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Preface

In this volume, proceedings of the Ninth International Conference on New Trends
of the Applications of Differential Equations in Sciences (NTADES 2022), Sozopol,
Bulgaria, 14–17 June 2022 are presented.

This conference was devoted to many applications of differential equations in
different fields of science. A number of phenomena in nature (physics, chemistry,
and biology) and in society (economics) result in problems leading to the study
of linear and nonlinear differential equations. During the conference invited and
contributed papers were presented. The main topics are given as follows: Applica-
tions in Mathematical Physics; Applications in Mathematical Biology; Applications
in Mathematical Finance; Applications in Neuroscience; and Applications in Frac-
tionalAnalysis. The conference provided awide range of problems concerning recent
achievements in both theoretical and applied mathematics. Basic research in math-
ematics leading to new methods and techniques useful for applications of differ-
ential equations was presented. Young researchers, postdocs, and Ph.D. students
participated during NTADES 2022 as well.

The Conference was in cooperation with the Society of Industrial and Applied
Mathematics. SIAMis themajor international organization for Industrial andApplied
Mathematics and its role is very important in the Republic of Bulgaria for the promo-
tion of interdisciplinary collaboration between applied mathematics and science,
engineering, finance, and neuroscience.

The main goal of the proceedings is to exchange new ideas and research between
scientists, who develop and study differential equations, and researchers, who apply
them for solving real-life problems. During the conference, more than 70 talks were
presented by scientists from universities and institutes from different countries. They
represented most of the strongest research groups in the fields. In this volume, 42
chapters in 5 parts are presented on the above topics which were selected after a
peer-review process.

In Part I which is the major part of the volume—19 chapters, some new appli-
cations of differential equations in mathematical physics are included. These papers
concern the study of partial differential equations arising in mathematical physics,
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vi Preface

and mechanics, and provided the most recent new methods for their investiga-
tion. I would like to stress the readers’ attention to Chaps. “Porous-Media Flow
and Yamabe Flow on Complete Manifolds” and “On the Square of Laplacian
with Inverse Square Potential” which actually were invited plenary talks during the
conference.

Part II which is organized into six chapters, deals with some applications in
biology, more special studying some models of the Hepatitis B virus with control on
the immune system, modeling and simulation of virotherapy in oncology, modeling
epilepsy phenomena, etc.

In Part III, consisting of six chapters investigations of forecasting in finance are
presented via different models, diversification, and optimization of the financial port-
folio. In some of the chapters, stochastic models are investigated for stock price
prediction and portfolio formation via extensive simulations.

Part IV which includes five chapters, is devoted to neuroscience applications by
studying artificial neural networks, as well as some stochastic approaches based on
modified Sobol sequences for Fredholm integral equations. Computer simulations
of air pollution models are presented as well.

Last Part V consists of six chapters and provided recent investigations in fractional
analysis as well as in approximation theory.

All chapters of this edition are written in an accessible manner and are very
well illustrated. The volume can be considered as an informative milestone for
young scientists and a comprehensive reference to the experienced reader in order
to stimulate further research in applications of differential equations.

Sofia, Bulgaria
July 2022

Angela Slavova
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Porous-Media Flow and Yamabe Flow
on Complete Manifolds

Li Ma

Abstract In this paper, we discuss the recent progress about the (sigma-) porous-
media flow and Yamabe flow on the whole space or on a complete Riemannian
manifold. The global existence of singularYamabe flowwill be showed. Some results
about Yamabe flow related to previous results about scalar curvature problems such
as the works of W. M. Ni, Aviles–McOwen, Delanoe, etc. will also be discussed.

Keywords Yamabe flow · Scalar curvature problem · Monotone method ·
Singular manifolds

1 Introduction to Porous-Media (PM) Equation
and Yamabe Flow

The aim of this talk is to present some recent results about Yamabe flow on complete
non-compact Riemannian manifolds and porous-media flow on the whole space. We
also give outline proofs of the results and pose some new questions.

1.1 Porous-Media Equation

The porous-media equation can be introduced below: Let Ω ⊂ Rn be a bounded
smooth domain and let T > 0. Let Q = QT = Ω × [0, T ) be the space-time domain
with parabolic boundary ∂pQ = ∂Q \ Ω × {T }. The typical model equation for
porous-media equation is

ut = Δum, u > 0, QT = Ω × [0, T ), Ω ⊂ Rn, m > 0. (1)

L. Ma (B)
School of Mathematics and Physics, University of Science and Technology Beijing, 30 Xueyuan
Road, Haidian District, Beijing 100083, People’s Republic of China
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4 L. Ma

The study of PM equation has a very long history [1, 37] and the classical result says
that it is locally well-posed in weak sense [9].

ForΩ = Rn , we define, for b, c > 0, ubc(x, t) = cu(bx, cm−1b2t). Then ubc(x, t)
is still a solution to (1). In particular, for uc(x, t) = cu(x, cm−1t) with c > 1, by
uc(x, 0) ≥ u(x, 0) and by the comparison principle, we know that uc ≥ u for all
t > 0, which implies that d

dc |c=1uc = (m − 1)tut + u ≥ 0, i.e., ut ≤ u
(1−m)t , ∀t > 0,

which is the Aronson–Benilan inequality.
FixT > 0 and letCn = 2m(n−2−mn)

1−m ,β = n
n−2−nm , andγ = −β/n.DefineuT (x, s)

= (T − t)−βu((T − t)γ x, t), s = − log(T − t), which are Rescaled solutions.

Barenblatt’s solutions are of the following form: Bλ(x, t) =
(

Cn(T−t)
λ(T−t)2γ +|x |2

)1/(1−m)

.

The main results from Osher–Ralston, Herrero–Pierre [17], Daskalopoulos–
Sesum [11], etc. say that these special solutions are stable in some weighted L1

space.
Sigma porous-media flow under consideration is given below. Fix σ > 0. We also

consider the σ -(porous-media) flow

uσut = Lu, on QT := Ω × [0, T ], (2)

with the initial-boundary conditions, where Lu = Δu + Vu with V being the poten-
tial function on Ω .

We have the following interesting questions:
Q1: T > 0. Classify ancient or eternal solutions to the σ -(porous-media) flow

uσut = Lu, on b f Rn × (−∞, T ] or Rn × (−∞,∞).
Q2: Study the asymptotic behavior of global solutions to the σ (porous media))-

flow uσut = Lu, on Rn × [0,∞).
Q3: Fix T > 0. Does the σ (porous media))-flow keeps some weighted Sobolev

spaces?
The last question is always true for the standard heat flow on Rn . Recall that

ue(x, t) = ex+t andus(x, t) = 1
2 x

2 + ax + t , and linear functionsax + C are eternal
solutions on R and they are both L p stable by L p − Lq estimate, which says that for
any 1 ≤ q ≤ p ≤ ∞, the solution satisfies |u(t)|p ≤ (4π t)−

n
2 ( 1

q − 1
p )|u0|q , t > 0.

One may have weighted version of this inequality. As we mentioned in the last
conference, there is a lot of results about porous-media flow in Rn . Still, we may
contribute some new results about this flow in latter sections. One may consult
the books listed [9] for more examples. For the study of the evolution equation
ut = u2(Δu + u) on QT , one may also consult the paper [16]. For porous-media
equations, one may also refer to the survey papers [1], etc.

One of our goals here is to find some existence results about solutions to PM
equations. Based on the understanding of singular Yamabe equation, we shall prove
that for some m ∈ (0, 1), the evolution problem 1 has global solutions with singular
initial datum.Wewill see the geometric character of the related problems is important.
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1.2 Scalar Curvature Problems on Compact Manifolds

It is well known that the scalar curvature S(g) of a Riemannian manifold (M, g)
is a weak invariant, but it plays an important role in general relativity theory of
A. Einstein [19]. The famous Hilbert action is the total scalar curvature defined by
A(g) = ∫

M S(g)dVg, and its Euler–Lagrange equation is more or less the Einstein
equation about the metric g. We now have good understanding about closed 3-
manifold with positive scalar curvature. However, we still have a long way to go to
classify closed 4-manifold with positive scalar curvature. By the results of Schoen–
Yau, Gromov–Lawson, etc. we know that the n− torus T n cannot have nontrivial
nonnegative scalar curvature. One basic problem in scalar curvature geometry is to
understand if a metric can be conformally deformed into one with constant scalar
curvature, and this problem leads us to consider the geometric evolution of the metric
in a conformal class.

We nowmention the famous scalar curvature problems and the Yamabe problem:
The conformal change of themetric g in a Riemannianmanifold (Mn, g), n ≥ 3, says
that the scalar curvature of the conformal metric g̃ = u4/(n−2)g is given by R(g̃) =
u−(n+2)/(n−2)Lgu, in M , where Lgu := −a 4(n−1)

n−2 Δgu + R(g)u, a = 4(n−1)
n−2 , and

R(g) is the metric of the metric g. Sometimes, we let S(g) = R(g). The famous
scalar curvature problem states that for any closed Riemannian manifold with any
given function K , if one can find a conformal metric with the scalar curvature K .
One may ask similar question on a complete non-compact or a compact manifold
with boundary.

A special case of constant scalar curvature problem is the famous Yamabe problem
[19], which may be stated as follows: Assume M is closed. Define the Yamabe
invariant Q(M) = inf{J (u); u �= 0, u ∈ H 1(M)} for the Yamabe functional for u ∈
H 1(M), u �= 0, J (u) =

∫
M (a|∇u|2+R(g)u2)

(
∫
M |u|2n/(n−2))(n−2)/n .

The famous Yamabe problem [38] about the existence of a minimizer of the func-
tional J (u) when M is compact. After some important works from N. S. Trudinger
[19], Th. Aubin [2], resolution of the Yamabe problem was done by R. Schoen [34]
in 1984. R. Schoen solved the problem via a use of positive mass theorem.

One may also pose Yamabe problem with boundary on compact manifold with
boundary [7, 13, 14, 22]. For references about the Yamabe problem on a complete
Riemannian manifold, see also [21].

1.3 Scalar Curvature Problem on Complete Manifolds

In case when M = Rn , the scalar curvature equation can be rewritten as

−Δu = Ku
n+2
n−2 , u > 0, in Rn.
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For this problem, W.M.Ni [31] obtained a remarkable result, which will be stated in
latter section. Ni’s result was improved by Delaneo (1992) and Ma-McOwen [30].
This problem is largely open on complete non-compact manifolds. In the case when
M is an ALE manifold, Brill–Cantor (1981) obtained a beautiful result, where some
arguments had some drawback and was corrected by Maxwell, Choquet-Brohat, etc.
New results in this direction were obtained by Dilts–Maxwell (2018) [10]. A well-
known result is that any compact manifold Mn , n ≥ 3, admits a Riemannian metric
with negative scalar curvature.

The singular Yamabe problem is also interesting to know. Given any compact
Riemannian manifold (Mn, g), n ≥ 3, with Q(M) ≤ 0. Let Σ := Σd ⊂ M be a
closed submanifold of M , d ≤ n−2

2 . Let N = M\Σ . We ask if there is a complete
metric ĝ in the conformal class [g] such that R(ĝ) is a constant on N and such a
problem is also called the Yamabe problem on complete non-compact manifolds.
There is a counter-example showed to us by Z. R. Jin (1988). On one hand, Aviles–
McOwen (1988) proved that N admits no complete metric in the conformal class
[g] with negative constant scalar curvature. On the other hand, using the maximum
principle, Delanoe (1992) proved that N admits no complete metric in the conformal
class [g] with nonnegative scalar curvature. Results about singular Yamabe problem
on Sn are relatively rich. For M = Sn and d > n−2

2 , Loewner–Nirenberg (1974)
proved that there exists a complete, conformalmetric on Sn\Σ with constant negative
scalar curvature. For d ≤ n−2

2 , Schoen (1988), Mazzeo–Pacard (1999), etc. proved
that there exists a complete, conformal metric on Sn\Σ with constant positive scalar
curvature. There are also some gluing arguments to find singular metrics of constant
positive scalar curvature. The moduli space of such metric had also been studied, see
works of K. Uhlenbeck, Mazzeo, Pollack, etc.

1.4 Yamabe Flow

We now come to a discussion of Yamabe flow [24]. The Yamabe flow was introduced
by R.Hamilton in 1989 to understand the Yamabe problem on closed manifolds. Let
(Mn, gb) be the Riemannian manifold of dimension n ≥ 3 and let u = u(x, t)’s are
smooth positive functions on M . The Yamabe flow is the family of metrics g(t) =
u

4
n−2 gb satisfying

∂t g = −R(g)g, g(0) = u
4

n−2
0 gb, (3)

where R(g) = u− n+2
n−2 (− 4(n−1)

n−2 Δ0u + R0u) is the scalar curvature of the metric g and
R0 = R(gb), where Δ0 = Δgb is the Laplacian operator of the metric gb. We may

rewrite (3) by ∂t u = u
−4
n−2 ((n − 1)Δ0u − n−2

4 R0u).

If we change the background metric gb = U
4

n−2 gc, then g(t) = w
4

n−2 gc by letting
w = Uu and ∂tw = w

−4
n−2 ((n − 1)Δgcw − n−2

4 R(gc)w) with the initial metric Uu0.
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For M being closed, see papers of R. Hamilton, B. Chow, R. Ye, H. Schwetlick–
Struwe, S. Brendle, etc. For related Yamabe flow with boundary, one may obtain the
global Yamabe flowwith the first initial-boundary data. There are some results about
Yamabe flow with boundary data. For more results, one may refer to the papers of
S. Brendle (2002) [4], Ma-Zheng (2021)[23]. The uniqueness of backward Yamabe
flow with boundary was obtained by Park Tung Ho [18].

2 Zero and Negative Constant Scalar Curvature Problem
and Yamabe Flow

We recall the famous Brill–Cantor theorem on ALE [5] in the following way.

Theorem 1 On an ALE (p, 2, δ) manifold (M, g) with p > n/2, δ > − n
p , there

exists an ALE conformal metric g̃ such that R(g̃) = 0 on M if and only if for any
nontrivial f ∈ W p

2,δ̃
, δ̃ > − n

p + n−2
2 , (δ̃ ≥ −1 of p = 2),

∫

M
(a|∇ f |2 + R(g) f 2)dV > 0. (4)

For a recent proof, one may refer to Maxwell’s paper (CMP 2005) or [8].
We prefer to recall Aviles–McOwen’s results about the scalar curvature problem.

Theorem 2 (Aviles–McOwen, JDG, 1988) Assume on the complete Riemannian
manifold (M, g) that there is some nontrivial nonnegative f ∈ C1

0(M) satisfying
(4), i.e., ∫

M
(a|∇ f |2 + R(g) f 2)dV < 0.

Then there is a conformal metric ǧ with R(ǧ) = −1. If we further assume that there
are a compact set M0 ⊂ M and a positive constant δ > 0 such that

R(g)(x) ≤ −δ, ∀x ∈ M\M0, (5)

or for some uniform β ∈ (0, 2) and α ∈ [0, 1) and β ∈ [2α, 1 + α), there hold
R(g)(x) ≤ −C1r(x)−β for x ∈ M\M0 and Rc(g)(∂r , ∂r ) ≥ −C2r(x)−2α , themetric
ǧ is complete. Here, r(x) is the distance function to some point p in (M, g).

The important step in their argument is to find the lower solution of the form
u−(r) = (r2 + b2)− n−2

4 to the equation aΔgu − u
n+2
n−2 − R(g)u = 0, on M .

We may use Aviles–McOwen’s conditions to study the Yamabe flow. Assume the
conditions (4) and (5), we can prove that for any initial regular data ϕ(x) ≥ u−(r),
there is a global Yamabe flow with the initial data ϕ.
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3 Monotone Methods for Yamabe Flows and Sigma PM
Flows

In this section, we consider the Yamabe flows and sigma PM flows for M being
complete non-compact [28, 29].

First of all, some recent results about Yamabe flow [25, 26] can be stated as
follows.

1. The existence of global Yamabe flow on asymptotically flat (in short, AF or
ALE) manifolds. Note that the ADM mass is preserved in dimensions 3, 4, and 5.
Key step in the proof: The Yamabe invariant plays an important role.

2. If the initial scalar curvature is nonnegative, theYamabe flowonALEmanifolds
converges to scalar-flat one.

Key step in the proof: there is a bounded positive sub-solution to the corresponding
Poisson equation.

We do believe for the Yamabe positive case, we have the convergence of the
global Yamabe flow. In the case when the Yamabe constant is nonpositive, the global
flow on AF manifolds cannot have any smoothness convergence; otherwise, we get
a limit metric with zero scalar curvature, which is impossible by Theorem 5.1 in
[12]. It is an open question to normalize the flow to some convergence results. To
understand Yamabe flow and porous-media equation well, we need the maximum
principle for uniform parabolic equations. LetΩ ⊂ Rm be an open, bounded domain.
Let QT = Ω × [0, T ] and ∂QT = ∂Ω × [0, T ] ∪ Ω × {0}.

Let, for u ∈ C2,1(QT ),

Lu = ai j (x, t)ui j + b j (x, t)u j + c(x, t)u

with c(x, t) ≤ C for some C ∈ R, and bounded continuous coefficients (ai j ) and
(b j ) such that there is a uniform constant λ0 > 0, for any (x, t) ∈ QT and any ξ =
(ξ j ) ∈ Rn , it holds a jk(x, t)ξ jξk ≥ λ0|ξ |2.

Define Bu = u or Bu = ∂νu on ∂Ω × [0, T ]). Assume that a = a(x, t) > 0 be
a bounded continuous on QT . The maximum principle says that if u is the regular
solution to Lu − a0(x, t)ut ≥ 0, in QT with Bu ≤ 0 and u(x, 0) = g(x) ≤ 0 for
x ∈ Ω , then we have u < 0 in the interior of QT .

We now review the classical Maximum principle [16, 20].

Theorem 3 (Linear parabolic maximum principle:) Assume that a ≥ 0 on QT and
ellipticity ai j ξi ξ j ≥ 0 for all ξ ∈ Rm holds uniformly. Suppose, u satisfies

{
aut − ai j uxi x j − bkuxk − cu ≤ 0 inΩ × [0, T ],
u ≤ 0 onΩ × {0} and on∂Ω × [0, T ], (6)

where the function c − λa < 0 (for some λ ∈ R) is bounded from above. Then, u ≤ 0
in Ω × [0, T ].



Porous-Media Flow and Yamabe Flow on Complete Manifolds 9

We recall the definitions of lower and upper solutions. Let f : Ω × R → R be a
smooth function on QT . Let Lv = ai jvxi x j + bkvxk be a uniformly elliptic operator
on Ω with the complementary boundary operator Bv.

We say that u0 = u0(x, t) is a upper solution to the evolution equation

vt − Lv = f (x, v), on QT , (7)

if vt − Lv ≥ f (x, v), on QT , with the initial-boundary condition Bv ≥ h, where
h is a given smooth function. Similarly we may define the lower solution to (7) with
the initial-boundary data Bv ≤ h.

To get global Yamabe flow, we need theMonotone method [32]. The well-known
monotone method may be stated as follows.

Theorem 4 Let v0 ≤ u0 be a pair of lower upper (or sub-super) solutions to (7).
Assume that there exists some constant A such that

∂u f (x, u) + A ≥ 0 on Ω × [min v0, sup u0].

Then there exists a smooth solution to (7) with v0 ≤ u ≤ u0 on QT .

This result may be extended to Yamabe-type flow and the lower or upper solutions
are constructed by solving linear problems. This is a basic tool for us to solve the
existence problems of Yamabe-type flows or porous-media flows.

We remark that more general formulation about monotone method is possible.
Onemay formulate it in a little bit general way. Given a smooth nonlinear function

f (x, v). Assume that there is a uniform constant K > 0 such that

fv + K > 0, QT = Ω × [0, T ]. (8)

We now consider the nonlinear evolution equation

avt = ai jvxi x j + bkvxk + f (x, v), a = a(x, t) > 0 (9)

with the initial-boundary condition v = g or vn + bv = c(x, t) ∂Ω × {t} and v = g
at t = 0. Given a sub- and super-solution pair (u1, u2), u1 < u2. Then there is a
solution u ∈ [u1, u2] to (9).

4 Global Yamabe Flows on Rn and on Singular Manifolds

In 1982,W.M.Ni proved very interesting result about scalar curvature problemon Rn .
Write x = (x1, x2) ∈ Rn−k × Rk , k ≤ n and n ≥ 3. Let K (x) be a bounded locally
Holder continuous function on Rn . Assume that there are some constants C > 0 and
l > 2 such that
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|K (x1, x2)| ≤ C

|x2|l , (10)

for |x2| large, uniformly in x1 ∈ Rn−k . Then the problem

Δu + K (x)u p = 0, p > 1, in Rn (11)

possess infinitely many bounded positive solutions with the property that each of
these solutions is also uniformly bounded below by a positive constant. Moreover,
if K (x) ≥ 0 on Rn or K (x) ≤ 0 on Rn , each of these solutions tends to a positive
constant at infinity in the x2-directions.

We may give some Extensions. Ni’s result may be thought as a global result.
For a local result, one may note the following argument. Let F(u, K ) = Δu +
K (x)u p, F(1, 0) = 0 between certain weighted spaces. Notice that D1F(1, 0)v =
Δv and D1F(1, 0) = Δ is an isomorphism by the result of Nirenberg–Walker (1973
JMAA). By the implicit function theorem, we know that for K near to zero in some
weighted space, we may solve (11) in certain weighted space. This argument works
well for ALE manifolds with zero scalar curvature, see the works from Bartnik,
McOwen, Delaneo, Brill–Cantor, Maxwell, Choquet-Brohat, etc.

4.1 Global Yamabe Flow on Rn

Solving elliptic problem has important impact on Yamabe flow. In fact, using Ni’s
result and the monotone method, one may get a global result about Yamabe flow.

Theorem 5 Take K1 ≤ 0 ≤ K2 satisfying (10) on Rn. We may sort of a positive
solution ui to (11) with K = Ki such that u1 ≤ u2 on Rn. Then for any smooth
u0 ∈ [u1, u2] on Rn, we have global Yamabe flow (u(t)) for the initial data u0 and
u(t) ∈ [u1, u2].

We also have similar result for sigma-porous-media flow on Rn and also on ALE
manifolds. A similar result on singular metrics will be given in next section.

4.2 Global Yamabe Flow on Singular Manifolds

We first consider the Schoen–Yau’s construction in a paper published in 1979 [35].
Let (Mn, g) be an n-dimensional compact Riemannian manifold without boundary.
Assume that R = S(g) > 0 on M . By a classical result, we have a Green function of
the conformal Laplacian operator L . Let Σ := Σd ⊂ M be a closed submanifold of
M , n − d > 2. Let ρ(x) = d(x,Σ) near to Σ and it may be extended positively and
smoothly to M\Σ . According to Schoen–Yau, the equation Lu = 0 has a positive
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solution u of the form u = ρ−(n−d−2) + 0(ρ1−(n−d−2)), for d < n − 3 and u =
ρ−(n−d−2) + 0(log ρ), for d = n − 3.

It is interesting to consider zero scalar curvature problem.
We remark that for n−2

2 < d < n − 2, the metric u4/(n−2)g is incomplete. Delanoe
(1992) [12] and Ma-McOwen (1992) [30] proved that if Q(M) > 0 and d < n − 2,
for some ε = c(n, d) > 0, c > 0,, there is a positive solution u of the form u(x) =
cρd+2−n + 0(ρd+2−n+ε), x near toΣ to Lu = 0 on N := M\Σ ; moreover, if d ≤
n−2
2 , the metric u4/(n−2)g is complete.
We now consider the Yamabe flow on the singular manifold N := M\Σ . We first

mention Schulz’s result of Yamabe flow [33].
Let (Mn, g0) be a closed manifold. In the interesting paper, M. Schulz proved that

if d > n−2
2 , then an instantaneously complete Yamabe flow (g(t)) on N = M\Σ

with g(0) = g0 exists. He also proved that for d ≤ n−2
2 , any Yamabe flowwith initial

data (N , g0) is incomplete and uniquely given by the restriction of the Yamabe flow
with initial data (M, g0). He leaves an open question if such a Yamabe flow exists.
We can answer this question and give the existence of such flow below.

We use the barrier functions to get global Yamabe flow. Let β ∈ (0, n − d − 2),
α ∈ (0, 1). Let f ∈ Cα

loc(N ) be a positive smooth function which equals to ρβ−(n−d)

near to Σ . Since f ∈ L1(M), via the use of Green function G, G f is well defined
in C2,α

loc (N ) and satisfies Lu = f on N with G f = 0(ρβ−(n−d−2)) near to Σ . Let, for
C > 0 and t ∈ R,

uC,t = Cu + tG f > 0, in M.

Then we have
Lus,t = t f, in M.

For t > 0, uC,t is a super-solution of Lu = 0 and for t > 0, uC,t is a lower solution
of Lu = 0. We may choose C1 < C2, t1 < 0, t2 > 0 such that u1 < u2, where ui =
uCi ,ti . Then (u1, u2) is a lower and super-solution pair and we may use the monotone
method to find global solutions to Yamabe-type flow (and σ−porous-media flow)
with the initial data u0 ∈ [u1, u2].

One may consult [3] for more results about Yamabe flow on singular manifolds.
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Simple Equations Method (SEsM): Areas
of Possible Applications

Nikolay K. Vitanov

Abstract We discuss the Simple Equations Method (SEsM) for obtaining exact
solutions of nonlinear differential equations. The focus of the discussion is on the
areas of application of the methodology with respect to various properties of the
solved equations. The point of interest here includes the kinds of nonlinearities. We
present the result of the application of SEsM to differential equation with nonpoly-
nomial nonlinearity.

Keywords SEsM · Nonlinear differential equations · Exact solutions ·
Nonpolynomial nonlinearities

1 Introduction

In the last decades, the mathematical instruments for the study of Nature and society
become complicated enough. Thus, the researchers started a large amount of studies
of complex systems. Just several examples are from the theory of networks, social
sciences, economics, dynamics of research groups, etc. [1–15]. In many of these
studies, one has to deal with the nonlinearity of the complex systems [16–26]. This
can be done by the methods of the time series analysis and by the methods connected
tomodel nonlinear differential or difference equations [27–40]. Themethodology for
obtaining exact and approximate solutions of these equations attracts much attention.
Different ways to deal with the nonlinearity in the model equations have been used.
The Hopf–Cole transformation [41, 42] represents such a way. The further study of
appropriate transformations led to the Method of Inverse Scattering Transform [43,
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44] and to the method of Hirota for obtaining of exact solutions of NPDEs [45].
The truncated Painleve expansions may lead to many appropriate transformations of
the nonlinearities of the studied equations [46, 47]. Kudryashov [48, 49] formulated
the Method of Simplest Equation (MSE) which is based on the determination of
singularity order n of the solved NPDE and searching of a particular solution of
this equation as a series containing powers of solutions of a simpler equation called
the simplest equation. Several examples of the application of this methodology are
provided in [50–52].

30 years ago [53–59], we started work on methodology for obtaining exact and
approximate solutions of nonlinear partial differential equations called nowadays
Simple Equations Method (SEsM) [60–65]. We have used the ordinary differential
equation of Bernoulli as simplest equation [66–68] and we have applied the method-
ology to ecology and population dynamics [69]. This version of the methodology
used the concept of the balance equation for obtaining the kind of the simplest equa-
tion and the kind of the solution of the solved equation [70, 71]. Till more recent
times (2018) [72–80], we have used the methodology on the basis of one simplest
equation and one balance equation. A strategic article from this period was [79].
There we have extended the methodology of the MMSE to the simplest equations

of the class
(
dk g
dξk

)l = ∑m
j=0 d j g j , where k = 1, . . . , l = 1, . . . , and m and d j are

parameters. In 2018, we extended the methodology for use of more than one simple
equation. This modification is called SEsM—Simple Equations Method [81], and
the first description of the methodology was made in [60] and then in [62–65]. For
more applications of particular cases of the methodology, see [82–86].

Below we will discuss various aspects of the application of SEsM. Some of these
aspects occurred in the last year. In addition, we will discuss perspectives of the
application of the SEsM.

2 Simple Equations Method (SEsM)

SEsMpresents an algorithm for obtaining exact and approximate solutions of systems
of n nonlinear differential equations. The solutions are constructed by the solutions
ofm more simple differential equations. SEsM consists of four steps. Let us consider
a system of nonlinear partial differential equations

Ai [u1(x, . . . , t), . . . , un(x, . . . , t)] = 0, i = 1, . . . , n.

Ai [u1(x, . . . , t), . . . , un(x, . . . , t), . . . ] depend on the functions u1(x, . . . , t), . . . ,
un(x, . . . , t) and someof their derivatives (ui can be a function of several spatial coor-
dinates). The steps of SEsM are as follows. At Step 1, we transform the nonlinearity
by ui (x, ..., t) = Ti [Fi (x, . . . , t),Gi (x, . . . , t), . . . ]. Ti (Fi ,Gi , . . . ) is a function of
other functions Fi , Gi , . . . . Fi (x, . . . , t), Gi (x, . . . , t), . . . are functions of several
spatial variables as well as of the time. The transformations Ti have the goal: to trans-
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form the nonlinearity of the solved differential equations to a more treatable kind of
nonlinearity (e.g., to polynomial nonlinearity). The application of the transforma-
tion to the solved equations leads to nonlinear differential equations for the functions
Fi ,Gi , . . . . At Step 2 of SEsM, the functions Fi (x, ..., t), Gi (x, . . . , t), . . . are rep-
resented as a composite function of other functions fi1, ..., fi N , gi1, . . . , giM , . . . .
The functions fi and gi are connected to solutions of some ordinary or partial dif-
ferential equations. At Step 3 of SEsM, we choose the simple equations for which
fi1, . . . , fi N , gi1, . . . , giM are solutions. At Step 4 of SEsM,we apply steps (1)–(3) to
solved equations. This usually leads to a system of nonlinear algebraic equations for
the coefficients of the solved nonlinear differential equation and for the coefficients
of the solution. Any nontrivial solution of this algebraic system leads to a solution
of the studied nonlinear partial differential equation.

3 Kinds of Nonlinearities Treated by SEsM

Step 1 of SesM allows for the treatment of various kinds of nonlinearities [87]. The
idea is to reduce the nonpolynomial nonlinearity to polynomial nonlinearity and then
to deal with the polynomial nonlinearity by means of Steps 2, 3, and 4 of SEsM. We
consider below the problem of searching for exact solutions of nonlinear differential
equations containing the function u(x, ..., t) and its derivatives. u can depend on
several spatial variables x, ... and the time t .

We consider a differential equation for the function u(x, ..., t) which contains
terms of two kinds: (i) terms containing only derivatives of u; (ii) terms containing
one or several nonpolynomial nonlinearities of the function u and these nonpolyno-
mial nonlinearities are of the same kind. Let u = T (F) be a transformation with the
following properties: (i) The transformation T transforms any of the nonpolynomial
nonlinearity to a function which contains only polynomials of F ; (ii) The transfor-
mation T transforms the derivatives of u to terms containing only polynomials of
derivatives of F or polynomials of derivatives of F multiplied or divided by polyno-
mials of F . Then, the transformation T transforms the studied differential equation
to a differential equation containing only polynomial nonlinearity of F .

We will skip the proof, and instead of this, we will list a transformation that trans-
forms a nonpolynomial nonlinearity into a polynomial one. Let N (u) = sin(u). In
this case, a possible transformation is u = 4 tan−1(F). The transformation has Prop-
erty (i) as N (u) = sin[4 tan−1(F)] = 4 F(1−F2)

(1+F2)2
. N (u) is transformed into a function

that contains only polynomials of F . The transformation has also Property (ii) as for
an example ux = 4

1+F2 Fx .
The list of the appropriate transformations can be continued. Let us now consider

one illustrative example. We consider the differential equation with a nonpolynomial
nonlinearity

bu2xx + du2t t = l sin2(u) (1)
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where b, d, l are parameters. We use the transformation u = 4 tan−1(F) at the first
step of application of SEsM. This transformation leads to an equation for F(x, t)
containing only polynomial nonlinearity

4F2(bF4
x + dF4

t ) − 4(F + F3)(bF2
x Fxx + dF2

t Ftt ) + (1 + 2F2)(bF2
xx + dF2

t t ) +
F4(bFxx + dFtt ) − l(F6 − 2F4 + F2) = 0.

(2)

The step 2 of SEsM requires F to be a composite function of more simple functions:
F(x, t) = F[T1(x, t), T2(x, t)]. In order to consider the general case, we have to use
the information from Appendices 1 and 2. In order to keep the example relatively
simple, wewill consider a particular case of the above composite function: F(x, t) =
AT1(μ)T2(ξ), where μ = αx and ξ = γt . The result is a differential equation that
contains polynomials constructed of T1, T2, and their derivatives.

At Step 3 of SEsM, we have to determine the form of the functions T1 and T2. We
assume that T1 and T2 are solutions of more simple (and ordinary) differential equa-
tions which contain polynomial nonlinearity. T12μ = ∑N1

i=0 δi T i
1 ; T2

2
ξ = ∑N2

j=0 εi T
j
2 ,

where δi and εi are parameters. We substitute these relationships in (2). We obtain
a polynomial of T1 and T2 which contains monomials of T1, T2, and monomials
which are combinations of powers of T1 and T2. These monomials are multiplied by
coefficients which are nonlinear algebraic relationships containing the parameters
of the solved equation and the parameters of the more simple equations. We have
to ensure that any of these nonlinear algebraic relationships contains at least two
terms. This is done by a balance procedure that fixes the values of the parameters
N1 = 4 and N2 = 4. For simplicity, we consider a specific case of the obtained sim-
ple equations. In such a way, the simple equations for the function T1 and T2 become
T1

2
μ = pT 4

1 + qT 2
1 + r ; T22ξ = sT 4

2 + vT 2
2 + w. This form of the simple equations

leads to the following system of nonlinear algebraic equations (these are the nonlin-
ear algebraic relationships for the coefficients of the polynomial containing T1, T2,
and their derivatives).

bα4q2 + dγ4v2 = l; dγ4vA2w − bα4 pq = 0

−4dγ4sw − bα4q2 − 4bα4 pr + l − dγ4v2 = 0;
bα4A4r2 + dγ4s2 = 0;−bα4q A2 + dγ4sv = 0;

bα4 p2 + dγ4A4w2 = 0;−dγ4sv + bα4q A2r = 0;
−dγ4vA2 + bα4 pq = 0. (3)

The system (3) has the solution

p = w = r = s = 0, q = δ
[−b(dγ2v2 − l)]1/2

α2b
, δ = ±1, −b(dγ2v2 − l ≥ 0.

(4)
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v, A, l, b, d, α, γ are free parameters (they have to satisfy the condition−b(dγ2v2 −
l) ≥ 0). Equation (4) corresponds to the following solution of (1)

u(x, t) = 4 tan−1

{
A exp

[
δ1

(
αvx + γδ

[−b(dγ2v2 − l)]1/2
α2b

t

)]}
, δ1 = ±1.

(5)
This solution describes traveling waves of kind kink and anti-kink.

4 Concluding Remarks

In this text, we studied the application of SEsM for the case of nonpolynomial
nonlinearity of the solved differential equation.We show that bymeans of appropriate
transformations, the nonpolynomial nonlinearities can be reduced to polynomial
nonlinearities and then the SEsM can be applied for obtaining the solution of the
resulting equations containing polynomial nonlinearities. Thus, the achievements of
SEsM for solving differential equations with polynomial nonlinearity can be used to
the full extent.
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An Example for Application of the
Simple Equations Method for the Case of
Use of a Single Simple Equation

Zlatinka I. Dimitrova

Abstract We discuss the application of the methodology of the Simple Equations
Method. Discussion is focused on an example where the methodology is applied on
the basis of a single simple equation. We explain in detail each step of the methodol-
ogy anddiscuss theobtained exact solutions of the solvednonlinear partial differential
equation.

Keywords SEsM · Methodology based on one simple equation

1 Introduction

An essential feature ofmany complex systems is their nonlinearity [1–18]. The corre-
sponding effects are studied, for an example, by the methods of the time series analy-
sis and/or by models based on differential or difference equations [19–36]. There are
various methods for obtaining exact solutions of nonlinear differential equations. We
mention the Hopf-Cole transformation [37, 38]. It transforms the nonlinear Burg-
ers equation to the linear heat equation. Well-known methods for obtaining soliton
solutions of classes of nonlinear differential equations are the Method of Inverse
Scattering Transform [39, 40] and the method of Hirota [41].

Below we apply the SEsM (Simple Equations Method) for obtaining exact solu-
tions of nonlinear differential equations. The line of research resulting in SEsM
begins with the work of Kudryashov and then Kudryashov and Loguinova [42, 43].
The development of SEsM [44–47] started many years ago [48–56]. This research
was continued in 2009 [57, 58] and in 2010, when the ordinary differential equation
of Bernoulli was used as simplest equation [59] with application to ecology and
population dynamics [60]. SEsM uses balance equations [61, 62] to determine the
kind of the simplest equations and truncation of the series of solutions of the simplest
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equation [63–69]. An important milestone in the development of the methodology
was [70] where the methodology was extended to simplest equations of the class(
dk g
dξk

)l = ∑m
j=0 d j g j , where k = 1, . . ., l = 1, . . ., and m and d j are parameters. In

addition, in [70] it was mentioned that the composite functions and their deriva-
tives play important role in the methodology. In the last years, the methodology was
extended to SEsM—Simple Equations Method. A version of SEsM based on two
simple equations was applied in [71] and the first description of the methodology
was made in [44] and then in [45–47]. For more applications of specific cases of the
methodology see [72–85].

The goal of this article is to show one example of application of SEsM. These
examples will be connected to the use of composite function which is a function
of a single simple equation. We discuss the SEsM in Sect. 2 and supply the needed
information for the use of derivatives of composite functions in SEsM. The example
is shown in Sect. 3. Section 4 summarizes some concluding remarks.

2 Methodology of the Method of Simple Equations (SEsM)

Below we solve a single differential equation. Because of this we present the version
of the method for solving a single nonlinear differential equation (Fig. 1).

We consider the nonlinear differential equation P[u(x, . . . , t), . . . , ] = 0.
P[u(x, . . . , t), . . .] depends on the function u(x, . . . , t) and some of their deriva-
tives (ui can be a function of more than 1 spatial coordinates). Step 1 of SEsM
is to perform transformations u(x, . . . , t) = T [F(x, . . . , t),G(x, . . . , t), . . .].. Here
T (F,G, . . .) is some function of another functions F,G, . . .. In general F(x, . . . , t),
G(x, . . . , t), . . . are functions of several spatial variables as well as of the time. The

Fig. 1 The example of SEsM with use of composite functions
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goal of the transformations is to transform the nonlinearity of the solved differential
equations to more treatable kind of nonlinearity.

The nonlinearities in the solved equations can be of different kinds. Because of
this there is no universal transformation of the nonlinearity which is valid for all
possible cases. The application of the transformation T to the solved equation leads
to nonlinear PDEs for the functions F,G, . . ..

In Step 2 of SEsM the functions F(x, . . . , t), G(x, . . . , t), . . . are represented as
a function of other functions f1, . . . , fN , g1, . . . , gM , . . ., which are connected to
solutions of somedifferential equations that aremore simple than the solved equation.
Fi andG j become composite functions and we have to use the Faa-di-Bruno formula
in order to write the derivatives of these functions [86].

Step 3 of SEsM is connected to the representation of the functions used in
F,G, . . .—the functions f1, . . . , fN , g1, . . . , gM are solutions of some differential
equations. These equations are more simple than the solved nonlinear partial dif-
ferential equation. If the simple equations contain only polynomial nonlinearities
then their form can be determined by balance equations. Balance equations may be
needed in order to ensure that the system of algebraic equations from Step 4 contains
a nontrivial solution.

At Step 4 of SEsMwe apply the steps 1–3 to the solved equation. In themost cases
the result of this are functions which are sum of termswhere each term contains some
function multiplied by a coefficient. We can obtain a nontrivial solution of the solved
equation if all coefficients mentioned in Step 4 are set to 0. This usually leads to a
system of nonlinear algebraic equations for the coefficients of the solved nonlinear
PDE and for the coefficients of the solution. Any nontrivial solution of this algebraic
system leads to a solution to the studied nonlinear partial differential equation.

3 An Example of Use of Composite Functions in the
Methodology of SEsM

We consider an example where a composite function will be used to find an appropri-
ate transformation that transforms the solved nonlinear equation to an equation for
whichwe can easily find simple equations. The solved nonlinear differential equation
is

uut + u3ux + pu2x + quuxx = 0 (1)

We are going to transform the nonlinearity in (1) by means of a transformation
which is a simple composite function of the kind u(x, t) = u [φ(x, t),φx (x, t)] ..
The substitution of this relationship in (1) leads to the equation

uuφ(φt + qφxx ) + uuφx (φt + qφxx )x + u3(uφφx + uφxφxx ) +
p(uφφx + uφxφxx )

2 + qu(uφφφ
2
x + uφxφxφ

2
xx ) = 0 (2)
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Equation (2) can be decomposed again into two equations

u3(uφφx + uφxφxx ) + p(uφφx + uφxφxx )
2 + qu(uφφφ

2
x + uφxφxφ

2
xx ) = 0 (3)

φt + qφxx = 0 (4)

Equation (4) can be treated as simplest equation again and (3) is an equation for
the transformation.

Equation (3) has the following solution

u(φ,φx ) =
(
r
φx

φ

)π

, π = 1/2, r = −2ν (5)

and in addition p = q = −ν. We assume τ = qt and the solution of (5) is

φ(x, τ ) = 1

2π

∞∫

−∞
dλ

∞∫

−∞
dξ f (ξ) cos[λ(x − ξ)] exp(−λ2τ ), (6)

where the initial condition is φ |τ=0= f (x) (Cauchy problem).
By means of the solution (6) of the simple equation (4) we obtain the solution

u(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2ν

∂
∂x

[ ∞∫
−∞

dλ
∞∫

−∞
dξ f (ξ) cos[λ(x − ξ)] exp(−λ2τ )

]

∞∫
−∞

dλ
∞∫

−∞
dξ f (ξ) cos[λ(x − ξ)] exp(−λ2τ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1/2

(7)

4 Concluding Remarks

In this article we discuss the application of the Simple Equations Method (SEsM)
for obtaining exact solutions of nonlinear differential equations. We present a for-
mulation of the methodology based on composite function and on the possibility for
use of more than one simple equation. The composite functions of the methodology
can be used in principle when one: (a) searches for the appropriate transformation
in order to transform the nonlinearity of the equation; (b) constructs the solution of
the equation by means of the solution of more simple equations; (c) searches for
solution of the more simple equation (we note that the more simple equation can be
quite complicated). We presented an example where a separate equation is available
for the transformation which has to transform the nonlinearity of the equation. The
solution of this equation for the transformation leads to the possibility that the solu-
tion of the searched nonlinear equation can be constructed on the basis of solution
of a simple equation which is a linear partial differential equation. This allows us to
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present a solution of the Cauchy problem for the solved nonlinear partial differential
equation.

Our goal in this text was just to present the methodology of SEsM and to illus-
trate its use. The methodology has many applications of the kind which has been
demonstrated in the example above. We will discuss these applications in our future
work.
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Boundary Value Problems for the
Polyharmonic Operators

Petar Popivanov and Angela Slavova

Abstract This paper deals with Dirichlet-type elliptic and degenerate oblique
derivative boundary value problem for the polyharmonic operator Δm in the ball
B1 and in the half space. Pointwise estimations from above and from below for the
Green function to the homogeneous Dirichlet problem for (−Δ)mu = f in B1 are
found and applied to the corresponding solutions u in the case f ≥ 0. Similar results
are obtained for the Navier problem with homogeneous data on S1 = ∂B1. Solutions
in closed (explicit) form for the equation of Δmu = 0 in B1 with Lopatinskii-type
boundary conditions are constructed too. By using the subelliptic estimates and the
hypoellipticity of several elliptic degenerate PDO in Examples 1–4, boundary value
problems violating Lopatinskii conditions are studied in Rn+1

+ . They turn out to be
hypoelliptic and Fredholm ones.

Keywords Polyharmonic operator · Dirichlet problem · Degenerate oblique
derivative problem · Lopatinskii condition · Navier problem

1 Introduction

This paper deals with Dirichlet-type and degenerate oblique derivative-type bound-
ary value problems for the polyharmonic operator Δm in the ball and in the half
space. Certainly, the boundary value problems for elliptic operators satisfying the
Lopatinskii condition are well studied both in Hölder and Sobolev spaces [6, 7,
9]. There are many papers and monographs devoted to the Dirichlet, Navier, and
mixed Dirichlet–Navier boundary value problems for the polyharmonic equation
and its generalizations, including the construction of Green functions [1, 5]. Here
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we concentrate on the explicit formulas for the solutions of several boundary value
problems and more specially on the pointwise estimations from above and below of
the solutions satisfying Lopatinskii-type boundary conditions in a ball (Propositions
1 and 2). By using some results of Zhao [14] we can obtain very precise result for
the Green function in the ball of the Poisson equation with homogeneous Dirichlet
data on the sphere. It is worth mentioning that the solution of the Dirichlet problem
for the equation Δmu = f in B1 with zero data on the unit sphere S1 is located
between two convex rotational cones with

−→
0u axes and having in the base B1 zero

of sharp order m on S1. Similar result is valid if we replace “cone” by “smooth
rotational convex–concave surface” tangential of sharp order m to S1. Further on,
we propose short comment on the subelliptic estimates for first-order differential
(pseudo-differential) operators (see [4, 7, 10]) and study in the half space xn+1 ≥ 0,
n ≥ 2 different boundary value problems violating Lopatinskii condition. The cor-
responding examples 1, 2, 3, 4 deal with hypoelliptic boundary value problems for
the biharmonic and three harmonic operators. Concerning the notion of hypoellip-
ticity see [7]. In the case of Δ3u = 0, x ∈ Rn+1

+ , we find out subelliptic estimates
for the solutions of the boundary value problem. Assuming that u ∈ Hs0

loc(R
n+1
+ ),

s0 > 2m − 1/2 (s0 > m + 1/2) and the boundary data are C∞
0 (Rn) smooth we get

that u ∈ C∞(Rn+1
+ ) in the hypoelliptic case.

Wewrite down the explicit formulas for the solutions of theDirichlet andNeumann
problems for the Laplace equation in half space. Applying Faa di Bruno formula
[13], we obtain an explicit integral formula for the polyharmonic functions in Rn+1+
(see Proposition 4). It enables us to find the traces u|xn+1=0, . . ., D j

nu|xn+1=0 for
j = 0, . . . ,m − 1.

In Proposition 3, we study a boundary value problem of elliptic (Fredholm) type
for Δmu = 0 in a ball and reduce it to the solvability of m-Dirichlet problems for
the Laplace equation in the unit ball B1. This way formulas can be written into
explicit (closed) form for the polyharmonic operator equipped with Lopatinskii-type
boundary conditions given on the unit sphere S1.

The paper is organized as follows. Section 1 contains the introduction. In Sect. 2,
we formulate our main results, illustrative examples and comments. The proofs are
given inSect. 3,while Sect. 4 contains theReferences. This paper can be considered as
a further development of our investigations in [11, 12] on the biharmonic operator in
B1 in the case of non-Lopatinskii (not complementing in other terminology) boundary
conditions. We put here the stress on the polyharmonic operators and on the explicit
formulas for the solutions in the half space and in the ball. Integral representations
of the solutions of the Dirichlet problem in the unit ball for Δmu = 0 can be found
in [3].
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2 Formulation of the Main Results, Illustrative Examples,
and Comments

At first we consider the Dirichlet boundary value problem

∣
∣
∣
∣

(−Δ)mu = f in B1 in Rn, |x | < 1, f ∈ C0(B̄1)

Dαu|∂B1 = 0, |α| ≤ m − 1, S1 = ∂B1.
(1)

One can easily see that the boundary condition (1) is equivalent to u|S1 = . . . =
∂m−1u
∂nm−1 |S1 = 0, where ∂

∂n |S1 = ∂
∂r |S1 is the unit outward normal to S1, r = |x |.

Boggio proved in 1905 in [1] that

u(x) =
∫

B1

G(−Δ)m ,B(x, y) f (y)dy, (2)

where the Green function Gm,n = G(−Δ)m ,B under the integral sign is given by

Gm,n(x, y) = km,n|x − y|2m−n
∫ [XY ]/|x−y|

1
(v2 − 1)m−1v1−ndv > 0 (3)

and the constant km,n = π−n/2Γ ( n
2 )

2.4m−1[(m−1)!]2 , Γ (x) being the Euler gamma function.
As it is shown in [5]

Gm,n(x, y) �

⎧

⎪⎨

⎪⎩

|x − y|2m−nmin(1, dm (x)dm (y)
|x−y|2m ), n > 2m

log(1 + dm (x)dm (y)
|x−y|2m ), n = 2m

dm− n
2 (x)dm− n

2 (y)min(1, d
n
2 (x)d

n
2 (y)

|x−y|n ), n < 2m.

(4)

As usual, d(x) = dist (x, 0) = 1 − |x |, x ∈ B1, [XY ] = ||x |y − x
|x | |; [XY ]2 = |x −

y|2 + (1 − |x |2)(1 − |y|2) > 0, ∀x, y ∈ B1, d(x) being Lipschitz function in B̄1,
d(x) ∈ C∞(B1 \ 0). Evidently, [XY ]2 � |x − y|2 + d(x)d(y).

Geometrically, if x ∈ B1 \ 0 and x∗ is its inverse point to x with respect to S1,
then x∗ = x

|x |2 /∈ B̄1. Then [XY ] = |x ||y − x∗|, y ∈ B1.

In the special case m = 1, n ≥ 3 we have that k1,n = π−n/2Γ ( n
2 )

2 . Then from (3) we
have

0 < G1,n(x, y) = k1,n
n − 2

|x − y|2−n(|x − y|2−n − [XY ]2−n), x, y ∈ B1. (5)
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Proposition 1 Consider the bvp (1). Then
(a) for m = 1, n ≥ 3 the corresponding Green function

G1,n(x, y) ≥ k1,n
2(n − 2)

|x − y|2−nd(x)d(y)

|x − y|2 + d(x)d(y)
≥ k1,n

n − 2

21−n

5
d(x)d(y), x, y ∈ B1.

(6)
Suppose that f ≥ 0, f 
≡ 0 in (1). Then

k1,nd(x)21−n

5(n − 2)

∫

B1

d(y) f (y)dy ≤ k1,nd(x)

2(n − 2)

∫

B1

|x − y|2−nd(y) f (y)dy

|x − y|2 + d(x)d(y)
≤ u(x)(7)

≤ || f ||C0(B̄1)

d(x)

n
,∀x ∈ B1.

(b) There exists a constant Cm,n depending on n,m and B1 only and such that if
f ≥ 0, f 
≡ 0

Cm,nd
m(x)

∫

B1

f (y)dm(y) ≤ u(x) ≤ || f ||C0(B̄1)

Cm
(1 − r2)m ≤ || f ||C0(B̄1)

Cm
dm(x)2m .

(8)
The constant Cm = 2mm!(n + 2m − 2)(n + 2m − 4) . . . (n + 2)n.

We point out that with appropriate constant Dm,n > 0 Gm,n(x, y) ≥ Dm,ndm(x)
dm(y), ∀x, y ∈ B̄1.

Starting from formula (4) one can easily see that for n > 2m, 0 < Gm,n(x, y) ≤
Em,n

dm (x)dm (y)
|x−y|n , x 
= y; x, y ∈ B1. Therefore, for n > 2m the double-sided estimate

Dm,ndm(x)dm(y) ≤ Gm,n(x, y) ≤ Em,n
dm (x)dm (y)

|x−y|n , x 
= y; x, y ∈ B1 holds and
Dm,n, Em,n > 0 are some absolute constants.

Consider now the Navier problem [5] in B1:

(−Δ)m = f in B1, f ∈ C0(B̄1)

u|S1 = Δmu = . . . = Δm−1u|S1 = 0.
(9)

(9) is reduced to m Dirichlet-type bvp for Laplace operator, namely,

∣
∣
∣
∣

−Δu = u1
u|S1 = 0

,

∣
∣
∣
∣

−Δu1 = u2
u1|S1 = 0

. . .

∣
∣
∣
∣

Δum−1 = − f
um−1|S1 = 0.

(10)

Proposition 2 Suppose that the right-hand side of (9) is continuous and f ≥ 0,
f 
≡ 0. Then the unique solution of (9) can be estimated from below and above as
follows:

Cm,nd(x)(
∫

B1

d2(y)dy)m−1
∫

B1

f (z)d(z)dz ≤ u(x) ≤ 1

nm
|| f ||C0(B̄1)

d(x),∀x ∈ B1.
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The constant Cm,n is absolute,
∫

B1
d2(y)dy = measS1

2
n(n+1)(n+2) , measS1 =

2πn/2

Γ ( n
2 )
.

If we consider the solutions of (1), (9) as smooth surfaces they are located in the
case m = 1 between two rotational cones K1,2 with vertices k1,2 at

−→
0u axis, while

in the case (1), m ≥ 2 they are located between two convex cones L1,2 with vertices
l1,2 tangential to S1, respectively, smooth rotational convex–concave surfaces M1,2

tangential to S1 of sharp order m.
Several remarks about the subelliptic estimates in Rn+1

+ , n ≥ 2 are given below.
Consider the boundary first-order differential operator M in {xn+1 = 0} with real
coefficients

M = L(x, ∂x ) + a(x)
∂

∂xn+1
,Rn+1+ = {(x, xn+1), x = (x1, . . . , xn) ∈ Rn, xn+1 > 0},

(11)
L-nondegenerate, real vector field, a ∈ C∞(Rn), a(x) ≥ 0, ( a(x) ≤ 0) everywhere
and a(x) = 0 ⇒ ∑k

j=1 |L ja(x)| > 0. Evidently, k is even. Assume that

∣
∣
∣
∣

Δu = 0, in Rn+1
+ , u ∈ Hs0(Rn+1

+ ), s0 > 3
2

Mu|xn+1=0 = ϕ(x).
(12)

Certainly, (12) is not a Lopatinskii-type boundary value problem. Then u|xn+1=0 =
c(x) satisfies for s > 1

2 a first-order pseudo-differential equation and the a priori
estimate called subelliptic estimate:

||c||
Hs+ 1

k+1
≤ Cs(||ϕ||s + ||c||s−1). (13)

Moreover, (13) is taken in H
s+ 1

k+1
loc (Rn) and the solution of the Fredholm-type bvp

(12) satisfies the a priori estimate in Rn+1
+ :

||u||Hs(Rn+1+ ) ≤ C(||ϕ||s−3/2+ k
k+1

+ ||u||
Hs−1/2(Rn+1+ ) ). (14)

The norm of ϕ is taken in the Sobolev space Hs−3/2+ k
k+1 (Rn).

We propose a geometrical interpretation of the condition imposed on the vector
field M and on the coefficient a ≥ 0 (a ≤ 0) everywhere. In fact, − ∂

∂xn+1
is the unit

outward normal to the boundaryRn
x of the half spaceR

n+1
+ , the real-valued vector field

M is nondegenerate and becomes tangential to Rn
x at the points x , where a(x) = 0.

Moreover, M is pointing either outward ( a(x) > 0) or inward ( a(x) < 0) to Rn+1
+ .

We point out that {a(x) = 0} is not obliged to be smooth submanifold.
Here are several examples of bvp for biharmonic and three harmonic operators

which are non-elliptic but of Fredholm type.
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Example 1.

∣
∣
∣
∣
∣
∣
∣

Δ2u = 0 in Rn+1
+ , n ≥ 2

B1(u)|xn+1=0 = Mu|xn+1=0 = ϕ1

B2(u)|xn+1=0 = ∂2u
∂x2n+1

|xn+1=0 = ϕ2.

(15)

(15) is reduced to a subelliptic pseudo-differential equation for c0 = u|xn+1=0,

while c1 = |D|c0−|D|−1ϕ2

2 and |D| has symbol |ξ| ≥ 1 belonging to S11,0, u(x, xn+1) =
(2π)−n

∫

eixξ−xn+1|ξ|(ĉ0(ξ) + xn+1ĉ1(ξ))dξ. The bvp (15) is hypoelliptic.
Example 2.

∣
∣
∣
∣
∣
∣
∣

Δ2u = 0 in Rn+1
+ , n ≥ 2

B1(u)|xn+1=0 = ∂u
∂xn+1

|xn+1=0 = ϕ1

B2(u)|xn+1=0 = g(x) ∂2u
∂x2n+1

+ ∂2u
∂x21

|xn+1=0 = ϕ2.

(16)

Then c0 satisfies the hypoelliptic equation on the boundary of the type g(x)Δxc0 +
∂2
x1c0 = ψ with g(x) = x21 . The bvp is hypoelliptic one [7].
Example 3.

∣
∣
∣
∣
∣
∣
∣

Δ2u = 0 in Rn+1
+ , n ≥ 2

B1(u)|xn+1=0 = ∂u
∂xn+1

|xn+1=0 = ϕ1

B2(u)|xn+1=0 = g(x) ∂2u
∂x2n+1

+ A(x) ∂u
∂x1

|xn+1=0 = ϕ2,

(17)

with A(x) ∈ C∞, A(x) > 0, g(x) > 0 for |x | > 0, g ∈ C∞.
Then c0 satisfies on the boundary the inverse parabolic equation A(x)∂1c0 +

g(x)Δxc0 = ψ. Taking A(x) ≡ 1 and g(x) flat at the origin we conclude that (17) is
hypoelliptic boundary value problem.

Example 4.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Δ3u = 0 in Rn+1
+ , n ≥ 2

B1(u)|xn+1=0 = Mu|xn+1=0 = ϕ1 ∈ Hs−3/2+ k
k+1 (Rn)

B2(u)|xn+1=0 = ∂2u
∂x2n+1

|xn+1=0 = ϕ2 ∈ Hs− 5
2 + k

k+1 (Rn)

B3(u)|xn+1=0 = ∂3u
∂x3n+1

|xn+1=0 = ϕ3 ∈ Hs− 7
2 + k

k+1 (Rn), s ≥ 6.

(18)

Then (18) is reduced to 3 × 3 system of pseudo-differential equations on the bound-
ary xn+1 = 0, the equation for c0 being first-order subelliptic one and a(x) = 0 ⇒
∑k

j=1 |L ja(x)| > 0.
Then u(x, xn+1) = (2π)−n

∫

eixξ−xn+1|ξ|(ĉ0 + xn+1ĉ1 + x2n+1ĉ2(ξ))dξ, where
ĉ j (ξ) stands for the Fourier transform of the tempered distribution c j (x).

One can guess that (18) is hypoelliptic bvp of Fredholm type and u ∈ Hs
loc(R

n+1
+ ).
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For the sake of completeness, we give the exact formulas for the solutions of
Dirichlet (Neumann) problems for Laplace equation in Rn+1

+ :

∣
∣
∣
∣

Δu = 0 in Rn+1
+ , n ≥ 2

u|xn+1=0 = ϕ(x) ∈ C0
b (R

n).
(19)

Then there exists unique solution u ∈ C∞(Rn+1
+ ) ∩ C0

b (R̄
n+1) given by the Poisson

formula

u(x, xn+1) = Γ ( n+1
2 )

π
n+1
2

xn+1

∫

Rn

ϕ(x − y)dy

(x2n+1 + |y|2) n+1
2

= Γ ( n+1
2 )

π
n+1
2

xn+1

∫

Rn

ϕ(x + yxn+1))dy

(1 + |y|2) n+1
2

(20)
and ||u||C2,α(R̄n+1+ ) ≤ Cα||ϕ||C2,α(Rn), 0 < α < 1.

It is interesting to point out that u(x, xn+1) →xn+1→0 ϕ(x), ∀x ,
while limxn+1→0xn+1

∂u
∂xn+1

= 0.

We will give examples of Hölder C0,α and Lipschitz C0,1 Dirichlet data such that
∂u

∂xn+1
(0, xn+1) ∼ cln 1

xn+1
, c > 0 for xn+1 → 0 in the Lipschitz case. As it concerns

the Neumann bvp

∣
∣
∣
∣

Δu = 0, in Rn+1
+ , n ≥ 2, u ∈ C∞(Rn+1

+ )

− ∂u
∂xn+1

|xn+1=0 = h(x) ∈ C0
b (R

n) ∩ L1(Rn),
(21)

we obtain that

u(x, xn+1) = Γ ( n+1
2 )

π
n+1
2 (n − 1)

∫

Rn
y

h(y)dy

(x2n+1 + |x − y|2) n−1
2

+ C, (22)

xn+1 > 0 and (22) holds for |h(y)| ≤ C(1 + |y|2)−1. We remind that the convolution
of f, g ∈ L1(Rn) is defined by f ∗ g(x) = ∫

Rn f (x − y)g(y)dy.
Example 5. Consider the polyharmonic operator

Δmu = 0, in Rn+1
+ ,m ≥ 2, n ≥ 2. (23)

After a partial Fourier transform with respect to x ∈ Rn we get that û(ξ, xn+1) =
Fx→ξ(u(x, xn+1)), û(ξ, xn+1) = ∑m

j=1 x
j−1
n+1 ĉ j (ξ)e

−xn+1|ξ|, xn+1 > 0, ĉ j (ξ) being
tempered distributions in Rn

x .
By using (20) we come to the formula

u(x, xn+1) = Bn

m
∑

j=1

x j
n+1

1

(x2n+1 + |x |2) n+1
2

∗ c j (x) =
m

∑

j=1

x j−1
n+1u j (x, xn+1), (24)
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Bn = Γ ( n+1
2 )

π
n+1
2

, u j = Bn
xn+1

(x2n+1+|x |2) n+1
2

∗ c j (x),Δu j = 0 for xn+1 > 0,Δm(x j−1
n+1u j ) = 0

for xn+1 > 0 and j = 1, . . . ,m.
The convolution is taken in Rn

x with respect to x , xn+1 being a parameter.
One can see that (23) is satisfied by the function

u = xmn+1

m−1
∑

j=0

∂ j
xn+1

(
1

(x2n+1 + |x |2) n+1
2

∗ c j (x)). (25)

The simplest case is when c j ∈ C∞
0 (Rn

x ). If I j = ∂
j
xn+1(

1

(x2n+1+|x |2) n+1
2

) ∗ c j (x) it is

interesting to find out an explicit formula for the corresponding derivative ∂
j
xn+1 of

the Poisson kernel. Then we must consider two cases: j even and j odd. We shall
apply Faa di Bruno formula [13] to the Poisson kernel for j ≥ 1, j even. After several
computations we come to the expression:

∂ j
xn+1

(
1

(x2n+1 + |x |2) n+1
2

) =
j/2
∑

p=0

(−1) j−p( j − p) . . . ( j − 2p + 1) (26)

n+1
2

n+3
2 . . . ( n+1

2 + j − p − 1)

(x2n+1 + |x |2) j−p+ n+1
2

(2xn+1)
j−2p

(

j
p

)

.

We point out that ∂
j
xn+1(

xn+1

(x2n+1+|x |2) n+1
2

) is reduced to the computation of

∂
j
xn+1(

1

(x2n+1+|x |2) n+1
2

) and |x |2∂ j
xn+1(

1

(x2n+1+|x |2) n+3
2

).

And now we shall study the following elliptic boundary value problem in the unit
ball B1 finding out the solution into explicit form via the Poisson formula. Thus,

∣
∣
∣
∣
∣
∣
∣
∣

Δmu = 0 in B1,m ≥ 2, n ≥ 3
B0(u) = ϕ1 on S1
. . .

Bm−1(u) = ϕm on S1,

(27)

where B0(u) = u, B1(u) = ∑n
l=1 al(x)Dxl + b(x)Dru, . . . Bj (u) = ∑

k+|α|= j akl(x)
Dα

x D
k
r u; j = 1, 2, . . . ,m − 1. Evidently, Bj (u) for j ≥ 1 are differential opera-

tors on the boundary with smooth coefficients. As usual, α = (α1, . . . ,αn) ∈ Nn
0,

Dx j = 1
i

∂
∂x j

, Dr = 1
i

∂
∂r , r being the unit outward normal to S1 for r = 1. We can

take the radial vector field L = ∑n
j=1 x j

∂
∂x j

= r d
dr , L 
= 0 for x 
= 0 and L|S1 = ∂

∂r |S1
instead of ∂

∂r , respectively Dr . The vector fields ∂
∂x1

, . . . , ∂
∂xn

, L are linearly depen-
dent in Rn . According to [1] each sufficiently smooth m-polyharmonic function in
B1 can be written in the form
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u =
m

∑

j=1

(r2 − 1) j−1u j ,Δu j = 0 in B1. (28)

In fact, one can easily prove by induction the identities

ΔL = LΔ + 2Δ,ΔL2 = L2Δ + 4LΔ + 4Δ, (29)

Δu = 0 ⇒ ΔLku = 0 (30)

and

Δu = 0 ⇒ Δ(rk
dku

drk
) = 0,Δk+1((r2 − 1)ku) = 0. (31)

(29), (30), (31) hold in B1 for k ∈ N.

Proposition 3 Consider the boundary value problem (27) with sufficiently smooth
right-hand sides ϕ j , j = 0, 1, . . . ,m − 1 and assume that for each j ∈ [1, . . . ,m −
1] the expression

A j (x) =
∑

k+|α|= j

akα(x)Dα
x D

k
r ((r

2 − 1) j ) 
= 0 (32)

at S1.
Then (27) possesses a unique solution of the form (28), where the functions u j

satisfy the Dirichlet problem for Laplace equation in B1, namely,

∣
∣
∣
∣

Δu1 = 0, B1

u1|S1 = ϕ1

∣
∣
∣
∣

Δu2 = 0, B1

u2|S1 = ψ2
. . .

∣
∣
∣
∣

Δum = 0, B1

um |S1 = ψm .
(33)

ψ1 = ϕ1 and ψ j is expressed for j ≥ 2 by ϕ j as well as by ϕ1, . . . ,ϕ j−1 and their
derivatives.

This is the formula for the unique solution of the Dirichlet problem to the Poisson
equation [6]:

∣
∣
∣
∣

−Δu = f in B1 ⊂ Rn, n ≥ 3, f ∈ Cα(B̄1)

u|S1 = ϕ ∈ C0(S1)
(34)

u(x) =
∫

B1

G1,n(x, y) f (y)dy + 1 − |x |2
nωn

∫

S1

ϕ(y)

|x − y|n ,

where G1,n is given by formula (5), nωn = 2πn/2

Γ ( n
2 )
.

Example 6.

∣
∣
∣
∣
∣
∣

Δ2u = 0 in B1, n ≥ 3
B0(u) ≡ u = ϕ1 at S1
B1(u) = ϕ2 = ∑n

l=1 al(x)Dxl u + b(x)Dru|S1 .
.
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Then condition A1(x) 
= 0 (32) takes the form A1(x) = ∑n
j=1 x ja j (x) + b(x) 
=

0 at S1, respectively, u = (r2 − 1)u1 + u2,

∣
∣
∣
∣

Δu1 = 0, B1

u1|S1 = ϕ1,

∣
∣
∣
∣

Δu2 = 0, B1

u2|S1 = i ϕ2−B1(u1)
2A1

|S1 . .
Our last Proposition 4 concerns the Dirichlet problem for the polyharmonic operator
in Rn+1

+ .

Proposition 4 Consider in Rn+1
+ , n ≥ 2 the boundary value problem

∣
∣
∣
∣
∣
∣
∣
∣
∣

Δmu = 0, in Rn+1
+

u|xn+1=0 = ϕ1 ∈ Hm−1/2(Rn)

. . .
∂m−1u
∂xm−1

n+1
|xn+1=0 = ϕm ∈ H 1/2(Rn).

(35)

Then there exists a solutionof (35) u ∈ Hm
loc(R

n+1
+ ) that canbewrittenas û(ξ, xn+1) =

∑m
j=1 x

j−1
n+1e

−xn+1|ξ|ĉ j (ξ),c j being unknown tempered distributions in Rn. The distri-
butions c j , j = 1, . . . ,m can be expressed as

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c1 = ϕ1

c2 = ϕ2 + |D|ϕ1

c3 = 1
2!ϕ3 + 1

2 |D|2ϕ1 + |D|ϕ2

. . .

c j = 1
( j−1)!ϕ j + A1, j |D| j−1ϕ1 + . . . + A j−1, j |D|ϕ j−1

. . . ,

(36)

the constants Akj being uniquely determined.

In the standard variables (x, xn+1) ∈ Rn+1
+ , we have

u(x, xn+1) =
m

∑

j=1

x j−1
n+1 [D1 j

xn+1

(x2n+1 + |x |2) n+1
2

∗ ϕ j + (37)

B1 j
∂ j−1

∂x j−1
n+1

(
xn+1

(x2n+1 + |x |2) n+1
2

∗ ϕ1) +

. . . + Bj−1, j
∂

∂xn+1
(

xn+1

(x2n+1 + |x |2) n+1
2

∗ ϕ j−1)]

and Bk, j = Ak, j (−1) j−k Γ ( n+1
2 )

π
n+1
2

, k = 1, . . . , j − 1, while D1 j = 1
( j−1)!

Γ ( n+1
2 )

π
n+1
2

.

3 Proofs of Main Results, the Examples, and Comments

We shall begin with Proposition 1 (a). Thus,
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0 < G1,n(x, y) = k1,n
n − 2

(|x − y|2−n − [XY ]2−n) =

k1,n
n − 2

(]XY ] − |x − y|)([XY ]n−3 + . . . + |x − y|n−3)

|x − y|n−2[XY ]n−3[XY ] ≥

≥ k1,n
n − 2

[XY ]2 − |x − y|2
|x − y|n−2[XY ]([XY ] + |x − y|) .

Having in mind that |x − y| ≤ [XY ] and therefore [XY ] + |x − y| ≤ 2[XY ] we get

G1,n(x, y) ≥ k1,n
2(n − 2)

(|x − y|n−2 + |x − y|n
[XY ]2 − |x − y|2 )−1 ≥

k1,n
2(n − 2)

|x − y|2−nd(x)d(y)(|x − y|2 + d(x)d(y))−1,

d(x)d(y) ≤ [XY ]2 − |x − y|2 ≤ 4d(x)d(y).
We are interested in the estimation from below:

|x − y|2−nd(x)d(y)

|x − y|2 + d(x)d(y)
≥ cd(x)d(y) (38)

for some constant c > 0 in the ball: x, y ∈ B1. Consequently,

1 ≥ c|x − y|n−2(|x − y|2 + d(x)d(y)). (39)

On the other hand, |x − y|n−2(|x − y|2 + d(x)d(y) ≤ 2n−2.5 for each x, y ∈ B1.
Taking c = 22−n

5 we come to (38). Thus, G1,n(x, y) ≥ k1,n
5(n−2)2

1−nd(x)d(y),∀x, y ∈
B1, i.e., we obtain (6).

The estimations from below of theGreen functionsGm,n (4) are similar, the results
are the same and we shall investigate only the case n > 2m. We are looking for such
a positive constant C > 0 that

|x − y|2m−nmin{1, d
m(x)dm(y)

|x − y|2m } ≥ Cdm(x)dm(y),∀x, y ∈ B̄1. (40)

Thus, in an equivalent form

1

C
min{1, d

m(x), dm(y)

|x − y|2m } ≥ |x − y|n−2mdm(x)dm(y),∀x, y ∈ B1. (41)

Evidently, 0 ≤ |x − y|n−2mdm(x)dm(y) ≤ 2n−2m,∀x, y ∈ B̄1.
There are two possibilities in (41):
(a) 0 ≤ d(x)d(y)

|x−y|2 ≤ 1 ⇐⇒ 0 ≤ dm (x)dm (y)
|x−y|2m ≤ 1
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(b) d(x)d(y)
|x−y|2 ≥ 1 ⇐⇒ dm (x)dm (y)

|x−y|2m ≥ 1.
In the case (a) (41) takes the form

1

C

dm(x)dm(y)

|x − y|2m ≥ |x − y|n−2mdm(x)dm(y), (42)

i.e., (41) holds if C = 2−n .
If (b) (40) holds we have

1

C
≥ |x − y|n−2mdm(y)dm(y). (43)

Therefore, (43) is valid with C = 2−n+2m . Taking the constant C = 2−n we get
(40). As it concerns the estimation from above of the solution of (1), Proposition
1 points out that r2p+1 = |x |2p+1 /∈ C∞(|x | ≤ 1) but only to C∞(B1 \ 0). By using
formula (2) we reduce our problem to the construction of C∞ smooth solution of
(−Δu)m = 1 with zero Dirichlet data in B1. Because of this we are trying to find the
corresponding solution as radial symmetric one, i.e., v = 1

Cm
(1 − r2)m ,Cm > 0. The

boundary conditions are obviously fulfilled. The inductive formula Δmrα = α(α −
2) . . . (α − 2(m − 1))(α − 2 + n)(α − 4 + n) . . . (α − 2m + n)rα−2m enables us to
conclude that

∣
∣
∣
∣

(−Δ)mv = 1 in B1

v|S1 = . . . = ∂m−1v
∂rm−1 |S1 = 0

(44)

and v = 1
Cm

(1 − r2)m with Cm = 2mm!(n + 2m − 2)(n + 2m − 4) . . . (n + 2)n.
Proposition 1 is verified.

Remark 1 We can construct Green function in Rn+, n ≥ 3. As it is mentioned in [5]

for n > 2m G(−Δ)m ,Rn+ = km,n|x − y|2m−n
∫ |x∗−y|

|x−y|
1 (v2 − 1)m−1v1−ndv andRn+ = {x ∈

Rn, x1 > 0}, while if x ∈ Rn+ then x∗ = (−x1, x2, . . . , xn) ∈ Rn−. It is easy to see
that |x∗ − y|2 = |x − y|2 + 4d(x)d(y), d(x) = x1, d(y) = y1, x1 = dist (x, ∂Rn+).
Similar considerations as in the case of Proposition 1 can be done with the Green
function G(−Δ)m ,Rn+(x, y) but we omit the details.

Several words about the Navier problem (9), based on (7). With some constant
c > 0 for the Poisson equations (10), we guess

cd(x)
∫

B1
d(y)u1(y)dy ≤ u(x) ≤ ||u1||C0

n d(x)

cd(x)
∫

B1
d(y)u2(y)dy ≤ u1(x) ≤ ||u2||C0

n d(x)
. . .

cd(x)
∫

B1
d(y)u j+1(y)dy ≤ u j (x) ≤ ||u j+1||C0

n d(x)
. . .

cd(x)
∫

B1
d(y) f (y)dy ≤ um−1(x) ≤ || f ||C0

n d(x).

(45)
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We observe that f ≥ 0 ⇒ um−1 ≥ 0 ⇒ um−2 ≥ 0 and we conclude inductively
that each u j ≥ 0 as well u ≥ 0. As 0 ≤ u(x) ≤ 1

n ||u1||C0d(x), . . . , ||um−2||C0 ≤
1
n ||um−1||C0 and ||um−1||C0 ≤ 1

n || f ||C0 ⇒ 0 ≤ u(x) ≤ 1
nm || f ||C0d(x), i.e., u(x) ≤

1
nm || f ||C0(B̄1)

d(x) from Proposition 2 is shown. The left-hand side of the inequality
is proved inductively, as the first two lines from (45) give u(x) ≥ cd(x)

∫

B1
u1(y)d(y)

dy ≥ c2d(x)
∫

B1
d2(y)dy

∫

B1
u2(y)d(y)dy, etc.

Therefore, u(x) ≥ cmd(x)(
∫

B1
d2(y)dy)m−1

∫

B1
f (y)d(y)dy and one can take

c = k1,n21−n

5(n−2) . This way Proposition 2 is proved.

To find formula (20) we remind that u(x, xn+1) = F−1
ξ→x(e

−xn+1|ξ|ϕ̂). On the

other hand, if we put v̂ = e−xn+1|ξ| we obtain that u(x, xn+1) = F−1
ξ→x(ϕ̂v̂) = v ∗ ϕ.

It is well known (Eskin, Shilov) that v = F−1
ξ→x(v̂) = Γ ( n+1

2 )

π
n+1
2

xn+1

(x2n+1+|x |2) n+1
2
, n ≥ 3.

Thus, u = Γ ( n+1
2 )

π
n+1
2

xn+1

(x2n+1+|x |2) n+1
2

∗ ϕ(x). To obtain Neumann formula (22) for (21)

we put v(x, xn+1) = − ∂u
∂xn+1

⇒
∣
∣
∣
∣

Δv = 0, xn+1 > 0
v|xn+1=0 = h(x)

. Poisson formula (20) gives

us that v = Γ ( n+1
2 )xn+1

π
n+1
2

∫

Rn
h(y)dy

(x2n+1+|x |2) n+1
2
. According to Lebesgue’s dominated con-

vergence theorem u(x, xn+1), given by (20), tends to 0 for xn+1 → ∞. Therefore,

u(x, xn+1) − u(x,+∞) = −Γ ( n+1
2 )

π
n+1
2

∫

Rn h(y)[∫ xn+1

+∞
λdλ

(λ2+|x−y|2) n+1
2

]dy. After a simple

integration we come to (22).
The proof of (14) for the operator L(x, D) + ia(x)|D| relies on (13) and Par-

seval’s identity. In fact, in the case s = 2
∫

Rn
x

∫ ∞
0 |Dα

x D
β
xn+1u(x, xn+1)|2dxdxn+1 =

(2π)−n
∫

Rn
ξ
|ξα|2|Dβ

xn+1 û(ξ, xn+1)|2dξdxn+1. Certainly, Δu = 0 in Rn+1
+ implies that

û(ξ, xn+1) = e−xn+1|ξ|ĉ(ξ), i.e., Dβ
xn+1 û(ξ, xn+1) = const |ξ|β ĉ(ξ)e−xn+1|ξ|, i.e.,

||Dα
x D

β
xn+1u||2

L2(Rn+1+ )
≤ const

∫ ∞
0

∫

Rn
ξ
|ξ|2|α+β||ĉ(ξ)|2e−2xn+1|ξ|dξdxn+1. Thus, for

s = 2 , i.e., |α + β| ≤ 2, we get ||u||2
Hs(Rn+1+ )

≤ const ||c||Hs−1/2(Rn) as
∫ ∞
0 e−2xn+1|ξ|

dxn+1 = 1
2|ξ| . Applying (13) to ||c||Hs−1/2 we come to (14). We repeat that in those

estimates the Hs
loc Sobolev norms are used; c(x) = u(x, 0). Because of the lack of

space and the same pseudo-differential approach used in Examples 1–4 we shall
study in details only Example 4 that seems to be more complicated. Then its solution
exists of the form

u = (2π)−n
∫

eixξ−xn+1|ξ|(ĉ0(ξ) + xn+1ĉ1(ξ) + x2n+1ĉ2(ξ))dξ.

Wefindconsecutively ∂u
∂xn+1

|xn+1=0 = c1 − |D|c0,ϕ2 = ∂2u
∂x2n+1

|xn+1=0 = |D|2c0 − 2|D|
c1 + 2c2, ϕ3 = ∂3u

∂x3n+1
|xn+1=0 = −|D|3c0 + 3|D|2c1 − 6|D|c2. From the pseudo-

differential system containing the last two equations, we eliminate c2 and get
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c1 = 1

3
(−|D|−2ϕ3 − 3|D|−1ϕ2 + 2|D|c0). (46)

Therefore,

c2 = 1

2
(−ϕ2 + 1

3
|D|2c0 − 2

3
|D|−1ϕ3). (47)

On the other hand, B1(u)|xn+1=0 = ϕ1 leads to the pseudo-differential equation on
the boundary (L(x, Dx ) + ia(x)|D|)c0 − ia(x)c1 = −iϕ1, L being defined in (11).
Eliminating c1 we conclude that

(L(x, D) + i

3
a(x)|D|)c0 = −iϕ1 − i

a(x)

3
|D|−2ϕ3 − ia(x)|D|−1ϕ2 ≡ ψ (48)

is a subelliptic equation.
One can see from (18) that ψ ∈ Hs− 3

2 + k
k+1 and according to the subelliptic esti-

mate (13) for the boundary operator

∣
∣
∣
∣
∣

Δu = 0,Rn+1
+

M1u = L(x, ∂x )u + a(x)
3

∂u
∂xn+1

|xn+1=0 = ψ
we

have that c0 = u|xn+1=0 ∈ Hs−1/2(Rn). Then according to (46) c1 ∈ Hs−3/2 and (47)
implies c2 ∈ Hs−5/2.

Concluding remark:

Δ3u = 0 in Rn+1
+

u|xn+1=0 ∈ Hs−1/2(Rn)
∂u

∂xn+1
|xn+1=0 ∈ Hs−3/2

∂2u
∂x2n+1

|xn+1=0 ∈ Hs−5/2+ k
k+1 ⊂ Hs− 5

2 .

As u satisfies the Dirichlet (i.e., elliptic) problem for Δ3u = 0 we conclude that
u(x, xn+1) ∈ Hs

loc(R
n+1
+ ), s ≥ 6.

Concerning Example 2 we shall mention that in this case c1 = ϕ1 + |D|c0, while
c0 satisfies the second-order PDE on the boundary

g(x)Δxc0 + ∂2
x1c0 = ϕ2 + 2g(x)|D|ϕ1, g(x) = x21 . (49)

The operator (49) is Hörmander’s sum of squares of smooth linear real vector fields,
namely, it has the form Nc0 ≡ x21 (∂

2
1 + ∂2

2 + . . . + ∂2
n)c0 + ∂2

1c0 = ψ(x). N can be
written as N = ∑n+1

j=1 X
2
j + X0, where Xn+1 = ∂1, X j = x1∂ j for n ≥ j ≥ 1 and

X0 = −x1∂1. Evidently, [∂1, x1∂1] = ∂1, [∂1, x1∂ j ] = ∂ j for j ≥ 2, [x1∂ j , x1∂k] =
0, j ≥ 2, k ≥ 2, [x1∂1, x1∂ j ] = x1∂ j , j ≥ 2.

As the system of the vector fields has rank n the hypoellipticity of N holds.
We shall prove now Proposition 3. We are looking for the solution of (27) of the

form

u =
m

∑

l=1

(r2 − 1)l−1ul,Δul = 0, r = |x |. (50)
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Evidently,

∣
∣
∣
∣

Δu1 = 0 in B1,

u1|S1 = ϕ1.

One can easily see that for j ≥ 1

ϕ j+1 = Bj (u)|S1 = A ju j+1+ (51)

a linear combination of u1, . . . , u j and their derivatives of some order.
The boundary value problem (27) decomposes to the solvability of m-Dirichlet

boundary value problems of the type (33). As u1 can be found directly via Poisson
formula the other solutions can be constructed inductively via (51), respectively, the
solution u of (27) is written in the form (50).

The proof of Proposition 4 is standard and we omit it.
We shall begin now with several concluding remarks.
At first we prove that limxn+1→0xn+1

∂u
∂xn+1

= 0 for u from (19), (20), where ∂u
∂xn+1

=
Cn

∫

Rn

ϕ(x−y)(|y|2−nx2n+1)

(x2n+1+|y|2) n+3
2

dy.

Example 7. Consider (20) with ϕ(x) =
{ |x |α, |x | ≤ 1
1, |x | ≥ 1

and 0 < α ≤ 1. Then for

xn+1 > 0, u(0, xn+1) = Cn
∫

Rn
ϕ(xn+1z)dz

(1+|z|2) n+1
2

= Cnxα
n+1

∫

|z|< 1
xn+1

|z|αdz
(1+|z|2) n+1

2
+

Cn
∫

|z|> 1
xn+1

dz

(1+|z|2) n+1
2
. So with some Q > 0

u(0, xn+1) = Cnx
α
n+1(

measS1
α − 1

x1−α
n+1 + Q + o(x1−α

n+1 )) + CnmeasS1xn+1 + o(xn+1), xn+1 → 0,

i.e., u(0, xn+1) is Hölder function with exponent α < 1.
In the Lipschitz case α = 1, we have that

u(0, xn+1) = CnmeasS1xn+1(ln
1

xn+1
+ 1) + o(xn+1), xn+1 → 0,

i.e., the solution u is losing Lipschitz property near the boundary. Certainly,
| ∂u
∂xn+1

(0, xn+1)|xn+1→0 → ∞ for each exponent 0 < α ≤ 1.
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Search of Complex Transcendental Roots
of a Combination of a Nonlinear
Equation and a Polynomial

Yoshihiro Mochimaru

Abstract Target nonlinear equation is limited within ordinary differential equations
with one-point boundary value or two-point boundary value problems, and the order
of a polynomial is assumed to be finite and it is assumed that at least one complex
solution exists (which may be real). The purpose is to find numerically at least one
root (not necessarily all of them). Examples are similar equations to Chandrasekhar’s
white dwarf equation, nonlinear differential equation exactly expressible through
Weierstrass function, and some internal gas explosion equations.

Keywords Transcendental root · Combination · Nonlinear · Monic equation

1 Introduction

Root(s) of a single real nonlinear equation would be found numerically in principle
such as by means of Newton’s method if it is analytic. Complex roots of some Bessel
functions, Hankel functions, their cross-products, andMathieu functions are reported
in [1, 2].

Here treated are complex transcendental roots of a combination of a nonlinear
equation and a polynomial. Target equations: Specific nonlinear functions such as
those given by derivatives through their polynomials, and nonlinear functions defined
by nonlinear ordinary differential equation(s). Among possibilities of multiple zero
points, one zero point on a prescribed branch is sought; two-point boundary value
problem function, nonlinear integral function explicitly defined uniquely through
such a principal value, nonlinear integro-differential equation, boundary integration
types are not included.

Finally, zeros of single specified forms of a Gauss Hypergeometric Function are
given, which are the cases corresponding to no additional polynomial.
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2 Analysis

To find the zero(s) of the target equation regarding initial value parameter(s) or
pure parameter(s), it becomes necessary to solve a truncated polynomial equation,
any function including special functions, infinite series, or their mixed, inclusive of
an additive finite polynomial. For such purposes, use is made of the Taylor series
expansion, the coefficients of which can be obtained analytically or through finite
difference approximation, with a suitable shift to truncate some higher terms com-
pletely, to change to a monic polynomial. Two ways are possible, the first is to divide
all the coefficients of the polynomial by that of the highest degree (if not zero), the
second is to divide all the coefficients by the constant (the lowest, if not zero), and
change the variable of the polynomial by its inverse. The zeros of the monic polyno-
mial are computed by the Jenkins–Traub algorithm; some Fortran routine based on
that is found in NAPACK [3], where slight modification is required. However, many
(not necessary all) of the zeros computed there do not satisfy the original equation
(equality) even approximately, since the said truncation is based on the assumption
(as necessary condition) that the higher terms are small.

2.1 From the 7th Power Equation

(
dw

dx

)7

− w2

(
dw

dx

)
− w = 0, (1)

1

W

(
1 + z2

) + F(z) = 0, (2)

F(z) ≡
(

dw

dx

)
x=1

, w(0) = z, (3)

where W is a constant given a priori (hereafter). If
dw

dx
≡ y (w)1/3, then

y7 − y − w

w7/3
= 0. (4)

Assuming φ(≡ w/w7/3), |φ| � 1, one root is given by

y = 1 + 1

6
φ − 7

72
φ2 + 7

81
φ3 + 4515

31104
φ4 + · · · . (5)

Thus, Eq.(1) can be integrated numerically using the Runge–Kutta method. For
getting Taylor coefficients of expansion, select a suitable point(s) (whichmay depend
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on functions and parameters) and choose small difference interval values such as
±0.002 (which may be complex, in double precision) to get function values to apply

the difference formula. If W = −0.1 + 0.01i

(0.05 − 0.05 i)2
, then z = −1.968 − 0.765 i .

2.2 Form of Quintic Equation

(
dw

dx

)5

−
(

dw

dx

)
− 2 + w

2
= 0, (6)

1

W

(
1 + z2

) + F(z) = 0 , x ∈ [0, 1], (7)

w(0) = z , F(z) ≡ w(1). (8)

Equation (6) regarding dw/dx can be solved by Modular Function as long as
−2 + w/2 is given a priori [4], so that if the branch of the solution is fixed, a con-

tinuous solution is found as long as

(
dw

dx

)
�= 0, i.e., w �= 4 (necessary condition).

If W = 0.02 − 0.01 i

(0.1 − 0.1 i)2
, then z = −0.604 + 0.908 i .

2.3 Form of Cubic Equation

(
dw

dx

)3

− z x

(
dw

dx

)
+ x3 = 0, (9)

1

W

(
1 + z2

) + F(z) = 0, (10)

F(z) ≡ w(1) ; x ∈ [0, 1], (11)

provided that
dw

dx
∼ z0.5 x0.5 − x2

2 z
(z �= 0, |x | � 1), (12)

dw

dx
= 2

√
z

3
x sin θ, (13)
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θ = 1

3i
ln

(√
1 − ω2 + i ω

)
(principal values), (14)

ω ≡ 31.5

2 z × z0.5
x1.5 , (x ≥ 0). (15)

If W = 0.5 + 0.1 i

(0.5 − 0.2 i)2
, then z = 0.071 + 1.186 i .

2.4 Briot–Bouquet Differential Equation

x y′ = λ y + a x + a02 y2 + a03 y3 + x (a11 y + a12 y2), (16)

a = z , x ∈ [0, 1] , a03 �= 0, (17)

1

W

(
1 + z2

) + F(z) = 0 , F(z) ≡ y(1). (18)

To be regular at x = 0,

y(0) = 1

2 a03

(
− a02 +

√
a02

2 − 4λ a03

)
, (19)

y′(0) = {
λ + 2 a02 y(0) + 3 a03 y2(0)

}
y′(0) + {

a + a11 y(0) + a12 y2(0)
}
. (20)

If W = −0.12 + 0.15 i

(0.15 − 0.3 i)2
, λ = 2 , a02 = 0.5, a03 = 1.5, a11 = 1.2, a12 = 1.7, then

z = 0.256 − 1.657 i .

2.5 Briot–Bouquet Differential Equation of Order 2 Type

x2 y′ = x f (y) + x2 g(y) + h(y), (21)

f (y) ≡ a0 + a1 y + a2 y2, (22)

g(y) ≡ z + c1 y, (23)

h(y) ≡ b1 y + b2 y2 + b3 y3. (24)
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To be regular at x = 0,
f (y0) = 0, y0 ≡ y(0), (25)

y0 = − b2/(2 b3) , 4 b1 b3 − b2
2 = 0, (26)

{
f ′(y0) − 1

}
y′
0 + g(y0) + 1

2
h′′(y0) y′2

0 , (27)

1

W

(
1 + z2

) + F(z) = 0 , F(z) ≡ y(1). (28)

IfW = −0.12 + 0.15 i

(0.15 − 0.3 i)2
, a0 = 1, a1 = 1, a2 = 1.5, b1 = 1, b2 = 1.7, c1 = 1.3, then

z = 0.400 − 0.265 i .

2.6 Definite Integral of a Special Function

F(z) ≡
∫ +∞

0

1

x0.5 2F1(a, b; c;− z x) 2F1(a, b; c;− z/x) dx, (29)


(a) > 1/2 ,
(b) > 1/2, | arg(z)| < π. (30)

(Singular integral at x = 0) 2F1: Gauss Hypergeometric Function.

1

W

(
1 + z2

) + F(z) = 0, (31)

F(z) =
√

π

z
�

[
a − 1

2 , b − 1
2 , c

a, b, c − 1
2

]
× 2F1 (2a − 1, 2b − 1; 2c − 1;− z) ,

(32)

�

[
α, β, γ
α∗, β∗, γ∗

]
≡ �(α)�(β)�(γ)

�(α∗)�(β∗)�(γ∗)
. (33)

If W = 0.005 − 0.003 i

(0.2 + 0.7 i)2
, a = 1.5, b = 0.7, c = 1.2, then z = 0.024 − 0.092 i .

2.7 Definite Integral Including a Special Function

F(z) ≡
∫ +∞

0
e−z x

1F1 (a; b; x) dx . (34)
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1F1: Confluent Hypergeometric Function

(z) > 1 (sufficient condition of integration)

1

W

(
1 + z2

) + F(z) = 0. (35)

If W = −0.2 + 0.3 i

(0.2 − 0.1 i)2
, a = 2.5 , b = 0.8, then z = 3.259 − 0.050 i .

2.8 Inverse Function

Inverse function at particular values of Gauss Hypergeometric Function

F(z) ≡ 2F−1
1

(
1

8
, 1; 9

8
; z

)
, (36)

1

W

(
1 + z2

) + F(z) = 0, (37)

2F1

(
1

8
, 1; 9

8
; z

)
= F−1

= 1

8 z1/8

[
ln

1 + z1/8

1 − z1/8
+ 1

i
ln

1 + i z1/8

1 − i z1/8

+ 1

20.5 i
ln

1 + i20.5 z1/8/(1 − z1/4)

1 − i20.5 z1/8/(1 − z1/4)

− 1

20.5
ln

1 − 20.5 z1/8 + z1/4

1 + 20.5 z1/8 + z1/4

]
. (38)

Numerical inverse function values F(z) at complex points are also obtained by the

Newton method from F−1. If W = 0.004 − 0.006 i

(0.1 − 0.1 i)2
, then z = 0.343 − 0.147 i .

2.9 Nonlinear Second-Order Ordinary Differential Equation,
Resulting in Two-Point Boundary Value Problem

w′′ = w2 + w + x , x ∈ [0, 1], (39)

w(0) = z , w(1) = 1 , F(z) = w′(1), (40)
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1

W

(
1 + z2

) + F(z) = 0. (41)

If W = −0.04 − 0.01 i

(0.12 + 0.12 i)2
, then z = −0.264 + 1.113 i .

2.10 Nonlinear Differential Equation Exactly Expressible
Through Weierstrass Function

yzz + y yz − y3 − b0 yz − 3 b0 y2 − 3 b2
0 y − b3

0 = 0. (42)

The suffix z stands for the derivative with respect to z [5].

y = − b0 + Rz

R
, F(z) ≡ y(z). (43)

R ≡ R(z): Weierstrass Function.

1

W

(
1 + z2

) + F(z) = 0. (44)

If ω1 = 2,ω3 = 1 + i (half periods), W = 0.2 + 0.1 i

(0.2 − 0.25 i)2
, b0 = 1.5, then

z = 0.804 + 1.231 i .

2.11 One Internal Gas Explosion Equation

r
d2r

dt2
+ 3

2

(
dr

dt

)2

− k2
(r0

r

)3 γ = 0, (45)

where r : explosion radius; t : time. Mathematical model: k, r0, γ: real. Initial
condition (at t = 0)

r = r0, (46)

dr

dt
= z , (
(z) > 0), (47)

1

W

(
1 + z2

) + F(z) = 0, F(z) ≡ d

dt
r(2). (48)
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If W = 0.2 + 0.1 i

(0.2 − 0.25 i)2
, r0 = 10, k = 300, γ = 4

3
, then z = 5.470 − 2.63 i .

2.12 Mathematical Differential Model From Modified
Chandrasekhar’s White Dwarf Equation

[Two-point boundary value problem:]

y′′ + 2

x
y′ + β

(
y2 − z

)(3/2) = 0, (49)

0 < x0 ≤ x ≤ 1, y(x0) = 1, y(1) = z, x0 = 0.03, β = 0.2, (50)

1

W

(
1 + z2

) + F(z) = 0, F(z) ≡
∫ 1

x0

(
y − z0.5

)
dx . (51)

Originally, β is set as β = 1 [4], however, different value is introduced to exclude

spatial limitations. If W = −2 + 0.15 i

(0.9 − 0.4 i)2
, then z = 0.399 + 0.200 i .

2.13 Mathematical Coupled Differential Model From
Laminar Natural Vertical Convection along a Constant
Temperature Wall

f ′′′ + 3 f f ′′ − 2
(

f ′)2 + T = 0, (52)

T ′′ + 3 Pr f T ′ = 0 , ′ ≡ d

dx
, x ≥ 0. (53)

T : originally fromdimensionless temperature, Pr stands for a Prandtl number, where
Pr = 0.7 is used. With boundary conditions (two-point boundary value problem)

f (0) = f ′(0) = 0, T (0) = 1, T ′(4) = 0, (54)

(4 stands for substantially large location value, far away condition) (Fig. 1)

1

W

(
1 + z2

) + F(z) = 0, F(z) ≡ f (4), f ′′(0) = z. (55)

If W = 0.06 − 0.08 i

(0.2 + 0.3 i)2
, then z = 0.730 − 0.287 i .



Search of Complex Transcendental Roots of a Combination … 59

Fig. 1 Solution

2 4
0
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- 2

( )
( )
( )
( )

= 0.730 - 0.287
= 0.7

T
T
f
f

x

z i
Pr

ℜ
ℑ
ℜ
ℑ

T
 , 

f

2.14 Integro-Differential Problem of Volterra

dy

dt
= a y − b y2 + y

∫ t

0
c (t − s) y(s) ds, a, b, c : constant, (56)

1

W

(
1 + z2

) + F(z) = 0, y(0) = z( �= 0), F(z) ≡ y(xmax), xmax = 5. (57)

Finally,

y′′′ = 3
y′ y′′

y
− 2

(y′)3

y2
− b y y′′ + c y2, (58)

y′(0) = a y(0) − b {y(0)}2 , (59)

y′′(0) = a y′(0) − 2 b y(0) y′(0). (60)

IfW = 0.1 + 0.1 i

(0.5 − 0.2 i)2
, a = 1, b = 1, c = − 0.1 (Fig. 2), then z = − 0.073 + 1.072 i .
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Fig. 3 Zeros
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3 Zero-Points of Some Gauss Hypergeometric Functions

They correspond to no additional or missing polynomial case. The first case:
2F1(α,α;α + 1/2; z) = 0. Examples of typical zeros are shown in Fig. 3.

The second case: 2F1(α, 1.2α, 1.5α; z) = 0.
Examples of typical zeros are shown in Fig. 4.

4 Conclusions

Complex transcendental roots of a combination of nonlinear ordinary equation and
a polynomial are searched numerically for various kinds of equations. As long as the
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Fig. 4 Zeros
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coefficients (appearing explicitly) are moderate (after normalized in some sense), it
is possible to find approximately one of the zeros (not necessarily all) if any.
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Null Non-controllability for Singular
and Degenerate Heat Equation
with Double Singular Potential

Nikolai Kutev and Tsviatko Rangelov

Abstract Initial boundary value problem for singular and degenerate heat equation
with double singular potential is considered. Such problems appear in many physical
and mechanical models. Global existence of weak solutions, as well as null non-
controllability in dependance on the parameter of the potential, are obtained. Hardy
inequalities with double singular kernels at an interior point and on the boundary of
the domain and with optimal constant are used in the proof of the main results.

Keywords Singular and degenerate heat equations · Null non-controllability ·
Global existence · Hardy inequality

1 Introduction

We consider the parabolic problem

{
ut − div(|x |l∇u) − μΨ (x)u = f (t, x), in Q = (0, T ) × Ω,

u(t, x) = 0, for x ∈ ∂Ω, u(0, x) = u0(x),
(1)

where f (t, x) ∈ L2
(
(0, T );W−1,2

−l (Ω)
)
, u0(x) ∈ L2(Ω), Ω ⊂ IRn , 0 ∈ Ω , n > 2,

and Ω is a bounded star-shaped domain with respect to a small ball centered at the
origin, i.e.

