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Abstract. Plastic injection moulding requires careful management of
machine parameters to achieve consistently high product quality. To
avoid quality issues and minimize productivity losses, initial setup as well
as continuous adjustment of these parameters during production are crit-
ical. Stakeholders involved in the parameterization rely on experience,
extensive documentation in guidelines and Failure Mode and Effects
Analysis (FMEA) documents, as well as a wealth of sensor data to inform
their decisions. This disparate, heterogeneous, and largely unstructured
collection of information sources is difficult to manage across systems
and stakeholders, and results in tedious processes. This limits the poten-
tial for knowledge transfer, reuse, and automated learning. To address
this challenge, we introduce a knowledge graph that supports injection
technicians in complex setup and adjustment tasks. We motivate and val-
idate our approach with a machine parameter recommendation use case
provided by a leading supplier in the automotive industry. To support
this use case, we created ontologies for the representation of parameter
adjustment protocols and FMEAs, and developed extraction components
using these ontologies to populate the knowledge graph from documents.
The artifacts created are part of a process-aware information system that
will be deployed within a European project at multiple use case partners.
Our ontologies are available at https://short.wu.ac.at/FMEA-AP, and
the software at https://short.wu.ac.at/KGSWC2022.
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1 Introduction

In the manufacturing industry, the rise of the I4.0 paradigm facilitates complex
data-driven use cases [12,13]. This has, however, only increased the need for
deep domain knowledge to make sense of increasingly abundant data. In this
context, Knowledge Graphs (KGs) have emerged as an important tool that is
increasingly being adopted in manufacturing applications [5]. KGs can integrate
data from a variety of sources and evolve their schema to accommodate growing
requirements. Due to these properties, they have been used in industrial set-
tings as a backbone for a variety of downstream tasks such as building digital
twins, risk management, process monitoring, machine service operations, and
factory monitoring [9]. Furthermore, they increasingly provide a foundation for
machine learning and AI-driven applications in enterprise settings in general [2]
and manufacturing in particular [27].

This opens up interesting opportunities in quality management. In this paper,
we focus on the automotive industry and its supplier networks, in which the man-
agement of product quality along the production chain is crucial and the subject
of various standards such as ISO/TS 16949:2009 [10]. In the injection moulding
industry in particular – which supplies plastic parts to automotive manufactur-
ers – the parameterization of production machines to achieve consistent output
is a complex and delicate process that requires substantial domain knowledge
[4]. Part of this domain-knowledge is codified in injection process adjustment
protocols, which our industrial partner has integrated into their quality manage-
ment processes (cf. Fig. 1). The main objective of such protocols is to document
knowledge gained from (often long-term) experience and make it available in
digestible form. In addition, Failure Mode and Effects Analysis (FMEA) docu-
ments are extensively used to describe those failure modes together with their
potential causes and effects.

These documents are important tools to reduce the time machines spend in an
unproductive state. In addition, they are used extensively as training materials
for employees. However, both the adjustment protocol and FMEA are currently
typically maintained in numerous spreadsheets and accompanied by parameter
sheets in which injection technicians record parameter changes. This document-
centric workflow makes it difficult for injection technicians to identify the root
cause of product defects as well as to compare and link deviations in sensor
measurements to parameter changes made by the injection technician according
to the adjustment protocol. In addition, due to misspellings, lack of time, or
an incentive mismatch, the recorded changes in the protocol are often plagued
by data quality issues. Furthermore, the document-centric approach makes it
difficult to operationalize unstructured FMEAs knowledge, for example relating
it to issues on the shop floor to derive insights on how to resolve them.

In this paper, we address this challenge and contribute towards the vision
of KG-based shop-floor support; more specifically, we propose an approach to
enhance quality management on the shop floor that will serve as the backbone
for various Artificial Intelligence (AI) applications within a larger process-aware
Information System (IS). We integrate injection process adjustment protocols and
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Fig. 1. Sketch of the current parameter adjustment process (plastic injection
moulding machine adapted from [4]). Figure 2 shows the process formalized with
Business Process Model and Notation (BPMN).

