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Abstract. Recently, deep learning framework gained extreme impor-
tance in various domains such as Computer Vision, Natural Language
Processing, Bioinformatics, etc. The general architecture of deep learn-
ing framework is very complex that includes various tunable hyper-
parameters and millions/billions of learnable weight parameters. In many
of these Deep Neural Network (DNN) models, a single forward pass
requires billions of operations such as multiplication, addition, compar-
ison and exponentiation. Thus, it requires large computation time and
dissipates huge amount of power even at the inference/prediction phase.
Due to the success of DNN models in many application domains, the
area and power efficient hardware implementations of DNNs in resource
constraint systems have recently become highly desirable. To ensure
the programmable flexibility and shorten the development period, field-
programmable gate array (FPGA) is suitable for implementing the DNN
models. However, the limited bandwidth and low on-chip memory stor-
age of FPGA are the bottlenecks for deploying DNN on these FPGAs
for inferencing.

In this paper, Binary Particle Swarm Optimization (PSO) based app-
roach is presented to reduce the hardware cost in terms of memory and
power consumption. The number of weight parameters of the model and
floating point units are reduced without any degradation in the gener-
alization accuracy. It is observed that 85% of the weight parameters are
reduced with 1% loss in accuracy.
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1 Introduction

Deep learning techniques on hardware have gained popularity because of their
good accuracy and use in wide range of applications. These techniques are used
in many modern machine learning applications such as driver assistance systems,
speech recognition, natural language processing, healthcare etc. DNNs are being
used in various applications because of their self-adaptive features, non-linear
characteristics and their ability to adapt versatile configurations [6,9,12]. Fur-
thermore, DNNs learn the input data pattern layer by layer and then extract
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the features. Various problems such as face recognition, medical image segmen-
tation and classification, action recognition/classification, autonomous vehicle
driving and machine translations have been successfully solved using deep learn-
ing frameworks. The top leading industries such as Google, Microsoft, IBM and
Amazon etc. are exploiting and enhancing these deep learning models for ana-
lyzing the massive data collected from various social media sources.

As the research moves toward success in terms of accuracy, there is a trade-off
between computational time and model complexity. To reduce the computational
time, research is facilitated towards the efficient implementation of these models
on hardware. Since deep learning techniques need to extract a large number of
features from raw data, it requires huge computational resources and hence com-
plex hardware to perform operations such as addition and multiplication on large
matrices. Thus, as the models get complex, it becomes difficult to implement
these DNN applications in resource constraint embedded devices. Also, various
parameters such as cost, efficiency, power consumption and accuracy will influ-
ence the hardware implementation of these deep neural networks, especially for
resource constraint applications. In the learning phase, these DNNs learn mil-
lions/billions of parameters which are stored in the memory. On the other hand,
inference is a compute-intensive task with a large number of floating-point oper-
ations. The limited on-chip memory is a considerable bottleneck in storing these
millions/billions of parameters and the low power budget becomes a huddle in
inference. In order to exploit the FPGAs in real-time inferencing, the following
three approaches are popular in the literature [11,18,20]:

1. Reducing the precision of floating point units.
2. Parameter reduction and use of approximate computing architectures.
3. Partitioning of the problem to implement on multiple FPGAs.

In this work, a Particle Swarm Optimization (PSO) based approach is proposed
to decrease the memory requirement and power consumption. The proposed
mechanism reduces the hardware cost by reducing the weights of the model using
a stochastic optimization technique. This results in alleviation of the precision
of floating point units with insignificant loss in the accuracy. Our contributions
in this study are as follows:

1. The memory used to store the model weights is reduced by parameter prun-
ing. The parameters of trained DNN Models are pruned using evolutionary
algorithms without much loss in generalization accuracy.

2. The power consumption in computation is reduced by low precision transfor-
mation on the pruned model parameters.

3. A generalized mechanism is created to reduce the number of weights of any
heavy DNN models such as AlexNet, DenseNet, VGG16, etc.

2 Background

In the literature, evolutionary algorithm based approaches have been widely
studied for multi objective optimizations and parameter tuning [7,19]. These



586 G. Kumar et al.

approaches look for an approximate solution by choosing an initial population
of candidate vectors with random values and refining the solution based on the
multi-objective fitness criteria [19]. These approaches could be explored to reduce
the number of parameters in the trained deep learning models.

