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Preface

Precision oncology is a novel approach for cancer care where diagnosis, prognosis,
treatment and disease monitoring are tailored to an individual patient or group of
patients, ensuring higher rates of patient survival and treatments with less side effects
and more success in controlling or eliminating the disease. The advent of novel high-
throughput technologies in recent years such as next generation sequencing (NGS)
has led to an “omics” revolution, generation of massive amount of complex patient
data, that has prompted the development of novel computational infrastructures,
platforms and tools to store, retrieve and analyse this data efficiently. Artificial
Intelligence (Al) is ideal for interpreting patterns in large datasets and offers unique
opportunities for advancing precision oncology. Al can accurately interpret not only
omics data, but it can also integrate data from other sources such as patient reports
and medical imaging to give a more precise view of the individual or population,
allowing for better clinical decision making.

In this book, we provide an overview of Al in precision oncology and it is divided
into 3 parts. First part: Artificial Intelligence for Screening, Diagnosis and Monitor-
ing in Precision Oncology. This section includes the use of Al and novel biomarkers,
including circulating cell free nucleic acids (ccfNAs), in the diagnosis, prognosis and
monitoring of cancer. It also focuses on the use of Al-enhanced digital pathology and
radiogenomics in precision oncology. Second part: Artificial Intelligence and Omics
in Precision Oncology. It highlights the use of Al and epigenetics, metabolomics and
microbiomics in precision oncology. These sources of omics data are relatively
recent sources of data and are highlighted here as they represent a departure from
the more often discussed genomic, transcriptomic and proteomic data. Third part:
Artificial Intelligence in Cancer Therapy and Its Clinical Applications. It highlights
the use of Al-based medical devices, Al-guided drug design to target alternative
splicing in cancer, Al prediction tools in maximising therapeutic efficacy and
Al-empowered decision support systems such as Al-Pathway companion in
recommending the most effective therapeutic approaches. It also highlights the use
of Al tools for risk prediction, early detection, diagnosis and accurate prognosis.
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The authors are basic scientists and clinical experts working in the field of cancer
research and have forged a collaborative effort and writing on this important
transdisciplinary subject of Al and Precision Oncology in cancer care and clinical
decision making.

The editor has chosen a unique opportunity to capture the most up-to-date
perspectives in Artificial Intelligence and Precision Oncology, which is part of
advancing Society 5.0 and Healthcare by using digital technologies and providing
opportunities for improving cancer care delivery and outcomes.

Pretoria, South Africa Zodwa Dlamini
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Chapter 1 ®)
The Application of Al in Precision ekl
Oncology: Tailoring Diagnosis, Treatment,

and the Monitoring of Disease Progression

to the Patient

Zodwa Dlamini and Rodney Hull

Abstract Personalised oncology has long been the ideal when it comes to the
management of cancer. The ability to tailor screening, diagnosis, therapy and
monitoring to an individual patient or group of patients would vastly decrease the
burden of cancer while ensuring higher rates of patient survival and treatments with
less side effects and more success in controlling or eliminating the disease. Precision
oncology requires that as much information regarding the patient or population
group be known. In terms of the underlying molecular basis of the disease, this is
now being realised further to the advent of high throughput technologies such as
next-generation sequencing (NGS) and advances in mass spectrophotometry. This
has led to an “omics” revolution, with large datasets of information regarding the
molecular basis of cancer in individuals being generated. Artificial intelligence
(AI) is the ideal technology to manage and interpret these large datasets. In con-
junction with machine learning (ML) and deep learning (DL), Al can more accu-
rately interpret not only omics data, but it can also integrate data from other sources
such as patient reports and medical imaging to give a more precise view of the
individual or population, allowing for better clinical decision-making.

Keywords Precision Oncology - Artificial Intelligence - Screening - Diagnosis -
Treatment - Disease Monitoring - Prognosis - Omics - NGS - Digital Twinning
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2 Z. Dlamini and R. Hull

1.1 Introduction

The underlying molecular basis of cancer is complex and deciphering it has been the
basis for many decades of research. The revolution in the available techniques that
occurred in the 1970s led to the first in-depth studies concerning the molecular basis
of cancer. Gaining an understanding of the changes that give rise to cancer at the
molecular level allowed to not only understand how events in the body give rise to
the disease but also how it progresses and also how these events could be targeted for
the development of therapies. It was these initial studies that allowed for the
development of the first drugs that could target molecules and signalling pathways
to treat oncogenic processes, such as uncontrolled proliferation and resistance to
apoptosis. When microarrays were first developed, their ability to create a profile of
gene transcription in cancer (reviewed in (Govindarajan et al., 2012)) led to the first
discussions of precision oncology. Precision oncology, a type of precision medicine,
involves the tailoring of screening or treatment to an individual or specific popula-
tion group based on the molecular profiles specific to that individual or group of
individuals (Batch et al., 2022). The understanding of the molecular biology under-
lying cancer has been advanced in recent decades by the development of high
throughput techniques such as next-generation sequencing (NGS) and advanced
proteomics techniques such as SWATH. The data generated by these techniques
has been used to decipher the molecular mechanisms of tumour initiation and
progression. This data has also been used to construct database resources to integrate
and analyse molecular mechanisms underlying cancer.

The ability of scientists to use these large datasets and databases to make useful
observations and predictions concerning cancer is due to the advent and application
of artificial intelligence. Artificial intelligence (AI) is an analytical or predictive
operation performed by computers to emulate the decision-making processes of
human beings. It has intensive problem-solving capabilities and can be used to
perform tasks such as making predictions, scaling data, integrating different datasets,
and reducing the dimensionality of data. Most importantly precision oncology can
associate different patterns within data with real-world diagnoses, prognoses, or
disease monitoring capabilities. The ability of Al to analyse large sets of data and
transform this data into clinically actionable knowledge relies on the ability of Al to
learn from either previous data or model teaching datasets. This learning ability is
based on machine learning (ML) and deep learning (DL)-based approaches (Jiang
et al., 2017) (Saltz et al., 2018) (Huang et al., 2020) (Ibrahim et al., 2020). The
increase in interest in Al, precision oncology and precision medicine can be seen in
the number of entries these topics find when used as search terms in PubMed.
Standalone terms that carry entries for Al or precision medicine go back to the
1950s while the earliest entries for precision oncology date to the 1970s. There has
also been a lot of interest in Al since the 1990s while interest in the other two
increased rapidly from 2010 onwards. A combination of terms involving Al both
precision medicine and precision oncology AND Al have only been topics of interest
since 2017 (Fig. 1.1).
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Fig. 1.1 PubMed entries on Al and precision medicine/oncology (a) using the terms independently
the earliest references to Al or precision medicine come from the 1950s. While the earliest reference
to precision oncology comes from 1977. All terms show an increase in the number of entries in
PubMed. (b) The number of entries in PubMed for Al AND precision medicine and AT AND
precision oncology since 2015/ This is a depiction of the number of entries identified in PubMed
when the search terms AI AND precision medicine and AI AND precision oncology are used. For
both terms, there are only regular entries after 2015 and the number of papers increases dramatically
as time goes on. This demonstrates that these are topics of growing interest to researchers
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1.2 Al in Medicine

In order for Al to accurately make predictions regarding a patient’s health and
treatment requirements, it must be able to learn from previous data and analyses.
In this way, it emulates the human clinician learning from past experiences. The
ability of computing algorithms to learn and adjust their performance to better
recognise patterns in data is known as machine learning (ML). Initially, an Al
does this using training data to create or fine tune mathematical models (Hakenberg
et al., 2012). Deep learning (DL) is a specific type of ML which uses data that is
labelled (supervised) and data that is unlabeled (unsupervised) in the training
process. It integrates these different types of data by using multi-layer non-linear
analysis and classification. One of the applications of DL is in a process known as
natural language processing, and reinforcement learning (Falk et al., 2019)
(Kaelbling et al., 1996).

Natural language processing (NLP) algorithms use two terms and establish if they
are linked by counting the number of times they occur together. If they occur
together more frequently than they are associated (Cheng et al., 2008) (Santus
etal., 2019). This technique is used to search large amounts of literature or databases
of information for articles or cases of interest. This is important because there are
vast amounts of literature relating to cancer research and studies. One of these
algorithms, known as MEDscape uses NLP to search and organise medical patient
notes. The useful data retrieved from these notes is used to automatically update
patient records (Morin et al., 2021). Al using NLP algorithms have been used to
accurately predict patient outcomes using a variety of data including imaging reports
and oncologist notes from thousands of patients with multiple different tumour
types. The predictions the AI was able to make included cancer progression,
treatment response and the likelihood and speed of metastasis (Kehl et al., 2021).

Al makes use of neural networks to copy the way humans think and interpret data
but without user bias and human error. These neural networks allow Al to make
logical conclusions similar to those that could be reached by humans (Joshi et al.,
2021). These networks use multiple fundamental computing units (neurons) to
convert raw input data into classified, annotated and analysed output data. The
nodes are connected to form a network that contains multiple layers including an
input layer, multiple functional or hidden layers, and an output layer (Kuwahara
et al., 2021). There are multiple types of neural networks. Artificial Neural Networks
(ANNSs) use multiple interconnected computational neurons that distribute data
analysis tasks. These networks are useful for analysing multidimensional complex
data. The distribution and initial decisions the network make regarding this data are
based on the learning by these algorithms. This algorithm also analyses the data
sorting decisions by analysing if these decisions make the outcome worsens or
improves the output (Baskin et al., 2016). Convolutional neural networks (CNN5s),
a type of ANN, contain neurons that are self-optimised through learning. (O’shea
et al.,, 2021). They are classed as Deep Neural Networks, because CNNs have
multiple layers (Alquraishi & Sorger, 2021). Recurrent neural network (RNN)
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Table 1.1 Decision tree techniques

Decision tree

technique Method Reference
Random deci- | Construct multiple decision trees at the training stage. The | (Ho, 1995)

sion forests final decision is the most common output.

Neighbour Bottom-up method where outputs that are most similar are | (Saitou & Nei,
joining grouped together. 1987)
Regression Nodes represent the mean of the results of the preceding | (Kaminski et al.,
analysis nodes. 2018).

Binary Deci- Sequential decision process with features evaluated with | (Garcia Marquez
sion Tree one of two outcomes. et al., 2019)

remembers previous analyses both the inputs and resulting outcomes and then treats
all future inputs and outputs as related (Dupond, 2019).

Al must be able to make decisions to perform its analysis and useful feature
selection. The decision tools used are generally decision trees. These decision tools
are named trees as the graphical representation of the decision-making process
resembles a flowchart. The Al performs a test or analysis of each piece of data,
and this gives rise to separate results. Each decision is represented as a node and each
result represented as a branch. The final results then lead to a further analysis of each
branch. This gives rise to the branched tree structure with some decisions (results
proving to be dead ends). The final terminal nodes are known as classification or
label (Kamirski et al., 2018). There are different types of trees as shown in Table 1.1
and Fig. 1.2.

Al has used decision trees to improve diagnosis. One study used lung cancer
samples from the Lung Image Database Consortium (LIDC) dataset. This data was
split 90% for training and 10% for testing. A labelled subset of the training set was
used to train a CNN-based ransom decision tree. Once the CNN random decision
tree was trained it was tested on the test data. This tree was able to accurately assign
labels to the unlabeled data (Zheng et al., 2019). The origin of cancer tissue gas has
been predicted based on miRNA profiling using Al based on two types of decision
tree. Firstly, with neighbour joining methods and secondly with binary decision tree
analyses. The neighbour joining method with an accuracy of 93.9%. The prediction
accuracy of the binary decision tree method was 84.8% (Park et al., 2021).

Guidelines have been established in order to assist in the validation of the analysis
provided by Al. These guidelines are known as the critical assessment of genome
interpretation (CAGI) and were formulated using variants that were experimentally
validated to cause disease and assessing if those predictions obeying the guidelines
match these validated results (Andreoletti et al., 2019). The fifth edition of CAGI
created in 2021 consists of 14 questions or criteria known as challenges (Andreoletti
et al., 2019).
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Final
decision

A) Random forest decision tree

Fig. 1.2 Depictions of common decision tree methods (a) Random Forest trees use multiple trees
and then select the most common outcome (b) Neighbour joining tree group nodes by similarity and
select between these similar nodes (c) Regression trees the nodes are the mean of the previous nodes
(d) Binary trees with sequential decisions based on one of two possible outcomes
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1.3 Biomarker Discovery and Application

An ideal strategy to improve the screening, diagnosis, classification, staging and
treatment of various cancers, is the identification of various molecules or molecular
patterns or profiles that can serve as biomarkers. These biomarkers can be genomic
mutations, transcripts, non-coding RNAs, proteins, metabolites, or even epigenetic
markers. When patients present with symptoms indicating that they may have
cancer, the standard procedure is a physical examination and radiographic imaging,
this may be followed by biopsy examination. Many cancers screening procedures
require invasive or expensive procedures. Biomarkers are normally classified as
prognostic or predictive. Prognostic biomarkers are used to categorise patients by
their risk of developing disease (screening), diagnosis of the disease, risk of disease
progression, severity of disease and risk of death from the disease (Echle et al.,
2021). Predictive biomarkers can be used to select a targeted treatment. These
predictive biomarkers can also be used for drug discovery or in clinical trials for
new treatments (Echle et al., 2021). The discovery of these biomarkers relies on the
use of large omics datasets and the identification of patterns of the presence or
absence of molecules in these large datasets that can be associated with disease. Al is
a vital tool in this discovery process as it allows these large datasets to be rapidly and
accurately analysed and associations with diseases to be identified. This is made
possible through the use of machine and deep learning algorithms. Indeed, DL-based
image analysis has broad applications in multiple fields of modern medicine that
involve image data: in radiology, DL performs (Echle et al., 2021).

Liquid biopsies involve the identification of biomarkers in various body fluids.
This can be blood, urine, saliva, or even cerebral spinal fluid. This is a more ideal
diagnostic or prognostic technique than normal biopsies as they are less invasive and
traumatising to a patient. This is also an important consideration for precision
medicine as these samples can be obtained and analysed rapidly to give a current
view of the patients’ health and status (Kaur et al., 2017). These biomarkers can be
transcripts, genomic markers in the form of DNA, proteins, or metabolites. In the
case of RNA and DNA the transcripts would appear in biological fluids in the form
of circulating cell free nucleic acids (ccfNAs). These ccfNAs have already been used
as biomarkers in cancer diagnosis, prognosis, and monitoring (reviewed in (Pos
et al., 2018)). It has also been established that these ccfNA appear in higher amounts
in disorders such as cancer (Pos et al., 2018).

These nucleic acids can be in the form of cell free DNA which is fragmented
DNA usually no longer than 450 bp in size. This DNA can be either of genomic or
mitochondrial origin (Thierry et al., 2016). Circulating cell free RNAs include
mRNA transcripts, non-coding RNAs, such as microRNA (miRNA), long
non-coding RNA (IncRNA) and circular RNAs, transfer RNAs and ribosomal
RNAs (reviewed in (Pos et al., 2018)). These nucleic acids are normally released
into the body fluids as a result of cell death or in the case of many of the RNA
molecules through active secretion (Vita et al., 2022).
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1.4 Multi-omics Data

High throughput techniques like NGS allow for in-depth analysis of the mutational
landscapes, gene expression patterns and epigenetic modifications for a large num-
ber of samples. Integration of “multi-omics” (genomics, epi-genomics,
transcriptomics, proteomics, and metabolomics), and “non-omics” (medical/mass-
spectrometry imaging, patient clinical history, treatments, and disease endemicity)
data could help overcome the challenges in the accurate detection, characterisation,
and monitoring of cancers. The complex analysis, annotation and combination of
various omics data is sometimes only possible following data simplification. When
these simplification processes are performed it is important to note that it may lead to
the loss of information. The complexity of data is normally measured by the number
of dimensions (variables) it has (Pezoulas et al., 2021). This reduction allows for
increased ease and speed of analysis as well as a reduction in the space needed to
store the data (Meng et al., 2016).

1.4.1 Genomics

The generation of large genomic datasets is due to advances in next-generation
sequencer (NGS) (Paolillo et al., 2016)) and in silico computational algorithms.
Whole genome sequencing allows for the analysis of all genomic alterations in
cancer. It gives information regarding the number and identity of driver mutations
and allows the mutational signature of the tumour to be identified. WGS has led to
multiple sequencing projects and the establishment of databases containing the DNA
sequence profiles of many cancers. These databases are listed in Table 1.2. To be
truly useful genomic data must be integrated with clinical data, patient demo-
graphics, survival data, treatment status (Robinson et al., 2017). This is needed to
link genomic events to specific cancers prognoses, and treatment responses
(Robinson et al., 2017). Al has immense potential to contribute significantly at
every stage of cancer management ranging from reliable early detection, stratifica-
tion, determination of infiltrative tumour margins during surgical treatment, response
to drugs/therapy, tracking tumour evolution and potential acquired resistance to
treatments over time, prediction of tumour aggressiveness, metastasis pattern and
recurrence (Bi et al., 2019).

1.4.2 Transcriptomics

Transcriptome includes the transcribed mRNAs, the alternately spliced isoforms of
those mRNAs as well as non-coding RNAs such as miRNA. Any study looking at all
these transcripts will aim to identify all the transcripts involved in metabolic
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Table 1.2 DNA sequence databases and their applications

Database

Application

Reference

The Cancer Genome
Atlas (TCGA)

Understand the molecular basis of cancer
through the application of genomics.

(Wang, Jensen,
& Zenklusen,

2016)
International Cancer Voluntary collaborative forum. (Zhang et al.,
Genome Consortium 2019)

(ICGC)

CatLog of Somatic
Mutations in Cancer
(COSMIC)

Catalogue of somatic mutations in human cancer
showing the impact of these mutations.

(Forbes et al.,
2015)

The NCI’s Genomic Data
Commons (GDC)

A unified repository for cancer knowledge
enabling data sharing across cancer genomic
studies in support of precision medicine.

(Gao et al., 2013)

cBioPortal

Provides visualisation, analysis and download of
large-scale cancer genomics data sets.

(Gao et al., 2013)

Methyl-Cancer

Database for human DNA Methylation and
Cancer

(He et al., 2008)

UCSC Cancer Genomics
Browser

Displays whole-genome and pathway-oriented

(Goldman et al.,
2013)

views of genome-wide experimental measure-
ments for individual and sets of samples.

Moonshot project Aims to address inequalities in access to cancer

screening in the USA.

(Hsu et al., 2017)

processes and how they interact to result in gene expression. Studies that only
examine specific sets of transcripts, i.e., mRNAs or miRNAs will provide answers
to more specific questions. The result of epigenetic changes that occur in cancer can
and have been studied by examining the transcriptome of cancers where these
epigenetic changes have occurred. These studies have been undertaken in breast
cancer (Robinson et al., 2015), prostate (Varambally et al., 2002) (Bhasin et al.,
2015), head and neck squamous cell carcinoma (HNSCC) (Kelley et al., 2017).

1.4.3 Proteomics

Proteomic profiles reveal the actual cellular response to the conditions a cell is faced
with. The change in protein expression also provides information regarding pro-
cesses that affect protein modification, transport, and stability. Datasets of protein
expression profiles are created using mass spectrometry and have been used to
profile protein expression changes in response to therapy, monitor drug toxicity,
and for diagnosis using specific biomarkers. These biomarker profiles, which are
identified through protein expression signatures can also be to monitor disease
progression, establish metastatic risk, do treatment follow-up to check for recurrence
and stratify patients according to subtype (Keyl et al., 2022). Once again, these large
data sets require Al to interpret them accurately, reliably, rapidly and consistently.
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Many Al algorithms have been used to infer protein—protein interaction networks
from proteomic datasets (Keyl et al., 2022). Another significant role for Al in
proteomics is predicting docking capabilities between drugs and their target
compounds.

Al can also be used to combine and integrate proteomic and genomic data to
identify DNA mutations related to protein signalling. These genetic changes can
then be said to be genetic drives of cancer. This has been performed in breast cancer,
where the identification of signalling pathways specifically altered in different breast
cancer subtypes was achieved. It also identified SKP1 and CETN3 as two new
markers for basal-like breast cancer (Mertins et al., 2016). Proteomic and
transcriptomic data can be integrated to identify changes in the splicing of mRNA
and the generation of different protein isoforms that may be characteristic of
different cancers (Liu et al., 2017). Proteomic data can show a much stronger
association to the clinical characteristics of a patient, and this is reflected by the
close association of integrated proteomics data with the clinical outcomes, for
example MS analysis integrated with histopathological diagnosis (Huber et al.,
2014). This can be done with very small amounts of extracted proteins, for example
a study was performed where very small amounts of protein were analysed using
LC-MS which led to deep coverage of entire proteomes of specific cell types (Kulak
etal., 2017). A recent development has been the use of single-cell proteomics which
has gained importance since it is able to give insights into cancer heterogeneity and
the metastatic ability of single cells compared to colonies. It is also able to provide
information concerning rare/mutated cells (Doerr, 2019). This has been successfully
used to grade and rank acute myeloid leukaemia hierarchy (Schoof et al., 2021Db).

1.4.4 Metabolomics

Metabolomics is the analysis of small molecules, such as amino acids, lipids,
nucleotides, carbohydrates and organic acids, which are produced because of pri-
mary or secondary metabolic processes. The populations of these molecules changes
during, growth, in response to stress and consequently during the development and
progression of cancer (Bertini et al., 2009) (Lin et al., 2011) (Veselkov et al., 2011).
Therefore, metabolomics can be used as an indicator of the molecular mechanisms
underlying tumorigenesis.

It can also be used to monitor disease progression, the response of the tumour to
drugs and other treatments. As with proteomics, the profiling of metabolites relies on
mass spectrometry but with the additional use of nuclear magnetic resonance (NMR)
spectroscopy (Merz & Serkova, 2009). Traditionally the sample had to be separated
or fractionated to achieve the best results, but separation-free MS techniques have
been developed which reduce the volume of sample required and reduce variation in
the data generated through the analysis. These include direct infusion-MS, MALDI-
MS, mass spectrometry imaging (MSI), and direct analysis in real-time mass spec-
trometry (Dettmer et al., 2007). The Global Natural Product Social Molecular
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Networking (GNPS) is a small-molecule mass spectrometry networking hub.
Researchers can deposit their own MS data for small molecules and this repository
is available for other uses to search and use. GNPS has been shown to be very useful
for cataloguing and organising MS/MS data using Al in the form of correlation and
visualisation approaches. These can be used to identify spectra from related mole-
cules (Wang, Carver, et al., 2016). Techniques such as principal component analysis
or hierarchical clustering can be used in conjunction with ML to data mine these
repositories to enhance the identification of spectra (Bertini et al., 2009) (Duan et al.,
2005). These techniques have been used to identify metabolic biomarkers for
multiple cancers including colorectal (Yamazaki, 2015), pancreatic (Zhang et al.,
2012), lung (Zhuang et al., 2016), breast (Li et al., 2020), gastric (Ikeda et al., 2012),
ovarian (Zhang et al., 2013) and prostate (Kelly et al., 2016).

1.4.5 Microbiomics

It has been estimated that the microbiota of the average human contains 40 trillion
microbial cells (Sender et al., 2016). This microbiota is now known to play a role in
the development and progression of cancer, especially through interactions with the
nervous system and what is known as the gut-brain axis (reviewed in (Hull et al.,
2021)). The profiling of all the microbial genes, metabolites, proteins and transcripts
within a single patient is known as the patient’s microbiome (Sepich-Poore et al.,
2021). This can partly be explained by the interaction between the microbiome and
the immune system as this may favour the development of cancer (Mangani et al.,
2017). Microbiomes have been so closely associated with cancer, that it is now
known that specific populations of microorganisms and microbial metabolites are
associated with specific cancers. Therefore, different microbial signatures can be
used as biomarkers to diagnose or monitor cancer, and affect the safety, tolerability
and efficacy of specific treatments. Microbiomics are studies using the same high
throughput techniques such as NGS and mass spectrometry. Once again this gives
rise to large databases, which require the use of Al and machine or deep learning to
analyse and interpret this data. Any attempt to integrate this microbiomic data with
other “omics” data would require the use of Al (reviewed in (Cammarota et al.,
2020)). Al can also be used to identify and evaluate microbiome community
interactions with other microbes or the host. This is done using Network analysis
and is useful for the identification of changes in these interactions may be caused by
microbial community structure, environmental factors, metabolites, clinical. These
networks can be constructed based on similarity or correlation coefficients between
pairwise variables. Extended relationships can then be inferred based on these
pairwise interactions. This is done using algorithms such as SparCC (Sparse Corre-
lations for Compositional data) (Friedman & Alm, 2012) and Compositionally
Robust Inference of Microbial Ecological Networks) (Faust et al., 2012).
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1.5 Imaging

Medical imaging techniques such as Magnetic Resonance Imaging (MRI), CT scans,
and Positron emission tomography (PET), are commonly used in the diagnosis of
cancer. This is because these techniques are good at soft tissue contrast. This allows
them to be good at locating tumours and monitoring tumour progression. They are
also non-invasive and have a high resolution (Magadza & Viriri, 2021) (Menze et al.,
2014). The aim of imaging cancer or suspected cancer tissue is known as tumour
segmentation. This is the act of distinguishing between normal and cancerous tissue.
This is a vital procedure for the use of imaging techniques in diagnosis and treatment
planning, monitoring treatment response and disease progression (Bousselham et al.,
2019). AI has been successfully used to automate the interpretation of medical
imaging. It has been shown to be able to analyse stained sections of temper tissue
and segment these images allowing for the identification and quantification of
various parameters. These include the rate and amount of mitosis (Romo-Bucheli
et al., 2017), the presence and abundance of mutations (Coudray et al., 2018), the
differentiation between nuclei from benign cells versus those from cancer cells
(Sirinukunwattana et al., 2016) (Xu et al., 2016), spatial localisation of proteins
(Saltz et al., 2018). Al-based image analysis is more reproducible, objective and is
quantitative compared to manual assessment. Convolutional neural networks
(CNNs) are most commonly used for image analysis (Muhammad et al., 2020).
There are two types of automated segmentation, generative and discriminating
methods (Magadza & Viriri, 2021). Both methods use the same seven stages of
analysis image acquisition, image preprocessing (deionising/enhancement/restora-
tion), image segmentation/feature extraction and object recognition (Pan, 2007).
Image Segmentation techniques are all based on pixel-based selection to discern a
Region of Interest (ROI). However, there are different methods that are used to
achieve this, In the region-based method, a pixel in the ROI is selected as the
reference or seed pixel. Neighbouring pixels are then compared to this pixel in
order to establish if they are similar enough to be included (Punitha et al., 2018). In
the edge-based method, the image is reduced to only its important structural char-
acteristics. This decreases the image size. It also allows for the image’s background
to be separated from the object (Farag, 1992). The fuzzy theory-based method is an
amalgamation of the region and the edge methods. (Basir et al., 2003). The partial
differential equation (PDF) method calculates an energy of the image function. It
then uses a partial differential equation (PDE) to describe the parametric curve
evolution based on the energy of the image. It then uses this equation to find similar
pixels (Sliz & Mikulka, 2016). In the threshold-based method, a grayscale binary
image is created to reduce image complexity. This makes it easier to classify pixels
(Bhargavi & Jyothi, 2014). Finally, the semantic segmentation network method
classifies every individual pixel as either tumour or normal (Chen et al., 2017).
When it comes to performing Whole Slide Image (WSI) segmentation some of these
methods are more time and computing power consuming than others. The semantic
method is the slowest and requires the most computing power (Guo et al., 2019).
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1.5.1 Radiogenomics

Histopathological images have been integrated with genomics data in order to
enhance feature selection based on cancer tissue architecture (L6pez de Maturana
et al., 2019). In a similar way, multi-omics data have been associated with features in
medical images to develop predictive models using Al algorithms. This has been
successfully performed for prostate cancer (Robinson et al., 2015), renal cell carci-
noma (Schoof et al., 2021a), low-grade glioma (Brat et al., 2015), non-small cell
lung cancer (Yu et al., 2016) and breast cancer (Yuan et al., 2012). This technique
was initially given the name imaging genomics since it associated image features
with genomic data. However, another term, radiomics or radiogenomics has been
used to cover all the different omics data that can be associated with image features
(Bodalal et al., 2019). Image features that can be associated with this omics data
include structures, shapes, lines, points, colours or boundaries. It can even be
extended to regions of the image associated with these features (Bi et al., 2019). In
order to carry out a radiogenomics analysis, the Al must extract features identified on
an image and link these features with phenotypes which is due to protein expression
which can then be associated with genomic, transcriptomic and epigenomic or other
omics changes (Rutman & Kuo, 2009). The appearance of these features on an
image can then be an indication that these omics changes are present in the patient
and the tumour. In the same way, these omics profiles can be used as indicators of for
instance patient survival or disease progression, these associated image features can
now be used to do the same (Berger & Mardis, 2018). Al is also necessary in
radiogenomics as some of the features or changes in the cancer tissue may be so
subtle that they may be missed by the human eye. Computer-assisted image analysis
will accurately and consistently detect these changes based on what the algorithm
has learned from previous data thanks to the application of machine and deep
learning. These changes can then be associated accurately and without bias to any
genomic, proteomic, transcriptomic, epigenomic, metabolomic or feature within the
patient records. This is due to the analysis the Al can conduct on this data to extract
unique features and then associate them with the unique image features. As previ-
ously stated, this integration would be too complex for a human being to complete
accurately and timeously (Hussein et al., 2017). This end-to-end, automated data
analysis or pipeline is able to compute and discriminate a vast number of features in
both the image analysis and patient records or omics data to achieve the most
accurate selection of features that are associated. And these models’ ability to
learn means that they are optimising their analytical ability and performance while
integrating these data sets and looking for associations (Jansen et al., 2018).

Ai and radiogenomics have been shown to be able to predict the neoadjuvant
therapy response in esophageal cancer using a convolutional neural network to
analyse fluorodeoxyglucose positron emission tomography (18F-FDG PET) images.
It was able to associate features from these images with transcriptomic data and
make highly specific and accurate predictions (Ypsilantis et al., 2015). In another
study, Al algorithms were used to identify image features within PET images in
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breast cancer patients and associate these features with a genetic biomarker
(Fujishima et al., 2017). Studies have also shown that features in images could be
associated with tumour mutational burden, the average number of genetic mutations
per megabase (Angus et al., 2019) and with the metastatic ability of the tumour
(Trivizakis et al., 2019).

1.6 Drugs, Al and Precision Oncology

1.6.1 Drug Discovery and Re-purposing

The design or discovery of new drugs is a time-consuming and expensive undertak-
ing with many potential compounds that have already had large amounts of money,
$314 million to $2.8 billion, spent on them failing in the final stages. This means that
all the time and money spent on them was essentially wasted (Waring et al., 2015). It
is estimated that 90% of drugs fail to enter clinical trials for regulatory approval in
(Fleming, 2018). Al can be used to remove those compounds most likely to fail from
further development and prevent resources being wasted on them (Gawehn et al.,
2016). This can be achieved using modelling to design better drugs by assessing a
compound’s binding abilities, identifying their binding partners that may be biolog-
ically significant and establishing if there are any toxic interactions they may have.
Some of these modelling algorithms that have been developed and that are already in
use include the quantitative structure-activity relationship (QSAR) models. These
models still face problems since they need to learn from experimental data sets. If
these datasets are small, it may decrease the accuracy of the model. If the data is not
validated there may be errors that would lead to errors in the final model due to the
algorithm learning from incorrect data (Roy & Pratim Roy, 2009) (Zhao et al., 2017).
Al can also be used to search through chemical databases to identify compounds
with a structure that may indicate their ability to bind to a specific target. The
searching of these large libraries is known as high-throughput screening techniques
(HTS) (Inglese et al., 2006) (Zhu et al., 2016).

Al can also be used to predict how a drug will behave with respect to its
physicochemical properties, bioactivity and toxicity. Physiochemical properties
can be predicted using Al-based tools such as using Quantitative Structure Property
Relationship (QSPR) workflow. This algorithm was originally designed to predict
the physiochemical properties of environmental toxins (Zang et al., 2017). Other
algorithms have also been developed that are able to perform function such as
predicting the solubility of a drug, these include undirected graph recursive neural
networks and graph-based convolutional neural networks (CVNN) (Kumar et al.,
2017). The efficacy of drugs can be predicted by establishing their affinity for their
target molecule, and toxicity and side effects may be predicted by identifying any
unintended interactions it may have. Al is able to accomplish these actions by
calculating the binding affinities for the drug on a large number of molecules. It
can do this by identifying any similar features or structures the drug has with similar
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molecules or targets similar to the intended target (Oztiirk et al., 2018). Screening for
the most effective treatment for a specific patient is also possible using Al. One way
this can be done is through the use of a digital twin.

1.6.2 Digital Twins

An important concept in the use of Al in medicine is the creation of a digital twin.
This digital twin is the use of patient-specific data to create a virtual copy of the
patient. An accurate digital twin requires accurate, detailed and up-to-date informa-
tion about the patient (Batch et al., 2022). Deciding on the best treatment for an
individual patient is one of the primary uses of the digital twin. This process is
demonstrated in Fig. 1.3. As much data concerning the patient is gathered. This
includes various omics data, patient records, medical imaging and imaging reports
and any data concerning demographic or risk factors. Al then creates the digital twin.
These twins are then duplicated, and each twin is given a virtual treatment. Using
information regarding the molecular basis of these treatments, their side effects and
case reports and studies of these treatments and Al algorithm can then run simula-
tions for each individual treatment on the digital twin. The results can be used to
select the best treatment option (Bjornsson et al., 2019).

There are many ways these drugs can be tested in these simulations. One example
is the use of protein—protein interaction (PPI) networks, constructed using a patient’s
proteomic or transcriptomic data as a map. Changes in protein expression caused by
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Fig. 1.3 The use of digital twins in drug discovery. Various types of data from a patient are used to
create the most accurate digital twin possible. This twin is then duplicated and treated virtually with
all available drugs. Artificial intelligence then calculates treatment outcomes based on drug
molecular interactions and the molecular environment of the digital twin
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a treatment can then be mapped to the patients PPI to identify changes in the
pathways the drug could cause when used to treat the patient (Barabasi et al.,
2011) (Zhou et al., 2014). Another example could involve genetic changes detected
in a patient. These alterations that lead to transcript and protein changes can be used
to create a twin with the altered protein and protein expression patterns. A treatment
targeting this protein can be used to treat the digital twin. The resulting effects on PPI
and pathways can then be simulated in the twin.

1.7 Conclusion

The integration and analysis of data from various sources such as different “omics”,
medical images and medical imaging reports, electronic medical records, or hand-
written doctor’s notes, is only possible in a practical manner using Al and machine
learning. The requirement for the use of Al has been necessitated due to the
advancements in multidimensional “omics” technologies. The application of Al to
biological data enables the understanding of complex biological systems. Al is
already used in the automated extraction of information as well as the automated
integration of health records. It is also currently used to organise, annotate and store
data in big data storage systems such as cloud scaling. Al can outperform human
clinicians and pathologists in all these tasks and it has enabled us to develop new
techniques to study cancer, detect cancer at an early stage, more accurately predict
patient outcomes. Decide on the correct treatment, monitor disease progression and
treatment effectiveness, design new drugs and therapies, and stratify and classify
tumours (Fig. 1.4).

This chapter has served as a brief introduction to the various topics that will be
covered in the following chapters of this book. The initial chapters will examine the
use of Al in the identification and application of novel biomarkers for precision
oncology. This involves the use of these biomarkers in diagnosis, screening, mon-
itoring drug resistance and in the choice of the most appropriate treatment regimen.
They will also discuss the novel use of ccfNAs as biomarkers in precision medicine.
The last of these initial chapters will discuss the use of digital pathology in
accomplishing these tasks and how the new field of radiogenomics will allow
image features to be associated with molecular signatures. The book will then
discuss some of the less discussed “omics” that are studied to obtain data that can
be used to identify biomarkers for use in precision oncology. These include
epigenomics, metabolomics and microbiomics. The final chapters of the book will
discuss the practical and clinical application of Al to precision oncology in detail.
The first of these applications the book will discuss is the use of nanotechnology in
Al-based precision oncology. It will then focus on the use of Al-based devices in
cancer screening. This will be followed by a chapter describing the use of Al to
design new drugs and then a chapter describing the application of Al to increase the
efficiency of immunotherapy. For the final applications, the book will discuss the
role Al can play in helping clinicians and oncologists choose the correct treatment
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Fig. 1.4 A summary of the applications of Al in precision oncology

for an individual patient using various Al tools and techniques. The concluding
chapter will summarise the topics covered and offer insights into the future of Al in
precision oncology.
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Abstract Artificial intelligence (Al) is changing the medical research and patient
care field by showing data patterns that allow predicting disease, disease progress,
and treatment outcomes for individual patients. Big-data sets from these fields
require advanced technology for analysis. High cancer mortality negates advances
in oncology research. Traditional approaches are becoming inadequate to efficiently
combat cancer due to cancer’s heterogenous nature. Accurate risk assessment,
prevention, detection, segmentation, and cancer treatment present major challenges
for successful patient outcomes. Al-based tool advancement presents a potent
weapon for improved cancer care by advancing personalized patient care. These
tools have promise for improved therapeutic potential and identifying novel bio-
markers and drug targets. Effective implementation of precision oncology needs a
positive impact on patient outcome, provides decision support in real time, and
discovery of unique patient patterns of disease progression. Emerging technologies
present with new challenges; the benefits of Al technology in precision oncology
outweigh the challenges. Al-based precision oncology provides augmented intelli-
gence to aid clinician decision-making. Advancement of wet-lab-based assays, high
throughput NGS data, bioinformatics tools, and strategies to detect novel biomarkers
that accurately predict prognosis and enhance treatment regimens are urgently
warranted. This review will focus on Al-based tools in the detection and identifica-
tion of cancer biomarkers for accurate prognosis with the overall aim of enhancing
treatment regimens, advancing precision oncology, and improving patient outcomes.

Keywords Artificial Intelligence (Al) - Biomarkers - Precision oncology - Cancer
treatment - Tissue biopsies - Liquid biopsies - DNA methylation

2.1 Introduction

Artificial intelligence (AI) uses in oncology include cancer research, prognosis
indication, and treatment response. These applications are corroborated by
Al-based tools in understanding the molecular biology of tumors (Farina et al.,
2022). With mounting data from cancer research such as the OMICS data, it has
become imperative to couple these advances with high technology tools such as Al
tools. Al relies on computers following algorithms learned by computer methods or
even established by humans to execute certain tasks or support decision-making
(Hosny et al., 2018). Machine learning (ML) is a branch of Al (Rajkomar et al.,
2019). Deep learning (DL) is a subfield of ML, where mathematical algorithms are
arrayed using computational units that are multi-layered, resembling human cogni-
zance. These include differentiated neuronal networks (DNN), recurrent neuronal
networks (RNN), convolutional neuronal networks (CNNs), and artificial neuronal
networks (ANNs).

In unstructured medical data, artificial neuronal networks (ANNSs) can be used to
analyze this type of data. Unstructured data is common in health systems and is used
to record qualitative and personal patient information, which may be obtained by
imaging acquisition or patient-health care provider interactions (Wang et al., 2019).
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On the other hand, CNNs are DL algorithms suitably used in imaging files. In
addition, DL can be used in the prediction of future health risks. For example, in
cardiology, when patients do routine CT scans and MRI, DL models have already
been trained to predict cardiovascular scores from CT scans (Elton et al., 2021;
Pickhardt et al., 2020). Furthermore, it has been shown that DL. CNNs can predict a
five-year future breast cancer risk, from a normal mammogram. The ability to predict
future cancer development from normal scans is a potent intervention tool. Addi-
tionally, CNNs have been demonstrated to show over 90% precision in discriminat-
ing between benign from malignant hematoxylin and eosin (H and E) stained breast
biopsies (Cai et al., 2010). Similarly, malignant or benign skin lesions can be
accurately classified by a dermoscope, maintaining a trained dermatologist standard
(Rezvantalab et al., 2018). The identification of change in disease patterns by Al
tools holds great promise in advancing precision oncology. Biomarkers are measur-
able biological indicators used to predict disease initiation and progression (Chen
etal., 2015; Lin et al., 2019; Strimbu & Tavel, 2010). Some of the molecules such as
nucleic acids, proteins, lipids, and other metabolites are shed into peripheral blood,
and these can be used as biomarkers for cancer screenings (Fang, 2020). Although
DP has been the cornerstone of cancer biomarker discovery, the use of liquid
biopsies in cancer biomarker discovery is emerging as a potent tool to accurately
predict prognosis and response to treatment. This review will discuss the Al-based
tools in the detection and identification of cancer biomarkers for accurate prognosis
with the overall aim of enhancing treatment regimens, advancing precision oncol-
ogy, and improving patient outcomes.

2.2 Al Advances in Healthcare and Precision Oncology

The ability to analyze complex and comprehensive patient information for the
monitoring and differentiating between healthy and sick people relies on the iden-
tification of population and personalized biomarkers. This will aid in comprehending
biological signals that can indicate any health shifts. It has also been documented
that harnessing the use of electronic health records by the integration of distinct data
sources and by discovering patient-specific disease progression patterns will facili-
tate the implementation of effective personalized health care and positively enhance
patient outcome. Advanced technological tools are needed to enhance intra-
operability, interoperability and networking of laboratory, clinical and public health
systems. These tools will also aid to address valid social and ethical issues associated
with the protection and privacy of healthcare data. However, data hacking and
breaching, uncertainty of black boxes use of algorithms to resolve output pose as
limitations and obstacles to efficient Al implementation in health (Ahmed et al.,
2020).

Al tools also have the potential to redress the burdening effects of medical errors,
which has been reported to be the third leading cause of death. It has been reported
that in the USA, approximately 200,000 people are dying every year due to medical
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errors (Makary & Daniel, 2016). Unfortunately, a decline in this number has not
been reported due to poorly coordinated healthcare and costs, communication
breakdown, and misdiagnosis. The concept of precision medicine primarily relies
on the 4Ps. These are Predictive, Preventative, Personalized, and Participatory. This
is aimed at enabling clinicians to effectively understand how variations in person-
alized clinical data can positively contribute to improved patient outcomes through
precise predictive parameters, accurate diagnosis, and prognosis (Mayekar &
Bivona, 2017). The significance of healthcare data mining cannot be ignored.

Al tools have been reported to play a significant role in precision oncology. This
is evidenced by the facilitation of early diagnosis of various cancer types which
usually present at advanced stages such as epithelial ovarian cancer (EOC). Due to
the lack of clinical symptoms in EOC early stages and deficiency of effective
screening tests, about 70% of EOC patients are diagnosed at late stages (Jacobs
et al., 2016). ML has been demonstrated to hold promise to alleviate this burden
(Ma et al., 2021). Ma et al. (2021) used 8 ML techniques to derive predicting
information from 11 peripheral blood parameters from EOC patients (Ma et al.,
2021). These ML methods included random Forest (RF), Logistic Regression,
Gradient Boosting Machine, Naive Bayes, Conditional Random Forest, Elastic
Net, Neural Network and Support Vector Machine. They demonstrated that ML
techniques, Random Forest was superior to conventional regression-based classifiers
in the prediction of various clinical parameters associated with EOC. This study
concluded that ML techniques may provide risk stratification for EOC patients, and
this could be done prior to initial intervention. This commendation was particularly
referring to the use of blood variables, specifically the circulating tumor cells
(CTCs). The predictive algorithms through ML hold a promise to pre-treatment
stratification of EOC patients and therefore could facilitate customized treatment.

Risk stratification is essential to improve long-term outcomes of cancer patients,
especially cancers with a lack of early detective measures. This Al approach could
precisely delineate cancer characteristics and facilitate outcome prediction prior to
initial intervention (Narod, 2016). Conventionally, clinical factors such as tumor
grade, age, and history may be used to aid in prognosis assessment. However, these
parameters have been shown to have inadequate predictive value (Chen et al., 2007;
Kang et al., 2012). Contrarily, emerging evidence demonstrates that CTCs in EOC
patients hold potential as prognosticators, and these may be applicable to the survival
outcomes of various tumors (Aktas et al., 2011). It has been demonstrated that ML
can predict early disease and disease progression in EOC patients through liquid
biopsies constituents such as the CTCs as biomarkers. Distinct classes of biomarkers
are discussed below.
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2.3 C(Classification of Biomarkers

Biomarkers can be classified as type 0, I, and II, according to functions and
characteristics (Banerjee et al., 2017; Heckman-Stoddard, 2012; Sahutoglu et al.,
2017). Type O biomarkers are linked to known clinical indicators and are used to
measure the diseases’ natural history. On the other hand, type I biomarkers are
associated with the efficiency of pharmacological agents. Type II biomarkers are
alternate endpoint biomarkers intended for the substitution of clinical endpoints
(Sahutoglu et al., 2017; Waseem et al., 2017). Additional to these, oncology bio-
markers are further classified into molecular categories which are: genetic, epige-
netic, proteins, glycoproteins, receptors, hormones, etc. (Verma, 2012). Tumor
biomarkers are also known to be categorized into predictive, diagnostic, prognostic,
and pharmacodynamics (Alizadeh et al., 2000; Cai et al., 2010; Chyla et al., 2018;
Lesko & Atkinson Jr, 2001; Maisel et al., 2011). Diagnostic biomarkers are used to
detect or confirm the presence of a disease. Diagnostic biomarkers may be present at
any stage of cancer development. Pharmacodynamics biomarkers are used for the
selection of doses of chemotherapeutic agents in a specific set of tumor-patient
conditions. Pharmacodynamic biomarkers are also used to assess imminent drug
treatment effects. Predictive biomarkers are used to identify subsets of patients who
are more likely to respond to a particular treatment, while prognostic biomarkers are
used to measure disease progression.

Oncological clinical workflows are dependent on predictive and prognostic
molecular biomarkers. However, one of the obstacles with this growing trend of
such biomarkers is complexity, cost, and time for clinical decision-making (Echle
et al., 2021). Predictive and prognostic molecular biomarkers are currently used in
oncology workflows. Predictive biomarkers enable oncologists to choose a specific
targeted treatment for a particular patient group. For example, in breast cancer,
detecting HER?2 positivity in patients makes them eligible for anti-HER2 treatment,
thus considering HER?2 a strong biomarker in this setting (Le et al., 2017; Naito &
Urasaki, 2018). Similarly, with in treatment-refractory stage IV colorectal cancer
(CRC), microsatellite instability (MSI) is an FDA-approved biomarker for
immunotherapy-based treatment (Le et al., 2017). Here, MSI detection is associated
with good therapeutic response prospects, thus rendering MSI a good predictive
biomarker. The choice of standard treatment for non-small cell lung cancer
(NSCLC) is also driven by the various number of molecular biomarkers such as
ALK, PDLI1, EGFR, and other genes (Lim et al., 2020). Contrary to predictive
biomarkers, prognostic biomarkers enable oncologists to categorize patients based
on their disease progression risk and thus can be used for treatment intensity
adjustment for individual patients. In clinical trials, the design of new therapeutic
agents for solid tumors is progressively coupled with the discovery and identification
of predictive biomarkers. MSI is used as a predictive biomarker for immunotherapy,
while fusion-driven tumors have a good response to molecularly targeted therapy.
Furthermore, homologous repair deficiency tumors such as prostate cancer respond
well to inhibitors of poly ADP-ribose polymerase (PARP). With advances in
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Fig. 2.1 The discovery of ideal biomarkers is key to improved patient outcomes. Biomarkers can
be targeted for improved diagnosis, prognosis, and therapeutics. The identification of ideal bio-
markers holds the key potential to personalized medicine and overall improved clinical outcome

biomarker detection and discovery, it is imperative to couple these efforts with
technology advances such as those of Al, to effectively implement precision oncol-
ogy. Figure 2.1 illustrates key features of discovering an ideal biomarker, for
efficient use in a clinical setting.

2.4 Oncology Biomarkers: Solid Biomarkers vs Liquid
Biomarkers

Tissue biopsies have been the gold standard of biomarker discovery. However, some
inherent limitations associated with tissue biopsies have been identified. Tissue
biopsies can be invasive and clinically risky, usually requiring surgical resection
(Tlié¢ & Hofman, 2016). Additionally, tissue biopsies provide spatially limited infor-
mation obtained from a specific tumor tissue region due to sampling limitations and
may therefore not reflect the broad intra-tumor heterogeneity (Gerlinger et al., 2014;
Sabaawy, 2013). This may limit accurate diagnosis and prognosis (Hoffman et al.,
2002). Alternatively, multi-region tissue biopsies can be used. These biopsies can
capture intra-tumor heterogeneity (Gerlinger et al., 2014; Zhang et al., 2014).
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However, the clinical application of multi-region tissue biopsies is limited by
accessibility and volume of tumor tissues (Ili¢ & Hofman, 2016; Khan et al., 2018).

Contrarily, liquid biopsies are emerging as minimally invasive, compared to
tissue biopsies. Tissue biopsies use circulating blood materials as the CTCs, cell-
free nucleic acid (cfNA) (cfDNA-cell-free DNA, cfRNA-cell-free RNA) and
exosomes detect and identify molecular modifications that can indicate cancer
progression. cfDNA/cfRNA is fragmented cellular DNA/RNA that is released into
the bloodstream by dying cells either by programmed cell death (apoptosis) or by
necrosis, or even by active secretion (Jahr et al., 2001; Wan et al., 2017). This
cellular nucleic fragmentation is a normal physiological process occurring in healthy
individuals, where usually cfDNA is mainly derived from apoptotic hematopoietic
cells (Lehmann-Werman et al., 2016). Contrarily, in cancer patients, cfDNA/cfRNA
can be derived from tumor tissue and tumor microenvironment, usually reflecting the
epigenetic and genetic modifications of the tumor microenvironment and tissue
(Wyatt et al., 2017). Due to the ability to better reflect the tumor microenvironment
than tissue biopsies and even enhanced stability than cfRNA, extensive studies are
emerging on cfDNA as a biomarker in early cancer detection, cancer stratification,
and cancer surveillance. However, CTCs and cfDNAs have been reported to have
short life span (Mondelo-Marcia et al., 2021).

The tumor tissues available from biopsies have an enormous amount of informa-
tion that is clinically relevant and that remains to be completely exploited. Advances
in DL have allowed hidden information from histology cancer images to be mined,
thus providing clinically useful information. On the other hand, the evidence of
clinical validity and utility for ctDNAs-based assays is currently inadequate for
advanced cancers, while lacking for the application of early cancer detection
(Merker et al., 2018; Ossandon et al., 2018; Pantel, 2016). It has been proposed
that epigenetic modifications unlike mutations, can be targeted as potent biomarker
discovery tools with various applications in risk assessment, therapy response
prediction, early cancer detection and prognosis (Gordevicius et al., 2018; Leygo
et al.,, 2017; Liu et al., 2018). In the early stages of tumourigenesis, epigenetic
changes mostly precede the somatic mutations and the associated histopathological
alterations can be detected (Peltoméki, 2012). An FDA-approved epigenetic-based
assay, Epi pro Colon is used for the detection of colon cancer (Koch et al., 2018).
Like traditional biomarkers, the genetic and epigenetic biomarkers may be limited by
low sensitivity and specificity (Fiala & Diamandis, 2018).

2.5 Advances in Biomarker Discovery: Liquid Biopsies

In liquid biopsies, DNA methylation is the most studied epigenetic feature in cancer
biomarker discovery, particularly in cfDNA. Five-methylcytosine (SmC) modifica-
tion at the 5°-C-phosphate-G-3’ (CpG) dinucleotides is one of the most studied DNA
methylation modifications (Feng et al., 2019; Guo et al., 2017; Kang et al., 2017;
Leygo et al., 2017; Xu et al., 2017; Zeng et al., 2018, 2019). Xu et al. (2017)
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Fig. 2.2 Liquid biopsy biomarkers: Liquid biopsy biomarkers such as CTCs, cfNA, cfDNA,
cNucleosomes and exosomes can be used in cancer diagnosis and prognosis. These biomarkers
can be used to infer response to treatment also. DNA methylation patterns are key in detecting and
identifying molecular alterations

demonstrated that SmC DNA methylation biomarkers derived from ctDNA showed
better prognosis indication than other biomarkers such as serum-based alpha-feto-
protein (AFP) and TNM staging in hepatocellular carcinoma (Xu et al., 2017).
Additionally, Wedge et al. (2017) showed that long intersperse nucleotide element
1 (LINE-1) cfDNA methylation alterations have a strong association with clinical
outcomes in diffuse large B cell lymphoma, illustrating prognostic biomarker poten-
tial (Wedge et al., 2017).

In addition, identifying tissue-specific methylation haplotypes as biomarkers to
elucidate tumor burden and cfDNA tissue of origin can be explored in 5mC
biomarker discovery. Unlike the conventional single-CpG methylation biomarker
in cancer stratification, the use of multi-CpG haplotypes shows potent promise in
clinical applications (Guo et al., 2017). Furthermore, additional epigenetic features
such as  nucleosome  positioning and  occupancy on  cfDNA,
5-hydroxymethylcytosine (ShmC) have been used to deduce cfDNA tissue of origin
and cancer progression (Ivanov et al., 2015; Li et al., 2017; Snyder et al., 2016; Song
et al., 2017; Tian et al., 2018). Notably, the clinical application of genome-wide
nucleosome distribution of cfDNAs has not yet been broadly studied but may
provide valuable information in distinguishing pooled cfDNA to construe tissue of
origin (Lehmann-Werman et al., 2016; Snyder et al., 2016). Figure 2.2 demonstrates
how tumor cells shed their cellular contents such as nucleic acids, into the
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bloodstream. CTCs can also leave primary tumor site and infiltrate the bloodstream.
CTCs, cfNAs especially cfDNA can be used as liquid biomarkers.

2.6 Al in Cancer Biomarker Discovery

Tissue biomarkers are unique information sets written in the tissue. These unique
molecules are used in Pathology for the recognition of particular patient subsets with
predictive, diagnostic, or prognostic purposes. Thus, biomarkers are key molecules
in precision oncology. While Pathology may be considered as a subjective discipline
due to personal natural differences in visual abilities, data integration and overall
judgment, Al-based tools may aid in bridging this gap (Lancellotti et al., 2021).
Whole slide imaging (WSI) applications in the 1990s led to growing interest in Al in
Pathology, as it previously happened in Radiology field (Colling et al., 2019; Niazi
etal., 2019; Parwani & Amin, 2020). As ML was the first Al method to be applied in
Pathology, ML algorithms that were routinely used to discriminate benign against
malignant tumors had limitations. ML algorithms were used to annotate unique
morphological features such as the size of the cell, cytoplasmic texture, and nuclear
shape. This unfortunately was identified to be time-consuming and fixed around
anchored feature to the problem. Transformation of the Al-based tools in histopa-
thology was experienced with the introduction of DL. DL methods were demon-
strated to be able to learn directly from WSI/raw data and by not relying on
engineering an anchored feature to the problem. However, raw data still need a
threshold control, even though DL does not require pre-existing standards. For this
reason, DL techniques are divided into unsupervised, weakly supervised, and
strongly supervised. Al-based biomarkers are aimed at predicting response to treat-
ment and patient survival and identifying somatic mutations (Coudray et al., 2018;
Kather, Krisam, et al., 2019; Saltz et al., 2018; Skrede et al., 2020; Wulczyn et al.,
2020). For example, the expression of Ki67, HER2/neu, estrogen, and progesterone
tissue biomarkers allow for the selection of suitable treatment and outcome predic-
tion of breast cancer patients. To date, various Al software are available either
openly or commercially, as illustrated in Table 2.1. These can be used to address
Al-based biomarker aims.

