
Davide Taibi · Marco Kuhrmann ·
Tommi Mikkonen · Jil Klünder ·
Pekka Abrahamsson (Eds.)

LN
CS

 1
37

09

Product-Focused
Software Process Improvement
23rd International Conference, PROFES 2022
Jyväskylä, Finland, November 21–23, 2022
Proceedings

Lecture Notes in Computer Science 13709

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Davide Taibi ·Marco Kuhrmann ·
Tommi Mikkonen · Jil Klünder ·
Pekka Abrahamsson (Eds.)

Product-Focused
Software Process Improvement
23rd International Conference, PROFES 2022
Jyväskylä, Finland, November 21–23, 2022
Proceedings

Editors
Davide Taibi
Tampere University
Tampere, Finland

Tommi Mikkonen
University of Jyväskylä
Jyväskylä, Finland

Pekka Abrahamsson
University of Jyväskylä
Jyväskylä, Finland

Marco Kuhrmann
Reutlingen University
Reutlingen, Germany

Jil Klünder
Leibniz University Hannover
Hannover, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-21387-8 ISBN 978-3-031-21388-5 (eBook)
https://doi.org/10.1007/978-3-031-21388-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3210-3990
https://orcid.org/0000-0002-8540-9918
https://orcid.org/0000-0002-4360-2226
https://orcid.org/0000-0001-6101-8931
https://orcid.org/0000-0001-7674-2930
https://doi.org/10.1007/978-3-031-21388-5

Preface

On behalf of the PROFES Organizing Committee, we are proud to present the
proceedings of the 23rd International Conference on Product-Focused Software Process
Improvement (PROFES 2022). The conference was held during November 21–23, 2022.

Following the previous editions, the main theme of PROFES 2022 was professional
software process improvement (SPI) motivated by product, process, and service quality
needs. The technical program of PROFES 2022 was selected by a committee of leading
experts in software process improvement, software process modeling, and empirical
software engineering.

This year, we received 75 submissions. After a thorough evaluation that involved at
least three independent experts per paper, 24 full technical papers were finally selected.
As we had strong competition this year, many good papers did not make it in the pool of
selected papers and, therefore, we invited several author teams to re-submit their papers
as a short paper or poster paper. Eventually, we included nine short papers and six poster
papers in the program. Each submission was reviewed by at least three members of the
PROFES Program Committees.

Alongside the technical program, PROFES 2022 hosted a doctoral symposium,
two workshops, and one tutorial. In total eight papers were accepted for the doctoral
symposium. The workshop on Computational Intelligence and Software Engineering
(CISE) aims to foster the integration between software engineering and AI communities,
and to improve research results, teaching and mentoring, and industrial practice.
The workshop on Processes and Practices for Quantum Software (PPQS) aims to
establish a community, fostering academic research and industrial solutions, focused
on quantum software engineering principles and practices for process-centric design,
development, validation, and deployment andmaintenance of quantum software systems
and applications.

We are thankful for the opportunity to have served as chairs for this conference.
The Program Committee members and reviewers provided excellent support in the
paper evaluation process. We are also grateful to all authors of submitted manuscripts,
presenters, keynote speakers, and session chairs, for their time and effort in making
PROFES 2022 a success. We would also like to thank the PROFES Steering Committee
members for their guidance and support in the organization process.

October 2022 Davide Taibi
Marco Kuhrmann
Tommi Mikkonen

Jil Klünder
Pekka Abrahamsson

Organization

Organizing Committee

General Chair

Tommi Mikkonen University of Jyväskylä, Finland

Program Chairs

Davide Taibi Tampere University, Finland
Marco Kuhrmann Reutlingen University, Germany
Pekka Abrahamsson University of Jyväskylä, Finland

Short-Paper Track Chairs

Valentina Lenarduzzi Lappeenranta-Lahti University of Technology,
Finland

Juan Manuel Murillo Rodríguez University of Extremadura, Spain

Industry Paper Track Chairs

Ilenia Fronza Free University of Bozen-Bolzano, Italy
Marcus Ciolkowski QAware, Germany