2.1 Formulating the Optimization Problem

The heuristic algorithms such as Genetic Algorithms, Differential Evolution [16]
and Particle Swarm Optimization (PSO) are widely used in non-convex and
multi-objective optimization problems. These methods primarily require a fit-
ness function whose value (fitness value) is calculated for a given set of decision
variables. Before the beginning of the optimization procedure in the algorithm,
a population is randomly generated. This population is termed as a collection
of chromosomes/particles/agents/individuals in the framework of heuristic algo-
rithms. As the iterations of the algorithm proceed, the members of the population
are modified because of the evolutionary approach being followed. At the end
of iterations, the particle or chromosome that gives the optimized value for the
fitness function is selected. Depending upon the kind of optimization (maximiza-
tion/minimization) being done, either highest value or lowest value is selected
as the optimized value and thereby the particle or chromosome which gives the
optimized value is taken as the solution.

To fit the problem of parameter estimation of the Deep Learning model
into this framework, a fitness function and decision variables are required. The
purpose of the fitness function is to indicate how good are the solutions given
by the heuristic algorithm. Furthermore, the decision variables’ values influence
the fitness function’s value. However, it might be possible that the best values
require a large number of iterations. Thus, to reduce the time, the termination
criteria for the algorithm is the number of iterations.

2.2 Deep Learning for Hardware

In recent years, various types of dedicated hardware have been developed that
target deep learning techniques. For example, in order to perform multiple
floating-point operations with quick processing and high precision, a 16-bit
floating-point arithmetic is being used in Nvidia Tesla P100. Also, Big Basin
is a Facebook deep neural network server that performs DNN processing effi-
ciently [13].

Deep neural network models could be implemented on various hardware plat-
forms such as FPGAs, ASICs and SOCs [10,14]. Although the DNN implemen-
tation on CPU is flexible as well as cost-efficient, it is performance constrained.
On the other hand, DNN implementation on ASIC results in better performance
than CPU. The DNN implementation on SOCs is also gaining popularity due
to its ability to provide both hardware as well as software processing ability in
a single device. Hardware could be used as an accelerator, whereas software is
coded to perform a specific job/task.
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Fig. 1. The overall architecture of proposed approach.

3 Methodology

The proposed approach is shown in Fig. 1, which consists of basic DNN, an opti-
mization algorithm to reduce the number of weights and FPGA implementation
of the reduced model.

3.1 Deep Neural Network

To train the DNN model, MNIST [1] dataset has been taken as input, which is a
hand digit recognition dataset. The DNN model represented as F (X) have input
X where, X ∈ (x1, x2, x3 ,..., xn), and output Y where, Y ∈ (y0, y2, y3 ,...,
ym). The practical DNNs have hundreds or thousands of layers with thousands
of neurons in each layer, making total parameters in millions or billions. These
parameters need to be stored in the memory for inferencing phase.

There are many pre-trained models available in well known TensorFlow
library1. A few of them are briefly explained below:

1. AlexNet [8]: Standard AlexNet consists of 8 layers, out of which 5 are con-
volution layers and 3 are fully connected layers. It is trained on the ImageNet
dataset. AlexNet revolutionized the state-of-the-art in object recognition in
the real time.

2. DenseNet [5]: This model is similar to a dense layer feed-forward network
where each layer is fully connected with the successive layer. This model has
been primarily used for object recognition tasks on ImageNet, CIFAR, SVHN
and CIFAR100 datasets.

3. VGG16 [15]: This model has been used for ImageNet dataset classification
and is also widely used as a transfer learning pre-trained model in low resource
domains.

1 https://keras.io/api/applications/.

https://keras.io/api/applications/
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In our experiments, AlexNet [8] is chosen to demonstrate the effectiveness
of the proposed approach. The chosen model is a moderate-size DNN model
suitable for the proof of the concept.

3.2 Particle Swarm Optimization (PSO)

To optimize the number of parameters, an existing optimization algorithm, i.e.,
Particle Swarm Optimization (PSO) algorithm [7] is used. This is a bio-inspired
algorithm which does not require a convex objective function. This algorithm
works for any non-convex, discrete and multi-objective function optimization
scenario. In most cases, the objective function serves as part of the fitness func-
tion. The fitness of a particle/position/individual represents the goodness of
the solutions. A few hyper-parameters are required for the PSO algorithm. The
fitness function for the minimization is

f = α × (1 − accuracy) + (1 − α) × countx(1)
total_features(x)

(1)

Here, accuracy is the model accuracy after parameter pruning by particle swarm
optimization (PSO) algorithm, and countx(1) is the remaining number of param-
eters after pruning. The proposed non-convex fitness function jointly minimizes
the validation error and number of parameters. The parameter α controls the
contribution of model validation error and the number of parameters in the joint
optimization.

