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The Application of Al in Precision ekl
Oncology: Tailoring Diagnosis, Treatment,

and the Monitoring of Disease Progression

to the Patient

Zodwa Dlamini and Rodney Hull

Abstract Personalised oncology has long been the ideal when it comes to the
management of cancer. The ability to tailor screening, diagnosis, therapy and
monitoring to an individual patient or group of patients would vastly decrease the
burden of cancer while ensuring higher rates of patient survival and treatments with
less side effects and more success in controlling or eliminating the disease. Precision
oncology requires that as much information regarding the patient or population
group be known. In terms of the underlying molecular basis of the disease, this is
now being realised further to the advent of high throughput technologies such as
next-generation sequencing (NGS) and advances in mass spectrophotometry. This
has led to an “omics” revolution, with large datasets of information regarding the
molecular basis of cancer in individuals being generated. Artificial intelligence
(AI) is the ideal technology to manage and interpret these large datasets. In con-
junction with machine learning (ML) and deep learning (DL), Al can more accu-
rately interpret not only omics data, but it can also integrate data from other sources
such as patient reports and medical imaging to give a more precise view of the
individual or population, allowing for better clinical decision-making.
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1.1 Introduction

The underlying molecular basis of cancer is complex and deciphering it has been the
basis for many decades of research. The revolution in the available techniques that
occurred in the 1970s led to the first in-depth studies concerning the molecular basis
of cancer. Gaining an understanding of the changes that give rise to cancer at the
molecular level allowed to not only understand how events in the body give rise to
the disease but also how it progresses and also how these events could be targeted for
the development of therapies. It was these initial studies that allowed for the
development of the first drugs that could target molecules and signalling pathways
to treat oncogenic processes, such as uncontrolled proliferation and resistance to
apoptosis. When microarrays were first developed, their ability to create a profile of
gene transcription in cancer (reviewed in (Govindarajan et al., 2012)) led to the first
discussions of precision oncology. Precision oncology, a type of precision medicine,
involves the tailoring of screening or treatment to an individual or specific popula-
tion group based on the molecular profiles specific to that individual or group of
individuals (Batch et al., 2022). The understanding of the molecular biology under-
lying cancer has been advanced in recent decades by the development of high
throughput techniques such as next-generation sequencing (NGS) and advanced
proteomics techniques such as SWATH. The data generated by these techniques
has been used to decipher the molecular mechanisms of tumour initiation and
progression. This data has also been used to construct database resources to integrate
and analyse molecular mechanisms underlying cancer.

The ability of scientists to use these large datasets and databases to make useful
observations and predictions concerning cancer is due to the advent and application
of artificial intelligence. Artificial intelligence (AI) is an analytical or predictive
operation performed by computers to emulate the decision-making processes of
human beings. It has intensive problem-solving capabilities and can be used to
perform tasks such as making predictions, scaling data, integrating different datasets,
and reducing the dimensionality of data. Most importantly precision oncology can
associate different patterns within data with real-world diagnoses, prognoses, or
disease monitoring capabilities. The ability of Al to analyse large sets of data and
transform this data into clinically actionable knowledge relies on the ability of Al to
learn from either previous data or model teaching datasets. This learning ability is
based on machine learning (ML) and deep learning (DL)-based approaches (Jiang
et al., 2017) (Saltz et al., 2018) (Huang et al., 2020) (Ibrahim et al., 2020). The
increase in interest in Al, precision oncology and precision medicine can be seen in
the number of entries these topics find when used as search terms in PubMed.
Standalone terms that carry entries for Al or precision medicine go back to the
1950s while the earliest entries for precision oncology date to the 1970s. There has
also been a lot of interest in Al since the 1990s while interest in the other two
increased rapidly from 2010 onwards. A combination of terms involving Al both
precision medicine and precision oncology AND Al have only been topics of interest
since 2017 (Fig. 1.1).
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Fig. 1.1 PubMed entries on Al and precision medicine/oncology (a) using the terms independently
the earliest references to Al or precision medicine come from the 1950s. While the earliest reference
to precision oncology comes from 1977. All terms show an increase in the number of entries in
PubMed. (b) The number of entries in PubMed for Al AND precision medicine and AT AND
precision oncology since 2015/ This is a depiction of the number of entries identified in PubMed
when the search terms AI AND precision medicine and AI AND precision oncology are used. For
both terms, there are only regular entries after 2015 and the number of papers increases dramatically
as time goes on. This demonstrates that these are topics of growing interest to researchers
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1.2 Al in Medicine

