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Abstract A nonlinear non-instantaneous impulsive difference equations with max-
imum of the state variable over a past time interval is investigated. The exponential
stability concept is studied and some criteria are derived. These results are also
applied for a neural networks with switching topology at certain moments and long
time lasting impulses. It is considered the general case of time varying connection
weights. The equilibrium is defined and exponential stability is studied. The obtained
results are illustrated on examples.
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1 Introduction

One of the most important problems in the theory and application of difference
equations is stability (see, for example, [3, 6, 7, 9, 11, 12]). At the same time
impulses are a very useful mathematical apparatus to model some instantaneous
perturbations in the process. In the case when the acting time of the impulses is not
possible to be neglected, these impulses are called non-instantaneous impulses (for
continuous case, see, [4]).

In this paper we study nonlinear difference equations with a special type of delay
in the case there are some impulses starting at initially given points and acting on
finite time intervals. The delay is presented as the maximum value of the unknown
function over a past time discrete interval. By utilizing the Lyapunov stability theory
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and discrete-time Gronwall inequality, we establish some sufficient conditions for
exponential stability of the zero solution.

Neural networks have received extensive interests in recent years in connection
with their potential applications in signal processing, content addressable memory,
pattern recognition, combinatorial optimization. It is well known that the existence
of delays in neural networks causes undesirable complex dynamical behaviors such
as instability, oscillation and chaotic phenomena. In practice, for computation conve-
nience, continuous-time neural networks are often discretized to generate discrete-
time neural networks. Thus, the study of discrete-time neural networks attracts more
and more interests.

In this paper, we deal with a class of discrete-time neural networks with a special
type of delay subject to long time lasting impulsive perturbations. The delay is pre-
sented by the maximum value of the state variables ove a past time interval with fixed
interval. The basic characteristic of these perturbations is that the time of their action
is not negligible small, so we consider the so called non-instantaneous impulses.
We consider the general case when the connection weights between neurons are
changeable in time. We apply the obtained theoretical results to obtain exponential
stability criteria and new exponential convergence rate for non-instantaneous impul-
sive discrete-time neural networks with delays and variable connection weights.

Some discrete neural networks are considered and the theoretical results are
applied. The example is computer realized by the help of Wolfram Mathematica.
Following the theoretical schemes for solving the problems, the corresponding algo-
rithms are coded to calculate the values of the solution for each step. The graphs are
generated by CAS Wolfram Mathematica.

2 Statement of the Problem and Definition of Solution

We will introduce basic notations used in this paper. Most of them are well
known and used in the literature. Let Z+ be the set of all nonegative integers; the
increasing sequence {ni }∞i=0 : n0 = 0, ni ∈ Z+, ni ≥ ni−1 + 3, i = 1, 2, . . . and
the sequence {di }∞i=1 : di ∈ Z+, 1 ≤ di ≤ ni+1 − ni − 2, i = 1, 2, . . . be given;
Z[a, b] = {z ∈ Z+ : a ≤ z ≤ b}, a, b ∈ Z+, a < b, Za = {z ∈ Z+ : z ≥ a} and
Ik = Z[nk + dk, nk+1 − 1], k ∈ Z+, and Jk = Z[nk + 1, nk + dk], k ∈ Z1, where
d0 = 0.

Let φ ∈ Z(−h, 0) → R
N with ‖φ‖0 = max

σ∈[−h,0] ||φ(σ)||, where ||.|| is a norm in

R
N .
Consider the initial value problem (IVP) for the system of nonlinear difference

equation with non-instantaneous impulses
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x(n + 1) = Ax(n) + F

(
n, max

ξ∈Z[n−h,n]
x(ξ)

)
for n ∈

∞⋃
k=0

Ik,

x(n) = Pk(n, x(nk)), for n ∈ Jk, k ∈ Z1,

x(n) = φ(n), n ∈ Z[−h, 0],

(1)

where x ∈ R
n , x = (x1, x2, . . . , xN ) ∈ R

N , A is N × N square matrix, F = (F1,

F2, . . . , FN ), Fi : ⋃∞
k=0 Ik ×R

N → R, Pk = (Pk,1, Pk,2, . . . , Pk,N ), Pk,i : Jk ×
R

N → R, i = 1, 2, . . . , N , k = 1, 2, . . . , and h is a natural number.
Denote by MN the set of all quadratic N × N dimensional matrices with the

spectral norm |A| = √
λmax (AT A), and for any vector x ∈ R

N we will use the norm

|x | =
√

N∑
i=1

x2i . Moreover, denote by λmin(A) and λmax (A) the minimum and the

maximum eigenvalue of a positive definite symmetric matrix A and�(A) = λmax (A)

λmin(A)
.