DL is an Al method that makes use of ANNs in the identification of recurring
patterns in complex datasets such as in medical records. DL is a powerful tool used
in modern day to directly extract hidden information from routinely available data,
advancing the traditional molecular biology biomarker discovery. Imaging datasets
in particular, have been reported to have high-density information which can be used
with DL techniques. For instance, in radiology, DL has been reported to perform
human tasks such as organ segmentation or tumor detection on CT images. DL use in
radiology is mounting with currently approved FDA DL techniques such as
DL-based CT data analysis that was carried out in lung cancer screening trial in
2019 (Ardila et al., 2019). MRI datasets have also been reported to work well with
DL-based mining (Lundervold & Lundervold, 2019). Furthermore, DL has also been
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Table 2.1 List of public and commercially available software

Al-based software Source

1. HistoQC https://github.com/choosehappy/HistoQC

2. Isola https://histolab.readthedocs.io/en/latest/

3. HistomicsTK https://digitalslidearchive.github.io/Histomics TK/
4. QuPath https://qupath.github.io

5. PyHIST https://github.com/manuel-munoz-aguirre/PyHIST
6. PytorchDigitalPathology https://github.com/Ciel Al/PytorchUnet

7. ASAP https://computationalpathologygroup.github.io/ASAP
8. Ibex https://ibex-ai.com/

9. Visiopharm https://visiopharm.com/

10. Aiforia https://www.aiforia.com/

11. Paige https://paige.ai/

12. Proscia https://proscia.com/

reported to demonstrate strong results for non-radiology tasks such as in dermoscopy
for skin cancer detection and in colonoscopy (Haenssle et al., 2018; Luo et al., 2019;
Yamada et al., 2019; Yap et al., 2018). However, due to the larger size of histology
images, this imaging modality may contain more abundant information than is found
in radiological images. With histology images, millions of different cells can be
visualized on a slide. The cell’s spatial arrangement and morphology have been
reported to carry rich information compared to other medical imaging techniques. In
comparing datasets from a whole histology slide and whole chest CT dataset of the
same tumor from the same patient, the radiology imaging provided datasets fewer
than the histology imaging. Even with the proposed use of DL methods in radiology,
histological images are a rich source of DL-based biomarker mining compared to
radiological images. Figure 2.3 shows a multistep process toward Al-based bio-
marker development.

Big data and AI cannot be separated in this modern-day precision oncology era.
In genomics, “big data” can be referred to as large amounts of data generated by high
throughput sequencing such as NGS. Big data is characterized by the 5 Vs, velocity,
volume, value, variety, and veracity (Fountzilas & Tsimberidou, 2018). Traditional
methods are unable to process big data, and thus advanced technology tools such as
Al are required (Ioannidis & Khoury, 2018; Jain, 2016). Computational technologies
are being continually developed for the identification of diagnostic and prognostic
algorithms using the available clinical data (Mesko, 2017). For example, the IBM’s
(International Business Machines) Watson for Oncology is an Al program devel-
oped to analyze data from clinical notes, scientific reports and research, including the
National Comprehensive Cancer Network (NCCN) Clinical Practice in Oncology
guidelines (Kohn et al., 2014). This Al system can then suggest evidence-based
personalized treatment by combining these data with patients’ records. It has been
reported that combining physician’s notes and Al-obtained diagnostic algorithms is
key to diagnostic accuracy of 99.5% (Wang et al., 2016).
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Output classification

Developing
Al-based
DL-based tools biomarker

Input data

Histogenomics,
radiogenomics, NGS

Patients’ clinical data

Fig. 2.3 Developing the Al-based biomarker. The Al program is fed by big data that may include
NGS data, digital images, and clinical information. These programs learn to separate the classifi-
cations of interest without pre-existing assumptions. The output returns as categorized information
of significant clinical value in the prediction, diagnosis, prognosis, and response to treatment of
cancer

2.7 Al in the Detection of Novel Biomarkers for Accurate
Prognostication and Prediction of Drug Resistance
to Enhance Treatment

Al-based algorithms have demonstrated effectiveness in the prediction of microsat-
ellite instability by analyzing general H and E-stained tissue slides (Hildebrand et al.,
2021; Kather, Pearson, et al., 2019). Low-cost integrated use of this biomarker can
be beneficial to immunotherapy application and aid to identify high-risk families.
Furthermore, Al-based DNA methylation patterns in cancers can be useful in early
detection and intervention (Dlamini et al., 2020; Wrzeszczynski et al., 2017). Al has
the potential to transform the healthcare system, reducing costs and disparities. The
workflow in the diagnosis of oncology patients with solid tumors involves obtaining
tissue samples by either biopsy or by surgical resection. This is then followed by the
preparation of pathology tissue slides for histological staining such as H and E or
immunohistochemistry (IHC). H and E slides are the most routinely available for the
majority of cancer patients. This makes it convenient to access these histology slides
which contain abundant information that can be analyzed by DL methods. Although
DL methods can be used in tumor detection and segmentation, these Al tools can be
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used in histology images to advance personalized cancer patient care through
predictive biomarker discovery. In addition to histopathology, it has been demon-
strated that advanced methods such as DL are required to comprehend high-level
labels directly from histology that cannot be comprehended by traditional pathology.
This assumption involves three major areas which are interpreting genetic alter-
ations, prognostic indicators, and the prediction of treatment response. These renders
DL methods as valuable in clinical decision-making.

Contrary to DL methods in the clinical workflow, wet-lab-based assays such as
polymerase chain reaction (PCR), in situ hybridization (ISH), IHC, NGS that are
usually performed in parallel to histopathology, have been illustrated to have
limitations. These limitations such as high costs, time consuming and complexity
of datasets unfortunately pose as barriers to novel biomarker detection and to
effective treatment regimens (Kather et al., 2020). However, challenges with current
DL-based applications in oncology workflow include smaller training sample size
and phenotypic strength of genetic targets. These limitations can be overcome by
large datasets using a specific technical solution like the transfer learning approach
(Costa & Czerniecki, 2020; Lancellotti et al., 2021; Mayekar & Bivona, 2017).
Molecular testing in oncology clinical workflows form the basis to customize
treatment according to the molecular makeup of the tumor tissue of advanced
cancers. DL-based genotype biomarkers can be used to screen patients prior to
genetic testing, while the solid use of these biomarkers is still in developmental
stages, has not yet superseded the wet-lab assays. Notably, it has been reported that
most of DL-based genotyping methods have lower reported AUROC values
between 0.70 and 0.90, translating to 50% and 90% specificity and sensitivity.
Although this is a low performance of what would usually be required of definitive
tests, DL-based methods can be used to pre-screen cancer patients for rare traits. This
may have significant alleviating effects on molecular testing loads. In DP, advances
in DL biomarkers could meet the AUROC 0.90 threshold, translating to specificity
and sensitivity equivalent to molecular assays. In such instances, DL methods could
be considered as primary definitive testing or perhaps even be used parallel to
web-lab assays to detect genotypic variations directly from histology slides, which
may aid in treatment tailoring and predicting response.

2.8 Challenges, Limitations, and Opportunities

Oncology clinical workflows depend on predictive and prognostic biomarkers.
However, it has been noted that due to the growing number of biomarker discovery
and identification in clinical workflows, the delay in clinical decision-making and
associated cost in this rising era cannot be ignored (Fitzgerald et al., 2021). In real
clinical settings, the Al application is still limited by various problems, which
include the low digitization level. For example, a survey in England showed that
only 30% of Institutions had access to a full DP workstation. Of these, DP applica-
tions were revealed to be more common in research, teaching, and quality assurance
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compared to clinical use. Even so, DP applications were found to be less likely to be
used in primary diagnosis compared to consultations (Williams et al., 2018).
Increased development of open source datasets such as the Cancer Genome Atlas,
the Cancer Imaging Archives and Grand Challenges, a recent H2020 program
IMI2-2019-2018 for a central repository can help alleviate the impediments of
small training datasets for Al tools.

Although limitations in precision oncology involve ethical, legal, financial, and
technological, data sharing is key for the success of this phenomenon. The American
Association for Cancer Research (AACR, n.d.) has invested in an international data-
sharing project, Genomics, Evidence, Neoplasia, Information, Exchange (GENIE).
GENIE is a data-sharing registry that collects and combines Clinical Laboratory
Improvement Amendments of 1988 (CLIA)-certified genomic data. Here, data is
acquired from routine practice, from cancer treated patients at different institutions
(AACR, n.d.). Additionally, the American Society of Clinical Oncology (ASCO’s)
Cancer Learning Intelligence Network for Quality (CancerLinQ) is also a data
sharing and learning health program for the analysis of large aggregated
de-identified electronic health records of similar patients’ cases. This data-sharing
program is reported to represent real-world evidence to help inform personalized
patient care and treatment (Miller & Wong, 2018). Substantial resources have been
dedicated to these initiatives, which are key to a paradigm shift in precision oncol-
ogy, by identifying unique tumor patterns in predicting treatment response and
overall patient outcome.

2.9 Conclusions and Perspectives

It is important to detect and identify biomarkers that induce drug resistance and also
to identify novel therapeutic targets to enhance regimes of treatment (Dlamini et al.,
2020). Precision oncology for populations or individuals could allow the use of
specific diagnostic or prognostic biomarkers. This data can be used to monitor
disease progression and response to treatment. Thus, this information can be used
to decipher molecular alterations that can be targeted for the prediction of drug
resistance and improve patient outcomes (Dlamini et al., 2022). The significance of
molecular biomarkers is founded on sensitivity, specificity, and predictability for
reduced therapeutic instability and improved patient outcomes (Barreto et al., 2012;
Cheng et al., 2014; Dlamini et al., 2021). While tissue biomarkers have been used as
gold standards in disease diagnosis and progression, Al tools have great potential in
enriching human capabilities to optimize use of these in precision oncology. Addi-
tionally, liquid biopsies also hold great promise toward accurate prognostic and
predictive biomarker use, despite their limitations in a clinical setting. Furthermore,
findings generated from ‘big data’ studies can be overwhelming and therefore should
be accompanied by advanced technological tools. It is undeniable that Al-based
tools can enhance human potential in identifying changes in disease patterns. This
will improve the prediction of unique patients’ response to therapy and thus forge
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Fig. 2.4 Al-based tools in
novel oncology biomarker
discovery. Al-based tools
have the potential to
advance precision oncology
through the detection and
discovery of novel
prognostic and predictive
oncology biomarkers, thus
enhancing treatment
regimens. These parameters
function in synergy such as
lock (biomarkers) and key
(Al-based tools) to
transform oncology clinical
workflows

personalized patient care. Both tissue and liquid biopsies can be leveraged by
Al-based tools to identify novel predictive and prognostic biomarkers in advancing
precision oncology, Fig. 2.4.
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Chapter 3 )
Use of Artificial Intelligence s
in Implementing Mainstream Precision
Medicine to Improve Traditional
Symptom-driven Practice of Medicine:

Allowing Early Interventions and Tailoring
better-personalised Cancer Treatments

Thifhelimbilu Luvhengo, Thulo Molefi, Demetra Demetriou, Rodney Hull,
and Zodwa Dlamini

Abstract Cancer was until recently considered a homogenous disease with clearly
defined boundaries based on the organ involved and the TNM stage of a tumour.
Current challenges in cancer treatment include the shortage of expertise, delay in
diagnosis, inaccurate quantitative staging and variable treatment response. An
improvement in the understanding of the pathogenesis of cancer, tumour microen-
vironment and metastatic pathways has led to an increase in the application of
precision medicine in the management of malignant tumours. Recent advances in
imaging, histopathological analysis, genomics, transcriptomics, epigenomics, prote-
omics and metabolomics have increased the volume of information available to
guide personalised management of patients diagnosed with cancer. The ability to
combine demographic, clinical, radiologic and genomic findings has made the
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application of precision medicine in the management of cancer more feasible. This
chapter will report on the current uses of Al in the management of common
malignancies and how it would facilitate the implementation of mainstream preci-
sion medicine for screening, early diagnosis and personalised treatment of common
solid and haematological malignancies.

Keywords Artificial Intelligence - Intervention - Oncology - Precision Medicine -
Tailored treatment

3.1 Introduction

Cancer is the leading cause of death globally and its incidence is increasing expo-
nentially across the world, especially in younger adults (Kitahara & Sosa,
2016; Marur & Forastiere, 2008; Miller et al., 2020). Most cancers would be curable
if they are diagnosed early and treated timeously. However, majority of patients
however present when the cancer is either locally advanced or metastatic which
reduces the likelihood of cure (Mamelle et al., 1994; Wu et al., 2021). In certain
cases, some cancers acquire resistance to previously effective chemotherapy,
targeted therapy or immunotherapy (Algahtani et al., 2019; Mangaj et al., 2021).
The options for the treatment of cancer include surgery, radiotherapy, chemotherapy,
hormonal therapy, immunotherapy and targeted therapy.

Historically clinicians relied on the “one size fits all” approach for screening,
history taking, physical examination, staging, treatment, surveillance of side effects
and prognostication of patients who were diagnosed with cancer. Among the
limitations of clinical and image-dependent qualitative TNM staging is the subjec-
tivity during the interpretation of findings and its inability to accurately quantify the
actual burden of the disease or predict its clinical behaviour. Among the other
reasons for variable treatment response and outcome of cancers is the inter- and
intra-tumour variability (Borczuk et al., 2009). The interpretation of results of
imaging and histopathological investigations is influenced by the experience of a
radiologist and pathologist, respectively. Furthermore, once cancer has developed it
continues to evolve and becomes heterogeneous within itself, and at its metastatic
sites (AlSendi et al., 2021). Analysis of biopsy specimen is usually limited to a small
area of the tumour even if an excision biopsy was done (Vo et al., 2020). The
diagnostic workup of cancer rarely includes a biopsy of metastatic sites whose
microenvironment is likely to be different to that of the primary. The tumour markers
that are currently used for screening, diagnosis or follow-up of most cancers are not
reliable and often there is no correlation between their serum level and the volume of
cancer (Zhang et al., 2020b).

Precision medicine is the ability to offer the most specific, appropriate, effective,
efficient and safe treatment to a patient. Originally, precision medicine was limited to
the use of results from genomics studies to guide treatment but precision medicine
currently incorporates analysis of lifestyle, environment and bio-information to
guide treatment (Beckmann & Lew, 2016; Canzoneri et al., 2019; Rogers et al.,
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Fig. 3.1 Illustration of the potential application of precision medicine based on a combination of
results obtained from imaging, histopathology and genomic investigations to guide treatment. Deep
phenotyping of patients and the workup includes the medical history, basic lifestyle, laboratory
results, omic results, physical examination, functional diagnosis and immunology results. This
leads to enormous amounts of data. The data needs to be pre-processed and selected via data
mining. Diagnostic and predictive models can be designed based on the results obtained. The
models will allow the prediction of treatment that will be more effective. These models can be
shared with the relevant parties

2020; Wu et al., 2021). Precise and personalised treatment of cancer relies on the
ability to timeously make an accurate diagnosis, correctly stage the disease, select
the most effective treatment, minimise side effects and detect resistance or recurrent
disease early when it is still treatable (Bhinder et al., 2021. Precision medicine uses
results from imaging, histopathology and/or genomic investigations to guide treat-
ment (Fig. 3.1) (Konig et al., 2017).

Collation and analysis of bio-information, big data generated from electronic
health information system and next-generation sequencing is beyond the capabilities
of a human brain. Artificial intelligence (AI) has been adopted by several industries
to generate algorithms that assist decision-making (Rogers et al., 2020). The use of
Al to assist decision-making began in the 1950s but an exponential increase in the
use of Al in the healthcare industry started recently (Ahmed et al., 2021; Bourcier
etal., 2021; Connor, 2019; Keshinbora & Guven, 2020; Kroner et al., 2021; Luchini
etal., 2022; Nensa et al., 2019; Weidlich & Weidlich, 2018). Artificial intelligence in
the diagnostic workup, treatment planning and follow-up of common cancers such as
carcinoma of the breast, colon, prostate and lung (Luchini et al., 2022) (Fig. 3.2).

3.2 Artificial Intelligence

Artificial intelligence was introduced in the 1950s but its use in the healthcare
industry only started within the last 15 years (Bhinder et al., 2021; He et al,,
2019). Artificial intelligence (AI) is the use of computer applications to imitate



52 T. Luvhengo et al.

H Cancer radiology ® Pathology © Radiation oncology M Gastroenterology M Clinical oncology m Gynecology

b]

B General cancers M Breast cancer ™ Lung cancer M Prostate cancer B Colorectal cancer M Brain tumor = Others

Fig. 3.2 Status of Artificial Intelligence in oncology. 3.2a and 3.2b provide the representation of
Al-based devices that is expressed by oncology-related specialities. 3.2a Cancer radiology at—
55%, Pathology at—20%, Radiation oncology at—9%, Gastroenterology at—=8%, Clinical oncol-
ogy at 7% and Gynaecology at—1%. 1b) General cancer at—36%, Breast cancer at—33%, Lung
cancer at—9%, Prostate cancer at—9%, Colorectal cancer at ~8%, Brain tumours at—3% and
Others 2%
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human intelligence (Liu et al., 2019; Shimizu & Nakayama, 2020). A more basic
form of Al is machine learning which uses computers to develop algorithms
(Fig. 3.3).

The simplest form of deep learning is artificial neural network (ANN).
Convolutional neural network (CNN) is more advanced as it includes more than
one hidden layer. A convolutional neural network relies on the input of previously
collected clinical, radiological, histopathologicalor genomic data to develop a rec-
ognition model for future encounters (Bi et al., 2019; Honsy et al., 2018). Among the
reported benefits of Al in oncology is the facilitation of early detection of cancer,
virtual biopsy, prediction of metastasis, assessment of the adequacy of tumour
excision margin and determination of the prognosis. A combination of findings
from personal, lifestyle, clinical, radiomics, epigenomics, proteomics and
metabolomics (medomics) may be used for risk-stratification of cancer and facilitate
the application of precision medicine (Dlamini et al., 2020; Wu et al., 2021)
(Fig. 3.4).

3.3 Use of Artificial Intelligence for Early Interventions
and Tailoring Better-personalised Treatment
of Common Cancers

Breast, colon, lung, prostate, skin, stomach, lung, cervical, oesophageal and hepa-
tocellular carcinoma are among the 10 most commonly diagnosed cancers in adults.
The other common cancers include head and neck, ovarian, anal, pancreas, brain and
haematological malignancies. Common to all cancers is a presentation at advanced
in close to 70% of the cases, inter- and intra-tumoural heterogeneity, the plurality of
molecular subtypes, variation in their response to treatment and frequent acquisition
of resistance to therapies during follow-up.
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Fig. 3.4 Anillustration of areas of collection of information that can be enhanced by Al and used to
facilitate the delivery of precision medicine. Artificial intelligence enhances data discovery and
allows the integration of information. This process can be automated and lead to improved decision-
making. Al assists in image segmentation, registration and interpretation. Al allows the identifica-
tion of biomarkers that allows remote monitoring and diagnosis. Al also allows automated detec-
tion. Regarding the diagnosis, Al allows precision stratification and the selection of the image of
interest. This assists in cancer diagnosis, monitoring, progression and prognosis. Al allows for
optimised resource allocation and leads to personalised therapy and novel therapies

3.3.1 Breast Cancer

Breast cancer is the most common cancer in women worldwide and its incidence is
increasing (Miller et al., 2020). While screening using imaging modalities such as
mammography, tomosynthesis, ultrasound and/or MRI are reliable methods for the
detection of breast cancer, the expertise for interpretation of the findings is not
universally available (Geras et al., 2019). The diagnosis of breast cancer requires a
core needle biopsy. Core needle biopsy is invasive and only sample a small area of
the tumour. Radical or modified radical mastectomy was the standard of care for
curable breast cancer, but breast-conserving surgery is currently appropriate for most
cases of early breast cancer. A select group of patients who have oligometastatic
breast cancer may benefit from curative treatment (AlSendi et al., 2021).

The stage and molecular subtypes of breast cancer, the microenvironment in the
tumour and its genetic landscape influence the necessity of neo-adjuvant and/or
adjuvant (Garrido-Castro et al., 2019). The molecular subtype, presenting symptoms
and sites of metastases from breast cancer influence the selection of palliative
treatment (Garrido-Castro et al., 2019). Chemotherapy and trastuzumab are for all
HER-2/neu enriched tumours irrespective of the TNM stage (Lerebours et al., 2021).
Categorisation of breast cancer into molecular subtypes uses the differentiation of a
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tumour, oestrogen and progesterone receptor status, HER-2 neu expression, mitotic
count and Ki-67 index (Garrido-Castro et al., 2019). The genetic landscape and
tumour microenvironments such as overexpression of growth factors and the exis-
tence of tumour infiltrating lymphocytes also influence the behaviour of breast
cancer inclusive of its response to treatment (Low et al., 2018). The behaviour of
some cases of breast cancer is not predictable through manual collation and inter-
pretation of assembled information, despite the involvement of a
multidisciplinary team.

Early diagnosis and targeted treatment based on the molecular subtype and
mutational analysis of breast cancer offers the greatest hope for a cure. The volume
of data obtained from clinical, radiological, histopathological and molecular testing
during the evaluation of a patient who has breast cancer is beyond the integrative
ability of humans. The introduction of radiomics has improved the accuracy of the
interpretation of mammography where there is limited availability of experienced
radiologists (Geras et al., 2019). Challenges associated with the histopathological
assessment of a tissue specimen from the breast include the heterogeneity of the
tumour, limited availability of pathologists, inter-observer variability and delay in
communicating the results due to workload (Ibrahim et al., 2020). The application of
Al through the digitalization of histology slides and the use of deep learning-based
interpretation provides more accurate results and categorisation of subtypes of breast
cancer and facilitates timeous reporting of histology results (Ibrahim et al., 2020).
Furthermore, it is easier to select areas of interest while using digital slides. Analysis
of digital slides is, therefore, more likely to be comprehensive and lead to a better
characterisation of cancer including its microenvironment and the molecular sub-
types (Ibrahim et al., 2020; Low et al., 2018). Artificial intelligence can predict the
histological type, tumour grade and molecular subtype of breast cancer without a
tissue biopsy. The other reported benefits of Al in breast cancer include the predic-
tion of the likelihood of additionally involved lymph nodes if a sentinel lymph node
is positive. Artificial intelligence programs can accurately predict the presence of
distant metastases.

3.3.2 Colorectal Cancer

Colorectal cancer is the third most common cancer globally and is the second leading
cause of cancer-related mortalities (Mitsala et al., 2021). The incidence of colorectal
cancer is increasing globally, especially among young adults including in low- and
middle-income countries. Close to 90% of colorectal cancer are sporadic and
develop from an adenomatous polyp through a stepwise process, which takes on
average 10—15 years (Kather et al., 2018). The genomic landscapes changes and new
mutations develop as colorectal cancer grows and metastasises (Mitsala et al., 2021).
The prognosis of colorectal is better if diagnosed before it has metastasised to lymph
nodes or the liver. Approximately 20% of colorectal cancer present when the tumour
has already metastasized (Aigner et al., 2017; Lin et al., 2020; Maclean et al., 2021;
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Rocca et al., 2022; Rompianesi et al., 2022). Some cases of metastatic colorectal
cancer are curable (Aigner et al., 2017).

Colonoscopy is the most reliable method for screening colorectal cancer whereas
the diagnostic modalities include colonoscopy, endoscopic ultrasound, CT scan and
MRI. Management of colorectal cancer depends on the stage of the tumour at
presentation and site of the tumour, histological differentiation, genetic make-up,
molecular subtype and tumour microenvironment (Kather et al., 2018). Options for
the treatment of early colorectal cancer include endoscopic mucosal resection,
endoscopic submucosal dissection, trans-anal excision, and trans-anal endoscopic
microsurgery (Mitsala et al., 2021). The choice of endoscopic treatment is dependent
on early diagnosis, accurate pre-operative histological diagnosis and tumour staging.
Chemotherapy, radiotherapy and targeted therapy when the cancer is either locally
advanced or metastatic.

The introduction of Al has led to a reduction of missed polyps during colonos-
copy, accurate assessment of cancer risk and depth of tumour invasion in adenoma-
tous polyps, accurate assessment of lymph node status, early detection of liver
metastases and prediction of response to treatment (Bedrikovetski et al., 2021;
Dayde et al., 2017; Rompianesi et al., 2022). The liver is the most common site
for metastases from colorectal cancer and 25-50% of patients have liver metastases
at first presentation (Lin et al., 2020; Liu et al., 2020; Rocca et al., 2022). Colorectal
cancer with limited metastases in a selected group of patients is curable. Artificial
intelligence combining CT, MRI, mass-spectrometry of exhaled volatile com-
pounds, demographics, CEA and tumour stage are useful for timeous detection of
liver metastases when they are still resectable or suitable for liver transplant
(Rompianesi et al., 2022).

Additional challenges in the management of rectal cancer are the risk of local
recurrence and the need to preserve the anal sphincter. The interpretation of findings
from endo-luminal ultrasound and MRI is subjective and reliant on the experience of
the radiologist. Although minimal surgery options are preferred, they are not suitable
for all patients. Artificial intelligence programs combining demographic informa-
tion, radiomics, genomics, tumour markers and proteomics may guide treatment
selection and predict treatment response (Liu et al., 2020; Wang et al., 2021).

3.3.3 Lung Cancer

Lung cancer is the most common malignancy in men and the third most common
globally, although its incidence is decreasing (Jones & Baldwin, 2018). Lung cancer
is heterogenous as it has various subtypes which differ in terms of risk factors,
molecular and genetic profile, response to treatment and prognosis (Borczuk et al.,
2009). Around 62-75% of patients present when the tumour is advanced or meta-
static (Jones & Baldwin, 2018; Wu et al., 2021). The one-year survival of metastatic
lung cancer is below 40%. Screening and early diagnosis of lung cancer using plain
x-ray, low-dose CT scan, MRI and PET/CT significantly improves the chance of
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cure (Tunali et al., 2021). Sampling of mediastinal lymph nodes is required in some
cases (Tunali et al., 2021). Surgery is the mainstay of treatment for lung cancer, but
curative radiotherapy is effective for early disease in non-operable patients (Jones &
Baldwin, 2018). Radiofrequency and microwave ablation are beneficial for
irresectable diseases (Jones & Baldwin, 2018). Selected patients with limited
oligometastatic lung cancer may benefit from a trial of curative treatment (Mentink
et al., 2021). Artificial intelligence can predict the response to chemotherapy,
targeted therapy or immunotherapy Tunali et al., 2021).

3.3.4 Cancer of the Cervix

Cancer of the cervix remains the most common cancer in some of the LMICs and its
rate is increasing despite the expansion of the screening program using Pap smears
and vaccination programs against the human papillomavirus (HPV) (Xue et al.,
2020). Over 85% of mortalities associated with cancer of the cervix occur in
LMICs (Bedell et al., 2020; Hu et al., 2019). Prevention and treatment of cancer
are labour intensive and are reliant on the availability of personnel, expertise and
specific equipment (Baleydier et al., 2021; Holmstrom et al., 2021; Hu et al., 2019).
Interpretation of Pap smear is subjective and based on experience that may lead to
excessive referral of patients for colposcopy (Xue et al., 2020). The interpretation
and reporting of findings following colposcopy are subjective and rely on the level of
experience of the practitioner (Xue et al., 2020). Screening for high-risk HPV
serotypes is more sensitive than a pap smear but its accuracy unless its evaluation
and interpretation are automated.

Deep learning was recently introduced into the screening program for cancer of
the cervix including digitalization of glass slides, whole-slide scanning and auto-
mated evaluation of pap smears such as the CYTOREADER (Hu et al., 2019). The
other addition to the screening program is using dual stained slides for p16/Ki-67 for
the identification of high-risk intra-epithelial neoplasm or early advanced cancer
followed by scanning of the entire slide for regions of interest and automated
evaluation of Pap smear slides (Bedell et al., 2020). Artificial intelligence-guided
digital colposcopy improves diagnostic accuracy and expedites treatment (Hu et al.,
2019). Smart phone-based computer-aided screening and diagnosis of cancer of the
cervix is effective and feasible (Baleydier et al., 2021). Another potential role of Al
in the selection of treatment and/or prediction of tumour response in patients who
have oligometastatic, oligo-progressive or oligo-recurrent cancer of the cervix
(Mangaj et al., 2021).

3.3.5 Gastric Cancer

Adenocarcinoma of the stomach (gastric cancer) is the third to the fifth most
common cause of cancer deaths in the world. Gastric cancer is highly heterogeneous
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and is classified based on the age of onset, underlying cause, stage at presentation,
histological finding, molecular subtype and extent of distant metastases (Ahadi et al.,
2020; Bergquist et al., 2019; Birkman et al., 2017; Chevallay et al., 2022;
Machlowska et al., 2020; Skierucha 2016; Song et al., 2017). Pathologists’ work-
load, discrepancy, and heterogeneity of the tumour may affect the quality of histo-
pathology reports (Niu et al., 2020). Identification of signet ring cells and their
proportion depends on the thoroughness of a pathologist (Pernot et al., 2021). Digital
slides and new-generation sequencing have led to an improvement in the accuracy of
pathology reports (Niu et al., 2020).

Gastric cancer may be early, locally advanced or metastatic. The prognosis of
gastric cancer depends on the stage at presentation and, the histological, genomic
and molecular subtype of the tumour (Machlowska et al., 2020). Early gastric cancer
is a tumour that has not invaded beyond the submucosa regardless of the lymph node
status. Options for the management of low and intermediate-risk early gastric cancer
include endoscopic submucosal excision and endoscopic submucosal resection.
High-risk patients and histological features mandate a gastrectomy with appropriate
lymph node dissection. The 5-year survival of early gastric cancer following curative
surgery is over 90%. Staging laparoscopy with lavage cytology should precede
curative resection for locally advanced gastric cancer as peritoneal metastases are
sometimes missed. Surgery and chemotherapy for early gastric cancer are associated
with 90% 5-year survival, inclusive of the signet ring cell subtype. Prognosis is good
even for SRCC. Endoscopic mucosal resection or endoscopic submucosal dissec-
tion. Another area where Al may help in the selection of patients for curative
treatment in cases of oligometastatic gastric cancer (Chevallay et al., 2022).

3.3.6 Prostate Cancer

Prostate cancer is among the six most commonly occurring cancers and the third
most common cause of cancer-related mortality in men globally (Liberini et al.,
2022). The diagnosis of prostate cancer requires a needle biopsy that can be finger-,
ultrasound or MRI-guided (Kasivisvanathan et al., 2018). Prostate cancer is hetero-
geneous, and its subtypes include indolent, early, locally advanced and metastatic
(Haffner et al., 2021; Mateo et al., 2020). The age of the patient, Gleason score,
tumour microenvironment, genetic landscape and extent of distance metastases can
influence the behaviour of prostate cancer (Foster et al., 2019; Haffner et al., 2021;
Mateo et al., 2020). The microenvironment and behaviour of prostate cancer are
highly variable as it changes as the tumour grows, and extensive heterogeneity
occurs even within an individual tumour (Liberini et al., 2022; Wang et al., 2018).

Options for the management of prostate cancer include observation, brachyther-
apy or radical prostatectomy with or without adjuvant chemotherapy (Huang et al.,
2018). The use of anti-androgen (castration) therapy, chemotherapy, targeted ther-
apy or immunotherapy depends on the molecular sub-types of the tumour (Mateo
et al., 2020). Application of Al program combining clinical, radiomics, genomics
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and epigenomics is useful for screening, predicting tumour grade and Gleason score,
detection of pelvic lymph node and distant metastases using PET/CT, and prognos-
tication of prostate cancer (Huang et al., 2018; Liberini et al., 2022). Additionally, a
multi-parameter CT scan can accurately predict the Gleason score of prostate cancer
(Liberini et al., 2022).

3.3.7 Malignant Melanoma

Although malignant melanoma is relatively rare compared to other skin cancers, it is
both the most aggressive and most fatal of the primary skin tumours. It however
among the top 10 most commonly occurring cancers in some countries, including the
USA (Bobos, 2021). The types of cutaneous malignant melanoma include superficial
spreading, nodular, lentigo malignant melanoma and acral lentiginous melanoma
(Bobos, 2021). The prognosis of melanoma is good with expected 5-year survival
above 90% if is detected early. Deep learning-guided dermoscopy using
smartphones can accurately confirm the malignant change in a skin lesion (Phillips
etal., 2019). Malignant melanoma is a highly heterogeneous disease (Bobos, 2021).

The prognosis of a patient who has malignant melanoma is influenced by gender,
age, site of the tumour, Breslow’s thickness, presence and number of mitotic counts,
evidence of tumour ulceration, lymphovascular infiltration, neurotropism, presence
of tumour infiltration lymphocytes, the existence of microscopic or macroscopic
satellites, in-transit metastases and lymph node or distant metastases (Beasley, 2020;
Bobos, 2021). Management of patients diagnosed with metastatic malignant mela-
noma is dependent on the stage at presentation and the molecular profile of the
tumour (Eroglu et al., 2020). Mortality of patients presenting with stage 3 or
4 melanoma remains high with variable responses to targeted and
immunomodulation therapy. A combination of PET/CT is useful for monitoring
the response of metastatic melanoma to targeted therapy and immunomodulation
treatment (Filippi et al., 2022). Artificial intelligence program using a combination
of demographic, clinical, radiomics, genomics, epigenomic and proteomics data is
used for early diagnosis, screening for metastases and prediction of response to
treatment and overall prognosis (Eroglu et al., 2020; Filippi et al., 2022).

3.3.8 Ovarian Cancer

Ovarian cancer includes stromal, germ cell and epithelial tumours. Epithelial ovarian
cancer accounts for 90% of malignancies of the ovary and is subdivided into Type
1 and Type 2 (Kroeger & Drapkin, 2017). Type 2 epithelial tumours are fast-growing
and the most aggressive with a reduced chance of cure. The symptoms of ovarian
malignancies are non-specific and around 70% of patients have an irresectable
disease at presentation (Matulonis et al., 2020). Management of advanced ovarian
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cancer includes de-bulking followed by paclitaxel or platinum-based chemotherapy
(Matulonis et al., 2020). Less than 50% of ovarian cancer respond to paclitaxel or
platinum-based chemotherapy (Ma et al., 2021). Deep learning program using CNN
can predict the treatment response of ovarian cancer by combining demographics,
clinic-pathological, radiomics, biomarkers and genomics to predict histology of the
tumour, tumour stage, response to chemotherapy, the likelihood of recurrence and
overall prognosis (Gong et al., 2020). Radiomics based on CT and MRI can
accurately diagnose the type of ovarian cancer and its histological grade, presence
of peritoneal metastases and predict response to treatment (Wang et al., 2022; Zhou
et al., 2022). The model for predicting tumour response and the overall outcome
combines age, BMI, neutrophils and lymphocytes count and the level of CRP,
albumin, fibrinogen, CA-125, CEA, a- fetoprotein and circulating tumour cells
(CTC) (Ma et al., 2021).

3.3.9 Hepatocellular Carcinoma

Hepatocellular carcinoma is increasing in incidence globally (Khemlina et al., 2017).
Risk factors of HCC include Hepatitis B and C infection, liver cirrhosis,
non-alcoholic steatohepatitis and obesity (Khandekar et al., 2011; Khemlina et al.,
2017). Majority of patients who have HCC present late when the tumour is neither
resectable nor suitable for liver transplant (Khemlina et al., 2017). The diagnosis of
HCC relies on the level of a-fetoprotein, imaging or needle biopsy (Zhou et al.,
2019). Needle biopsy is rarely necessary for the evaluation of a liver mass and all
HCCs are associated with an elevation of a-fetoprotein. Although diagnosis based
on CT and/or MRI findings is usually relied on, some of the HCCs do not show
classical findings. Hepatocellular carcinoma may be confused with intrahepatic
cholangiocarcinoma, liver metastasis or focal nodular hyperplasia (Perez & Grande,
2020). Furthermore, the interpretation of CT or MRI of the liver depends on the
expertise that may not be available in under-resourced settings (Honsy et al., 2018;
Liu et al., 2019).

The use of radiomics can provide an accurate classification of liver lesions
according to the Liver Imaging Reporting and Data System (Feng et al., 2021).
Radiomic can preoperatively predict the histological grade, Ki-67 index, the exis-
tence of microvascular invasion and molecular profile of HCC (Feng et al., 2021).
The other use of radiomics is in the immune profiling of HCC in preparation for
immunotherapeutic agents (Moldogazieva et al., 2021). A combination of radiomics
and a-fetoprotein levels can prognosticate HCC. Integration of radiomics, genomics,
epigenomics, transcriptomics and proteomics is more accurate for the prediction of
tumour response or recurrence following resection and selection of options for
palliative treatment (Perez & Grande, 2020; Zhang et al., 2020b). Among the
available palliative, options are TACE, RFA and sorafenib (Zhang et al., 2020b).
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3.3.9.1 Carcinoma of Oesophagus

Carcinoma of the oesophagus is among the top eight most commonly occurring
malignancies (Huang et al., 2020). The main subtypes of carcinoma of the oesoph-
agus are squamous cell carcinoma and adenocarcinoma. The incidence of adenocar-
cinoma of the oesophagus is increasing. Majority of patients present when the
tumour is advanced and the expected five-year survival is less than 20% malignan-
cies (Huang et al., 2020). Screening of individuals who have premalignant lesions
leads to early diagnosis and an increased chance of cure. The performance and
interpretation of screen results of screening test is however laborious and subjective.
Potential benefits of Al have been demonstrated in the entire pathway from screen-
ing to provisioning of personalised care of individuals who have oesophageal cancer
(Syed et al., 2020). Image-guided Al can accurately diagnose early cancer including
the ability to perform endocytoscopy and virtual biopsy (Syed et al., 2020). Further-
more, Al can predict the presence of local and distant metastasis, treatment planning,
response to treatment and prognostication (Syed et al., 2020; Zhang et al., 2020a).
Application of Al allows for a comprehensive assessment of the microenvironment
and genomics of the tumour personalised care of patients who have oesophageal
cancer (Visaggi et al., 2021; Zhao et al., 2021.

3.3.10 Pancreatic Adenocarcinoma

Although pancreatic adenocarcinoma (PDAC) is rare and its rate is increasing. Risk
factors of PDAC include smoking, chronic pancreatitis and familial. Treatment
options include surgical resection, chemotherapy and targeted therapy. More than
80% of patients with PDAC present when the tumour is not resectable (Pereira et al.,
2020). The tumour microenvironment and genetic landscape of PDAC are highly
variable (Hayashi et al., 2021). The prognosis of PDAC remains decimal despite an
improvement in surgical expertise and current advances in the understanding of the
genomics, epigenetics and the microenvironment of pancreatic adenocarcinoma
(Waddell et al., 2015). The application of Al for the screening of high-risk individ-
uals has generated hope for early diagnosis and cure for patients who have PDAC
(Kenner et al., 2021). Artificial intelligence is also helpful for staging, prediction of
response to treatment and prognostication of pancreatic cancer (Hayashi et al.,
2021).

3.3.11 Other Cancers

The beneficial use of Al extends to carcinoma of the uterus (Ravegnini et al., 2022),
urinary bladder (Malinaric et al., 2022), renal cell carcinoma (Peng et al., 2021) and



62 T. Luvhengo et al.

gastrointestinal stromal tumour (GIST) (Yang et al., 2020). Artificial intelligence is
useful for screening and early diagnosis of basal cell carcinoma of the skin (Santilli
et al., 2020), oesophageal carcinoma, thyroid cancer, neuroendocrine tumours (Clift
et al., 2020), phyllodes tumour of the breast (Niu et al., 2021; Rayzah et al., 2020),
cholangiocarcinoma, dermatofibrosarcoma protuberans (Li et al., 2021b) and
haematological malignancies (El Alaoui et al., 2022; Salama et al., 2020). Another
area of the potential benefit of Al in oncology is radiomics and virtual biopsy for
cholangiocarcinoma (Yang & Shu, 2021), gall bladder cancer (Jeong et al., 2020),
primary and metastatic brain tumour and neuroblastoma (Giglia et al., 2020; Rudie
et al., 2019), soft tissue sarcoma (Gitto et al., 2021; Vibhakar et al., 2021) and
adrenal tumours (Liu et al., 2022a). Artificial intelligence provides more accurate
information for treatment planning in head and neck cancer (Kearney et al., 2018;
Mahmood et al., 2021; Resteghini et al., 2018; van Dijk & Fuller, 2021) and
malignant tumours in paediatric patients (Vo et al., 2020) and determination of the
adequacy of excision margin for basal cell carcinoma (Santilli et al., 2020).

Additional benefits of Al and its potential use for precision medicine is in the
prediction of fibrosarcomatous variant and the possible presence of metastases
dermatofibrosarcoma protuberans (Li et al., 2021b) and lung metastases in patients
who have papillary carcinoma of the thyroid (Zhao et al., 2019; Liu et al., 2022b).
Patients who have head and neck (Shen et al., 2019), neuroendocrine tumours
(Partouche et al., 2021, sarcomas (Tian et al., 2018; Zhu et al., 2019; Gitto et al.,
2021; Liet al., 2021a), pheochromocytoma (Buffet et al., 2019; Guo et al., 2020) and
thyroid cancer Yoon et al., 2020) can benefit from Al as it can predict the response to
treatment. Similarly, Al is useful for the prediction of side effects and prognostica-
tion of patients who have head and neck cancers (Kearney et al., 2018). Table 3.1 is a
summary of areas of potential benefits of Al in 27 commonly diagnosed solid and
hemopoietic malignancies.

Collection, collation, analysis and matching with the existing Al developed
prediction models improve the ability to deliver precision medicine (Fig. 3.5).

3.4 Limitations

The application of Al is resource intensive as it requires advanced computing which
may not be available in LMICs. The resources or expertise to offer the treatment
recommended following the application of Al may also not be available in LMICs.
The big data that is available for use to generate algorithms for decisions are likely to
have been sourced from HICs. The robustness of the algorithms is likely to be
influenced by the quality of the data which has been fed into the computer. The size
of a sample that is used for training and validation of the treatment algorithms might
not have been adequate or appropriate. A possibility of either false positives or false
negatives exists. Deep learning especially CNN is beyond the capability of a human
brain. A computer is not able to explain how a diagnosis was made or why a certain
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Table 3.1 The current scope of Al with potential benefits for precision medicine in 27 solid and
haematopoietic malignancies

Treatment | Prediction
Early response of tumour
Cancer type Screening | Diagnosis | assessment | recurrence Prognostication

Breast cancer

Cancer of cervix

Uterine malignancies

Colorectal carcinoma

Gastric cancer

Lung cancer

Prostate cancer

Head & neck cancer

Oesophageal
carcinoma

Hepatocellular
carcinoma

Melanoma

Ovarian cancer
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treatment would be the most ideal, the so-called “black-boxes” of Al. Decisions
which are guided by Al may not be defensible in case of litigation. The application of
Al to guide personalised may threaten confidentiality and the ability to receive
informed consent and therefore autonomy of patients.
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Fig. 3.5 Illustration of the linkage of medomics, Al benefits and precision medicine to enable early
intervention and tailoring better-personalised cancer treatments

3.5 Conclusion

The traditional symptoms and TNM decisions are archaic and lead to either under or
over-treatment of cancer. The genomic and epigenomics in the microenvironment of
cancer makes it a heterogenous disease within itself and in different persons. The
need for personalised medicine is more relevant in oncology than any other field in
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medicine and related professions in the healthcare industry. The last 10 years have
seen a dramatic in the uptake and use of Al in oncology the workup and treatment of
almost all malignancies in humans. The use of Al extends from the screening of
common malignancies or high-risk individuals to allow for early diagnosis with
confidence and exclusion of differentials. The ability to combine demographic,
clinic-pathological, radiological and molecular profiles in a patient allows for a
more enhanced prediction of the likelihood of metastasis, tumour grade, response
to treatment, the possibility of tumour recurrence and long-term survival. Therefore,
Al in oncology is likely to facilitate the delivery of precision medicine in the
management of cancer.
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Al as a Novel Approach for Exploring s
ccfNAs in Personalized Clinical Diagnosis

and Prognosis: Providing Insight into

the Decision-Making in Precision Oncology

Lesetja Motadi, Mzubanzi Mabongo, Demetra Demetriou,
Precious Mathebela, and Zodwa Dlamini

Abstract For many years the idea of personalized medicine has toyed around. It is
characterized as an innovative method to alter disease treatment and prevention that
considers the differences in individuals’ genes and lifestyles. The purpose of preci-
sion medicine is to provide patient-specific treatments at the right time for quick and
cost-effective recovery. While world technological advances provide the opportu-
nity for many in medical science to access big data that no human brain can collate,
the use of artificial intelligence (AI) may help improve cancer screening and
diagnosis and planned treatment. In this chapter, although we will not cover all
technologies already available for patient care, we highlight the progress made in
using technology combined with liquid biopsy in precision oncology. We will also
be discussing Al as a novel approach for exploring circulating cell-free nucleic acids
(ccfNAs) in personalized clinical diagnosis and prognosis.
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4.1 Introduction

Cancer is one of the common global causes of mortality and morbidity. Its burden is
putting a lot of pressure on the health systems. Management of cancer is still mainly
based on the TNM staging with the current being the sixth edition of AUJC. This
classification informs decision-making and planning that includes treatment and
prognosis. In most cases, in an attempt to pull together the skills and resources
from different fields, multidisciplinary clinics are formed to improve the quality of
decision-making and prognostication of cancer. The unfortunate aspect of this data is
that it is not always digitalized in some units. The need for digitalization of the data
has always been a goal for clinicians. Unfortunately, scant resources make this a pie
in the sky, especially in low-income countries. The digitalization of oncology data
would bring the service closer to the use of artificial intelligence (Al).

Artificial intelligence refers to the use of computer techniques to simulate clini-
cian intelligence and cognitive function in health sciences (Elkhader & Elemento,
2022). Al plays a vital role in personalized medicine which developed as a result of
the collaboration of experts in medicine, mathematics, and physics (La Porta &
Zapperi, 2018). In medicine, Al has several applications including diagnosis, early
detection of cancer using imaging and genomics disease monitoring, and new drug
development. Al comprises two subfields; machine learning (ML) and deep learning
(DL). ML enables computers to develop the necessary skills for problem-solving and
learn without being precisely programmed (Ilhan et al., 2021). ML is classified into
unsupervised -, supervised learning, and reinforcement learning (Dutton & Conroy,
1997; Jain et al., 1999). Unsupervised learning algorithms can analyze unlabeled
data and can be used to identify structures that are hidden. The algorithm itself is able
to detect patterns in the data that it can use for learning as the system does not have
expectable results or prior labeled data. Supervised learning is the learning process
of the machine which is based on known or labeled data. In reinforcement learning,
the software is exposed to negative and/or positive learning within a powerful
environment (Garcia-Pola, 2021). ML uses different types of classifiers which
include artificial neural networks (ANN), support vector machines (SVM), and
decision trees. These require input data and structured hierarchical learning networks
that are accurately imported to assist the computer systems to build a mathematical-
based model for decision-making.

In deep learning, complex architectural analogs are constructed to the
interconnected neurons of the human brain (Hunter et al., 2022). Deep learning
algorithms that are commonly applied in the genomics field include feedforward
neural networks (FNN), natural language processing (NLP), convolutional neural
networks (CNNs), recurrent neural networks (RNNs), bidirectional long short-term
memory networks (BLSTMs), long short-term memory networks (LSTMs), and
gated recurrent unit (Alharbi & Rashid, 2022). Al may provide a one-stop on
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which the captured data like signs and symptoms, histology images and reports,
biochemistry results, and radiology images and reports can be collated and inte-
grated. This expediates the diagnosis, planning, improve accuracy and consistency
in decision-making (Greatbatch et al., 2019). Al in oncology has many applications
which include liquid biopsy extraction, identification, detection, classification, and
prognosis. Liquid biopsy assays continuously rely on ML and Al to isolate cellular
and molecular signatures that can predict the outcomes or presence of tumors
(Elkhader & Elemento, 2022).

Precision medicine has been used currently to achieve greater personalized care
by the development of the latest updated diagnostic methods to study individual
variability (Kaur et al., 2017). The initial significant step to this personalized
medicine is the collection of comprehensive real-time data. In oncology, this
includes liquid biopsy, appropriate diagnostic imaging, biochemistry results, and
clinical records. The analytes from the liquid biopsy include circulating free nucleic
acids (cfNA), which is the DNA and RNA material released into circulation cells that
have undergone apoptosis and necrosis (Mandel, 1948; Pos et al., 2018). Useful
markers within the body fluids have been identified as helpful in personalized
treatment resulting in increased survival (Kosaka et al., 2010). Liquid biopsies are
being used for their non-invasive, prognostic, and predictive nature. Under normal
homeostasis, ccfNAs are produced from the hematopoietic system. In clinical
conditions, ccfNAs are released by circulating tumor cells into body fluids like
serum, plasma, and cerebrospinal fluids by apoptosis, necrosis, phagocytosis, and
exocytosis (De Rubis et al., 2018; Zhou et al., 2017).

Cell-free Nucleic Acids (cfNA) include circulating tumor DNA (ctDNA) and
RNA which are released by apoptotic tumor cells. The cfNA analytes from the liquid
biopsy consist of cell-free DNA (cfDNA) and RNA. The RNA components include
long non-coding RNAs (IncRNAs), microRNA (miRNA), and exomes (Sorber et al.,
2017). These analytes act as diagnostic and prognostic markers as well as therapeutic
targets providing significant clinical benefits to patients. The captured data from
these analytes, for example, the quantities, are used for both diagnosis and disease
monitoring. This provides valuable information for Al Figure 4.1 shows the use of
cfNA in cancer diagnosis and treatment.

4.2 Cancer Liquid Biopsies and Their Use in Precision
Oncology

Liquid biopsies have recently played a crucial role in diagnosing several cancers and
screening in which a patient could benefit from a specific therapy. In addition, they
are considered to be a new gold standard of care for cancer patients (Torres et al.,
2020). These biopsies contain isolated tumor-derived products such as ctDNA which
is present in the fluids drawn from cancer patients. Liquid biopsies tests have been
proven to be highly accurate as they give an idea of what is happening in the tumor
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Fig. 4.1 Uses of cell-free nucleic acids (cfNA) in cancer diagnosis and treatment. CfNAs can be
used to screen, detect and diagnose cancer. It can also be used for the localization of cancer through
cfDNA pattern fragmentation, nucleosome spacing, methylation analysis, and non-coding RNA
detection. Additionally, cfNAs are used in staging, prognosis, drug resistance, and treatment
response monitoring

microenvironment (TME). The well-known liquid biopsy markers in cancer scenar-
ios are circulating cell-free nucleic acids (ccfNAs), extracellular vesicles (EV),
exfoliated tumor cells, cell-free proteins, exosomes, and peptides (Di Meo et al.,
2017). In this chapter, we are only going to focus on the role of ccfNAs in cancer and
how they can be integrated with Al to guide decision-making in precision oncology.

Radiomics is a specialized branch of Al that enables the extraction of image
features obtained by clinicians (Gillies et al., 2016). These features can give an idea
of pathophysiological processes and represent the phenotypic characteristics of the
tumor. Because of their simple workflows, replicability and minimal invasiveness,
the combined use of radiomics and liquid biopsies make them very attractive in
oncology. ML approaches play an important role in ensuring the success of radiomic
applications in clinical settings. In a radiomic study by Parma et al., they reported
that two methods; the Wilcoxon test-based feature selection method (WLCX) and
random forest (RF) had the best prognostic performance when compared to the other
12 methods (Parmar et al., 2015). Additionally, the methods were very stable against
data variations. They went on to conclude that one must accurately choose ML
methods that are optimal for radiomic applications as this can assist in obtaining
stable and specific biomarkers.
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4.2.1 Cell-Free DNAs

By definition cell-free DNAs (cfDNA) are fragments of DNA released into the
plasma/serum following circulating tumor cell (CTC) lysis by apoptosis or necrosis
which carries genome-wide DNA information. Al using cfDNA can achieve a mean
sensitivity and specificity of 85% in early colorectal cancer in stages I and II (Wan
et al., 2019). CancerSEEK detected eight common cancer types through the analysis
of cfDNA and the use of a random forest model by evaluating eight proteins, 1933
gene positions and predicted malignancy with an area under the curve (AUC) of
91%. It also identified a very high proportion of ovarian and liver cancers (Cohen
et al., 2018). Mitochondrial DNA (mtDNA) are detectable fragments released from
the cell as a result of apoptosis. Some studies reported increased levels of circulating
DNA in the blood of patients suffering from cancer (Meddeb et al., 2019).

4.2.2 Circulating Tumor DNA

Circulating tumor DNA (ctDNA) is a nucleic material isolated from circulation and
can be accessed and analyzed from the liquid biopsy sample. CtDNA is a form of
cfDNA that is expelled by the tumor cells into circulation (Wang et al., 2020). It is
reported to be released into the peripheral blood after tumor cells outgrow their blood
supply, become hypoxic and undergo apoptosis or necrosis. CtDNA in body fluids
exist in two forms, a free single or double-stranded DNA and DNA—protein complex
(Cheng et al., 2016; Zhang, Liang, et al., 2019). The half-life of ctDNA is reported to
range from 15 minutes to 2 hours, and is rapidly cleared by kidneys, liver, and spleen
(Perakis & Speicher, 2017). Like cfDNA, ctDNA molecules circulating in the blood
are emerging as critical non-invasive biomarkers for pathological processes includ-
ing cancer. CtDNA is differentiated from cfDNA by the presence of gene mutations.
These mutations can be diagnosed by use of next-generation sequencing (NGS).
NGS generates a large amount of data from ctDNA by whole genome sequencing
and methylation sequencing (Hunter et al., 2022). This large genomic data generated
from NGS can be integrated with the disease phenotype and other clinical records
through AT algorithms. Combining Al and epigenomic analysis of ctDNA has been
successful in the identification of genes that are differentially methylated in lung
cancer (Bahado-Singh et al., 2022). This was archived through DL and with 100%
sensitivity and specificity. A recent test in EGFR mutation through plasma droplet
digital PCR (ddPCR) was proven to be hundred percent specific in detecting these
mutations in lung cancer (Guo et al., 2019). CtDNA-based liquid biopsies present
hope that it may guide precision medicine treatment through the identification of
unique molecular characteristics of an individual’s cancer. With a liquid biopsy,
NGS is the best tool to sequence ctDNA to provide a molecular profile of cancer
leading to clear diagnostic outcomes.
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4.2.3 Cell-free Mitochondrial DNA in Cancer

Mitochondrial DNA (mtDNA) are detectable fragments of DNA of mitochondrial
origin and are also released from the cell as a result of apoptosis. Several studies
report elevated levels of circulating mtDNA in the blood of patients suffering from
various diseases especially cancer (Meddeb et al., 2019). This elevation can be
attributed to the fact that during various diseases the affected cells activate cell
machinery like apoptosis which will attack the infected or affected cell. As described
previously in many studies apoptosis results in the fragmentation of DNA and that of
mitochondria (Mahmoud et al., 2016; Motadi et al., 2007). Like any other gene,
mtDNAs are prone to mutations and such mutations have been implicated in the
pathogenesis of multiple cancers thereby making circulating cell-free mtDNA as
potential non-invasive tumor biomarker (Liu et al., 2016). These epigenetic marks
on cfDNA have been referenced as indication of existence and location of tumors.
They would also be used to monitor tumor burden noninvasively through estimating
the percentage of ctDNA in the total cfDNAs (Snyder et al., 2016; Sun et al., 2015).
Several studies also suggested that mitochondria-originated cfDNA fragments in
cancer patients are more fragmented than those in healthy individuals (Cristiano
et al., 2019). This suggestion provided knowledge in the diagnosis and also prog-
nosis of cancer which can advise on the stages of cancer (An et al., 2019; Ma et al.,
2017; Underhill et al., 2016).

In a study by Liu et al., they have shown that using NGS substantial fraction of
tumor-specific mtDNA mutations in plasma cf-mtDNA specifically from hepatocel-
lular carcinoma but none from colorectal cancer (Liu & Geng, 2022). Similarly, the
examination in thyroid cancer even though not conclusive, displayed that the
quantity of cfDNA was higher in patients affected by nodular thyroid diseases
than healthy individuals (Salvianti et al., 2017). This evidence presents potential
cancer-specific difference of tumor-derived mtDNA. This information suggests that
monitoring the size of mt-cfDNAs in cancer patients would be a useful tool to
estimate tumor burden and cancer progression.

4.3 Al and Cell-free RNAs in Cancer

Circulating cell-free ribonucleic acids (ccfRNAs) including mRNA and microRNA
(miRNA) are present in significant levels in the blood of cancer patients which
makes them potential targets for medical diagnosis. Well-known circulating RNAs
are mainly represented by miRNAs, IncRNAs and messenger RNAs (mRNAs). Cell-
free RNAs (cfRNA) are highly stable in body fluids because they are protected from
endogenous RNase activity by encapsulation in lipoprotein complexes (Rapado-
Gonzalez, 2019). Unlike ctDNA, ccfRNA-based Al programs are not reliable or
accurate. However, one of the most applied programs is RNA-seq has revealed a
high accuracy to classify cancer subtypes and predict cancer progression (Elbashir
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et al., 2019). There are several other ccfRNA-based Al programs that would not all
be covered and have shown progress in improving precision oncology. CcfRNAs are
endogenous non-coding small RNA molecules that are secreted into the blood
circulation and are involved in several biological process regulations. There is
increasing evidence that plasma and serum RNA could serve as tumor-specific
markers for cancer detection diagnosis (Kolenda et al., 2020). Several studies have
shown that cancer cells transmit their intercellular tumor-suppressive miRNAs to the
extracellular environment, thereby modifying the microenvironment of the tumor
and supporting cell proliferation of cancer cells (Bahrami et al., 2018; Jamali et al.,
2018; Shekari et al., 2018; Wang et al., 2018). Therefore, extracellular miRNAs can
be classified as both oncogenic and suppressors by different stimuli. Circulating
miR-373 and miR-214 were associated with lymph node metastasis while similar
miRNA molecules were reported to be valuable in the treatment of head and neck
squamous carcinoma (Chen et al., 2013; Summerer et al., 2013).