In order for Al to accurately make predictions regarding a patient’s health and
treatment requirements, it must be able to learn from previous data and analyses.
In this way, it emulates the human clinician learning from past experiences. The
ability of computing algorithms to learn and adjust their performance to better
recognise patterns in data is known as machine learning (ML). Initially, an Al
does this using training data to create or fine tune mathematical models (Hakenberg
et al., 2012). Deep learning (DL) is a specific type of ML which uses data that is
labelled (supervised) and data that is unlabeled (unsupervised) in the training
process. It integrates these different types of data by using multi-layer non-linear
analysis and classification. One of the applications of DL is in a process known as
natural language processing, and reinforcement learning (Falk et al., 2019)
(Kaelbling et al., 1996).

Natural language processing (NLP) algorithms use two terms and establish if they
are linked by counting the number of times they occur together. If they occur
together more frequently than they are associated (Cheng et al., 2008) (Santus
etal., 2019). This technique is used to search large amounts of literature or databases
of information for articles or cases of interest. This is important because there are
vast amounts of literature relating to cancer research and studies. One of these
algorithms, known as MEDscape uses NLP to search and organise medical patient
notes. The useful data retrieved from these notes is used to automatically update
patient records (Morin et al., 2021). Al using NLP algorithms have been used to
accurately predict patient outcomes using a variety of data including imaging reports
and oncologist notes from thousands of patients with multiple different tumour
types. The predictions the AI was able to make included cancer progression,
treatment response and the likelihood and speed of metastasis (Kehl et al., 2021).

Al makes use of neural networks to copy the way humans think and interpret data
but without user bias and human error. These neural networks allow Al to make
logical conclusions similar to those that could be reached by humans (Joshi et al.,
2021). These networks use multiple fundamental computing units (neurons) to
convert raw input data into classified, annotated and analysed output data. The
nodes are connected to form a network that contains multiple layers including an
input layer, multiple functional or hidden layers, and an output layer (Kuwahara
et al., 2021). There are multiple types of neural networks. Artificial Neural Networks
(ANNSs) use multiple interconnected computational neurons that distribute data
analysis tasks. These networks are useful for analysing multidimensional complex
data. The distribution and initial decisions the network make regarding this data are
based on the learning by these algorithms. This algorithm also analyses the data
sorting decisions by analysing if these decisions make the outcome worsens or
improves the output (Baskin et al., 2016). Convolutional neural networks (CNN5s),
a type of ANN, contain neurons that are self-optimised through learning. (O’shea
et al.,, 2021). They are classed as Deep Neural Networks, because CNNs have
multiple layers (Alquraishi & Sorger, 2021). Recurrent neural network (RNN)
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Table 1.1 Decision tree techniques

Decision tree

technique Method Reference
Random deci- | Construct multiple decision trees at the training stage. The | (Ho, 1995)

sion forests final decision is the most common output.

Neighbour Bottom-up method where outputs that are most similar are | (Saitou & Nei,
joining grouped together. 1987)
Regression Nodes represent the mean of the results of the preceding | (Kaminski et al.,
analysis nodes. 2018).

Binary Deci- Sequential decision process with features evaluated with | (Garcia Marquez
sion Tree one of two outcomes. et al., 2019)

remembers previous analyses both the inputs and resulting outcomes and then treats
all future inputs and outputs as related (Dupond, 2019).

Al must be able to make decisions to perform its analysis and useful feature
selection. The decision tools used are generally decision trees. These decision tools
are named trees as the graphical representation of the decision-making process
resembles a flowchart. The Al performs a test or analysis of each piece of data,
and this gives rise to separate results. Each decision is represented as a node and each
result represented as a branch. The final results then lead to a further analysis of each
branch. This gives rise to the branched tree structure with some decisions (results
proving to be dead ends). The final terminal nodes are known as classification or
label (Kamirski et al., 2018). There are different types of trees as shown in Table 1.1
and Fig. 1.2.

Al has used decision trees to improve diagnosis. One study used lung cancer
samples from the Lung Image Database Consortium (LIDC) dataset. This data was
split 90% for training and 10% for testing. A labelled subset of the training set was
used to train a CNN-based ransom decision tree. Once the CNN random decision
tree was trained it was tested on the test data. This tree was able to accurately assign
labels to the unlabeled data (Zheng et al., 2019). The origin of cancer tissue gas has
been predicted based on miRNA profiling using Al based on two types of decision
tree. Firstly, with neighbour joining methods and secondly with binary decision tree
analyses. The neighbour joining method with an accuracy of 93.9%. The prediction
accuracy of the binary decision tree method was 84.8% (Park et al., 2021).