The PSO algorithm tries to minimize the fitness function so that it can
increase the accuracy as well as decrease the number of parameters. It tries to
get the best position for each particle by updating its local best (pbest) and then
global best (gbest) position. In this work, the position vector is represented using
a binary vector of ‘1s’ and ‘0s’. The value ‘1’ represents the inclusion/selection of
the corresponding weight parameters, while the value ‘0’ represents the rejection
of the corresponding weight parameters in the model. Thus, an optimized posi-
tion vector represents the optimized number of parameters. Initial velocities and
positions are randomly generated for each particle and then updated according
to the following equation:

v(i+1) = w × vi + c1 × r1 × (pbesti − xi) + c2 × r2 × (gbest − xi) (2)

where vi is the velocity of ith particle, xi is the position of ith particle, w ∈
(-1,1), c1 + c2 ≤ 4, and r1, r2 ∈ (0,1) which are randomly generated

xi+1 =

{
1 if sigmoid(vi+1) ≥ 0.5
0 else

(3)

The PSO Algorithm 1 follows the following steps to find out the optimum solu-
tion:
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1. In first step, random positions and random velocities for each particle are
collected. Each particle has its own pbest position and each iteration has a
gbest position.

2. In second step, the fitness function is calculated on the positions of all the
particles and again choose the pbest and gbest.

3. In next step, the algorithm re-calculates the velocities of each particle with
local best and global best positions.

4. Then, with the help of new velocities, it re-calculates the optimum positions,
i.e., local best of each particle. Because of binary PSO, rather than simply
adding the position vector with velocity, it uses another method explained in
next step.

5. Finally, to update the position vector, sigmoid of velocities are taken and if
they are greater than 0.5, then the position vector has a value of 1; else 0.

6. The above steps are repeated until a near-optimum solution is observed or
some loop-breaking condition is met.

Complexity: The complexity of the Algorithm 1 is O(T.k.m.F ); where T
denotes the number of maximum iterations, k denotes the number of parti-
cles/individuals, m denotes the number of parameters and F denotes the com-
plexity of fitness function.

Algorithm 1. Binary Particle Swarm Optimization
1: Input: Fitness Function, Initial Positions(xi), Initial Velocities(vi)
2: Output: Optimal Solution
3: for each particle (i) do
4: Calculate fitness function (fi)
5: Update pbesti and gbest
6: end for
7: while iteration do
8: for each particle (i) do
9: Update velocities (v(i+1)) and positions (x(i+1))

10: Update pbest(i+1) and gbest
11: end for
12: end while
13: Return: Optimal Solution

3.3 Low Bit Precision Representation

For the floating point representation of real numbers, the IEEE 754 standard is
used. It has three components: sign, exponent and fraction. The sign is of 1 bit,
exponent is of 8 bit and fraction is of 23 bit, which makes a word size of 32 bits.
The reduction in the number of bits for floating point representation requires
less complex hardware and hence reduces the power consumption. Floating point
is a quantization of infinite precise real numbers. The standard floating point
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representation can exactly represent the real number in the range of 10−5 to
105. If the number is out of this range then, it is rounded off. However, most
deep neural networks perform their calculations in a relatively small range, such
as −10.0 to 10.0. Thus, by compressing the 32-bit weight matrix into 8 or 16
bits after parameter pruning, there is no significant loss in the accuracy. The
experiments show that 1 bit for sign, 5 bit for exponent and 2 bit for fraction in
case of 8 bit representation and 1 bit for sign, 11 bit for exponent and 4 bit for
fraction in case of 16 bit representation produce best results.

4 Experiments

To evaluate the effectiveness of the proposed approach, extensive experiments are
performed. The training of deep learning models involves various matrix oper-
ations such as multiplication (MACC), addition (ADD), comparison (COMP),
division (DIV) and exponentiation. In many DNN models, billions of operations
are required, as shown in Table 1. Thus it requires high power budget and com-
putation time. The Graphics Processing Units (GPUs) were designed to exploit
SIMD architecture. The GPUs provide more computational power with a fast
connection to memory. The GPU architectures are widely used to train and
inference large deep layered neural networks such as VGG16 [15], Inception V3
[17], ResNet-152 [4] and BERT [2] etc. The GPU devices are very power-hungry,
which limits their usage for real-time applications using mobile devices, IoTs etc.

As shown in Table 1, AlexNet has 60.97 M parameters which are trained
and stored in the memory for inferencing. Also, it has 17.86 M parameters in
convolution layers. We use AlexNet for our experiments as it has significantly
large number of parameters.