4.3.1 Non-coding RNA in Cancer

A non-coding RNA is an RNA that is not translated into a functional protein. This
represents a large segment of the human transcriptome that plays important roles in
disease pathogenesis. There are several known non-coding RNAs such as small
interfering RNA (siRNA) that bind to some mRNA and lead to their degradation in
that way promoting or blocking the progression of diseases including cancer. The
other type is miRNA which is the type of RNA that controls the expression of certain
proteins. MiRNA regulates protein expression by targeting the formation of mRNA
of a particular gene and this takes place in the nucleus. The identified role of ncRNAs
promising applications in cancer diagnosis, prognosis, and therapy. In most cancers,
the expression of ncRNAs correlates with cancer survival, metastasis and tumor
grade, therefore providing great potential as a prognostic marker (Bray et al., 2018;
Chandra Gupta & Nandan Tripathi, 2017). TP53 plays a major role in cancer
prevention and positive response to chemotherapy (Lane, 1992). In a study by
Jiang et al., they observed that the hsa-miR-125a-5p miRNA overexpression led to
elevated p53 expression. Additionally, the miRNA was able to suppress cell prolif-
eration and induce apoptosis via the p53 pathway in lung cancer (Jiang et al., 2011).
Similar results were observed in metastatic colorectal cancer whereby treatment with
bevacizumab resulted in increased expression of miR-125a-5p and miR-92b-3p with
a positive response, suggesting that the antibody has an effect on regulation of
miRNA (Kiss et al., 2021). Moreover, bevacizumab therapy resulted in increased
survival of the patients. Figure 4.2 depicts how cfRNA and cfDNA are used in the
identification of patient-targeted therapy.
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Fig. 4.2 Representation of how cfRNA and cfDNA in plasma/serum can be used in the identifi-
cation of patient-targeted therapy. Created with BioRender.com

4.3.2 Long Non-coding RNA in Cancer

Long non-coding RNA (IncRNA) are non-coding RNAs that are said to be longer
than 200 nt (Li & Chen, 2013). These RNAs interact with protein, DNA, mRNA,
and miRNA to control gene expression through epigenetic modifications. This has
been identified as a potential target for monitoring cancer treatment and progression.
There is an estimate of about 16,000 IncRNA genes contained in the human genome
(Fang et al., 2018; Uszczynska-Ratajczak et al., 2018). In cancer, IncRNAs are said
to be involved in multiple mechanisms which include chromatin interactions,
chromatin remodeling, and natural antisense transcripts. Studies have shown that
IncRNAs may modulate transcription by seizing regulatory factors such as transcrip-
tion factors and catalytic proteins or miRNAs (Kallen et al., 2013). In prostate
cancer, there was a relationship between enhancer RNAs (eRNAs) levels produced
by upstream enhancers of the prostate-specific antigen (PSA) gene and the expres-
sion of the actual PSA gene which suggests a relationship between chromatin
remodeling and eRNA (Hsieh et al., 2014). Additionally, there were identified
enhancer regions that bind transcriptional p53 factors thereby affecting the cell
cycle arrest (Melo et al., 2013). Similarly, IncRNA HULC was reported to be
upregulated in hepatocellular carcinoma with multiple binding sites of miR-372
(Wang et al., 2010). Overexpression of the HULC gene reduced miR-372 expression
leading to the downregulation of translation of its target transcript PRKACB by
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activating the phosphorylation of the cAMP-responsive element (CRE)-binding
protein (CREB).

In some instances, IncRNAs act as competitive endogenous RNA (ceRNAs) to
promote cancer, particularly pancreatic cancer. This was evident in studies where
HLA complex group 11 (HCG11) was identified as the contributing factor in the
suppression of apoptosis in various malignant tumors by facilitating cancer progres-
sion (Xu et al., 2017; Zhang, Huang, et al., 2019). Similarly, some studies have
shown and supported that DLEU2L wiped miR-210-3p through competing with
BRCAZ2 via ceRNA mechanism (Xu et al., 2021). Additionally, miR-210-3p served
as an oncogene, which was presented by its direct correlation with malignant
biochemical activities in pancreatic cancer cells, including proliferation, invasion,
and migration (Ni et al., 2019). Yan et al. showed that in gastric cancer HOX
transcript antisense RNA (HOTAIR) binds to miR-126 directly and inhibits its
expression, resulting in enhanced expression of VEGFA and PIK3R2 and activating
the PI3K/AKT/MRP1 pathway (Yan et al., 2016). HOTAIR acts as a ceRNA to
promote cisplatin resistance. HOTAIR was reported to have targeted miR-17-5p
while modifying PTEN which affects the proliferation and apoptosis of gastric
cancer cells (Jia et al., 2019). MALATI is a nuclear-reserved IncRNA with over
8000 nucleotide bases located on chromosome 11ql13. Studies suggested that
MALATTI is overexpressed in numerous human cancers, and the ceRNA network
based on MALATI plays a crucial role in several cancer processes (Brown et al.,
2012; Li et al., 2016). In lung cancer, MALATT is considered to be an early marker
of metastasis and tumorigenesis (Li et al., 2016).

4.3.3 The Role of MicroRNAs in Human Cancer

MicroRNAs (miRNAs) are a family of small non-coding RNAs that function to
control a wide range of biochemical mechanisms such as carcinogenesis. In cancer
cells, miRNAs are said to be unregulated. MiRNAs function either as oncogenes or
tumor suppressors during cancer development (Fig. 4.2). Several studies have shown
that modification of specific miRNA through the use of miRNA mimics was able to
normalize the gene signaling pathways and reverse the phenotype in cancerous cells
(Borchert et al., 2006; Lee et al., 1993; Reinhart et al., 2000). The synthesis of
miRNA begins with the transcription of the gene by either RNA polymerase II or I1I
into a large primary transcript (Lee et al., 2004). The pri-miRNAs are then cleaved
by a microprocessor complex and transported by Ran/GTP/Exportin 5 complex from
the nucleus to the cytoplasm as a duplex structure. The mature miRNA is combined
with protein complex termed RNA-induced silencing complex (RISC) and guides
RISC to target mRNA (Macfarlane & Murphy, 2010).

Over the past decade, miRNA expression has been discovered to be deregulated
in human cancers and this is owing to mechanisms such as epigenetic changes and
defects in the miRNA synthesis. Overexpression of miRNA in cancer cells when
compared to normal cells is often associated with alterations in genomic miRNA
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copy numbers and gene locations. Equally, amplification of miR-17-92 cluster gene
first observed in B-cell lymphomas and lung cancers and their translocation was
observed in T-cell acute lymphoblastic leukemia (Hayashita et al., 2005; Mavrakis
et al., 2010). Also, miRNA expression is tightly regulated by several transcription
factors, so abnormal expression of miRNA in cancer was reported to be associated
with dysregulation of some key transcription factors, such as c-Myc and p53
(O'Donnell et al., 2005). In the same study, oncogenic miR-17—-92 was activated in
several cancers by c-myc to regulate apoptosis and cell proliferation. The following
several cancer-suppressing miRNAs were all reported to be inactivated by c-myc,
mir-15a, miR-26, miR-29, and mir-30 (Chang et al., 2008). Figure 4.3 shows the
sequential use of miRNA in patient care and drug development.

The p53 gene is a tumor suppressor and is the most mutated gene in human
cancers. P53 regulates the expression of many carcinogenic genes through its
transcriptional activity, including miR-34a/b/c that promotes cell-cycle arrest, cell
senescence, and apoptosis in cancer (Chang et al., 2007; Hermeking, 2010; Raver-
Shapira et al., 2007). MiR-223 is expressed in the hematopoietic system, and its
expression is suppressed in many cancers including hepatocellular cancer and acute
myeloid leukemia (Eyholzer et al., 2010; Stamatopoulos et al., 2009). The hallmarks
of human cancer comprise six biochemical capabilities acquired during tumor
development, this including sustaining proliferation, evading growth suppressors,
avoiding cell death, and activating invasion and metastasis (Hanahan & Weinberg,
2011). Given that miRNA is abnormally expressed in cancers, it is suggested that the
suppressed miRNAs could affect some of the cancer hallmarks. Depending on their
validation and targets, miRNA may act as oncogene or tumor suppressor providing a
clear target for cancer diagnosis and therapy.

4.3.4 Gene Silencing in Diagnosis and Prognosis of Cancer

RNA interference (RNAI) is a biochemical process that inhibits gene expression in
cancer. In recent years it has been used/targeted to improve the efficiency, accuracy,
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Table 4.1 Selected examples of siRNA, miRNA, and IncRNA and their targets in cancer therapy

Type of cancer siRNA microRNA Non-coding RNA
Lung cancer siRNA- Increase Apoptosis p53, Phase I clinical trial
EphA2-DOPC | STAT3 NCT02369198;
NCT02221999 for
phase II/II1.
Colorectal cancer Doublecortin- Increase bevacizumab; KCNQI1OTI1, NEAT1
like kinase miR-216b-5p / ZNF14,
1 (DCLK1), miR-497/Bcl2, NFOO/
STAT6 VEGFA
Pancreatic cancer Atu027 and HCG1 I/cisplatin resis- GASS
siG12D tance.
LODER both Oncogenic/miR-132 and
at phase II. miR-212 act on RB1.
Breast cancer 1linc0015226 Trichostatin A targets over | GAS5
22 upregulated miRNAs.
Breast cancer siRNA-medi- MiR-27b and miR-892a AKO023948 as positive
ated HOTAIR | act on CYP1BI and regulator of AKT.
CYPIALI expression.
Colorectal carcinoma, siRNA-based miR-25, miR-504 and miRNA182-5p,
Ovarian cancer, inhibition of: miR-30d act on MEG3
Hepatoblastoma, Breast | MALATI, suppressing p353.
cancer. TKM-PLK1
(TKM-080301)

and stability of treatments, particularly genetic therapies. SIRNAs are double-
stranded RNAs (dsRNAs) with 21-23 nucleotides in length, which act by silencing
their target genes through enzymatic cleavage of target mRNA. This targeted
therapeutic system was designed to prevent tumor growth and it has been working
in clinical studies in patients bearing solid tumors. SiRNA and miRNA-based
therapies are now in clinical trials and recently novel siRNA-based therapeutics
approved by the Food and Drug Administration (FDA), indicating the beginning of a
new era of targeted therapeutics (Table 4.1).

RNAi-mediated silencing is activated in the cytoplasm through the conversion of
double-stranded RNAs (dsRNAs) into small interfering RNAs (siRNAs) or directly
via cytosolic delivery of chemically-synthesized siRNA drugs (Van de Vyver et al.,
2021). The RNAi mechanism is triggered initially by the enzyme Dicer that slices
dsRNAs into short double-stranded siRNAs of 21-25 nt. In recent years, Al algo-
rithms have been introduced to synthesize numerous chemical siRNAs to increase
efficacy and potency in RNAI for in vivo use (Behlke, 2008). This was evident in
current Covid-19 vaccines. This has increased in vivo delivery of siRNA including
the current FDA-approved Onpattro and Givlaari for the treatment of ATTR amy-
loidosis and acute hepatic porphyria, respectively (Gangopadhyay & Gore, 2022).

Table 4.1 shows selected examples of siRNA, miRNA, and IncRNA and their
targets in cancer therapy. SiIRNA has been in use for several years now, however, the
delivery of synthetic siRNA has been a challenge to reach target sites. In recent
years several studies have identified different types of systems for administrating
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and prognosis provides insight into the decision-making in precision oncology. Created with
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siRNA such as micelles, antibody conjugates, microparticles, synthetic cationic
polymers, and peptides (Semple et al., 2010; Tam et al., 2013). Neutral lipid-based
formulations have successfully enabled the delivery of siRNA in vivo in mouse
models displaying tumor growth inhibition and consequently the downregulation of
targeted genes (Oh & Park, 2009). Similarly, Ozcan et al. showed a successful
siRNA-based treatment against ovarian cancer (Ozcan et al., 2015). In addition to
lipids, several nanoparticles are approved as carriers for human drug use (Wagner,
2012). One of the anticancer systems approved is CALAA-01, which is a targeted
nanocomplex that includes an anti-R2 siRNA that inhibits cancer growth by
targeting Bcl2 family of anti-apoptotic genes (Rahman et al., 2013). Another form
of delivery includes a combination of Poly-L-lactic-co-glycolic acid (PLGA) and
hyaluronic acid (HA) which plays a crucial role as a binding ligand against CD44
receptor which is highly overexpressed in tumor cells (Byeon et al., 2018). The
combination was used to deliver paclitaxel together with a siRNA against focal
adhesion kinase (FAK) that is overexpressed in breast, colon and ovarian cancers
which resulted in highly targeted delivery to CD44+ cells (Byeon et al., 2018).
However, the limitation to siRNA therapeutic agents is their vulnerability to degra-
dation in serum. Figure 4.4 shows a summary of ccfNAs and Al to improve precision
oncology, diagnosis, prognosis, and treatment.
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4.4 Limitations and Future Perspectives

Arttificial intelligence is changing the healthcare industry, with new predictions
carried out daily and unlimited. With new technology comes new challenges. One
of the challenges of Al in precision oncology is the biasness, lack of clarity for some
Al algorithms. Although this technology assists in developing early detections in
mutations and predictions of when one might develop cancer, in poor and develop-
ing countries due to lack of resources and the cost of the technology, people would
hardly benefit from it. There are challenges in the development, implementation, and
maintenance of Al models are substantial. One of the limitations of ccfNAs is that
they have a relatively short half-life and requires precautious handling to retain their
integrity and stability.

Other limitations include unregulated set algorithms, unsupervised learning
implementations and patient data confidentiality. A major problem in the develop-
ment of AI models is the absence of structured, cancer-related data, as well as the
nonexistence of standardization. Al can be used as a diagnostic tool routinely as part
of medical check-ups for adult patients. This can be achieved through ML algorithms
by digital diagnosis. Al algorithms allow data to be analyzed from DNA, RNA,
metabolites and other analytes from liquid biopsy at the same time, cutting costs and
financial implications. Al can also be used as a non-invasive tool that can easily
diagnose genomic aberration by using a probe over the large surface blood vessels of
the body and can be used as a reliable tool to easily acquire liquid biopsies such as
saliva and urine.

4.5 Conclusion

Despite the results achieved so far, the application of Al to cancer for valuable
precision oncology is still limited. Oncologic radiographic imaging Al is currently
being used for detection and diagnosis. However, there has not been any highly
clinical value to it. Genomic profiling has revolutionized precision oncology for
eligibility to targeted therapy, identification of chemotherapy-induced genomic
alterations as compared to the initial tissue biopsy. On the other hand, the develop-
ment of Al-based technologies for biomedical applications opened a new era in the
field of personalized clinical diagnosis and prognosis. Al can be used as novel
approach for exploring ccfNAs in personalized clinical diagnosis and prognosis
that will provide insight into the decision-making in precision oncology.
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Chapter 5 )
Al-Enhanced Digital Pathology s
and Radiogenomics in Precision Oncology

Demetra Demetriou, Rodney Hull, Mmamoletla Kgoebane-Maseko,
Zarina Lockhat, and Zodwa Dlamini

Abstract Precision medicine is the personalization of medicine based on the
molecular or genetic profiling of an individual and can lead to improved diagnosis,
prognosis, and treatment. Personalized medicine requires key features to be
extracted from large data sets, normally using artificial intelligence (Al). Artificial
intelligence can also be used to perform digital pathology and to identify key features
in cytology, hematology, and histology based on medical images. Digital pathology
consists of the acquisition of information from slides prepared from patient samples
and data analysis using specific software tools. Al can automate the process of digital
pathology by learning to discriminate the regions of interest from background tissue
and finding features of interest to make accurate diagnoses. All this can be done
rapidly, with high repeatability and no bias. Medical imaging is used as a diagnostic
tool in cancer screening and disease monitoring. Imaging techniques like CT, MRI,
and PET/CT scans can visualize the interior of a patient’s body non-invasively and
with a skilled radiologist can be used as an accurate diagnostic tool in cancer. The
application of Al to this field, combined with information obtained from large omics
data sets, has led to an improved tool for the screening and monitoring of cancer in
the form of radiogenomics. This technique uses Al to associate features detected in
medical radiological imaging with disease phenotypes in patients based on their
genomic, transcriptomic, or proteomic profiles. Al, however, still relies heavily on
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good basic clinical practice. This starts with the investigation of patients’ symptoms,
taking an adequate clinical history, thorough clinical examination, baseline labora-
tory, and radiology/ultra-sonographic work-up. This chapter will discuss the role
played by Al in the advancement of personalized patient care, through digital
pathology and radiogenomics which is the aim of precision medicine.

Keywords Cancer - Genetics - CT - PET/CT - MRI - Precision medicine - Artificial
intelligence

5.1 Introduction

Cancer is a major public health problem globally. Numerous studies have recorded
that treatment is given at later stages of cancer progression leading to poor survival.
It is crucial to detect cancer early and to provide the correct treatment. For this
reason, diagnosis using digital pathology, radiogenomics and artificial intelligence
(AI) is an important sub-field of precision medicine. Cancer is a complex disease.
Various parameters must be considered for accurate decision-making (Abernethy
et al., 2010). It is difficult for physicians to consider all these parameters. For this
reason, Al is likely to become an important part of cancer management by providing
accurate and faster interpretations of patient data (Fogel & Kvedar, 2018). Molecular
biomarkers are a promising technique for cancer detection. These biomarkers can be
used for diagnosis, prognosis, survival rate prediction, assistance in making a
treatment decision, and in the management and surveillance of the disease (Dlamini
et al., 2022). Al is used for advanced statistical and data analysis in conjunction with
other methods such as digital pathology and radiogenomics. By increasing the
accuracy of data analysis and knowledge of cancer through these methods, the
implementation of precision oncology will be improved as the results will be tailored
to a patient. This improves diagnosis, prognosis, and treatment. Figure 5.1 shows
areas in basic patient work-up, where Al (through Next-Generation Sequencing
(NGS), digital pathology, and radiogenomics) can be integrated to improve the
speed and accuracy of diagnosis and treatment.

Precision medicine is a rising field for disease prevention and treatment that
considers gene variation, environment and lifestyles of individuals. Precision med-
icine, also referred to as personalized medicine, aims to treat patients through tailor-
made therapies based on unique traits. These traits include the patient’s genome,
transcriptome, and proteome from a genetics aspect and also include the patient’s
environment, lifestyle, and socio-economic status (Dlamini et al., 2022). Numerous
studies are trying to find a way to improve the diagnosis, prognosis, treatment, and
survival rate of cancer patients. Clinicians and scientists aim to find non-invasive
imaging biomarkers that can be associated with genomic features and clinical out-
comes (Liu & Hu, 2022). For this reason, digital pathology and radiogenomics, have
proven of interest in the fields of cancer diagnosis and prognosis. Al, with the use of
these methods, improves diagnosis and prognosis.
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Fig. 5.1 Sequential steps of basic patient work-up and how Al will be factored in. The patient
presents their symptoms to the medical practitioner. The medical practitioner will perform a
physical examination. Basic blood work and basic radiology will be performed. This includes
ultrasounds and X-ray investigations. NGS, Genomics and proteomics will be done leading to
advanced radiology work-up in combination with a CT scan or MRI scan. Radiogenomics will enter
at this point allowing informed decision-making. A biopsy will occur followed by planning around
the initial investigation. A decision on resectability will be made. If the cancer is resectable, staging
will be performed followed by chemotherapy or radiation and rehabilitation. If the cancer is
non-resectable, chemotherapy or radiation will be given to the patient for the relief of symptoms
and suffering
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5.2 Medical Imaging in Precision Medicine

5.2.1 Magnetic Resonance Imaging (MRI) in Precision
Medicine

Magnetic resonance imaging (MRI) uses radio waves and strong magnetic fields
to produce detailed images of the body. MRI is a non-invasive method and is used
to scan the brain, bones, spinal cord, heart, joints, and blood vessels. The results can
be used for diagnosis, treatment plans and to analyze treatment efficacy. It uses
non-ionizing electromagnetic radiation and employs radio frequency (RF) radiation
in the presence of controlled magnetic fields (Katti et al., 2011). The patient will lie
inside a tunnel that contains strong magnets. The human body is made of water
molecules which consist of hydrogen and oxygen atoms. MRIs interact with the
protons at the center of hydrogen molecules within the body. During the scan, the
protons in the body line up in the same direction. Short lengths of radio waves are
sent to a focus area of the body, distributing the alignment of the protons. When the
radio waves stop, the protons re-align. Radio signals are sent out that are received by
the receiver. The received information can provide the exact location of the protons
in the body. These signals provide information about the exact proton location
within the body. The signals from the protons are combined to create a detailed
image of the inside of the body.

The advantages of MRI include non-invasiveness, no ionizing radiation, contrast
manipulation to distinguish tissue, multiplanar image to obtain direct, sagittal,
coronal, and oblique images and no adverse effects, to name a few (Pekar, 2006).
Some disadvantages of MRI include claustrophobia, expensive equipment, implants
such as cardiac pacemakers that might not be safe and image distortion in patients
with surgical clips or stents (Pekar, 2006). MRI scans are used in precision medicine
as it can provide detailed data about the individual patient.

5.2.2 Computed Tomography (CT) Scan in Precision
Medicine

Computed tomography (CT) is a widely used cross-sectional imaging method. CT
was a ground-breaking development in the 1970s. CT derives from computed
(computer), tomo (to cut), and graph(y) (Caldemeyer & Buckwalter, 1999). CT
uses X-rays or ionizing radiation that is coupled with an electronic detector array
to record patterns of densities. This creates an image of a “slice” or “cut” of tissue.
The X-ray beam rotates around the object and allows multiple X-ray projections to
pass through the object (Rivas et al., 2011). The internal structure is reconstructed
from multiple projections (Konig et al., 2015). The multiple projections produce a
detailed 3-D image of the body. Doctors can evaluate hard tissues and soft tissues.
CT scans are commonly done in hospitals and centers to evaluate life-threatening
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conditions in a limited time. CT scans are used in advanced breast cancer to detect
distant metastasis, especially in the chest, abdomen, and pelvis. Only a limited
anatomic area can be scanned at a time. This is a disadvantage and at present, CT
scans are not the most useful for whole-body screening. CT scans in precision
medicine can evaluate hard tissues and soft tissues of the individual patient leading
to improved diagnosis and treatment.

5.2.3 Positron Emission Tomography (PET)/Computed
Tomography (CT) in Precision Medicine

Positron emission tomography (PET) evaluates tissue and organ function by using
small amounts of radioactive materials or radiopharmaceuticals. PET/CT scans can
be used to detect the early onset of disease by identifying changes at the cellular
level. PET/CTs are commonly used to detect and monitor cancer. Currently,
18F-FDG PET/CT using a glucose analog, fluorine-18 labeled FDG is part of staging
and monitoring treatment response in breast cancer. FDG PET imaging exploits the
increased glycolysis found in most tumors, due to the over-expression of glucose
transporters (GLUT) and increased hexokinase activity. GLUT expression is an
independent prognostic marker and is associated with more aggressive disease and
poor survival in various cancer types (Boellaard et al., 2010; Meyer et al., 2019).
PET/CT is often chosen in precision medicine as it provides detailed data of the
individual that leads to improved diagnosis, prognosis, and treatment.

5.2.4 CT vs. PET/CT Comparisons: The Preferred Choice

CT and PET/CT scans are both diagnostic tools that provide accurate and clear views
of the body. The main difference is the focus of the tools. A CT scan creates a
detailed stationary image of organs, bones, and tissues. A PET/CT scan shows how
the tissues work on a cellular level within the body. A CT scan is used to evaluate
hard and soft tissues. CT scans pass X-rays through the body allowing the creation of
images. The radioactive material used in the PET/CT scan emits energy. The energy
is detected by a unique camera to produce detailed images. A CT scan is performed
in minutes. For this reason, CT scans are used in emergencies, for example, car
accidents. PET/CT scans require more time. With a CT scan, radiation does not stay
in the body. With PET/CT scans, a small amount of radiation may stay in the body
for a limited time. CT scans display problems after a disease changes the tissue or
organ’s structure. PET/CT scans can detect cancer earlier than other tests as it looks
at the cellular level. For this reason, PET/CT scans are the preferred choice in
precision medicine.
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5.3 Digital Pathology and Al

Pathology has always played a critical role in drug development including target
identification, identification of drug mode of action and pharmacodynamics, etc.
(Jubb et al., 2014; Kramer et al., 2007). Today, pathology has improved and has led
to new areas of interest such as digital pathology. Digital pathology (DP) plays a
significant role in laboratories and modern clinical practice (Tizhoosh &
Pantanowitz, 2018; Farahani et al., 2015). DP consists of the acquisition of infor-
mation via the microscopic examination of patient samples and the analysis, inter-
pretation, and management of data via software tools. Technological advances
allowed improved computing power, faster networks and increased storage. This
has enabled pathologists to manage digital slide images more efficiently. Whole-
slide imaging (WSI) aids as a platform for artificial intelligence applications. These
images produce multiple sources of information, which include the presence of color
information, anatomical orientation, and multiple scale information (Niazi et al.,
2019). Advanced Al algorithms integrated with digital pathology, allow in-depth
analysis of samples. Unique imaging markers associated with diseases can be
identified earlier which will lead to improved prognosis and treatment selection.
DP and AT have great potential for improving cancer management through precision
oncology. DP reduces the turnaround time for pathologists. The digital aspect
changes the way cancer is diagnosed, by allowing image and data sharing, integrated
diagnostics, increased efficiency, modernization of pathology, cost saving, and
improved patient care (Niazi et al., 2019). Al tools can assist pathologists by
providing immediate, interactive, and standardized analysis of digital slides, that
can be shared with multiple users (Farahani et al., 2015; Zarella et al., 2019). Al can
also provide automated annotations and can play a vital role in quality assurance.
Figure 5.2 shows the basic digital pathology workflow.

Tissue preparations for digital pathology remain the same as with traditional
pathology. The pathologist will perform a gross examination of the tissue, assessing
the color, size, and consistency of the biopsied tissue and select a region of interest to
examine under a microscope. A selected area of interest will undergo a multi-step
preparation that can take up to several days. The prepared slide is then digitized
using a WSI scanner. This scanner allows the capturing of an image of the slide and
creates an electronic replica known as a virtual slide. Virtual slides are easy to
duplicate, edit, store, catalog, and share. The scanner automatically pre-processes the
virtual slide and saves it onto cloud storage. A compression algorithm is applied to
reduce the file size before saving. The pathologist will examine the magnified tissue
samples using slide viewing and management software for digital pathology. Many
modes of action can be used such as angle change, comment additions, and multiple
slide views with the use of the software. DP allows for the ability to examine tissue
together with other medical data associated such as radiology scans or clinical
history. The slide viewing software must be integrated with the radiology informa-
tion system (RIS) and electronic health record (EHR).
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Fig. 5.2 Basic digital pathology workflow. (a) Sample preparation on a glass slide. (b) Sample
capturing using a WSI scanner. (c¢) The virtual slide can be saved on the cloud or another storage
system. (d) The virtual slide can be viewed or edited using the appropriate software. (e) Additional
information can be uploaded and integrated with EHR. (f) The software allows the virtual slide and
data to be shared with anyone, anytime, anywhere. (g) The results can be reported with the
integration with LIS/LMS

5.3.1 Reporting the Results

Some software has a reporting functionality. Reporting can also be performed via the
integration of laboratory information systems (LIS) or laboratory information man-
agement systems (LIMS). EHRs also automate sending reports to a physician that
can be used for treatment. Advanced digital workflows incorporate machine learning
(ML) and Al methods to recognize patterns in tissue samples. This has led to the new
discipline of computational pathology.

Al in pathology enables the geographical analysis of data and quantitative
accuracy using spatial algorithms (Baxi et al., 2022). DP and Al approaches provide
improvements over traditional methods, for example, the enabling of spatial analy-
sis. It provides unbiased, highly precise, and consistent results that are accessed by
pathologists (Mroz et al., 2013). DP can assist in the implementation of precision
medicine and can be used in conjunction with other techniques such as medical
imaging and radiogenomics for improved diagnosis, prognosis, and treatment.

5.4 Radiogenomics and Artificial Intelligence and Its Use
in Precision Medicine

Radiogenomics combines medical imaging and genomic profiles for analysis (Liu &
Hu, 2022). Radiogenomics has been referred to as a significant advancement in
medical imaging, training, analysis, and high-throughput methods that are used to
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correlate multiple imaging parameters with genomic data (Pinker et al., 2018)
non-invasively. Radiogenomics aims to provide a better understanding of tumor
biology as it combines quantitative data from medical images with an individual’s
genomic data by constructing prediction models (Shui et al., 2020; Liu & Hu, 2022).
The goal will be to develop imaging biomarkers that incorporate phenotypic and
genotypic components to improve cancer outcomes. Radiogenomics is favored for
its non-invasive nature of imaging as well as being cost-effective as it can result in
early cancer detection (Pinker et al., 2018). These images, selected features, and
associated omics data are used to make in-depth decisions on genomic biomarkers,
prognosis, and treatment. Since radiogenomics is a combination of radiomics and
genomics, it is important to understand each aspect on its own and how it can be
combined.

Radiomics is defined as the “high throughput extraction of quantitative features
that results in the conversion of images into mineable data” (Visvikis et al., 2019;
Gillies et al., 2015). Genomics refers to the study of the genome of an organism that
can be used to find variations. This knowledge can be used to determine health,
disease, or drug response (Del Giacco & Cattaneo, 2012; Vailati Riboni et al., 2017).
Figure 5.3 shows the basic, overall methodology of radiomics, genomics, and
radiogenomics.

The Cancer Imaging Archive (CIA) is the largest medical imaging dataset that is
publicly available (Clark et al., 2013). Data from 125 projects have been collected.
CIA covers various disease types including Coronavirus Disease 2019 (COVID-19)
and cancer. The Cancer Genome Atlas (CGA) platform contains contributing geno-
mic sources (Tomczak et al., 2015). Image information used includes the results
from CT, MRI, PET with CT (PET/CT) scans, radiomic features, tumor segmenta-
tion of the CT images, and quantitative values measured from the PET/CT images
(Liu & Hu, 2022; Shui et al., 2020). Figure 5.4 shows the basic Radiogenomic
workflow.

5.4.1 Acquisition of Raw Images

PET/CT and single photon emission CT (SPECT) provide the anatomical and
functional details of a tumor. Recently, combinations of quantitative functional
assessments such as multiple PET tracers, MRI contrast mechanisms, and
PET-MRYI, have revealed multi-dimensional tumor phenotypic features (Yankeelov
et al, 2014; Matthew et al, 2015; Tixier et al., 2020). For example,
diffusion-weighted MRI can provide tumor density and cellularity information.
This can be used for cytotoxic treatment monitoring (Anderson et al., 2000).
Fluorodeoxyglucose (FDG)-PET is a molecular imaging tool that characterizes
metabolic activity changes within the tumor. The uptake, metabolism, and accumu-
lation rate can be used to assess the disease progression and therapeutic effects
(Tixier et al., 2020; Eisenhauer et al., 2009; Mu et al., 2020).
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Fig. 5.3 The relationship between radiomics, genomics, and radiogenomics. With radiomics, the
patient is taken for medical imaging via CT, MRI, or PET/CT. The medical image is used for data
interpretation via graphs and statistical analysis. Based on the image, the tumor can be virtually
isolated in a process called tumor segmentation. Tumor segmentation represents the correct
identification of the spatial location of a tumor. The sample can be combined with Al to provide
improved diagnosis, prognosis, and treatment. Regarding the genomics pathway, the patient
undergoes a biopsy. The biopsy material is sent for genetic testing. Various genetic tests provide
multiple omics data and genomic signature is evaluated. The information can be combined with Al
for improved diagnosis, prognosis, and treatment. Radiomic and genomic data are combined into
the new field of radiogenomics. The combination and the knowledge gained by the individual
pathways have led to increased survival rates

5.4.2 Pre-processing of Information

It is important that raw image data must be pre-processed to vindicate homogenous
and reliable traits. The imaging signals within the region of interest (ROI) can be
filtered. However, manual segmentation is often used. Experienced clinicians will
extract sufficient and optimal data from the ROI. Sufficient information cannot be
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Fig. 5.4 The basic radiogenomics study workflow. Step 1 consists of image acquisition achieved
via CT, MRI, PET/CT, etc. Step 2 consists of the identification and segmentation of the region of
interest. Step 3 consists of quantitative imaging feature extraction using various types of analysis.
Step 4 consists of bioinformatics analysis and data mining

provided if the ROI is minute. A large ROI can lead to bias due to the heterogeneity
of the tumor. Some clinicians prefer full manual segmentation, but this is time-
consuming and can show inter-observer variability (Parmar et al., 2014; Yip et al.,
2017). Automatic segmentation is preferred to manual segregation. Automatic
segmentation performance is dependent on the algorithm’s accuracy and the ability
to differentiate the ROIs from the surrounding tissues. Various machines can manage
automatic segregation (Dorador & Rodriguez-Tovar, 2020; Mouawad et al., 2020;
Velazquez et al.,, 2013). For this reason, various studies have proven that the
preferred mode of segmentation is semi-automatic (Sensakovic et al., 2011). Tixier
et al. compared the robustness of 108 radiomic features using a semi-automatic and
an interactive segmentation method (Tixier et al., 2019). The results demonstrated
that the interactive method resulted in more robust features than the semi-automatic
method (Tixier et al., 2019).

Um et al. used five image pre-processing techniques to extract 420 features from
161 cases (Um et al., 2019). Histogram standardization contributed the most to
reducing radiomic feature variability. The results showed that patients can be
grouped based on their survival rates (Um et al., 2019). Veeraraghavan et al.
developed a novel semi-automatic approach by combining cancer-specific
multiparametric Gaussian Mixture Model (GCGMM) and GrowCut (GC) to produce
reproducible and accurate segmentations (Veeraraghavan et al., 2018). Segmenta-
tion performances were compared in a sample of 75 patients with invasive breast
carcinoma. GCGMM’s segmentations were shown to be more reproducible when
compared to manual delineations and other analyzed segmentation methods
(Veeraraghavan et al., 2018).

5.4.3 Extraction of Features

The important factor of radiomics is the extraction of high-dimensional feature sets.
These sets can be used to describe the attributes of cancer phenotypes and can be
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used to develop prediction models. Radiomic features can be processed by unique
software, including PyRadiomics (Liu et al., 2019; Fedorov et al., 2012), CERR
(Chen et al., 2020; Apte et al., 2018) or IBEX (Bettinelli et al., 2020; Au-Ger et al.,
2018). Morphology-based features can be used to collect three-dimensional
(3D) characteristics which can include the volume, surface areas, and sphericity.
Intensity-based features can evaluate the gray-level distribution within the ROI and
can characterize the overall variability in intensity (first order) and the local distri-
bution (second order). This is referred to as “texture features.” Regarding pathology,
advanced texture analysis is rising as a novel medical imaging tool for the analysis of
intra-tumoral heterogeneity. Texture analysis can be used to analyze the association
between the gray-level intensity of pixels and the location within ROIs. Texture
analysis constitutes four steps namely extraction, texture discrimination, texture
classification, and shape reconstruction (Nie et al., 2019; Ganeshan et al., 2013).
Dynamic features are used to quantify uptake in tumors over time and are derived
from dynamic contrast-enhanced CT or MRI and metabolic PET. This can provide
information regarding the relationships between prognosis and molecular subclassi-
fications of tumors (Sibille et al., 2019).

5.4.4 Data Analysis

The variables and features collected from extraction can be duplicated and can
contain unnecessary information. Data selection or analysis is needed to sift through
all the information and only keep the significant data. There are three common
selection models namely the filter -, wrapper - and embedded methods. The filter
methods can evaluate features without involving the model. The wrapper models
involve predictor optimization as part of the selection process (Roffo, 2016). The
wrapper models provide improved results. However, the filter methods are less
expensive. In the embedded methods, the learning part and the feature selection
are joined (Roffo, 2016).

Convolutional neural networks (CNNs) are used for deep learning. CNN com-
bines imaging filters with artificial neural networks through a series of layers (Jun
et al., 2019). CNNs use local connections and weights to analyze the input images.
This is followed by the pooling operations to obtain spatially invariant features (Liu
et al., 2020). After sufficient training data is obtained, algorithms can determine the
optimal feature set and the importance of each feature (Xu et al., 2019). After the set
is obtained, a prediction model is required to connect the features selected with the
genetic information. A radiomics model is used to validate the potential for clinical
application. A radiogenomics study can be hypothesis or exploratory driven. In
exploratory studies, a multiple hypotheses test is common, where features extracted
are assessed against various genomic variables. Using the hypothesis-driven
approach, scientists collect sufficient imaging phenotypes and investigate it with a
specific hypothesis in mind (Konstantinidis et al., 2014).
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Al has allowed the analysis of medical images with the absence of human
interference. Al and deep learning have led to automated and consistent medical
imaging analysis. It is believed that Al can exceed experienced pathologists in
cancer diagnosis and prognosis (Giirsoy Coruh et al., 2021). Radiogenomics with
Al will be able to extract features from an image and link these features with specific
phenotypes (Dlamini et al., 2022). The phenotype can be associated with changes on
a genomic, transcriptomic, translational, and epigenomic level. This information can
be used to improve prognosis, diagnostic, and treatment approaches (Rutman &
Kuo, 2009). These image features can also be used as survival indicators and
predictors (Dlamini et al., 2022). Using Al with radiogenomics increases accuracy
and knowledge for improved diagnosis, prognosis, and treatment.

5.4.5 Current Application of Radiogenomics in Oncology

Radiogenomics uses big data analysis approaches (Incoronato et al., 2017).
Radiogenomics also provides an in-depth understanding of tumor biology and
imaging biomarkers. These approaches have been validated in a variety of tumors
(Pinker et al., 2018). Evidence has showed that there is an association between
imaging and genomic characteristics of cancers (Gevaert et al., 2017; Nougaret et al.,
2017; Vargas et al., 2017; Nougaret et al., 2018; Li et al., 2018; Liu et al., 2017,
Mazurowski et al., 2017; Hong et al., 2018; Kickingereder et al., 2016; Cui et al.,
2017; Hu et al., 2017; Jamshidi et al., 2013; Hui et al., 2014; Grimm et al., 2015;
Mazurowski et al., 2014; Zhu et al., 2019; Yamamoto et al., 2015; Karlo et al., 2013;
Lietal., 2019; Kocak et al., 2019; Cen et al., 2019; Shinagare et al., 2015; Kuo et al.,
2007; Xia et al., 2018; Miura et al., 2015; Taouli et al., 2017; Sadot et al., 2015;
Vlachavas et al., 2019; Lubner et al., 2015; Miles et al., 2014; Chen et al., 2015;
Horvat et al., 2019; Lee et al., 2018; Halpenny et al., 2017; Nair et al., 2014;
Stoyanova et al., 2016; McCann et al., 2016; Jansen et al., 2018; Zwirner et al.,
2019). Radiogenomics in clinical practice must overcome a few challenges. One
such challenge is the repeatability and reproducibility of current radiogenomics
models (Kang et al., 2018). Shui et al. noted that researchers must consider the
variability arising from the use of different equipment, different software, or differ-
ent clinics (Shui et al., 2020). Standard practice guidelines are crucial to ensure the
accuracy and reliability of analytic results in radiogenomics studies (Andreassen
et al., 2016). Figure 5.5 shows the combination of radiomics and genomics into
Radiogenomics and radiogenomics, DP and Al integration can help advance the
future of personalized patient care and precision oncology.

5.5 Limitations

Various Al approaches are ridiculed for not being able to provide information on
how the results were obtained. This causes doubt about the prediction accuracy
(Sorell et al., 2022). Clinical, legal, and regulatory issues have been a source of
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Fig. 5.5 (a) The combination of radiomics and genomics into Radiogenomics. The knowledge
gained by radiomics and genomics has led to a new field of Radiogenomics. (b) Radiogenomics, DP
and Al integration can help advance the future of personalized patient care and precision oncology

discussion. Some algorithms are intensive, and research is being conducted to make
the algorithms easier to interpret. On the regulatory side, some countries might have
restrictions on the use of Al in oncology for example the EU’s new General Data
Protection Regulation stipulates that “the data subject shall have the right not to be
subject to a decision based solely on automated processing” (Consulting, n.d.). Al
resulting financial and economic implications are still under review and are specu-
lative. Al development can benefit low-income and middle-income countries posi-
tively or negatively. However, Al aims to benefit the pathologists from these
countries with faster and more accurate diagnoses. For this reason, there is a need
for regulatory control and the devices must be safe and effective. There are devel-
opments for example one-shot learning, which uses minute sample amounts for
learning. This is useful in pathology where deep learning is challenging due to image
size and complexity. In reinforcement learning, algorithms are trained by comparing
immediate actions with long-term outcomes to reach a specific goal. Algorithms
must be tested to make complex decisions. These algorithms must also be assessed
for accuracy. Machine and deep learning by Al must also be assessed or supervised
by experts in the field, for example, pathologists, bioinformaticians, and program-
mers (Pashkov et al., 2020).

Al must be carefully integrated into current clinical practice. Each discipline follows
carefully designed patient work-up protocols that include good history taking and a
thorough physical examination. This is followed by baseline laboratory blood work and
basic radiology (X-ray and ultrasound). An accurate biopsy procedure may require real-
time Ultrasound and/or CT/MRI scan guidance. Integrated multidisciplinary clinico-
pathologic and radiology correlation leads to well-planned tumor resection and ade-
quate oncology intervention (radiation, chemotherapy or chemo-radiation therapy, with
the application of neoadjuvant therapy where necessary).

Some confounding factors that need to be considered when integrating Al into
routine cancer management include the following (Table 5.1):
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Table 5.1 Factors for consideration when integrating Al in cancer management (Nagahashi et al.,

2017; Colomer et al., 2020)

Factors for consideration

Examples of conditions and complexities they
may represent

Stage of disease at presentation and first
diagnosis

The application of Al protocols and algorithms
requires good clinical judgment. Not all
patients will benefit from all elements of

Al Patients presenting early, with curable
cancers, do not require somatic gene panel
analysis. On the opposite end of the spectrum,
patients with an advanced, rapidly progressing
disease with a short life expectancy, often do
not qualify for molecular profiling. These
patients are a difficult fit for most Al protocols/
algorithms

Composite synchronous and metachronous
tumors

Al protocols use specific algorithms based on
genomic assays that may not benefit the patient
if clinical examination or small, poorly repre-
sentative biopsies have missed synchronous,
metachronous and composite cancers

Cancer occurring in the context of familial
syndromes

Clinicians need to select Al protocols that do
not miss underlying familial/inherited muta-
tions that patients may not be aware of at
presentation

Environmentally induced and enhanced cancers
as well as endemic cancers

Exposure to asbestos, ionizing radiation, diet-
related carcinogens, smoking, and viral onco-
genesis must be carefully woven into Al algo-
rithms. Al algorithms should be designed with
endemic cancers in mind

The developing world context

The accuracy of Al algorithms comes with
significant financial investment. From instru-
ments to scarce/expensive skills, there are zero
margins for error since most developing coun-
tries are unable to afford the duplication of
highly specialized investigations. In these set-
tings, very good, all-inclusive clinical proto-
cols need to accompany Al algorithms to
protect delicate third-world budgets while still
benefiting patients

Innate limitations within some genetic level
tests. Any discordance at this level will have a
negative ripple effect on the entire Al protocol/
algorithm that is applied

Static and dynamic tumor heterogeneity. Pres-
ence of cancer-associated mutations within the
patient’s normal tissue

Sample age: More than 7 years old tissue (for-
malin fixed paraffin embedded tissue) is not
suitable for NGS analysis (and likely also
unsuitable for transcriptomic and proteomic
analysis as well)
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5.6 Conclusion

Combining digital pathology, radiogenomics and Al can improve workflow and lead
to advanced diagnostics. Ultimately, it can lead to detailed and informed cancer
diagnosis, prognosis, and treatment. Radiogenomics, DP and Al integration can help
advance the future of personalized patient care and precision oncology. Precision
medicine aims to offer unique and extraordinary patient care and treatment. Preci-
sion medicine would also provide the most accurate information regarding treatment
and risk factors. Al can assist in monitoring response, analyzing large data sets,
recovery, etc., which will ease the burden on the pathologists and the results will be
obtained faster. Although Al has a few limitations, improvements and research are
continuously growing to improve Al systems. Precision medicine with Al can
improve the prevention of serious diseases.
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Chapter 6 )
Epigenetics Analysis Using Artificial s
Intelligence in the Era of Precision Oncology

Rodney Hull, Serwalo Ramagaga, Nomsa Nkosi, Rahaba Marina,
Rosemary I. Kabahuma, and Zodwa Dlamini

Abstract It has become a common practice? to use omics data to characterise and
diagnose cancer. This has mainly been in the form of genomic mutations,
transcriptome and proteomic profiles that are unique or more common in cancer.
However, it has become obvious that for complex diseases like cancer, it is important
and incredibly useful to examine the genetic changes that occur to alter gene
expression that do not rely on changes to the genetic sequence. This is the epigenome
and its ability to change according to and to reflect an individual’s environment and
lifestyle means that it can be directly linked to risk factors for cancer. Epigenome
changes have been reported in various cancers. The epigenome also provides data
concerning the predisposition of an individual to develop cancer, at the earlier stages
of the disease. Like all omics data, epigenomics is considered ‘big data’ and its
analysis and interpretation can only be realistically undertaken through the use of Al
and machine learning. However, it is in the combined analysis of genomic,
epigenomic and expression data that omics data can give true insight into the
underlying molecular basis of cancer. The integration and analysis of these different
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data requires the use of specialised Al as machine learning models. This chapter will
cover various Al applications in epigenomics-driven precision oncology. Challenges
and opportunities in Al-enhanced cancer epigenomics will be discussed.

Keywords Epigenetics - Analysis - Artificial intelligence - Precision oncology -
Omics - Cancer - Environment - Lifestyle

6.1 Introduction

Personalised medicine relies on the selection, analysis and integration of information
from different ‘omics’ sources utilised alongside patient and medical data (Rauschert
et al., 2020). The ability to integrate and utilise these large data sets would not be
possible using conventional analysis. It would take too long to be of any use in any
clinical setting. However, Artificial intelligence (Al) algorithms can be designed and
trained to accomplish these tasks rapidly, efficiently while addressing bias chal-
lenges (Toh et al., 2019). In this way, Al allows clinicians and researchers to make
use of and manage big data or large sets of complex biological data (Rauschert et al.,
2020). Traditionally, when discussing omics data, the three sources that come to
mind are genetic or DNA sequence data (genomics), RNA sequence and expression
data (transcriptomics) and protein structure and expression data (proteomics). How-
ever, changes in gene expression that occurs at the level of DNA but do not involve
changes in the DNA sequence, is known as epigenetics, or above the genome/
Epigenetics is a vital part of an individual’s molecular biology and gives rise to
another source of omics data, epigenomics. Epigenetic modifications fall can be
categorised into: DNA methylation, histone post-translational modifications and
variants, nuclear organisation and finally, regulation by small non-coding RNAs
(Wen et al., 2017).

Epigenetic modifications of DNA are the result of an individual environment
interacting and altering DNA in such a way as to alter gene expression. As such it
plays a vital role in the development and progression of diseases such as cancer
(Romanowska & Joshi, 2019) (Rauschert et al., 2020). Since these epigenetic
modifications serve as a link between environmental contributions to a disease
through genetic alterations, epigenetic modifications can generally be identified in
the early stages of cancer and thus be useful tools in early cancer detection. They are
found in the coding as well as non-coding regions of the DNA (Garcia-Giménez
et al., 2012). Because of this, the ability to detect these epigenetic modifications
could be used as a biomarker for the diagnosis and prognosis of cancers in the early
stages of the disease. Other advantages to the use of epigenetic markers as bio-
markers are their stability in fluids such as blood and their presence in cell-free
Nucleic Acids (cfNAs). The role of liquid biopsies in early cancer detection,
diagnosis and accurate prognosis is an emerging key area towards precision oncol-
ogy (Wen et al., 2017).
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6.2 Types of Epigenetic Modifications
6.2.1 DNA Methylation

DNA methylation represses gene expression. It has been known for some time that
changes in DNA methylation occur at cytosine-phosphate-guanine (CpG) sites,
often referred to as CpG islands, during the development and progression of cancer
(Heyn & Esteller, 2012) (Fig. 6.1). It also occurs in repetitive genomic regions
(satellite DNA) and is often found in parasitic elements (long or short interspersed
transposable elements or LINES and SINES) (Robertson, 2005). DNA
methyltransferases (DNMTs) transfer a methyl group to the 5’ carbon of cytosine
nucleotides adjacent to guanines (Reyngold & Chan, 2018). Methylation stops gene
transcription by either masking the DNA, preventing transcription factors from
binding or by recruiting methyl-CpG binding proteins (MBPs) that silence genes
by binding to methylated CpG sites, and recruiting chromatin remodelling molecules
(Bird, 2002). Cancer can be caused by the incorrect methylation and resulting in
silencing of genes such as tumour suppressor and DNA repair genes, as well as genes
that control the cell cycle and genes that regulate genome integrity (Paulsen &
Ferguson-Smith, 2001). Cancers have been shown to have a drastically altered
methylation pattern and generally lower methylation rates but with
hypermethylation occurring in genes that are normally unmethylated (Reyngold &
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Fig. 6.1 Epigenetic modifications. A representation of epigenetic changes and what role they play
in altered gene expression. Chromatin remodelling changes the structure of chromatin by altering
the position or stricture of nucleosomes. This changes the accessibility of genes for transcription.
Histone modification describes the covalent addition of groups or whole proteins to the tail or core
of the histone protein. These groups alter the affinity the histone has for DNA and can either
increase or repress gene expression. DNA methylation describes the addition of methyl groups to
cytosine bases on DNA inducing or repressing gene expression
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Chan, 2018; Laget & Defossez, 2008). Changes in DNA methylation have until
recently been measured using microarray assays. The most popular of which is the
Illumina HumanMethylation Infinium BeadArray (Kurdyukov & Bullock, 2016).
Another method involves the use of methylation-sensitive PCR. These techniques
are now being superseded by next-generation sequencing (NGS) in the form of deep-
amplicon bisulphite sequencing, which can measure DNA methylation at defined
genomic loci. These changes in methylation are then quantified using numerous
methods such as affinity enrichment strategies and methods involving bisulphite
conversion (Singer, 2019).

DNA methylation is also known to change due to environmental exposure to
certain carcinogens. This allows for better risk evaluation in screening for cancers, as
well as improved diagnosis and prognosis (How Kit et al., 2012). These changes in
DNA methylation can also be targeted for the development of new therapies and
opens up another avenue for personalised medicine in cancer management (Jones
et al., 2016). Based on this, changes in DNA methylation have been successfully
used as an epigenetic biomarker for colorectal cancer. The biomarker, mSEPT9, is a
region of the Septin 9 gene that was found to be methylated in approximately 90% of
all colorectal cancer patients. This biomarker has the added advantages that it can be
used to diagnose colorectal cancer from blood plasma (Payne, 2010), because DNA
methylation is chemically and biologically stable for an extended period of time
(How Kit et al., 2012). However, relying only on blood samples for certain types of
cancer may not be an effective diagnostic test as many methylation patterns are
tissue-specific (Sina et al., 2018).

Large amounts of training data exist for learning algorithms that need to be taught
to recognise and assign meaning to methylation profiles. This data can be found in
large-scale, data-rich repositories. These include The Cancer Genome Atlas
(TCGA), ENCODE, and the BLUEPRINT (Aryee et al., 2014; Jaffe et al., 2012;
Leung et al., 2015).

In addition to DNA, mRNA transcripts can also be methylated. Most commonly
at an adenosine, the N® methyladenosine (m°A), which are located at the sequences
GAC or AAC (Csepany et al., 1990). In the 3’ untranslated regions (3'UTRs). These
regions regulate RNA stability, subcellular localisation and translation (Meyer et al.,
2012). These modifications can affect alternative splicing, translation, translocation,
and degradation (Wang et al., 2016). Many of the proteins that regulate the meth-
ylation of mRNA are associated with several cancers where their increased activity
silences the expression of tumour suppressor genes and pro-apoptotic genes (Zhong
et al., 2019).

6.2.2 RNA Regulation

Non-coding RNAs include pseudogenes, transposon elements, repeated non-coding
sequences, regulatory elements, non-coding genes. About 98% of genetic transcripts
encode non-coding RNAs (ncRNAs) that play an important role in regulating gene
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expression (Comfort, 2015). NcRNAs include microRNAs (miRNA), transcribed
ultraconservative regions (T-UCR), small nucleolar RNA (sno-RNA), PIWI-
interacting RNA (piRNA), large intergenic non-coding RNA (lincRNA), and long
non-coding RNA (IncRNA) (Esteller, 2011). Of these, miRNAs and IncRNAs are
the most studied (Fig. 6.1). MicroRNAs (miRNAs) regulate gene expression post-
transcriptionally. They do this by repressing translational, degrading mRNA and by
targeting promoter sequences to activate gene expression (Place et al., 2008). In this
way, miRNAs are involved in the positive and negative regulation of cancer
pathways such as proliferation, differentiation, cell cycle regulation, apoptosis,
development and stress response (Pileti¢ & Kunej, 2016). They act as part of the
epigenetic machinery by binding to specific promoter sites or by recruiting other
epigenetic regulators. They themselves can also be regulated by other epigenetic
factors. For instance, their expression can be activated or repressed by epigenetic
mechanisms such as histone modifications, DNA methylation or RNA methylation
(Pileti¢ & Kunej, 2016). Deregulation of miRNA expression is known to contribute
to the development of cancer, since they can act as a tumour suppressor or as an
oncogene. This means that their silencing or overexpression can either promote or
inhibit cancer development and progression (Pileti¢ & Kunej, 2016).

The transcriptional activators of the SWI/SNF complex control the synthesis of
long non-coding RNAs (IncRNAs) through the activity of RNA polymerase II. They
have multiple roles and can interact with many proteins, DNA and RNA molecules.
They are thought to make up most genome transcripts. LncRNAs play an important
role in many physiological processes and like miRNA, many of these are related to
cancer. These processes include development, differentiation, and proliferation.
They are also part of the epigenetic machinery, playing a role in chromatin
remodelling, transcriptional and post-transcriptional regulation, splicing regulation,
X chromosome inactivation and genomic imprinting (Bhat et al., 2016; Romero-
Barrios et al., 2018). Like miRNAs their deregulation is implicated in the growth and
development of cancer. As previously stated, IncRNAs play a role in epigenetic
modification by recruiting the complexes responsible for chromatin remodelling to
specific chromatin loci (Chang et al., 2006). LncRNas can also modify the activity of
transcription factors by acting as cofactors. They can also recruit specific
RNA-binding proteins to specific gene promoters (Bhat et al., 2016). They play a
role in post-transcriptional regulation by controlling translation by binding to and
blocking mRNAs and bind to and sequester multiple miRNAs (Filipowicz et al.,
2008).