Guidelines have been established in order to assist in the validation of the analysis
provided by Al. These guidelines are known as the critical assessment of genome
interpretation (CAGI) and were formulated using variants that were experimentally
validated to cause disease and assessing if those predictions obeying the guidelines
match these validated results (Andreoletti et al., 2019). The fifth edition of CAGI
created in 2021 consists of 14 questions or criteria known as challenges (Andreoletti
et al., 2019).
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Final
decision

A) Random forest decision tree

Fig. 1.2 Depictions of common decision tree methods (a) Random Forest trees use multiple trees
and then select the most common outcome (b) Neighbour joining tree group nodes by similarity and
select between these similar nodes (c) Regression trees the nodes are the mean of the previous nodes
(d) Binary trees with sequential decisions based on one of two possible outcomes
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1.3 Biomarker Discovery and Application

An ideal strategy to improve the screening, diagnosis, classification, staging and
treatment of various cancers, is the identification of various molecules or molecular
patterns or profiles that can serve as biomarkers. These biomarkers can be genomic
mutations, transcripts, non-coding RNAs, proteins, metabolites, or even epigenetic
markers. When patients present with symptoms indicating that they may have
cancer, the standard procedure is a physical examination and radiographic imaging,
this may be followed by biopsy examination. Many cancers screening procedures
require invasive or expensive procedures. Biomarkers are normally classified as
prognostic or predictive. Prognostic biomarkers are used to categorise patients by
their risk of developing disease (screening), diagnosis of the disease, risk of disease
progression, severity of disease and risk of death from the disease (Echle et al.,
2021). Predictive biomarkers can be used to select a targeted treatment. These
predictive biomarkers can also be used for drug discovery or in clinical trials for
new treatments (Echle et al., 2021). The discovery of these biomarkers relies on the
use of large omics datasets and the identification of patterns of the presence or
absence of molecules in these large datasets that can be associated with disease. Al is
a vital tool in this discovery process as it allows these large datasets to be rapidly and
accurately analysed and associations with diseases to be identified. This is made
possible through the use of machine and deep learning algorithms. Indeed, DL-based
image analysis has broad applications in multiple fields of modern medicine that
involve image data: in radiology, DL performs (Echle et al., 2021).

Liquid biopsies involve the identification of biomarkers in various body fluids.
This can be blood, urine, saliva, or even cerebral spinal fluid. This is a more ideal
diagnostic or prognostic technique than normal biopsies as they are less invasive and
traumatising to a patient. This is also an important consideration for precision
medicine as these samples can be obtained and analysed rapidly to give a current
view of the patients’ health and status (Kaur et al., 2017). These biomarkers can be
transcripts, genomic markers in the form of DNA, proteins, or metabolites. In the
case of RNA and DNA the transcripts would appear in biological fluids in the form
of circulating cell free nucleic acids (ccfNAs). These ccfNAs have already been used
as biomarkers in cancer diagnosis, prognosis, and monitoring (reviewed in (Pos
et al., 2018)). It has also been established that these ccfNA appear in higher amounts
in disorders such as cancer (Pos et al., 2018).

These nucleic acids can be in the form of cell free DNA which is fragmented
DNA usually no longer than 450 bp in size. This DNA can be either of genomic or
mitochondrial origin (Thierry et al., 2016). Circulating cell free RNAs include
mRNA transcripts, non-coding RNAs, such as microRNA (miRNA), long
non-coding RNA (IncRNA) and circular RNAs, transfer RNAs and ribosomal
RNAs (reviewed in (Pos et al., 2018)). These nucleic acids are normally released
into the body fluids as a result of cell death or in the case of many of the RNA
molecules through active secretion (Vita et al., 2022).
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1.4 Multi-omics Data

High throughput techniques like NGS allow for in-depth analysis of the mutational
landscapes, gene expression patterns and epigenetic modifications for a large num-
ber of samples. Integration of “multi-omics” (genomics, epi-genomics,
transcriptomics, proteomics, and metabolomics), and “non-omics” (medical/mass-
spectrometry imaging, patient clinical history, treatments, and disease endemicity)
data could help overcome the challenges in the accurate detection, characterisation,
and monitoring of cancers. The complex analysis, annotation and combination of
various omics data is sometimes only possible following data simplification. When
these simplification processes are performed it is important to note that it may lead to
the loss of information. The complexity of data is normally measured by the number
of dimensions (variables) it has (Pezoulas et al., 2021). This reduction allows for
increased ease and speed of analysis as well as a reduction in the space needed to
store the data (Meng et al., 2016).