4.1 Results

The PSO algorithm optimizes the number of parameters without any significant
loss in generalization accuracy. As can be observed from Fig. 2, the fitness func-

Table 1. Deep learning model details [3]

Model MACC COMP ADD DIV Activations Params

InceptionV4 12.27 G 21.87 M 53.42 M 15.09 M 72.56 M 42.71 M
InceptionV3 5.72 G 16.53 M 25.94 M 8.97 M 41.33 M 23.83 M
InceptionV2 13.18 G 31.57 M 38.81 M 25.06 M 117.8 M 55.97 M
ResNet-152 11.3 G 22.33 M 35.27 M 22.03 M 100.11 M 60.19 M
ResNet-50 3.87 G 10.89 M 16.21 M 10.59 M 46.72 M 25.56 M
AlexNet 7.27 G 17.69 M 4.78 M 9.55 M 20.81 M 60.97 M
GoogleNet 16.04 G 161.07 M 8.83 M 16.64 M 102.19 M 7 M
VGG16 154.7 G 196.85 M 10 K 10 K 288.03 M 138.36 M
BERT -12 − − − − − 110 M
BERT-24 − − − − − 345 M
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Table 2. Parameter values for PSO

Name Value of the parameter

Number of particles 10
Maximum iteration 100
alpha(α) 0.7
omega(w) 0.99
c1 2.0
c2 2.0

tion is minimized as the number of iterations increases. The inertia weight w
and velocity vector are initialized with 1.0 and 0.1, respectively, in the experi-
ments. After every iteration, w is multiplied by 0.99. Table 2 provides the details
of other parameters. It should be noted that there are some rises and falls due
to the local minima. As shown in Fig. 2, the fitness value saturates after 8th
iteration. There is no further reduction which denotes the completion of the
algorithm. Now, the reduced number of parameters is calculated using the gbest
position vector. The parameters after parameter pruning are only 15% of the
total parameters with 1% loss in accuracy (i.e., 98.20%, Table 3). It has also
been observed that proposed optimization heuristic achieves 50% reduction in
the number of parameters without any degradation in the validation accuracy
(Table 3). Additionally, a comparison of the proposed PSO based approach with
the Random Parameter selection method (RP) is provided in Table 3. The RP
method achieves a 50% reduction in total parameters with 8% loss in accuracy.

Fig. 2. Fitness vs Iteration

The parameters count after each iteration of the algorithm is shown in Fig. 3.
It is evident from Figs. 2 and 3 that as the number of parameters increases,
the fitness value also increases. The accuracy of the model after each iteration
of parameter pruning by the PSO algorithm is shown in Fig. 4. The proposed
approach achieves a similar set of accuracy with 85% reduction in the number
of parameters.
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Fig. 3. Remaining Parameters vs Iteration

The original model and model after parameter pruning (proposed model)
with different floating-point precision are compared in Table 4. It can be observed
that the proposed model reduces the model size by 50% while producing a similar
set of accuracy. It should be noted that the accuracy degrades when the floating
point precision is reduced (Table 4).

Fig. 4. Accuracy vs Iteration

4.2 Hardware Cost

By using PSO algorithm, 85% of the total parameters are reduced, which directly
results in the reduction of total required memory. A further saving of the mem-
ory (by a factor of two) can be achieved using low bit representation for the
remaining 15% parameters. Moreover, the reduction in the total parameters
directly reduces the required power budget. This is because the energy required
for the floating point multiplication reduces significantly. Instead of a floating
point multiplication, now it becomes an integer multiplication with zero.
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Table 3. Model validation accuracies for MNIST dataset

Method #Parameters Accuracy

Original Model (AlexNet) 17,866,752 99.40
Random parameter selection 9,930,946 91.65
Proposed Model (without any loss) 8,933,370 99.40
Proposed Model (with loss) 2,680,012 98.20

Table 4. Model Sizes with different floating point precision and accuracy

Name 64-bit float 32-bit float 16-bit float
Size (in MB) ACC Size (in MB) ACC Size (in MB) ACC

Original model 142.934 99.40 71.467 98.20 35.733 97.50
Proposed model 69.467 98.20 33.733 97.80 17.733 96.80

5 Conclusion and Future Work

In this paper, a generalized mechanism to reduce the cost (in terms of area
and power) of a hardware implementation of Deep Neural Network is proposed.
It has been shown that 85% of parameters could be reduced with 1% loss of
accuracy with parameter pruning. A further reduction in required memory space
is achieved with low bit floating point representation for remaining parameters.
Thus, making it suitable for resource constrained embedded devices. For future
work, the more advanced and complex deep neural network will be implemented
on hardware using this scheme.
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