It is known that IncRNAs can silence and activate genes to contribute to the
development and progressions of breast cancer. As such machine learning algo-
rithms were designed to identify immune-related IncRNAs and categorise them
according to their relationship with patient survival, disease severity, disease pro-
gression. The Al identified 43 IncRNAs which were then used to construct a
prognostic array examining non-coding gene signatures of the expression of these
IncRNAs. This immune-related IncRNA pair (IRLP) signature was found to be
highly sensitive and specific for predicting the survival rates of breast cancer patients
as well as being able to classify their molecular subtypes of their cancer. For
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instance, low-risk signatures were associated with a longer survival time and were
classified as tumours expressing low levels of macrophage M2 and high expression
levels of biomarkers indicating immunosuppression. High-risk signatures were
associated with a lower survival time and were associated with the activation of
the MAPK, Jak-STAT and Erb signalling, pathways (Zhu et al., 2022). Machine
learning algorithms were also used to build a prognostic toll for skin melanoma
based on constructing a competing endogenous RNA (ceRNA) network. This was
based on analysing the expression profiles of IncRNAs, miRNAs and mRNAs in
melanomas from the TCGA, the Gene Ontology (GO) database, and Kyoto Ency-
clopaedia of Genes and Genomes (KEGG) pathway databases. The algorithms
identified all the differentially expressed IncRNAs, miRNAs and mRNAs from
these databases by comparing metastatic melanoma data to normal skin tissue
data. The algorithm constructed ceRNAs for metastatic melanoma and these differ-
ent expression profiles were then correlated to survival data. This integrative analysis
identified IncRNA, miRNA and mRNA biomarkers in an active ccRNA network in
metastatic melanoma that could be used to classify melanomas based on patient
survival outcomes (Wang et al., 2019).

6.2.3 Histone Modifications

Histones are the structural proteins that interact with DNA allowing it to be packaged
in the nucleus as chromatin. The histone DNA complex creates repeating units called
nucleosomes. The nucleosomes consist of eight histone proteins surrounded by a
147 bp of DNA connected by a short DNA linker (Kouzarides, 2007). The regulation
of transcription and gene expression occurs through the regulated unpacking of the
DNA from this complex so it can be accessed by the transcription machinery
(Kouzarides, 2007). Histones are modified at their N-terminal tails or in their core
domain and modification occurs following intrinsic and extrinsic changes through-
out the life of the cell. The tail region of histones has a high contingent of basic
lys/arg and hydroxyl group-containing Ser/Thr/Tyr. The tails are easily accessible
and are therefore ‘open’ to post-translation modifications through the formation of
covalent bonds (Fig. 6.1) on these exposed lysines, arginines, sernes and threonines.
These modifications include acetylation, methylation, phosphorylation,
ubiquitylation, and SUMOylation (Cheng et al., 2019). Additionally, these modifi-
cations can alter the way in which the histones interact with the DNA, which can in
turn alter the stability of the nucleosome and any interactions DNA has with any
DNA interacting molecule (Bowman & Poirier, 2015). Modifications to the core of
the histone happen less often as the core is not readily accessible and the modifica-
tions are normally the result of the activity of chromatin remodels (Bowman &
Poirier, 2015).

The assessment of histone modification in melanoma cell lines was carried out as
part of an assessment of genomic sequence variation and mutation on gene
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expression. This also included assessing chromatin accessibility and transcriptome
and proteome data to generate phased whole genome with epigenetic and expression
data for 10 melanoma cell lines. A specialised Al tool was trained for this task and
was named DeepMEL?2. This tool was able to use this data to identify signalling
pathways, regulatory gene networks, and mutations affecting the epigenetic regula-
tion of these pathways and networks that control melanocytic and mesenchymal-like
melanoma cell states. The Ai detected thousands of allele-specific chromatin acces-
sibility variants (ASCAVs) in each cell line’s genome, 15-20% of which led to
changes in transcription factor binding sites. This Al tool is therefore able to identify
the presence o and interpret the functional consequence of mutations that affect
chromatin accessibility and gene expression (Atak et al., 2021).

Two families of enzymes regulate histone acetylation, histone acetyl transferases
(HAT), and deacetylation, histone deacetylases (HDAC). HATsS catalyse the transfer
of an acetyl group from acetyl-CoA to the e-amino group of lysine. This changes the
charge of the histone reducing the affinity of the tail for DNA, meaning the histone is
more easily displaced, giving molecules like transcription factors easier access to the
DNA and increasing gene transcription (Zheng, 2015). Deacetylase proteins
containing domains such as Bromodomains and extra terminal domains (BET)
recognise acetylated histone-lysine residues and then act to remove these groups.
This increases the basic charge of the histone allowing it to interact with the DNA
more tightly leading to a decrease in gene transcription (Castelli et al., 2018). The
aberrant expression of HDACs and HATS, as well as mutations in the jat and hdac
genes, play an important role in the development and progression of cancer
(Figueroa et al., 2013). The resulting changes in gene expression occur as a result
of modified expression of these proteins. Therefore, both Hats and HDACs are
targets for anti-cancer treatments (Figueroa et al., 2013). HDACa can also
deacetylate and alter the function of proteins involved in cancer associated processes
such as differentiation, autophagy apoptosis, DNA damage repair, and immune
responses (Castelli et al., 2018).

Histone Methyl Transferases (HMTs), Histone Methylation Recognising Proteins
and Histone Demethylases (HDMs) act as writers, readers, and erasers in the process
of transferring a methyl group to histones. Methylation can occur on arginine and
lysine residues. The HMTs transfer the methyl group. These residues can be
modified with up to three methyl groups (Cheng et al., 2019). Methylation both
promotes and inhibits gene expression and disruption of the methylation of histones
can lead to the growth and development of cancer (Martinez-Garcia & Licht, 2010).

6.2.4 Chromosomal Structure

Chromatin remodelling allows the genetic material to be packaged and unpackaged
when needed. It is also used to regulate access to DNA. It is therefore able to control
access to and use of DNA regulatory elements that control chromosomal processes.
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Table 6.1 List of Al tools used to interpret chromatin remodelling data

Al tool Description Reference

EpiTenso High-order tensor decomposition-based algorithm to (Zhu et al., 2016)
identify 3D spatial associations of chromatin
TargetFinder | Machine learning pipeline that integrates data for annota- | (Whalen et al.,
tion. Including cap analysis of gene expression (CAGE), |2016)
ChIP-seq, DNase I hypersensitive sites sequencing
(DNase-seq), FAIRE-seq (formaldehyde-assisted isolation
of regulatory elements) and DNA methylation

3DEpiLoop | Supervised learning pipeline using a random forest as a (Al Bkhetan &
statistical learning algorithm to model 3D chromatin loops | Plewczynski, 2018)
using one dimensional data

HiCPlus Deep convolutional neural network that infers high- (Zhang et al., 2018)
resolution chromosomal conformation interaction matri-
ces using Hi-C data

DeepTACT) | Bootstrapping deep learning model predict chromatin (Liet al., 2019)
contacts at individual regulatory element level

These elements include enhancers, promoters, and replication origins. In doing so,
chromatin remodelling controls gene transcription, DNA replication, repair and
recombination (Tsuda et al., 2021). There are four families of protein complexes
that remodel chromatin. These are the switching defective/sucrose non-fermenting
(SWI/SNF) family, the imitation switch (ISWI) family, chromodomain, the helicase,
DNA binding (CHD) family, and the Inositol requiring 80 (INO80) family. All these
complexes require energy in the form of ATP to remodel chromatin (Clapier &
Cairns, 2009). The families differ in their function and can function to either change
the structure of the nucleosome by evicting histone or alter the orientation of the
subunit in the octamer. Other families can create DNA loops by altering the surface
of nucleosomes or can even slide the nucleosome along the DNA strand. Any
mutations in these chromatin re-modellers have been shown to be present in many
types of cancers (Tsuda et al., 2021). The SWI/SNF family act by sliding nucleo-
somes, ejecting histones, or repositioning chromatin and are involved in DNA
differentiation, proliferation, and repair (Clapier et al., 2017). The genes for this
family of re-modellers has been found to carry mutations in more than 20% of
human cancers. (Clapier & Cairns, 2009). The ISWI family of re-modellers are also
deregulated in various cancers (Zhong et al., 2019). They catalyse nucleosome
sliding and organise spacing and assembly of chromatin (Clapier & Cairns, 2009).
Since the interpretation of chromatin remodelling often require that the data be used
to infer the three-dimensional position of chromatin loops, Al has been used to turn
one-dimensional data into three-dimensional models of chromatin. Many Al tools
have been developed for this function and some of these tools are listed in Table 6.1.
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6.3 Al in the Analysis of Epigenomics

Machine learning (ML) is the process whereby Al learns and makes predictions
based on recognising patterns within the data. The more data the algorithm must
analyse and learn from, the greater the accuracy of the predictions. With the current
high throughput technologies generating large amounts of epigenomics data, these
forms of Al are ideal to assist in the use of this data to identify biomarkers,
therapeutic targets and assist in the management of cancer. These processes are
already regularly performed using genomics and transcriptomics data, where Al is
used to perform gene set enrichment analysis to identify upregulated signalling
pathways (Ghanat Bari et al., 2017). Different types of ML are used in the analysis
of epigenomic data. The two major different types of learning algorithms are
supervised, and unsupervised learning (Fig. 6.2), both of which can make use of
deep learning (DL).

Personalised medicine depends on the integrated analysis of big data mostly in
the form of ‘omics’ data. In many cases, epigenetic data must be analysed alongside
genetic, transcriptomic, and proteomic data to get a clear picture of the changes in
gene expression. For instance, mutations in the genes that code for histone-
modifying enzymes can be detected through genomic analysis, while the change in
the protein function can be detected in the changes of the acetylation or methylation
epigenetic markers. Finally, the changes in gene expression resulting from these
genetic and epigenetic changes can be seen by examining the mRNAs that were
transcribed and the proteins that were finally expressed (Lee et al., 2018). This may
involve integrating data from various sources and interpreting different types of data.
To do this Al must be able to undertake multimodal learning operations. In addition
to this, the size and complexity of these databases demand that Al undertakes
multitask learning (Fig. 6.2). This involves the performance of multiple learning
tasks at the same time (Strezoski et al., 2019). This also allows multiple models to be
trained at the same time and multiple models to be used to assess the same data
increasing the accuracy of the final result. It also results in a faster more efficient
analysis (Baxter, 2000). In order for these models to function simultaneously, they
must share some underlying features, which also allows them to share data (Zhang &
Yang, 2021).

6.3.1 Supervised Learning

In supervised learning, labelled datasets are used to train a dataset. This method
requires a human to label the data or categorise the different inputs. Once the
algorithm has used the labelled data to learn what the patterns are associated with,
for example the diagnosis of an aggressive cancer, it can analyse different datasets in
the same way to identify variable, such as the presence of an aggressive cancer
(Rajkomar et al., 2019). Some of the different algorithms used include linear or



126 R. Hull et al.

i

User input

Data labelling
®* $e

y y

Raw input data red
Training data S
. %
O o
S

{ Output '

Unsupervised learning
{ Output

Raw input data

Interpretation
Unknown output
No traiming data

Algorithm H Processing ]—D ﬁ
LJ

Multimodal learning

G i ion data Epi ic data Transcriptomic data Proteomic data

Algorithm

Qutput

Multi task learning

Features (experimental data (" Lincar models Responses

Epigenomic | Expression

[ data =

XYZXYZXYZ | XYZXYZXYZ =

YZX Xvzxvaxvz | X
XYZX XYZXYZXYZ

] YZXYZ | XYZXYZXYZ

Fig. 6.2 Different learning models used by Al in undertaking machine learning to analyse omics
data. Supervised learning is conducted using labelled data and requires user input to label the data.
The algorithm then learns to classify data based on these provided labels. Unsupervised learning
does not require labelled data and learns to tell data apart based on a classification system it creates
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logistic regression, support vector machine, random forest algorithms, and least
absolute shrinkage and selection operator regression (LASSO) (Krittanawong
et al.,, 2017). Support vector machine separate classes of labelled data using a
hyperplane, a simple line separating two-dimensional space, and the data points
nearest to this line are used to classify other unlabelled data (Cristianini et al., 2008).
Random Forest decision trees use mutule trees and select an average based on the
outcome of the different trees (Cristianini et al., 2008). The LASSO algorithm is a
logistic regression model that selects the most important prediction variables from
the data using a penalisation model to weigh the feature for their importance
(Cristianini et al., 2008).

Generally, supervised learning is used with epigenomic data to perform a predic-
tive role in cancer. It has been used for example to classify metastatic prostate
cancer. Here, prostate cancer tissue archives alongside healthy tissue counterparts
were analysed for DNA methylation rates and patterns. This information was used
for functional assessment, gene-set enrichment and protein interaction analyses, and
examination of transcription factor-binding patterns. A LASSO algorithm was used
with the data labelled, based on cancerous or healthy samples. Once the classifica-
tion algorithm was trained, it was validated using many benign and tumour prostate
arrays (Aref-Eshghi et al., 2018). Epigenomic analysis of DNA methylation proved
to be highly accurate in identifying driver events for the development of prostate
cancer. This was related to methylation events disrupting the activity of tumour
suppressor genes. The methylation profiles were able to predict the presence of
prostate cancer following the identification of as little as four CpGs (Aref-Eshghi
et al., 2018). Supervised learning and Al were also used to diagnose brain cancers
and asses their metastatic potential using DNA methylation patterns. The DNA
methylation profiles of the three most common of brain metastases were determined,
these included the spread of melanoma, breast, and lung cancers to form brain
cancer. The Al analysed the methylation pattern from normal, primary, and meta-
static cancers to create a three-step DNA methylation-based classifier (BrainMETH).
This tool classifies brain cancers based on the tissue of origin using their DNA
methylation patterns. These predictions matched those given by histopathology
examination (Orozco et al., 2018).

6.3.2 Unsupervised Learning

Unsupervised learning uses unlabelled data which allows for a greater measure of
correlation between two variables. Unsupervised learning is commonly used in

<
«

Fig. 6.2 (continued) based on differences in the data. Multimodal learning is used to combine data
from various sources and learns to look for common features on the different data and links them in
this way. Multitask learning is the use of Al to analyse multiple related data sets at the same time
using different but related models
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clustering, which involves assigning data points to various groups based on their
inherent characteristics. Unsupervised learning relies on techniques such as k-means
clustering and hierarchical clustering, principle component analysis, and partial least
squares discriminant analysis (Tarca et al., 2007). Unsupervised learning is often
used to simplify data. Both principle component analysis, and partial least squares
discriminant analysis are used to reduce the dimensionality of data (Meng et al.,
2016). Unsupervised algorithms are also more useful for detecting patterns in large
datasets with lots of datapoints, which is typical of all omics databases (Nguyen &
Rocke, 2002). Unsupervised learning has been used to detect DNA methylation
patterns when comparing cancer and non-cancer tissue, or classify cancers based on
their metastatic potential. An example of this is the use of unsupervised machine
learning AI to perform whole-methylome analysis of primary adrenocortical
tumours (pACT) in children. This study aimed to identify biomarkers that could
be used for prognosis. The AI model identified two groups based on their DNA
methylation profiles. The first group has higher methylation sites in CpG islands
related to gene promoter regions. This group had a poorer prognosis with more
advanced disease that was recurrent or metastatic (Bueno et al., 2022).

Semi-supervised learning is a technique where a small amount of labelled training
data is used for an algorithm to identify features specific to each class, and then, by
searching larger data sets, it can classify unlabelled data into one of these classifi-
cations based on similarities between the features of the labelled and unlabelled data
(Oliver et al., 2018).

6.3.3 Deep Learning

Deep learning is a type of machine learning that constructs a complex hierarchy of
analysis using multiple levels of analysis, each using the results of the previous analysis
as input. It can use the outputs and inputs from multiple levels of this hierarchy to learn
from. In other words, it can learn from features it has selected from higher and lower
levels of a selected feature hierarchy that is built upon these lower hierarchy features. Its
ability to automatically learn at multiple levels allows it to perform complex problem-
solving and analysis (Bengio, 2009). Both supervised and unsupervised learning can
make use of deep learning algorithms. Deep learning algorithms are useful in that they
can work with very complex data. This includes large-volume, multidimensional data
from a variety of sources. This makes them useful for integrating multi-omics data
(LeCun et al., 2015). Supervised deep learning has been used to classify gliomas based
on mutation and DNA methylation profiles in single cancer cells (Chang et al., 2018).
Deep learning models can also be trained using unsupervised learning methods.
Unlabelled mammography images were used to train a deep learning model that was
trained to assign scores to breast density scores. These scores were shown to be an
accurate predictor of breast cancer (Kallenberg et al., 2016).
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6.4 The Practical Use of Epigenetic Data and Al
in the Management of Cancer

Screening for genetic mutations gives useful information on an individual’s predis-
position to develop cancer. Epigenomic screening can provide more useful informa-
tion considering the current status or activity of disease (Leygo et al., 2017).
Screening for promoter DNA methylation is simpler since specific regions, promoter
regions, are the only areas that need to be examined. By looking for epigenetic
markers, involving methylation in promoter regions, numerous early diagnostic
techniques for multiple cancer have been successfully pioneered. The genes under
the control of these promoters are known to be involved in the initiation of carcino-
genic pathways (Leygo et al., 2017). For instance, DNA from stool samples was
screened for methylation status to diagnose colorectal cancer. This technique iden-
tified patients with cancer even when sequencing of DNA from the colonic mucosa
did not indicate the presence of mutations that could predispose an individual to
colorectal cancer (Elliott et al., 2013). Cancers of the central nervous system are
difficult to diagnose and classify using histopathology, with a large degree of
variability between different pathologists (Merve et al., 2019). DNA methylation
profiles have been successfully used as biomarkers to classify various CNS tumours
(Capper et al., 2018). This was optimised and built upon via the development of a
comprehensive machine learning approach that used DNA methylation profiles to
classify CNS tumours (Capper et al., 2018). These studies all demonstrate the use of
epigenetic markers in the management of various cancers. However, the integrated
analysis of epigenetics and other omics data combined with the large databases of
epigenetic changes generated by high throughput techniques requires the use of Al
and machine learning to fully exploit the potential of epigenomics.

A deep learning-based survival model for hepatocellular carcinoma was designed
based on epigenetics data (DNA methylation) in combination with RNA sequencing
data (RNA-seq) and microRNA-sequencing data (miRNA-seq). All these datasets
were obtained from The Cancer Genome Atlas (TCGA). The model integrated all
these datasets using multimodal learning and was able to predict prognosis as well as
a model that used genomics and clinical data (Chaudhary et al., 2018). This model
used an unsupervised deep learning method known as the autoencoder method
which establishes clinical risk based on the level of variations (Chaudhary et al.,
2018). By integrating epigenomic data with other omics data using Al it is possible
to clarify the significance of genetic mutations in non-coding regions. Genome-wide
association studies have identified single-nucleotide polymorphisms in non-coding
DNA regulatory elements (Corces et al., 2018). To do this, an unsupervised learning
method was used to construct the genome-wide chromatin accessibility map. This
was done using whole genome sequencing and ATAC-sequencing data from
410 tumour samples representing 23 cancer types obtained from the TCGA. The
assay for transposase-accessible chromatin using sequencing (ATAC-seq), is an
NGS-based technique that constructs the library for sequencing using hyperactive
transposase. The adapters for NGS are loaded onto transposase which simultaneous
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fragmentation and attaches the adapter to open chromatin regions. This results in a
library that is made up of accessible regions of the chromatin (Cui et al., 2021). The
unsupervised k-means clustering Al algorithm assisted analysis of this data. It
identified 562,709 DNA elements that are transposase-accessible and identified
distal enhancers. This data can be further analysed to subtype cancers, generate
protein-DNA footprints that can be used to identify transcription factors that drive
cancer-related transcription and can be used to, identify gene-regulatory interactions
in cancer. This analysis also showed that genetic loci that can predispose individuals
to develop cancer are epigenetically active DNA regulatory elements (Corces et al.,
2018).

6.5 Limitations of AI-Driven Epigenomics Applications

All three ML methods have their own drawbacks and limitations. Supervised
learning requires user input to label the teaching data and so cannot be fully
automated. Also, the data must be correctly labelled and therefore the system is
sensitive to human error (Krittanawong et al., 2017). Supervised learning may also
suffer from the problem known as ‘over-fitting’. This is the name given to the
phenomenon where the algorithm is able to analyse the training data very well but
this does not translate to other data sets as the algorithm is too optimised to the
teaching data (Japkowicz & Stephen, 2002). Deep learning requires large amounts of
computing power (LeCun et al., 2015). This may be a prohibitive factor in regular
diagnostic applications. However, the continuous increase in computing power,
along with cloud computing, should offer a solution to this problem. One of the
biggest issues with DL is due to the multi-layered complex analysis, it is not always
possible for users to discern how the Al arrived at the final solution and this may
create trust issues. This black box problem is a common problem with all uses of Al
(Rudin, 2019). One of the greatest limitations of unsupervised learning is that it is
unable to label the patterns of correlation with a potential biological relevance,
meaning that user input is required, and the process cannot be fully automated
(Alanazi et al., 2017). This can best be summed up as correlation not implying
causation, as the algorithms inability to give the relevance of clustering and/or
associations means these methods struggle to assign meaning to the patterns they
recognise. This means that care must be taken when interpreting the analysis
performed by an Al running an unsupervised learning algorithm (Nguyen &
Rocke, 2002). These methods can also be negatively affected by unnecessary,
redundant, or irrelevant (noisy) data present in the dataset. This data may lead the
algorithm to group the data incorrectly. This can be avoided by the careful
pre-processing of data (Nguyen & Rocke, 2002).

A difficulty for all these methods is the high number of variables in epigenetic
data, which sometimes exceeds the sample number. Many of the algorithms used
struggle with this problem which can only be solved by gathering more samples
(Kirpich et al., 2018). It is also important to choose the right algorithm for a specific



6 Epigenetics Analysis Using Artificial Intelligence in the Era of. . . 131

task or dataset. Some of the associations with DNA methylation patterns are not
linear, with multiple CpGs linked to the same gene able to influence other methyl-
ation events and therefore the transcriptome (Deutsch & Mcllvane, 2012). Prediction
bias is another problem faced by Al in all omics analysis tasks. This is most observed
in the bias most models have for the molecular patterns associated with Europeans.
This is because most studies are conducted with European samples which means
most training data is from Europeans (Phillips et al., 2011). This particular problem
can only be solved through the study and collection of data from more non-European
populations, especially African populations and populations from low to middle
income countries (LMICs) (Char et al., 2018).

6.6 Conclusions

Epigenomic data can be used on its own or integrated with other omics data to
provide a clear view of the molecular landscape of signalling pathways involved in
the development and progression of cancer. Epigenomic markers offer an advantage
in that they are dynamic and change with the patient’s lifestyle and environment and
are linked to risk factors. Unlike transcriptomic or proteomic analysis, they will
provide an earlier indication of the presence of or level of gene expression changes
that may lead to cancer. Like all omics analysis, epigenomic analysis requires the
analysis of big data sets. This is especially true of integrated analysis across multi-
omics data. Practically the best way to accomplish this by using AI. This is
especially true as with high throughput technologies like Nest Generation Sequenc-
ing. Omics data has entered the era of big data and epigenomics is no exception
(Fig. 6.3). The use of Al to analyse epigenomic data carries many of the same
problems as all Al does in the field of medicine. These problems are more closely
related to omics data involving shortcomings within the actual model used and the
data used to teach these models. The data problem should be solved over time as
more data is archived and a greater variety of populations and individuals are studied
than the traditionally focussed upon European populations. Many of the problems
concerning the different learning models can be solved by the correct selection of the
appropriate model to perform a task (Fig. 6.3). Also, as more advanced models are
created through the efforts of programmers and through trial and error, these
problems and shortcomings may become things of the past.
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Fig. 6.3 The use of Al to analyse epigenomic data from different sources. Epigenomic data
concerning changes in DNA methylation, chromatin structure, histone modification and the expres-
sion of non-coding RNAs has changed with the development of Next Generation Sequencing. This
has allowed for the acquisition of vast amounts of data and has brought epigenomics into the big
data era. To analyse and interpret this large amount of data, which may also require the integration
of other data sources, different machine learning models must be implemented by Al algorithms to
identify features within the data that can be used to classify the samples for cancer management
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Chapter 7 ®)
Association of Metabolomics with Al e
in Precision Oncology: Emerging

Perspectives for More Effective

Cancer Care

Langanani Mbodi, Precious Mathebela, and Zodwa Dlamini

Abstract Metabolomics is defined as the comprehensive analysis of metabolites in
a biological specimen. It holds a long-awaited promise to inform the practice of
precision medicine. Despite its enormous potential that has already been explored
widely, metabolomics has been relatively underutilized in all other sectors and so
much so in oncology. Metabolites have been used in the recent past to diagnose
complex metabolic diseases including disorders such as inborn errors of metabolism.
Classifying tumours is essential for determining treatment and prognosis. With next-
generation sequencing profiling, the classification of cancers can be conducted using
circulating tumour DNA and analysing copy number variation associated with
cancers such as small lung cancer as example, with no need for expensive invasive
histological classification. The collective efforts of radiomics and deep learning will
in the future deliver increased accuracy in diagnostic image analysis. The combined
applications of artificial intelligence and machine learning in healthcare will in the
future be implemented to improve disease management and provide effective
medical care.
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This chapter is intended to assist or further demonstrate the valuable role of
metabolomics and Al in precision oncology including specific areas such as
radiogenomics for diagnosis, treatment and prognostication of the disease.

Keywords Metabolomics - Precision oncology - Metabolomics in cancer - Artificial
intelligence - Cancer care

7.1 Definitions and Broad Applications
7.1.1 Metabolomics

Metabolomics is defined as the comprehensive analysis of metabolites in a biological
specimen. As an emerging technology, it holds a long-awaited promise to inform the
practice of precision medicine. Metabolites have been used to diagnose complex
metabolic diseases including disorders such as inborn errors of metabolism (Clish,
2015; Dettmer et al., 2007). The metabolites are mostly regulated by genetic factors
which hold potential as disease treatment targets (Chu et al., 2021).

Metabolomics technologies are capable of precise analysis of up to thousands of
metabolites without limiting to standard clinical chemistry techniques.
Metabolomics offers a detailed characterization of metabolic phenotypes and allows
for easy and practical use in clinical practice, precision medicine approaches such as
in disease diagnosis and management including characterization of metabolic
derangements that underlie disease, the discovery of novel therapeutic targets and
biomarkers that may be used to either diagnose a disease or monitor effect and
response to therapeutic agents (Clish, 2015).

In biological specimens, it affords comprehensive detection and quantification of
metabolites and small molecules in biological specimens by combining analytical
techniques and chemometrics to enable researchers to identify a large proportion of
metabolites (the metabolome) present in a sample (Clish, 2015). The metabolites can
be in the form of amino acids, sugars, ketones, nucleotides, fatty acids, organic acids,
as well as microbial-derived metabolites, and exogenous small molecules (including
drugs, food additives, toxins and pesticides) (Chung et al., 2018). Through analysis
of extracted data, valuable data is extracted through analysing these products of
cellular metabolism and relevant information about an organism’s metabolic or
physiologic state at the time of sampling is revealed (Chung et al., 2018; Kim
et al., 2011). There are other omics which are considered to complement
metabolomics and these include genomics, transcriptomics, microbiomics,
epigenomics and proteomics. Omics have been used in a wide range of applications
such as in environmental analysis, toxicology, nutrition science and systems biology
(Robertson et al., 2011; Weckwerth, 2010; Wilmes et al., 2013; Zhao et al., 2017). In
agriculture, metabolomics has been used in conjunction with nutrition assessment
methods to identify biomarkers that represent diet-related disease risks. In this field,
metabolomics technologies have been used to improve commercially significant
traits and increase crop yields. However, despite its enormous potential,
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metabolomics has been relatively underutilized in veterinary medicine where it
could be of great assistance for screening, diagnosing and treatment of spontaneous
diseases (Tran et al., 2020).

The most important role of metabolomics in the biomedical field in the current era
is to identify and develop novel disease biomarkers while providing new insights
into disease pathogenesis and explain complex endogenous and exogenous bio-
chemical pathways to help in disease diagnosis, monitoring of cellular responses
to nutrition, drugs, toxins, etc. There are further processes which aid in drug
development and cancer diagnosis which are based on the knowledge of cancer
being an altered metabolism disease and therefore, metabolomics is relevant to
cancer biology research (carcinogenesis, identification of specific biomarkers for
diagnosis) (Tran et al., 2020).

7.1.2 Analytical Techniques in Metabolomics

Metabolomic analyses commonly utilize one or more analytical techniques to
facilitate the identification and quantification of as many metabolites as possible in
a biological sample (Alonso et al., 2015; Sas et al., 2015). The most commonly used
are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS).
One-dimensional NMR spectroscopy is commonly used to detect 10 s—100 s of
metabolites in biological extracts. One of the advantages of one-dimensional NMR
is that it allows the reuse of the sample for other analyses and can quantify
metabolites with high accuracy and reproducibility (Ren et al., 2018).
Two-dimensional NMR techniques can be used to confirm or elucidate the structures
of previously unidentified metabolites, as well as measure the incorporation of stable
isotopes in labelling experiments. MS techniques involve the ionization of
derivatized or underivatized samples and detection of corresponding charged ions
(as mass-to-charge ratios) (Marion, 2013). MS allows greater coverage of metabo-
lites and are more sensitive than the NMR. MS is often coupled with chromato-
graphic separation techniques such as gas or liquid chromatography (GC, LC) or
capillary electrophoresis (CE). Chromatographic separation of samples minimizes
ion suppression effects associated with complex mixtures thereby increasing sensi-
tivity. This allows great sampling load and provides orthogonal information (reten-
tion time prediction) that allows metabolite identification. In recent years there have
been advances towards the use of high-resolution, accurate MS instruments such as
the orbitrap MS and Fourier-transform ion cyclotron resonance MS (FT-ICR-MS)
(Alonso et al., 2015; Sas et al., 2015).

New-generation MS instruments that allow post-chromatographic separation of
analytes by ion mobility instruments have the capacity to increase metabolite
coverage. This is achieved by allowing the separation of metabolite isomers with
the same mass and providing information on the shape (collision cross-section) of
molecules that can be used in metabolite identification. The use of multiple
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complementary analytical platforms is important given that no single platform offers
complete coverage of either polar or apolar metabolites (Tran et al., 2020).

As with proteomics, the profiling of metabolites relies on MS but with the
additional use of NMR spectroscopy. Separation-free MS techniques have now
been developed which reduce the volume of sample required and variation in the
data generated through the analysis without separation or fractionation. The use of
hubs such as the Global Natural Product Social Molecular Networking (GNPS)
which is a small molecule MS networking hub where researchers can deposit their
own MS data for small molecules makes it possible for the data to be available for
other users to search and use. Such data can be mined through the use of techniques
such as principal component analysis or hierarchical clustering in conjunction with
MS. These repositories enhance identification of spectra. These techniques have
been used to identify metabolic biomarkers for cancers in different organ systems
such as colorectal, pancreatic, lung, breast, gastric, ovarian and prostate (Puchades-
Carrasco & Pineda-Lucena, 2017). Figure 7.1 shows the basic workflow in
metabolomic studies.

7.1.3 Limitations of Metabolomics

A number of limitations hinder the widespread use of metabolomic techniques
regardless of its evolution since its inception. In current practice, most metabolomic
studies only identify a minority of metabolites in biological samples, reflecting the
complexity of sample analysis, the presence of multiple adducts and isotopes for
each species, and the difficulty of validating hundreds of metabolites with suitable
standards (Edelstein, 2016). There are some classes of metabolites that are either
difficult to detect using current instrumentation or technology or are present below
the level at which these techniques are able to detect and this complicates the
interpretation of data. When new or unknown metabolites are detected, they present
a new opportunity for understanding disease processes and detecting novel disease
biomarkers. However, the identification of these unknown or poorly defined metab-
olites remains one of the biggest challenges for metabolomics (Wang et al., 2010).
When metabolites are identified, their significance with regard to cancer diagnosis
as biomarkers, disease prognostic markers, etc. is another challenge. These
non-targeted metabolomic analyses generate enormous data sets that may contain
a lot of clinically irrelevant or unintended information which may demand a lot of
resources to transform these data into valid interpretations and conclusions. It also
requires an in-depth understanding of metabolic pathways and the interconnectivity
of metabolites and biological systems (Johnson et al., 2016). Hence, in many cases it
is difficult to conclude how a change in metabolite steady-state levels translates to
changes in metabolic fluxes through one or more associated pathways although this
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NMR nuclear magnetic resonance

is increasingly being addressed by coupling metabolomic approaches with stable
isotope labelling. There are metabolites which are only biologically significant in the
presence of other metabolites. Another challenge is that pertaining to the optimiza-
tion of sample collection and storage protocols. This needs to be addressed in order
to gain a global understanding of physiologic processes and optimally integrate other
omics such as genomics, proteomics, transcriptomics, etc. (Tran et al., 2020).
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7.2 Precision Oncology

Precision oncology, also termed personalized medicine in cancer medicine, is an
innovative approach to tailoring disease prevention and treatment that considers
differences in individuals’ genes, environment and lifestyle factors. Its goal is to
provide targeted therapy based on the molecular and clinical profiles of each cancer
type (Pfohl et al., 2021). The strategy of a “one-size-fits-all” therapeutic approach
assumed in most medical treatments which is based on treating the “average patient”
may be successful for some patients and not for others. Therefore, it makes sense to
eradicate this modality as it is both wasteful and may be associated with poor
outcome.

There are powerful discoveries in tailored treatment which are precision medicine
driven and some of them are Food and Drug Administration (FDA) approved. These
treatments are tailored to characteristics of individuals such as a person’s genetic
makeup, or the genetic profile of an individual’s tumour histological type or subtype.
An example is patients with multiple primaries of malignant tumours that may
include breast, endometrial and ovarian cancers, who routinely undergo molecular
testing as part of patient care. Molecular testing of these tumours enables physicians
to select treatments that improve chances of survival and reduce exposure to adverse
effects per tumour site instead of an umbrella treatment program (Jones et al., 2019).

7.3 Artificial Intelligence

Artificial intelligence (Al) is a branch of computer science which deals with the
simulation of intelligent behaviour in computers (Hamet & Tremblay, 2017). It relies
on computers following specific algorithms established by humans or learned by
computer methods to support decisions or execute certain tasks. Machine learning
(ML) as a subfield of Al represents the process by which a computer is able to
improve its own performance by continuously incorporating newly generated data
into an existing iterative model. ML has three algorithms which are commonly used:
(1) Supervised learning, (2) Unsupervised learning and (3) Reinforcement learning
(Hamet & Tremblay, 2017).

A subfile of ML known as deep learning (DL) is where mathematical algorithms
are deployed using multi-layered computational units resembling human cognition.
These include neural networks (interconnections of computer processors similar to
connections in the human brain) with different architecture types such as recurrent
neural networks, convolutional, etc. (Hosny et al., 2018; Rajkomar et al., 2019).

At their most basic level, Al techniques are used to update patients on a person-
alized basis about their upcoming treatment procedures, progress, recovery, thera-
pies used, dietary changes and modifications in lifestyles patterns along with the
survival summary of previously recovered cancer patients. This allows patients to be
more aware of their diseases and the entire clinical treatment procedures. Noting that
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any new technological invention will have its shortfalls and advantages, the days and
times for use of Al techniques to provide personalized treatment to cancer patients
tailored to their needs in much quicker ways have arrived and we better get ready to
embrace it (Dlamini et al., 2020).

7.4 Cancer Management and Al

7.4.1 Diagnosis and Treatment of Cancer

The management of common cancers with high morbidity, such as endometrial
cancer, in modern days is moving towards use of Al It is estimated that 19.3 million
new cancer cases were diagnosed each year in the past decade. This figure is
increasing each day and will likely continue to increase over the next few decades
(Sung et al., 2021).

It is projected that 30.2 million new cancer cases will be diagnosed in 2040
despite substantial improvements in cancer diagnosis and management (Emens et al.,
2017). Even though the current modalities in diagnosis and therapy for cancer have
resulted in a reduction in cancer mortality over the last two decades, an alarming
10 million cancer-related deaths were recorded in 2020 (Sung et al., 2021). It is
therefore imperative to promote bio-technological innovation in healthcare and more
especially in cancer care.

The capacity of the human brain to process information is naturally limited.
Processing of the modern big data is an urgent need for the implementation of
alternative strategies. In addition to the increased availability of data, the augmen-
tation of the storage and computing has boosted the development of data-processing
techniques, such as ML and AI. ML and AI are becoming increasingly important
tools to tackle complex issues in cancer care. There are more than 90 identified
registered clinical trials for Al in cancer diagnosis with majority of trial recorded to
have started after the year 2017 (Farina et al., 2022). This chapter provides an
overview of the role of Al in oncology, including current applications, future
perspectives and highlights some of the limitations of its use in an attempt to
stimulate and prepare the reader for incorporation of ML and Al in cancer diagnosis.

Cancer is considered a complex disease biologically and requires that many
parameters are addressed and considered correct before a medical decision is made
at close to 10,000 parameters. For this extensive process, Al is the obvious solution
and helps provide faster and more accurate interpretations of patient genomic and
transcriptomic data (Dlamini et al., 2022).
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7.4.2 Biomarkers

The discovery of biomarkers is one of the most promising techniques for cancer
detection and is considered most effective when using molecular biomarkers. Bio-
markers are used for diagnosis, disease prognosticating, predicting patient’s
response to therapy and estimating patient’s overall survival after therapy (Dlamini
et al., 2020). There are several roles of biomarkers including but not limited to:

(a) improving cancer treatment and its management.

(b) classify cancers into types or subtypes.

(c) stratify cancers based on the stage of disease. This is important because different
types, subtypes or stages require different treatment modalities.

(d) check for drug resistance. Cancer drug resistance is a major obstacle for the
successful treatment of cancer. The identification of resistance genes, epigenetic
changes and the physiological pathways responsible for the development of such
resistance will assist in solving this problem and improve treatment outcomes
through direct targeting of the changes and therefore novel drugs can be devel-
oped. An example of such use would be for drug-resistant breast cancer due to
the ESR1 oestrogen receptor.

The entire process involves determining if the presence of these biomarkers is
associated with specific cancers, different stages of these cancers or different patient
outcomes (Dlamini et al., 2020; Kumar et al., 2018). Relevant biomarkers have been
identified through different omics technologies and the data is analysed using Al If
clinicians or clinician oncologists have to do physical biopsies, it requires tissue to
be removed and examined histologically, whereas with the examination of molecular
biomarkers via next-generation sequencing (NGS) is non-invasive and performed
through blood tests. An example of a molecular biomarker used in most
gynaecological malignancies is the circulating cancer antigen 125 (CA 125) used
for the detection of ovarian cancer, monitoring of treatment response, prediction of
metastasis and also in other epithelial cancers (Wang et al., 2019). However, this
biomarker is non-specific as blood is not necessarily representative of the changes
occurring in the tumour microenvironment (TME) and can also be elevated in other
non-cancer conditions such as pregnancy, endometriosis, diverticulitis, liver cirrho-
sis and uterine fibroids (Cohen et al., 2014). The identification and characterization
of novel biomarkers through NGS can assist through the detection of the presence of
molecular or genetic alterations specific to a particular cancer. It also assists through
detecting mutation signatures and tumour mutational burden (TMB) (Palmirotta
et al., 2018). Using Al, advanced statistical and data analysis is applied to all these
changes detected. Through RNA sequencing, information regarding changes in gene
expression signatures in cancer is provided as well as the detection of mutations in
RNA which can affect gene expression. These changes are all related to the under-
lying molecular mechanisms of cancer and therefore they can easily and practically
be used as biomarkers of different types of cancer as well as for staging. Such can be
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used to prognosticate and monitor treatment as previously highlighted (Dlamini
et al., 2022).

7.4.3 Challenges Facing the Application of Al to Cancer
Diagnosis, Prognosis and Treatment

There are several studies that have demonstrated how Al performs better than
humans with regard to interpretation of the quantities of data pertaining to a complex
disease such as cancer (Pashkov et al., 2020). It is important that we remind
clinicians and clinician scientists that Al should always be used to augment human
intelligence and not replace it. Any analysis of the medical data or biomarkers
performed by Al should be assessed by qualified experts in their respective specialist
clinical fields. The use of ML and DL in Al must also be assessed or supervised by
experts in bioinformatics and programming. One of the biggest challenges facing the
application of Al and DL to cancer diagnosis, prognosis and treatment is lack of
knowledge concerning what the Al system is actually doing and how it comes to its
final conclusions and therefore humans may blindly apply the report into clinical
setting (Sorell et al., 2022). In the future, once Al is fully automated and requires no
human intervention, it may become uncertain how an Al is selecting features or
making decisions. The fear is that this may create doubt on the accuracy of the
predictions made and indirectly force clinicians and researchers to accept these
results on “as is” basis without scientific interrogations (Sorell et al., 2022).
Although there are Al systems designed to be easily understood by physicians,
and whose actions can be understood by the physicians and clinicians to improve
their ease of use in clinical settings, there is still a long way before these are well
understood by physicians who do not interact with Al on a daily basis or who do not
possess IT knowledge (Dlamini et al., 2022).

The use of Al in prostate cancer was recently put in practice from a development
using ML to predict if prostate cancer patients could effectively be treated using
nerve-sparing radical prostatectomy. The Al did this by predicting whether a tumour
could extend beyond the prostate (Kwong et al., 2022). All decisions and analyses
produced by the Al could be analysed and explained in layman language using a
publicly available web application, Shapley Additive Explanations (SHAP). How-
ever, even though this was achieved, DL also requires a large amount of data to learn
enough to generate algorithms that it can be applied to new database. This is
achieved through a process that requires multiple sampling to act as training data.
This may not be accepted by patients. There is also an ethical issue as the use of big
data is based on the use of patients’ data which may occur without consent of the
patient (Dlamini et al., 2022).

The other challenge in adopting Al to the oncology clinic setting is that the Al
algorithms are not yet standardized for such a setting (Chua et al., 2021). This is very
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difficult to achieve as cancer knowledge continues to expand and this can lead to
information disparities.

7.5 The Solution to the Challenges of AI Applications

The challenges facing the implementation of Al and the use of big data are not
insurmountable. Ethical problems related to the use of big data can be solved through
individual country’s policy makers intervention and the implementation of simple
rules and guidelines governing its use (Dlamini et al., 2022).

The problem of Al being a mysterious black box that clinicians and oncologists
would be uncomfortable using or trusting is being solved with the development and
implementation of methods to test the accuracy of the predictions made by the
system as well as revealing some of the decision-making processes made by the
Al system. The challenge of the availability of training data will autocorrect as more
studies that had ethical clearance are performed and data collected and stored. Such
data can be used retrospectively to train the Al and as such this challenge will be
overcome by the passage of time (Dlamini et al., 2022).

The enormous amounts of data required for storage capability to keep the
genomic, transcriptomic, proteomic and medical record data for every patient should
not pose a challenge as computer hardware development with “unlimited storage
capacity” or use of cloud storage continues to advance.

7.6 Precision Medicine in Cancer Care

7.6.1 Introduction

The clinical trials on precision medicine have shown that drugs’ adverse reactions
can be avoided by treating cancers with genotype-focused pharmacological agents
which are specific to a disease-causing gene mutation. This customized treatment
permits for identification of specific genetic variations and associated response to
individual drugs (Sicklick et al., 2019). Metabolomics is closely linked to the overall
pathophysiological status of an individual. Thus, metabolomics may incorporate the
biochemical events of thousands of small molecules in the cells, tissues, organs or
biological fluids. The qualitative and quantitative alteration of the metabolite com-
position observed in disease pathologies or after drug administration translates into
complex metabolic signatures (Holmes et al., 2008). The analysis of these signatures
can potentially provide useful information for the diagnosis and prognosis of patients
as well as for predicting pharmacological responses to specific interventions. Fur-
thermore, specific metabolic signatures that occur after drug treatment provide
information from pathways targeted or affected by drug therapy. In modern days,
tumour genomic profiling is routinely used to classify tumour types, identify driver
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or germline mutations, perform prognostic assessments and make future therapeutic
decisions (Aboud & Weiss, 2013). However, the heterogeneity found in the cancer
genomes and cancer tissues makes it difficult to determine the underlying causes or
ascertain the optimal and best treatment. Moreover, the increased number of muta-
tions and multiple combinations of tumour suppressors and oncogenes make indi-
vidualized tumour classification or customized therapy almost impossible (Forbes
et al., 2015).

7.6.2 A Summary of the Application of Al to Precision
Medicine

Multi-omics data can be combined with multiple types of associated data such as
published literature, medical images, protein models and gene expression data. Al
algorithms use deep neural networks (DNN) and learning algorithms to create, test
and improve models to achieve accurate predictions. The results of the networks and
algorithms will be in association with biomarkers for diagnosis, prognosis estima-
tion, treatment modification, prediction of survival outcomes and offer opportunities
in fine-tuning and individualizing treatment plan. Where mutations are identified,
such can be used to predict changes in protein structure (Dlamini et al., 2022). DNN
can also be used in conjunction with histopathology, scans, MRI, mammograms, etc.
to amplify the accuracy of the prediction model (Bhinder et al., 2021; Coudray et al.,
2018). Both Figs. 7.2 and 7.3 depict the application of Al in precision oncology and
genomics and how such have an impact on the pathological and pharmacological
processes, as well as clinical biomarkers.

7.7 Application of Al to Metabolomics

7.7.1 Application in Therapeutics

In the management of colorectal carcinoma, the use of Al and Metabolomics helps
clinicians choose the most efficient treatment with less adverse effect. Al technology
is able to predict chemotherapy and radiotherapy response and assist the clinician in
selecting the treatment modality that is likely to achieve the best therapeutic benefit.
There are several ML models that have been developed to predict the toxicity of
chemotherapy through collection of biomarkers at different stages of therapy (Qiu
et al., 2022).

Omics data provide information such as prognostic signatures [Complexity Index
in SARComas (CINSARC) and Genomic Grade Index (GGI)], transcriptome bio-
markers which help establish biological pathways that are essential for understand-
ing the disease mechanisms and treatment of tumours that would otherwise have
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poor prognosis such as sarcoma. The omics approach to sarcoma treatment also
focuses on development of targeted therapy such as PARP inhibitors through novel
therapeutic biomarkers (Zou et al., 2022).

7.8 Application in Imaging Genomics
(Radiomics/Radiogenomics)

Imaging genomics, also known as radiomics or radiogenomics, describes the asso-
ciation of features of a tumour identified through tumour imaging with genomic data
such as mutations, copy number variation (CNV) and gene expression profiles
(Bodalal et al., 2019). The features of tumours such as structures, shapes, lines,
points, colours, boundaries or the area of the image closely associated with one of
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these features are identifiable. When applied to clinical medicine, these features aid
to distinguish tumour tissue and normal tissue. The ability to make these distinctions
has traditionally only been able to be performed by a human operator and therefore,
subject to bias and interpretation and interpersonal variations in reported findings
(Giirsoy Coruh et al., 2021).

Al can analyse medical images without the need for human interference and with
automation and consistency. In its current technological developmental state, Al is
thought to outperform skilled and experienced pathologists in the use of medical
imaging to diagnose cancer or make prognostic predictions. Imaging genomics relies
on the use of Al to extract features identified on an image and link these features with
phenotypes (Giirsoy Coruh et al., 2021). The phenotype reflects protein expression,
which is then associated with genomic, transcriptomic and epigenomic changes.
This association can then be used to improve diagnostic and prognostic approaches.
Therefore, medical imaging can be used to infer that these genetic changes are
present within the tumour being imaged, allowing the use of image features as
predictors of survival or indicators of the effects of treatment and as an accurate
diagnostic tool than the conventional medical imaging modalities (Berger & Mardis,
2018). The most recent work by Yin and colleagues done in 2022 is a good example
of the clinical application of the metabolomics, Al and precision medicine. They
used an Al brain metastasis detection system which was more sensitive than three
experienced and three junior radiologists (Dlamini et al., 2022).

Another application in clinical settings is its use to stratify the risk of mantle cell
lymphoma (MCL) using CT-derived 3D images (Lisson et al., 2022). This is more
reliable in predicting if the MCL patient would have a poor outcome, when com-
pared to the use of traditional size measurements of the tumour as a prognostic tool.
Because of lack of standardization, different clinical teams or units may use different
feature selection process (Dlamini et al., 2022).

7.9 The Future of Cancer Care

Al and precision oncology in healthcare with the advancement in technology will
revolutionize and transform the future of healthcare through the generation of big
digital datasets acquired by means of NGS, use of algorithms for image processing,
patient-related health records, data arising from large clinical trials and disease
predictions (Dlamini et al., 2020). Oncology has been in the forefront of reaping
the benefits of Al for universal cancer management in the form of early detection,
tailored or targeted therapy by obtaining genetic information of the patient and
predictions of future outcomes. Al’s capabilities of pattern recognition and complex
algorithms can be employed to gain relevant clinical information that will decrease
errors related to diagnostics and therapy. The collective efforts of radiomics and DL
will in the future deliver increased accuracy in diagnostic image analysis. The
combined applications of Al and ML in healthcare will in the future be implemented



7 Association of Metabolomics with Al in Precision Oncology:. . . 153

to improve disease management and provide effective medical care (Dlamini et al.,
2020).

Cancer management will be improved by identifying clinically relevant bio-
markers for early detection of disease and predicting prognosis for effective treat-
ment. With Al and metabolomics, novel molecular biomarkers for different cancers
can be deciphered by identifying germline mutations in DNA and whole
transcriptome analysis by RNA sequencing. In the future, oncologists and oncology
clinicians will use studies such as The Cancer Genome Atlas (TCGA) for RNA
sequencing in biomarker identification for diagnosis and as a prognostic predictor.
This data from the TCGA showed that despite differences in tumour biology, there
was an overlap of molecular features in some tumour types and therefore revealed
biomarkers that can predict the overall survival, disease-free survival and
progression-free survival, which are essential endpoints in cancer management
(Liu et al., 2018; Hutter & Zenklusen, 2018). A recent study utilized shallow RNA
sequencing for predicting disease outcome and reduced costs of sequencing without
compromising the biological data obtained for attaining accurate clinical insights
(Milanez-Almeida et al., 2020). This can easily be applied in genome diagnostics in
neuroblastoma, breast and lung cancers. Another recent study on the use of
metabolomics in oncology gave hope of future utilization of circulating cell-free
DNA (cfDNA) to analyse CNV as a “cost-effective, non-invasive, rapid, robust and
sensitive alternative” for predicting the prognosis of malignancies such as neuro-
blastoma using a sequencing method (Van Roy et al., 2017). Classification of
tumours is essential for treatment and prognosis. With NGS profiling, the classifi-
cation of cancers can be conducted using circulating tumour DNA (ctDNA) and
analysing CNV associated with cancers such as small lung cancer with no need for
expensive invasive histological classification (Dlamini et al., 2020).

7.10 Conclusion

This chapter is intended to assist to further demonstrate the valuable role of specific
areas of Al such as DL, ML and radiogenomics for diagnosis, treatment and
prognostication. Metabolomics holds an indubitable potential in bringing solutions
as far as cancer diagnostics, therapeutics and management are concerned. Integrating
metabolomics technologies with Al indeed offers more effective cancer care strat-
egies as it aids in overcoming challenges that either technique cannot overcome on
its own. Further development in the Al technology and the algorithms for a person-
alized, clinically obtained genomics data gives hope of more targeted therapy for
better cancer care.
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Chapter 8 )
Artificial Intelligence Application s
to Microbiomics Data for Improved Clinical
Decision Making in Precision Oncology
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Thanyani Victor Mulaudzi, Rodney Hull, and Zodwa Dlamini

Abstract The microbiome consists of the total number of micro-organisms and
their genomes occupying a specific environment with distinct physico-chemical
properties, at a specific time. Because of the sheer number of micro-organisms
occupying the human body the microbiome offers substantially more genetic diver-
sity, and hence more flexibility, than the human genome.

Disturbances in the microbiome have been linked to the development of various
diseases including cancer. Microbes play a significant role in the development and
progression of cancer by acting either directly or indirectly through a variety of
mechanisms. It has been increasingly recognized that no two patients’ cancers are
exactly the same, and some of this heterogeneity can be directly attributable to the
microbiome. Several studies have demonstrated links between specific microbes to
specific cancers like Helicobacter pylori and gastric cancer, human papillomavirus
and cervical squamous cell carcinoma, Fusobacterium nucleatum and colorectal
cancer, etc.

The use of informatics, machine learning, and artificial intelligence assists with
the interpretation of data generated from multi-omics technologies and real-world
data, enhancing decision-support systems in precision oncology. A more in-depth
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understanding of the mechanisms of microbiota-mediated immunomodulation and
identification of precise immune-stimulatory and immune-inhibiting bacterial strains
or pathways could lead to increased precision in cancer therapy.

Keywords Microbiome - Microbiomics - Machine learning - Big data - Precision
oncology - Atrtificial intelligence

8.1 Introduction

Big data, information technology, and artificial intelligence (AI) promise to change
the world. Big data analysis is applied in many fields of human activities and must
also be productively employed in the field of medicine. To come to grips with the
extreme biological complexity of our organism and each of our organs, the com-
pleteness of enormous amounts of data is of extraordinary worth if assessed holis-
tically with the -omics disciplines (Vassilios, 2016). The introduction of Al
technology with machine learning and deep learning into the medical field including
the field of oncology is inevitable. More than 60 Al-equipped medical devices have
been approved by the FDA in the USA with several of them already being used for
clinical applications, especially in radiology (Hamamoto et al., 2020). The role of the
microbiome is one of the most topical aspects and concepts that the medical
fraternity is grappling with trying to find more answers about the cause, effect, and
possible treatment of a variety of diseases including cancer. The microbiome
consists of all micro-organisms (living and non-living with their genome and theater
of activity) which interact with each other, live in the same habitat, and form their
ecological niche together (Moss, 2017).

Compared to many other fields of multi-omic studies, microbiomes are dynamic
ecosystems with active host regulation. As a result, the analysis and interpretation of
generated data tends to be more complex and challenging (Nayfach et al., 2019;
Topcuoglu et al., 2020). Based on current observations, the degree of personalization
of the human microbiome vastly exceeds that of the host genome with no two
individuals showing an identical overlap in the microbial species of their
microbiome. This degree of personalization is so high that it may even have forensic
applications (Gilbert et al., 2018). Over the past decade more and more microbiome
researchers have begun using machine learning algorithms, as they increasingly
become aware of the ability of these models to incorporate and assess the interper-
sonal microbiome variations and ecology, and the ability of artificial intelligence to
assess each microbial population together with its co-existent microbial population
rather than in isolation. Machine learning offers a holistic view incorporating the
structure of the microbial communities as a whole and identifies linkages between
the microbes and disease state (Topcuoglu et al., 2020). The application of machine
learning algorithms has proven to be valuable in identifying predictive characteris-
tics of a microbial signature (Gilbert et al., 2018). Changes in the microbial popu-
lation of the microbiome result in dysbiosis with subsequent onset, flare-up, and
resistance to therapy of disease. The ability to manage these changes can represent
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the medicine of the future, by acting on modifiable entities within the microbiome, as
opposed to the human genome which is not modifiable. Data from microbiomics
integrated with patient metadata and other omics data may provide advanced
decision-support systems allowing us to further advance precision medicine and
oncology (Putignani et al., 2019).

8.2 The Human Microbiome

The human microbiome can be defined as the total number of micro-organisms and
their genomes that exist in the human body, occupying a specific environment or
region with distinct physiological and chemical properties, at a specific time. As
such the microbiome does not only define the microbiota but also their genomic
characteristics and theater of activity (Kambouris, 2020). These micro-organisms
include viruses, fungi, protozoa, archaea, and bacteria. The microbiome can be
characterized as consisting of a core microbiome and a variable microbiome. The
core human microbiome is defined as any set of microbial taxa and their associated
genomic or functional attributes characteristic of the human host and present in a
specific body region in all or large majority of human beings (Turnbaugh et al.,
2007; Neu et al., 2021). The number of micro-organisms that exist and coexist in the
human body is enormous with approximately 500-1000 species of just bacteria
found in the human body at any given time and it is estimated that the microbiota
outnumbers human somatic and germ cells by a factor of ten (Turnbaugh et al., 2007,
Gilbert et al., 2018). The Human Microbiome Project (HMP) was initiated in 2008 to
explore the microbial communities of the human host and characterize their role in
human health and disease (Creasy et al., 2021). One of the primary objectives of the
HMP was to understand the microbiome and the factors that influence its distribution
and evolution over time and its impact on human genetic and physiological diversity
(Turnbaugh et al., 2007). The human microbiome is not homogenous within a single
individual, with each region of the body having its unique microbiome, largely as a
result of the early phases of human development where the microbiome concurrently
develops in a regional as well as body site-specific direction leading to each body site
having its specific biogeography (Gilbert et al., 2018; Hull et al., 2021).