FMEAs within a KG and provide pipelines to iteratively update this knowledge
graph from the respective documents. Furthermore, we replace the parameter
spreadsheets with a KG that directly receives the changes from the injection
moulding machine. To this end, we introduce an FMEA-injection process adjust-
ment protocol ontology that extends an existing FMEA ontology [20]. In addition,
we provide a software library that transforms spreadsheets into a KG representa-
tion. This lowers the entry barrier towards integrating the KG-based approach
into the current workflow. We motivate and validate the approach with an appli-
cation in injection moulding, but expect that our artifacts - the ontologies and
the tool - are applicable more generally in other production settings with similar
requirements.

The remainder of this paper is structured as follows. Section 2 describes the
problem based on the current workflow; Sect. 3 introduces the adjustment pro-
tocol ontology, and the adapted FMEA ontology, which we develop based on the
documents provided by our industrial partner. Furthermore, this section describes
the accompanying software and provides summary statistics on the constructed
KG. In Sect. 4, we describe the application of the constructed KG as the backbone
for a parameter recommendation system. Section 5 discusses the broader context
of the process-aware IS that the KG and components introduced in this paper are
part of, outlines empirical evaluation strategies, future work, and limitations. In
Sect. 6, we review related work before concluding the paper in Sect. 7.

2 Problem Statement

In this section, we describe the current workflow of the injection moulding pro-
cesses and outline the research problem. This includes a description of the produc-
tion process and how adjustments to the injection moulding machine are managed.

Our use case stems from a large European automotive supplier that produces
plastic car parts through injection moulding. To develop the use case, we con-
ducted a domain analysis and modeled the current processes in Business Process
Model and Notation (BPMN) [19]. The injection moulding process itself is com-
plex – due to space constraints, we describe only the high-level stages, which
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Fig. 2. Injection process adjustment protocol process in a BPMN model. The
tasks of the process rely on documents, paper or digital, as an input or output.

are (cf. [4]): (i) Filling, i.e., feeding and melting the materials and injecting
them into the mold; (ii) Packing, i.e., the pressing process to ensure the densely
textured product is produced; (iii) Cooling until the molten material is fully
solidified; and (iv) Ejection, i.e., the mold releasing process after the work piece
has cooled to a given temperature. After these steps, the operator performs a
quality inspection of the product and gives feedback on whether the product is
OK or Not OK (NOK). If the product is NOK, then the operator documents
among other data points the type of defects and the condition under which
the defect appeared. Based on these observations, the operator can adjust the
parameters of the injection moulding machine according to specified procedures
to address the issue.

The company manages these procedure during production with an injection
process adjustment protocol (see Fig. 2). The protocol has three phases with (i)
machine stabilization, (ii) temperature adjustment, and (iii) injection parameter
adjustment. Within these phases, the protocol defines a sequence of actions that
need to be taken to adjust a set of parameters; each action is associated with
three aspects, which are (i) a parameter priority list, (ii) the direction in which
the parameter should be changed, (iii) and the rate of change. Machine operators
use this as a guiding tool, and it is supposed to shorten the time a machine
spends in an unproductive state. The protocol requires the operator to manually
readjust parameter values on the machine and update the parameter changes into
a parameter sheet, which can be a source of error. Furthermore, the adjustment
activities are carried out manually and are only supported by the guideline, which
is provided in a text processing or spreadsheet format, without an automated
feedback loop to the guideline. What is more, an FMEA document already exists
that is supposed to be used to map defects to their specific causes and effects.
This document is also in spreadsheet format, which makes it difficult to detect
deviations from the guideline, identify the root cause of a given defect, and assess
to what extent they are helpful, incorrect, and complete. Data quality is another
key issue in this context, as it requires the shop floor employee to manually justify
the reason for the deviation, which is error-prone and time-intensive. Another
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obstacle is that an ad-hoc analysis is expensive, and the absence of an immediate
incentive for the operator to invest an effort in accurately describing a deviation.