Tutorial and Workshop Chairs

Arif Ali Khan University of Oulu, Finland
Fabio Calefato University of Bari, Italy

Poster Track Chairs

Pilar Rodriguez Universidad Politécnica de Madrid, Spain
Fabiano Pecorelli Tampere University, Finland

Panel Chair

John Noll University of Hertfordshire, UK

viii Organization

Journal-First Chairs

Darja Smite Blekinge Institute of Technology, Sweden
Fabian Fagerholm Aalto University, Finland

PhD-Symposium Chairs

Paul Clarke Dublin City University, Ireland
Andrea Janes Free University of Bozen-Bolzano, Italy

Proceedings Chair

Jil Klünder Leibniz Universität Hannover, Germany

Publicity Chairs

Gemma Catolino Jheronimus Academy of Data Science,
The Netherlands

Sami Hyrynsalmi Lappeenranta-Lahti University of Technology,
Finland

Program Committee

Pekka Abrahamsson University of Jyväskylä, Finland
Sousuke Amasaki Okayama Prefectural University, Japan
Andreas Birk SWPM, Germany
Fabio Calefato University of Bari, Italy
Gemma Catolino Jheronimus Academy of Data Science,

The Netherlands
Marcus Ciolkowski QAware GmbH, Germany
Paul Clarke Dublin City University, Ireland
Bruno da Silva California Polytechnic State University, USA
Maya Daneva University of Twente, The Netherlands
Michal Dolezel Prague University of Economics and Business,

Czech Republic
Fabian Fagerholm Aalto University, Finland
Davide Falessi University of Rome Tor Vergata, Italy
Michael Felderer University of Innsbruck, Austria
Ilenia Fronza Free University of Bozen-Bolzano, Italy
Lina Garcés UNIFEI, Brazil
Carmine Gravino University of Salerno, Italy
Noriko Hanakawa Hannan University, Japan
Jens Heidrich Fraunhofer IESE, Germany

Organization ix

Helena Holmström Olsson University of Malmo, Sweden
Martin Höst Lund University, Sweden
Frank Houdek Mercedes-Benz AG, Germany
Sami Hyrynsalmi LUT University, Finland
Andrea Janes Free University of Bozen-Bolzano, Italy
Marcos Kalinowski Pontifical Catholic University of Rio de Janeiro,

Brazil
Kai-Kristian Kemell University of Helsinki, Finland
Petri Kettunen University of Helsinki, Finland
Arif Ali Khan University of Oulu, Finland
Jil Klünder Leibniz Universität Hannover, Germany
Marco Kuhrmann Reutlingen University, Germany
Filippo Lanubile University of Bari, Italy
Valentina Lenarduzzi University of Oulu, Finland
Jingyue Li Norwegian University of Science and Technology,

Norway
Silverio Martínez-Fernández Universitat Politècnica de Catalunya, Spain
Kenichi Matsumoto Nara Institute of Science and Technology, Japan
Tommi Mikkonen University of Jyväskylä, Finland
Rahul Mohanani University of Jyväskylä, Finland
Sandro Morasca Università degli Studi dell’Insubria, Italy
Maurizio Morisio Politecnico di Torino, Italy
Jürgen Münch Reutlingen University, Germany
Anh Nguyen Duc University of Southeastern-Norway, Norway
John Noll University of Hertfordshire. UK
Edson Oliveirajr State University of Maringá, Brazil
Fabiano Pecorelli University of Salerno, Italy
Dietmar Pfahl University of Tartu, Estonia
Rudolf Ramler Software Competence Center Hagenberg, Austria
Pilar Rodriguez Universidad Politécnica de Madrid, Spain
Daniel Rodriguez University of Alcalá, Spain
Juan Manuel Murillo Rodriguez University of Extremadura, Spain
Bruno Rossi Masaryk University, Czech Republic
Rebekah Rousi University of Vaasa, Finland
Gleison Santos Universidade Federal do Estado do Rio de