1.4.1 Genomics

The generation of large genomic datasets is due to advances in next-generation
sequencer (NGS) (Paolillo et al., 2016)) and in silico computational algorithms.
Whole genome sequencing allows for the analysis of all genomic alterations in
cancer. It gives information regarding the number and identity of driver mutations
and allows the mutational signature of the tumour to be identified. WGS has led to
multiple sequencing projects and the establishment of databases containing the DNA
sequence profiles of many cancers. These databases are listed in Table 1.2. To be
truly useful genomic data must be integrated with clinical data, patient demo-
graphics, survival data, treatment status (Robinson et al., 2017). This is needed to
link genomic events to specific cancers prognoses, and treatment responses
(Robinson et al., 2017). Al has immense potential to contribute significantly at
every stage of cancer management ranging from reliable early detection, stratifica-
tion, determination of infiltrative tumour margins during surgical treatment, response
to drugs/therapy, tracking tumour evolution and potential acquired resistance to
treatments over time, prediction of tumour aggressiveness, metastasis pattern and
recurrence (Bi et al., 2019).

1.4.2 Transcriptomics

Transcriptome includes the transcribed mRNAs, the alternately spliced isoforms of
those mRNAs as well as non-coding RNAs such as miRNA. Any study looking at all
these transcripts will aim to identify all the transcripts involved in metabolic
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Table 1.2 DNA sequence databases and their applications

Database

Application

Reference

The Cancer Genome
Atlas (TCGA)

Understand the molecular basis of cancer
through the application of genomics.

(Wang, Jensen,
& Zenklusen,

2016)
International Cancer Voluntary collaborative forum. (Zhang et al.,
Genome Consortium 2019)

(ICGC)

CatLog of Somatic
Mutations in Cancer
(COSMIC)

Catalogue of somatic mutations in human cancer
showing the impact of these mutations.

(Forbes et al.,
2015)

The NCI’s Genomic Data
Commons (GDC)

A unified repository for cancer knowledge
enabling data sharing across cancer genomic
studies in support of precision medicine.

(Gao et al., 2013)

cBioPortal

Provides visualisation, analysis and download of
large-scale cancer genomics data sets.

(Gao et al., 2013)

Methyl-Cancer

Database for human DNA Methylation and
Cancer

(He et al., 2008)

UCSC Cancer Genomics
Browser

Displays whole-genome and pathway-oriented

(Goldman et al.,
2013)

views of genome-wide experimental measure-
ments for individual and sets of samples.

Moonshot project Aims to address inequalities in access to cancer

screening in the USA.

(Hsu et al., 2017)

processes and how they interact to result in gene expression. Studies that only
examine specific sets of transcripts, i.e., mRNAs or miRNAs will provide answers
to more specific questions. The result of epigenetic changes that occur in cancer can
and have been studied by examining the transcriptome of cancers where these
epigenetic changes have occurred. These studies have been undertaken in breast
cancer (Robinson et al., 2015), prostate (Varambally et al., 2002) (Bhasin et al.,
2015), head and neck squamous cell carcinoma (HNSCC) (Kelley et al., 2017).

1.4.3 Proteomics

Proteomic profiles reveal the actual cellular response to the conditions a cell is faced
with. The change in protein expression also provides information regarding pro-
cesses that affect protein modification, transport, and stability. Datasets of protein
expression profiles are created using mass spectrometry and have been used to
profile protein expression changes in response to therapy, monitor drug toxicity,
and for diagnosis using specific biomarkers. These biomarker profiles, which are
identified through protein expression signatures can also be to monitor disease
progression, establish metastatic risk, do treatment follow-up to check for recurrence
and stratify patients according to subtype (Keyl et al., 2022). Once again, these large
data sets require Al to interpret them accurately, reliably, rapidly and consistently.
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Many Al algorithms have been used to infer protein—protein interaction networks
from proteomic datasets (Keyl et al., 2022). Another significant role for Al in
proteomics is predicting docking capabilities between drugs and their target
compounds.