3 Knowledge Graph for Product Quality Management

This section describes the knowledge sources, the developed FMEA-IPAP ontol-
ogy which integrates the knowledge sources, the software components for auto-
mated extraction and construction from documents, and provides details and
statistics on the constructed knowledge graph.

3.1 Knowledge Sources

The parameter adjustment knowledge graph integrates two major sources of
knowledge with (i) the Failure Mode and Effects Analysis (FMEA) documents,
and (ii) the Injection Process Adjustment Protocol (IPAP). We describe them
next in greater detail.

Failure Mode and Effects Analysis (FMEA) is an engineering technique to
define, review and identify potential failures and their effects and causes for sys-
tems, designs, processes or services [23]. The technique aims to describe, model,
and analyze potential failures in order to ultimately improve product quality,
increase productivity and reduce waste. This quality management tool has been
widely used in many industrial applications and engineering domains. However,
it is mostly conceived as a ”boring and complicated human activity”, given its per-
ception as complying with engineering regulations rather than improving product
quality [24].

Injection Process Adjustment Protocols (IPAPs) contain a set of standard
procedure definitions for injection parameter adjustment. Injection technicians
use them, for instance, to adjust machine stabilization and mass temperature
verification as well as parameter modification, where, depending on the type
of failure mode (e.g., gloss or marbling) different sets of parameters such as
compaction time or pressure, cooling time, and injection speed or pressure are
changed individually and iteratively at a fixed rate until the production defect
has been resolved. This protocol also includes information on the order in which
parameters should be adjusted - the action priority. Action priority is a good
example for knowledge derived over a long time period.

3.2 FMEA-IPAP Ontology

To represent concepts from both sources - described above - in an integrated
FMEA-IPAP ontology, we developed (i) a parameter adjustment protocol ontol-
ogy based on guideline documents used by the industrial partner, and (ii) an
FMEA ontology based on an existing ontology and the FMEA documents also
used by our industrial partner.
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Fig. 3. FMEA Ontology (light blue) and IPAP Ontology (light green). Our
FMEA ontology is adapted from [20]. (Color figure online)

To model the domain of interest, we started with a domain analysis that
involved workshops and a review of the existing resources for FMEA and IPAP
documents obtained from our industrial partner. Next, we conducted a survey
of FMEA ontologies and identified the FMEA ontology proposed in [20] as a
good candidate for reuse, due to the straightforward conceptual alignment with
existing FMEA documents. For the representation of the knowledge from the
IPAP documents, we did not find any suitable formalization in the literature and
consequently used a bottom-up ontology construction approach [18] to create it.

As shown in Fig. 3, we combine the FMEA and IPAP concepts into a sin-
gle integrated FMEA-IPAP OWL ontology1. The FMEA concepts (light blue)
are partially adapted from an existing FMEA ontology proposed in [20]. The
FMEA ontology consists of six main classes with seven object properties to link
them. The FailureMode class defines the individual failure modes that may
happen, such as Marbling, Gloss, and Burn. Each failure mode may be asso-
ciated with the property hasPotentialCause to a number of potential causes
(defined as Cause). Each Cause can have a recommended Action (linked via
hasRecommendedAction). The IPAP ontology (light green) consists of four main
classes, and four object properties to relate the instances of the classes. We
reused several data properties from the Dublin Core Ontology2 – e.g., title
and description – to describe class details. Adjustment is the main class
of the ontology that represents the individual adjustment protocol. It has data
properties such as actionPriority that define the priority level of the adjust-
ment (e.g. first, second, and third), and adjustmentRate to define the rate of
adjustment. Furthermore, the Adjustment class has object properties to the
classes (i) hasParameter links to Parameter, a class that describes specific
parameters that need to be adjusted, such as injection speed, mass temperature,

1 https://w3id.org/teamingai/resources/ont/FMEA.
2 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/.