Janeiro, Brazil
Kurt Schneider Leibniz Universität Hannover, Germany
Ezequiel Scott University of Tartu, Estonia
Outi Sievi-Korte Tampere University, Finland
Darja Smite Blekinge Institute of Technology, Sweden
Kari Systä Tampere University of Technology, Finland
Davide Taibi Tampere University of Technology, Finland

x Organization

Marco Torchiano Politecnico di Torino, Italy
Ville Vakkuri University of Jyväskylä, Finland
Rini Van Solingen Delft University of Technology, The Netherlands
Xiaofeng Wang Free University of Bozen-Bolzano, Italy
Hironori Washizaki Waseda University, Japan
Dietmar Winkler Vienna University of Technology, Austria

Contents

Keynote

The End-Users of Software Systems Deserve Better: Experiences
on the Obstacles on Providing Value and How Servitization Can Help 3

Aapo Koski

Cloud and AI

Managing the Root Causes of “Internal API Hell”: An Experience Report 21
Guillermo Cabrera-Vives, Zheng Li, Austen Rainer,
Dionysis Athanasopoulos, Diego Rodríguez-Mancini,
and Francisco Förster

Requirements for Anomaly Detection Techniques for Microservices 37
Monika Steidl, Marko Gattringer, Michael Felderer, Rudolf Ramler,
and Mostafa Shahriari

Towards a DSL for AI Engineering Process Modeling . 53
Sergio Morales, Robert Clarisó, and Jordi Cabot

Classification of Changes Based on API . 61
Masashi Iriyama, Yoshiki Higo, and Shinji Kusumoto

Empirical Studies

Defining Requirements Strategies in Agile: A Design Science Research
Study . 73

Amna Pir Muhammad, Eric Knauss, Odzaya Batsaikhan,
Nassiba El Haskouri, Yi-Chun Lin, and Alessia Knauss

Analysing the Relationship Between Dependency Definition and Updating
Practice When Using Third-Party Libraries . 90

Kristiina Rahkema and Dietmar Pfahl

On the Limitations of Combining Sentiment Analysis Tools
in a Cross-Platform Setting . 108

Martin Obaidi, Henrik Holm, Kurt Schneider, and Jil Klünder

xii Contents

Marine Data Sharing: Challenges, Technology Drivers and Quality
Attributes . 124

Keila Lima, Ngoc-Thanh Nguyen, Rogardt Heldal, Eric Knauss,
Tosin Daniel Oyetoyan, Patrizio Pelliccione, and Lars Michael Kristensen

The Viability of Continuous Experimentation in Early-Stage Software
Startups: A Descriptive Multiple-Case Study . 141

Vihtori Mäntylä, Bettina Lehtelä, and Fabian Fagerholm

Data-Driven Improvement of Static Application Security Testing Service:
An Experience Report in Visma . 157

Monica Iovan and Daniela Soares Cruzes

Near Failure Analysis Using Dynamic Behavioural Data . 171
Masoumeh Taromirad and Per Runeson

Process Management

A Process Model of Product Strategy Development: A Case of a B2B
SaaS Product . 181

Bogdan Moroz, Andrey Saltan, and Sami Hyrynsalmi

Communication Skills Requirements of Junior Software Engineers −
Analysis of Job Ads . 201

Anu Niva and Jouni Markkula

Benefit Considerations in Project Decisions . 217
Sinan Sigurd Tanilkan and Jo Erskine Hannay

Towards Situational Process Management for Professional Education
Programmes . 235

Dennis Wolters and Gregor Engels

Change Management in Cloud-Based Offshore Software Development:
A Researchers Perspective . 243

Muhammad Azeem Akbar, Kashif Hussain, Saima Rafi,
Rafiq Ahmad Khan, and Muhammad Tanveer Riaz

Half-Empty Offices in Flexible Work Arrangements: Why Are Employees
Not Returning? . 252

Darja Smite, Nils Brede Moe, Anastasiia Tkalich, Geir Kjetil Hanssen,
Kristina Nydal, Jenny Nøkleberg Sandbæk, Hedda Wasskog Aamo,
Ada Olsdatter Hagaseth, Scott Aleksander Bekke, and Malin Holte