Ω = {x ∈ IRn, |x | ≤ ϕ(x)}, (2)

where ϕ(x) ∈ C0,1(IRn) is a positive homogeneous function of 0-th order.
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The potential Ψ (x)

Ψ (x) = |x |l−2

[
1 −

( |x |
ϕ(x)

) l+n−2
2

]−2

, l + n − 2 > 0, l < 2,

is singular on the boundary ∂Ω and at the origin.
For l > 0, Eq. (1) is a degenerate parabolic equation, for l < 0, it is a singular

parabolic equation, and for l = 0, it is a uniformly parabolic one.
Problem (1) occurs in many physical problems, in the non-relativistic quantum

mechanics [6, 19], molecular physics [16], in quantum cosmology [6], in the study
of near-horizon structure of black holes and other.

After the remarkable paper [4], for existence or blow-up of the solutions to the
heat equation with singular at a point potential, their results are extended in different
directions. One of them is the null controllability for linear heat equations [15], and
sub-linear ones [12], see also the references therein for inverse-square potentials.
More general than quadratic singularities at an interior point, motivated in the book
[20], are studied in [3]. The case of singular on the whole boundary potential in the
n-dimensional case is treated in [5].

The threshold between the global existence of weak solutions and the null non-
controllability in the papers mentioned above is the optimal constant in the Hardy
inequality with the corresponding singular potential. When the coefficient before
the singular term is less than the Hardy constant, by means of Carleman‘s estimates,
global existence holds, while for greater constant, blow-up or null non-controllability
occurs.

Finally, let us mention that problem (1) with singular potential only at an interior
point is studied in [1, 7] for a degenerate or singular heat equation, where global
existence or blow-up of the solutions is proved. Nonexistence of positive solution to
more general reaction-diffusion equations with Hardy type potential are studied in
[2, 13], see also the references therein.

In the present paper, we extend our result in [14] for the heat equation with dou-
ble singular potential to degenerate or singular heat equation with the same poten-
tial. When the coefficient before the singular term is less than the corresponding
optimal Hardy constant, we prove global existence of weak solutions and null non-
controllability when the coefficient is greater than the Hardy constant.

2 Preliminaries

Let us denote by W 1,2
l,0 (Ω), l ∈ IR, l + n > 2 the completion of C∞

0 (Ω) functions
with respect to the norm

‖z‖W 1,2
l,0 (Ω) =

(∫
Ω

|x |l |∇z|pdx
) 1

2

< ∞. (3)
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We also consider the condition

lim
ε→0

εl+1
∫
Sε

|Trz|2dS = 0, Sε = {x ∈ IRn, |x | = ε}, (4)

where Trz is the trace operator, see [9, Sect. 5.5] and [18, Sect. 1.1.6]. The space
W 1,2

l,0 (Ω) is reflexive and we can define the dual space W−1,2
−l (Ω) of W 1,2

l,0 (Ω) as

W−1,2
−l (Ω) = {v ∈ D′(Ω); z = divv, z ∈ L2

−l(Ω; IRn)} where L2
−l(Ω; IRn) =

{z : Ω → R measurable, such that x− l
2 z(x) ∈ L2(Ω)} with norm ‖z‖L2−l (Ω) =(∫

Ω
|x |−l |z|2dx) 1

2 .
Note that W 1,2

l,0 (Ω) ⊂ W 1,2
0 (Ω) for l < 0 and W 1,2

0 (Ω) ⊂ W 1,2
l,0 (Ω) for l ≥ 0.

Moreover, if ω̄ ⊂ Ω\{0}, then W 1,2
l,0 (ω) coincides with W 1,2

0 (ω).

In what follows we will use the notation Cl,n = (
l+n−2

2

)2
.

For the proof of null non-controllability in Sect. 3, we need the inequality with
potential, singular only at the origin, see (1.5) and Corollary 1.4 in [11].

Theorem 1 Suppose Ω ⊂ IRn, 0 ∈ Ω , n > 2, is a bounded domain. For every con-
stant l + n > 2, l < 2 and every w(x) ∈ W 1,2

l,0 (Ω) the Hardy inequality

∫
Ω

|x |l |∇z(x)|2dx ≥ Cl,n

∫
Ω

|x |l−2|z(x)|2dx, (5)

holds. The constant Cl,n is optimal.

In the proof of global existence in Sect. 4, the following result for potential ψ(x)
is used.

Theorem 2 Suppose l + n > 2 andΩ ⊂ IRn, n > 2, l < 2, 0 ∈ Ω , is bounded star-
shaped domain with respect to a small ball centered at the origin. For every z(x) ∈
W 1,2

l,0 (Ω) satisfying (4), the Hardy inequality

∫
Ω

|x |l |∇z(x)|2dx ≥ Cl,n

∫
Ω

ψ(x)z2(x)dx,

holds. The constant Cl,n is optimal.

The proof of Theorem 2 follows from Theorem 1.1 of [10].

3 Null Non-controllability for µ > Cl,n

In this section, we prove that there is no control for problem (1). First, let us recall
some definitions, see [8].
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Definition 1 The null controllability means that for every u0(x) ∈ L2(Ω), there

exists a control f (t, x) ∈ L2
(
(0, T ) × W−1,2

−l (Ω)
)
such that the solution u(t, x) of

(1) satisfies u(T, x) = 0 for x ∈ Ω .

If
u(t, x) ∈ L∞ (

(0, T ); L2(Ω)
) ∩ L2

(
(0, T );W 1,2

l,0 (Ω)
)

, (6)

then following the idea of the optimal control, we consider for every u0(x) ∈ L2(Ω)

the functional

Ju0(u, f ) = 1

2

∫
Q
u2(t, x)dxdt + 1

2

∫ T

0
‖ f ‖2

W−1,2
−l (Ω)

dt,

defined in the set

D(u0) =
{
(u, f ) ∈ L2

(
(0, T );W 1,2

l,0 (Ω)
)

× L2
(
(0, T );W−1,2

−l (Ω)
)}

.

Definition 2 Acontrol f (t, x) ∈ L2
(
(0, T );W−1,2

−l (Ω)
)
is localized inω if f (t, x)

= 0 in Ω\ω̄ in the sense that for every θ(x) ∈ C∞(Ω\ω̄), we have θ(x) f (t, x) = 0

in L2
(
(0, T );W−1,2

−l (Ω)
)
.

Definition 3 Problem (1) can be stabilized if there exists a constant C > 0, such
that

inf
(u, f )∈D(u0)

Ju0(u, f ) ≤ C‖u0‖2L2(Ω), for every u0 ∈ L2(Ω).

Let us define

Ψε(x) = (|x |2 + ε
) l−2

2

(
1 + ε −

( |x |
ϕ(x)

) l+n−2
2

)−2

, (7)

and consider the regularized problem

⎧⎪⎨
⎪⎩

uεt − div
(
(|x |2 + ε)

l
2 ∇uε

)
− μΨε(x)uε = f (t, x), in Q,

uε(t, x) = 0, for t ∈ [0, T ], x ∈ ∂Ω,

u(0, x) = u0(x), for x ∈ Ω.

(8)

For ε > 0, problem (8) is well-posed.
We consider the functional

Ju0( f ) = 1

2

∫
Q
u2ε(t, x)dxdt + 1

2

∫ T

0
‖ f ‖2

W−1,2
−l (Ω)

dt,

for every f (t, x) localized in [0, T ] × ω, ω̄ ⊂ Ω .
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Theorem 3 Suppose μ > Cl,n, n > 2, l > 2 − n, l < 2, f (t, x) is localized in ω,
ω̄ ⊂ Ω\{0}. Then there is no constant C such that for every ε > 0 and every u0(x) ∈
L2(Ω) the estimates

inf
f ∈D1

Ju0( f ) ≤ C‖u0‖2L2(Ω),

holds, where D1 =
{
f ∈ L2

(
(0, T );W−1,2

−l (Ω
)}

.

For the proof of Theorem 3, we need spectral estimates for the following eigenvalue
problem {

−div
(
(|x |2 + ε)

l
2 ∇φε

1

)
− μΨεφ

ε
1 = λε

1φ
ε
1 in Ω,

φε
1 = 0, on ∂Ω, ‖φε

1‖L2(Ω) = 1,
(9)

where λε
1 is the first eigenvalue and φε

1 is the corresponding first eigenfunction.

Lemma 1 If μ > Cl,n, n > 2, l > 2 − n, l < 2, then

lim
ε→0

λε
1 = −∞, (10)

and for every ω̄ ⊂ Ω\{0}
lim
ε→0

‖φε
1‖W 1,2(ω) = 0, (11)

Proof If we assume that λε
1 is bounded from below with a constant C1, then from

the Reyleigh identity, it follows that

∫
Ω

(|x |2 + ε)
l
2 |∇z|2dx ≥ μ

∫
Ψε(x)z

2(x)dx + C1

∫
Ω

z2dx, (12)

for every z ∈ C∞
0 (Ω).

For the function z = ε− n
4 z

(
ε− 1

4 x
)
, ε ≤ 1, we get from (12)

με− n
2
∫
Ω

(|x |2 + ε)
l−2
2

(
1 + ε −

(
|x |

ϕ(x)

) l+n−2
2

)−2

z2
(
ε− 1

4 x
)
dx

≤ ε− n+1
2

∫
Ω

(|x |2 + ε)
l
2 |∇z(ε− 1

4 x)|2dx − C1ε
− n

2
∫
Ω
z2(ε− 1

4 x)dx

(13)

Since ϕ(ε− 1
4 x) = ϕ(x), after the change of the variables ε− 1

4 x = y, (13) becomes

με
l−2
4

∫
Ω

(
|y|2 + ε

1
2

) l−2
2

(
1 + ε −

(
ε
1
4 |y|

ϕ(y)

) l+n−2
2

)−2

z2(y)dy

≤ ε
l−2
4

∫
Ω

(
|y|2 + ε

1
2

) l
2 |∇z(y)|2dy − C1

∫
Ω
z2(y)dy.

(14)

After the limit ε → 0,we have from (14) and l + n − 2 > 0, l < 2 the final inequality
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∫
Ω

|y|l |∇z(y)|2dy ≥ μ

∫
Ω

|y|l−2z2(y)dy, (15)

for every z ∈ C∞
0 (Ω), and hence for every z ∈ W 1,2

l,0 (Ω). Since μ > Cl,n inequality
(15) contradicts the Hardy inequality (5) and (10) is proved.

In order to prove (11), for ω̄ ⊂ Ω\{0}, we fix the sets ω̄ ⊂ ω̄1 ⊂ ω̄2 ⊂ Ω\{0} and
choose C2(Ω) smooth function η1(x), η1 ≥ 0, ‖η1‖L∞(Ω) ≤ 1 satisfying

{
η1(x) = 1 for x ∈ ω1,

η1(x) = 0 for x ∈ Ω\ω2.
(16)

After multiplication of (9) with η1φ
ε
1 and integration, we get

− λε
1

∫
Ω

η1(φ
ε
1)

2dx + ∫
Ω

η1(|x |2 + ε)
l
2 |∇φε

1 |2dx
= μ

∫
Ω

η1Ψε(x)(φε
1)

2dx − ∫
Ω

η1(|x |2 + ε)
l
2 φε

1〈∇φε
1,∇η1〉dx

≤ μ supx∈ω2
Ψ (x)

∫
Ω

η1(φ
ε
1)

2dx + ∫
Ω

η1(|x |2 + ε)
l
2 φε

1 |∇φε
1 ||∇η1|dx

≤ μ supx∈ω2
Ψ (x)

∫
Ω

η1(φ
ε
1)

2dx + 1
2

∫
Ω

η1(|x |2 + ε)
l
2 |∇φε

1 |2dx
+ supx∈ω2

[
σ(η1)(|x |2 + ε)

l
2

] ∫
ω2

(φε
1)

2dx,

because |∇η1|2 ≤ 2η1 sup |σ(η1)|, where σ(z) = �n
i=1|zxi xi |.

Hence

− λε
1

∫
Ω

η1(φ
ε
1)

2dx ≤ −λε
1

∫
Ω

η1(φ
ε
1)

2dx + 1
2

∫
Ω

η1(|x |2 + ε)
l
2 |∇φε

1 |2dx
≤

[
μ supx∈ω2

Ψ (x) + supx∈ω2

(
|σ(η1)|(|x |2 + ε)

l
2

)] ∫
ω2

(φε
1)

2dx,

≤ μ supx∈ω2
Ψ (x) + supx∈ω2

[
σ(η1)(|x |2 + ε)

l
2

]
< ∞,

(17)

and from (10) it follows that limε→0
∫
Ω

η1(φ
ε
1)

2dx = 0. From the choice of η1 in
(16) we get

lim
ε→0

∫
ω1

(φε
1)

2dx = 0. (18)

Now repeating the above considerations for ω and ω1, instead of ω1, ω2 and function
η(x) satisfying ⎧⎨

⎩
η(x) = 1 for x ∈ ω,

η(x) = 0 for x ∈ Ω\ω1,

η(x) ≥ 0 ‖η‖L∞(Ω) ≤ 1,

inequality (17) becomes
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1
2

∫
ω
(|x |2 + ε)

l
2 |∇φε

1 |2dx
≤ 1

2

∫
Ω

η(|x |2 + ε)
l
2 |∇φε

1 |2dx − λε
1

∫
Ω

η(φε
1)

2dx

≤
[
μ supx∈ω1

Ψ (x) + supx∈ω1

(
σ(η)(|x |2 + ε)

l
2

)] ∫
ω1

(φε
1)

2dx .

(19)

From (18), (19), and 0 /∈ ω, we obtain

lim
ε→0

∫
ω

(|x |2 + ε)
l
2 |∇φε

1 |2dx = lim
ε→0

∫
ω

|x |l |∇φε
1 |2dx = 0,

which proves (11).

Proof (Proof of Theorem 3). We choose u0(x) = φε
1(x) and define the functions

aε(t) =
∫

Ω

uε(t, x)φ
ε
1(x)dx, bε(t) =

∫
Ω

f (t, x)φε
1(x)dx,

where ε is small enough such that λε
1 < 0 according to (10) and uε(t, x) is solution of

(8) satisfying (6). Simple computations give us after integration by parts the equalities

aε(t) = ∫
Ω

φε
1(x)

[
div

(
(|x |2 + ε)

l
2 ∇uε(t, x)

)
+ μΨε(x)uε(t, x) + f (t, x)

]
= ∫

Ω
uε(t, x)

[
div

(
(|x |2 + ε)

l
2 ∇φε

1(x)
)

+ μΨε(x)φε
1(x)

]
dx

+ ∫
Ω

φε
1(x) f (t, x)dx = −λε

1

∫
Ω

φε
1(x)uε(t, x)dx + ∫

Ω
φε
1(x) f (t, x)dx

= −λε
1aε(t) + bε(t).

(20)
From (20) we get

aε(t) = e−λε
1t +

∫ t

0
e−λε

1(t−s)bε(s)ds.

Since f (t, x) is localized in [0, T ] × ω, ω̄ ⊂ Ω\{0}, we obtain the estimates

b2ε (t) ≤ ‖ f ‖2
W−1,2

−l (ω)
‖φε

1‖2W 1,2(ω),

∫ T

0
a2(t)dt ≤

∫
Q
u2ε(t, x)dxdt (21)

and ∫ T
0

[
e−λε

1t + ∫ t
0 e

−λε
1(t−s)bε(s)ds

]2
dt

≥ 1
2

∫ T
0 e−2λε

1t dt − ∫ T
0

[∫ t
0 e

−λε
1(t−s)bε(s)ds

]2
dt

≥ − 1
4λε

1

(
e−2λε

1T − 1
) − ∫ T

0

[∫ t
0 e

−2λε
1(t−s)ds

∫ t
0 b

2
ε (s)ds

]
dt

= − 1
4λε

1

(
e−2λε

1T − 1
) − 1

λε
1

∫ T
0

(
1 − e−2λε

1t
) ∫ t

0 b
2
ε (s)dsdt

≥ − 1
4λε

1

(
e−2λε

1T − 1
) [

1 − 1
4λε

1
‖φε

1‖2W 1,2(ω)

∫ T
0 ‖ f ‖2

W−1,2
−l (ω)

dt
]
.

(22)

From (21) and (22), we get the inequality



70 N. Kutev and T. Rangelov

− 1
4λε

1

(
e−2λε

1T − 1
) ≤ ∫

Q u2εdxdt

+ 1
4(λε

1)
2

(
e−2λε

1T − 1
) ‖φε

1‖2W 1,2(ω)

∫ T
0 ‖ f (t, .)‖2

W−1,2
−l (ω)

dt,
(23)

and (23) means that either

− 1
8λε

1

(
e−2λε

1T − 1
) ≤ ∫

Q u2εdxdt or

− 1
8λε

1

(
e−2λε

1T − 1
) ≤ 1

4(λε
1)

2

(
e−2λε

1T − 1
) ‖φε

1‖2W 1,2(ω)

× ∫ T
0 ‖ f (t, .)‖2

W−1,2
−l (ω)

dt.
(24)

From (23) and (24), we have the final estimate.

J ε
u0( f ) ≥ min

{
− 1

16λε
1

(
e−2λε

1T − 1
)
,− λε

1

4‖φε
1‖W 1,2(ω)

}
,

and from (10) and (11), it follows that limε→0 J ε
u0( f ) = ∞ which proves

Theorem 3.

4 Global Existence for µ < Cl,n

In this section, we prove existence of a weak global solution u(t, x)

u(t, x) ∈ C0
(
(0, τ ); L2(Ω)

) ∩ L2
(
(0, τ );W 1,2

l,0 (Ω)
)

, for all τ > 0, (25)

of the problem (1) when l + n > 2, l < 2, μ < Cl,n and Ω satisfies (2).

Theorem 4 Let Ω ⊂ IRn, n > 2, 0 ∈ Ω , be a star-shaped domain with respect to
a small ball centered at the origin, (2) holds and μ < Cl,n, l + n > 2, l < 2. If

f (t, x) ∈ L2
(
(0, T );W−1,2

−l (Ω)
)
, u0(x) ∈ L2(Ω), then problem (1) has a weak dis-

tributional solution u(t, x) satisfying (25).

Proof We define with N ≥ 1 the functions

hN (x) =
{ |x |l, for l ≤ 0,

|x |l + 1
N , for l > 0,

ΨN (x) = (|x |2−l + 1
N

)−1
(
1 + 1

N −
(

|x |
ϕ(x)

) l+n−2
2

)−2

.

The problem

⎧⎨
⎩

uN ,t − div (hN (x)∇uN ) − μΨN (x)uN = f (t, x), in Q,

uN (t, x) = 0, for (t, x) ∈ (0, T ) × ∂Ω,

uN (0, x) = u0(x), for x ∈ Ω,

(26)



Null Non-controllability for Singular and Degenerate Heat Equation … 71

has unique solution in the distributional sense, see for example Proposition 1 in [7]
and Theorem 1.2 in [17].

Multiplying (26) with uN (t, x) and integrating we get from the Cauchy–
Bunyakovski inequality the estimate

1
2

∫
Ω

(
u2N (T, x) − u20(x)

)
dx + ∫

Q hN (x)|∇uN (t, x)|2dxdt
−μ

∫
Q ΨN (x)u2N (t, x)dxdt = ∫

Q f (t, x)uN (t, x)dxdt

≤ ∫ T
0 ‖ f (t, .)‖W−1,2

−l (Ω)‖uN (t, .)‖W 1,2
l,0 (Ω)dt

≤ δ
2mC

−1
l,n

∫ T
0 ‖uN (t, .)‖2

W 1,2
l,0 (Ω)

dt

+ 1
2

(
m
δ

)
Cl,n

∫ T
0 ‖ f (t, .)‖2

W−1,2
−l (Ω)

dt,

with
m = min

x∈Ω
Ψ1(x) and δ = m

2

[
Cl,n − μ

]
> 0.

From Theorem 2 and the definition (3) of W 1,2
l,0 (Ω), we obtain the following chain

of inequalities:

0 ≤ 1
2

∫
Ω
u20(x)dx − ∫

Q hN (x)|∇uN (t, x)|2dxdt + (
μ + δ

2m

) ∫
Q Ψ (x)|uN (t, x)|2dxdt

− δ
2m

∫
Q ΨN (x)|uN (t, x)|2dxdt + δ

2mC−1
l,n

∫
Q |x |l |∇uN (t, x)|2dxdt

+ 1
2

(m
δ

)
Cl,n

∫ T
0 ‖ f (t, .)‖2

W−1,2
−l,0 (Ω)

dt

≤ C2 − δ
2

∫
Q |uN (t, x)|2dxdt + (

μ + 2δ
2m

)
C−1
l,n

∫
Q |x |l |∇uN (t, x)|2dxdt

≤ C2 − ∫
Q

[
1 − (

μ + δ
2m

)
C−1
l,n

]
|x |l |∇uN (t, x)|2dxdt − δ

2

∫
Q |uN (t, x)|2dxdt,

where the constant C2 = 1
2

∫
Ω
u20(x)dx + 1

2

(
m
δ

)
Cl,n

∫ T
0 ‖ f (t, .)‖2

W−1,2
−l (Ω)

dt is inde-

pendent of N and uN (t, x).
From the choice of δ and hN (x), we get the final estimate

3

4
Cl,n

[
Cl,n − μ

] ∫
Q

|x |l |∇uN (t, x)|2dxdt + m

4

[
Cl,n − μ

] ∫
Q

|uN (t, x)|2dxdt ≤ C2,

i.e., the norms

‖uN‖
L2

(
0,T );W 1,2

l,0 (ω)
) ≤ C3, ‖uN‖L∞(0,T );L2(ω)) ≤ C3, (27)

are uniformly bounded with a constant C3 independent of N . By means of (27),
the limit of a subsequence of {uN (t, x)}, N → ∞ gives a weak solution u(t, x) in
the distributional sense of (1). The convergence of {uNk (t, x)} under the estimates
(27) without changes follows from the proof of Theorem 3.1 in [7] and we omit it.
Theorem 4 is proved.
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Special Functions and Polynomials
Connected to the Simple Equations
Method (SEsM)

Nikolay K. Vitanov

Abstract We discuss the Simple Equations Method (SEsM) for obtaining exact
solutions of nonlinear differential equations. The discussion is focused on two top-
ics: (i) Specific special function (called V -function) which occurs when the solved
nonlinear differential equation possesses polynomial nonlinearities; (ii) Two sets of
polynomials which occur for the case when the differential equation which is used as
a simple equation in the methodology has specific simple form. We present several
results on the properties of the V -function and on the properties of the sets of the
studied polynomials.

Keywords SEsM · Nonlinear differential equations · Exact solutions ·
V -function · Special sets of polynomials

1 Introduction

The mathematical instruments for study of Nature and society became powerful
enough in order to allow studies of the numerous characteristics of the complex
systems from the Nature and society [1–16] such as their nonlinearity [17–23]. The
methods of the time series analysis and the methods based on model nonlinear dif-
ferential or difference equations [24–36] are very suitable for study of nonlinear
systems. Various approaches to deal with the nonlinearity of the model equations
are used. Examples are the Method of Inverse Scattering Transform [37, 38] and the
method of Hirota [39]. In addition Kudryashov formulated the Method of Simplest
Equation (MSE) [40, 41]. MSE is based on determination of singularity order n of
the solved NPDE and on searching of specific solution of this equation as series con-
taining powers of solutions of an equation called simplest equation (two examples
are [42, 43]).
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12 years ago we have proposed a methodology for obtaining exact and approx-
imate solutions of nonlinear partial differential equations known today as Simple
Equations Method (SEsM) [44–49]. Our work on elements of this methodology
began many years ago [50–56]. In [57, 58] and in 2010 we have used the ordinary
differential equation of Bernoulli as simplest equation [59] and we have applied the
simplest version of SEsM: the Modified Method of Simplest Equation (MMSE) to
ecology and population dynamics [60]. In MMSE we have used the concept of the
balance equation in order to determine the kind of the simplest equation and the kind
of the solution of the solved equation [61, 62]. Till 2018 our work on the methodol-
ogy and its application have been based on the MMSE [63–72]. An important article
from this period was [71]. There, the methodology of the MMSE was extended to

to simplest equations of the class
(
dl h
dξ l

)k = ∑m
i=0 dih

i where k = 1, . . . , l = 1, . . . ,

and m and di are parameters.
The last version of the methodology (called SEsM—Simple Equations Method)

allows us to use of more than one simplest equation. Application of SEsM based on
two simple equations can be seen in [73]. The first description of SEsM was in [44]
and then in [46–49]. For more applications of SEsM see [74–78].

Below we will discuss two aspects of the application of SEsM. One aspect is
connected to a special function which arises in the application of SEsM for obtaining
solutions of nonlinear equations having polynomial nonlinearity. For the same class
of equations specific series of polynomials arise. This is the second aspect of the
methodology which will be discussed below.

2 Simple Equations Method (SEsM)

SEsM is an algorithm for obtaining exact and approximate solutions of systems of
nonlinear differential equations. The solutions are constructed by known solutions
of m more simple differential equations. Here, we describe SEsM for the case of
obtaining an exact solution of a single nonlinear differential equation.

SEsM has 4 steps. We want to solve a nonlinear partial differential equa-
tion G[v(x, . . . , t), . . . , ] = 0. Here G[v(x, . . . , t), . . . ] depends on the functions
v(x, . . . , t) and some of their derivatives (v can be a function of several spatial coor-
dinates). The steps of SEsM are as follows. Step 1 is to transform the nonlinearity.We
apply transformation v(x, ..., t) = R[F1(x, . . . , t), . . . ]. R(F1, . . . ) is a composite
function of other functions F1, F2, . . . . Fi (x, . . . , t) are functions of several spatial
variables as well as of the time. The goal of R is to transform the nonlinearity of the
solved equation to more simple kind of nonlinearity The transformation leads to non-
linear differential equations for the functions Fi . At Step 2 the functions Fi (x, ..., t)
are chosen as a composite functions of other functions gi1, ..., gi N . The functions gi
are constructed by known solutions of differential equations which are more simple
than the solved equation. At Step 3 we determine the form of the simple equations
and their solutions. For the case of polynomial nonlinearities in the solved equations,
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the methodology determines the form of the simple equations by means of use of
additional relationships called balance equations. At Step 4, we apply the steps 1–3
to the solved equation and obtain a system of nonlinear algebraic equations for the
coefficients of the solved nonlinear differential equation and for the coefficients of
the solution. Any nontrivial solution of this system corresponds to a solution the
solved nonlinear differential equation.

3 The V -Function

Let us consider a special class of equations which have polynomial nonlinearities
with respect of the unknown function and its derivatives. Here, we consider the
specific case of one spatial variable and time and we search for a solution of the
kind g(x, t) = g(ξ); ξ = μx + νt, where μ and ν are parameters. The basis of
our search will be a solution h(ξ) of a certain simple equation. Then, g = f [h(ξ)].
We assume that f is a polynomial of h. Then f = ∑q

r=0 brh
r . We use the simple

equation

hk(l) =
(
dlh

dξ l

)k

=
m∑
i=0

aih
i . (1)

In (1) k, l,m are integers. We denote the solution of (1) as function

Va0,a1,...,am (ξ ; l, k,m),

where l is the order of derivative of h; k is the degree of derivative, andm is the highest
degree of the polynomial of g. The trigonometric, hyperbolic, elliptic functions of
Jacobi, etc. are specific case of the function V .

Let us consider several features of the function V . We set first k = 1 and
l = 1. (1) becomes h(1) =

(
dh
dξ

)
= ∑m

i=0 aih
i . For the case m = 0 we obtain

Va0(ξ ; 1; 1; 0) = a0ξ + C, where C is a constant of integration. For the case m = 1

we have h(1) =
(
dh
dξ

)
= a0 + a1h. For the case a0 = 0, a1 �= 0 the solution is

V0,a1(ξ ; 1; 1; 1) = C exp[a1ξ ], where C is a constant of integration. The solution

for the case a0 �= 0, a1 �= 0 is Va0,a1(ξ ; 1; 1; 1) = exp[a1ξ ]
[
C − a0

a1
exp[−a1ξ ]

]
. For

the case m = 2 we obtain h(1) =
(
dh
dξ

)
= a0 + a1h + a2h2. This is an equation of

Riccati kind. One solution of this equation is h∗(ξ) = − a1
2a2

− θ
2a2

tanh
[

θ(ξ+ξ0)

2

]
.

Above ξ0 is a constant of integration. We can use this solution in order to
obtain the general solution Va0,a1,a2(ξ ; 1; 1; 2) of the above equation of Ric-
cati kind. The substitution u = 1

h−h∗ , transforms the equation to the linear
equation du

dξ
+ (2a2h∗ + a − 1)u + a2 = 0. The solution of this equation is u =

exp
[− ∫

dξ(2a2h∗ + a1)
] [
C − a2 exp

[∫
dξ(2a2h∗ + a1)

]]
. Then
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Va0,a1,a2(ξ ; 1; 1; 2) = − a1
2a2

− θ

2a2
tanh

[
θ(ξ + ξ0)

2

]
+

tanh

[
θ(ξ + ξ0)

2

]2
{
C − a2 tanh

[
θ(ξ + ξ0)

2

]2
}−1

, (2)

where C is a constant of integration.
Let us now consider the case k = 2, l = 1. In this case (1) becomes h2(1) =(

dh
dξ

)2 = ∑m
i=0 aih

j .Letm = 0. Then
(
dh
dξ

)2 = a0.The solution is Va0(ξ ; 1; 2; 0) =
a1/20 ξ + C , where C is a constant of integration. Thus, we have the following rela-
tionship between different V -functions.

Va20
(ξ ; 1; 2; 0) = Va0(ξ ; 1; 1; 0) (3)

We can continue the calculation of the V functions and their specific cases. This will
be done elsewhere.

4 The Polynomials

Here we mention a theorem (for details about other related propositions and their
proofs see [71, 79]). The theorem is for the case of application of SEsM where the
composite function depends on a function of a single variable and the last function is
a solution of a differential equation containing polynomial non-linearity.We consider
a nonlinear partial differential equation with nonlinearities which are polynomials
of the unknown function h(x, t) and its derivatives. We search for a solution of
the kind i(x, t) = i(ξ); ξ = εx + δt, where ε and δ are parameters. The basis of
our search will be a solution h(ξ) of a certain simple equation. Then, i = f [h(ξ)].
We assume that f is a polynomial of h. Then f = ∑r

s=0 bsh
s . We use the simple

equation (1). In (1) k, l,m are integers. Belowwenote a theorem inwhich the function
Va0,a1,...,am (ξ ; 1, 2,m) participates. This function is solution of the simple equation

h2(1) =
(
dh
dξ

)2 = ∑m
j=0 a jh j . The theorem is [71]

Theorem 1 If h2(1) is given by equation h
2
(1) =

(
dh
dξ

)2 = ∑m
j=0 a jh j and f is a poly-

nomial of h given by equation f = ∑r
s=0 bsh

s , then for i[ f (h)] the following rela-
tionship holds

i(n) = Xn(q,m)(h) + h(1)Yn(q,m)(h)

where Xn(q,m)(g) and Yn(q,m)(g) are polynomials of the function h(ξ).

The theorem allows us to calculate the derivatives of composite functions. The
polynomials are calculated as follows. X0 = ∑r

s=0 bsh
s; Y0 = 0. Starting from here,

we obtain Xn+1 = Yn
2

∑m
j=0 ja j h j−1 + dYn

dh

∑m
j=0 a j H j , Yn+1 = dXn

dh .



Special Functions and Polynomials Connected to the Simple … 77

The equations of Bernoulli and Riccati are specific cases of the simple equation

h(1) =
n∑
j=0

d jh
j . (4)

In (4) n and d j are constant parameters. (4) is specific case of f = ∑r
s=0 bsh

s .
For the casewhen the simple equation has the specific form (4)wehave to calculate

a single kind of polynomial Mn . In other words, when the simple equation is of the
kind (4) i(n) is a polynomial of h: i(n) = Mn(h). Mn can be calculated as follows.
We start from M0 = ∑r

s=0 bsh
s . Then we use the recurrence relationship Mj+1 =

dMj

dh

∑m
k=0 ckh

k .

Below we calculate several of the polynomials Xn and Yn . We start from
X0 = ∑r

s=0 bsh
s; Y0 = 0. By the recurrence relationships we obtain X1 = 0; Y1 =∑r

s=0 sbsh
s−1. We can continue without any problems. We can calculate also

several of the polynomials Mi for the case (4) We start from M0 = ∑r
s=0 bsh

s .

The application of the recurrence relationship for these polynomials leads to
the following relationships for M1, . . . . M1 = ∑r

s=0

∑m
j=0 bssc j h

s+ j−1, M2 =∑r
s=0

∑m
j=0

∑m
k=0 bss(s + j − 1)c j ckhs+ j+k−2, etc.

5 Concluding Remarks

In this text we discussed two aspects of the application of the Simple equations
Method: (i) the occurrence and selected features of a special function (the V function)
and (ii) the occurrence of two classes of polynomials connected to the class of possible
simple equations which posses polynomial nonlinearities. We derived relationships
for the simplest cases of the V -function. We obtained relationships for the specific
cases of the discussed polynomials. Obviously, this research open a large field for
new results. These results will be reported elsewhere.

Acknowledgements This paper is partially supported by the project BG05M2OP001-1.001-0008
“National Center for Mechatronics and Clean Technologies”, funded by the Operating Program
“Science and Education for Intelligent Growth” of Republic of Bulgaria.

References

1. Nicolis G., Nicolis C.: Foundations of Complex Systems. World Scientific, New Jersey (2012)
2. Levin. R.: Complexity. Life at the Edge of Chaos. The University of Chicago Press, Chicago

(1999)
3. Ivanova, K., Ausloos, M.: Application of the detrended fluctuation analysis (DFA) method for

describing cloud breaking. Physica A: StatisticalMechanics and its Applications 274, 349–354
(274). https://doi.org/10.1016/S0378-4371(99)00312-X

https://doi.org/10.1016/S0378-4371(99)00312-X


78 N. K. Vitanov

4. Dimitrova, Z. I.: Fluctuations and dynamics of the chaotic attractor connected to an instability
in a heated from below rotating fluid layer. Compt. rend. Acad. bulg. Sci 60, 1065–1070 (2007)

5. Vitanov N.K.: Science Dynamics and Research Production. Indicators, Indexes, Statistical
Laws and Mathematical Models. Springer, Cham (2016)

6. Nikolova, E. V., Serbezov, D. Z., Jordanov, I.: Nonlinear spread waves in population dynam-
ics including a human-induced Allee effect. AIP Conference Proceedings vol. 2075, 150004
(2019). https://doi.org/10.1063/1.5091327

7. Vitanov, N. K., Vitanov, K. N.: Discrete-time model for a motion of substance in a channel of
a network with application to channels of human migration. Physica A: Statistical Mechanics
and its Applications 509, 635–650 (2018). https://doi.org/10.1016/j.physa.2018.06.076

8. Dimitrova, Z.I.: On the nonlinear dynamics of interacting populations. Effects of delay on
populations substitution. Compt. rend. Acad. bulg. Sci 61, 1541–1548 (2008)

9. Vitanov, N. K., Ausloos, M., Rotundo, G.: Discrete model of ideological struggle accounting
for migration. Advances in Complex Systems 15, 1250049 (2012). https://doi.org/10.1142/
S021952591250049X

10. Vitanov,N.K., Vitanov,K.N.: Boxmodel ofmigration channels.Mathematical Social Sciences
80, 108–114 (2016). https://doi.org/10.1016/j.mathsocsci.2016.02.001

11. Kutner, R., Ausloos, M., Grech, D., Di Matteo, T., Schinckus, C., Stanley, H. E.: Econophysics
and sociophysics: Their milestones & challenges. Physica A 516, 240–253 (2019). https://doi.
org/10.1016/j.physa.2018.10.019

12. Dimitrova, Z. I., Hoffmann N. P.: On the probability for extreme water levels of the river Elba
in Germany. Compt. rend. Acad. bulg. Sci 65, 153–160 (2012)

13. Vitanov, N. K., Vitanov, K. N.: On themotion of substance in a channel of a network and human
migration. Physica A: 490, 1277–1294 (2018). https://doi.org/10.1016/j.physa.2017.08.038

14. Chen, W.-K.: Theory of Nets. Flows in Networks. Imperial College Press, London, UK (2003)
15. Jordanov, I. P., Nikolova, E. V.: On the evolution of nonlinear density population waves in the

socio-economic systems. AIP Conference Proceedings vol. 2075, 150002 (2019). https://doi.
org/10.1063/1.5091325

16. Simon J. H.: The Economic Consequences of Immigration. The University of Michigan Press,
Ann Arbor, MI, USA (1999)

17. Torokhti A., Howlett P.: ComputationalMethods forModelling of Nonlinear Systems. Elsevier,
Amsterdam (2007)

18. Jordanov, I., Nikolova, E.: On nonlinear waves in the spatio-temporal dynamics of interacting
populations. Journal of Theoretical and Applied Mechanics 43, 69–76 (2013). https://doi.org/
10.2478/jtam-2013-0015. arXiv:1208.5465

19. Jordanov, I. P.: On the nonlinear waves in (2+ 1)-dimensional population systems. Compt. rend.
Acad. bulg. Sci 61, 307–314 (2008)

20. Dimitrova, Z.I.: On travelling waves in lattices: the case of Riccati lattices. Journal of The-
oretical and Applied Mechanics 42, 3–22 (2012), https://doi.org/10.2478/v10254-012-0011-
2). arXiv:1208.2414

21. Jordanov, I. P., Dimitrova, Z. I.: On Nonlinear Waves of Migration. Journal of Theoretical and
Applied Mechanics 40, 89–96 (2010)

22. Nikolova, E. V.: On nonlinear waves in a blood-filled artery with an aneurysm. In AIP Confer-
ence Proceedings vol. 1978, 470050 (2018). https://doi.org/10.1063/1.5044120

23. Dimitrova, Z. I., Ausloos, M.: Primacy analysis in the system of Bulgarian cities. Open Physics
13, 218–225 (2015). https://doi.org/10.1515/phys-2015-0029

24. Kantz, H., Schreiber T.: Nonlinear Time Series Analysis. Cambridge University Press, Cam-
bridge, UK (2004)

25. Struble R.: Nonlinear Differential Equations. Dover, New York (2018)
26. Vitanov, N. K.: Upper bounds on the heat transport in a porous layer. Physica D 136, 322–339

(2000). https://doi.org/10.1016/S0167-2789(99)00165-7
27. Vitanov, N. K., Ausloos, M. R.: Knowledge epidemics and population dynamics models for

describing idea diffusion. In: Scharnhorst A., Boerner K., van den Besselaar P. (eds.) Models of
science dynamics. Understanding Complex Systems. pp. 69–125. Springer, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-23068-4_3

https://doi.org/10.1063/1.5091327
https://doi.org/10.1016/j.physa.2018.06.076
https://doi.org/10.1142/S021952591250049X
https://doi.org/10.1142/S021952591250049X
https://doi.org/10.1016/j.mathsocsci.2016.02.001
https://doi.org/10.1016/j.physa.2018.10.019
https://doi.org/10.1016/j.physa.2018.10.019
https://doi.org/10.1016/j.physa.2017.08.038
https://doi.org/10.1063/1.5091325
https://doi.org/10.1063/1.5091325
https://doi.org/10.2478/jtam-2013-0015
https://doi.org/10.2478/jtam-2013-0015
http://arxiv.org/abs/1208.5465
https://doi.org/10.2478/v10254-012-0011-2
https://doi.org/10.2478/v10254-012-0011-2
http://arxiv.org/abs/1208.2414
https://doi.org/10.1063/1.5044120
https://doi.org/10.1515/phys-2015-0029
https://doi.org/10.1016/S0167-2789(99)00165-7
https://doi.org/10.1007/978-3-642-23068-4_3


Special Functions and Polynomials Connected to the Simple … 79

28. Dimitrova, Z. I., Vitanov, N. K.: Adaptation and its impact on the dynamics of a system of
three competing populations. Physica A: Statistical Mechanics and its Applications 300, 91–
115 (2001). https://doi.org/10.1016/S0378-4371(01)00330-2

29. Dimitrova, Z., Gogova,D.,: Investigation ofDifferences inOptical PhononsModes by Principal
Component Analysis. Compt. rend. Acad. bulg. Sci 63, 1415–1420 (2010)

30. Mills T.: Applied Time Series Analysis. Academic Press, London (2019)
31. Dimitrova, Z. I., Vitanov, N. K.: Chaotic pairwise competition. Theoretical Population Biology

66, 1–12 (2004). https://doi.org/10.1016/j.tpb.2003.10.008
32. Dimitrova, Z. I.: On the Low-DimensionalDynamics ofBlood Flow in Small PeripheralHuman

Arteries. Compt. rend. Acad. bulg. Sci 63, 55–60 (2010)
33. Borisov, R., Dimitrova, Z. I., Vitanov, N. K.: Statistical characteristics of stationary flow of

substance in a network channel containing arbitrary number of arms. Entropy 22, 553 (2020).
https://doi.org/10.3390/e22050553

34. Vitanov, N. K., Vitanov, K. N.: Statistical distributions connected to motion of substance in
a channel of a network. Physica A 527, 121174 (2019). https://doi.org/10.1016/j.physa.2019.
121174

35. Dimitrova, Z. I., Vitanov, K. N.: Homogeneous balance method and auxiliary equation method
as particular cases of simple equations method (SEsM). In AIP Conference Proceedings vol.
2321, 030004 (2021). https://doi.org/10.1063/5.0043070

36. Vitanov, N. K., Vitanov, K. N., Kantz, H.: On themotion of substance in a channel of a network:
Extended model and new classes of probability distributions. Entropy 22, 1240 (2020). https://
doi.org/10.3390/e22111240

37. Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: The inverse scattering transform-Fourier
analysis for nonlinear problems. Studies in Applied Mathematics 53, 249–315 (1974). https://
doi.org/10.1002/sapm1974534249

38. Gardner, C. S., Greene, J. M., Kruskal, M. D., Miura, R. M.: Method for solving the Korteweg-
deVries equation. Physical review letters 19, 1095–1097 (1967). https://doi.org/10.1103/
PhysRevLett.19.1095

39. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge,
UK, (2004)

40. Kudryashov, N. A.: Simplest equation method to look for exact solutions of nonlinear differ-
ential equations. Chaos, Solitons & Fractals 24, 1217–1231 (2005). https://doi.org/10.1016/j.
chaos.2004.09.109

41. Kudryashov, N. A., Loguinova, N. B.: Extended simplest equation method for nonlinear dif-
ferential equations. Applied Mathematics and Computation 205, 396–402 (2008). https://doi.
org/10.1016/j.amc.2008.08.019

42. Kudryashov, N. A.: Exact solitary waves of the Fisher equation. Physics Letters A 342, 99–106
(2005). https://doi.org/10.1016/j.physleta.2005.05.025

43. Kudryashov, N. A.: Exact solutions and integrability of the Duffing-Van der Pol equation. Reg-
ular and Chaotic dynamics 23, 471–479 (2018). https://doi.org/10.1134/S156035471804007X

44. Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Simple Equations Method (SEsM): Algo-
rithm, connection with Hirota method, Inverse Scattering TransformMethod, and several other
methods. Entropy 23, 10 (2021). https://doi.org/10.3390/e23010010

45. Vitanov, N. K.: Recent developments of the methodology of the modified method of simplest
equation with application. Pliska Studia Mathematica Bulgarica 30, 29–42 (2019)

46. Vitanov, N.K.: Modifiedmethod of simplest equation for obtaining exact solutions of nonlinear
partia differential equations: history, recent developments of the methodology and studied of
classes of equations. Journal of Theoretical and Applied Mechanics 49, 107–122 (2019)

47. Vitanov, N. K.: The simple equations method (SEsM) for obtaining exact solutions of nonlinear
PDEs: Opportunities connected to the exponential functions. AIP Conference Proceedings vol.
2159, 030038 (2019). https://doi.org/10.1063/1.5127503

48. Vitanov, N. K., Dimitrova, Z. I.: Simple equations method (SEsM) and other direct methods for
obtaining exact solutions of nonlinear PDEs. AIP Conference Proceedings vol. 2159, 030039
(2019). https://doi.org/10.1063/1.5127504

https://doi.org/10.1016/S0378-4371(01)00330-2
https://doi.org/10.1016/j.tpb.2003.10.008
https://doi.org/10.3390/e22050553
https://doi.org/10.1016/j.physa.2019.121174
https://doi.org/10.1016/j.physa.2019.121174
https://doi.org/10.1063/5.0043070
https://doi.org/10.3390/e22111240
https://doi.org/10.3390/e22111240
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1002/sapm1974534249
https://doi.org/10.1103/PhysRevLett.19.1095
https://doi.org/10.1103/PhysRevLett.19.1095
https://doi.org/10.1016/j.chaos.2004.09.109
https://doi.org/10.1016/j.chaos.2004.09.109
https://doi.org/10.1016/j.amc.2008.08.019
https://doi.org/10.1016/j.amc.2008.08.019
https://doi.org/10.1016/j.physleta.2005.05.025
https://doi.org/10.1134/S156035471804007X
https://doi.org/10.3390/e23010010
https://doi.org/10.1063/1.5127503
https://doi.org/10.1063/1.5127504


80 N. K. Vitanov

49. Dimitrova, Z. I., Vitanov, N. K.: Travelling waves connected to blood flow and motion of
arterial walls. Gadomski, A. (ed.) In: Water in Biomechanical and Related Systems pp. 243–
263. Springer, Cham. (2021)

50. Martinov, N., Vitanov, N.: On the correspondence between the self-consistent 2D Poisson-
Boltzmann structures and the sine-Gordon waves. Journal of Physics A: Mathematical and
General 25, L51–L56 (1992). https://doi.org/10.1088/0305-4470/25/2/004

51. Martinov, N., Vitanov, N.: On some solutions of the two-dimensional sine-Gordon equation.
Journal of Physics A: Mathematical and General 25, L419–L426 (1992). https://doi.org/10.
1088/0305-4470/25/8/007

52. Martinov, N. K., Vitanov, N. K.: New class of running-wave solutions of the (2+ 1)-dimensional
sine-Gordon equation. Journal of Physics A:Mathematical and General 27, 4611–4618 (1994).
https://doi.org/10.1088/0305-4470/27/13/034

53. Martinov, N. K., Vitanov, N. K.: On self-consistent thermal equilibrium structures in two-
dimensional negative-temperature systems. Canadian Journal of Physics 72, 618–624 (1994).
https://doi.org/10.1139/p94-079

54. Vitanov, N. K.: Breather and soliton wave families for the sine-Gordon equation. Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences
454, 2409–2423 (1998). https://doi.org/10.1098/rspa.1998.0264

55. Vitanov, N. K., Martinov, N. K.: On the solitary waves in the sine-Gordon model of the two-
dimensional Josephson junction. Zeitschrift fur Physik B Condensed Matter 100, 129–135
(1996). https://doi.org/10.1007/s002570050102

56. Vitanov, N. K.: On travelling waves and double-periodic structures in two-dimensional sine-
Gordon systems. Journal of Physics A: Mathematical and General 29, 5195–5207 (1996).
https://doi.org/10.1088/0305-4470/29/16/036

57. Vitanov, N. K., Jordanov, I. P., Dimitrova, Z. I.: On nonlinear dynamics of interacting popula-
tions: Coupled kink waves in a system of two populations. Communications in Nonlinear Sci-
ence and Numerical Simulation 14, 2379–2388 (2009). https://doi.org/10.1016/j.cnsns.2008.
07.015

58. Vitanov, N. K., Jordanov, I. P., Dimitrova, Z. I.: On nonlinear population waves. Applied
Mathematics and Computation 215, 2950–2964 (2009). https://doi.org/10.1016/j.amc.2009.
09.041

59. Vitanov, N. K.: Application of simplest equations of Bernoulli and Riccati kind for obtaining
exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity. Communica-
tions in Nonlinear Science and Numerical Simulation 15, 2050–2060 (2010). https://doi.org/
10.1016/j.cnsns.2009.08.011

60. Vitanov, N. K., Dimitrova, Z. I.: Application of the method of simplest equation for obtaining
exact traveling-wave solutions for two classes of model PDEs from ecology and population
dynamics. Communications in Nonlinear Science and Numerical Simulation 15, 2836–2845
(2010). https://doi.org/10.1016/j.cnsns.2009.11.029

61. Vitanov, N. K., Dimitrova, Z. I., Kantz, H.: Modified method of simplest equation and its
application to nonlinear PDEs.AppliedMathematics andComputation 216, 2587–2595 (2010).
https://doi.org/10.1016/j.amc.2010.03.102

62. Vitanov, N. K.: Modified method of simplest equation: powerful tool for obtaining exact and
approximate traveling-wave solutions of nonlinear PDEs. Communications in Nonlinear Sci-
ence and Numerical Simulation 16, 1176–1185 (2011). https://doi.org/10.1016/j.cnsns.2010.
06.011

63. Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: On the class of nonlinear PDEs that can be
treated by the modified method of simplest equation. Application to generalized Degasperis-
Processi equation and b-equation. Communications in Nonlinear Science and Numerical Sim-
ulation 16, 3033–3044 (2011). https://doi.org/10.1016/j.cnsns.2010.11.013

64. Vitanov, N. K.: On modified method of simplest equation for obtaining exact and approximate
solutions of nonlinear PDEs: the role of the simplest equation. Communications in Nonlin-
ear Science and Numerical Simulation 16, 4215–4231 (2011). https://doi.org/10.1016/j.cnsns.
2011.03.035

https://doi.org/10.1088/0305-4470/25/2/004
https://doi.org/10.1088/0305-4470/25/8/007
https://doi.org/10.1088/0305-4470/25/8/007
https://doi.org/10.1088/0305-4470/27/13/034
https://doi.org/10.1139/p94-079
https://doi.org/10.1098/rspa.1998.0264
https://doi.org/10.1007/s002570050102
https://doi.org/10.1088/0305-4470/29/16/036
https://doi.org/10.1016/j.cnsns.2008.07.015
https://doi.org/10.1016/j.cnsns.2008.07.015
https://doi.org/10.1016/j.amc.2009.09.041
https://doi.org/10.1016/j.amc.2009.09.041
https://doi.org/10.1016/j.cnsns.2009.08.011
https://doi.org/10.1016/j.cnsns.2009.08.011
https://doi.org/10.1016/j.cnsns.2009.11.029
https://doi.org/10.1016/j.amc.2010.03.102
https://doi.org/10.1016/j.cnsns.2010.06.011
https://doi.org/10.1016/j.cnsns.2010.06.011
https://doi.org/10.1016/j.cnsns.2010.11.013
https://doi.org/10.1016/j.cnsns.2011.03.035
https://doi.org/10.1016/j.cnsns.2011.03.035


Special Functions and Polynomials Connected to the Simple … 81

65. Vitanov, N. K.: On modified method of simplest equation for obtaining exact solutions of
nonlinear PDEs: case of elliptic simplest equation. Pliska Studia Mathematica Bulgarica 21,
257–266 (2012)

66. Vitanov, N. K., Dimitrova, Z. I., Kantz, H.: Application of the method of simplest equation
for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and
generalized Camassa-Holm equation. AppliedMathematics and Computation 219, 7480–7492
(2013). https://doi.org/10.1016/j.amc.2013.01.035

67. Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Traveling waves and statistical distributions
connected to systems of interacting populations. Computers &Mathematics with Applications
66, 1666–1684 (2013). https://doi.org/10.1016/j.camwa.2013.04.002

68. Vitanov,N.K., Vitanov,K.N.: Population dynamics in presence of state dependent fluctuations.
Computers & Mathematics with Applications 68, 962–971 (2014). https://doi.org/10.1016/j.
camwa.2014.03.006

69. Vitanov, N. K., Dimitrova, Z. I.: Solitary wave solutions for nonlinear partial differential equa-
tions that contain monomials of odd and even grades with respect to participating derivatives.
Applied Mathematics and Computation 247, 213–217 (2014). https://doi.org/10.1016/j.amc.
2014.08.101

70. Dimitrova, Z.I.: Relation betweenG’/G-expansionmethod and themodifiedmethod of simplest
equation. Compt. rend. Acad. bulg. Scie 65, 1513–1520 (2012).

71. Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Modified method of simplest equation for
obtaining exact analytical solutions of nonlinear partial differential equations: further devel-
opment of the methodology with applications. Applied Mathematics and Computation 269,
363–378 (2015). https://doi.org/10.1016/j.amc.2015.07.060

72. Vitanov, N. K., Dimitrova, Z. I., Ivanova, T. I.: On solitary wave solutions of a class of nonlinear
partial differential equations based on the function 1/coshn (αx+ βt). Applied Mathematics
and Computation 315, 372–380 (2017). https://doi.org/10.1016/j.amc.2017.07.064

73. Vitanov, N. K., Dimitrova, Z. I.: On themodifiedmethod of simplest equation and the nonlinear
Schrödinger equation. Journal of Theoretical and Applied Mechanics 48, 59–68 (2018)

74. Nikolova, E. V., Jordanov, I. P., Dimitrova, Z. I., Vitanov, N. K.: Evolution of nonlinear waves
in a blood-filled artery with an aneurysm. AIP Conference Proceedings vol. 1895, 070002
(2017). https://doi.org/10.1063/1.5007391

75. Vitanov, N.K., Dimitrova, Z.I.: Simple Equations Method and Non-Linear Differential Equa-
tions with Non-Polynomial Non-Linearity. Entropy 23, 1624 (2021). https://doi.org/10.3390/
e23121624

76. Nikolova, E. V., Chilikova-Lubomirova, M., Vitanov, N. K.: Exact solutions of a fifth-order
Korteweg-deVries-type equationmodeling nonlinear longwaves in several natural phenomena.
AIP Conference Proceedings vol. 2321, 030026 (2021). https://doi.org/10.1063/5.0040089

77. Dimitrova, Z. I.: Several examples of application of the simple equations method (SEsM) for
obtaining exact solutions of nonlinear PDEs. AIP Conference Proceedings vol. 2459, 030005
(2022). https://doi.org/10.1063/5.0083572

78. Dimitrova, Z. I.: On several specific cases of the simple equations method (SEsM): Jacobi
elliptic function expansion method, F-expansion method, modified simple equation method,
trial function method, general projective Riccati equations method, and first integral method.
AIP Conference Proceedings, vol. 2459, 030006 (2022). https://doi.org/10.1063/5.0083573

79. Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: On the use of composite functions in the Simple
Equations Method to obtain exact solutions of nonlinear differential equations. Computation
9, 104 (2021). https://doi.org/10.3390/computation9100104

https://doi.org/10.1016/j.amc.2013.01.035
https://doi.org/10.1016/j.camwa.2013.04.002
https://doi.org/10.1016/j.camwa.2014.03.006
https://doi.org/10.1016/j.camwa.2014.03.006
https://doi.org/10.1016/j.amc.2014.08.101
https://doi.org/10.1016/j.amc.2014.08.101
https://doi.org/10.1016/j.amc.2015.07.060
https://doi.org/10.1016/j.amc.2017.07.064
https://doi.org/10.1063/1.5007391
https://doi.org/10.3390/e23121624
https://doi.org/10.3390/e23121624
https://doi.org/10.1063/5.0040089
https://doi.org/10.1063/5.0083572
https://doi.org/10.1063/5.0083573
https://doi.org/10.3390/computation9100104


Finite Time Blow Up of the Solutions to
Nonlinear Wave Equations with
Sign-Changing Nonlinearities

Nikolai Kutev, Milena Dimova, and Natalia Kolkovska

Abstract We study the initial boundary value problem for the nonlinear wave equa-
tion in Ω ⊂ R

n with power-type nonlinearity and sign-changing coefficients. We
investigate the non-existence of global solutions for different energy levels. When
the energy is supercritical, we give a new sufficient condition on the initial data,
which guarantees finite time blow up of the corresponding solution.

Keywords Nonlinear wave equation · Sign-changing nonlinearity · Blow up

1 Introduction

We consider the initial boundary value problem for the nonlinear wave equation with
sign-changing nonlinearity

utt − Δu = f (x, u), t > 0, x ∈ Ω, (1)

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ Ω, (2)

u(t, x) = 0, t ≥ 0, x ∈ ∂Ω. (3)

Here Ω is a bounded open subset of Rn (n ≥ 1) with smooth boundary ∂Ω and

u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω). (4)
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The nonlinear term f (x, u) has one of the following forms:

f (x, u) = a(x)|u|p−1u + b(x)|u|q−1u, (5)

f (x, u) = a(x)|u|p + b(x)|u|q−1u, (6)

1 < q < p and p < ∞ for n = 1, 2; p <
n + 2

n − 2
for n ≥ 3. (7)

We assume that functions a(x) and b(x) in (5) and (6) satisfy conditions

a(x) ∈ C(Ω), b(x) ∈ C(Ω), |a(x)| ≤ A, |b(x)| ≤ A ∀ x ∈ Ω, (8)

{x ∈ Ω : a(x) > 0} �= ∅, b(x) ≤ 0 ∀ x ∈ Ω. (9)

Let us note that a(x) may change its sign in Ω .
The global existence and finite time blow up of the solutions to the wave equation

utt − Δu = f (u), t > 0, x ∈ Ω ⊂ R
n, n ≥ 1 (10)

with superlinear nonlinearity f (u) have been intensively investigated in the last
decades. The first results concern the finite time blow up of the solutions to (10),
(2)–(4) with negative or zero initial energy, see [1] and the earlier papers [2, 3]. A
powerful method of proving blow up of the solutions to abstract nonlinear equations
is developed by Levine in [4]. The main idea of the concavity method of Levine is
the reduction of the wave equation to an ordinary differential inequality with respect
to the L2 norm of the solution.

In the pioneering paper [5], the authors introduce the so-called potential well
method. By means of this method, the global behavior of the solutions is completely
studied for subcritical initial energy, 0 < E(0) < d. Here E(0) is the energy of the
initial data, see (12), and d is the depth of the potential well, see (15). The authors
prove that when 0 < E(0) < d and the Nehari functional is negative I (u0) < 0 (see
(14)), then the solution to problem (10), (2)–(4) with

f (u) = a|u|p−1u, p > 1 (11)

blows up for a finite time. In the critical energy case, E(0) = d, it is proved that if
I (u0) < 0 and (u0, u1) ≥ 0, then the solution blows up for a finite time, see, e.g.,
[6]. Later on, the results for problem (10), (2)–(4) with the single nonlinearity (11)
are extended for more general combined power-type nonlinearities with constant
coefficients, see [7, 8] and the references therein.

For supercritical initial energy, E(0) > d, the concavity method of Levine is
improved in [9], where the finite time blow up of the solutions to (10) is proved for
arbitrary positive energy under the conditions
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E(0) <
1

2

(∫
Ω
u0(x)u1(x) dx

)2
∫
Ω
u20(x) dx

,

∫

Ω

u0(x)u1(x) dx > 0.

Further generalizations of the concavity method are suggested in [10, 11].
Let us also mention the results in [7, 12] for blow up of the solutions to problem

(10), (2)–(4) with arbitrary positive energy. For nonlinearity (11) (see [12]) and
combined power-type nonlinearities with constant coefficients (see [7]), the blow up
of the solutions is proved under the conditions

E(0) <
C(p − 1)

2(p + 1)

∫

Ω

u20(x) dx,
∫

Ω

u0(x)u1(x) dx ≥ 0,

where C is the constant of the Poincare inequality, see (26).
In the present paper, we focus our investigation on equation (1) with more general

nonlinear term f (x, u) given in (5)–(9) with a sign-changing coefficient a(x). The
finite time blow up of the solutions to (1)–(9) with non-positive and subcritical
initial energy is completely solved. For supercritical initial energy, a new sufficient
condition for finite time blow up is found. This sufficient condition holds without any
requirements for the sign of the scalar product of the initial data. Thus, for the first
time in the literature, we prove finite time blow up for initial data with supercritical
energy and negative sign of their scalar product.

The paper is organized in the following way. In Sect. 2, some definitions and
preliminary lemmas are given. In Sect. 3, finite time blow up of the solutions to (1)–
(9) with subcritical energy is proved by the potential well method. A new sufficient
condition for finite time blow up of the solutions with supercritical energy is derived
in Sect. 4.

2 Preliminary

Further on, we will use the following short notations for the functions depending on
t and x

‖u‖p = ‖u(t, ·)‖LP (Ω), p > 0, (u, v) = (u(t, ·), v(t, ·)) =
∫

Ω

u(t, x)v(t, x) dx .

For convenience, we will write ‖u‖ instead of ‖u‖2.
Let us recall the definition of blow up of the weak solution to problem (1)–(9).

Definition 1 The solution u(t, x) of (1)–(9) defined in the maximal existence time
interval [0, Tm), 0 < Tm ≤ ∞ blows up at Tm if

lim sup
t→Tm ,t<Tm

‖u‖ = ∞.
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The solution u(t, x) to (1)–(9) satisfies the conservation law E(0) = E(t) for
every t ∈ [0, Tm), where

E(t) := E(u(t, ·), ut (t, ·)) = 1

2

(‖ut‖2 + ‖∇u‖2) −
∫

Ω

∫ u(t,x)

0
f (x, z) dz dx .

(12)
Below, we recall some preliminary results useful for proving blow up via the

modifications of the concavity method proposed in [8, 11].

Lemma 1 (Theorem 3.2 in [8]) Suppose ψ(t) ∈ C2([0, Tm)) is a nonnegative solu-
tion to the problem

ψ′′(t)ψ(t) − γψ′2(t) = Q(t), t ∈ [0, Tm), 0 < Tm ≤ ∞,

γ > 1, Q(t) ∈ C([0,∞)), Q(t) ≥ 0 for t ∈ [0,∞).
(13)

If ψ(t) blows up at Tm, then Tm < ∞.

Lemma 2 (Theorem 2.3 in [11]) Supposeψ(t) ∈ C2([0, Tm)) is a nonnegative solu-
tion of the problem

ψ′′(t)ψ(t) − γψ′2(t) = αψ2(t) − βψ(t) + H(t), t ∈ [0, Tm) 0 < Tm ≤ ∞,

γ > 1, α > 0, β > 0, H(t) ∈ C([0,∞)), H(t) ≥ 0 for t ∈ [0,∞).

If ψ(t) blows up at Tm, then Tm < ∞.

To apply the potential well method, proposed in [5], we introduce the functionals

J (u) = J (u(t, ·)) = J (t) := 1

2
‖∇u‖2 −

∫

Ω

∫ u(t,x)

0
f (x, z) dz dx,

the Nehari functional I (u)

I (u) = I (u(t, ·)) = I (t) := ‖∇u‖2 −
∫

Ω

u f (x, u(t, x)) dx, (14)

and the critical energy constant d (the depth of the potential well)

d = inf
u∈N

J (u), (15)

where N is the Nehari manifold, defined by

N = {u ∈ H1
0(Ω) : I (u) = 0, ‖∇u‖ �= 0}.
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3 Subcritical Initial Energy, E(0) < d

In case of subcritical initial energy, E(0) < d, we employ the potential well method
in proving blow up of the weak solutions to (1)–(9). We start with statements about
the structure of the Nehary manifold, the estimate of the depth of the potential well
d as well as the relations between functionals I , J and constant d.

Lemma 3 If z ∈ H1
0(Ω) and ‖∇z‖ �= 0, then there exists a constant λ∗ �= 0 such

that λ∗z lies in N iff

∫

Ω

a(x) |z(x)|p+1 dx > 0 when (5) holds (16)

and ∫

Ω

a(x) |z(x)|pz(x) dx �= 0 when (6) holds. (17)

Proof Case (5) Proof of Sufficiency. From (14), we get

I (λz) = λ2

(
‖∇z‖2 − |λ|p−1

∫

Ω

a(x)|z(x)|p+1 dx − |λ|q−1
∫

Ω

b(x)|z(x)|q+1dx

)

= λ2h(λ),

(18)

where h(λ) = ‖∇z‖2 − |λ|p−1
∫

Ω

a(x)|z(x)|p+1 dx − |λ|q−1
∫

Ω

b(x)|z(x)|q+1 dx .

Since h(λ) is an even function we investigate the behavior of h(λ) for λ > 0. Obvi-
ously

lim
λ→0+

h(λ) > 0, lim
λ→+∞

h(λ) = −∞.

If
∫
Ω
b(x)|z(x)|q+1 dx �= 0, then function h(λ) has a positive maximum at the point

λ0, where

λ0 =
(

− (q − 1)
∫
Ω
b(x)|z(x)|q+1 dx

(p − 1)
∫
Ω
a(x)|z(x)|p+1 dx

) 1
p−q

> 0.

Thus, h(λ) is strictly increasing for λ ∈ (0,λ0) and strictly decreasing for λ ∈
(λ0,+∞). If

∫
Ω
b(x)|z(x)|q+1 dx = 0, then h(λ) is strictly decreasing for λ ∈

(0,+∞). In both cases, there exists a constant λ∗ > 0 such that h(λ∗) = 0. Since
h(λ) is even then h(−λ∗) = 0 and hence I (−λ∗z) = I (λ∗z) = 0, i.e. −λ∗z and λ∗z
belong to N .

Case (5) Proof of Necessity. Let λ∗z ∈ N for some constant λ∗ �= 0.We suppose
by contradiction that ∫

Ω

a(x) |z(x)|p+1 dx ≤ 0. (19)
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From (18) for λ = λ∗ and (19), we get the following impossible chain of inequalities
0 = I (λ∗z) ≥ (λ∗)2‖∇z‖2 > 0. Hence, condition (16) is fulfilled.

Case (6) Proof of Sufficiency. Suppose (17) holds. Then

I (λz) = λ2
(

‖∇z‖2 − |λ|p−2λ

∫

Ω
a(x)|z(x)|pz(x)dx − |λ|q−1

∫

Ω
b(x)|z(x)|q+1dx

)

= λ2g(λ),

where g(λ) = ‖∇z‖2 − |λ|p−2λ

∫

Ω
a(x)|z(x)|pz(x) dx − |λ|q−1

∫

Ω
b(x)|z(x)|q+1 dx .

If
∫
Ω
a(x)|z(x)|pz(x) dx > 0, then g(λ) > 0 for every λ < 0. For λ ∈ (0,+∞),

similarly to Case (5), we conclude that there exist a unique constant λ∗ > 0, such
that g(λ∗) = 0 and hence λ∗z ∈ N .

Let
∫
Ω
a(x)|z(x)|pz(x) dx < 0. Since g(λ) > 0 for every λ > 0, we study the

case λ ∈ (−∞, 0). For
∫
Ω
b(x)|z(x)|q+1 dx �= 0 we obtain that g(λ) has a unique

local positive maximum at the point

λ0 = −
(

(q − 1)
∫
Ω
b(x)|z(x)|q+1 dx

(p − 1)
∫
Ω
a(x)|z(x)|pz(x) dx

) 1
p−q

< 0

and limλ→0− g(λ) > 0, limλ→−∞ g(λ) = −∞. Hence, there exists a unique constant
λ∗ < λ0, such that g(λ∗) = 0. For

∫
Ω
b(x)|z(x)|q+1 dx = 0, function g(λ) is strictly

decreasing, so there exists a uinique λ∗ such that g(λ∗) = 0. Thus, for every b(x)
satisfying (8) and (9), there exists a unique constant λ∗ for which λ∗z ∈ N .

The proof of Case (6) Necessity is analogous to the proof of Case (5) Necessity,
so we omit it. Lemma 3 is proved.

Corollary 1 Suppose f (x, z) satisfies (5)–(9). Then the Nehari manifold N is not
empty.

Proof Case (5) From (8) and (9), it follows that there exists Ω1 ⊂ Ω such that
a(x) > 0 for x ∈ Ω1. If we choosew ∈ H1

0(Ω1),w > 0 inΩ1 andw ≡ 0 inΩ \ Ω1,
then (16) is satisfied. Lemma 3 gives us that λ∗w ∈ N for some constant λ∗ �= 0.

Case (6) Similarly, from (8) and continuity of a(x), it follows that there exists
Ω2 ⊂ Ω such that a(x) �= 0 for x ∈ Ω2. Hence, for w ∈ H1

0(Ω2), w > 0 in Ω2 and
w ≡ 0 inΩ \ Ω2, condition (17) in Lemma 3 holds and λ∗w ∈ N for some constant
λ∗ �= 0.

Lemma 4 Suppose f (x, z) satisfies (5)–(9), z ∈ H1
0(Ω), ‖∇z‖ �= 0 and let

r =
(
AC p+1

p+1

)− 1
p−1

> 0, where Cp+1 = sup
u∈H1

0(Ω)\{0}

‖u‖p+1

‖∇u‖ . (20)

(i) If I (z) < 0, then ‖∇z‖ > r;
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(ii) If I (z) = 0, then ‖∇z‖ ≥ r .

Proof (i) Since I (z) < 0, we obtain the following chain of inequalities:

‖∇z‖2 <

∫

Ω

z f (x, z) dx ≤
∫

Ω

|a(x)||z(x)|p+1 dx +
∫

Ω

b(x)|z(x)|q+1 dx

≤
∫

Ω

|a(x)||z(x)|p+1 dx ≤ A‖z‖p+1
p+1 ≤ AC p+1

p+1‖∇z‖p+1.

Hence, AC p+1
p+1‖∇z‖p−1 > 1, i.e. ‖∇z‖ > r. The proof of (ii) is analogous to (i)

and we omit it. Lemma 4 is completed.

Lemma 5 Suppose f (x, z) satisfies (5)–(9). Then the following estimate holds

d ≥ p − 1

2(p + 1)
r2 > 0, where r is defined in (20).

Proof Corollary 1 gives us that N �= ∅. Hence, from (15), Lemma 4 (ii), and the
relation

J (z) = 1

p + 1
I (z) + p − 1

2(p + 1)
‖∇z‖2 − p − q

(p + 1)(q + 1)

∫

Ω

b(x)|z(x)|q+1 dx,

(21)
we get

d = inf
z∈N

J (z) ≥ p − 1

2(p + 1)
inf
z∈N

‖∇z‖2 ≥ p − 1

2(p + 1)
r2 > 0,

which proves Lemma 5.

Lemma 6 Suppose f (x, z) satisfies (5)–(9), z ∈ H1
0(Ω), ‖∇z‖ �= 0, and I (z) < 0.

Then there exists a constant |λ∗| < 1, λ∗ �= 0 such that I (λ∗z) = 0.

Proof Case (5) From I (z) < 0 and Lemma 4 (i), we get

0 < r2 < ‖∇z‖2 <

∫

Ω

a(x)|z(x)|p+1 dx +
∫

Ω

b(x)|z(x)|q+1 dx

≤
∫

Ω

a(x)|z(x)|p+1 dx .

Hence, condition (16) is satisfied, and from Lemma 4, there exists λ∗, |λ∗| ∈ (0, 1)
such that I (λ∗u) = 0.

Case (6) The case
∫
Ω
a(x) |z(x)|pz(x) dx > 0 is treated in the same way as

Case (5). Now we consider the case
∫
Ω
a(x) |z(x)|pz(x) dx < 0. Then
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I (−z) = ‖∇(−z)‖2 −
∫

Ω

a(x)|z(x)|p(−z(x)) dx −
∫

Ω

b(x)|z(x)|q+1 dx

= I (z) + 2
∫

Ω

a(x)|z(x)|pz(x) dx < 0.

Therefore, the result in Case (5) is applicable to−z, i.e., there exists λ∗, |λ∗| ∈ (0, 1)
such that I (λ∗(−z)) = I (−λ∗z) = 0. The proof of Lemma 6 is completed.

Lemma 7 Suppose f (x, z) satisfies (5)–(9), z ∈ H1
0(Ω), ‖∇z‖ �= 0 and I (z) < 0.

Then the following inequality holds:

I (z) < (p + 1)(J (z) − d). (22)

Proof From Lemma 6, it follows that there exists |λ∗| < 1, λ∗ �= 0 such that
I (λ∗u) = 0. From (15) and (21), we get the following chain of inequalities:

d ≤ J (λ∗z) = 1

p + 1
I (λ∗z) + p − 1

2(p + 1)
(λ∗)2‖∇z‖2

− p − q

(p + 1)(q + 1)
|λ∗|q+1

∫

Ω

b(x)|z(x)|q+1 dx

<
p − 1

2(p + 1)
‖∇z‖2 − p − q

(p + 1)(q + 1)

∫

Ω

b(x)|z(x)|q+1 dx = J (z) − 1

p + 1
I (z).

Thus (22) is proved.

In the framework of the potential well method, there are two important subsets of
H1

0(Ω):

W = {
z ∈ H1

0(Ω) : I (z) > 0
} ∪ {0} and V = {

z ∈ H1
0(Ω) : I (z) < 0

}
.

In the following theorem, we formulate the sign preserving properties of the Nehari
functional I (z), i.e., the invariance of W and V under the flow of (1)–(9) when
E(0) < d.

Theorem 1 Suppose u(t, x) is the weak solution of (1)–(9) defined in the maximal
existence time interval [0, Tm), 0 < Tm ≤ ∞ and E(0) < d.

(i) If u0 ∈ W, then u(t, x) ∈ W for every t ∈ [0, Tm);
(ii) If u0 ∈ V , then u(t, x) ∈ V for every t ∈ [0, Tm).

The proof of Theorem 1 is identical to the proof of the invariance of W and V for
nonlinearities (5) and (6) with a(x) ≡ a > 0 and b(x) ≡ b < 0, see Theorem 3.2 in
[13]. That is why we omit it.

The following corollary will allow us to treat the case of non-positive energy
within the potential well method.

Corollary 2 Suppose E(0) < 0 or E(0) = 0 and ‖∇u‖ �= 0 . Then every weak solu-
tion of (1)–(9) belongs to V during its existence time.
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Proof From the conservation law, we get E(0) = E(t) ≤ 0. Since

E(t) = 1

p + 1
I (u) + 1

2
‖ut‖2 + p − 1

2(p + 1)
‖∇u‖2

− p − q

(p + 1)(q + 1)

∫

Ω

b(x)|u(t, x)|q+1 dx,
(23)

we get that I (u) < 0 and u(t, x) ∈ V for every t ∈ [0, Tm).

Theorem 2 Suppose u(t, x) is the weak solution to (1)–(9) defined in the maximal
existence time interval [0, Tm), 0 < Tm ≤ ∞. If E(0) < d and u0 ∈ V , then u(t, x)
blows up at Tm < ∞.

Proof We suppose by contradiction that there exists a global weak solution u(t, x)
of (1)–(9). Applying Theorem 1 (ii) and Lemma 7, for function ψ(t) = ‖u(t, ·)‖2,
we obtain

ψ′′(t) = (p + 3)‖ut‖2 − 2(p + 1)(E(0) − J (t)) − 2I (t)

= (p + 3)‖ut‖2 + 2[(p + 1)(J (t) − E(0)) − I (t)] ≥ 2(p + 1)(d − E(0)) > 0.
(24)

Integrating (24) twice, we get ψ(t) ≥ (p + 1)(d − E(0))t2 + ψ′(0)t + ψ(0) and
limt→∞ ψ(t) = ∞.

On the other hand, one can show thatψ(t) satisfies conditions in Lemma 1. Indeed,

ψ′′(t)ψ(t) − p + 3

4
ψ′2(t) =(p + 3)

(‖u‖2‖ut‖2 − (u, ut )
2)

+ 2[(p + 1)(J (t) − E(0)) − I (t)]‖u‖2.

Hence, ψ(t) is a solution of (13) for γ = p+3
4 > 1 and for t ∈ [0,∞)

Q(t) = (p + 3)
(
‖u‖2‖ut‖2 − (u, ut )

2
)

+ 2[(p + 1)(J (t) − E(0)) − I (t)]‖u‖2 ≥ 0.

According to Lemma 1 function ψ(t), or equivalently, u(t, x), blows up for a finite
time, which contradicts our assumption that u(t, x) is globally defined. The proof of
Theorem 2 is completed.

Theorem 3 Suppose E(0) < d and u0 ∈ W. Then problem (1)–(9) has no blowing
up weak solutions.

Proof Suppose by contradiction that u(t, x), defined in [0, Tm), 0 < Tm ≤ ∞, blows
up at Tm . Since I (0) > 0, from Theorem 1 (i) it follows that I (t) > 0 for t ∈ (0, Tm).
From (23) we have for every t ∈ (0, Tm) the estimate E(0) ≥ p−1

2(p+1)‖∇u‖2 holds,
which contradicts Definition 1. Thus Theorem 3 is proved. �
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4 Supercritical Initial Energy, E(0) ≥ d

Theorem 4 Suppose u(t, x) is the weak solution to (1)–(9) defined in the maximal
existence time interval [0, Tm), 0 < Tm ≤ ∞. If

E(0) <
C(p − 1)

2(p + 1)
‖u0‖2 +

√C(p − 1)

p + 1
(u0, u1), (25)

then u(t, x) blows up at Tm < ∞. Here C is the constant of the Poincaré inequality

‖∇u‖2 ≥ C‖u‖2. (26)

Proof Analogously to the proof of Theorem 2, we assume that u(t, x) is globally
defined. Simple computations give us that ψ(t) = ‖u(t, ·)‖2 is a solution of the
equation

ψ′′(t) = (p − 1)Cψ(t) − 2(p + 1)E(0) + G(t), (27)

where C is defined in (26), and

G(t) = (p − 1)(‖∇u‖2 − C‖u‖2) + (p + 3)‖ut‖2 − 2(p − q)

q + 1

∫

Ω

b(x)|u(t, x)|q+1 dx ≥ 0.

(28)
If we set α = C(p − 1) > 0 and β = 2(p + 1)E(0) > 0, then the classical solution
of (27) is

ψ(t) =1

2

(
ψ(0) + 1√

α
ψ′(0) − β

α

)
e
√

αt

+ 1

2

(
ψ(0) − 1√

α
ψ′(0) − β

α

)
e−√

αt

+ β

α
+ 1√

α

∫ t

0
G(s) sinh(

√
α(t − s)) ds.

(29)

Since (25) is equivalent to ψ(0) + 1√
α
ψ′(0) − β

α
> 0, from (28) and (29) we

conclude that limt→∞ ψ(t) = ∞.
Obviously, ψ(t) satisfies also the equation

ψ′′(t)ψ(t) − p + 3

4
ψ′2(t) = αψ2(t) − βψ(t) + H(t), where

H(t) =(p + 3)(‖ut‖2‖u‖2 − (u, ut )
2) + (p − 1)(‖∇u‖2 − C‖u‖2)‖u‖2

− 2(p − q)

q + 1
‖u‖2

∫

Ω

b(x)|u(t, x)|q+1 dx ≥ 0.
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From Lemma 2, it follows that u(t, x) blows up for a finite time, which contradicts
our assumption Tm = ∞. Theorem 4 is proved.
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An Example for Application of the Simple
Equations Method for the Case of Use
of Two Simple Equations

Zlatinka I. Dimitrova

Abstract Wediscuss themethodology of the Simple EquationsMethod. Discussion
is focused not only on the methodology but also on an example where the method-
ology is applied on the basis of a two simple equations for solution of a differential
equation of a nonlinear Schrödinger kind. We explain the steps of the methodology
and discuss the obtained exact solutions of the solved nonlinear partial differential
equation.

Keywords Simple Equations Method (SEsM) · Methodology based on two
simple equations

1 Introduction

Complexity is closely related to the nonlinearity [1–16]. Methods of the time series
analysis and modeling based on differential or difference equations are appropriate
to study these effects [17–36]. Methods for obtaining exact solutions of nonlinear
differential equations such as the Hopf–Cole transformation [37, 38] are of interest
for us. Other interesting methods for obtaining exact solutions of classes of nonlinear
differential equations are the Method of Inverse Scattering Transform [39], and the
method of Hirota [40].

Below we discuss a methodology called SEsM (simple equations method). It is
designed for obtaining exact solutions of nonlinear differential equations. SEsM is the
successor of themethodology calledMMSE (modifiedmethod of simplest equation).
MMSE was designed on the basis of research of Kudryashov and Loguinova who
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presented the Method of Simplest Equation (MSE) [41, 42]. The development of
SEsM [43–46] started many years ago [47–55]. This research continued in 2009
[56, 57] and in 2010 by the use of the ordinary differential equation of Bernoulli as
simplest equation [58] and application ofMMSE to ecology and population dynamics
[59]. Characteristic feature of MMSE is the use of a balance equation [60, 61]
and till 2018 MMSE [62–65, 67, 68] was based on one simplest equation and one
balance equation.An important addition to themethodologywasmade in [69]. There,

MMSE was extended to simplest equations of the class
(
dk f
dξ j

)k =
m∑
i=0

ci f i , where

j = 1, . . . , k = 1, . . . , andm and ci are parameters. In the last years, themethodology
was extended by the possibility of use of more than one simplest equation. The
modification is called SEsM—Simple Equations Method [43–46, 70]. For more
applications of specific cases of the methodology see [71, 84].

The goal of this article is to discuss SEsM and to show one example of its appli-
cation. SEsM is discussed in Sect 2. In Sect. 3 we present an application of SEsM for
the case of use of composite functions of two solutions of simple equations. Several
concluding remarks are summarized in Sect. 4.

2 Methodology of the Simple Equations Method (SEsM)

SEsM is designed for search of solution of systems of nonlinear differential equations
but below we shall use it in order to obtain a solution of a single differential equation
(Fig. 1).

We search for an exact solution of the nonlinear differential equation
D[u(x, . . . , t), . . . , ] = 0. D[u(x, . . . , t), . . . ] depends on the function u(x, . . . , t)

Fig. 1 The example of SEsMwith use of composite functions. Composite functions can be used in:
the transformation of the nonlinearity; the construction of the solution as function of the solutions
of the simple equations; in the process of obtaining solutions of the simple equations
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and some of their derivatives (ui can be a function ofmore than 1 spatial coordinates).
Step 1 of SEsM is connected to the transformation u(x, . . . , t) = W [G(x, . . . , t),
H(x, . . . , t), . . .].. W (F,G, . . .) is a composite function of another functions F,G,

. . .. G(x, . . . , t), H(x, . . . , t), . . . are functions of several spatial variables as well
as of the time. The goal of the transformation is to transform the nonlinearity of the
solved differential equation to more treatable kind of nonlinearity. The application
of the transformation leads to nonlinear PDEs for the functions G, H, . . ..

In Step 2 of SEsM the functionsG(x, . . . , t), H(x, . . . , t), . . . are represented as a
composite function of other functions g1, . . . , gN , h1, . . . , hM , . . .. The last functions
are connected to solutions of some differential equation which are more simple than
Eq. (2).

The solved differential equation contains derivatives. Then, we use the Faa di
Bruno’s formula in order to write the general form of the derivatives of the composite
functions F and G [85].

Step 3 of SEsM is connected to determination of the functions g1, . . . , gN ,
h1, . . . , hM , . . .. The equations for these functions are more simple than the solved
nonlinear partial differential equation.

At Step 4 of SEsM, the steps 1–3 are applied to Eq. (2). The result is a system
of nonlinear algebraic equations. Any nontrivial solution of the algebraic system
corresponds to a solution of the studied nonlinear partial differential equation.

3 An Example of Use of Composite Functions in the
Methodology of SEsM for the Case of Two Simple
Equations

The example will be connected to a class of equations of the kind of the nonlinear
Schrödinger equation, namely,

i
∂ψ

∂t
+ a

∂2ψ

∂x2
+ ψ

C∑
l=−B;l �=−1

bl | ψ |2l= 0. (1)

Above, B and C are nonnegative integers. We skip Step 1 of SEsM where the
transformation is used and proceed to the Step 2 where we have to construct the
solution ψ as composite function of solutions of two simple equations ψ(x, t) =
ψ(p(x, t), q(x, t)). (1) can have many solutions. Below we will search for specific
solutions which are represented by a product of the solutions of the two simple
equations ψ(h, g) = p(x, t)q(x, t). Then (1) becomes

i(pqt + qpt ) + a(pqxx + qpxx + 2pxqx ) + pq
C∑

l=−B;l �=−1

bl | pq |2l= 0. (2)
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We focus our interest on the class of solutions which possess a traveling-wave com-
ponent. ψ(x, t) = q(x, t)p(x, t). p(ξ) is a real function (ξ = αx + βt) and q(x, t)
is a complex function. The substitution of this relationship for ψ in the solved equa-
tion leads to following relationship for the first simple equation: dq

dζ
= iq, ζ = κx +

ωt + π. The solution of this equation is q(ζ ) = exp(iζ ) = exp[i(κx + ωt + π)].
For the function p(ξ), we obtain the equation

α2apξξ + (2ακa + β)i pξ − (ω + κ2a)p + p
C∑

l=−B;l �=−1

bl p
2l = 0. (3)

(3) is solved by means of the second simple equation. g(ξ) has to be a real function
and, because of this, we have β = −2ακa We substitute this in (3) and multiply the
result by p′. The obtained relationship is integrated with respect to ξ (here a constant
of integration c occurs). Then, it is assumed that v = pσ , where σ is a parameter.
The form of the equation for v becomes

v′2 = σ 2(ω + κ2a)

α2a
v2 + σ 2c

α2a
v2(σ−1)/σ −

C∑
l=−B;l �=−1

σ 2bl
α2a(l + 1)

v2(l+σ)/σ . (4)

Many specific cases of (4) are possible. Here we discuss the case c = 0, σ : arbitrary
positive integer that is different from 1, C = Dσ , l = nσ , n = −1, . . . , D. In this
case, (4) is reduced to the equation

v′2 =
D∑

n=−1

cnv
2(n+1), (5)

where c−1 = − σ 2b−σ

α2a(1−σ)
, c0 = σ 2(ω+κ2a−b0)

α2a , cn = − σ 2bnσ

α2a(σn+1) , n = 1, . . . , D.

(5) defines function which is particular case of the special function Va(ξ ; q, l,m)

discussed in [69]. This function is defined as the solution of the nonlinear ODE(
dqv
dξq

)l = ∑m
j=0 a ju j ,, where q, l, andm are positive integers and a = (a0, . . . , am).

For the considered specific case (5) the solution of (1) is

q(x, t) = [Va3(ξ ; 1, 2, 2D + 2)]1/σ exp[i(kx + ωt + θ)] (6)

where a3 = (a0, . . . , a2D+2) and a2i = ci−1, a2i+1 = 0, i = 0, D + 1.
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4 Concluding Remarks

In this article, we show an application of the Simple Equations Method (SEsM)
for obtaining exact solutions of nonlinear differential equations. The methodology
is based on use of composite functions. The discussed example is connected to a
class of equations of Schrödinger kind. The example illustrates the use of two simple
equations within the methodology of SEsM. The first simple equations describe the
envelope of the solution and the oscillations within the envelope are described by
the second simple equation. The solution of the last equation can be expressed by a
special function which is frequently encountered in the process of application of the
SEsM.
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A Note on the Steady Poiseuille Flow
of Carreau–Yasuda Fluid

Nikolay Kutev and Sonia Tabakova

Abstract The steady Poiseuille flow of Carreau–Yasuda fluid in a pipe, caused by
a constant pressure gradient, is studied theoretically. It is proved that at some values
of the viscosity model parameters, the problem has a generalized solution, while at
others—classical solution. For the latter, a necessary and sufficient condition is found,
which depends on the pressure gradient and Carreau–Yasuda model parameters.

Keywords Carreau–Yasuda fluid · Steady Poiseuille flow · Classical solution ·
Necessary and sufficient condition

1 Introduction

The Poiseuille flow problem is one of the fundamental problems of fluid mechanics,
corresponding to a parabolic velocity profile in a pipe or channel when the flow is
laminar and fully developed in the axial direction. For a Newtonian fluid, the problem
has a well-known analytical solution [1]. However, for non-Newtonian fluids, it has
no analytical solution, except for some special cases for generalized Newtonian fluid
models, such as the power law model of viscosity dependence on shear rate [2]. The
behavior of the so-called shear-thinning fluids (viscosity is decreasing function of
shear rate), for example, polymer solutions, polymer melts, suspensions, emulsions,
and some biological fluids, is described by different viscosity models, such as the
power law model, Carreau model, Carreau–Yasuda model, and others [2–4].
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The general unsteady and oscillatory cases of the Poiseuille flow in an infinite
channel or pipe using the Carreau or Carreau–Yasuda models are studied in our
previous papers [5–8]. The most interesting case of negative power index in these
models, n < 0, corresponds to severe pseudoplastic behavior [9–11]. It has been stud-
ied theoretically in [7] and [8], but the sufficient and necessary condition for solution
existence is still a challenge. The aim of the present work is to prove the solution
existence or non-existence for the different parameters of the steady Poiseuille flow
problem of the Carreau–Yasuda fluid and to find the sufficient and necessary condi-
tion for classical solution existence at n < 0.

The dimensionless equations of motion and continuity for the steady pipe flow
are as follows:

v · ∇v = −∇ p + ∇ · T, (1)

∇ · v = 0, (2)

where v is velocity vector, p—pressure, T = μapp Ṡ—viscous stress tensor with

Ṡ = 1

2

(∇v + ∇vT
)
as strain rate tensor, and μapp—apparent viscosity (constant for

Newtonian fluid and a non-linear function of shear rate γ̇ =
√
2Ṡ : Ṡ for generalized

Newtonian fluid).
Theflow is assumed fully developed laminar driven by a constant pressure gradient

b in the axial direction. Then, in the adopted cylindrical coordinate system (x,Y,ϕ)
with x as the axial coordinate, the flow velocity is simplified as v = (U (Y ), 0, 0) and
T reduces to the scalar μapp(γ̇)γ̇, where γ̇ =| UY |. The Carreau–Yasuda viscosity
model is assumed for the apparent viscosity μapp:

μapp = 1 − c + c[1 + Cuαγ̇α](n−1)/α, (3)

where c = 1 − μ∞
μ0

, with μ0, μ∞ as the upper and lower limits of the viscosity cor-

responding to the low and high shear rates, Cu is the Carreau number (Weissenberg
number), and α and n are empirically determined for the considered fluid.

Applying the upper assumptions, the system (1)–(3) is reduced to one elliptic
equation for the axial velocity:

L(U (Y )) = 1

Y

d

dY

{ [
1 − c + c (1 + Cuα | UY |α) n−1

α

]
YUY

}
= b (4)

with the axisymmetrical and no-slip boundary conditions:

UY (0) = U (R) = 0, (5)

where R is the dimensionless pipe radius (the pipe radius or diameter is usually
taken as characteristic length). Here Cu > 0, b ∈ R, α > 0, n ∈ R, c ∈ [0, 1] are
empirically determined parameters.
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If b = 0, then (4), (5) has only the trivial solution U (Y ) ≡ 0. It is clear that
U (Y,−b) = −U (Y, b), whereU (Y, b),U (Y,−b) are solutions of (4), (5) with right-
hand side b and −b, correspondingly. That is why further on we consider only the
case b > 0.

The outline of the paper is as follows. In Sect. 2, the main results are formulated
in four theorems to be proved in Sect. 3. An application, connected with polymer
pipe flows with a lower limit of viscosity tending to zero, i.e., at c = 1, is presented
by one theorem and found in Sect. 4.

2 Main Results

In order to formulate the main results, we introduce the function

F(ζ) =
[
1 − c + c (1 + Cuαζα)

n−1
α

]
ζ for ζ ≥ 0, (6)

where ζ =| UY |.
Theorem 1 Suppose b > 0,α > 0, and either c = 0, Cu = 0, or n = 1. Then prob-
lem (4), (5) is Newtonian one (classical Poiseuille problem in a pipe) and has a unique
classical solution:

U (Y ) = b

4
(Y 2 − R2) for every Y ∈ [0, R]. (7)

Theorem 2 Suppose b > 0, α > 0, c ∈ (0, 1), and either one of the following con-
ditions holds:

n ≥ 0; (8)

n < 0 and

(
1 − α + 1

n

) n−1−α
α

<
1 − c

αc
. (9)

Then problem (4), (5) has a unique classical solution U (Y ) ∈ C2([0, R]) satisfying

U (Y ) = −
∫ R

Y
F−1

(
bs

2

)
ds and (10)

0 ≤ UY (Y ) ≤ F−1

(
bR

2

)
for Y ∈ [0, R]. (11)

Theorem 3 Suppose b > 0, α > 0, n < 0, c ∈ (0, 1), and

(
1 − α + 1

n

) n−1−α
α

= 1 − c

αc
. (12)
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If [

1 − c + c

(
1 − α + 1

n

) n−1
α

]

Cu−1

(
−α + 1

n

) 1
α

≥ bR

2
, (13)

then problem (4), (5) has a unique classical solution U (Y ) satisfying (10), (11);
If [

1 − c + c

(
1 − α + 1

n

) n−1
α

]

Cu−1

(
−α + 1

n

) 1
α

<
bR

2
, (14)

then problem (4), (5) has a unique generalized solution U (Y ) ∈ C2([0, R] \ Y0)⋂
C1([0, R]) satisfying (10), (11), UYY (Y0) = ∞, where

Y0 = 2

b

[

1 − c + c

(
1 − α + 1

n

) n−1
α

]

Cu−1

(
−α + 1

n

) 1
α

∈ (0, R). (15)

Remark 1 If (13) is strict inequality, then U (Y ) ∈ C2([0, R]), while when (13) is
an equality, then U (Y ) ∈ C2([0, R))⋂C1([0, R]), UYY (R) = ∞.

Theorem 4 Suppose b > 0, α > 0, n < 0, c ∈ (0, 1), and

(
1 − α + 1

n

) n−1−α
α

>
1 − c

αc
. (16)

Then problem (4), (5) has a unique classical solution iff

bR

2
≤

[
1 − c + c

(
1 + Cuαζα

1

) n−1
α

]
ζ1 = F(ζ1), (17)

where ζ1 is the first positive zero of F ′(ζ) = 0. Moreover, U (Y ) satisfies (10), (11)
and

0 ≤ UY (Y ) ≤ F−1

(
bR

2

)
≤ ζ1 for Y ∈ [0, R]. (18)

Remark 2 If (17) is a strict inequality, then U (Y ) ∈ C2([0, R]). When (17) is an
equality, then U (Y ) ∈ C2([0, R))⋂C1([0, R]), UYY (R) = ∞.

3 Proofs of the Main Results

Integrating Y.L(U (Y )) from 0 to Y ∈ (0, R], we get the identity
[
1 − c + c (1 + Cuα | UY |α) n−1

α

]
UY = bY

2
for Y ∈ [0, R]. (19)
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Hence UY (Y ) > 0 for Y ∈ (0, R] and (19) is equivalent to

F(UY (Y )) =
[
1 − c + c

(
1 + CuαUα

Y

) n−1
α

]
UY = bY

2
for Y ∈ [0, R]. (20)

Proof of Theorem 1. For c = 0 or n = 1, we have F(ζ) = ζ and (20) becomes

UY (Y ) = bY

2
for Y ∈ [0, R]. (21)

Integrating (21) from 0 to Y ∈ (0, R], we obtain from (5) thatU (Y ) = b

4
(Y 2 − R2),

which proves Theorem 1.

Proof of Theorem 2. Simple computations give us for ζ ≥ 0

F ′(ζ) = 1 − c + c (1 + Cuαζα)
n−1−α

α (1 + nCuαζα) , (22)

F ′′(ζ) = c(n − 1)Cuαζα−1 (1 + Cuαζα)
n−1−2α

α (α + 1 + nCuαζα) . (23)

Thus, from (22), we get

F ′(ζ) ≥ 1 − c + c (1 + Cuαζα)
n−1−α

α > 0 for ζ ≥ 0, n ≥ 0, and c ∈ (0, 1].
(24)

If (9) holds, then from (23) we obtain

F ′′(ζ0) = 0 for Cuαζα
0 = −α + 1

n
> 0, (25)

F ′′(ζ) < 0 for ζ < ζ0 , i.e., for Cuαζα < −α + 1

n
, and (26)

F ′′(ζ) > 0 for ζ > ζ0 , i.e., for Cuαζα > −α + 1

n
. (27)

From (25)–(27), it follows that the function F ′(ζ) has a global minimum in the
interval [0,∞) at the point ζ = ζ0. Since from (9), we have

F ′(ζ0) = 1 − c − αc

(
1 − α + 1

n

) n−1−α
α

, (28)

F ′(ζ) ≥ F ′(ζ0) > 0 for ζ ≥ 0. (29)

Under the conditions (8), (9) and from (24), (19), it is seen that F ′(ζ) > 0 and F(ζ)
is strictly monotone increasing. Moreover,
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F(0) = 0, lim
ζ→∞

F(ζ) = ∞, (30)

so that there exits the inverse function F−1(ζ). From

(F−1(ζ))′ = 1

F ′(F−1(ζ))
> 0 (31)

it follows that F−1(ζ) : [0,∞) → [0,∞) is strictly monotone increasing function
and (20) is equivalent to

UY (Y ) = F−1

(
bY

2

)
for Y ∈ [0, R], (32)

where

F−1

(
bY

2

)
: [0, R] →

[
0, F−1

(
bR

2

)]
. (33)

Integrating (32) from Y ∈ [0, R) to R, we get from (5) that the function

U (Y ) = −
∫ R

Y
F−1

(
bs

2

)
ds for Y ∈ [0, R] (34)

is the unique classical solution of (4), (5), when one of the conditions (8), (9) is
satisfied. Moreover, from the monotonicity of F−1(ζ) and (32), the estimate (11)
holds and Theorem 2 is completed.

Proof of Theorem 3. From (12), the inequalities (28), (29) become

F ′(ζ0) = 0, F ′(ζ) > 0 for ζ ≥ 0, ζ 
= ζ0. (35)

Thus, F(ζ) is a monotone increasing function, and the inverse function F−1(ζ)
exists and is monotone increasing, which is evident from (31). Moreover, (30) holds
and F(ζ) : [0,∞) → [0,∞), F−1(ζ) : [0,∞) → [0,∞). Hence, equation (20) is
equivalent to (32), and after integration, as in the proof of Theorem 2, the unique
solution of (4), (5) is given by (34).

Let us analyze the regularity ofU (Y ). It is clear thatU (Y ) ∈ C1([0, R]) and from
the monotonicity of F−1 the estimate (11) holds. Since (13) is equivalent to

F(ζ0) ≥ bR

2
, i.e., ζ0 ≥ F−1

(
bR

2

)
(36)

and after differentiating (32), we get from (31), (26) the estimates

UYY (Y ) = ∂

∂Y

(
F−1

(
bY

2

))
= b

2F ′(F−1
(
bY
2

)
)

≤ b

2F ′(F−1
(
bR
2

)
)

(37)
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≤ b

2F ′(F−1 (ζ0))
= ∞ for Y ∈ [0, R].

Thus
0 < UYY (Y ) < ∞ for Y ∈ [0, R) and UYY (R) = ∞, (38)

when (13), equivalently (36), is a strict inequality, because

b

2F ′(F−1
(
bR
2

)
)
<

b

2F ′(F−1 (ζ0))
= ∞.