https://w3id.org/teamingai/resources/ont/FMEA
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/


112 S. Bachhofner et al.

and decompression, (ii) hasCondition provides a temporal and spatial context
– i.e., under what conditions (FailureCondition) an adjustment is appro-
priate, for example in the beginning, middle, last injection (temporal aspects),
partially, and whole (spatial aspects). (iii) hasModificationType to connect
the ModificationType class that represents the type of modification (i.e.,
decrease and increase) The Adjustment class also links to classes in the FMEA
ontology – the FailureMode class that matches the adjustment protocol (via
hasAdjustment property and its inverse adjustmentOf) to the specific failure
mode in the FMEA (e.g., marbling and gloss).

3.3 Construction Pipeline Implementation

We developed an extraction and transformation pipeline. The pipeline extracts
the parameter adjustment rules and FMEA statements from spreadsheets, and
then transforms them into a KG using the ontologies introduced in the previous
section. We found that this automation dramatically reduces the entry barrier
for the various stakeholders at our industrial partner. Moreover, it enables users
unfamiliar with knowledge graphs to profit from our approach while they can
use their familiar tool chain. To manage the creation of and interaction with
the KG, and integrate it into existing workflows, we developed an Application
Programming Interface (API) that provides three main functions – one func-
tion each for the transformations, and one function to recommend parameters.
We designed the transformation functions to have the same function signature
as they have the same responsibility, but for different ontologies. Function rec-
ommend is responsible for recommending a parameter adjustment action given
a failure that arose under a condition. We refer the interested reader to the
repository for further details.

3.4 Knowledge Graph Instance and Statistics

Figure 4 shows an excerpt of the knowledge graph output generated from both
FMEA and Injection Process Adjustment Protocol (IPAP) documents. The two
sources of knowledge are now integrated and linked. For example, a failure mode
MARBLING links to potential cause Excessive Injection Speed that has
an associated parameter Injection Speed; this parameter information has not
been provided previously in the FMEA documents, but it is now being linked
to the IPAP knowledge. The case is similar for the IPAP document, previously
it had no information about the failure cause, but after integrating them into
FMEA knowledge, we are able to directly trace the root cause of the failure –
Excessive Injection Speed. The failure mode is also linked to the condition
during injection process, which is the same entity as defined in the IPAP.
We discuss the benefits of this integration and linking further in Sect. 4. Table 1
shows statistics of the developed ontology and the generated knowledge graph
from both FMEA and IPAP. While they might evolve, we consider them as a
static part, as the ontologies would change less compared to their instance data.
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Fig. 4. Knowledge-Graph Output (excerpt) generated from FMEA and IPAP
documents.

Table 1. Knowledge graph statisticsa

Type FMEA IPAP

Axioms Static 38 73

Class count Static 4 6

Object property count Static 4 7

Data property count Static 3 6

Individual (instance) count Dynamic 112 222
aAs per March 2, 2021.

4 Use Case: Shop Floor Parameter Adjustment
Recommendation

In this section, we present our shop floor parameter adjustment applica-
tion enabled by the transformation of heterogeneous semi-structured and non-
structured sources to a homogeneous knowledge graph. We also build the founda-
tion to address further issues we raised in Sect. 2. In particular, we migrate from
a document-centric to a KG-centric paradigm with explicit semantic relations
between the sources, which enables the company to shift tasks in the process
towards computer-aided decisions. Figure 5 illustrates the redesigned process, in
which the manual tasks from the original process (cf. Fig. 2), which were not
computer-supported, have been replaced with computer-supported user tasks.
Next, we provide a general description of the use case, followed by an example.

The parameter adjustment procedure makes heavy use of parameter adjust-
ment recommendations, which are retrieved as follows. First, the failure mode
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Fig. 5. Redesigned KG-based parameter adjustment process from Fig. 2 - Note
that the process consists of user tasks, increasing the degree of automation.

Table 2. Query results for failure mode marbling under condition close to

injection point - see Listing 1 for the query.