Contents xiii

Refactoring and Technical Department

Technical Debt in Service-Oriented Software Systems . 265
Nikolaos Nikolaidis, Apostolos Ampatzoglou,
Alexander Chatzigeorgiou, Sofia Tsekeridou, and Avraam Piperidis

An Investigation of Entropy and Refactoring in Software Evolution 282
Daniel Keenan, Des Greer, and David Cutting

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 298
Kevin Ljung and Javier Gonzalez-Huerta

Software Business and Digital Innovation

Counter the Uncertainties in a Dynamic World: An Approach to Creating
Outcome-Driven Product Roadmaps . 319

Stefan Trieflinger, Dominic Lang, and Jürgen Münch

Designing Platforms for Crowd-Based Software Prototype Validation:
A Design Science Study . 334

Sebastian Gottschalk, Sarmad Parvez, Enes Yigitbas, and Gregor Engels

Rapid Delivery of Software: The Effect of Alignment on Time to Market 351
Kouros Pechlivanidis and Gerard Wagenaar

Exploring the “Why”, “How”, and “What” of Continuous Digital Service
Innovation . 366

Jenny Elo, Kaisa Pekkala, Tuure Tuunanen, Juuli Lumivalo,
and Markus Salo

Why Traditional Product Roadmaps Fail in Dynamic Markets: Global
Insights . 382

Stefan Trieflinger, Jürgen Münch, Dimitri Petrik, and Dominic Lang

Understanding Low-Code or No-Code Adoption in Software Startups:
Preliminary Results from a Comparative Case Study . 390

Usman Rafiq, Cenacchi Filippo, and Xiaofeng Wang

Testing and Bug Prediction

Test Case Selection with Incremental ML . 401
Markus Mulkahainen, Kari Systä, and Hannu-Matti Järvinen

xiv Contents

Inferring Metamorphic Relations from JavaDocs: A Deep Dive
into the MeMo Approach . 418

Alejandra Duque-Torres and Dietmar Pfahl

An Evaluation of Cross-Project Defect Prediction Approaches
on Cross-Personalized Defect Prediction . 433

Sousuke Amasaki, Hirohisa Aman, and Tomoyuki Yokogawa

A/B Testing in the Small: An Empirical Exploration of Controlled
Experimentation on Internal Tools . 449

Amalia Paulsson, Per Runeson, and Rasmus Ros

TEP-GNN: Accurate Execution Time Prediction of Functional Tests
Using Graph Neural Networks . 464

Hazem Peter Samoaa, Antonio Longa, Mazen Mohamad,
Morteza Haghir Chehreghani, and Philipp Leitner

Improving Software Regression Testing Using a Machine Learning-Based
Method for Test Type Selection . 480

Khaled Walid Al-Sabbagh, Miroslaw Staron, and Regina Hebig

Early Identification of Invalid Bug Reports in Industrial Settings – A Case
Study . 497

Muhammad Laiq, Nauman bin Ali, Jürgen Böstler, and Emelie Engström

Posters

Resem: Searching Regular Expression Patterns with Semantics
and Input/Output Examples . 511

Hiroki Takeshige, Shinsuke Matsumoto, and Shinji Kusumoto

Building a Unified Ontology for Behavior Driven Development Scenarios 518
Konstantinos Tsilionis, Yves Wautelet, and Samedi Heng

Quality Metrics for Software Development Management and Decision
Making: An Analysis of Attitudes and Decisions . 525

Hannes Salin, Yves Rybarczyk, Mengjie Han, and Roger G Nyberg

Are NLP Metrics Suitable for Evaluating Generated Code? 531
Riku Takaichi, Yoshiki Higo, Shinsuke Matsumoto, Shinji Kusumoto,
Toshiyuki Kurabayashi, Hiroyuki Kirinuki, and Haruto Tanno

Automated and Robust User Story Coverage . 538
Mickael Gudin and Nicolas Herbaut

Contents xv

Tidy Up Your Source Code! Eliminating Wasteful Statements
in Automatically Repaired Source Code . 544