However, when (13), equivalently (36), is equality, then

UYY (R) = b

2F ′(F−1
(
bR
2

)
)

= b

2F ′(F−1 (ζ0))
= ∞.

Remark 1 and the proof of (13) are completed.
Suppose that (14) holds. As in the proof of (13)U (Y ) ∈ C1([0, R]) is the unique

solution of (4), (5) satisfying (10), (11). Conditions (14), (15) are equivalent to

F(ζ0) <
bR

2
, F(ζ0) = bY0

2
, i.e., ζ0 < F−1

(
bR

2

)
, ζ0 = F−1

(
bY0
2

)

(39)
and therefore Y0 ∈ (0, R).
From the monotonicity of F−1, we get from (39)

F−1

(
bY

2

)
< F−1

(
bY0
2

)
= ζ0 for Y ∈ [0,Y0), (40)

F−1

(
bY

2

)
> F−1

(
bY0
2

)
= ζ0 for Y ∈ (Y0, R]. (41)

Repeating the estimate (37), from (41) and the monotonicity of F ′(ζ), see (26), (27),
we have

UYY (Y0) = ∞, 0 < UYY (Y ) < UYY (Y0) = ∞ for Y ∈ [0, R] \ Y0, (42)

i.e., U (Y ) ∈ C2([0, R] \ Y0)⋂C1([0, R]), which proves (14) and Theorem 3.

Proof of Theorem 4. Under conditions (16), (28), it follows that F ′(ζ) has a strictly
negative minimum in the interval [0,∞) at the point ζ0. Since

F ′(0) = 0, lim
ζ→∞

F ′(ζ) = 1 − c > 0 (43)
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the function F ′(ζ) has two positive roots 0 < ζ1 < ζ2 < ∞, F ′(ζi ) = 0, i = 1, 2,
ζ0 ∈ (ζ1, ζ2). Moreover, from (43) and (26), it follows that

F ′(ζ) > 0, F ′′(ζ) < 0 for ζ ∈ [0, ζ1), F ′(ζ1) = 0, (44)

i.e., F ′(ζ) is strictlymonotone decreasing,while F(ζ) is strictlymonotone increasing
for ζ ∈ [0, ζ1). Hence, the inverse function

F−1(ζ) : [0, ζ1) → [0, F−1(ζ1)] (45)

is well defined and from (31), (44) is strictly monotone increasing.

Sufficiency: From (17), we get

ζ1 ≥ F−1

(
bR

2

)
and F−1

(
bY

2

)
: [0, R] →

[
0, F−1

(
bR

2

)]
. (46)

Since

[
0, F−1

(
bR

2

)]
⊂ [0, ζ1), from (45) equation (20) is equivalent to (32) and

after integrationU (Y ) ∈ C1([0, R]) satisfies (34). Moreover, from the monotonicity
of F−1(ζ) and (46), the estimate (18) is satisfied because

0 ≤ UY (Y ) ≤ UY (R) = F−1

(
bR

2

)
≤ ζ1.

Repeating the estimate (37), we get

0 < UYY (Y ) < ∞ for Y ∈ [0, R], (47)

when (17), equivalently (46), is a strict inequality, i.e., U (Y ) ∈ C2([0, R]).
If (17), equivalently (46), is an equality, then

UYY (R) = b

2F ′(F−1
(
bR
2

)
)

= b

2F ′(ζ1)
= ∞, U (Y ) ∈ C2([0, R)) ∩ C1([0, R]),

(48)
which proves the sufficiency in Theorem 4 and Remark 2.

Necessity: Suppose U (Y ) ∈ C2((0, R)) ∩ C1([0, R]) is a classical solution of (4),
(5). Then U (Y ) satisfies (20). We assume by contradiction that (17) fails, i.e.,

bR

2
> F(ζ1). (49)

If Y0 = 2F(ζ1)

b
, then from (49), we have Y0 ∈ (0, R) and from (44), (45)
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ζ1 = F−1

(
bY0
2

)
. (50)

Thus, (50) and (37) for Y = Y0 give us

UYY (Y0) = b

2F ′(F−1
( bY0

2

)
)

= b

2F ′(ζ1)
= ∞. (51)

Since Y0 is an interior point of the interval (0, R), it follows from (51) that U (Y ) is
not a classical C2(0, R) smooth solution of (4), (5) and Theorem 4 is completed.

4 Applications. Case c = 1

In the applications of polymer pipe flows, the special case of c = 1 is important
(μ∞ → 0 [2]).

Theorem 5 Suppose b > 0, α > 0, n ∈ R, and c = 1. Then

(a) for
n > 0 (52)

problem (4), (5) has a unique classical solutionU (Y ) ∈ C2([0, R]) satisfying (10),
(11);
(b) for

n = 0 (53)

problem (4), (5) has a unique classical solution U (Y ) ∈ C2((0, R)) ∩ C1([0, R])
iff

bR

2
≤ Cu−1 (54)

and U (Y ) satisfies (10), (11);
(c) for

n < 0 (55)

problem (4), (5) has a unique classical solution U (Y ) ∈ C2((0, R)) ∩ C1([0, R])
iff

bR

2
≤ Cu−1

(
n − 1

n

) n−1
α

(
−1

n

) 1
α

= F

(

Cu−1

(
−1

n

) 1
α

)

(56)

and U (Y ) satisfies (10), (11).

Remark 3 If (54) or (56) is strict inequality, then U (Y ) ∈ C2([0, R]). When (54)
or (56) is equality then U (Y ) ∈ C2([0, R)) ∩ C1([0, R]) and UYY (R) = ∞.
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Proof (a) Suppose (52) holds. Then from (24)

F ′(ζ) ≥ (1 + Cuαζα)
n−1−α

α > 0 for ζ ≥ 0 (57)

and F(ζ) is strictly monotone increasing function.
Since F(0) = 0, limζ→∞ F(ζ) = ∞, there exists the inverse function F−1(ζ) :
[0,∞) → [0,∞), which is strictly monotone increasing function from (31) and
(57). Thus problem (4), (5) is equivalent to (20), and after integration, U (Y )
satisfies (10), (11).

(b) Suppose (53) holds. Here, again (57) is valid, from which F(ζ) is strictly mono-
tone increasing function for ζ ≥ 0. Since F(0) = 0, limζ→∞ F(ζ) = Cu−1 =
supζ≥0 F(ζ), there exists the inverse function

F−1(ζ) : [0,Cu−1) → [0,∞), (58)

which is strictly monotone increasing function from (31) and (57).

Sufficiency: From (54) F−1

(
bY

2

)
:
[
0,

bR

2

]
→

[
0, F−1

(
bR

2

)]
is well

defined for Y ∈ [0, R] because
[
0,

bR

2

]
⊂ [0,Cu−1]. The rest of the proof is

identical to the proof of (a) of Theorem 5.
Necessity: If U (Y ) ∈ C2((0, R)) ∩ C1([0, R]) is a classical solution of (4), (5),
we suppose by contradiction that

bR

2
> Cu−1.

Then Y0 = 2

bCu
∈ (0, R) and from (20) and the monotonicity of F(ζ) we have

for Y ∈ (Y0, R) the following impossible chain of inequalities:

Cu−1 = bY0
2

<
bY

2
= F(UY (Y )) ≤ sup

ζ≥0
F(ζ) = Cu−1. (59)

(c) Suppose (55) holds. From (22), (23), we get

F ′(ζ) = (1 + Cuαζα)
n−1−α

α (1 + nCuαζα) , (60)

F ′′(ζ) = (n − 1)Cuαζα−1 (1 + Cuαζα)
n−1−α

α (α + 1 + nCuαζα) , (61)

and F ′(ζ) > 0 for Cuαζα < −1

n
, F ′(ζ) = 0 for Cuαζα = −1

n
, and F ′(ζ) < 0

forCuαζα > −1

n
. Thus, the function F(ζ) has a global maximum in the interval

[0,∞) at the point ζ1 = Cu−1

(
−1

n

) 1
α

and
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F(ζ1) = Cu−1

(
n − 1

n

) n−1
α

(
−1

n

) 1
α

> 0.

The rest of the proof is identical to the proof of Theorem 4 and we omit it. The
proof of Remark 1 is identical to the proof of Remarks 1 and 2.

In practice, the necessary and sufficient condition (56) corresponds to three dif-
ferent scenarios for solution existence of (4), (5), which depend on the values of the
parameters n, α, Cu, b, and R: (i) if (56) is strict inequality, then ζ1 is not reached
for any Y ∈ [0, R] and there exist two solutions of (4), but only one of them is the
solution of (5); (ii) if (56) is equality, then there is only one solution of (4), (5); (iii)
if (56) is not fulfilled, then ζ1 is reached at some inner point Y1 ∈ [0, R), thus there
is no solution of (4), (5).
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Green’s Function and Wave Scattering in
Inhomogeneous Anti-plane PEM
Half-Plane

Tsviatko Rangelov and Petia Dineva

Abstract Half-plane Green’s functions and wave scattering solutions in quadrati-
cally and exponentially graded in respect to depth piezoelectric half-plane with and
without taking into consideration the surface elasticity properties are derived analyt-
ically. The surface elasticity model is considered in the frame of Gurtin andMurdoch
(Arch. Ration Mach Anal 57:291–323, 1975). Anti-plane stress–strain state holds.
The mechanical model considers materials with the same functional behavior of all
material properties. The obtained solutions recover a wide class of Green’s func-
tions for homogeneous/graded, elastic/piezoelectric materials with/without surface
elasticity properties.

Keywords Graded piezoelectric half-plane · Surface elasticity · Green’s
function · Free-field SH wave

1 Introduction

Two kinds of analytical solutions are essential in elastodynamic BEM models. For
the whole plane problems they are fundamental solutions and plane-wave solutions.
For the half-plane models they are Green’s function and free-field wave motion
solution. The key role played by them is to reduce a Boundary Value Problem (BVP)

T. Rangelov (B)
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev
Str., Bl. 8, 1113 Sofia, Bulgaria
e-mail: rangelov@math.bas.bg

P. Dineva
Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia,
Bulgaria
e-mail: petia@imbm.bas.bg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Slavova (ed.), New Trends in the Applications of Differential Equations in Sciences,
Springer Proceedings in Mathematics & Statistics 412,
https://doi.org/10.1007/978-3-031-21484-4_11

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21484-4_11&domain=pdf
mailto:rangelov@math.bas.bg
mailto:petia@imbm.bas.bg
https://doi.org/10.1007/978-3-031-21484-4_11


118 T. Rangelov and P. Dineva

formulated by the governing partial differential equation together with boundary and
initial conditions into a system of boundary integral equations through the use of
reciprocal theorems.

The aim of this work is to derive analytically 2D fundamental solutions, half-plane
Green’s functions and free-field wave motion solutions for a family of functionally
graded Piezoelectric Materials (PEM) without and with surface elasticity effects.
Recall that Green’s function in the half-plane is a fundamental solution that satisfies
additionally boundary conditions on the horizontal surface, which are: (a) classical
traction-free boundary conditions; (b) non-classical boundary conditions accounting
for the surface effect. There are restricted set of results concerning Green’s function
for homogeneous half-plane, see [7] and Green’s function for graded materials, see
[4], Chaps. 2 and 5 and references therein.

To the authors’ knowledge there are no results for dynamic Green’s function
in the homogeneous or graded half-plane and free-field solution with non-classical
boundary conditions for the aim of nanomechanics, see [2] and [3]. The derived here
solutions recover additionally the fundamental solutions and Green’s functions for
(a) homogeneous PEM; (b) homogeneous and graded pure elastic isotropicmaterials.

2 Preliminaries

In a Cartesian coordinate system Ox1x2x3 we consider a piezoelectric half-plane
IR2

− = {x = (x1, x2), x2 < 0} poled in x3—direction and subjected to time-harmonic
incident SH-wave with frequency ω. The only non-vanishing displacements are
the anti-plane mechanical displacement u3(x,ω) and the in-plane electrical dis-
placements D1(x,ω), D2(x,ω), x = (x1, x2). In all formulas below capital indexes
K , J, . . . vary 3, 4, while small indexes i, j, . . . vary 1, 2, also comma denotes par-
tial differentiation and the summation convention under repeating indexes is applied.
Assuming quasi–static approximation of piezoelectricity, the field equations in the
frequency domain in absence of body forces and free volume charges are given by
the balance equation, see [1]

σi J,i + ρJ Kω2uK = 0, (1)

where uK = (u3,φ) is the generalized displacement and σi J is the generalized stress,
σi J = Ci JKluK ,l = Ci JKlsKl , where

Ci33l =
{
c44, i = l
0, i �= l

; Ci34l =
{
e15, i = l
0 i �= l

; Ci44l =
{−ε11, i = l
0, i �= l

.

Here c44 is shear stiffness, e15 is dielectric permittivity and ε11 is piezoelec-
tric permittivity. The strain–displacement and electric field–potential relations are
si3 = u3,i , Ei = −φ,i where si j , φ are the strain tensor and electric potential, the
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generalized strain is denoted with sJi = (u3,i , Ei ). In (1) it is used the notation

ρJ K =
{

ρ, J = K = 3
0, J = 4 or K = 4

, where ρ is the mass density.

We further assume that the mass density and material parameters vary in the same
manner with respect to x , by a function h(x) ∈ C2(IR2

−) and h(x) ≥ 1 such that
c44(x) = c044h(x), e15(x) = e015h(x), ε11(x) = ε011h(x), ρ(x) = ρ0h(x).What fol-
lows is an analytical derivation of 2D fundamental solutions and half-plane Green’s
functions for a family of functionally graded piezoelectric materials.

Fundamental solution u∗(x, ξ,ω) of Eq. (1) is solution of the equation

σ∗
i J M,i (x, ξ,ω) + ρJ Kω2u∗

KM(x, ξ,ω) = δJMδ(x, ξ), x, ξ ∈ IR2
−, (2)

where σ∗
i J M = Ci JKlu∗

KM,l , x = (x1, x2) and ξ = (ξ1, ξ2). Here δJM is Kroneker’s
symbol, δ(x, ξ) is Dirak’s delta function. For simplicity if there is no misunderstand-
ing we will omit the arguments of the functions.

In order to derive the fundamental solution u∗(x, ξ,ω) and then Green’s function
we first transform equation in (2) by a suitable change of functions to an equation
with constant coefficients. This can be done if certain restrictions on function h(x) are
supposed. In a second stepwe apply Fourier transform,which allows the construction
of a set of fundamental solutions depending on the roots of the characteristic equation
of the obtained ordinary differential equations. Next, using both the inverse Fourier
transformand the inverse changeof functions, the fundamental solutions ofEq. (1) are
obtained for specific types of graded piezoelectric material. Finally, applying partial
Fourier transform with respect to x1 and using the representation of the fundamental
solution with special functions, see [6], we construct a correction term, i.e., function
w(x, ξ,ω), such that g(x, ξ,ω) = u∗(x, ξ,ω) + w(x, ξ,ω) is a Green’s function and
g(x, ξ,ω) satisfies the boundary condition along the half-plane boundary.

In the first step we use a method that successfully was applied by [5] for elastic
continua. The smooth transformation

uK (x,ω) = h−1/2(x)UK (x,ω) (3)

leads to a wave equation with constant coefficients, having in mind that

uK ,l = − 1
2h

−3/2h,lUK + h−1/2UK ,l ,

σi J = C0
i J KlhuK ,l = C0

i J Kl [−(h1/2),lUK + h1/2UK ,l ], and
σi J,q = C0

i J Kl [−(h1/2),lqUK − (h1/2),lUK ,q + (h1/2),qUK ,l + h1/2UK ,lq ],

whereCi JKl(x) = h(x)C0
i J Kl . Since for q = i = l, the termswith the first derivatives

of UK vanish, Eq. (1) after dividing it by h1/2(x) takes the form

C0
i J K iUK ,i i + [ρ0J Kω2 − C0

i J K i h
−1/2(h1/2),i i ]UK = 0, (4)
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Correspondingly, using the property h−1/2(x)δ(x, ξ) = h−1/2(ξ)δ(x, ξ) of the Dirac
function, Eq. (2) with the transformation

u∗
KM(x, ξ,ω) = h−1/2(x)U ∗

KM(x, ξ,ω) (5)

yields

C0
i J K iU

∗
KM,i i + [ρ0J Kω2 − C0

i J K i h
−1/2(h1/2),i i ]U ∗

KM = h−1/2(ξ)δJMδ(x, ξ). (6)

Equations (4) and (6) are equations with constant coefficients, if the condition

C0
i J K i h

−1/2(h1/2),i i = pJK = const, x ∈ IR2
−, (7)

is fulfilled, what constitutes certain restrictions for the inhomogeneity function h(x).
Let us consider two types of inhomogeneous piezoelectric materials for which

condition (7) is fulfilled.
Case (q) For pJK = 0—quadratic inhomogeneous function hq(x) = (bx2 + 1)2,

b < 0, x ∈ IR2
−;

Case (e) For pJK = C0
2J K2a

2—exponential inhomogeneous function he(x) =
e2ax2 , a < 0, x ∈ IR2

−;

3 Fundamental Solution and Plane-Wave Solution

3.1 Fundamental Solution

The fundamental solution matrix is not unique, and we need at least one to use it
for derivation of Green’s function. In [1], Chap. 3, a fundamental solution matrix
is obtained with Radon transform, but now for the aim of derivation of Green’s
function we need to obtain a fundamental solution with Fourier transform. Below
we will consider both cases (q) and (e) simultaneously having in mind that: in case
(q) a = 0; in case (e) a �= 0.

After some simplifications from matrix equation (4) we obtain the following
equations and relation for U ∗

KM

ΔU ∗
33 + k2U ∗

33 = 1
γ
h−1/2(ξ)δ(x, ξ), U ∗

43 = U ∗
34 = e015

ε011
U ∗

33,

U ∗
44 =

(
e015
ε011

)2
U ∗

33 + V ∗
44(x, ξ), with ΔV ∗

44 − a2V ∗
44 = − h−1/2(ξ)

ε011
δ(x, ξ),

(8)

where Δ = ∂2

∂x21
+ ∂2

∂x22
is the Laplace operator, γ = c044 + (e015)

2

ε011
and k2 = ρ0ω2

γ
− a2.

Equations in (8) are of Helmholtz type and let us consider the model equation
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Δv(x, ξ) + k2v(x, ξ) = c(ξ)δ(x, ξ)

where k2 is a constant and c(ξ) �= 0. Let us introduce the notation r(x, ξ) = |x − ξ|.
There are the following 3 types of solutions with respect to k see [9]:

(−) if k2 < 0, v(x, ξ) = c(ξ)
2π K0(|k|r(x, ξ)) = ic(ξ)

4 H (1)
0 (i |k|r(x, ξ),

(0) if k2 = 0, v(x, ξ) = c(ξ)
2π ln r(x, ξ),

(+) if k2 > 0, v(x, ξ) = − c(ξ)
2π K0(−i |k|r(x, ξ)) = − ic(ξ)

4 H (1)
0 (|k|r(x, ξ),

where K0 is Kelvin function of 0-th order and H (1)
0 is Hankel function of the first

kind and 0-th order.
Now solving Helmholtz type equations in (8) and equation for V ∗

44 for different
values of k2 we obtain fundamental solution u∗ via {U ∗

KM} in (5) as follows, where
we use the notations

M0 =
⎛
⎝1 e015

ε011
e015
ε011

(
e015
ε011

)2

⎞
⎠ , N 0 =

(
0 0
0 1

ε011
.

)
.

3.1.1 Case (q)

Here k2 = ρ0ω2

γ
> 0, i.e., a = 0, h−1/2

q (x)h−1/2
q (ξ) = 1

bx2+1
1

bξ2+1 = Pq(x, ξ) and

u∗
q(x, ξ,ω) = −Pq(x, ξ)

[
i

4γ
M0H (1)

0 (kqr(x, ξ)) + 1

2π
N 0 ln r(x, ξ)

]
. (9)

3.1.2 Case (e)

In this case h−1/2
e (x)h−1/2

e (ξ) = e−a(x2+ξ2) = Pe(x, ξ) and let us define ω0 = γ
ρ0

|a|,
a �= 0 and thenwith respect toωwehave the following cases for k2 and corresponding
fundamental solutions: For k2 < 0, i.e., ω < ω0, this is case (-) that corresponds to
simple vibration behavior:

u∗
e(x, ξ,ω) = −Pe(x, ξ)

[
i

4γ
M0H (1)

0 (i |ke|r(x, ξ)) − 1

4
N 0H (1)

0 (i |a|r(x, ξ))
]

.

(10)
For k2 = 0, i.e., ω = ω0, this is case (0) that corresponds to quazi-static behavior;

u∗
e(x, ξ,ω) = Pe(x, ξ)

[
1

2πγ
M0 ln r(x, ξ) − 1

4
N 0H (1)

0 (i |a|r(x, ξ))
]

. (11)

For k2 > 0, i.e., ω > ω0, this is case (+) that corresponds to wave propagation behav-
ior:
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u∗
e(x, ξ,ω) = −Pe(x, ξ)

[
i

4γ
M0H (1)

0 (ker(x, ξ)) + 1

4
N 0H (1)

0 (i |a|r(x, ξ))
]

. (12)

The fundamental solution of the equation of motion (1) for different types of the
material gradient depends on the type and properties of the material gradient, on the
reference material piezoelectric properties and on the frequency of the dynamic load.

3.2 Plane-Wave Solution

In order to find SH plane-wave solution of (1) in a quadratically and exponentially
graded whole plane we will use the transformation (3), so that Uin

K satisfies Eq. (4)
with constant coefficients and the incident generalized displacement solution is uinK =
h−1/2(x)Uin

K . Vector functionUin =
{
Uin

3
Uin

4

}
is obtained by the wave decomposition

method, following Chap. 11 in [1], which is expressed as follows

Uin =
(
1
e015
ε011

)
eik(x1ζ1+x2ζ2) (13)

where ζ1 = cos θ, ζ2 = sin θ and θ ∈ (0,π/2] is the direction of the SH wave.

4 Green’s Function and Free-Field Solution

4.1 Green’s Function

Green’s function g(x, ξ,ω) of Eq. (1) in the half-plane IR2
− is a fundamental solu-

tion that satisfies in addition prescribed traction boundary condition on x2 = 0, i.e.,
g(x, ξ,ω) is defined as the solution of the problem

Lg ≡ �i J M,i + ρJ Kω2gKM = δJMδ(x, ξ), x, ξ ∈ IR2
−

T g
JM = −δJ3μ

Sg3M,11 on x2 = 0,
(14)

where the corresponding to Green’s function g(x, ξ,ω) stress is defined as �i J M =
Ci JKlgKM,l , the corresponding to Green’s function g(x, ξ,ω) traction is T g

JM =
�i J Mni and n = (0, 1) is outward normal vector to the boundary x2 = 0. Note
that boundary condition (14) concerns only the pure mechanical stress and traction,
although g(x, ξ,ω) is time-harmonic Green’s function for piezoelectric half-plane.
Constant μS �= 0 if there is a surface effect on x2 = 0, see [2, 3] and μS = 0 if the
classical traction-free boundary condition on x2 = 0 is satisfied in the case of absence
of surface elasticity effect. In the case of piezoelectricity with taking into account
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the surface elasticity effects it is assumed: (a) existence of the infinitely thin layer
along the half-plane free surface which is elastic isotropic with own surface elastic
characteristics; (b) the thin free surface layer is electrically impermeable and inside
it the electric field is ignored. It may be thought as a low-capacitance medium with
a potential jump Δφ = φ+ − φ−. The boundary condition for the normal compo-
nents of the electrical displacement in this case is DS

n = 0 along the free surface thin
layer S. In order to derive Green’s functions we will proceed as in [8]. Let us denote
β = √

η2 − k2 and use the following representation of the Hankel function and ln r ,
see [6]:

H (1)
0 (kr) = 1

iπ

∫ iα+∞
iα−∞

1
β
e−β|x2−ξ2|eiη(x1+ξ1)dη, x2 < 0, ξ2 < 0,

ln r = 1
2

∫ +∞
−∞

1
|η|e

−|η||x2−ξ2|eiη(x1+ξ1)dη, x2 < 0, ξ2 < 0,
(15)

where r = |x − ξ|, k = k1 + ik2, k1 = ρω2

γ
− a2, k2 > 0, −k2 < α < k2. Note that

in the cases we consider, we can pass k2 → 0, i.e., α = 0 in (15) and integrals are
over IR.

The expression (15) is replaced in (9) for case (q) and in (10)—(12) for case (e).
Recall that for the fundamental solution it holds Lu∗(x, ξ,ω) = δ(x, ξ)I2, I2

is unit matrix in IR2. As far as Green’s function is presented by g(x, ξ,ω) =
u∗(x, ξ,ω) + w(x, ξ,ω), we have to find 2 × 2 matrix functionw(x, ξ,ω) = {wI J },
I, J = 3, 4 such that

Lw(x, ξ,ω) = 0,
Tw
JM − δJ3μ

Sw3M,11 = − (
T u∗
JM − δJ3μ

Su∗
3M,11

)
, for x2 = 0.

(16)

Note that for matrix function z JM = h− 1
2 (x)ZJM (x, ξ,ω), the traction matrix on

x2 = 0 is defined as

T z
JM |x2=0 = σ2JM |x2=0 = C0

2J K2

(
− 1

2h
− 1

2 h′
,2ZKM + h

1
2 ZKM,2

)
|x2=0.

So, in the considered inhomogeneity cases we have

Case (q): T z
JM |x2=0 = C0

2J K2

[−bZKM + ZKM,2
] |x2=0,

Case (e): T z
JM |x2=0 = C0

2J K2

[−aZKM + ZKM,2
] |x2=0.

(17)

The matrix function w(x, ξ,ω) is derived separately for cases (q) and (e).

4.2 Quadratic Inhomogeneity—Case (q)

We are asking for matrix function w(x, ξ,ω) as an inverse Fourier transform in
respect to η with components wI J = 1

bx2+1WI J where
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WI J = 1

bξ2 + 1

∫
IR

(
SI J

1

β
eβ(x2+ξ2) + DI J

1

|η|e
|η|(x2+ξ2)

)
eiη(x1−ξ1)dη, (18)

here β2 = η2 − k2 and SI J , DI J depend on η, β, μS , γ, b, but does not depend on
x1, x2.

The columns of the matrix function WI J should satisfies Eq. (4) with con-
stant coefficients, then wI J satisfies Eq. (16). This holds under the conditions

S4J = e015
ε011

S3J , D3J = 0, J = 3, 4. Independent functions S3J and D4J , J = 3, 4
are determined from the boundary conditions (16) on x2 = 0. Applying (17) for w

and u∗ it is obtained finally the following expressions

S33 = 1
4πγ

β+b+μSη2

β−b−μSη2 , S43 = e015
ε011

S33, S34 = e015
ε011

1
4πγ

β+b
β−b , S44 = e015

ε011
S34,

D33 = D34 = 0, D34 = 1
2πγ

|η|+b
|η|−b , D44 = e015

ε011
D34.

4.3 Exponential Inhomogeneity—Case (e)

By the use of the fundamental solutions (10), (11), (12) and representations (15), we
will find the corresponding matrix function w(x, ξ,ω) for different cases of k. Let
us define together with β = √

η2 − k2 also βk = √
η2 + k2 and βa = √

η2 + a2.

4.3.1 Simple Vibration Case k2 < 0

We are asking for matrix function w−(x, ξ,ω) as an inverse Fourier transform in
respect to η with components w−

I J = e−ax2W−
I J , where

W−
I J = e−aξ2

∫
IR

(
S−
I J

1

βk
eβk (x2+ξ2) + D−

I J

1

βa
eβa(x2+ξ2)

)
eiη(x1−ξ1)dη.

We find that Eq. (16) is satisfies for w−
I J , if

S−
33 = 1

4πγ
βk+a−μSη2

βk−a+μSη2 , S
−
43 = e015

ε011
S−
33, S

−
34 = e015

ε011

1
4πγ

βk+a
βk−a , S−

44 = e015
ε011

S−
34,

D−
33 = D−

34 = 0, D−
34 = 1

2πγ
βa+a
βa−a , D−

44 = e015
ε011

D−
34.

4.3.2 Quasi-Static Case k2 = 0

We are asking for matrix function w0(x, ξ,ω) as an inverse Fourier transform in
respect to η with components w0

I J = e−ax2W 0
I J , where
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W 0
I J = e−aξ2

∫
IR

(
S0I J

1

|η|e
|η|(x2+ξ2) + D0

I J

1

βa
eβa(x2+ξ2)

)
eiη(x1+ξ1)dη.

We find that Eq. (16) is satisfied for w−
I J , if

S033 = 1
4πγ

|η|+a−μSη2)

|η|−a+μSη2)
, S043 = e015

ε011
S033, S

0
34 = e015

ε011

1
4πγ

|η|+a
|η|−a , S

0
44 = e015

ε011
S034,

D0
33 = D0

34 = 0, D0
34 = 1

2πγ
βa+a
βa−a , D0

44 = e015
ε011

D0
34.

4.3.3 Wave Propagation Case k2 > 0

We are asking for matrix function w+(x, ξ,ω) as an inverse Fourier transform in
respect to η with components w+

I J = e−ax2W+
I J , where

W+
I J = e−aξ2

∫
IR

(
S+
I J

1

β
eβ(x2+ξ2) + D+

I J

1

βa
eβa(x2+ξ2)

)
eiη(x1+ξ1)dη.

We find that Eq. (16) is satisfied for w+
I J , if

S+
33 = 1

4πγ
β+a−μSη2

β−a+μSη2 , S
+
43 = e015

ε011
S+
33, S

+
34 = e015

ε011

1
4πγ

β+a
β−a , S+

44 = e015
ε011

S+
34,

D+
33 = D+

34 = 0, D+
34 = 1

2πγ
βa+a
βa−a , D

+
44 = e015

ε011
D+

34.

4.4 Free–Field Wave Solution

The traction-free boundary conditions along the boundary of the inhomogeneous
half-plane are expressed by the following formulas defined by the vector-valued
function z = h−1/2(x)Z(x,ω)

Case (q): T z
J |x2=0 = C0

2J K2

[−bZK + ZK ,2
] |x2=0

Case (e): T z
J |x2=0 = C0

2J K2

[−aZK + ZK ,2
] |x2=0

Let us denote z f f
K = zinK + zscK , where zinK is incident SH wave generalized dis-

placement and zscK is the generalized displacement of SH wave scattering by the
boundary x2 = 0. For the boundary condition with the surface effect it holds
T z f f

J − δJ3μ
Sz f f

3,11

∣∣
x2=0 = 0. Note that the surface effect can present only for the

mechanical displacement component z3. As is mentioned in [3] there exists only
scattering SH wave displacement in the case of incident SH-wave displacement,
propagating in half-plane with surface effect along its boundary. We suppose that
this is true also for the considered here quadratically and exponentially graded in
depth piezoelectric half-plane.
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We are asking the free–field wave solution in the form
u f f
K = h−1/2(x)

(
A1Uin

K + A2Usc
K

)
, where Uin is defined in (13) and

Usc =
(
1
e015
ε011

)
eik(x1ζ1−x2ζ2).

Our aim is to determine constants A1, A2 such that the boundary condition (13)
holds. Note that the amplitude of the incident wave is usually assumed to be unit.
Both inhomogeneity cases will be considered separately.

4.4.1 Quadratic Inhomogeneity—Case (q)

Recall that in this case h−1/2
q (x) = 1

bx2+1 , b ≤ 0 and

(
u f f
3

u f f
4

)
= 1

bx2 + 1

(
1
e015
ε011

) [
Aq
1e

−ik(x1ζ1+x2ζ2) + Aq
2e

−ik(x1ζ1−x2ζ2)
]
.

After some simplifications we obtain that the boundary conditions

T u f f

3 − μSu f f
3,11

∣∣
x2=0 = 0, and T u f f

4

∣∣
x2=0 = 0 are satisfy if Aq

2 = γ(b+ikζ2)−μSζ21
γ(−b+ikζ2)+μSζ21

Aq
1 .

4.4.2 Exponential Inhomogeneity—Case (e)

Recall that in this case h−1/2
e (x) = e−ax2 , and we will consider only the case of wave

propagation, i.e., k2 = ρ0ω2

γ
− a2 > 0

(
u f f
3

u f f
4

)
= e−ax2

(
1
e015
ε011

) [
Ae
1e

−ik(x1ζ1+x2ζ2) + Ae
2e

−ik(x1ζ1−x2ζ2)
]
.

After some simplifications we obtain that boundary conditions

T u f f

3 − μSu f f
3,11

∣∣
x2=0 = 0, and T u f f

4

∣∣
x2=0 = 0 are satisfy if Ae

2 = γ(a+ikζ2)−μSk2ζ21
γ(−a+ikζ2)+μSk2ζ21

Ae
1.

5 Concluding Remarks

2D half-plane Green’s functions and free-field SH wave solutions for a family of
homogeneous and inhomogeneous in depth piezoelectric and elastic isotropic mate-
rials at macro and nano-level are derived analytically. They are the key components
of the mesh-reducing BEM-based models with well-known advantages discussed in
details in [1, 4] for solution of dynamic problems for inhomogeneous/homogeneous
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and heterogeneous elastic and multifunctional materials with coupled properties.
Different types of half-plane domains under dynamic loads with or without hetero-
geneities (layers, cracks, inclusions, relief) can be studied via BEM based on the
derived here Green’s functions and free-field SH wave solutions.

The above-described package of analytically derived dynamic Green’s functions
and free-field SH wave solutions presents an excellent basis for development of
innovative dynamic BEMmodels in solid mechanics, fracture mechanics, mechanics
of heterogeneous, and functional graded materials at macro and nano level.
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On the Well-Posedness for The Complex
Ginzburg–Landau Equation on the
Product Manifold R

d × T

Elena Nikolova, Mirko Tarulli, and George Venkov

Abstract We prove both local and global well-posedness results for the solution to
the complex Ginzburg–Landau equation with pure power mass-energy intercritical
nonlinearity, posed on the product space Rd × T.

Keywords Non-linear differential equations · Ginsburg Landau equation ·
Well-posedness

1 Introduction

The aim of this paper is to display local and global well-posedness in energy space for
the solution to the complex nonlinear Ginzburg–Landau equation (GLE) onRd × T,
with d ≥ 1 andT = R/2πZ is the one-dimensional standard torus endowed with the
flat metric. Namely, we consider the following Cauchy problem:

{
ut − (b1 + ib2)Δx,yu = (c1 + ic2)|u|αu, (t, x, y) ∈ R+ × R

d × T,

u(0, x, y) = f (x, y) ∈ H 1(Rd × T).
(1.1)
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Here b1 ≥ 0, b2, c1, c2 are real parameters, Δx,y = Δx + ∂2
y , and the nonlinearity

parameter α satisfies the assumption

0 < α < α∗(d), α∗(d) =
{

4
d−1 if d ≥ 2,

+∞ if d = 1,
(1.2)

such that α∗(d) corresponds to the H 1-critical nonlinearity in R
d+1. Notice that

the Cauchy problem (1.1) inherits the properties of the gauge invariant nonlinear
Schrödinger equation (NLS), but lacks its Hamiltonian structure. In view of that, we
shall explore local and global existence, assuming the initial data are chosen in the
space H 1(Rd × T). Our first main result in this direction is given in the following:

Theorem 1 Let d ≥ 1 and α satisfying the assumption (1.2) be fixed. Then we have,
for any initial data f ∈ H 1(Rd × T), that the problem (1.1) has a unique local
solution u(t, x, y) ∈ C([0, T ); H 1(Rd × T)), where T = T (‖ f ‖H 1(Rd×T)) > 0.

Our second result sheds light on the conservation of mass and energy for the GLE
when it behaves like a Schrödinger-type equation (that is, when b1 = 0). We have

Theorem 2 The solution u(t, x, y) ∈ C((−T, T ); H 1(Rd × T)) of

{
iut + b2Δx,yu = (ic1 − c2)|u|αu, (t, x, y) ∈ R+ × R

d × T,

u(0, x, y) = f (x, y) ∈ H 1(Rd × T),
(1.3)

with b2 > 0, c1, c2 < 0 satisfies the following inequalities

‖u(t)‖L2(Rd×T) ≤ ‖ f ‖L2(Rd×T) (1.4)

and
E(u(t)) ≤ E(u(0)), (1.5)

for any t > 0, where

E(u(t)) = b2
2

∫
Rd×T

(|∇xu(t, x, y)|2 + |∂yu(t, x, y)|2)dxdy (1.6)

+ |c2|
α + 2

∫
Rd×T

|u(t, x, y)|α+2dxdy.

Moreover u(t, x, y) can be extended globally in time.

The Ginzburg–Landau type equations have an important role in several different
models of mathematical physics, quantum mechanics as well as biomedicine. We
refer to [7] for more detailed information on their applications. Moreover, we mainly
address [4, 14], were all the mathematical analysis associated to the Lr -theory for
the GLE of type (1.1) is developed in details. On the other hand, we recall [3] and [1]
(and the included references), in which well-posedness and again blow up for the half
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Ginzburg–Landau–Kuramoto equation with rough coefficients are examined. In the
previous two papers, the nonlinearity considered is of the type ic|u|αu, with c ∈ R,
which transposes in our frame to selecting c1 	= 0 and c2 = 0 in (1.3). A key tool to
study the properties for solutions to the nonlinear problem of type of (1.1) are the
Strichartz estimates (see for example [5, 6, 13] and references therein). Our paper
has two different aims. First we show, the unconditional local well-posedness of the
solution to (1.1) in the energy space by generalizing the classical L2-based Strichartz
estimates and the nonlinear extended Strichartz ones (see [2, 8, 10] and [11]) to the
free propagator e(b1+ib2)tΔx,y . We highlight that our method used in the various proofs
guarantees to treat the lack of endpoint estimates, especially for d = 1, 2. In addition
it permits to avoid, in the fixed point argument, the use of the fractional Leibniz rule
to the term |u|αu with respect to the x-variable. Then we exhibit that, unlike the
classical NLS with pure power nonlinearity, the mass and energy are not conserved
quantities for theGLE, but decay, adding a parabolic effect to the system.Thismethod
permits to bypass the technical difficulties associatedwith the classical regularization
argument (see [4]).

2 Notations and Preliminaries

We indicate by f ∈ Lr1
x L

r2
y , for 1 ≤ r1, r2 < ∞, if

‖ f ‖r1
L
r1
x L

r2
y

=
∫
Rd

‖ f (x, ·)‖r1
L
r2
y
dx < +∞, where ‖ f (x, ·)‖r2

L
r2
y

=
∫
T

| f (x, y)|r2 dy,

with obvious modification for r1, r2 = ∞. Moreover, we introduce, for any s, γ ∈ R,
the Sobolev spaces

Hs
x = (1 − Δx )

− s
2 L2(Rd), H γ

y = (1 − ∂2
y)

− γ
2 L2(T)

and the anisotropic space

Hs
x H

γ
y = (1 − Δx )

− s
2 (1 − ∂2

y)
− γ

2 L2
x,y .

Given any Banach space X we define, for any 1 ≤ q < ∞,

‖ f ‖Lq
t X =

(∫
R+

‖ f (x)‖qX dt

)1/q

,

with obvious modification for q = ∞. For its version local in time we embrace the
notation Lq

T X when t ∈ (0, T ), for T > 0. In addition, we shall need:



132 E. Nikolova et al.

Proposition 1 For every 1
2 < γ < 1, there exists C̃ = C(α, γ) > 0 such that:

‖u|u|α‖Hγ
y

≤ C̃‖u‖α+1
Hγ

y
. (2.1)

Proof The proof can be found in [11], so we will omit it. �

3 Strichartz Estimates for the Complex GLE

The Schrödinger group eitΔx and the heat semigroup etΔx are both parts of the analytic
semigroup defined via the Fourier transform as

ezΔxϕ = F−1
(
e−4zπ2|·|2Fϕ

)
,

for all complex z with Re z ≥ 0. It follows that for t > 0, e(b1+ib2)tΔx is a continuous
map on the space of tempered distributions S ′ (

R
d
)
and that for each ϕ ∈ S ′ (

R
d
)
,

the map t �→ e(b1+ib2)tΔxϕ is continuous from R+ into S ′ (
R

d
)
and the operator

e(b1+ib2)tΔx = F−1e−(b1+ib2)t |ξ|2F enjoys several decay estimates that are summa-
rized in the following:

Proposition 2 Let 2 ≤ r ≤ p ≤ ∞. Then, for any t > 0, b1 ≥ 0 and b2 ∈ R we
have ∥∥e(b1+ib2)tΔx f

∥∥
L p
x

� t−
d
2 ( 1

r − 1
p ) ‖ f ‖Lr

x
. (3.1)

Proof The proof is based on an application of the Young and Hölder’s inequalities
and can be found in [4] (see also [12]). �

As a consequence of the above result, we can obtain generalized Strichartz esti-
mates (see [2] and [6]) on the geometric setting R

d × T, adapted to the nonlinear
problem (1.1)which are fundamental for the proof ofwell-posedness results.Namely,
inspired by [11], one gets

Lemma 1 For any d ≥ 3, γ ∈ ( 12 , 1) and α satisfying the assumption (1.2) there
exist real s∗ = dα−4

2α ∈ (
0, 1

2

)
and s∗ ≤ s < 1

2 , at least a pair (q, r) ∈ R
2+ and a

corresponding pair (q̃, r̃) ∈ R
2+ that fulfill
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0 <
1

r
,
1

r̃
<

1

2
, 0 <

1

q
<

1

2
, 0 <

1

q̃
< 1, (3.2)

1

q
+ 1

q̃
< 1,

d − 2

d
<

r

r̃
<

d

d − 2
, (3.3)

1

q
+ d

r
<

d

2
,

1

q̃
+ d

r̃
<

d

2
, (3.4)

2

q
+ d

r
= d

2
− s,

2

q
+ d

r
+ 2

q̃
+ d

r̃
= d, (3.5)

1

r̃ ′ = α + 1

r
,

1

q̃ ′ ≥ α + 1

q
, (3.6)

such that the solution to the GLE (1.1) satisfies the estimate

‖e(b1+ib2)tΔx,y f ‖Lq
t Lr

x H
γ
y

+
∥∥∥∥
∫ t

0
e(b1+ib2)(t−τ )Δx,y F(τ )dτ

∥∥∥∥
Lq
t Lr

x H
γ
y

≤ C
(
‖ f ‖Hs

x H
γ
y

+ ‖F‖
Lq̃′
t Lr̃ ′

x Hγ
y

)
. (3.7)

For d = 1, 2 the above estimate remains valid, provided that we drop the conditions
(3.3).

Proof We introduce the operator

u(t, x, y) = e(b1+ib2)tΔx,y f (x, y) +
∫ t

0
e(b1+ib2)(t−τ )Δx,y F(τ , x, y)dτ

and observe that

∂t u − (b1 + ib2)Δxu + (b1 + ib2)∂
2
yu = F, (t, x, y) ∈ R+ × R

d × T, (3.8)

with u(0, x, y) = f (x, y). We have the following decomposition with respect to the
orthonormal basis {eiky} of L2(T),

u(t, x, y) =
∑
k

uk(t, x)e
iky, (3.9)

F(t, x, y) =
∑
k

Fk(t, x)e
iky, (3.10)

f (x, y) =
∑
k

fk(x)e
iky . (3.11)

Notice that the functions uk(t, x), Fk(t, x) and fk(x) satisfy the following Cauchy
problem
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∂t uk − (b1 + ib2)Δxuk + (b1 + ib2)k
2uk = Fk, (t, x) ∈ R+ × R

d , (3.12)

with uk(0, x) = fk(x). Let us prove the homogeneous estimates. Applying the clas-
sical homogeneous Strichartz estimates (see [6]) to (3.12) with Fk(x, y) = 0, we
achieve

‖e(b1+ib2)t (Δx−k2) fk‖Lq
t Lr

x
≤ C‖ fk‖Hs

x
,

with (q, r) and s as in (3.2) and (3.5). We see that the presence of the factor
e−(b1+ib2)tk2 does not affect the above estimates, moreover the constants C > 0 does
not depend on k. Summing the squares over k we achieve

‖e(b1+ib2)t (Δx−k2) fk‖�2k L
q
t Lr

x
≤ C‖ fk‖�2k H

s
x
.

Furthermore, because of q, r ≥ 2, by theMinkowski inequality and Plancherel iden-
tity we infer

‖e(b1+ib2)tΔx,y f ‖Lq
t Lr

x L
2
y
≤ C‖ f ‖Hs

x L
2
y
,

Now it is sufficient to commute the equation (3.8) with the operator (−∂2
y)

γ
2 , then

the estimate (3.7) follows. The proof of inhomogeneous case in (3.7) is similar: by
picking fk(x, y) = 0 in (3.12) and using now the extended inhomogeneous Strichartz
estimates obtained in [8] and [11] one arrives at∥∥∥∥

∫ t

0
e(b1+ib2)(t−τ )(Δx−k2)Fk(s, ·)dτ

∥∥∥∥
Lq
t Lr

x�
2
k

≤ C ‖Fk‖Lq̃′
t Lr̃ ′

x �2k
, (3.13)

with (q, r) and (q̃, r̃) satisfying the relations (3.2)–(3.5). To complete the proof of
the lemma we want not only that the above estimates work together, but also in a way
well fitted to handle the nonlinear problem (1.1). This is guaranteed by Proposition 1
in [10] (see also [8] and [11]), which states that the set of real numbers (q, r), (q̃, r̃)
and s satisfying all the conditions (3.2)–(3.5) and (3.6) is not empty. �

We look also at the full classical Strichartz estimates.

Proposition 1 Let be d ≥ 1. Indicate by Dk both ∇x , and ∂y . Then we have for
k = 0, 1 and γ ∈ R the following estimates:

‖Dke(b1+ib2)tΔx,y f ‖L�
t L

p
x H

γ
y

+
∥∥∥∥Dk

∫ t

0
e(b1+ib2)(t−τ )Δx,y F(τ )dτ

∥∥∥∥
L�
t L

p
x H

γ
y

(3.14)

≤ C
(‖Dk f ‖L2

x H
γ
y

+ ‖DkF‖
L �̃′
t L p̃′

x Hγ
y

)
,

provided that

2

�
+ d

p
= 2

�̃
+ d

p̃
= d

2
, � ≥ 2, (�, 2) 	= (2, 2). (3.15)
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Proof We can proceed as in the proof of Lemma 1, making use now of the clas-
sical Strichartz estimates available in [4, 12, 14], (see also [13] and references
therein). �

4 Proof of Main Theorems

4.1 Unconditional Well-Posedness in C([0, T ); H1(Rd × T))

First, we will need the next useful result.

Proposition 3 Let d ≥ 1 and α satisfying the assumption (1.2) be fixed. Then there
exist pairs (q, r) and (�, p) satisfying (3.15) and such that:

1

p′ = 1

p
+ α

r
,

1

�′ >
1

�
+ α

q
. (4.1)

Proof The proof of the caseα ≥ 4/d, with (q, r) any couple given by Lemma 1, can
be found in [8]. For 0 < α < 4/d, instead, it is enough to select ( 1q , 1

r ) = ( 1
�
, 1
p ) =

( dα
4(α+2) ,

1
α+2 ) satisfying (3.15). �

We can proceed with:

4.1.1 Proof of Theorem 1.

We will perform a contraction argument, following [8] and [9]. Let be defined the
integral operator associated to (1.1) for all f ∈ H 1

x,y ,

T f (u) = e(b1+ib2)Δx,y f + (c1 + ic2)
∫ t

0
e(b1+ib2)(t−τ )Δx,y (|u|αu)(τ , x, y) dτ . (4.2)

One wants to show that there exist a T = T
(‖ f ‖H 1

x,y

)
> 0 and an unique u(t, x, y) ∈

C((0, T ); H 1
x,y), satisfying the property T f (u(t)) = u(t), for any t ∈ (0, T ). Let us

set the following auxiliary norm

‖w‖ZT (q,r) = ‖w‖Lq
T L

r
x H

γ
y

+ ‖w‖L�
T L

p
x L2

y
+ ‖∇xw‖L�

T L
p
x L2

y
+ ∥∥∂yw

∥∥
L�
T L

p
x L2

y
, (4.3)

where (q, r) are as in Lemma 1 and (�, p) = (�(q, r), p(q, r)) as in Proposition 3.
We split the proof in several different steps as follows.
StepOne:Forany f ∈ H 1

x,y , there exist T = T
(‖ f ‖H 1

x,y

)
> 0and R = R

(‖ f ‖H 1
x,y

)
>

0 such that for any T ′ < T :

T f BZT ′ (q,r)(0, R)) ⊂ BZT ′ (q,r)(0, R).
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We start with estimating the nonlinear term by using (3.6) in combination with (2.1),
Sobolev embedding and the Hölder inequality. Namely

‖(c1 + ic2)u|u|α‖
Lq̃′
T Lr̃ ′

x Hγ
y

� ‖‖u‖α+1
Hγ

y
‖
Lq̃′
T Lr̃ ′

x
� T

1
q̃′ − α+1

q ‖u‖α+1
Lq
T L

r
x H

γ
y
, (4.4)

for some C > 0. Hence, the estimate (3.7) with s + γ ≤ 1 allows us to conclude

‖T f u‖Lq
T L

r
x H

γ
y

� ‖ f ‖Hs
x H

γ
y

+ T
1
q̃′ − α+1

q ‖u‖α+1
Lq
T L

r
x H

γ
y
. (4.5)

An use of Propositions 1, 3, in conjunction with the bound (2.1), Hölder inequality,
and Sobolev embedding yields the following:

‖T f u‖L�
T L

p
x L2

y
+ ‖∇xT f u‖L�

T L
p
x L2

y
+ ‖∂yT f u‖L�

T L
p
x L2

y

�
∑
k=0,1

(
‖Dk f ‖L2

x L
2
y
+ ‖Dk(u|u|α)‖

L�′
T L

p′
x L2

y

)

�
∑
k=0,1

(
‖Dk f ‖L2

x L
2
y
+ ∥∥‖Dku(t, x)‖L2

y
‖u(t, x)‖α

L∞
y

∥∥
L�′
T L

p′
x

)

�
∑
k=0,1

(
‖Dk f ‖L2

x L
2
y
+ ∥∥‖Dku(t, x)‖L p

x L2
y
‖u(t, x)‖α

Lr
x H

γ
y

∥∥
L�′
T

)

�
∑
k=0,1

(
‖Dk f ‖L2

x L
2
y
+ T

1
�′ − 1

�
− α

q ‖Dku(t, x)‖L�
T L

p
x L2

y
‖u(t, x)‖α

Lq
T L

r
x H

γ
y

)
. (4.6)

Combining the above result with (4.5) and the natural embedding H 1
x ⊆ Hs

x H
γ
y we

get

‖T f u‖ZT (q,r) � ‖ f ‖H 1
x,y

+ T
1
�′ − 1

�
− α

q ‖u‖ZT (q,r)‖u‖α
Lq
T L

r
x H

γ
y
, (4.7)

that concludes the proof of the step.
StepTwo:Let T, R > 0beas in theprevious step, then there exists T = T

(‖ f ‖H 1
x,y

)
<

T such that T f is a contraction on BZT (q,r)(0, R), equipped with the norm ‖.‖Lq
T
Lr
x L

2
y
.

For any v1, v2 ∈ BLq
T L

r
x H

γ
y
(0, R), by estimate (3.7), Minkowski, Hölder and Sobolev

inequalities, we arrive to

‖T f v1 − T f v2‖Lq
T L

r
x L

2
y
≤ C‖v1|v1|α − v2|v2|α‖

Lq̃′
T Lr̃ ′

x L
2
y

≤ C
∥∥‖v1 − v2‖L2

y
(‖v1‖α

L∞
y

+ ‖v2‖α
L∞
y
)
∥∥
Lq̃′
T Lr̃ ′

x

≤ CT
1
q̃′ − α+1

q

(
‖v1‖α

Lq
T L

r
x H

γ
y

+ ‖v2‖α
Lq
T L

r
x H

γ
y

)
‖v1 − v2‖Lq

T L
r
x L

2
y
.

This is enough to complete this step.
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Step Three: The solution exists and is unique inZT (q, r),where T is as in the former
step.
We are in position to show existence and uniqueness of the solution by apply-
ing the contraction principle to the map T f defined on the complete metric space
BZT (q,r)(0, R), equipped with the topology induced by ‖.‖Lq

T
Lr
x L

2
y
.

Step Four: Regularity of the solution: u(t, x) ∈ C((0, T ); H 1
x,y).

Arguing as in the proof of (4.6) with (�, p) = (∞, 2) provides u(t) ∈ C((0, T );
H 1

x,y).

Step Five: Assuming that u1, u2 ∈ C((0, T ); H 1
x,y) are fixed points of T f , then

u1 = u2.
The technique utilized here is a generalization of the one presented in [9–11] (and
references therein). If u1, u2 are fixed points of T f then T f (u1 − u2) = u1 − u2. By
(3.14), we get by Sobolev embedding and the property 2 <

αp
p−2 < 2d

d−1 , true for any
d ≥ 1,

‖T f (u1 − u2)‖L�
T L

p
x L2

y
� ‖|u1|αu1 − |u2|αu2‖L�′

T L
p′
x L2

y

� ‖u1 − u2‖L�
T L

p
x L2

y

(
‖u1‖α

L
α�
�−2
T L

αp
p−2
x L∞

y

+ ‖u2‖α

L
α�
�−2
T L

αp
p−2
x L∞

y

)

‖u1 − u2‖L�
T L

p
x L2

y
T

�−2
�

(
‖u1‖α

L∞
T L

αp
p−2
x Hγ

y

+ ‖u2‖α

L∞
T L

αp
p−2
x Hγ

y

)

� ‖u1 − u2‖L�
T L

p
x L2

y
T

�−2
�

(
‖u1‖α

L∞
T H 1

x,y
+ ‖u2‖α

L∞
T H 1

x,y

)
, (4.8)

for T suitably small. A continuity argument completes the proof of the final
step. �

4.2 Decay of Mass and Energy

In this setting, for each ϕ ∈ S ′ (
R

d
)
, the map t �→ eib2tΔxϕ is continuous from

R into S ′ (
R

d
)
and by the above arguments we know now that u(t, x, y) ∈

C((−T, T ); H 1(Rd × T)) because b1 = 0 (see [11]). We are in position to give
the proof of the second main result.

4.2.1 Proof of Theorem 2

Throughout this section we shall denote the nonlinearity as h(u) = (|c2| −
i |c1|)|u|αu. We follow the technique presented in [10] that relies entirely on
Duhamel’s representation of the solution to (1.3)
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u(t) = U (t) f − i
∫ t

0
U (t − s)h(u) ds, (4.9)

where U (t) = eitb2Δ is a Schrödinger-type operator. We have

Im 〈h(u), u〉 = − Im i〈|c1||u|αu, u〉 = −|c1|〈|u|αu, u〉. (4.10)

Thanks to the Eq. (1.3) we obtain

Im 〈h(u), b2Δx,yu〉 = Re 〈(|c2| − i |c1|)|u|αu, ∂t u〉
= 1

2

|c2|
α + 2

∂t

∫
Rd×T

|u|α+2dxdy − |c1| Re i〈|u|αu, ∂t u〉. (4.11)

We apply the operatorU (−t) to u, ∇xu and ∂yu. Because of its unitary property, we
get for k = 0, 1,1

∥∥∥Dku(t)
∥∥∥2
L2
x,y

=
∥∥∥U (−t)Dku(t)

∥∥∥2
L2
x,y

=
∥∥∥∥Dk f − i

∫ t

0
U (−s)Dkh(u(s)) ds

∥∥∥∥
2

L2
x,y

=
∥∥∥Dk f

∥∥∥2
L2
x,y

+ 2 Im
∫ t

0
〈Dkh(u(s)),U (s)Dk f 〉 ds +

∥∥∥∥
∫ t

0
U (−s)Dkh(u(s)) ds

∥∥∥∥
2

L2
x,y

.

(4.12)

A differentiation and then a further integration of the last term w.r.t. the time variable
yield

∥∥∥∥
∫ t

0
U (−s)Dkh(u(s)) ds

∥∥∥∥
2

L2
x,y

= 2 Im
∫ t

0
〈Dkh(u(s)),−i

∫ s

0
U (s − σ)Dkh(u(σ))dσ〉 ds.

(4.13)

Plugging (4.13) into (4.12) we arrive to

∥∥Dku(t)
∥∥2

L2
x,y

= ∥∥Dk f
∥∥2

L2
x,y

+ 2 Im
∫ t

0
〈Dkh(u(s)), Dku〉 ds. (4.14)

Finally, using property (4.10) we obtain, for k = 0, the mass

‖u(t)‖2L2
x,y

= ‖ f ‖2L2
x,y

− 2|c1|
∫ t

0
〈|u|αu, u〉 ds, (4.15)

1 We underline here that the inner products are understood, for k = 0, 1, in

(L∞
t H1

x,y ∩ L�
t H

k,α
x L2

y ∩ L�
t L

α
x H

k
y ) × (L1

t H
1
x,y + L�′

t H
k,α/(α−1)
x L2

y + L�′
Lα/(α−1)Hk

y ),

with � = 4α/(d(α − 2)).
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which immediately leads to (1.4). From (4.11), for k = 1, we get instead

E(u(t)) = E(u(0)) + |c1| Re i
∫ t

0
〈(|u|αu)(s), ∂su(s)〉 ds, (4.16)

with E(u(t)) as in (1.6). By inserting (1.3) into (4.16) we achieve

E(u) − E(u(0)) = |c1|
∫ t

0
Re 〈|u|αu, −i∂su〉 ds

= |b2c1|
∫ t

0
Re 〈|u|αu, Δx,yu〉 ds − |c1c2|

∫ t

0
Re 〈|u|αu, |u|αu〉 ds. (4.17)

Then it follows that

E(u(t)) − E(u(0)) ≤ |b2c1|
∫ t

0
Re 〈|u|αu, Δx,yu〉 ds

= −|b2c1|
∫ t

0
Re 〈|u|α(∇x , ∂y)u + u(∇x , ∂y)|u|α), (∇x , ∂y)u〉 ds

= −|b2c1|
∫ t

0

∫
Rd×T

|u|α ∣∣(∇x , ∂y)u
∣∣2 + α|u|α−2( Re (u(∇x , ∂y))

2u) dx dy ds ≤ 0.

(4.18)

This shows that the energy is a decreasing function w.r.t the time variable and the
proof of the theorem is complete. �
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Exact Traveling Wave Solutions
of the Generalized
Rosenau–Kawahara-RLW Equation
via Simple Equations Method

Elena V. Nikolova and Mila Chilikova-Lubomirova

Abstract We apply the Simple Equations Method (SEsM) for obtaining exact solu-
tions of a non-linear partial differential equation (PDE) from the kind of the gener-
alized Rosenau–Kawahara-RLW equation. The elliptic equation of Jacobi and the
elliptic equation of Weierstrass are used as simple equations. Various exact solu-
tions of the studied equation are obtained. These solutions are expressed by a special
function V , which takes various forms depending on the used simple equation.

Keywords Exact traveling wave solutions · Rosenau–Kawahara-RLW equation ·
Simple equations method

1 Introduction

The complex dynamics of many processes in nature and human society is often
presented by non-linear PDEs. Various analytical and numerical methods can be
applied to the analysis of such models. Finding exact analytical solutions to these
models is a powerful and effective tool for a better understanding of the space-
temporal dynamics of these systems. Many years ago, the methods for obtaining
exact solutions of non-linear PDEs were appropriate only for the case of integrable
non-linear equations, as the method of inverse scattering transform or the method of
Hirota [1–3]. Recently, other methods for obtaining exact special solutions of non-
integrable non-linear PDEs have been developed (for examples, see [4–6]). Another
famous method in this branch is the Method of Simplest Equation (MSE) developed
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by Kudryashov [7]. Modification of this method is made in [8, 9], as it is known as
Modified Method of Simplest Equation (MMSE). The MMSE follows the concept
of the balance equation. It is based on the determination of the kind of the simplest
equation and truncation of series constructed from solutions of the simplest equation
by means of application of a balance equation. This methodology was successfully
applied for obtaining exact traveling wave solutions of various non-linear evolution
equations [10, 11]. In the last few years,MMSE has been extended, as the last version
is called Simple Equations Methodology (SesM) (see [12, 13]). SEsM is based on
the possibility of the use of more than one simple equation. For this case, the used
simple equations are more simple than the solved non-linear PDE, but these simple
equations in fact can be quite complicated. The SEsM and its particular cases were
successfully applied in [14–19].

Below, we shall apply the SesM for obtaining exact analytical solutions of the
generalized Rosenau–Kawahara-RLW equation. A short description of the studied
equation and the basic algorithm of SesM is presented in Sect. 2. In Sect. 3, various
analytical solutions of one variant of the generalized Rosenau–Kawahara-RLW are
derived. Conclusions based on the obtained results are made in Sect. 4.

2 Problem Formulation and Methodology

In this study, we consider the generalized Rosenau–Kawahara-RLW equation, pre-
sented in the form [20]:

ut + αux + βu pux − γuxxt + εuxxx + λuxxxxt + μuxxxxx = 0. (1)

Here, u(x, t) is the non-linear wave profile, where x and t are spatial and temporal
variables, respectively. Also, α,β, γ, ε,λ,μ are arbitrary parameters, and p is a
positive integer presenting power law non-linearity. Equation (1) is the generalization
of three basic models available in the literature depending on the numerical values
of the model parameters. For the case when ε = λ = μ = 0, Eq. (1) is reduced to the
general regularized long-wave (RLW) equation [21]. When γ = ε = μ = 0, Eq. (1)
is reduced to the general Rosenau equation [22]. When γ = λ = 0, it gives rise to the
general Kawahara equation [23]. All of these equations have extensive applications
in many scientific areas such as fluid mechanics, electro magnetics, plasma, and
non-linear optics.

Here, we shall search for an analytical solution of Eq. (1) applying the SEsM. The
SEsM can be used for obtaining analytical solutions of non-linear PDEs of the kind

�(u(x, t), ........) = 0 (2)
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where the left-hand side of Eq. (2) is a relationship containing the function u(x, t)
and some of its derivatives. The algorithm of SEsM includes the following four steps
[19]:

(1) The transformation

u(x, ..., t) = Tr(F1(x, ..., t), F2(x, ..., t), ...FN (x, ...., t)) (3)

is made, where Tr(F1, F2, ..., FN (x, ...., t)) is a composite function of other
functions Fi i = 1...N . F1(x, ..., t), F2(x, ..., t), ..., FN (x, ...., t) are functions
of several spatial variables, as well as of time. The transformations Tr have
two goals: (1) They can remove some non-linearities if possible (an example is
the Hopf–Cole transformation, which leads to the linearization of the Burgers
equation); (2) They can transform the non-linearity of the solved differential
equations to a more treatable kind of non-linearity (e.g., to polynomial non-
linearity). In many particular cases, one may skip this step (then we have just
u(x, ..., t) = F(x, ..., t)), but in numerous cases this step is necessary for obtain-
ing a solution of the studied non-linear PDE. The substitution of Eq. (3) in Eq.
(2) leads to a non-linear PDE for the function F(x, ..., t). In many cases, the
general form of the transformation Tr(F) is not known.

(2) This step is based on the use of composite functions. In this step, the functions
F1(x, ..., t), F2(x, ..., t), ... are chosen as composite functions of the functions
fi1, ..., fi N , ..., which are solutions of simpler differential equations. There are
two possibilities: (1) The construction relationship for the composite function is
not fixed. Then, the Faa di Bruno relationship for the derivatives of a composite
function is used; (2) The construction relationship for the composite function is
fixed. For example, for the case of one solved equation and one function F , the
construction relationship can be chosen to be

F = α̂ +
N∑

i1=1

β̂i fi1 +
N∑

i1=1

N∑

i2=1

γ̂i1 fi1 fi2 + .... +
N∑

i1=1

.....

N∑

iN=1

σ̂i1...in fi1 .... fiN .

(4)
Then one can directly calculate the corresponding derivatives from the solved
differential equation.

(3) In this step, the simple equations for the functions fi1 , ..., fiN must be selected. In
addition, in accordancewith the hypothesis of Point (1) of Step 2, the relationship
between the composite functions F1(x, ..., t), F2(x, ..., t), ..., and the functions
fi1 , ..., fiN must be fixed. The fixation of the simple equations and the fixation
of the relationships for the composite functions are connected. The fixations
transform the left-hand sides of Eq. (2). The result of this transformation can be
functions that are the sum of terms. Each of these terms contains some function
multiplied by a coefficient. This coefficient is a relationship containing some of
the parameters of the solved equations and someof the parameters of the solutions
of the simple equations used. The fixation mentioned above is performed by a
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balance procedure that ensures that the relationships for the coefficients contain
more than one term. This balance procedure leads to one or more additional
relationships among the parameters of the solved equation and parameters of the
solutions of the simple equations used. These additional relationships are known
as balance equations.

(4) A non-trivial solution of Eq. (2) is obtained if all coefficients mentioned in Step
3 are set to zero. This condition usually leads to a system of non-linear algebraic
equations. The unknown variables in these equations are the coefficients of the
solved non-linear differential equation and the coefficients of the solutions of
the simple equations. Any non-trivial solution of this algebraic system leads to
a solution of the studied non-linear PDE.

Below, we shall apply the above-given methodology to obtain exact solutions of
Eq. (1). We shall consider u as a composite function of one function of one variable
ξ = κx + ωt (κ and ω are parameters), i.e.,

u(ξ) = f [g(ξ)]. (5)

Let us assume that f is a polynomial of g. Then

f =
n∑

i

aig(ξ)i . (6)

In this way, Eq. (5) becomes

u =
n∑

i

aig(ξ)i , (7)

where ai , i = 0, ..., n are parameters, and n shall be determined by means of a
balance equation. We use the following simple equation:

(dkg

dξk

)l =
m∑

j=0

b jg
j , (8)

where k is the order of derivative of g, l is the degree of derivative in the defining
ODE, and m is the highest degree of the polynomial of g in the defining ODE. We
shall present the solutions of Eq. (5) by the special function V (ξ, k, l,m), which
has interesting properties. This function can be trigonometric, hyperbolic, elliptic
function of Jacobi, etc. For our study, we choose one specific case of the function V ,
the function Vb0,b1,...,bm (ξ; 1, 2,m), which is a solution of the simple equation:

(dg

dξ

)2 =
m∑

j=0

b jg
j , (9)
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where b j , j = 0, ...,m are parameters, and m shall be determined by means of a
balance equation.

Below, we shall present several examples of the application of V depending on
the numerical value of m.

3 Exact Solutions of the Generalized
Rosenau–Kawahara-RLW Equation

Following the above-given algorithm, we skip Step 1 of SEsM (no additional trans-
formation of non-linearity). In Step 2, we consider u as a composite function of one
variable ξ = κx + ωt (see Eq. 5). Then Eq. (1) is reduced to

(ω + ακ)
du

dξ
+ βκu p du

dξ
− γκ2ω

d3u

dξ3
+ εκ3 d

3u

dξ3
+ (λωκ4 − μκ5)

d5u

dξ5
= 0. (10)

In Step 3 of SEsM, we have to select the equation for u( f ) (the relationship for the
composite function) and the equation for g(ξ) (the simple equation). We assume that
the expression for u is of kind (7). In addition, the simple equation g is assumed to
be of kind (9). The substitution of Eqs. (7) and (9) in Eq. (10) leads to a polynomial
of the function g. In order to obtain the system of non-linear algebraic equations, we
have to write balance equations for these powers, i.e., in this case we have to balance
the largest powers. This procedure leads us to the balance equation

n = 2m − 4

p
. (11)

We fix p = 2. Then Eq. (1) may have solutions of the kind

u(x, t) =
m−2∑

i=0

aig(ξ)i , ξ = κx + ωt (12)

and the function g is a solution of the simple equation

(dg

dξ

)2 =
m∑

j=0

b jg
j . (13)

Wenote that the solutionofEq. (1) is presentedby theV -functionVb0,...,bm (ξ; 1, 2,m).
Below, we give two examples of the solution of this equation depending on the
numerical value of m.
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3.1 Case M = 4

According to the balance equation (11), n = 2. In this case

u(ξ) = a0 + a1g + a2g
2,

(dg

dξ

)2 = b0 + b1g + b2g
2 + b3g

3 + b4g
4. (14)

The substitution of Eq. (14) in Eq. (10) leads to a system of six non-linear algebraic
equations (Step 4. of the SesM). One non-trivial solution of this system is

a0 = 1

40

1

b4
√

β κ(−λω + μκ)
(80μκ3b4 b2 − 4 (480μκ5b24b

2
2λω

−1440 κ5b4
3b0 λω μ − 10 κ2α b4

2μ − 240μ2κ6b4
2b2

2 − 10ω b4
2μκ

+720μ2κ6b4
3b0 + 720 κ4b4

3b0 λ2ω2 + 10ω2b4
2λ + 10 κα b4

2λω

−240 κ4b24b
2
2λ

2ω2)1/2 − 80 κ2b4 b2 λω)
√
10; b1 = 1

8

(4b4b2 − b23)b3
b24

a1 = 1008
κ4

√
10

√
β κ (−λω + μκ)b3

β (24κ3λω b24 − 24κ4μ b24 + 360 κ3)

a2 = 6

√
10

√
β κ (−λω + μ k)b4 ˇ

β
, (15)

ε = κ2

4α3b4
(4 b4 ω γ + 4 (−240 κ6μ2b22b

2
4 + 720 κ6μ2b34b0 − 1440 κ5b34b0 λω μ

+480 κ5b22b
2
4λω μ − 240 κ4b22b

2
4λ

2ω2 + 720 κ4b34b0 λ2ω2

−10 κ2α b24μ − 10ω b24kμ + 10 κα b24λω + 10ω2b24λ)1/2).

Then the used simple equation becomes

(dg

dξ

)2 = b0 + 1

8

(4b4b2 − b23)b3
b24

g + b2g
2 + b3g

3 + b4g
4, (16)

where b0, b2, b3, and b4 are free parameters, and b1 is dependent on b2, b3 and b4.
The solution of Eq. (16) can be written as

g = V
b0,

1
8

(4b4b2−b23 )b3

b24
,b2,b3,b4

(ξ; 1, 2, 4). (17)

Then, the solution of Eq. (10) (and Eq. 1 respectively) is
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u(ξ) = 1

40

1

b4
√

β κ (−λω + μκ)
(80μκ3b4 b2 − 4 (480μκ5b24b

2
2λω

1440 κ5b34b0 λω μ − 10 κ2α b24μ − 240μ2κ6b24b
2
2 − 10ω b24μκ

+720μ2κ6b34b0 + 720 κ4b34b0 λ2ω2 + 10ω2b24λ + 10 κα b24λω

−240 κ4b24b
2
2λ

2ω2)1/2 − 80 κ2b4 b2 λω)
√
10 (18)

+1008
κ4

√
10

√
β κ(−λω + μκ)b3

β (24κ3λω b24 − 24κ4μ b24 + 360 κ3)
V
b0,

1
8

(4b4b2−b23 )b3

b24
,b2,b3,b4

(ξ; 1, 2, 4)

+6

√
10

√
β κ (−λ ω + μ k)b4 ˇ

β
V 2

b0,
1
8

(4b4b2−b23 )b3

b24
,b2,b3,b4

(ξ; 1, 2, 4), ξ = κx + ωt.

Let us consider the specific case b1 = 0 and b3 = 0. Then the non-trivial solution of
the system of non-linear algebraic equations reduces to

a0 = 1

b4
√

β κ (−λω + μκ)
(80μκ3b4 b2 − (160ω2b24λ − 3840κ4b24b

2
2λ

2ω2

−160ωb24μκ − 160κ2αb24μ − 3840μ2κ6b24b
2
2 + 11520μ2κ6b34b0

+11520κ4b34b0λ
2ω2 + 160καb24λω − 23040κ5b34b0λωμ

+7680μκ5b24b
2
2λω)1/2 − 80 κ2b4 b2 λω)

√
10 (19)

a1 = 0; a2 = 6

√
10

√
β κ (−λω + μκ)b4κ

β
;

ε = κ2

α3
(ω γ + (−240 κ6μ2b2

2 + 720 k6μ2b4b0 − 1440 κ5μ b4b0λω

+480 κ5μ b2
2λω − 240 κ4λ2ω2b2

2 + 720 κ4λ2ω2b4b0 − 10α μ κ2 + 10ω2λ)1/2).

Then the used simple equation becomes

(dg

dξ

)2 = b0 + b2g
2 + b4g

4, (20)

where b0, b2, and b4 are free parameters. Equation (20) is of the Jacobi elliptic
function kind, and its solution can be presented as

g = Vb0,0,b2,0,b4(ξ; 1, 2, 4). (21)

Then, the solution of Eq. (10) (and Eq. 1 respectively) reduces to
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u(ξ) = 1

b4
√

β κ (−λω + μκ)
(80μκ3b4 b2 − (160ω2b24λ − 3840κ4b24b

2
2λ

2ω2

−160ωb24μκ − 160κ2αb24μ − 3840μ2κ6b24b
2
2 + 11520μ2κ6b34b0

+11520κ4b34b0λ
2ω2 + 160καb24λω − 23040κ5b34b0λωμ (22)

+7680μκ5b24b
2
2λω)1/2 − 80 κ2b4 b2 λω)

√
10

+6

√
10

√
β κ (−λω + μκ)b4κ

β
V 2
b0,0,b2,0,b4(ξ; 1, 2, 4), ξ = κx + ωt.

In the context of Jacobi elliptic functions, the solution (22) presented by the special
function Vb0,0,b2,0,b4(ξ; 1, 2, 4) may have various forms depending on the numerical
values of the free coefficients b0, b2, and b4. The most popular variants of solutions
are

V1,0,−(1+k∗2),0,k∗2(ξ; 1, 2, 4) = sn(ξ, k∗);
V(1−k∗2),0,(2k∗2−1),0,k∗2(ξ; 1, 2, 4) = cn(ξ, k∗); (23)

V−(1−k∗2),0,(2−k∗2),0,−1(ξ; 1, 2, 4) = dn(ξ, k∗),

where k∗ (0 < k∗ < 1) is the modulus of the elliptic function. In addition, when
k∗ → 0, the Jacobi elliptic functions degenerate to the trigonometric functions. For
example

sn(ξ) → sin(ξ), cn(ξ) → cos(ξ), dn(ξ) → 1. (24)

Moreover, when k∗ → 1, the Jacobi elliptic functions degenerate to the hyperbolic
functions. For example

sn(ξ) → tanh(ξ), cn(ξ) → sech(ξ), dn(ξ) → sech(ξ). (25)

All possible solutions of the Jacobi elliptic equation (and Vb0,0,b2,0,b4(ξ; 1, 2, 4),
respectively) depending on the values of b0, b2, and b4 can be found in [24].

3.2 Case M = 3

According to the balance equation (11), n = 1. In this case

u(ξ) = a0 + a1g,
(dg

dξ

)2 = b0 + b1g + b2g
2 + b3g

3. (26)

The substitution of Eq. (26) in Eq. (10) leads to a system of three non-linear algebraic
equations (Step 4 of the SesM). One non-trivial solution of this system is
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a0 = 1

10

(
γ ω − 5κ2λω b2 + 5κ3μ b2 − ε κ

) √
10√

β κ (−λω + μκ)
;

a1 = 3

2

√
10

√
β κ (−λω + μκ)κ b3

β
(27)

b1 = (−10α κ λ ω − 2 γ ω ε κ + 15κ4λ2ω2b22 − 30 κ5μ b22λω − 10λω2

+γ2ω2 + ε2κ2 + 15κ6μ2b22 + 10ω μκ + 10α κ2μ)/(45κ4b3(λ
2ω2

−2λω μκ + μ2κ2)).

Then the used simple equation becomes

(dg

dξ

)2 = b0 + b1g + b2g
2 + b3g

3, (28)

where b0, b2, b3 are free parameters, and b1 is dependent on b2 and b3 (see Eq. (27)).
The solution of Eq. (28) can be written as

g = Vb0,b1,b2,b3(ξ; 1, 2, 3) (29)

where b1 is presented in Eq. (27). Then, the solution of Eq. (10) (and Eq. 1, respec-
tively) is

u(ξ) = 1

10

(
γ ω − 5κ2λω b2 + 5κ3μ b2 − ε κ

) √
10√

β κ (−λω + μκ)
(30)

+3

2

√
10

√
β κ (−λω + μκ)κ b3

β
Vb0,b1,b2,b3(ξ; 1, 2, 3)

as ξ = κx + ωt .
Let us consider the specific case b2 = 0 and b3 = 4.We rewrite also b0 = −g3 and

b1 = −g2. Then the used simple equation is reduced to an equation of theWeierstrass
elliptic function kind ℘(ξ, g2, g3)

(d℘

dξ

)2 = 4℘3 − g2℘ − g3, (31)

where g2 and g3 are parameters. Then the non-trivial solution of the system of non-
linear algebraic equations reduces to

a0 = 1

10

(γ ω − ε κ)
√
10√

β κ (−λω + μκ)
; a1 = 6

√
10

√
β κ (−λω + μκ)κ

β
(32)

ε = 1

κ
(γ ω + (10α κ λ ω − 10ω μκ + 10λω2 + 360 κ5λω μ

−180g2κ
6μ2 − 10α κ2μ − 180g2κ

4λ2ω2)1/2)
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where g2 is a free parameter (The parameter g3 is not presented in the formulas given
above.). For this case, the V function can be presented as

Vb0,b1,0,4(ξ; 1, 2, 3) = ℘(ξ, g2, g3). (33)

Then, the solution of Eq. (10) (and Eq. 1, respectively) is reduced to

u(ξ) = 1

10

(γ ω − ε κ)
√
10√

β κ (−λω + μκ)
+ 6

√
10

√
β κ (−λω + μ κ)κ

β
℘(ξ, g2, g3), ξ = κx + ωt. (34)

In order to show the forms of the Weierstrass elliptic functions in a more famil-
iar (popular) format, we rewrite them in terms of Jacobi’s elliptic functions. The
corresponding relations are

℘(ξ, g2, g3) = e3 + e1 − e3
sn2(ξ

√
e1 − e3, k∗)

;

℘(ξ, g2, g3) = e2 + (e1 − e3)
dn2(ξ

√
e1 − e3, k∗)

sn2(ξ
√
e1 − e3, k∗)

; (35)

℘(ξ, g2, g3) = e1 + (e1 − e3)
cn2(ξ

√
e1 − e3, k∗)

sn2(ξ
√
e1 − e3, k∗)

,

where e1, e2, and e3 are the roots of the polynomial 4℘3 − g2℘ − g3, and the mod-

ulus of Jacobi’s elliptic functions is k∗ =
√

e2−e3
e1−e3

(e1 > e2 > e3). The Weierstrass

elliptic functions can take other forms considered in the context of Jacobi elliptic
functions. For example, when k∗ → 0, i.e., e2 → e3, the Jacobi elliptic functions
(and the Weierstrass elliptic functions, respectively) can transform to the trigono-
metric functions (for instance, see Eq. 24). Moreover, when k∗ → 1, i.e., e2 → e1,
the Jacobi elliptic functions (and the Weierstrass elliptic functions, respectively) can
transform to the hyperbolic functions (for instance, see Eq. 25).

4 Conclusion

In this paper, we obtain various exact traveling wave solutions of a variant of the gen-
eralized Rosenau–Kawahara-RLW equation by applying a particular case of SEsM,
including the use of one simple equation. The elliptic equation of Jacobi and the
elliptic equation of Weierstrass are used as simple equations. The general solutions
of the studied equation are presented by the special function V . It is shown that for
specific values of the coefficients of the used simple equations, exact solutions of the
elliptic kind, of triangular kind, or of hyperbolic kind are possible.
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Several Properties of the Solutions
of Linear and Semilinear Harmonic
and Polyharmonic Equations

Petar Popivanov and Angela Slavova

Abstract This paper deals with several necessary conditions for the existence of
nontrivial classical non-negative solutions to the Dirichlet problem for the semilin-
ear polyharmonic equation and for the existence of weak solutions to the Dirichlet
problem for Liouville equation with power type singularity |x |−2. By using variants
of Harnack inequality for some classes of second-order elliptic PDEs (say of Cordes
type), quantitative Hopf’s principle is verified and the corresponding constant in the
case of harmonic functions is written explicitly.

Keywords Semilinear polyharmonic equation · Liouville equation · Harnack
inequality · Quantitative Hopf’s principle · Explicit solutions

1 Introduction and Formulation of the Main Results

We have two aims in this paper. At first, we find necessary conditions for the solv-
ability of the homogeneous Dirichlet problem for the semilinear polyharmonic equa-
tion (−�)mu = f (u) + g(x) in the unit ball B1 in Rn with polynomial nonlinearity
f (u) and right-hand side g(x) < 0; f (u) contains the term c|u|u−1.s, s = n+2m

n−2m , and
n > 2m, being the critical embedding Sobolev exponent. For a special choice of
f (u) and g(x), the Dirichlet problem under consideration does not possess classical
positive (non-negative) in B1 nontrivial solution u.

Our first result is illustrated by the well-known example having f (u) = λu +
|u|ss, λ ≤ 0. We shall formulate in a more general form Proposition 1, while more
refined results will be proposed and commented on the process of proving.

Proposition 1 Consider the boundary value problem (bvp)

(−�)mu = f (u) + g(x), f ∈ C1(R1), g(x) ∈ C1in B̄1, (1)
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B1 = {x ∈ Rn : |x | < 1}, S1 = ∂B1, m > 1, n > 2m and u ∈ C2m(B1) ∩ C2m−1

(B̄1), u|S1 = ∂u
∂n |S1 = . . . = ∂m−1u

∂nm−1 |S1 = 0, ∂
∂n |S1 = ∂

∂r |r=1. Put I1 = ∫
B1

[F(u(x)) −
n−2m
2n u(x) f (u(x))]dx, where F = ∫ z

0 f (μ)dμ and I2 = 1
n

∫
B1
u(x)(Lu + n+2m

2 )

g(x)dx, where L = ∑n
j=1 x j

∂
∂x j

is the radial vector field.
Then (1) does not possess the classical solution u if I1 ≤ 0, I2 ≤ 0 and I1 + I2 <

0. Under the requirements (15), (18) proposed below (1) does not have classical
non-negative non trivial solutions.

Later on, in Example 2, we construct a 1 parametric family of non-classical solu-
tions 0 > uc ∈ C∞(B1 \ 0) of the Liouville-type equation, which develop logarith-
mic singularities at the origin, while eu

r2 ∈ C∞(B̄1) for the values of the parameter
c = 4k2, k ∈ N.More precisely, u can be prolonged at 0 in such away that e

u

r2 becomes
C∞ smooth everywhere.

Then we prove that

∣
∣
∣
∣
−�u = eu

2|x |2 + f (x), 0 ∈ Ω ⊂ Rn, n ≥ 2,Ω − bdd , ∂Ω ∈ C2

u|∂Ω = 0
(2)

with f ≥ 0, f �≡ 0, d(x) f (x) ∈ L1(Ω), d(x) = dist (x, ∂Ω), x ∈ Ω does not pos-
sess weak solutions.

In the second part of the paper, we prove the quantitative Hopf lemma for Cordes-
type second-order elliptic equation

Lu =
n∑

i, j=1

ai j (x)uxi x j = 0, ai j (x) = a ji (x) (3)

in the bounded domain Ω with ∂Ω ∈ C2. The coefficients |ai j (x)| ≤ M , M =
const > 0 and if we denote by A(x) = (ai j (x))ni, j=1, according to Cordes condi-
tion, the eigenvalues 0 < λ1(x) ≤ . . . ≤ λn(x) of A(x) do not scatter too much, i.e.,

tr A(x) =
n∑

i=1

λi (x) ≤ λλ1(x) (4)

with n ≤ λ < n + 2.
We shall begin with the Laplace equation.

Proposition 2 Suppose that u ∈ C1(B̄1) is a non-constant harmonic function in
B1(0) and it attains its maximum at x0 ∈ ∂B1(0). Then

∂u

∂n
(x0) ≥ (2n + 1)e−(2n+1) 1

3

(
2

3

)n−2

(u(x0) − u(0)). (5)

This is the quantitative Hopf principle.
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Proposition 3 Consider the non-constant classical solution u(x) of (3) , u ∈ C0(Ω̄)

and assume that ∂u
∂n exists at the point x0 ∈ ∂Ω such that maxΩ̄u = u(x0). Then

there exists a positive constant C(λ, n, M, ∂Ω) for which ∂u
∂n (x0) ≥ C(u(x0) −

u(z0)), z0 ∈ Ω .

As usual, n stands for the unit outward normal to ∂Ω at x0 and the location of z0 can
be specified—z0 belongs to some ball BR(y0) ⊂ Ω which is tangential to ∂Ω at x0.

Detailed proofs of Proposition 1–3 are given in Sect. 2. The proof of Proposition 1
is based on Pohozaev identity [4], the study of (2) relies on [1], the proof of Proposi-
tion 2 is standard but uses Harnack inequality for non-negative harmonic functions
in the ball. In the proof of Proposition 3, we apply [11] and Harnack inequality for
positive solutions of (2) under Cordes condition (4) [2, 3, 8, 9, 12, 13].

2 Proofs and Comments of Propositions 1–3

1. To find several necessary conditions for the solvability of the Dirichlet problem
for the polyharmonic equation in the ball, we shall use Pohozaev-type identity [4].
Thus, let B1 = {x ∈ Rn : |x | < 1}, S1 = ∂B1, n > 2m, m > 1 and u ∈ C2m(B1) ∩
C2m−1(B̄1) satisfies the Dirichlet problem (1) into the equivalent form:

∣
∣
∣
∣
(−�)mu = f (u) + g(x), f ∈ C1(R1), g ∈ C1(B̄1)

Dαu|S1 = 0, |α| ≤ m − 1.
(6)

Evidently, u ≡ 0 in (1) ⇒ g(x) = − f (0), ∀x ∈ B1.
There are two different cases for m : m even, i.e., m = 2k, k ≥ 1, m-odd, i.e.

m = 2k + 1. Then it is proved in [4] that if L = ∑n
j=1 x j

∂
∂x j

= r d
dr is the radial

vector field
∫

B1

(−�)2kuLudx = −n − 2m

2

∫

B1

(�ku)2dx − 1

2

∫

S1

(�ku)2dw (7)

for m-even and

∫

B1

(−�)2k+1uLudx = −n − 2m

2

∫

B1

|∇�ku|2dx − 1

2

∫

S1

(
∂

∂n
�ku

)2

dw (8)

for m-odd.

Remark 1 (1) If x ∈ S1 and nx is the unit outward normal to S1 at x , then
< x, nx >= 1.

(2) Define s = n+2m
n−2m > 1 as critical Sobolev exponent.
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In fact, the embedding Hm
0 (Ω) into L p+1(Ω) for Ω-smooth bounded domain in Rn

is compact for p < s. It remains continuous but not compact for p = s, namely,
Hm

0 (Ω) ⊂ Ls+1, s + 1 = 2n
n−2m > 2, n > 2 ([4]).

There are no difficulties to guess that

∫

B1

g(x)Ludx = −
∫

B1

uLg − n
∫

B1

u(x)g(x)dx = −
∫

B1

u(x)(L + n)g(x)dx,

(9)∫

B1

f (u)Ludx = −n
∫

B1

F(u(x))dx, (10)

where F(z) = ∫ z
0 f (μ)dμ, i.e. F

′
(z) = f (z).

From (6) with testing function n−2m
2 u, we conclude that for m = 2k

n − 2m

2

∫

B1

(�ku)2dx = n − 2m

2

[∫

B1

u f (u)dx +
∫

B1

ug(x)dx

]

, (11)

while for m = 2k + 1

n − 2m

2

∫

B1

|∇�ku|2dx = n − 2m

2

[∫

B1

u f (u)dx +
∫

B1

ug(x)dx

]

. (12)

In fact,
∫
B1

�v.v + ∫
B1

|∇v|2 = ∫
S1

v ∂v
∂n dw = 0 if v = �ku ⇒ v|S1 = 0.

Combining (7), (9), (10), and (11), respectively, with (8), (9), (10), and (12), we
deduce that for m = 2k

0 ≤ 1

2n

∫

S1

(�ku)2dw =
∫

B1

[

F(u(x)) − n − 2m

2n
u(x) f (u(x))

]

dx + (13)

1

n

∫

B1

u(x)

(

L + n + 2m

2

)

g(x)dx ≡ I1 + I2

and, for m = 2k + 1,

0 ≤ 1

2n

∫

S1

(
∂

∂n
�ku

)2

dw =
∫

B1

[

F(u(x)) − n − 2m

2n
u(x) f (u(x))

]

dx + (14)

1

n

∫

B1

u(x)

(

L + n + 2m

2

)

g(x)dx = I1 + I2

Certainly, 0 < n−2m
2n = 1

s+1 < 1/2. (6) does not possess classical solution if I1 ≤ 0,
I2 ≤ 0 and I1 + I2 < 0. (13), (14) are identities for u = 0.

Our first step is to solve the linear first-order PDE

(L + A)g = h(x) ∈ C0(B̄1) (15)
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with (a) h ≤ 0, h �≡ 0, possibly (b) h(x) < 0 for x �= 0, A = n+2m
2 > 2.

The method of characteristics gives us that (15) possesses the solution

g(x) =
∫ 1

0
t A−1h(t x)dt ≤ 0, g �≡ 0, (16)

and g(x) < 0 for x �= 0 if h(x) < 0 for x �= 0; g(0) = h(0)
A , h ∈ C p ⇒ g ∈ C p,

p ∈ N0.
One can obtain the same result by writing (15) in polar coordinates, i.e., r dg

dr +
Ag = h(r, ω). This is linear ODE of first order, etc.

Our next step is to investigate I1. So, we consider the function

F(z) − 1

s + 1
z f (z) = F(z) − z

s + 1
F

′
(z). (17)

(i.e., we have put z = u(x)). We suppose that (17) satisfies ODE with negative right-
hand side, i.e.,

F(z) − 1

(s + 1)
zF

′
(z) = q(z) < 0 for 0 < |z| ≤ 1, q(0) = 0, 0 <

1

s + 1
<

1

2
.

(18)
Thus,

F(z) = C |z|s+1 − |z|s+1(s + 1)
∫

q(z)dz

z|z|s+1
. (19)

If q(z) ∼ −z2 near 0 then F(z) ∼ C |z|s+1 + s+1
1−s |z|2 and if q ≡ 0 ⇒ F(z) =

C |z|s+1. Certainly, in the case q(z) ∼ −z2 near 0, q(z) < 0 for |z| > 0, we have
that f (z) = F

′
(z) ∼ C(s + 1)|z|s−1z + 2z s+1

1−s , z ∼ 0, C > 0, 1 − s < 0. Formally,

if q(z) ∼ −z2p, z → 0 then F(z) ∼ C |z|s+1 + (s + 1) |z|2p
2p−(s+1) , i.e., f (z) ∼ C(s +

1)|z|s−1z + 2p(s+1)|z|2p−2

2p−(s+1) z, z → 0.
Combining the previous results, we come to Proposition 1 from Sect. 1. Thus,

the Dirichlet problem (6) under conditions (15), (18) imposed on the right-hand side
g(x) and, on the nonlinearity f (z), |z| ≥ 0 does possess classical positive solution
in the case (15) (a) and non-negative not nontrivial solution in the case (15) (b).

Example 1 As in [4] take f (u) = λu + |u|s−1u, λ ∈ R1-parameter. Then F(u) =
λ u2

2 + |u|s+1

s+1 , according to (16) g(x) = ∫ 1
0 t A−1h(t x)dt ≤ 0, g(x) �≡ 0, I1 = λ( 12 −

1
s+1 )

∫
B1
u2dx , u �≡ 0, λ < 0 ⇒ I1 < 0. Then (6) does not possess classical≥0 solu-

tion.
If g ≡ 0 (6) does not possess classical nontrivial solution u for λ < 0 (the sign of

u is not important).
Suppose now thatλ = 0 but (15) (b) holds. Then (6) does not possess non-negative

nontrivial classical solution in B1 for g(x) < 0, x �= 0 given by (16). Here, the trivial
solutions are: u ≡ 0; u ≡ 0 satisfies (6) with f (u) = λu + |u|s−1u if and only if
g(x) ≡ 0.
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Existence and regularity results for weak and classical solutions of (6) can be
found in [4], Sects. 7, 7.2, 7.4, and 7.5.

2. H.Brezis and X.Cabré considered in [1] the Dirichlet problem

− �u = u2

|x |2 + f (x), in Ω, u = 0 on ∂Ω, (20)

whereΩ is a smooth bounded domain inRn , 0 ∈ Ω with d(x) f (x) ∈ L1(Ω), f ≥ 0,
i.e., f �≡ 0. They proved that (20) does not possess a weak solution in the following
sense. Assume that h(x, u) is a Carathéodory function inΩ × R. Then u(x) is aweak
solution of−�u = h(x, u) inΩ , u|∂Ω = 0 if u ∈ L1(Ω), d(x)h(x, u) ∈ L1(Ω) and
− ∫

Ω
u�ξ = ∫

Ω
h(x, u)ξ for each ξ ∈ C2

0 (Ω̄). As usual, d(x) = dist (x, ∂Ω).
The problem for solvability of (20) is rather delicate, as �u ≤ 0 in Ω , i.e., u

is superharmonic function that attains its minimum at ∂Ω . If minΩu = u(x̂), x̂ ∈
Ω ⇒ u ≡ const.

Certainly, it is interesting to find out other solution, that does not enter into the
frames of the weak solutions.

Example 2 Consider the Dirichlet problem for the Liouville equation with power
singularity in the unit circle B1 ⊂ R2:

�u + eu

2|x |2 = 0, x ∈ B1, u|S1 = 0. (21)

At first, we construct formally a radial solution u of (21) (see [10]). In polar
coordinates, we have r2u

′′
(r) + ru

′
(r) + 1

2e
u(r) = 0, 0 < r ≤ 1, u(1) = 0. The stan-

dard change r = et , t ∈ (−∞, 0] and the substitution t = lnr , u(r) = ũ(t) lead to
ũ

′′ + 1
2e

ũ = 0, ũ(0) = 0, i.e., (ũ
′
)2 = C1 − eũ , C1 > 0, −∞ < ũ ≤ lnC1. We shall

investigate only the case ũ
′
(t) =

√
C1 − eũ . As ũ(0) = 0, wemust have lnC1 ≥ 0 ⇒

C1 ≥ 1. Suppose that C1 > 1, Thus, F(ũ) = ∫ ũ(t)
0

dλ√
C1−eλ

= t = lnr, ũ(0) = 0. If

F(ũ) =
∫ ũ

0

dλ
√
C1 − eλ

⇒ F
′
(ũ) > 0, ũ ≤ lnC1, F

′
(lnC1) = +∞, (22)

0 < F(lnC1) < ∞, F(ũ) ∼ ũ√
C1
, ũ → −∞, F(ũ) > 0 for 0 < ũ ≤ lnC1, F

′
(0) =

1√
C1−1

> 0.The inverse function ũ(t) = F−1(t),−∞ < t ≤ F(lnC1), ũ(t) ∼ √
C1t ,

t → −∞, ũ
′
(t) > 0, ũ(0) = 0, ũ

′ |F(lnC1) = 0. Therefore, u(r) = F−1(lnr), 0 < r ≤
eF(lnC1).

We can compute (22) via the change z = (C1 − eλ)1/2 (see [10]). The indefinite

integral F(ũ) = ∫
dũ√
C1−eũ

= − 1√
C1
ln|

√
C1+

√
C1−eũ√

C1−
√

C1−eũ
|, 0 < eũ ≤ C1 gives that lnr =

F(u) − F(0) = − 1√
C1
ln

√
C1+√

C1−eu√
C1−√

C1−eu√
C1+√

C1−1√
C1−√

C1−1

. Thus,
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u = ln4C1 + ln
r

√
C1

(r
√
C1(

√
C1 − √

C1 − 1) + √
C1 + √

C1 − 1)2
. (23)

Evidently, r = 1 ⇒ u(1) = 0, u ∼ √
C1lnr , r → 0, u ≤ lnC1, u = lnC1 ⇐⇒

r0 = (
√
C1 + √

C1 − 1)
2√
C1 > 1, 0 < r ≤ r0.

Consider eu

2r2 = 2C1
A

(A+1)2r2 . If
√
C1 = 2k, k ∈ N, then eu

2r2 ∈ C∞(B̄1) as r
√
C1 =

r2k ∈ C∞[0,∞). Otherwise, the regularity of
eu

2r2 is increasing with C1 > 1. Evi-
dently, u ∈ L p(B1) for each p ≥ 1. Certainly, u /∈ L∞(B1).

Conclusion. We have constructed 1-parametric family of solutions u = uC1(r),
C1 > 1 of (21). uC1 are superharmonic functions, for C1 = 4k2, we have that
eu

2|x |2 ∈ C∞(Br0), u ∈ C∞(Br0 \ {0}), Br0 = {|x | < r0, x ∈ R2} but uC1 develop log-
arithmic singularity at the origin and uC1 < 0 in B1. u can be prolonged smoothly in
[r0, 2r0] by the formula u(2r0 − r) = u(r) for 0 ≤ r ≤ r0.

We shall say several words about the weak solutions of the Dirichlet problem (2),
where d(x) f (x) ⊂ L1(Ω), f ≥ 0 almost everywhere, f �≡ 0. Repeating the proof
of Corollary 1.3. of [1], we conclude that (2) does not possess weak solutions. In
fact, at first, one proves that each weak solution u = 0 is almost everywhere. This is a
contradiction with (2) as f (x) ≥ 0 almost everywhere, f �≡ 0, while f (x) = − 1

2|x |2
almost everywhere in Ω . In the two-dimensional case, the proof is rather simple,
while if n ≥ 3, we apply Lemma 1.7 from [1] taking the smooth concave function

	(u) =
{
e−ε − e−u, u ≥ ε > 0
u−ε
eε , u ≤ ε,

, the solutionu of−�u ≥ eu

2|x |2 ,u ≥ 0, being≥ ε >

0 in some ball Bη(0) ⊂ Ω . Then we define v = 	(u), u = u(x), and x ∈ Bη(0) and
find that 0 ≤ v ≤ e−ε in Bη(0). According to Lemma 1.7, −�v ≥ 1

2|x |2 in Bη(0) in

distribution sense D
′
(Bη(0)). The function w = v − 1

2(n−2) log
1
|x | ∈ L1(Bη(0)) and

one checks that−�w ≥ 0 in D
′
(Bη(0)). Therefore, there exists a constantC > 0 and

such that w ≥ −C in Bη(0). Letting x → 0 (i.e., r → 0), we obtain contradiction
v(x) → +∞, i.e., u = 0 almost everywhere.