The skin, for example, shows dramatic variation in microbiome composition and
structure across its different sites (e.g. elbow and face) (Gilbert et al., 2018). The
human microbiome is a living ecosystem that does not operate in isolation but
interacts closely with and is influenced by the environmental microbiome found in
the temporo-spatial environment that an individual occupies (Ramaboli et al., 2022).
A long co-evolutionary process has enabled the development of mutually beneficial
interaction between the human host and the trillions of microbiota living within and
on the human, with humans demonstrating traits that they did not evolve on their
own but through the direct influence of their co-existent microbial genomes
(Rajendhran & Gunasekaran, 2010). Disturbances in the microbiome have been
linked to the development of various diseases, for example, the state of the adult
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Fig. 8.1 The human microbiome. The core human microbiome is the part of microbiome present in
a given habitat in all or the vast majority of humans, where habitat can be the whole human or a
specific region, e.g., gut. Micro-organism is the total number of micro-organisms including living
(bacteria) and non-living (viruses) organism. Variable microbiome is variation as a result from a
combination of host specific factors, e.g., genotype, host physiological status, immune system,
pathobiology (disease status), lifestyle (including diet), host environment (at home and/or work)
and the presence of transient populations of micro-organisms that cannot persistently colonize a
habitat. Microbial structural elements and metabolites constitute the theater of activity of the micro-
organisms

human gut, which can harbor up to ten times more microbial cells than the total
number of somatic and germ cells, has been linked to the health status of patients
such as cancer development (Ramaboli et al., 2022; Shukla et al., 2015). Explorative
analysis of the human microbiome should be coupled with an assessment of the
environmental exposure including exposure to pathogens, nutrients, drugs, and
pollution (Putignani et al., 2019). A growing number of studies have shown that it
is subsets of microbiomes that cause health differences among individuals and it is
rare for a single bacterial species to be associated with a disease (Topcuoglu et al.,
2020). Microbiome research has significantly improved recently with the advent of
high-throughput technologies generating large amounts of data and metadata with
the ability to not only inexpensively and easily detect microbiota but also measure
their metabolic activity (Gaitanis, 2020). Figure 8.1 below captures the concept of
the human microbiome.
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8.3 The Microbiome and Cancer

Over the past decade, it has been increasingly recognized that no two patients’
cancers are exactly the same, and some of this heterogeneity can be directly
attributable to the microbiome (Rodriguez et al., 2021). The gut microbiome com-
position gradually shifts throughout an individual’s lifetime and varies widely
between individuals which impact carcinogenesis, disease development, antitumor
immunity and clinical response to therapy including immunotherapy (Matson et al.,
2021). Disruption of the microbiome (dysbiosis) results in immune dysregulation
and impaired ability to control tumorigenesis. Dysbiosis can be characterized by
alteration in proportions of certain phyla, increased or decreased abundance, increase
in species that promote chronic inflammation (and oncogenesis) or reduction of
species that down-modulate chronic inflammation or with antitumor effects
(Vivarelli et al., 2019). See Fig. 8.2 below.

Microbiota play a significant role in the development and progression of cancer
by acting either directly or indirectly through a variety of mechanisms including the
inactivation of some chemotherapeutic agents, production of mutagens, and the
promotion of inflammation by reactive oxygen species inducing DNA damage,
stimulation of cancer-promoting signaling pathways such as the e-cadherin—Wnt—
b-catenin signaling pathway. The e-cadherin—f catenin complex regulates cellular
adhesion, thus any disruption leads to unchecked cell migration, invasion, and
metastasis (Hull et al., 2021). Some of the breakthrough studies confirming the
cancer causality by microbes were studies demonstrating that H. pylori greatly
increases the risk of non-cardia gastric cancer, the discovery of oncogenic HPV
strains and their strong association with squamous cell cervical carcinoma and the
association of hepatocellular carcinoma with chronic viral hepatitis caused by
hepatitis B and C viruses (HBV/HCV) (Gaitanis, 2020). A study by Ponziani et al.
(2019) investigated gut microbiota features associated with hepatocellular carcinoma
(HCC) in patients with complex phenotypes, such as cirrhosis and nonalcoholic fatty
liver disease (NAFLD), and found that patients with liver cirrhosis and hepatocel-
lular carcinoma had, amongst other things, deficiency of beneficial bacteria, namely
Akkermansia and Bifidobacterium and that this combined deficiency enhances
intestinal and liver inflammation, influencing the initiation and/or the progression
of hepato-carcinogenesis. They concluded that in patients with cirrhosis and NAFLD
the gut microbiota profile and systemic inflammation are significantly correlated and
can concur in hepato-carcinogenesis processes (Ponziani et al., 2019). Persistence of
Helicobacter pylori infection has emerged as a cause of gastric cancer, and H. pylori
is recognized as a type I human carcinogen, with 90% of gastric cancer cases
worldwide considered to be associated with H. pylori infection and approximately
10% to Epstein-Barr virus infection. H. pylori drives carcinogenesis by chronic
inflammation leading to the Correa cascade of chronic atrophic gastritis, gastric
intestinal metaplasia, dysplasia, and adenocarcinoma. H. pylori induces the recruit-
ment of neutrophils and macrophages, which, in turn, produce reactive oxygen
species (ROS) and nitrogen species (RNS). Inflammation-mediated ROS/RNS can
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directly trigger single-strand DNA breaks (SSB) and/or induce the NF-B
pro-inflammatory pathway that can trigger double-strand DNA breaks (DSB)
(Knippel et al., 2021). Some data suggest that successful eradication of H. pylori
reduces the risk and rate of gastric cancer (rates reduced from 3% to 1.6% in a meta-
analysis and from 13.4% to 7.2% in another study) (Gaitanis, 2020; Knippel et al.,
2021). Fusobacterium nucleatum has been studied extensively and mechanistically
linked as a bacterial driver of tumorigenesis in colorectal cancer (CRC) development
via activation of p-catenin signaling and by driving inflammatory responses. High
levels of intra-tumoral F. nucleatum in CRC are associated with low survival rates,
chemo-resistance, and evasion of immunity (Matson et al., 2021).

A study analyzing the microbiota profile and metabolites profile from fecal
samples collected from 50 CRC patients and 50 healthy controls observed a three-
fold increase in Proteobacteria, a 60-fold increase in Fusobacteria, and a 0.5-fold
decrease in Firmicutes in CRC patients compared with the healthy control group and
microbes were much less abundant in the CRC group, indicating a significant shift in
the gut microbiome of CRC patients (Yang et al., 2019). However, the microbiome
does not only lead to the development and progression of cancer but there also exist
several favorable microbiotas that are associated with decreased risk of cancer,
improved survival, and better response to therapy including immunotherapy.
Hayes et al. in a prospective study nested in 2 large US cohorts assessed the oral
microbiota with high-throughput sequencing of the 16S ribosomal RNA (16S
rRNA) gene in pre-diagnostic oral samples from 129 Head and Neck Squamous
Cell Carcinoma (HNSCC) cases and 254 controls, and they found that the greater
abundance of the commensal bacterial genera, Corynebacterium and Kingella, was
associated with reduced risk of HNSCC (Hayes et al., 2018). Riquelme et al. in their
study found that patients with high alpha diversity of the pancreatic ductal carcinoma
(PDAC) tumor microbiome had better overall survival compared to those with low
alpha diversity, where alpha diversity is defined as the number of species present
within the tumor specimen. They found enrichment of Saccharopolyspora,
Pseudoxanthomonas, Streptomyces, and Bacillus clausii within the PDAC speci-
mens of the long-term survivor cohort and demonstrated that this enrichment is
strongly predictive of prolonged survival in resected PDAC (Riquelme et al., 2019).
A number of organisms have been positively linked with cancer but only 10 have
been classified as true oncogenic as per the International Agency for Cancer
Research (IACR), see Table 8.1 below.

Of the trillions of microbes inhabiting the human body only ten microbes have
been classified as proper oncogenic, leading to cancer (seven viruses, three parasites,
and one bacteria). The other cancer associated microbes are regarded as complicit
micro-organisms (i.e., known to have some impact in cancer initiation, progression,
and metastasis but not necessarily proven to be the main causative event).
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Bacteria associated with cancer

Micro-organism

Cancer

Mechanism

Reference

Helicobacter Intestinal type gastric | DNA methylation, cyclin E Moss (2017),
pylori cancer over-expression, p27 degrada- | Matson et al.
tion, mutation in 7P53 KRAS, |(2021), Eguchi
APC. et al. (2004)
Induces Correa cascade.
Fusobacterium Colorectal cancer Induces a pro-inflammatory Matson et al.
nucleatum micro-environment and sup- (2021), Wu et al.
pression of host immunity. (2019)
Binds E-cadherin, activates the
B-catenin pathway, and
induces the expression LEF/T-
cell factor (TCF).
Bacteroides Colorectal cancer Activates host colonic epithe- | Knippel et al.
fragilis lial cell (CEC) NF-xB and (2021), Shariati

STATS3 pathways and CEC
Wnt signaling.

E-cadherin cleavage, induction
of c-Myc expression,
upregulation of CEACAMS6,
downregulation of MUC2.

et al. (2021)

Akkermansia and Hepatocellular Combined deficiency Ponziani et al.
Bifidobacterium carcinoma enhances intestinal and liver (2019)
inflammation.
Acidovorax Lung SCC Abundance — promotes Knippel et al.
tumorigenesis. (2021),
TP53 mutations. Greathouse et al.
(2018)
Helicobacter spp., | Gallbladder cancer Mucosal alterations, inflam- Allegra et al.
S. typhi mation, weakening and muco- | (2019)
sal dysplasia.
Streptococcus Pancreatic cancer Mucosal alterations, inflam- Allegra et al.
mitis, Neisseria mation, weakening and muco- | (2019)
elongata sal dysplasia.
A. vaginae, Endometrial cancer Increased vaginal pH. Allegra et al.
Porphyromonas (2019)
sp.

Confirmed oncogenic microbes as per International Agency for Cancer Research (IACR)

Epstein-Barr Virus

Burkitt lymphoma,
B-cell and NK-cell
lymphoma

Immortalizes B lympho-
cytes— expression of multiple
viral proteins, increased pro-
liferation of infected cells,
blocking of apoptosis, cell
migration and inducing geno-
mic instability.

Cmrecak et al.
(2021), Allegra
et al. (2019)

(continued)
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Bacteria associated with cancer

Micro-organism

Cancer

Mechanism

Reference

Hepatitis B and C
virus (HBV, HCV)

Hepatocellular
carcinoma

Vicious cycle of hepatocyte
regeneration and necrosis —
mutation accumulation, telo-
merase reactivation — chronic
inflammation.

Interference with
RAF/MAPK/ERK and
Wnt/B-catenin signaling path-
ways and blocking TNF-a
mediated apoptosis.

Cmrecak et al.
(2021), Allegra
et al. (2019)

Human papilloma-
virus (HPV)

Cervical SCC.
Head and neck SCC

E6 and E7 onco-proteins pro-
liferation

E6 targets p53 interfering with
apoptosis.

E7 targets tumor suppressor
protein Rb — proliferation and
cell differentiation disruption.

Cmrecak et al.
(2021), Allegra
et al. (2019)

Kaposi sarcoma Kaposi sarcoma pri- | Latent viral proteins — carci- | Allegra et al.
herpes virus mary effusion nogenesis by stimulating cell | (2019), Cmrecak
(KSHV) lymphoma proliferation, anti-apoptotic et al. (2021)
activity, deregulation of the
cell cycle, avoidance, and
modulation of immune
response.
Human Adult T-cell leuke- Abnormal DNA replication Cmrecak et al.

T-lymphotropic mia/lymphoma due to increase of B lympho- | (2021), Allegra
virus (HTLV) (ATL). cyte growth. Oxidative stress. | et al. (2019)
Non-Hodgkin’s Oncogenic activation.
lymphoma
Human immuno- Indirectly increases the risk of | Cmrecak et al.
deficiency virus cancer by immune-suppression | (2021), Allegra
(HIV) — reactivation of other cancer- | et al. (2019)
related viruses.
Helicobacter As above Garrett (2015),
pylori Cmrecak et al.

(2021)

Parasites with oncogenic potential

Schistosoma Bladder Schistosoma eggs in bladder — accumula- | Cmrecak et al.
haematobium | cancer tion of inflammatory cells and production of | (2021), Allegra

oxygen-derived free radicals. et al. (2019)
Clonorchis Cholangio- | Chronic inflammation in intrahepatic bile Allegra et al.
sinensis carcinoma | ducts (2019), Cmrecak
Opisthorchis Reduced apoptosis, upregulation of Bcl-2, | et al. (2021)
viverrini downregulation of p27, augmented cell

invasion.
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8.4 Microbiomics

Microbiomics, which is the science of collective characterization and quantification
of molecules responsible for the structure, function, and dynamics of a microbial
community (Kumar, 2021), is by its nature and character particularly prone to the
generation of big data. The human microbiome is a complex entity that is a living
ecosystem affected by temporal and spatial influences with each of its constituents
undergoing fluctuations in growth rate and survival (Gilbert et al., 2018). Human
beings are regarded as “superorganisms” with trillions of associated micro-
organisms, co-existing in a symbiotic relationship where each is vital for survival
(Rajendhran & Gunasekaran, 2010). The Human Microbiome project revealed that
commensal microbial genes exceed the total number of human genes by 100:1 and
an adult human gut can harbor up to 100 trillion microbial cells; ten times higher
than the total number of somatic and germ cells (Shukla et al., 2015). Each bacterial
strain has a genome containing thousands of genes, offering substantially more
genetic diversity, and hence more flexibility, than the human genome (Gilbert
et al., 2018). This wide genetic diversity of human microbiota results in a wide
range of metabolic activities, which are crucial for understanding the fundamental
mechanisms of host-microbial crosstalk (Ramaboli et al., 2022). As of 2020 the
Human Microbiome Project Data Coordination Center (HMPDACC) Data Portal
contained 48 TB of data composed of raw and processed data from both host and
microbiome generated from different cohorts from the initial and integrated phases
of the HMP. This data is associated with more than 31,000 samples (Creasy et al.,
2021). The Human Microbiome Project and systems biology approaches to study
intestinal microbiome have generated multitudes of omics data (big data) and the
commensurate powerful analytical tools for efficient description of the human
microbiome (Putignani et al., 2019). Microbiomics enables the study of microbial
communities in their natural environment with their natural partners obviating the
need to have to culture them in order to study them in isolation. It has the unique
capacity to simultaneously provide a telescopic, big picture view of the dynamics of
an entire community and a microscopic view of the behavior of a single gene,
protein, or metabolite across large populations. This ability to study microbial
communities as a whole and in their natural environments enabled the discovery
not only of new species, but also attributed novel metabolic pathways, interactions,
and behaviors to them (Kumar, 2021). Compared to many other fields of multi-omic
studies, microbiomes are dynamic ecosystems with active host regulation. This adds
interesting new dimensions and complexity to the analyses and interpretation of
data. Some of the common data types used in microbiome research include amplicon
data, shotgun metagenomics data, meta-transcriptome data, and other-omics data
such as metabolomics and meta-proteomics data (Nayfach et al., 2019; Topcuoglu
et al., 2020).
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8.4.1 Techniques in Microbiomics
8.4.1.1 Quantitative Microbial Profiling Methods

Human beings are regarded as super-organism or holo-bionts because of the micro-
organisms that exist within their bodies in a symbiotic relationship, and the genomes
of these micro-organisms are responsible for a host of important human metabolic
activities (Kumar, 2021; Rajendhran & Gunasekaran, 2010). Therefore, to fully
comprehend the whole human genome we must also characterize the human
microbiomes. There are two main methods for microbiome analysis that do not
rely on growing organisms in pure culture: microbial community profiling by
conducting amplicon gene sequences of small-subunit ribosomal RNA (rRNA):
the 16S rRNA (for archaea and bacteria) or the 18S rRNA (for eukaryotes), and
metagenomics (analysis of all genomes in microbiome ecosystem) studies where
community microbial DNA is subjected to whole genome shotgun sequencing
(Hamady & Knight, 2009). The genome sequence data obtained through sequencing
of microbial samples can then be processed using programs that are specific to the
microbiome such as QIIME or Mothur. The 16S rRNA gene sequences are clustered
into operational taxonomic unit (OTU), representing a particular microbial taxon
abundance (Namkung, 2020; Marcos-Zambrano et al., 2021).

8.4.1.2 Multi-omics Technologies

Multi-omics technologies that probe the gene expression of the microbial genomes
which include meta-transcriptomics, meta-proteomics, and metabolomics provide
more detailed information on microbial activities in the environment; giving us
greater insight into functional potential and the expression profile of microbiome-
derived bioactive molecules (Moss, 2017; Hamady & Knight, 2009; Kashyap et al.,
2017). In this sense, meta-transcriptomics is the characterization of gene expression
from all microbes in an ecosystem, metabolomics is the characterization of all small
molecule metabolites in an ecosystem, and meta-proteomics is the characterization
of all proteins in an ecosystem (Kashyap et al., 2017).

8.5 Artificial Intelligence: Big Data and Machine Learning
8.5.1 Big Data

Big data in the field of medicine constitutes multiple types of data from the
individual patient’s data derived from their psychosocioeconomic circumstances,
demographics, clinico-laboratory information, radiological studies, histopathology,
and the -omics studies data generated by high-throughput technologies to population
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data generated from population-wide genomic studies and electronic health records
of large patient populations. Machine learning is a fundamental technology that will
allow us to integrate and meaningfully process vast amounts of critical data that is
beyond the capacity of the human brain to analyze and comprehend within a
reasonable space of time (Rajkomar et al., 2019). The molecular technique of
next-generation sequencing (NGS) generates large amounts of data related to
mutated genes that are collated into gigabytes, terabytes, or petabytes of data, and
as such analysis of this massive data requires the use of robust computational
approaches to exploit the information effectively (Dlamini et al., 2020; Mirsadeghi
etal., 2021). The use of informatics and artificial intelligence is crucial to assist with
the interpretation of the huge amounts of data generated from the multi-omics
technologies and real-world data that need to be collected, categorized, and analyzed
to enhance decision-support systems (De Maria Marchiano et al., 2021). The
machine learning algorithms can be trained with data from countless patients
whereas it is too difficult for human physicians and biologists to gain such experi-
ence in an entire career or their research (Mirsadeghi et al., 2021). Sequencing a
single genome, for instance, will produce over 100 gigabytes of data (Topcuoglu
et al., 2020). The AI models give experts the ability to take appropriate clinical
decisions ensuring that every diagnosis, management decision, and therapy is
personalized based on all known information about a patient, in real-time, while
incorporating lessons from a collective experience of the whole (Rajkomar et al.,
2019; Mirsadeghi et al., 2021).

8.5.2 Machine Learning in Microbiomics

Machine learning involves models making inferences from available data to identify,
classify, and predict patterns and to learn new tasks (Marcos-Zambrano et al., 2021).
The application of machine learning algorithms has proven to be valuable in
identifying predictive characteristics of a microbial signature (Gilbert et al., 2018).
Large-scale microbiome studies resulting in large-scale datasets have been rapidly
increasing as sequencing technology has become less costly and has advanced. This
has allowed the use of machine learning algorithms to characterize the functional
relationships between specific microbiome and the ecosystem properties (Namkung,
2020). Machine learning in microbiomics can be either supervised (use of labeled
input datasets to create an algorithm that accurately predicts outcome or classify
data) or unsupervised (model learns by analysis and clustering of unlabeled data,
identifying patterns and new associations from the presented unlabeled datasets).
Different approaches of machine learning can be applied to extrapolate input data,
classify, interpret, and predict associated cancer susceptibility and/or treatment out-
comes (Table 8.2).

A variety of machine learning algorithms can be used in microbiome studies from
supervised learning algorithms that deal with classification issues and uncovering
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Table 8.2 Examples of machine learning models used in microbiome studies

Model

Description

Study where model used

‘ References

Supervised models

Logistic Solves classification by Beck & foster: used LR to | Marcos-Zambrano
regression fitting linear model to data | uncover possible microbial | et al. (2021), Zhou
assessing the probability interactions associated and Gallins (2019)
of an outcome for a binary | with bacterial vaginosis
variable. diagnosis.
Linear dis- Finds a linear combination | Segatta et al: used LDA Segata et al. (2011),
criminant of microbial features in the | effect size (LEfSe) algo- Marcos-Zambrano
analysis training data that models rithm to detect bacterial et al. (2021), Zhou
(LDA) the multivariate mean dif- | organisms and functional and Gallins (2019)
ferences between classes. | characteristics differen-
tially abundant between
two or more microbial
environments.
k-nearest Uses proximity to assign a | Asher & basher: predicted | Asher and Bashan
neighbors new sample to a class with | species’ abundance pro- (2022), Marcos-
(k-NN) majority of characteristics | files based on their pres- Zambrano et al.

nearest to individual data
point.

ence/absence configura-
tion using the kNN
regression algorithm.

(2021)

Naive Bayes

Probabilistic machine

Werner et al compared

Werner et al. (2012),

classifiers learning algorithm based naive Bayesian taxonomic | Marcos-Zambrano
on the Bayes Theorem classification results using | et al. (2021)
used for classification training sets built from
tasks. three different reference
databases of varying
diversity and overall taxo-
nomic structure.
Support vec- | Determines a linear or Liu ef al used SVM for the | Liu et al. (2022),
tor machines | nonlinear separating line/ | quantitative prediction of | Zhou and Gallins
(SVM) decision boundary in the medium-chain carboxylate | (2019), Namkung
given dataset to make the | production in two contin- | (2020)
largest distance or margin | uous anaerobic bioreactors
to the nearest training data | from 16S rRNA gene
points of any classes. dynamics in enriched
communities.
Artificial Machine learning based on | Lo & Marculescu: pro- Lo and Marculescu
neural mimicking the functioning | posed a new neural (2019), Marcos-
networks of the human brain’s neu- | network-based pipeline Zambrano et al.
ral network, learning from | that is suitable for classi- (2021)
complex nonlinear fying metagenomic
relationships. datasets.
Deep Uses artificial neural net- Reiman et al.: developed a | Reiman et al. (2017)
Learning works (ANNs) with deep | CNN model for classifica-

architectures, i.e., multiple
hidden layers, yielding a
higher level of abstraction.

tion of a microbiome sam-
ple based on its microbial
taxonomic abundance
profile.

(continued)
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Model | Description Study where model used References
Ensemble Methods Combines multiple classifiers to obtain better performance than a single
classifier:
Random for- | Ensemble learning in Liu et al. showed that RF | Liu et al. (2022),
ests (RF) which a complex model is | performs better producing | Marcos-Zambrano
made by combining many | more consistent results et al. (2021)
simple models. when using 16S rRNA
genes to predict n-caproate
and n-caprylate
productivities.
Multiple Decision trees are created | Wang et al. used decision | Wang and Liu
decision from set of training exam- | trees in RF and gradient (2020), Kingsford
trees ples for which the class boosting models. and Salzberg (2008)
labels are known and they
used to classify previously
unseen examples.
Gradient Gradient boosting: a pro- | Wang examined the clas- | Wang and Liu
boosting cess of ensemble modeling | sification performance of | (2020), Marcos-
(GB) by averaging weak predic- | RF, XGBoost compared to | Zambrano et al.

tions from decision trees
(learners) of fixed size.

the elastic net (ENET) and
support vector machine
(SVM) in 29 benchmark
human microbiome
datasets.

(2021), Zhou and
Gallins (2019)

Unsupervised Learning Methods

Clustering Aims to group datasets Shi et al.: systematically Shi et al. (2022),

with shared attributes compared methods for Marcos-Zambrano

building a hierarchy of clustering microbiome et al. (2021)

nested clusters in order to | observations from four

extrapolate algorithmic published studies with

relationships based on dif- | either geographical or sea-

ferent metrics. In sonal variables as the true

microbiome data analysis, | cluster label, which

clustering is often used to | enables biological inter-

identify naturally occur- pretation of the group

ring clusters, which can separation.

then be assessed for asso-

ciations with characteris-

tics of interest.
Nonnegative | Model extracts hidden Ko et al.: developed a Ko et al. (2021),
matrix fac- patterns from a series of network-based method Marcos-Zambrano
torization high-dimensional vectors | using NMF to identify et al. (2021)
(NMF) or nonnegative datasets. functional meta-microbial

features that better dis-
criminate specific environ-
mental conditions of
samples using
microbiome data.
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associations of possible microbial interactions with disease states, to unsupervised
learning for clustering microbiomes and assessing functional microbial features.

8.6 Advancing Precision Oncology

Given that cancer is the most genetically heterogeneous of all diseases, the key
challenge is how to use the knowledge of the molecular composition of the patient/
tumor to choose the treatment(s) that provides patients with the highest likelihood of
a curative outcome and minimal likelihood of drug resistance and toxicity (Soldatos
et al., 2019). Precision oncology seeks to optimize individual patient care by
extracting important information from medical big data, especially genomic infor-
mation to improve the clinical decision-making process enabling clinicians to select
optimal treatment protocols that improve outcomes and increase the quality of life of
cancer patients (Hamamoto et al., 2020; Lassen et al., 2021). Simply put precision
oncology seeks to deliver the right cancer treatment to the right patient at the right
dose and at the right time (Schwartzberg et al., 2017). Whereas genomics gives us
the understanding of cancer’s input codes in a form of genes, the output codes which
are proteins are needed to fully capture the informational state of a tumor and provide
a more complete and precise picture of how to understand and treat the underlying
molecular pathology more especially since it has been demonstrated that even when
a targeted drug is a good match for a specific mutation, it is not always effective
(Rodriguez et al., 2021). Three major classes of predictive biomarkers are currently
driving the emerging practice of precision oncology; the dependency of tumor cells
on cancer driver mutations which disrupt the cellular control mechanism leading to
unregulated cell growth and survival, secondly the biomarkers that act by influenc-
ing the sensitivity of a tumor to immune recognition, e.g. deficient mismatch repair
(DMMR), tumor mutational burden (TMB), and microsatellite instability (MSI),
thirdly its synthetic lethality resulting from the observation that cell death is more
efficiently induced by the simultaneous loss of function of two or more key players
in cellular signaling pathways (Soldatos et al., 2019). With the increase in the
availability of molecular studies the challenge for physicians is that the more
molecular outcomes data is generated around biomarkers, the more difficult it
becomes to clinically interpret the mutational profile of a patient. Fortunately, with
the computational power of Al and machine learning, the more clinic-molecular
outcomes data is generated globally, the easier it will become to analyze an individ-
ual patient’s profile (Lassen et al., 2021). Nonetheless with the combination of
computational characterization and experimental validation, it is possible to narrow
down the list of markers and assist precision oncologists to design compact targeted
panels (Mirsadeghi et al., 2021).

The microbiome plays a role in tumor development and progression and has a
significant impact on the host immune system influencing antitumor immunity and
response to treatment. Therefore a more in-depth understanding of the mechanisms
of microbiota-mediated immunomodulation and identification of precise immune-
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stimulatory and immune-inhibiting bacterial strains or pathways could lead to
increased precision in cancer therapeutic approaches (Matson et al., 2021). The
human microbiome is as unique and specific to each individual as fingerprints are,
it develops in first few years of life before it stabilizes for the rest of life, but is
influenced by diet, lifestyle, and environmental factors (Marcos-Zambrano et al.,
2021). The microbiome is resilient as it tends to resort to its stable form after insults
while at the same time demonstrating a level of plasticity as it can be modified by
external factors. It is thus more mutable than human cells (Kashyap et al., 2017). Al
through machine learning can efficiently process all the big data from microbiomic
signatures, patient clinical, genetic, and laboratory data, environmental lifestyle
factors as well as tumor profile to compute algorithms that can predict optimal,
individual treatment outcomes.

In pursuit of enhancing precision oncology, oncologists must gain easy access to
big data that is generated globally to avoid some of the pitfalls associated with
machine learning based on human decisions. Because algorithms that learn from
human decisions will also learn human mistakes, such as over-testing and over-
diagnosis, failing to notice people who lack access to care, under-testing those who
cannot pay, and mirroring race or gender biases (Obermeyer & Lee, 2017).

8.7 Targeting the Microbiome in the Treatment of Cancer

The genomic revolution and precision medicine efforts have allowed human geno-
mic screening to identify a spectrum of germline encoded mutations that lead to
cancer allowing individual-specific application of preventive and therapeutic strat-
egies as well as the stratification of patients based on response to treatment and
development of adverse events. The microbiome’s malleability and its propensity to
easy manipulation is particularly appealing for developing personalized targeted
therapies by using precision microbiome targeting approaches combined with
other patient and population data as outlined in Fig. 8.3 (Kashyap et al., 2017).

8.8 Limitations

The study or characterization of the human microbiome is complex due to a number
of reasons: the microbiome is variable between human to human and over time
within the same human; abundance of a particular microbe in cancer may be directly
linked to cancer development and/or progression or could simply be opportunistic
with the cancer micro-environment being favorable to the growth of that microbe;
for microbial quantification to be meaningful, it must be coupled with metagenomics
analysis. Some of the available computational tools may not be sufficiently powered
to accurately analyze data for guiding patient-specific therapy strategy.
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Fig. 8.3 Pathway to precision oncology involving microbiomics: Combination of big data from the
real-word data, population data coupled with patients own multi-omics, clinico-laboratory data can
be accurately analyzed using computational power of machine learning and Al to advance precision
oncology

While microbiome can be targeted for precision medicine, a major limitation is
that there is no standardization of methods to develop reliable and reproducible
microbiome-based diagnostic and therapeutic strategies. To be able to successfully
implement microbiome-based diagnostics and therapeutics, uniform collection,
sequencing, and analysis standards that would enhance reproducibility of results
across centers and reduce biases in their interpretation need to be developed
(Kashyap et al., 2017).

Cancers develop over long time periods, while different micro-organisms con-
tribute to oncogenesis and are relatively abundant in the tumor micro-environment at
distinct time points during the neoplastic process. So by the time cancer is detected,
the window of opportunity for identifying the inciting microbial agent(s) may have
passed, allowing these organisms to remain elusive (Garrett, 2015).

8.9 Conclusions

Disturbances in the natural state of the human microbiome and the prevalence of
some microbes in certain body regions play a significant role in the development and
progression of cancer acting either directly or indirectly. Cancer is the most hetero-
geneous disease with no two cancers being the same, much the same way the human
microbiome demonstrates the wide diversity from person to person and body region
to body region. The microbiome has two major characteristics that make it a suitable
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target for precision oncology. Firstly, its uniqueness and specificity to each individ-
ual that is as unique as the fingerprints and secondly its malleability and ability to be
easily manipulated by external factors like diet, introduction of probiotics to its
environment, and pharmaceuticals. The microbiota can be targeted as part of a
treatment strategy to successfully manage cancer progression. Given the diversity
of both the microbiome and cancer, and recent progress in multi-omics studies it is
inevitable that machine learning and Al algorithms must be incorporated as essential
tools required for the accurate interpretation of big data generated by microbiomics
and cancer genomics to enhance decision-making systems in cancer treatment and
advance precision oncology.
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AI and Nanomedicine in Realizing the Goal <=2
of Precision Medicine: Tailoring the Best
Treatment for Personalized Cancer

Treatment

Amanda Skepu, Boitumelo Phakathi, Malose Makgoka, Zukile Mbita,
Botle Precious Damane, Demetra Demetriou, and Zodwa Dlamini

Abstract Nanomedicine and precision medicine are modern concepts in the med-
ical field. Nanomedicine is defined as the nanotechnology application in medical
practice and is incorporated into diagnosis and treatment to manage different medical
conditions. Precision medicine or personalized medicine aims at individualizing
treatment for patients to overcome general treatment that works for some patients.
For other patients, the treatment is ineffective or may be toxic to the patient. Novel
nanomedicine technologies are used in the treatment of various diseases and can be
modified to individual patients according to their genetic profiles, however there are
still some limitations to these technologies. This chapter will examine the role of
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Artificial Intelligence (AI) and nanotechnology integration in realizing the goal of
precision medicine.

Keywords Nanomedicine - Nanotechnologies - Artificial Intelligence - Machine
Learning - Precision medicine - Treatment

9.1 Introduction

Precision medicine offers tremendous opportunity to revolutionize the future of
healthcare, with great strides already being made in the field of cancer. In precision
medicine, it is important to understand the relationship between genetic variability,
lifestyle and environment, and patient’s health. This relationship has been studied
extensively in populations of European and Asian ancestry, but there is not much
information about African populations. Extensive knowledge and understanding are
therefore needed in this area before precision medicine programs for Africans
populations can be effectively implemented. Moreover, this diversity amongst
patients is greater in different cancer types, further exacerbating the stage at diag-
nosis and the treatment thereof. Furthermore, precision medicine aims to provide
tailored, individualized treatment approach, ensuring that the correct drug at the right
dose is given to each patient (Alghamdi et al., 2022).

Over the recent years, nanotechnology has offered innovative solutions for some
of the world’s most pressing problems, particularly in the health space. An important
application of nanotechnology is in nanomedicine, where nanoscale systems are
leveraged for their unique properties to improve the diagnosis and treatment of
various diseases, predominantly cancer. Nanomedicine is advancing with novel
drug development through multifunctional approaches and sources in diagnosis
and therapy. Nanomedicine-based drug treatment is investigated at a fixed dosage
where the drug action is dose-dependent, time-dependent, and specific to the patient.
Al is used to optimize the dose and drug parameters that will overcome the
challenges of nanomedicine trials. Real-time adaptation between Al and
nanomedicine can improve patient data analysis and nanomaterial design. For
instance, an Al-based pattern analysis and algorithm models can further improve
the accuracy of diagnosis, prognosis, and therapy. Predictive computational models
could help to accelerate the translation of nanomedicine into clinical practice.

9.2 Nanotechnology Solutions in Precision Medicine

Nanotechnology is a growing branch of science that allows the design of tools and
devices of various sizes that can specifically function at the atomic, molecular, and
cellular levels (Auffan et al., 2009). Nanomedicine is the application of nanotech-
nology in biomedical research and clinical practice. The properties of nanomaterials
include transformable shape and size, high specific surface area, and tunable
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chemical reactivity, which make them perfect for improving early diagnosis and
treatment of cancer and neurodegenerative diseases. Moreover, these properties
allow them to adapt to any microenvironment which makes them ideal as drug-
load carriers and as imaging agents.

Nanomedicine has made significant improvements in diagnosis and therapy
developments, as evidenced by improved treatment outcomes and contrast efficiency
as a result of imaging agents and nanoparticle-modified drug compounds (Ho et al.,
2019). Nanomedicine platforms have been incorporated into clinical practice, for
example, with the approval for Abraxane® and many other products (Ho et al.,
2019). As the field of nanomedicine continues to grow, multifunctional approaches
have been investigated that will allow the integration of diagnostic and therapeutic
agents into a single treatment solution. These strategies can refine treatment outcome
via targeted, multi-agent delivery that maintains drug synergy (Ho et al., 2019).

Since the emergence of nanomedicine, an array of nanotechnology-based plat-
forms (including polymer, lipid, natural compound, silicon, metal, and carbon-based
platforms) have been investigated for imaging applications and drug delivery (Glinel
et al., 2018), for conditions such as cancer, cardiovascular disease, regenerative
medicine, and others (Zavaleta et al., 2018; Bowerman et al., 2016). Nanoparticles
are classified into organic, non-organic, and composite. In addition to drug delivery
systems, these commonly used nanoparticles can also be used to track the intracel-
Iular homing of biomolecules. It is important to select the right type of nanoparticle
for specific applications as the reliability of the nanoparticle used for medical
purposes can depend on the composition and characteristics of the nanomaterial
used (Joudeh & Linke, 2022; Gessner & Neundorf, 2020) (Table 9.1).

Nanomedicine has been implicated in the diagnosis, monitoring, prevention, and
treatment of diseases. These tools are currently used in current clinical practice
(Greish, 2012). Moreover, nanotechnology can be used as a technology to investi-
gate unmet needs, for example with patient-specific and population-specific prob-
lems. There are multiple areas where nanomedicine and personalized medicine
interlink and these include:

1. Diagnostics, where nanomedicine can be used to investigate pharmacogenetic
testing, drug targets, and simultaneous in vitro and in vivo testing (Alghamdi
et al., 2022).

2. Therapeutics, where nanomedicine can be tailored for target specificity for each
patient improving precision medicine (Ventola, 2012).

3. Targeting capability, where nanomedicine dosages can be tailored based on
individual patient conditions (Maeda, 2001).

The intention of nanodrugs was to improve the accuracy and properties of
available drugs or diagnostic agents. Current nanodrugs are designed to minimize
the side effects of drugs and improve the half-life, bioavailability, and overall
pharmacodynamic and pharmacokinetic properties of drugs (Alghamdi et al.,
2022). There are several pharmacokinetic advantages that nano-based drugs can
offer, as compared to the traditional drug delivery systems, and these include:
controlled release possibility, solubility and absorption, drug stability and
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Table 9.1 Classification of nanoparticles

Nanoparticles | Examples Structure
Organic (A) Dendrimers

(B) Liposomes

(C) Micelles

(D) Hydrogels

g

Non-organic | (A) Gold

(B) Carbon quantum
dots

(C) Mesoporous sil-
ica

(D) Carbon
nanotubes

(E) Iron oxide

Composite (A) Metal
(B) Magnetic
lon metal

%‘3%

B) Magnetlc Graphene oxide

metabolism improvement, improved blood circulation, side effects reduction, and
improved targeted delivery (Zhang et al., 2020). Traditionally, the focus of pharma-
ceutical industries and nanotechnology was on a one-size-fits-all basis, however,
nanomedicine is able to personalize the pharmacodynamics and pharmacokinetics,
thereby offering personalized therapeutical opportunity (Pereira et al., 2015;
Mitchell et al., 2021).

With the advent of nanomedicine, superior strategies of simultaneously
functionalizing and co-delivering nanomaterial platforms with multiple therapeutic
agents for improved treatment outcomes have emerged (Zhang et al., 2017; Qi et al.,
2017; Karp & Peer, 2018). These multilayered approaches have been for treatment
administration control, thus allowing efficient delivery-based enhancements (Linden
et al., 2016). These capabilities have further allowed the investigation of
nanomedicine platforms for combination therapies and co-delivery to address mul-
tiple disease ranging from oncology to infectious and regenerative diseases (Elbashir
et al., 2001; Tabernero et al., 2013).
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9.2.1 Combining AI and Nanotechnology Solutions
in Tailoring the Best Treatment for Cancer Treatment

Artificial Intelligence is defined as the ability of computers to supplement complex
human analysis through machine learning (ML) algorithms (Dlamini et al., 2020).
ML algorithms range a host of different complexities and mechanisms including
artificial neural networks (ANN) and clustering-based approaches (Deo, 2015). This
section explores the synergistic relationship between Al and nanomedicine in the
context of cancer precision medicine.

As discussed in the previous section, nanotechnology offers a personalized
experience, ranging from tumor diagnosis, targeted drug delivery to organ trans-
plantation, offering healthcare practitioners with novel tools. With the incorporation
of Al and ML, these tools will have eyes, hands, and a brain, with the capability of
providing advanced personalized care and ability to track the patients’ well-being.
Figure 9.1 depicts the impact of integrating Al and nanotechnology in personalized
medicine.

For targeted therapy, precision medicine relies on probe specificity for a particular
molecular target. The development of targeted nano-based therapies or nanodrugs is
often complicated by differences in the omic-profile of the patient, lifestyle, and
molecular interactions. To improve treatment efficacy and outcomes, reduction of
interaction with non-target cells and non-specific binding in a healthy host is needed.
Therefore, Al and ML algorithms can predict membrane-bound ligand interaction,
surface binding properties and biocompatibility that can improve the field of
nanomedicine (Hayat et al., 2021). Currently, there are few published studies

Artificial
Intelligence

<Y Nanotechnology

L

Fig. 9.1 Integration of Al and Nanotechnology for Precision Medicine. Integrated nanomedicine
and Al can be exploited or applied across different spectrums within medicine from tailored patient-
specific diagnosis, treatment, and patient follow-up
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using Al algorithms for nanodrug target selection and genomic screening for optimal
design. Examples of specific areas where Al has empowered nanomedicine are
highlighted in the next sections.

9.3 Role of Al in Drug Development Optimization

Traditionally, drug development has always relied on novel compound target-based
discovery followed by screening and dose studies to determine efficacy and safety.
During the screening process, compounds which do not show good efficacy are often
eliminated from the screen. However, even if a drug does not show efficacy on its
own, it can mediate efficacy when the right drug at the right dose is given. To
identify this combination is challenging. Al can play a huge role in enhancing the
progress in drug development (Ho et al., 2015; Zarrinpar et al., 2016). This is evident
from a study conducted by Weiss et al. (2015), where they assessed anti-angiogenic
agents for preclinical ovarian cancer treatment. Drugs that showed no efficacy on its
own at specific doses resulted in the decrease in the burden when combined with
another drug at the same doses. This showed the role that Al can play in identifying
drug combinations that will improve nanomedicine (Weiss et al., 2015, Weiss &
Nowak-Sliwinska, 2017).

Optimization of drug combinations can enhance drug synergism to improve
cancer treatment efficacy. However, this still remains a challenge as drug optimiza-
tion requires the right combination of dosage, dosing frequency, and drugs to
enhance their efficacy, while decreasing toxicities and side effects. Furthermore,
drug combinations may also lead to unexpected toxicities due to biological system
complexities. Despite improved therapeutic efficacy through multifunctional
nanomedicines, there are still optimization challenges. Combining Al and
nanomedicine can help overcome these challenges, thereby improving the efficacy
of cancer therapy (Ho et al., 2019).

9.3.1 Role of Artificial Intelligence in Clinical Therapy: Drug
Dosing and Therapeutic Efficacy Correlation

It is envisaged that AI will also play a significant role in the optimization of the
administration of nanotechnology-unmodified and modified drug combinations.
Drug synergy is dose-dependent, time-dependent, and patient-specific, but can
change during treatment, resulting in sub-optimal response rates when a fixed-dose
treatment is given to a heterogeneous patient population (Ho et al., 2019).
Approaches that incorporate big data-driven approaches have been used for drug
selection to assist in treatment decision making (Kawamoto et al., 2005; Warken
et al., 2018). These strategies can be seen as a crucial initial step toward using
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valuable information databases to refine the regimen design process, which may
improve broader patient population safety and efficiency (Ho et al., 2019).

In oncology, reducing dose has always been seen as a way to managing or
reducing toxicity related to treatment, as opposed to improving drug efficacy in
combination therapy. Emerging studies demonstrate that it is feasible to increase
drug efficacy while reducing the dosing in combination therapy (Ho et al., 2019). For
this to be implemented in practical use, the main hurdle to overcome is to establish a
dosing approach that can correlate the correct dose and the best treatment outcome,
at a specific time point, the hurdle that can be addressed through Al and ML.

On the other hand, dosing control is not always adequate to personalize the
treatment due to the varying response action of patients with different
pharmacogenomic profiles. This is where Al can be used to correlate drug dosing
and the treatment outcome (Ho et al., 2019). For example, Valdes et al. (2017)
developed ANN for constructing personalized radiotherapy treatment for cancer
patients according to the treatment goal, the radiation’s physical specifications,
and the patients’ anatomical and physiological parameters. These methods are
adapted to predict drug-response relationships based on drug properties, gene
expression profiles, and physiological measurements (Linden et al., 2016).

9.3.2 Role of Al in Improved Targeting

Personalized targeting, a concept that was first introduced by Paul Ehrlich in the
early 1900s as the “Magic Bullet” theory (Ehrlich, 1960), is one of the advantages of
nanomedicine. This technology uses targeted drugs which recognize and activate the
disease target site, thereby protecting surrounding healthy tissues. It is done by using
a specific ligand such as membrane-bound receptor ligands, antibodies, or other
cellular markers to coat the surface of drug-loaded nanoparticles. Despite the
promise of targeted nanomedicine, its implementation in the clinic has not yet
come to fruition, with only a few formulations currently in clinical studies (Shi
et al., 2017). There are several published reviews that are detailing some of the
challenges that need to be addressed in order to successfully translate targeted
nanomedicine to the clinic (Brannon-Peppas & Blanchette, 2012) and this is where
Al can play a role in closing the gaps. Tagging drug-loaded nanoparticles with a
targeting moiety does not translate to successful delivery and release at the target
site. The effect of the nanomedicine properties on the interactions with the cellular
membranes, plasma, and the vasculature endothelium is not easily justified and can
be significantly improved with Al Integration of AI computational modeling in the
design of nanoparticles can play a role in increasing the success rate of targeted
therapies.

Moreover, computational models can be used in predicting the capability of
nanoparticles to cross barriers en route to the target organ. Various model types
have been used to predict the ability of nanoparticles to cross the blood—brain barrier
and their potential toxicity (Shityakov Roewer et al., 2017). These models can be
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Fig. 9.2 Computational models and machine learning algorithms for prediction of drug encapsu-
lation. Computational models depend on deep understanding of the physical, chemical, and
biological processes

used to improve the formulations of brain targeting nanoparticles. However, due to
the complexities of the permeation process, these computational models require
large computation capabilities. Recently, a ML approach for blood—brain perme-
ability prediction was reported based on the drugs’ side effects, indications, and
chemical properties (Gao et al., 2016). However, the design of ML methods requires
different types of data than used in traditional computational models as shown in
Fig. 9.2. For computational models, extensive biochemical and physical knowledge
is needed, while, in ML methods, prior understanding is not a prerequisite. The latter
utilizes large datasets of experimental results and detects correlations in the data
which are then translated into a prediction model.
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9.3.3 Role of Al in Gene Therapy

Gene therapy is a form of precision medicine in which patient-specific mutations are
inhibited, corrected, or removed. Gene silencing with RNA interference (RNAi) was
first demonstrated by Fire and Mello and has been used to target complementary
mRNA molecules in cells and lead to their degradation (Elbashir et al., 2001). This
mechanism has been explored for precision treatment of various diseases. Tabernero
et al. (2013) have shown that silencing of proteases that mediate cell invasion and
metastasis, oncogenes, drug resistance genes, and angiogenic factors, has positive
therapeutic effects in cancer. However, the utility of RNAI as a precision treatment
requires efficient delivery vehicles (Whitehead et al., 2009). These delivery vehicles
must be able to cross the endothelial barrier and plasma membranes, avoid phago-
cytic uptake, release the small interfering RNA (siRNA) in the cytoplasm, and
escape the endosome (Kanasty et al., 2013). Various nanoparticles, namely, poly
(ethylene imine) polymer nanoparticles, lipid nanoparticles, polysaccharide-based
nanoparticles composed of chitosan or cyclodextrin and self-assembled nucleic acid
nanoparticles, have been investigated in animal models and were shown to deliver
siRNA in vivo (Semple et al., 2010). However, their use as delivery tools in cancer
remains a challenge, which includes high interstitial fluid pressure in the tumor
environment and inter-patient variability in tumor vasculatures. Clinical trials are
currently underway using siRNA against different targets in various cancer types
(Kim et al., 2016).

Various Al-based models, including neural networks (NN), decision trees, and
SVMs were used for classification of ineffective and effective sequences for RNAi in
order to recognize the key features in their design (Peek 2007). However, these
models do not consider the delivery method but only the efficiency of the siRNA
sequence. Instead, laborious experimental scanning of chemical libraries was
performed in several studies to evaluate the parameters in the design of carrier
systems (Alabi et al., 2013). However, these data can be explored to help discover
overlooked design parameters and development of ML algorithms. Moreover, spe-
cific modeling of membrane—nanoparticle interactions can provide knowledge of
intercellular pathways, particle uptake mechanisms, and the effects of the nanopar-
ticle on these processes (Ding & Ma, 2015). By considering these properties, the
transfection efficiency of the nanoparticles can be improved (Adir et al., 2019).

9.4 Challenges with Al Integrated Nanotechnologies
9.4.1 AI-Enabled Nanomedicine

For implementation of precision medicine, computational methods are proving to be
key. Studies have demonstrated the value of Al algorithms for screening and
classifying patients’ drug suitability and for optimizing nanomedicine properties in
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precision medicine (Adir et al., 2019). However, for Al algorithms to reach clinical
implementation, several challenges must be addressed, including obtaining large
datasets that will be used for training the algorithms in order to achieve high
accuracy. Furthermore, a multi-disciplinary collaborative approach is required
among the experts in the fields of nanomaterials, medicine, and computer science
and implementation of computation in all stages of academic and industrial research
will help to optimize their performance and clinical relevance (Adir et al., 2019).

9.4.2 Current Nanotechnology Strategies

As compared to conventional therapeutics, nanomedicine boasts several benefits,
which include improved dose-response, targeted delivery, precision/personalization,
and therapeutic efficacy (Ventola, 2012; Mitchell et al., 2021). However, there are
limitations in realizing the applications of nanomedicine into real clinical use. These
encompass issues of biocompatibility, insufficient standardized quantification
methods for monitoring and analyzing patient response to therapy due to the inability
by physicians to perform data analysis (Sanhai et al., 2007). Additionally, the
translation of nanomedicine-based therapies is limited by the amounts of genomic
data and information required to be decoded when selecting candidate small mole-
cule targets. In order to overcome some of these limitations that inhibit translation of
nanomedicine, this is where Al comes in to provide the computational power and
throughput necessary for the realization of this technology in theragnostic imaging
and cancer nanodrug development (Ho et al., 2019). Some of these approaches are
discussed in the following sections of this chapter.

9.5 Conclusion and Perspectives

Despite the successes of nanomedicine-based therapies, nanomedicine is still not yet
suitable for every patient or disease including cancer. The key question to ask when
it comes to precision medicine treatment is whether nanomedicine can be personal-
ized for every patient. Besides the complicated clinical approval process for person-
alized nanomedicine, other limitations include the different fabrication techniques
and the high costs of nanomedicine development. A combined approach
encompassing the use of both precision diagnostic platform and personalized drug-
tailoring can improve the patient’s treatment outcome. This will improve therapeutic
efficacy and overcome drug resistance. Al and other computational models play a
key role in the development, design, and implementation of these nanotechnologies
(Fig. 9.3).

The development of ML algorithms has fostered extraordinary growth in the
application of Al algorithms in nanomedicine. Some future perspectives of
nanomedicine with Al integration include simulation and modeling of
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Fig. 9.3 Application of Al technologies for the development of nanomedicines. Machine learning
assists with integrating multiple large datasets that would not be possible for the human mind to
comprehend. These datasets are processed and used for multiple purposes in nanotechnology.
Nanotechnology-developed medical products can be used for the purpose of diagnosis, drug
delivery systems for delivery of targeted and site-specific precision medicines, designing of
combinatorial therapies, and optimization of nanomaterials
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nanotoxicology, optimization of nanodrug doses, and predictions of protein corona
formation. A challenge in drug administration is that drug synergy is patient-specific,
time-dependent, and dose-dependent at any given point of treatment (Hayat et al.,
2021). Al in nanomedicine can assist in overcoming these challenges resulting in the
improvement of nanotherapy and precision medicine.

Although Al-based algorithms for nanomedicine can improve care, their effec-
tiveness and safety must still be ensured. Accurate evaluation and optimization of
methods should be included in phases of development. Regulatory bodies can be
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assigned to address key aspects and to ensure the effectiveness, performance, and
safety of ML algorithms at each step (Larson et al., 2021). With all of these efforts,
advances in nanomedicine in combination with AI will be a game changer in
precision medicine and in the development of healthcare.
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Chapter 10 M)
Artificial Intelligence-Based Medical e
Devices Revolution in Cancer Screening:
Impact into Clinical Practice

Ahmed Bhayat, Rodney Hull, Nkhensani Chauke-Malinga,
and Zodwa Dlamini

Abstract Al-based medical devices promise to revolutionise medical imaging tools
and lead to advancement in the diagnosing and management of cancer patients.
These devices are by their very nature a form of personalised medicine as they
analyse data recorded from individual patients. They may take the form of an actual
recording device with Al built-in or merely as a software that can be loaded onto a
variety of devices or even operated remotely from the cloud. There are a variety of
innovative medical equipment that have been developed recently using Artificial
Intelligence (Al) algorithms. These devices aim not only at improving the diagnosis
of cancer but also to improve the treatment of a variety of different cancers. The most
common cancers that have Al testing devices include lung, breast, central nervous
system, and prostate cancers. The Al devices that play a role in the management of
these cancers have shown to be able to diagnose, characterise, and image tumours to
ensure early treatment and appropriate management. Al devices are also able to be
used for cancer screening through endoscopies radiology and medical imaging
analysis. While the technology faces problems in the form of regulation, inflated
costs, ethical considerations, and a lack of trust in the devices, its promise cannot be
ignored.
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10.1 Introduction

There is an emerging role for medical devices that use artificial intelligence to screen
for and diagnose various cancers in patients. This would allow for more rapid and
precise treatments. The most frequently used Al devices were to manage and treat
cancers in the breast, lung, and prostate. Many of these devices have already been
approved and are currently being used across the globe. The FDA has also approved
numerous Al devices and the list of devices continues to grow. The advantage of
many of these devices is that they increase access to early cancer detection, prevent
invasive surgical treatment options, and indirectly reduce the cost of management of
these cancers by reducing surgical intervention. Clinically, the reduction of hospital
stays because of the use of these devices reducing surgical procedures assists patients
and improves diagnosis due to Al mapping which provides a more detailed diagnosis
and hence treatment options. A study by Luchini et al. (2022) reviewed diagnostic
tools approved by the FDA for diagnosing cancer (Luchini et al., 2022). This review
reported that breast, lung, and prostate cancers had the largest number of Al
diagnostic tools. Many of these devices have already been approved. A full list of
the devices approved by the US FDA' is attached in Appendix I. Hence, there are a
variety of Al diagnostic tools available, and more research is required on other Al
tools in other types of cancers.

This chapter will discuss the use of these artificial intelligence-based medical
devices (AIMDs) in precision oncology. It will cover a brief history of these devices,
followed by a discussion of their uses, the basis for their function, their regulation,
and finally the challenges and limitations faced by these devices.

10.2 The Definition and Characteristics of an AI Device

A device can be classified as an AU-based device in several ways. At face value, the
term is assigned based on the announcements by regulatory agents such as the FDA,
or through communications from the company producing the device. More impor-
tantly, the device is defined as an Al-based device if it uses machine or deep learning
as well as the algorithms used in the operating of the device. Aside from actual
physical devices that are used in medical applications or can be implanted in
patients, the term medical devices can also cover software as a medical device
(SaMD), medical big data common data model (CDM), and digital therapeutics
(DTx). SaMDs are just Al-based software that can function as a medical tool and
does not require a physical device (Kawtrakul & Praneetpolgrang, 2014). CDMs are
tools and programs that are used to standardise and curate medical data and DTx
devices are meant to replace existing drugs device (Kawtrakul & Praneetpolgrang,
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2014). Software that is a medical device can be divided into those that operate on
their own or embedded software which is run off a specific hardware device known
as software in a medical device (SiMD) (Moor, 2006).

In addition to these groups, a subset of Al-based medical devices which assist
medical professionals in making diagnoses or selecting the appropriate treatment is
known as a clinical decision support system (CDSS). These devices typically
analyse medical images (Kawtrakul & Praneetpolgrang, 2014). Some of the newer
devices even learn and contain algorithms to take the patient’s wishes into account,
since shared decision-making is beneficial (Nilsson & Nilsson, 1998). These devices
accomplish this by using a patient decision support system (PDSS) to assist in
making decisions (Kawtrakul & Praneetpolgrang, 2014). Broadly speaking, physical
AIMDs can be classified as embedded or independent, depending on whether they
are implanted. The AIMD can then be classified by function control, measurement,
analysis, diagnosis, data conversion, transmission, reception, and finally display
(Kawtrakul & Praneetpolgrang, 2014).

10.3 History of Artificial Intelligence (AI) Devices

At first medical devices were merely capable of making measurements as well as
displaying and recording the results. The incorporation of Al has transformed
medical devices into advanced tools capable of diagnosing and determining the
risk of developing cancer. These devices’ names vary worldwide, but this review
will use the term artificial intelligence medical devices (AIMDs) (Luger, 2005). As
of early 2020 more than 60 medical devices with Al have been approved by the Food
and Drug Administration (FDA) in the USA. Many of these devices have been
designed for cancer and the majority of them are in the radiology and diagnostic
fields (Hamamoto et al., 2020a). The term Al has been used in medicine since around
1950. Studies in different countries have shown that Al has been developing over the
past few decades and this renewed interest has helped to overcome one of the
challenges faced by researchers, which was the lack of funding (Kawtrakul &
Praneetpolgrang, 2014; Hamamoto et al., 2020a). The history of Al can be classified
into three time periods: the Birth of Al (First Al Boom), the second Al boom, and the
third AI Boom (the era of deep learning) (Hamamoto et al., 2020a).