Usually, the difference equation describes the development of a certain phe-
nomenon by recursively defining a sequence, each of whose terms is defined as
a function of the preceding terms, once one or more initial terms are known (see, for
example, [10]). Differently than that, we consider a difference equation in which the
present state is also involved nonlinearly in the right side part. It makes the answer
of the question about the existence of the solution more complicated.

Definition 1 The trivial solution of the system (1) is called globally exponentially
stable, if there exist constants L > 0 and α ∈ (0, 1) such that for any initial function
φ the inequality |x(n)| ≤ Lαn||φ||0, n = 1, 2, . . . holds.

The constant α is called the exponential convergence rate.
Consider the Lyapunov equation

AT H A − H = −C, (2)

where A, H, C ∈ MN .

3 Exponential Stability of Linear Delay Discrete Equations

We will study the exponential stability of the linear system (1).

Theorem 1 (Exponential stability results). Let

1. The matrix A ∈ MN and C ∈ MN be a positive definite matrix.
2. The function F ∈ C(Z+ ×R

N
,R

N
), F(n, 0) = 0 for any n ∈ Z+ and there

exists a constant K > 0 such that |F(n, u)| ≤ √
K |u| for u ∈ R

N
, n ∈ Z+.

4. The functions Pk ∈ C(Z+ ×R
N
,R

N
), Pk(n, 0) = 0, k = 1, 2, . . . and there

exist constants Mk > 0 such that |Pk(n, u)| ≤ √
Mk |u| for any u ∈ R

N
, n ∈ Jk

and k = 1, 2, . . . .
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5. There exists a solution H ∈ Mn of (2) such that |H | Mk < 1, k = 1, 2, . . . ,

L1(H) − L2(H) < λmax (H) − λmin(H), and

�(H)
(
|AT H | + |H A| + Kλmax (H)

)

min(C) < λmax (H) + 0.5�(H)(|AT H | + |H A|)

where L1(H) = λmax (H) − λmin(C) + 0.5�(H)(|AT H | + |H A|), and L2(H)

= λmin(H) − �(H)K
(
λmax (H) + 0.5|H A| + 0.5|AT H |

)
.

Then the zero solution of (1) is exponentially stable.

Proof Denote � = max
{
�, L1(H)

λmax (H)
− L2 + λmin(H)

}
< 1, where � =

sup
k≥1

|MT
k HMk |.

Consider the function V (x) = xT Hx for x ∈ R
N
. Then λmin(H)|x |2 ≤ V (x) ≤

λmax (H)|x |2.
Let x(n), n ∈ Z[−h + 1,∞), be a solution of the IVP (1) with the initial function

φ.
Let n ∈ ⋃p

k=0 Ik . Then we have

V (x(n + 1)) − V (x(n))

≤ (−λmin(C) + 0.5|AT H | + 0.5|H A|) |x(n)|2
+ (

λmax (H) + 0.5|H A| + 0.5|AT H |) K | max
ξ∈Z[n−h,n]

x(ξ)|2

≤ −λmin(C)|x(n)|2 + |AT H B| |x(n)|2

+
(
|AT H B| + |BT H B|

)
| max
ξ∈Z[n−h,n]

x(ξ)|2.

(3)

Apply the inequalities −|x(n)|2 ≤ − V (x(n)

λmax (H)
, and

∣∣∣∣ max
ξ∈Z[n−h,n]

x(ξ)

∣∣∣∣
2

= |x(η)|2 ≤ V (x(η))

λmin(H)
≤ λmax (H)

λmin(H)
‖φ‖20

to (3) and obtain

V (x(n + 1)) ≤
(
1 − λmin(C)

λmax (H)
+ |AT H B|

λmin(H)

)
V (x(n))

+
(
|AT H B| + |BT H B|

)λmax (H)

λmin(H)
‖φ‖20.