Al can also be used to combine and integrate proteomic and genomic data to
identify DNA mutations related to protein signalling. These genetic changes can
then be said to be genetic drives of cancer. This has been performed in breast cancer,
where the identification of signalling pathways specifically altered in different breast
cancer subtypes was achieved. It also identified SKP1 and CETN3 as two new
markers for basal-like breast cancer (Mertins et al., 2016). Proteomic and
transcriptomic data can be integrated to identify changes in the splicing of mRNA
and the generation of different protein isoforms that may be characteristic of
different cancers (Liu et al., 2017). Proteomic data can show a much stronger
association to the clinical characteristics of a patient, and this is reflected by the
close association of integrated proteomics data with the clinical outcomes, for
example MS analysis integrated with histopathological diagnosis (Huber et al.,
2014). This can be done with very small amounts of extracted proteins, for example
a study was performed where very small amounts of protein were analysed using
LC-MS which led to deep coverage of entire proteomes of specific cell types (Kulak
etal., 2017). A recent development has been the use of single-cell proteomics which
has gained importance since it is able to give insights into cancer heterogeneity and
the metastatic ability of single cells compared to colonies. It is also able to provide
information concerning rare/mutated cells (Doerr, 2019). This has been successfully
used to grade and rank acute myeloid leukaemia hierarchy (Schoof et al., 2021Db).

1.4.4 Metabolomics

Metabolomics is the analysis of small molecules, such as amino acids, lipids,
nucleotides, carbohydrates and organic acids, which are produced because of pri-
mary or secondary metabolic processes. The populations of these molecules changes
during, growth, in response to stress and consequently during the development and
progression of cancer (Bertini et al., 2009) (Lin et al., 2011) (Veselkov et al., 2011).
Therefore, metabolomics can be used as an indicator of the molecular mechanisms
underlying tumorigenesis.

It can also be used to monitor disease progression, the response of the tumour to
drugs and other treatments. As with proteomics, the profiling of metabolites relies on
mass spectrometry but with the additional use of nuclear magnetic resonance (NMR)
spectroscopy (Merz & Serkova, 2009). Traditionally the sample had to be separated
or fractionated to achieve the best results, but separation-free MS techniques have
been developed which reduce the volume of sample required and reduce variation in
the data generated through the analysis. These include direct infusion-MS, MALDI-
MS, mass spectrometry imaging (MSI), and direct analysis in real-time mass spec-
trometry (Dettmer et al., 2007). The Global Natural Product Social Molecular
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Networking (GNPS) is a small-molecule mass spectrometry networking hub.
Researchers can deposit their own MS data for small molecules and this repository
is available for other uses to search and use. GNPS has been shown to be very useful
for cataloguing and organising MS/MS data using Al in the form of correlation and
visualisation approaches. These can be used to identify spectra from related mole-
cules (Wang, Carver, et al., 2016). Techniques such as principal component analysis
or hierarchical clustering can be used in conjunction with ML to data mine these
repositories to enhance the identification of spectra (Bertini et al., 2009) (Duan et al.,
2005). These techniques have been used to identify metabolic biomarkers for
multiple cancers including colorectal (Yamazaki, 2015), pancreatic (Zhang et al.,
2012), lung (Zhuang et al., 2016), breast (Li et al., 2020), gastric (Ikeda et al., 2012),
ovarian (Zhang et al., 2013) and prostate (Kelly et al., 2016).

1.4.5 Microbiomics

It has been estimated that the microbiota of the average human contains 40 trillion
microbial cells (Sender et al., 2016). This microbiota is now known to play a role in
the development and progression of cancer, especially through interactions with the
nervous system and what is known as the gut-brain axis (reviewed in (Hull et al.,
2021)). The profiling of all the microbial genes, metabolites, proteins and transcripts
within a single patient is known as the patient’s microbiome (Sepich-Poore et al.,
2021). This can partly be explained by the interaction between the microbiome and
the immune system as this may favour the development of cancer (Mangani et al.,
2017). Microbiomes have been so closely associated with cancer, that it is now
known that specific populations of microorganisms and microbial metabolites are
associated with specific cancers. Therefore, different microbial signatures can be
used as biomarkers to diagnose or monitor cancer, and affect the safety, tolerability
and efficacy of specific treatments. Microbiomics are studies using the same high
throughput techniques such as NGS and mass spectrometry. Once again this gives
rise to large databases, which require the use of Al and machine or deep learning to
analyse and interpret this data. Any attempt to integrate this microbiomic data with
other “omics” data would require the use of Al (reviewed in (Cammarota et al.,
2020)). Al can also be used to identify and evaluate microbiome community
interactions with other microbes or the host. This is done using Network analysis
and is useful for the identification of changes in these interactions may be caused by
microbial community structure, environmental factors, metabolites, clinical. These
networks can be constructed based on similarity or correlation coefficients between
pairwise variables. Extended relationships can then be inferred based on these
pairwise interactions. This is done using algorithms such as SparCC (Sparse Corre-
lations for Compositional data) (Friedman & Alm, 2012) and Compositionally
Robust Inference of Microbial Ecological Networks) (Faust et al., 2012).
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1.5 Imaging