Failure mode and effects analysis Adjustment protocol
Failure cause Action priority Modification type Parameter Rate Unit

Excess decompression 1 Decrease Decompression 1.0 Millimeter
Lack of plasticizing back pressure 2 Increase Back pressure 1.0 Bar
Excess temperature in hot chamber . . . 3 Decrease Mass temperature 10.0 Celsius

is determined based on automated or manual visual inspection on the shop
floor. Next, we obtain a list of prioritized adjustments for the failure using the
observed condition. Finally, we retrieve the failure mode, action priority, mod-
ification type, parameter, parameter rate, and the unit of the parameter – and
sort the results ascending by action priority. The machine operator can then use
this information to execute the parameter adjustment.

We illustrate the procedure for the shop floor parameter adjustment rec-
ommendation with an example. A machine operator observes a piece with a
Marbling defect (failure mode) close to the injection point (condition). The oper-
ator enters this information on a Human–machine interface (HMI) in order to
parameterize the query in Listing 1. The system assists the operator with a list of
parameter adjustment recommendations ordered by their action priority - which
is the order in which the parameters need to be changed (Table 2). Based on
the query result, the operator learns, for instance, that the recommended first
adjustment is to decrease the decompression parameter by 1mm, and the last
recommended adjustment is to decrease the mass temperature by 10 Celsius.

Table 2 lists the results for the query in Listing 1, i.e., all fmea:FailureModes
and their respective failure conditions and failure causes. The failure cause is
crucial, as it connects the FMEA with the IPAP via the parameter that is asso-
ciated with a failure cause. This parameter is in turn connected to an adjustment,
which has a modification type (indicating whether to increase or decrease the
parameter), and an adjustment rate. The parameter is also connected to a unit.
Finally, the query filters for the observed failure and condition.
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PREFIX dcterm:<http://purl.org/dc/terms/>
PREFIX ap:

<http://www.w3id.org/teamingai/resources/ont/adjustmentProtocol#>↪→

PREFIX fmea: <http://www.w3id.org/teamingai/resources/ont/FMEA#>

SELECT DISTINCT ?failureCause ?actionPriority ?modifType ?param ?rate
?unit↪→

WHERE { ?failure a fmea:FailureMode;
fmea:hasFailureCondition ?con;
fmea:hasPotentialFailureCause ?failureCause.

?failureCause fmea:hasAssociateParameter ?param.
?adj ap:hasParameter ?param;

ap:hasModificationType ?modifType;
ap:actionPriority ?actionPriority;
ap:adjustmentRate ?rate.

?param a ap:Parameter; ap:unit ?unit.
FILTER regex(str(?failure),"MARBLING")
FILTER regex(str(?con),"close.+to.+injection.+point")
... }

ORDER BY ASC(?actionPriority)
LIMIT 3

Listing 1. The parameter suggestion query for failure marbling under the con-
dition close to injection point - see Table 2 for the query results.

5 Discussion

In this section, we discuss the wider context of the parameter recommendation
system introduced in this paper. We start by discussing how the knowledge graph
and transformation components are part of a larger envisioned software system
that aims to translate human teamwork into the digital age. Next, we present our
evaluation strategy. Finally, we finish the section discussing current limitations.

The Teaming.AI platform and KGs. The FMEA and IPAP are production sys-
tem resources for quality management that we lift from a semi-structured to
a semantically explicit structured form. This facilitates an increased degree of
automation of the parameter adjustment process, and hence also of the produc-
tion process. With this increase in automation, however, new challenges arise
in all software development phases. It is, for instance, unclear how the system
should act if it encounters an uncertain situation, and how such situations should
be modelled in the first place.