(4)

From equalities
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1 − λmin(C)

λmax (H)
+ 0.5

|AT H | + |H A|
λmin(H)

= 1

λmax (H)

(
λmax (H) − λmin(C) + 0.5�(H)(|AT H | + |H A|))

and (
λmax (H) + 0.5|H A| + 0.5|AT H |

) K

λmin(H)

= �(H)
(
λmax (H) + 0.5|H A| + 0.5|AT H |

) K

λmax (H)

and inequality (4) we get

V (x(n + 1)) ≤ L1(H)

λmax (H)
V (x(n − 1)) +

(
λmin(H) − L2(H)

)
‖φ‖20. (5)

Let n = 0. Then from inequality (5) we obtain

V (x(1)) ≤
(
L1(H) − L2(H) + λmin(H)

)
‖φ‖20 <

1+h
√

�(H)‖φ‖20. (6)

Let n = 1. Then from inequalities (5) and (6) we get

V (x(2)) ≤ L1(H)

λmax (H)
V (x(1)) +

(
λmin(H) − L2(H)

)
‖φ‖20

≤ �(H)‖φ‖20 <
1+h
√

�2(H)‖φ‖20.
(7)

Consider the following two possible cases:
Case 1. Let m ≥ n1 − 1. Then using induction, the inequalities � <

p
√

� for
p > 1, n ≤ n1 − 1 < m + 1, i.e. m+1

n > 1 for n ∈ I0 and inequality (5), we prove
that

V (x(n + 1)) ≤ 1+h
√

�n(H)‖φ‖20, for n ∈ Z[0, n1 − 1].

Case 2. Let h < n1 − 1. Then using induction and inequality (5) we prove that

V (x(n + 1)) ≤ 1+h
√

�n(H)‖φ‖20, for n = 1, 2, . . . , h.

Then for k = 1, 2, . . . , n1 − h we get

V (x(h + k)) ≤ L1(H)

λmax (H)
V (x(h)) +

(
λmin(H) − L2(H)

)
‖φ‖20

≤ �(H)
1+h
√

�k(H)‖φ‖20 <
1+h
√

�h+k(H)‖φ‖20.
(8)

By induction we prove that
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V (x(n1 + k)) <
1+h
√

�n1+k−1v0, k = 0, 1, . . . , d1.

Let n = n1 + d1. Then using the inequalities n1 + d1 + 1 − h > 0 and (5) we get

V (x(n1 + d1 + 1)) ≤ 1

λmax (H)
L1(H)

1+h
√

�n1+d1‖φ‖20
+

(
− L2(H) + λmin(H)

)
1+h
√

�n1+d1+1−h‖φ‖20
< �

n1+d1+1
h+1 ‖φ‖20.

(9)

Similarly, V (x(n1 + d1 + 2)) < �
n1+d1+2

h+1 ‖φ‖20.
By induction process we prove the validity of the inequality

V (x(n)) < �
n

h+1 ‖φ‖20 for all n ∈ Z1. (10)

Therefore, we get |x(n)| < L‖φ‖0αn , for all n ∈ Z1 with α = 2(h+1)
√

� < 1, and

L = √
�(H) =

√
λmax (H)

λmin(H)
.

�

4 Exponential Stability of Discrete Neural Networks
with Maximum, Non-instantaneous Impulses and Time
Variable Connection Weights

Consider the following neural network modeled by discrete system with maximum,
non-instantaneous impulses and time variable connection weights

ui (n + 1) = aiui (n) +
n∑
j=1

�i j (n) f j

(
max

ξ∈Z[n−h,n]
u j (ξ)

)
+ Gi

for n ∈
∞⋃
k=0

Ik, i ∈ Z[1, N ],

ui (n) = Mikui (nk) +
n∑
j=1

�k
i j (n)Sj (u j (nk)) + Qik,

for n ∈ Jk, k ∈ Z1, i ∈ Z[1, N ],
ui (n) = φi (n), n ∈ Z[−h, 0], i ∈ Z[1, N ],

(11)

where ui (n), i ∈ Z[1, N ], denotes the state of the i-th neuron at discrete time n,
ai , i ∈ Z[1, N ], represents the passive decay rate, f j is the neuron activation function
with f j (0) = 0, Gi is the exogenous input, Pj is the neuron output signal function
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which is a continuous function, �i j (n) and �k
i j (n) denote the connection weight

from the neuron j to the neuron i at time n, m ∈ Z(1) is the transmission delay,
φi (n), n ∈ Z[−h, 0] is the initial function for the i-th neuron.