3. We shall prove now the quantitative Hopf lemma for harmonic functions [6]
with an explicit form of the constants participating in the corresponding formula (5).
So assume that u ∈ C2(B1) ∩ C0(B̄1) is harmonic function in the unit ball. Then if
u ≥ 0 in B1 ⊂ Rn , n ≥ 3, the Harnack inequality [5] claims that

1 − |x |
(1 + |x |)n−1

u(0) ≤ u(x) ≤ 1 + |x |
(1 − |x |)n−1

u(0), x ∈ B1. (24)

Having in mind that f1(r) = 1−r
(1+r)n−1 , 0 ≤ r ≤ 1 is monotonically decreasing, while

f2(r) = 1+r
(1−r)n−1 is monotonically increasing function of r we conclude that f1(r) ≥

1
3 (

2
3 )

n−2 in B̄1/2 and 0 < f2(r) ≤ 3.2n−2 in B̄1/2. Thus, (24) implies

1

3

(
2

3

)n−2

u(0) ≤ u(x) ≤ 3.2n−2u(0) in B̄1/2. (25)
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From (25), we deduce that in fB1/2u ≤ supB1/2u ≤ inf B1/2 u2.3
n . This is another form

of Harnack inequality.
We suppose that u(x) < u(x0),∀x ∈ B1, x0 ∈ S1, u(x) ≤ u(x0) at S1, as otherwise

u(x) = u(x0) for some x ∈ B1 ⇒ u ≡ u(x0). Another additional condition is u ∈
C1(B̄1) guaranteeing the existence of ∂u

∂n (x0) = ∂u
∂r |r=1(x0).

As usual consider the auxiliary function v(x) = e−α|x |2 − e−α with α > 0. Cer-
tainly, 0 < r < 1 ⇒ 1 − e−α > v(r) > 0, v(1) = 0, i.e. 0 < v(r) < 1.Writing� =
∂2

∂r2 + n−1
r

∂
∂r in radial coordinates we obtain �v = e−αr2(4α2r2 − 2αn) and there-

fore�v > 0 ⇐⇒ r >
√ n

2α . Suppose thatα ≥ 2n + 1 ⇒ √ n
2α < 1

2 . Taking r ≥ 1
2 ,

we see that v is subharmonic function, i.e., �v > 0 in B1 \ B1/2 = A. So maxĀu =
max∂Au = maxS1∪S1/2u.

Define in A the function hε(x) = u(x) − u(x0) + εv(x), ε > 0. Then �hε =
�u(x) + ε�v = ε�v > 0 in A andhε is subharmonic in A,maxĀhε = maxS1∪S1/2hε.
Thus, hε|S1 = u(x) − u(x0)|S1 ≤ 0, hε(x0) = 0 and

hε|S 1
2

= u|S1/2 − u(x0) + εv(x)|S1/2 < maxS1/2u − u(x0) + ε, (26)

as 0 < v|S1/2 < 1.
Consider now the non-negative harmonic function 0 < w(x) = u(x0) − u(x) in

B1. According to (25), in fS1/2w ≥ c(n)w(0), c(n) = 1
3 (

2
3 )

n−2. Therefore, u(x0) −
u(x) ≥ c(n)w(0), ∀x ∈ S1/2 ⇒

maxS1/2u ≤ u(x0) − c(n)w(0). (27)

From (26) and (27), we get hε|S1/2 < ε − c(n)w(0). Taking ε ≤ c(n)w(0), we
conclude that hε|S1/2 < 0. It is easy to see that maxĀhε = maxS1∪S1/2hε = 0 and
maximum is attained in x0 ∈ S1 = ∂B1. Consequently,

∂hε

∂n (x0) ≥ 0, i.e., ∂u
∂n (x0) ≥

−ε ∂v
∂r (x0) = 2εαe−α . Conclusion: ∂u

∂n (x0) ≥ 2αe−αc(n)(u(x0) − u(0)) and we may
take here α = 2n + 1, c(n) = 1

3 (
2
3 )

n−2. This way Proposition 2 is proved. In fact, (5)
holds with the above-given values of α and c(n).

Bellow,we shall generalize Proposition 2 for theCordes-type second-order elliptic
equation (3) (see [2, 3]): Lu = 0 inΩ , whereΩ is bounded domain inRn , ∂Ω ∈ C2.

These are the conditions, imposed on L.

(a) a = in fx∈Ω,|ξ |=1
∑n

j,k=1 a jk(x)ξ jξk, 0 < a < ∞. Thus,
∑n

j,k=1 a jk(x)ξ jξk ≥
a|ξ |2 and therefore

∑n
i=1 aii (x) ≥ na as aii (x) ≥ a.

(b)
∑

j,k |a jk(x)| ≤ M , i.e.,
∑n

i=1 aii (x) ≤ M .

(c) 0 < λ = supx∈Ω,|ξ |=1

∑n
i=1 aii (x)∑n

j,k=1 a jk (x)ξ j ξk
.

Thus,
∑n

j,k=1 a jk(x)ξ jξk ≥ 1
λ

∑n
i=1 aii (x)|ξ |2, i.e.,

n∑

j,k=1

a jk(x)ξ jξk ≥ na

λ
|ξ |2, x ∈ Ω, ξ ∈ Rn. (28)
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λ is called constant of ellipticity of L .
The Cordes condition (c) has the following interpretation. Consider the sym-

metric positive matrix A(x) = (a jk(x))nj,k=1 and denote by λ j (x) its eigenvalues:
0 < λ1(x) ≤ λ2(x) ≤ . . . ≤ λn(x). As we know, λ1(x) = in f|ξ |=1(Aξ, ξ), λn(x) =
sup|ξ |=1(Aξ, ξ),

∑n
i=1 λi (x) = tr A(x) = ∑n

i=1 aii (x). Therefore, sup|ξ |=1
1

(Aξ,ξ)
=

1
λ1(x)

⇒ λ = supx∈Ω,|ξ |=1

∑n
i=1 λi (x)
λ1(x)

⇒ ∑n
i=1 λi (x) ≤ λλ1(x). So λ ≥ n.

Further, we assume that supplementary

(d) n ≤ λ < n + 2.

Cordes condition means that the eigenvalues λi of A(x) do not scatter too much.
This is the result to be used further on.

Theorem 1 (10.2 from Chap.1 of [8]). Suppose that Lu = 0 in BR(y0) ⊂ Ω , u ∈
C2(Ω) ∩ C0(Ω̄), λ < n + 2 and u > 0 there. Then for each r, 0 < r < R

supBr (y0)u ≤ C1in fBr (y0)u (29)

and the constant C1 > 0 depends on λ, n, a, M, r
R , i.e., C1(λ, n, a, M, r

R ). Evidently,
C1 ≥ 1.

The proof of Proposition 3 imitates the proof of Proposition 2 up to application
of Theorem 1 in estimating w. We shall compare Proposition 3 with Theorem 2.2
from [7]. Consider the bounded domain Ω , ∂Ω ∈ C2 and the elliptic operator

L(u) = 1

2

n∑

j,k=1

a jk(x)
∂2u

∂x j∂xk
+

n∑

i=1

bi (x)
∂u

∂xi
+ c(x)u, (30)

u ∈ C2(Ω) ∩ C0(Ω̄), a jk = akj , bi , c ∈ C0(Ω̄), where
∑n

j,k=1 a jk(x)ξ jξk ≥ λ|ξ |2,
λ = const > 0,∀x ∈ Ω ,∀ξ ∈ Rn ,

∑n
j,k=1 |a jk(x)| + ∑n

i=1 |bi (x)| + |c| ≤ M ,M =
const > 0, x ∈ Ω .

Theorem 2.2 from [7] assumes that c(x) ≤ −c∗ for some c∗ > 0, ∀x ∈ Ω and u is
non-constant subsolution L(u) ≥ 0, attaining its non-negative maximum at x̂ ∈ ∂Ω ,
where ∂u

∂n (x̂) exists. Then there exists a positive constant γ (c∗, λ, M,Ω) and such
that ∂u

∂n (x̂) > γ u(x̂). In the proof of Proposition 3, we rely heavily on Harnack
inequality (29) for positive solutions of the Cordes-type elliptic PDE (4), while the
key ingredient in the proof of Theorem 2.2 is Feynman–Kac representation formula
of a subsolution to the elliptic equation (30).
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Global Existence Result of Solutions
for a Riser Equation with Logarithmic
Source Term and Damping Term

Nazlı Irkıl and Erhan Pişkin

Abstract This work deals with the influence of the logarithmic source term on
solutions to quasilinear riser equation with nonlinear damping term. We established
global results of solutions with negative initial energy.

Keywords Global existence · Second-order equation · Logarithmic nonlinearity

1 Introduction

In this work, we consider the following riser equation with logarithmic nonlinearity:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|ut |μ utt + ut |ut |k−1 + 2βuxxxx − 2 [(ax + b) ux ]x + β
3

(
u3x

)

xxx
−

[
(ax + b) u3x

]

x
−

(
βu2xx ux

)

x
= |u|p−2 u ln |u| , (x, t) ∈ [0, 1] × (0, T ) ,

u (0, t) = u (1, t) = uxx (0, t) = uxx (1, t) = 0, t ∈ (0, T ) ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ [0, 1] ,
(1)

where a, b, α, β are nonnegative constants. The exponents were taken μ ≥ 0, 0 ≤
k ≤ min {μ + 1, 1} and p ≥ 2.

When there is no logarithmic source term in (1), the problem becomes such that

utt + αut + 2βuxxxx − 2 [(ax + b) ux ]x + β

3

(
u3x

)

xxx − [
(ax + b) u3x

]

x

− (
βu2xxux

)

x = f (u) . (2)

The problem (2) which was discussed by many authors (see [1, 3, 5, 7, 12]) is
related to the dynamics of a riser vibrating due to effects of current and waves [10,
13].
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In recent years, hyperbolic wave equations with logarithmic source term were
discussed by many mathematicians. Moreover, there have been some works on the
logarithmic source term (see [2, 4, 9, 11]). To the best of our knowledge, in the
absence of the damping term and taking μ = 0 in the problem (1) was studied by
[8]. The aim of this work is to have a global existence of solutions to the problem
(1). More precisely, we consider the effect of the damping term on the quasilinear
riser problem with the logarithmic source term.

2 Preliminaries

This section includes some definitions and lemmas which will be used in the proof
of our results. We denote (., .)2 the inner product in L2 = L2 [0, 1] and ‖.‖p is the
norm in L p = L p [0, 1].

The total energy functional was defined as

E(t) = 1

μ + 2
‖ut‖μ+2

μ+2 + β ‖uxx‖2 +
1∫

0

(ax + b) u2xdx + β

2
‖uxuxx‖2

+1

4

1∫

0

(ax + b) u4xdx + 1

p2
‖u‖p

p − 1

p

1∫

0

u p ln |u| dx . (3)

By using initial condition and (3), the initial energy functional can be considered,
such that

E(0) = 1

μ + 2
‖u1‖μ+2

μ+2 + β ‖u0xx‖2 +
1∫

0

(ax + b) u20xdx + β

2
‖u0xu0xx‖2

+1

4

1∫

0

(ax + b) u40xdx + 1

p2
‖u0‖p

p − 1

p

1∫

0

|u0|p ln |u0| dx . (4)

Definition 1 A function u ∈ C
(
[0, T ] , H 2

0 [0, 1]
)
is said to be a weak solution of

(1) on [0, T ] if
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1∫

0
|ut |μ uttwdx +

1∫

0
ut |ut |k−1 wdx +

1∫

0
2βuxxwxx

+
1∫

0
2 [(ax + b) ux ]wx −

1∫

0

β

3

(
u3x

)

xx wx

+
1∫

0

[
(ax + b) u3x

]
wx +

1∫

0

(
βu2xxux

)
wx

=
1∫

0
|u|p−2 u ln |u| w,%

(5)

Lemma 1 Assume that u is the solution for the problem (1). Then the E (t) is
decreasing fo t > 0 and

E ′ (t) = −‖ut‖kk ≤ 0. (6)

Proof We multiply both sides of the equation (1) by ut and then integrating from 0
to 1, we obtain (6).

3 Global Existence

In this part, we state the global existence of the problem (1).

Theorem 1 Let u0 ∈ H 2
0 [0, 1] and u1 ∈ L2 [0, 1] hold. Assume further that

1∫

0
u p ln

|u| dx ≤ 0, ‖ut‖μ+2 > 1 and E (0) < 0. Then, the problem (1) has a global weak
solution.

Proof We define a functional, such that

B (t) = E (t) + 1

p

1∫

0

u p ln |u| dx − 1

p2

1∫

0

u pdx . (7)

Thanks to definition of the E (t) , (7) can be rewritten as

B (t) = 1

μ + 2
‖ut‖μ+2

μ+2 + β ‖uxx‖2 +
1∫

0

(ax + b) u2xdx

+β

2
‖uxuxx‖2 + 1

4

1∫

0

(ax + b) u4xdx

≥ 0. (8)

By taking derivative of equality (7), it yields that
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B ′ (t) = −‖ut‖k+1
k+1 +

1∫

0

u p−1ut ln |u| dx + 1

p

1∫

0

u p−1utdx − 1

p

1∫

0

u p−1utdx

= −‖ut‖k+1
k+1 +

1∫

0

u p−1ut ln |u| dx

≤ −‖ut‖k+1
k+1 +

1∫

0

u putdx . (9)

By using basic inequality x > ln |x |, Hölder andYoung’s inequality, (9) was obtained
such that

∣
∣B ′ (t)

∣
∣ <

1∫

0

u putdx

≤ ‖u‖
kp

(k+1)
p ‖ut‖k+1

≤ 1

4θ2
‖u‖p

p + θ2 ‖ut‖k+1
k+1 (10)

where θ was defined as a positive constant.
By using (7), the inequality (10) is obtained as

∣
∣B ′ (t)

∣
∣ ≤ p2

4θ2

⎡

⎣E (t) − B (t) + 1

p

1∫

0

u p ln |u| dx
⎤

⎦ + θ2 ‖ut‖k+1
k+1 . (11)

Thanks to E (0) < 0 and Lemma 1, we know

dE (t)

dt
= −‖ut‖k+1

k+1 ≤ 0, (12)

E (t) ≤ E (0) < 0. (13)

By combination of (8) and(13) and using the condition
1∫

0
u p ln |u| dx ≤ 0, we have

E (t) − B (t) + 1

p

1∫

0

u p ln |u| dx ≤ 0. (14)

Therefore, (11) becomes ∣
∣B ′ (t)

∣
∣ ≤ θ2 ‖ut‖k+1

k+1 . (15)
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On the other hand, from (8), we conclude that

(μ + 2) B (t) = ‖ut‖μ+2
μ+2 + (μ + 2) β ‖uxx‖2 + (μ + 2)

1∫

0

(ax + b) u2xdx

+ (μ + 2)

2
‖uxuxx‖2 + (μ + 2)

4

1∫

0

(ax + b) u4xdx .

Consequently, we have
‖ut‖μ+2

μ+2 ≤ (μ + 2) B (t) . (16)

We can suppose that ‖ut‖μ+2 ≥ ‖ut‖k+1 > 1, then, by k ≤ μ + 1 and embedding
theorem, we can conclude that

‖ut‖k+1
k+1 ≤ C

(
‖ut‖μ+2

μ+2

) k+1
μ+2 ≤ C ‖ut‖μ+2

μ+2 (17)

where C is positive constant.
Making using of the (15)–(17), we get

∣
∣B ′ (t)

∣
∣ ≤ θ2 ‖ut‖k+1

k+1 ≤ Cθ2 ‖ut‖μ+2
μ+2 ≤ (μ + 2) θ2B (t) , (18)

where k ≤ μ + 1 .
Therefore, we have ∣

∣B ′ (t)
∣
∣ ≤ (μ + 2) θ2B (t) . (19)

It is clear that

B (t) exp
(− (μ + 2) θ2t

)
< B (t) < B (t) exp

(
(μ + 2) θ2t

)
. (20)

With the (20), the definition of B (t) and continuation principle, the proof was com-
pleted.

Notes and Comments. This work was partly supported by the Scientific and Techno-
logical Research Institution of Turkey (TUBİTAK).
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Parabolic Equations with Causal
Operators

Tzanko Donchev, Dimitar Kolev, Mihail Kolev, and Alina I. Lazu

Abstract We study an initial boundary value problem (IBVP) with a parabolic PDE
with a nonlinear reaction function F(t, x, p, α), where α = (Qu)(t, x), Q being a
causal operator (CO), and F is Hölder in t and x , continuous in p, Lipschitz in α, and
monotone increasing in (p, α). We state that under the above-mentioned conditions
and assuming in addition that F contains a locally Lipschitz summand, then the
solution can be qualitatively estimated. Moreover, this solution blows up in some
t-interval. To this end, we use the monotone iterative method.

Keywords Parabolic equation · Causal operators · Monotone-iterative technique

1 Introduction

Consider the parabolic partial differential equation in the general form

∂u

∂t
= F(t, x, u, (Qu)(t, x)) in I × Ω ⊂ R × Rn, (1)

with the initial condition u(t, x) = ϕ(x), x ∈ Rn, t ∈ [−h, 0] (h > 0), where
Q : B → B1 is a causal operator, B and B1 being Banach spaces, the function G is
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continuous w.r.t. all arguments in the domain Ω̃ = I × Ω , I ⊂ R is an interval such
that [−h, 0] ⊂ I , and Ω is a bounded domain with a smooth boundary ∂Ω .

The theory of CO started with the work of C. Corduneanu [5]. Some evolution
processes can be modeled by PDEs in the form F(t, x, u(t, x), Qu(t, x)). Here, the
unknown function u takes part as an argument of F depending on t and x and secondly
as transformed by a causal operator Q. An example of the casual operator is the delay
(deviation), that is, Qu = u(t − σ), where σ > 0. Here, u depends smoothly on the
time moment t − σ , where the delay of time is expressed by σ . The same function
u is taken in a position at σ units back, that is to say, as though the equation under
consideration has past memory. Such an equation is called functional differential
equation (see, e.g., [2, 6]). It turns out that the general class of CO includes the
Niemytzki operator, Volterra integral operator, Fredholm operator (see, e.g., [5]),
and also the problems with “maxima” (see [3]). Another type of CO is time lag,
comprehensively studied in [4, 8, 9].

In this paper, we first show a technique for the existence of solutions to (1). Given
theRobin boundary condition Bu = h(t, x) imposed on the boundary ∂D, where B is

defined by B ≡ α0(t, x)
∂

∂ν
+ β0(t, x), α0(t, x) and β0(t, x) are nonnegative Hölder

continuous functions for t ∈ [t0, T ). The initial condition is givenbyu0(x) ≡ u(t0, x)
in Ω , where t0 is the initial time, for instance t0 = 0. The idea of the existence and
uniqueness of solutions for a similar class of PDEs of parabolic type with delay
can be seen in [11] (see, e.g., [2, 6]). Some methods such as quasi-linearization,
comparison, and somemodifications by which one is able to investigate the existence
and uniqueness, stability, and decay for nonlinear parabolic problems are given in
[1, 6, 10, 11]. Here, we are interested in the behavior of the solutions of the IBVP
for (1) including the blow-up property, under Hölder continuous boundary and initial
data.

2 Preliminaries

Let us introduce the function space E = E([0, T ),Rn) with a fixed number T > 0.
It contains all maps acting from [0, T ) into Rn with the norm ‖ · ‖c by which we
obtain a certain topology. Let Q : E → E be a map which we call an operator on E .

Definition 1 Q is a causal operator if for each pair {x(·), y(·)} ∈ E such that x(s) =
y(s) for 0 ≤ s ≤ t , the following equality holds:

(Qx)(s) = (Qy)(s) for 0 ≤ s ≤ t, (2)

with t < T arbitrary.
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Example 1 Consider the spaces

Ω1 = {
u : u = φ(t)

(
x2y + λ1(t)xy

) + a1(t)x + b1(t)y + c1(t), (x, y) ∈ M ⊂ R2},

Ω2 = {
v : v = φ(t)

( y3
3 + λ2(t)xy

) + a2(t)x + b2(t)y + c2(t), (x, y) ∈ M ⊂ R2},

where M = X ∪ Y , X = {(x, y) : √
3x + y = 0}, Y = {(x, y) : √

3x − y = 0},
and φ(t), λi (t), ai (t), bi (t), and ci (t) (i = 1, 2) are arbitrary functions, continuous
on some open interval J ⊂ R. Let us construct the space Ω = Ω1 ∪ Ω2. Consider
the differential operator L = D(t, x, y)

(
∂2
xx + ∂2

yy

)
, where D(t, x, y) is an arbitrary

function continuous in J × R2.

Now we may take an element z ∈ Ω̃ ⊂ Ω , where λ1(t) = λ2(t), a1(t) = a2(t),
b1(t) = b2(t), c1(t) = c2(t) and then see that Lz(t, x, y) satisfies the stated property
in Definition 1. Hence, we may conclude that L is a causal operator.

Definition 2 Let 0 < θ < 1 be a fixed number. Then the map z : � ⊂ Rn+1 → R
is said to be θ Hölder (with a constant κ) if |z(x) − z(y)| ≤ κ‖x − y‖θ for any
x, y ∈ �. We write z ∈ C1+θ if z(·) admits partial derivatives which are θ Hölder.

Introduce the notations DT ≡ [0, T ) × Ω, ST ≡ (0, T ] × ∂Ω, D−σ ≡ [−σ, 0]
× Ω , ET ≡ [−σ, T ) × Ω̄, E = C(D−σ ,R), E+ = C(D−σ ,R+).

Consider the parabolic IBVP with the causal operator Q in the form

(a) ∂u
∂t − Lu = F(t, x, u, Qu(t, x)) in DT ,

(b) Bu = h(t, x) on ST ,

(c) u(t, x) = η0(t, x) in D−σ ,

(d) η0(0, x) = u0(x) in Ω,

(3)

where σ > 0 is a given number, η0(t, x) ∈ E+ is a given Hölder continuous func-
tion in D−σ , u0(·) ∈ Cθ (Ω̄). Moreover, h(t, x) ≥ 0 is assumed to be in the class
C1+θ (ST ). We note that the operator

L ≡
n∑

i, j=1

ai j (t, x)
∂

∂xi

∂

∂x j
+

n∑

j=1

b j (t, x)
∂

∂x j
(4)

in (3)(a) is uniformly elliptic in the sense that the matrix {ai j (t, ·)} is positive definite
on Ω and uniformly on t . We assume that the coefficients of L are in the class

C1+θ (Ω̄) (0 < θ < 1). The boundary operator B is defined by B ≡ α0(t, x)
∂

∂ν
+

β0(t, x), where α0(t, x) and β0(t, x) are nonnegative functions in C1+θ (∂Ω) for
t ∈ [0,∞) and not identically zero on [0,∞) × ∂Ω; ∂/∂ν is the outward normal
derivative on ∂Ω .Nextwe assume that F has the form F = f (t, x, u) + R(t, x, Qu),
then both functions f and R are Hölder continuous in DT × R. In addition, f (t, x, ·)
and R(t, x, ·) are C1-functions. The solution of (3) is a function u ∈ C1,2(DT ).
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Everywhere in this paper, we assume that the problem (3) satisfies the compatibility

condition

[
α0(0, x)

∂u0
∂ν

+ β0(0, x)u0

]

x∈∂Ω

= h(0, x)

∣∣∣∣
x∈∂Ω

.

Definition 3 A function ũ ∈ Cθ ∩ C1,2(DT ) is called an upper solution of IBVP (3)
if

(a) ∂ ũ
∂t (t, x) ≥ Lũ(t, x) + F(t, x, u, Qu(t, x)) in DT ,

(b) Bũ(t, x) ≥ h(t, x) on ST ,

(c) ũ(t, x) ≥ η0(t, x) in D−σ .

Similarly, û ∈ Cθ ∩ C1,2(DT ) is called a lower solution of (3) if it satisfies the
reversed inequalities.

Definition 4 A pair {ũ(t, x), û(t, x)} is called ordered if ũ(t, x) ≥ û(t, x) in ET .
Then the set of all functions u = u(t, x) such that û(t, x) ≤ u(t, x) ≤ ũ(t, x) in ET

is denoted by
〈
û, ũ

〉
and is called sector.

Next we will make use of a standard elliptic boundary value problem. Let λ0 > 0
and �(x), always normalized by max {�(x) : x ∈ Ω} = 1, in Ω be the principal
eigenvalue and correspondent normalized eigenfunction, respectively, to

− Lu = λu in Ω, Bu = 0 on ∂Ω. (5)

Define the following linear differential operator of parabolic type:

Lc ≡
(

∂

∂t
− L + c

)
in (0, T ] × Rn, (6)

where T and L are the same as those in (3) and (4), respectively, and c = c(t, x) is
a bounded function in (0, T ] × Rn . Now we consider the following IBVP:

(a) Lcv = q(t, x) in DT ,

(b) Bv = h(t, x) on ST ,

(c) v(0, x) = u0 in Ω,

(7)

whereLc is defined by (6), Bu ≡ α0(t, x)
∂u
∂ν

+ β0(t, x)u, α0(t, x) ≥ 0, β0(t, x) ≥ 0,
α0(t, x) + β0(t, x) > 0, and h ≥ 0 on ST . Assume that the coefficients of L , q, h, u0,
and c areHölder continuous in their respective domains. Then due to the above-stated
assumptions, there exists a positive constant C = C(T ) > 0 such that

|F(t, x, u1, α1(t, x)) − F(t, x, u2, α2(t, x))| ≤ C(|u1 − u2| + |α1 − α2|). (8)

Let the number σ be 0 < σ < 1. We formulate the following hypothesis.
(H) Suppose that

(i) F(t, x, p, α) is Hölder in (t, x) ∈ DT , uniformly ∀ (p, α) ∈ R+ × R+ and
globally nonnegative;
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(ii) F(t, x, p, α) is C1-function in p ∈ R+, uniformly ∀ (t, x, α) ∈ DT × R+;
(iii) F(t, x, p, α) is Lipschitz in α ∈ E+, uniformly ∀ (t, x, p) ∈ DT × R+;
(iv) F(t, x, p, α) is monotone increasing in (p, α) ∈ R+ × E+.

The last implies that if p ≥ q and α(t, x) ≥ β(t, x), then F(t, x, p, α) ≥ F(t, x, q,

β). Next, we need the following auxiliary results.

Lemma 1 Let (H) be satisfied. Then there exists a pair of ordered upper and lower
solutions of (3).

Proof From [7, Theorem 7, Ch. 2], we know that the problem (7) admits a unique
solution z(t, x). Clearly, z is a lower solution of (3). Let M = ‖η0‖E and fix N > 0.
As before due to [7, Theorem 7], with F = F(t, x, M + N , M + N ) the considered
problem admits a unique solution w(t, x) on ET . Since w(·, ·) is continuous, one
has that there exists T1 > 0 such that |w(t, x)| ≤ M + N on ET1 . Clearly, w(·, ·) is
an upper solution of (3). Let t > T1. Replacing t by tθ , we consider again (3) on ET .
Using the same method, one can prove the existence of the upper solution of (3) with
changed initial condition on [0, T2] for some T2 > 0. By virtue of Zorn’s lemma,
there exists a maximal interval [0, T ) with 0 < T ≤ +∞, where the upper solution
w is defined. The proof is therefore complete. �

Lemma 2 Let u(k) be a lower solution, and v(k) be an upper for (3) such that the
following iteration process for lower solution holds:

(a) ∂u(k)

∂t = Lu(k−1) + F(t, x, u(k−1), (Qu(k−1))(t, x)) in DT ,

(b) Bu(k) = h(t, x) on ST ,

(c) u(k)(t, x) = η0(t, x) in D−σ ,

(d) η0(0, x) = u0(x) in Ω,

(9)

and similar to upper solutions vk . Then the following inequalities hold:

u(0) ≤ · · · ≤ u(k) ≤ u(k+1) ≤ · · · ≤ v(k+1) ≤ v(k) ≤ · · · ≤ v(0). (10)

Proof First, assume that u(k) ≥ u(k−1), and then set u(k) − u(k−1) ≡ y(k−1) ≥ 0. We
should prove that y(k) ≥ 0. Therefore, from themonotonicity of F follow the inequal-
ities

∂y(k)/∂t = Ly(k−1) + F(t, x, u(k), (Qu(k))(t, x)) − −F(t, x, u(k−1), u(k−1)
t (x)) =

Ly(k−1) + F(t, x, u(k), (Qu(k))(t, x)) − F(t, x, u(k−1), (Qu(k))(t, x))+
+F(t, x, u(k−1), (Qu(k))(t, x)) − −F(t, x, u(k−1), (Qu(k−1))(t, x)) ≥
≥ Ly(k−1) + F(t, x, u(k−1), (Qu(k))(t, x)) − −F(t, x, u(k−1), (Qu(k−1))(t, x))
≥ Ly(k−1).

(11)
Obviously, By(k) = 0, y(k)(0, x) = 0 and having in mind Corollary 2.2.1 in [10],
we conclude that y(k) ≥ 0 and u(k+1)(t, x) ≥ u(k)(t, x). Next, we consider v(k) and
assume that v(k) ≤ v(k−1). Then setting v(k) − v(k−1) ≡ z(k−1) ≤ 0 get the inequalities
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∂z(k)/∂t = Lz(k−1) + F(t, x, v(k), (Qv(k))(t, x))
−F(t, x, v(k−1), (Qv(k−1))(t, x)) = Lz(k−1) + F(t, x, v(k), (Qv(k))(t, x))
−F(t, x, v(k−1), (Qv(k))(t, x)) + F(t, x, v(k−1), (Qv(k))(t, x))
−F(t, x, v(k−1), (Qu(k))(t, x)) ≤ Lz(k−1).

(12)

Obviously, Bz(k) = 0, z(k)(0, x) = 0, and by the same argument as it was before we
conclude that z(k) ≤ 0. Hence v(k+1)(t, x) ≤ v(k)(t, x). Now assume that u(k) ≤ v(k).
Therefore, we have to prove that w(k+1) ≡ v(k+1) − u(k+1) ≥ 0. To this end, we use
the same argument as before

∂w(k+1)/∂t = Lw(k) + F(t, x, v(k), (Qv(k))(t, x))
−F(t, x, u(k), (Qu(k))(t, x)) ≥ Lw(k).

(13)

It is clear that Bw(k+1) = 0, w(k)(0, x) = 0, hence w(k+1) ≥ 0 and v(k+1)(t, x) ≥
u(k+1)(t, x) by which the proof is complete. �

Having in mind the above stated lemmas, it follows.

Corollary 1 There exist the sequences:

u(0) ≤ u(1) ≤ · · · ≤ u(m−1) ≤ u(m) ≤ · · ·
≤ v(m) ≤ v(m−1) ≤ · · · ≤ v(1) ≤ v(0),

(14)

such that u(m)(t, x) → u(t, x) and v(m)(t, x) → v(t, x) as m → ∞. Moreover,
u(t, x) ≡ v(t, x) is the unique solution of (3).

The next statement concerns the existence and uniqueness of the solution of (3).

Theorem 1 Suppose that (H) holds and the reaction function F has the general
form F = F(t, x, u, ut ). Then there exists a unique solution of (3).

Proof From the above-stated results in Lemmas 1, 2, and Corollary 1, we conclude
that there exist the sequences (14) u(0) ≤ u(1) ≤ · · · ≤ u(m−1) ≤ u(m) ≤ · · · v(m) ≤
v(m−1) ≤ · · · ≤ v(1) ≤ v(0) having limits u ≡ v. Further, u ≡ v is the unique solution
of the problem under consideration. �

3 Main Result

We assume that the condition (H) holds and suppose in addition the following:
(H1) The reaction function has the form F = f (t, x, u) + R(t, x, Qu), where

f (t, x, ·) is locally Lipschitz in t and x , i.e., it belongs to Lloc(R+) (the set of all
locally Lipschitz functions on R+), while R(t, x, ·) is bounded on the bounded sets,
where (t, x) ∈ DT .

Since Qu ∈ B1, we use the norm ‖Qu‖ = max
(t,x)∈DT

|Qu(t, x)|.
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Theorem 2 Suppose that (H1) holds and u(t, x) is the nonnegative solution of (3).
If there exist constants α > 0, β > 0, and A > 0 such that

(a) f (t, x, η) ≥
(

λ0

2
+ α + A

2

)
η, ∀η ≥ 0,

(b) R(t, x, Qu(t, x)) ≥
(

λ0

2
+ β + A

2

)
‖Qu‖,

(15)

where Qu(t, x) ∈ C([−σ, 0] × Ω, R), then for any δ > 0 and η0(t, x) ≥ δ in D−σ ,
the solution of (3) satisfies the inequality:

u(t, x) ≥ δe(α+β+A)t�(x). (16)

Proof First, we define the function û ≡ δe(α+β+A)t�(x) and verify that it is a lower
solution of (3). According to the definition of lower solution, we have to prove that
the quantity on the left-hand sides of (3) is less or equal to those on the right-hand
sides for û instead of u. From the elliptic boundary value problem (5) with h ≥ 0,
we infer that û can be a lower solution of (3) if the following estimates hold true:

(
λ0

2
+ α + A

2

)
δe(α+β+A)t�(x) ≤ f (t, x, δe(α+β+A)t�(x)),

(
λ0

2
+ β + A

2

)
δ‖η(x)‖ ≤ R(t, x, δη(x)),

(17)

where η(x)(s) = e(α+β+A)s�(x) for every s ∈ [−σ, 0]. Taking into account (3)(a)
and in view of (15), we get

∂ û
∂t − Lû = δ(α + β + A)e(α+β+A)t�(x) + δλ0�(x)e(α+β+A)t

= δ�(x)e(α+β+A)t (α + β + A + λ0)

≤
(

λ0

2
+ α + A

2

)
δ�(x)e(α+β+A)t +

(
λ0

2
+ β + A

2

)
δ‖η(x)‖

≤ f (t, x, δe(α+β+A)t�(x)) + R(t, x, δ�(x)η(x)e(α+β+A)(t−σ)).

The boundary condition (3)(b) leads to û|ST = δ�(x)e(α+β+A)t |ST = 0 ≤ h(t, x)|ST .
For the initial data (3)(c) and (3)(d), we have û(t, x) ≡ δ�(x)e(α+β+A)t ≤ δ ≤
η0(t, x) in D−σ , and û(0, x) = δ�(x) ≤ δ ≤ u0(x) = η0(0, x). Thus, we veri-
fied that û(t, x) is a lower solution of (3). Our goal is to find an upper solution of
(3). To this end, we fix T > 0 and choose both numbers M, N ≥ δe(α+β+A)T . Taking
into account the assumptions for both functions f and R (and therefore F) which
are bounded on bounded sets, we define the auxiliary function FNM by

FNM(t, x, u, α(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

F(t, x, u, ν(x)) u < M, ‖ν(x)‖ < N
F(t, x, u, ν̃(x)) u < M, ‖ν(x)‖ ≥ N
F(t, x, M, ν(x)) u ≥ M, ‖ν(x)‖ < N
F(t, x, M, ν̃(x)) u ≥ M, ‖ν(x)‖ ≥ N ,

(18)
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where ν̃(x) = N
ν(x)

‖ν(x)‖ · The definition of FNM was suggested by our former coau-

thor K. Nakagawa. Consider (3)(a) with right-hand side FNM instead of F , that is,

(a) ∂u
∂t − Lu = FNM(t, x, u, Qu(t, x)) in DT ,

(b) Bu = h(t, x) on ST ,

(c) u(t, x) = η0(t, x) in D−σ ,

(d) η0(0, x) = u0(x) in Ω.

(19)

Next, we consider again the linear problem (7). Then having inmind the above-stated
requirements, we conclude that the IBVP (7) has a unique solution r = r(t, x),
r ∈ C(DT ) ∩ C1,2(DT ). Let’s assume that c = 0 and q ≥ FNM in (7). Then we
denote the solution of (7) in this case by r0(t, x) that is an upper solution of the
modified problem (19). Since FNM(t, x, ·, ·) ∈ Lloc(R+ × R+), and at the same time
FNM(t, x, 0, 0) ≥ 0, then Theorem 1 ensures the existence of a unique solution z of
(19), and 0 ≤ z ≤ r0(t, x). By the choice of N , M , the function û = δe(α+β+A)t�(x)
is a lower solution of the modified problem (19) in the domain DT , and û ≤ r0.
Therefore, û ≤ z ≤ r0. Hence, by the definition of FNM , z is the solution of the
original problem for as long as z ≤ min{N , M}. Also, it follows that by taking N , M
sufficiently large, the solution of problem (3) satisfies the inequality (16) ∀t > 0
unless it blows up in finite time. Thus in the case of blow-up, the inequality (16) is
evidently satisfied. This completes the proof. �

Theorem 3 Suppose that (H1) holds and u(t, x) is the nonnegative solution of (3).
If there exist constants α > 0, β > 0, and A > 0 such that

(a) f (t, x, η) ≥
[(

α + A

2

)
(1 + t)−1 + λ0

2

]
η ∀ η ≥ 0,

(b) R(t, x, Qu(t, x)) ≥
[(

β + A

2

)
(1 + t)−1 + λ0

2

]
‖Qu‖,

(20)

then, for any δ > 0 and for any η0(t, x) ≥ δ,

u(t, x) ≥ δ(1 + t)α+β+A�(x) for t > 0, x ∈ Ω. (21)

Proof Let û = δ(1 + t)α+β+A�(x) be a function of t and x , where A > 0. We will
prove that û is a lower solution of (3). To this end, we have to verify that

∂ û
∂t − Lû ≤ f (t, x, û) + R(t, x, Qû) in DT .

We note that
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∂ û
∂t − Lû = δ(α + β + A)(1 + t)α+β+A−1�(x) + δλ0�(x)(1 + t)α+β+A

= δ�(x)(1 + t)α+β+A[(α + β + A)(1 + t)−1 + λ0]
= δ�(x)(1 + t)α+β+A[(α + A/2)(1 + t)−1 + λ0/2 + (β + A/2)(1 + t)−1 + λ0/2]
= δ�(x)(1 + t)α+β+A[(α + A/2)(1 + t)−1 + λ0/2]
+δ�(x)(1 + t)α+β+A[(β + A/2)(1 + t)−1 + λ0/2]
≤ δ�(x)[(α + A/2)(1 + t)−1 + λ0/2](1 + t)α+β+A

+‖ût‖[(β + A/2)(1 + t)−1 + λ0/2]
≤ f (t, x, δ�(x)(1 + t)α+β+A) + R(t, x, Qû).

From (3)(b) and (5), we have Bû = δ(1 + t)α+β+AB�(x) = 0 ≤ h(t, x) on ST , and
using (3)(c) obtain û(t, x) = δ(1 + t)α+β+A�(x) ≤ η0(t, x) on D−σ .

Our next goal is to find an upper solution for (3). Further for some T >

0, we choose numbers N , M ≥ δ(1 + T )α+β+A and define the function FNM =
FNM(t, x, u, v) as in (18). Having in mind (19) and by the same reasoning as in
the proof of Theorem 2, we obtain that the solution u of (3) satisfies the inequality
(21).

The second result concerns the existence of blow-up.

Theorem 4 Let (H1) hold and let z be a nonnegative function defined on [0, T0) × Ω

and unbounded at some point inΩ as t → T0. If z is a lower solution of (3) in DT for
every T < T0, then there exists another positive number T ∗ ≤ T0 such that a unique
solution u = u(t, x) of (3) exists in (0, T0] × Ω and lim

t→T ∗[max
x∈Ω

u] = ∞.

Proof Consider the function FNM(t, x, u, v) in (18) defined in DT and for each N >

0, M > 0. Here, we will use the modified IBVP (19). Now observe that the condition
(H1) holds for the modified function FNM for any u1 ≥ u2 ≥ 0. Choose arbitrary
N , M > η0(t, x) in D−σ . Then there is a number TNM < T0 such that v ≤ N , u ≤
M on DNM ≡ [0, TNM) × Ω , and v(t0, x0) = N , u(t1, x1) = M for some points
(t0, x0), (t1, x1) ∈ DNM , respectively. Accept û = max {u, v} as a lower solution of
the modified problem (19) in DNM . Assume that u(0) = û is the initial iteration and
then the corresponding lower sequence u(k) is monotone nondecreasing in DNM .
The uniform boundedness of FNM ensures that u(k) is bounded in DNM . One may
prove (see, e.g., [11]) that u(k) converges monotonically from below to a unique
solution z∗ of the modified IBVP (19) and z∗ ≥ û. From η0 < S ≡ min{N , M} in
Ω , we conclude that there exists t2 ≤ TNM such that 0 ≤ z∗ ≤ S on [0, t2] × Ω and
z∗(t2, x2) = S at x2 ∈ Ω . We note that FNM coincides with F when 0 ≤ v ≤ N
and 0 ≤ u ≤ M and then z∗ is solution of the IBVP (3) in [0, t2] × Ω . Hence, we
infer that there exists a solution of (3) for as long as it remains bounded by S. If
the solution is bounded in [0, T0] × Ω by some constant C , then it is bounded in
the set [0, TNM ] × Ω by C for any TNM ≤ T0. Therefore, for some N , M > C it
follows that for some t2 ≤ TNM , IBVP (3) has a unique solution z in [0, t2] × Ω

such that z(t2, x2) = S for x2 ∈ Ω . This contradicts to z ≤ C < S in [0, T0] × Ω

hence z should be unbounded in [0, T0] × Ω . �
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Well Posedness of Solutions
for a Degenerate Viscoelastic Equation
for Kirchhoff-Type with Logarithmic
Nonlinearity

Nazli Irkıl and Erhan Pişkin

Abstract This paper deals with Kirchhoff-type equation with degenerate viscoelas-
tic term and logarithmic nonlinearity.We established the global existence of solutions
by using the potential well method.

Keywords Degenerate viscoelastic wave equation · Kirchhoff-type equation ·
Logarithmic nonlinearity

1 Introduction

In this paper, we study the following viscoelastic Kirchhoff-type problem:

⎧
⎪⎪⎨

⎪⎪⎩

vt t − M
(
‖∇v‖2

)
Δv − div [b (x) ∇v] +

t∫

0
g (t − s) div [b (x) ∇v] ds + vt = |v|p−2 v ln |v| ,

v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) , x ∈ Ω,

v (x, t) = 0, x ∈ ∂Ω × (0, ∞) ,

(1)
whereΩ is a boundeddomain in Rn with smooth boundary∂Ω .M (s) is a continuous
function and g (t) is a positive kernel function which was defined on R+.

The problems which include logarithmic source term are related to different
branches of physics [2, 6]. Because of that, these type problems are new and impor-
tant area for authors. And they showed different mathematical behavior of problems.
For more results, we refer the readers to [3, 7, 10].

The following equation

utt − M
(‖∇u‖2) Δu −

t∫

0

h (t − s) � u (s) ds − �ut = |u|p−2 u ln |u| . (2)
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has been considered by Ferreira et al. [5]. They established blow up results of solu-
tions for negative initial energy. Later Pişkin et al. [8] studied initial boundary prob-
lem (2) with p = 2. They proved the local existence of weak solution by applying
Banach fixed theorem. And they obtained blow up results.

Motivated by the papers, we are led naturally to generalize and consider a degen-
erate viscoelastic equation in Kirchhoff-type subject to the global existence.

2 Set Up of Potential Well

In this section, we will outline the general framework of the definitions of the func-
tions in the problem (1) and give some related lemma used to prove the conclusions
later. First of all, we define ‖.‖2 and ‖.‖p to the usual L

2 (Ω) norm and L p (Ω) norm,
respectively. We denote by C and Ci (i = 1, 2, . . .) various positive constants.

Let us begin with defining the b (x) ∈ C1 (Ω) is a positive function such that

b (x) ≥ b21 > 0, (3)

and

Hb :=
⎧
⎨

⎩
v ∈ H 1

0 (Ω) :
∫

Ω

b (x) |∇v|2 dx < ∞
⎫
⎬

⎭
, (4)

is a Hilbert space endowed with a norm

‖∇v‖2b =
∫

Ω

b (x) |∇v|2 dx . (5)

By combination of (3) and (5), is clear that

‖∇v‖22 ≤ 1

b21
‖∇v‖2b . (6)

Now we state some hypotheses and lemmas which will be used to prove our results.
(H1) g : R+ → R+ is a C1 nonincreasing function satisfying

g (0) ≥ 0, g′ (0) ≤ 0, 1 −
t∫

0

g (s) ds = l > 0. (7)

(H2) There exist positive differentiable function ϑ (s), such that

g′ (s) ≤ ϑ (s) g (s) , f or s ≥ 0. (8)
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(H3) M (s) is a C1 function and satisfies

M (s) ≥ −m0 and M (s) s ≥ M̂ (s) (9)

where l − 1 ≥ m0
b1

, where b1 the first eigenvalue of the problem Δv = −b

(div [b (x) ∇v]) and M̂ (s) =
s∫

0
M (τ ) dτ .

(H4) The constant p satisfies

{
p ≥ 1, n = 1, 2,

min {1, b − 1} < p ≤ n+2
n−2 , n ≥ 3.

(10)

Corollary 1 The first eigenvalue b1 of the problem

{
Δv = −b (div [b (x) ∇v])
v = 0, ∂Ω

(11)

satisfies

b1 = inf
v∈Hb(Ω)

‖∇v‖2b
‖∇v‖22

> 0, ‖∇v‖22 ≤ 1

b21
‖∇v‖2b . (12)

Lemma 1 [1] Let C1 be the smallest positive constant satisfying for ∀v ∈ H 1
0 (Ω)

‖v‖q ≤ C1 ‖∇v‖ , (13)

where 2 ≤ q < ∞, if n = 1, 2; and 2 ≤ q ≤ 2n
n−2 , if n ≥ 3.

Now, we introduce the total energy function fot the problem (1) at time t ≥ 0 such
that

E(t) = 1

2
‖vt‖2 + 1

2

(

l − m0

b1

)

‖∇v‖2b + 1

2
(g ◦ ∇v) (t)

+ 1

p2
‖v‖p

p − 1

p

∫

Ω

v p ln |v| dx . (14)

where

(g ◦ ∇v) (t) =
t∫

0

g (t − τ ) ‖∇v (t) − ∇v (τ )‖2b dτ . (15)

The potential energy functional
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J (v) = 1

2

(

l − m0

b1

)

‖∇v‖2b + 1

2
(g ◦ ∇v) (t)

+ 1

p2
‖v‖p

p − 1

p

∫

Ω

v p ln |v| dx . (16)

and the Nehari functional

I (v) =
(

l − m0

b1

)

‖∇v‖2b

+ (g ◦ ∇v) (t) −
∫

Ω

v p ln |v| dx, (17)

for v ∈ H 1
0 (Ω) .

Thanks to (14)–(17), it tells us that for v ∈ H 1
0 (Ω) ,

J (v) = I (v)

p
+ (p − 2)

2p

(

l − m0

b1

)

‖∇v‖2b

+ (p − 2)

2p
(g ◦ ∇v) (t) + 1

p2
‖v‖p

p , (18)

and

E(t) = 1

2
‖vt‖2 + J (v). (19)

And then, by (17), we state potential set as follows:

W = {
v ∈ H 1

0 (Ω) | I (v) > 0
} ∪ {0} , (20)

and the outer space of the potential well

U = {
v ∈ H 1

0 (Ω) | I (v) < 0
}
. (21)

The depth of potential well is defined as

d = inf
u∈N J (v) . (22)

where the Nehari manifold was denited as

N = {
v ∈ H 1

0 (Ω) | I (v) = 0
} ∪ {0} . (23)
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Lemma 2 Suppose that (A1) and (A2) hold. Then the energy functional E (t) is
decresing with respect to t and

E ′ (t) = 1

2

[(
g′ ◦ ∇v

)
(t) − g (t) ‖∇v (t)‖2b

] − ‖vt‖2 ≤ 0, (24)

where
(
g′ ◦ ∇v

)
(t) =

t∫

0

g′ (t − s) ‖∇v (t) − ∇v (τ )‖2b dτ . (25)

Lemma 3 [8, 9] For any v ∈ Hb (Ω) , ‖v‖ �= 0, then we have
(i)

lim
λ→0

J (λv) = 0, (26)

and
lim

λ→∞
J (λv) = −∞ (27)

(ii) For 0 < λ < ∞, there exists a unique λ1, such that

d

dλ
J (λv) |λ=λ1= 0 (28)

where λ1 is the unique root of equation l
(
l − m0

b1

)
‖∇v‖2b + (g ◦ ∇v) (t) =

−λp−2
∫

Ω

v p ln |v| dx − λp−2 ln λ
∫

Ω

v pdx

(iii) J (λv) is strictly decreasing on λ1 < λ < ∞, strictly increasing on 0 < λ <

λ1 and attains the maximum at λ = λ1

(iv) I (λv) > 0 for 0 < λ < λ1, I (λv) > 0 for λ1 < λ < ∞, and I (λ1v) = 0

I (λv) = λ
d

dλ
J (λv)

⎧
⎨

⎩

> 0, 0 ≤ λ ≤ λ1,

= 0, λ = λ1,

< 0, λ1 ≤ λ.

(29)

Lemma 4 [4, 8] For t ≥ 0, the potential well depth d represented as

d = (p − 2)

2p

⎡

⎣(l − m0)
p+1
2

b
p2+p+1
p−1

1

C p+1
1

⎤

⎦

2
p−1

, (30)

where C1 is the optimal constant of Lemma 1 (Hb (Ω) ↪→ L p+1) and

{
b − 1 ≤ p ≤ n+2

n−2n ≥ 3,
b − 1 ≤ p ≤ ∞, n = 1, 2.

(31)
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Definition 1 (Local weak solution) Let T > 0.Assume that (H1) − (H4) hold.We
say that for any (v0, v1) ∈ Hb (Ω) × L2 (Ω) , there is a unique local weak solution
of problem (1) such that

v ∈ C
(
[0, T ] ; H 2

0 (Ω) ∩ Hb (Ω)
)
, (32)

and
(vt ) ∈ (

C [0, T ] ; L2 (Ω)
)
, (33)

leads to ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(vt t , v1) + M
(‖∇v‖2) (∇v,∇v0)

−
t∫

0
g1 (t − s)∇ [b (x) ∇v] v0ds + ∫

Ω

v0vt dx

= ∫

Ω

|v|p−2 v ln |v| v0dx .
(34)

3 Global Existence

The global existence of solution for the problem (1) was considered in this part. We
give some useful lemma and later we proved Theorem 1.

Lemma 5 Let (H1) − (H4)hold. Suppose that for any (v0, v1) ∈ Hb (Ω) × L2 (Ω) ,

such that

I (0) > 0,ϕ = C p+1
1 b1

bp+1
1 (lb1 − m0)

(
2pb1

(p − 2) (lb1 − m0)
E(0)

) p−1
2

(35)

then for all t > 0
I (v (t)) > 0. (36)

Proof Onwards I (0) > 0, then by continuity of v (t) , we conclude that, there is a
time t∗ < T , such that for ∀t ∈ [0, t∗]

I (v (t)) ≥ 0. (37)

Thanks to (18)and (36), we obtain that

J (v (t)) ≥ (p − 2)

2p

(

l − m0

b1

)

‖∇v‖2b

+ (p − 2)

2p
(g ◦ ∇v) (t) + 1

p2
‖v‖p

p . (38)
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for any α > 0.Since taking l − 1 ≥ m0
b1

and using Lemma 2 and (38), we arrive that
for ∀t ∈ [0, t∗] (

l − m0

b1

)

‖∇v‖2b ≤ 2p

(p − 2)
E(0). (39)

Exploiting log x < x inequality, Lemma 1, (35), and (36), we conclude that

∫

Ω

|v|p ln |v| dx ≤ ‖v‖p+1
p+1

= ϕ

(

l − m0

b1

)

‖∇v‖2b <

(

l − m0

b1

)

‖∇v‖2b . (40)

therefore, by definition of I (u (t)), we show that for any t ∈ [0, t∗]

I (v (t)) > 0. (41)

lim
t→t∗

C p+1
1 b1

bp+1
1 (lb1 − m0)

(
2pb1

(p − 2) (lb1 − m0)
E(v (t) , vt (t))

) p−1
2

≤ α < 1 (42)

we can take t∗ = T .

Lemma 6 [8] Suppose that (v0, v1) ∈ Hb (Ω) × L2 (Ω) and (H1) − (H4) , 0 <

E (0) < d. If I (v0) > 0, then v (t) ∈ W, where v was defined as a weak solution
of the problem (1).

Theorem 1 Let (v0, v1) ∈ Hb (Ω) × L2 (Ω) and (H1) − (H4) hold. Suppose that
E (0) < d and v (t) ∈ W, then problem (1) admits a globally and bounded weak
solution.

Proof It suffices to show that ‖vt‖2 + ‖∇v‖2b is bounded independently of t . Under
the condition of Theorem 1 and thanks to Lemma 6, we conclude that v ∈ W on
[0, T ). Thus, we obtain

C2
(‖vt‖2 + ‖∇v‖2b

) ≤ E(0), (43)

where C2 = min
{
1
2 ,

(
l − m0

b1

)
(p−2)
2p , 1

}
is a positive constant, which depends on

p, l,m0, b1.
By condition E (0) < d, (43) can be rewritten as

‖vt‖2 + ‖∇v‖2b ≤ 1

C2
E(0) ≤ 1

C2
d < ∞. (44)

By using of the (44) and continuation principle, we have the global existence of the
solution v for the problem (1).
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An Application of Simplest Equations
Method to Nonlinear Equations
of Schrödinger Kind

Ivan P. Jordanov

Abstract In this study, we apply the Simplest Equations Method (SEsM) to obtain
the exact solution of equation which is connected to the nonlinear Equation of
Schrödinger. We use a specific case of SEsMwhich is based on the use of two simple
equations. By means of the first simple equation, we construct a complex exponen-
tial function. The solution of the second simple equation is derived by applying the
classical modified method of the simplest equation.

Keywords Simple equations method (SEsM) · Nonlinear equation of Schrödinger

1 Introduction

The dynamics of many social and economic systems is nonlinear [1–18]. During the
past few decades, many non-linear phenomena are modeled by systems of nonlinear
partial differential equations (PDEs). Such model systems require applications of the
methods of non-linear dynamics, chaos theory, and theory of stochastic processes
[19–39].

In more detail, reaction–diffusion equations have many applications for the
description of different kinds of processes in physics, chemistry, biology, economics,
and social sciences. Most systems in our environment contain components that inter-
act through competition or cooperation which in some cases can lead to adaptation
of the interactions. It is of special importance to study the behavior of such systems
and to develop and apply new appropriate mathematical methods for the description
of processes in these systems. In addition, the agent models are an important tool
for the analysis of complex systems [40]. Depending on the nature of the system,
the agents may have a variety of properties, as well as they can interact in different
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ways. In the recent years, we observe a rapid growth in publications related to agent
models because they may explain adequately the complex processes in a number of
social systems, such as migrations of various human populations [41–45].

When the number of agents is small and the chaos in their behavior is insignificant,
the dynamics of systems of interacting agents can be described by less complicated
systems of ordinary or partial differential equations. Therefore, the deterministic
systems of PDEs are widely used to represent the dynamics of many economic
and social processes. Analysis of these systems by applying various analytical and
numericalmethods can lead us to a better understanding of themain dynamic features
of agent systems. For example, extracting exact particular analytical solutions of such
equations can help in understanding and explaining the migration of individuals in
space, i.e., so-called population waves [41–49].

The paper is organized as follows. We discuss the SEsMmethodology for obtain-
ing exact solutions of nonlinear partial differential equations in Sect. 2. In Sect. 3, we
apply a simple specific case of this methodology, based on two simple equations, in
order to obtain solutions of nonlinear partial differential equation connected to the
nonlinear equation of Schrödinger. Several concluding remarks are summarized in
Sect. 4.

2 The Simple Equations Method (SEsM)

Below we apply a specific case of a methodology for obtaining exact and approx-
imate solutions of nonlinear partial differential equations called Simple Equations
Method (SEsM) [71–74]. Vitanov used elements of SEsM in his early works almost
30 years ago [50–58]. In 2009 [48, 49] and in 2010, Vitanov and co-authors have
used the ordinary differential equation of Bernoulli as simplest equation [59] and
applied a version of SEsM called Modified Method of Simplest Equation (MMSE)
to ecology and population dynamics [60]. This method uses a balance equation [61,
62] to determine the kind of the simplest equation and truncation of the series of
solutions of the simplest equation. Up to 2018, the applications of the methodol-
ogy have been based on MMSE [63–70]. Recently Vitanov extended the capacity
of the methodology by the inclusion of the possibility of use of more than one sim-
plest equation. This modification is called SEsM—Simple Equations Method—as
the used simple equations are more simple than the solved nonlinear partial differ-
ential equation but these simple equations in fact can be quite complicated. We note
that the first description of the methodology was made in [71] and then in [72–74].
For more applications of specific cases of the methodology, see [75–80].

A short description of SEsM is as follows. We consider the specific case of SEsM
for obtaining the exact solution of one nonlinear partial differential equation. We
consider the nonlinear partial differential equation

Y[u1(x, . . . , t), . . . , un(x, . . . , t)] = 0. (1)
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Y[u1(x, . . . , t), . . . , un(x, . . . , t)] depends on the functions ui (x, . . . , t) and some
of their derivatives (ui can be a function of more than 1 spatial coordinates). Step 1
of SEsM is to perform transformation

u(x, ..., t) = T [Fi (x, . . . , t),Gi (x, . . . , t), . . . ]. (2)

Here T (F,G, . . . ) is some function of another functions F,G, . . . In general,
F(x, . . . , t), G(x, . . . , t), . . . are functions of several spatial variables as well as
of the time. The goal of the transformations is to remove the nonlinearity of the
solved equation or to transform the nonlinearity of the solved differential equation to
more treatable kind of nonlinearity (such as polynomial nonlinearity). The nonlin-
earities in the solved equations can be of different kinds. Because of this, there is no
universal transformation of the nonlinearity which is valid for all possible cases. In
many specific cases, one may skip this step. Then u(x, ..., t) = F(x, ..., t)). But, in
numerous cases, the step is necessary for obtaining a solution of the studied nonlinear
partial differential equation. The application of (2) to (1) leads to a nonlinear PDEs
for the functions F,G, . . . .

In Step 2 of SEsM, the functions F(x, ..., t), G(x, . . . , t), . . . are represented
as a function of other functions f1, ..., fN , g1, . . . , gM , . . . , which are connected to
solutions of some differential equations (these equations can be partial or ordinary
differential equations) that are more simple than Eq. (2). The possible values of N
and M are N = 1, 2, . . ., M = 1,2,... (there may be an infinite number of functions f
too). The forms of the functions F( f1, . . . , fN ), G(x, . . . , t), . . . can be different.
For example, for the case of single solved equation, the function F can have the form

F = α +
N∑

i1=1

βi1 fi1 +
N∑

i1,i2=1

γi1,i2 fi1 fi2 + · · · +
N∑

i1,...,iN=1

σi1,...,iN fi1 . . . fiN , (3)

where α,βi1 , γi1,i2 ,σi1,...,iN . . . are parameters.
Step 3 of SEsM is connected to the representation of the functions used in

F,G, . . . - the functions f1, . . . , fN , g1, . . . , gM which are solutions of some dif-
ferential equations. We shall consider the case when these differential equations are
ordinary differential equations.

We shall skip Step 4 of SEsM. These steps deal with the case when the above
differential equations are complicated andwehave to construct their solution again on
the basis ofmore simple differential equations.We assume that the simple differential
equation has the needed exact solutions which allow us to construct the solution of
the solved more complicated differential equation.

Step 5 of SEsM is connected to the determination of the used simple differential
equations. In many cases, the form of the simple equations is determined by balance
equations. Balance equations may be needed in order to ensure that the system of
algebraic equations from Step 6 contains more than one term in any of the equations.
This is needed if one searches for a nontrivial solution of the solved nonlinear partial
differential equation.
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At Step 6 of SEsM, we apply the steps (1)–(5) to Eqs. (2) and this transforms the
left-hand side of these equations into functionswhich are the sumof termswhere each
term contains some function multiplied by a coefficient. This coefficient contains
some of the parameters of the solved equations and some of the parameters of the
solution. In most cases, a balance procedure must be applied in order to ensure that
the above-mentioned relationships for the coefficients contain more than one term.
The balance procedure leads to additional relationships between the parameters of
the solved equation and the parameters of the solution. These relationships are called
balance equations.

Finally, at Step 7 of SEsM, We can obtain a nontrivial solution of Eq. (2) if all
coefficients mentioned in Step (6) are set to 0. This condition leads to a system of
nonlinear algebraic equations for the coefficients of the solved nonlinear PDE and
for the coefficients of the solution. Any nontrivial solution of this algebraic system
leads to a solution to the studied nonlinear partial differential equation.

3 Application to Nonlinear Differential Equation
of Schrödinger Kind

In this section, we shall find an analytical solution of an equation of the nonlinear
Schrödinger kind. We shall use a simple version of SEsM based on two simple
equations.

Let us consider the equation of nonlinear Schrödinger kind:

i
∂q(x, t)

∂t
+ a

∂2q(x, t)

∂x2
+ b−2 q(x, t) |q(x, t)|−4 + b0 q(x, t) + (4)

+b1 q(x, t) |q(x, t)|2 + b2 q(x, t) |q(x, t)|4 + b3 q(x, t) |q(x, t)|6 = 0,

where i = √−1, a and bi are parameters, and q(x, t) is a complex function. The
solution of Eq.4 will be searched as

q(x, t) = g(ξ) h(x, t), (5)

where g(ξ) is a real function (ξ = αx + βt) and h(x, t) is a complex function. The
two simplest equations will be for the functions g(ξ) and h(x, t), respectively. Let
us denote as h̄(x, t) the complex conjugate function of h(x, t). The substitution of
Eq.5 in Eq.4 leads to (we denote dg(x,t)

dξ
as g′ and d2g(x,t)

dξ2
as g′′)
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iβ g′ h(x, t) + i g
∂h(x, t)

∂t
+ α2 a g′′ h(x, t) + 2α a g′ ∂h(x, t)

∂x
+

+a g
∂2h(x, t)

∂x2
+ b−2 g−3 h−1(x, t) h̄−2(x, t)b0 g h(x, t) + (6)

+b1 g3 h2(x, t) h̄(x, t) + b2 g5 h3(x, t) h̄2(x, t) + b3 g7 h4(x, t) h̄3(x, t) = 0.

The first simplest equation is for the function h(x, t). Taking into an account the pres-
ence of h and its derivatives in Eq.6 as well as the presence of the term h(x, t) h̄(x, t)
there and aiming to choose such simplest equation that will lead to the reduction of
Eq.6 to an equation for g(ξ), we arrive at the simplest equation

∂h(ζ)

∂ζ
= i h(ζ), ζ = k x + ω t + θ (7)

which solution is

h(ζ) = exp(i ζ) = exp [i (k x + ω t + θ)]. (8)

The substitution of Eq. 7 in Eq.6 reduces Eq.6 to an equation for the function g(ξ):

α2 a g′′ + i (β + 2 a α k) g′ + b−2 g−3 + (9)

+(b0 − ω − a k2) g + b1 g3 + b2 g5 + b3 g7 = 0.

g(ξ) has to be a real function and then

β = −2 a α k. (10)

The substitution of Eq. 10 in Eq.9 followed by multiplication of the result by g′ and
integration with respect to ξ leads to the equation

α2 a g′ 2 − b−2 g−2 − C + (b0 − ω − a k2) g2 + b1
2

g4 + b2
3

g6 + b3
4

g8 = 0, (11)

where C is a constant of integration. Further, we set

u(ξ) = gσ(ξ), (12)

where σ is a parameter that will be determined below. Then the substitution of Eq. 12
in Eq.11 leads to the following equation for u(ξ):

u′ 2 = σ2

a α2

[
b−2 u

2 (σ−2)
σ + C u

2 (σ−1)
σ − (b0 − ω − a k2) u2 +

−b1
2
u

2 (σ+1)
σ − b2

3
u

2 (σ+2)
σ − b3

4
u

2 (σ+3)
σ

]
. (13)
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The cases where b3 = 0 and σ = ±2,±4 are discussed in detail in [44, 76], where
a solution was obtained using elliptic functions.

For the case (b3 �= 0) σ = 2, Eq.13 becomes

u′ 2 = σ2

a α2

[
b−2 + C u − (b0 − ω − a k2) u2 − b1

2
u3 − b2

3
u4 − b3

4
u5

]
. (14)

Now we search for solution of Eq. (14) of kind u = u(ξ) =
n∑

i=0
ai ϕi (ξ), where

ϕ′(ξ) =
r∑
j=0

c jϕ j (ξ). Here ai and c j are parameters, and ϕ (ξ) is a solution of some

ordinary differential equation, referred to as the simplest equation. The balance equa-
tion is 2 r − 2 = 3 n. We assume that n = 1 and r = 5/2, i.e., the equation ϕ′(ξ) =
[c1 ϕ(ξ) + c0] 5

2 will play the role of simplest equation and u(ξ) = a1 ϕ(ξ) + a0. We
substitute the last expression in Eq. (14). Relationships between the coefficients of
the solution and the coefficients of the model are derived by solving a system of six
algebraic equations, and they are

a0 = −
3
√
4( 3

√
16σ b2 + 15 c0

3
√
a α2 c12 σ b32 )

15σ b3
, b1 = 16 b22

45 b3
,

a1 = −c1
3
√
4 a α2 c12 σ b3

2

σ b3
, C = − 64 b24

10125 b3
3 , (15)

b−2 = − 256 b25

759375 b3
4 , b0 = 675 b32(ω + 675 a k2 ) + 32 b23

675 b3
2 ,

and c0, c1, b2, b3 �= 0, a, k, α, σ �= 0, and ω are free parameters.
Substituting (15) in the solution of equation ϕ′(ξ) = [c1 ϕ(ξ) + c0] 5

2 , the solution
of Eq. (14) obtains the form (C1 is integration constant):

u(x, t) =
3
√
4 a α2 c12 σ b3

2

σ b3

{
c0 −

3
√
4

3
√[3 c1 (α x − 2 a α k t + C1 )]2

}
+

−
3
√
4( 3

√
16σ b2 + 15 c0

3
√
a α2 c12 σ b32 )

15σ b3
, (16)

and the corresponding solution (5) of Eq. (4) is

q(x, t) =
( 3

√
4 a α2 c12 σ b3

2

σ b3

{
c0 −

3
√
4

3
√[3 c1 (α x − 2 a α k t + C1 )]2

}
+

−
3
√
4( 3

√
16σ b2 + 15 c0

3
√
a α2 c12 σ b32 )

15σ b3

)1/2

exp [i (k x + ω t + θ)]. (17)
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4 Concluding Remarks

In this study, we show an example of the application of the Simple equationsMethods
(SEsM) for obtaining the exact solution of a nonlinear partial differential equation
of Schrödinger kind. The used version of SEsM is based on two simple equations.
We have obtained a solution that contains two parts. The first part is the envelope
described by a complex exponential function. The second part is derived by applying
the classical modified method of the simplest equation. The obtained results show
that SEsM is an effective method for obtaining exact analytical solutions of nonlinear
partial differential equations. We are going to apply this methodology for a further
study of equations of nonlinear Schrödinger kind in our future research.
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On the Square of Laplacian with Inverse
Square Potential

Vladimir Georgiev and Mario Rastrelli

Abstract The work treats the domain of 3D Laplace operator A with inverse square
potential and its square. In the case when this operator is essentially self-adjoint, its
domain has an explicit representation in terms of classical Sobolev spaces and the
value of the function at the origin. If the coefficient of the inverse square potential is
sufficiently large, then a similar characterization is obtained for A2.

Keywords Self-adjoint operator · Inverse square potential · Rellich inequality

1 Introduction

In this work, we study the domain of the operator

A = −Δ + q(|x |)
|x |2 (1)

and its square. Here x ∈ R
3 and q(|x |) ∈ C1(R3) is a radial positive decreasing

function that satisfies

inf q(|x |) > β1 = 3

4
. (2)

For q(|x |) = β > β1, it is well-known that the operator is essentially self-adjoint
(see [1, 2]). Hence, one can start with domain C∞

0 (Rn\{0}), where the operator is
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symmetric and its graph closure gives the unique self-adjoint extension that shall be
denoted again by A.

So, we know that the operator−Δ + β/|x |2 is essentially self-adjoint if β > β1 =
3
4 . In particular, A coincides with the Friedrichs extension of the symmetric operator
operator −Δ + β/|x |2 with domain C∞

0 (Rn\{0}).

In [3], the following inclusion is established

Theorem 1 (Characterization of D(A), see [3]) If q(|x |) satisfies (2), then D(A) =
H 2(R3) ∩ {u(0) = 0}.

The key question that we treat in this work is to give a characterization of the
square of A, when q(x) = β.

Our main result is the following.

Theorem 2 (Characterization of D(A2)) If

β > β1, β �= β2, β2 = 35

4
= 8 + β1β �= β2 − 2, β �= β2 − 6 (3)

then
D(A2) = H 4(R3) ∩ {u(0) = u′(0) = u′′(0) = 0}. (4)

2 Domain of D(A)

Here for completeness, we give a proof of Theorem 1. From now on, we will call

C∞
(0) = C∞

0 (R3\{0}) (5)

Our first step is the proof of the inclusion D(A) = H 2(R3) ∩ {u(0) = 0}.
Proposition 1 (D(A) ⊆ H 2) Let u ∈ D(A), then u ∈ H 2.

Proof From the definition of D(A), we know that u ∈ D(A) means that there exists
a sequence uk ∈ C∞

(0) such that

uk −→ u in L2

Auk −→ Au in L2.

To prove that u is in H 2, it is sufficient to prove that Δu is in L2. So we will prove
that u/r2 is in L2. Let’s write the formula of A for uk

−Δuk + q(r)

r2
uk = fk ∈ L2
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Let’s scalar multiply for uk/r2 in L2. From now on, we will omit the ωn term for the
radial integrals. We obtain

−
∫
R3

Δuk · uk
r2

dx +
∫
R3

q(r)

r4
u2k dx =

∫
R3

fk
uk
r2

dx . (6)

Using the relation ∇r−k = −k x
rk+2 , we find

−
∫
R3

Δuk · uk r−2dx =
∫
R3

|∇uk |2 dx
r2

−
∫
R3

|uk |2 dx
r4

.

Therefore, we arrive at

(
Auk,

uk
r2

)
L2

=
∥∥∥∥∇uk

r

∥∥∥∥
2

L2

−
∥∥∥uk
r2

∥∥∥2

L2
+

∫
R3

q(r)

r4
|uk |2dx ≥

≥
∥∥∥∥∇uk

r

∥∥∥∥
2

L2

+ (β − 1)
∥∥∥uk
r2

∥∥∥2

L2
.

Due to Hardy’s inequality (see (33) in the Appendix), with p = 2 and q = 1,

the following inequality holds:
∥∥∇uk

r

∥∥2

L2 ≥ 1
4

∥∥ uk
r2

∥∥2
L2 so we arrive at

(
Auk,

uk
r2

)
L2 ≥(

β − 3
4

) ∥∥ uk
r2

∥∥2
L2 and hence we have the estimate

∥∥∥uk
r2

∥∥∥
L2

≤ 1

β − 3/4
‖Auk‖L2 . (7)

This estimate implies

‖Δuk‖L2 ≤ ‖Auk‖L2 + 1

β − 3/4
‖Auk‖L2 . (8)

Taking the limit k → ∞ we complete the proof. �

In the previous proof, we have obtained the following key estimates:

‖Δu‖L2 � ‖Au‖L2 , (9)

and ∥∥∥ u

r2

∥∥∥
L2

� ‖Au‖L2 . (10)

Proof (Proof of Theorem 1) Once we have the inclusion D(A) ⊂ H 2, we use the
Sobolev embedding, and from u ∈ D(A), we see that u is a continuous function, and
from the convergence of the integral
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∫
R3

|u(x)|2
|x |2 dx

, we get u(0) = 0. So we have the inclusion D(A) ⊆ H 2(R3) ∩ {u(0) = 0}.
It remains to prove the opposite inclusion H 2(R3) ∩ {u(0) = 0} ⊆ D(A).
But this follows from Rellich’s inequality (see (34) in the Appendix).
Let’s consider u ∈ H 2, it is sufficient to check that u/r2 is in L2. Thanks toHardy’s

inequality with p = 2 and q = n − 2, and after the Rellich’s onewith k = 1, we have

∥∥∥∥ 1

r2
u

∥∥∥∥
2

L2

≤
(
4

3

)2

‖Δu‖2L2 .

This completes the proof. �

Observation 1 In the proof, we have obtained the following fundamental inequality:

∥∥∥∥ 1

r2
u

∥∥∥∥
L2

� ‖Δu‖L2 . (11)

3 Definition and Domain of A2

Thanks to the definition of D(A)we can define A2. The square is for the composition
and, because we know how A2 behaves on C∞

(0), the closure is well defined and is
essentially self-adjoint too.

If we consider u ∈ C∞
(0), it can be easily checked that

A2u = Δ2u − βΔ
( u

r2

)
− β

r2
Δu + β2

r4
u. (12)

For simplicity, we shall reduce the proof of the main result to the case of radial
functions, since adding integration in angular variables we can get the general result.

Proposition 2 (H 4
rad ⊆ D(A2)) Let u ∈ H 4

rad , then u ∈ D(A2).

Proof It is sufficient to prove that ‖A2u‖L2 is finite. So we compute the L2 norm of
every term.

First of all, ‖Δ2u‖L2 is finite because u is in H 4. CallingΔu = g ∈ H 2 and using
(11), we obtain ∥∥∥∥ 1

r2
Δu

∥∥∥∥
L2

�
∥∥Δ2u

∥∥
L2 (13)

and we have the estimate on the third term. We can repeat the computation done in
Proposition 1 for the forth term, Hardy with p = 2 and q = −3 and Rellich with
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k = 3.

∥∥∥∥ 1

r4
u

∥∥∥∥
2

L2

=
∫ ∞

0

∣∣∣∣1r u(r)

∣∣∣∣
2

r−4dr ≤
(
2

5

)2 ∥∥∥∥ 1

r3
∂r u

∥∥∥∥
2

L2

≤
(

4

35

)2 ∥∥∥∥ 1

r2
Δu

∥∥∥∥
2

L2

, (14)

and thanks to (13), we can write

∥∥∥∥ 1

r4
u

∥∥∥∥
L2

�
∥∥∥∥ 1

r2
Δu

∥∥∥∥
L2

�
∥∥Δ2u

∥∥
L2 (15)

and ∥∥∥∥ 1

r3
∂r u

∥∥∥∥
L2

�
∥∥∥∥ 1

r2
Δu

∥∥∥∥
L2

�
∥∥Δ2u

∥∥
L2 (16)

We conclude with the Leibnitz formula for the Laplacian Δ( f g) = Δ f · g + f ·
Δg + 2∇ f ∇g, we have, indeed

Δ
( u

r2

)
= 1

r2
Δu + uΔ

(
1

r2

)
+ 2∇u · ∇

(
1

r2

)
.

So, because 2∇u · ∇ (
1
r2

) = −2 2
r3 ∇u · r̂ = − 4

r3 ∂r u and Δ
(
1
r2

) = 1
r2 ∂r

(
r2∂r

1
r2

) =
2
r4 , the following estimate can be computed

∥∥∥Δ
( u

r2

)∥∥∥
L2

≤
∥∥∥∥ 1

r2
Δu

∥∥∥∥
L2

+ 2

∥∥∥∥ 1

r4
u

∥∥∥∥
L2

+ 4

∥∥∥∥ 1

r3
∂r u

∥∥∥∥
L2

.

Finally, thanks to (13), (15), and (16), we can conclude that

‖A2u‖L2 �
∥∥Δ2u

∥∥
L2 . (17)

Lemma 1 If β > β2 = 8 + β1, then Drad(A2) = H 4
rad ∩ {u(0) = u′(0) = u′′(0) =

0}.
Proof Let’s consider u ∈ D(A2), in particular, u ∈ D(A) and Au = f ∈ D(A). So,
thanks to (10), we have

∥∥∥∥ 1

r2
f

∥∥∥∥
L2

� ‖A f ‖L2 = ‖A2u‖L2 (18)

Let’s consider a sequence {uk}∞k=1 ⊆ C∞
(0) such that uk → u in H 2, fk = Auk → f

in H 2 and A2uk → A2u in L2, and let’s compute the following scalar product in L2:
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(
− 1

r2
Δuk + β

r4
uk,

1

r4
uk

)
L2

. (19)

With Cauchy–Schwartz and (18), we obtain

(19) ≤
∥∥∥∥ 1

r2
fk

∥∥∥∥
L2

∥∥∥∥ 1

r4
uk

∥∥∥∥
L2

� ‖A2uk‖L2

∥∥∥∥ 1

r4
uk

∥∥∥∥
L2

(20)

On the other hand

(19) = −
∫ ∞

0
Δuk uk r

n−7dr + β

∥∥∥∥ 1

r4
uk

∥∥∥∥
2

L2

. (21)

Now, as done for the D(A) case, let’s study the first term

−
∫ ∞

0
Δuk uk r

−4dr = −
∫ ∞

0
∂2
r uk uk r

−4dr − (n − 1)
∫ ∞

0
∂r uk uk r

−5dr,

We integrate by parts

−
∫ ∞

0
∂2
r uk uk r

−4dr =
∫ ∞

0
(∂r uk)

2 r−4dr + (n − 7)
∫ ∞

0
∂r uk uk r

−5dr,

and we substitute

−
∫ ∞

0
Δuk uk r

−4dr =
∫ ∞

0
(∂r uk)

2 r−4dr − 6
∫ ∞

0
∂r uk uk r

−5dr.

Thanks to Hardy, with p = 2 and q = −3, we can write

∥∥∥∥ 1

r3
∂r uk

∥∥∥∥
2

L2

=
∫ ∞

0
(∂r uk)

2 r−4dr ≥

≥
(
5

2

)2 ∫ ∞

0

∣∣∣uk
r

∣∣∣2 r−3dr =
(
5

2

)2 ∥∥∥∥ 1

r4
uk

∥∥∥∥
2

L2

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(22)

and, integrating by parts again

− 6
∫ ∞

0
∂r uk uk r

−5dr = −3
∫ ∞

0
∂r (u

2
k) r

−5dr =

= 3(−5)
∫ ∞

0
u2k r

−6dr = −15

∥∥∥∥ 1

r4
uk

∥∥∥∥
2

L2

.

Adding all terms, the following inequality holds:
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−
∫ ∞

0
Δuk uk r

−4dr ≥ −35

4

∥∥∥∥ 1

r4
uk

∥∥∥∥
2

L2

so we have two estimates on the scalar product

(
β − 35

4

) ∥∥∥∥ 1

r4
uk

∥∥∥∥
2

L2

≤ (19) � ‖A2uk‖L2

∥∥∥∥ 1

r4
uk

∥∥∥∥
L2

. (23)

Simplifying, we have computed

∥∥∥∥ 1

r4
uk

∥∥∥∥
L2

� ‖A2uk‖L2 . (24)

Moreover, due to the convergence, we have obtained

∥∥∥∥ 1

r4
u

∥∥∥∥
L2

� ‖A2u‖L2 . (25)

Let’s now write respect to u the inequality (18):

∥∥∥∥− 1

r2
Δu + β

r4
u

∥∥∥∥
L2

� ‖A2u‖L2 ,

adding (25), we have estimated also

∥∥∥∥ 1

r2
Δu

∥∥∥∥
L2

� ‖A2
Fu‖L2 . (26)

Repeating the same computation as in (14) with Rellich, we have

∥∥∥∥ 1

r3
∂r u

∥∥∥∥
L2

�
∥∥∥∥ 1

r2
Δu

∥∥∥∥
L2

�
∥∥A2u

∥∥
L2 . (27)

Now the thesis follows because, thanks to triangular inequality, we can write

‖Δ2u‖L2 �
∥∥A2u

∥∥
L2 . (28)

The conditions for u and its derivatives in 0 follow fromSobolev embeddings. Indeed,
the convergence for u,∂r u and ∂2

r u is uniform, in particular pointwise.

Lemma 2 If β1 < β < β2, then Drad(A2) = H 4
rad ∩ {u(0) = u′(0) = u′′(0) = 0};

Proof It is sufficient to consider the following scalar product in L2, instead of (19),

(
− 1

r2
Δuk + β

r4
uk,− 1

r3
∂r uk

)
L2

. (29)
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Integrating by parts, we compute
(
− 1

r2 Δuk + β

r4 uk,− 1
r3 ∂r uk

)
L2

= 7
2

∥∥ 1
r3 ∂r u

∥∥2

L2 −
β 5

2

∥∥ 1
r4 u

∥∥2

L2 , and, due to Cauchy-Schwartz, we obtain:

7

2

∥∥∥∥ 1

r3
∂r u

∥∥∥∥
2

L2

− 5β

2

∥∥∥∥ 1

r4
u

∥∥∥∥
2

L2

≤
∥∥∥∥ 1

r2
f

∥∥∥∥
L2

∥∥∥∥ 1

r3
∂r u

∥∥∥∥
L2

. (30)

Because β > β1 > 0 and (22), we can write

− 5β

2

∥∥∥∥ 1

r4
uk

∥∥∥∥
2

L2

≥ −2β

5

∥∥∥∥ 1

r3
∂r uk

∥∥∥∥
2

L2

(31)

and find (
7

2
− 2β

5

) ∥∥∥∥ 1

r3
∂r u

∥∥∥∥
2

L2

≤
∥∥∥∥ 1

r2
f

∥∥∥∥
L2

∥∥∥∥ 1

r3
∂r u

∥∥∥∥
L2

. (32)

so, for β < β2, we have the boundedness of
∥∥ 1
r3 ∂r u

∥∥2

L2 ,
∥∥ 1
r4 u

∥∥2

L2 .

Proof (Proof of Theorem 2 ) It is sufficient to join the results of Lemmas 1 and 2.

4 Appendix: Hardy and Rellich Inequalities

Proposition 3 (Weighed Hardy’s inequality) The inequality

∫ ∞

0

∣∣∣∣1r f (r)

∣∣∣∣
p

rq−1 dr ≤
(

p

|p − q|
)p ∫ ∞

0
| f ′(r)|p rq−1dr (33)

holds:

– if p > q and f (0) = 0,
– if p < q and f (∞) = 0.

Proof The Proof is in Corollary 1.2.9 in [4]

Thanks to Hardy’s inequality we can prove a particular case of the Rellich’s
inequality.

Proposition 4 (Radial Rellich’s inequality) Let u be a sufficiently smooth radial
function, then the following inequality holds for every real numbers n > 0, k ≥
1 − n

2 :

∫ ∞

0

∣∣∣∣∂r u(r)

rk

∣∣∣∣
2

rn−1dr ≤
(

2

n + 2k − 2

)2 ∫ ∞

0

∣∣∣∣Δu(r)

rk−1

∣∣∣∣
2

rn−1dr. (34)
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Proof ∫ ∞

0

∣∣∣∣∂r u(r)

rk

∣∣∣∣
2

rn−1dr =
∫ ∞

0

∣∣∣∣r
n−1∂r u(r)

r

∣∣∣∣
2

r3−n−2kdr

≤
(

2

n + 2k − 2

)2 ∫ ∞

0

∣∣∣∣ 1

rk−1

1

rn−1
∂r (r

n−1∂r u(r))

∣∣∣∣
2

rn−1dr

=
(

2

n + 2k − 2

)2 ∫ ∞

0

∣∣∣∣ 1

rk−1
Δu(r)

∣∣∣∣
2

rn−1dr,

where, in the second line, we used the Hardy’s inequality for p = 2, q = 4 − n − 2k
and f (r) = rn−1∂r u(r), which in zero is equal to zero.
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Deficiency
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Abstract The global decline of honeybee colony number, called Colony Collapse
Disorder, is a long-lasting and severe problem. It has been researched a lot, but
some of the causal factors are still unknown. Nevertheless, it is well agreed that poor
nutrition often leads to disruption in the colony routine and it is indeed a primary
reason for population decline. In this study, we adopt a compartment model that
considers the distinct population of brood, hive, and forager bees and the amount
of stored pollen and nectar. The paper proposes a robust approach to calibrate the
mathematical model from experimental data in order to study the rates of change
in the food consumption. The obtained values of the dynamics parameters are not
directly observable but vital to explore the impact of the behavioral changes occurring
in the case of nutritional stress. Such information is of extreme importance to choose
and apply the best beekeeping policy to prevent or cure colony failure.
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1 Introduction

The honeybee is one of the most important species on the Earth. It is the main
known pollinator of plants around the world. The life on the planet is impossible
in case of bees absence. Honeybees collect food in the form of nectar and pollen
from the surrounding environment, then process it, and store it for the whole colony
population.Recently,massive colonydeclineswere observed all over theworld,while
theywere caused bymultiple but unclear factors. This phenomenon, characterized by
the absence of forage bees (those bees which fly and gather food) with the presence
of a small number of hive bees (those who care for the hive and the brood) and
the unattended queen, is called Colony Collapse Disorder (CCD) [2, 3, 15, 18].
Since it is agreed that not a single factor causes this syndrome, many reasons are
associated to the colony failure, such as pesticides, viruses, bacteria, fungi, harsh
weather conditions, and nutritional stress. It is concluded that the joint effect of the
multiple stressors causes the colony collapse [10–12, 16].

In this paper, we adopt the model proposed in [4]. It distinguishes five classes of
bees—eggs and larvae, pupae, hive bees, pollen forager bees, and nectar forager bees.
The other two compartments are the amount of stored pollen and nectar. The model
explores the consumption and impact of the food on the honey bees during different
stages of their lives. It provides a simple theoretical framework to investigate how
the presence of pollen and nectar influences the colony population dynamics.

While the mathematical models provide a tool for simulation, system behavior is
driven by the model parameters. Unfortunately, most of them are not directly observ-
able or measurable in practice. Their values, however, together with the respective
sensitivities, determine the outcome of the experiment and thus—the possible sce-
nario in the real world. So the knowledge of the parameter values is of paramount
importance for the proper honeybee management. What is usually measurable,
though, is the values of the model functions. In our case, they are the population
size of the different classes and the amount of the stored food. There exists appropri-
ate hardware which is capable of measuring the respective quantities with satisfying
precision. Thus, we are able to define the inverse problem of deriving the parameter
values given observations of the model functions, which will be rigorously defined
in the subsequent sections.

Such inverse problems, concerning similar models, are solved by different math-
ematical methods in [1–3, 10].

The next section is dedicated to the detailed explanation of the mathematical
model. In Sect. 3, the inverse problem is defined, while in Sect. 4 the direct and
inverse problems are solved, respectively. The experiments are presented in Sect. 5
and the paper is concluded in the last section.



Parameter Recovery Study of Honeybee Colony Failure … 213

2 Mathematical Model

Almost all compartment models regard the rates of change in the population size
of the different classes of honeybees. The stages of the bee life are four—an egg,
a larva, a pupa, and a mature bee. Usually, there is a single queen in a colony and
her main job is to lay eggs. A healthy queen lays up to 1500–2000 eggs per day.
There are three types of adult bees—a queen, female workers, and male drones.
The latter emerge from non-fertilized eggs, comprise less than 1/20 from the adults,
and do not contribute to the colony work, thus being usually neglected in modeling.
The queen and workers emerge from fertilized eggs and all of them are fed with
royal jelly during the first three days of their lives. Then, those larvae, chosen to
become queens, are continued to be fed with royal jelly, while the others are fed with
nectar or diluted honey and pollen. After pupation, the young hive bees clean the
hive and feed the larvae and the queen, following the responsibilities of building and
guarding the nest. When they mature enough (usually after about twenty days), they
could be recruited to become forage bees. The foragers fly outside the hive to gather
nectar, pollen, and water. The behavioral maturation of the hive bees is regulated by
a pheromone and it is known as social inhibition. If there is a plenty of foragers, the
hive bees are recruited at a later age, and vice versa. It is also possible for foragers
to go back to hive duties.

In the present model, the forage bees are differentiated between pollen and nectar
foragers. The first ones are known for their large pollen loads, while the second ones
are recognized by their extended abdomens. The forager behavior primarily depends
on the colony needs. The collected amount of pollen and nectar heavily depends
on the available quantity in the environment. As mentioned, consuming pollen, the
hive bees produce royal jelly, consumed on its turn by the queen, adult bees, and the
uncapped brood. The latter is composed of the eggs and larvae. After a couple of
days, the hive bees seal the cells and the brood becomes capped or pupae.

Let us denote the population size of the uncapped broodwith Bu and of the capped
brood with Bc. Further, as usual, the population size of the hive bees is denoted with
H , and the population size of the pollen forage bees and the nectar forage bees—with
Fp and Fn , respectively. Similarly, the amount (in grams) of stored pollen and nectar
is denoted with f p and fn . The time t is measured in days. The model is constituted
by the following system of ordinary differential equations (ODEs):

dBu

dt
= L · S(H, f p, fn) − φu Bu, (1a)

dBc

dt
= φu Bu − (ϕc + mc)Bc, (1b)

dH

dt
= ϕc Bc − H · (

Rp(H, Fp, Fn, f p) + Rn(H, Fp, Fn, fn)
)
, (1c)

dFp

dt
= H · Rp(H, Fp, Fn, f p) − mpFp, (1d)
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dFn

dt
= H · Rn(H, Fp, Fn, fn) − mnFn, (1e)

d f p
dt

= μp(t)cFp − γu Bu − γH H, (1f)

d fn
dt

= μn(t)cFn − λu Bu − λA(H + Fp + Fn). (1g)

Equation (1a) of model (1a–1g) describes the rate of change of the uncapped brood,
constituted by eggs and larvae. L is the number of eggs laid by the queen per day.
S(·) is a saturation function determining the survival rate of the uncapped brood. It
is assumed to depend on the number of hive bees that take care after the uncapped
brood and the amount of the stored food. It is based on the function suggested in
[14], but is extended to

S(H, f p, fn) = H

H + ν
· f 2p
f 2p + K · H · fn

fn + b
. (2)

The first term in (2)models the impact of the hive bees on the survival of the uncapped
brood. Since the hive bees feed and keep warm the brood, if they are low in number,
the survival rate declines. The half-saturation constant ν determines the speed of the
decline.

The second and the third terms in (2) consider the decline of the survival rate if
the food amounts are low. Their sigmoid forms are suggested in [14]. The parameter
b is again a half-saturation constant that controls the effect of nectar shortage. Most
of the protein is provided from the pollen, so the former would be enough if the
amount of the collected pollen is proportional to the population size of the hive bees.
The parameter K denotes the maximal amount of pollen that could be consumed by
a hive bee to be saturated to produce enough royal jelly.

The second term in (1a) is the daily capping rate.
Equation (1b) models the rate of change of the capped brood. The first term

describes the size of the uncapped brood that develops into the capped brood. The
first part of the second term shows the number of pupae that develop into young hive
bees and the constant ϕc is the emerging rate. The second part is the capped brood
mortality rate.

The rate of change in the population size of the hive bees is modeled by Eq. (1c).
The first constituent term is the number of the capped brood that develop into hive
bees. The second one is the number of bees, recruited for pollen and nectar foragers,
respectively.

The transition from hive bees to foragers is high if there is a shortage of foragers
and low in case of enough foragers. The pollen recruitment function is assumed to
be

Rp(H, Fp, Fn, f p) = αmin
p + αmax

p

(

1 − f 2p
f 2p + K · H

)

− δ · Fp

H + Fp + Fn
, (3)
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where αmin
p is the minimal pollen recruitment rate when there is enough stored pollen

in the hive. The second term in (3) expresses how the shortage of collected pollen
increases the pollen recruitment rate, as the constant αmax

p controls that effect. The
last term in (3) models how the presence of pollen foragers decreases the recruitment
rate, as the constant δ regulates the strength of the social inhibition.

Analogously, the nectar recruitment function (4) is assumed to be

Rn(H, Fp, Fn, fn) = αmin
n + αmax

n

(
1 − fn

fn + b

)
− δ · Fn

H + Fp + Fn
. (4)

The rate of change of the pollen foragers is modeled by Eq. (1d), where the first
term represents the pollen recruitment rate, and the second term—the pollen forager
mortality rate. Similarly, the rate of change of the nectar forage bees is modeled by
Eq. (1e).

The rate of change in the stored pollen is described with Eq. (1f). The first term
accounts for the amount of pollen collected by the pollen foragers. This directly
depends on the pollen availability, which is not constant throughout the year. Func-
tions that describe the variation of the availability, for instance the peaks during the
plant flowering and the dips during the winter, are proposed in [17]. We consider the
following expression for μp(t):

μp(t) = 1

2

(
cos

( π

180
t
)

+ 5

2

)
.

The constant c denotes the maximal amount of food collected from a forager per
day. The second and third terms in (1f) denote the daily consumption of pollen from
the uncapped brood and the hive bees, respectively.

In a similar manner, the rate of change in the stored nectar is modeled by Eq. (1g).
The nectar availability is described with the function

μn(t) = 1

2

(
sin

( π

180
t
)

+ 11

2

)
.

Again, λu and λA are the nectar consumption rates from the uncapped brood and
the adult bees.

3 Definition of the Inverse Problem

This section is dedicated to the formulation of the inverse coefficient problem. This
is essentially finding the “fair” values of the unknown parameters, provided with
additional information about the solution to the problem (1a–1g). In practice, it is
very important to know how fast the bees consume their food stores, which is given
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by the levels of the rates γu , γH , λu , and λA. They are not directly measurable, but it
is possible to reconstruct their values using mathematical methods.

The problem (1a–1g) is subjected to the initial condition

Bu(t0) = B0
u , Bc(t0) = B0

c , H(t0) = H0, Fp(t0) = F0
p , Fn(t0) = F0

n , f p(t0) = f 0p , fn(t0) = f 0n , (5)

where ppp = (p1, p2, p3, p4)�, p1 := γu , p2 := γH , p3 := λu , p4 := λA and

ppp ∈ Sadm ≡ {
R4 : 0 < pr < Pr , r = 1, 4

}
. (6)

The solutions
{
Bu(t; ppp), Bc(t; ppp), H(t; ppp), Fp(t; ppp), Fn(t; ppp), f p(t; ppp), fn(t; ppp)}, ppp ∈ Sadm to

(1a–1g) are defined on the interval t0 ≤ t ≤ T . The admissible set Sadm follows the
biology of the honey bee [20] and the particular model [4]. If the values of the
parameters γu , γH , λu , and λA are known, the problem (1a–1g)–(5) is well-posed
and it is called a direct problem.

In the paper, it is studied the inverse problem of recovering the parameters ppp ∈
Sadm, which are assumed to be unknown. Further, the provided additional information
is in the form of observations of the values of the functions

{
Bobs
u (t i ), Bobs

c (t i ), H obs(t i ), Fobs
p (t i ), Fobs

n (t i ), f obsp (t i ), f obsn (t i )
}
,

i = 1, . . . , Iobs; t0 = t1 < . . . < t Iobs = T (7)

of the system (1a–1g)–(5).
Via solving the inverse problem, the goal is to reconstruct the unknown parameters

ppp from the observation data. It is done through minimization of the functional

min
ppp∈Sadm

Φ(ppp), ppp = (p1, p2, p3, p4).

Our target is to find the point ppp = (p1, p2, p3, p4) of the local minimum of the
functional Φ(ppp). The functional Φ(ppp) could be written as

Φ(ppp) = 1

2

Iobs∑

i=1

[
(
Bu(t

i ; ppp) − Bobs
u (t i )

)2 + (
Bc(t

i ; ppp) − Bobs
c (t i )

)2 +
(
H(t i ; ppp) − H obs(t i )

)2 + (
Fp(t

i ; ppp) − Fobs
p (t i )

)2 + (
Fn(t

i ; ppp) − Fobs
n (t i )

)2 +
(
f p(t

i ; ppp) − f obsp (t i )
)2 + (

fn(t
i ; ppp) − f obsn (t i )

)2
]
. (8)

In (8)
{
Bobs
u (t i ), Bobs

c (t i ), H obs(t i ), Fobs
p (t i ), Fobs

n (t i ), f obsp (t i ), f obsn (t i )
}
are the

experimental data (7) and
{
Bu(t i ; ppp), Bc(t i ; ppp), H(t i ; ppp), Fp(t i ; ppp), Fn(t i ; ppp),

f p(t i ; ppp), fn(t i ; ppp)
}
is the theoretical solution to problem (1a–1g)–(6).
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4 Solution to the Direct and Inverse Problems

This section begins with a brief description of the numerical algorithm to solve
the direct problem (1a–1g)–(5). Such kind of sophisticated models do not possess
analytic solutions, so a computational approach is needed here. What is more, in the
synthetic data framework, the direct problem is solved in order to take observations
to explore the solution to the inverse problem.

We use the nonuniform mesh

ωτ = {
t0, t1, t2, . . . , t j , . . . , tJ = T

}
for j = 0, . . . , J (9)

and the boolean mask

m j = 1{t j is an observation point} =
{
1, t j = t i for some i ≤ j,
0, otherwise,

where, as mentioned, t j , j = 0, J are the nodes for the direct problem and t i , i =
1, Iobs is the subset of nodes where measurements are taken at. Without loss of
generality, it is assumed that the observation moments coincide with some of the
time nodes. If this is not the case in practice, a simple interpolation would help.

The standard numerical methods are able to solve the initial problem (1a–1g)–(5).
Similar problems are solved in [2, 10], including honeybee feeding [1]. In the present
paper, we employ the MATLAB� ode45 subroutine with the mesh (9). This solver
is based on an explicit Runge–Kutta–Dormand–Prince formula [9, 19], which could
achieve fourth and fifth order of accuracy.

The inverse problem solution regards the coefficient recovery in (1a–1g)–(6), (7).
It consists of finding those values of the parameters ppp, which reproduce the empirical
dynamics as far as possible. In other words, we are looking for the point of minimum
of Φ(ppp), which is denoted with p̌̌p̌p.

The argmin vector p̌̌p̌p is called nonlinear least squares estimator (LSE). There
are a couple of methods to find p̌̌p̌p, and we will employ the Trust Region Reflexive
algorithm [7, 8], using the MATLAB� subroutine lsqnonlin.

More information about the metrics used to estimate the goodness-of-fit could be
found in [5, 6].

5 Computational Experiments

In this section, we supply numerical simulations to validate the proposed algorithm.
First, we tackle the direct problem. Further, we use the results as measurements to
solve the inverse problem.

Let us demonstrate the solution to the direct problem. The values of the parameters
are taken from [13, 14, 17]. Themaximumnumber of eggs laid by the queen per day is
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Honeybee population dynamics
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Fig. 1 Honey bee population dynamics

L = 2000. The number of hive bees required for surviving half the eggs is ν = 5000
and the required mass of the stored nectar for surviving half the eggs is b = 500 g.
The maximum amount of pollen that could be consumed by a hive bee to saturate
the food is K = 8. The pupation rate of the uncapped brood is φu =1/9 and the
emerging rate of the capped brood isϕc =1/12. Themortality rate of the capped brood
is mc = 0.006. The minimal recruitment rates of pollen and nectar foragers in the
case of plenty of foragers are amin

p = amin
n = 0.25. The maximal recruitment rates in

absence of foragers are amax
p = amax

n = 0.25. The parameter controlling the effect of
excess of foragers is δ = 0.75.Themortality rates of the pollen andnectar foragers are
mp = mn = 0.1. Themaximum amount of food brought to the colony from a forager
per day is c = 0.1 g. The consumption of pollen by uncapped brood and hive bees
is γu = 0.018 g/day and γH = 0.007 g/day. The consumption of nectar by uncapped
brood and adult bees is λu = 0.018 g/day and λA = 0.007 g/day, respectively.