Medical imaging techniques such as Magnetic Resonance Imaging (MRI), CT scans,
and Positron emission tomography (PET), are commonly used in the diagnosis of
cancer. This is because these techniques are good at soft tissue contrast. This allows
them to be good at locating tumours and monitoring tumour progression. They are
also non-invasive and have a high resolution (Magadza & Viriri, 2021) (Menze et al.,
2014). The aim of imaging cancer or suspected cancer tissue is known as tumour
segmentation. This is the act of distinguishing between normal and cancerous tissue.
This is a vital procedure for the use of imaging techniques in diagnosis and treatment
planning, monitoring treatment response and disease progression (Bousselham et al.,
2019). AI has been successfully used to automate the interpretation of medical
imaging. It has been shown to be able to analyse stained sections of temper tissue
and segment these images allowing for the identification and quantification of
various parameters. These include the rate and amount of mitosis (Romo-Bucheli
et al., 2017), the presence and abundance of mutations (Coudray et al., 2018), the
differentiation between nuclei from benign cells versus those from cancer cells
(Sirinukunwattana et al., 2016) (Xu et al., 2016), spatial localisation of proteins
(Saltz et al., 2018). Al-based image analysis is more reproducible, objective and is
quantitative compared to manual assessment. Convolutional neural networks
(CNNs) are most commonly used for image analysis (Muhammad et al., 2020).
There are two types of automated segmentation, generative and discriminating
methods (Magadza & Viriri, 2021). Both methods use the same seven stages of
analysis image acquisition, image preprocessing (deionising/enhancement/restora-
tion), image segmentation/feature extraction and object recognition (Pan, 2007).
Image Segmentation techniques are all based on pixel-based selection to discern a
Region of Interest (ROI). However, there are different methods that are used to
achieve this, In the region-based method, a pixel in the ROI is selected as the
reference or seed pixel. Neighbouring pixels are then compared to this pixel in
order to establish if they are similar enough to be included (Punitha et al., 2018). In
the edge-based method, the image is reduced to only its important structural char-
acteristics. This decreases the image size. It also allows for the image’s background
to be separated from the object (Farag, 1992). The fuzzy theory-based method is an
amalgamation of the region and the edge methods. (Basir et al., 2003). The partial
differential equation (PDF) method calculates an energy of the image function. It
then uses a partial differential equation (PDE) to describe the parametric curve
evolution based on the energy of the image. It then uses this equation to find similar
pixels (Sliz & Mikulka, 2016). In the threshold-based method, a grayscale binary
image is created to reduce image complexity. This makes it easier to classify pixels
(Bhargavi & Jyothi, 2014). Finally, the semantic segmentation network method
classifies every individual pixel as either tumour or normal (Chen et al., 2017).
When it comes to performing Whole Slide Image (WSI) segmentation some of these
methods are more time and computing power consuming than others. The semantic
method is the slowest and requires the most computing power (Guo et al., 2019).
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1.5.1 Radiogenomics