For any u = (u1, u2, . . . , uN ) we denote f (u) = (
f1(u1), f2(u2), . . . ,

fN (uN )
)
and S(u) = (

S1(u1), S2(u2), . . . , SN (uN )
)
.

We will introduce the following assumptions:
A1. The functions fi ∈ C(R,R), i ∈ Z[1, N ], and there exist positive constants

Li , i ∈ Z[1, N ], such that | fi (u) − fi (v)| ≤ Li |u − v|, u, v ∈ R.
A2. The functions Si ∈ C(R,R), i ∈ Z[1, N ], and there exist positive constants

Ki , i ∈ Z[1, N ], such that |Si (u) − Si (v)| ≤ Ki |u − v|, u, v ∈ R.

A3. The functions �i j :
∞⋃
k=0

Ik → R, i, j ∈ Z[1, N ], and �k
i j : Jk → R, i, j ∈

Z[1, N ], k ∈ Z+, are bounded, i.e. there exists constants βk
i j > 0, γi j > 0 such that

|�i j (n)| ≤ βi j for n ∈
∞⋃
k=0

Ik and |�k
i j (n)| ≤ γk

i j for n ∈ Jk , k ∈ Z+, i, j ∈ Z[1, N ].
In the non-homogeneous case we will define an equilibrium of the model (11):

Definition 2 ([2]) A vector u∗ ∈ R
N : u∗ = (u∗

1, u
∗
2, . . . , u∗

N ) is said to be an equi-
librium point of the impulsive discrete-time neural network (11) if it satisfies the
equalities

u∗
i = aiu

∗
i +

N∑
j=1

�i j (n) f j (u
∗
j ) + Gi for n ∈

∞⋃
k=0

Ik, i ∈ Z[1, N ],

u∗
i = Miku

∗
i +

N∑
j=1

�k
i j (n)Sj (u

∗
j ) + Qik for n ∈ Jk, k ∈ Z1.

(12)

Let (11) has an equilibrium u∗ ∈ R
N . Substitute x = u − u∗ ∈ R

N in (11) and
obtain

xi (n + 1) = ai xi (n) +
N∑
j=1

�i j (n)F j

(
max

ξ∈Z[n−h,n]
x j (ξ)

)
, n ∈

∞⋃
k=0

Ik,

xi (n) = Mikxi (nk)) +
N∑
j=1

�k
i j (n)r j (x j (nk)), n ∈ Jk, k ∈ Z1,

(13)

where Fi (y) = fi (y − u∗
i ) − fi (u∗

i ) and ri (y) = Si (y − u∗
i ) − Si (u∗

i ), i = 1, 2,
. . . , N , for y ∈ R.

The stability behavior of the equilibrium of (11) is equivalent to the stability
behavior of zero solution of (13).

The system (13) could be written in the matrix form (1) where



378 S. Hristova and K. Stefanova

A =

⎡
⎢⎢⎣
a1 0 0 . . . . . . 0
0 a2 0 . . . . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . . . . aN

⎤
⎥⎥⎦ , B(n) =

⎡
⎢⎢⎣

�11(n) �12(n) �13(n) . . . . . . �1N (n)

�21(n) �22(n) �23(n) . . . . . . �2N (n)

. . . . . . . . . . . . . . .

�N1(n) �N2(n) �N3(n) . . . . . . �NN (n)

⎤
⎥⎥⎦ ,

F(u) =

⎡
⎢⎢⎣

F1(u1)
F2(u2)

. . .

FN (uN )

⎤
⎥⎥⎦ , r(u) =

⎡
⎢⎢⎣
r1(u1)
r2(u2)

. . .

rN (uN )

⎤
⎥⎥⎦ , Mk =

⎡
⎢⎢⎣
M1k 0 0 . . . . . . 0
0 M2k 0 . . . . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . . . . MNk

⎤
⎥⎥⎦ ,

Gk(n) =

⎡
⎢⎢⎣

�k
11(n) �k

12(n) γk
13(n) . . . . . . �k

1N (n)

�k
21(n) �k

22(n) �k
23(n) . . . . . . �k

2N (n)

. . . . . . . . . . . . . . .