The Teaming.AI platform – of which the artifacts of this paper are part of
– addresses these challenges systematically. It is a software system built with
human-computer interaction as the guiding principle in all development phases.
This is driven by the growing number of tasks software systems can either
take over partially or fully from humans - with the main objective to increase
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productivity and effectiveness. In this context, it is unclear whom of the two
should be the performer, and whom the supporter of a task. To address this
problem, the human-computer guiding principle is structured with the big five
of teamwork [22] and the 4S interdependence framework [11]. These two frame-
works are used to analyze and model tasks that require a form of interaction
between humans and the software system, in other words who should be the
performer and who the supporter. In these tasks, it is important for the human
to have confidence in the decisions made by the software system. Knowledge
modeling is a major pillar for the Teaming.AI platform, as it needs to support
these requirements, and also application requirements. Because of the crucial role
KGs have in this software system, it has two components. First, the dynamic
KG is responsible for storing high level events, which are aggregated run time
events needed for the process-aware IS. And second, the background KG, which
is responsible for storing information on (i) organizational roles and responsibil-
ities, (ii) products, (iii) production system resources, and (iv) production pro-
cesses. In this paper, we describe an important building block for the production
system resources in the background KG.

Evaluation. Overall, we found that the knowledge graph approach offers flex-
ibility and reduces the cost of integrating additional data sources as well as
interoperability within the organizations (and potentially beyond) enabled by
Semantic Web standards. An evaluation of our approach beyond a qualitative
validation through domain experts is out of the scope of the present paper, but
we discuss potential quantitative evaluation approaches we plan in future work.
To evaluate the system against the currently used approach, we will compare
product quality metrics with and without our approach in place. Although qual-
ity can be measured in a variety of ways, we can define it pragmatically for our
purposes as a fraction of parts meeting the quality standards relative to the total
number of produced parts [15]

quality =
saleable parts
produced parts

(1)

Another important variable to observe is the time a machine is in production
mode, and the average time it takes to resolve an issue. We hypothesize that
quality increases as a result of an increase in a productive state, which itself is
a result of an increased speed in resolving issues.

Limitations. In this paper, we use a KG as a backbone for a quality management
use case within the automotive industry. We validated the two ontologies and
the software qualitatively in the context of the current use case of our industrial
partner, but leave an investigation into the generalizability to other organizations
and use cases for future work. We found that KGs are a useful approach in this
context and support a broader vision of KG-enabled teaming, yet they are not
the only candidate technology to address the use case requirements. For instance,
a relational, key-value, or key-document data base could be used instead of a KG.
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They are less flexible and less suitable for the broader vision of enabling Human-
AI teaming, but the cost of integration may be similar or lower compared to using
a KG. Furthermore, the pool of developers familiar with such technologies is also
still larger, although this is not an inherent limitation of the proposed approach.
Finally, an evaluation of our approach with the above mentioned evaluation
strategies will only provide insights on whether computer aided support had an
effect, but not that this effect is specific to the use of a KG.

6 Related Work

This paper contributes to the literature on Semantic Web (SW) technologies in
manufacturing, specifically in the context of a real-world quality management
use case from the automotive industry. In the following, we review related work
on FMEA ontologies.

FMEA Ontologies. One of the first contributions focusing on structured FMEAs
are Ref. [6,14,16,21]. Lee et al. [16] introduces the DAEDALUS knowledge engi-
neering framework that integrates product “design and diagnosis” with the pur-
pose of “exchanging and integrating design FMEA and diagnosis models”. They
therefore focus on connecting product design and diagnosis. Along similar lines,
[6] discusses two management problems in relation to FMEA, and in knowledge
management more generally. They find that “relevant knowledge may often not
be found in an explicit form like databases”, and that “the access to knowledge
is encumbered with the problem that different actors use different terms to talk
about the same topic”. The authors conclude that “It [ontologies] can solve the
main shortcomings and the resulting problems as mentioned”. Ref. [14] focus on
the second problem raised in [6] and use ontologies to map different functional
models to FMEA sheets. A number of approaches also have been developed that
aim to make unstructured FMEAs information more structured and semantically
explicit. For instance, [26] introduce an FMEA knowledge graph with ontologies
in manufacturing processes; [17] describes an FMEA process and software tools
for a lead-free soldering process; finally, [25] uses ontologies to ease sharing, reuse,
and maintenance of FMEAs in manufacturing processes.