A colony with no brood in the beginning is assumed, B0
u = B0

c = 0, with H 0 =
16000 hive bees, F0

p = 2000 pollen foragers, F0
n = 6000 nectar foragers, and no

food stores, f 0p = f 0n = 0. The considered period is one year, t0 = 0 and T = 365.
The result from the simulation is given in Fig. 1.

In the case of relative low mortality rate mp = mn = 0.1, the colony easily
achieves an equilibrium state.

Now let us proceed to the solution to the inverse problem. As we discussed earlier,
we aim to reconstruct the unknown food consumption rates ppp = (γu, γH , λu, λA)

� =
(0.018, 0.007, 0.018, 0.007)� (6). The observations (7) are assumed to be taken
equidistantly, once in ten days. The initial values are the neutral ppp0 = (0.01, 0.01,
0.01, 0.01)�.

To begin with, a test with exact observations is conducted. This simply means
that the functions are measured without any error or noise. The results are given in
Table 1.
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Table 1 Test with exact observations

Parameter pr0 pr p̌r
∣∣pr − p̌r

∣∣
∣∣pr − p̌r

∣∣

pr
̂NSE

γu 0.01 0.018 0.0180 5.8981e−17 3.2767e−15 2.0624e−14

γH 0.01 0.007 0.0070 9.1940e−17 1.3134e−14 8.6642e−14

λu 0.01 0.018 0.0180 2.1858e−16 1.2143e−14 2.0487e−14

λA 0.01 0.007 0.0070 1.8562e−16 2.6516e−14 4.0398e−14

Table 2 Goodness-of-fit metrics with exact measurements
∥∥∇Φ( p̌̌p̌p)

∥∥∞ δpppk k + 1 Φ( p̌̌p̌p) σ̃ 2 σ̂ R2

1.73e−5 2.7318e−17 10 5.9325e−20 1.6034e−21 4.1771e−11 1−4.0542e−31

Table 3 Tests with perturbed observations

Par pr0 pr 1% 2% 3%

p̌r ̂NSE p̌r ̂NSE p̌r ̂NSE

γu 0.01 0.018 0.0182 0.4048 0.0183 0.8019 0.0185 1.1915

γH 0.01 0.007 0.0067 1.7824 0.0065 3.7091 0.0062 5.8016

λu 0.01 0.018 0.0185 0.3939 0.0191 0.7650 0.0196 1.1154

λA 0.01 0.007 0.0065 0.8573 0.0061 1.8460 0.0056 2.9990

The unknown parameters are accurately reconstructed, which is apparent from the
negligible errors. The goodness-of-fit metrics are shown in Table 2, demonstrating
an ideal fit.

Let us proceed with experiments with perturbed observations. In practice, every
electronic device has its instrumental error thus testing with noisy measurements is
meaningful. We add Gaussian noise to the observations (7). By m% noise we mean
the relative error in the observation does not exceed m% with 95% confidence. We
also define the relative parameter error (10) as follows.

REppp :=
∥∥ p̌̌p̌p − p̌̌p̌ppert

∥∥∞∥∥ p̌̌p̌p
∥∥∞

. (10)

For m = 1, 2, 3, the results are presented in Table 3. It is obvious that the higher
the noise, the higher the error in the recovered parameters.

What is more, the normalized standard errors also increase, but the inaccuracies
in the recovered values are not that high.

The gof metrics are given in Table 4. The non-monotonicity of the first-order
optimality measure

∥
∥∇Φ( p̌̌p̌p)

∥
∥∞ is because of the randomness of the noise. More-

over, the coefficients of determination R2 are high enough. Nevertheless, the relative
parameter errors are proportional to the level of noise.
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Table 4 Goodness-of-fit metrics with perturbed measurements
Noise (%)

∥∥∇Φ( p̌̌p̌p)
∥∥∞ δpppk Φ( p̌̌p̌p) REppp σ̃2 σ̂ R2

1 15.9 3.92959e−14 2.32864e7 0.0304 6.2936e5 827.5836 0.9998

2 0.633 2.50024e−14 9.31455e7 0.0608 2.5174e6 1.6552e3 0.9994

3 1.38 4.25102e−14 2.09577e8 0.0913 5.6642e6 2.4827e3 0.9986

6 Conclusion

In the paper, a robust and effective algorithm for parameter reconstruction of honey
bee population dynamics is suggested. The adoptedmodel balances between simplic-
ity and sophistication. It consists itself of a number of first-order ordinary differential
equations, which describe the rates of change in honey bee compartments and food
stores.

We recover the parameters related to the consumption rates of the brood and the
bees. They are important in view of adequate beekeeping practice and management,
but not directly observable in the nature. This means that knowing their fair values
provides an advantage in taking appropriate precocious measures. The parameters
are recovered via a square cost functional minimization, consisting of the squared
difference between the theoretical and the experimental quantities. The solution to
the direct problem is standard and is given in brief, and the solution to the inverse
coefficient identification problem is thoroughly described and the computational
algorithm is presented in detail. The numerical simulations with exact and perturbed
observations support the theoretical findings. The results are acceptable even in the
case of noisy measurements. Finally, it is shown that the algorithm is resource-
efficient and fast to compute.

Among the ways this study could be continued, considering even more elaborate
models, using the memory property of the system (through fractional-order deriva-
tives), or involving time-varying parameters seem promising to explore. Moreover,
a bifurcation analysis of the biologically meaningful equilibria points is useful from
both theoretical and practical perspectives.
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Chaos in a Dynamical Model of
Competition Between Three Basic Power
Stations Types

Elena V. Nikolova

Abstract In this study we propose a mathematical model based on a system of
three non-linear ordinary differential equations to describe possible dynamical effects
from competition between three basic power stations types depending on the primary
energy source for electricity generation (nuclear energy, fossil fuels (non-renewable)
energy and renewable sources).We choose the average price of electricity per kWh to
be the common variable indicator for the proposed system. We consider a particular
case of the reduced number of system parameters. For this case we analyze the
dynamical properties of the equilibrium points of the three-dimensional system. On
the basis of this analysis we found that for selected values of the parameters of the
model of equations, chaos of Shilnikov kind in the considered system is possible. We
illustrate numerically the development of a chaotic system attractor with increasing
the value of an appropriate control parameter.

Keywords Dynamical model · Competition between three power stations ·
Shilnikov chaos

1 Introduction

The use of systems of differential equations is a widespread method for modeling
dynamics of many natural processes from the past centuries to the present [1–18]. In
the recent years, however, the focus of scientific interest has shifted to understand-
ing the chaotic dynamics appeared in systems of three or more ordinary differential
equations. A such dynamics includes sequences of bifurcations, periodic doubling
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cascades and appearance of complex attractors, creating a ‘butterfly effect’ chaos (in
the well-known Lorenz system [19]) or a spiral chaos (in the well-known Shilnikov
system [20]). Themost important tool for analyzing the appearance of chaoticmotion
of a Shilnikov kind in a 3D non-linear dynamical system is the well-known Shilnikov
theorem. According to this theorem, chaotic behavior is exhibited in the neighbor-
hoods of parameter space where certain homoclinic orbits appear, surrounding the
saddle–focus equilibrium point [20]. The spiral chaos (or so-called also Shilnikov
chaos) has been observed in many dynamical systems, starting from the Rössler sys-
tem [21] and the Arneodo–Coullet–Tresser system [22]. Shilnikov chaos has been
found also in various dynamical models in physics [23–27], in ecology and popula-
tion dynamics [28–33], in economics [34, 35] and in medicine [36, 37].

In this paperwepresent a systemof three non-linear ordinary differential equations
to describe the competition between three different power stations depending on the
primary energy source for electricity generation. The primary energy sources can be
classified into three categories: nuclear energy, fossil fuels (non-renewable) sources,
like coal, natural gas, and petroleum, and renewable energy sources, like wind, solar,
geothermal, and hydro-power. These primary energy sources are converted to elec-
tricity in the corresponding power stations. On the basis of this classification, in our
dynamical model, we assume that a nuclear power station (NPS), a fossil fuel power
station (FFPS) (It can use coal or natural gas to produce electricity), and a hydro-
electric power station (HPS) are competed with respect to the average price of the
produced electricity per kWh. Next our goal is to demonstrate that chaos based on
Shilnikov’s theorem can exist in the considered three-dimensional system.

The paper is structured as follows. A short description of the proposed model is
presented in Sect. 2 of the paper. The basic criteria for the appearance of chaos based
on Shilnikov’s theorem are formulated in the same section. In Sect. 3 conditions
for existence of Shilnikov chaos in the three-dimensional model are analytically
determined. 3D phase portraits, which illustrate the appearance and the evolution
of a system chaotic attractor are presented in the Sect. 4. Conclusions based on the
obtained results are made in Sect. 5.

2 Formulation of the Problem

We consider the following system of ordinary differential equations

ẋ = a10x − a11x
2 − a12xy − a13xz

ẏ = a20y − a21yx − a22y
2 − a23yz

ż = a30z − a31zx − a32zy − a33z
2, (1)

assuming that x (x > 0) is a quantity accounting for the average price of electricity
per kWh produced by a NPS; y (y > 0) is the quantity accounting for average price
of electricity per kWh produced by a FFPS; and z (z > 0) is the quantity accounting



Chaos in a Dynamical Model of Competition … 225

for average price of electricity per kWh produced by a HPS. All the coefficients
of a system (1) are nonnegative. The time derivative of a quantity corresponds to
the growth of the average price of electricity produced by the corresponding power
station per unit time. In the model (1), the competition between power stations is
taken into account through interactions between every two power stations. For an
example, such competition can be expressed as follows: the increase of the average
price of electricity produced by a FFPS and the increase of the average price of
electricity produced by a HPS lead to a decrease of the growth of the average price
of electricity produced by a NPS per unit time. This is accounted for by the last two
terms in the first equation of (1). In the same way, the increase of the average price
of electricity produced by a NPS and the increase of the average price of electricity
produced by a HPS lead to a decrease of the growth of the average price of electricity
produced by a FFPS per unit time. This is accounted for by the second term and
the last term in the second equation of (1). In addition, the presence of the NPS
and FFPS decreases the growth of the average price of electricity produced by a
HPS per unit time. This is accounted for by the second term and the third term in the
third equation of (1). Finally, in the absence of interactions (competition) between the
power stations, the increase of the average price of electricity produced by each of the
three power stations is assumed to follow a logistic law, where a10, a11, a20, a22, a30
and a33 are the corresponding logistic growth coefficients.

Chaotic behavior in the above-formulated system can be realized if it satisfies the
requirements of the theorem of Shilnikov [20].

Theorem 1 (Shilnikov) If for the system

ẋ = ρx − ωy + P(x, y, z)

ẏ = ωx + ρy + Q(x, y, z)

ż = γz + R(x, y, z) (2)

where (P, Q, R are Cr functions (1 < r < ∞) vanishing together with their first
derivative at O = (0, 0, 0)) an unstable orbit � exists, which is a homoclinic con-
nection, and if

γ > −ρ > 0 (3)

then every neighborhood of the orbit � contains a denumerable set of unstable
periodic solutions of saddle type.

In order to obtain chaos in the system (1) according to the Shilnikov theorem we
have to satisfy the following Shilnikov conditions:

C 1a: There a saddle focus equilibrium point of the system (1) exists, where
the characteristic eigenvalues connected to its linear stability are λ3 > 0, and
λ1,2 = ρ ± iω with negative real part ρ and imaginary ω;
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C 1b: The condition λ3 > −ρ between the characteristic eigenvalues of the sad-
dle focus equilibrium point must be satisfied.

C 2: There is a homoclinic orbit based at the saddle focus equilibrium point.

3 Appearance of Shilnikov Chaos in the System (1)

In order to obtain chaotic behavior for the system (1) according to the requirements
of the Shilnikov theoremwe analyze the properties of the equilibrium points of (1). In
analogywith [29–33]wefind that one of the possibilities for developing the Shilnikov
chaos in the system (1) is reduced to the case in which the system parameters are
described by the following relationships:

a11 = a13 = a21 = κ1, a12 = a22 = a23 = a31 = a32 = κ2, a33 = κ3 (4)

and
a10 = 2κ1 + κ2, a20 = κ1 + 2κ2, a30 = κ3 + 2κ2 (5)

Thus, we reduce the number of system parameters to 3: κi (i = 1, 2, 3) and the
system (1) becomes:

ẋ = (2κ1 + κ2)x − κ1x
2 − κ2xy − κ1xz

ẏ = (κ1 + 2κ2)y − κ1yx − κ2y
2 − κ2yz

ż = (κ3 + 2κ2)z − κ2zx − κ2zy − κ3z
2 (6)

Next we shall analyze the stability of the equilibrium points connected to the
existence of Shilnikov chaos.Wenote again that theShilnikov theorem [20] states that
a system of ordinary differential equations exhibits Shilnikov chaos if there exists: a
saddle focus equilibrium point of the system with λ3 > −ρ, and a homoclinic orbit
based at this equilibrium point. We shall focus only on the first Shilnikov condition
(defined as C 1 in the previous section) for the system (6). The second condition
(defined as C 2 in the previous section), connected to the existence of a homoclinic
orbit, is hard to show analytically, but we shall visualize its appearance numerically
in the next section of the paper.

The equilibrium points of (6) are

E1 : x = y = z = 0, E2 : x = y = 0, z = 2κ2 + κ3

κ3
, E3 : x = y = z = 1,

E4 : x = 2κ1 + κ2

κ1
, y = z = 0, E5 : x = 0, y = 2κ2 + κ1

κ2
, z = 0, (7)

E6 : x = 0, y = κ2κ3 + κ1κ3 − 2κ2
2

κ2(κ3 − κ2)
, z = κ3 − κ1

κ3 − κ2
,
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E7 : x = κ1κ3 + κ2κ3 − 2κ1κ2

κ1(κ3 − κ2)
, y = 0, z = κ2

2 − κ1κ3

κ1(κ3 − κ2)

The equilibrium states (7) are realistic (nonnegative) when κ3 > κ2 > κ1, κ2κ3 +
κ1κ3 > 2κ2

2, κ1κ3 + κ2κ3 > 2κ1κ2 and κ2
2 > κ1κ3.

Now in order to obtain realistic equilibria of the system (6) for the considered
problem, we shall focus only on the parameter region

κ3 > κ2 > κ1, (8)

and we shall determine the area of validity of the Shilnikov criteria C1 in this region.

Proposition 1 When κ2
κ1

> 1 and κ3
κ1

> κ2
κ1
, the equilibrium point

E6 = (0, κ2κ3+κ1κ3−2κ2
2

κ2(κ3−κ2)
, κ3−κ1

κ3−κ2
) of the system (6) is a saddle focus with λ3 > −ρ,

where λ3 is its real characteristic eigenvalue and ρ is the real part of its conjugated
complex characteristic eigenvalues.

Proof The linear stability of the equilibrium points of (6) is determined by the
Jacobian matrix:

Mi j =
⎛
⎝

M11 − λ − κ2x − κ1x
−κ1y M22 − λ − κ2y
−κ2z − κ2z M33 − λ

⎞
⎠ (9)

where

M11 = 2κ1 + κ2 − 2κ1x − κ2y − κ1z

M22 = κ1 + 2κ2 − κ1x − 2κ2y − κ2z (10)

M33 = 2κ2 + κ3 − κ2x − κ2y − 2κ3z

According to the requirements of the theorem of Shilnikov, chaotic motion for the
system (6) will be observed if there an equilibrium point of a saddle focus type exists
and characteristic eigenvalues connected to linear stability of this equilibrium point
have to satisfy the condition (3) in some region of the space of the system parameters.

We denoteα = κ2
κ1
and β = κ3

κ1
, assumingα > 1 and β > 1 to satisfy the condition

(8) for the system parameter region. Then, the equilibrium point E6 from (7) can be

rewritten as E6 =
(
0, αβ+β−2α2

α(β−α)
,

β−1
β−α

)
. The Jacobian matrix at this equilibrium

point is

M ′
i j =

⎛
⎝

M ′
11 − λ − ακ1x − κ1x
−κ1y M ′

22 − λ − ακ1y
−ακ1z − ακ1z M ′

33 − λ

⎞
⎠ (11)

where
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M ′
11 = κ1(2 + α − 2x − αy − z)

M ′
22 = κ1(2α + 1 − x − 2αy − αz) (12)

M ′
33 = κ1(2α + β − αx − αy − 2βz)

According to Eq. (11), the characteristic eigenvalues connected to linear stability of
this equilibrium point are:

λ1,2 = κ1

(−2α2 + αβ + β2

2(α − β)
±

√
A

2(α − β)

)
; λ3 = −κ1(α

2 − 2α + 1)

α − β
(13)

where

A = 4α4 − 12α3β + 9α2β2 − 2αβ3 + β4 + 8α3 − 12α2β + 8αβ2 − 4αβ − 4β3 + 4β2 (14)

Thus, when the system of inequalities:

A

2(α − β)
< 0,

−2α2 + αβ + β2

2(α − β)
< 0, −α2 − 2α + 1

α − β
> 0 (15)

and

− α2 − 2α + 1

α − β
> −−2α2 + αβ + β2

2(α − β)
(16)

hold true, the equilibrium point E6 of the system (6) is of a saddle focus type, and the
condition (3) for the characteristic eigenvalues connected to its stability, is satisfied
too. There are several solutions of the system of inequalities (14)–(15), but only one
solution satisfies the condition ((8)) for the system parameter region. This solution
is

α > 1, β > α, (17)

Thereby the Shilnikov condition C 1 for the system (6) is satisfied in the parameter
region (16), i.e., the above-formulated Proposition follows.

In addition, the system (6) shall turn to a chaotic regime if there is another equi-
librium point of Eq. (6), which must undergo a supercritical Hopf bifurcation in
the same region of parameters (see Eq. (16)). To obtain the Hopf bifurcation in our
three-dimensional system we use the center-manifold theorem. In accordance with
this theorem we must reduce the considered system to a normal form in which the
bifurcation occurs when the system parameters approach 0 and the equilibrium point
is located in the origin with pure imaginary characteristic eigenvalues. In our case
this equilibrium point is E3 = (1, 1, 1) and its characteristic eigenvalues presented
in terms of α and β are

λ1,2 =
(

− 1

3
(α + β) − 5

12
+ β − 5α + αβ − 4α2 − β2 − 1

3B

±
√
3

2
i(
1

6
+ 2αβ − 10α + 2β − 8α2 − 2β2 − 2

3B
)

)
κ1 (18)
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λ3 =
(

− 1

3
(α + β) − 1

6
− β − 5α + αβ − 4α2 − β2 − 1

3B

)
κ1

where

B =
(

− 168α + 120α2 − 12αβ + 12β + 12β2 + 12αβ2 − 152α3 − 7 − 24α2β

−8β3 + 1 + 2(6β3 − 372α3 + 108α3β − 75α2β2 + 36αβ3 + 300α4 − 3β4

−48α4β2 − 72α3β2 + 6α2β3 + 60α4β − 360α5 + 132α6 − 6αβ4 + 24α3β3 (19)

−3α2β4 + 72α5β + 12α − 12αβ + 144α2 + 108α2β − 54αβ2 − 3β2)1/2
)1/3

We note that

− 1

3
(α + β) − 5

12
+ β − 5α + αβ − 4α2 − β2 − 1

3B
→ 0 (20)

in the parameter region (16) as well as the inequality

1

6
+ 2αβ − 10α + 2β − 8α2 − 2β2 − 2

3B
> 0 (21)

is satisfied in the same parametric region.

4 Numerical Results

We illustrate the process of appearance of Shilnikov chaos in Fig. 1. We use κ2 as a
control parameter for obtaining the attracting manifold.

As Fig. 1 shows, initially, the system (6) has a stable equilibrium state (E3) for
κ2 < 0.9 (Fig.1a). Whit increasing κ2, the equilibrium point becomes unstable and
undergoes a supercritical Hopf bifurcation at κ2 = 0.9 as a stable periodic orbit
bifurcates from it (Fig. 1b). Next we illustrate the evolution of this limit cycle with
increasing κ2. We observe that when κ2 > 0.9 initially the trajectory spirals onto
the orbit decreasing the size of the limit cycle (Fig. 1c) whereas at κ2 ≥ 1 this orbit
becomes a boundary of the unstable manifold of the saddle focus (E6) that spirals
onto it (Fig. 1d). Finally, when κ2 � 1.1 period double cascade is observed, and
the mechanism of Shilnikov holds: The unstable 1D manifold touch the stable 2D
manifold thereby forming the aforementioned homoclinic loop of the saddle focus
(Fig. 1e). After that numerous almost periodic orbits around the homoclinic loop
occur, as the attracting whirlpool already contains a set of complex structures, i.e.,
the so-called spiral strange attractor has appeared (Fig. 1f).
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Fig. 1 Transition to Shilnikov chaos in the system (6). The values of system parameters are κ1 =
0.05, κ3 = 1.3. We vary the value of κ2. Panel a: κ2 = 0.8. The equilibrium point E3 is stable.
Panel b κ2 = 0.9. The cyclic state after the Hopf bifurcation is purely presented. Panel c κ2 = 0.95.
The trajectory spirals onto the limit cycle. Panel d κ2 = 1. The saddle focus E6 already has appeared
and the unstable manifold of the saddle focus is clearly visible. Panel e κ2 = 1.1. Period double
cascade is observed. A homoclinic loop appears. Panel f κ1 = 1.2. Chaotic motion already exists.
With further increasing κ1 the attractor again is reduced to a periodic cycle

5 Conclusion

In this paperwe show thatwhen competition between threemain electricity producers
exists with respect to the average price of electricity, the behavior of the correspond-
ing dynamical model becomes complicated. For example, the equilibrium point E3

describes the case at which the average prices of electricity produced by the three
power stations are the same. On the other hand, the saddle focus E6 corresponds



Chaos in a Dynamical Model of Competition … 231

to situation in which the average price of electricity produced by the NPS is 0 and
the average prices of electricity produced by the FFPS and by the HPS are larger
than those at the point E3. In other words, the Shilnikov chaos corresponds to a
situation in which the competition between three electricity producers with respect
to the average price of produced electricity leads to the attenuation of one of them,
whereas the other two power producers oscillate in irregular ways. In this case, the
large changes in the average price of electricity produced by NPS are observed, as
this price can even become minimal. We note that the FFPS or the HPS (taken alone)
can also demonstrate such attenuation in its average price of produced electricity
depending on the choice in the arrangement of the variables in the system of equa-
tions. In addition, we identify numerically the region of parameter space where the
chaotic motion of Shilnikov kind in the studied dynamical system exists.
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Mathematical Analysis of Hepatitis B
Virus Combination Treatment

Irina Volinsky

Abstract In the current paper, we research the influence of IL-2 therapy and we
introduce the regulation by distributed feedback control. The results of the stability
analysis are presented. We use the Cauchy matrix C(t, s), in order to study the
behavior (stability) of corresponding system of integro-differential equations.

Keywords Functional differential equations · Exponential stability · Cauchy
matrix · Integro-differential systems · Hepatitis B · Immune system

1 Introduction

The hepatitis B virus (HBV) represents a huge problem for public health, increasing
the risk of cirrhosis and carcinoma in the population [1].

It needs to integrate its DNA with the host cell DNA to survive. Chronic HBV
infection accounts for at least 50% of carcinoma cases [2], and have a high mortality
rate.

Current therapy for chronic HBV infection is based on two strategies: interferons
and nucleoside analog [3].

Five nucleoside analogs are approved in the United States: lamivudine, adefovir,
entecavir, tenofovir disoproxil, and tenofovir alafenamide [1]. Their role is to block
virus replication .

With all of these therapeutic options, therapeutic goals are rarely achieved [4–7].
Possible drug improvement could be obtained with the integration of interleukin-2
(IL-2) and new clinical trials are evaluating its impact on the combination therapy
(NCT02360592, NCT00451984) help for viral clearing [8].
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Mathematical models are useful tool for representing molecular mechanisms and
try to predict new biological insights [17–23].

Previous models have tried to predict the effectiveness of antiviral therapy, but
without considering the important role of the immune system [9–11]. This approxi-
mation does not allow for realistic predictions.

A completemodelwas presented in [12],where immune systemand drug response
were both taken into account. In this study, we propose a mathematical model for
HBV infection, using a system of functional differential equations. This approach
has already proven its efficacy in biology and medicine [13, 14]. We have taken into
account the role of the immune system and the two different treatments (interferon
and nucleoside analogs), and we have included a control function to optimize the
role of a possible IL-2 co-treatment. In [15], a global analysis of a hepatitis C virus
(HCV) model is presented with CTL and antibody responses. The model consisted
of five nonlinear equations as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X ′ = r − dX − βV X
Y ′ = βV X − aY − pY Z
V ′ = kY − uV − qVW
W ′ = −hW + gVW
Z ′ = cY Z − bZ

(1)

Variables are uninfected cells, infected cells, free virus numbers, antibody
response, and CTL response. Those are denoted, respectively, by X (cells/mL),
Y (cells/mL), V (IU/mL), W (IU/mL), and Z(cells/mL). X cells are produced
at a rate r , die at a rate dX , and are infected by virus at a rate βV X . The infected
cells, Y , grow at the rate of βV X , die (naturally) at a rate aY , and are killed by the
CTLs at a rate pY Z . Free viruses V are produced by infected cells Y at a rate kY ,
decay at a rate uV , and are neutralized by antibodies at a rate qVW . Antibodies W
develop in response to free viruses at a rate gvW and decay at a rate hW . The number
of CTLs, Z , expands in response to infected cells at a rate cY Z and decays in the
absence of infection at a rate bZ .

The dynamics of both HBV and HCV are similar. Hence, we can use a similar
model to describe each one of them, using the five variables described above.

2 Modified Model of HBV

Let us now discuss the novelty of our approach. In this paper, we consider the
efficiency of the interferon therapy and the efficiency of therapy with nucleoside
analogs. These are, respectively, denoted by η and ε, and their values are between
0 and 1. Due to their influence on the therapy, they directly affect the growth or the
decay of the infected cells.

Additionally, we wish to introduce the distributed control function U (t), which
represents the impact of the IL-2 therapy, as the following integral form:
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U (t) =
t∫

0

e−α(t−s)Z(s)ds. (2)

Since the role of IL-2 is still not very well characterized and the literature is
controversial, we have decided to consider that it is produced mainly by the CTLs,
and we applied it to the Z equations due to its role in increasing CTL response and
T lymphocyte duplication and activation. We wish to study and predict the patient’s
disease and advancement, and will allow us to properly adjust the therapeutic process
to each subject.

The goal of this paper is to demonstrate a new approach of co-treatment for HBV
using a distributed control in the model of the HBV disease. A model of infectious
diseases is proposed based on the analysis of the integro-differential systems studied
in [19].

Modified model is as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X ′ = r − dX − (1 − η)βV X
Y ′ = (1 − η)βV X − aY − pY Z
V ′ = (1 − ε)kY − uV − qVW
W ′ = −hW + gVW
Z ′ = cY Z − bZ + DU

. (3)

Using the reduction method we pass from a integro-differential system (3) to an
ordinary differential system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X ′ = r − dX − (1 − η)βV X
Y ′ = (1 − η)βV X − aY − pY Z
V ′ = (1 − ε)kY − uV − qVW
W ′ = −hW + gVW
Z ′ = cY Z − bZ + DU
U ′ = Z − αU

. (4)

3 Main Results

We wish to study the disease-free equilibrium, since it represents a patient who is
either a healthy subject or a recovered one. From this stationary state, it is possible
to deduce the others.

P = {X,Y, V,W, Z ,U } =
( r

d
, 0, 0, 0, 0, 0

)
. (5)

Linearizing systems (1) and (4) in the neighborhood of the disease-free equilibrium,
we obtain
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = −dx1 − βr

d x3
x ′
2 = −ax2 + βr

d x3
x ′
3 = kx2 − ux3
x ′
4 = −hx4
x ′
5 = −bx5

(6)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ′
1 = −dx1 − (1−η)βr

d x3
x ′
2 = −ax2 + (1−η)βr

d x3
x ′
3 = (1 − ε)kx2 − ux3
x ′
4 = −hx4
x ′
5 = Dx6 − bx5
x ′
6 = x5 − αx6

, (7)

where
x1 = X − r

d
, x2 = Y, x3 = V, x4 = W, x5 = Z , x6 = U.

Denote the corresponding matrices of coefficients of system (6) and (7):

B =

⎛

⎜
⎜
⎜
⎜
⎝

−d 0 − βr
d 0 0

0 −a βr
d 0 0

0 k −u 0 0
0 0 0 −h 0
0 0 0 0 −b

⎞

⎟
⎟
⎟
⎟
⎠

. (8)

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−d 0 − (1−η)βr
d 0 0 0

0 −a (1−η)βr
d 0 0 0

0 (1 − ε)k −u 0 0 0
0 0 0 −h 0 0
0 0 0 0 −b D
0 0 0 0 1 −α

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.. (9)

The characteristic polynomial of system (6) has five roots:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ1 = −h
λ2 = −d

λ3 = −d(a+u)+
√

d2(a−u)2+4kβrd
2d

λ4 = −d(a+u)−
√

d2(a−u)2+4kβrd
2d

λ5 = −b.

(10)

The characteristic polynomial of system (7) has six roots:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ∗
1 = −h

λ∗
2 = −d

λ∗
3 = −d(a+u)+

√
d2(a−u)2+4kβrd(ε−1)(η−1)

2d

λ∗
4 = −d(a+u)−

√
d2(a−u)2+4kβrd(ε−1)(η−1)

2d

λ∗
5 = −(α+b

2 ) +
√

(α−b)2+4D
2

λ∗
6 = −(α+b

2 ) −
√

(α−b)2+4D
2 .

(11)

Theorem 1 If all of the coefficients of system (1) are positive, then system (1) is
exponentially stable in the neighborhood of disease-free equilibrium.

Let us denote the corresponding spectral radius of systems (6) and (7) by

ρ = max1≤i≤5 |λi | , ρ∗ = max1≤ j≤6

∣
∣λ∗

i

∣
∣ . (12)

Theorem 2 [25] If all of the coefficients of system (4) are positive, η and ε are
parameters defined between 0 and 1, and inequalities

(ε − 1)(η − 1) <
aud

βkr
, D < αb

are fulfilled, then system (4) is exponentially stable in the neighborhood of disease-
free equilibrium and ρ ≤ ρ∗.

Consider the following system with an uncertain coefficient:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X ′ = r − dX − (1 − η)β V X
Y ′ = (1 − η)βV X − aY − pY Z
V ′ = (1 − ε)kY − uV − qVW
W ′ = −hW + gVW
Z ′ = cY Z − bZ + (D + ΔD(t))U.

(13)

The uncertain coefficient ΔD(t) can be the result of individual conditions of the
patient, because the assimilation of a drug in the body of different patients can have
different rates of influence.We assumed thatΔD(t) is essentially a bounded function.

As before, this system of integro-differential equations can be reduced to the
following system of homogeneous ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X ′ = −dX − (1 − η)βV X
Y ′ = (1 − η)βV X − aY − pY Z
V ′ = (1 − ε)kY − uV − qVW
W ′ = −hW + gVW
Z ′ = cY Z − bZ + (D + ΔD(t))U
U ′ = Z − αU.

(14)

Let us denote (see Appendix A):
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ΔD∗ = t≥0|ΔD(t)|, Q∗
1 = Q∗

2 = Q∗
3 = Q∗

4 = 0,

Q∗
5 = ΔD∗

[∣
∣
∣
∣

c28
c13 − c14

∣
∣
∣
∣ +

∣
∣
∣
∣

c28
c13 + c14

∣
∣
∣
∣

]

, Q∗
6 = ΔD∗

[∣
∣
∣
∣

c31
c13 − c14

∣
∣
∣
∣ +

∣
∣
∣
∣

c32
c13 + c14

∣
∣
∣
∣

]

.

Theorem 3 [24] Let the assumption of Theorem 2 be fulfilled, c13 �= c14 and the
inequality max1≤i≤6{Q∗

i } < 1 be true, then system (14) is exponential stable in the
neighborhood of disease-free equilibrium.

Remark 1 From [16], the following values of the parameters in system (4) are used:

d = 0.00333, g = q = 5, b = 0.112, β = 7, h = 2, a = 0.56, u = 0.67,

p = c = 5.14, k = 20, r = 6.17 ∗ 10−4.

Example 1 Using the coefficient values from Remark 1, and taking the following
values of parameters α = 0.5, D = 0.04, such that condition D < αb is fulfilled.
From Theorem 3,

Q∗
1 = Q∗

2 = Q∗
3 = Q∗

4 = 0, Q∗
5 ≈ 69ΔD∗, Q∗

6 ≈ 7ΔD∗.

We obtain the following condition for uncertain coefficient: ΔD∗ < 0.145.

Consider system (3), with unbounded memory control function

U (t) =
t∫

t−τ (t)

e−α(t−s)Z(s)ds. (15)

Denote

Ũ (t) =
t∫

0

e−α(t−s)Z(s)ds. (16)

Let us write (15) in the following form:

U (t) =
t∫

0

e−α(t−s)Z(s)ds − e−ατ (t)

t−τ (t)∫

0

e−α((t−τ (t))−s)Z(s)ds

= Ũ (t) − e−ατ (t)Ũ (t − τ (t)). (17)

Reducing the integro-differential system (3), where U (t) is defined by (15) to an
ordinary differential system, we obtain the following:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X ′ = r − dX − (1 − η)βV X
Y ′ = (1 − η)βV X − aY − pY Z
V ′ = (1 − ε)kY − uV − qVW
W ′ = −hW + gVW
Z ′ = cY Z − bZ + DŨ − De−ατ (t)Ũ (t − τ (t))
Ũ ′ = Z − αŨ .

(18)

Linearizing system (18) in the neighborhood of the disease-free equilibrium, we
obtain the corresponding homogeneous linear systems:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ′
1(t) = r − dx1(t) − (1−η)βr

d x3(t)
x ′
2(t) = −ax2(t) + (1−η)βr

d x3(t)
x ′
3(t) = (1 − ε)kx2(t) − ux3(t)
x ′
4(t) = −hx4(t)
x ′
5(t) = Dx6(t) − bx5(t) − De−ατ (t)x6(t − τ (t))
x ′
6(t) = x5(t) − αx6(t),

(19)

where

x1(t) = X − r

d
, x2(t) = Y, x3(t) = V, x4(t) = W, x5(t) = Z , x6(t) = Ũ .

Let us denote τ∗ = ess inf t≥0 |τ (t)| and

Q1 = Deατ∗
(∣

∣
∣
∣

c28
c14 − c13

∣
∣
∣
∣ +

∣
∣
∣
∣

c28
c13 + c14

∣
∣
∣
∣ +

∣
∣
∣
∣

c31
c14 − c13

∣
∣
∣
∣ +

∣
∣
∣
∣

c32
c13 + c14

∣
∣
∣
∣

)

. (20)

Theorem 4 [25] Let the assumption of Theorem 2 be fulfilled, c13 �= c14 and the
inequality Q1 < 1 be true, then system (18) is exponentially stable in the neighbor-
hood of disease-free equilibrium.

Example 2 Using the coefficient values from Remark 1, and taking the following
values of parameters α = 0.5, D = 0.01, such that condition D < αb is fulfilled.
From Theorem 4, Q1 ≈ 0.33e0.5τ∗ . We obtain the following condition for unbounded
memory control function limit: τ∗ < 2.2.

Consider system (3), with delay in upper limit of control function

U (t) =
t−τ (t)∫

0

e−α(t−s)Z(s)ds. (21)

Let us write (21) in the following form:
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U (t) = e−ατ (t)

t−τ (t)∫

0

e−α((t−τ (t))−s)Z(s)ds = e−ατ (t)Ũ (t − τ (t)). (22)

Reducing integro-differential system (3), where U (t) is defined by (21), to an
ordinary differential system, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X ′ = r − dX − (1 − η)βV X
Y ′ = (1 − η)βV X − aY − pY Z
V ′ = (1 − ε)kY − uV − qVW
W ′ = −hW + gVW
Z ′ = cY Z − bZ + DŨ + De−ατ (t)Ũ (t − τ (t)) − DŨ
Ũ ′ = Z − αŨ .

(23)

Linearizing systems (23) in the neighborhood of the disease-free equilibrium, we
obtain the corresponding homogeneous linear systems:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ′
1(t) = r − dx1(t) − (1−η)βr

d x3(t)
x ′
2(t) = −ax2(t) + (1−η)βr

d x3(t)
x ′
3(t) = (1 − ε)kx2(t) − ux3(t)
x ′
4(t) = −hx4(t)
x ′
5(t) = Dx6(t) − bx5(t) + De−ατ (t)x6(t − τ (t)) − Dx6(t)
x ′
6(t) = x5(t) − αx6(t).

(24)

Let us denote

Q2 = Deατ∗
(∣

∣
∣
∣

c28
c14 − c13

∣
∣
∣
∣ +

∣
∣
∣
∣

c28
c13 + c14

∣
∣
∣
∣ +

∣
∣
∣
∣

c31
c14 − c13

∣
∣
∣
∣ +

∣
∣
∣
∣

c32
c13 + c14

∣
∣
∣
∣

)

+D (2 |c28| + |c31| + |c32|) .

Theorem 5 [25] Let the assumption of Theorem 2 be fulfilled, c13 �= c14 and the
inequality Q2 < 1 be true, then system (24) is exponentially stable in the neighbor-
hood of disease-free equilibrium.

Example 3 Using the coefficient values from Remark 1, and taking the following
values of parameters α = 0.5, D = 0.01, such that condition D < αb is fulfilled.
From Theorem 5, Q2 ≈ 0.33e0.5τ∗ + 0.06. We obtain the following condition for
unbounded memory control function limit: τ∗ < 2.
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4 Appendix A

Let us denote the following:

c11 = d(a + u)

2d
, c12 =

√
4kβrd(ε − 1)(η − 1) + d2(a − u)2

2d
, c13 = α + b

2
,

c14 =
√

(α − b)2 + 4D

2
, c15 = βr(η − 1)

d(−c11 + c12 + d)
, c16 = βr(η − 1)

d(−c11 + c12 + a)
,

c17 = βr(η − 1)

d(−c11 − c12 + d)
, c18 = βr(η − 1)

d(−c11 − c12 + a)
, c19 = D

−α
2 + b

2 + c14
,

c21 = D

−α
2 + b

2 − c14
, c22 = c15 − c17

c16 − c18
, c23 = 1

c16 − c18
, c25 = c15 · c18 − c16 · c17

c16 − c18
,

c26 = c18
c16 − c18

, c27 = c16
c16 − c18

, c28 = 1

c19 − c21
, c31 = c21

c19 − c21
, c32 = c19

c19 − c21
.

We assume that the denominators are not zero.
The Cauchy matrix of system (4) is given in the following (see [24]):

C1(t, s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e−d(t−s),

C2(t, s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c22
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e−d(t−s) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−c15 · c23
c16 · c23
−c23
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e(−c11+c12)(t−s) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c17 · c23
−c18 · c23

c23
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e(−c11−c12)(t−s),

C3(t, s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c25
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e−d(t−s) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−c15 · c26
c16 · c26
−c26
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e(−c11+c12)(t−s) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c17 · c27
−c18 · c27

c27
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e(−c11−c12)(t−s),

C4(t, s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e−h(t−s),
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C5(t, s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

c19 · c28
c28

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e(−c13+c14)(t−s) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

−c21 · c28
−c28

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e(−c13−c14)(t−s),

C6(t, s) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

−c19 · c31
−c31

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e(−c13+c14)(t−s) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

c21 · c32
c32

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

e(−c13−c14)(t−s).
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Abstract Mathematical models are useful analytical tools that can help medical
practitioners in understanding cancer treatment options. Testing various treatment
assumptions and scenarios by varying the parameters in a mathematical model can
provide analysis that may help in predicting prognosis for patients, improving the
effectiveness of treatment plans, and providing deeper insights into questions that
cannot be addressed by clinical or experimental studies alone. In this research, we use
differential equations to model and simulate virotherapy as a treatment approach for
spherical tumors. Using a system of five nonlinear ordinary differential equations,
we investigate the complex dynamics between cancer cells, infected cancer cells,
oncolytic viruses, immune cells, and dead cancer cells using analytical methods
and numerical simulations. The model is analyzed qualitatively by computing the
equilibria and deriving conditions for their local stability. The rate of change of the
tumor’s radius was derived and used to provide the basis for numerical simulations
that establish the effectiveness of virotherapy as a treatment. Numerical simulations
and sensitivity analysiswere performed to identify parameterswith the greatest effect
on the success of virotherapy which could be then used in the derivation of optimal
therapeutic strategies.
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1 Introduction

According to the World Health Organization, cancer is defined as “a generic term
for a large group of diseases that can affect any part of the body” [1]. A defining
characteristic of cancer lies in its rapid creation of abnormal cells beyond usual
boundaries in the body which can, as malignant tumors grow, invade adjoining parts
of the body and spread to other tissues. This process is called metastases, and it is
a major cause of death for patients with cancer [1]. Cancer is one of the leading
causes of death in the world, but there is still no functional cure for it. There are more
than 9.8 million deaths related to cancer worldwide every year. Yet, according to the
American Cancer Society, there will be 1,918,030 new cancer cases and more than
600 thousand cancer deaths in the US in 2022 alone [2].

Some of the traditional methods to treat cancer include surgery, chemotherapy,
radiation, and stem cell transplants. A fairly new and very promising approach
designed to fight cancer with less toxicity is virotherapy. This therapy uses a geneti-
callymodified viruswhich is injected into the cancer tumor directly [3]. The oncolytic
virus attacks the cancer cells by introducing its own RNA, causing the cell to produce
more viruses, and as a result dies by releasing the viruses in a process called lysis. A
major advantage of virotherapy is that while the virus attacks cancer cells, it does not
affect healthy cells; therefore; the virotherapy is safer and less invasive than other
methods of cancer treatment. Even though virotherapy is a very promising technique,
it is not without its challenges. When the immune system recognizes the virus as an
invader, it attacks the virus and works to destroy it, making it impossible for the
oncolytic virus to spread and infect other cancer cells [4]. Hence, for virotherapy to
be effective, the immune system must be suppressed.

One way to study how the suppression of the immune systemwill affect the effec-
tiveness of virotherapy is throughmathematical modeling.Mathematical models and
numerical simulations are powerful tools that can be used to reduce the experimental
cost of virotherapy by simulating the dynamics outcome of a given setup of the sys-
tem. It can also be used to test hypothesis, understand the effect of each parameter on
the system’s dynamics, and study the interactions with other variables. Here, we use
five differential equations to study the short- and long-term effects of virotherapy as
a treatment for cancerous tumors with different types of immune-suppression.

Previous studies of mathematical modeling of oncolytic virotherapy include treat-
ment with time delay [5] andmodeling dynamics of cancer virotherapy with immune
response [6]. In Wang’s paper [5], virotherapy was modeled focusing on the lytic
cycle and virus-specific CTL response, which relates to the body’s immune system.
Wang’s results supported the need to include an immune-suppressing drug in order to
optimize virotherapy as a cancer treatment. Al-Tuwairqi’s model included the stim-
ulation of immune response due to the presence of tumors as well as the destruction
of tumors due to the release of cytokines from natural killer cells [6].

In this work, we explore a mathematical model of virotherapy with the immune
response which is the ODE version of the PDE model introduced in [7]. We extend
themodel to include dead cells in order to use the principle of conservation ofmass in
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deriving the equation for the rate of change of the tumor’s radius.We use that equation
to verify the efficacy of the therapy. A simplified version of this model, using three
and four state variables, was developed by the authors in [8] particularly for use in a
differential equations class with the goal of teaching undergraduate students direct
applications of mathematical modeling to contemporary issues in biology. Math-
ematical models are useful tools that may help in understanding cancerous tumor
growth; in this way, they can contribute to better predict the prognosis for patients
and improve the effectiveness of the treatment plans. Mathematical models can be
also used to test different assumptions by varying the models’ parameters. In this
way, they provide deeper insights into questions that cannot be addressed by clinical
studies or experimental studies, which can be very expensive. Using sensitivity anal-
ysis by direct differential methods, we found the most sensitive parameters of this
model which then were varied to gain more insight into these critical parameters.
This may possibly lead to better efficacy of virotherapy as a cancer treatment.

The remainder of this paper is organized as follows. First, we introduce the math-
ematical model and its underlying assumptions. Next, we study the model qualita-
tively by showing the existence and uniqueness of the state variables, calculating the
steady-state solutions, and finding their local stability. Then, we perform a sensitivity
analysis on the system in order to investigate the behaviors of solutions with respect
to small perturbations in the parameters’ values.

2 Mathematical Model

We use a mathematical model to study the complex interactions between cancer
cells, oncolytic virus particles, and immune cells during virotherapy as a cancer
treatment and the effect of immuno-suppression on the effectiveness of the treatment.
Suppose x(t) is the number of uninfected cancer cells, y(t) is the number of infected
cancer cells, z(t) is the number of immune cells, v(t) is the number of oncolytic
virus particles, and n(t) is the number of dead cancer cells. We assume that the
cancer cells grow exponentially with an intrinsic growth rate α. This assumption is
reasonable in the initial stages of tumor growth, which is the goal of our investigation.
Data collected over the span of 30 days from mice in Huang et al. [9] did not show
any signs of attaining a carrying capacity, which also justifies the exponential growth
assumption in our model. Moreover, this simplification makes the model analytically
tractable. When the virus is injected, it infects the cancer cells at a rate β; as a result,
the infected cancer cells die at a rate δ. Due to lysis, new virus particles are released
with a burst size b. The free virus particles decay at a rate γ . Once infected, cancer
cells trigger the response of the immune system, which kills the infected cancer cells
at a rate of k. These cells then become dead cells and contribute to the rate of change
of n with a clearance rate of μ. The immune response is stimulated by the infected
cancer cells at a rate s and decays at a rateω. The dynamics of the model is illustrated
by the compartment diagram in which the solid lines represent stimulation or growth
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and the dashed lines represent inhibition or killing/decay, and they are governed by
the following system of five nonlinear ordinary differential equations:

Compartmental model diagram.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx
dt = αx − βxv
dy
dt = βxv − kyz − δy
dz
dt = syz − ωz2 − ez
dn
dt = kyz + δy − μn
dv
dt = bδy − k0vz − γ v

(1)

with initial conditions

x(0) = x0 ≥ 0, y(0) = y0 ≥ 0, z(0) = z0 ≥ 0, n(0) = n0 ≥ 0, v(0) = v0 ≥ 0.

We consider three kinds of delivery e(t) of the immune-suppressor drug, namely a
constant E , a decaying function with decay parameter q > 0 and initial amplitude E ,
that is, e(t) = E exp(−qt), and a periodic function with period P > 0 and amplitude
E > 0, that is, e(t) = E sin

(
2π
P t
)
. Hence, with t0 as the initial time and tF as the

final time, the immune-suppressing term has the form:

e(t) =
⎧
⎨

⎩

E, t0 ≤ t ≤ tF
E exp(−qt), t0 ≤ t ≤ tF
E sin

(
2π
P t
)
, t0 ≤ t ≤ tF .

3 Qualitative Analysis

In this section, we investigate model (1) qualitatively. We first discuss the existence
and uniqueness of the state variables, then we find the steady-state solutions of the
model and define their stability.
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3.1 Existence and Uniqueness of the Solutions

Theorem 1 Given an initial condition (x0, y0, z0, n0, v0) in the region

Q = {(x, y, z, n, v) ∈ R
5 : x ≥ 0, y ≥ 0, z ≥ 0, n ≥ 0, v ≥ 0}

the system (1) has a unique solution which lies in Q.

Proof The right-hand side of each differential equation is continuously differentiable
in a neighborhood of Q and thus for initial conditions in Q, locally, there exists a
unique solution. Now we will show that Q is positively invariant. Rewrite the first
equation of (1) as

dx

x
= ψ1(v)dt

where ψ1(x, v) = α − βv. Integrating over [0, t], we obtain

x(t) = x(0) exp

[∫ t

0
ψ1(v)ds

]

.

From here, since x(0) = x0 ≥ 0 we conclude that x(t) ≥ 0 for all t ≥ 0. From the
second equation of (1), we see that

dy

dt
≥ −y(kz + δ),

which can be rewritten as
dy

y
≥ ψ2(z)dt,

where ψ2(z) = −(kz + δ). Now, integrating over [0, t] gives

y(t) ≥ y(0) exp

[∫ t

0
ψ2(z)ds

]

from where we can conclude that if y(0) = y0 ≥ 0 then y(t) ≥ 0 for all t . Similarly,
from the third equation in (1), we can write it as the inequality

dz

z
≥ ψ3(z)dt,

where ψ3(z) = −(ωz + e(t)), and after integrating over [0, t], we get the inequality

z(t) ≥ z(0) exp

[∫ t

0
ψ3(z)ds

]

.
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Again, if z(0) ≥ 0, then z(t) ≥ 0 for all t . Similarly, from the fourth equation, rewrit-
ten as the differential inequality dn

n ≥ −μ and after integrating over [0, t], we obtain
n(t) ≥ n(0)e−μt , which is always non-negative for a non-negative initial condition.
Finally, from the last equation, we obtain

dv

v
≥ ψ4(z),

where ψ4(z) = −(k0z + γ ), and integrating over [0, t] gives

v(t) ≥ v(0) exp

[∫ t

0
φ4(z)ds

]

,

which is non-negative as long as the initial condition is non-negative. This con-
cludes the proof that all solutions are non-negative and Q is positively invariant, i.e.,
solutions that start in Q will remain in Q throughout their interval of existence.

3.2 Equilibrium Solutions

The equilibria of the system are the steady-state solutions obtained by setting the
rates of change of equations in (1) to zero and solving for x, y, z, n, and v. We write
equilibria in the form E(x, y, z, n, v). Thus, we consider the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(α − βv) = 0
βxv − kyz − δy = 0
z(sy − ωz − e) = 0
kyz + δy − μn = 0
bδy − k0vz − γ v = 0.

(2)

Case 1. Suppose x = 0 and z = 0. Then the second, fourth, and fifth equations
in (2) tell us that y = 0, n = 0, v = 0, respectively. We label this equilibrium as
E0 = (0, 0, 0, 0, 0). This equilibrium E0 represents the free equilibrium where
all cancer cells (uninfected, infected, and dead), immune cells, and viruses are
zero.

Case 2. Suppose x = 0 and z �= 0. Then the system (2) reduces to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 0
y(kz + δ) = 0
sy − ωz − e = 0
kyz + δy − μn = 0
bδy − k0vz − γ v = 0,

(3)
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which tells us that there are two sub-cases: y = 0 or z = − δ
k . Since we do not

consider negative solutions z, it follows that ymust be zero.Now, assuming y = 0,
the third equation in the reduced system shows that z = −e(t)

w .
Note that this state is possible in case the delivery of the immune-suppressor drug
has the form e(t) = E sin

(
2π
P t
)
. Next, with y = 0, the fourth equation implies

that n = 0. Finally, with y = 0 and z = −e(t)
ω

, we have that v = 0.
Summarizing, in case e(t) is either a constant or an exponentially decaying func-
tion, then there is no equilibrium with x = 0, z �= 0. But with z = − e(t)

ω
over

some t where e(t) is negative, our second equilibrium is defined by

E1 =
(

0, 0,
−1

ω
e(t), 0, 0

)

, provided, e(t) =
{
E sin

(
2π
P t
)
, P

2 < t < P
0, otherwise

.

Case 3. Suppose x �= 0 and z = 0. Now, the system (2) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α − βv = 0
βxv − δy = 0
z = 0
δy − μn = 0
bδy − γ v = 0,

=⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v = α
β

x = δ
β

y
v

z = 0
n = δ

μ
y

y = γ

bδ v.

With v = α
β
from the first equation, we now have a third equilibria E2:

E2

(
γ

bβ
,

αγ

bβδ
, 0,

αγ

bβμ
,

α

β

)

.

Now, we see that when z is zero, or there are no immune cells to attack the virus,
there is a partial victory for virotherapy as there is a coexistence of uninfected
and infected cells as well as the viruses, as described in the equilibrium E2. In
addition, increasing the bursting parameter b and the infection rate β decreases
the steady state for the cancer cells, and hence the virotherapy is more efficient.

Case 4. Finally, suppose that x �= 0 and z �= 0. Then the system (2) reduces to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α − βv = 0
βxv − kyz − δy = 0
sy − ωz − e = 0
kyz + δy − μn = 0
bδy − k0vz − γ v = 0,

=⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v = α
β

αx − kyz − δy = 0
sy − ωz − e = 0
kyz + δy − μn = 0
bδy − k0α

β
z − αγ

β
= 0.

Observe that we can solve for y and z by looking at the third and fifth equations
to get the smaller system:

{
sy − ωz − e = 0
bδy − k0α

β
z − αγ

β
= 0.
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Using Cramer’s Rule, for example, we obtain

y =

∣
∣
∣
∣
e −ω
αγ

β
−k0α

β

∣
∣
∣
∣

∣
∣
∣
∣
s −ω

bδ −k0α
β

∣
∣
∣
∣

=
−ek0α

β
+ αγω

β

−sk0α
β

+ bδω
= αγω − ek0α

bβδω − sk0α

z =

∣
∣
∣
∣
s e
bδ αγ

β

∣
∣
∣
∣

∣
∣
∣
∣
s −ω

bδ −k0α
β

∣
∣
∣
∣

=
sαγ

β
− beδ

−sk0α
β

+ bδω
= sαγ − beβδ

bβδω − sk0α
.

Toensure existence of z,wemust require that the abovedenominatorbβδω − sk0α
is nonzero. Then, to solve for x and n, we have

x = 1

α
(kyz + δy) and n = 1

μ
(kyz + δy),

and so we get

x = γω − ek0
bβδω − sk0α

(
ksαγ − kbβδe

−sk0α − bβδω
+ δ

)

and n = αγω − ek0α

μbβδω − μsk0α

(
ksαγ − kbβδe

−sk0α − bβδω
+ δ

)

Thus, we have a fourth equilibrium point E3(x3, y3, z3, n3, v3) where

x3 = γω−ek0
bβδω−sk0α

(
ksαγ−kbβδe
bβδω−sk0α

+ δ
)

y3 = αγω−ek0α
bβδω−sk0α

z3 = sαγ−beβδ

bβδω−sk0α

n3 = αγω−ek0α
μbβδω−μsk0α

(
ksαγ−kbβδe
bβδω−sk0α

+ δ
)

v3 = α
β
.

Observe that the equilibrium E3 is the so-called coexistence equilibrium, where
all cells and viruses are present. We get the following statement for the existence
of equilibrium E3:

Theorem 2 If the following conditions are true, E3 is biologically relevant:

min

{
k0
ω

,
γ

e

}

<
bβδ

αs
< max

{
k0
ω

,
γ

e

}

.
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3.3 Stability of Equilibria

Here, we investigate the local stability of the equilibrium points using the lineariza-
tion method. The Jacobian J (E) at the point E(x, y, z, n, v) associated with the
system (1) is given by

J (E) =

⎛

⎜
⎜
⎜
⎜
⎝

α − βv 0 0 0 −βx
βv −kz − δ −ky 0 βx
0 sz sy − 2ωz − e 0 0
0 kz + δ ky −μ 0
0 bδ −k0v 0 −k0z − γ

⎞

⎟
⎟
⎟
⎟
⎠

. (4)

3.3.1 Stability of the Equilibrium E0

The stability of the equilibrium E0 can be obtained by analyzing the eigenvalues of
J (E0):

J (E0) =

⎛

⎜
⎜
⎜
⎜
⎝

α 0 0 0 0
0 −δ 0 0 0
0 0 −e 0 0
0 δ 0 −μ 0
0 bδ 0 0 −γ

⎞

⎟
⎟
⎟
⎟
⎠

.

Since this matrix is lower-triangular, its eigenvalues are the diagonal entries. Hence,
the eigenvalues are λ1 = α, λ2 = −δ, λ3 = −e, λ4 = −μ, and λ5 = −γ . Four of
the eigenvalues are negative while one of them is positive; thus, E0 is an unstable
equilibrium.

Theorem 3 The zero equilibrium E0 = (0, 0, 0, 0, 0) has one positive and four neg-
ative eigenvalues for any parameter values and hence is always unstable.

3.3.2 Stability of the Equilibrium E1

To analyze the stability of E1 = (0, 0, −1
ω
e(t), 0, 0), let us find the Jacobian at E1:

J (E1) =

⎛

⎜
⎜
⎜
⎜
⎝

α 0 0 0 0
0 −δ 0 0 0
0 − se

ω
e 0 0

0 δ − ke
ω
0 −μ 0

0 bδ 0 0 k0e
ω

− γ

⎞

⎟
⎟
⎟
⎟
⎠

.
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Since the matrix is lower-triangular, its eigenvalues are the elements on its diagonal.
Hence, the eigenvalues are λ1 = α, λ2 = −δ, λ3 = −e, λ4 = −μ, and λ5 = k0e

ω
− γ .

As at least one eigenvalue is always positive, this equilibrium is always unstable.

Theorem 4 The equilibrium E1 = (0, 0, −1
ω
e(t), 0, 0) has at least one positive

eigenvalue for any parameter values and hence is always unstable.

3.3.3 Stability of the Equilibrium E2

The stability of the equilibrium E2 can be obtained by analyzing the eigenvalues of
J (E2):

J (E2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 −γ

b
α −δ

−kαγ

bβδ
0 γ

b

0 0 sαγ

bβδ
− e 0 0

0 δ
kαγ

bβδ
−μ 0

0 bδ −k0α
β

0 −γ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5)

The eigenvalues λ can be determined by solving the characteristic equation
det(λI − J (E1)) = 0, where

λI − J (E2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ 0 0 0 γ

b

−α λ + δ
kαγ

bβδ
0 − γ

b

0 0 λ − sαγ

bβδ
+ e 0 0

0 −δ − kαγ

bβδ
λ + μ 0

0 −bδ k0α
β

0 λ + γ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Computing the determinant by expanding about the fourth column to get

det(λI − J (E2)) = (λ + μ) det

⎛

⎜
⎜
⎜
⎝

λ 0 0 γ

b
−α λ + δ

kαγ

bβδ
− γ

b

0 0 λ − sαγ

bβδ
+ e 0

0 −bδ k0α
β

λ + γ

⎞

⎟
⎟
⎟
⎠

,

then expanding about the third row:

det(λI − J (E2)) = (λ + μ)
(
λ − sαγ

bβδ
+ e
)
det

⎛

⎝
λ 0 γ

b−α λ + δ − γ

b
0 −bδ λ + γ

⎞

⎠ =

= (λ + μ)(λ − sαγ

bβδ
+ e) (λ(λ + γ )(λ + δ) + αδγ − δγ λ)

= (λ + μ)(λ − sαγ

bβδ
+ e)(λ3 + (δ + γ )λ2 + αδγ ).
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The eigenvalues so far are λ1 = −μ and λ2 = sαγ

bβδ
− e. Next, we apply the Routh–

Hurwitz Criteria on λ3 + Aλ2 + Bλ + C = 0, where A = δ + γ, B = 0,C = αδγ.

Since A and C are positive, we need to look at the sign of AB − C :

AB − C = −αδγ < 0,

which is always negative. According to the Routh–Hurwitz Criteria, there will be
a root with a positive real part, which means that this equilibrium will be always
unstable. Let us now state our theorem:

Theorem 5 The equilibrium E2

(
γ

bβ ,
αγ

bβδ
, 0, αγ

bβμ
, α

β

)
is always unstable.

3.3.4 Stability of the Equilibrium E3

The stability of the equilibrium E3 can be obtained by analyzing the eigenvalues of
J (E3):

J (E3) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 −βx
α −kz − δ −ky 0 βx
0 sz −ωz 0 0
0 kz + δ ky −μ 0
0 bδ −k0α

β
0 −k0z − γ

⎞

⎟
⎟
⎟
⎟
⎠

. (6)

The eigenvalues λ can be determined by solving the characteristic equation
det(λI − J (E3)) = 0, where

λI − J (E3) =

⎛

⎜
⎜
⎜
⎜
⎝

λ 0 0 0 βx
−α λ + kz + δ ky 0 −βx
0 −sz λ + ωz 0 0
0 −kz − δ −ky λ + μ 0
0 −bδ k0α

β
0 λ + k0z + γ

⎞

⎟
⎟
⎟
⎟
⎠

.

Computing the determinant by expanding about the fourth column to get

det(λI − J (E3)) = (λ + μ) det

⎛

⎜
⎜
⎝

λ 0 0 βx
−α λ + kz + δ ky −βx
0 −sz λ + ωz 0
0 −bδ k0α

β
λ + k0z + γ

⎞

⎟
⎟
⎠ ,

then expanding about the first row:

det(λI − D(E3)) = (λ + μ)

⎡

⎢
⎣λ det

⎛

⎜
⎝

λ + kz + δ ky −βx
−sz λ + wz 0

−bδ
k0α
β

λ + k0z + γ

⎞

⎟
⎠− βx det

⎛

⎜
⎝

−α λ + kz + δ ky
0 −sz λ + ωz

0 −bδ
k0α
β

⎞

⎟
⎠

⎤

⎥
⎦ .
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Hence, one eigenvalue is λ1 = −μ. To find the other four eigenvalues, consider first
each determinant from above:

det

⎛

⎝
λ + kz + δ ky −βx

−sz λ + wz 0
−bδ k0α

β
λ + k0z + γ

⎞

⎠ =

= (λ + kz + δ) (λ + ωz) (λ + k0z + γ ) + sk0αxz − bδβx(λ + ωz) + ksyz (λ + k0z + γ ) ,

and

det

⎛

⎝
−α λ + kz + δ ky
0 −sz λ + ωz
0 −bδ k0α

β

⎞

⎠ = αsz
k0α

β
− αbδ (λ + ωz) .

Combining all together, we find that the other four eigenvalues of det(λI − J (E3))

are the solutions to the fourth-order polynomial:

P(λ) = λ4 + A1λ
3 + B1λ

2 + C1λ + D1 = 0, where

A1 = ωz + kz + δ + k0z + γ > 0,
B1 = z2(k0ω + kω + kk0) + z(ωγ + kγ + δω + k0δ) + δγ + ksyz − bδβx,
C1 = (k0z + γ )(kωz2 + δωz + ksyz) + αbδβx + k0sαxz − bδβωxz,
D1 = αbδβωxz − α2k0sxz = αxz(bβδω − sk0α).

Observe that the first coefficient is always positive A1 > 0. For stability, we need
all eigenvalues to be either negative real numbers or have a negative real part if they
are complex numbers. Using Routh–Hurwitz Criteria, we can find conditions on the
coefficients of P(λ) which will guarantee negative real parts for the eigenvalues.
These results are summarized in the following theorem:

Theorem 6 For the coexistence equilibrium E3, the following is true:

1. if C1 > 0 and A1B1C1 > C2
1 + A2

1D1, then the coexistence equilibrium E3 is
stable;

2. if either one of the above conditions is not satisfied, then the coexistence equilib-
rium E3 is unstable.

4 Rate of Change of the Tumor’s Radius

We want to find an equation describing the rate of change of the tumor’s radius R(t)
if we assume that the tumor has a spherical form. This will allow us to gauge the
effectiveness of the virotherapy treatment to shrink the tumor. Let us assume that
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P(t) = x(t) + y(t) + z(t) + n(t) is the total cell population of the tumor. From the
corresponding differential equations in (1), the derivative of P is given by

dP

dt
= d

dt
(x + y + z + n) = αx + syz − ωz2 − ez − μn. (7)

Using the assumption that the tumor is a sphere with radius R, we can find its volume

V (t) = 4

3
πR3(t), (8)

and differentiating with respect to t , we get the equation for its rate of change

dV

dt
= 4πR2 dR

dt
.

Dividing both sides of the above equation by V and then substituting V = 4
3πR3,

we get the following equation for the volume’s rate of change and the radius’s rate
of change:

1

V

dV

dt
= 3

R

dR

dt
. (9)

When P changes, the tumor’s volume will also change; however, we can assume
that their ratio remains a constant such as P = θ0V , where θ0 = x0 + y0 + z0 + n0,
and without loss of generality, we can assume that x0, y0, z0, and n0 are the initial
conditions for these variables. Hence, differentiating P

V = θ0 gives the following
relationship between their derivatives:

1

P

dP

dt
= 1

V

dV

dt
. (10)

Then combining the relationships (7), (9), and (10) gives an equation for the rate
of change of R

3

R

dR

dt
= 1

V

dV

dt
= 1

P

dP

dt
= 1

P

(
αx + syz − ωz2 − ez − μn

)

or equivalently
3
R

dR
dt = 1

θ0V

(
αx + syz − ωz2 − ez − μn

)
.

Finally, using Eq. (8) for the volume, we get the following equation describing the
rate of change of tumor’s radius R(t) in time:

dR

dt
= 1

4πθ0R2
(αx + syz − ωz2 − ez − μn) (11)

where θ0 = x0 + y0 + z0 + n0 is the sum of the initial conditions of x, y, z, n.
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5 Sensitivity Analysis

Sensitivity analysis is the systematic investigation of a system to small perturbations
of its parameters. Here, we employ a local method of sensitivity analysis. Each
parameter is varied one at a time by a small amount around some fixed point, and the
effect of individual perturbations on the solutions is calculated. In particular, we use
the so-called direct differential method. In this method, suppose that a mathematical
model assumes the form ẏi = fi , where fi = fi (yi , p j )with parameters p j , then we
can analyze the rate of change of yi with respect to p j via the equations

d

dt

(
∂yi
∂p j

)

= ∂ fi
∂yi

∂yi
∂p j

+ ∂ fi
∂p j

= J · Sj + Fj , (12)

where matrix J , the Jacobian, is given by

J =

⎛

⎜
⎜
⎜
⎝

∂ f1
∂y1

∂ f1
∂y2

...
∂ f1
∂yk

∂ f2
∂y1

∂ f2
∂y2

...
∂ f2
∂yk

... ... ... ...
∂ fk
∂y1

∂ fk
∂y2

...
∂ fk
∂yk

⎞

⎟
⎟
⎟
⎠

,

vector Sj , the sensitivity vector for parameter p j , and vector Fj , the derivative of
the right-hand side of the system with respect to the parameter p j , are given by the

vectors: Sj =
(

∂yi
∂p j

)
=

⎛

⎜
⎜
⎜
⎝

∂y1
∂p j
∂y2
∂p j

...
∂yk
∂p j

⎞

⎟
⎟
⎟
⎠

, Fj =

⎛

⎜
⎜
⎜
⎝

∂ f1
∂p j
∂ f2
∂p j

...
∂ fk
∂p j

⎞

⎟
⎟
⎟
⎠

. Looking at our system (1), we have

five dependent variables and 11 parameters; hence, k = 5 and j = 11. In particular,
we have our Jacobian J (computed in a previous section)

J =

⎛

⎜
⎜
⎜
⎜
⎝

α − βv 0 0 0 −βx
βv −kz − δ −ky 0 βx
0 sz sy − 2ωz − e 0 0
0 kz + δ ky −μ 0
0 bδ −k0v 0 −k0z − γ

⎞

⎟
⎟
⎟
⎟
⎠

. (13)

Let us arrange all parameters as the vector p = (α β k δ s ω e μ b k0 γ ) .

The full sensitivity matrix S and the full derivative of the right-hand side with respect
to the parameters F are given correspondingly by
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S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂x
∂α

∂x
∂β

∂x
∂k ... ∂x

∂γ
∂y
∂α

∂y
∂β

∂x
∂k ...

∂y
∂γ

∂z
∂α

∂z
∂β

∂x
∂k ... ∂z

∂γ
∂n
∂α

∂n
∂β

∂x
∂k ... ∂n

∂γ
∂v
∂α

∂v
∂β

∂x
∂k ... ∂v

∂γ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, F =

⎛

⎜
⎜
⎜
⎜
⎝

x −xv 0 0 0 0 0 0 0 0 0
0 xv −yz −y 0 0 0 0 0 0 0
0 0 0 0 yz −z2 −z 0 0 0 0
0 0 yz y 0 0 0 −n 0 0 0
0 0 0 0 0 0 0 0 δy −vz −v

⎞

⎟
⎟
⎟
⎟
⎠

. (14)

Hence, for example, the system of differential equations that investigates the rate
of change of the dependent variables with respect to the parameter α is given by ten
differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = αx − βxv
dy
dt = βxv − kyz − δy
dz
dt = syz − ωz2 − ez
dn
dt = kyz + δy − μn
dv
dt = bδy − k0vz − γ v
ds11
dt = (α − βv)s11 − βxs51 + x
ds21
dt = βvs11 − (kz + δ)s21 − kys31 + βxs51
ds31
dt = szs21 + (sy − 2ωz − e)s31
ds41
dt = (kz + δ)s21 + kys31 − μs41
ds51
dt = bδs21 − k0vs31 − (γ + k0z)s51.

Observe that the first five differential equations are exactly the differential equations
in the system while the bottom five come from (12) by using information from (13)
and the first column of F from (14).

Since different parameters can have different units and thus can have different
orders of magnitude difference in size, we calculate the relative sensitivity S̄i j =
∂yi
∂p j

p j

yi
. Then the sensitivity of each parameter p j is given by the sensitivity index

defined as the magnitude of the corresponding norm of the i, j-th element in S̄:

∥
∥S̄i j
∥
∥
2 =
√
√
√
√

N∑

k=1

(
∂yi
∂p j

(tk)
p j

yi (tk)

)2

.

For a given parameter set, we computed the relative sensitivity matrix which is given
in Table 1. The cancer is most sensitive to the death rate parameter δ of the infected
cancer cells, the bursting size b, and the death rate parameter γ of the virus. Infected
cancer cells are also most sensitive to perturbations in their death rate parameter δ,
and second most sensitive to perturbations in the cancer growth rate parameter α as
well as in the infection rate parameter β. The immune cells are most sensitive to
the immune-suppression parameter e and to the immune stimulation rate s, both of
which in general could be expected. The virus is most sensitive to the bursting size b
as well as to the death rate parameter δ of the infected cancer cells and its death rate
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Table 1 L2 norms of the rate of change of each variable with respect to the parameters, including
the maximum value for each variable and each parameter. The Table also includes the second and
the third most sensitive parameters for each of the variables

p
∥
∥
∥ ∂x

∂p
p
x

∥
∥
∥
2

∥
∥
∥

∂y
∂p

p
y

∥
∥
∥
2

∥
∥
∥ ∂z

∂p
p
z

∥
∥
∥
2

∥
∥
∥ ∂n

∂p
p
n

∥
∥
∥
2

∥
∥
∥ ∂v

∂p
p
v

∥
∥
∥
2

× max

α 3.8148 0.0136 0.1945 0.0161 0.0136 103 x

β 3.7848 0.0131 0.1213 0.0099 0.0091 103 x

k 1.1340 0.0068 0.0481 0.0024 0.0036 102 x

δ 5.3606 0.0565 0.2301 0.0107 0.0185 103 x

s 1.4652 0.0058 0.2930 0.0016 0.0044 103 x

ω 0.5609 0.0014 0.0698 0.0003 0.001 10−3 x

e 1.4485 0.0056 0.5366 0.0014 0.0042 103 x

μ 0.0000 0.0000 0.0000 0.1528 0.0000 102 n

b 5.2434 0.0081 0.0787 0.0062 0.0192 103 x

k0 5.8636 0.0005 0.0046 0.0004 0.0169 101 x

γ 4.2068 0.0004 0.0036 0.0003 0.0172 103 x

max δ δ e α b

2nd, 3rd b, γ α, β s, δ μ, δ δ, γ

parameter γ . And finally, the dead cells n are most sensitive to the cancer growth
rate parameter α and to the clearance rate parameter μ. One interesting result from
our sensitivity analysis is that the cancer cells turned out to be most sensitive to the
parameter δ even though that parameter does not participate directly in the right-hand
side of the equation for the rate of change of the uninfected cancer cells x .

6 Numerical Simulations

In this section, we utilize the results from sensitivity analysis of the system to explore
the dynamics when the most sensitive parameters are varied to gain more insight into
those critical parameters that may lead to better efficacy of the virotherapy treatment.
As the cancer cells are most sensitive to the death rate of the infected cancer cells δ,
we start by analyzing the model’s outputs when it is varied on the interval 1/48 <

δ < 1/18 [7, 10]. All parameters used in the simulations are given in Table 2. Figure
1 shows the cells’ population over time when a constant immune-suppression e(t) =
0.5 is applied. Increasing the δ supports the immune-suppression drug’s control of
the tumor’s growth. Even though the tumor’s radius does not decrease significantly,
the virotherapy works by suppressing tumor’s growth and keeping it under its initial
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Table 2 The parameter values used in the simulations
Parameter Description Value Units References

α Tumor growth rate 2 × 1/10 day−1 [7]

β Infection rate of the virus 7 × 10−8 virions−1 hr−1 [7]

k Immune killing rate of infected tumor cells 2 × 10−8 mm3 hr−1 cell−1 [7]

δ Death rate of the infected tumor cells 1/18 1/h [7, 10]

s Stimulation rate of immune cells by infected cells 5.6 × 10−7 hr−1 [7]

ω Death rate of the immune cells 2 × 10−12 hr−1 [7]

e Immune-suppressive drug 0.5 hr−1 [7]

μ Clearing rate of the dead cells 1/48 hr−1 [7]

b Burst size of free virus 200 viruses cell−1 [7, 11]

k0 Immune killing rate of the virus 10−8 mm3 hr−1cell−1 [7]

γ Clearance rate of viruses 2.5 × 10−2 virions−1 hr−1 [7, 12]

size. Interestingly, as seen in Fig. 2 when δ is at its lowest value, the exponentially
decaying suppression is not sufficient to control the radius’ growth. However, as
δ increases, the same exponential decay suppression is able to control the tumor’s
growth and the radius even slightly decreases in time. With the periodic application
of the immune-suppression drug, as can be seen in Fig. 3, the tumor could not be
taken under control and on average its radius increases even with the highest death
rate of the infected tumor cells (δ = 1/2), which is outside of the natural range of
this parameter.

Figure 4 shows the dynamics of the state variables over timewhen the bursting size
b of the viruses released after the lysing of the infected cancer cells was varied over
its range of variability. Starting from b = 100 [7] and doubling the size up to b = 800
[11], we can see that in the case with no immune-suppression– which is illustrated
with the solid lines– as higher b is, as lower the tumor’s radius gets. However,
the radius stabilizes at a value that is higher than its original size. When a strong
constant suppression is applied, illustrated with the dashed lines, with the increasing
parameter b the viruses increase as well and the radius of the tumor decreases to
a lower level than its original size. However, even the strong immune-suppression
and the highest bursting size are not sufficient to eradicate the tumor. The periodic
type of immune-suppression with varying bursting size b is shown in Fig. 5. As the
bursting size increases, the tumor’s radius decreases on average; however, it varies
at a level higher than its original size and hence is not sufficient to suppress tumor
growth.

The next most sensitive parameter is the death rate of the virus γ . When it was
varied within the range [0.0025, 0.25] shown with solid lines in Fig. 6, the exponen-
tially decaying immune-suppression e(t) = 0.2e−0.5t was not sufficient to control
the tumor growth when γ is at the upper end of its range. However, even a weak but
constant immune-suppression e = 0.2 (see the dashed lines in Fig. 6) is sufficient
to control cancer growth and the radius of the tumor decreases even below its initial
value.
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Fig. 1 The populations of cancer cells x , infected cancer cells y, immune cells z, dead cells n,
viruses v, and the change of the radius R in time when the death rate of the infected tumor cells
δ is varied over its range of variability and a constant immune-suppression e(t) = 0.5 is applied.
δ = 1

48 is given in blue, δ = 1
28 is given in green, and δ = 1

18 is in red. All other parameters are
given in Table 2
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Fig. 2 Thepopulations of cancer cells x , infected cancer cells y, immune cells z, dead cellsn, viruses
v, and the change of the radius R in time when the death rate of the infected tumor cells δ is varied
over its range of variability and exponentially decaying immune-suppression e(t) = 0.2e−0.5t is
applied. δ = 1

48 is given in blue, δ = 1
28 is given in green, and δ = 1

18 is in red. All other parameters
are given in Table 2
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Fig. 3 The populations of cancer cells x , infected cancer cells y, immune cells z, dead cells n,
viruses v, and the change of the radius R in time when the death rate of the infected tumor cells δ

is varied over its range of variability and a periodic immune-suppression e(t) = 0.2 sin(π/12t) is
applied. δ = 1
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Fig. 4 The populations of cancer cells x , infected cancer cells y, immune cells z, dead cells n,
viruses v, and the change of the radius R in time when the bursting size b is varied. Two cases were
considered: without immune-suppression and with strong constant immune-suppression e(t) = 0.9
applied (given by the dashed lines). b = 100 is given in blue, b = 200 is given in green, b = 400 is
in red, and b = 800 in black. All other parameters are given in Table 2
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Fig. 5 The populations of cancer cells x , infected cancer cells y, immune cells z, dead cells n,
viruses v, and the change of the radius R in time when the bursting size b is varied and a periodic
immune-suppression e(t) = 0.2 sin(π/12t) is applied. b = 100 is given in blue, b = 200 is given
in green, b = 400 is in red, and b = 800 in black. All other parameters are given in Table 2
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Fig. 6 The populations of cancer cells x , infected cancer cells y, immune cells z, dead cells n,
viruses v, and the change of the radius R in time when the the death rate of the virus γ is varied over
its range of variability. Two cases are considered, with exponentially decaying immune-suppression
e(t) = 0.2e−0.5t , given in solid lines, and with a weak constant immune-suppression e(t) = 0.2,
given by the dashed lines. γ = 0.0025 is given in blue, γ = 0.025 is given in green, and γ = 0.25
is in red. All other parameters are given in Table 2
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7 Conclusions

With this study, we have shown that mathematics can be a powerful tool in furthering
biological understanding of virotherapy as a possible cancer treatment. In this work,
we explored a mathematical model of virotherapy with the immune response which
is the ODE version of the PDE model introduced in [7]. We extended the model
to include dead cells, which allowed us to use conservation of mass to derive the
equation for the rate of change of the tumor’s radius. We use that equation to gauge
the efficacy of the therapy. Using mathematical modeling, we studied the complex
interplay among tumor cells, oncolytic virus particles, and immune response.

Qualitative analysis found four equilibria, namely a trivial equilibrium, a disease-
free equilibrium, an equilibrium containing no immune cells, and a coexistence
equilibrium. The conditions for the stability of each equilibrium were derived.

Studying the sensitivity analysis of the model is very important as it allows us
to identify the most sensitive parameters of the model which in turn indicate the
vulnerability of the model pathways. This model was most sensitive to the death
rate δ of the infected cancer cells, the bursting size b, and the death rate γ of the
virus. The state variables are also sensitive to perturbations in the cancer growth rate
α and the infection rate β. The immune cells dynamics is mostly affected by the
immune-suppression parameter e and the immune stimulation rate s. As the virus is
most sensitive to the bursting size b, this means that the oncolytic viruses must be
chosen so that they have as large as possible lysis production.

Using numerical simulations, we showed that immune system suppression is nec-
essary for virotherapy to be effective. Additionally, simulations also show that even
though the cancer cells decrease significantlywith immune control, the tumor’s radius
decreases only to a limiting value and the tumor does not get eradicated. Among the
three different types of immune-suppression delivery, the constant and exponential
decay showed to be the most effective in controlling the tumor growth. Periodic type
of immune-suppression may control the tumor growth only with a very high death
rate δ of the infected cancer cells. Hence, to increase the efficacy of virotherapy, it
needs to be supplemented with another treatment. These results can guide medical
professionals in exploring the choice of additional therapeutic interventions to try in
combination with virotherapy to eradicate the tumor.
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Numerical Analysis of Thermoregulation
in Honey Bee Colonies in Winter Based
on Sign-Changing Chemotactic
Coefficient Model

Atanas Z. Atanasov, Miglena N. Koleva, and Lubin G. Vulkov

Abstract The presentwork is inspired by beekeeper practice and the recent develop-
ments in laboratory experiments made on honey bee colonies, where the thermoregu-
lation in the hive is studied. We consider the modification of the Keller–Segel model,
including chemotactic coefficient of which the sign can change as honey bees move
to a preferred temperature, and mortality of the organisms as well. In this case, the
known studies on Keller–Segel-type models are not applicable. We construct a sec-
ond order in space positivity preserving for the bee density, difference scheme. This
allows us to perform numerical parameter model calibration to real data, obtained
from temperature measurements.

Keywords Keller–Segel model · Honeybee thermoregulation · Finite difference
scheme · Flux limiter · Positivity preserving

1 Introduction

During winter, honey bee colonies have high mortality of individual bees and this
results in the extinction of the colony before the next spring season [1, 3–6, 15].
Honey bee colonies are not dormant during the winter: they remain active and main-
tain the hive temperature. Honey bees form combs for brood and storage of honey
and pollen and bees are found to thermoregulating cluster in between the combs
with the highest temperature in the center [3, 12]. The core temperature maintained
between 18◦C and 32◦C if the ambient temperature range of −15–10◦C. The ther-
moregulation is a result of individual bees attempting to regulate their own body
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temperatures. This enables them to survive long periods of cold. During the winter
the colony is dependent on the survival of a long-lived cohort of bees that is produced
in the autumn [3, 4, 15].

The most important factor for the survival of bees in winter is the generation and
retention of heat. Bees produce heat through flight muscle activities [3, 7]. Below a
certain temperature the bee starts shivering with her flight muscles, whereas above
this temperature she remains at rest. Also, honey bees have a thermotactic movement
which is based on temperature differences in their local neighborhood [3].

Varietymathematicalmodels usingnon-linear ordinary differential equations have
been proposed to predict and analyze the main factors in the honey bee colony
dynamics under specific conditions, see [2, 5, 13] and reference therein. In [15],
coupled thermotaxis-diffusion equation for the cluster density with a heat equation
with a temperature- and bee-density-dependent source is used to describe the self-
organized thermoregulation of honeybee clusters. In [3], a Keller–Segel model with
a sign-changing chemotactic coefficient is used to model the honey bee colonies in
winter. This model is the extension of the one in [15] by including the mortality of
individual bees.

In this work, we develop and examine positivity-preserving numerical method for
solving the problem, introduced in [3]. To this aim we apply flux-limiter approach
and extend the method, proposed in [10] for more complicated problem with sign-
changing chemotactic coefficient and discontinuous functions.

The remaining part of the paper is organized as follows. In the next section, we
present themodel problem. In Sect. 3, we develop the positivity-preserving numerical
method. In Sect. 4, we present and discuss numerical results.We give the results from
computations with real data, measured in winter of 2017 in the village of Brestovitca,
Bulgaria. The paper is closed by concluding remarks.

2 Model Description

In [3], the thermotactic movement of honey bees is described by the generalized
Keller–Segel model [9, 14]

∂T

∂t
= �T + f (T )ρ,

∂ρ

∂t
= ∇[∇ρ − X (T )ρ∇T ] − θ(ρ, T )ρ.

Here ρ ≥ 0 is the bee density and T is the local temperature, f (T )ρ models the
heat generation by bees, and X changes sign form positive to negative and generates
very different dynamics compared to the models considered in the mathematical
literature. Namely, when the local temperature T is too low, T > TX , bees move
toward higher temperature; when T < TX , they move away to lower temperature.
This means that the chemotactic coefficient X (T ) changes sign at TX , and hence
it can become negative, which is very different from the generalized Keller–Segel
model, where X has a fixed positive sign.
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In [3], the individual mortality bees, described by the function θ(ρ, T ) > 0, is
incorporated and the functions f and X are simplified, based on those in [15].
Similarly, based on the data in [15] f is chosen to be a step function as well

f (T ) =
{
flow, T < T f ,

fhigh, T > T f ,
X (T ) =

{+χ1, T < TX ,

−χ2, T > TX ,
(1)

where flow, fhigh, χ1, χ2 > 0, T f < TX . The temperature TX can thought as the
preferred temperature for the bees, as bees prefer to move toward locations with this
temperature.

Further, in [3] is taken a cross section of this cluster from the center to the edge,
and study the cluster in the spatial dimension [0, L] where x = 0 is the center of the
colony and x = L is the edge of it. To construct the set of four boundary conditions,
the following arguments are applied. Bees do not leave the colony in winter, and
temperature at the edge of the colony at x = L is equal to the ambient temperature
Ta , which we assume to be fixed and to below the preferred temperature TX in winter
and because of the assumed symmetry boundary conditions both for T and ρ at the
center of colony are imposed. Finally, for x ∈ [0, L], t ∈ [0, t f ], the model becomes

∂T

∂t
= ∂2T

∂x2
+ f (T )ρ,

∂ρ

∂t
= ∂2ρ

∂x2
− ∂

∂x

(
X (T )ρ

∂T

∂x

)
− θ(ρ, T )ρ, (2)

∂T

∂x
(0, t) = 0; T (L , t) = Ta < TX , (3)

∂ρ

∂x
(0, t) = 0;

(
∂ρ

∂x
− X (T )ρ

∂T

∂x

)
(L , t) = 0, (4)

ρ(x, 0) = ρ0(x), T (x, 0) = T 0(x). (5)

The mortality function is constructed as a product of the following distinctive
effects: (i) the effect of the local temperature (θT ); (ii) the effective refresh rates of
heat generating bees (θD); (iii) the effect of parasitic mites in the colony (θM)

θ(T, ρ) = θ0θT (T )θD(ρ)θM(ρ), (6)

θT (T ) =
{
1, T < Tθ,

0, T ≥ Tθ,
θD(ρ) = ρ

(ρtot)γ
, θM(ρ) = 1 + m

ρtot
, ρtot =

∫ L

0
ρ(x)dx,

where θ0 is a constant that must fit to the observations, γ > 0 is some unknown
exponent, Tθ > Ta , and m is the amount of mites in the colony.

In [3], authors study the model (2)–(5). First, they analyze system (2) in the
absence of bee mortality, θ = 0 and find two types of steady-state configurations,
type I: the temperature stays below TX in the whole colony, i.e., T (x) < TX for
all x ∈ [0, L] and type II: the temperature is larger than TX at x = 0, and hence
there exists a point x∗ such that T (x) > TX for x < x∗ and T (x) < TX for x > x∗,
distinguishable by the colony size ρtot.
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3 Numerical Method

In this section, we develop bee density positivity-preserving numerical method for
solving problem (1)–(6). We unfold the flux-limiter approach [10].

Since the winter period is very large, we consider the rescaled model. Let x =
x/xr , t = t/tr ,T = T/Tr ,ρ = ρ/ρr , θ0 = θ0/θ0,r , θ = θ/θr , f = f/ fr ,X = X /Xr .
Then, if xr = L , tr = L2, θr = Xr = Tr = 1, ρr = 1/L , θ0,r = 1/L , fr = 1/L and
keeping the notation x , t , T , ρ instead of x , t , T , ρ, θ0, θ, f , X , the rescaled problem
is (2)–(5), x ∈ [0, 1], t ∈ [0, t f /L2] with

f (T ) = L

{
flow, T < T f ,

fhigh, T > T f
, θ0 := Lθ0, ρtot =

1∫
0

ρ(x, t)dx . (7)

First we construct the spatial semidiscretization. Consider uniform meshes

ωh = {xi : xi = ih, i = 0, 1, . . . , N , xN = L},
ω̊h = {xi+1/2 = xi + h/2, i = 0, 1, . . . , N , x−1/2 = x0, xN+1/2 = xN }

and denote by ui (t) and ui+1/2(t) the mesh function u at point (xi , t) and (xi+1/2, t),
respectively. We will also use the notations

u± = max{0,±u}, ux,i+1/2 = ui+1 − ui
h

, uxx,i = ux,i+1/2 − ux,i−1/2

h
.

The first equation in (2),(7) and the corresponding boundary conditions (3),(7)
are approximated by the standard second-order finite difference scheme

dTi
dt

= Txx,i + f (Ti )ρi , i = 1, 2, . . . , N − 1,

dT0
dt

= 2

h
Tx,1/2 + f (T0)ρ0, TN = Ta .

(8)

Consider the second equation in (2),(7). We apply finite volume method. Integrat-
ing over the intervals [xi−1/2, xi−1/2], i = 0, 1, . . . , N , we derive

xi−1/2∫
xi−1/2

∂ρ

∂t
dx =

(
∂ρ

∂x
− X (T )ρ

∂T

∂x

)xi−1/2

xi−1/2

−
xi−1/2∫

xi−1/2

θ(ρ, T )ρdx . (9)

Denote by Fi+1/2 = Fi+1/2(ρi , Ti ) the approximation of the flux X (T )ρ∂T
∂x at point

(xi+1/2, t). Approximating the integrals in (9) by mid-point rule, we get
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dρi

dt
= ρxx,i − Fi+1/2 − Fi−1/2

h
− θ(ρi , Ti )ρi , i = 1, 2, . . . , N − 1, (10)

dρN

dt
+ 2

ρN − ρN−1

h2
+ θ(ρN , TN )ρN = 2FN−1/2

h
, (11)

dρ0

dt
+ 2

ρ0 − ρ1

h2
+ θ(ρ0, T0)ρ0 = −2F1/2

h
, (12)

whereρtot is discretized by the trapezoidal rule quadrature and for the approximation
of (9) at boundary nodes we use (4),(7).

For the terms Fi±1/2, we use van Leer flux-limiter approach, see, e.g., [8]

�(r) = |r | + r

1 + |r | , ri+1/2 = ρi+1 − ρi

ρi − ρi−1
, (13)

and the technique presented in [10]. Observe that �(r) is Lipschitz continuous,
continuously differentiable for all r �= 0, and

�(r) = 0, if r ≤ 0 and �(r) ≤ 2min(1, r).

Let Xi+1/2 := X (Ti+1/2)Tx,i+1/2, X (Ti+1/2) = 0.5(X (Ti+1) + X (Ti )). The dis-
crete flux is expressed in two forms, depending on the sign of X (T ) ∂T

∂x [8, 10]

Fi+1/2 =
⎧⎨
⎩
Xi+1/2

(
ρi + 1

2�(ri+1/2)(ρi − ρi−1)
)
, Xi+1/2 ≥ 0

Xi+1/2

(
ρi+1 + 1

2�(r−1
i+3/2)(ρi+1 − ρi+2)

)
, Xi+1/2 < 0.

(14)

Further, due to the symmetry property of the flux limiter �(r) = r�(r−1) and in
view of (13) we derive an equivalent form of Fi+1/2

Fi+1/2 =Xi+1/2

(
ρi+1 + 1

2
�(r−1

i+3/2)(ρi+1 − ρi+2)

)

=Xi+1/2

(
ρi+1 + 1

2
�(r−1

i+3/2)
ρi+1 − ρi+2

ρi+1 − ρi
(ρi+1 − ρi )

)

=Xi+1/2

(
ρi +

(
1 − 1

2
�(ri+3/2)

)
(ρi+1 − ρi )

)
.

(15)

Similarly, the flux Fi−1/2 is defined by shifting the index i and applying the
symmetry property of the flux limiter

Fi−1/2 =
⎧⎨
⎩
Xi−1/2

(
ρi + (

1 − 1
2�(r−1

i−1/2)
)
(ρi−1 − ρi )

)
, Xi−1/2 ≥ 0,

Xi−1/2

(
ρi + 1

2�(r−1
i+1/2)(ρi − ρi+1)

)
, Xi−1/2 < 0.

(16)
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Note that, for example, FN−1/2 involves the values �(rN+1/2) and for i = 0 in
(16), ρ−1 must be determined. For the value of ρi at the outer grid nodes xN+1 and
x−1 a second-order extrapolation formula [11] can be used or second-order finite
difference discretization of the boundary conditions (4)

ρN+1 = 3ρN − 3ρN−1 + ρN−2, (17)

ρ−1=ρ1, ρN+1 = ρN−1−2hX (TN )ρN T<
x,N

, T<
x,N

= TN − 3TN−1 + 2TN−2

h
. (18)

From (10) and in view of (16), (15), we get

dρi

dt
= ρxx,i − Fi+1/2 − Fi−1/2

h
− θ(ρi , Ti )ρi , i = 1, 2, . . . , N − 1, (19)

Fi+1/2 − Fi−1/2 = [Xi+1/2
]+ (

ρi + 1

2
�(ri+1/2)(ρi − ρi−1)

)

− [Xi+1/2
]− (

ρi + (
1 − 1

2
�(ri+3/2)

)
(ρi+1 − ρi )

)

− [Xi−1/2
]+ (

ρi + (
1 − 1

2
�(r−1

i−1/2)
)
(ρi−1 − ρi )

)

+ [Xi−1/2
]− (

ρi + 1

2
�(r−1

i+1/2)(ρi − ρi+1)
)
.

To compute the slope r1/2 we use (18), while for rN+1/2, the extrapolation formula
(17) is applied.

From (11), applying (16), (15), we get

dρN

dt
+ 2

ρN − ρN−1

h2
+ θ(ρN , TN )ρN = 2FN−1/2

h
, (20)

FN−1/2 = [XN−1/2
]+ (

ρN + (
1 − 1

2
�(r−1

N−1/2)
)
(ρN−1 − ρN )

)

− [XN−1/2
]− (

ρN + 1

2
�(r−1

N+1/2)(ρN − ρN+1)
)
.

Here ρN+1 is eliminated from (18). As before, for the slope r−1
N+1/2 we use (17).

In the same fashion, from (12), (16), (15), we derive

dρ0

dt
+ 2

ρ0 − ρ1

h2
+ θ(ρ0, T0)ρ0 = −2F1/2

h
, (21)

F1/2 = [X1/2
]+(

ρ0+1

2
�(r1/2)(ρ0 − ρ−1)

)
−[X1/2

]−(
ρ0+

(
1 − 1

2
�(r3/2)

)
(ρ1 − ρ0)

)
,

where quantity ρ−1 is eliminated from (18).
In the time interval [0, t f ], we introduce the non-uniform temporal mesh ωτ =

{tn : t0 = 0, tn = tn−1 + τn, n = 1, 2, . . . , M, tM = t f } and denote by uni the mesh
function u at grid node point (xi , tn). Using implicit–explicit time stepping, the full
discretization of (8) is
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T n+1
i − T n

i

τn
− T n+1

xx,i = f (T n
i )ρni , i = 1, 2, . . . , N − 1,

T n+1
0 − T n

0

τn
− 2

h
T n+1
x,1/2 = f (T n

0 )ρn0, T n+1
N = Ta .

(22)

The ODEs (19), (20), (21) are approximated as follows:

ρn+1
i − ρni

τn
− ρn+1

xx,i + θ(ρni , T
n+1
i )ρn+1

i

= − Fi+1/2(ρ
n
i , T

n+1
i ) − Fi−1/2(ρ

n
i , T

n+1
i )

h
, i = 1, 2, . . . , N − 1,

(23)

ρn+1
N − ρnN

τn
+ 2

ρn+1
N − ρn+1

N−1

h2
+ θ(ρnN , T n+1

N )ρn+1
N = 2FN−1/2(ρ

n
N , T n+1

N )

h
, (24)

ρn+1
0 − ρn0

τn
+ 2

ρn+1
0 − ρn+1

1

h2
+ θ(ρn0, T

n+1
0 )ρn+1

0 = −2F1/2(ρ
n
0, T

n+1
0 )

h
. (25)

We implement the scheme (22)–(25), such that to avoid iteration process. At each
time level we perform the next two steps:

Decoupling Algorithm (DA)

(1) Solve the linear system (22) to find T n+1.
(2) Solve the linear system (23)–(25) for known T n+1 and find ρn+1.

Theorem 1 Let ‖u‖ = max
0≤i≤N

|ui | and ρ0 ≥ 0. If τn ≤ h
(
4

∥∥X (T n+1)T n+1
x

∥∥)−1
, then

at each time level, the solution ρn of (22)–(25), realized by the two-step Decoupling
Algorithm (DA), is non-negative.

Proof (outline)Thecoefficientmatrix of (23)–(25) is anM-matrix and since0 ≤ 1 −
1
2

(
�(r±1

i+1/2)
) ≤ 1, 1 ≤ 1 + 1

2

(
�(r±1

i+1/2)
) ≤ 2, θ(ρni , T

n+1
i ) > 0, i = 0, 1, . . . , N ,

conditions of the theorem guarantee the non-negativity of the right-hand side.

4 Numerical Simulations

In this section, we test the accuracy, the order of convergence, and the relevance of the
proposed scheme (22)–(25), implemented by DA. All data and results are given for
the problem (1)–(6) and the computations are performed with the rescaled problem
(1)–(7). We consider the following set of parameters [3]: Tθ = 21, TX = 25, χ1 =
χ2 = 1, fhigh = 0.6, flow = 3, T f = 15.

Example 1 (Convergence test) First, we test the algorithm DA for the problem with
exact solution. We add residual function fR(x, t) in the right-hand side of Eqs. (2),
such that T (t, x) = T 0(x)e−t/(3t f ), ρ(t, x) = ρ0(x)e−t/t f to be the exact solution of
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Table 1 Errors and convergence rates, test with exact solution
Non-smooth X (T ) Smooth X (T )

N EN
T CRT EN

ρ CRρ EN
T CRT EN

ρ CRρ

80 1.92201e-2 2.46059e-3 1.50392e-2 1.89418e-3

160 4.42138e-3 2.1200 5.73106e-4 2.1021 2.17345e-3 2.7906 3.18897e-4 2.5704

320 1.20971e-3 1.8698 1.54615e-4 1.8901 5.42347e-4 2.0026 7.98900e-5 1.9970

640 2.95805e-4 2.0319 3.79081e-5 2.0281 1.35910e-4 1.9966 1.99727e-5 2.0000

1280 7.36004e-5 2.0068 9.44061e-6 2.0055 3.39614e-5 2.0007 4.99473e-6 1.9996

(1)–(7). We take T 0(x) = Ta + 40(1 − (x/L)4) and for ρ0(x) we use steady-state
solution, obtained in [3].

We test the convergence both for original (the derivative of the flux is computed
in left and right sense in order to obtain fR(x, t)) and smoothed function X (T ) =
tanh[(TX − T )/ε] [15]withγ = 1,m = 10, θ0 = 4.10−3 [3]. Errors and convergence
rates at time t f are given by EN

T = max
0≤i≤N

|T (t f , xi ) − T M
i |, CRT = log2(EN

T /E2N
T ),

EN
ρ = EN

T = max
0≤i≤N

|ρ(t f , xi ) − ρM
i |, CRρ = log2(EN

ρ /E2N
ρ ).

In Table 1, we present the results with Ta = −9◦C, L = 10 cm at t f = 100 min
for uniform temporal mesh with step size τ and fixed ratio τ = h2 with non-smooth
X (T ) (only a simple averaging is used, see (16)) and smooth X (T ), ε = 0.5. We
observe second order of spatial convergence in both cases. Further, our computations
are performed without smoothing the function X (T ).