�k
N1(n) �k

N2(n) �k
N3(n) . . . . . . �k

N N (n)

⎤
⎥⎥⎦ ,

u = (u1, u2, . . . , uN ), F = (F1, F2, . . . , FN ), F(n, u) = B(n)F(u), Pk = (Pk,1,
Pk,2, . . . , Pk,N ), Pk(n, u) = Gk(n)r(u) + MkuT .

From assumption (A1) and the inequality

(
N∑
j=1

γ j u j

)2

≤ N
N∑
j=1

(
γ j u j

)2
we have

|F(n, u)| ≤
√
N

∑N
i=1 max j (L jβi j )2

√∑N
j=1 u

2
j , i.e. the condition 3 of Theorem 1

is satisfied with K = N
N∑
i=1

max j (L jβi j )
2.

From assumption (A2) and the inequality
( N∑

j=1
γ j u j

)2 ≤ N
N∑
j=1

(
γ j u j

)2
we have

|Pk(n, u)| ≤
√
2
(
maxi M2

ik + ∑N
i=1 N max j

(
γk
i j K j

)2) ∑N
i=1 u

2
i , i.e. the condition

4 of Theorem 1 is satisfied with Mk = 2
(
maxi M2

ik + ∑N
i=1 N max j

(
γk
i j K j

)2)
.

Theorem 2 Let the conditions (A1)–(A3) be satisfied and:

1. The discrete model (11) has an equilibrium u∗.
2. The constants ai , Mik ∈ R, βi j , γk

i j > 0, Gi , Qik ∈ R, i, j ∈ Z[1, N k ∈ Z1.

3. The inequalities maxi M2
ik + N

∑N
i=1 max j

(
γk
i j K j

)2
< 1 for k ∈ Z1, maxi a2i +

maxi |ai | + N (1 − maxi |ai |)∑N
i=1 max j (L jβi j )

2) < 1, and maxi a2i + maxi

|ai | + K
(
1 + maxi |ai |

)
< 1 hold.

Then the equilibrium point of the difference neural network with non-instantaneous
impulses (11) is exponentially stable with a rate α = 2(h+1)

√
� < 1. where � =

max
{
�,maxi a2i + maxi |ai | + K

(
1 + maxi |ai |

)}
< 1with� = sup

k≥1

(
max

i
M2

ik +
N∑
i=1

N max
j

(
γk
i j K j

)2)
.
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Proof Let H = E , where E ∈ Mn is the unit matrix. Then (2) is satisfied with
C ∈ Mn : cii = 1 − a2i and ci j = 0 for i 
= j . Thenλmax (H) = λmin(H) = φ(H) =
1 and λmin(C) = 1 − maxi a2i , |A| = maxi |ai |. According to Theorem 1 the zero
solution of (13) is exponentially stable.

5 Application

Consider a system with three agent with constant connection weights modeled by
the following discrete model of neural network

u1(n + 1) = 1

2
u1(n) + 1

8
sin

(
max

ξ∈Z(n−3,n)
u1(ξ)

)
− 1

4
sin

(
max

ξ∈Z(n−3,n)
u2(ξ)

)

+ 1

16
max

ξ∈Z(n−3,n)
u3(ξ) + 1

u2(n + 1) = 1

3
u2(n) + 1

4
sin

(
max

ξ∈Z(n−3,n)
u1(ξ)

)
+ 1

8
sin

(
max

ξ∈Z(n−3,n)
u2(ξ)

)
+ 2

u3(n + 1) = 1

4
u3(n) + 1

16
sin

(
max

ξ∈Z(n−3,n)
u1(ξ)

)
− 1

8
sin

(
max

ξ∈Z(n−3,n)
u2(ξ)

)