The first Al Boom started when computers were becoming accessible, and
scientists realised their value in medicine. The name “Artificial Intelligence (Al)”
was coined in the mid-fifties at a workshop in the States and this initiated the
academic field of Al (Moor, 2006). Following this, computer programs were devel-
oped albeit the programs were slow and expensive. The costs of testing and
implementing these programs were also steep and as a result, funding started
decreasing for research to continue. The second Al boom started around the 1980s
when companies around the world started investing and developing programs that
could answer questions and solve problems using logical rules obtained from expert
knowledge (Nilsson & Nilsson, 1998; Luger, 2005). Examples of these included
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computers which could identify compounds from a spectrometer and the ability to
diagnose infectious diseases in the blood (Lindsay et al., 1980; Shortliffe, 1976). The
interest in Al started declining again and by the 1990s again reached challenges with
funding. The third Al boom and the era of Deep Learning began in the mid-2000s,
Al once again attracted attention through the invention of the computer that was able
to perform actions without the assistance of humans (Hinton & Salakhutdinov,
2006). Then in 2010, the term “big data” was proposed due to the explosion of the
internet and its multiple uses in data collection, storage, and analysis (Hinton &
Salakhutdinov, 2006). Since then Al has been extensively used in medicine through
various image analyses (Asada et al., 2020; Weisberg et al., 2020) and tumour
screening abilities (Blanc et al., 2020; Jiang et al., 2021).

The earliest medical devices can be said to date back to ancient times with devices
such as forceps, knives, scalpels, saws, lancets, needles, and trocars. When
discussing radiology and oncology, the earliest medical device was a linear acceler-
ator, which was used to treat cancer. Following this, most of the medical devices
consisted of imaging technologies such as CT, MRI, PET mammograms, ultrasound,
and endoscopy. These devices allowed for better diagnosis screening and monitoring
of cancer. However, it was not until the application of software algorithms to design
and manage radiation treatment plans that the first software-based devices were
developed for cancer management (Benjamens et al., 2020).

In the 1950s with the first boom in Al, it was thought that clinical expert systems
could replace physicians through the creation of a “doctor in a box”. At that time the
available computing power was insufficient to deal with the large amounts of data
required for this. Rule-based expert systems were developed in the 1970s and these
were used in simple non-oncology medical devices that were mere impersonations of
AIMDs. With the third boom in Al starting in the early 200 s the next logical step in
the revolution of medical devices was the addition of intelligence to a medical
device. This proved to can be extremely successful (Jaakkola et al., 2019).

10.4 The Basis of AIMDs

AIMDs must be able to answer questions and analyse data in the same way as a
human being but faster, without bias and with a high degree of repeatability. Several
types of technologies were developed as Al advanced towards a point where the use
of Al in medical devices became viable. The basis of these technologies are the
decision support systems that they use. These are decision-making systems that try to
emulate human decision-making. These terms do not describe the precise algorithm
used but the basis of the selection or area the algorithm works within. There are a
variety of these systems. Different types of thought-emulating technologies are
found on various AIMDs (Gurupur & Wan, 2020). The first requirement for an
AIMD is a decision support system (DSS), a computer program that compiles and
organises raw data to identify problems that require solutions and prepare the data
for further analysis by specific algorithms. The diverse types of DSS are shown in
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Fig. 10.1 Decision Support systems used by AIMDs and their applications: The above schematic
represents the decision support systems that can be used by AIMDs to compile and analyse raw data
and identify problems that need to be solved and thereby optimise later decision-making performed
by specific algorithms. In general, the rule-based DSSs, both Bayesian and expert based, are only
applied to narrow applications as rule construction and writing can become too complex

Fig. 10.1 with details of their use in medicine and oncology. The initial expert
systems involved the use of experts in the field to program computers with the
knowledge to answer sets of then questions using set rules (Herasevich et al., 2013).
These were followed by statistical probability systems also known as Bayesian belief
networks. In this process, the computer makes decisions based on statistical analyses
and computes probabilities to find the answer to a problem (Maragoudakis et al.,
2008). Although these rule-based systems can be used in AIMDs, this technology
has the drawback that as the scenarios they were applied to become more complex
the system of rules governing them became too unwieldy. Neural networks use small
computational units or nodes. These nodes then interact with each other feeding each
other the outputs of the analysis they carried out. In this way, the device replicates
the thought processes of the human brain (Bhambhvani et al., 2021). The data
mining technique involves the use of specific search algorithms to scan large sets
of data for patterns. It looks for specific patterns that can be matched with the data it
has received from the patient (Wang et al., 2022). The intelligent agent or multiple
agent system uses software that is organised into a network of discrete units that act
independently that perform autonomous tasks. Genetic algorithms mimic evolution
by using natural selection to select those results that are most likely or are preferable
in some other way. It continues to work only with these results in further analysis and
eliminates the others. Finally, fuzzy logic where the truth of any test result is
assigned a value between 0 and 1. These partial truths are dealt with by a superset
of conventional logic to select the true outcome.

The DSS is the framework the Al is built upon; however, the actual work is done
by the various types of algorithms which an Al can use to conduct data analysis.
These include support vector machine (SVM), neural networks (NN), naive Bayes
(NB), K-nearest neighbour (KNN), decision tree (DT), random forest (RF), and
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logistic regression (Manickam et al., 2022). SVMs are one of the most used
algorithms in medicine. They work by separating data into discrete groups and
then finding the midpoint between the two groups of data. This hyperplane or line
separating the data is the furthest from the data points. Data falling on each side of
the plane is classified appropriately. This algorithm is commonly used for cancer
diagnosis due to its accuracy and speed. The algorithm can also easily be scaled to fit
higher dimensional data (Sweilam et al., 2010). NNs are the other most used
algorithm in medicine. These are efficient, fast, and flexible algorithms. They also
do not require specific rules to produce a result and are capable of multitasking
(Manickam et al., 2022). These algorithms are also used as DSSs and are discussed
above.

10.5 The Practical Use of AI Devices in Cancers

In medicine, AIMDs are most applied to Radiology and Cardiology. These two
medical specialities have the most FDA-approved AIMDs. AIMDs have been
designed for use in fields as diverse as internal medicine/endocrinology, neurology,
ophthalmology, emergency medicine, and of the greatest interest to us, oncology
(Benjamens et al., 2020). Currently, Al is used in a variety of settings and in
oncology it is used for the detection, characterisation, and monitoring of tumours.
Al has been used extensively in the diagnosis of lung, breast, central nervous system,
and prostate cancers (Tables 10.1 and 10.2) (Bi et al., 2019). In terms of staging, Al
has been used in the staging and diagnosis of various cancers and hence indirectly in

Table 10.1 General use in cancer monitoring

Name of the device Description of the device and its role Reference
Kaiku Health (Kaiku Oy) Outcome monitoring and symptom tracking. Schmalz
et al. (2020)
C the Signs (C the Signs Assessment of symptoms to support cancer BA and
Ltd.) diagnosis. Bakshi
(2021)
Hot Spot APP (Visiopharm | Hotspot scoring method for various cancer Hida et al.
A/S) applications. (2020)
Invasive Tumour Detection | Distinguish non-invasive and invasive tumours Hida et al.
APP (Visiopharm A/S) using cytokeratin and p63 markers. (2020)
SubtlePET (Subtle Medical) | Increased speed and safety scanning exams. Xu et al.
(2020)
RayCare 2.3 (RaySearch Management of oncology care and follow-up. Bhalla and
Laboratories) Lagana
(2022)
FoundationOne Liquid CDx | Diagnostic NGS-based test using circulating cell- | Woodhouse
(Foundation Medicine, Inc.) | free DNA (cfDNA) from cancer patient plasma. et al. (2020)
Used for treatment with targeted therapies.

This table lists the AIMDs that are used for general cancer diagnosis, monitoring, and treatment



ical Systems, Inc.)

pl6INK4a and Ki-67 immunocyto-
chemical assay in cervical specimens.
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Table 10.2 Al-based devices for specific cancers

Name of the device: Description of the device and its role | Reference

Breast

ER APP, Breast Cancer (Visiopharm Determination of oestrogen receptor Stalhammar

A/S) expression. et al. (2016)

PR APP, Breast Cancer (Visiopharm Determination of progesterone Kérsnis

A/S) expression. et al. (2015)

QuantX (Quantitative Insights) Diagnosis. Scientific
(2017)

densitasAl (Densitas Inc.) Breast density assessment. Tan et al.
(2020)

cmTriage (CureMetrix) Triage for mammography. Tartar et al.
(2021)

Her2 dual DNA probe cocktail. Determine HER2 gene amplification Probe (n.d.)

status.

Cervical and endometrial cancer

AVEC (Automated Visual Evaluation | Cervical cancer screening and Xue et al.

of the Cervix) (MobileODT Ltd.) diagnosis. (2020)

CINtec PLUS cytology (Ventana Med- | Diagnosis using a qualitative Uijterwaal

et al. (2015)

VENTANA MMR RxDx Panel
(Ventana Medical Systems, Inc.)

Identifying endometrial cancer patients
who may benefit from treatment with
dostarlimab-gxly.

Goodpaster
(n.d)

Skin
DERM (Skin Analytics Ltd.) Skin cancer diagnosis support. Phillips and
Greenhalgh
(2020)
Lymphoma
Cobas® EZH2 Mutation Test (Roche | Identifies follicular lymphoma patients | Okosun et al.
Molecular System, Inc.) that have an EZH2 mutation and can be | (2019)
treated with TAZVERIK
(tazemetostat).
Prostate
DeepDx-Prostate Connect (Deep Bio Recognition of acinar adenocarcinoma. | Ryu et al.
Inc.) (2019)
Paige Prostate (Paige Inc.) Diagnosis using prostate needle Raciti et al.
biopsies. (2020)
Al-Pathway Companion Prostate Can- | Diagnostic support. Henkel et al.
cer (Siemens Healthcare GmbH (parent (2022)
company: Siemens AG)
Galen Prostate (Ibex Medical Analytics | Diagnosis using prostate core needle Pantanowitz
Ltd.) biopsies. et al. (2020)

This table lists AUMDs used to manage specific cancers and by the type of cancer they are used for
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the management of these cancers (Bi et al., 2019). A list of cancer monitoring tests
and devices is given below:

10.5.1 Radiology and the Analysis of Images for Pathology

Medical images obtained using imaging techniques such as X-rays, CT scans, MRI,
PEY, or ultrasound are extremely valuable as a means of diagnosis, screening,
disease, and disease monitoring. This makes this form of medical data vital for
clinical applications. Imaging also lends itself a wall to analysis and interpretation
using Al As such radiologists and associated applications were one of the first to
make use of the applications of digital medicine and Al devices (Pesapane et al.,
2018). The diagnosing of pathological lesions is a major concern in many countries
including South Africa, where there is a shortage of pathologists (Yoshizawa, 2013).
Al is used in Computer-Assisted Diagnosis (CAD) when analysing diagnostic
images (Qin et al., 2018). CAD has improved the diagnostic accuracy and repro-
ducibility of image reading and reduced the reading time (Hizukuri et al., 2021).
Given this background, the use of Al in diagnosing and drafting pathological reports
will go a long way in dealing with the shortage of trained qualified human pathol-
ogists and radiologists. Digital pathology has also been useful in the management,
diagnosis, and grading of genitourinary cancers as described in Fig. 10.1 (Pai et al.,
2020).

AIMDs can use medical image analysis to assist in the diagnosis of cancer. They
use variations of a convolutional neural network (CNN)-based deep learning algo-
rithm. The CNN analyses the image by producing a large number of small images,
each with a single feature. These features are mapped and the final classification is
based on this map (Papa et al., 2020). The ability of Al to detect objects relies on the
CNN trained using many images. The ground truth, reference, for the analysis
consists of images that have been annotated by experts. The trained Al can then
detect and pinpoint objects. AIMDs use three basic methods to analyse medical
images. Those are classification, detection, and segmentation. In the classification
process, the medical image to a predefined category. In the detection process,
features are identified in medical images as being a tumour.

The algorithms used in the detection process are a more advanced convoluted
neural networks (CNNs) called faster regions with convolutional neural networks
(fR-CNN). These neural networks learn using a region proposal network (RPN).
They then extract a region of interest (ROI). Another algorithm that can be used in
the decision process is a regression technique called You Only Look Once (YOLO).
Finally, the segmentation process involves identifying structures or features within
the ROI (Woods, 2007). The use of AINDs to analyse medical images has been
applied to multiple different cancers and imaging technologies. These include breast,
prostate, lung, brain, and cervical cancer amongst others. Prostate needle core biopsy
is the gold standard for the detection of prostate cancer. This involves pathologists
analysing the images obtained from the biopsies and assigning a Gleason score, but
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the number of tumour-positive cores can give a better idea of the extent and
malignancy of cancer. This involves time and resources which may be limited.
Additionally, it has been reported that a blinded re-examination of slides improves
cancer detection rates (Varma et al., 2018). Al is capable of accurately detecting
prostate cancer from digital whole slide images (WSIs) (Litjens et al., 2016). A
device named the Paige Prostate Alpha is an AIMD that can detect prostate cancer
accurately and more efficiently using core needle biopsies. The authors of this study
suggested that due to the speed and accuracy of this device it could be used to carry
out the blinded re-examination of slides previously viewed by a pathologist (Raciti
et al., 2020).

10.5.2 Endoscopy

Various types of equipment have been developed for the detection of colorectal
cancer (Table 10.3). These have improved the diagnosis and early detection of
cancers and reduced the number of missed cases (Yamada et al., 2019). A study
reported an overall sensitivity and specificity of the Al for colorectal lesions to be
98.8 and 99%, respectively (Yamada et al., 2019). Full blood counts (TBCs), tests to
establish the size and number of various blood cells, can be used to diagnose CRC

Table 10.3 Al-based devices used in colorectal cancer

Name of the device Description of the device and its role | Reference
ColonFlag (Medial EarlySign Inc.) Pre-symptomatic high-risk patient Ayling
screening. et al.
(2021)
GI-Genius (Medtronic Inc. (parent company: | Detection. Hassan
Medtronic plc.)) et al.
(2020)
Discovery Al (Pentax Medical GmbH (par- | Polyp detection. Boese
ent company: Pentax Corporation) et al.
(2022)
Metastasis Detection App (Visiopharm A/S) | Detects metastasis in lymph nodes Thagaard
for colorectal and breast (2017)
adenocarcinoma.
CAD EYE (FUJIFILM Europe GmbH) Polyp detection and characterisation | (Fitting
using colonoscopy. et al.,
2022)
NaviCam Capsule Endoscope System with | A magnetically manoeuvred capsule | Cave
NaviCam Stomach Capsule (AnX Robotica, | endoscopy system. et al.
Inc.) (2022)
GI-Genius (Cosmo Atrtificial Intelligence— | Detecting colonic mucosal lesions in | Gowda
Al LTD) real time using white-light et al.
endoscopy. (2021)

This table lists AIMDs used for the diagnosis, management, and monitoring of colorectal cancer,

mainly through the use of endoscopy
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(Reed et al., 2020). The AIMD ColonFlag (Medial EarlySign, Kfar Malal, Israel)
detects FBC changes and converts these into risk scores. It uses Al algorithms, in the
form of decision trees, to take the patient’s age, sex, and FBC into account to detect
CRC. This is based on FBC changes being present before CRC symptoms are
noticeable (Kinar et al., 2016). Colonoscopies are currently the gold standard for
cRC-diagnosis and screening, but they often miss neoplastic lesions. There is also
variability in the interpretation of the resulting images due to human bias (Zhao et al.,
2019). Both these problems can be eliminated using Al to interpret the images. The
Al can be programmed to recognise and detect polyps on colonoscopy images The
GI-Genius, Medtronic Al system was taught using video images obtained from a
high-definition white-light colonoscopy of histologically confirmed polyps. It was
trained with a large dataset of 1.5million images in combination with reports
associated with these images made by expert endoscopists. In a study on the abilities
of this device, it was found that the device performed well or better than 5 expert
endoscopists (Hassan et al., 2020) (Table 10.4).

The actual use of an AIMD (Fig. 10.2) involves data acquisition by the device, or
data previously acquired being entered into the device. The AI then uses data
reduction techniques to simplify the data while only losing the minimum amount
of information. This is done to reduce data dimensionality and complexity to allow
for further analysis or to reduce the size of the data (de Hond et al., 2022). The
decision support system of the device then uses a DSS such as to organise and
compile the data to prepare it for further analysis. For example, a data mining DSS
compares the patients data against a libraray of medical data and searches for
patterns in the patient data that can be matched or intepreted using the stored data
or other DSS such as statistical Bayesian analysis, expert systems and neural
networks as discussed above (Manickam et al., 2022). The DSS may identify
problems which may require further data from the medical practitioner using the
device. The request for more information may also allow the device to refine its
algorithms. The onboard decision or feature identification algorithms will then
analyse the data using a variety of different algorithms. The results of this analysis
can then be used by the device to teach itself through a machine or deep learning to
improve its algorithms for future use (de Hond et al., 2022).

10.6 The Regulation of Al-based Devices

Due to the unique position occupied by medical devices and Al-based medical
devices in medicine, the regulation and approval of these devices have become
complicated as no regulatory organisation initially had guidelines in place that could
be successfully applied to them. The previous FDA regulations for medical device
licensing are strict and these also applied to AIMDs, which involve rigorous testing
processes that are long and expensive. These regulations and testing procedures were
a major obstacle for the development and use of AIMDs in medicine (Benjamens
et al., 2020). Both the Food and Drug Administration (FDA) in the USA and the
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Table 10.4 Al-based devices used in imaging
Name of the device Description of the device and its role | Reference
ClearRead CT (Riverain Technolo- Analyse multi-slice CT scans of the Singh et al.
gies LLC.) chest to detect nodules. (2021)
Veye Chest (Aidence BV) Detection of pulmonary nodule using | Murchison

CT scans. et al. (2022)
AmCAD-US (AmCad BioMed Quantify ultrasound image data. Hamamoto

Corporation)

et al. (2020b)

DLCExpert (Mirada Medical Ltd.)

Assist in contouring radiation therapy
from CT scans.

Min Seo et al.
(n.d.)

Arterys MICA (Arterys)

An Al-based platform for analysing
medical images such as MRI and CT.

Borgers (2021)

AmCAD-UT (AmCad BioMed
Corporation)

Assistance in the analysis of thyroid
ultrasound images.

Reverter et al.
(2019)

Arterys Oncology DL (Arterys Inc.)

A cloud-based medical imaging Al
that measures and tracks lesions and
nodules using MRI and CT scans. Can
also be used to confirm the absence or
presence of lesions.

Wang et al.
(2019)

Deep Learning Image Reconstruction

A deep-learning-based CT image

Greffier et al.

(GE Medical Systems) reconstruction technology. (2020)
Paige Insight (Paige Inc.) Digital pathology viewer for Raciti et al.
diagnosis. (2020)

InferRead CT Lung (Beijing
Infervision Technology Co. Ltd.)

A tool that uses CT scans for lung
cancer screening and management.

Li et al. (2021)

Broncholab (Fluidda Inc.)

Support in diagnosis and documenting
pulmonary tissue images using CT
scans.

Wang et al.
(2022)

JPC-01 K (JLK Inspection Inc.)

Detection for diagnostic support from

Turkbey and

MRI images. Haider (2022)
Transpara (ScreenPoint Medical BV) | Interpretation of mammograms for Sasaki et al.

screening. (2020)
QVCAD (QView Medical Inc.) Aid to detect mammography-occult Xu et al.

lesions. (2018)

HealthMammo (Zebra Medical
Vision Inc.)

Analyse mammograms.

Hu and Giger
(2021)

Mia-Mammography Intelligent
Assessment (KheironMedical Tech-
nologies Ltd.)

Breast cancer detection using
mammograms.

Harvey et al.
(2019)

Syngo-Breast Care (Siemens

Diagnosis using mammograms.

Baptist et al.

Healthcare GmbH (parent company: (2017)
Siemens AG)
ProFound Al for 2D Mammography | Detection from 2D mammograms. Stephens
(iCAD Inc.) (2021)
ProFound Al for Digital Breast Detection and diagnosis using digital | Overman
Tomosynthesis (iCAD Inc.) breast tomosynthesis (DBT) exams. (2022)
Breast-SlimView (Hera-MI SAS) Diagnosis by analysing Vijayalakshmi
mammograms. et al. (2021)

(continued)



206

Table 10.4 (continued)
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Name of the device

Description of the device and its role

Reference

Vara (Merantix Healthcare GmbH)

Screening support and triaging from

Gassner and

mammograms. Juknat (2019)
Transpara (ScreenPoint Medical) Interpretation of mammograms for Sasaki et al.
screening. (2020)
ProFound Al Software V2.1 iCAD) | Interpretation of DBT. Lyell et al.
(2021)
JBD-01 K (JLK Inspection Inc.) Diagnosis using mammograms. Al-Tam and
Narangale
(2021)
b-box (b-rayZ GmbH) Assess mammography image quality | Steinwendner
and breast density fusing (2020)
mammograms.
Genius Al Detection (Hologic, Inc.) Identify potential abnormalities in Hamilton-
breast tomosynthesis images. Basich (2020)
Visage Breast Density (Visage Screening and diagnosis using full- Liu et al.
Imaging) field digital mammography. (2022)
Imagio Breast Imaging System (Seno | Improved classification of breast Overman
Medical Instruments, Inc.) masses using ultrasound. (2022)
MammoScreen (Therapixel SA) Screening and diagnosis using FFDM. | Dang et al.
(2022)
Breast cancer image, computer-aided | Diagnosis of breast cancer based on Retson and
detection/diagnosis software mammography. Eghtedari
(2020)
SmartTarget (SmartTarget Ltd.) Image-guided procedures for inter- Hamid et al.
vention against and diagnosis. (2019)
QyScore software (Qynapse SAS) Labelling, visualisation, and volumet- | Cavedo et al.
ric quantification of brain structures (2022)

and lesions using MR images.

LungQ (Thirona Corp)

Diagnosis and documentation of pul-
monary tissue images.

Sadeghi et al.
(2021)

Syngo.CT Lung CAD (Siemens Detects solid pulmonary nodules Poulter (2022)
Medical Solutions Inc. (parent com- | using multi-detector computed
pany: Siemens AG)) tomography examinations of the

chest.
Auto Lung Nodule Detection Detection and diagnosis of lung nod- | Cha et al.
(Samsung Electronics Co. Ltd. (parent | ule using X-ray images. (2019)

company: Samsung Group)

This table lists the AINDs used to analyse medical images for screening, diagnosis, prognosis, and

monitoring purposes

European Medicines Agency (EMA) in the EU have attempted to regulate these
devices and approval of these devices for clinical use, by developing new rules and
guidelines (Food and Administration, 2019). The importance of regulating the use
and approval of these devices is due to them being considered high-risk and
innovative technology. The high-risk definition is based on the integral role they
would play in diagnosis and treatment and any error in the device could easily result
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Fig. 10.2 An example of the workflow using a medical device. (1) In the acquisition step the
medical device either takes readings or is given data concerning the patient (2) In the pre-processing
step, the data is filtered, duplicates are removed, and complexity is reduced minimising loss of data.
(3) The data is entered into the decision support structure of the device where it is compiled and
organised, and if any problems are identified, this may lead to (3a) the device demanding more
information to be entered by the user. (4) The device implements its built-in decision and analysis
algorithms to answer the question which in this case is to offer a diagnosis, prognosis or manage-
ment of a specific condition. The results of this analysis may be used to teach the algorithm (4a or
generate a report (5) where the recommended action is conducted (6).

in fatal consequences for the patient. The fact that it is a new technology means that
the consequences of using AI/ML to make medical decisions are unknown
(Benjamens et al., 2020). This is complicated by how the algorithms update so
frequently that any approval process would need to be continuously updated, which
is probably not viable (Food and Administration, 2019).

Worldwide steps have been taken to create laws to regulate these devices. In the
USA, the Twenty-First Century Cures Act was enacted in 2016. This acts as the
approval process for these devices. A few months later the FDA approved the Digital
Health Innovation Plan to improve the efficiency of regulation of digital technolo-
gies. This plan also includes the software pre-cert pilot program which allows the
software to skip the medical device approval process (Lee & Kesselheim, 2018). The
European Union (EU) introduced new directives and regulations between 2021 and
2022. These state that an IJAMD is classified as a medical device and falls under the
medical device classification system. The EU further revised the General Data
Protection Regulation (GDPR) to allow the use of IAMDs for diagnosis and
management of health conditions and the collection of medical data (Chance &
Review, 2018).
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10.7 Drawbacks and Limitations of AI Devices

Despite all the promises that AIMDs hold for advancing medicine and by their very
nature precision medicine, there are many problems facing their implementation. As
discussed above, the implementation of rules and regulations governing their use and
application has yet to be properly developed (Food and Administration, 2019).
Related to this are some of the ethical issues surrounding the use of these devices.
For example, if an error occurs due to the failure of a device or incorrect conclusions
reached by the Al, who is accountable? Blame could be placed on the operator, the
manufacturer, or a regulatory body. This becomes even more complex once Al starts
making autonomous decisions. This may currently limit their use as support tools
(Pesapane et al., 2018). In addition to this, the cost of these devices is inherently high
mostly due to their development costs. Unfortunately, this means that poorer under-
resourced countries will have problems accessing them, maintaining them, and
ensuring that staff are trained in using them.

Apart from ethical and financial considerations, the adoption of Al-based medical
devices faces further problems such as problems of trust and problems involving
real-world data resources. The trust issue comes down to the black box problem
which is due to a lack of transparency. This is due to the actual function of the device
not being understood, this is further complicated when learning algorithms alter the
algorithms as the device is used and learns (Steinwendner, 2020). Another problem
relates to the information given to a device to learn from. Al requires huge real-world
data sets and this will take time to create and develop. If there is an inherent bias in
the data, then the results given by the device will show a bias (Steinwendner, 2020).
For instance, if a device is used only with patients of a specific ethnic group, then the
results may be inaccurate when the device is used on other population groups.

Many of the problems facing the use of AIMDs can be solved through more
specific and specialised regulations being in place. For instance, specialist software
regulations need to be developed and implemented, as currently, most regulations
focus only on hardware issues. Quality control regulations for AIMDs are also
lacking. Security and privacy risks and concerns are also problems facing AIMDs.
The communication function of AIMDs means that information can be stolen and
cyberattacks can cause the device to malfunction. More prospective studies should
be conducted to increase the amount of data that is available for inputs into Al
systems.

10.8 Conclusion and Future Perspectives

It is well established that Al has a key role to play in precision oncology, but its
introduction into medical devices is a recent development in cancer management.
These devices can be considered by their very nature to be personalised medicine as
they work with data gathered from individual patients. At the same time, they
promise to advance a variety of fields in cancer management. These range from
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Fig. 10.3 Summary of the applications and underlying basis of AIMDs. AIMDs rely on decision
support systems and algorithms to automate the process of pattern recognition and use machine and
deep learning to improve these underlying systems with each data set analysed. These can be said to
be the principles that guide the development of these devices. From their ability to learn to their
basic role as pattern recognition machines no matter what form that data takes to their goal to be
fully automated medical devices with minimal or no human interference. The pink blocks in the
figure represent key roles that AIMDs play in precision oncology. The yellow boxes represent the
key tasks the devices need to perform to accomplish these goals

screening (such as radiology, image analysis, and endoscopy) to diagnosis and
disease monitoring (Fig. 10.3). They can accomplish these tasks more accurately
and with less bias in a fraction of the time that human pathologists can manage.

The ability of these devices to use machine learning to improve their abilities
makes them autonomous in that they do not require external upgrades and as they
learn they may be able to operate independently from a human operator. However,
they do face challenges such as the cost, regulations, ethical considerations, and a
lack of trust. These problems are, however, not insurmountable. Each can be solved
through the development of proper guidelines, which may become easier as the
technology develops and the medical community gets more familiar with it. The
development of the technology and the ability to build new devices based on
technology developed for and based on the previous generation of devices will in
all likelihood lead to a decrease in the cost of these devices.
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Chapter 11 ®)
Intelligent Drug Design and Use for Cancer <
Treatment: The Roles of AI and Precision
Oncology in Targeting Patient-Specific

Splicing Profiles

Rodney Hull, Mosebo A. Manabile, and Zodwa Dlamini

Abstract The development of new drugs is expensive, time-consuming, and often
results in failure. These problems can partially be solved through the use of Al to
identify drug targets, search for molecules capable of interacting with these targets,
and then model the interactions of the drug and its target while modelling the
physiochemical properties of this drug. Alternative splicing is commonly altered in
cancer and as such has become a target for the designing of new drugs. While many
drugs have been designed to target either the new isoforms that favour cancer
development or proteins involved in the splicing pathway, Al can improve this by
helping screen proteome and transcriptome databases to identify new splice variants.
Al can also model the three-dimensional structure of new isoforms in order to screen
for compounds that can bind exclusively to these isoforms.

Keywords Neural networks - Machine learning - Deep learning - Virtual screening -
3D modelling - Isoforms - Splice variants - Precision oncology

11.1 Introduction

The development of new drug treatment for cancer involves the investment of large
periods of time and is associated with high costs and a low success rate (Waring
et al., 2015). It is estimated that over 90% of new drugs fail between the initiation of
phase 1 trials and the approval phase, mostly due to safety issues. This does not take
into account the multitude of compounds that are screened before the few successful
compounds enter phase 1 trials (Fleming, 2018). This means a lot of time and money
is wasted. Figure 11.1 gives an indication of the costs of drug design and how much

R. Hull (<) - M. A. Manabile - Z. Dlamini

SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision
Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI),
University of Pretoria, Pretoria, South Africa

e-mail: rodney.hull@up.ac.za; u20804289 @tuks.ac.za; zodwa.dlamini@up.ac.za

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 217
Z. Dlamini (ed.), Artificial Intelligence and Precision Oncology,
https://doi.org/10.1007/978-3-031-21506-3_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21506-3_11&domain=pdf
mailto:rodney.hull@up.ac.za
mailto:u20804289@tuks.ac.za
mailto:zodwa.dlamini@up.ac.za
https://doi.org/10.1007/978-3-031-21506-3_11#DOI

218 R. Hull et al.

(A) Cost of drug development phases (B) TIME TAKEN FOR EACH SRAGE OF
DEVELOPMENT
ODiscovery i .
12% . Discovery
OTesting and improvement ) Testing and improvement
36%
5% OPhase 1 Phase 1
0
OPhase 2 Phase 2
OPhase 3 12% 8% 7 ® Phase 3
12%

ODrug approval Drug approval

(C) Number of potential compounds

Discovery 2000

Testing and improvement
Phase 1
Phase 2
Phase 3

Drug approval

Fig. 11.1 The cost of drug design at various stages of the process and the chance of success. Drug
discovery and design consists of multiple steps which are costly and time consuming. These steps
include target selection and validation, therapeutic screening and lead compound optimization,
pre-clinical and clinical trials, and manufacturing practices. The high failure rate of many drugs
increases the cost of developing a new drug

cost is involved to complete each stage of the process. The costs shown are in both
money (la) and time (1b) and a graphical representation of the success rate is given
in Figure 11.1c. The initial screening of compounds contributes a large percentage to
both financial and time costs in the process. At this stage animal models need to be
used and although this cost can be lowered using in vitro techniques, it still involves
the screening of many compounds. The cost can be lowered even further using in
silico approaches to only select the most promising compounds for further testing.
The use of computer models can identify the most promising compounds to interact
with specific targets and predict many of the physiochemical characteristics of these
compounds, removing compounds that are less favourable for being developed as
potential drug candidates (Zhang et al., 2017). These techniques which include
virtual screening (VS) and molecular docking continue to have a low success rate
because they are traditionally unable to accurately predict the in vivo actions of these
compounds, which may significantly differ from those that are observed in vitro and
cannot be foreseen by in silico analysis (Hughes et al., 2011). Artificial intelligence
and machine learning give computer algorithms the ability to learn to recognize
patterns in biological systems. Combined with the ability to learn to recognize and
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interpret the properties of molecules based on their structure means that Al has the
potential to interact with biological systems and predict side effects and toxicity.

The identification of specific targets for the design of new drugs is also an
important role that Al can play in the treatment of cancer. These drug targets can
be identified through the analysis of molecular profiles by Al This would allow for
the identification of molecular changes specific to a type of cancer, population group,
or even a single patient. It is well known that the same treatments do not work in the
same way across multiple population groups, with some groups responding poorly to
a treatment that was used successfully in another population group. In addition to
this, the more specific the molecular changes are to cancer, the better the chances of
avoiding side effects or off-target effects. To assist in this, it is best to target a cancer-
specific process. Alternative splicing results in multiple proteins and mRNA tran-
scripts being coded for by a single gene. It is estimated that up to 90% of all human
genes are alternatively spliced. Alterations in AS are common in cancer, with cancer-
specific protein isoforms sometimes favouring the development and progression of
the disease. This makes these protein-specific isoforms or the mechanisms that lead
to the formation of these cancer-specific isoforms attractive targets for the design of
new drugs. This chapter will discuss the use of Al in designing drugs based on
cancer-specific splicing profiles to develop new treatments that can be personalized
to specific individuals or population groups. It will discuss how Al can be used to
identify specific targets, identify compounds that can interact with these targets, and
demonstrate how Al can be used to assess the physiochemical properties of these
compounds and predict any side effects they may have. Finally, it will discuss how
Al can be used to predict how different treatments will behave based on biological
data from an individual patient.

11.2 The Application of Al in Drug Design

High-throughput technologies such as next generation sequencing and mass spec-
trometry have given rise to large complex sets of biological data. This has been
accompanied by improvements in computer hardware and the rise of machine
learning and deep learning in Al In addition to this, the data gathered through the
use of these techniques have been entered into large data sharing platforms or
databases. Al can make use of advanced computational approaches to help process
and analyse these large sets of data. These include neural networks, decision trees,
natural language processing (NLP), cloud computation, and graphics processing
(Mirza et al., 2019; Dlamini et al., 2022). The ability of Al to aid in the rational
design of drugs, identify drugs to be repurposed, optimize the design of clinical
trials, and assist in the manufacturing and marketing of drugs means that Al can
assist in the development of a pharmaceutical product from the bench to the bedside
(Duch et al., 2007). AI’s ability to effectively and efficiently identify molecules that
could interact with a drug target relies on its ability to identify and predict chemical
structure and characterize its pharmacophores and three-dimensional structure. This
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relies on the use of algorithms and mathematical equations to predict a molecule’s
structure and biological activity. Despite the use of recently designed ML algo-
rithms, it is important to note that these algorithms rely on classical chemistry
(Sellwood et al., 2018). These algorithms that are used in virtual screening for
drugs, including predicting their in vivo activity and toxicity, include algorithms
such as Nearest-Neighbour classifiers, random forest decision trees (RF), extreme
learning machines, support vector machines (SVMs), and deep neural networks
(DNNs) (Alvarez-Machancoses & Fernandez-Martinez, 2019; Dana et al., 2018)
(Fig. 11.2).

The primary role played by Al in the analysis of big data sets is well known,
which is due to its ability to organize and annotate the data which can then be used to
identify features specific to cancer. In this case it is the identification of molecular
patterns associated with alternative splicing. This can be the expression pattern of
different protein isoforms, or the expression pattern of different splicing factors. It
can also be the identification of different transcripts arising from alternative splicing
and the level of these different transcripts. In addition to the ability of Al to identify
specific molecular profiles for individual patients, Al can also assist in designing
drugs able to target these different transcripts, protein isoforms, or even those
regulatory proteins that control the splicing process. The latter drug target includes
designing drugs that target differentially expressed splicing factors. Al’s ability to
assist in precise manufacturing of drugs means that Al can be used to make specific
dosages of drugs or different mixtures of compounds in a single treatment (Blasiak
et al., 2020) (Table 11.1).

11.3 The Role of Al in Drug Screening

Once Al has been used to identify molecular profiles unique to the disease within an
individual, these unique molecular profiles can be targeted for treatment. Al can
assist here by searching chemical databases and literature to identify molecules that
will associate with the molecules that arise due to these molecular alterations. These
search hits can then be used as lead compounds for further investigation. Al can then
be used to determine pharmacological features of this compound, its toxicity and
validate its bioactivity and practical usefulness as a drug (Mak & Pichika, 2019;
Sellwood et al., 2018).

Drug design uses annotation systems such as the Simplified Molecular Input Line
Entry System (SMILES). SMILES is a linguistic construct representing chemical
structure not a computer data structure using atom and bond symbols and only a few
grammar rules. This is a convenient notation for chemicals that AI can use
(Weininger & Sciences, 1988). Algorithms such as DNN can be used to model
structures or make feature predictions including data describing a molecule’s poten-
tial energy measurement, electron density, and coordinates of atoms (Hessler &
Baringhaus, 2018). Other algorithms involve DL using undirected graph recursive
neural networks. Convolutional neural networks (CVNN) making use of
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Fig. 11.2 Representations of techniques used by algorithms applied to virtual screening. (a)
Nearest-neighbour classifiers are used to define entries based on known records by calculating
the distance to tall training records based on their position as calculated by two features of the data
points. The nearest neighbour is identified, and the labels of this neighbour are given to the
unknown. (b) Extreme learning machines are neural networks with one or more hidden layers.
(c) Support Vector Machine: Schematic representation of a linear SVM. Voxels (a unit of graphic
information that difines a point in three-dimensional space as opposed to a pixel which defines a
point in two dimensional space. The blue squares represent voxels belonging to cancer samples
while the cylinders are voxels belonging to healthy samples. A hyperplane separates these which is
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graph-based have been used to predict the solubility of molecules (Kumar et al.,
2017) and ANN-based models using kernels and kernel ridge-based models (Rupp
etal., 2010). Figure 11.3 is a depiction of the workflow that Al uses to design drugs.

This table lists the databases that contain omics data (largely fenomic) which can
be used for drug design. It also lists databases that contain data concerning chemical
compounds, for instance chemical structures and toxicity.

11.3.1 Prediction of Physicochemical Properties
and Bioactivity Using Al

The physicochemical properties of a compound include properties such as how
soluble it is and in what solvent it is most soluble, interatomic distance, partition
coefficient, ionization, permeability, and intermolecular forces. It is important to
establish these properties for a potential drug as these dictate the molecule’s phar-
macokinetics and its ability to associate with its target (Zang et al., 2017). Certain
machine learning tools use large data sets that have been produced during previous
compound optimization studies to predict physicochemical properties (Yang et al.,
2019). Al can also be used to predict the toxicity of a compound. A compound that is
toxic can be removed from the drug discovery pipeline thereby preventing further
time and money being wasted on its development. This is also useful as Al can be
used to alter the structure of a drug in a way as to decrease the toxicity of the drug but
not its activity. Currently the most successful Al toxicity prediction tool is the
ML-based DeepTox. This software predicts the toxicity of a compound based on
2500 toxicophoric features (Mayr et al., 2016). Another ML-based program called
eToxPred was able to predict the toxicity with a 72% accuracy of small organic
molecules (Mayr et al., 2016).

11.3.2 Al Predictions of the Mode of Action
of Potential Drugs

By establishing the affinity of a molecule for its target dictates the efficacy of the
potential drug. Drug affinity predictions can also be used to establish if there are any
off-target molecules which the drug can bind to. Off-targets are any proteins or
ligands the drug may bind to unintentionally. This can lead to undesirable side

Fig. 11.2 (continued) the maximum separation from the closest points of the two groups. Data
points on the margins of separation are the support vectors. (d) Deep neural network uses multiple
hidden layers with the data from all nodes in each layer being analysed by all nodes in the next.
(e) The random forest decision tree increases the accuracy of the decision process by producing
many trees and selecting the most common outcomes as the final decision
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Table 11.1 List of databases that contain large amounts of data for drug design

Database Purpose Reference
PubChem Public repository of chemical structure Wishart
and associated biological properties etal. (2018)
ChEMBL Information on compounds’ binding, Wishart
function, and toxicity et al. (2018)
DrugBank Information on all approved drugs and Wishart
their mechanisms, interactions, and et al. (2018)
apposite targets
NCBI Gene Expression Omnibus GWAS data Edgar et al.
(GEO) (2002)
The Cancer Genome Atlas (TCGA) GWAS data. Sequencing data related to | Wang et al.
cancer (2016)
ArrayExpress GWAS data Parkinson
et al. (2007)
GWAS central GWAS data Beck et al.
(2014)
NHGRI-EBI GWAS Catalogue GWAS data Buniello
et al. (2019)
Sequence read archive Sequencing data Leinonen
et al. (2011)
The National Cancer Institute Geno- | Sequencing data related to cancer Jensen et al.
mic Data Commons (NCIGDC) (2017)
DriverML Tool that can point out driver genes Han et al.
related to cancer (2019)

effects. Drug target binding affinity (DTBA) can be determined by Al-based
methods. Generally, this is done in two ways. Al can determine any similarities or
features that are shared between the drug and its target. The features method involves
the use of the chemical moieties of the drug and the target to identify feature vectors.
In the similarities method, the more similarities between the drug and the target, the
higher the affinity they have for each other (Oztiirk et al., 2018). There are web
applications that have been designed to predict drug—target interactions (Lounkine
et al., 2012). Tools such as Kronecker-regularized least squares (KronRLS) are used
to compare the similarities of the drug and the target (Oztiirk et al., 2018). Some
tools such as SimBoo use both the feature and similarity methods. Other commonly
used methods include SMILES, ligand maximum common substructure (LMCS),
and extended connectivity fingerprinting (Oztiirk et al., 2018). In cases where there
is no accurate 3D model of the protein available then DL approaches such as
DeepAffinity and Protein And Drug Molecule interaction prEdiction (PADME)
can be used (Lounkine et al., 2012).

Al also allows for the automated mining of scientific literature for novel drug
targets and lead compounds from the literature. These text mining-based tools use
natural language processing (NLP) to turn unstructured text into structured data. This
structured data can then be used to identify molecules of interest. NLP gives
computers the ability to interpret human language, both speech and text, using Al
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Fig. 11.3 Schematic of drug screening workflow. Large databases are analysed by Al to extract
features, for example molecular profile changes, of interest using various algorithms and applying
various forms of machine learning including deep learning. These features are used to search
libraries and databases of chemical compounds to identify molecules that may interact with an
identified molecule, most likely a protein. Once a molecule of interest is identified, more complex
information gathering and analysis of the drug like properties of this compound are carried out. The
molecule’s binding affinity with the target and its pharmaco-properties can then be examined.
Virtual drug testing can then be performed in silico. All these stages can be carried out with the aid
of AI; however, the final validation steps must involve cell culture or animal models
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algorithms (Ficenec et al., 2003). Molecular fingerprinting involves technique used
to define the compound and is normally based on the structure of the compound. In
the early stages of drug discovery a drug’s chemical structure is normally used not
only as a fingerprint but also to model drug—target interactions (Labute, 2000). This
structure can then be used by computer-assisted drug design processes to search
large databases of chemicals in order to identify similar molecules that may interact
with the target. Alternately, the protein or ligand can be used to search the same
databases in order to identify lead compounds. Al would allow for the development
of other chemical descriptors besides structure. These include the use of nonlinear
modelling algorithms (Zhu & Xia, 2016). The algorithms and Al tools that can be
used to analyse drug activity, pharmaco-properties, and drug—target interactions are
listed in Table 11.2.

The chemical space is a conceptual description of the space spanned by all
possible molecules and compounds that fall under a set of given principles or
boundaries. The virtual chemical space is the virtual or computational version of
this chemical space. This virtual chemical space is enormous and can be interpreted
as a map of the distributions of molecules based on their properties. Therefore, this
space can be used to perform virtual screening (VS) by searching for bioactive
compounds based on positional information about molecules within the space. In
silico search methods use ligand-based approaches and can be much cheaper than
other drug screening methods (Mak & Pichika, 2019).

11.4 Techniques and Tools for Computational Drug
Discovery

The quantitative structure-activity relationship (QSAR) models assume that com-
pounds with a similar structure will have similar activities. These models have been
shown to identify many compounds which may serve as lead targets. It has also been
shown to have the ability to make simple physicochemical predictions. However,
when it comes to successful drug design and discovery these models only work
using chemical structure and target activity, which is not enough to ensure the
success of an identified compound (Russo & Zhu, 2022). This is due to the fact
that these models lack the ability to model complex biological properties (Zhao et al.,
2017). However, QSAR was first used in the 1960s and since then has evolved into
Al-based QSAR approaches. These approaches use techniques such as linear dis-
criminant analysis (LDA), support vector machines (SVMs), random forest (RF),
and decision trees to increase the speed and accuracy of QSAR models (Zhang et al.,
2017). These simple models also suffer when they are used as machine learning
algorithm as they commonly only have access to small data training sets and may
have to use unvalidated experimental data which may be full of errors (Zhao et al.,
2017).
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Table 11.2 List and description of drug activity, pharmocol-property, and binding databases

Database Purpose Reference
Absorption, distribution, Determining the sites of metabolism of the drug | Gaulton
metabolism, and excretion et al.
(ADME) (2012)
DrugBank Information on all approved drugs and their Wishart
mechanisms, interactions, and apposite targets et al.
(2018)
DrugMatrix Toxicogenomic information data of drugs Gilson
et al.
(2016)
Binding Database (BindingDB) | Information regarding drug-target (protein/ Armbrust
enzyme) binding et al.
(2010)
Library of integrated network- | Change in gene expression signatures of human | Keenan
based cellular signature cell lines when treated with different chemical | et al.
(LINCS) compounds (2018)
DriverML Tool that can point out driver genes related to Han et al.
cancer (2019)
SimBoost Considers both feature-based and similarity- Oztiirk
based interactions to predict DTBA et al.
(2018)
MANTRA Groups compound based on similar gene Lounkine
expression profiles and therefore similar mech- | et al.
anism of action (2012)
DeepNeuralNetQSAR Detection of the molecular activity of Chan et al.
compounds (2019)
ORGANIC A molecular generation tool Brown
(2015)
PotentialNet Uses NN to predict binding affinity of ligands | Pereira
et al.
(2016)
Hit Dexter Predicts molecules that might respond to bio- Pereira
chemical assays et al.
(2016)
DeltaVina A scoring function for rescoring drug—ligand Pereira
binding affinity et al.
(2016)
Neural graph fingerprint Helps to predict properties of novel molecules Pereira
et al.
(2016)
DeepTox suitable candidate in drug discovery Ciallella
and Zhu
(2019)
DeepChem Al system that finds suitable candidates in drug | Zhu (2020)
discovery
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This table lists databases that contain data on the physiochemical nature of
compounds such as molecular weight, melting temperature, and dissociation con-
stant, as well as their binding affinities and biological activates.

Al can also use quantum mechanics in the form of predicting molecular orbitals
and wave functions of organic molecules using a DL-driven tool named SchNOrb.
This data can be used to predict the arrangement of chemical bonds and electronic
properties of a molecule. This in turn can be used to identify reactive sites (Schiitt
et al., 2019). The behaviour of molecules or their molecular dynamics (MD) can be
simulated to show how molecules interact at the atomic level (Gastegger et al.,
2020). These simulations can then be used to study the interaction and binding of a
drug to its target. Even though MD existed before Al and can be done using normal
modelling techniques, this is time-consuming and labour-intensive. Al has the
capacity to accelerate MD and lighten the workload of researchers (De Vivo et al.,
2016). De novo drug design describes the process of developing novel compounds to
serve as lead targets for drug development. Despite its usefulness and past success,
traditional de novo drug design may involve complicated drug synthesis and an
inability to accurately predict the bioactivity of the designed molecule (Yang et al.,
2019). This process has been improved using Al as well as machine and deep
learning. One of these tools, MolAICal, uses a DL genetic algorithm trained on
data describing approved drugs from the US Food and Drug Administration (FDA)
to design potential drugs. These drugs are then assessed for their molecular docking
using DL algorithms trained on the ZINC database (Grzybowski et al., 2018). DNNs
have been applied to the rules of organic chemistry and retrosynthesis. Using Monte
Carlo tree search, this Al can predict the reaction process required to synthesize a
molecule. They can also use the same methods to assist in drug discovery and design
(Segler et al., 2018).

11.5 Protein Modelling and Docking

The most common type of target for most drugs are proteins. Their contribution to
disease might be due to structural changes due to changes in their amino acid
sequence or their expression level. In this chapter we are most interested in protein
targets that arise due to splicing changes giving rise to pro-cancer isoforms. To target
these proteins, it is important to be able to accurately predict the structure of these
proteins. Protein folding can be predicted by replicating the four stages of protein
folding virtually in a protein folding pipeline to produce a 3D model (Fiser et al.,
2000). The starting material for 3D protein modelling is the amino acid sequence of
the protein, its primary structure. Changes in the amino acid sequence can result in
changes in how the protein folds into the secondary structure to form structures such
as alpha helices and beta sheets. Neural networks can be trained to model how
changes in the primary structure affect this initial folding into the secondary structure
(Fiser et al., 2000). For example, changes that have occurred due to alternative
splicing of mRNA will alter the amino acid sequence of the protein (Fig. 11.4). This
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Fig. 11.4 Isoform modelling and interactions. Changes to three-dimensional structure of a protein
caused by alternative splicing can be determined by examining the changes in mRNA sequence,
which can then be used to determine the amino acid sequence and the structure of the protein. Using
VEGF as an example the changes in the alternatively spliced mRNA of the pro-angiogenic 165 A
and 165b show that the neuropilin domain will not form correctly in the anti-angiogenic 165b (A) as
reflected in the structural change in the protein, as shown by the 3D models (B). Pathway analysis
shows how this structural change can inhibit the angiogenic process (C). This also shows the
various stages where drugs can be designed to target splicing or promote the expression of certain
variants (red arrows)

is done by the calculation of the distances between pairs of residues. The tertiary
structure of the protein is then modelled by arranging the secondary structural
elements into a three-dimensional structure using specific algorithms, such as the
Monte Carlo Metropolis algorithm (Fischer et al., 2016) and automated modelling
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Table 11.3 List and description of multiple tools for structural prediction
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Database Purpose Reference
Protein data bank Three-dimensional structures of proteins, DNA, Rose et al. (2017)
(PDB) RNA
MolAlcal Can design three-dimensional drugs in three- Bai et al. (2021)
dimensional protein pockets
AlphaFold Predicts the 3D structure of proteins from their Powles and
amino acid sequences Hodson (2017)
Recurrent Geometric Generates three-dimensional structure of proteins | AlQuraishi
Network from amino acid sequence (2019)
SchNOrb Predicts molecular orbitals and wave functions of | Schiitt et al.
organic molecules (2019)
ChemMapper Predicting drug—target interactions Lounkine et al.
(2012)
Similarity ensemble Predicting drug—target interactions Lounkine et al.
approach (SEA) (2012)

(Fiser et al., 2000). An Al-based tool named AlphaFold was created by Google’s
DeepMind and this tool was trained using 3D structure data from the Protein Data
Bank (PDB). What is interesting about this Al is how it was trained, which was done
in two steps. First a CNN was used to create a matrix of distances and torsion angles
based on an amino acid sequence. These two matrices were then used to construct a
three-dimensional protein model using a gradient optimization technique (Senior
et al., 2020). Other Al applications that also use bond length and angles of rotation to
predict 3D protein structure rely on DL-based Recurrent Geometric Network (RGN)
(Segler et al., 2018). The Al-based tools that can be used to perform 3-dimensional
modelling are listed in Table 11.3.

This table lists tools that can be used to predict or model the three-dimensional
structure of proteins and compounds.

Once the 3D structure of the protein is known, it is possible to predict how the
drug will interact with the protein. The drug can also be designed to interact with the
protein target site in a specific chemical environment. In terms of alternate isoforms
of the protein which may be missing entire domains or contain extra amino acids, the
structure prediction may show a completely altered protein and this may lead to
completely different structures and drug designs (Wan & Zeng, 2016). Random
forest models have also been used to predict drug—protein interactions using inte-
grated pharmacological and chemical data. These RF models could also predict
target—disease and target—target associations that could be used for future drug
design (Yu et al., 2012). Repurposed drugs qualify for Phase II clinical trials (Mak
& Pichika, 2019), making its development faster. It is also cheaper, costing only half
of what the development of a new drug costs (Persidis, 2011). Understanding the
interaction between drugs and proteins is also important when a drug is being
repurposed. It also prevents polypharmacotherapy or off-site interactions (Wan &
Zeng, 2016). The ability of repurposing a drug can be investigated using the ‘guilt by
association’ approach. Here similarities between different targets, diseases, drugs,
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chemical structures, and gene expression profiles are used to search for new uses for
an existing drug (Koromina et al., 2019; Park, 2019) (Fig. 11.4).

11.6 Drugs Targeting Alternative Splicing

Alternative splicing increases the diversity and number of proteins produced by a
limited number of genes by splicing pre-mRNA allowing for one gene to produce
multiple protein isoforms. The involvement of alternative splicing (AS) in many
aspects of cellular homeostasis, differentiation as well as tissue growth and devel-
opment, means that any dysregulation of this process could result in the development
of disease (Baralle & Giudice, 2017). Aberrations in the splicing machinery and
profiles of spliced mRNA and protein isoforms are a regular occurrence in many
cancers. This is especially true if those produced isoforms favour the development or
progression of cancer or influence pathways in the hallmarks of cancer such as the
generation of malignant protein isoforms (Wang & Aifantis, 2020). The range of
molecules that may be affected in cancer that can lead to changes in the splicing
process and isoform expression profile include RNA—protein complexes and asso-
ciated regulatory proteins (Oltean & Bates, 2014). This has led to the adoption of
alternative splicing regulators and the pro-oncogenic isoforms AS produces, as
targets for the development of drugs.

Multiple different classes of drugs have been developed that target alternative
splicing. These include small molecule inhibitors that act as spliceosome inhibitors.
Some of these may also target the auxiliary proteins of the spliceosome. Some of
these are phytochemicals or their synthetic analogues and are structurally related
compounds (Martinez-Montiel et al., 2016). The targets of these molecules include
the splicing factor SF3b and its subunits or spliceosomal associated proteins (Mar-
tinez-Montiel et al., 2016; Teng et al., 2017). Other targets of these small molecules
such as pladienolide B include the actual pro-cancer isoforms. Pladienolide B
increased the levels of pro-apoptotic p73 while decreasing the levels of anti-
apoptotic p73 (Zhang et al., 2019). Serine arginine protein kinases (SRPKs) and
Cdc-like kinases (CLKs) are also targets for drugs that aim to influence
AS. Aberrantly expressed SR proteins have been noted to greatly affect malignancy
and cancer development (Kedzierska & Piekietko-Witkowska, 2017). The CLK
inhibitor TG-003 suppressed SR protein phosphorylation (ElHady et al., 2017).
SRPIN340 and SPHINX are two SRPK inhibitors that are well studied (Fukuhara
et al., 2006; Gammons et al., 2013). SRPIN340 has high inhibitory activity against
SRPK1 and SRPK2. It has been demonstrated that it is able to reduce melanoma
tumour growth in vivo. It affects the splicing of VEGF and angiogenesis, reducing
the expression of pro-angiogenic isoforms of VEGF (Gammons et al., 2014).
SRPIN340 also reduces cell migration, invasion, and colony number formation
(Moreira et al., 2018). Despite these effects SRPIN340 failed to be developed as a
drug due to its poor absorption in vivo and poor pharmacokinetic properties
(Gammons et al., 2014). SPHINX was a more potent inhibitor of SRPK1 compared
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to SRIN340 and was shown to significantly downregulate pro-angiogenic VEGF ¢
expression (Mavrou et al., 2015).

Protein arginine methyltransferases (PMRTs) are splicing regulators that are
upregulated in many cancers (Maron et al., 2022). PRMTs methylate arginine to
post translationally modify proteins. This modification affects the binding of RNA
binding proteins (RBPs) which act to regulate splicing and maintain accurate
splicing (Dowhan et al., 2012). As such PRMTs are attractive drug targets for the
treatment of cancer (Hwang et al., 2021). Small molecules that inhibit PRMTs have
been developed, with many in the pre-clinical trial stage (Guccione & Richard,
2019). AMI-1 targets PRMT 5 and is able to inhibit solid tumour progression, while
GSK3368715 and MS023 are PRMT1 inhibitors that are known to affect the
assembly of the spliceosome by inhibiting the methylation of RBPs (Guccione &
Richard, 2019). PF-0639999 is a type II PRMT inhibitor that has been shown to be
effective in treating lung cancer (Yang et al., 2022).