Similar to the approach in this paper, [20] address the problem of using nat-
ural language text for FMEAs, which makes it difficult to reuse this knowledge.
We refer in this paper to documents in natural language text as non-structured
documents. The organization as a result wasted resources on the FMEA docu-
ment. Our work complements this and is also motivated by waste. In addition,
we show how a structured and semantically explicit representation can help to
increase the degree of automation. Another similarity to our work is the pro-
posal of an FMEA ontology. Ref. [7] also state that the problem of FMEAs is
“in the form of textual natural language descriptions that limit computer-based
extraction of knowledge for the reuse of the FMEA analyses in other designs or
during plant operation.”. They also stress the need to move from non-structured
to structured FMEAs and base their ontology on ISO-15926 to define general
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terms as a foundation so “engineers can build new concepts from the basic set
of concepts”. Finally, Ref. [8] point out the importance of connecting a systems
functional dependency description with the FMEA – using the heating, ventila-
tion and cooling system example from the ISO 60812:2006 standard. Including
functional dependencies enables “automated reasoning to test and infer depen-
dencies” – which we have not considered so far, but will cover in future work.

7 Conclusion and Future Work

The main contribution of this paper is the integration of Injection Process
Adjustment Protocol (IPAP) and Failure Mode and Effects Analysis (FMEA)
knowledge; and the parameter recommendation applications this enables. We
motivated the importance of this problem economically. First, the objective is
to reduce waste caused by incorrect parameters. Second, the training of injection
technicians is time-intensive and therefore costly and may take up to one year.
Third, the long term objective is to fully automate the parameter adjustment
process. We show how the integrated knowledge can be used by a parameter
adjustment recommendation engine within a process-aware IS, and leave the
application for conformance checking as future work. In particular, we show how
the parameter adjustment recommendation engine changes the injection param-
eter adjustment process by switching from manual tasks to user tasks. This,
combined with the conformance checking and other systems, may increase the
automation even further, for example towards a fully automated process where
humans have the supporter role and the software system the performer role.

To this end, we introduced a parameter adjustment protocol ontology and
integrated it with a FMEA ontology - which we adapted to our purposes and
is introduced in Ref. [20]. Both ontologies are based on a set of documents we
received from our industrial partner. We accompany these ontologies with a
software library for transforming spreadsheets. We argue that this is important,
as it lowers the entry costs to these ontologies for third parties. These artifacts
are the foundation for a KG that will be used as the backbone for AI applications
for quality management and beyond. The KG can, for example, integrate sensor
data from the injection moulding machine, and can itself be an input for machine
learning models.

For future work, we plan to integrate data from the injection moulding
machine via the parameter class. Specifically, we plan to integrate two sources:
(i) the parameter settings from the machine, and (ii) the actual parameter val-
ues observed by sensors within the machine. Integrating the disparate, hetero-
geneous, and largely unstructured collection of information sources relating to
FMEA and IPAP enables applications beyond the parameter adjustment rec-
ommendation engine we present here. Conformance checking, for instance, can
leverage the KG to compare actual versus recommended parameter changes,
which may reveal an incomplete and partially incorrect adjustment protocol.
Furthermore, we used BPMN so far as a process modeling language to docu-
ment and redesign the parameter adjustment processes, but not as part of the
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developed system. In future work, we aim to add process context to the KG,
for which we aim to adopt the concept of a modular KG to organize different
contexts [1]. This is linked to the idea of a layered KG, where a KG has different
meanings to different stakeholders - which we plan to explore [3]. Finally, adding
the just mentioned process context and using it as an active system component
is an important enabler towards higher degrees of automation using service or
script tasks. Using the process model actively is also important as it makes the
performer and supporter roles mentioned in the previous paragraph usable in
production. Maybe even more important, it makes these roles explicit for all
stakeholders.
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