Histopathological images have been integrated with genomics data in order to
enhance feature selection based on cancer tissue architecture (L6pez de Maturana
et al., 2019). In a similar way, multi-omics data have been associated with features in
medical images to develop predictive models using Al algorithms. This has been
successfully performed for prostate cancer (Robinson et al., 2015), renal cell carci-
noma (Schoof et al., 2021a), low-grade glioma (Brat et al., 2015), non-small cell
lung cancer (Yu et al., 2016) and breast cancer (Yuan et al., 2012). This technique
was initially given the name imaging genomics since it associated image features
with genomic data. However, another term, radiomics or radiogenomics has been
used to cover all the different omics data that can be associated with image features
(Bodalal et al., 2019). Image features that can be associated with this omics data
include structures, shapes, lines, points, colours or boundaries. It can even be
extended to regions of the image associated with these features (Bi et al., 2019). In
order to carry out a radiogenomics analysis, the Al must extract features identified on
an image and link these features with phenotypes which is due to protein expression
which can then be associated with genomic, transcriptomic and epigenomic or other
omics changes (Rutman & Kuo, 2009). The appearance of these features on an
image can then be an indication that these omics changes are present in the patient
and the tumour. In the same way, these omics profiles can be used as indicators of for
instance patient survival or disease progression, these associated image features can
now be used to do the same (Berger & Mardis, 2018). Al is also necessary in
radiogenomics as some of the features or changes in the cancer tissue may be so
subtle that they may be missed by the human eye. Computer-assisted image analysis
will accurately and consistently detect these changes based on what the algorithm
has learned from previous data thanks to the application of machine and deep
learning. These changes can then be associated accurately and without bias to any
genomic, proteomic, transcriptomic, epigenomic, metabolomic or feature within the
patient records. This is due to the analysis the Al can conduct on this data to extract
unique features and then associate them with the unique image features. As previ-
ously stated, this integration would be too complex for a human being to complete
accurately and timeously (Hussein et al., 2017). This end-to-end, automated data
analysis or pipeline is able to compute and discriminate a vast number of features in
both the image analysis and patient records or omics data to achieve the most
accurate selection of features that are associated. And these models’ ability to
learn means that they are optimising their analytical ability and performance while
integrating these data sets and looking for associations (Jansen et al., 2018).

Ai and radiogenomics have been shown to be able to predict the neoadjuvant
therapy response in esophageal cancer using a convolutional neural network to
analyse fluorodeoxyglucose positron emission tomography (18F-FDG PET) images.
It was able to associate features from these images with transcriptomic data and
make highly specific and accurate predictions (Ypsilantis et al., 2015). In another
study, Al algorithms were used to identify image features within PET images in
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breast cancer patients and associate these features with a genetic biomarker
(Fujishima et al., 2017). Studies have also shown that features in images could be
associated with tumour mutational burden, the average number of genetic mutations
per megabase (Angus et al., 2019) and with the metastatic ability of the tumour
(Trivizakis et al., 2019).

1.6 Drugs, Al and Precision Oncology

1.6.1 Drug Discovery and Re-purposing

The design or discovery of new drugs is a time-consuming and expensive undertak-
ing with many potential compounds that have already had large amounts of money,
$314 million to $2.8 billion, spent on them failing in the final stages. This means that
all the time and money spent on them was essentially wasted (Waring et al., 2015). It
is estimated that 90% of drugs fail to enter clinical trials for regulatory approval in
(Fleming, 2018). Al can be used to remove those compounds most likely to fail from
further development and prevent resources being wasted on them (Gawehn et al.,
2016). This can be achieved using modelling to design better drugs by assessing a
compound’s binding abilities, identifying their binding partners that may be biolog-
ically significant and establishing if there are any toxic interactions they may have.
Some of these modelling algorithms that have been developed and that are already in
use include the quantitative structure-activity relationship (QSAR) models. These
models still face problems since they need to learn from experimental data sets. If
these datasets are small, it may decrease the accuracy of the model. If the data is not
validated there may be errors that would lead to errors in the final model due to the
algorithm learning from incorrect data (Roy & Pratim Roy, 2009) (Zhao et al., 2017).
Al can also be used to search through chemical databases to identify compounds
with a structure that may indicate their ability to bind to a specific target. The
searching of these large libraries is known as high-throughput screening techniques
(HTS) (Inglese et al., 2006) (Zhu et al., 2016).

Al can also be used to predict how a drug will behave with respect to its
physicochemical properties, bioactivity and toxicity. Physiochemical properties
can be predicted using Al-based tools such as using Quantitative Structure Property
Relationship (QSPR) workflow. This algorithm was originally designed to predict
the physiochemical properties of environmental toxins (Zang et al., 2017). Other
algorithms have also been developed that are able to perform function such as
predicting the solubility of a drug, these include undirected graph recursive neural
networks and graph-based convolutional neural networks (CVNN) (Kumar et al.,
2017). The efficacy of drugs can be predicted by establishing their affinity for their
target molecule, and toxicity and side effects may be predicted by identifying any
unintended interactions it may have. Al is able to accomplish these actions by
calculating the binding affinities for the drug on a large number of molecules. It
can do this by identifying any similar features or structures the drug has with similar
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molecules or targets similar to the intended target (Oztiirk et al., 2018). Screening for
the most effective treatment for a specific patient is also possible using Al. One way
this can be done is through the use of a digital twin.