The identification of splicing events, leading to the discovery of new drug targets
can be performed optimally using AI/ML models. The web tool AVISPA (Barash
et al., 2013) predicts if a specific exon is alternatively spliced and what regulatory
elements are associated with it by using a Bayesian NN classifier and a DNN model
performed even better. This model used RNA-Seq data to predict AS across tissues
(Leung et al., 2014). Another Al model was developed based upon these two
previous models that can use unlabelled data and semi-supervised learning algo-
rithms to predict AS events from DNA sequences (Stanescu et al., 2016; Xiong et al.,
2015). Al algorithms can be used to help detect splicing isoforms from transcriptome
data. Four different software employing AI, CypRules, MetaSite, MetaPred,
SMARTCyp, and WhichCyp have been used to identify cytochrome P450 isoforms.
These specific isoforms were identified when the authors were looking for increase
in the metabolism of various drugs and their presence is an indicator of drug
resistance. These programs all made use of SVM-based algorithms and were able
to accurately identify multiple CYO450 isoforms with high accuracy (Pu et al.,
2019).

11.7 Other Applications of AI in Drug Design

Apart from drug design, screening, and virtual testing, Al can be used to assist in
manufacturing, marketing, and the design of clinical trials. For instance, once a drug
has been designed and has shown promising results, its dosage and desired delivery
characteristics need to be determined. In addition to this mass manufacture and
synthesis of the drug need to be considered. Traditionally this involved trial-and-
error testing, a process that can now be replaced by Al (Kalra et al., 2002).
Computational tools can also be used to solve formulation problems (Mehta et al.,
2019). Computational fluid dynamics (CFD) and discrete element modelling (DEM)
can be used to optimize manufacturing by predicting the movement, dispersal, and
packaging of drugs using automated production processes (Rantanen & Khinast,
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2015). Clinical trials are needed to determine the safety and efficacy of a drug in
humans. A process that requires 67 years and is costly (Hay et al., 2014). These
trials often fail or are complicated due to inappropriate patient selection and infra-
structure problems (Harrer et al., 2019). Al can be used to improve patient selection
for recruitment in Phase II and III clinical trials using patient-specific genome or
exposome profile analysis. This can give an indication of the presence and level of
drug targets in patients and therefore, the effectiveness of the drug (Harrer et al.,
2019; Mak & Pichika, 2019).

11.8 Limitations to AI-Based Drug Design

Al-based drug design promises to speed up the creation of new drugs and can aid the
pharmaceutical industry in manufacturing and testing, resulting in lower costs and
cheaper drugs. However, there are challenges that Al in drug design faces that must
be overcome. Al depends on substantial amounts of data to learn from and interpret.
This data must be reliable and be of a high quality. Al also requires skilled Al-based
platforms operators and concerns arising due to potential job losses as Al replaces
humans. There is also apprehension due to the black box problem, where users do
not know how an Al has arrived at the result of the analysis due to algorithms
changing and evolving due to DL and ML (Lamberti et al., 2019). However, human
intervention is required as Al needs to be trained by humans. Data security is also a
concern as Al-driven personalized medicine requires omics data of an individual and
this constitutes personal information. The ethics surrounding the use and sharing of
this information need to be established.

11.9 Conclusion

High costs and low efficiency are the greatest challenges that new drug design faces
and this chapter has demonstrated how Al can be used to help solve these challenges
and lead to shorter development times for drugs. This has been facilitated due to
advances in computing and the ability to obtain big data sets from high-throughput
omics technologies. Al also allows for the integration of data from different sources
and levels of cell biology. In the case of drugs targeting alternative splicing, it allows
for the integration of proteomic and transcriptomic data to identify splicing events
and search drug databases for molecules that can target different protein isoforms. It
also allows data regarding molecules that regulate the splicing process, such as
expression and transcription profiles of RNA binding proteins and splicing factors
to be integrated into the analyses. Despite the discussed challenges many new drugs
targeting splicing and many new drug targets that arise due to splicing or are
involved in the splicing process have been identified using Al (Fig. 11.5).
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Fig. 11.5 The role of Al in drug discovery. The schematic represents the myriad of ways that Al
can be used for the development of new drugs
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Chapter 12 ®)
Applying Artificial Intelligence Prediction <z
Tools for Advancing Precision Oncology

in Immunotherapy: Future Perspectives

in Personalized Care

Botle Precious Damane, Zilungile Lynette Mkhize-Kwitshana,
Mahlatse Cordelia Kgokolo, Thifhelimbilu Luvhengo, and Zodwa Dlamini

Abstract Artificial intelligence (AI) has revolutionized the medical field more
evidently in managing and treating cancer as it continues to be a global burden.
Artificial intelligence has been imperative in the screening and detection of cancer
for decades. As technology evolves, Al has gone as far as predicting the risk of
cancer development or recurrence. More profoundly, machine learning (ML) can
advance individualized cancer therapy (precision medicine) through molecularly
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targeted therapies or cancer immunotherapy. Machine learning algorithms are uti-
lized to develop models that can monitor treatment response and resistance to cancer
immunotherapy. However, the ability of ML to deal with large data sets accurately
and precisely requires careful construction and articulation of prediction models.
This chapter will discuss some of the models which are used to identify diagnostic
and predictive biomarkers for stratification of cancer patients who will respond
positively to immunotherapy and/or stratification based on the likelihood of devel-
oping resistance to treatment. Furthermore, the chapter will address how Al plays a
role in advancing precision medicine in cancer immunotherapy.

Keywords Arttificial intelligence - Precision medicine - Cancer immunotherapy -
Prediction model - Machine learning - Immune checkpoints

12.1 Introduction

Cancer immunotherapy refers to the manipulation of the patient’s immune system to
fight cancer (Waldman et al., 2020). Precision medicine refers to the identification of
a specific molecular biomarker of a disease and using the same marker to target
it. Precision medicine is selective and thus keeps healthy cells and the surrounding
tissue unharmed as it avoids the traditional one-size-fits-all approach when using
chemotherapy and radiation (Lewis & Yap, 2020). In the broader sense of the
concept, precision medicine refers to customized treatment practices for specific
groups of individuals or specific tumors or disease profiles. Artificial intelligence can
monitor the use of cancer immunotherapy, predict patient tolerance, and optimize
treatment response. Prediction models which are generated through AI provide
information about the patient’s health status and assist with diagnosis, patient
outcome, and identification of prognostic factors. This information is based on the
input data such as the patient’s symptoms, environment, tissue or anatomical
imaging, and molecular biomarkers (de Hond et al., 2022). Subtypes of Al include
machine learning (ML), deep learning (DL), robotics, computer vision, natural
language processing, and a lot more (Liang et al., 2020; Sarker, 2021), however
not all Al tools are applicable instantaneously (Shao et al., 2021).

The development of neural networks comes with the disadvantage of having a
multitude of ineffectual data that need to be filtered to create a workable lucrative
system. Several ML classifier algorithms including artificial neural networks
(ANNSs), support vector machines (SVMs), and decision trees (DTs) can accurately
predict the existence of cancer and/or prognosis (Shaikh & Rao, 2022). Deep
learning is capable of processing input of medical images to solve complex data
involving classification, segmentation, and image texture. Deep learning comes with
neural networks that can process high-quality output images fast and efficiently.
Deep learning programs include deep neural networks (DNNs), convolutional neural
networks (CNNs), and recurrent neural networks (RNNs) (Shao et al., 2021). The
deep learning program is useful for monitoring of the response to treatment inclusive
of immunotherapeutic agents in patients diagnosed with cancer. Trebeschi et al.
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designed the prognostic Al-monitor (PAM) that can accurately predict the overall
survival of patients during treatment with immune checkpoint inhibitors (ICs)
(Trebeschi et al., 2021). This chapter will cover the existing Al tools that are used
to predict therapeutic responses to cancer immunotherapy. The feasibility of the Al
tools will be addressed as well as the measures taken to improve the efficacy of
cancer immunotherapy using Al tools.

12.1.1 Cancer Immunotherapy

Exposure to environmental carcinogens (Koual et al., 2020) or genetic predisposi-
tions (Wang, 2016) that contribute to cancer development can be fought off at the
cellular level by the immune system until such time that cancer cells manage to
escape immunoediting and grow beyond control. Cancer cells use specific escape
mechanisms which include manipulation of the immune system to recognize cancer
cells as part of the normal body cells. Similar mechanisms explain how immuno-
therapy is used to manipulate and heighten the host immune system to enable it to
identify and destroy cancer cells (Suresh & O’Donnell, 2021). Adverse events (AEs)
seen with cancer immunotherapy are due to heightened immune responses which are
intended to elicit anticancer immune responses. The type and severity of AEs depend
on the type of immunotherapy used and can be mild or even life-threatening (Barber,
2019).

12.1.1.1 The Efficacy of Cancer Immunotherapy

Key to the success of cancer immunotherapy is its ability to target cancer cells while
preserving normal cells. The effectiveness of immunotherapy has improved signif-
icantly over the years with remission reported in some of the patients (Ventola,
2017). The success of immunotherapy has led to the Food and Drug Administration
(FDA) approving more immunotherapeutic drugs for cancer treatment particularly
immune checkpoint inhibitors, especially for hard-to-treat cancers (Twomey &
Zhang, 2021). Table 12.1 categorizes and highlights some of the FDA-approved
therapies and their mechanisms of action.

Immunotherapy has its pros and cons. The variations in treatment response
between different cancers and individuals with the same cancer can be due to lack
of specificity, the ability of anticancer immune cells to recognize and destroy cancer
cells, and drug resistance. Moreover, tumor mechanisms such as the dense tumor
microenvironment which may prevent drug delivery to the core of the tumor, the
reliance on the individual’s immunocompetence, and the involvement of microbiota
all contribute to immunotherapeutic response (Sambi et al., 2019). Similar to all
other treatment strategies, challenges with immunotherapy include side effects such
as overstimulation of the immune response (cytokine release syndrome). This aspect,
however, falls outside the scope of this chapter and will not be dealt with in detail.
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Table 12.1 Categorization of cancer immunotherapies
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FDA-approved drug

Mode of Action

| Reference

Immunotherapy: Vaccines

Sipuleucel-T

Dendritic cells (DCs) activate T cells to

Anassi and Ndefo (2011),

(Provenge) target prostatic acid phosphatase. Ventola (2017), DeMaria and
Bilusic (2019)

TICE (BCG BCG activates T cells immune response | Han et al. (2020)

vaccine) and promotes phagocytosis of cancer

cells by macrophages. BCG cell wall
surface marker and glycosaminoglycan
on the surface of normal urothelial cells
bear negative charges that make it chal-
lenging for BCG to enter normal cells.
Instead, BCG gains access preference to
positively charged cancer cells.

Immunotherapy: Immunomodulators

Cytokines

IFN-a Enhances MHC class I expression, Lee and Margolin (2011)
mediates maturation of DCs, and acti-
vates effector cells.

IL-2 IL-2 signaling forms an integral part of

regulatory T cells’ (Tregs) suppressive
function. Tregs block the anti-tumor
functional capacity of cytotoxic T cells.

Immune checkpoint inhibitors:

Multiple (listed in
references)

Generally, CTLA-4 and PD-1 are normal
co-inhibitors that downregulate an
immune response to maintain immune
homeostasis and can thus block anti-
tumor T cells immune responses. CTLA-
4 and PD-1 inhibitors act by halting the
activities of these molecules thereby
enabling anti-tumor immune responses to
continue. Otherwise, there is a list of
drugs developed to inhibit these immune
checkpoints with each having a specific
side and mode of action.

Vaddepally et al. (2020),
Twomey and Zhang (2021)

Agonists:

Mostly under clini-
cal trials

Activates T cells and induces the
expression of costimulatory molecules
resulting in inflammatory responses.

Kaczanowska et al. (2013),
Choi et al. (2020)

Immunotherapy: Adoptive cell therapies

Chimeric antigen
receptor (CAR)
T-cell therapies

CAR-Ts are genetically modified autolo-
gous T cells that specifically target and
kill cancer cells. First, autologous circu-
lating T lymphocytes will be isolated by
leukapheresis. Then lymphocytes will be
genetically engineered with chimeric
tumor-specific antigens and these tumor-
infiltrating lymphocytes (TIL) are
expanded and transferred back into the
same patient as a form of therapy.

Rohaan et al. (2019), Fischer
and Bhattarai (2021)

(continued)
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Table 12.1 (continued)

FDA-approved drug | Mode of Action Reference

Immunotherapy: Oncolytic virus therapy
T-VEC Similar to BCG, T-VEC promotes lysis | DeMaria and Bilusic (2019),
of cancer cells and activation of immune | Ferrucci et al. (2021)

T cells responses in the tumor microen-
vironment. Furthermore, activation of T
cells via DCs is facilitated by GM-CSF
inserted within the virus.

Immunotherapy: Monoclonal antibodies
Multiple (listed in Monoclonal antibodies exhibit a variety | Zahavi and Weiner (2020),
references) of anticancer mechanisms such as Coulson et al. (2014)
enhanced identification of cancer cells,
improvement of cytotoxicity, blocking
cancer cell growth, promotion of apo-
ptosis, specific delivery of radio- or che-
motherapy and blocking angiogenesis

12.1.2 Al and Biomarker Prediction Tools
12.1.2.1 Identification of Genomic Immune Signatures

The response of cancer to systemic treatment is influenced by its stage and molecular
profile. Hepatocellular carcinoma is a heterogeneous disease with a divergent
response to local and systemic therapy. Prediction of therapeutic response by
identification of immune profiles that can be utilized as clinically actionable bio-
markers in hepatocellular carcinoma patients was determined using DL prediction
tools. Upregulated immune signatures were identified using The Cancer Genome
Atlas (TCGA). Immune signatures were selected based on their known ability to
improve immunotherapeutic response. Training of CNN was performed based on
these immune signatures and digital histopathology (Fig. 12.1).

Patch-based model is used to correct the background noise caused by a random
signal that interferes with data acquisition. This noise could occur during transmis-
sion or due to the quality of input data (Alkinani & El-Sakka, 2017). For the patch-
based model (Fig. 12.2), 500 patches were chosen from the slides. Patches were
predicted using pre-trained ShuffleNet and categorized into high or medium/low
clusters. Hierarchical clustering was performed using the Ward2 algorithm and
Euclidean distance. In classic multiple-instance learning, bags of unlabeled instances
were considered positive if a bag contained one or more positive instances (cluster
high) and negative if all instances were negative. The model was able to predict
digital histological images outside of the region of interest (ROI) which was
accomplished by combining annotations from the most predictive patches.
Clustering-constrained attention multiple-instance learning (CLAM) is another
method that was used in the study to identify patches that were of clinical signifi-
cance. The identified patches were then used to make predictions of the whole slide
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Fig. 12.1 Simplified illustration of identification of immune cells on a whole slide image by digital
pathology using deep learning prediction tools. When training a classifier to identify an image, a
neural network will create a simplified way to recognize the image by creating numerical patterns.
These patterns are calculated and filtered into a feature map which will allow the placement of
specific features of a cell until accurate identification is achieved

Patches

Region of interest

Segmentation Classification

Fig. 12.2 Classification of immunomorphological features on a whole slide image. An ROI will
first be selected. This region encompasses characteristics that represent the entire image. Boundaries
are created around each cell. Segmentation is performed to separate each cell according to its
boundaries. A classifier will separate each cell according to morphological features and character-
istics. Here the computer is trained to differentiate types of immune cells. These include the ability
to isolate immune parameters from morphological features such as the stroma, cells dying from
neoadjuvant therapy, cancerous and normal cells

images (WSI). The AI methods allowed the authors to identify the highest expres-
sion of immune gene signatures that were likely to correlate with a subset of
hepatocellular carcinoma (HCC) cells that would most probably be sensitive to
cancer immunotherapy. The CLAM model was able to accurately predict tumor
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immune clusters in 38/42 cases that would benefit from targeted immunotherapy
(Zeng et al., 2022).

12.1.2.2 Long Noncoding RNAs as Prognostic Markers

Another set of biomarker tools are long noncoding RNAs (IncRNAs) which have
been used as predictive markers of overall survival in several cancers. Novel
immune-related IncRNA signatures are becoming more popular as prognostic or
overall survival markers in bladder (Ren et al., 2022), breast (Ma et al., 2020),
nasopharyngeal (Liang et al., 2022), lung (Zhou et al., 2022), and colon (Lin et al.,
2020) cancers. Although several authors have confirmed the role of immune-related
IncRNA signature (IRLS) as predictive biomarkers, IRLS have limited predictive
value in colorectal cancers. High-risk patients have to undergo chemotherapy while
low-risk patients show improved responses to immunotherapy such as bevacizumab.
The selection of patients suitable for immune checkpoint therapy is based on several
parameters including expression of PD-L1, tumor mutation burden, and identifica-
tion of defective mismatch repair markers such as microsatellite instability (MSI) or
deficient DNA mismatch repair (IMMR) which are not always reliable or accurate.

There is a plethora of identified gene expression markers that are not clinically
actionable due to multiple factors including the need for consistent and reliable ML
tools. Data sets from multiple studies with clinical and molecular information can be
collected and ML applied to detect specific IRLS that can be used as reliable
predictive markers for colorectal cancer patients who will benefit from myeloid-
derived suppressor cells (MDSCs) immunotherapy. From 235 IRLS identified,
43 were prognostic. These were subjected to ML-based integration to get a consen-
sus. The TCGA-CRC data set (101 prediction models) was subjected to Leave-One-
Out Cross-Validation (LOOCYV) framework. The use of lasso cox followed by
stepwise cox identified 16 IncRNAs. This set was used to determine patient risk
scores and overall survival (Liu et al., 2022).

12.1.2.3 MicroRNAs as Prognostic Markers

The use of anti-PD-1 as a predictive marker for cancer immunotherapeutic outcome
is limited to 30-50% of cases which could be due to the heterogeneous cell density
of the tumor microenvironment. Machine learning can be employed to handle the
heterogeneous data collected from the tumor microenvironment and develop
decision-making Al tools to support precision oncology and personalized care.
The microRNA (miRNA) signature classifier (MSC) has been validated as an
independent prognostic indicator in lung cancers and an ML tool was developed to
predict the efficacy and therapeutic response to cancer immunotherapy in non-small
cell lung cancer (NSCLC). Data on patient demographics, medical history, tumor
stage, PD-L1 expression, molecular diagnosis, radiology, patient management, and
therapeutic response was combined to develop the predictive algorithm. The MSC
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algorithm consisted of low, intermediate, high, and hemolyzed categories. The
hemolyzed category was thought to be due to the presence of microRNA in the
blood cells (Prelaj et al., 2022).

Recognition of blood miRNA is validated by the study done by Rajakumar et al.
who identified five miRNA signatures for prediction of the overall survival of
patients with advanced NSCLC on anti-PD-L1 therapy from whole blood miRNA
profiling (Rajakumar et al., 2022). The authors further assessed if the revised
miRNA risk (miRisk) score could predict patient response to chemoimmunotherapy.
Patients selected for the study had high expression levels of PD-1 ligand (>50%)
pre-immunotherapeutic treatment. The miRisk score was stratified according to the
median risk score within the low-risk < —0.0725 < high-risk training cohort. The
low miRisk cohort had significantly increased overall survival which did not corre-
late with that of combinatorial therapy suggesting that immunotherapeutic markers
cannot be used as predictive markers for combinatorial therapy, specifically with
chemotherapy (Rajakumar et al., 2022).

The most relevant feature for ML training was selected based on the available
literature and clinical experience paired with a linear correlation higher than 0.8.
Only one of the features was chosen. The classification was performed using a
feedforward neural network (FFNN), logistic regression (LR), K-nearest neighbors
(K-NN), support vector machines (SVM), and random forest. The best-suited feature
was selected using the Akaike information criterion (AIC). The model that was
selected based on performance for predicting therapeutic response was the
LR. Features included functional status as measured by the Eastern Cooperative
Oncology Group (ECOG) performance status, immunotherapy, line of therapy, the
neutrophil-to-lymphocyte ratio (NLR), the MSC test, and PD-L1. The model could
accurately predict treatment response and patient survival. The limitation of this
study was the exclusion of the radiogenomics and sample size (Prelaj et al., 2022).

12.1.2.4 Radiomics as Therapeutic Response Monitoring Tools

A multi-cohort study using a radiomics-based biomarker of tumor-infiltrating CDS8
cells in patients on anti-PD-1 monotherapy was performed to assess predictive
immunotherapeutic response in multiple solid cancers. A radiomic signature profile
was identified with high contrast computerized tomography (CT) scan images and
RNA-sequencing genomic data (CD8B gene). The radiomic signature was validated
on the TGCA database. The CD8 cell expression signature was constructed using the
elastic-net regularized regression method. A high radiomic score was correlated
with an increased objective response rate (ORR) at 3 months compared to patients
with progressive disease or stable disease. These results were also associated with
improved patient overall survival (Sun et al., 2018).

Yang et al. utilized a multi-omics DL approach to predict response to cancer
immunotherapy (anti-PD-1/PD-L1) in NSCL cancer. Data collection included
radiomics, laboratory, and baseline clinical data. A unified DL tool was used to
integrate this data and multimodal serial data from CT scans. The CT scan data was
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grouped according to RECIST. A group of responders was based on the reports that
showed complete or partial treatment response and non-responders were patients
who had progressive disease. Radiomics was used to analyze radiographic features.
A DL model with Simple Temporal Attention (SimTA) modules was developed to
process the asynchronous clinical time series between radiomic and blood test
features. A 60-day (SimTAgpg) and 90-day (SimTAgg) response models were
developed. The RNN DL models using baseline PD-L1 expression, blood profile,
and radiomics were used to validate the use of SimTA modules. The data obtained
was integrated with clinical data. All these data were incorporated into a multiple
layer perceptron (MLP) structure for the prediction of responders and
non-responders. The neural network was trained for classification purposes and
optimized with an Adam optimizer. The module was able to correctly group
responders and non-responders; however, the RNN model was not as good in
terms of distinguishing responders from non-responders. The study also indicated
that low-risk patients had significantly improved progression-free survival (PFS) and
overall survival than high-risk patients (Yang et al., 2021).

Trebeschi et al. [8] developed a prognostic Al-monitor (PAM) model to monitor
immunotherapeutic response in metastatic urothelial cancer patients. Whole body
information was collected from the chest and abdominal CT scans which also
provided an overview of disease complications and patients’ immune response to
immunotherapy. The AI tool, PAM consisted of three modules. The localizer
module used CNN trained to focus on the chest and the abdomen in two separate
images and the last two modules were named trackers. These modules used CNN
with instances trained for chest and abdominal imaging, respectively, for analysis of
morphological changes. Trackers were designed to match anatomical landmarks and
shapes of two 3D radiological images and quantify anatomical differences between
them (Trebeschi et al., 2021).

12.1.2.5 Other Approaches

Paracrine-regulated cross-talk between various cell types, including immune and
tumor cells, and cell-matrix interactions may be involved in promoting tumor
progression (Place et al., 2011; Quail & Joyce, 2013; Burkholder et al., 2014;
Ungefroren et al., 2011). The cell-matrix interactions can be manipulated to enhance
treatment and improve patient clinical outcomes (Bracci et al., 2014; Beatty &
Gladney, 2015). Wang and colleagues developed an image classifier that could
quantify TIL and analyze morphological features of the image to assess the interac-
tion between cancer and immune cells. The aforementioned characteristics were
analyzed in comparison with patient clinical outcomes and CNN was used for nuclei
segmentation. A watershed and feature-based approach was used to detect TIL and
cancer nuclei and thereafter, CNN was used for the characterization of the normal
stroma and epithelial tissue. High infiltration of lymphocytes and cancer cells was
associated with poor prognosis. The groups were separated based on lymphocytic
and non-lymphocytic clusters. The density and spatial closeness between
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lymphocytes and non-lymphocytic cells were used as quantitative image features.
These parameters could be used in predicting which patients will respond well to
cancer immunotherapy (Wang et al., 2022).

12.2 Integration of AI Tools in the Enhancement of Cancer
Immunotherapies

The response to immune checkpoint inhibitors is predicted based on the detection of
specific IC (e.g., PD-L1) associated with the disease but patients do not always
benefit from treatment with ICs. There is variability in PD-L1 expression amongst
patients with the same cancer, patients with different cancer types, and the frequency
of tumor-infiltrating immune cells (Davis & Patel, 2019). To overcome the variabil-
ity of PD-L1 expression, adjuvants are used to improve the efficacy of cancer
vaccines by heightening specific anticancer immune responses. For example,
Cervarix vaccine is utilized as a preventative measure against human papillomavirus
(HPV) 16 and 18 types. Approximately 70% of cervical cancers are attributable to
HPV 16 and 18 (Ahmed et al., 2017; Dubensky & Reed, 2010). Cervarix vaccine is
formulated with a toll-like receptor (TLR)-4 targeted adjuvant known as
monophosphoryl lipid A (Dubensky & Reed, 2010). The TLRs modulate immune
responses in multiple ways which include reduction of cancer favoring immunosup-
pressive effect of regulatory T cells (Han et al., 2019), MDSCs, tumor-associated
macrophages (TAMs) (Liu et al., 2020), and stimulation of neutrophils (Hayashi
et al., 2003) which may promote metastatic spread of cancer (Xiong et al., 2021).
TLRs can also increase cancer immune responses by activation of DCs, hence the
use of the CpG vaccine adjuvant which activates DCs through TLR9 (Chen et al.,
2022).

Chaudhury et al. combined immune response profiles with data integration and
ML to investigate how adjuvants modulate vaccine-induced immune responses.
Three liposomal formulations, namely Alum (ALFA) with or without 1QS21
(ALFQ) were used and a multivariate prediction model was developed based on
their effect on the immune response. The self-assembling protein nanoparticles
(SAPN) vaccine (FMP014) was administered to rhesus monkeys. The levels of
CD4+ and C8+ T cells and cytokine profiles were measured at different time points
and the effect of vaccination was accessed at each time point. Immune responses
were based on the difference with adjuvant and not antigen dose-related immune
responses and so most of the measurements were vaccine-induced. A difference in
the immune response of ALFA and ALFQ animal groups was observed. A random
forest model was used to categorize immune profiles between these two groups. An
ML tool was trained to analyze the adjuvant used by accessing its immune profile.
The model predicted which animals received a vaccine with ALFA or ALFQ as an
adjuvant with 92% accuracy (Chaudhury et al., 2018).
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The development of cancer vaccines depends on the ability of immune cells to
recognize tumor antigens and facilitate their destruction by antigen-presenting cells
such as DCs. Adoptive cell therapies are based on the augmentation of anticancer
immune responses by harvesting tumor antigen-exposed tumor-infiltrating lympho-
cytes (TILs). Precision and specific identification of tumor antigens by human
leukocyte antigen (HLA) molecules are central to the efficacy of these immunother-
apies. The HLA epitope prediction algorithms that have been utilized thus far are
based on the binding of the peptide—-HLA complex. However, these models have not
been successful in predicting HLA presentation. Bulik-Sullivan developed an HLA
class I epitope prediction algorithm that could accurately predict HLA presentation
crucial to the development of personalized immunotherapies by using data sets
collected from mass spectrophotometry. A neural network model, the epitope
discovery in cancer genomes (EDGE) was trained from the data set of tissue samples
with paired class I HLA peptide sequences, HLA types, and transcriptome sequenc-
ing. The HLA peptide presentation was directly proportional to the mRNA expres-
sion of their source gene. Peptides were considered positively labeled if they were
identified using mass spectrometry and negative if identified via the reference
proteome not detectable by mass spectrometry. From here data sets were categorized
into validation and testing sets. The model accurately identified HLA alleles based
on gene RNA expression and gene-specific presentation propensity (Bulik-Sullivan
et al., 2019).

12.2.1 Al Tools for the Prediction of Novel Immune-Related
Adverse Events

It is of outmost importance that healthcare providers ensure that the risk of devel-
oping side effects is minimal, particularly in patients who are less likely to benefit
from cancer immunotherapy. Some patients falling under the category of responders
might still develop side effects. Kichloo et al. reviewed systemic adverse effects
caused by cancer immunotherapy and grouped them according to specific organ
toxicity which ranged from cardiotoxicity mainly attributed to ICs and chimeric
antigen receptor (CAR) T-cell therapy to dermatological, pancreatic, endocrine, and
gastrointestinal problems and possibly more. It is predicted that with more discov-
eries of cancer immunotherapeutic agents, understanding of their mode of action,
and the information provided by patients on therapy, the benefits of cancer immu-
notherapy will eventually outweigh the risks (Kichloo et al., 2021).

Martins et al. noted that ICs have not only reshaped the traditional therapeutic
golden standard-of-care approaches but have also brought new hope to patients. This
statement is supported by real stories of patients who are in remission and remain in
remission years after they have stopped cancer immunotherapy. However, a new
spectrum of adverse effects has been reported with characteristics that have not been
observed with chemotherapy. With the discovery of new immunotherapeutic agents,
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new and rare adverse effects might surface (Martins et al., 2019). Clinicians should
therefore be prepared and find ways to learn about immune-related adverse events
(irAEs) in advance so they can act timeously and accordingly.

Having to detect the possibility of patients developing irAEs could save some of
the patients from the additional psychological strain caused by a cancer diagnosis
and irAEs which would more likely have a positive impact on the patient’s quality of
life and overall survival. Machine learning can be used to determine the possible
development of irAEs from data collected from previously reported clinical out-
comes post-cancer immunotherapeutic immune response. To predict whether
a patient has irAEs (presence) or the odds of a patient developing irAEs (onset),
ML binary classification model was used. A questionnaire with 18 monitored
symptoms was collected from cancer patients receiving ICs using a digital platform
and then data sets were collected from a treating clinician with records of symptoms
from when treatment was initiated and terminated. These included the type of
toxicity and the location thereof.

Several ML models were applied including logistic regression, elastic-net regres-
sion, support vector machines, light gradient boosting machine (LightGBM), and
random forest. However, these were excluded except for python library extreme
gradient boosting (XGBoost) which gave the best fit for the objectives of the study.
The input data for the first model contained the electronic patient-reported outcomes
(ePRO) data and was trained to detect the presence of irAEs. The second model was
trained to detect the onset of irAEs. The developed model was able to accurately
predict the presence of irAEs but was not able to predict the onset of irAEs
(Tivanainen et al., 2021).

An increase in cancer progression (hyperprogressive disease) has been observed
in patients on ICs. Hyperprogressive disease is associated with many factors includ-
ing age, genetic mutations, and metastatic disease. Identification and stratification of
patients at risk of developing hyperprogressive disease will be an additional impor-
tant tool in clinical decision-making (Vaidya et al., 2020). An increase in quantita-
tive vessel tortuosity (QVT) serves as an indication of a positive response to
treatment with ICs. Baseline contrast CT scans were used to study tumor vasculature
and correlated it with overall survival and predictive response to ICs in lung cancer
patients. RECIST was used to categorize patients into responders and
non-responders. Using an unsupervised clustering algorithm, two survival groups
were identified. This allowed for successful prediction of responders and improve-
ment of overall survival (Alilou et al., 2019).

Patients with hyperprogressive disease will have distinct radiomics features that
can be used to develop predictive Al tools useful for the stratification of advanced
NSCL patients on ICs therapy who are at risk of developing hyperprogressive
disease. After RECIST categorization, the effect of immunotherapy on tumor size
per unit time (months) was used to determine the hyperprogressive disease.
Unsupervised clustering (heatmaps and K-mean) was performed on radiomics
features and a supervised algorithm was applied to identify hyper-responders. The
random forest, linear discriminant analysis, diagonal linear discriminant analysis,
quadratic discriminant analysis, and support vector machine were tested as training
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models. Ultimately the best fit model was a random forest classifier which was also
used for the validation set. Prediction of hyper-responders also revealed that this
group of patients had lower overall survival than the other groups (Vaidya et al.,
2020).

12.2.2 Implementation of Al Tools for Monitoring Patient
Compliance to Cancer Immunotherapy

The benefits of cancer immunotherapy include the ability of the body to regain
effective immunoediting processes that recognize and destroy cancer cells. The
patient immune system regains memory of cancer cells and develops mechanisms
that keep these cells at bay until such time that the patient is in remission. The
immune system is armed in such a way that recurrence is limited/prevented. How-
ever, these benefits can be hampered by patient's poor adherence to treatment or
hospital visits. A concern that is managed while the patient is still hospitalized.
Non-compliance by patients is attributed to several factors including not taking the
medication at prescribed times, stopping medications once the patient feels better or
due to certain side effects such as nausea, diarrhea and fatigue, taking incorrect
dosage, forgetfulness, inconvenience, and family support. Non-compliance has a
significant impact on therapeutic response and clinical outcomes (Jin et al., 2008;
Nizet et al., 2022).

The Al tools have been developed to assist patients with adherence. These can
come in a form of phone applications (apps) with a personalized patient profile that
sends reminders with schedules for daily medications. These Al technologies have
information that can assist patients with frequently asked questions related to the
medication, how to control possible adverse effects, and when to visit their oncol-
ogist. Web-based apps allow patients to constantly report adverse effects to their
healthcare providers assisting with patient monitoring. These apps have built-in
alerts set to alarm healthcare providers should the patient need immediate attention.
Graetz et al. evaluated the use of a remote patient care monitoring platform to
improve management of adverse effects and adherence to breast cancer therapy.
Alerts were sent by email to the hospital team who would then pay attention to
reports of new symptoms, increased severity, or if 2 or more dosages were missed
and respond to patients within 24 hours of receiving alerts. The apps with reminders
were utilized better (73.5% of participants) than apps without. Email alerts received
from this group of patients were also higher. Adherence to breast cancer therapy was
significantly higher in patients who had the app and reminder (100%) than those who
only had the app (72.7%) (Graetz et al., 2018). However, the study did not compare
compliance with patients who had no app.

Chatter robots (Chatbots) are also referred to as digital assistants or intelligent
agents. Chatbots is a software application developed from ML that can be used to
have a conversation with a patient via text (Xu et al.,, 2021). Conveniently so,
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chatbots are integrated into WhatsApp messaging that is more familiar and widely
used in African countries as well (Belfin et al., 2019). Chatbots would allow a patient
to take a photo of a skin lesion for cancer diagnosis. Data sets of images of patients
confirmed with skin cancer are used to train CNN models to make predictions of
whether the lesion is malignant or benign. If the lesion is malignant, the model will
be able to accurately classify the type of skin cancer the patient has. The patient will
be able to communicate with the software and ask questions related to the diagnosis
and get urgent medical advice and intervention (An, 2021). This platform can further
be used to monitor patient response to skin cancer immunotherapy. Adverse effects
can be managed effectively and images of improved or worse responses can be
uploaded to help the patient cope with the disease outside clinical visits.

These Al applications could assist with improved patient overall survival and
reduce the burden of disease which would in return reduce hospital visits and
consequently transport costs. This will also provide healthcare professionals with
the opportunity to manage the burden of service delivery and reduce costs related to
patient management, especially in the public sector. Remote monitoring can help
patients keep track of their medications and reduce the risk of cancer recurrence
(Xu et al., 2021).

12.3 Challenges of Al in Cancer Immunotherapy

Implementation of Al use, particularly in LMICs can pose significant challenges.
Most African countries have regions where there is limited access to technology
such as communication towers needed to transmit cell phone signals or connect to
the internet. Thus, web-based apps used to monitor patient treatment response and
adherence can be challenging in these setting. Although such interventions have
been reported to improve patient adherence, reduce racial disparities in cancer
treatment strategies, and improve cancer survival outcomes, these advantages are
yet to be leveraged in LMICs (Graetz et al., 2018). It should be noted that most
cancer patients require psychological and emotional support and these applications
do not provide human interaction and emotional support. Consequences related to
psychological disturbances should the diagnosis be positive and the risks associated
with self-misdiagnosis can be detrimental. The apps are also not equipped with
detailed treatment plans (Xu et al., 2021).

A multidisciplinary team (MDT) consisting of oncologists, radiologists, sur-
geons, and pathologists was employed to assess the effectiveness of an assistant
decision-making system trained by Memorial Sloan Kettering [Watson for Oncology
(WFO)]. This Al technology is used to recommend treatment regimens for cancer
patients. Discrepancies in the concordance rate amongst participating countries and
the types of cancer were observed. Out of the 1738 cases that were studied,
959 (55.18%) cases were consistent with the MDT treatment schemes. In some
cases, 166 (9.55%) fell under the “not recommend” scheme while 110 cases (6.33%)
were not available for recommendation on WFO. This data serves as an indicator
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that there is still more work to be done to improve the reliability of Al tools used for
treatment recommendations with either chemo or immunotherapeutic interventions.
The use of technologies such as WFO in LMICs is not always practical as it does not
accommodate locally available treatment modalities though it is meant to generate
treatment recommendations based on the data captured (Jie et al., 2021).

More applications use imaging features in combination with non-imaging data
and real-world data to train AI models for precision oncology. However, the quality
of data sets especially in studies where data banks such as the TCGA database are
not utilized can produce unreliable results. The concept of putting junk in and getting
junk out applies in every aspect of medical research. Training of models using large
data sets requires a multi-center approach. The challenge here is that annotation is
labor intensive and requires patience. This might result in discrepancies in segmen-
tations that might affect feature mapping. Thus, when collecting data from different
study sites, these issues should be taken into consideration during the validation
processes of the Al model. Ethical considerations might also be an issue as research
done on images require waiver of patient informed consent. The issue around the
protection of the personal information act (POPIA) could also be a concern as most
of the imaging data comes from archives and getting permission from patients
themselves can limit the feasibility of research studies (Cheung & Rubin, 2021).

12.4 Future Perspectives

The application of Al technologies has improved the efficiency and accuracy of
diagnosis and prediction of treatment responses in cancer. This includes the identi-
fication of biomarkers that have allowed for non-invasive diagnostic and prediction
methods. The precise identification of HLA alleles and presentation based on mRNA
expression is one of the breakthroughs in the development of future cancer immu-
notherapies. Future efforts to improve therapeutic response to ICs and limit adverse
effects should include analysis of other immune pathways involving suppressive
cells such as Tregs. Amoozgar et al. found that targeting glucocorticoid-induced
TNFR-related receptor (GITR) in Tregs can ameliorate anti-PD-1 therapeutic
response by several mechanisms including converting Tregs into cytotoxic T cells
and improving MHC recognition of tumor antigens. The authors noted significant
alleviations of therapeutic resistance and eradication of tumors in murine models
(Amoozgar et al., 2021). Al application in combination with RNA-Seq data sets
could improve the efficacy and accuracy of these studies. Validation of data using Al
tools could also facilitate their translation into clinical settings.
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Fig. 12.3 Multiple DL algorithms can be tested in determining patients that will benefit from
cancer immunotherapy. The most commonly used DL algorithms are listed on the diagram. Al
accomplishes what the human mind cannot comprehend in a short space of time with precision and
accuracy. The use of Al allows for the collection of data from multifaceted medical diagnostic
platforms. Large data sets can be analyzed to group patients into responders and non-responders,
saving time, and costs related to patient care/management and improving overall survival. DAE
Denoising autoencoder, DBNs—deep belief networks, LSTM—Iong short-term memory

12.5 Conclusion

The introduction of Al in medicine has allowed for big data sets to be processed by
integrating imaging data and data collected from several medical disciplines to
facilitate decision-making and improve precision oncology and clinical outcomes
(Fig. 12.3). AI has allowed for the stratification of patients into responders and
non-responders so that only patients who will benefit from cancer immunotherapy
are treated accordingly. This also assists with limiting irAEs and promotes patient
overall survival. Other treatment modalities can then be considered in a group of
patients categorized as non-responders. As noted in the text, the use of Al has shown
that even combinatorial therapies with chemotherapy and immunotherapy might still
not be beneficial in patients grouped as non-responders.
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for Individual Cancer Patients: Maximising
Therapeutic Efficacy
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Abstract Artificial Intelligence (AI) has made unique advances in anti-cancer drug
discovery, development and treatment. Although Al efforts in cancer therapy are not
meant to replace human capabilities, its benefits cannot be ignored either, as
humans’ capacity to generate most appropriate personalised treatment may be
limited. Every patient responds uniquely to treatment and Al-tools offer opportuni-
ties to study unique mechanisms of response and even recommend the most effective
personalised treatment combination. The success of precision oncology not only
depends on patient-drug optimum combination but also relies on innovative thera-
peutic approaches that may include new drug discovery, development and drug
repurposing. Al holds great potential in maximising therapeutic efficacy for each
patient and improving patient outcome. Furthermore, it is emerging that adaptive
therapy empowered by Al may transform the landscape of precision oncology in
favour of improved patient outcome. This chapter will focus on Al-enhanced
decision support systems in optimising therapeutic approaches, advancing precision
oncology and improving patient outcome.
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13.1 Introduction

Artificial intelligence (Al) is a branch of computer science that deals with human
behaviour simulation in computers. Al relies on computers to follow human
established algorithms. These algorithms may also be learned by computers in
supporting human decisions or executing specific human tasks (Hosny et al.,
2018). Machine learning (ML), a sub-field of Al, represents processes by which
computers can improve their own performance by continuous incorporation of new
data into an existing model (Rajkomar et al., 2019). Deep learning (DL) is an ML
sub-field in which mathematical algorithms are arrayed using multi-layered compu-
tational units that resemble human cognition (Farina et al., 2022). DL can find
hidden information in images that may not be recognisable by the human eye, cancer
research and management is one of the most Al benefiting fields (Tartar et al., 2014;
Van der Waal, 2018; Li et al., 2019). DL has strong learning and reasoning abilities,
thus simulating human capacity (Houssami et al., 2019; Sherbet et al., 2018).

The growing load of cancer on healthcare systems and the necessity to minimise
its adverse effect on cancer patients’ lives necessitate the generation of care
approaches supported by predictive, personalised, preventive and participatory
(P4) systems (Hood & Auffray, 2013). Thus, employing Al-powered decision
support systems in recommending the most effective therapeutic approaches for
individual cancer patients in maximising therapeutic efficacy may be beneficial. In
this era, the widely employed treatment methods are steered by clinical practice
guidelines crafted by oncology experts. For instance, the American Society of
Clinical Oncology (ASCO) supplies oncology sites with guidelines that report
their practices via its Quality Oncology Practice Initiative. ASCO reports back
with a clinical site evaluation hinged on high-value measures that are patient-centred
procedures, including pain regulation (Abernethy et al., 2010; Rocque et al., 2019).
Notably, as large amounts of cancer patients’ clinical and molecular data become
available, Al and ML are being investigated for their potential to aid in the multi-
faceted cancer treatment decision-making (El Naqa et al., 2018; Walsh et al., 2019).
Diagnostics, prognostics, prediction of therapy outcomes and therapy prescriptions
are all possible applications of Al in oncology. For example, deep neural networks
(DNN5s) and convolutional neural networks (CNN5s) are utilised to categorise skin
cancer lesions (Esteva et al., 2017), lung cancer patterns (Gertych et al., 2019; Wei
etal., 2019), forecast HLA-peptide ability to bind for immunotherapy (Martins et al.,
2019) and define target quantity for radiotherapy (Boon et al., 2018). The ML
applications also include breast cancer therapy advice to deter metastasis (Jiang
et al., 2019) and using Bayesian networks to aid in the therapy plan (Sesen et al.,
2013; Cypko et al., 2017). Bayesian networks and logistic regression have also been
used to predict cancer recurrence (Witteveen et al., 2018). Other uses of ML in
cancer studies include predicting the short-term risk of death in patients beginning
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chemotherapy (Elfiky et al., 2018), indicating which patients will benefit from
adjuvant therapy (Steele et al., 2014). Additionally, Al could be essential to preci-
sion oncology by the detection and discovery of novel biomarkers that can be
targeted for population and personalised based therapy (Derbal, 2022; West et al.,
2020). This chapter will discuss Al-enhanced decision support systems, improving
therapeutic efficacies for personalised cancer care and improving patient outcome.

13.2 AIl-Tools in Optimising Drug Combinations
and Enhancing Effective Cancer Therapeutics: From
Drug Development to Personalised Care

Artificial intelligence (Al) tools have the potential to transform various facets of
cancer care, management and therapy. Al-empowered cancer therapy approaches
may include anti-cancer drug discovery, development and repurposing. These
Al-augmented efforts may also facilitate how these drugs are clinically validated
and administered (Ho, 2020). To date, drug discovery and development processes
are time consuming and costly. Variability between patients’ treatment outcomes is
also a challenge. Thus, Al holds promising potential to bridge such existing gaps in
optimising most effective therapeutic approaches, particularly for individual cancer
patients, Figs. 13.1 and 13.2.

Al-tools have also been reported to play a significant role in drug repurposing by
effectively predicting drug behaviour using genomic and chemical data (Menden
et al., 2013). Furthermore, Al-reinforcement learning was successfully reported to
design a new drug compound in 3 weeks, compared to standard timelines of about
1 year. Reinforcement learning uses the punishment and reward approach to train
Al-algorithms with a goal to achieve an intended drug structure. In addition to
Al-augmented anti-cancer drug discovery, drug pharmacokinetic properties can
also be deduced. For example, Zhavoronkov et al.’s (2019) study demonstrated
that the generative tensorial reinforcement learning (GENTRL) was trained by
chemical structures dataset that target the tyrosine kinase discoidin domain receptor
1 (DDR1) (Zhavoronkov et al., 2019). This receptor has been reported to promote
progression of various cancer cells. Al-based tools predicted receptor binding and
lead compound, with an aim of minimising off-targets or other tyrosine kinase
isoforms, thus improving drug-target binding. Table 13.1 summarises Al-based
tools in drug discovery.

Al-technology has the potential to transform the traditional drug-combination
based approach using the already available clinical trials data and resolving exten-
sive drug and dose parameters. This novel Al-approach will distinctly broaden the
pool of drugs in consideration and optimise combinations, even rare combinations
that may be effective towards maximising therapeutic efficacy. For instance, the
quadratic phenotypic optimisation platform (QPOP) has the potential to be used as a
clinical decision support platform to identify appropriate patient-specific drug
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Fig. 13.2 Cancer therapy developmental stages. The first step in therapy is to identify the drug
target. Lead compound must be generated and optimised to ensure adequate binding to the target.
The process will enter pre-clinical development and tested before entering the clinical trial phases.
This process will be optimised towards personalised cancer therapy

combinations. QPOP does not depend on previous assumptions such as cancer
molecular mechanisms, associated drug targets and drug combinations. This
Al-platform uses parabola represented quadratic relationships, thus correlating
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Table 13.1 Al-tools used in drug discovery

263

Tool Information Website URL and Reference
DeepTox This software predicts the toxicity of drugs. | www.bioinf jku.at/research/
DeepTox (Ciallella & Zhu, 2019)

ORGANIC | This is a molecular generation tool that https://github.com/aspuru-guzik-
assists in the creations of molecules with group/ORGANIC (Brown, 2015)
the required properties.

DeepChem | This is an MLP model that uses a python- | https://github.com/deepchem/
based Al system. This tool can be used to | deepchem (Zhu, 2020)
find an adequate drug discovery candidate.

DeltaVina This is a scoring function that allows https://github.com/chengwang88/
rescoring of drug—ligand binding affinity. | deltavina

DeepNeural- | This is a Python-based system driven by https://github.com/Merck/

NetQSAR computational tools. It can assist in the DeepNeuralNet-QSAR (Chan
detection of compound molecular activity. | et al., 2019)

Chemputer | Chemputer assists in the reporting proce- https://zenodo.org/record/1481731

dure of chemical synthesis and
standardisation.

PotentialNet

Predicts binding affinity of ligands using
NNs.

https://pubs.acs.org/doi/
full/10.1021/acscentsci.8b00507
(Pereira et al., 2016)

AlphaFold 3D protein structures prediction. https://deepmind.com/blog/
alphafold
Hit Dexter Uses ML techniques to predict molecules | http://hitdexter2.zbh.uni-
that respond to biochemical assays. hamburg.de
Neural Predicts properties of novel molecules. https://github.com/HIPS/neural-
graph fingerprint
fingerprint

inputs with optimal output sets. In such cases, inputs would be drugs and doses,
while outputs will be pre-clinical reduction in tumour with minimised drug toxicity.
Various studies have evaluated the QPOP platform in improving therapeutic effi-
cacy. For example, Rashid et al. (2018) used the QPOP Al-platform to evaluate
14 chemotherapy drugs in synergy with other drugs to treat multiple myeloma mouse
models (Rashid et al., 2018). Unexpectedly, QPOP identified rare drug combinations
such as mitomycin C and decitabine. Reportedly, monotherapy drug efficacy of each
of these two drugs was not achieved. This combination noticeably improved MM
mouse model outcomes when compared to standard clinical drug combinations
(Rashid et al., 2018). This platform can be used to explore novel targeted therapies
combinations in chemotherapy and immunotherapy.

Al has also been reported to predict toxicity related to radiation and chemother-
apy (Isaksson et al., 2020; Oyaga-Iriarte et al., 2019; Cuplov & André, 2020). ML
algorithms can be trained to develop models that can predict response to new anti-
cancer drugs or drug combinations using high-throughput screening data (Liang
et al., 2020; Simon et al., 2020; Meng et al., 2020; Goecks et al., 2020). Scientists are
also reported to advance ML-drug discovery in generating and creating molecules’
reverse synthesis pathways. Reverse synthesis of molecules, also known as
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retrosynthesis, is a chemical synthesis method involving the deconstruction of a
target molecule into its readily available, simple starting materials to assess the best
synthetic route (Liang et al., 2020). Large amounts of data are usually created from
the generation of new drugs, thus offering new opportunities to chemical-molecular
data processing and results generation that will aid in drug development
(Nascimento et al., 2019; Sharma & Rani, 2020; Watson et al., 2019). Additionally,
ML can assist in data processing that has been collected over decades in a short space
of time (Vamathevan et al., 2019). ML also can facilitate the support of making
informed decisions that would otherwise require experimentation costs (Koromina
et al., 2019; Klambauer et al., 2019; Ballester, 2019).

The approval rate of oncology drug candidates has unfortunately been reported to
be below 5% (Wong et al., 2019). It has also been reported that identifying
actionable biomarkers as potential treatment response predictive indicators improves
patient outcomes (Lin et al., 2019). Al-empowered biomarker discovery is also a
promising area towards improved treatment outcomes in advancing precision oncol-
ogy (Lin et al., 2019; Harrer et al., 2019). Through harnessing of electronic health
records (EHRs), patients’ genomic data and biomarker information, Al may also
enable remote clinicians’ teams to collectively work together in providing inputs to
diagnosis and prognosis. Furthermore, a neural network Al-platform, CURATE.AI
was used to study patient-specific combination therapy by modulating multidrug
dosing. This platform used a patient’s data solely by employing a second-order
algebraic algorithm. Optimal dosing associated with combination therapy safety and
tumour reduction was observed at various treatment time points (Pantuck et al.,
2018; Zarrinpar et al., 2016). However, this Al-platform to maximise therapeutic
efficacy through innovative combination therapy is being tested on smaller patient
cohorts and will therefore require larger patient pools for validation. Additionally,
Al-optimised compounds that combine with other standard therapies at a
sub-optimal level are not likely to significantly improve patient outcome.

Lind et al.’s (2019) research group developed an Al-random forest model that
integrates screening data and ML. This Al-model can predict anti-cancer drug
activity based on the mutation state of genomes of cancer cells. Furthermore,
Wang et al. (2018) group developed an Al-model, called elastic regression
predicting drug sensitivity. It has also been reported that ML models were able to
predict various cancers’ drug sensitivity. These included ovarian (tamoxifen treated),
gastric (treated with 5-FU) and endometrial (paclitaxel treated) cancers (Hossain
etal., 2019; Paik et al., 2019; McDonald, 2018; Li et al., 2019; Taninaga et al., 2019;
Liu et al., 2019; Stanzione et al., 2021; Giinakan et al., 2019). Al also may play an
important role in addressing cancer drug resistance by learning and analysing large
cancer drug-resistant data (Beck et al., 2020; Goldenberg et al., 2019; Leventakos
et al.,, 2019). The implementation of Al in anti-cancer therapeutics will require
involving the Al-tools from drug discovery, development, testing, validation and
administration. Al-tools also hold a promise to increasing the pool of combination
therapies for personalised care by tailoring bespoke treatments that combine multiple
therapeutic strategies. Table 13.2 outlines the benefits and challenges of
Al-enhanced cancer therapy.
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Table 13.2 Benefits and challenges of the aspects of Al-enhanced cancer therapy

Aspect Benefit Challenge
Target Decrease of toxicity and non-target Identification of the optimal tar-
Discovery effects. gets.

Increased drug exposure. Validation of Al-designed drugs.
Development Drug and dosage optimisation. Improved trial results.

Patient and trial matching. Stratification of patient data.
Administration | Approved dosages. Validation.

Decrease in resistance. Similar benefits in various

cancers.

13.3 AI-Empowered Clinical Decision Support:
Applications in Chemotherapy, Radiotherapy,
Immunotherapy

Al-chemotherapy applications focus more on patient-drug response. The key
achievements include chemotherapy drug management use, chemotherapy drug
tolerance prediction and chemotherapy program optimisation (Chen et al., 2018;
Levine et al., 2019; Smail-Tabbone & Rance, 2019; Zhu et al., 2012). In a recent
study by Pantuck et al. (2018), optimal dose combination of zen-3694 and
enzalutamide was determined using CURATE.AI (Pantuck et al., 2018). Addition-
ally, breast cancer patients with homologous repair (HR) defects were detected by a
DL system which predicted 74% HR defects accuracy. This prediction enabled
breast cancer patients to benefit from PARP inhibitors (Gulhan et al., 2019). In
addition, another study demonstrated the link between taxol and gemcitabine che-
motherapy drugs and breast cancer patients’ genes using an ML algorithm. This
Al-platform was able to predict patients’ drug tolerance and differentiate between
the two chemotherapy drugs’ effects (Dorman et al., 2016). Furthermore, DL
platform was used by a different study in risk stratification and induction chemo-
therapy guidance for nasopharyngeal carcinoma (NSC) (Tang et al., 2019). This
Al-method was illustrated to be significantly better when compared to Epstein-Barr
Virus (EBV)-DNA-based model (Peng et al., 2019).

In radiotherapy, the application of Al is more precise. It is reported that Al can
automatically plan radiotherapy treatment and aiding radiologists identify key target
areas (Fiorino et al., 2020; Lou et al., 2019; Meyer et al., 2018). Lin et al. (2019), for
example, used a 3D CNN (3D CNN) in NSC delineation and achieved 79%, which is
reported to be equivalent to that of a radiologist. Furthermore, radiotherapy treatment
response in bladder cancer was also evaluated using a DL approach. This study
combined DL with radiomics to construct a predictive model in determining treat-
ment response. Additionally, Babier et al. (2018) developed an Al software that
demonstrated reduction in radiation therapy planning time period, indicating similar
radiation therapy treatment plan but reduced time in planning compared to a
radiologist. Al-intervention in cancer overtreatment has also been demonstrated.
This was shown by ML algorithm that could analyse digital images from women’s
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cervix. This Al-platform was illustrated to accurately recognise precancerous lesions
to be treated over non-cancerous lesions, thus reducing patients’ overtreatment
(Hu et al., 2019). Furthermore, Bahl et al. (2018) developed an ML platform that
could evaluate high-risk breast cancer lesions, aiding physicians in recommending
appropriate treatment and avoid unnecessary surgery.

Compared to chemotherapy and radiotherapy, Al-immunotherapy applications
primarily focus on treatment effect evaluation and aiding physicians adjust the
treatment plan (Jabbari & Rezaei, 2019; Trebeschi et al., 2019; Abbasi, 2019; Tan
et al., 2020). Sun et al. (2018) developed a DL platform that could precisely predict
programmed cell death protein 1 (PD-1) inhibitors’ therapeutic effects by evaluating
immunotherapy effects in patients who are PD-1 sensitive with advanced solid
tumours (Sun et al., 2018). Another research study developed an ML method
which could improve identifying cancer neoantigen and cancer immunotherapy
efficiency. This Al-method was based on mass spectrometry database of human
leukocyte antigen (HLA). DL technologies have been reported to augment or
support physician’s treatment decision systems, and not to replace them. Al can
help combine most appropriate treatment plan through learning from cancer patients’
clinical big data (Meyer et al., 2018; Liu et al., 2018; Bogani et al., 2018; Golden,
2017; Walsh et al., 2019; Blackledge et al., 2019). For example, Prinzt (2017)
developed an Al-platform, known as a Clinical Decision Support System (CDSS).
This is a DL technology that can extract, evaluate and generate suitable cancer
treatment options using large clinical data amounts from patients’ medical records.
However, it is evident that Al-advances are recent and still at infancy, illustrating a
long road ahead to adopting and implementing Al-powered clinical decision support
in cancer care, let alone personalised cancer care.