In Fig. 1, we plot solution profiles of the numerical density and temperature on dif-
ferent scalesatfixed time,obtainedbyDA for theoriginalproblem( fR(x, t) = 0). Just
as in [3], the two type solutions are clearly distinguished—type I: the temperature is
less thanTX in thewhole colony and type II: the temperature is larger thanTX at x = 0
and the distribution of bees has a peak at the location with preferred temperature TX .

Example 2 (Practical example) In practice the temperature in the beehive can be
measured, but on a certain, not enough small for the numerical computations, distance
in space. We apply the model (1)–(7) to compute the density, using the known values
of the temperature and to turn into align themodel parameterswith themeasurements,
often called model calibration.

For illustration, we use the data, obtained in the winter of 2017 by the measuring
system, placed in a hive, located in the village of Brestovitca, in the Northeast-
ern part of Bulgaria. Geographical location of experimental apiary in Brestovica is
43◦32′4.02′′C N, 25◦45′14.1′′ E and at an altitudinal range of 222 m. The experi-
mental hive is a 12-frame Dadant-Blatt. Six temperature sensors—DS18B20—are
placed at a distance of 5 cm from each other and the temperature is measured in
intervals of 5, 10, or 15 min. We use the data from the first four sensors (Nmeas = 3),
which are in a line (Ox-axis) and located in the cluster. The first sensor is in the
cluster core (x = 0). Instead of the ambient temperature Ta , we use the values of the
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Fig. 1 Solution profiles of the numerical density and temperature, solution type I (left) and type II
(center and right)

fourth sensor, situated close to the edge. For the particular experiment L = 15cm and
for the simulations we use the measured temperature from 5.01.2017, 9:55 pm up
to 7.01.2017, 1:20 pm, at 308 time points (Mmeas = 307), t f = 2000 min, see Fig. 2
(left). We denote by Tmeas(̃xi , t̃n), the measured values of the temperature at points
(̃xi , t̃n), i = 0, 1, . . . , Nmeas, n = 0, 1, . . . , Mmeas.

The values Tmeas(̃xi , t̃0) at the initial time are interpolated in order to fit the
data to the spatial mesh ωh . We find numerically by multiple runs, the opti-
mal set of parameters θ0 = 2.10−3, γ = 1, m = 25, such that the error Emeas =
‖T (̃xi , t̃n) − Tmeas(̃xi , t̃n)‖/‖T (̃xi , t̃n)‖, ‖v‖ = max

0≤i≤Nmeas, 0≤n≤Mmeas

|v(̃xi , t̃n)|, to be as
small as possible. Here T (̃xi , t̃n) is the solution, computed by DA and then interpo-
lated on points (̃xi , t̃n), i = 0, 1, . . . , Nmeas, n = 0, 1, . . . , Mmeas.

In Fig. 2 (right), we plot the computed temperature. The error
εmeas = |T (̃xi , t̃n) − Tmeas(̃xi , t̃n)|/‖T (̃xi , t̃n)‖ and the density are depicted in Fig. 3.
More precise results are obtained at the colony’s core. The two types of density
distribution, depending on the values of the temperature, are clearly distinguishable.
Although the measured temperature corresponds to the solution of Type I, while the
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Fig. 2 Measured temperature (left) and computed temperature (right)
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Fig. 3 The error εmeas (left) of the temperature and the computed density (right)

computed temperature is referred to Type 2 solution, the relative error is optimal and
the fitting between computed and measured temperature is acceptable, taking into
account that the considered model is simplified to 1D case with constant diffusion
coefficient and parameters θ0, γ, and m are not precisely determined.

5 Conclusions

In this paper, we constructed positivity preserving, second order in space numerical
scheme for solving a Keller–Segel model with sign-changing chemotactic coeffi-
cient, describing the thermoregulation in honey bee colonies during the winter. The
experiment with real data showed that the method can produce relevant results.

In our future work, we will make additional efforts in order to identify parameters
θ0, γ, andm. The engineers are able to use the temperature sensors, while the density
observations are very difficult to perform. The temperature readings from the sen-
sor at arbitrary specified times allow us to consider inverse problem of identifying
ρ = ρ(x, t) as an unknown reaction coefficient of the first equation in (2). Next, on
the base of the second equation in (2), the inverse problem of numerical determina-
tion of θ0, γ, and m will be solved.

Acknowledgements This work is supported by the Bulgarian National Science Fund under the
Project KP-06-PN 46-7 “Design and research of fundamental technologies and methods for preci-
sion apiculture”.
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On Jansen–Rit System Modeling
Epilepsy Phenomena

Anna Coletti

Abstract Our aim was to describe a generative model of EEG rhythms based on
the interaction of anatomically interconnected neuronal populations. In our study we
have seen how the description of oscillatory behaviors in the Jansenmodel is therefore
closely related to the study of its bifurcations. They often identify a change in the
performance of the system. Even if the behavior of even small systems d ≥ 3 can be
complex, the centralmanifold theoremallowsus to study the behavior of the system in
critical points of particular interest, reducing their size, referring to the simpler normal
forms that can be easily analyzed. The numerical simulation of mathematical models
allows to experiment their dynamics, often confirms mathematical hypotheses, or
suggests new possible variations that can be carried out on it.

Keywords Jansen–Rit system · Epilepsy · Center manifold theorem ·
Andronov–Hopf theorem

1 The Jansen–Rit System

1.1 The Model’s Equations

The Jansen and Rit system [1, 2] studies the temporal dynamics of a cortical column
through the interaction of three populations of interconnected neurons: pyramidal
neurons, excitatory interneurons, and inhibitors interneurons. The population of pyra-
midal cells receives inhibitory or excitatory feedbacks from local interneurons that
are other stellate pyramidal cells that reside in the same column, and excitatory input
from nearby cortical units and subcortical structures such as the thalamus.

The excitatory input is represented by an arbitrary mean firing rate p(t) which
can be random (representing non-specific background activity) or explicit, taking
into account some specific activity in other cortical units [3, 4]. The three families
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and the synaptic interactions between them are shaped by different systems [5]. Each
of the neuronal populations is modeled by two blocks.

The first types of blocks transform the average frequency of activation into an
EPSPor IPSP, that is, into an average excitatory or inhibitory post-synapticmembrane
potential, respectively [6, 7].

Both pyramidal neurons and excitatory interneurons use glutamate as a neuro-
transmitter, and therefore the impulse response of the respective synapses is the
same for which it is indicated with the function he(t).

On the contrary, inhibitory interneurons make use of the neurotransmitter GABA
and the impulse response is indicated with hi (t).

From the point of view of signal analysis, the representation of the PSP block is a
linear transformation given by a convolution with an impulse response function or,
equivalently, by a linear differential equation of the second order. The excitatory or
inhibitory impulse response function is, respectively, of the form

hi (t) =
{

Bbte−bt if t ≥ 0,

0 if t < 0.

hi (t) =
{

Bbte−bt if t ≥ 0,

0 if t < 0.

In other words, if x(t) is the input to the system, its output y(t) is the convolu-
tion product he ∗ x(t) or hi ∗ x(t). The constants A and B, expressed in millivolts,
determine the maximal amplitude of the post-synaptic potentials while a and b,
expressed in s−1, lumps together characteristic delays of the synaptic transmission.
We can express this convolution product also as a second-order differential equa-
tion, or equivalently as a system of two first-order differential equations. The second
block transforms the average membrane potential of a population of neurons into an
average pulse density of action potentials fired by the neurons.

This transformation is described by a sigmoid function of the form

Sigm(v) = 2e0
1 + er(v0−v)

, (1)

where e0 defines the maximum activation speed of the neural population, v0 the PSP
for which 50% of the discharge rate is reached, and r the slope of the sigmoidal trans-
formation at v0 which can be viewed either as a firing threshold or as the excitability
of the populations. The Sigmoid systems introduce a nonlinear component in the
model.

The connectivity constants C1 C2 C3 C4 account for the number of synapses
established between two neuron populations; they can be reduced to a single param-
eter C .
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There are three main variables in the model, the outputs of the three post-synaptic
boxes noted y0, y1, and y2; we also consider their derivatives ẏ0 ẏ1 ẏ2 noted y3, y4,
and y5, respectively.

If we write two first-order differential equations for each post-synaptic system
we obtain a system of six first-order differential equations that describes Jansen’s
neural mass model [1, 2]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ0(t) = y3(t)

ẏ1(t) = y4(t)

ẏ2(t) = y5(t)

ẏ3(t) = AaSigm[y1(t) − y2(t)] − 2ay3(t) − a2y0(t)

ẏ4(t) = Aa{p(t) + C2Sigm[C1y0(t)]} − 2ay4(t) − a2y1(t)

ẏ5(t) = BbC4Sigm[C3y0(t)] − 2by5(t) − b2y2(t).

(2)

We focus on studying the variable y = y1 − y2, the membrane potential of the
main family of neurons.

We think of this quantity as the output of the unit because in the cortex, pyramidal
cells are the main carriers of long-range cortico-cortical connections. Furthermore,
their electrical activity corresponds to the EEG signal: pyramidal neurons launch
their apical dendrites into the superficial layers of the cortex where the post-synaptic
potentials are summed, representing the essential part of the EEG activity.

To allow the model to produce a set of EEG-like signals, based on different
neuroanatomical studies, we used the parameter values as established in the work by
Jansen and Rit [2].

1.2 Geometric Study

In this section, we consider p as a parameter of the system and we propose to study
the behavior of a unit as p varies.

We study the dynamic system with p kept constant and the other parameters set
with the values given by Jansen and Rit [2]. We are interested in computing the fixed
points and periodic orbits of the system as function of p because they will allow us to
account for the appearance of alpha-like and spike-like epileptic activity. Equilibrium
point satisfies Ẏ = f (Y, p) = 0 with y ∈ R

n and p ∈ R, that is, a system of n scalar
equations in R

n+1 endowed with the coordinates (y, p). Generically f (y, p) = 0
defines a smooth one-dimensional manifold (curve) M in Rn+1.

The problem of computing the curve M is a specific case of the general (finite-
dimensional) continuation problem, which means finding a curve in R

n+1 defined
by n equations: F(y) = 0, F : Rn+1 → R

n . By the Implicit Function Theorem [8],
the previous system locally defines a smooth curve M , provided that rank J = n,
where J = Fy(ȳ) is the Jacobian matrix of F(y) calculated at the equilibrium points
ȳ, which we noted as S(y). Writing Ẏ = 0 we obtain the system of equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 = A
a Sigm[y1 − y2]

y1 = A
a (p + C2Sigm[C1y0])

y2 = B
b C4Sigm[C3y0]

y3 = 0

y4 = 0

y5 = 0,

(3)

which implies the only family of equilibrium points in the (p, y) plane:

y = A

a
p + A

a
C2Sigm

[
A

a
C1Sigm(y)

]
− B

b
C4Sigm

[
A

a
C3Sigm(y)

]
, (4)

where y indicates y = y1 − y2 which can be thought of as the representative of the
EEG activity and p our parameter of interest, labeled by P P .

Number of intersections between the curve and the vertical line p = constant
are the equilibrium points for that particular value of p. We draw the curve also for
negative p values, for which there is no biological value as p as at firing rate but
which play a fundamental role in the mathematical description of the model.

To study stability without solving the system of nonlinear differential equations,
we use the indirect Lyapunov method or linearization method [9, 10].

J(S(y)) is the Jacobian matrix of f (y, p) respect of y; it is the matrix of the
linearized dynamic system in a neighborhood of the equilibrium point S(y). So we
have

J(S(y)) =
(

03 I3
K M(y) −K

)
,

where

K = 2 diag(a, a, b), M(y) =
⎛
⎝ −a

2 γ(y) −γ(y)
δ(y) −a

2
θ(y) 0 −b

2 .

⎞
⎠

I3 is the three-dimensional identity matrix and 03 the three-dimensional null
matrix.

The three functions γ(y), δ(y) and θ(y) are defined by

γ(y) = A

2
Sigm ′(y), δ(y) = AC1C2

2
Sigm ′(C1y0(y)),

θ(y) = BC3C4

2
Sigm ′(C3y0(y)),
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Fig. 1 A branch of
equilibria in the (PP,
y0)-plane differentiating
stable and unstable fixed
points and the bifurcation
points

where y0(y) is the first coordinate of S(y) and Sigm ′(x) is the derivative of the
function Sigm(x).

In dynamic models or physical systems, the mechanism underlying a transition
in behavior is often a local bifurcation of equilibria [11]. The bifurcation analysis
of the system means building its one-parameter bifurcation diagram. In particular,
study the dependence of equilibria and limit cycles on the parameter, as well as locate
and analyze their bifurcations. The complexity of the system given by the sigmoidal
function makes the research and study of the latter analytically impractical.

In order to identify and study the bifurcations, we used the MatCont software
based on the interpreted language MATLAB [12]. MatCont is a graphical MATLAB
software package for the interactive numerical study of dynamical systems. Starting
from an orbit converging to an equilibrium point, we have calculated by continuation
the entire curve of fixed points. Subsequently we compute the eigenvalues of J along
the curve to analyze the stability of the family of equilibrium points. In particular,
the fixed points for which the eigenvalues have a real negative part are stable, defined
by a continuous line, while the fixed points for which at least one eigenvalue has
a real positive part are unstable, defined by a dashed line. For the purpose of the
geometric study of the system, it is important to identify the points where at least one
eigenvalue has no real part, called the bifurcation points, where a drastic and sudden
change in the behavior of the system takes place (Fig. 1).

The first limit point appears for p = 113.58624. Here one eigenvalue has zero
real part; the curve of equilibria has a turning point, on one side the equilibria are
stable on the other unstable. Here there is a saddle-node bifurcation with homoclinic
orbits.

In the meantimeMatCont finds a special point also in p = 96, here a test function
is zero, but that is due to two real eigenvalues, one positive and one negative, summing
up to zero, not a complex pair. This is mentioned in the main MatCont window as
a neutral saddle equilibrium. At p = −41.30141 another Limit point is found. Here
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the branch does not become stable, just one more eigenvalue has now positive real
part.

In the model for p = 89.829112 and for p = 315.6964 two complex conjugate
eigenvalues cross the imaginary axis. The system undergoes what is called a Hopf
bifurcation. In particular, a theorem due to Hopf which we will see in the following
section shows that for p = 89.83 a one-parameter family of stable periodic orbits
appears at the fixed point that has two complex conjugate eigenvalues crossing the
imaginary axis toward positive real parts.

These periodic orbits persist till p = 315.70 where a second Hopf bifurcation
occurs: the two eigenvalues whose real parts became positive for p = 89.83 see
them become negative again, corresponding to the (re)creation of a simple attractive
fixed point. For p between 89.83 and 315.70, there is a family of periodic orbits
that we call Hopf cycles (Fig. 2). Numerically if we consider the difference function
y = y1 − y2 this oscillates around 10 Hz, witch correspond to alpha activity, as can
also be seen in the simulations of y(t) for p = 200 (Fig. 3).

We have experimentally calculated the period of the orbits in the Hopf cycle and
we have noticed how this remains constant as p varies, as shown in the following
figure (Fig. 4).

We do not mention the bifurcations obtained for negative p-values, in particular,
for p = −12.147468 we have another Hopf bifurcation, because only the positive
p-values have biological relevance, while the study for each p value will be necessary
for mathematical evaluations. Nevertheless, this last bifurcation will be important in
the model to explain phenomena of spike activity.

The other branch of limit cycles lies in the domain between the star labeled L P ,
where there is a saddle-node bifurcation and the red line L PC representing a fold
bifurcation of limit cycles. We will call these orbits spike cycles. The branch of the
spike cycles begins at p = 113.58, thanks to a bifurcation of the saddle node and ends
at p = 137.38 due to a fold bifurcation of the limit cycles that we have identifiedwith

Fig. 2 Hopf cycle
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Fig. 3 y(t) for p = 200

Fig. 4 Period of Hopf cycle

MatCont and appears in the window as the red line labeled L PC . This bifurcation
results from the fusion of a stable and an unstable family of periodic orbits.

The unstable family of orbits originates in the Hopf bifurcation obtained for
p = −12.147468.

In fact, we note that for a value belonging to such an interval such as p = 135, the
system numerically simulates an activity similar to that recorded by epileptic EEGs.
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1.3 The Central Manifold Theorem and the Andronov–Hopf
Bifurcation

The term Hopf bifurcation (or Poincaré-Andronov–Hopf bifurcation) refers to local
birth or death of a periodic solution from an equilibrium when a parameter exceeds
a critical value. It is the simplest bifurcation that does not involve only the equilibria
and therefore belongs to what is sometimes called dynamic (as opposed to static)
bifurcation theory. In a differential equation aHopf bifurcation typically occurs when
a complex conjugate pair of linearized flow eigenvalues at a fixed point becomes
purely imaginary. This implies that a Hopf bifurcation can only occur in systems of
dimension two or greater.

The behavior of even small systems d ≥ 3 can be complex. The central manifold
theorem is a mathematical tool that allows to study the behavior of the system near
critical points of particular interest, reducing their size. We say that a subspace
V ⊂ R

n is invariant for the system if x ∈ V implies eAt x ∈ V for all t ∈ R.

The space R
n can therefore be decomposed as the sum of a stable, unstable,

and central subspace, crossed, respectively, by the (generalized) eigenvectors corre-
sponding to eigenvalues of A with negative, positive, and zero real parts. We have
so R

n = V s ⊕ V u ⊕ V c. In particular these sub-spaces are invariant for the flow of
the system.

The Center Manifold Theorem applies to the case where V c is nontrivial. It says
that near the origin all the interesting dynamics takes place on an invariant manifold
M, tangent to the center subspace V c.

Theorem 1 Center Manifold Theorem Let f : Rn 	→ R
n be a vector field in C

k+1

(here k ≤ 1), with f (0) = 0. Consider the matrix A = D f (0), and let V s, V u, V c be
the corresponding stable, unstable, and center sub-spaces. Then there exists δ > 0
and a local center manifold M with the following properties:

– There exists a C
k function φ : V c 	→ R

n with πcφ(xc) = xc such that

M = {φ(xc); xc ∈ V c, |xc| < δ}.
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– The manifold M is locally invariant for the flow of the system, i.e., x ∈ M implies
x̃(t, x) ∈ M for |t | small.

– M is tangent to V c at the origin.
– Every globally bounded orbit remaining in a suitably small neighborhood of the

origin is entirely contained inside M.
– Given any trajectory such that x(t) 	→ 0 as t 	→ ∞, there exists ν > 0 and a

trajectory t 	→ y(t) ∈ M on the center manifold such that eνt |x(t) − y(t)| 	→ 0,
as t 	→ ∞.

1.3.1 Andronov–Hopf Theorem

In an n-dimensional system, the Center Manifold Theorem guarantees that the oscil-
latory dynamics will be qualitatively similar to the two-dimensional case, there is
therefore a two-dimensional surface on which the limit cycle will emerge.

Theorem 2 Andronov–Hopf theorem In n ≥ 3 assume that its Jacobian matrix
A(α) = fx (x0(α),α) has

– one pair of pure complex eigenvalues λ1,2 = + − iω(α);
– ns eigenvalues with Reλ j < 0;
– nu eigenvalues with Reλ j > 0;

with ns + nu + 2 = n. According to the Center Manifold Theorem, there is a family of
smooth two-dimensional invariant manifolds W c

α near the origin. The n-dimensional
system restricted on W c

α is two dimensional, hence has the normal form above.
Moreover, under the non-degeneracy conditions, the n-dimensional system is locally
topologically equivalent near the origin to the suspension of the normal form by the
standard saddle,

ẏ1 = βy1 − y2 + σy1(y
2
1 + y22 ) ẏ2 = y1 + βy2 + σy2(y

2
1 + y22 )

ẏs = −ys ẏu = +yu,

where y = (y1, y2)T ∈ R
2, ys ∈ R

ns and yu ∈ R
nu .

In particular sign(l1(0)) = σ = ±1 determines if there is a supercritical or a
subcritical Andronov–Hopf bifurcation.

If σ = −1, the normal form has an equilibrium at the origin, which is asymptot-
ically stable for β ≤ 0 (weakly at β = 0) and unstable for β < 0. Moreover, there
is a unique and stable circular limit cycle that exists for β > 0 and has radius

√
β.

This is a supercritical Andronov–Hopf bifurcation.
If σ = +1, the origin in the normal form is asymptotically stable for β < 0 and

unstable for β ≤ 0 (weakly at β = 0), while a unique and unstable limit cycle exists
for β < 0. This is a subcritical Andronov–Hopf bifurcation.
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1.3.2 Conditions Necessary for the Hopf Bifurcation

Consider now an equilibrium solution for the second-order differential equation of
one population y = Y (p), such that h(0,Y, p) = 0, so that y = Y is a solution for
any fixed p. There is no loss of generality in assuming Y (p) = 0 for all values of p,
since we can always change variables yold = Y (p) + ynew. The linearized equation
near the equilibrium solution Y (p) ≡ 0 is ÿ − 2α ẏ + βy = 0, where α = α(p) =
− 1

2hẏ(0, 0, p) and β = β(p) = hy(0, 0, p).
The critical point is a spiral point if β > α2.

If we assume now that at p = 0 the critical point changes from a stable to an
unstable spiral point (if the change occurs for some other p = pc, one can always
redefine pold = pc + pnew). Thus α < 0 for p < 0 and α > 0 for p > 0, with β > 0
for p small.

In fact, assume h is smooth and α(0) = 0,β(0) > 0 and d
dp α(0) > 0.

This last is known as the transversality condition. It guarantees that the eigenvalues
cross the imaginary axis as p varies.

In our case, the equations are

⎧⎪⎨
⎪⎩

ÿ0 − AaSigm[y1 − y2] + 2a ẏ0 − a2y0 = 0

ÿ1 − Aa{p + C2Sigm[C1y0]} + 2a ẏ1 + a2y1 = 0

ÿ2 − BbC4Sigm[C3y=] + 2bẏ2 + b2y2 = 0.

TheHopf bifurcation appears for p̄ = 89.829112, and in this pointwe have the fol-
lowingphase space coordinatesY ( p̄) = (0.097839 20.164937 13.425371 0.000000
0.000000 0.000000).

The system must therefore be translated into yold = Y ( p̄) + ynew, where y =
(y0, . . . , y5). We omit the development in the translated point and the verification as
it is pure algebra.

2 Simulate Signals

The bifurcation diagram is a valid tool for describing the behaviors of the Jansen–Rit
model when the afferent input from the adjacent regions is modeled by a white noise
or a Gaussian noise, whose input frequency is different.

In fact, the geometric study suggests the values of the parameter p for which an
interesting behavior of the system is expected.

Setting the input p(t) in the equations of the model as a random input uni-
formly distributed between 120 and 320 pulses per second, an alpha-like activity
was observed for C = 135, which we can see in Fig. 5.

On the other hand, if we use as input p(t) in the model a Gaussian white noise
with mean 90 and standard deviation 30, corresponding to a rate of 30–150 pulse/s
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Fig. 5 Alpha rhythm with
p(t) as a random input
uniformly distributed
between 120 and 320 pulses
per second

Fig. 6 Spike activity with
p(t) as a Gaussian white
noise corresponding to a rate
of 30–150 pulse per second

we can see that the model produces a signal similar to a spontaneous EEG recorded
from neocortical structure electrodes during interictal periods (Fig. 6).

Notes and Comments All stochastic simulations were performed using the Milstein
method, a variation of the Euler–Maruyama method while the deterministic simula-
tions are performed using the Runge–Kutta 4 method.
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Forex Time Series Forecasting Using
Hybrid Convolutional Neural
Network/Long Short-Term Memory
Network Model

Maya Markova

Abstract The deep learning approach plays a meaningful role in predicting finan-
cial time series data. This research proposes a time series deep learning hybrid
model based on the convolutional neural network and long short-term memory
(CNN-LSTM) framework for predicting EUR/USD exchange rate. The CNN-LSTM
Encoder–Decoder model for multivariate multi-step time series forecasting is devel-
oped and evaluated with the 5-min time interval foreign exchange rate of EUR/USD
data. The historical data are transformed into a three-dimensional structure to prepare
the data for fitting the model. Dataset preparation and CNN-LSTM model are made
using Python. To solve a problem with dying ReLU in 1D CNN layers, a parametric
leaky ReLU activation function with He kernel initialization is used. Themodel takes
six timesteps of four features as input—open, high, low, and close prices in 5-min
intervals of EUR/USD price and predicts the following three timesteps for the same
four features.

Keywords Forex · Deep neural network · CNN-LSTM model

1 Introduction

The foreign exchange market (Forex) is an intercontinental market where you can
trade any currency of any country in the world. The foreign exchange market opened
up in the 1970s by introducing floating exchange rates. Since then, individuals and
companies that have participated in the foreign exchange market have always deter-
mined the comparison between currency prices based on the law of supply and
demand. The Forex market has always been considered a free market as it is free
from any external control. All those wishing to engage in forex trading are free to
compete with each other and can choose to trade or not at any time.

The sheer number of forex trades taking place in a continuous motion every
day makes the forex market one of the most liquid money markets in the world.
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According to various research studies, the volume of money traded in the foreign
exchangemarket amounts to almost five trillion dollars daily. The highest transaction
volume recorded is almost $6 trillion in just one day. The average daily amount of
total transactions is around $3 trillion. The exact amount cannot really be determined
since not all foreign exchange transactions are processed at a central exchange office.

Foreign exchange transactions could be conducted from anywhere in the world
using telecommunications networks and the Internet. Unlike the stock market, which
only trades during traditional business hours, the forex market trades 24 h a day,
5 days a week. Forex trading starts at 00:00 GMT on Mondays and ends at 22:00
GMT on Fridays. Always a dealer could be found in all time zones. Major currency
exchanges are located in the following major markets: New York in North America,
Frankfurt and London in Europe, Tokyo and Hong Kong in Asia, and Australia and
New Zealand in the Pacific [1].

There are two different methods of analyzing the financial markets: funda-
mental analysis and technical analysis. Fundamental analysis is principally based
on economics, while technical analysis uses historical prices to try to predict future
movements. Short-term traders focus their strategies mostly on price movements
and prefer to use technical analysis. Fundamental analysis focuses on the social,
economic, and political forces that drive supply and demand. Those who use funda-
mental analysis as a trading tool look at various macroeconomic indicators such as
interest rates, growth rates, inflation, and unemployment.

With the growing popularity of technical analysis and the emergence of new
technologies, the influence of technical trading on the forex market has increased
significantly. Technical analysis emphases more on reviewing price movements. It
uses historical currency data to predict future price developments. Technical anal-
ysis supposes that all information about the current market is already revealed in
the currency price. Therefore, studying price action is all that is required to make
informed trading decisions. Furthermore, technical analysis assumes that historymay
repeat itself [2].

According to investors lately, foreign exchange has surpassed other investment
instruments like futures, bonds, and stock exchange [3–5]. When the exchange rate
oscillates often, investors may make substantial gains at a minimal cost. As a result,
there has been a significant increase in interest in forecasting exchange rates using
artificial neural networks, in particular time series forecasting. The researchers found
that exchange rate fluctuations behave as a nonlinear dynamic system affected by
many complex variables. It was evident that using linear thinking cannot predict
the performance of a nonlinear system. To meet the market demand for higher
predictability it is crucial to use a nonlinear exchange rate forecasting method like
deep learning. Deep learning is also proving effective in the field of currency fore-
casting, in addition to its already well-known application areas such as image and
video processing, voice recognition, natural language processing, and others. As a
consequence, deep learning algorithms are attracting increasing interest [6].
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In recent years, deep neural network studies have made significant progress in
data science. On many prediction tasks, models like CNN, LSTM, and transformers
perform better than traditional machine learning. However, due to the uncertain,
irregular, andunstable nature of financialmarkets and the complexity of financial time
series data, research based on deep neural network financial forecasts still has room
for improvement [7]. Machine learning is more effective in short-term prediction
(minutes or hours) than long-term prediction because economic news is less likely
to influence the price movement.

This project aims to investigate combining CNN and LSTM layers in one hybrid
CNN-LSTMmodel for Forex time series forecastingwith 5-minEUR/USDexchange
data.

2 Convolutional Neural Networks

Convolutional neural networks (CNN) capacity to learn automatically from raw data
may be used for time series forecasting. The data could be seen as a one-dimensional
picture that a CNNmodel could interpret and find its most important features. CNNs
support multivariate input and output, as well as the ability to learn arbitrary but
complicated functional relationships [8].

The theme of sequence modeling in deep learning was mainly associated with
recurrent neural network designs such as LSTM and GRU, until recently. Bai
et al. [9] guide that this is an old-fashioned way of thinking, so the convolutional
networks must be considered the primary option for representing sequential data.
They demonstrated that convolutional networks beat RNNs in a wide variety of
tasks while avoiding typical disadvantages allied with recurrent models, including
the exploding/vanishing gradient issue or a lack of memory retention. By combining
multiple Conv1D layers, a CNN may successfully study long-term relationships in
time series [8].

3 Long Sort-Term Memory Neural Networks

The long short-term memory (LSTM) network is a recurrent neural network (RNN),
which was first proposed by Sepp Hochreiter and Jurgen Schmidhuber [10] and later
improved by Alex Graves [11].

LSTMs were created to overcome the issue of vanishing and exploding gradients
that can be seen during the training of conventional RNNs. LSTM unit includes a
memory cell that stores information updated by three special gates: the forget, the
input, and the output gate. The cell remembers values over random time intervals,
and the three gates regulate the stream of data into and out of the cell (see Fig. 1).
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Fig. 1 LSTM architecture

LSTM internal state variable is passed from cell to cell and is modified by
Operation Gates.

1. Forget Gate

Ft = σ(W f .
[
ht−1, xt

] + b f ). (1)

The output at t − 1 is concatenated with the current input at time t into a single
tensor. Then is applied a linear transformation afterward, a sigmoid. The output of
this gate is between zero and one because of the sigmoid. The results number is
multiplied by the internal state, and if f t = 0, the previous internal state is forgotten,
where the name forget gate is come. If f t = 1, the previous state will be passed
through unchanged.

2. Input Gate

It = σ(Wi .
[
ht−1, xt

] + bi ). (2)

The input gate passes the previous output and the new input through one more
sigmoid layer. The output of the gate is between zero and one, and the output of the
candidate layer is multiplied by the input gate value.

Ct = ReLU (WC .
[
ht−1, xt

] + bC). (3)

This layer applies a Rectified Linear Unit (ReLU) function to the input and
previous output and returns a candidate vector which is summed with the internal
state.

The following rule is used to update the internal state:

Ct = ft ∗ Ct−1 + it ∗ Ct . (4)

The forget gate and the previous state are multiplied and added to the segment of
the new candidate allowed by the output gate.
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3. Output Gate

Ot = σ
(
WO .

[
ht−1, xt

] + bO
)
, (5)

ht = Ot ∗ ReLUCt . (6)

This gate works similarly and controls how much of the internal state is sent to
the output.

The described three gates have separate weights and biases. The network finds out
which part of the current input and past output to save and which part of the internal
state to send to output [12].

4 Activation Function Parametric ReLU

An essential component of artificial neural networks (ANN) is activation functions.
They are mathematical equations that define the outputs of neural nodes. The activa-
tion functions permit the network to learn complex data features and add nonlinearity
to a neural network. The selection of activation function has a sustainable influence
on the ANNs performance, and one of the trendy choices recently is the ReLU [13].

Unfortunately, theReLUactivation function suffers from a so-called dyingReLUs
problem. During training, part of the neurons starts to output only zeros. Sometimes,
this could happen with half of the neurons in the network, especially if it is trained
with a significant learning rate. The gradient of the ReLU function is zero when its
input is negative or zero. Because of zeros, output gradient descent does not influence
anymore. To solve this problem, variants of the ReLU function could be used, like
leaky ReLU or parametric ReLU [14]. Adding a slight slope in the negative area
of the function that causes small negative outputs for smaller than zero inputs is an
effective way to solve a dying ReLU problem [13].

The parametric leaky ReLU (PReLU) function is a variant of leaky ReLU where
the parameter a is not a hyperparameter but is learned during the training. The
parametric leaky ReLU function in [15] is defined as

f (yi ) =
{

yi , i f yi > 0
ai yi , i f yi ≤ 0

, (7)

where yi is the input of the activation function and the coefficient ai controlling the
slope of function in the negative part. When ai = 0, it became a ReLU function and,
when ai is hyperparameter with the small and fixed value, it became a Leaky ReLU
function. When ai is learned during the training function, it is called Parametric
ReLU. Equation (7) is equivalent to
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f (yi ) = max(0, yi ) + aimin(0, yi ). (8)

As described in [15], PReLU could be trained simultaneously with other layers
during backpropagation. The gradient of ai for one layer is

∂ε

∂ai
=

∑

yi

∂ε

∂ f (yi )

∂ f (yi )

∂ai
, (9)

where ε represents the objective function. The term ∂ε
∂ f (yi )

is the deeper layer gradient.
The gradient of the activation is assumed by

∂ f (yi )

∂ai
=

{
0, i f yi > 0
yi , i f yi ≤ 0

. (10)

5 CNN-LSTM Encoder–Decoder Model with Multivariate
Input

In an encoder–decoder architecture, a convolutional neural network could be adopted
as the encoder. The 1D CNN can read across sequence input and automatically learn
the relevant features. Then the data could be interpreted by an LSTM decoder. We
discuss hybrid CNN-LSTM models that use CNN and LSTM layers, forming an
encoder–decoder architecture. The CNN layer expects as input the same 3D structure
data as the LSTM layers, though multiple features are read like different channels of
an image that finally have the same effect [16].

5.1 The Data

Data from www.finam.ru [17] for 5-min exchange rates of EUR/USD from 1 June
2017 to 27May 2022 (total 379 325 timesteps) were selected for the study. The open,
high, low, and close prices were preprocessed in the shape of (samples, timesteps,
and features). We have four features: an open, a high, a low, and a close price. The
timesteps are six (a total of half an hour) at a 5-min interval. The input and output data
samples are made by dividing the multivariate input data sequence in the following
manner. The first six timesteps of data are input, while the following three timesteps
of each of the fourth features are used as output (target) data for the model. The
second sample takes the input data between 2 and 7 timesteps and output between 8
and 10 timesteps, and so on.

http://www.finam.ru
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5.2 The Model

Wemade multivariate multi-step input data for the first 1D CNN layer to forecast the
Forex time series. In a 1D CNN, the kernel travels in a single direction. Input data
has four features—time series for open, high, low, and close prices in 5-min intervals
of EUR/USD. The model predicts the following three timesteps for the same four
features. The convolution is like a sliding window function applied in one direction
to a input data matrix. This sliding window in a convolutional layer is named a filter
or feature detector. The size/height of this filter, called kernel size, in our model is
equal to the number of input timesteps.

We created manymodels, and our final model consists of five layers after refining.
The parameter settings of the constructed CNN-LSTM model are shown in

Table 1.
The model consists of two 1D convolutional layers, a max pooling layer, one

LSTM layer, and a Dense output layer. Input data are in a three-dimensional data
vector (None, 6, 4), in which 6 is the size of the timestep and 4 is the four features of
the input data. To solve a problem with dying ReLU, in 1D CNN layers parametric
leaky ReLU activation function is used.

Table 1 Parameter settings
of the CNN-LSTM model

Parameters Value

Convolution layer1 filters 2048

Convolution layer2 filters 2048

Convolution layer kernel_size 6

Convolution layer activation
function

PReLU

Convolution layer padding Causal

Pooling layer pool_size 2

Pooling layer padding Same

Number of hidden units in LSTM
layer

256

LSTM layer activation function ReLU

Time_step 6

Batch_size 2048

Learning rate 0.00004

Optimizer Adam

Loss function mean_squared_error

Metrics RootMeanSquaredError

Epochs 320
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6 Construction of CNN-LSTMModel in Python

The Google Colab Pro environment and Python‘s Keras deep learning library are
used for building the model. The Python code of the model construction is shown in
Fig. 2.

The training data are separated into 70% for training and 30% for validation.
To prevent overfitting, which often occurs in more complex models, we use regu-
larization L2 for kernel_regularizer, bias_regularizer, and activity_regularizer (see
Fig. 2).

We first made a model with a ReLU activation function for 1D CNN and LSTM
layers. However, at some point, the model stopped to learn. To solve this problem
with dying ReLU, we use a parametric leaky ReLU activation function in 1D CNN
layers and a lower learning rate. Themodel results (Fig. 3) show that the loss function
for the training data is 1.7E-04. The validation data loss function measured by MSE
is about 1.8E-04, measured by RMSE is 0.0036, which is an outstanding result.

After fitting, the model is evaluated on the test dataset for 5-min exchange rates
of EUR/USD from 27 May 2022 to 22 June 2022, and the loss function for the test
data set measured with mean squared error is 2.12E-04 (Fig. 4).

Fig. 2 The Python code of the model construction

Fig. 3 Results for loss function measured by mean square error and root mean squared error
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Fig. 4 Fit and evaluate model python code

To predict new data, we loaded the model and inserted new data for six timesteps
of open, high, low, and close prices. The result is a prediction of the following three
5-min interval timesteps for four features open, high, low, and close price (Fig. 5).
The result shows that the error of our model prediction with fresh, unseen data is
from −0.00054 to 0.017336 and is smaller for first of the three steps.

Fig. 5 Making predictions with new data of the following six timesteps
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7 Conclusion

In this paper, we make a hybrid CNN-LSTM model for time series prediction of
EUR/USD exchange rate using historical intraday data for the open, high, low, and
close price of 5-min interval. The Google Colab Pro environment is used for creating
and testing the Python model. The model has five layers—two 1D convolutional
layers with 2048 filters and kernel size 6, one max pooling layer with pool size 2,
one LSTM with 256 hidden units, and one fully connected layer. To solve a problem
with dying ReLU in 1D CNN layers, a parametric leaky ReLU activation function
with He kernel initialization is used. The model was compiled with loss function
mean squared error and optimizer Adam with a learning rate of 0.00004. The results
show that the loss function for the training data is 1.7E-04. The validation data loss
function measured by MSE is about 1.8E-04, measured by RMSE is 0.0036, which
is an outstanding result. Future work will be to train the model with more data and
receive better accuracy. After training, the model was saved to file for further use
and predictions with new data. The model is fed with new data for six timesteps
of open, high, low, and close prices to show prediction. The outcome predicts the
following three 5-min interval timesteps for four features open, high, low, and close
prices (Fig. 5). The result shows that the error of our model prediction with fresh,
unseen data is from −0.00054 to 0.017336 and is smaller for the first of the three
steps.
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Diversification and Optimization
of the Financial Portfolio in Times
of Uncertainty

Ivan Georgiev, Victoria Deninska, Vesela Mihova, and Velizar Pavlov

Abstract In conditions of pandemic, economic crisis, or other forcemajeure circum-
stances that can lead to dynamics: increase or decrease in the prices of certainfinancial
instruments, it is good to organize the investor’s portfolio in many different types of
financial instruments—shares, bonds, money-market funds, indices, crypto and fiat
currencies, oil, and other commodities. Such a mixed portfolio is discussed in the
presented paper, combining crypto and fiat currencies, indices, and fuels. The choice
of instruments takes into account the instability of the markets and how these instru-
ments behave against the background of world events. Weekly data for the period
July 2020–December 2021 incl. has been used. With the help of ARIMA models,
estimated asset prices for one period ahead have been derived. They have been used
to calculate the estimated rates of return of the assets. The standard deviations of the
rates of return and the correlation matrix between the rates of return of the consid-
ered financial instruments have been estimated using a historical data. The derived
estimates have beenmixed in an optimal risk portfolio, based onmulti-objective opti-
mization problem, which maximizes return and minimizes risk. Different scenarios
for the full portfolio are considered, based on the coefficient of risk aversion.

Keywords Price forecasting · Risk diversification · Portfolio optimization

1 Introduction

Let us consider uncertainty as the inability to predict future events. Uncertainty about
economic processes development is of a major concern for agents in the economy.
Households and firms base their actions on how likely they think the economy is
to grow, stagnate, or be in recession [1]. Moreover, economies and global events
appear increasingly interconnected. Globalization definitely has its positive aspects,
but when events such as pandemic, war, financial crisis, global recession, etc. break
out, it often leads to increased government deficits and attempts by investors to move
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theirmoneyout of equities to safer assets, such as preciousmetals, government bonds,
and money-market instruments [2]. The transfer of investor capital from equities to
safer financial instruments leads to stock market depreciation. The likelihood that an
area of an investment portfolio will suffer serious losses is significant, so the key to
a successful portfolio is that it is well diversified.

There are several major events that have put investors in times of uncertainty
in recent months (and even years). On the one hand, in recent years, COVID-19
is causing disruption around the world, bringing unprecedented changes to daily
life, local infrastructure, and the global economy. Some industries are highly vulner-
able to the resulting economic changes, others not so much, but constant changes in
restrictions, prevention, etc. bring uncertainty to us all. On the other hand, Russia’s
military invasion of Ukraine since 24 February 2022 has led to international sanc-
tions on Russia, a spike in fuel prices, waves of refugees, and a complication of the
international economic situation. The mentioned and some other events (that do not
enjoy suchmedia attention) affect financialmarkets, increasing their volatility. Under
these circumstances, the present work proposes a portfolio organization consisting
of eight different financial instruments, including crude oil, cryptocurrencies, fiat
currencies, indices, and government bonds. The choice of instruments takes into
account the instability of the markets and how these instruments behave against the
background of world events. The estimated prices of the instruments for one period
ahead are calculated using Autoregressive Integrated Moving Averages (ARIMA)
models. Predicted rates of return on the assets are derived. Their standard deviations
and the covariance matrix of the standard deviations are estimated using historical
data. Based on this information, an optimal risk portfolio is constructed. The struc-
ture of this portfolio has been found using a code, derived for the purpose by the
authors, that solves a multi-objective optimization problem.

2 Diversification

Given the international political and economic environment, the choice of financial
instruments for the investment portfolio as well as its diversification is essential. Let
us consider risk as the deviation in one or more returns of one or more future events
from their expected value [3]. It is important that a portfolio contains many assets
so that the negative deviations in some of them are offset by the positive ones in
others. Alternative investments have proven to be an interesting hedge for diversi-
fication during recessions [4]. Such an alternative instrument is cryptocurrency, a
form of payment that can circulate without the need for a central monetary authority
such as a government or bank. It is naturally diversified—it represents wealth across
all borders and is not tied to any one country’s economy. In this paper, two cryp-
tocurrencies have been used for investment portfolio compilation: CMC Crypto and
Bitcoin USD. Another instruments, added to the constructed portfolio, are the fiat
currencies TRY/USD, EUR/USD, and GBP/USD. Fiat currencies give central banks
more control over the economy because they can control howmuchmoney is printed,
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which in turn is used to deal with inflation and to influence aggregate demand and
economic activity.

In the present work, due attention is also given to crude oil. Oil is the engine
of the world economy and perhaps the most important commodity on the planet.
Real oil prices can have an effect on all goods and services and on the general
purchasing power of the population. It is influenced by geopolitical uncertainty and
global economic data: volatile economic data can support oil and weak data can have
a negative impact. Two indices, which could be used as indicators of how the U.S.
economy is doing, are added to the portfolio. The first one is the Dow Jones Industrial
Average (DJIA), which tracks the performance of 30 of the largest publicly traded
companies on the New York Stock Exchange and Nasdaq. DJIA is price-weighted,
meaning that stocks with a higher price have a greater weight in the index. The
second one is the Standard & Poor’s 500 (S&P 500), which is weighted by the
market capitalization of the top 500 U.S. companies. The price behavior of these
eight financial instruments is examined for the period July 2020–December 2021
inclusive, taking into account weekly closing price data. Instruments with different
trends have been deliberately selected—this allows for short and long selling. In
times of deep uncertainty about the direction of the economy and world politics,
most investors are looking for the predictability of the Treasury market. Treasury
bills are taken in this work as a non-risky asset. It is a matter of personal preference
(to the level of risk aversion) how much of an investor’s capital will be invested in
the risky portfolio and how much in the risk-free asset [5]. Therefore, the focus of
this work is on constructing an optimal risk portfolio, which can then be mixed with
the risk-free asset, depending on the investor’s individual preferences.

3 Price Modeling

Using the data described above, ARIMA models are built that give forecasts for the
prices of financial instruments 1 period ahead (in this case, 1week or for 03.01.2022).
IBMSPSS software has been used for the purpose, and the selection of themodels has
beenmade from the ExpertModeler option of the software. Thus, for all instruments,
the ARIMA (0, 1, 0) model is applied.

The graphs of auto-correlation functions (ACFs) and partially auto-correlation
functions (PACFs) are examined for each model. For the instrument’s currencies
TRY/USD, EUR/USDGBP/USD, and S&P 500, there are no jumps outside the 95%
confidence intervals for ACF and PCF, while for other assets there are 1 or at most 2
small jumps outside the confidence intervals for ACF or PACF. For the purposes of
the study, these are good enough forecasts.

Table 1 shows the prices, predicted from the ARIMA (0, 1, 0) models for each
financial instrument, the known prices for the previous period, and the expected rates
of return (RoR), calculated as the difference between these prices. In the last column,
the historical data for the standard deviations of RoRs is presented.
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Table 1 Predictions, last known values, expected RoRs, and standard deviation of RoRs

Financial
instrument

Estimated value Last known value Expected RoR
(%)

Std. dev. RoR (%)

Crude oil 75.6531 75.2100 0.5891 6.1028

CMC crypto 1196.5174 1166.2900 2.5918 18.3224

Bitcoin USD 42,954.3994 41,911.6000 2.4881 10.2676

TRY/USD 0.0712 0.0721 −1.3087 6.9267

EUR/USD 1.1365 1.1364 0.0088 0.9472

GBP/USD 1.3602 1.3590 0.0883 1.1714

S&P 500 4787.1565 4766.1800 0.4401 3.1124

DIJA 36,473.0556 36,338.3000 0.3708 2.1133

4 Optimization

Consider a portfolio with n assets, where

ri rate of return of the ith asset,
E(ri ) expected rate of return of the i th asset, and
σ 2
i dispersion of the return of the i th asset

Then the risk portfolio will have an expected rate of return corresponding to
the mean value of the expected rates of return of the separate stocks, weighted
with the corresponding proportion each of them takes in the portfolio [6]: E

(
rp

) =∑n
i=1 wi E(ri ), where wi is the weight of the ith stock.
The standard deviation of the risk portfolio is given by σP =√∑n
i=1 w

2
i σ

2
i + ∑n

i=1,i �= j

∑n
j=1 wiw jσiσ jρ

(
ri , r j

)
,

where ρ
(
ri , r j

)
is the correlation coefficient between the ith and the jth stock rates

of return.
Investors seek to both maximize expected return and minimize risk. This is in fact

a difficult task, as often maximizing return comes at the expense of greater risk.
The P1 portfolio dominates the P2 portfolio if E

(
rP1

) ≥ E
(
rP2

)
and σP1 ≤ σP2 .

A portfolio is called efficient if it dominates all possible portfolios for a given
level of one of these metrics [7]. The assumption that investors are risk averse means
that they prefer as little risk as possible for a given level of expected return and, out
of two portfolios with identical returns, they will choose the one with less risk. The
intersection of the set of portfolios with the maximum return and the set of portfolios
with the minimum risk are called the efficient frontier.

The structure of an optimal portfolio of financial instruments could be computed
based on any of the following optimization problems [8]:

1. Select a portfolio structure such that its risk is minimal with an expected return
not lower than a given level Ec, (Ec = const):
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min σp =
√√√√

n∑

i=1

w2
i σ

2
i +

n∑

i=1,i �= j

n∑

j=1

wiw jσiσ jρ
(
ri , r j

)
,

E
(
rp

) ≥ Ec,

n∑

i=1

wi = 1,wi ≥ 0.

2. Select a portfolio structure such that its expected rate of return is maximal with
risk not greater than a given levelσc, (σc = const):

max E
(
rp

) =
n∑

i=1

wi E(ri ), σp ≤ σc,

n∑

i=1

wi = 1,wi = 0.

3. Select a portfolio structure that maximizes the risk premium at the best reward to
risk ratio (S—the maximum slope of the capital allocation line CAL): max S =
E(rp)−r f

σP
,
∑n

i=1 wi = 1,wi ≥ 0.

Which problem the investor prefers depends on his objectives. In this paper, the
three problems are combined into a multi-objective optimization problem. Several
objective functions (private criteria), which are usuallywritten as elements of a vector
[9], have to be minimized:

minw∈W Z(W ), (1)

n∑

i=1

wi = 1, (2)

wi ≥ 0. (3)

In the considered problem n = 3 and:

Z(W ) = [Z1(W ),−Z2(W ),−Z3(W )]T , W = [w1,w2, . . .wn]
T ,

Z1 = σp, Z2 = E
(
rp

)
, Z3 = E

(
rp

) − r f

σp

.

A minimum is chased over the criteria Z1(W ), while on Z2(W ) and Z3(W ) a
maximum is required, which explains the negative sign in front of these functions
in the vector criterion. A characteristic feature of multi-objective problems is the
absence of a unique optimal solution. Usually solving them results in a set of so-
called Pareto-optimal solutions obtained using the principle of optimality proposed
by Vilfredo Pareto [10]. Since none of them is better than the others (if no additional
considerations are taken into account), it is appropriate to find asmanyPareto-optimal
solutions as possible.
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The goal in this work is to find the Pareto front of optimal solutions to problems
(1)–(3) and possibly to isolate one particular solution that reflects to some extent
the authors’ subjective view of the trade-off. The vector criterion (1) is linear and
the constraints (2)–(3) are linear implying that the admissible set is convex. From
the fact that the admissible set (2)–(3) is convex, the weighting method proposed
by Zadeh [11] will be applied to find the Pareto-optimal solutions. A generalized
criterion is constructed as a linear combination of the partial criteria with weights
λ j , j = 1, 2, 3 and a condition on the weights

3∑

j=1

λ j = 1, λ j ≥ 0, j = 1, 2, 3. (4)

Uniformly distributed random numbers satisfying condition (4) have been
assigned to the weights λk . For each random set of weights, the single-criterion
integer problem (5) is solved:

minZ = λ1Z1 + λ2(−Z2)+λ3(−Z3) (5)

with constraints (2) and (3).
Different solutions are selected. They form the searched Pareto front.

The choice of a particular solution is subjective and depends very much on the
expertise of the particular investor or portfolio manager (the person who decides
on the risk-reward trade-off). In the present work, the global criterion method [9]
is applied to select a particular solution from the Pareto front. In this method, the
distance between some given point v◦ = [

v◦
1, v

◦
2, . . . , v

◦
n

]T
in the criterion space and

the points in the reachable set is minimized. Usually, the utopian point U is chosen
as the point v◦. In this case, problem (1) is transformed into form (6):

minw∈Wd(W ), (6)

where

d(W ) =
⎛

⎝
3∑

j=1

k j
[
Z j (W ) − v◦

j

]p
⎞

⎠

1
p

. (7)

If all criteria are equally important, the weighting factors are assumed to be the
same: k j = 1. When p = 1, the generalized criterion (7) is a linear combination of
the components of the vector|Z j (W ) − v◦

j |. The magnitude d at p = 2 coincides
with the distance between two points of the three-dimensional Euclidean space. The
solution obtained by this scheme is Pareto optimal and uniformly approximates all
the partial criteria Z j (W ) to their ideal values v◦

j .
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In this paper, all weights of the private criteria are equal
(
k j = 1

)
and p = 2. The

problem is solved using theMATLAB product. The input data consist of: vector with
the predicted RoRs of the financial instruments; vector with the standard deviations
of the RoRs; correlationmatrix of assets’ RoRs; RoR on a risk-free asset; and number
of points on the Pareto front we want to see. The output data are: matrix with the
weight distributions for the portfolios, where each row corresponds to one point on
the Pareto front; matrix with values for the three criteria, where each row corresponds
to one point on the Pareto front; the closest to the utopian point that lies on the Pareto
front, whose coordinates appear to be the values of the private criteria, as well as
the portfolio distribution for which these criteria values are obtained. The problem is
solved under the following assumptions: risk-free stocks exist; borrowing is possible
at a risk-free rate; and short sales of risky stocks are allowed. Treasury bills are used
as a risk-free asset with an annual yield of 1.512%, which equates to a 0.0291% (or
0.000291) weekly yield (1.512/52).

The expected RoRs and the historical data for the standard deviations (Table 1) are
used along with the correlation matrix (Table 2) in order to compile an optimal risk
portfolio of the eight assets. The instruments with negative expected rate of return
are sold in a short position. Figure 1 shows some points, part of the Pareto frontier,
the utopian point, the closest point to the utopian, and the distance between them.

The results for the optimal risk portfolio obtained using the closest point to the
utopian are presented in Fig. 2. The shares of TRY/USD are hold in a short position,
while the shares of the rest financial instruments are taken in a long position. This
distribution leads to a risk portfolio with an expected rate of return of 0.4605%, and
a standard deviation estimate of 1.0371%. Slope of capital allocation line in this case
is S = 0.4160.

Table 2 Correlation matrix

Instrument Crude
oil

CMC
crypto

Bitcoin
USD

TRY/USD EUR/
USD

GBP/USD S&P
500

DIJA

Crude oil 1.00 −0.23 −0.09 0.03 −0.08 0.19 −0.18 0.07

CMC
crypto

−0.23 1.00 0.05 −0.10 0.02 −0.09 0.12 0.03

Bitcoin
USD

−0.09 0.05 1.00 −0.05 −0.04 −0.10 −0.07 −0.02

TRY/
USD

0.03 −0.10 −0.05 1.00 −0.05 −0.07 −0.05 0.00

EUR/
USD

−0.08 0.02 −0.04 −0.05 1.00 0.24 −0.10 0.06

GBP/
USD

0.19 −0.09 −0.10 −0.07 0.24 1.00 −0.14 −0.13

S&P 500 −0.18 0.12 −0.07 −0.05 −0.10 −0.14 1.00 0.78

DIJA 0.07 0.03 −0.02 0.00 −0.06 −0.13 0.78 1.00
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Fig. 1 Pareto frontier,
utopian solution, and closest
point to the utopian

Fig. 2 Shares in the optimal
risk portfolio obtained using
the closest point to the
utopian

Column 3 from Table 3 presents the share and the position (long (+) and short
(−)) for each financial instrument in the organized portfolio. Last column, which
also shows (+) and (−), presents the real movement of the closing prices. The
difference between the last known price and actual price for each financial instru-
ment has been calculated. Taking into account the positions (long, short) and the
percentage distribution of the portfolio, it is possible to calculate what would be
the real percentage return. The trends of Crude Oil, Bitcoin USD, EUR/USD, and
GBP/USD are correctly predicted and they bring profit, while the trend of the rest
instruments are not correctly predicted and they bring loss. The actual percentage
return, obtained with the presented approach, is calculated as follows:

8∑

i=1

εi wi

∣∣Pi,n+1 − Pi,n
∣∣

Pi,n+1
∗ 100

=
[
0.0593 ∗ |78.900 − 75.2100|

78.900
+ · · · + (−1) ∗ 0.0789 ∗ |36231.6600 − 36338.3000|

36231.6600

]
∗ 100 = 0.1049%
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Table 3 Portfolio weights, estimated, last known, and actual values

Financial
instrument

Estimated
value—ARIMA

Portfolio weights Last known price Actual price

Crude Oil 75.6531 5.93 (+) 75.2100 78.9000 (−)

CMC Crypto 1196.5174 2.30 (+) 1166.2900 1039.2100 (−)

Bitcoin USD 42,954.3994 6.49 (+) 41,911.6000 43,113.8800 (+)

TRY/USD 0.0712 7.92 (+) 0.0721 0.0736 (+)

EUR/USD 1.1365 33.98 (+) 1.1364 1.1416 (+)

GBP/USD 1.3602 24.94 (+) 1.3590 1.3677 (+)

S&P 500 4787.1565 10.54 (+) 4766.1800 4677.0300 (−)

DIJA 36,473.0556 7.89 (+) 36,338.3000 36,231.6600 (−)

where:

Pi,n last known price for instrument i (opening price for the position),
Pi,n+1 actual price for instrument i (closing price for the position), and
εi takes values 1 or −1 depending on whether the direction of the trend is

correctly predicted.

The resulting return is on a weekly basis. If the investor manages to keep his
portfolio return at this level within 1 year, it will equate to an annual return of 5.457%.
For comparison, the annual return on the risk-free asset is 1.512%, indicating that
the annual risk premium would be 5.457% − 1.512% = 3.945%.

5 Conclusions

This paper examines different types of financial instruments, their volatility, and
their combination in a well-diversified portfolio. The aim is to reduce risk given
the complicated international economic environment. ARIMA models are used to
forecast the closing prices of the assets. Expected rates of return on assets for one
period ahead are derived from the models. These were used as inputs to construct
an optimal risk portfolio, together with historical data on standard deviations and
correlation matrices of instrument rates of return. To find the portfolio, three of the
most common optimization criteria are assumed and combined in a multi-objective
optimization problem. This problem involves finding a Pareto front and selecting a
specific point on that front. A set of portfolios corresponding to the Pareto front is
found and a specific point among them is selected with the help of a code developed
for this purpose inMATLAB.Using this point, the structure of the optimal portfolio is
obtained. Taking into account the positions (long, short), the percentage distribution
of the portfolio, the last known, and the actual prices, the real percentage of the return
is calculated. On an annualized basis, this percentage equates to 5.457%, resulting
in a risk premium of 3.945%.
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Simulating Stochastic Differential
Equations in Option Pricing

Velizar Pavlov and Teodora Klimenko

Abstract Investors use financial derivatives to increase the expected return and
reduce the risk associated with an investment. Options are very attractive since
they offer limited risk. Due to their intensive use in risk management and portfolio
hedging, many researchers develop models that accurately price options. In this
paper, we consider the best known option pricing model, the Black–Scholes model,
and then apply numerical modeling techniques to stochastic differential equations,
namely, the Euler–Maruyama and Milstein methods, and further use Monte Carlo
simulations. Next, we prove that the numerical approximations do converge in a
strong sense to the price of European call options, and we show that the empirically
computed convergence rate approaches the theoretical convergence rate for both the
Euler–Maruyama and Milstein methods.

Keywords Stochastic differential equations · Monte Carlo · Option pricing

1 Introduction

Over the past few years, derivative securities (options, futures and forward contracts,
swaps, warrants) have become essential instruments for both speculators and
investors, regardless of their corporate profile. Derivatives facilitate the transfer of
financial risks. As such, they can be used to hedge risky positions or to take risks in
anticipation of gains [1].

Options are essentially contracts between two parties which give their holders the
right, but not the obligation to buy or sell a prescribed amount of an underlying asset
at a specified price within a specified time period. The value of the option is tied to
the value of the underlying asset, which can be stocks, bonds, currencies, interest
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rates, market indices, exchange traded funds, futures contracts, other derivatives, and
so on. Options themselves are securities, like stocks or bonds, and it is because they
derive their value from something else, they are called derivatives [2].

The price of an option is constituted by two components: The first one is the
internal value, which is defined as the difference between the market price of the
underlying asset and the strike price of an option. The second one is the time value,
which through a varying, nonlinear relationship reflects the expected value at the
maturity date discounted to the present [3].

The pricing of options and other financial instruments is one of the most impor-
tant problems in finance, since its purpose is to determine the fair price of a security
with respect to more liquid securities whose price is determined by the law of supply
and demand (most commonly priced are “vanilla” and “exotic” options, convertible
bonds, etc.) [4]. To determine the option price, one must first choose a model of the
price dynamics of the underlying asset, usually in the form of ordinary differential
equations [5, 6] or stochastic differential equation depending on market parameters
such as interest rate, volatility of the asset, etc., then find a solution to the chosen
model in some form, and finally obtain the required option price. The volatility of
the asset can be constant (Black–Scholes model) [7], may depend on the value of
the underlying asset (volatility smile), the time (volatility term structure) [8], on
both (local volatility model) or may satisfy some other stochastic differential equa-
tion (stochastic volatility model) [9]. An exact analytical formula for the European
vanilla option price has been derived from theBlack–Scholesmodel and several other
local and stochastic volatility models, but in general, approximations or numerical
methods must be used to estimate options (when it is difficult or impossible to use
other approaches) [10]. To solve the problem, we use the Monte Carlo method to
construct the empirical density of the underlying asset distribution and then deter-
mine the option value [11–13]. Possible applications of local volatility models with
parallel computation include modeling and managing large equity portfolios [14,
15], assessing and managing market and credit risks [16, 17].

Option pricing via Monte Carlo simulation is among the most popular ways to
value certain types of financial options (e.g., exotic path-dependent derivatives, such
as Asian options) by directly simulating several thousand possible (but random)
price paths of the underlying asset with the corresponding option strike price for
each path and then calculating the average outcome of the process discounted to
the present day and that is the option value today [18]. This is the first from the
two main Monte Carlo approaches [19], while the other is based on Monte Carlo
approximation of multidimensional integrals. Monte Carlo simulation is essentially
useful in evaluating derivative contracts [20].

The method can guarantee that with a certain probability theMonte Carlo approx-
imation error is less than a given value (probabilistic error). Monte Carlo methods
approach the solution faster thannumerical integrationmethods, require lessmemory,
have fewer data dependencies, and are easier to program [21].

In this paper, various simulations ofGeometricBrownianMotion paths are consid-
ered, the approximation error of the Euler–Maruyama and Milstein methods is
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evaluated, and the convergence rate of the two methods is empirically determined.
Employing these simulations, the value of European and Asian options is obtained.

2 Simulations by the Euler–Maruyama and Milstein
Methods

In order to simulate the price of a European call option, one must first determine
the process that the price of the underlying asset follows over the life of the option
t ∈ [0,T]. The underlying asset is known to follow the Geometric Brownian Motion
(GBM) given by the stochastic differential Eq. (1), widely used in the study and
modeling of dynamical systems that are subject to various random disturbances.
The price of the underlying asset St is assumed to have an expected return μ and a
constant volatility σ :

dSt = μStdt + σ StdWt . (1)

The Euler–Maruyama (2) and Milstein (3) techniques are commonly used to
approximate the solution of stochastic differential equations, where μ represents the
mean return, σ is the volatility, h is the size of the discretization time step, and �Wi

is the increment of the Brownian motion at each time step. The latter is simulated by
generating random numbers with a standard normal distribution (4):

Si+1 = Si + μSih + σ Si�Wi , (2)

Si+1 = Si + μSih + σ Si�Wi + σ 2Si
2

(
�Wi

2 − h
)
, (3)

�Wj = Wtj+1 − Wtj = Z
√

�twithZ ∼ N(0, 1). (4)

As can be seen from the formulas above (Formulas (2) and (3)), the Milstein
method is almost the same as the Euler–Maruyama method, but here in order to
obtain a higher accuracy of approximation, an additional term is added by including
one of the double integrals from the Itô–Taylor expansion for Itô processes.
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Xt = Xt0 +
∫ t

t0

{a(Xt0) +
∫ s

t0

[a’(Xz)a(Xz) + 1

2
a”(Xz)b

2(Xz)]dz

+
∫ s

t0

a’(Xz)b(Xz)dWz}ds +
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t0

{b(Xt0)

+
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to

[b’(Xz)a(Xz) + 1
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2(Xz)]dz

+
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b’(Xz)b(Xz)dWz}dWs

=> Xt − Xt0 = a(Xt0)(t − t0) + b(Xt0)

∫ t

t0

dWs + R.

If R is neglected, the Euler–Maruyama method is obtained (2).
It can be found that the dominant term in the residual R is

t0+h∫

t0

s∫

t0

dWzdWs ≈ O(h)

Then:

∫ t

t0

∫ s

t0

b’(Xz)b(Xz)dWzdWz ≈ b’(Xz)b(Xz)

∫ t

t0

∫ s

t0

dWzdWs = b’b

2
((�W )2 − h)

=> Xt − Xt0 = a
(
Xt0

)
(t − t0) + b

(
Xt0

)
t∫

t0

dWs + b
′
b

2

t∫

t0

s∫

t0

dWzdWs+
∼
R.

If R̃ is neglected, the Milstein method (3) is obtained.

Geometric Brownian Motion.

Let the following parameter values be given as input to the simulations:

μ = 0.06; σ = 0.3; S0 = 50; h = 10−2; t ∈ [0, 1],

where S0 is the price of the underlying asset today; and the output is S(t), which
represents the dynamics of the underlying asset price for the given realization of the
Brownian motion in the interval [0, T ], where T is the maturity date of the option.

Fifty paths are plotted using the Milstein (Fig. 1) method. On the graphs, the
abscissa represents the time points [t] and the ordinate [S] is the realization of the
price of the underlying asset.

Let us calculate the exact analytical solution of the Geometric Brownian Motion
by considering the step size h = 10−i for i = 1, 2, 3, 4, 5 using formula (5), where
t is a specified time moment in the future andW is the Wiener process itself, which



Simulating Stochastic Differential Equations in Option Pricing 321

Fig. 1 Stock price dynamics for h = 0.01 using Milstein method

is the accumulated sum of the increments dW up to the time instant t .

S(t) = S0e
(
μ− σ2

2

)
t+σW

. (5)

For each step size h, this exact solution (ST,k) is compared with the approxima-
tions (S

∧

T,k) from the Euler–Maruyama and Milstein methods, and the error ε
∧

(h) is
computed using the following formula:

ε̂(h) := 1

M

M∑

k=1

∣∣∣ST,k − ŜT,k

∣∣∣.

Here, we only need the price of the underlying asset at the maturity date T, which is
why only the last calculated value from the exact solution and the approximation is
taken into account to estimate the error. So, to get the average error, we first take the
sum of the absolute errors for each path and then divide this sum by M, the number
of paths we have simulated.

Table 1 shows the approximation errors for the price of the underlying asset
at maturity date T using the Euler–Maruyama (Err_EM) and Milstein (Err_M)
methods, where h is the time step size.

As can be seen from the table, when the step size h decreases, the errors of both
methods also decrease. At the largest step size h = 10−1, the errors are also the
largest, and vice versa. It can be noted that the Milstein method is more accurate and
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Table 1 Approximation
error by the Euler–Maruyama
and Milstein methods

h Err_EM Err_M

0.10000 0.814502 0.077256

0.01000 0.288945 0.009201

0.00100 0.080778 0.001012

0.00010 0.026781 0.000088

0.00001 0.008354 0.000009

the errors are smaller than those of the Euler–Maruyama method, just because it has
a higher order of convergence.

The quality of any algorithm that approximates the true value of the solution
depends heavily on the convergence rate. It is necessary to evaluate how fast the
approximation converges to the true solution. To evaluate the strong convergence
rate of each method, we take the decimal logarithm of the step sizes h = 10−i

for i = 1,2,3,4,5 and the logarithm of the errors computed for the two methods,
Euler–Maruyama and Milstein.

As can be seen from Fig. 2, the estimated error for the Milstein method is not
only smaller than the error for the Euler–Maruyama method, but also decreases
much faster (the slope is steeper). Therefore, at h = 10−1, it can be seen that the
difference between the two methods is smaller than the difference for h = 10−5,
because the convergence order of theMilsteinmethod is higher than that of the Euler–
Maruyama method. Applying linear regression, we find the strong convergence rate
for both methods. It can be seen that the results converge to the theoretical values of
the convergence orders: ½ for the Euler–Maruyama method and 1 for the Milstein
method.

3 Valuation of European and Asian Options

In order to find the fair value of the European call option, in addition to the above
values of the Geometric Brownian Motion parameters, we set the strike price of the
option K = 50 and the interest rate r = 0.05. We apply the Black–Scholes formula:

VEC = StN(d1) − Ke−r(T−t)N(d2),

where

N(x) = 1√
2π

x∫

−∞
e− s2

2 ds,

d1 =
ln

( St
K

) +
(
r + σ 2

2

)
(T − t)

σ
√
T − t

,
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Fig. 2 Empirical estimation of the strong convergence rate of the Euler–Maruyama and Milstein
methods

d2 =
ln

( St
K

) +
(
r − σ 2

2

)
(T − t)

σ
√
T − t

.

To approximate the price of the European call option, the Euler–Maruyama and
Milstein methods are applied, and for this purpose, firstly μ must be replaced by r,
i.e., the price of the underlying asset S must have an expected return μ equal to the
risk-free rate r. So, it is obtained the risk-neutral stochastic differential equation:

dSt = r Stdt + σ StdWt .

To estimate today’s option price V0, we take the expected value of the payoff
function under a risk-neutral measure Q discounted to today’s point in time:

VEC
0 = e−rT ∗ EQ[ST − K ]+.

To approximate the expected value of the payoff function under the risk-neutral
measure, the Monte Carlo simulation method is used, where M paths are simulated
and, using the index i, a certain path from 1 to M is fixed. The payoff function[
SiT − K

]+
is calculated for each simulation by taking the last estimated price of

the underlying asset for each path, i.e., at the maturity date T. Then, the sum of the
payoff functions for all paths is divided by the number of simulations M to obtain
the average value of the payoff function, which is multiplied by e−rT to discount to
today’s point in time.

Thus, the fair value of the option today is found:
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Ṽ
EC
0 = e−rT ∗ 1

M
∗

M∑

i=1

[SiT − K ]+ (6)

Finally, the results obtained by Euler–Maruyama and Milstein methods are
compared with the Black–Scholes solution for different number of simulated paths
M = {10,100,1000,10,000} and fixed time step size h = 10−4. For this purpose, the
absolute error of the estimated option price (6) and the exact Black–Scholes solution
is computed for both methods:

∣∣
∣∣

∼
V0

EC

− V EC
0

∣∣
∣∣. (7)

Similarly, the values of the Asian call option are calculated. It is known that
the Asian arithmetic option does not possess an exact solution. It differs from its
European counterpart in the way its payoff is calculated. The Asian option belongs
to the class of the path-dependent options since its payoff depends on the realization
of the underlying price St for the whole life of the option t ∈ [0, T ]:

VAC
0 = e−rT ∗ EQ

⎡

⎣ 1

J

J∑

j=1

St j − K

⎤

⎦

+

, (8)

where {t j }Jj=1 is a discrete set with observation times (for a discretely monitored
Asian option).

By the same argument, the Monte Carlo approximation to the Asian call premium
is given by averaging the simulations, M in number:

∼
V0

AC

= e−rT ∗ 1

M
∗

M∑

i=1

⎡

⎣ 1

J

J∑

j=1

Sit j − K

⎤

⎦

+

. (9)

Table 2 provides an estimate of the fair price of a European call option using
the Black–Scholes method, an approximation of the option price using the Euler–
Maruyama and Milstein methods, and an estimate of the approximation error. The
Euler–Maruyama and Milstein approximations (9) of the fair value of an Asian call
option are given as well, but since there is no exact formula for (8), the approximation
error cannot be obtained.

The first column of Table 2 is the number of simulated paths M, but as can be
seen, the exact option price (in the C_BS column) does not depend on the number of
simulations M, so here in the table it is the same for eachM = [10,100,1000,10000].

C_EM is the approximated European call option price calculated using the
Euler–Maruyama method, and Err_EM is the error of this approximation. C_M
is the approximated price of the European call option calculated using the Milstein



Simulating Stochastic Differential Equations in Option Pricing 325

Table 2 Estimation of the fair value of the European and Asian call option

M C_BS C_EM Err_EM C_M Err_M A_C_EM A_C_M

10 7.115627 1.249625 5.866003 1.243205 5.872422 0.565354 0.566168

100 7.115627 4.558837 2.556790 4.561021 2.554606 2.456645 2.458124

1000 7.115627 6.867675 0.247952 6.867469 0.248158 3.822855 3.822648

10,000 7.115627 6.988541 0.127087 6.988551 0.127076 3.942129 3.941976

method and Err_M is the error of this approximation. A_C_EM and A_C_M are
the approximated prices of the Asian option by the both methods, respectively.

As can be seen from Table 2, when only 10 paths are simulated, the approximated
price is far from the theoretical price, but as M increases, the approximation results
get closer and closer to the exact European call option price. The error decreases as
M increases, and, for example, by the Euler–Maruyama method from 5.87 it drops
to 0.13. The error from the Milstein method is plotted on Fig. 3a. Also, here it can
be seen that there is no significant difference between the results obtained by the
Euler–Maruyama and the Milstein methods since the number of simulated paths M
is too small. Therefore, to obtain better results when using the Monte Carlo method,
possibly many more paths should be simulated.

The same results apply for the put option valuation (Table 3).We apply the Black–
Scholes formula to find the exact European put option value:

VEP = Ke−r(T−t)N(−d2) − StN(−d1),

where N(x), d1 and d2 are the same as in VEC. Its exact value is VEP = 4.677099.
The put premium approximations and the difference between them are calculated

analogously to (6) and (7), but only the call payoff is replaced by the put payoff
[K − ST ]+:

(b)(a)

Fig. 3 Absolute error in the option valuation, associated with the Milstein method. Call option
error (a) and put option error (b)
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Table 3 Estimation of the fair value of the European and Asian put option

M P_EM Err_EM P_M Err_M A_P_EM A_P_M

10 6.648960 1.971861 6.647441 1.970342 5.153849 5.154948

100 4.412524 0.264574 4.412199 0.264900 2.756057 2.756767

1000 4.734758 0.057659 4.733905 0.056806 2.902844 2.902490

10,000 4.667667 0.009432 4.667551 0.009547 2.768098 2.768045

∼
V0

EP

= e−rT ∗ 1

M
∗

M∑

i=1

[
K − SiT

]+
.

In similar manner, for the valuation of the Asian put option, the payoff is replaced

by
[
K − 1

J

∑J
j=1 St j

]+
:

∼
V0

AP

= e−rT ∗ 1

M
∗

M∑

i=1

⎡

⎣K − 1

J

J∑

j=1

Sit j

⎤

⎦

+

.

The same implications could be drawn for the pricing of the put options. In that
case, the results seem to be more precise, but this phenomenon is due to the random-
ness of the simulations. It is also visible that the more simulations are performed,
the more accurate the results are (Fig. 3b).

4 Conclusion

In this study, we have shown the advantages of applying the Monte Carlo simulation
approach for valuation of European and Asian options. Firstly, the Euler–Maruyama
and Milstein discretization methods are introduced, and they are employed in simu-
lating trajectories of the Geometric Brownian Motion. Then, we proposed a simple
way to empirically estimate the strong convergence rates for the bothmethods, which
fully coincide with the theoretical ones. This is done by calculating the approxima-
tion error of the simulation of the underlying asset price development. Furthermore,
the Black–Scholes formula is given in brief and it is explained how to estimate the
approximation error of the option valuation through Monte Carlo simulations. Next,
the fair values of European and Asian options are calculated and the accuracy depen-
dence on the number of simulations is commented. For the European options, the
error could be computed, but unfortunately this is not the case with the Asian options,
since they do not experience an exact formula. The aforementioned calculations are
done for call and put options. Finally, some implications are outlined which are of
help when estimating vanilla and exotic options via Monte Carlo simulations for a
wide variety of purposes from hedging to portfolio management.
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Comparison of the Growth Between
the Number and the Payments of IBNR
Claims with Chain-Ladder Method

Elitsa Raeva and Velizar Pavlov

Abstract The problem of estimation of the claims which incur but are not reported
(IBNR) in the same calendar year is one of the toughest tasks, which the actu-
aries are dealing with. The main tool that is used in practice is the Chain-Ladder
Method (CLM). It is often preferred because there are only two propositions which
are necessary and because it presents an algorithm, which could be easily imple-
mented in different software. Another advantage to use CLM is the suitable way of
representing the sample data. Using this advantage, a comparison between the devel-
opment growth of the number of the claims and their cost value is made. To make
this comparison, the data is collected using a sequence of development triangles for
longer period. In this paper, an idea for analyzing the behavior of the data inside
the CLM and how it depends or changes over the development year of the claim
settlement is given.

Keywords Insurance · IBNR claims · Chain-ladder method · Run-off triangle

1 Introduction

The Chain-Ladder method is one of the most useful tools in the actuary problems,
which are related to the outstanding reserves. One of the main purposes of the current
work is to analyze the robustness of the Chain-Ladder methodology over the compar-
ison of the cost and the number of claims due to theMotor Third Party Liability Insur-
ance type. Firstly, the classical Chain-Ladder method [1, 2] and the inflation adjusted
Chain-Ladder method [3, 4] are considered. Then, a methodology for analyzing the
results as a time series data, using series of development triangles [2, 5], is applied to
compare bothmethods. Themethods, combined in the current work, allow the insurer
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to different conclusions about the price estimations, even to construct different port-
folios of insurance risks [6, 7]. It could be in use for managing different projects of
insurance products and risk in pricing the investment resources [8].

2 Chain-Ladder Methodology

2.1 Basic Chain-Ladder Method for Number of Claims

As a start point of the analysis, the basic Chain-Ladder method is presented. For
illustrating the steps of the algorithm, the method is applied to data corresponding to
the number of claims for the period of years 2000–2010. The data is taken from the
official site of the Financial SupervisionCommission [9]. Following themethodology
from [5], firstly, the cumulative run-off triangle is considered. Using the values from
the up-triangle part of Table 1, the development factors are calculated with Formula
(1), and the results are shown in the last row of Table 1.

fk = E{CSn−k
k }

E{CSn−k
k−1}

=
∑n−k

j=1CS j;k
∑n−k

j=1CS jk−1

, k = 1, 2, . . . , n − 1, (1)

where E
{
CSik

} =
∑i

j=1CS jk

i , i = 1, 2, . . . , n; k = 0, 1, . . . , n − 1, i + k ≤ n. For
the concrete data n = 11, because in Bulgaria, the maximum number of which the
insurer payment for insurance of car driver liability could be delayed is 10 years.

Table 1 Cumulative values of the run-off triangle

Occur
Year

0 1 2 3 4 5 6 7 8 9 10

2000 14097 17913 18677 18954 19185 19455 19487 19528 19545 19549 19556
2001 27479 35727 37203 38166 38588 38846 39026 39077 39107 39130 39144

2002 24380 32640 34812 35879 36207 36542 36679 36718 36749 36766 36779

2003 28564 38920 41484 42781 43317 43707 43845 43890 43926 43946 43962

2004 30742 44531 49545 51268 51877 52320 52491 52557 52600 52625 52644

2005 32539 47199 55553 58032 59262 59606 59811 59887 59936 59964 59985

2006 34917 54543 61662 63856 64559 65089 65314 65396 65450 65480 65503

2007 38375 62080 67167 68709 69612 70183 70425 70514 70572 70605 70630

2008 42546 68301 72940 75240 76228 76854 77119 77217 77280 77315 77343

2009 43392 67254 73478 75795 76790 77421 77688 77786 77850 77886 77913

2010 45450 67252 73476 75793 76788 77419 77686 77784 77848 77884 77911

1.480 1.093 1.032 1.013 1.008 1.003 1.001 1.001 1.000 1.000
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Table 2 Estimates of the run-of triangle of the number of claims

Occur
Year

0 1 2 3 4 5 6 7 8 9 10

2000 12097 3816 764 277 231 270 32 41 17 4 7
2001 25478 8248 1476 963 422 258 180 51 30 23 14
2002 22378 8260 2172 1067 328 335 137 39 31 17 13
2003 26561 10356 2564 1297 536 390 138 45 36 20 16
2004 28738 13789 5014 1723 609 443 171 66 43 24 19
2005 30534 14661 8354 2479 1230 344 205 76 49 28 21
2006 32911 19626 7119 2194 703 530 224 83 54 30 23
2007 36368 23706 5086 1542 903 572 242 89 58 32 25
2008 40538 25755 4639 2300 988 626 265 98 63 36 28
2009 41383 23862 6224 2317 996 631 267 98 64 36 28
2010 43440 21802 6224 2317 996 631 267 98 64 36 28

The estimations of the cumulative values, which are fulfilled in the down-triangle
part of Table 1 are achieved with the following expression

CS
∧

ik = CSi;k−1 ∗ fk, i = 2, 3, . . . , n; k = 1, 2, . . . , n − 1; n < i + k ≤ 2n − 1.
(2)

The predicted values shown in Table 2 are obtained after moving to a development
triangle using a formula for the differences from the values in Table 1. X

∧

i j = CS
∧

i j −
CS
∧

i; j−1, i = 2, 3, . . . , n; j = 1, 3, . . . , n − 1; n < i + j ≤ 2n − 1.
There are different criterions for estimations and forecasts of the expected values

of the free reserves by Chain-Ladder method in practice. The use of one or another
type of result depends on the necessary information for the next year. Estimates of
expected values, which will have to be paid by damages arising from previous years
(PYR—previous year reserves), are considered in the current work [4]. These values
are distributed by years for the period of the next n years. These results are obtained
after summing the values of the diagonals of the down-triangle part of Table 2, using
the formula:

PY RYn+i =
n−i−1∑

j=0

X
∧

n− j;i+ j , i = 1, 2, . . . , n − 1. (3)

Summing the values on the diagonals, the realized and expected values for reserves
pending payments are obtained. Table 3 shows the estimated forecasts for the next
9 years.

The first number in Table 3 is obtained from the sum of the numbers below the
main diagonal in Table 2, which are marked in dark color.
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Table 3 Estimates of the number of claims

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019

32097 10477 4352 1104 484 223 127 64 28

2.2 Inflation Adjusted Chain-Ladder Method for the Cost
of Claims

The inflation rate plays an important factor in estimating the expected values of
claims that the insurers pay [4]. Inflation Adjusted Chain Ladder [3] was used for this
purpose. The method is applied on data on the gross amount of paid claims under the
Motor Third Party Liability Insurance for the same period considered in the previous
paragraph, i.e., from 2000 to 2010. The data are presented by a development triangle
in Table 4.

Data on inflation for the considered period were taken from the official website of
the National Statistical Institute of Bulgaria [4]. Table 5 presents the inflation values
for the respective years, as well as discount factors, DFi = ∏n

j=i (I R j + 1), i =
1, 2, . . . , n − 1. From the last row of Table 5, Table 6 is obtained. At the next

Table 4 Run-off triangle of the claims cost (in millions)

Development year

Occur
Year

0 1 2 3 4 5 6 7 8 9 10

2000 9.33 5.95 1.95 0.79 0.62 0.43 0.18 0.20 0.16 0.08 0.54
2001 19.25 9.95 3.24 2.01 1.12 0.53 0.45 0.27 0.26 0.22
2002 14.26 10.91 4.26 2.1 1.44 0.69 0.51 0.23 0.23
2003 1.61 13.96 4.55 2.12 1.21 1.13 0.51 0.55
2004 17.92 17.69 7.86 3.16 2.35 2.3 0.48
2005 18.98 20.09 11.92 3.76 2.16 1.96
2006 22.78 28.46 11.59 5.17 1.94
2007 29.64 41.65 13.39 5.34
2008 40.7 55.66 14.35
2009 43.57 54.08
2010 43.8

Table 5 Discount factor table

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

I Ri 0.086 0.042 0.011 0.050 0.026 0.057 0.056 0.109 0.063 −0.002 0.00

I Ri + 1 1.086 1.042 1.011 1.050 1.026 1.057 1.056 1.109 1.063 0.998 1.00

DF 1.619 1.490 1.430 1.415 1.347 1.313 1.242 1.177 1.061 0.998 1.00
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Table 6 Discount triangle tables

Development year

Occur
Year

0 1 2 3 4 5 6 7 8 9 10

2000 1.619 1.490 1.430 1.415 1.347 1.313 1.242 1.177 1.061 0.998 1.00
2001 1.490 1.430 1.415 1.347 1.313 1.242 1.177 1.061 0.998 1.00 1.021
2002 1.430 1.415 1.347 1.313 1.242 1.177 1.061 0.998 1.00 1.021 1.062
2003 1.415 1.347 1.313 1.242 1.177 1.061 0.998 1.00 1.021 1.062 1.083
2004 1.347 1.313 1.242 1.177 1.061 0.998 1.00 1.021 1.062 1.083 1.075
2005 1.313 1.242 1.177 1.061 0.998 1.00 1.021 1.062 1.083 1.075 1.075
2006 1.242 1.177 1.061 0.998 1.00 1.021 1.062 1.083 1.075 1.075 1.077
2007 1.177 1.061 0.998 1.00 1.021 1.062 1.083 1.075 1.075 1.077 1.093
2008 1.061 0.998 1.00 1.021 1.062 1.083 1.075 1.075 1.077 1.093 1.119
2009 0.998 1.00 1.021 1.062 1.083 1.075 1.075 1.077 1.093 1.119 1.155
2010 1.00 1.021 1.062 1.083 1.075 1.075 1.077 1.093 1.119 1.155 1.146

stage, each element of Table 7 is multiplied by each element of Table 4 to obtain an
upper triangular table with the cumulative values, which is shown in Table 7. The
development factors and estimations should be calculated analogously to the basic
Chain-Ladder method using Formulas (1) and (2), respectively. Sample of the results
is presented in Table 7.

Then converting again to a triangle of development should be done (Table 8). In
order to bring the estimates into forecast values, it is necessary to make an inflation
forecast for the next period. The length of the estimated values of the inflation factor
is equal to the number of rows (or columns) of the development triangle. In the current
case, a forecast for 10 future observations is needed, i.e., from 2011 to 2020 inclusive.
The forecast is made using the statistical software SPSS. Forecasting time series is a

Table 7 Cumulative estimations of the claims cost

Development year

Occur
Year

0 1 2 … … 8 9 10

2000 15092197 23964414 26749830 29905697 29981020 30517164
2001 28684685 42917991 47493929 53408350 53631779 54590864
2002 20402145 35830317 41564064 … … 47921926 48093766 48953817
2003 22787148 41594454 47566147 54147685 54341850 55313633

… … …
2007 34876950 79059174 92422429 105520420 105898799 107792564
2008 43176528 98721356 113066604 129467576 129931826 132255369
2009 43485466 97562930 114369780 … … 130959785 131429385 133779708
2010 43802789 88669424 103944218 119021934 119448728 121584803

2.0243 1.1723 … … 1.0050 1.0036 1.0179
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Table 8 Run-off triangle of the claims cost

Development year
Occur
Year

0 1 2 … 7 8 9 10

2000 15092197 8872218 2785415 238776 167795 75323 536144
2001 28684685 14233306 4575938 290658 260039 223428 959 085
2002 20402145 15428172 5733747 … 231740 225365 171 840 860 050

2003 22787148 18807306 5971692 553778 269 508 194 165 971 783

2004 24145600 23230305 9783934 474 939 333 266 240 099 1 201 679

2005 24923052 24964061 14027115 521 887 366 210 263 833 1 320 467

2006 28302950 33479971 12296989 602 389 422 699 304 530 1 524 151

2007 34876950 44182224 13363255 748 471 525 205 378 379 1 893 765

2008 43176528 55544828 14345248 918 332 644 397 464 250 2 323 542

2009 43485466 54077464 16806850 … 928 916 651 824 469 601 2 350 323

2010 43802789 44866635 15274794 844 239 592 406 426 794 2 136 076

whole subject of mathematics and the accuracy of the forecast is not a main focus in
the currentwork. For this reason, the given option formodelingARIMA time series in
SPSS is used only. The results could be seen in Fig. 1. Since the development triangle
under consideration covers previous periods, for which past inflation data are already
available, the real data are taken. The forecast seen in Fig. 1 (the blue line) is needed
for the analyses later in the paper.With these data, the values from the future inflation
discount factor are calculated and the results are presented in Table 9. The last row of
Table 9 is calculated by the formula FDFi = ∏i

j=1(I Rn+ j+1 + 1), i = 2, 3, . . . , n.

Fig. 1 Inflation factor forecast

Table 9 Future discount factor table

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

I Ri 0.000 0.021 0.040 0.020 −0.007 0.000 0.001 0.015 0.024 0.032 −0.008

I Ri + 1 1.000 1.021 1.040 1.020 0.993 1.000 1.001 1.015 1.024 1.032 0.992

FDFi 1.000 1.021 1.062 1.083 1.075 1.075 1.077 1.093 1.119 1.155 1.146
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Table 10 Estimates claims cost

Year 2011 2012 2013 2014 … 2016 2017 2018 2019
77751246 33074 098 17644002 … … 4211426 3788242 3206878 2446902

Multiplying the values from the down-triangle part of Table 6 with Table 8, the final
estimations are obtained and summarized in Table 10.

After considering the highlights in both cases, similar calculations should be
carried out for a number of development triangles and the results should be
summarized as a time trend for the period 2000–2021.

3 Chain Ladder for a Number of Development Triangles

Following the calculations on the algorithm described above, the results of 12 trian-
gles were obtained and summarized, which include the data on the number and value
of the paid civil liability insurance benefits for Bulgaria. The analysis was made
in two directions: the rate of growth of development factors during the considered
period was tracked; a validation was made between the obtained estimates from the
Chain-Ladder Method and the realized values.

3.1 Growth Rate of the Development Factors

After the calculations made according to the algorithm described above, generalized
results for the development factorswere also obtained. In Table 11, the growth rate for
the development factors is calculated according to the respective year of development
and the period to which the assessment refers.

The last row of Table 12 is calculated by

Gi = 11

√
√
√
√

11∏

j=2

(
f j
i

f j−1
i

)

, i = 1, 2, . . . 10. (4)

Analogous results from the data of the claims cost are shown in Table 12.
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Table 11 Average growth rate of the development factors according to the number of claims

Year 1 2 3 4 5 6 7 8 9 10

2000–2010 1.480 1.093 1.032 1.013 1.008 1.003 1.001 1.001 1.001 1.000

2001–2011 1.502 1.093 1.031 1.013 1.008 1.004 1.001 1.001 1.000 1.000

2002–2012 1.511 1.096 1.032 1.014 1.008 1.003 1.001 1.001 1.000 1.000

2003–2013 1.534 1.095 1.034 1.018 1.009 1.003 1.001 1.000 1.000 1.000

2004–2014 1.539 1.093 1.034 1.020 1.012 1.004 1.002 1.001 1.000 1.000

2005–2015 1.550 1.088 1.033 1.018 1.012 1.005 1.002 1.001 1.000 1.000

2006–2016 1.545 1.076 1.030 1.019 1.012 1.005 1.002 1.001 1.000 1.000

2007–2017 1.466 1.068 1.029 1.020 1.015 1.008 1.007 1.001 1.001 1.000

2008–2018 1.476 1.072 1.030 1.019 1.013 1.006 1.003 0.997 1.001 1.000

2009–2019 1.497 1.078 1.032 1.020 1.011 1.005 1.003 0.997 1.001 1.000

2010–2020 1.495 1.079 1.033 1.018 1.009 1.005 1.003 0.997 1.001 1.001

2011–2021 1,496 1.078 1.031 1.017 1.010 1.006 1.000 1.002 1.001 1.001

Gi in % 0.10 −0.12 −0.01 0.04 0.01 0.02 −0.01 0.01 0.00 0.00

Table 12 Average growth rate of the development factors from the claims’ cost

Year 1 2 3 4 5 6 7 8 9 10

2000–2010 2.024 1.172 1.061 1.032 1.024 1.009 1.007 1.005 1.004 1.018

2001–2011 2.091 1.174 1.065 1.034 1.022 1.009 1.006 1.004 1.002 1.002

2002–2012 2.125 1.177 1.066 1.035 1.024 1.009 1.006 1.004 1.002 1.003

2003–2013 2.202 1.173 1.074 1.036 1.025 1.012 1.006 1.002 1.002 1.001

. … … … … … … … … … …

2009–2019 2.492 1.185 1.081 1.046 1.025 1.013 1.007 1.006 1.001 1.001

2010–2020 2.484 1.187 1.081 1.045 1.028 1.013 1.008 1.005 1.003 1.002

2011–2021 2.453 1.184 1.079 1.047 1.029 1.015 1.013 1.005 1.004 1.002

Gi in % 1.76 0.09 0.16 0.13 0.04 0.05 0.05 0.00 0.00 −0.14

3.2 Validation of the Estimations

For the 12 development triangles, there are 12 estimated values for the PYR estima-
tion and their corresponding 11 values of the already realized data. The results for
the number of claims and the claims cost values are given in Table 13.

The graphics of the forecast validation are presented in Fig. 2. There are no
jumps observed on the blue line, which corresponds to the PYR forecast. This shows
the robust of the Chain-Ladder method over extreme periods. The inflation adjusted
method (on the right-sided graph) estimates strongly positive trend due to the inflation
factor. Both realized values have jumps in after 2018 in 2019, which most probably
is a result of the pandemic condition at this time. Using the same formula (4), one
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Table 13 PYR estimations for the number of claims and the claims cost values

Year Number of claims Claims cost values

PYR Realized values PYR Realized values

2000–2010 32,097 35,950 77,751,246 96,275,255

2001–2011 33,064 33,064 91,213,766 93,716,086

2002–2012 35,286 39,533 98,582,000 108,744,941

2003–2013 36,070 35,253 100,562,823 102,179,028

2004–2014 36,229 36,483 104,277,365 105,360,841

2005–2015 39,060 38,092 105,625,711 114,587,644

2006–2016 42,325 50,994 113,900,593 134,682,148

2007–2017 40,553 48,439 113,372,166 165,961,501

2008–2018 40,458 58,750 132,206,718 183,341,060

2009–2019 48,123 49,925 180,088,245 157,139,850

2010–2020 46,211 41,580 183,284,837 151,520,067

2011–2021 51,818 232,896,898

Fig. 2 PYR and realized values of the number of claims (on the left graph) and claims cost (on the
right-side graph)

can look at the growth rate of the estimated values. For the number of claims, there
is 4% growth rate against 9% growth rate for the forecast of the claims cost. While
the realized values show 1% growth rate for the number of claims and only 5% for
the claims cost. In Fig. 3, the results of the average values are illustrated, which
the insurer could estimate for a single claim, calculated for each of the considered
periods.

4 Conclusions

Basic Chain-Ladder method and Chain-Ladder method with inflation factor were
considered in the current work. Twelve development triangles corresponding to the
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Fig. 3 Average cost per claim

number of claims and the cost value, which have been paid over a 12 years’ time
horizonwere analyzed and estimated.Over the calculation the result could be summa-
rized in two directions—empirical results and model specifications. The growth rate
of the development factors with 1-year delay corresponding to the number of claims
is 0.1% versus 1.76% for the paid. This may be interpreted as a tendency for that,
cases closed in the second year, to lead more expenses than these, which are paid
during the current year of occurrence. This is also confirmed by the values of the
development factor with 1-year delay of the claims cost, which are more than 2.
Because of the inflation factor, the forecast for the payments has obvious positive
trend in the last 3 years, which is not that clearly expressed by the realized values. On
the other hand, the realized number of claims has a tendency to decrease during the
last 3 years and the calculated estimations keep the low trend in long-term period.
The estimated growth rate of the payments is 9% and the realized is just 5%. For
the number of claims there is realized 1% growth rate and 4% expected. This is a
result of the inflation growth during the crisis last 3 years. The considered Chain-
Ladder method with analyzing a series of development triangles gives the possibility
to follow the tendency for delay of the insurance claims. The Chain-Ladder estima-
tion is robust to unexpected fluctuations and it is sensitive about the inflation factor.
Combination of the results from the number and the claim cost values could be used
for estimating the average value, which the insurer should be prepared to reserve for
individual claims.
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Comparative Analysis of ARIMA
and Modified Differential Equation
Approaches in Stock Price Prediction
and Portfolio Formation

Vesela Mihova, Virginia Centeno, Ivan Georgiev, and Velizar Pavlov

Abstract In portfoliomanagement theory, the principle of separation states thatwith
the same input, all investors will have the same optimal risk portfolio. Whether the
portfolio will actually be optimal depends on how accurate the results of the technical
analysis conducted by the portfolio manager, or the investor is in order to predict the
rate of return on the financial assets included in the portfolio. In this article, Autore-
gressive Integrated Moving Average (ARIMA) models have been used to predict
assets’ prices of four Bulgarian companies. Estimated rates of return have been
calculated from the models. An optimal risk portfolio has been organized based on
the Markowitz model. The resulting portfolio has been compared with a similar one
obtained on the same data, using Modified Ordinary Differential Equations (ODE)
to derive the forecast rates of return of the assets.

Keywords Price forecasting · ARIMA · Financial portfolio

1 Introduction

Nowadays, financial markets are very important as they propose sixmain functions to
each economy: Defining the price level, assets’ liquidity, efficiency of purchases and
sales, loans, and credits, up-to-date information for the cash flow, and risk manage-
ment. As there are a lot of investors with different preferences, the financial markets
offer different financial instruments, some of which are focused on short terms
while others are more appropriate for long terms. The stock markets require that
the investors must have better knowledge of the processes there because the market
terms, factors, and circumstances suggest strong and sustained movements in traded
instruments. The past publicly available information has some predictive relation-
ship to the future stock returns, and one should know how to determine it and how to
implement it. In portfolio management theory, the principle of separation states that
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with the same input, all investors will have the same optimal risk portfolio. There-
fore, the problem of choosing a portfolio can be divided into two separate unrelated
problems [1]. The first problem is clearly a technical problem. An optimal portfolio
should be defined. In fact, a portfolio manager offers the same portfolio P for all
his clients regardless of their degree of risk aversion. This portfolio, obtained in
response to the problem of maximizing the return/variability ratio, is the optimal risk
portfolio that one could reach, taking into account the available input data, such as
rates of return, standard deviations of rates of return, and the correlation matrix. The
instruments used by the portfolio manager to predict the expected rates of return of
the assets are significant for determining the risk portfolio. The second problem that
should be solved is to allocate the treasury bonds and the risk portfolio in between
the full investment portfolio in accordance with the personal preferences of each
investor and how much he is willing to take risks. There is a wild variety of different
approaches to time series forecasting and defining an optimal investment portfolio
(see [2–5]). Some of them are technical approaches, while others are more easily
applicable. The most widely used approaches to time series forecasting and that are
providing complementary approaches to the problem are Autoregressive Integrated
Moving Average (ARIMA)models [3]. They have been used to predict assets’ prices
of four Bulgarian companies. Estimated rates of return have been obtained from the
models. Further, an optimal risk portfolio has been organized based on theMarkowitz
model. The portfolio has been compared with a similar one obtained on the same
data, using modified ODE [6] to derive the forecast rates of return of the assets. The
comparison is done under equal other conditions: The same choice of financial instru-
ments, respectively, standard deviations and correlation matrices, the same program
code for optimization and the same non-risky asset. The investment portfolio mixes
shares of four Bulgarian companies in different work areas—technology, real estate,
courier/transport services, and finances. These are the technology holding Allterco
JSC, the joint stock company Elana AgroCredit JSC, the courier company Speedy
JSC, and the holding Chimimport JSC. A daily data for the period 01.06.2020–
29.10.2020 is used for the purposes of the study. The financial results of the four
companies to the end of 2020 are presented in Table 1.