Takumi Iwase, Shinsuke Matsumoto, and Shinji Kusumoto

Tutorials

Utilizing User Stories to Bring AI Ethics into Practice in Software
Engineering . 553

Kai-Kristian Kemell, Ville Vakkuri, and Erika Halme

Workshop on Engineering Processes and Practices for Quantum
Software (PPQS’22)

Classical to Quantum Software Migration Journey Begins: A Conceptual
Readiness Model . 563

Muhammad Azeem Akbar, Saima Rafi, and Arif Ali Khan

1st Workshop on Computational Intelligence and Software
Engineering (CISE 2022)

Technical Debt Forecasting from Source Code Using Temporal
Convolutional Networks . 581

Aversano Lerina, Mario Luca Bernardi, Marta Cimitile,
and Martina Iammarino

Adagio: A Bot for Audio Processing Against Violence . 592
Rosa Conte, Vito Nicola Convertini, Ugo Lopez, Antonella Serra,
and Giuseppe Pirlo

End Users’ Perspective of Performance Issues in Google Play Store Reviews . . . 603
Anam Noor, Muhammad Daniyal Mehmood, and Teerath Das

Predicting Bug-Fixing Time: DistilBERT Versus Google BERT 610
Pasquale Ardimento

Proposing Isomorphic Microservices Based Architecture
for Heterogeneous IoT Environments . 621

Pyry Kotilainen, Teemu Autto, Viljami Järvinen, Teerath Das,
and Juho Tarkkanen

Doctoral Symposium

Ethical Tools, Methods and Principles in Software Engineering
and Development: Case Ethical User Stories . 631

Erika Halme

xvi Contents

Architectural Degradation and Technical Debt Dashboards 638
Dario Amoroso d’Aragona

The Impact of Business Design in Improving the Offering of Professional
Software Services . 644

Sari Suominen

Applications of MLOps in the Cognitive Cloud Continuum 650
Sergio Moreschini

Implementing Artificial Intelligence Ethics in Trustworthy System
Development - Making AI Ethics a Business Case . 656

Mamia Agbese

Developing a Critical Success Factor Model for DevOps . 662
Nasreen Azad

Strategic ICT Procurement in Finland: Tensions and Opportunities 669
Reetta-Kaisa Ghezzi

Leverage Software Containers Adoption by Decreasing Cyber Risks
and Systemizing Refactoring of Monolithic Applications . 675

Maha Sroor

Author Index . 681

Keynote

The End-Users of Software Systems
Deserve Better

Experiences on the Obstacles on Providing Value and How
Servitization Can Help

Aapo Koski(B)

61 NorthPoint Solutions Oy, Tampere, Finland
aapo.koski@61n.fi

Abstract. Failed software projects, delayed deliveries and unsatisfied
users are topics that we read on almost daily basis on the media. We’re
so used to unsuccessful software projects that we do not even seem to
expect projects to provide real value to the users. Simultaneously, the
societies are more dependent on the software than ever and huge amount
of people make their living out of software engineering related jobs. We
are investing substantially in the education and training in the software
domain and emphasize modern technologies and practices in the educa-
tion. A consensus exists within the academia and industry on how to
effectively develop information systems: with iterative and user-centered
methodologies that focus on continuous improvement, i.e. agile meth-
ods. Somehow, still, these great ideas and principles do not materialize
in practice in software projects; we seem to encounter failing projects and
unhappy clients more than succeeding projects with happy end-users. My
claim is that we are not doing the best we can, and we know better what
we should do when creating and maintaining software intensive systems.
The structures that inhibit us from providing the best value possible for
the user are often related to bad communication and/or non-disciplined
ways of working. Many of the obstacles can be avoided through servi-
tization: better collaboration, more user-centered development methods
and iterative approaches.