+ 1

16
max

ξ∈Z(n−3,n)
u3(ξ)) + 1 for n ∈

∞⋃
k=0

Ik,

(14)
with non-instantaneous impulses for n ∈ Jk, k ∈ Z1

u1(n) = 1

2
u1(nk) + 1

8
sin(u1(nk)) − 1

4
sin(u2(nk)) + 1

16
u3(nk) + 1

u2(n) = 1

3
u2(nk) + 1

4
sin(u1(nk)) + 1

8
sin(u2(nk)) + 2

u3(n) = 1

4
u3(nk) + 1

16
sin(u1(nk)) − 1

8
sin(u2(nk)) + 1

16
u3(nk) + 1,

(15)

and initial conditions

ui (n) = φi (n), n = −3, −2, −1, 0, (16)

where n0 = 0, d0 = 0, n1 = 4, d1 = 6, n2 = 18, d2 = 5, n3 = 33, d3 = 7, n4 = 45.
In this particular case I0 = Z[0, 3], I1 = Z[10, 17], I2 = Z[23, 32], I3 = Z[40, 44]
J1 = Z[5, 10], J2 = Z[19, 23], J3 = Z[34, 40]. (The whole interval is Z[−3,45]).

The point u∗ = (2.40568, 3.23436, 1.53241) is the equilibrium point of (14),
(15). The conditions of Theorem 2 are reduced to 0.25 + 3( 1

16 + 1
16 + 1

64 ) =
0.680556 < 1, and0.25 + 0.5 + 3(1 − 0.5)( 1

16 + 1
16 + 1

64 ) = 0.965278 < 1.There-
fore, the equilibrium u∗ is exponentially stable with a rate α = 8

√
0.965278 ≈
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Fig. 1 Graphs of the bound αn‖φ − u∗‖0 = 2.87314 ∗ 0.995592n and the differences |u1(n) −
2.40568|, |u2(n) − 3.23436|, |u3(n) − 1.53241| for n ∈ [1, 45]

Table 1 Values of the bound αn‖φ − u∗‖0 = 2.87314 ∗ 0.995592n and the differences |u1(n) −
2.40568|, |u2(n) − 3.23436|, |u3(n) − 1.53241| for n = 1, . . . , 45

n 2.87314 ∗
0.995592n

|u1(n) −
2.40568|

|u2(n) −
3.23436|

|u3(n) −
1.53241|

1 2.86048 0.269342 0.226707 0.660759

2 2.84787 0.0153586 0.00404188 0.301958

3 2.83531 0.146954 0.00197866 0.229919

4 2.82281 0.213725 0.0285321 0.204716

5 2.81037 0.0909878 0.0490802 0.0496394

… … … … …

38 2.42913 0.000020443 1.71883 ∗ 10−6 3.53387 ∗ 10−6

39 2.41842 0.000020443 1.71883 ∗ 10−6 3.53387 ∗ 10−6

40 2.40776 0.000020443 1.71883 ∗ 10−6 3.53387 ∗ 10−6

41 2.39714 6.77539 ∗ 10−6 1.13363 ∗ 10−7 1.04167 ∗ 10−6

42 2.38658 4.65835 ∗ 10−7 2.03659 ∗ 10−6 2.0664 ∗ 10−6

43 2.37606 2.16839 ∗ 10−6 3.92243 ∗ 10−6 2.09433 ∗ 10−6

44 2.36558 3.24319 ∗ 10−6 5.03918 ∗ 10−6 1.98103 ∗ 10−6

45 2.35516 3.681 ∗ 10−6 5.61059 ∗ 10−6 1.90291 ∗ 10−6

0.995592 and L = √
�(H), �(H) = λmax (H)

λmin(H)
, H = E , where E ∈ Mn is the unit

matrix.
Consider the solution ũ(n) of the discrete model (14), (15), (16) with initial

functions φ1(n) = 3n + 2, φ2(n) = 2n + 2, φ3(n) = n + 4, n = −3, −2, −1, 0.
In this case ‖φ − u∗‖0 = max

σ∈[−h,0] ||φ(σ) − u∗|| = 2.87314. The graphs of the dif-

ferences |u1(n) − 2.40568|, |u2(n) − 3.23436|, |u3(n) − 1.53241| and the bound
αn‖φ − u∗‖0 = 2.87314 ∗ 0.995592n are given on Fig. 1 and Table1. From both it
could be seen the equilibrium point u∗ is exponentially stable.
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