Table 1 Financial results of the four companies to the end of 2020

Company Market capital
(million BGN)

Turnover for the
previous year (BGN)

Total assets
(pieces)

Price per share
(BGN)

Alterco 194.400 11, 617, 459.00 17, 999, 999 6.77

Elana Agrocredit 38.828 3, 114, 040.94 36, 629, 925 1.02

Speedy 408.699 2, 884, 193.70 5, 377, 619 58.39

Chimimport 225.267 9, 080, 952.02 239, 646, 267 0.94
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2 ARIMA Approach

ARIMA models can predict a stock’s future prices based on its past performance or
forecast a company’s earnings based on past periods. The parameters p, d, and q
[7] are used to build ARIMA models. The autoregressive element p is the impact
of the data from p previous moments in the model. The integrated element d is the
trend in the data while the element q shows how many members are used to smooth
small fluctuations with the help of a moving average. Generally, one ARIMA model
with parameters p, d, and q [7], can be shown by: Yt = C + ϕ1�

dYt−1 + · · · +
ϕp�

dYt−p − θ1εt−1 − . . . θqεt−q + εt , where C, ϕi , i = −
1, p, and θ j , j = −

1, q are
the parameters sought; ε j is a randomly distributed value with a zero mathematical
expectation and dispersion σ 2. If there is no information about the distribution, then
it is assumed by default to be normal. � is the difference operator, which is defined
as: �0Yt = Yt ,�1Yt = Yt − Yt−1, . . . ,�

kYt = �k−1Y t − �k−1Y t−1. Different
combinations of parameters (p, d, q) are tested in this work in order to identify
the time series. The graphs of auto-correlation functions (ACFs) and partially auto-
correlation functions (PACFs, see [8]) are examined for each combination. These
functions depend on a fixed number of lags and are calculated for each moment t ,
exception some end ones, where they cannot be calculated. Taking into consideration
the jumps in both functions, the appropriate parameters for each model are obtained.
If forYt ACFandPACFhave no jumps or one small jumpoutside the 95%confidential
intervals, then the model is taken as good enough for the purposes of the study.

3 Modified ODE Approach

To predict the prices of financial instruments, the authors propose in [6], the following
approach based on modified ordinary differential equations. Let the chronologically
arrangedmoments in ascending order and the observed values for an asset considered
as a time series be, respectively, t0, t2, . . . , tnandy0, y2, . . . , yn . An ODE could be
fitted on these time series [9, 10], describing the values at the given discrete time
instants: y

′
(t) = g(t, y), y(t0) = y0. The function g(t, y) can be largely arbitrary.

Let it has the following form, as described in [6, 9]: g(t, y) =
(∑M

i=0 ai t
i
)
y + b0 +

∑N
j=1 b j sin

(
2π j
θ
y + c j

)
, i.e., y

′
(t) =

(∑M
i=0 ai t

i
)
y+b0 +∑N

j=1 b j sin(
2π j
θ
y+c j ).

Here the coefficients (1) are unknown.

a0, a1, . . . aM , b0, b1, . . . , bN , c1, c2, .., cN , θ. (1)

These coefficients could be found by solving an inverse problem using a numer-
ical one-step method for ODE. After finding these coefficients, the unknown
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n + 1 value can be predicted, using the following equation: yn+1 = yn +
h
[(∑M

i=0 ai t
i
n

)
yn + b0 + ∑N

j=1 b j sin
(
2π j
θ
yn + c j

)]
.

In [11], this approach is applied by the authors to the instruments considered here
for the same time period. The results obtained in [11] are used to make a comparison
with those obtained in the current paper.

4 Empirical Analysis

Using the daily closing prices of the instruments Alterco (A4L), Chimimport
(CHIM), Elana AgroCredit (EAC), and Speedy (SPDY) from the period 01.06.2020
to 29.10.2020 (151 periods—from 0 to 150, including weekends and missing data),
different predictions with ARIMA approach are made for the value of the closing
price on the next day, i.e., for 30.10.2020 (period 151). The last known l = 6 periods
are kept for validation. The development sample for each instrument consists of the
data that excludes the periods kept for validation for the corresponding instrument.
When a model works well on the development sample, it is tested by adding step by
step the validation periods. The errors from the predictions on each step are calcu-
lated. They are used to calculate the weighted average error, applying the rule that
the more recent the observations, the bigger the weight. Checks are made whether
the models on development and validation data have jumps beyond the 95% confi-
dence intervals in the ACF and PACF residual graphs. If there are no jumps or they
are small, the model is applied to the entire data set for the corresponding instru-
ment, and the predicted value for one period ahead is derived. It has been found
empirically that the most suitable models for the A4L instrument are ARIMA (1,
0, 10) and ARIMA (2,1,6). There is a lack of any jumps outside the 95% confi-
dence intervals in the ARIMA (1, 0, 10) model on all available data in both ACF
and PACF residuals. The model predicts almost no change in the company’s equity
prices for 30.10.2020. For ARIMA (2, 1, 6), it has been checked that there is a lack
of any jumps outside the 95% confidence intervals on all available data in both ACF
and PACF residuals. This model predicts a growth in the company’s equity prices
for 30.10.2020. Similarly, to the described procedure with Alterco, ARIMA (3, 1,
10), and ARIMA (4,1,7) models are built on the relevant development sample for
the CHIM instrument. It is verified that there are no jumps in ACF and there is a
small jump outside PACF’s confidence intervals for both models on the total popu-
lation. Both models predict an increase in CHIM’s prices for 30.10.2020. ARIMA
(1, 0 ,6) and ARIMA (2,1,6) models are considered for the EAC instrument. There
are no jumps outside ACF’s and PACF’s confidence intervals for both models. The
model ARIMA (1, 0, 6) predicts a decrease in EAC’s prices for 30.10.2020, while
ARIMA (2,1,6) predicts an increase. The models, chosen for the last instrument—
SPDY, are ARIMA (2, 1, 9) and ARIMA (3,1,10). There are no jumps outside ACF’s
and PACF’s confidence intervals for both models. Both models predict a decrease
in SPDY’s prices for 30.10.2020. For each period over which the respective models
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are validated, the forecast errors are derived. The results are presented in Tables 2,
5. The data for periods 145 and 146 (24.10.2020 and 25.10.2020) is missing as they
are Saturdays and Sundays (days when the financial exchange is closed). For some
of the instruments, data are also missing for working days as described below. For
A4L (Table 2), data are missing for period 150 (29.10.2020).

For CHIM (Table 3), data are missing for period 144 (23.10.2020).
For EAC (Table 4), data are missing for period 147 (26.10.2020).
For SPDY (Table 5), therewere nomissing data forworking days in the considered

validation period.
The aim is to get a forecast for the period 151 (30.10.2020).

Table 2 Absolute errors of the predictions of the closing prices of A4L instrument under different
model selection

Error l = 142 l = 143 l = 144 l = 147 l = 148 l = 149

ARIMA
(2, 1, 6)

0.04 0.18 0.07 0.04 0.10 0.14

ARIMA
(1, 0, 10)

0.08 0.10 0.01 0.25 0.07 0.08

Table 3 Absolute errors of the predictions of the closing prices of CHIM

Error l = 142 l = 143 l = 147 l = 148 l = 149 l = 150

ARIMA
(4, 1, 7)

0.01 0.01 0.01 0.04 0.01 0.01

ARIMA
(3, 1, 10)

0.01 0.01 0.01 0.03 0.01 0.01

Table 4 Absolute errors of the predictions of the closing prices of EAC

Error l = 142 l = 143 l = 144 l = 148 l = 149 l = 150

ARIMA
(2, 1, 6)

0.01 0.00 0.02 0.01 0.01 0.01

ARIMA
(1, 0, 6)

0.00 0.01 0.01 0.00 0.00 0.00

Table 5 Absolute errors of the predictions of the closing prices of SPDY

Error l = 143 l = 144 l = 147 l = 148 l = 149 l = 150

ARIMA
(2, 1, 9)

1.17 0.38 0.06 0.62 0.33 0.66

ARIMA
(3, 1, 10)

1.02 0.26 0.21 0.80 0.37 0.93
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Table 6 Predicted value and weighted average error on the chosen models for the instruments

Instrument—model Predicted value Weighted average error

A4L—ARIMA (1, 0, 10) 5.0102 0.0993

A4L—ARIMA (2, 1, 6) 5.1525 0.0965

CHIM—ARIMA (3, 1, 10) 0.8758 0.0135

CHIM—ARIMA (4, 1, 7) 0.8826 0.0152

EAC—ARIMA (1, 0, 6) 1.0394 0.0031

EAC—ARIMA (2, 1, 6) 1.0477 0.0101

SPDY—ARIMA (2, 1, 9) 56.3522 0.5224

SPDY—ARIMA (3, 1, 10) 56.0732 0.6015

The weighted average error is derived as follows. The weights for calculating
the weighted average error were given, respectively, 1

7.5 ; 1.1
7.5 ; 1.2

7.5 ; 1.3
7.5 ; 1.4

7.5 ; 1.5
7.5 . They

are applied to the error in the cases retained for validation. The more recent the
observations, the bigger the weight. The choice of weights is somewhat subjective.
In this case, a linear function was chosen based on empirical experience. The latter
error has 1.5 times the weight of the former. Tables 6 shows the predicted values
and weighted average errors on the chosen models for each of the four financial
instruments, respectively.

For example, the weighted average error for the model A4L - ARIMA (2,1,6)
from Table 6 is derived from Table 2 as follows: 1

7.5 ∗0.04+ 1.1
7.5 ∗0.18+ 1.2

7.5 ∗0.07+
1.3
7.5 ∗ 0.04 + 1.4

7.5 ∗ 0.1 + 1.5
7.5 ∗ 0.14 = 0.0965.

The rest weighted average errors are calculated analogically.
A linear combination of the forecasts for the two models for each instrument

is used to obtain the final predicted value for the corresponding instrument. The
coefficients in this linear combination are inversely proportional to weighted average
errors from the given models. The results are presented in Table 7.

For example, the estimated value for A4L is obtained from Table 6 as follows:
1

0.0965 ∗5.1525+ 1
0.0993 ∗5.0102

1
0.0965+ 1

0.0993
= 5.0824.

Table 7 Predictions, actual
values, and relative error in %
between predicted and actual
closing price values

Financial
instrument

Estimated
value

Actual value Relative error in
%

A4L 5.0824 4.98 2.0562

CHIM 0.8790 0.87 1.0343

EAC 1.0413 1.04 0.1297

SPDY 56.2225 57.00 1.3640
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5 Optimal Risk Portfolio

The forecasts, obtained so far (Table 7), are used to organize an optimal risk portfolio
via a MATLAB programming code, previously developed by the authors [5]. The
code is based on the Markowitz model [1] under the following constraints: risk-
free instruments exist; borrowing is possible at a risk-free rate; short sales of risky
instruments are allowed. The purpose of the code is to maximize the slope of Capital
Allocation Line (CAL) for each eligible risk portfolio p. The code deals with the

following optimization problem: minF = −maxSP = − E(rp)−r f
σP

∑n
i=1 wi = 1,

where:

– wi—weight of the i-th stock,
– E

(
rp

)
—the expected rate of return of the risk portfolio; it is calculated as follows:

E
(
rp

) = ∑n
i=1 wi E(ri ).

– σP—the standard deviation of the risk portfolio: σP =√∑n
i=1 w

2
i σ

2
i + ∑n

i=1,i �= j

∑n
j=1 wiw jσiσ jρ(ri , r j ).

– - ρ(ri , r j )—the correlation coefficient between the rates of return of the i-th and
the j-th instrument.

The following data is used as an input for the programming code:

– The estimates of the expected rates of return (RoRs—see Table 8) are obtained
as a relative difference between the estimated value for 30.10.2020 and the real
value for 29.10.2020.

– The standard deviations (Table 8) and the correlation matrix (Table 9) are
calculated in [11] using the historical data.

Table 8 Expected RoRs from the ARIMA models and standard deviations of RoRs

Financial instrument Expected RoR (%) Std. deviation (%)

A4L 1.6480 3.3276

CHIM −0.1136 1.7765

EAC 0.1250 1.2198

SPDY −1.3640 1.5851

Table 9 Correlation matrix

Instrument A4L CHIM EAC SPDY

A4L 1.0000 0.0430 0.0572 −0.1008

CHIM 0.0430 1.0000 0.0820 −0.1137

EAC 0.0572 0.0820 1.0000 −0.0294

SPDY −0.1008 −0.1137 −0.0294 1.0000
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Table 10 Estimated values, portfolio weights, last known price, and actual price

Instrument Est. value
ARIMA

Weights
ARIMA, %

Est. value
ODE

Weights
ODE, %

Last known
price

Actual price

A4L 5.0824 19.23 (+) 4.9846 9.18 (−) 5.00 4.98 (−)

CHIM 0.8790 8.37 (−) 0.8752 57.77 (−) 0.88 0.87 (−)

EAC 1.0413 7.20 (+) 1.0404 0.06 (+) 1.04 1.04 (0)

SPDY 56.2225 65.21 (−) 57.1085 32.99 (+) 57.00 57.00 (0)

– The return on the risk-free asset. A government security with an annual yield of
3%, which is equivalent to 0.0083% daily yield (3% / 360), has been used for the
purpose.

The results obtained in this paper are as follows. The optimal risk portfolio consists
of: 19.23% shares in A4L in a long position, 8.37% shares in CHIM in a short
position, 7.20% shares in EAC in a long position, and 65.21% shares in SPDY in a
short position. The expected rate of return on the risk portfolio is 1.2248%, and the
standard deviation estimate is 1.1622%. In comparison, the risk portfolio for which
the forecast prices obtained under the modified ODE approach was used which has
an expected rate of return of 0.4031%, and a standard deviation estimate of 1.1371%.
A comparison of the risk portfolio structure of the two approaches is shown in Table
10.

Table 10 presents long (+) and short (-) positions of each asset in the organized
portfolio. Last column, which shows (+), (-), (0), presents the real movement of the
closing prices, where 0 means that there is no change in the price. The difference
between the last known price and actual price for each financial instrument has
been calculated. Taking into account the positions (long, short) and the percentage
distribution of the portfolio in both methods, it is possible to calculate what would be
the real percentage return in each of the two approaches. The actual percentage return
on the ARIMA approach is calculated as follows:

(−(5 − 4.98) ∗ 100
4.98

) ∗ 0.1923 +(
(0.88 − 0.87) ∗ 100

0.87

) ∗ 0.0837 = 0.0190%. The EAC and SPDY instruments have
no change in the closing price and actually adding them to the portfolio brings
neither profit nor loss, but they are involved in risk diversification. Similarly, for
the real percentage return in the modified differential equation approach, we get(
(5 − 4.98) ∗ 100

4.98

) ∗ 0.0918 + (
(0.88 − 0.87) ∗ 100

0.87

) ∗ 0.5777 = 0.7009%.

6 Conclusions

The present work examines an ARIMA approach, to make a forecast of the future
prices of four Bulgarian financial instruments: A4L, CHIM, EAC, and SPDY, based
on the daily close prices of the instruments for the period 01.06.2020–29.10.2020.
The derived results are used to obtain a structure of the optimal risk portfolio (the
percentage share of each asset), for a day ahead. The structure of this portfolio is



Comparative Analysis of ARIMA and Modified Differential Equation … 349

compared with a similar one obtained on the same data, where the forecasts are made
using modified ODE and the portfolio is organized under equal other conditions. The
following conclusions could be drowned: (1) Alterco (A4L) notes a real decline in
the closing price. The ARIMA approach is predicting a slight increase, while the
modified ODE approach is predicting a slight decline. Obviously, the forecast of
the modified ODE approach is closer to the reality. (2) CHIM shows a real decline
in the closure price, which is correctly predicted by both approaches. (3) The EAC
and SPDY instruments have no change in the closing price and actually adding
them to the portfolio brings neither profit nor loss. In fact, the forecasts from both
approaches give a small increase or decrease in these instruments, and it turns out
that the forecasts made with the modified ODE approach are closer. (4) In both
approaches, a real positive return on the risk portfolio is reported. With the ARIMA
approach, it is approximately 0.02%, while with the modified differential equation
approach it is about 0.70%. It could be seen that in this case the modified differential
equation approach is the better choice to predict the change in the prices of the
selected financial instruments for the period under review, as well as to organize the
investment portfolio. (5) It is interesting to note that the expected rate of return for the
ARIMA approach (nearly 1.23%) is higher than that of the modified ODE approach
(0.40%), and it is combined with a slightly higher standard deviation. This effect can
be explained by the greater discrepancy between the estimated and the actual value
of the ARIMA approach, which artificially increases the expected return.

Acknowledgements This paper contains results of the work on project No 2022-FNSE-04,
financed by “Scientific Research” Fund of Ruse University.
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the Inferred Rate of Default
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Abstract The rate of default is a measure of the credit risk of a portfolio of loans
and is generally considered confidential information. However, the inferred rate of
default, (IRD) is an estimate based on publicly reported information. We use the
Bulgarian National Bank’s quarterly reports on the credit quality to measure IRD for
the major bank groups in Bulgaria. Our estimation is based on current regulations
enforcing the IFRS9 accounting standard in theBulgarian bank system. Furthermore,
focusing on banks of Group 2, we suggest an original methodology for forecasting
IRD based on macroeconomic indicators. We report and compare the result of two
approaches of estimation: a hybrid ARIMA regression, and an Asymptotic Single
Risk Factor model of the Vasicek–Merton type. The general conclusion is that IRD
resembles the known characteristics of the confidential rate of default and can be
useful for credit risk analysis. In addition, it has the advantage of allowing estimation
based on stale financial information and freshmacroeconomic forecasts in an intuitive
and manageable way.
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1 Introduction

For any given loan, the probability of default is the probability of it reaching a state
where the borrowerwill be unlikely to repay the amount due. The rate of default at the
end of period t , RDt , furthermore, is constructed as an estimator of the probability
of default, by setting up a portfolio of loans with the same risk profile and observing
the amounts transitioning between states over a given period

RDt = Nt

Pt−1
. (1)

Here Pt−1 is the amount of all performing loans at the beginning of the period t ,
and Nt—the amount of those performing at the beginning but defaulting at the end
of period t . In this study, we consider exclusively rates of default over 12 months;
this horizon is methodologically useful for the estimation of expected credit loss
according to the International Financial Reporting Standard, IFRS 9.

We define the inferred rate of default as a ratio derived frompublicly available data
concerning the quality of banks’ assets with the purpose of approximate estimation
of the rate of default. Next, we provide evidence that IRD can be utilized to analyze
the risk tendencies in banks of Group 2 using time-series analysis. We show that
the IRD is subject to similar time-series forecasting models as the ones previously
developed with private data for the confidential rates of default in [2].

Additionally, in this study, we develop a Vasicek-type Asymptotic Single Risk
Factor model for forecasting IRD and transitioning back and forth between trough-
the-cycle and point-in-time probability of inferred impairment.

We hypothesize, that the IRD would prove useful for comparing credit risk cross-
sectionally, between banks and bank groups. (This analysis, is left for the future.)

With the introduction of the IFRS 9 accounting standard, Bulgarian banks were
required to employ models to produce economically justified forecasts of the prob-
abilities of default for the estimation of their expected credit loss. (Cf., e.g., [1].)
The development of such forecasting models for point-in-time PD is a subtle task
because the results needn’t be perceived as overly optimistic, or excessively con-
servative since both could bring in additional accounting risks. (Cf., e.g., [6].) For
this reason, the banks are encouraged to build their own forecasting policies using
available private and public data. A bank’s private series of rates of default, however,
is often found in need of corrections, due to errors, omissions, or corporate events,
which contaminate the data. In such cases, the respective inferred rates of default can
be instrumental in the computation of the necessary adjustments of RD distribution.

Further steps in the IRD study would involve the application of the techniques of
event study and principal component analysis (similarly to, e.g., [10]) to analyze the
effect of various system-wide events and regulatory changes.



Models for Measuring and Forecasting the Inferred Rate of Default 353

2 Inferred Rate of Default

Since 2007, the banks in Bulgaria have been consistently classified into three cate-
gories in the following way: Group 1 consists of the five largest banks, Group 3 are
the branches of foreign banks, and Group 2—all the rest. The Bulgarian National
Bank (BNB) publishes quarterly reports on credit quality by bank groups. These
reports have been issued under different titles through the years: Information about
credit quality and impairments till the end of 2014, and since 2015 as Information
on nonperforming loans and impairments. Despite minor variances in the classifi-
cation, we were able to identify the necessary quantities during the entire period
2007–2022.1

Each quarterly report classifies the loans of the respective bank group into several
portfolios, based on the type of borrowers. Furthermore, for each portfolio are iden-
tified the amounts that, at the end of the reporting period, t , fall into the following
four categories:

– Regular Performing loans. These are loans that continue without any violation
of the contract. We call this state S1 and denote the total amount of the loans in it
by Pt .

– Loans in breach of contract. These are further sub-classified into three groups
based on the length of the delinquency period:

• Loans past due no more than 90 days, denoted by S2 with total P ′
t . These loans

were considered under review for most of the period of available data, using the
previous accounting regulations, and currently, most of them fall into Stage 2
of impairment under IFRS 9.

• Loans past due more than 90 but less than 181 days, nonperforming, denoted
by S3 with total Nt .

• Loans past due more than 180 days, lost, denoted by S4 with a total N 0
t .

We construct the inferred rate of default as follows:

I RDt = Nt + max{0, N 0
t − N 0

t−1}
Pt−1 + P ′

t−1

(2)

We concentrate on two types of borrowers only:

1. Non-financial corporations. These are corporate credits, excluding loans
extended to any state and local governments and their subsidiaries, as well, as
banks and other financial institutions

2. Households. These are retail credits, including all consumer and mortgage loans.

1 In 2019, with the oncoming of the COVID-2019 pandemic, the Bulgarian government introduced
a series of measures that gave the banks the option to postpone the recognition of failing loans
as “defaulted”. This has had the effect of “smoothing”, the rates of default, and inferred rates of
default during that period. To avoid contamination, we have omitted from consideration all data
after December 31, 2019.
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In the remaining sections of the paper, we focus on the IRD of the portfolios of
Group 2, which as of March 31, 2022, hold about 30% of all loans in the system. We
suggest, that a comparison between the IRD series of the three bank groups would
be an interesting topic for future analysis, which might turn out to be revealing of
the portfolio quality of the different types of banks.

2.1 Economic Interpretation of the Inferred Rate of Default

The IRD only approximately resembles the usual RD.

1. In constructing the IRD, the loans past due less than 90 days are considered as
performing. Most of them, very likely, would have been considered as such in
the computation of ECL, even with an elevated risk (i.e., classified in Stage 2
of impairment, Cf. [6]). Some of them, however, should have been regarded as
defaulting, according to the individual bank’s policies.

2. While it is, in most situations, fair to consider loans less than 6 months past due as
fresh NPE for the given quarterly report, some of them will probably have been
classified as defaulting by the banks even earlier. The IRD catches such cases
with eventual delay.

3. We consider in the IRD the positive growth in stale NPE (past due more than
180 days) as recent defaults. Our experience indicates that banks often manage
the riskier loans in their portfolio in a way that allows them to record newly
defaulting loans directly into this group. This is, in part, due to their policies
being formulated during an earlier regulatory period which allowed loans to be
considered as “exposure under review” up until the moment when it was declared
“lost”. On the other hand, excluding these exposures from consideration would
have made IRD uncharacteristically small at this time. Perhaps, as regulatory
supervision becomes more diligent in the future this component would have to be
modified or even excluded from consideration.

Remark 1 As the rate of default measures the relative frequency of loans transi-
tioning from the regular state to default, the inferred rate of default is designed
to estimate the probability of transitioning from states S1 or S2 to state S3. (The
positive growth in state S4 is added to the numerator, as explained above, only as a
correction and because most of the available reports date back to the period before
the introduction of IFRS9.) Such transition is costly for the bank and, hence, for the
contract holder, as well.

Definition 1 The event of a loan transitioning from states S1 or S2 to S3 or S4 is
referred to as inferred impairment and the probability of inferred impairment (PII
for short) is its expected relative frequency using the information set St−1, available
1 year back

P I It = E[I RDt |St−1].
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2.2 Other Data Used in the Analysis

In the building of forecasting models for IRD, we use the reports of the National
Statistical Institute (NSI) of Bulgaria for the Gross Domestic Product (GDP) and the
Unemployment Rate. These are the most common macroeconomic factors used for
forecasting RD. In addition, this choice allows us to compare IRD with the results
in [2]. For further details on variable construction we refer to [7].
Gross Domestic Product. We use Real GDP quarterly reports to compute, at the end
of each quarter the one-year growth rate of annual GDP.

G(t) = RGDP[t − 3, t]
RDGP[t − 4, t − 7] − 1.

Here, RGDP[t − 3, t] denotes the cumulative real GDP at average 2015 prices as
reported in the four quarters t − 3, ..., t .
Unemployment Rate. The unemployment rate is reported by NSI at the end of each
quarter and it is measured as the number of unemployed persons as a proportion of
the labor force. The variable used for this analysis is the annual growth or the rate of
default

U (t) = UR[t]
UR[t − 4] − 1.

Here UR[t] denotes the Unemployment Rate measured at the end of quarter t .

3 ARMA Regressions

In this section, we develop forecasting models for IRD using the methodology of
ARMA regressions.

3.1 Explanatory Variables

In a sequence of linear regressions, we test the dependence between the macroeco-
nomic indicators and the IRD.

Table 1 show the results of OLS regression estimation of the following models:

yt = α + βxt−τ + εt (3)

Here
yt = ln(I RDt ) − ln(I RDt−4)
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Table 1 Comparison between OLS regression with different lags (3). The coefficient α is not
reported. Reported are the R2 and β coefficients are reported along with the p values of their
individual t-tests of significance. For the Corporate portfolio Group 2, the best model is with Lag 0.
Similarly, in the Retail segment, the portfolio exhibits a strong positive relationship with the current
unemployment rate. Notice, that the reversal of the relationship with stale data may be evidence of
compensating for an overreaction

Lag

τ = 0 τ = 1 τ = 2 τ = 3 τ = 4

Corporate Coef. −7.82 −7.33 −5.65 −4.25 −2.78

p-value (0.008) (0.014) (0.058) (0.136) (0.313)

R2 0.16 0.14 0.09 0.06 0.03

Retail Coef. 1.71 0.79 0.41 −0.39 −1.49

p-value (0.009) (0.240) (0.547) (0.577) (0.028)

R2 0.16 0.04 0.01 0.01 0.13

is always the annual logarithmic growth in IRD, τ = 0, 1, ..., 4 is a time lag in
quarters, and the explanatory variables are defined as follows:

– For the corporate portfolio:

xt = G(t) − G(t − 4)

– For the retail portfolio
xt = U (t) −U (t − 4)

As a result, we observe in the Corporate portfolio of Group 2 a quick reaction
(after only one quarter) to changes in GDP. Similarly, in the Retail portfolio, IRD
shows an immediate response to changes in the dynamics of the Unemployment
Rate.

3.2 Model Estimation and Comparison with the Rate of
Default

The stationarity of all the time series, x(t) and y(t) is confirmed using the Dickey–
Fuller test.

For the Corporate portfolio in Group 2, using the Box–Jenkins method, we
identify the ARMA(1,1) model as best-fitting.

yt = βxt + ρyt−1 + θεt−1 + εt (4)

The results of the estimation are shown in Table 2.
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Table 2 ARMA regressions for the Corporate IRD. The models for the portfolio in Group 2 is
according to specification (4). All coefficients are significant to 95% level, as shown by p-values.
The Wald χ2 of the overall significance of the model passes at the 99% level

β θ ρ χ2

Coef. −5.89 0.87 −0.52 49.92

p-value (0.029) (0.0001) (0.023) (0.0001)

Table 3 ARMA regressions for the Retail IRD. Two models are reported. The models for the
portfolio in Group 2: the best fitting model (5) (lines 1, 2) and specification (6) which better
resembles the RD model (lines 3, 4). All coefficients are significant at the 95% level as seen from
the p-values. The Walt χ2 test overall significance of the model passes at 99%

β ρ1 ρ4 χ2

(5) Coef. 1.73 – −0.44 20.38

p-value (0.023) (0.0001) (0.0001)

(6) Coef. 2.02 0.44 – 10.78

p-value (0.045) (0.006) (0.004)

Similarly, we apply the Box–Jenkins to select a AR(4) model as best fitting in the
Retail portfolio of Group 2

yt = βxt−τ + ρ4yt−4 + εt (5)

The results of the estimation are shown in Table 3. We have reported the result of the
model AR(1) which fits reasonably well and has a similar form to the one reported
in [2]:

yt = βxt−τ + ρ1yt−1 + εt (6)

Comparison with Rate of Default. In comparison, similar forecasting models for RD
in [2]. For the Corporate portfolio

yt = −6.96xt + 0.86yt−1 − 0.99εt−1 + εt .

and for the Retail portfolio

yt = 0.86xt−1 + 0.697yt−1 + εt .

The similarity of models for IRD and RD with data for banks of Group 2 suggests
that the IRD distribution can be used to build models for the replacement of missing
and faulty data.
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4 A Modified Vasicek Model

In this section, the 12-month probability of inferred impairment of a portfolio, P I I ,
is considered to have an underlying value, the trough-the-cycle PII (TTC-PII), and
at any time t there is a actual, point-in-time PII (PID-PII).

Vasicek’s Asymptotic Single Risk Factor model (Cf., e.g., [9]) applies a geometric
Brownian motion equation to a firm’s asset value

d Ai = μi Aidt + σi Aidxi ,

where Ai is the individual borrower’s asset value, μi and σi are the drift rate and
volatility of that value and xi is a Wiener process. The value Ai at the loan’s maturity
time T can be represented as

ln Ai (T ) = ln Ai (0) + μi T − 1

2
σ2
i T + σi

√
T Xi ,

where Xi has a standard normal distribution.
Although the transition of a given exposure to the state of inferred impairment

does not necessarily lead to the total loss of the firm, it is costly for the borrower, and
we assume, that it will be allowed to happen only after the value of the asset drops
below a certain level, B̃i .

This assumption (Cf. [5]) allows us to conclude

P I Ii = P[Ai (T ) < B̃i ] = P[Xi < Di ] = Φ(Di ).

Here Φ is the CDF of the standard normal distribution and

Di = ln B̃i − ln Ai (0) − μi T + σ2
i Ti
2

σi
√
Ti

the inferred impairment threshold of the asset.
These observations justify the assumption that the values Φ−1(I RDt ) (similarly

to Φ−1(RDt )) are drawn from a standard normal distribution.
Furthermore, we make a standard (cf. [4, 9]) assumption, that a bank’s portfolio is

built of assets with a similar risk profile resulting in the constraint that the respective
variables Xi are jointly standard normal and of equal pairwise correlation ρ. We have

Xi = Z
√

ρ + Yi
√
1 − ρ,

where Z ,Y1, . . . Yn aremutually independent standard normal variables. In this setup,
Z is considered as a common factor which has an effect on the portfolio (e.g., the
overall macroeconomic and business cycle over the interval [0, T ]), Yi represents the
borrowers’ respective idiosyncratic risk and ρ = corr(Z , Xi ) is the asset correlation.
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Although originally developed for an individual asset, the Vasicek setup applies
to the entire portfolio of loans, instead.

Definition 2 The point-in-time PII of a portfolio is the function

p(z) = P[X < D|Z = z] = Φ

(
D − z

√
ρ√

1 − ρ

)
,

i.e., the probability of inferred impairment given the systemic factor has a specific
value Z = z.

Here D can be interpreted as the inferred impairment threshold of the portfolio’s
“average client”, or, the “central tendency client”.

Definition 3 The through-the-cycle PII of a portfolio is obtained as the marginal
probability by averaging through all possible macroeconomic conditions (i.e., values
of Z )

p = EZ [p(Z)] =
∫ ∞

−∞
p(z)φ(z) dz = Φ(D).

The parameters D and ρ can be estimated using the observed data of default
rates. This type of estimation is sometimes done using a more complex methodology
involvingKaplanfilters andMonteCarlo integration (Cf., e.g., [3, 8]. Implementation
of this technique is left for the future.) Here, we suggest a simpler application of a
method of moments that produces a satisfactory approximate result.

Proposition 1 In the setup of the Vasicek model with the additional assumption that
both the asset correlation (i.e., the parameter ρ) and the factor Z remain invariant
over a prolonged period, we denote with {I RDt : t ∈ A} the time series of observed
inferred rates of default (i.e., the measurements of PIT-PI). Denote by μ̂ and σ̂2 the
sample mean and variance of the time series {Φ−1(I RDt ) : t ∈ A}. Then, assuming
that the available data describes sufficiently well the full possible variety of systemic
macroeconomic conditions the following estimates of D, R, and Zt are valid:

D̂
μ̂√

1 + σ̂2
, ρ̂ = σ̂2

1 + σ̂2
, and Ẑt = μ̂ − Φ−1(I RDt )

σ̂
.

The proof will be reported elsewhere.

4.1 Model Estimation

Setting
yt = Zt − Zt−4,
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Table 4 ARMA regressions for the Z -score of the IRD. The model for Corporate Group 2 is
according to specification (4), and for Retail—according to (5), The results reveal that corporate
Z -scores positively correlate to GDP, and Z -scores for the retail portfolio negatively correlate to
the unemployment rate, as expected

Corporate β ρ θ χ2

Coef. 5.62 0.86 −0.45 46.13

p-value (0.068) (0.0001) (0.048) (0.0001)

Retail β ρ4 χ2

Coef. −1.88 −0.45 21.40

p-value (0.011) (0.0001) (0.0001)

we confirm that the forecasting models (4) and (5) are valid. The results of the
estimation are shown in Table 4.

5 Conclusions

Wedefine the inferred rate of default to approximate the rate of default using available
systemic data. The resulting data series exhibits the following characteristics:

1. The IRD is a measure of the credit riskiness of a portfolio, reflecting the relative
frequency of transition of the exposure of the portfolio from a regular state to the
state of implied impairment.

2. The IRD similarly depends on macroeconomic factors as RD. The IRD for cor-
porate loans is explained by the growth of the GDP, and for retail—by the growth
of the Unemployment Rate.

3. The IRD can be modeled using an Asymptotic Single Risk Factor, similar to the
Vasicek model, and can be foretasted similarly. This type of model offers a slight
advantage over less complex time series models and provides a clear and sturdy
theoretical frame of all underlying assumptions of the forecasting process. Our
observations, however, indicate that ASFR models, are found by smaller banks
less intuitive and their results are harder to manage.

Acknowledgements This work was supported by UNWEResearch Program (Research Grant Nrs.
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Application of the Wavelet Data
Transformation for the Time Series
Forecasting by the Artificial Neural
Network

Anastasia Butorova , Elena Baglaeva , Irina Subbotina,
Marina Sergeeva , Aleksandr Sergeev , Andrey Shichkin ,
Alexander Buevich , and Pavel Petrov

Abstract The study tested how thewavelet transformof the data affects the accuracy
of an artificial neural network model for forecasting surface methane concentration.
A model based on the nonlinear autoregressive neural network with external input
(NARX) was used. For comparison, we used the base NARX model and the hybrid
model. The hybrid model was created based on the data to which the discrete wavelet
transform (DWT) was applied. For DWT, the Daubechies wavelet of the fourth level
was used. The initial data for the study were collected on the measurements of the
concentration of greenhouse gases in the Russian Arctic zone. We evaluated the
accuracy of the models by the following indicators: Mean absolute error, root mean
square error, and the index of agreement. The proposed approach has improved the
accuracy of the forecast. The accuracy of the hybrid model has increased by more
than 10%.

Keywords Wavelet transform · Artificial neural networks · Hybrid models

1 Introduction

More andmore researchers are using the artificial neural network (ANN) approaches
to predict time series in different fields of knowledge. To obtain adequate forecasting
results, it is necessary to take into account many ANN parameters. In addition,
the preliminary preparation of the initial data for training the ANN can also increase
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forecasting efficiency.One of thesemethods is the discretewavelet transform (DWT),
which is successfully used in the analysis of time series [1–12].

In this paper, we compared the performance of a model based on an ANN-type
NARX and a hybrid model in which the wavelet-transformed data were used to train
NARX.

2 Materials and Methods

For the study, a time series was taken, which represented the average hourlymeasure-
ments of the concentration of one of the main greenhouse gases—methane. These
datawere obtained during themonitoring of greenhouse gases in theArctic part of the
Russian Federation (Bely Island, Yamalo-Nenets Autonomous District). Measure-
ments were carried out by a cavity ring-down spectrometer Picarro G2401. In addi-
tion, the main meteorological parameters (temperature, atmospheric pressure, and
air humidity) were measured and synchronized. These measurements were taken by
the Vaisala Automatic Weather Station AWS310. The location of the measurement
site is shown in Fig. 1.

As a result, 1175 time points were obtained for each of the four scalar time series:
Temperature, atmospheric pressure, humidity, and CH4 concentrations. Of which,
1103 time points were a training time series that was used for training, and the

Fig. 1 Place of measurements (Google Earth)
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remaining 72 time points were used for testing and did not participate in the training
process.

ANN NARX, which is one of the best for forecasting time series [13–17], was
used as a base model. The NARX network is an iterative, dynamic multi-layer feed-
back network. The use of feedbacks allows using the description of recurrent neural
networks NARX in the form of a set of states, which makes them convenient devices
for nonlinear forecasting and modeling.

The hybrid model (DWTNARX) was also built on the basis of the NARX network
for training which DWT transformed time series was used.

Before DWT, the time series of CH4 concentrations was scaled from 0 to 1. DWT
was used to represent the scaled training series of CH4 concentrations as a set of
successive approximations of the approximating and detailing components:

S(t) = AJ (t)+
J∑

m=1

Dm(t), (1)

where S(t) is the original time series, AJ (t) and Dm(t), „ (m = 1,…,J) are
approximating and detailing components, J is the DWT decomposition level.

For DWT, the Daubechies wavelet of the fourth level was used. Daubechies
wavelets are orthogonal, asymmetric, and have no analytical form. In the Matlab
package, Daubechies are given by a set of weighting factors.

In the training procedure, the input data of the artificial neural network NARX
were meteorological time series: Temperature, humidity, and pressure, which were
scaled from 0 to 1. The output datawas scaled from 0 to 1 values of the approximating
and detailing components.

For each component, the neural network was trained and the values of the test
time series of CH4 concentrations were forecasted. Each network was trained 500
times. The network with the smallest root mean square error (RMSE) was selected.
The final forecasting was calculated as the rescaled sum of the forecasting of the
approximating and detailing components for CH4 concentrations.

To train the ANNs, the Levenberg–Marquardt Learning Algorithm was applied.
To assess the prediction accuracy, we used the following indices: Mean absolute

error (MAE) (2), RMSE (3), and the index of agreement (d), (a standardized measure
of the degree of model prediction error and varies between 0 and 1, where a value of
1 indicates a perfect match, and 0 indicates no agreement at all [18] (4).

MAE =
∑n

i=1 |P(xi)−M (xi)|
n

, (2)

RMSE =
√∑n

i=1(P(xi)−M (xi))
2

n
, (3)

d = 1−
∑|P(xi)−M (xi)|∑

(|P(xi)− m| + |M (xi)− m|) , (4)
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Table 1 The results of
prediction of the methane
concentration

Model MAE, ppm RMSE, ppm d

NARX 0.0119 0.0180 0.775

DWTNARX 0.0124 0.0161 0.886

Fig. 2 Comparison of different prediction approaches

where P(xi) is a predicted concentration in location xi, M(xi) is a measured
concentration, m is a mean concentration, and n is a number of points.

3 Results and Discussion

The final neuron number in the hidden layer was 20. Table 1 shows the parameters
used to compare the performance of the different methods (the best values for the
test interval are in bold).

Figure 2 shows the predictionmade by theNARXandhybridDWTNARXmodels.
The forecast for the hybrid DWTNARX turned out to be more accurate. On the index
of agreement, the accuracy improved by 13%.

4 Conclusion

The paper shows that the use of data preliminarily prepared for the training time series
made it possible to improve the accuracy of forecasting changes in the concentration
of greenhouse gas CH4. The discrete wavelet transform (the Daubechies wavelet)
method was used to transform the data. The ANN NARX trained on these data
improved the quality of the model by 13%.
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Discrete Neural Networks
with Maximum and Non-instantaneous
Impulses with Computer Simulation

Snezhana Hristova and Kremena Stefanova

Abstract A nonlinear non-instantaneous impulsive difference equations with max-
imum of the state variable over a past time interval is investigated. The exponential
stability concept is studied and some criteria are derived. These results are also
applied for a neural networks with switching topology at certain moments and long
time lasting impulses. It is considered the general case of time varying connection
weights. The equilibrium is defined and exponential stability is studied. The obtained
results are illustrated on examples.

Keywords Difference equations · Non-instantaneous impulses · Maximum ·
Exponential stability · Discrete neural networks · Switching topology

1 Introduction

One of the most important problems in the theory and application of difference
equations is stability (see, for example, [3, 6, 7, 9, 11, 12]). At the same time
impulses are a very useful mathematical apparatus to model some instantaneous
perturbations in the process. In the case when the acting time of the impulses is not
possible to be neglected, these impulses are called non-instantaneous impulses (for
continuous case, see, [4]).

In this paper we study nonlinear difference equations with a special type of delay
in the case there are some impulses starting at initially given points and acting on
finite time intervals. The delay is presented as the maximum value of the unknown
function over a past time discrete interval. By utilizing the Lyapunov stability theory
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and discrete-time Gronwall inequality, we establish some sufficient conditions for
exponential stability of the zero solution.

Neural networks have received extensive interests in recent years in connection
with their potential applications in signal processing, content addressable memory,
pattern recognition, combinatorial optimization. It is well known that the existence
of delays in neural networks causes undesirable complex dynamical behaviors such
as instability, oscillation and chaotic phenomena. In practice, for computation conve-
nience, continuous-time neural networks are often discretized to generate discrete-
time neural networks. Thus, the study of discrete-time neural networks attracts more
and more interests.

In this paper, we deal with a class of discrete-time neural networks with a special
type of delay subject to long time lasting impulsive perturbations. The delay is pre-
sented by the maximum value of the state variables ove a past time interval with fixed
interval. The basic characteristic of these perturbations is that the time of their action
is not negligible small, so we consider the so called non-instantaneous impulses.
We consider the general case when the connection weights between neurons are
changeable in time. We apply the obtained theoretical results to obtain exponential
stability criteria and new exponential convergence rate for non-instantaneous impul-
sive discrete-time neural networks with delays and variable connection weights.

Some discrete neural networks are considered and the theoretical results are
applied. The example is computer realized by the help of Wolfram Mathematica.
Following the theoretical schemes for solving the problems, the corresponding algo-
rithms are coded to calculate the values of the solution for each step. The graphs are
generated by CAS Wolfram Mathematica.

2 Statement of the Problem and Definition of Solution

We will introduce basic notations used in this paper. Most of them are well
known and used in the literature. Let Z+ be the set of all nonegative integers; the
increasing sequence {ni }∞i=0 : n0 = 0, ni ∈ Z+, ni ≥ ni−1 + 3, i = 1, 2, . . . and
the sequence {di }∞i=1 : di ∈ Z+, 1 ≤ di ≤ ni+1 − ni − 2, i = 1, 2, . . . be given;
Z[a, b] = {z ∈ Z+ : a ≤ z ≤ b}, a, b ∈ Z+, a < b, Za = {z ∈ Z+ : z ≥ a} and
Ik = Z[nk + dk, nk+1 − 1], k ∈ Z+, and Jk = Z[nk + 1, nk + dk], k ∈ Z1, where
d0 = 0.

Let φ ∈ Z(−h, 0) → R
N with ‖φ‖0 = max

σ∈[−h,0] ||φ(σ)||, where ||.|| is a norm in

R
N .
Consider the initial value problem (IVP) for the system of nonlinear difference

equation with non-instantaneous impulses
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x(n + 1) = Ax(n) + F

(
n, max

ξ∈Z[n−h,n]
x(ξ)

)
for n ∈

∞⋃
k=0

Ik,

x(n) = Pk(n, x(nk)), for n ∈ Jk, k ∈ Z1,

x(n) = φ(n), n ∈ Z[−h, 0],

(1)

where x ∈ R
n , x = (x1, x2, . . . , xN ) ∈ R

N , A is N × N square matrix, F = (F1,

F2, . . . , FN ), Fi : ⋃∞
k=0 Ik ×R

N → R, Pk = (Pk,1, Pk,2, . . . , Pk,N ), Pk,i : Jk ×
R

N → R, i = 1, 2, . . . , N , k = 1, 2, . . . , and h is a natural number.
Denote by MN the set of all quadratic N × N dimensional matrices with the

spectral norm |A| = √
λmax (AT A), and for any vector x ∈ R

N we will use the norm

|x | =
√

N∑
i=1

x2i . Moreover, denote by λmin(A) and λmax (A) the minimum and the

maximum eigenvalue of a positive definite symmetric matrix A and�(A) = λmax (A)

λmin(A)
.

Usually, the difference equation describes the development of a certain phe-
nomenon by recursively defining a sequence, each of whose terms is defined as
a function of the preceding terms, once one or more initial terms are known (see, for
example, [10]). Differently than that, we consider a difference equation in which the
present state is also involved nonlinearly in the right side part. It makes the answer
of the question about the existence of the solution more complicated.

Definition 1 The trivial solution of the system (1) is called globally exponentially
stable, if there exist constants L > 0 and α ∈ (0, 1) such that for any initial function
φ the inequality |x(n)| ≤ Lαn||φ||0, n = 1, 2, . . . holds.

The constant α is called the exponential convergence rate.
Consider the Lyapunov equation

AT H A − H = −C, (2)

where A, H, C ∈ MN .

3 Exponential Stability of Linear Delay Discrete Equations

We will study the exponential stability of the linear system (1).

Theorem 1 (Exponential stability results). Let

1. The matrix A ∈ MN and C ∈ MN be a positive definite matrix.
2. The function F ∈ C(Z+ ×R

N
,R

N
), F(n, 0) = 0 for any n ∈ Z+ and there

exists a constant K > 0 such that |F(n, u)| ≤ √
K |u| for u ∈ R

N
, n ∈ Z+.

4. The functions Pk ∈ C(Z+ ×R
N
,R

N
), Pk(n, 0) = 0, k = 1, 2, . . . and there

exist constants Mk > 0 such that |Pk(n, u)| ≤ √
Mk |u| for any u ∈ R

N
, n ∈ Jk

and k = 1, 2, . . . .
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5. There exists a solution H ∈ Mn of (2) such that |H | Mk < 1, k = 1, 2, . . . ,

L1(H) − L2(H) < λmax (H) − λmin(H), and

�(H)
(
|AT H | + |H A| + Kλmax (H)

)

min(C) < λmax (H) + 0.5�(H)(|AT H | + |H A|)

where L1(H) = λmax (H) − λmin(C) + 0.5�(H)(|AT H | + |H A|), and L2(H)

= λmin(H) − �(H)K
(
λmax (H) + 0.5|H A| + 0.5|AT H |

)
.

Then the zero solution of (1) is exponentially stable.

Proof Denote � = max
{
�, L1(H)

λmax (H)
− L2 + λmin(H)

}
< 1, where � =

sup
k≥1

|MT
k HMk |.

Consider the function V (x) = xT Hx for x ∈ R
N
. Then λmin(H)|x |2 ≤ V (x) ≤

λmax (H)|x |2.
Let x(n), n ∈ Z[−h + 1,∞), be a solution of the IVP (1) with the initial function

φ.
Let n ∈ ⋃p

k=0 Ik . Then we have

V (x(n + 1)) − V (x(n))

≤ (−λmin(C) + 0.5|AT H | + 0.5|H A|) |x(n)|2
+ (

λmax (H) + 0.5|H A| + 0.5|AT H |) K | max
ξ∈Z[n−h,n]

x(ξ)|2

≤ −λmin(C)|x(n)|2 + |AT H B| |x(n)|2

+
(
|AT H B| + |BT H B|

)
| max
ξ∈Z[n−h,n]

x(ξ)|2.

(3)

Apply the inequalities −|x(n)|2 ≤ − V (x(n)

λmax (H)
, and

∣∣∣∣ max
ξ∈Z[n−h,n]

x(ξ)

∣∣∣∣
2

= |x(η)|2 ≤ V (x(η))

λmin(H)
≤ λmax (H)

λmin(H)
‖φ‖20

to (3) and obtain

V (x(n + 1)) ≤
(
1 − λmin(C)

λmax (H)
+ |AT H B|

λmin(H)

)
V (x(n))

+
(
|AT H B| + |BT H B|

)λmax (H)

λmin(H)
‖φ‖20.

(4)

From equalities
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1 − λmin(C)

λmax (H)
+ 0.5

|AT H | + |H A|
λmin(H)

= 1

λmax (H)

(
λmax (H) − λmin(C) + 0.5�(H)(|AT H | + |H A|))

and (
λmax (H) + 0.5|H A| + 0.5|AT H |

) K

λmin(H)

= �(H)
(
λmax (H) + 0.5|H A| + 0.5|AT H |

) K

λmax (H)

and inequality (4) we get

V (x(n + 1)) ≤ L1(H)

λmax (H)
V (x(n − 1)) +

(
λmin(H) − L2(H)

)
‖φ‖20. (5)

Let n = 0. Then from inequality (5) we obtain

V (x(1)) ≤
(
L1(H) − L2(H) + λmin(H)

)
‖φ‖20 <

1+h
√

�(H)‖φ‖20. (6)

Let n = 1. Then from inequalities (5) and (6) we get

V (x(2)) ≤ L1(H)

λmax (H)
V (x(1)) +

(
λmin(H) − L2(H)

)
‖φ‖20

≤ �(H)‖φ‖20 <
1+h
√

�2(H)‖φ‖20.
(7)

Consider the following two possible cases:
Case 1. Let m ≥ n1 − 1. Then using induction, the inequalities � <

p
√

� for
p > 1, n ≤ n1 − 1 < m + 1, i.e. m+1

n > 1 for n ∈ I0 and inequality (5), we prove
that

V (x(n + 1)) ≤ 1+h
√

�n(H)‖φ‖20, for n ∈ Z[0, n1 − 1].

Case 2. Let h < n1 − 1. Then using induction and inequality (5) we prove that

V (x(n + 1)) ≤ 1+h
√

�n(H)‖φ‖20, for n = 1, 2, . . . , h.

Then for k = 1, 2, . . . , n1 − h we get

V (x(h + k)) ≤ L1(H)

λmax (H)
V (x(h)) +

(
λmin(H) − L2(H)

)
‖φ‖20

≤ �(H)
1+h
√

�k(H)‖φ‖20 <
1+h
√

�h+k(H)‖φ‖20.
(8)

By induction we prove that
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V (x(n1 + k)) <
1+h
√

�n1+k−1v0, k = 0, 1, . . . , d1.

Let n = n1 + d1. Then using the inequalities n1 + d1 + 1 − h > 0 and (5) we get

V (x(n1 + d1 + 1)) ≤ 1

λmax (H)
L1(H)

1+h
√

�n1+d1‖φ‖20
+

(
− L2(H) + λmin(H)

)
1+h
√

�n1+d1+1−h‖φ‖20
< �

n1+d1+1
h+1 ‖φ‖20.

(9)

Similarly, V (x(n1 + d1 + 2)) < �
n1+d1+2

h+1 ‖φ‖20.
By induction process we prove the validity of the inequality

V (x(n)) < �
n

h+1 ‖φ‖20 for all n ∈ Z1. (10)

Therefore, we get |x(n)| < L‖φ‖0αn , for all n ∈ Z1 with α = 2(h+1)
√

� < 1, and

L = √
�(H) =

√
λmax (H)

λmin(H)
.

�

4 Exponential Stability of Discrete Neural Networks
with Maximum, Non-instantaneous Impulses and Time
Variable Connection Weights

Consider the following neural network modeled by discrete system with maximum,
non-instantaneous impulses and time variable connection weights

ui (n + 1) = aiui (n) +
n∑
j=1

�i j (n) f j

(
max

ξ∈Z[n−h,n]
u j (ξ)

)
+ Gi

for n ∈
∞⋃
k=0

Ik, i ∈ Z[1, N ],

ui (n) = Mikui (nk) +
n∑
j=1

�k
i j (n)Sj (u j (nk)) + Qik,

for n ∈ Jk, k ∈ Z1, i ∈ Z[1, N ],
ui (n) = φi (n), n ∈ Z[−h, 0], i ∈ Z[1, N ],

(11)

where ui (n), i ∈ Z[1, N ], denotes the state of the i-th neuron at discrete time n,
ai , i ∈ Z[1, N ], represents the passive decay rate, f j is the neuron activation function
with f j (0) = 0, Gi is the exogenous input, Pj is the neuron output signal function
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which is a continuous function, �i j (n) and �k
i j (n) denote the connection weight

from the neuron j to the neuron i at time n, m ∈ Z(1) is the transmission delay,
φi (n), n ∈ Z[−h, 0] is the initial function for the i-th neuron.

For any u = (u1, u2, . . . , uN ) we denote f (u) = (
f1(u1), f2(u2), . . . ,

fN (uN )
)
and S(u) = (

S1(u1), S2(u2), . . . , SN (uN )
)
.

We will introduce the following assumptions:
A1. The functions fi ∈ C(R,R), i ∈ Z[1, N ], and there exist positive constants

Li , i ∈ Z[1, N ], such that | fi (u) − fi (v)| ≤ Li |u − v|, u, v ∈ R.
A2. The functions Si ∈ C(R,R), i ∈ Z[1, N ], and there exist positive constants

Ki , i ∈ Z[1, N ], such that |Si (u) − Si (v)| ≤ Ki |u − v|, u, v ∈ R.

A3. The functions �i j :
∞⋃
k=0

Ik → R, i, j ∈ Z[1, N ], and �k
i j : Jk → R, i, j ∈

Z[1, N ], k ∈ Z+, are bounded, i.e. there exists constants βk
i j > 0, γi j > 0 such that

|�i j (n)| ≤ βi j for n ∈
∞⋃
k=0

Ik and |�k
i j (n)| ≤ γk

i j for n ∈ Jk , k ∈ Z+, i, j ∈ Z[1, N ].
In the non-homogeneous case we will define an equilibrium of the model (11):

Definition 2 ([2]) A vector u∗ ∈ R
N : u∗ = (u∗

1, u
∗
2, . . . , u∗

N ) is said to be an equi-
librium point of the impulsive discrete-time neural network (11) if it satisfies the
equalities

u∗
i = aiu

∗
i +

N∑
j=1

�i j (n) f j (u
∗
j ) + Gi for n ∈

∞⋃
k=0

Ik, i ∈ Z[1, N ],

u∗
i = Miku

∗
i +

N∑
j=1

�k
i j (n)Sj (u

∗
j ) + Qik for n ∈ Jk, k ∈ Z1.

(12)

Let (11) has an equilibrium u∗ ∈ R
N . Substitute x = u − u∗ ∈ R

N in (11) and
obtain

xi (n + 1) = ai xi (n) +
N∑
j=1

�i j (n)F j

(
max

ξ∈Z[n−h,n]
x j (ξ)

)
, n ∈

∞⋃
k=0

Ik,

xi (n) = Mikxi (nk)) +
N∑
j=1

�k
i j (n)r j (x j (nk)), n ∈ Jk, k ∈ Z1,

(13)

where Fi (y) = fi (y − u∗
i ) − fi (u∗

i ) and ri (y) = Si (y − u∗
i ) − Si (u∗

i ), i = 1, 2,
. . . , N , for y ∈ R.

The stability behavior of the equilibrium of (11) is equivalent to the stability
behavior of zero solution of (13).

The system (13) could be written in the matrix form (1) where
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A =

⎡
⎢⎢⎣
a1 0 0 . . . . . . 0
0 a2 0 . . . . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . . . . aN

⎤
⎥⎥⎦ , B(n) =

⎡
⎢⎢⎣

�11(n) �12(n) �13(n) . . . . . . �1N (n)

�21(n) �22(n) �23(n) . . . . . . �2N (n)

. . . . . . . . . . . . . . .

�N1(n) �N2(n) �N3(n) . . . . . . �NN (n)

⎤
⎥⎥⎦ ,

F(u) =

⎡
⎢⎢⎣

F1(u1)
F2(u2)

. . .

FN (uN )

⎤
⎥⎥⎦ , r(u) =

⎡
⎢⎢⎣
r1(u1)
r2(u2)

. . .

rN (uN )

⎤
⎥⎥⎦ , Mk =

⎡
⎢⎢⎣
M1k 0 0 . . . . . . 0
0 M2k 0 . . . . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . . . . MNk

⎤
⎥⎥⎦ ,

Gk(n) =

⎡
⎢⎢⎣

�k
11(n) �k

12(n) γk
13(n) . . . . . . �k

1N (n)

�k
21(n) �k

22(n) �k
23(n) . . . . . . �k

2N (n)

. . . . . . . . . . . . . . .

�k
N1(n) �k

N2(n) �k
N3(n) . . . . . . �k

N N (n)

⎤
⎥⎥⎦ ,

u = (u1, u2, . . . , uN ), F = (F1, F2, . . . , FN ), F(n, u) = B(n)F(u), Pk = (Pk,1,
Pk,2, . . . , Pk,N ), Pk(n, u) = Gk(n)r(u) + MkuT .

From assumption (A1) and the inequality

(
N∑
j=1

γ j u j

)2

≤ N
N∑
j=1

(
γ j u j

)2
we have

|F(n, u)| ≤
√
N

∑N
i=1 max j (L jβi j )2

√∑N
j=1 u

2
j , i.e. the condition 3 of Theorem 1

is satisfied with K = N
N∑
i=1

max j (L jβi j )
2.

From assumption (A2) and the inequality
( N∑

j=1
γ j u j

)2 ≤ N
N∑
j=1

(
γ j u j

)2
we have

|Pk(n, u)| ≤
√
2
(
maxi M2

ik + ∑N
i=1 N max j

(
γk
i j K j

)2) ∑N
i=1 u

2
i , i.e. the condition

4 of Theorem 1 is satisfied with Mk = 2
(
maxi M2

ik + ∑N
i=1 N max j

(
γk
i j K j

)2)
.

Theorem 2 Let the conditions (A1)–(A3) be satisfied and:

1. The discrete model (11) has an equilibrium u∗.
2. The constants ai , Mik ∈ R, βi j , γk

i j > 0, Gi , Qik ∈ R, i, j ∈ Z[1, N k ∈ Z1.

3. The inequalities maxi M2
ik + N

∑N
i=1 max j

(
γk
i j K j

)2
< 1 for k ∈ Z1, maxi a2i +

maxi |ai | + N (1 − maxi |ai |)∑N
i=1 max j (L jβi j )

2) < 1, and maxi a2i + maxi

|ai | + K
(
1 + maxi |ai |

)
< 1 hold.

Then the equilibrium point of the difference neural network with non-instantaneous
impulses (11) is exponentially stable with a rate α = 2(h+1)

√
� < 1. where � =

max
{
�,maxi a2i + maxi |ai | + K

(
1 + maxi |ai |

)}
< 1with� = sup

k≥1

(
max

i
M2

ik +
N∑
i=1

N max
j

(
γk
i j K j

)2)
.
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Proof Let H = E , where E ∈ Mn is the unit matrix. Then (2) is satisfied with
C ∈ Mn : cii = 1 − a2i and ci j = 0 for i 
= j . Thenλmax (H) = λmin(H) = φ(H) =
1 and λmin(C) = 1 − maxi a2i , |A| = maxi |ai |. According to Theorem 1 the zero
solution of (13) is exponentially stable.

5 Application

Consider a system with three agent with constant connection weights modeled by
the following discrete model of neural network

u1(n + 1) = 1

2
u1(n) + 1

8
sin

(
max

ξ∈Z(n−3,n)
u1(ξ)

)
− 1

4
sin

(
max

ξ∈Z(n−3,n)
u2(ξ)

)

+ 1

16
max

ξ∈Z(n−3,n)
u3(ξ) + 1

u2(n + 1) = 1

3
u2(n) + 1

4
sin

(
max

ξ∈Z(n−3,n)
u1(ξ)

)
+ 1

8
sin

(
max

ξ∈Z(n−3,n)
u2(ξ)

)
+ 2

u3(n + 1) = 1

4
u3(n) + 1

16
sin

(
max

ξ∈Z(n−3,n)
u1(ξ)

)
− 1

8
sin

(
max

ξ∈Z(n−3,n)
u2(ξ)

)

+ 1

16
max

ξ∈Z(n−3,n)
u3(ξ)) + 1 for n ∈

∞⋃
k=0

Ik,

(14)
with non-instantaneous impulses for n ∈ Jk, k ∈ Z1

u1(n) = 1

2
u1(nk) + 1

8
sin(u1(nk)) − 1

4
sin(u2(nk)) + 1

16
u3(nk) + 1

u2(n) = 1

3
u2(nk) + 1

4
sin(u1(nk)) + 1

8
sin(u2(nk)) + 2

u3(n) = 1

4
u3(nk) + 1

16
sin(u1(nk)) − 1

8
sin(u2(nk)) + 1

16
u3(nk) + 1,

(15)

and initial conditions

ui (n) = φi (n), n = −3, −2, −1, 0, (16)

where n0 = 0, d0 = 0, n1 = 4, d1 = 6, n2 = 18, d2 = 5, n3 = 33, d3 = 7, n4 = 45.
In this particular case I0 = Z[0, 3], I1 = Z[10, 17], I2 = Z[23, 32], I3 = Z[40, 44]
J1 = Z[5, 10], J2 = Z[19, 23], J3 = Z[34, 40]. (The whole interval is Z[−3,45]).

The point u∗ = (2.40568, 3.23436, 1.53241) is the equilibrium point of (14),
(15). The conditions of Theorem 2 are reduced to 0.25 + 3( 1

16 + 1
16 + 1

64 ) =
0.680556 < 1, and0.25 + 0.5 + 3(1 − 0.5)( 1

16 + 1
16 + 1

64 ) = 0.965278 < 1.There-
fore, the equilibrium u∗ is exponentially stable with a rate α = 8

√
0.965278 ≈
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Fig. 1 Graphs of the bound αn‖φ − u∗‖0 = 2.87314 ∗ 0.995592n and the differences |u1(n) −
2.40568|, |u2(n) − 3.23436|, |u3(n) − 1.53241| for n ∈ [1, 45]

Table 1 Values of the bound αn‖φ − u∗‖0 = 2.87314 ∗ 0.995592n and the differences |u1(n) −
2.40568|, |u2(n) − 3.23436|, |u3(n) − 1.53241| for n = 1, . . . , 45

n 2.87314 ∗
0.995592n

|u1(n) −
2.40568|

|u2(n) −
3.23436|

|u3(n) −
1.53241|

1 2.86048 0.269342 0.226707 0.660759

2 2.84787 0.0153586 0.00404188 0.301958

3 2.83531 0.146954 0.00197866 0.229919

4 2.82281 0.213725 0.0285321 0.204716

5 2.81037 0.0909878 0.0490802 0.0496394

… … … … …

38 2.42913 0.000020443 1.71883 ∗ 10−6 3.53387 ∗ 10−6

39 2.41842 0.000020443 1.71883 ∗ 10−6 3.53387 ∗ 10−6

40 2.40776 0.000020443 1.71883 ∗ 10−6 3.53387 ∗ 10−6

41 2.39714 6.77539 ∗ 10−6 1.13363 ∗ 10−7 1.04167 ∗ 10−6

42 2.38658 4.65835 ∗ 10−7 2.03659 ∗ 10−6 2.0664 ∗ 10−6

43 2.37606 2.16839 ∗ 10−6 3.92243 ∗ 10−6 2.09433 ∗ 10−6

44 2.36558 3.24319 ∗ 10−6 5.03918 ∗ 10−6 1.98103 ∗ 10−6

45 2.35516 3.681 ∗ 10−6 5.61059 ∗ 10−6 1.90291 ∗ 10−6

0.995592 and L = √
�(H), �(H) = λmax (H)

λmin(H)
, H = E , where E ∈ Mn is the unit

matrix.
Consider the solution ũ(n) of the discrete model (14), (15), (16) with initial

functions φ1(n) = 3n + 2, φ2(n) = 2n + 2, φ3(n) = n + 4, n = −3, −2, −1, 0.
In this case ‖φ − u∗‖0 = max

σ∈[−h,0] ||φ(σ) − u∗|| = 2.87314. The graphs of the dif-

ferences |u1(n) − 2.40568|, |u2(n) − 3.23436|, |u3(n) − 1.53241| and the bound
αn‖φ − u∗‖0 = 2.87314 ∗ 0.995592n are given on Fig. 1 and Table1. From both it
could be seen the equilibrium point u∗ is exponentially stable.
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Aleksandr Sergeev , Elena Baglaeva , Marina Sergeeva ,
Irina Subbotina , and Julian Vasilev

Abstract The paper presents a forecast of changes in the methane content in the air
in surface layer of the atmosphere. The forecast was made by the models based on
the twomost common types of artificial neural networks (ANN): A nonlinear autore-
gressive neural networks with exogenous inputs (NARX) and Elman neural network
(ENN). For training, we used the Levenberg–Marquardt learning algorithm. The data
were collected upon monitoring the greenhouse gases on Bely Island, Yamal-Nenets
Autonomous Okrug, Russia. For the comparison, the three time intervals with the
different patterns of changes in methane content were chosen. To assess the predic-
tion accuracy of the models, we used the mean absolute error, mean square error,
and the standardized measure of the model prediction error degree—the index of
agreement. The model based on the artificial neural network NARX for all simulated
intervals was the most accurate.
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1 Introduction

Time series forecasting is becoming more and more popular in various fields of
science. This is largely due to the rapid development of the methods and algorithms
based on artificial neural networks. Suchmethodsmake it possible to predict complex
systems with high accuracy [1–9].

In this paper, we compared the prediction results of the two most efficient ANNs
using the example of predicting changes in the surface methane concentration for
three different time intervals.

2 Materials and Methods

The main greenhouse gases were monitored on the territory of Bely Island (Russia),
located in the southern part of the Arctic Ocean (Fig. 1). The island is located far
from industrial sites and is an excellent natural testing ground for such research.

The concentrations of the greenhouse gases weremeasured using a Picarro G2401
cavity ring-down spectrometer.

Fig. 1 Place of measurements (Google Earth)
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For forecasting, three time intervals were selected, which represented the average
hourly data on the methane content. Each time interval consisted of 168 measure-
ments of methane concentration. For prediction, the intervals were divided into two
parts. The first part of the 144-long dimension was a training time series. The second
part of 24 dimensions was the predicted time series.

Each time interval was characterized by its own characteristics in the dynamics
of changes in methane concentration. So, the interval 1 did not have a pronounced
dependence on the time of day, it was more chaotic. Interval 2 had a noticeable
cyclicality depending on the timeof day.During the day, the concentration ofmethane
increased, and fell at night. Interval 3 also had a similar relationship, with the average
methane concentration increasing from the beginning to the end of this interval.

The two ANNs were chosen for forecasting: ENN and NARX. In such studies, it
is these types of ANNs that demonstrate the most accurate results [10–14].

Elman’s artificial neural network is a simple recurrent neural network, which
consists of three layers—the input (distribution), the hidden, and output (processing)
layers. The hidden layer has feedbackon itself.Unlike the usual feedforward network,
the input image of the recurrent network is not one vector, but a sequence of vectors,
the vectors of the input image are fed to the input in a given order, while the new
state of the hidden layer depends on its previous states.

The NARX network is a recurrent dynamic network with multi-level feedback.
The architectural structure of recurrent neural networks can take many different
forms, but the simplest ones use architectural neural networks with feedback. This
model has a single input that applies to the memory on the delay lines and a single
output shorted to the input through the memory on the delay lines. The contents of
these two memory blocks are used to power the input layer of the perceptron. In
addition, the use of feedbacks makes it possible to use the description of recurrent
neural networks NARX in the form of a set of states, which makes them convenient
devices in nonlinear forecasting and modeling.

The structure of ANNs was determined by computer simulation. In the hidden
layer, the number of neurons was chosen using the minimum RMSE—root mean
square error. The range of variation of neurons was between 5 and 25. The training of
each network was carried out 500 times. After that, the best networks were selected.
The input was a time interval. The number of neurons that corresponded to the
smallest error formed the hidden layer. The concentration of methane corresponding
to the time interval was presented in the output layer.

To train the ANNs, the Levenberg–Marquardt learning algorithm was applied.
The following indices were used to assess the accuracy of the prediction: mean

absolute error (MAE) (1), rootmean square error (RMSE) (2), and index of agreement
(d), which is the standardizedmeasure of themodel prediction error degree and varies
from 0 to 1, where 1 indicates a complete match and 0 indicates a complete lack of
agreement [15].

MAE =
∑n

i=1 |P(xi)−M (xi)|
n

, (1)
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Table 1 The results of
prediction of the methane
concentration for a 24-h time
series

Method MAE, ppm RMSE, ppm d

Interval 1

Elman 0.032 0.039 0.47

NARX 0.025 0.032 0.62

Interval 2

Elman 0.018 0.021 0.40

NARX 0.010 0.011 0.52

Interval 3

Elman 0.007 0.011 0.56

NARX 0.004 0.005 0.63

RMSE =
√

∑n
i=1(P(xi)−M (xi))

2

n
, (2)

d = 1−
∑|P(xi)−M (xi)|∑

(|P(xi)− m| + |M (xi)− m|) , (3)

where P(xi) is the concentration in the location xi that was predicted, M(xi) is the
concentration in the location xi that was measured, m is the average concentration,
and n is the number of points.

3 Results and Discussion

For Elman and NARX networks in the hidden layer, the final number of neurons was
20. The parameters used for comparison of the performance of different methods are
presented in Table 1. The best values for the test interval for NARX are in bold.

Both networks accurately predicted changes in methane concentration for all time
intervals. The NARX network showed the best accuracy based on all indices (Fig. 2).

4 Conclusion

BothANN-basedmodels demonstrated a sufficiently accurate forecast for changes in
the methane concentration at three 24-h time intervals. A more accurate prediction
was obtained for intervals 2 and 3 with a pronounced dependence on the time of
day. It can be argued that the approach used is suitable for predicting changes in the
concentration of greenhouse gases.
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Fig. 2 Comparison of different prediction approaches
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Approaches for Multidimensional
Sensitivity Analysis in Air Pollution
Modeling
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Abstract A thorough experimental investigation of Monte Carlo algorithms based
on Halton and Sobol scrambling algorithms has been performed for the first time for
the model under consideration. For scrambling Halton sequence, we use a permuta-
tion of the radical inverse coefficients derived by applying a reverse-radix operation
to all of the possible coefficient values. For scrambling Sobol sequence, we use
random linear scramble combined with a random digital shift. These methods have
never been applied and compared before for the Unified Danish Eulerian model
and this motivates our study. The novelty of the proposed approaches is that Halton
scrambling algorithm has been applied for the first time to sensitivity studies of the
particular air pollution model. The computational experiments demonstrate that the
proposed stochastic approaches are efficient for the considered multidimensional
integrals evaluation and especially for computing small by value sensitivity indices
which are very important for the reliability of the mathematical model.
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1 Introduction

The reliability of the large-scale mathematical models when used to make deci-
sions, appears to be a significant problem [8–10, 18]. In improving the reliability,
the sensitivity analysis of the model outputs with respect to artificial or natural per-
turbation of the model inputs plays a central role. By definition [4, 17], sensitivity
analysis is a procedure for studying how sensitive are the output results of large-
scale mathematical models to some uncertainties of the input data. A large-scale
mathematical model, describing remote transport of air pollutants—Unified Danish
EulerianModel (UNI-DEM), is used to derive the input data for sensitivity analysis.
This model was developed at the Danish National Environmental Research Insti-
tute (http://www2.dmu.dk/AtmosphericEnvironment/DEM/, [19–21]). The results
described here can be used for increasing the reliability of the mathematical model
results, and identifying input parameters that should be measured more precisely.
UNI-DEM is employed in the present study since it is one of the most advanced
large-scale mathematical models that appropriately describe the physical and chemi-
cal processes in full. One of the most appealing features of UNI-DEM is its advanced
chemical scheme, the Condensed CBM IV, which consider a large number of chem-
ical species and numerous reactions between them, of which the ozone is one of
the most important pollutants for its central role in many practical applications of
the results. The computational domain [3] is large enough to completely covers the
European region and the Mediterranean, and the calculations are done for a certain
time period. It is appropriate to explore the relationships between input parameters
and model outputs to identify the reliability of the model. Sensitivity analysis is
most often deduced by variance-based methods. Sobol variance-based approach for
global sensitivity analysis has been applied to compute the corresponding sensitivity
measures which leads to multidimensional integrals [15].

2 Sensitivity Analysis and Stochastic Methods

2.1 Sobol Approach for Global Sensitivity Analysis

It is assumed that the mathematical model can be presented by a model function

u = f (x), where x = (x1, x2, . . . , xd) ∈ Ud ≡ [0; 1]d (1)

is a vector of input parameters with a joint probability density function (p.d.f.)
p(x) = p(x1, . . . , xd).

The concept of Sobol approach is based on a decomposition of an integrable
model function f into terms of increasing dimensionality [15, 17]:

http://www2.dmu.dk/AtmosphericEnvironment/DEM/
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f (x) = f0 +
d∑

ν=1

∑

l1<...<lν

fl1...lν (xl1 , xl2 , . . . , xlν ), (2)

where f0 is a constant. The representation (2) is referred to as the ANOVA-
representation of the model function f (x) if each term is chosen to satisfy the
following condition [16]:

1∫

0

fl1...lν (xl1 , xl2 , . . . , xlν )dxlk = 0, 1 ≤ k ≤ ν, ν = 1, . . . , d.

It guarantees that the functions in the right-hand side of (2) are defined in a unique

way, where f0 =
∫

Ud

f (x)dx. The quantities

D =
∫

Ud

f 2(x)dx − f 20 , Dl1 ... lν =
∫

f 2l1 ... lνdxl1 . . . dxlν (3)

are the so-called total and partial variances, respectively. A similar decomposition
holds for the total variance that is represented by the corresponding partial variances:
D = ∑d

ν=1

∑
l1<...<lν

Dl1...lν .
The Sobol global sensitivity indices [14, 16] are the main sensitivity measures

that follow the Sobol approach and are defined as

Sl1 ... lν = Dl1 ... lν

D
, ν ∈ {1, . . . , d}. (4)

and the total sensitivity index (TSI) of an input parameter xi , i ∈{1, . . . , d} defined
by [14, 16]:

Stoti = Si +
∑

l1 �=i

Sil1 +
∑

l1,l2 �=i,l1<l2

Sil1l2 + . . . + Sil1...ld−1 , (5)

where Si is called the main effect (first-order sensitivity index) of xi and Sil1...l j−1

is the j th order sensitivity index. The higher-order terms describe the interaction
effects between the unknown input parameters xi1 , . . . , xiν , ν ∈ {2, . . . , d} on the
output variance.

The propermathematical approach to the problem of conducting global sensitivity
analysis is constituted by computing the total sensitivity indices (5) of corresponding
order, following formulae (3)–(4), which in turn leads to evaluatingmultidimensional
integrals.
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2.2 Sobol and Halton Sequences

The distinctive feature of a quasirandom or low discrepancy sequence (for instance
Halton and Sobol sequences) is the lower degree of randomness compared to a pseu-
dorandom number sequence. Nevertheless, this is a desired property which makes
the quasirandom sequence more advantageous for numerical integration purposes in
higher dimensions, since the low discrepancy sequences incline to sample the space
in a “more uniform” manner that the pseudorandom sequences [2].

Let xi = (x (1)
i , x (2)

i , . . . , x (s)
i ) for i = 1, 2, . . . and n = . . . a3(n), a2(n), a1(n) be

the representation of n in base b . The multidimensional quasi-random sequence
is defined as Xn = (φb1(n), φb2(n), . . . , φbs (n)), where the base bi numbers are
relatively prime.
Halton sequence [5, 6] is defined as:

s(k)
n =

∞∑

i=0

σ
(k)
i+1a

(k)
i+1(n)b−(i+1)

k ,

where (b1, b2, . . . , bs) ≡ (2, 3, 5, . . . , ps), and pi denotes the i th prime, and σ
(k)
i ,

i ≥ 1—set of permutations on (0, 1, 2, . . . , pk − 1).
Sobol sequence [1, 7] is defined by:

xk ∈ σ i
(k), k = 0, 1, 2, . . .

where σ i
(k), i ≥ 1 - set of permutations on every 2k, k = 0, 1, 2, . . . subsequent

points of the Van der Corput sequence, defined by n = ∑∞
i=0 ai+1(n)bi , φb(n) =∑∞

i=0 ai+1(n)b−(i+1) when b = 2.

In binary for the Sobol sequence we have that: x (k)
n =

⊕

i≥0

ai+1(n)vi , where

vi , i = 1, . . . , s is a set of direction numbers [7].

2.3 Scrambling

The original motivation of scrambling aims toward obtaining more uniformity for
quasi-random sequences in high dimensions. The proved convergence rate for the
Scrambling Algorithms improves significantly the rate for the unscrambled nets
[13], which is n−1(log n)d−1. That is why it is important to compare numerically
our algorithms with their scrambled versions. The idea of scrambling is based on
randomization of a single digit at each iteration. Let

x (i) = (xi,1, xi,2, . . . , xi,s), i = 1, . . . , n (6)
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be quasi-random numbers in [0, 1)s , and let

z(i) = (zi,1, zi,2, . . . , zi,s) (7)

be the scrambled version of the point x (i). Suppose that each xi, j can be represented
in base b as

xi, j = (0.xi1, j xi2, j . . . xiK , j . . .)b (8)

with K being the number of digits to be scrambled. For scrambling Halton sequence
we use a permutation of the radical inverse coefficients derived by applying a reverse-
radix operation to all of the possible coefficient values [11]. For scrambling Sobol
sequence we use random linear scramble combined with a random digital shift [12].

3 Case Study and Numerical Results

The present sensitivity analysis uses data originating from runs of a large large-
scale mathematical model describing remote transport of air pollutants (UNI-DEM,
[19, 21]). The geographical area into consideration (4800 × 4800 km2) includes
wholly Europe and the Mediterranean and partially Asia and Africa. It includes
all main physical, chemical and photochemical processes occurring between the
studied species as well as the emissions and the rapidly changing meteorological
conditions. The reason to choose this model as a case study is that it is among the
atmospheric chemistry models which consider the chemical processes in great detail
and in accurate manner.

3.1 Sensitivity Studies with Respect to Emission Levels

In this section we will present the results for the sensitivity of UNI-DEM output (in
particular, the ammonia mean monthly concentrations) with respect to the anthro-
pogenic emissions input data variation, shown and discussed in this section. The
anthropogenic emissions input consists of four different components
E = (EA,EN,ES,EC) :

EA − ammonia (NH3); ES − sulphur dioxide (SO2);
EN − nitrogen oxides (NO + NO2); EC − anthropogenic hydrocarbons.

Results of the relative error estimation for the quantities f0, the total variance D,
first-order (Si ) and total (Stoti ) sensitivity indices are given in Tables1, 2, 3 and Fig. 1,
respectively. f0 is presented by a 4-dimensional integral, while the rest of the above
quantities are presented by 8-dimensional integrals, following the ideas of correlated
sampling technique to compute sensitivity measures in a reliable way (see [8, 17]).
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Table 1 Relative error for the evaluation of f0 ≈ 0.048

# of samples CRU SOBOL HALTON SOBOLSCR HALTONSCR

n Relative error Relative error Relative error Relative error Relative error

210 1.0203e−02 3.4504e−04 2.5491e−04 1.8415e−05 1.5307e−04

212 3.4246e−03 6.9277e−05 1.4346e−04 1.8209e−05 5.4839e−06

214 2.5052e−03 7.8022e−06 2.8407e−05 4.8534e−06 7.0189e−06

216 1.7268e−03 4.6585e−06 9.6538e−06 3.6422e−07 2.3992e−06

218 4.3151e−04 1.7393e−06 3.4711e−06 1.5539e−07 1.8033e−07

220 6.7226e−05 2.5234e−07 1.1020e−06 1.1501e−07 4.7965e−08

222 6.4635e−05 8.3823e−08 2.8645e−07 3.3934e−09 3.2964e−08

224 1.6251e−05 1.5669e−08 9.0096e−08 4.4868e−09 2.8637e−09

The five different stochastic approaches used for numerical integration are presented
in separate columns of the tables.

For n = 224 for the model function f0 the best algorithm is the Halton scrambled
sequence, followed by the Halton sequence – see the results in Table1 for the maxi-
mum number of samples. For number of samples n = 224 for the total variance D the
best algorithm is the Sobol sequence, followed by the Halton scrambled sequence –
see the results in Table2 for the maximum number of samples.

For number of samples n = 224 in Table3 Sobol gives the best relative errors for
S1, S3, Stot1 , Stot2 , Stot3 , while Halton scrambled sequence gives the best results for S2,
S4 and Stot4 . However, for the most important and smallest in value sensitivity index
S4 and Stot4 Halton scrambled sequence gives the most reliable results. The numerical
results suggest that the best algorithm is the Halton scrambled sequence, followed by
the Sobol sequence (for small in value sensitivity indices Halton scrambled sequence
gives better results), and after that follows Sobol scrambled sequence and Halton
sequence. In most of the cases the scrambled and non scrambled sequences produced
results of the same order. In all experiments as expected the Crude Monte Carlo
approach gives the worst results.

3.2 Sensitivity Studies with Respect to Chemical Reactions
Rates

In this section we will study the sensitivity of the ozone concentration values in
the air over Genova with respect to the rate variation of some chemical reactions of
the condensed CBM-IV scheme [19], namely: # 1, 3, 7, 22 (time-dependent) and #
27, 28 (time independent). The simplified chemical equations of those reactions are:
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Table 2 Relative error for the evaluation of the total variance D ≈ 0.0002

# of samples CRU SOBOL HALTON SOBOLSCR HALTONSCR

n Relative error Relative error Relative error Relative error Relative error

210 1.1512e−01 1.4797e−03 1.5217e−02 2.6245e−04 7.1057e−03

212 2.8713e−02 1.5736e−03 8.1209e−03 1.2114e−03 1.5066e−03

214 4.3025e−02 4.7282e−04 1.8880e−03 5.7270e−05 5.9235e−04

216 1.7631e−02 1.1726e−04 6.8346e−04 3.3306e−06 1.2015e−04

218 1.1619e−02 1.3197e−05 1.5618e−04 7.2002e−06 4.1675e−05

220 5.7971e−03 8.4017e−06 4.7374e−05 1.7242e−05 8.9747e−06

222 7.3641e−04 1.8001e−06 1.5029e−05 1.1211e−06 4.3661e−06

224 1.9965e−03 3.2922e−08 3.1611e−06 8.2382e−07 1.5148e−07

Table 3 Relative error for estimation of sensitivity indices of input parameters using variousMonte
Carlo and quasi-Monte Carlo approaches (n ≈ 224)

EQ RV CRU SOBOL HALTON SOBOLSCR HALTONSCR

S1 9e−01 2.0736e−04 3.6546e−07 1.1917e−06 6.0288e−07 6.2995e−07

S2 2e−04 3.3428e−03 1.7825e−05 2.4151e−04 4.4273e−05 2.3471e−06

S3 1e−01 1.3562e−03 1.8064e−06 9.1091e−06 3.4129e−06 4.0456e−06

S4 4e−05 1.6781e−01 1.4025e−04 4.0279e−04 1.7591e−04 8.4522e−05

Stot1 9e−01 1.6667e−04 2.1422e−07 1.1955e−06 4.2602e−07 4.9628e−07

Stot2 2e−04 6.3335e−02 2.9270e−05 2.5980e−04 4.3709e−05 5.6982e−05

Stot3 1e−01 1.7633e−03 3.0504e−06 8.8825e−06 4.7584e−06 5.1651e−06

Stot4 5e−05 1.5280e−02 1.9103e−04 3.9080e−04 9.5501e−05 1.7606e−05
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Fig. 1 Relative errors for the calculation of f0 ≈ 0.048 (left) and D ≈ 0.0002 (right)
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Table 4 Relative error for the evaluation of f0 ≈ 0.27

# of samples CRU SOBOL HALTON SOBOLSCR HALTONSCR

n Relative error Relative error Relative error Relative error Relative error

210 6.9655e−04 2.4527e−04 3.6545e−04 3.9428e−04 1.7657e−04

212 8.0553e−04 1.0223e−04 8.6328e−05 4.0466e−05 2.3302e−05

214 2.8035e−03 2.2274e−05 3.4302e−05 5.2466e−06 2.4262e−05

216 5.9493e−04 2.2604e−06 3.6220e−06 1.2498e−06 5.3505e−06

218 7.6591e−04 1.8400e−06 1.7421e−06 6.0489e−07 8.4729e−07

220 3.4494e−04 3.5561e−07 6.0821e−07 1.0645e−07 3.2548e−07

222 4.6980e−05 9.3845e−08 1.6051e−07 1.6511e−08 6.0443e−08

224 8.6192e−06 1.8639e−09 4.9903e−08 1.1468e−08 1.8102e−08

[#1] NO2 + hν =⇒ NO + O; [#22] HO2 + NO =⇒ OH + NO2;
[#3] O3 + NO =⇒ NO2; [#27] HO2 + HO2 =⇒ H2O2;
[#7] NO2 + O3 =⇒ NO3; [#28] OH + CO =⇒ HO2.

The domain under consideration is the 6-dimensional hypercube [0.6, 1.4]6.
The relative error estimation for the quantities f0, the total variance D and some

sensitivity indices are given in Tables4, 5, 6 and Fig. 2, respectively.
The value of f0 is calculated from a 6-dimensional integral, while the rest quan-

tities are calculated from 12-dimensional integrals, following the paradigm of cor-
related sampling [8]. For n = 224 for the model function f0 the best algorithm is
the Sobol sequence, followed by the Sobol scrambled sequence—see the results in
Table4 for the maximum number of samples. For number of samples n = 224 for
the total variance D the best algorithm is the Sobol scrambled sequence, followed
again by the Sobol sequence—see the results in Table5 for the maximum number of
samples.

For number of samples n = 224 in Table6 Sobol gives the best relative errors for
S1, S2, S6, Stot1 , Stot6 , S12, S14, S24 and S45. Halton scrambled sequence gives the best
results for S3, S4, S5, Stot3 and interestingly Halton sequence gives the best relative
errors for Stot2 , Stot4 and Stot5 . It can be seen that for the small in value sensitivity index
S45 Sobol sequence gives also reliable results. However, for the most important and
smallest in value sensitivity index S5 the Halton scrambled sequence produce the best
results. The algorithm performance demonstrate that the best approach is to apply
the Sobol sequence, followed by the Halton scrambled sequence (better results are
associated with the latter for small in value sensitivity indices). The Sobol scrambled
sequence follows. It appears again that the Crude Monte Carlo method produces the
worst results.
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Table 5 Relative error for the evaluation of the total variance D ≈ 0.0025

# of samples CRU SOBOL HALTON SOBOLSCR HALTONSCR

n Relative error Relative error Relative error Relative error Relative error

210 7.2185e−02 2.1299e−03 4.9601e−02 7.4282e−03 3.3594e−02

212 9.5413e−02 1.8037e−03 2.7994e−03 5.3106e−04 4.8055e−03

214 6.3987e−02 1.1021e−04 2.3975e−03 5.3462e−04 1.1157e−04

216 2.9741e−02 1.2418e−04 3.4838e−04 1.0328e−04 7.2396e−04

218 7.4173e−03 2.2215e−05 4.0181e−04 1.9470e−06 5.3410e−05

220 8.9182e−03 3.3461e−06 4.6222e−05 6.2125e−06 3.2061e−05

222 2.2089e−03 5.2062e−06 2.8782e−06 2.0482e−06 6.0767e−06

224 1.2915e−03 1.5526e−06 2.5678e−06 7.9422e−07 2.7586e−06

Table 6 Relative error for estimation of sensitivity indices of input parameters using various QMC
approaches (n ≈ 224)
EQ RV CRU SOBOL HALTON SOBOLSCR HALTONSCR

S1 4e−01 2.4330e−03 4.5630e−07 1.0773e−05 1.6426e−06 3.4398e−06

S2 3e−01 1.8600e−03 9.9892e−07 1.7563e−05 1.0094e−06 1.1826e−06

S3 5e−02 3.9300e−03 5.2706e−06 1.3779e−05 4.9645e−06 1.7893e−06

S4 3e−01 1.7259e−03 2.5748e−06 8.7453e−06 7.4544e−07 5.9071e−07

S5 4e−07 6.2991e+01 7.5741e−02 2.0971e−01 9.4203e−02 6.4810e−02

S6 2e−02 1.3933e−02 3.5457e−06 3.6907e−05 4.1779e−06 9.6398e−06

Stot1 4e−01 1.9688e−03 6.6739e−07 1.0799e−05 1.7121e−06 2.9868e−06

Stot2 3e−01 2.6026e−03 1.1905e−06 1.4399e−05 8.4968e−07 2.7793e−06

Stot3 5e−02 2.0711e−03 3.0697e−06 1.4532e−05 2.8127e−06 1.5540e−07

Stot4 3e−01 1.7469e−03 3.5570e−06 8.3469e−06 2.3770e−06 5.2178e−06

Stot5 2e−04 4.2987e−02 1.0014e−04 8.5496e−05 7.3245e−06 2.0781e−04

Stot6 2e−02 5.3593e−03 4.0620e−06 3.8012e−05 7.3849e−06 9.0746e−06

S12 6e−03 2.4931e−02 1.2872e−05 5.9774e−05 4.9952e−05 7.3132e−05

S14 5e−03 1.2130e−02 1.4795e−05 3.1874e−05 2.7816e−05 9.9435e−05

S24 3e−03 2.6639e−02 1.9557e−05 7.0366e−05 7.1769e−05 2.3935e−04

S45 1e−05 1.5179e−01 1.0902e−04 3.2605e−03 2.2443e−04 2.9941e−03

4 Conclusion

Anumber of stochastic algorithms formultidimensional integral evaluation are exam-
ined to analyze their computational efficiency in terms of relative error. The UNI-
DEM model is considered and the output sensitivity with respect to variation in the
input emissions of the anthropogenic pollutants and in rates of several chemical reac-
tions is studied. The influence of emission levels over very important air pollutants
(ammonia, ozone, and ammonium sulphate and ammonium nitrate) is considered.
The numerical experiments show that Halton and Sobol sequences and their scram-
bled versions constitute part of the best available stochastic methods to evaluate
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Fig. 2 Relative errors for the calculation of f0 ≈ 0.27 (left) and D ≈ 0.0025 (right)

sensitivity indices. In particular, they cope with the smallest in value sensitivity
indices, which are vital for the reliability of the results as well as being the most
difficult problem. Experiments show that scrambling is useful for obtaining more
uniformity for quasi-random sequences in high dimensions which is definitely the
case in the Halton scrambled sequence. This paper shows that essential improvement
is obtained with Halton scrambled sequence over the original Halton sequence and
this is the best available approach for most of the small in value sensitivity indices
which are very important for the reliability of the model results.
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Advanced Biased Stochastic Approaches
Based on Modified Sobol Sequences for
the Fredholm Integral Equation

Venelin Todorov, Ivan Dimov, and Rayna Georgieva

Abstract In this paper we propose and analyse advanced biased stochastic meth-
ods for solving a class of integral equations—the second kind Fredholm integral
equations. We study and compare innovative possible approaches to compute linear
functionals of the integral under consideration: biasedMonte Carlo method based on
evaluation of truncated Liouville-Neumann series and transformation of this problem
into the problem of computing a finite number of integrals. Advanced Monte Carlo
algorithms for numerical integration based on modified Sobol sequence have been
applied for computing linear functionals. Error balancing of both stochastic and sys-
tematic errors has been discussed and applied during the numerical implementation
of the biased algorithms. We compare the results obtained by some of the best biased
stochastic approaches with the results obtained by the standard Monte Carlo method
for integral equations.
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1 Introduction

The existing MC methods for integral equations (MCM-IE) are based on proba-
bilistic representations of the Liouville-Neumann (LN) series for the second kind
Fredholm integral equation [2, 4, 8]. The possible unbiased approaches deal with
infinite series, while the biased MC approaches use probabilistic representations of
truncated LN series. A well-known and widely used biased method is the Markov
chain MC (see, for example [12]). Usually, the Markov chain stops after a fixed
number of steps. Integral equations are very important for areas such as mechanics,
geophysics, electricity and magnetism, kinetic theory of gases, quantum mechanics,
mathematical economics, and queuing theory [10, 11, 13].

A possible approach to deal with the problem of approximation of linear function-
als of the solution of an integral equation is to transform it into approximate evaluation
of finite number of integrals (FNI) (linear functionals of iterative functions) [3, 4].
Hereweextend the studyof the properties to four differentMCalgorithms formultidi-
mensional numerical integration for solving integral equations. These algorithms are
Crude MC algorithm [17], based on SIMD-oriented fast Mersenne Twister pseudo-
random number generator [15, 20], quasi-Monte Carlo (QMC) algorithm based on
��τ Sobol quasirandom sequences and MC algorithms (MCA-MSS-1 and MCA-
MSS-2) based on modified Sobol quasirandom sequences [5–7].

Consider the second kind Fredholm integral equation:

u(x) =
∫

�

k(x, x′)u(x′)dx′ + f (x) (1)

or
u = Ku + f (K is an integral operator), where

k(x, x′) ∈ L2(� × �), f (x) ∈ L2(�) are given functions and u(x) ∈ L2(�) is an
unknown function, x, x′ ∈ � ⊂ Rn (� is a bounded domain).

We are interested in Monte Carlo methods for evaluation of linear functionals of
the solution of the following type:

J (u) =
∫

ϕ(x)u(x)dx = (ϕ, u), (2)

where ϕ(x) ∈ L2(�) is a given function.
We can apply successive approximation method for solving integral equations:

u(i) =
i∑

j=0

K( j) f = f + K f + . . . + K(i−1) f + K(i) f, i = 1, 2, . . . (3)

where u(0)(x) ≡ f (x).
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An approximation of the unknown value (ϕ, u) can be obtained using a truncated
LN series (3) for a sufficiently large i :

(ϕ, u(i)) = (ϕ, f ) + (ϕ,K f ) + . . . + (ϕ,K(i−1) f ) + (ϕ,K(i) f ).

So, we transform the problem for solving integral equations into a problem for
approximate evaluation of a finite number of multidimensional integrals. We will
use the following denotation (ϕ,K( j) f ) = I ( j), where I ( j) is a value, obtained
after integration over � j+1 = � × . . . × �, j = 0, . . . , i. It is obvious that the cal-
culation of the estimate (ϕ, u(i)) can be replaced by an evaluation of a sum of linear
functionals of iterative functions of the type (ϕ,K( j) f ), j = 0, . . . , i , which can be
presented as:

(ϕ,K( j) f ) =
∫

�

ϕ(t0)K( j) f (t0)dt0 =

=
∫
G

ϕ(t0)k(t0, t1) . . . k(t j−1, t j ) f (t j )dt0 . . . dt j ,

(4)

where t = (t0, . . . , t j ) ∈ G ≡ � j+1 ⊂ Rn( j+1). If we denote by Fj (t) the integrand
function

F(t) = ϕ(t0)k(t0, t1) . . . k(t j−1, t j ) f (t j ), t ∈ � j+1,

then we obtain the following expression for (4):

I ( j) = (ϕ,K( j) f ) =
∫
G
Fj (t)dt, t ∈ G ⊂ Rn( j+1). (5)

Thus, we consider the problem for an approximate calculation of multiple integrals
of the type (5). The definition of domain G given above is important for the fur-
ther presented method of solving the integral equation as a set of FNI. Actually,
both representations (4) and (5) allow to define a biased algorithm. In this case the
approximation (ϕ,K( j) f ) to the true inner product (ϕ, u) is presented as a set of
l integrals I ( j) (see, (5)) with integrands Fj (t), where t is N ( j + 1) dimensional
point from the newly defined domain G.

2 Biased Stochastic Approaches

2.1 Crude Monte Carlo for Integrals

The simplest stochastic approach known as Crude Monte Carlo method (CMCM)
for evaluating integrals reduces the problem to the approximate calculation of a
mathematical expectation which coincides with the unknown functional defined by
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[4]. The Monte Carlo quadrature formula is based on the probabilistic interpretation
of an integral. If xl , l = 1, . . . , N is a uniformly distributed sequence in G, then the
Crude Monte Carlo approximation to the integral I ( j) is

I ( j) ≈ IN ( j) = V(G)

N

N∑
l=1

Fj (xl)

with integration error εN ( j) = |I ( j) − IN ( j)| ≈
√
Var(F)

N
, whereV(G) is the vol-

ume of G and Var(Fj ) is the variance of the corresponding random variable whose
mathematical expectation coincides with the unknown functional. This random vari-
able depends on the integrand F(t).

2.2 Monte Carlo Method for Integral Equations

It is known (see [4, 17]) that the approximate calculation of linear functionals of the
solution of an integral equation (ϕ, u) brings to the calculation of a finite sum of
linear functionals of iterative functions (ϕ,K j f ), j = 0, . . . , i . First, we construct a
random trajectory (Markov chain) Ti of length i starting from state x0 in the domain
�:

Ti : x0 −→ x1 −→ . . . −→ xi

according to the initial π(x) and transition p(x, x′) probabilities. The functions π(x)
and p(x, x′) satisfy the requirements for non-negativeness, to be acceptable to func-
tion ϕ(x) and the kernel k(x, x′) respectively and

∫
�

π(x)dx = 1,
∫
�
p(x, x′)dx′ = 1

for any x ∈ � ⊂ Rn . The Markov chain transition probability p(x, x ′) is chosen to
be proportional to |k(x, x ′)| following [4]. It means that p(x, x ′) = c|k(x, x ′)|, and
the constant c is computed such that

c =
(∫

�

|k(x, x ′)|dx ′
)−1

= 1 for any x ∈ �.

From the above supposition on the kernel k(x, x′) and the well-known facts that

Eθi [ϕ] = (ϕ, u(i)), where θi [ϕ] = ϕ(x0)

π(x0)

i∑
j=0

Wj f (x j ),

and W0 = 1, Wj = Wj−1
k(x j−1, x j )

p(x j−1, x j )
, j = 1, . . . , i
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it follows that the correspondingMonte Carlo estimation of (ϕ, u(i)) can be presented
in the following form:

(ϕ, u(i)) ≈ 1

N

N∑
l=1

θi [ϕ]l .

Therefore, the random variable θi [ϕ] can be considered as a biased estimate of the
desired value (ϕ, u) for i sufficiently large with a statistical error of orderO(N−1/2),
where N is the number of chains and θi [ϕ]l is the value of θi [ϕ] taken over the l-th
chain. The same trajectories of the type Ti can be used for a biased approximate
evaluation of (ϕ, u(i)) for various functions ϕ(x). Furthermore, they can be used for
various integral equations with the same kernel k(x, x′), but with different right-hand
sides f (x).

2.3 Monte Carlo Algorithms Based on Modified Sobol ��τ

Sequences

��τ sequences are uniformly distributed sequences (u.d.s.). The term u.d.s. was
introduced by Hermann Weyl [19]. For practical purposes an u.d.s. should satisfy
the following requirements [17, 18]: (i) the best asymptote as N → ∞, (ii) well
distributed points for small N , and (iii) a computationally inexpensive algorithm.
Suitable distributions such as��τ sequences are also called (t,m, s)-nets and (t, s)-
sequences in base b ≥ 2 [14]. Sobol [17] defines his�τ -meshes and��τ sequences,
which are (t,m, s)-nets and (t, s)-sequences in base 2, respectively. Subroutines
to compute these points can be found in [1], and with more details in [16]. Here
we consider two randomized quasi-Monte Carlo algorithms based on Sobol ��τ

sequences, namely MCA-MSS-1 and MCA-MSS-2.