Keywords: Software development methods · Agile development ·
Co-operation and collaboration · Servitization

1 Introduction

The software engineering (SE) and the development of information systems is
definitively complex and cumbersome. I’ve worked in the software industry for
more than 20 years in various roles, and I’ve been lucky enough to have worked
with great teams and people. I have seen true successes where the created soft-
ware has been praised by the customers, the projects have been economically
feasible and sometimes even on schedule. On the other hand, I’ve witnessed

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-21388-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_1&domain=pdf
http://orcid.org/0000-0002-4000-8491
https://doi.org/10.1007/978-3-031-21388-5_1

4 A. Koski

that in the projects same mistakes are repeated; I’ve seen carelessness and mere
disregard to good practices, causing delays, headaches, errors and especially dis-
appointments in the expectations by the customers.

The obscurity around the factors affecting the likelihood of a software project
to succeed or fail has bothered me all my career. At some point, encouraged by
my friends in academia, I started to write down my thoughts on various aspects
on the topic, and tried to look at the software industry from a researcher’s point-
of-view. One of the outcomes of this endeavour was my PhD thesis [9], but I do
feel that much more research is needed.

In this keynote, I revisit the characteristics of a successful software projects
by discussing what I’ve found are the hardest things in the SE projects, elab-
orate on the possible reasons behind the difficulties, state some lessons learned
and finally provide some solutions to many of the problems through the idea of
software servitization. In particular, the two fundamental things that will dras-
tically improve the way we create software are simple but hard to implement,
namely disciplined ways-of-working and better communication.

2 The Paradox

When discussing with the people working in the SE domain, no matter are
they from the academia or industry, the same paradox surfaces: we agree on
the solid principles and know very well how to do software engineering. A wide
consensus prevails that the only sensible approach to build any larger scale soft-
ware is through close collaboration with the presumed users in an iterative and
incremental way, while paying close attention to the process and improving it
gradually. At the same time, a large majority of the software projects struggle
to meet the expectations and projects often fail in one way or the other. This
paradox has been with us already for decades, as documented by “the software
crisis” [13], as well as by the seminal works of Brooks [2] or DeMarco [4], for
instance.

This paradoxical behavior may relate to the same phenomenon with doing
sports or eating healthy. We all know that one should avoid non-healthy food
and exercise regularly, but few of us actually do. Other possible reasons for the
existence of this paradox might be the lack of understanding of the true nature
of system development processes or lack of effective communication in general.

My claim here is that there is no easy part in the software development effort:
everything is crucial, and one cannot leave some aspects of the work abandoned
or out of focus. Success is never a coincidence [8], at least when dealing with
large software projects, and success, or perhaps just survival, is not about doing
most of the things about right, but doing each one of the things exactly right.

Let’s look at what we do and the ways we act when doing SE.

3 The Easy Things: What We are Good at

Humans are wired to blame. We are inclined to say that the reason for a failure
was in other people or circumstances when things go wrong. This behavior is

The End-Users of Software Systems Deserve Better 5

partially psychological, related to the fundamental attribution bias [16]. We’re
so good at blaming and finding errors that we don’t even notice how often we
do it.

Often in software project disasters human error is the first explanation pro-
vided, ignoring all the other, like the systemic factors. Human error also feels
the most satisfying explanation of the failure: if someone else is to blame for our
problems, then there is a nice and easy way to improve by leaving that someone
out of the next project, and there’s no need to improve anything else.

Unfortunately, what we’re naturally good at does not help much at all in
improving the success rate of software projects.

4 The Hard Things: What We Should and Can Do Better

On a specific request of a former employer of me, quite some years ago, I started
to construct a training course intended to onboard new talent to the software
industry. The idea was to shed some light on the true difficulties and challenges
one encounters in real-life software projects, aspects of the SE that we thought
are never taught in universities. While working on this course, we started to
realize that there seems to be no area in the SE domain that we could leave
untouched in our “Hardest Things” course.

Most people, even the ones who are not software designers, developers or
testers, assume that the job of developing software and information systems is
hard. The troubling question that I’ve had in my mind already for long has been
the following: how can it be possible for some individual or a group of novice
programmers to write applications (although mostly mobile ones) when many
serious large-scale information system projects fail, despite employing all the
wisdom, skills, resources and experiences of large software companies?

The root causes why we fail on creating software naturally vary per project,
but Fig. 1 gives an overview of the typical factors. The diagram is not, for sure,
a comprehensive one, but shows the complexity and the interdependency of the
factors affecting the outcomes.