13.4 Al-Enabled Adaptive Cancer Therapy

Al has also been reported to play a role in adaptive therapy. In standard cancer
therapy, the maximum tolerated doses remove drug-sensitive cancer cells. However,
this might not apply to drug-resistant cells. Adaptive therapy is being explored to
combuat this challenge, using dose-reduction Al-algorithms with an ultimate goal of
preventing the outnumbering of drug-sensitive cells by drug-resistant cells
(Chmielecki et al., 2011; Jedeszko et al., 2015). A recent study demonstrated that
Al-adaptive therapy improved mouse breast cancer model treated with paclitaxel,
compared to standard established therapies with high doses (Enriquez-Navas et al.,
2016). However, adaptive therapy real-world clinical oncology applications remain
to be elucidated. A recent study by Zhang et al. (2017) translated adaptive
therapy into a pilot clinical oncology study. This research group evaluated adaptive
therapy on a cohort of prostate cancer (PCa) patients receiving abiraterone hormone
therapy (Zhang et al., 2017). In this study, PCa patients received 47% of standard
abiraterone dose. At reporting time, 1/11 adaptive therapy trial participants experi-
enced tumour progression. This reporting aided in median estimation of time to
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progression, using the prostate-specific antigen (PSA) biomarker and radiographic
imaging of more than 27 months old. This was better than 11 months of PSA and
16.5 months of radiographic imaging for PCa patients on uninterrupted abiraterone
therapy (Zhang et al., 2017). In advancing personalised care through adaptive
therapy, population-based dose adjustments may yield superior results when
customising this therapy to each patient’s response to therapy. Mathematical models
are reported to be suitable tools in facilitating adaptive therapy in cancer
management.

Adaptive therapy involves consecutive treatment selections based on surveyed
tumour burden to achieve an intended outcome, which could be cure or ailment
regulation (Gatenby & Brown, 2020). Reinforcement learning (Alpaydin, 2004;
Sutton & Barto, 2018) is a potentially beneficial AlI-method for therapeutic agent
shortlisting and sequencing in the setting of adaptive cancer treatment. Given a
consistently apparent ailment condition, the objective is to choose a treatment series
that will influence the malignancy to a lag state, like remission, while optimising an
incentive function detailed by the clinical outcome and toxic effects. In the language
of reinforcement learning, the treatment choice-maker is referred to as the agent
acting on the disease, or the environment, by administering a series of treatments,
each of which is chosen depending on the state of the illness while ensuring a
maximum incremental reward function for the decision-makers conduct. The incen-
tive may be detailed because of information-fuelled forecasts of the toxic effects of
treatment and findings to steer therapy choice towards the objective of enhancing
survival rates with negligible treatment toxicity as a clinical cut-off. Nonetheless,
clinical trials on adaptive therapeutic interventions in malignancy care may be
required to crystallise the bounds and processes of an efficient and secure
Al-empowered adaptive cancer treatment, Fig. 13.3. Adaptive therapy clinical
applications face numerous obstacles, including minimising treatment toxicity and
acquiring a statistically valid burden of disease projections throughout care delivery,
from detection and initial therapy to cancer management.

13.5 Challenges and Limitations

Challenges to Al-application in oncology include the lack of transparency of
Al-algorithms associated with inadequacy of quality annotated data availability at
population levels. Furthermore, tumour heterogeneity and evolutionary dynamics
make tumour therapy responses unique, to every individual and populations. Thus
Al-platforms trained on closed systems (such as a population) may not yield reliable
treatment recommendations when placed to perform as open systems. Thus
Al-empowered decision support in recommending most effective treatment
approaches should be evaluated. Challenges surrounding Al-implementation in
real-world cancer management systems also include lack of adequate data, access
to the already available data, socio-and-legal issues and high costs. How exactly, like
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humans do, does Al-platform reach conclusions—the black-box phenomenon is also
a challenge, in cancer therapy and decision-making.

Unprecedented anti-cancer drug toxicity is another challenge in anti-cancer drug
discovery. In traditional drug development processes, approved and trial compounds
are frequently co-delivered preclinically and clinically. This is so done to manage
multiple drug targets while improving efficacy of treatment. The successive aug-
mentation studies of clinical dose are done to attain drug synergy. This drug synergy
is expected to have increased efficacy than those of individual drugs. In most cases
unfortunately, off-target drug effects can impede with the approval of the drug (Lin
et al., 2019). On the other hand, successfully designed compounds can demonstrate
efficacy when delivered at sub-optimal doses, while attempting to elude drug
toxicity. Ideally, optimised drug-combination concurrently best links compounds
and their doses, with minimised toxicity while aiming at the right targets. Experi-
mentally, testing all these parameters for optimal combination therapy is almost
unfeasible. Even though Al-tools can reduce this burden by significantly reducing
the number of experiments, ethical, socio-economic and Al-associated high costs
especially in low-middle income countries (LMICs) may be constraining. Addition-
ally, the existing therapeutic interventions such as chemotherapy still far supersede
the proposed innovative therapy approaches such as adaptive therapy. Furthermore,
inclusive medical genomics’ studies may also be a significant limitation towards
successful global implementation of Al-decision support making in oncology
personalised care. Nonetheless, novel Al-approaches hold the potential to improving
therapeutic efficacy in personalised cancer care.
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13.6 Conclusions

Al-enhanced decision support systems in recommending the most effective thera-
peutic approaches for individual cancer patients hold the potential to maximising
therapeutic efficacy. Challenges currently facing cancer therapeutic approaches
present as complex. These include a need to customise bespoke regimens that will
benefit each cancer patients. Furthermore, wet-lab and clinical oncology workflows
are insufficient to meeting these specific needs, and thus there is an existing gap that
Al-based tools hold great potential to bridging. Al-platforms such as CURATIVE.
Al and QPOP already show great promise towards personalised care through unique
drug combination and improved patient outcomes. Like all new technologies, these
platforms still need to be validated in larger patient cohorts and monitored for
drifting in various populations. These Al-platforms are not meant to replace
human efforts but to augment human capabilities. Furthermore, adaptive therapy is
key in the advancement of precision oncology and Al-technology is key to the
success of this therapy. In addition to unique, optimal and customised drug combi-
nation for individual patients, Al plays a key role in drug discovery, design,
development and administration and may help alleviate costs associated with new
drug development, common in oncology therapeutics. It is a long road ahead to
effectively employ Al in oncology therapy decision support systems. However,
emerging studies demonstrate the potential of Al in solidifying the road towards
precision oncology by recommending and enhancing most optimum therapeutic
approaches in personalised care, Fig. 13.4.

Artificial
Intelligence

Adaptive Precision
Therapy Oncology

xX2 X%

Fig. 13.4 Al-enhanced therapeutic efficacy. Al holds the potential to facilitate adaptive therapy in
advancing precision oncology by optimising unique drug combinations, drug dose and safety
administration thus recommending the most effective therapeutic approaches
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and Zodwa Dlamini

Abstract The practice of medicine generates data in the management of patients to
make decisions. Often health care providers rely on their problem-solving skills,
judgements and experience. Al-Pathway companion is now the foundation of
precision medicine and provides advanced analytics to manage the vast amount of
data. In the past, practising medicine was focused on general solutions that allow
safe treatments of most patients with similar symptoms. Thus, the working methods
within the medical community were on a generalized basis. The experimental and
experience-based approach will be replaced by the evidence-based approach with
improved prognosis, analysis, diagnosis and treatment methods. Disruptive technol-
ogies, such as genome sequencing and advanced biotechnology, generate vast
amount of data, impossible for an average mind to remember everything, thus
requiring Al. These technologies allow patients to participate in the decision-making
process about the management of their condition, using hand-held devices. Deep
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learning algorithms assist physicians in patient care. However, there is a need to
combine these algorithms with human expertise. By combining the knowledge of
deep learning systems and the human factor, efficacy is increased. It is important to
combine knowledge and Al in the medical field.

Keywords Clinical decision - Support systems - Al-Pathway companion -
Personalized care - Standardized pathways - Oncology

14.1 Clinical Decision Support Systems
14.1.1 Defining Clinical Decision Support Systems (CDSS)

Clinical decision support systems are computer-based programs. These programs
can analyse data within the electronic health records (EHRs) that can aid medical
professionals through the evidence-based approach (Héyrinen et al., 2008). The
functions by CDSS include an alarm system, diagnostics, prescription control,
disease management and drug control, to name a few. They can be demonstrated
as reminders and alerts, guidelines, reports, order sets, workflow tools or templates
(Sutton et al., 2020). There are various types of clinical decision support systems and
can include diagnostic support systems like quick medical reference (QMR) and
MYCIN, Arden Syntax for alerts or reminders and patient management systems
(Martin Pusic & Ansermino, 2004). The key components to clinical decision support
systems include a knowledge-base, an inference mechanism, for example, an algo-
rithm and patient data from various sources, see Fig. 14.1.

The patients’ history is the first step of data collection which is then prepared for
modelling before the application of predictive analytics decision support. Critical
decisions can be made from the predicted outcomes. Predicted outcomes are com-
pared with the actual outcomes to determine the accuracy of machine learning
process. The number of patient encounters can be recorded with each prediction
made until the predicted outcomes match closely the actual outcome, see Fig. 14.1.

In low-resource settings, there are decreased amounts of patient-to-physician
ratios, poor health infrastructure and a limited specialist. This causes a strain on
the already over-burdened healthcare systems. Clinical decision support systems can
alleviate this burden and support physicians in their daily routines. The system that is
suited for the low-resource setting has been predominantly focused on infection
control and maternal care which does not require deep learning (Dani Kiyasseh et al.,
2022). This highlights the need for further investigation to include various health
conditions and to improve patient outcomes. The CDSSs can be electronic or
manual. Regarding the electronic system, the results show clinical application and
in a particular order (see Fig. 14.2). Throughout this stage, multiple electronic
systems are outlined.

There are two main clinical decision support systems: manual and electronic. The
manual system consists of two categories, viz. the Early Warning scores and the
Plate-based algorithms. The electronic system consists of multiple disease



14 Al-Pathway Companion in Clinical Decision Support: Enabling. . . 279

Historical Actual
Clinical outcome
Data
v |
Data J
Prep
Clinical
Single Patient v Decision
Clinical
Encounter Model
Building
I “ Predictive Predicted
Analytic N Outcome
Decision
Support Model

Fig. 14.1 Clinical decision support systems

categories, such as bacteria, parasitic, the antimicrobial resistance and viral diseases.
The electronic systems category will provide electronic alerts and messages, ques-
tionnaires and digital scoring.

14.1.2 Clinical Decision Support Systems in Clinical Practice
and Clinical Trials

Clinical decision support has been successfully used to systematically review clin-
ical trials in identifying features critical to success (Kawamoto et al., 2005). A
nationwide multi-institutional audit assessment can be done using quality indicators
to pick up preventable medical errors. Thus, adverse events can be adequately
monitored to prevent deaths using these clinical decision support systems. To
address the issues in healthcare, organizations are increasingly using clinical deci-
sion support systems to assist with recommendations for clinical decision-making
and to provide patient-specific assessments. These support systems may be
computer-based or manual and can provide reminders to patient’s charts. Comput-
erized systems can provide patient-specific recommendations (Steinbrook, 2009).
These systems reduce medication errors and improve prescribing practices, delivery
services and adherence standard care. Compared with other approaches for improv-
ing practice, these systems are more effective and will be long-lasting.
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Fig. 14.2 Chart that delineates clinical decision support systems (CDSSs) and how it presents the
findings

14.1.3 Clinical Decision Support Systems Feature in Clinical
Practice

Computer-based systems improve clinical practice regarding the following:

* Automatic provision.

* Recommendations and not only assessments.

» Decision support regarding location and time.

* Computer-based decision support (Holroyd-Leduc et al., 2011).
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14.1.4 Clinical Decision Support Systems in Pathology

The manual review of pathology test results for missed diagnoses is laborious,
inaccurate and time-consuming. An automated solution has decreased the errors
involved and improved the accuracy for clinical decision support. The system
focused on microbiology test results that included the strain information and antibi-
otic sensitivities. Both factors play a role in clinical care and ongoing patient safety.
The system is highly effective at identifying abnormal test results. Furthermore, the
system used information of discharged summaries to identify patient follow-ups.
This shows the positive results in using the system. The system increased efficiency,
accuracy and supports patient safety by allowing diagnosis and accurate treatment
(Blumenthal, 2010; Holroyd-Leduc et al., 2011).

There are two aspects regarding decision-making in anatomical pathology,
namely decision support systems and decision analysis. Record keeping is problem-
atic and to be prepared for all possibilities is impossible. The analysis of the various
data from clinical trials and other genomic studies requires specialized,
multidisciplinary knowledge. Pathologists have minimal training in this regard.
The use of decision-making systems and Al decreases the associated challenges.
Light microscopy is a key level in cancer management and histopathology expertise
will be of importance (Hendrickson & Balzer, 2011).

The two main types of CDSS are evidence-based (knowledge-base) and
non-evidence-based. Various scientists and medical members like pathologists are
interested in the application of automated clinical decision support to laboratory
medicine and pathology. The application has enormous ability to optimize labora-
tory test selection, analysis and correlation with existing data. This will transform
laboratory medicine from an observational field to a specialized field allowing
precise and comprehensive diagnosis. Anatomic pathology can improve diagnostic
information (Jason M. Baron et al., 2014).

This transformation of pathology practice does not only assist the reduction of
waste or errors often seen in test selection and result interpretation but also improves
diagnostic precision. Advances in next-generation sequencing, laboratory automa-
tion, mass spectrometry and other technologies will improve diagnosis, prognosis
and treatment. Substantial improvements in the diagnosis came from the use, results
and analysis of data from using existing and traditional technologies. However, these
can be improved with the use of Al Clinical decision support avoids unwanted
testing and ensures that the correct tests are used. This allows misinterpretation of
test results to be avoided. The application of Al to clinical and laboratory data can
show important insight and patterns that overpower manual interpretation. Many of
the barriers in evolving the clinical application of NGS rely on analysis and
interpretation of the data.

Transforming the focus of pathology to enhance data analysis and precision
medicine will improve the value of laboratory testing. Data generation can become
routine, but accurate data extraction will become more complex. For pathology and
laboratory services to be cost-effective, the focus will need to be adjusted to the
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generating of diagnostic, prognostic and therapeutic information. Laboratories will
also have to be involved with test selection. Computational data analysis and
decision support systems will aid in integrating this evolution in laboratory and
pathology diagnosis, prognosis and treatment (Jason M. Baron et al., 2014). The
symbiosis between computers and humans will optimize diagnostic efficiency.

CDSSs show a paradigm shift in healthcare in modern times. CDSSs are used to
aid clinicians in the decision-making processes that can be very complexed. CDSSs
have evolved since their first use in the 1980s. They are commonly used through
electronic medical records and other computerized clinical workflows. Despite the
benefits of CDSS, there are still unknown factors, for example the use and cost
effects. Numerous publications show the success of CDSS, but challenges have also
been recorded (Holroyd-Leduc et al., 2011).

14.2 Al-Pathway Companion in CDSS: Cancer Control
and Prevention Includes Awareness, Screening
and Early Diagnosis

14.2.1 AI-Pathway Companion in Clinical Decision Support

Al-Pathway Companion clinical decision support solution allows standard and
precision care in infectious diseases, oncology and cardiology. The CDSS aims to
facilitate treatment and diagnosis to improve patient outcomes and increase the
survival rate (Blake et al., 2011). The system shows important patient data without
the need to access multiple files and databases. The key information is immediately
available for consultation purposes or collaboration with other specialists. Al technol-
ogies provide further insights for the patient and the medical staff. The Al-Pathway
Companion compares the patient’s medical status against known guidelines and assists
in the next steps in diagnosis and therapy (Henkel et al., 2022a, 2022b) (Fig. 14.3).

The patients are at the centre of adverse changes around them. Diseases and
sample amounts have been on the rise. The decrease in sample analysis results from
the use of outdated diagnostic tools, manual and subjective analysis, burdened
patients, overworked pathologists, decreased number of specialists and increased
sample volumes. These factors influence the result turnover time. The rising risk of
disease and sample volume is major cause of disequilibrium. This results in a
negative cascade around the centre as there are overworked pathologists, a shortage
of specialists and increased patient numbers.

14.2.2 What Is an AI-Pathway Companion?

Al-Pathway Companion consists of several medical devices and health products in
development. In some countries several such disease-specific products of
Al-Pathway Companion already exist which cover the following:
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14.2.3 Al-Pathway Prostate Cancer

The Al-Pathway Companion Prostate Cancer VA10B (Siemens Healthcare GmbH)
manufactured in Erlangen, Germany, has demonstrated success in providing patient
information in comprehensive dashboards on information effectiveness, quality and
satisfaction (Henkel et al., 2022a, 2022b). The variable indicators showed remark-
able improvement in this software tool. This system provides recommendations and
supports diagnosis or therapeutic options for prostate cancer patients utilizing
clinical guidelines in correlation with the patient’s current disease condition. Using
the CDSS connector system that is integrated with the patient information system
automatically collects all the relevant patient data from all the necessary source of
information systems (Fig. 14.4).

PACS is imported into the landing zone. In the landing zone, it is converted into a
uniformed data model and sent to the AIPC database. The database provides the
patient graph that is imported into AIPC applications. The applications provide the
report that is stored as the electronic health report. The electronic health report is
used with PACS and the process starts all over again. The system is suited to handle
large volume of data. The implementation of this software has significantly reduced
consultation preparation times in prostate cancer management and effectively
improved the decision-making process and customer satisfaction. However, map-
ping the more complex patient pathways, such as the follow-up treatment of prostate
cancer, still requires refinement and is subject to further research, especially inves-
tigating the effect in post-therapeutic prostate cancer management.
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Fig. 14.4 The web-based Al-Pathway companion product suite of several components consists of
a picture archiving and communication system (PACS), Al-Pathway Connector, AIPC database and
AIPC Applications

14.2.4 Al-Pathway Companion Breast Cancer

The possibility of digitizing whole-slide images of tissue has simplified the incor-
poration of Al using machine learning software tools in digital pathology. The
sensitivity and specificity of this application magnify the subvisual morphometric
phenotypes and ultimately improve pathologists in diagnosis, prognostication and
therefore patient management (Kaustav Bera et al., 2019). The use of Al in the
detection of breast cancer using mammography has also been tested but was found to
be not sufficiently specific (Karoline Freeman et al., 2021).

14.2.5 AlI-Pathway Companion Coronary Artery Disease

Siemens Healthiness is currently in collaboration with a UK-based group in the
National Health System (NHS) to develop a prototype Al-Pathway Companion
application for patients with suspected or known CAD. It is envisaged that the Al
application will automatically interpret scans and help identify patients at low risk to
shorten hospital stays. This is being complemented by creating computer-aided
software to aid clinical decisions and diagnosis. The tool will foster individualized
precision medicine and improve clinical and operational outcomes in the NHS
(LONDON, K.S.C., n.d.).
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14.2.6 Al-Pathway Companion Infectious Diseases

The implementation of Al predictive analytics tools in the Ministry of Health (MoH)
in Malaysia focused on controlling infectious diseases. This has for the first time
provided the MoH with the capability to predict diseases breakout and spreading
(USAID, n.d.). The MoH fully digitized and integrated EMRs from health facilities
across the country which enhances its analysis further by using Al Thus, using the
Al tools, the MoH was able to map health issues and disease outbreaks occurring
across the country through the application of Al to identify correlations among
multiple variables across complex data sets to identify risk factors and predict the
spread of diseases (Agrebi & Larbi, 2020).

Non-health data was also inserted to assist in the prediction of future outbreaks by
using natural language processing algorithms from social media and news reports.
Through the application of Al to newly digitized data, the MoH was enabled to view,
analyse, interpret and react to health data in real time. The predictive ML algorithms
enabled the MoH to exact the date and geolocation of the next disease outbreak
months in advance. The ML-powered algorithms also enabled the MoH to decide
which control interventions would be most effective and to plan the intervention
rollouts.

14.3 Clinical Uses of AI-Pathway Companion

* The companion correlates, aggregates and visualizes relevant patient-specific
information and other disease pathways.

» The companion enables automatic patient-specific mapping using evidence-based
guidelines.

* The companion facilitates objective decision-making using data from
multidisciplinary specialists on correlated patient preferences and data.

* The companion offers transparent diagnosis and treatment insights into time
(Blake et al., 2011).

14.4 Cancer Prevention and Control Using COMPAS

COMPAS is a computer-based algorithm that is used in criminal cases to predict the
likelihood that a defendant will re-offend. The application of Al in cancer control
programs must be investigated using a similar concept of algorithm, viz. COMPASS
(Leatherdale & Lee, 2019). Understanding the risk factors that start cancer is key for
reducing the future burden of cancer. Most current cancer control insights are
concluded from existing cohort studies and modern large-scale population labora-
tories (Welch & Kawamoto, 2013). Big data assets can be changed to have a greater
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Fig. 14.5 Schematic block diagram of the proposed decision support system; Nucleic Acid Based
Amplification (NASBA); Abnormal Squamous Cell of Undetermined Significance (ASCUS);
Probabilistic Neural Network (PNN), Multilayer Perceptron Network (MLP)

impact on the future cancer burden by focusing on primary prevention efforts that
use Al and ML. ML automatically learns patterns and can create complex models
and algorithms that aid in the prediction in big data, revealing unexpected new
relationships. Al has been successful in several field but the potential application in
cancer prevention is unknown (Leatherdale & Lee, 2019). An example of a practical
application of ML in cancer prevention is used in the Mayo clinic for cervical pap
smears, see Fig. 14.5.

14.5 Overview of Clinical Decision Support Systems

The clinical decision support system consists of three modules:

* Guideline engine.
* Data module.
» Free-text processor.

The data module is used for patient information searching from the EMR. The
information is kept as an edible file for guideline engines and depends on the free-
text processor to interpret free-text such as Papanicolaou (Pap) reports. The free-text
processor and guideline engine are basically rule-based (Kavishwar B. Wagholikar
et al., 2012).

The results of the Pap test, HPV DNA assay, NASBA assay, FLOW and p16 are
added into the system. The data undergoes a transformation. If the Pap test is not
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ASCUS, it will result in PNN. If the Pap test is ASCUS, it will result in MLP. The
data is interpreted and results in the system’s output. The system can be adjusted to
suit any HPV testing algorithm even in remote rural locations.

Another useful Clinical Decision Support System is the one used in community-
based screening programs (see Fig. 14.5). A community-based screening program
using WHO-approved algorithms of either Pap test or HPV DNA testing can be
constructed. The medical data is changed into processing data by the multilayer
perceptron network (MLP) or probabilistic neural network (PNN) subsystems.
Depending on the Pap test value, the patient’s data is promoted to the PNN of the
MLP subsystem. If the Pap test is ASCUS, the data is promoted to the MLP;
otherwise, the data will be promoted to the PNN. The output of each network is
transformed into useful medical information. So, the Clinical Decision Support
System provides predictions regarding the actual cervical status of each patient.

14.6 Machine Learning Tools

Artificial intelligence can assist with cancer detection using machine learning tools,
furthermore assist in decision-making, including treatment approaches (Meské et al.,
2017). According to the National Cancer Institute (NCI), ML, Al and deep learning
can be used to improve patient outcomes, survival and healthcare (Blake et al.,
2011). Integration of Al can improve the speed and accuracy and diagnosis, prog-
nosis, decision-making and survival. In low-income settings, Al-guided clinical care
can play a key role in reducing health disparities. Medical professionals have shared
the use of Al capabilities in cancer detection. Researchers at the Tulane University
discovered that Al can accurately diagnose and detect colorectal cancer by analysing
tissue scans (Singh & Graber, 2010; Singh et al., 2013). The researchers gathered
approximately 13,000 images of colorectal cancer from 13 independent cancer
centres in Germany, China and the USA and 8803 patients. Using random images,
the researchers built a machine learning program. The program can recognize images
of colorectal cancer. After creation of a performance measurement tool, the
researchers compared the pathology work to the machine learning technique and
models. The study showed that the average pathologist scored around 0.969 for
accuracy, while the program scored 0.98. This has shown that the ML techniques are
more accurate compared to manual data work by pathologists.

The researchers stated that the study will encourage pathologists to use modern
technologies and more pre-screening technology to speed up diagnosis. Al can
detect cancer earlier and improve the detection accuracy. New York University
created an Al program that is trained to identify patterns among thousands of images
to assist medical staff in diagnosis, prognosis, treatment and decision-making. Al
increased the accuracy of breast cancer by 37% when tested on 44,755 ultrasound
exams. The Al tool also assisted to reduce the tissue sample amount and biopsies
necessary to confirm tumours by 27% (Suh et al., 2013). Al can assist radiologists to
read breast ultrasounds to focus on positive cases and to avoid benign verification via
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biopsy. Al can also improve existing technology regarding patient survival and
outcomes. Medical professionals can use Al technology to accurately and efficiently
sort through MRIs to differentiate between cancer and health patients.

14.7 Predictive Models Assist in Decision-making

By identifying risk factors, predictive models have become an important component
in cancer surveillance due to the ability in determining the likelihood of cancer
development (Overbeek et al., 2010). In this way, patients can be encouraged to
apply preventive care strategies. According to studies by the University of Hawaii,
deep learning can distinguish between the mammograms of women who are at risk
to develop cancer in the future. The technology can also predict breast cancer risk by
measuring the breast density. Denser breasts are associated with a higher cancer risk.
However, other unknown factors can also contribute to the risk. The deep learning
model is thus used to find finer details that can be linked to increased cancer risks
(Bright et al., 2012).

14.8 Developing Treatment Responses

Al can be used to predict treatment responses of patients to predict adverse medica-
tion reaction. This predictive information is critical for patients and physicians when
deciding treatment options to prevent life-threatening adverse reactions (Boonstra &
Broekhuis, 2010). In one collaborative study, biopsy samples collected from three
large were analysed in randomized clinical trials to create personalized treatment for
patients with aggressive types of prostatic cancer using genetic test scores.
Two-thirds of prostate cancer deaths occur in high-risk prostate cancer patients.
Therefore, balancing the quality of life and survival risk is key in treatment selection.
According to researchers, biomarkers can be used to identify treatment-patient
benefits, create precision medicine and treatment guidelines (Mesko et al., 2017).
Nguyen et al. used the Decipher biopsy test that analysed the activity of 22 genes in
prostate tumours to create a scoring system that can show the aggressiveness of the
cancer. The score is calculated using RNA extracted from biopsy samples during
clinical trials. The score and long-term outcomes were compared and analysed
(Blake et al., 2011). Using predictive analysis, the genetic signatures showed the
likelihood of cancer metastases and whether the patient would die from the cancer or
from external factors. It is key to acknowledge that patients will respond differently
to medications (Petterson et al., 2012). ML and predictive analysis can decrease
toxicity from cancer treatments that may be ineffective for the individual. The
Georgia Institute of Technology and various Cancer Institutes used ML algorithms
to determine drug response using cancer-fighting drugs (Brodiea et al., 2021; Milap
Shah et al., 2020).
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14.9 Limitations in the Application of Al in Precision
Medicine

Although AI has potential, the challenges include ethical and legal factors such as
responsibility for false results, the safety procedures and maintenance, economic
implications and job security. Further research is required to provide accurate
analysis of the challenges. Al also has limitations in healthcare. Prediction and
forecasting methods are based on precedence through ML, but algorithms can
underperform in some cases, for example in drug resistance. Therefore, Al cannot
replace the human expertise. Data analysis must be supportive to the physicians’
skills.

14.10 Conclusion

Al-Pathway companion enables personalized patient care in clinical decision sup-
port, given the vast amount of clinical data that needs to be processed by health care
practitioners. It can also be used as a benchmark of standardized care for oncology
patients who present in different cancer stages, various molecular targets of cancer
treatment and resistance along care pathways in oncology. The strategic application
of Al-Pathway companion in disease prevention, diagnosis and treatment with
appropriate patient selection has the potential to revolutionize the healthcare industry
in modern times.
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Chapter 15 M)
Al Tools Offering Cancer Clinical s
Applications for Risk Predictor, Early
Detection, Diagnosis, and Accurate

Prognosis: Perspectives

in Personalised Care

Richard Khanyile, Rahaba Marima, Mandisa Mbeje, Shingai Mutambirwa,
Daniel Montwedi, and Zodwa Dlamini

Abstract Artificial intelligence (Al) is transforming the medical research and
clinical workflow by enhancing oncology clinical applications. Al-based tools are
emerging as key role players in advancing precision oncology by improving oncol-
ogy clinical applications in cancer risk prediction, early detection and diagnosis and
accurate prognosis. Although there are challenges with every newly developed
technology, efforts and significant investments have been placed to ensure the
success of this technology. Additionally, the introduction of sophisticated
Al-medical devices demonstrates the fundamental role that AI holds to offer in
oncology. Several Al-tools have illustrated high performance towards cancer care
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and management in various parts of the world. While risk prediction, early detection,
diagnosis and accurate prognosis are a work in progress in some cancer types, this
remains a challenge in various cancers. However, Al-based tools can advance human
efforts with the overall aim of improving oncology patient outcome through
personalised care. This chapter will focus on Al-based tools in advancing oncology
personalised care by improving risk prediction, early detection and diagnosis, and
accurate prognosis. Challenges in the application of Al-based tools from bench to
bedside will also be discussed, while providing an overview of Al-based tools for
predicting clinically relevant parameters in advancing precision oncology.

Keywords Artificial intelligence - Deep learning (DL) - Precision oncology - Early
detection - Diagnosis - Accurate prognosis - Clinical applications

15.1 Introduction

Significant advances have been made in the past decades in cancer screening
diagnosis and management. However, there are still existing challenges in providing
personalised cancer care. Thus, the convergence of Artificial Intelligence (Al) tools
and precision oncology is a promising potent tool in overcoming these challenges.
Al-based tools have the potential to improve high-risk populations, early detection
and diagnosis, as well as accurate prognosis in advancing precision oncology (Farina
et al., 2022). Early cancer diagnosis is still a global challenge and efficient screening
strategies have been reported to be limited by various factors which may include
financial support and public buy-in. Some of the initiatives have demonstrated
inadequate covering of the majority of at-risk populations (Ahnen et al., 2014). On
the other hand, enhancing screening initiatives with the lack of evidence-based
indication can also lead to a waste of valuable resources and a substantial financial
burden, particularly in resource-limited public health systems such as in the
low-middle income countries (LMICs) (Verma et al., 2018). Although data science
applications are underdeveloped in LMICs such as African countries, various cata-
Iytic factors are already in place. These factors may include cloud computing
developments, significant investments in digitising health information and
smartphone penetration robustness (Waljee et al., 2022; Holst et al., 2020). Further-
more, the United Nations (UN) promotes the centralisation of Al to achieve its
Sustainable Development Goals (Parker et al., 2020). Additionally, the US National
Institutes of Health has invested about US$75 million over a period of 5 years in
advancing data science, health innovation and discoveries across Africa in its new
programme, Health Discovery and Innovation in Africa (DSI-Africa) (1). Al tech-
nologies have advanced in healthcare, offering novel approaches in effective cancer
screening, diagnosis and prognosis (Qiu et al., 2022; Zhu et al., 2020; Dlamini et al.,
2020). Following cancer screening, timely and accurate diagnosis are keys in
identifying suitable treatment for effective cancer care management.

Al is categorised into 3 classes: Generalised Al (with general human intellectual),
Super Al (Al that exceeds human abilities) and Narrow AI (AI with narrow
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specialised capabilities). Machine can learn from narrow Al to figure out the most
complicated biological processes that may not be figured by humans. Compared to
humans, narrow Al is designed to learn and is not driven by emotions (Igbal et al.,
2021). Typical examples of narrow Al are Siri by Apple, Google assistance, Alexa
by Amazon and Microsoft’s Cortana. Most of these narrow Al-tools process the
human input (either by language or given data) and respond accordingly. These
tools, Artificial Narrow Intelligent (ANI) tools, work within a pre-defined range. For
example, when asking Siri what day it is, an accurate response is given because the
task is within Siri’s pre-defined Al range. Similarly, the advanced self-driving cars
also operate within their artificial narrow intelligence range (Aron, 2011; Kepuska &
Bohouta, 2018; Goksel Canbek & Mutlu, 2016; Brill et al., 2019). In health care, it
has been reported that Nvidia, a leading US-based multinational technology com-
pany announced its building efforts of AI supercomputer for drug design and
medical research (Buitrago et al., 2020; Yujuan et al., 2020; Kochanny & Pearson,
2021). Such efforts would require domain-specific expertise, such as ‘precision
oncology’. The Al-powered tools in clinical applications remain to be largely
elucidated. This chapter will discuss Al-based tools in clinical oncology workflows
that include risk prediction, early detection and diagnosis, accurate prognosis in
advancing precision oncology.

15.2 Al-based Tools in Clinical Oncology Workflows

Al-based tools in health, medicine and clinical oncology are advancing. For exam-
ple, the sophisticated medical devices such as robots in health care. These may
include the care-bots that have been specifically trained to care for aged patients and
assisting surgeons in surgery (Larson et al., 2014). Additionally, in Scotland,
National Health Services (NHS) 24, an Al-based clinical assessment service is in
testing at clinical phase. This tool is meant to assist the community with minor issues
of health telephonically (McCartney, 2018). Furthermore, Al-based tools have also
been reported to have high accuracy in the determination of infection-related
tumours and recommended most appropriate therapeutic strategies (Leibovici
et al., 2007). Figure 15.1 illustrates Al-based tools in offering key clinical oncology
applications. These include risk prediction, screening, detection, early diagnosis and
prognosis. These Al-tools depend on clinical data such as pathology, radiology and
omics.

In oncology workflows, Al is mostly applicable in pathology and radiology
imaging fields (Jha & Topol, 2016). In radiology, DL algorithms may be used in
cancer detection, classification, segmentation, characterisation and monitoring
(Bietal., 2019; Hosny et al., 2018). In cancer screening studies, image classification
is necessary. Al-based tools can aid radiologists in the classification of small lesions.
Al can also help radiologists in creating improved oncology workflows by the
determination of high priority report groups, thereby achieving better outcomes.
For example, various radiology studies demonstrated improved mammography
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Fig. 15.1 Clinical applications of Al-tools in oncology. Al-tools can be applied in oncology
imaging modalities such as pathology, radiology. Al-powered genomics and medical omics are
key in Al-enhanced cancer early diagnosis and accurate prognosis in precision oncology

screening for breast cancer by combining with Al-based tools (Ghosh, 2019;
Schaffter et al., 2020). Al-based tools in cancer screening are a growing field,
demonstrating advances in various cancer types (Miotto et al., 2016; Nartowt
et al., 2019, 2020; Hart et al., 2018; Muhammad et al., 2019; Roffman et al.,
2018; Stark et al., 2019). With regard to detection, it has been reported that
Al-based tools can aid to identify cancerous lesions that are highly likely to be
missed by humans. For example, Al-based tools can be used in finding lung nodules
and can distinguish cancerous from non-cancerous lesions and identify brain metas-
tasis on MRI scans (Schultheiss et al., 2020). Thus, Al-based tools enhance physi-
cians’ medical imaging processing in cancer detection and are not meant to replace
human effort.

Cancer segmentation can be challenging with traditional approaches. However,
Al-based tools have been showed to alleviate this problem (Qiu et al., 2022). Cancer
segmentation aids in classifying individual pixels based on their organs or lesions by
particularly recognising lesions and accessing lesions’ size and volume (Shaver
et al., 2019). DL methods can be used to reveal rare cancer characteristics and
patterns from medical images. Radiomics, a field that studies the extraction and
analyses of large amounts of advanced quantitative image features with the intent of
creating mineable databases from radiological images, is emerging in advancing
precision oncology. Radiomics plays an important role in cancer characterisation
and can inform ML models that can effectively predict treatment response (Avanzo
et al., 2020). Furthermore, radiomics has been reported to be applied in various
cancers such as liver, lung and brain tumours (Dreher et al., 2020; Kocher et al.,
2020). Radiomics can be used to predict clinically relevant oncology parameters, as
medical imaging can be used as a prognostic information source. Additionally,
patient genomic data can also be used for prognostic purposes (Li Wen & Leech,
2020; Sakellaropoulos et al., 2019).
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Furthermore, DL using brain MRI radiomic features has been reported to distin-
guish brain gliomas from brain metastasis, with a matched neuroradiologist trained
performance. In addition, Al-based tools have great potential in cancer monitoring,
due to AI’s capability to detect hidden discriminative features that may not be read
by humans (Bi et al., 2019). Generative adversarial networks (GANs) are unique
Al-models that are able to generate a new set of images based on various data types.
For example, GANs have been reported to generate synthetic CT images from MRI
images. GAN holds potential in enhancing radiotherapy planning (Maspero et al.,
2020). In addition, GAN has been proved valuable in prostate cancer, by automating
dose distribution for intensity-modulated radiation therapy (IMRT) (Murakami et al.,
2020). Additionally, autoencoders (VEs) and variational autoencoders (VAEs) gen-
erative networks have been proposed to have the potential of reducing radiation dose
and intravenous contrast use by improving MRI and CT multimodality imaging
(Haubold et al., 2021; Katsari et al., 2021).

15.3 Al-Models for Predicting Clinically Relevant
Parameters in Advancing Precision Oncology

Unstructured data are a common data type used in recording qualitative and subjec-
tive information that may be acquired through imaging modalities or patient—prac-
titioner interactions. Artificial neural networks (ANN) have been reported to be
useful tools in the analysis of unstructured data (Wang et al., 2019). Contrarily,
convolutional neural networks (CNNs) are used frequently in the imaging files.
Various Al-models have been developed globally to advance oncology personalised
care. However, valid steps must be followed when developing ML models that can
be used in clinical practice. These include choosing the correct problems, collection
of data and pre-processing (anonymity of data, for example), machine training,
internal validation, testing and optimising, evaluation and external validation
(Wiens et al., 2019), Fig. 15.2. Every step is critical to the optimal functioning of
the ML model. Following the deployment of any model, the results and application
must be continually monitored for drifting, loss of performance, etc., as quality
check and ensuring consistency of the same ML model. Furthermore, the clinical
applicability and utility of the newly developed ML models must be assessed and
validated in possible clinical trials using the commonly applied metrics for task
classifications in medicine. Receiver Operating Characteristic Curve (ROC curve) is
the most commonly used metric in health and medicine. ROC plots the true positive
rate and the false positive rate. The area under ROC (AUROC) then expresses the
accuracy level. Additionally, the confusion matrix is used to assess the model’s
sensitivity, specificity and precision (Handelman et al., 2019; Ranschaert et al.,
2019). This may be applicable in precision oncology, improving risk prediction in
high-risk populations, early detection and diagnosis, and accurate prognosis.
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Fig. 15.2 Developing the ML model. The development of new ML models goes through various
steps which may begin by choosing the correct problems, training, validating, testing and evaluating
the model. Validation can be internal and external. Continuous monitoring for drifting and loss of
performance purposes should be done following model deployment (https://depositphotos.
com/2120339/stock-photo-desktop-computer-isolated.html)

15.4 Al-Enhanced Technologies in Early Cancer Detection,
Diagnosis, Risk Stratification and Prognosis

Al-based tools have been reported to improve cancer diagnosis. For example,
Al-enhanced colonoscopy has been demonstrated to be an effective intervention in
the identification of benign polyps (Mori et al., 2020). This Al-enhanced colonos-
copy approach has the potential of healthcare-cost reduction, as well as preventing
invasive treatment approaches. In cervical cancer screening, ML algorithms have
been reported to have high accuracy of precancerous lesions prediction. Al-based
tools thus have the potential to minimise invasive treatment interventions, optimise
cancer diagnosis and minimise over-treatment in patients and thus improve accurate
prognosis (Hu et al., 2019; Shaffer, 2018). Notably, similar to other solid tumours,
significant advances have been made in Al-powered CRC precision oncology. A
study by van Rijn et al. (2006) showed that the miss rate for traditional colonoscopy
for any size polyp was 22%. This miss rate was reported to significantly increase for
smaller polyps (van Rijn et al., 2006). However, Al-aided colonoscopy has been
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reported to improve the detection of even smaller polyps, characterise polyps and
minimise variation that may be caused by different clinicians (Ozawa et al., 2020;
Qadir et al., 2020; Urban et al., 2018; Fernandez-Esparrach et al., 2016; Lee et al.,
2021; Zhang et al., 2017; Tian et al., 2019; Takemura et al., 2012). Prediction models
or statistical algorithms such as Multianalyte Assays with Algorithmic Analysis
(MAAA) have been shown to detect pre-symptomatic longitudinal complete blood
count (CBC) patterns that may be undetectable to clinicians in CRC (Colén-Franco
et al., 2018). Together with demographic data, the MAAA models can be used to
identify high-risk CRC patients (Schneider et al., 2020; Hornbrook et al., 2017;
Kinar et al., 2016; Ayling et al., 2021). Accurate prognosis and prediction of precise
treatment response outcome form an integral part of precision oncology (Huang
et al., 2020), even though the Al-based tools in cancer prognosis are less common
compared to the use of medical statistics. Different studies in several countries have
reported the use of Al-powered prognosis prediction in various cancers. To date,
Al-based tools in the advancement of precision oncology are evident, although
associated challenges may exist. Yamada et al. (2019) developed an Al-diagnostic
model with the aim of bridging disparities between different clinicians and improv-
ing early CRC detection. This system is reported to detect early CRC signs during
colonoscopy. Additionally, the sensitivity and specificity of this model were
reported to be 97.3% and 99%, with 0.975 AUC. This model has the ability to
notify clinicians in real-time of even non-polypoid polyps, avoiding missed diagno-
sis. Tables 15.1, 15.2 and 15.3 provide a summary of Al applications in cancer
screening, diagnosis and prognosis.

15.5 Al from Bench to Bedside: Challenges and Limitations

Although Al-based algorithms hold significant potential towards transforming can-
cer care, their translational application into an oncology clinical workflow still has a
long road. These challenges include data collection and training, lack of potential
clinical validation that can be attributed to the aforementioned challenges, ethical
and legal regulatory guidelines, user education limitations and high cost associated
with Al-models development in LMICs (Chua et al., 2021; Patel et al., 2020).
However, Al-based tools already form part of daily routine tasks, e.g., the use of
smartphone applications such as Siri. Such tools can be integrated into smartphones
as risk assessment tools that can provide cancer risk assessment outcome to the
public. These initiatives were particularly observed during the Covid-19 self-assess-
ment applications. Patients with high-risk outcomes can be recommended for further
medical care, even though lack of symptoms in early cancer detection and diagnosis
may be a challenge. The ‘Big Data’ generated by advancing cancer research initia-
tives sometimes possess as a challenge to clinicians as they try to apply such
recommendations in their clinical workflows. Furthermore, it has been demonstrated
that captured data from oncology health care workers is complex. This includes the
Doctor’s notes (typed or hand-written), imaging data, pathology data, laboratory
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Table 15.1 Summary of Al applications for CRC screening (Qiu et al., 2022)

Al-Model Year | Task Dataset Performance Reference
LightGBM | 2021 |Detection of | Microarray data from 100% accuracy | Nazari
DNN high-risk 111 patients with et al.
patients 22,278 features (2021)
included.
SSD 2021 | Polyp 47,555 images taken Accuracy: Lee et al.
classification | from endoscopies of 0.9067, (2021)
24 patients. precision:
0.9744,
recall: 0.9067,
F1: 0.9393
Random 2021 | Detection of 186 blood serum sam- 75% accuracy | Pan et al.
Tree, RF, serum ples made up of (2021)
LMT, SVM biomarker 90 CRC, 39 advanced
adenomas and
57 healthy individuals.
RF, LR, 2020 | Detection of 263 blood serum pro- AUC: 0.75, Ivancic
SVM, serum tein samples where 70% sensitivity | et al.
DT, Gauss- biomarker 213 samples were 89% specificity | (2020)
ian NB, and obtained from individ-
extremely uals undergoing screen-
randomised ing endoscopy and
trees 50 non-metastatic CRC.
CNN 2020 | Detection and | 27,508 endoscopy Detection: Ozawa
classification | images. Sensitivity— et al.
of polyp 0.92, (2020)
PPV—0.86
Classification:
Sensitivity—
0.83,
PPV—0.81
RetinaNet 2020 | Polyp EAD2019, Precision: Kayser
localisation CVC-ClinicDB, ETIS- | 0.537 et al.
Larib, in-house dataset, (2020)
Kvasir-SEG
Faster 2020 | Detection of ASU-Mayo Clinic, Precision: Qadir et al.
R-CNN, polyp CVC-CLINIC, 0.8154, (2020)
SSD CVC-ClinicVideoDB Sensitivity:
0.9086,
F1: 0.8595
ResNet50, 2019 | Detection and | 871 images taken from | F1: 0.6872, F2: | Tian et al.
RetinaNet classification | endoscopies of 0.6607 (2019)
of polyp 218 patients.
CNN 2018 | Detection of | 8641 endoscopy 90.0% sensitiv- | Urban et al.
polyp images. ity, (2018)
63.3 specific-
ity,
76.5%
accuracy

(continued)
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Table 15.1 (continued)

Al-Model Year | Task Dataset Performance Reference
Polyp CVC-ColonDB 74.8% specific- | Akbari
segmentation ity, 99.3% sen- | et al.

sitivity, 97.7% | (2018)
accuracy

Colonflag 2018 | Prediction of | Colon cancer screening | The odds of Hilsden
high-risk centre data (EMRs) Colonflag and | et al.
patient normal colo- (2018)

noscopies: 2.0
CNN 2017 | Classification | 1930 NBI images 85.9% accu- Zhang et al.
of polyp racy, (2017)
87.3% preci-
sion,
87.6% recall
rate

Colonflag 2017 | Detection of 112,584,133 US AUC: 0.80 Hornbrook
high-risk community-based +0.01 et al.
patient insured data (2017)

Mescore 2017 | Detection of a | 17,095 patients from Top 3% Kinar et al.
high-risk KPNW (EMRs) score > 97.02 | (2017)
patient Top 1%

score > 99.38

Energy map |2016 |Polyp 24 videos of AUC: 0.79, Fernandez-

detection endoscopies 70.4% sensitiv- | Esparrach
ity, 72.4% et al.
specificity (2016)

Mescore 2016 | Detection of a | 606,403 Israelis and AUC: 0.82 Kinar et al.
high-risk 25,613 +0.01 and (2016)
patient UK dataset (EMRs) 0.81 for valida-

tion sets
HuPAS ver- | 2012 | Polyp 1890 NBI endoscopic 98.7% Takemura
sion 3.1 classification | images accuracy et al.
(2012)

data and patient generated health data. Obtaining relevant meaning from such data is
depended on sufficient data extraction, interpretation, analysis and integration into
the clinical workflow. Thus, the human brain capacity can be enhanced by Al-tools
to process such robust information. Data processing, analysis and storage can be
done by Al-based tools on the already available data. Al-tools in cancer diagnosis is
a growing field with around a 100 recently registered clinical trials in Al-cancer
diagnosis (Dong et al., 2020). With every new technology, specifically in health
care, there are challenges and limitations that need to be overcome. Nonetheless,
Al-based tools hold promising interventions in early cancer detection, diagnosis and
accurately predicting prognosis, Fig. 15.3.
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Table 15.2 Summary of Al-based tools in cancer diagnosis (Hunter et al., 2022)
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Al-model Type Description Reference
Random forest | Regression, Grouping prediction of random decision Xiao et al.
Classification | trees. (2017)
Logistic Regression Prediction of categorical outcomes using Chhatwal
regression logistic function. et al. (2009)
Convolutional Regression, Detecting image features using kernels. Suh et al.
neural network | Classification (2020)
Support vector | Regression, Constructing hyperplanes using to optimise | Zhang et al.
machine Classification | data separation. (2013)
Extreme gradi- | Regression, Similar to random forest. Chronological Liew et al.
ent boosting Classification | errors minimised by descending gradient. (2021)
Naive Bayes Classification | Uses Bayesian probability which includes Olatunji et al.
priors for classification. (2021)
Artificial neural | Regression, Input multiplication by weights and biases to | Muhammad
network Classification | predict outcome. et al., (2019)

15.6 Conclusions

Although AI methods show great promise towards improving cancer health care, in
cancer diagnosis, accurate prognosis, predicting risk and response to treatment, how
precisely Al improves cancer health is not fully demonstrated. Some of the chal-
lenges that face the transition of Al-models into real-world settings include fairness
and bias, socio-environmental factors and data safety and privacy. Regarding fair-
ness and bias, it has been documented that health data can sometimes be bias. For
example, missing values and lack of diverse sampling. Al-models trained on such
data may augment the bias, thus making unfavourable decisions and possibly
discriminating against a particular group of people and exacerbating cancer health
disparities. This can be mitigated by diversifying data sources. It has been reported
that Al-models developed in one geographical region with unique socio-economic
factors may not respond and thus display similar levels of accuracy when placed in a
different socio-environmental setting. This may significantly impair the initial val-
idated model’s high standards. Additionally, Al-models developed in a particular
race group may sub-optimally perform in other race groups. Furthermore, data safety
and privacy issues must also be addressed. Data sharing and availability is key to any
Al-model. This includes data such as medical history, genomics, behaviours data
and social data that cover patients’ daily lives. However, building a well-controlled
and safe ecosystem for data storage, sharing and management is crucial (Johnson
etal., 2021). Overall, Al-aided screening methods are most likely to detect clinically
relevant parameters such as polyps in CRC which may otherwise be missed by
humans and may be precancerous lesions (Hilsden et al., 2018; van Rijn et al., 2006).
Al-technology also may be able to detect clinically relevant biomarkers to improve
cancer patient outcome (Issa & Noureddine, 2017; van Rijn et al., 2006; Yamada
et al., 2019). However, it has been reported that this technology may also increase
over diagnosis of early cancer stages with no potential of malignancy, which may
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Al- Powered Precision Oncology
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outcome
Fig. 15.3 Al-tools and precision oncology intersection and reinforcement. Al-empowers precision

oncology through enhanced risk prediction, early detection and diagnosis, reinforced prognosis, and
improved patient outcome (https://www.dreamstime.com/photos-images/biology.html)

negatively impact on patients and medical resources (Ozawa et al., 2020; Mori et al.,
2020). The benefits and the pitfalls of Al in personalised cancer care remain to be
accurately evaluated. Nonetheless, these benefits hold promising applications in
oncology personalised care, breaking and creating unique inter- and intra-population
barriers in advancing precision oncology and improving overall patient outcome,
Fig. 15.4.
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Fig. 15.4 Al-based tools hold great potential in breaking inter- and intra-population boundaries,
while connecting global communities in advancing precision oncology (https:/pixabay.com/
images/search/biology/)
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Chapter 16 )
Conclusion and Insights into the Future e
of AI in Precision Oncology

Zodwa Dlamini, Demetra Demetriou, and Thulo Molefi

Abstract Precision oncology is the main goal in the medical field. Personalized
patient- and health care will decrease the burden of cancer and improve diagnosis,
prognosis, treatment, and survival. Artificial intelligence (Al) is fast changing how
medical research is done with resultant improvements in patient care. By analyzing
large data sets, Al allows for the prediction of disease risk, early detection of disease
progression, and treatment outcomes for an individual patient on a particular ther-
apy. Al is also used as a novel approach for exploring ccfNAs that can be used as
potential drug targets or biomarkers. Al has led to improved data collection, analysis,
and interpretation of microbiomics, epigenomics, and metabolomics. Al has
improved the capabilities of medical imaging by enhancing digital pathology and
giving rise to the new field of radiogenomics. Al is being used to assist in the
development and application of nanomedicine to precision oncology. Al has
improved drug design to be more successful, less expensive, more target specific
and create drugs with reduced toxicity. The application of Al to the field of medical
devices has led to the introduction of sophisticated Al-based medical devices.
Additionally, AI will be used to solve many yet unforeseen challenges faced daily
in the medical field. Precision oncology through the application of Al to medicine
allows the best possible care for patients as it is personalized to their specific needs.
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16.1 Conclusion

Improved understanding of the pathogenesis of cancer, the tumor microenvironment,
and metastatic pathways has led to a more precise approach to how malignancies are
managed. The aim is to provide treatment that is accurate and less toxic. Al has
allowed this aim to be reached. Al is also used as a novel approach for exploring
ccfNAs in personalized clinical diagnosis and prognosis. In addition, the information
obtained from large omics data sets has led to improved screening and monitoring of
cancer in the form of radiogenomics. Epigenomics reflects how an individual’s
environment and lifestyle can alter their cancer risk. It also provides data concerning
the predisposition to develop cancer at premalignant stages in the cancer pathogen-
esis sequence. Epigenomics is considered big data and its analysis and interpretation
can only be realistically undertaken using Al and machine learning. Metabolomics,
on the other hand, is defined as the comprehensive analysis of metabolites in a
biological specimen and holds a long-awaited promise to inform the practice of
precision medicine. Metabolites are also used to diagnose complex metabolic dis-
eases, such as inborn errors of metabolism. The human body is also inhabited by a
vast number of microorganisms that are known as the microbiome. The microbiome
offers substantially more genetic diversity, and hence more flexibility, than the
human genome. Given the diversity of both the microbiome and cancer, together
with recent progress in multi-omics studies, it is inevitable that machine learning and
Al algorithms will be incorporated as essential tools required for the accurate
interpretation of big data and used to enhance decision-making systems and advance
precision oncology. Al can also be applied to new and established technologies in
the medical fields to improve their application and development (Fig. 16.1).
Nanomedicine has offered innovative solutions for some of the world’s most
pressing problems, particularly in the health space. Al applications have also been
applied to nanotechnology in the form of nanomedicine. Al-based algorithms for
nanomedicine hold promise for improving precision care. Al-based medical devices
promise to revolutionize medical imaging tools and lead to advancement in the
diagnosis and management of cancer patients. The development of new drugs is
expensive, time-consuming, and often results in failure. These problems can par-
tially be solved using Al to identify drug targets, search for ligands for these targets,

. Precision
Medicine Al ..
Medicine

Fig. 16.1 Medicine combined with Artificial Intelligence will lead to precision medicine and the
next-generation medicine with improved healthcare
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and then model the interactions of the drug and its target while determining the
physiochemical properties of the drug. Cancer immunotherapy refers to the manip-
ulation of the patient’s immune system to fight cancer. Al can monitor the use of
cancer immunotherapy, predict patient tolerance, and optimize treatment response.
The experience-based, one-size-fits-all approach of medicine is being replaced by
more precise approaches, which can be individualized with more accuracy. Disrup-
tive technologies, such as genome sequencing and advanced biotechnology, gener-
ate vast amounts of data. Data which is so vast, that it would be impossible for the
human mind to keep up with and remember in totality, thus requiring Al. The
introduction of sophisticated Al-medical devices demonstrates the fundamental
role that Al holds to offer in oncology. Several Al-tools have illustrated high
performance toward cancer care and management in various parts of the world.

The integration and analysis of data from various sources, such as “multi-omics”
data, medical images, medical imaging reports, electronic and hand-written medical
records, is only possible in a practical manner using Al techniques. Al-based tools
can enhance human potential by identifying changes in disease patterns. These tools
will identify variances in patient data and help to identify predictors of unforeseen
patients’ response to therapy and enable personalized patient care. The need for
personalized care is needed more in oncology than any other field in medicine. Al
can be used for the screening of common malignancies in high-risk individuals and
allow for early and accurate diagnosis while assisting to rule out other benign
differential diagnoses. The development of Al-based technologies for biomedical
applications opened a new era in the field of personalized clinical diagnosis and
prognosis. Combining digital pathology, radiogenomics, and Al can improve
workflow and lead to advanced diagnostics. Al-aided screening methods are more
likely to detect premalignant features within colon polyps which may otherwise have
been missed by humans. Epigenomic data can be used on its own or integrated with
other omics data to provide a clear view of the molecular landscape within signaling
pathways involved in the development and progression of cancer. Integrating
metabolomics technologies with Al indeed offers more effective cancer care strat-
egies, as it aids in overcoming challenges that either technique cannot overcome on
its own. Advances in nanomedicine, coupled with novel computational methods of
intelligent analysis, will be a game-changer in the development of healthcare and
precision medicine. The ability of these devices to use machine learning to improve
their abilities makes them autonomous. Therefore, they do not require external
upgrades and as they learn they will in future be able to operate independently
without human manipulation. Al can be used to help solve these challenges and lead
to shorter development times for drugs. Al has allowed for the stratification of
patients into responders and non-responders so that only patients who will benefit
from cancer immunotherapy are treated accordingly. The strategic application of a
patient-centered Al-Pathway companion in disease prevention, diagnosis, and treat-
ment has the potential to revolutionize the healthcare industry as we know it.
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