2.4 Summary of the MCM-MSS-1

One of the algorithms (based on a procedure of shaking) was proposed recently in
[6]. The idea is that we take a Sobol ��τ d-dimensional point (vector) x. Then x is
considered as a centrum of a sphere with a radius ρ << 1. A random point ξ ∈ Ud

uniformly distributed on the sphere is taken.Consider a randomvariable θ defined as a
value of the integrand at that random point, i.e., θ j = Fj (ξ). Consider random points
ξ(l)(ρ) ∈ Ud , l = 1, . . . , N . Assume ξ(l)(ρ) = x(l) + ρω(l), where ω(l) is a unique

uniformly distributed vector in Ud . The radius ρ is relatively small ρ 
 1

2d j
, such

that ξ(l)(ρ) is still in the same elementary lth interval Ed
l =

d∏
ν=1

[
a(l)
j

2dν
,
a(l)

ν + 1

2dν

]
,
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where the pattern ��τ point x(l) is. We use a subscript i in Ed
i to indicate that

the l-th ��τ point x(i) is in it. So, we assume that if x(l) ∈ Ed
l , then ξ(l)(ρ) ∈ Ed

l
too. It was proven in [6] that the mathematical expectation of the random variable
θ j = Fj (ξ) is equal to the value of the integral (5), that is Eθ j = ∫

Ud Fj (t)dt. This
result allows to define a randomized algorithm called Monte Carlo Algorithm based
on Modified Sobol Sequences (MCA-MSS-1).

In [7] the probability error of the algorithm MCA-MSS-1 is analysed. Denote by
‖ Fj ‖ the following expression:

‖ Fj ‖= sup

{∣∣∣∣ ∂r Fj

∂xα1
1 . . . ∂xαd

d

∣∣∣∣ , |α1 + . . . + αd | = k

}
.

It is proved that for integrandswith continuous and bounded first derivatives, i.e. Fj ∈
W1(L;Ud), where L = ‖Fj‖, it holds err(Fj , d) ≤ c

′
d

∥∥Fj

∥∥ N
− 1

2 − 1
d and r(Fj , d) ≤

c
′′
d

∥∥Fj

∥∥ N
− 1

2 − 1
d , where the constants c

′
d and c

′′
d do not depend on N .

2.5 Summary of the MCM-MSS-2

The second algorithm called MCA-MSS-2 is a modification of MCA-MSS-1 algo-
rithm. It is proposed and analysed in [5]. It is assumed that n = md , m ≥ 1. The unit
cubeUd is divided intomd disjoint sub-domains, such that they coincide with the ele-
mentary d-dimensional subintervalsUd = ⋃md

l=1 Kl, where Kl = ∏d
ν=1[a(l)

ν , b(l)
ν ),

with b(l)
ν − a(l)

ν = 1

m
for all l = 1, . . . , d. In such a way in each d-dimensional sub-

domain Kl there is exactly one ��τ point x(l). Assuming that after shaking, the ran-
dom point stays inside Kl , i.e., ξ(l)(ρ) = x(l) + ρω(l) ∈ Kl one may try to exploit the
smoothness of the integrand in case if the integrand Fj belongs toW2(L;Ud). In each
sub-domain K j the central point is denoted by s( j), where s( j) = (s( j)

1 , s( j)
2 , . . . , s( j)

d ).
Suppose two random points ξ(l) and ξ(l)′ are chosen, such that ξ(l) is selected

during our procedure used in MCA-MSS-1. The second point ξ(l)′ is chosen to be
symmetric to ξ(l) according to the central point s(l) in each cube Kl . In such a way the
number of random points is 2md . One may calculate all function values f (ξ(l)) and
f (ξ(l)′), for l = 1, . . . ,md and approximate the value of the integral in the following
way:

I ( f ) ≈ 1

2md

2N∑
l=1

[
f (ξ(l)) + f (ξ(l)′)

]
. (6)

This estimate corresponds to MCA-MSS-2.
In [5] it is proved that the Monte Carlo algorithm MCA-MSS-2 has an optimal

rate of convergence for functions with continuous and bounded second derivative
[4]. This means that if Fj ∈ W2(L;Ud), where L = ‖Fj‖, it holds err(Fj , d) ≤
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c̃
′
d

∥∥Fj

∥∥ N
− 1

2 − 2
d and r(Fj , d) ≤ c̃

′′
d

∥∥Fj

∥∥ N
− 1

2 − 2
d
, where the constants c

′
d and c

′′
d do

not depend on N .
Note that both MCA-MSS-1 and MCA-MSS-2 have one control parameter, that

is the radius ρ of the sphere of shaking. At the same time, to be able to efficiently use
this control parameter one should increase the computational complexity. It happens
because after shaking the random point may leave the multidimensional sub-domain,
and one needs to check if the random point is still in the same sub-domain. It is clear
that the procedure of checking if a random point is inside the given domain is a
computationally expensive procedure when one has to deal with a large number of
points.

2.6 Error Analysis of Biased Stochastic Approaches

Let us deal with the problem for approximate calculation of linear functional of the
solution of integral equation (ϕ, u). Let us denote the i-th iterative approximation
of u (i ≥ 0) by u(i) and the Monte Carlo approximation by ũ. It is known that two
errors systematic one (a truncation error) Rsys and stochastic (a probabilistic) one, RN

appear. Actually, we approximate the truncated LN series. If ε is a given sufficiently
small positive parameter then

|(ϕ, u) − (ϕ, ũ)| ≤ |(ϕ, u) − (ϕ, u(i))| + |(ϕ, u(i)) − (ϕ, ũ)| = εi + εN < ε,

where εi is the truncation error, εN is the probability error. We can obtain a lower
bound for the number i of iterations using [2]:

i >

ln
ε

2|(ϕ, u(0)) − (ϕ, u)|
ln ‖K‖L2

,

where u(0) is the initial approximation of u. Using the Cauchy-Bunyakowski inequal-
ity it is easy to show that

|(ϕ, u(0)) − (ϕ, u)| ≤ ‖ϕ‖L2(�)‖u(0) − u‖L2(�).

The second multiplier can be estimated:

‖u(0) − u‖L2(�) ≤ (‖I‖L2 + ‖K‖L2 + . . . + ‖K‖iL2
+ . . .)‖r (0)‖L2(�),

where r ( j) = f − u( j) − Ku( j), j = 0, 1, . . . .

Taking the limit for i → ∞ one can obtain
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‖u(0) − u‖L2 ≤ ‖r (0)‖L2(�)

1 − ‖K‖L2

.

It holds if the condition ‖K‖L2 < 1 is fulfilled.

3 Numerical Results

The numerical algorithms are tested on the following example [8, 9]:

u(x) =
∫

�

k(x, x ′)u(x ′)dx′ + f (x), � ≡ [0; 1] (7)

where

k(x, x ′) = x2ex
′(x−1), f (x) = x + (1 − x)ex ,ϕ(x) = δ(x − x0). (8)

The solution of this test problem is u(x) = ex . We are interested in an approximate
calculation of (ϕ, u), where ϕ(x) = δ(x − x0), x0 = 0.5.

We have performed the following biased stochastic algorithms: MC algorithm
and QMC based on Sobol sequences for integral equations and several algorithms
for integrals into which the problem of solving integral equations is transformed.
For the above set of algorithms we use Crude MCA, quasi-Monte Carlo algorithm
based on ��τ Sobol quasirandom sequences, MCA-MSS-1 and MCA-MSS-2. The
algorithms have been studied after 10 runs to average the final approximation and
for various sample sizes chosen according to proper sample size for Sobol quasir-
andom sequences. The number of iterations i/d is fixed, but it is chosen according
to the L2-norm of the kernel k(x, x′). For an approximate computation of any inte-
gral I ( j), j = 0, . . . , i different number of samples are chosen to satisfy the error
balancing requirements (Table1).

Table 1 Relative errors and computational time for computing u(x0) at point x0 = 0.5 usingMCM
for integral equations

i ε N Crude MC Sobol seq.

Rel. err. Time (s) Rel. err. Time (s)

1 0.4 128 0.05960 <0.0001 0.05916 <0.0001

2 0.14 1,024 0.00566 <0.0001 0.00670 <0.0001

2 0.08 4,096 0.00294 0.01 0.00712 <0.0001

3 0.02 32,768 0.00092 0.17 0.00204 0.01

4 0.018 65,536 0.00076 0.49 0.00096 0.03
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Table 2 Relative errors and computational time for computing u(x0) as a finite number (i) of
integrals from the LN series at x0 = 0.5 using Crude MCM

i N Integral equation FNI

Sobol seq. Crude MC Sobol seq. Crude MC

Rel. err. Time (s) Rel. err. Time (s) Rel. RN Rel. RN

1 128 0.05158 <0.0001 0.05197 <0.0001 0.00024 0.00016

2 1,024 0.01439 <0.0001 0.01405 <0.0001 2e-05 0.00033

2 4,096 0.01438 <0.0001 0.01422 <0.0001 5e-06 0.00015

3 32,768 0.00399 0.01 0.00404 0.11 1e-06 4e-05

4 65,536 0.00111 0.03 0.00108 0.63 1e-06 3e-05

Table 3 Relative errors and computational time for computing u(x0) as a finite number of integrals
from the LN series at x0 = 0.5 using MCA-MSS-1 and MCA-MSS-2 algorithms for integrals

i N ρ MCA-MSS-1 MCA-MSS-2

IE FNI IE FNI

Sobol CMCM Time Sobol CMCM CMCM

Rel. err. Rel. err. (s) Rel. RN Rel. RN Rel. RN Time (s) Rel. RN

1 128 2e-03 0.0516 0.0515 <1e-04 0.0003 0.0004 0.0514 <1e-04 0.0005

2 1017 2e-04 0.0144 0.0144 0.02 2e-06 2e-06 0.0144 0.02 2e-05

2 4,081 6e-05 0.0144 0.0144 0.14 2e-06 3e-06 0.0144 0.16 7e-06

3 32,749 8e-06 0.0040 0.0040 10.4 8e-07 8e-07 0.0040 10.73 1e-06

4 65,521 4e-06 0.0011 0.0011 54.9 1e-07 1e-07 0.0011 55.4 2e-07

Because of the bias of the first two classes of algorithms there is a reason to present
the relative errors, as well as, the approximation of the corresponding LN series with
a fixed length in Tables2 and 3, as well. We have used symbolic computations to
determine the values of the systematic error Rsys for number of iterations up to 3.

In Table4 we present the computed values for the systematic error Rsys at point
x0 = 0.1 and x0 = 0.5 just to have an idea about the magnitude of this kind of error.
One can clearly see that the systematic error decreases when the number of iterations
increase. At the same time, for such small number of iteration i the systematic error
dominates in almost all cases. The reason for that is that the analysis of balancing of
stochastic and systematic errors are done following the assumption that Crude MC
method is used.Actually, the applied algorithms, especially randomized quasi-Monte
Carlo algorithms MCA-MSS-1 and MCA-MSS-2 based on shaking of Sobol points
are of much higher quality and their stochastic errors RN are much smaller than their
systematic errors Rsys . Some typical values of RN are, say 10−6 for relatively small
number of random trajectories. These algorithms are very efficient when the norm of
the kernel is relatively small. Then one may increase (but not too much) the number
of iterations i , which will allow for a small number of N (and low computational
complexity) to have a relatively high accuracy.
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Table 4 Relative systematic error Rsys computed for three number of iterations i = 1, 2, 3 at two
points x0
x0 i = 1 i = 2 i = 3

x = 0.1 2.28 e-03 0.635 e-03 0.176 e-03

x = 0.5 51.8 e-03 14.3 e-03 3.99 e-03

4 Conclusion

In our investigation four biased Monte Carlo algorithms for numerical integration
have been applied. MCA-MSS-2 algorithm gives a slightly larger relative stochastic
error RN in comparison with MCA-MSS-1 related to the linear functional under
consideration, and smaller relative stochastic error (almost 10 times smaller for the
most cases) related to the finite number of integrals. Themain disadvantage ofMCA-
MSS-1 and MCA-MSS-2 algorithms is the high computational complexity due to
computing the minimal distance between the generated original Sobol sequences.
MCM-IE is reliable enough approach, but the technique of FNI leads to smaller
relative errors and give an opportunity to apply various algorithms for numerical
integration. A crucial step for the quality of the biased algorithm is balancing of both
stochastic RN and systematic Rsys errors. The algorithms based on evaluation of FNI
will suffer more from the effect of high dimensionality, because they are based on
quadrature points. The developed reliable approaches for solving integral equations
will be important in different areas of appliedmathematics, physics, and engineering.
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Conditional Boundedness of Generalized
Proportional Caputo Fractional
Differential Equations

Snezhana Hristova and Krasimira Ivanova

Abstract In this paper, we study generalized proportional Caputo fractional dif-
ferential equations via Lyapunov functions. We define conditional boundedness and
obtain some sufficient conditions. Several examples are provided to illustrate the
application of the proved conditions.

Keywords Generalized proportional caputo fractional derivative · Differential
equations · Lyapunov functions · Conditional boundedness

1 Introduction

In [7], Jarad, Abdeljawad, andAlzabut introduced a new type of fractional derivative,
the so-called generalized proportional fractional derivative. This type of derivative
preserves the semigroup property, possesses nonlocal character and, upon limiting
cases, it converges to the original function and its derivative [12]. Some stability prop-
erties ofUlam type for generalized proportional fractional differential equationswere
studied in [14]. We emphasize that the boundedness was not investigated yet. In this
paper, we study an initial value problem (IVP) for a nonlinear system of generalized
proportional Caputo fractional differential equations. We define conditional bound-
edness and obtain some sufficient conditions. The base of these conditions is the
application of Lyapunov functions. Several examples are provided to illustrate the
application of the proven conditions.
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2 Notes on Fractional Calculus

We recall that the generalized proportional fractional integral and the generalized
Caputo proportional fractional derivative of a function u : [a,∞) → R are defined
respectively by (as long as all integrals are well defined, see [7])

(aIα,ρu)(t) = 1

ραΓ (α)

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)α−1 u(s) ds,

t ∈ (a, b], α ≥ 0, ρ ∈ (0, 1],
(1)

and
(C

a Dα,ρu)(t) = (aI1−α,ρ(D1,ρu))(t)

= 1

ρ1−αΓ (1 − α)

∫ t

a
e

ρ−1
ρ (t−s)

(t − s)−α (D1,ρu)(s) ds,

for t ∈ (a, b], α ∈ (0, 1), ρ ∈ (0, 1],
(2)

where (D1,ρu)(t) = (Dρu)(t) = (1 − ρ)u(t) + ρu′(t).

Remark 1 If ρ = 1, then the generalized Caputo proportional fractional derivative
is reduced to the classical Caputo fractional derivative of order α ∈ (0, 1) : C

a Dα.

Remark 2 Note the generalized proportional Caputo fractional derivative easily
could be generalized for f ∈ C([a, b],Rn) via component-wise.

Remark 3 The generalized proportional Caputo fractional derivative of a constants
is not zero for ρ ∈ (0, 1).

Remark 4 The relation

(C
a Dα,ρe

ρ−1
ρ (.)

)(t) = 0 for t > a (3)

is known from [7, Remark 3.2].

Lemma 1 (Proposition 5.2 [7]) For ρ ∈ (0, 1] and q ∈ (0, 1), we have

(C
a Dq,ρ(e

ρ−1
ρ t

(t − a)β−1)(t) = ρqΓ (β)

Γ (β − q)
e

ρ−1
ρ t

(t − a)β−1−q , β > 0. (4)

We will use the explicit form of the solution of the initial value problem for the
scalar linear generalized proportional Caputo fractional differential equation which
is given in Example 5.7 [7] and which is (with necessary slight corrections) given in
the following result.
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Lemma 2 The solution of the scalar linear generalized proportional Caputo frac-
tional initial value problem

(C
a Dα,ρu)(t) = λu(t), u(a) = u0, α ∈ (0, 1), ρ ∈ (0, 1] (5)

has a solution

u(t) = u0e
ρ−1
ρ (t−a)Eα(λ(

t − a

ρ
)α), (6)

where Eα(t) is the Mittag–Leffler function of one parameter.

Lemma 3 ([2]) Let the function u ∈ C1([a, b],R) with a, b ∈ R, b ≤ ∞ (if b = ∞
then the interval is half open), and q ∈ (0, 1), ρ ∈ (0, 1] be two reals. Then,

(C
a Dq,ρu2)(t) ≤ 2u(t)(C

a Dq,ρu)(t), t ∈ (a, b]. (7)

The fractional derivatives for scalar functions could be easily generalized to the
vector case by taking fractional derivatives with the same fractional order for all
components.

3 Statement of the Problem and Basic Definitions

Consider the initial value problem (IVP) for a nonlinear system of generalized pro-
portional Caputo fractional differential equations with q ∈ (0, 1), ρ ∈ [0, 1]

C
t0 Dq,ρ

t y(t) = f (t, y(t)) for t > t0

y(t0) = y0,
(8)

where y0 ∈ R
n , the function f ∈ C([t0,∞) × R

n,Rn), f (t, 0) = 0 for t ≥ 0.
We will generalize Lipschitz stability for ordinary differential equations [6] to

systems of generalized proportional Caputo fractional differential equations.
The IVP for the system of generalized proportional Caputo fractional differ-

ential equations (8) is said to be conditionally bounded if there exist constants
M = M(q, ρ, t0) ≥ 1 and δ > 0, such that for any initial value y0 ∈ R

n : ||y0|| < δ
the inequality ||y(t; t0, y0)|| ≤ M holds for t ≥ t0.

Let J ⊂ R+, 0 ∈ J , ρ > 0. Consider the following sets:

K(J ) = {a ∈ C[J,R+] : a(0) = 0, a(r) is strictly increasing in J },
K(J ) = {a ∈ C[J,R+] : a(0) = 0, a(r) is strictly increasing in J, and

a(r) ≤ Kar for some constant Ka > 0},
Sρ = {x ∈ R

n : ||x || ≤ ρ}.
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Remark 5 The function a(u) = K1u, K1 > 0 is from the class K(R+) with Ka =
K1. The function a(u) = K2u2, K2 ∈ (0, 1] is from the classM([1,∞))with q(u) =√

u
K2

≥ 1 for u ≥ 1.

Lemma 4 ([8]). Let v ∈ C([a, b],R) be such that (t − a)1−qv ∈ C([a, b],R) and
there exists a point τ ∈ (a, b]: v(τ ) = 0 and v(t) ≤ 0 for t ∈ [a, τ ]. Then C

a Dq
τ v(τ ) ≥

0.

We will use the following scalar comparison scalar generalized proportional
Caputo fractional differential equation:

C
t0 Dq

t u(t) = g(t, u(t)) for t > t0, u(t0) = u0, (9)

where u, u0 ∈ R, g : [t0,∞) × R → R.

We obtain some comparison results.
We introduce the following condition:
(A) The function g(t, u) ∈ C([0,∞) × R+,R) is strictly decreasing w.r.t. its sec-

ond argument and g(t, 0) = 0 for t ≥ t0.
In our main results, we will use the conditional boundedness of the zero solu-

tion of the scalar comparison generalized proportional Caputo fractional differential
equation (9).

Example 1 Consider the scalar generalized proportional Caputo fractional differ-
ential equation

C
0 D0.25,0.5

t u(t) = 0.50.25Γ (7)

Γ (6.75)
t5.75 for t > 0, u(0) = u0. (10)

From Lemma 1, we get (C
0 D0.25,0.5(e−t t6)(t) = 0.50.25Γ (7)

Γ (7−0.25) e−t t6−0.25 and by Remark
4.

Thus, the solution of (10) is given by u(t) = (u0 + t6)e−t , t > 0, and it is con-
ditionally bounded with M = 120 > supt>0 e−t t6 and δ = 100 (see Fig. 1).

Example 2 Consider the scalar generalized proportional Caputo fractional differ-
ential equation

C
0 D0.4,0.5

t u(t) = 0.75u(t) for t > 0, u(0) = u0. (11)

From Lemma 2, the solution is u0e−t E0.4(0.75(2t)0.4). The solution is conditionally
bounded with M = 2.4 and δ = 1 (see Fig. 2).

Lemma 5 Assume the following conditions are satisfied:

1. The assumption (A) is satisfied.
2. The function x∗(t) = x(t; t0, x0) : [t0, T ) → �, x∗(.) ∈ Cq,ρ([t0, T )) is a solu-

tion of (8), where � ⊂ R
n, 0 ∈ �.
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Fig. 1 Graphs of the solutions of (10) with various initial values
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Fig. 2 Graph of the solution of (11) with x0 = 1 and the bound M = 2.4

3. The function V ∈ �([t0, T ),�) is such that for t ∈ [t0, T ), the inequality

C
t0 Dq,ρ

t V (t, x∗(t)) ≤ g(t, V (t, x∗(t)))

holds;

If V (t0, x0) ≤ u0, then the inequality V (t, x∗(t)) ≤ r(t) for t ∈ [t0, T ) holds,
where r(t) = r(t; t0, u0) is the maximal solution on [t0, T ) of (9) with u0 ≥ 0.

Proof Let m(t) = V (t, x∗(t)), t ≥ t0. We will prove

m(t) ≤ u(t), t ≥ t0. (12)

Let ε > 0 be an arbitrary number. We will prove

m(t) < u(t) + ε, t ≥ [t0, T ]. (13)
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Note m(t0) = V (t0, x0) ≤ u0 < u0 + ε, i.e., inequality (13) holds for t = t0. If the
inequality (13) is not true, then there exists a point t∗ ∈ (t0, s1], such that m(t∗) =
u(t∗) + ε, m(t) < u(t) + ε, t ∈ [t0, t∗).

From Lemma 4 with a = t0, b = s1, τ = t∗ and v(t) = m(t) − u(t) − ε, the
inequality C

t0 Dq
t m(t∗) ≥C

t0 Dq
t u(t∗) = g(t∗, u(t∗)) holds.

From conditions (A6) and 3(i), the inequality C
t0 Dq

t m(t∗) ≤ g(t∗, m(t∗)) =
g(t∗, u(t∗) + ε) < g(t∗, u(t∗)) holds. The contradiction proves the validity of
(13). Since ε is an arbitrary positive number, we obtain inequality (12) for
t ∈ [t0, s1]. �

4 Main Results

Theorem 1 Let the following conditions be satisfied:

1. Assumption (A) is fulfilled.
2. There exist a function V ∈ �(R+,Rn) and

(i) the inequalities

b(||x ||) ≤ V (t, x) ≤ a(||x ||), x ∈ R
n, t ∈ R+

holds, where a ∈ K([0, B]), b ∈ K([0, B]), B > 0;
(ii) for any initial data and any solution x(t) of (8) defined on [t0,∞), the

inequality
C
t0 Dq,ρ

t V (t, x(t)) ≤ g(t, V (t, x(t))), t > t0

holds.

3. The zero solution of (9) is conditionally bounded.

Then the zero solution of (8) is conditionally bounded.

Proof Let the zero solution of (9) be conditionally bounded. From condition 3, there
exist constants M ≥ 1 and δ > 0, such that for any u0 ∈ R : |u0| < δ1 the inequality

|u(t; t0, u0)| ≤ M for t ≥ t0 (14)

holds, where u(t; t0, u0) is a solution of (9) with the initial data (t0, u0).
From the inclusions a ∈ K([0, B]) and b ∈ M([0, B]), there exist a function qb(u)

and a positive constant Ka .Without loss of generality,we can assume Ka ≥ 1.Choose
the constant M1 such that M1 > max{1, b−1(a(B)), b−1(M)} and δ2 ≤ B

2M1
≤ B

2 ≤
B. Therefore, 2M1δ2 ≤ B.

Let δ = min
{
δ1, δ2,

δ1
Ka

}
. Choose the initial value x0 : ||x0|| < δ. Therefore,

||x0|| < δ ≤ δ2 ≤ B, i.e. x0 ∈ SB . Consider the solution x(t) = x(t; t0, x0) of system
(8) for the chosen initial data (t0, x0).
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Let u∗
0 = V (t0, x0). From the choice of x0 and the properties of the function a(u)

applying condition 2(i), we get u∗
0 = V (t0, x0) ≤ a(||x0||) ≤ Ka||x0|| < Kaδ ≤ δ1.

Therefore, the function u∗(t) satisfies (14) for t ≥ t0 with u0 = u∗
0, where u∗(t) =

u(t; t0, u∗
0) is a solution of (9) with an initial data (t0, u∗

0).
Let ε ∈ (0, M1] be an arbitrary number. We will prove

V (t, x(t)) < b(M1 + ε), t ≥ t0. (15)

For t = t0, we get V (t0, x0) ≤ a(||x0||) ≤ a(B) ≤ b(M1) ≤ b(M1 + ε), i.e.,
inequality (15) holds.

Assume (15) is not true. Therefore, there exists a point T > t0, such that
V (t, x(t)) < b(M1 + ε) for t ∈ [t0, T ), V (T, x(T )) = b(M1 + ε). Then for t ∈
[t0, T ] applying 2(i), we obtain the inequalities ||x(t)|| ≤ b−1(V (t, x(t)) ≤ M1 +
ε ≤ 2M1, i.e., x(t) ∈ S2M1 for t ∈ [t0, T ], and according to condition 2(ii) of The-
orem 1 with τ = T, it follows that condition 3(i) of Lemma 5 is satisfied for the
solution x(t) on the interval [t0, T ] and � = S2M1 .

According to Lemma 5, we get

V (t, x(t)) ≤ u∗(t) for t ∈ [t0, T ]. (16)

From inequality (16) and condition 2(i), we obtain

M1 < M1 + ε = b−1(V (T, x(T ))) ≤ b−1(u∗(T )) ≤ b−1(M) ≤ M1. (17)

The contradiction proves the validity of (15). From inequality (15) and condition
2(i), we have Theorem 1. �
Theorem 2 Let the conditions of Theorem 1 be satisfied where the condition 2(i) is
replaced by

2∗(i) the inequalitiesλ1(t)||x ||2 ≤ V ≤ λ2(t)||x ||2, x ∈ Sρ, t ∈ R
+ holds, where

λ1,λ2 ∈ C(R+, (0,∞)) and there exists positive constant A1, A2 : A1 < A2, such
that λ1(t) ≥ A1, λ2(t) ≤ A2 for t ≥ 0, and ρ > 0.

If the zero solution of (9) is conditionally bounded, then the zero solution of (8)
is conditionally bounded.

Proof The proof is similar to the one in Theorem 1, where M1 =
√

M A2
A1
.

Example 3 Consider the generalized proportional Caputo fractional differential
equations

C
0 D0.25

t x1(t) = 0.50.25Γ (7)

0.45Γ (6.75)
t5.75x1(t)e

−x2
1 (t) − 0.5x1(t) − x2(t),

C
t0 D0.25

t x2(t) = −0.5x2(t) + x1(t) for t > t0.

(18)

Let V (t, x) = x2
1 + x2

2 , x = (x1, x2). Then according to Lemma 3, for any t >

0, we get C
0 D0.25,0.5

t V (t, x(t)) ≤ 2x1(t) C
0 D0.25,0.5

t x1(t) + 2x2(t) C
0 D0.25,0.5

t x2(t) =
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Fig. 3 Graph of the function xe−x2
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Fig. 4 Graph of the solution of (11)

−x2
1 − x2

2 + 0.50.25Γ (7)
0.45Γ (6.75) t5.75e−x2

1 (t)x1(t) ≤ 0.50.25Γ (7)
Γ (6.75) t5.75 because −0.45 < xe−x2

<

0.45 (see Fig. 3).
Consider the scalar equation (10) whose solution according to Example 1 is condi-

tionally bounded. According to Theorem 1, the zero solution of (18) is conditionally
bounded.

Example 4 Consider the generalized proportional Caputo fractional differential
equations

C
0 D0.4,0.5

t x1(t) = 0.325x1(t) − x2(t),
C
t0 D0.4,0.5

t x2(t) = 0.325x2(t) + x1(t) for t > 0.
(19)

Let V (t, x) = x2
1 + x2

2 , x = (x1, x2). Then according to Lemma 3, for any
t > 0, we get C

0 D0.4,0.5
t V (t, x(t)) ≤ 2x1(t) C

0 D0.4,0.5
t x1(t) + 2x2(t) C

0 D0.4,0.5
t x2(t) =

0.75(x2
1 + x2

2 ) = 0.75V (t, x(t)).
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Fig. 5 Graph of the solution of (11)

Consider the scalar equation (11) whose solution according to Example 2 is condi-
tionally bounded. According to Theorem 1, the zero solution of (19) is conditionally
bounded (see Figs. 4 and 5).
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Practical Stability of Generalized
Proportional Caputo Fractional
Differential Equations by Lyapunov
Functions

Tzanko Donchev and Snezhana Hristova

Abstract The practical stability of a nonlinear nonautonomous Caputo fractional
differential equation is studied using Lyapunov-like functions. The novelty of this
paper is basedon the newdefinition of the derivative of aLyapunov like function along
the given fractional differential equation. Comparison results using this definition for
scalar fractional differential equations are presented. Several sufficient conditions
for practical stability, practical quasi-stability, strongly practical stability of the zero
solution, and the corresponding uniform types of practical stability are established.

Keywords Practical stability · Proportional caputo derivative · Lyapunov
functions

1 Introduction

Many practical qualitative questions and investigations of the properties of the equi-
librium of models are connected with stability. In the literature, there are various
types of stability. One of them is practical stability [14]. Note that this type of stabil-
ity is neither weaker nor stronger than the usual stability. Practical stability is studied
for various types of differential equations (see, for example, [3–7, 9, 11–13, 16]).

The stability of fractional order systems with proportional Caputo fractional
derivatives is quite recent (see, for example, [2]).

In this paper, the practical stability of nonlinear nonautonomous generalized pro-
portional Caputo fractional differential equations is defined and studied using Lya-
punov functions and comparison results. Sufficient conditions for practical stability,
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quasi-practical stability, and strong practical stability are obtained. Some examples
illustrate the obtained results.

2 Notes on Fractional Calculus

In engineering, the fractional order is q ∈ (0, 1) and we will restrict our considera-
tions to this case.

1: The generalized proportional fractional integral of a function u : [a,∞) → R
is defined by (as long as all integrals are well defined, see [10])

(aIq,ρu)(t) = 1
ραΓ (α)

∫ t
a e

ρ−1
ρ (t−s)

(t − s)q−1 u(s) ds,

t ∈ (a, b], q ≥ 0, ρ ∈ (0, 1]. (1)

2: The the generalized Caputo proportional fractional derivative of a function
u : [a,∞) → R is defined by (as long as all integrals are well defined, see [10])

(C
a Dq,ρu)(t) = (aI1−q,ρ(D1,ρu))(t)

= 1
ρ1−qΓ (1−q)

∫ t
a e

ρ−1
ρ (t−s)

(t − s)−q (Dρu)(s) ds,

for t ∈ (a, b], q ∈ (0, 1), ρ ∈ (0, 1], (2)

where (Dρu)(t) = (1 − ρ)u(t) + ρu′(t).

Remark 1 If ρ = 1, then the generalized Caputo proportional fractional deriva-
tive is reduced to the classical Caputo fractional derivative of order q ∈ (0, 1) :
(C

a Dq,ρu)(t) = C
a Dqu(t).

Remark 2 Note the generalized proportional Caputo fractional derivative is gener-
alized for u ∈ C([a, b], Rn) via component-wise.

Lemma 1 The generalized proportional fractional derivative of a constant K ∈ R
is

(C
a Dq,ρK )(t) = (1−ρ)K

ρ1−qΓ (1−q)

∫ t
a e

ρ−1
ρ (t−s)

(t − s)−q ds

= (1−ρ)K
ρ1−qΓ (1−q)

1
(

ρ−1
ρ )1+q [Γ (1 + q) − Γ (1 + q,

ρ−1
ρ

(t − a))] (3)

= K
ρ1−qΓ (1−q)

1
(ρ−1)q [Γ (1 + q,

ρ−1
ρ

(t − a)) − Γ (1 + q)] for t > a.

Remark 3 The relation

(C
a Dq,ρe

ρ−1
ρ (.)

)(t) = 0 for t > a (4)

is known from [10, Remark 3.2].
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Definition 1 We say u ∈ Cq,ρ([t0, T ], Rn) if u(t) is differentiable (i.e., u′(t) exists)
and the generalized proportional Caputo fractional derivative (C

a Dq,ρu)(t) exists.

We will use the explicit form of the solution of the initial value problem for the
scalar linear generalized proportional Caputo fractional differential equation which
is given in Example 5.7 [10] and which is (with necessary slight corrections) given
in the following result.

Lemma 2 The scalar linear generalized proportional Caputo fractional initial value
problem

(C
a Dα,ρu)(t) = λu(t), u(a) = u0, α ∈ (0, 1), ρ ∈ (0, 1] (5)

has a solution

u(t) = u0e
ρ−1
ρ (t−a)Eα(λ(

t − a

ρ
)α), (6)

where Eα(t) is the Mittag–Leffler function of one parameter.

We will recall the following property of the Mittag–Leffler function.

Proposition 1 (Theorem 1.2 [15]) For every q ∈ (0, 1), the function et

q − Eq(tq) is
completely monotonic.

As a partial case of Proposition 1, it follows

Corollary 1 Let q ∈ (0, 1). Then Eq(tq) < et

q , t ≥ 0.

In this paper, we will use the following result:

Lemma 3 ([2]) Let u ∈ Cq,ρ([t0,∞), Rn). Then, for any t ≥ t0, the inequality

(C
t0Dq,ρ

(
uT (.)u(.)

)
(t) ≤ 2 xT (t) (C

t0Dq,ρu)(t)

holds.

3 Preliminary Results

Consider the initial value problem (IVP) for the system of nonlinear fractional differ-
ential equations (FrDE) with a generalized proportional Caputo fractional derivative
for 0 < q < 1, ρ ∈ (0, 1],

(C
t0Dq,ρx)(t) = f (t, x(t)), x(t0) = x0 (7)

where x0 ∈ Rn, f ∈ C([t0,∞) × Rn, Rn), t0 ≥ 0 is a given number.
In this paper, wewill assume that, for any initial value (x0) ∈ Rn , the IVP for FrDE

(7) has a solution x(t; t0, x0) ∈ Cq,ρ([t0,∞), Rn). Note some sufficient conditions
for the existence of solutions of IVP for FrDE (7) are given in [8].
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The goal of our paper is to study various types of practical stability of the zero
solution of the IVP for FrDE (7). We now present some types of practical stability
of the zero solution of fractional differential equations. In the definition below, we
assume x(t; t0, x0) is any solution of the FrDE (7).

Definition 2 Let positive constants λ, A, λ ≤ A be given. The nonlinear system of
generalized proportional Caputo fractional differential equations (7) is said to be

(S1) (λ, A)—practically stable if, for any x0 ∈ Rn , the inequality ||x0|| < λ
implies ||x(t; t0, x0)|| < A for t ≥ t0;

(S2) (λ, A, T )—practically quasi-stable if, for any x0 ∈ Rn , the inequality ||x0|| <

λ implies ||x(t; t0, x0)|| < A for t ≥ t0 + T ;
(S3) (λ, A, K , T )—strongly practically stable if, for any x0 ∈ Rn , the inequality

||x0|| < λ implies ||x(t; t0, x0)|| < A for t ≥ t0 and ||x(t; t0, x0)|| < K for
t ≥ t0 + T , where the positive constants λ, A, K , T, K < λ < A are given.

The stability of the zero solution does not imply practical stability.
In this paper, we will use the followings sets:

K = {a ∈ C[R+, R+] : a is strictly increasing and a(0) = 0},
B(λ) = {x ∈ Rn : ‖x‖ < λ},
B̃(λ) = {x ∈ Rn : ‖x‖ ≤ λ} λ = const > 0.

In our results, wewill use the initial value problem for scalar fractional differential
equations of the following form:

c
t0 Dqu(t) = g (t, u(t)) , t > t0, u(t0) = u0 (8)

whereu0 ∈ R, g : [t0,∞) × R → R.Wewill assume in the paper for any initial value
u0 ∈ R the IVP for the scalar FrDE (8) has a solution u(t; t0, u0) ∈ Cq,ρ([t0,∞), R).

In this paper, we will study the connection between the practical stability of the
systemFrDE (7) and the practical stability of the scalar FrDE (8) by the helpwithLya-
punov functions V (t, x) ∈ C(J × Δ, [0,∞)) which are locally Lipschitzian with
respect to the second argument (here J = [t0, T ], T ≤ ∞, Δ ⊂ Rn).

In our further investigations, we will use the following comparison result by
Lyapunov functions.

Lemma 4 (Lemma 6 [1]) Assume the following conditions are satisfied:

1. The function x(t) = x(t; t0, x0) ∈ Cq,ρ([t0, T ],Δ) is a solution of the FrDE (7),
where Δ ⊂ Rn, t0, T ∈ R+, t0 < T ≤ ∞ are given constants, x0 ∈ Δ.

2. The function g ∈ C([t0, T ] × R, R).
3. The Lyapunov function V (t, x) ∈ C([t0, T ] × Δ, [0,∞)) and the inequality

(C
t0Dq,ρV (·, x(·))(t) ≤ g(t, V (t, x(t))), t ∈ (t0, T ) (9)

holds.
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4. The function u∗(t) = u(t; t0, u0) ∈ Cq,ρ([t0, T ], [0,∞)) is the maximal solution
of the initial value problem (8).

Then the inequality V (t0, x0) ≤ u0 implies V (t, x(t)) ≤ u∗(t) for t ∈ [t0, T ].
In some partial cases of the function g(t, x) in Lemma 4, we obtain the following

results:

Corollary 2 Assume the conditions of Lemma 4 are satisfied with g(t, u) ≡ 0. Then

for t ∈ [t0, T ] the inequality V (t, x(t)) ≤ V (t0, x0)e
ρ−1
ρ (t−t0) holds.

Corollary 3 Assume the conditions of Lemma 4 are satisfied with g(t, u) = K u,
where K ∈ (−∞,

1−ρ
ρ1−q ), K �= 0. Then the inequality

V (t, x(t)) ≤ V (t0, x0)e
ρ−1
ρ (t−t0)Eq(K (

t − t0
ρ

)q), t ∈ [t0, T ]

holds.

4 Main Results

We obtain some sufficient conditions for the practical stability of the system FrDE
(7).

Theorem 1 Suppose the following conditions hold:

1. The function g ∈ C([t0,∞) × R, R).
2. There exists Δ ⊂ Rn, such that for any x0 ∈ Δ the FrDE (7) has a solution

x(t) = x(t; t0, x0) ∈ Cq,ρ([t0,∞),Δ).
3. There exists a Lyapunov function V ∈ C([t0,∞) × Δ, [0,∞)) and there exists a

constant A > 0 such that B̃(A) ⊂ Δ such that

(i) for any solution of (7) x(.) ∈ B̃(A), t ≥ t0, the inequality

(C
t0Dq,ρV (·, x(·))(t) ≤ g(t, V (t, x(t))), t > t0 (10)

holds;
(ii) b(||x ||) ≤ V (t, x) ≤ a(||x ||) for t ≥ t0, x ∈ B̃(A), where a, b ∈ K.

4. The scalar FrDE (8) is (a(λ), b(A))—practically stable, where the constant λ > 0
is given such that λ ≤ A, a(λ) ≤ b(A).

Then the zero solution of the system of FrDE (7) is (λ, A)—practically stable.

Proof Let the couple (λ, A) be as it is described in conditions 3(ii) and 4. According
to condition 4, if the initial value u0 be such that |u0| < a(λ), then the inequality
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|u(t; t0, u0)| < b(A) for t ≥ t0, (11)

holds, where u(t; t0, u0) is a solution of (8).
Choose the initial value x0 ∈ B(λ) ⊂ Δ. According to condition 2, the corre-

sponding solution x(t) = x(t; t0, x0) ∈ Δ, t ≥ t0. We will prove the inequality

‖x(t)‖ < A for t ≥ t0. (12)

Since ||x0|| < λ ≤ A inequality (12) holds for t = t0. Assume (12) is not true. Thus,
there exists a point τ > t0 such that

‖x(t)‖ < A for t ∈ [t0, τ ) and ‖x(τ )‖ = A. (13)

Thus, x(·) ∈ B̃(A), t ∈ [t0, τ ]. Let u0 = V (t0, x0). According to condition 3(ii) and
the choice of x0, we obtain u0 < a(λ). From Lemma 3 with Δ = B̃(A) and T = τ ,
we obtain

V (t, x(t)) ≤ u∗(t; t0, u0) for t ∈ [t0, τ ]; (14)

where u∗(t; t0, u0) is the maximal solution of (8). From inequalities (14), (11) and
condition 3(ii), we get

b(A) = b(‖x(τ )‖) ≤ V (τ , x(τ )) ≤ u∗(τ ; t0, u0) < b(A). (15)

The obtained contradiction proves inequality (12) is true. Thus, the zero solution of
FrDE (7) is (λ, A)—practically stable.

Theorem 2 Suppose the following conditions hold:

1. The conditions 1 and 2 of Theorem 1 are fulfilled.
2. There exists a Lyapunov function V ∈ C([t0,∞) × Δ, [0,∞)) such that

(i) for any solution of (7) x(·) ∈ Δ, t ≥ t0, the inequality

(C
t0Dq,ρV (·, x(·))(t) ≤ g(t, V (t, x(t))), t > t0 (16)

holds;
(ii) b(‖x‖) ≤ V (t, x) ≤ a(‖x‖) for t ≥ t0, x ∈ Δ, where a, b ∈ K.

3. The zero solution of the scalar FrDE (8) is (a(λ), b(A), T )—practically quasi-
stable, where the positive constants T,λ, A are given such that λ < A, a(λ) <

b(A), B(A) ⊂ Δ.

Then the zero solution of the system of FrDE (7) is (λ, A, T )—practically quasi-
stable.

Proof Let the triple (λ, A, T ) be determined as in condition 4. Then, from condition
4, for any initial time |u0| < a(λ), the inequality
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|u(t; t0, u0)| < b(A) for t ≥ t0 + T, (17)

holds where u(t; t0, u0) is a solution of (8) (with u(t0) = u0).
Choose the initial value x0 ∈ B(λ) ⊂ Δ and let x(t) = x(t; t0, x0) ∈ Δ be the

corresponding solution of (7). We will prove the inequality

‖x(t)‖ < A for t ≥ t0 + T (18)

is true. Assume the contrary, i.e., there exists a point τ ≥ t0 + T such that ||x(τ )|| ≥
A.

Let u0 = V (t0, x0). According to condition 2(ii) and the choice of x0, we obtain
u0 < a(λ). From Lemma 3 with T = τ , we obtain

V (t, x(t; t0, x0)) ≤ u∗(t; t0, u0) for t ∈ [t0, τ ]; (19)

where u∗(t; t0, u0) is the maximal solution of (8).
From inequality (19) and condition 2(ii), we get

b(A) ≤ b(||x(τ )||) ≤ V (τ , x(τ )) ≤ u∗(τ ; t0, u0) < b(A). (20)

The obtained contradiction proves that inequality (18) is true. Therefore, the zero
solution of FrDE (7) is (λ, A, T )—practically quasi-stable.

Theorem 3 Suppose the following conditions hold:
1. The conditions 1 and 2 of Theorem 1 and condition 2 of Theorem 2 are fulfilled.
2. The zero solution of scalar FrDE (8) is (a(λ), b(A), b(K ), T )—strongly practi-
cally stable, where the positive constants T,λ, A, K are given such that K < λ <

A, b(K ) < a(λ) < b(A), B(A) ⊂ Δ.
Then the zero solution of the system of FrDE (7) is (λ, A, K , T )—strongly prac-

tically stable.

The proof of Theorem 3 is similar to that in Theorems 1 and 2, so we omit it.

Remark 4 Note, in the conditions of Theorems 1, 2, and 3, we could have Δ ≡ Rn .
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Nonlinear Evolution Inclusions with
Causal Operators

Tzanko Donchev, Nikolay Kitanov, Alina I. Lazu, and Stanislav Stefanov

Abstract In this paper, we study nonlocal problems described by multivalued per-
turbations of m-dissipative evolution equations with multivalued terms depending
on causal operators. The existence of the solution and some qualitative properties of
the solution set are considered using the measure of noncompactness or dissipative
type conditions.

Keywords m-Dissipative evolution equations · Causal operators

1 Introduction and Preliminaries

Let X be a real Banach space endowed with the norm |·|, A : D(A) ⊂ X ⇒ X
an m-dissipative operator, F : I × X ⇒ X a multifunction with nonempty closed
boundedvalues,where I = [−τ , T ], τ , T > 0, andQ : C(I, X) → C(I, X) a causal
operator.

In this paper, we study the following problem with the nonlocal initial condition:

⎧
⎪⎨

⎪⎩

ẋ(t) ∈ Ax(t) + fx (t), t ∈ (0, T )

fx (t) ∈ F(t, Q(x)(t))

x(s) = g(x(·))(s), s ∈ [−τ , 0],
(1)

T. Donchev · S. Stefanov
Department of Mathematics, UACG, 1 Hr. Smirnenski bvd, 1046 Sofia, Bulgaria
e-mail: stanislav.toshkov@abv.bg

N. Kitanov (B)
Department of Mathematics, South West University, Blagoevgrad, Bulgaria
e-mail: nkitanov@abv.bg

Institute of Mathematics and Informatics - Bulgaria Academy of Sciences, Sofia, Bulgaria

A. I. Lazu
Department of Mathematics, Gh. Asachi Technical University, 700506 Iasi, Romania

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Slavova (ed.), New Trends in the Applications of Differential Equations in Sciences,
Springer Proceedings in Mathematics & Statistics 412,
https://doi.org/10.1007/978-3-031-21484-4_39

433

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21484-4_39&domain=pdf
mailto:stanislav.toshkov@abv.bg
mailto:nkitanov@abv.bg
https://doi.org/10.1007/978-3-031-21484-4_39


434 T. Donchev et al.

where g : C(I, X) → C([−τ , 0], X) is a given function such that g(x(·))(0) ∈ D(A)

for any x(·) ∈ C(I, X).
The theory of causal differential equations has the powerful quality of unifying

ordinary differential equations, integro-differential equations, differential equations
with finite or infinite delay, Volterra integral equations, and neutral equations. Causal
operators have been introduced in [9]. The problems with causal operators include
time lag systems [4, 7, 8, 15, 19] in local or nonlocal case. Causal differential
equations are studied in [16, 17] in Banach space. We refer the reader to [3, 6,
11] for the theory of m-dissipative systems. The nonlocal multivalued perturbations
of m-dissipative operators are studied among others in [2, 5, 20, 21]. The case of
multivalued nonlocal semilinear problems with causal operators is considered in [1,
12, 13].

To our knowledge, the present article is the first one devoted to fully nonlinear
evolution systems involving causal operators. We study the existence of solutions
and qualitative properties of the solution set under compactness or dissipative type
assumptions.

The compactness type assumptions are mainly in two directions.
(Cs) One is to assume that A generates a compact semigroup. In this case, the

state space is assumed to be separable and one has to use some conditions on F ,
such as F(·, ·) has weakly compact values or the Banach space X is assumed to be
reflexive. This approach is not used in the present paper.

(Mnc) The second one is to assume that A generates an equicontinuous semigroup,
while F(·, ·) satisfies some measure of noncompactness (MNC) type condition.
In this case, the solution set is nonempty and compact; however, one has to use
additional assumptions such as X has uniformly convex dual or A is a sum of linear
and continuous dissipative operators.

Another type of assumption is of dissipative type.
(L) Assume that F(t, ·), Q, and g are Lipschitz. Imposing some conditions on the

Lipschitz constants, one can prove the existence of solutions and some qualitative
properties as continuous dependence of the initial conditions and relaxation theorem
when the dual operator is single valued, which is the case when X∗ is locally smooth.

To prove the existence of solutions for the nonlocal problem, one has to investigate
first the corresponding local problem.

Let f (·) be a Bochner integrable function. A continuous function x : [t0, T ] →
D(A) is said to be an integral solution of

{
ẋ(t) ∈ Ax(t) + f (t),

x(t0) = x0 ∈ D(A)
(2)

if x(t0) = x0 and for every u ∈ D(A), v ∈ Au, and t0 ≤ s ≤ t ≤ T , the following
inequality holds:

|x(t) − u| ≤ |x(s) − u| +
∫ t

s
[x(τ ) − u, f (τ ) + v]+dτ . (3)
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The function f (·) in (2) will be called pseudoderivative of x(·) and will be denoted
by fx (·). Notice that fx (·) depends on both x(·) and A. It is well known (cf. [3, 6])
that if x(·) and y(·) are the solutions of (2) with pseudoderivatives fx (·) and fy(·)
and initial conditions x0 and y0, then

|x(t) − y(t)| ≤ |x0 − y0| +
∫ t

0
| fx (s) − fy(s)|ds. (4)

The Hausdorff metric in the space of the closed bounded subsets of X is
DH (A, B) := max{Ex(A, B), Ex(B, A)}, where Ex(A, B) = supa∈A infb∈B |a −
b|. If a ∈ X and B ⊂ X , then the distance between a and B is dist (a, B) =
infb∈B |a − b|. We denote by B the closed unit ball in X . The multifunction
G : I × X ⇒ X is said to be upper semicontinuous (USC) at (t, x) if for every
ε > 0 there exists δ > 0 such that DH (G(t, x)),G(s, y)) < ε for any (s, y) with
|s − t | + |x − y| < δ. It is called almost USC if for any ε > 0 there exists a compact
set Iε ⊂ I with Lebesgue measure meas(I \ Iε) < ε such that G|Iε×X is USC. The
multifunctionG : I × E ⇒ E is said to be continuous if it is continuous with respect
to the Hausdorff metric. It is called almost continuous if for any ε > 0 there exists
a compact set Iε ⊂ I with Lebesgue measure meas(I \ Iε) < ε such that G|Iε×E is
continuous.

Definition 1 An operator Q : C(I, X) → C(I, X) is called causal if for every s ∈
[0, T ] and any u(·), v(·) ∈ C(I, X) such that u(t) = v(t) when t ∈ [0, s] one has
(Qu)(t) = (Qv)(t) for t ∈ [0, s].

Clearly, this definition implies that the casual operator is similar to the delay
operator xt . However, (Qu)(t) depends on the values of u(·) in the whole interval
[−τ , t] in contrast with xt which depends on the values of x(·) only on [t − τ , t]. Of
course, xt is also a casual operator.

The Hausdorff measure of noncompactness of a nonempty bounded subset A of
a Banach space E is defined by

χ(A) = inf{ε > 0; A admits a finite cover by balls of radius ≤ ε}.

We recall some properties of χ.

(1) χ(A) = 0 if and only if A is compact.
(2) If {An}n≥1 is a decreasing sequence of bounded closed nonempty subsets of X

and lim
n→∞ χ(An) = 0, then

⋂∞
n=1

An is nonempty and compact.

We will use also sequential MNC, generated by χ(·), defined by

χ0(A) = sup{χ({xn : n ≥ 1}); (xn) is a sequence in A}.

If E is separable, then χ0(Ω) = χ(Ω). In arbitrary Banach space E , we have
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χ0(Ω) ≤ χ(Ω) ≤ 2χ0(Ω), (5)

for every bounded Ω ⊂ X .
For more information about MNC, we refer the reader to [14, 18].

2 Compactness Type Conditions

In this section, X is a Banach space with uniformly convex dual X∗. We introduce
the following hypotheses:

(A) A ism-dissipative andgenerates an equicontinuous semigroup S(t) : D(A) →
X , t ≥ 0.

Notice that we can assume, without loss of generality, that 0 ∈ D(A) and 0 ∈ A0.
(F1) F(·, ·) is almost upper semicontinuous with nonempty closed convex

bounded values.
(F2) There exist two Lebesgue integrable functions a(·) and b(·) with positive

values such that ‖F(t,α)‖ := maxv∈F(t,α) |v| ≤ a(t) + b(t)|α| for a.a. t ∈ I and any
α ∈ X .

(F3) There exists a Lebesgue integrable function λ(·) such that χ(F(t, B)) ≤
λ(t)χ(B), for any nonempty bounded set B ⊂ X and for a.a. t ∈ I .

(g1) There exists a constant K > 0 such that ‖g(x(·)) − g(y(·))‖ ≤ K‖x(·) −
y(·)‖ for any x(·), y(·) ∈ C([−τ , T ], D(A)).

(g2) g(·) is a continuous compact map and there exist two constants p, q > 0 such
that ‖g(u(·))‖ ≤ p‖u(·)‖ + q for any u(·) ∈ C([−τ , T ], D(A)).

(Q1) Q is a continuous causal operator and there exists L > 0 such that‖Qu(·)‖ ≤
L‖u(·)‖ for any u(·) ∈ C([−τ , T ], D(A)).

(Q2) There exists a constant R > 0 with χ(QV ) ≤ Rχ(V ) for each bounded set
V ⊂ C([−τ , T ], X).

Denote by P = maxt∈I ‖S(t)‖. We need also the following assumption:

(L) K + R
∫ T

0
λ(t)dt < 1 − PK .

Lemma 1 ([20, Theorem 2.1]) If A generates an equicontinuous semigroup, B ⊂
L1([0, T ], X) is uniformly integrable, and C ⊂ D(A) is compact, then the set of
integral solutions of (2) for some fx ∈ B and some x0 ∈ C is bounded and equicon-
tinuous.

Denote α =
∫ T

0
a(t)dt and β =

∫ T

0
b(t)dt . Further, in this paper, we assume

that p + Lβ < 1.

Lemma 2 There exists a constant M > 0 such that for any z(·) ∈ C([−τ , T ], X)

with ‖z(·)‖ ≤ M we have ‖x(·)‖ ≤ M for any solution x(·) of
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⎧
⎪⎨

⎪⎩

ẋ(t) ∈ Ax(t) + fx (t), t ∈ (0, T )

fx (t) ∈ F(t, Q(z)(t))

x(s) = g(z(·))(s), s ∈ [−τ , 0].
(6)

Proof Let M := q + α

1 − p − Lβ
. Take z(·) ∈ C([−τ , T ], X) with ‖z(·)‖ ≤ M and let

x(·) be a solution of (6). Then, due to (g2), (F2), and (Q1),

|x(t) − 0| ≤ p‖z(·)‖ + q +
∫ t

0
[a(s) + Lb(s)‖z(·)‖]ds (7)

≤ p‖z(·)‖ + q +
∫ t

0
a(s)ds + L‖z(·)‖

∫ t

0
b(s)ds (8)

= q + α + (p + Lβ)‖z(·)‖, (9)

which leads to ‖x(·)‖ ≤ M.

We will use the following theorem proved in [10].

Theorem 1 Let � be a convex compact subset of a Banach space. If � : � ⇒ �

is with closed graph and compact contractive values, then there exists a fixed point
z ∈ �(z).

The main existence results with MNC are the following two theorems.

Theorem 2 Under the conditions (A), (F1)–(F3), (g2), (Q1), (Q2) there exists a
solution of the nonlocal problem (1). Furthermore, the solution set is compact in
C(I, X).

Proof Consider the map sol : C(I, X) ⇒ C(I, X), where sol(z) is the solution set
of the problem (6) for any z(·) ∈ C(I, X).

I. First, we prove that there exists a nonempty convex compact set M ⊂
C([−τ , T ], X) such that sol : M ⇒ M.

To this end, let M1 = co
⋃

z(·)∈C(I,X)
‖z(·)‖≤M

{x(·); x(·) ∈ sol(z)}.
We define inductively the sequence of sets (Mn) as follows:

Mn+1 = co
⋃

z(·)∈Mn

{x(·); x(·) ∈ sol(z)}.

Then Mn+1 ⊂ Mn , i.e., χ(Mn+1) ≤ χ(Mn). Let Mn(t) =
⋃

x(·)∈Mn

{x(t)}, i.e.,
the reachable set. Thus, χ(Mn+1(t)) ≤ χ(Mn(t)) for every t ∈ I .

From inequality (5), for any ε > 0 there exists a sequence {uk}k≥1 ⊂ Mn and a
sequence fk(·) ∈ L1([−τ , T ], X) such that fk(t) ∈ F(t, Q(uk)(t)) and, in view of
[6, Lemma 3.7, p. 39] (see also [21, Lemma 3.3]), using (F3), (Q2), we have
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χ(Mn+1(t)) ≤ χ({W (uk, fk)(t); k ≥ 1}) + ε ≤ 2R
∫ t

0
λ(t)χ(Mn(s))ds + ε,

where W (uk, fk) denotes the solution set of (6) with uk instead of z and fk instead
of fx .

Since ε > 0 is arbitrary, χ(Mn+1(t) ≤ 2R
∫ t

0
λ(t)χ(Mn(s))ds. Let β(t) :=

limn→∞ χ(Mn(t)), then β(t) ≤ 2R
∫ t
0 λ(s)β(s)ds. Due to Gronwal’s inequality,

β(t) = 0. Lemma 1 together with Arzela’s theorem imply that
⋂

n≥1
Mn = M

is nonempty and compact.
II. We prove that the multifunction z 
→ sol(z) has a closed graph.
To this aim, let yn → y uniformly on [−τ , T ] and let xn(·) ∈ sol(yn). Since

{xn(·)}∞n=1 ⊂ M and the latter is nonempty convex and compact, passing to subse-
quences, xn(·) → x(·) uniformly on [−τ , T ]. If fn(·) are the corresponding pseudo-
derivatives, then fn(t) ∈ M1 for every t ∈ [0, T ]. Furthermore,M1 is weakly com-
pact and Diestel’s criterion tells us that { fn(·)}n≥1 is weakly L1([0, T ], X)-compact.
Then, passing to subsequences, fn(·) ⇀ f (·) L1-weakly. Since F(·, ·) is USC with
convex and compact values, we get that x(·) is a solution of (6).

III. Now, we prove that sol(z) is compact contractible for any z ∈ M.
Since sol(z) ⊂ M, one has that it is compact when it is closed. Then sol(z) is

compact thanks to II.
Let z(·) ∈ M and let x(·) ∈ sol(z) have pseudoderivative fx (·). We define the

homotopy h : [0, 1] × sol(z) → sol(z) as follows:

h(s, x)(t) =
{
x(t), t ∈ [0, sT ]
yx (t, sT, y(sT )), t ∈ [sT, T ],

where ẏx (t) ∈ Ayx (t) + f̄ y(t), y0(s) = y(z(·))(s). Moreover,

f̄ y(t) =
{
fx (t), t ∈ [0, sT ]
fy(t), t ∈ [sT, T ]

for any y ∈ sol(z). Clearly, h(0, x)(t) = y(t) and h(1, x)(t) = x(t). Notice that the
solution set of (6) is continuous on the initial condition, because g(·) and Q(·) are
continuous. Therefore, h(·, x) is continuous and hence sol has contractible values.

Finally, we apply Theorem 1 to complete the proof.

Theorem 3 Let X be separable. Under the conditions (A), (F1)–(F3), (g1), (Q2),
(L) there exists a solution of the nonlocal problem (1). Furthermore, the solution set
is compact in C(I, X).
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Proof The proof follows similar lines as the proof of the previous theorem. Denote
by Sol(z) the solution set of the evolution inclusion

{
ẋ ∈ Ax + F(t, z(t)),

x0(s) = g(z(·))(s), s ∈ [−τ , 0]

for any z ∈ C([−τ , T ], X).
It follows from Lemma 2 that there exists a closed convex bounded subset U of

D(A) such that Sol : U ⇒ U.
Denote byW0 = Sol(z(·)), z(·) ∈ U. By induction,we defineWn+1 = co Sol(z),

z ∈ Wn . Clearly, Wn+1 ⊂ Wn . Denote Wn(t) the corresponding reachable set. Since
X is separable, one has that χ0(B) = χ(B) for every bounded set B. Therefore,
χ(Wn+1) = χ0(Wn+1). Clearly,

χ(Wn+1(t)) ≤ K sup
t∈[0,T ]

χ(Wn(t)) + R
∫ t

0
λ(s)χ(Wn(s))ds.

Thus,

sup
t∈[0,T ]

χ(Wn+1(t)) ≤ K sup
t∈[0,T ]

χ(Wn) + R sup
t∈[0,T ]

χ(Wn(t))
∫ t

0
λ(s)ds + ε

=
(

K + R
∫ T

0
λ(t)dt

)

sup
t∈[0,T ]

χ(Wn(t)).

Due to (L), limn→∞ supt∈[0,T ] χ(Wn(t)) = 0. The latter implies that, for any t ∈
[0, T ], there exists limn→∞ Wn(t) = W (t). Due toGronwall’s inequality,χ(W (t)) =
0 for any t ∈ [0, T ].

Therefore, the solution set of (1) sol(z) : z0 ∈ W (0) is equicontinuous. Therefore,
W = limn→∞ Wn exists and it is nonempty convex and compact set.

The rest of the proof is the same as in the proof of the previous theorem.

3 Lipschitz Type Conditions

In this section, X is an arbitrary Banach space and we assume that the right-hand
side and the initial function are Lipschitz continuous. Moreover, we don’t assume
that F has convex strongly compact values, an assumption used in the MNC case.
However, in this case, the continuity assumptions on F are stronger.

We need the following assumptions:
(FF1) F(·, ·) is almost continuous with nonempty closed bounded values. More-

over, ‖F(t, 0)‖ ≤ a(t) for some L1 positive function a(·). If X is separable, then we
can drop almost the continuity of F and replace it with F(·,α) measurable.
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(FF2) There exists a positive function μ(·) such that

DH (F(t, (Qx)(t)), F(t, (Qy)(t)) ≤ μ(t)‖(Qx)(t) − (Qy)(t)‖,

for any x(·), y(·) ∈ C([−τ , T ], X).
(Q3) There exists a constant N > 0 such that |(Qx)(t) − (Qy)(t)| ≤ N |x(t) −

y(t)|.
(C) K + exp

(

N
∫ T

0
μ(t)dt

)

:= α < 1.

Then, the following lemma holds.

Lemma 3 Let x(·) ∈ C([−τ , T ], X) and let fx (t) ∈ F(t, Q(x)(t)) be measurable.
Then, under (FF1), (FF2), (Q3), for any y(·) ∈ C([−τ , T ], X) and any ε > 0 there
exists fy(t) ∈ F(t, (Qy)(t)) such that | fx (t) − fy(t)| < Nμ(t)‖x(·) − y(·)‖ + ε.

The proof is almost the same as the proof of Proposition 2.1 of [2] and it is omitted.

Theorem 4 Under the assumptions (FF1), (FF2), (g1), (Q3), and (C), the problem
(1) has a solution.

Proof Wewill use successive approximations. Let x0(·) ∈ C(I, X). We define x1(·)
to be a solution of ⎧

⎪⎨

⎪⎩

ẋ1(t) ∈ Ax1(t) + f1(t)

f1(t) ∈ F(t, (Qx0)(t)),

x1(s) = g(x0(·))(s), s ∈ [−τ , 0].

For δn > 0, we define successively xn+1(·) to be the solution of
{
ẋ n+1(t) ∈ Axn+1(t) + fn+1(t)

xn+1(s) = xn(s), s ∈ [−τ , 0].

Due to Lemma 3, we can choose fn+1(t) ∈ F(t, (Qxn)(t)) to satisfy

| fn+1(t) − fn(t)| < Nμ(t)‖|xn(·) − xn−1(·)‖ + δn. (10)

It follows from (4) that

|xn+1(t) − xn(t)| ≤ |xn+1(0) − xn(0)| +
∫ t

0
| fn+1(s) − fn(s)|ds (11)

< |(g(xn(·))(0) − g(xn−1(·))(0)| +
∫ t

0
(Nμ(s)‖xn(·) − xn−1(·)‖ + δn)ds (12)

≤
(

K + N
∫ T

0
μ(s)ds

)

‖xn(·) − xn−1(·)‖ + δnT . (13)
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Clearly, one can choose δn such that δnT <
1 − α

2
. Consequently,

‖xn+1(·) − xn(·)‖ ≤ 1 + α

2
‖xn(·) − xn−1(·)‖

and hence xn(·) → x(·) uniformly on I . Further, from (10), we get that fn(t) → f (t)
in L1([0, T ])-strongly. It is easy to show that ẋ(t) ∈ Ax(t) + f (t) and hence x(·) is
a solution of (1).
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Non-positivity of Operators Gs,n+

Teodora Zapryanova

Abstract The paper gives an example of a function, which is positive on [−1, 1],
but it’s image by the operator G+s,n is not positive on [−1, 1].

Keywords K-functional · Moduli of functions · Linear operators

1 Introduction

In a recent years, we studied the rate of approximation by the operators Gs, n , G∗
s, n ,

G+
s, n (see [7–9]). We established equivalence between the error of approximation by

these operators and an appropriate Peetre K-functionals. Let us briefly list some of
these results.

In [7], the following K-functional was introduced:

K
(
f, t;C[−1, 1],C2, H

) = inf
{‖ f − g‖ + t‖Hg‖ : g ∈ C2

}
,

where the differential operator

H1(g(x)) := (
1 − x2

) 1
2
d

dx
(g(x)),

H( f (x)) := (H1)
2( f (x)) = (

1 − x2
)
f ′′(x) − x f ′(x).

Let f ∈ C[−1, 1], n ∈ N , s ∈ N

Gs,n( f, x) :=
π∫

−π

f (cos(arc cos x + v))Ks,n(v)dv,
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Ks, n(v) = μs, n

(
sin(nv/2)

sin(v/2)

)2s

= 1

2
+

sn−s∑

k=1

ρk,sn−s cos kv.

Ks, n(v) is even, non-negative trigonometric polynomial of degree less or equal

to m(n) = sn − s, where μs,n is chosen, such that
π∫

−π

Ks,n(v)dv = 1 (see [3]).

It was proved in the following.

Theorem A (see [7]) For f ∈ C[−1, 1] and s ≥ 3, we have

∥∥Gs, n f − f
∥∥ ∼ K ( f,

1

n2
; C[−1, 1], C2, H), n ∈ N.

The notation θ1( f, t) ∼ θ2( f, t) means that there exists a positive constant
independent of f and t such that

C−1θ1( f, t) ≤ θ2( f, t) ≤ Cθ1( f, t).

Above and throughout C denotes a positive constant, not necessarily the same at
each occurrence, which is independent of the function f and the parameter n (or t).

In [2], Badea generalized to a large class of continuous linear operators T on
C[0, 1], the convergence results of the iterates of Bernstein operator Bm toward L-
operator of linear interpolation at the endpoints of the interval [0, 1]. The conditions
required for T include preserving linear function. In contrast, our result in [10] gives
similar method based on spectral theory for operators preserving only the constant
functions. In this case, the limit of the iteratesGm

s, n of the Jackson-type operatorGs, n

is toward a suitable linear functional P : C[−1, 1] → C[−1, 1], defined by

P f = 1

π

1∫

−1

f (x)√
1 − x2

dx = 1

π

π∫

0

f (cos t)dt, where x = cos t.

We proved the following.

Theorem B (see [10]) With γ0 := max
1≤ j≤m(n)

{ ∣
∣ρ j,m(n)

∣
∣} we have

∥∥Gm
s, n − P

∥∥ ≤ Cγ m
0

for some suitable positive constant C and therefore

lim
m→∞

∥
∥Gm

s,n − P
∥
∥ = 0.

TheoremBgave an answer to the openproblemofGonska on the limit of iterates of
Jackson-type operator proposed in 2013 during the conference Constructive Theory
of Function.
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“Korovkin-type theorems” furnish simple and useful tools for ascertaining
whether a given sequence of positive linear operators converges to the identity oper-
ator. In 1953, Korovkin considered a test monomial functions 1, x, and x2 which
guarantee that the approximation property holds on the whole space provided it
holds on them (see, e.g., [1, p. 218]). Indeed let Ln : C[0, 1] → C[0, 1] be sequence
of positive linear operators and eλ(x) = xλ, x ∈ [0, 1], λ ≥ 0(e0 ≡ 1). Then

Ln(e0) = e0, Ln(e1) = e1, Ln(e2) → e2 ⇒ Ln( f ) → f,∀ f ∈ C[0, 1]
and

Ln(e0) = e0, Ln(e2) = e2, Ln(e1) → e1 ⇒ Ln( f ) → f,∀ f ∈ C[0, 1].
However, attempts to find positive linear polynomial operators Ln : C[0, 1] →
C[0, 1] such that

Ln(e1) = e1 and Ln(e2) = e2

failed. In this direction, Gavrea and Ivan [5] proved that there is no positive linear
analytic operator L : C[0, 1] → C[0, 1] preserving ei and e j , 0 < i < j. It is
the positivity property that keeps analytic operators away from possessing more
monomial fixed points (see Remark 2 in [5]).

2 Operator G+
s, n

Let L f be a linear operator that interpolates f at −1 and 1

L( f, x) := 1

2
f (1)(x + 1) + 1

2
f (−1)(1 − x), −1 ≤ x ≤ 1. (1)

We note that the uniform norm of the operator L is 1. We consider the sequence
of operators G+

s, n : C[−1, 1] → �sn−s , introduced in [3]

G+
s, n( f, x) = Gs, n( f, x) + L( f, x) − L(Gs, n f, x)

= Gs, n( f, x) + L
(
(I − Gs, n) f, x

)
.

(2)

In contrast to the operator Gs, n the operator G+
s, n is not positive. We give an

example of a function that illustrates this. Let us recall that the operator � is said to
be positive if �( f ) ≥ 0 for any non-negative function f on [a, b]. Let ‖ f ‖ :=
max{| f (x)| : −1 ≤ x ≤ 1} for f ∈ C[−1, 1]. We consider for f ∈ C[−1, 1] the
K -functional
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K+
(
f,

1

n2
; C[−1, 1], C2, H(I − L)

)

:= inf

{
‖ f − g‖ + 1

n2
‖(I − L)Hg‖ : g ∈ C2

}
.

In [8]we proved direct and strong converse inequality of typeA in the terminology
of [4]. More precisely, our result is given in the following

Theorem C If f ∈ C[−1, 1] and s ≥ 3, then for the operator G+
s, n and K -

functionalK+ given above, we have
∥∥G+

s,n f − f
∥∥ ∼ K+(

f, 1
n2 ; C[−1, 1], C2, H(I − L)

)
, n ∈ N,n ≥ n0.

We shall use

Lemma D μs,n =
[

π∫

−π

(
sin(nv/2)
sin(v/2)

)2s
dv

]−1

≤ c(s) n−2s+1

c(s) is a constant depending on s.

Proof:

π∫

−π

(
sin(nv/2)

sin(v/2)

)2s

dv ≥
π/n∫

0

(
sin(nv/2)

sin(v/2)

)2s

dv

(
as

2

π
v ≤ sin v ≤ v f or 0 ≤ v ≤ π

2

)

≥
π/n∫

0

(
2
π

nv
2

v
2

)2s

dv =
(
2

π

)2s

n2s
π

n
.

Hence μs,n ≤ c(s)n−2s+1 . The lemma is proved. �

3 An Example of a Function

Assertion 3.1 Let s andn be natural numbers, s ≥ 2. There exists a function f ∈
C[−1, 1] such that f (x) ≥ 0 for every x ∈ [−1, 1], but (G+

s, n f )(x0) < 0 for some
x0 ∈ [−1, 1].
Proof Let f (x) satisfy the following conditions:

(1) f (x) ∈ C∞[−1, 1];
(2) f (x) ≥ 0, for x ∈ [−1, 1];
(3) f (x) ≡ 0 in some neighborhood of zero;
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(4) f ′(−1) > 0 and f ′(1) < 0.

Recall that according to the definition f ′(−1) > 0 and f ′(−1) < 0 ⇔
(H f )(±1) > 0.

f (x) ≥ 0 for every x ∈ [−1, 1], but we will show (G+
s, n f )(0) < 0.

We define

f (cos(arccos x + v)) := f (cos(z + v)) = f̃ (z + v), z = arccos x .

We note

H1 f (cos(arccos x + v)) = − f̃ ′(z + v)

H f (cos(arccos x + v)) = f̃ ′′(z + v).

Expanding f̃ (z + v) by Taylor ′s f ormula wi th integral remainder

f (cos(arc cos x + v)) − f (x)

= f̃ (z + v) − f̃ (z) = f̃ ′(z)v +
z+v∫

z

f̃ ′′(t)(z + v − t)dt.

Then

(
I − Gs,n

)
( f, x) = −

π∫

−π

[ f (cos(arc cos x + v)) − f (x)]Ks,n(v)dv

= −
π∫

−π

⎡

⎣ f̃ ′(z)v +
z+v∫

z

f̃ ′′(t)(z + v − t)dt

⎤

⎦Ks,n(v)dv

= −
π∫

−π

z+v∫

z

f̃ ′′(t)(z + v − t)dtKs,n(v)dv.

(3)

We used that

π∫

−π

vKs,n(v)dv = 0.

Furthermore, for sufficiently small positive number δ, we have
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∫

|v|>δ

[ f (cos(arccos x + v)) − f (x)]Ks,n(v)dv

(

as

(
sin(nv/2)

sin(v/2)

)2s

is bounded f or |v| > δ

)

≤ cμs,n = c

⎡

⎣
π∫

−π

(
sin(nv/2)

sin(v/2)

)2s

dv

⎤

⎦

−1

= O
(
n−2s+1

)
f or s ≥ 2.

Then by (3), we get

(
I − Gs,n

)
( f, x) = −

δ∫

−δ

z+v∫

z

f̃ ′′(t)(z + v − t)dtKs,n(v)dv + O
(
n−2s+1). (4)

Now we set x = 1 in (4) and obtain

(
I − Gs,n

)
( f, 1) = −

δ∫

−δ

v∫

0

f̃ ′′(t)(v − t)dtKs,n(v)dv + O
(
n−2s+1

)
(5)

As f or t close to 0 H f (cos t) = f̃ ′′(t) > c > 0,

by (5) get

(
I − Gs,n

)
( f, 1) ≤ −c

δ∫

−δ

v∫

0

(v − t)dtKs,n(v)dv + O
(
n−2s+1

)

= −c

δ∫

0

v2Ks,n(v)dv + O
(
n−2s+1

)

= −c

π∫

0

v2Ks,n(v)dv + O
(
n−2s+1

) ∼ −n−2, f or s ≥ 2.

We used that (see [6, p. 57])
π∫

0
v2Ks,n(v)dv ∼ n−2 f or s ≥ 2.

Thus for

s ≥ 2

(
I − Gs, n

)
( f, 1) ≤ −cn−2. (6)
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Now we set x = −1 in (4) and obtain

(
I − Gs,n

)
( f,−1) = −

δ∫

−δ

π+v∫

π

f̃ ′′(t)(π + v − t)dtKs,n(v)dv + O
(
n−2s+1

)
(7)

H f (cos t) = f̃ ′′(t) > c > 0.

As for t close to π similarly by (7), we get

(
I − Gs,n

)
( f,−1) ≤ −c

δ∫

−δ

π+v∫

π

(π + v − t)dtKs,n(v)dv + O
(
n−2s+1

)

= −c

δ∫

0

v2Ks,n(v)dv + O
(
n−2s+1

)

= −c

π∫

0

v2Ks,n(v)dv + O
(
n−2s+1

) ∼ −n−2, f or s ≥ 2.

We used again that

π∫

0

v2Ks,n(v)dv ∼ n−2 f or s ≥ 2.

Thus for

s ≥ 2,

we have

(
I − Gs, n

)
( f,−1) ≤ −cn−2. (8)

Using (1), (6) and (8), for s ≥ 2 we have

L
((
I − Gs,n

)
f, x

) ≤ −cn−2. (9)

We now use

Gs,n( f, 0) =
π∫

−π

f (cos(arc cos 0 + v))Ks,n(v)

=
π∫

−π

f
(
cos

(π

2
+ v

))
Ks,n(v)dv =

π∫

−π

f (− sin v)Ks,n(v)dv.

(10)
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f (− sin v) ≡ 0,

by the choice of function f (see Condition 3)

for v close to 0. According to (10) and the definition of Ks,n (as
(
sin(nv/2)
sin(v/2)

)2s
is

bounded for |v| > δ), we have

Gs,n( f, 0) ≤ cμs,n

π∫

−π

f (− sin v)dv ≤ cμs,n ≤ cn−2s+1.

Using the above inequality and (9), we obtain

G+
s,n( f, 0) = Gs,n( f, 0) + L

((
I − Gs,n

)
f, 0

) ≤ cn−2s+1 − cn−2 < 0, f or s ≥ 2

as the constants c are positive.We showed that the operator G+
s, n is not positive. �
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Abstract In 2020, He, Ahmad, Afify and Goual proposed a new family based on
classical Arcsine distribution and exponentiated family named Arcsine
Exponentiated-X family. The main purpose of this work is to continue studying
the intrinsic properties of these families, namely to study the “saturation”—d to the
horizontal asymptote in the Hausdorff sense. We obtain precious estimates for the
value of the Hausdorff distance that can be used as an additional criterion in practice.
We consider Hausdorff approximation of two submodels from the proposed family
with baseline distribution—some extensions of the classical Weibull distribution. In
this study, we also define a new “adaptive ASE-W model with polynomial variable
transfer”. We develop several simple dynamic programming modules implemented
within the programming environment CAS Wolfram Mathematica. All new results
are illustrated with suitable numerical experiments with real cumulative data.
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1 Introduction

Over the last few years, there are many modifications to classical models in order to
achieve a better fit to the modeling data. The basic requirement is to have an adequate
description and a high degree of flexibility. One of the effective techniques to extend
the classical distributions without adding extra parameters is using trigonometric
functions and their inverses. In the literature, there are many modifications of Sin-G,
Cos-G, Tan-G and Sec-G (see related articles [1–6] and reference therein). Also,
there are several new families based on inverse trigonometric functions (see [7–10]).

Some of these new families are based on classical Arcsine distribution. Let us
recall that the Arcsine distribution is a symmetric distribution with a minimum at 1/2
and vertical asymptotes at 0 and 1. It is a well-know fact that the Arcsine distribution
is a special case of the Beta distribution, especically Beta(1/2; 1/2).

He, Ahmad, Afify and Goual [11] proposed a new family of distributions named
as Arcsine exponentiated-X (ASE-X). The cumulative distribution function of the
ASE-X family is given by

F(t; λ, ξ) = 2

π
arcsin

[
G(t; ξ)λ

]
, (1)

where G(t; ξ) is the cumulative distribution function of the baseline distribution
and ξ represents the parameter vector of the baseline distribution and λ > 0 is an
additional shape parameter.

Note that the ASE-X family contains some of the G-class distributions as its
submodels. For example, if λ = 1/2, the ASE-X family reduces to Arcsine-G family
(see [12]), if λ = 1, the ASE-X family reduces to the Arcsine-X family (see [13]).

This paper deals with the asymptotic behavior of some adaptive functions of the
Hausdorff distance between the Heaviside function and distribution functions based
on the arcsine function. Similar investigation on some generalized trigonometric dis-
tributions (Sin-G, Cos-G, Tan-G and ArcTan-G families) can be found in [14–20].
This study can be very useful for specialists that are working in several scientific
fields like insurance, financial mathematics, analysis and approximation of data sets
in a various modeling problems and others. One can see some modeling and approx-
imation problems in related articles [21–25] and references therein.

Definition 1 The shifted Heaviside step function is defined by

ht0(t) =

⎧
⎪⎨

⎪⎩

0, if t < t0,

[0, 1], if t = t0,

1, if t > t0.

Definition 2 ([26, 27]) The Hausdorff distance (the H-distance) ρ( f, g) between
two interval functions f, g on� ⊆ R, is the distance between their completed graphs
F( f ) and F(g) considered as closed subsets of � × R. More precisely,
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ρ( f, g) = max{ sup
A∈F( f )

inf
B∈F(g)

||A − B||, sup
B∈F(g)

inf
A∈F( f )

||A − B||}, (2)

wherein ||.|| is any norm in R
2, e.g., the maximum norm ||(t, x)|| = max{|t |, |x |};

hence, the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is

||A − B|| = max(|tA − tB |, |xA − xB |).
The main purpose of this work is to continue studying the intrinsic properties

of these families, namely in addition to the analysis of the important characteristic
“confidential bounds”, it is appropriate to study the “saturation”—d to the horizontal
asymptote in the Hausdorff sense. Based on the proposed approach, some extensions
of the Weibull distribution called the Arcsine Exponentiated-Weibull (ASE-W) and
Arcsine modified-Weibull (ASM-W) distributions are studied in detail. In this study,
we also define a new “adaptive ASE-W model with polynomial variable transfer.”
The applicability of the proposed models is proved in simulation study to some
cumulative data as the earthquake insurance, mortality rate of COVID-19 patients
in Canada, runoff amounts of Jug Bridge, Maryland. We develop several simple
dynamic programming modules implemented within the programming environment
CAS Wolfram Mathematica to shows the applicability of presented results.

2 Hausdorff Approximation

In this section, we investigate the “saturation”—d in the Hausdorff sense to the
horizontal asymptote a = 1. For the function FASE−X (t; λ, ξ) defined by (1), we
have

FASE−X (t0; λ, ξ) = 1

2
wi th t0 = G(−1)

(
2−(2λ)−1; ξ

)
.

Then the Hausdorff distance d between FASE−X (t; λ, ξ) and the Heaviside function
ht0(t) at the “median level” satisfies the following nonlinear equation:

FASE−X (t0 + d; λ, ξ) = 1 − d. (3)

Next, theorem gives upper and lower estimates for the Hausdorff distance d.

Theorem 1 Let

A = 1 + 2

π
λ 2(2λ)−1

G ′
(
G(−1)

(
2−(2λ)−1

)
; ξ

)
. (4)

For theHausdorff distance d between shiftedHeaviside function ht0(t) and the cumu-
lative distribution function FASE−X (t; λ, ξ) defined by (1), the following inequalities
hold true for 2.1A > e1.05:
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dl = 1

2.1A
< d <

ln (2.1A)

2.1A
= dr .

Proof We examine the following approximation of

H(d) = FASE−X (t0 + d; λ, a, b) − 1 + d

as we use the function

T (d) = −1

2
+

(
1 + 2

π
λ 2(2λ)−1

G ′
(
G(−1)

(
2−(2λ)−1

)
; ξ

))
d.

Indeed, from Taylor expansion, we get T (d) − H(d) = O(d2). The functions T (d)

and H(d) are increasing. This means that T (d) approximates H(d) with d → 0 as
O(d2). Note that, if 2.1A > e1.05 holds, then it is easy to show that

T (dl) < 0 and T (dr ) > 0.

This completes the proof. �

3 Some Special Cases of Arcsine Exponentialed-X Family

In this section, we consider a special case of ASE-X family. List of some submodels
based on the ASE-X family can be found in [11]. The reader can formulate other
special cases of the proposed family using different baseline distributions with cor-
responding approximation problems.

3.1 Arcsine Exponentiated-Weibull (ASE-W) Distribution

Fisrt, we consider a special case of ASE-X family with baseline Weibull distribution
called Arcsine exponentiated-Weibull (ASE-W) distribution.

The cumulative function of Weibull distribution is

G(t) = 1 − e−bta ,

where a, b > 0 are the shape parameters.

Definition 3 Arcsine exponentiated-Weibull (ASE-W) distribution is associated
with the cumulative distribution function given as

FASE−W (t; λ, a, b) = 2

π
arcsin

[(
1 − e−bta

)λ
]
. (5)
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For a = 1, the ASE-W distribution reduces to the ASE-exponential distribution
with parameter b and for a = 2, it reduces to the ASE-Rayleigh distribution with
parameter b.

The Hausdorff distance d between FASE−W (t; λ, a, b) defined by (5) and the
Heaviside function ht0(t) satisfies the relation

FASE−W (t0 + d; λ, a, b) = 1 − d, (6)

where

FASE−W (t0; λ, a, b) = 1

2
wi th t0 =

(
−1

b
log

(
1 − 2−(2λ)−1

))1/a

.

Next, corollary of Theorem 1 gives useful estimates for Hausdorff approximation
d.

Corollary 1 Let

B = 1 + 2

π
abλ (2(2λ)−1 − 1)

(
1

b
log

(
1 − 2−(2λ)−1

)) a−1
a

. (7)

For theHausdorff distance d between shiftedHeaviside function ht0(t) and the cumu-
lative distribution function FASE−W (t; λ, a, b) defined by (5), the following inequal-
ities hold true for 2.1B > e1.05:

dl = 1

2.1B
< d <

ln (2.1B)

2.1B
= dr .

In Table 1,we present some computational examples for different values of param-
eters λ, a and b. We use Corollary 1 for computation of the values of upper and lower
estimates dl and dr .

In [13], considered data set related to the earthquake insurance. They obtained
that this data set can be approximated with the Arcsine exponentiated-Weibull

Table 1 Bounds for Hausdorff distance d computed by Corrollary 1

λ a b dl d computed
by (6)

dr

17.25 5.54 0.36 0.114921 0.146136 0.248632

0.12 1.71 18.31 0.101311 0.176773 0.231958

0.63 7.05 0.71 0.174054 0.183464 0.304314

1.75 2.95 1.93 0.208334 0.233169 0.326795

2.03 0.25 3.61 0.182551 0.309569 0.310469

0.15 0.89 0.98 0.238425 0.341143 0.34183
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

1.0
d 0.300032

dl 0.27526 dr 0.355096

Fig. 1 Approximation of CDF function of ASE-W distribution to data set related to the earthquake
insurance

(ASE-W) distribution with parameters λ = 1, a = 2.222 and b = 1.268. In Fig. 1,
we present the results of the approximation of the Heaviside step function and cumu-
lative distribution function of ASE-W distribution with corresponding parameters.
From Corollary 1, we obtain the values of Hausdorff distance d = 0.30032 with
estimates dl = 0.27526 and dr = 0.355096, respectively.

3.2 Arcsine-Modified Weibull (ASM-W) Distribution

There are many modifications of classical Weibull distribution in the literature. In
2014, Almalki and Nadarajah [29] present a review of some of them.

In 2021, Liu et al. [28] consider the ASE-X family with baseline modifiedWeibull
distribution named Arcsine-modified Weibull model (ASM-W) (for λ = 1). Let us
recall that the cumulative distribution function of modified Weibull distribution is
defined by

G(t) = 1 − e−b1ta−b2t ,

where a, b1, b2 > 0 are the shape parameters. This modification improves the fitting
power of the exponential, Rayleigh, linear failure rate and Weibull distributions (see
[30]).

Definition 4 Arcsinemodified-Weibull (ASM-W) distribution is associatedwith the
cumulative distribution function given as

FASM−W (t; λ, a, b1, b2) = 2

π
arcsin

[(
1 − e−b1ta−b2t

)λ
]
. (8)

In [28], Liu et al. analyzed data set that represents the mortality rate of COVID-
19 patients in Canada. They obtained that this data set can be approximated
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Fig. 2 Model (8) for data set (normalized) representing themortality rate of the COVID-19 patients
in Canada with Hausdorff distance d = 0.373491

with the Arcsine modified-Weibull (ASM-W) distribution with parameters λ = 1,
a = 3.4768, b1 = 0.020029 and b2 = 0.000918. In Fig. 2, we present the results of
approximation of the Heaviside step function and cumulative distribution function
of ASM-W distribution with corresponding parameters. We obtain the Hausdorff
distance d = 0.373491 from the relation

FASM−W (t0 + d; λ, a, b1, b2) = 1 − d

for t0 = 3.26468, that is the solution of FASM−W (t0; λ, a, b1, b2) = 1

2
.

3.3 Adaptive ASE-W Model with Polynomial Variable
Transfer

Definition 5 Consider the following new “adaptive ASE-W model with polynomial
variable transfer”:

F∗(t; λ, a, b) = 2
π
arcsin

[(
1 − e−b f (t)a

)λ
]
.

f (t) =
n∑

i=0

ai t i , a0 = 0.

(9)
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Fig. 3 The model (9) for runoff amounts data (normalized) of Jug Bridge, Maryland

Note that the model is highly sensitive to the type and location of the zeros of the
polynomial f (t) (see [31]).

The applicability of the model (9) is proved in the simulation study to the data
represent runoff amounts of Jug Bridge, Maryland (see Chhikara and Folks [32]):

0.17, 1.19, 0.23, 0.33, 0.39, 0.39, 0.40, 0.45, 0.52, 0.56, 0.59, 0.64, 0.66

0.70, 0.76, 0.77, 0.78, 0.95, 0.97, 1.02, 1.12, 1.24, 1.59, 1.74, 2.92.

For the actual data in the specified period, our new model F∗(t) for

λ = 2.3, a = 1.3 b = 2.94,

n = 4, a0 = 0, a1 = −0.15, a2 = 3.4, a3 = −3.38, a4 = 0.845

is depicted on Fig. 3.
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On a Piecewise Smooth Gompertz
Growth Function. Applications

Vesselin Kyurkchiev, Anton Iliev, Asen Rahnev, and Nikolay Kyurkchiev

Abstract Following the ideas given in (Kyurkchiev in Int JDiffer EquAppl 21(1):1–
17, 2022 [5]), in this article, we study a hypothetical piecewise smooth Gompertz
growth functionG(g1(t), g2(t)). Precise bounds for theHausdorff distanced between
the Heaviside step function h0 and the sigmoid G are given. The applicability of
the new model is proved in simulation study to grouped data from dataN ASA =
{dataNasa1 ∪ dataNasa2} (Nagaraju et al. in SoftwareX 10:100357, 2019 [6]).
Some numerical examples, using CAS MATHEMATICA are also given. Studies in
this paper can also be applied to random shifted sigmoidal functions of Gompertz
type.
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1 Introduction: The Basic Problem, Preliminaries
Notations

Early studies in demography [1] gave rise to the familiar Gompertz and logistic
functions [2, 3]. Both functions are sigmoid (S-shaped), more specifically they are
monotone increasing on their definition domain. These sigmoid functions are used in
biological applications, income and lifetime analysis, financial mathematics, fuzzy
set theory, impulsive analysis, etc.

In [5], the author considers a hypothetical piecewise smooth sigmoidal growth
function based on the Verhulst model. These ideas can be successfully continued.

Gompertz model makes an extensive use of the sigmoidal function:

g1(t) = Ae−e−kt
. (1)

Without community restriction, we will consider model (1) in the constraint: g1(0) =
Ae−1 = 1

2 , i.e., A = e
2 . For a depictionof thismodel at concrete valueof the parameter

k, see Fig. 1.
In the fields of Growth Theory and Theory of Computer Viruses Propagation, the

stumper frequently arises how to develop a modified model at an already fixed value
of parameter k and an amendment in the dynamics of the growth process for t > t0,
in which saturation to the horizontal asymptote at level B = Ae−e−1

is reached (in
our model A = e

2 ≈ 1.35914, B = Ae−e−1 ≈ 0.940798). This can be performed as
an example with g2(t) (for t > 0, see Fig. 2)

g2(t) = Ae−e− kt
1+kt

. (2)

Fig. 1 The function g1(t) for fixed k = 5, g1(0) = 1
2 )
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Fig. 2 The function g2(t) for fixed k = 5, (g2(0) = 1
2 )

To construct the functiong2(t),weused a substantial ”fractional linear correction”.

Definition 1 This leads us to think of the following hypothetical piecewise smooth
sigmoidal growth function:

G(t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ae−e−kt := g1(t), t < 0

1

2
, t = 0

Ae−e− kt
1+kt := g2(t), t > 0.

(3)

Evidently, from (3), we have

g
′
1(0) = g

′
2(0).

Definition 2 The modified Heaviside step function is defined by

h0(t) =
⎧
⎨

⎩

0, if t < 0,
[0, B], if t = 0,
B, if t > 0.

In this paper, we will study some properties of this novel family. More exactly
bounds for the H-distance [4] d between the Heaviside step function and the classical
Gompertz function

σα,β(t) = e−αe−βt
(4)

can be located in [7]:
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Theorem 1 The H-distance d between the step function h0 (with B = 1) and the
sigmoid Gompertz function σα,β(t) (α = 0.69314718...) can be expressed in terms
of the parameter β for any real β ≥ 2 as follows:

2α − 1

1 + αβ
< d <

ln(1 + αβ)

1 + αβ
. (5)

In supplement, we will view the provocative task of approximating the Heavi-
side step function with the new class of growth functions G(t) with respect to the
Hausdorff distance.

2 Main Results

2.1 The H-Distance Between Function h0 and the Sigmoidal
Function G(t)

For the H-distances—d1 and d2 through g1(t) and g2(t), we possess

g1(−d1) = d1 (6)

and
g2(d2) = B − d2. (7)

For illustration, for fixed k = 10, we find d1 = 0.0970532 and d2 = 0.1534. For
k = 20, we have d1 = 0.0575575 and d2 = 0.1149 and, for k = 15, we find d1 =
0.0718839 and d2 = 0.129876 (see, Fig. 3). Obviously, for the H-distance d =
ρ(h0,G) between the Heaviside step function h0 and the sigmoidal function, G
is satisfied

d = max{d1, d2}. (8)

The following is actual.

Theorem 2 Let M = 1 + k
2 and 0 < d < 1

2 . For large enough values of k, for the
“saturation”-d, we have

d ≈ ln(2.3M)

2.3M
:= d∗. (9)

Draft of the proof Moreover, the proof is organized on a manner suggested in
[9], we will accept that, from (7), it is can be concluded that d(= d2) is the only
positive root of the equation:

F(d) := g2(d) − B + d = 0. (10)
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Fig. 3 The function G(t) for a) k = 10; b) k = 15; c) k = 20 (Asymptote at level B = Ae−e−1 ≈
0.940798)
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Fig. 4 The functions F(d) (red) and H(d) (green) for fixed k = 20; Hausdorff distance d = 0.1149

Table 1 Bounds for d computed by (7) and (9) for various values of k

k d computed by (7) d∗ computed by (9)

10 0.1534 0.190193

15 0.129876 0.15207

20 0.1149 0.1277

Obviously, the function

H(d) := −0.440798 +
(

1 + k

2

)

d (11)

approximates F(d) with d → 0 as O(d2) (see, for example Fig. 4). Since an exact
analysis, we obtain the estimate (10).

Numerical examples through (7) and (9) are depicted in Table 1.

2.2 Remarks

1. We will point out that the estimate (7) should be beneficial for consumers because
of the circumstance that the adjustment of this model in every CAS supposes the
information of a proper starting approximation for the root of the nonlinear equation
(7).
2. The user can draw some possible piecewise smooth sigmoidal models through
other “fractional rational corrections”.
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Fig. 5 The function G∗(t) for fixed k = 10 and r = 0.25

3. Investigations in this paper can also be used for an arbitrarily shifted Gompertz
function.

Definition 3 Define the following hypothetical piecewise smooth-shifted Gompertz
growth function:

G∗(t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ae−e−k(t−r) := g∗
1(t), 0 < t < r

1

2
, t = r

Ae−e
− k(t−r)

1+k(t−r) := g∗
2(t), t > r .

(12)

Obviously, from (12), we get

g∗
1
′(r) = g∗

2
′(r).

For example, for fixed k = 10, r = 0.25 see, Fig. 5.
4. Define the following piecewise cut function associated to the function G(t) (3):

C(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

0, t < t0
k
2 t + 1

2 := L(t), −t0 ≤ t ≤ t1

B, t > t1.

(13)
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Fig. 6 The function C(t) for fixed k = 8; The uniform distance ρ(C,G) = 0.213968

This function (see, for example, Fig. 6) can find a variety of applications in mathe-
matics and engineering.

2.3 Applications

Frequently, investigators are in front of the following question—how to implement
in practice a fixed sigmoidal function when approximating a dataset which is in a
”normalized form”. One chance is to use the methodology suggested in this paper
for building piecewise smooth Gompertz growth function.

1. Storm worm propagation.

dataStorm := {{1.8, 0.843}, {4, 0.926}, {5, 0.954}, {6, 0.967},
{7, 0.976}, {8, 0.981}, {9, 0.985}, {10, 0.991}, {22, 0.995}, {38, 0.997},
{51, 0.998}, {64, 0.9985}, {74, 0.999}, {83, 1}, {100, 1}}

For the “data_Storm”—normalized (see, [10]), the fitted model

g2(t) = Ae−e− kt
1+kt

for k = 2.0749 is presented on Fig. 7.
2. For the normalized cumulative failures
dataN ASA = {dataNasa1 ∪ dataNasa2} [6],



On a Piecewise Smooth Gompertz Growth Function. Applications 469

Fig. 7 Epidemic data of Storm Worm (normalized) fitted by g2(t) for k = 2.07491

DataN ASA1 := {{0, 0}, {0.13, 0.014285}, {0.24, 0.028571},
{0.31, 0.042857}, {0.38, 0.057142}, {0.39, 0.071428}, {0.42, 0.085714},
{0.43, 0.1}, {0.5, 0.128571}, {0.53, 0.157142}, {0.55, 0.185714},
{0.56, 0.2}, {0.57, 0.214285}, {0.6, 0.228571}, {0.72, 0.25},
{0.73, 0.264705}, {0.78, 0.308823}, {0.79, 0.323529}, {0.81, 0.338235},
{0.85, 0.397058}, {0.86, 0.411764}, {0.87, 0.426470}, {0.88, 0.428571}};
DataN ASA2 := {{0.88, 0.428571}, {0.94, 0.442857}, {0.98, 0.457142},
{1, 0.542857}, {1.01, 0.557142}, {1.02, 0.571428}, {1.05, 0.585714},
{1.06, 0.6}, {1.09, 0.628571}, {1.14, 0.642857}, {1.15, 0.671428},
{1.19, 0.685714}, {1.2, 0.7}, {1.27, 0.714285}, {1.28, 0.757142},
{1.3, 0.8}, {1.34, 0.770270}, {1.41, 0.783783}, {1.49, 0.797297},
{1.68, 0.810810}, {1.73, 0.810810}, {1.9, 0.810810}};

we will use model G∗(g∗
1 , g

∗
2):

g∗
1(t) = Ae−e−k(t−r)

0 < t < r ≈ 0.9

to approximate dataN ASA1 and

g∗
2(t) = Ae−e

− k(t−r)
1+k(t−r)

, t > r
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Fig. 8 The model (12) for {dataNasa1 ∪ dataNasa2}
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to approximate dataN ASA2.
For the factual data in the concrete period, the new model for

A = 1.35914, k = 2.1841053, r ≈ 0.9

is presented on Fig. 8.
The results are satisfactory. One of the advantages of the described model

G∗(g∗
1 , g

∗
2) over the classical Gompertz model (see Fig. 8) is that it better takes

into account the real attenuation and saturation to the horizontal asymptote, so char-
acteristic of the models in the field of Growth Theory and Population Dynamics.

Practically, when using suchmodels—of the type (12), the Kolmogorov–Smirnov
test should be implemented on the occasion when the parameters of the model are
evaluated from “grouped data” (see, [8]).

With the methodological aspects discussed here, we aim to provide the researcher
(who does not have to be a mathematician) with a reliable software tool for making
adjustments to his chosen model—for the specific experiment.
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