1.6.2 Digital Twins

An important concept in the use of Al in medicine is the creation of a digital twin.
This digital twin is the use of patient-specific data to create a virtual copy of the
patient. An accurate digital twin requires accurate, detailed and up-to-date informa-
tion about the patient (Batch et al., 2022). Deciding on the best treatment for an
individual patient is one of the primary uses of the digital twin. This process is
demonstrated in Fig. 1.3. As much data concerning the patient is gathered. This
includes various omics data, patient records, medical imaging and imaging reports
and any data concerning demographic or risk factors. Al then creates the digital twin.
These twins are then duplicated, and each twin is given a virtual treatment. Using
information regarding the molecular basis of these treatments, their side effects and
case reports and studies of these treatments and Al algorithm can then run simula-
tions for each individual treatment on the digital twin. The results can be used to
select the best treatment option (Bjornsson et al., 2019).

There are many ways these drugs can be tested in these simulations. One example
is the use of protein—protein interaction (PPI) networks, constructed using a patient’s
proteomic or transcriptomic data as a map. Changes in protein expression caused by
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Fig. 1.3 The use of digital twins in drug discovery. Various types of data from a patient are used to
create the most accurate digital twin possible. This twin is then duplicated and treated virtually with
all available drugs. Artificial intelligence then calculates treatment outcomes based on drug
molecular interactions and the molecular environment of the digital twin
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a treatment can then be mapped to the patients PPI to identify changes in the
pathways the drug could cause when used to treat the patient (Barabasi et al.,
2011) (Zhou et al., 2014). Another example could involve genetic changes detected
in a patient. These alterations that lead to transcript and protein changes can be used
to create a twin with the altered protein and protein expression patterns. A treatment
targeting this protein can be used to treat the digital twin. The resulting effects on PPI
and pathways can then be simulated in the twin.

1.7 Conclusion

The integration and analysis of data from various sources such as different “omics”,
medical images and medical imaging reports, electronic medical records, or hand-
written doctor’s notes, is only possible in a practical manner using Al and machine
learning. The requirement for the use of Al has been necessitated due to the
advancements in multidimensional “omics” technologies. The application of Al to
biological data enables the understanding of complex biological systems. Al is
already used in the automated extraction of information as well as the automated
integration of health records. It is also currently used to organise, annotate and store
data in big data storage systems such as cloud scaling. Al can outperform human
clinicians and pathologists in all these tasks and it has enabled us to develop new
techniques to study cancer, detect cancer at an early stage, more accurately predict
patient outcomes. Decide on the correct treatment, monitor disease progression and
treatment effectiveness, design new drugs and therapies, and stratify and classify
tumours (Fig. 1.4).

This chapter has served as a brief introduction to the various topics that will be
covered in the following chapters of this book. The initial chapters will examine the
use of Al in the identification and application of novel biomarkers for precision
oncology. This involves the use of these biomarkers in diagnosis, screening, mon-
itoring drug resistance and in the choice of the most appropriate treatment regimen.
They will also discuss the novel use of ccfNAs as biomarkers in precision medicine.
The last of these initial chapters will discuss the use of digital pathology in
accomplishing these tasks and how the new field of radiogenomics will allow
image features to be associated with molecular signatures. The book will then
discuss some of the less discussed “omics” that are studied to obtain data that can
be used to identify biomarkers for use in precision oncology. These include
epigenomics, metabolomics and microbiomics. The final chapters of the book will
discuss the practical and clinical application of Al to precision oncology in detail.
The first of these applications the book will discuss is the use of nanotechnology in
Al-based precision oncology. It will then focus on the use of Al-based devices in
cancer screening. This will be followed by a chapter describing the use of Al to
design new drugs and then a chapter describing the application of Al to increase the
efficiency of immunotherapy. For the final applications, the book will discuss the
role Al can play in helping clinicians and oncologists choose the correct treatment
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Fig. 1.4 A summary of the applications of Al in precision oncology

for an individual patient using various Al tools and techniques. The concluding
chapter will summarise the topics covered and offer insights into the future of Al in
precision oncology.
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