4.1 Defining the Need and Requirements

I’ve worked a lot in projects that are initiated by public tenders. In public ten-
ders, there’s typically a specific phase of the process where the aim to create the
requirements of the system or software to be created. Typically, the specifica-
tion results in a list of requirements, where the number of the requirements for
any non-trivial software system is several hundreds and for larger ones, like the
EHR system Apotti of Helsinki, which has more than 6000 functional require-
ments, complemented with hundreds of non-functional requirements related to
interfaces, architecture, data migration etc. [1].

The quality of the requirements vary a lot. Some of the requirements are eas-
ily understandable, not prone to misinterpretations and describe a feature that is

6 A. Koski

Fig. 1. Diagram on the factors affecting the success of any software project [10].

relatively straightforward to implement. On the other hand, some of the require-
ments use language that can be understood in totally different ways by different
readers and leave large part of the described aspect open for interpretation and
assumptions.

Although the good effort is spent on preparing, refining and tuning the
requirements with all the best intentions, at least the following key problems
remain unsolved:

– All the development efforts require learning between the starting point and
the release of the system. What we know of the needs and on the potential
solutions is often far from assumptions we have made in the beginning of the
process. This problem is further emphasized with long lasting projects.

– The written list of requirements effectively prevents the new solutions that
were not considered at the time the requirements were written.

– The requirements do not carry their history with them. This results in lost
information as there are no means to understand where the requirement orig-
inally stems from and why it was written.

– Tacit knowledge is not transferred with the requirements. Those who have
written the requirements have already had in their minds some sort of a
solution and the requirements reflect that solution, even to the level of tech-
nologies used and architectures employed.

– A list of requirements underrates value of communication. From the require-
ments, it is next to impossible to derive the needs of the real end-users.

– The requirements are often not prioritized well and thus do not enable value-
driven development, a must-have for an agile development process.

All the problems listed above point to the same direction: there needs to be
a solid way communicate what the software under development should be able
to do. The requirements give an idea, but the comprehensiveness and quality
of the requirements is rarely, if ever, verified. As reported in, e.g. [6] and [7],

The End-Users of Software Systems Deserve Better 7

low-quality requirements have been found to be the most common reason for the
failure of software projects.

Furthermore, the requirements typically focus a lot on the functionalities of
the system and the non-functional aspects, i.e. the quality aspects are overlooked.
One improvement to this situation could be to start with the quality needs
instead of functional requirements. This setup would give us a better chance to
find the right solutions to the true needs. One crucial step towards being able to
specify the non-functional requirements would be the usage of minimum viable
architecture (MVA, [5]), as an intrinsic part amending the functional and other
customer requirements.

The main lessons learned can be summarized as follows:

– Do not make the requirements the binding element in the contract. Instead,
consider usage scenarios, user stories, or use cases. The IEEE 830 style of
requirements do not make sense and do not communicate the intent well.

– Make sure that the usage scenarios are comprehensive and cover all the impor-
tant use cases we need. Requirements may be still there, but only in a sup-
porting and refining role for the usage-based specifications.

4.2 Design and Implementation

The challenge with the design and implementation is making sure that the design
results in a solution that can be implemented and meets the customer’s expecta-
tions. This calls for a design that needs to make sense to the customer to enable
the customer to give feedback and adjust the design if required. The design must
also allow the software to be built within the required time-frame.

In many projects I’ve worked, I have had the privilege to work with designers
with a common characteristic: the designers want to please the customer and find
designs that extend the original scope, resulting in feature creep. To increase the
probability for the project success, however, the focus needs to be on the critical
part of the system and to get it delivered as soon as possible. Any bloated or
extended design risks this goal immediately.

Writing the code is not the hardest or most time-consuming part in the soft-
ware development, which means that putting more manpower to do the coding
does not help to achieve set goals sooner [2]. Too often, however, when things
start to go wrong, the only solution the management finds is to hire more devel-
opers and testers.

The main lessons learned regrading design and implementation are:

– Start from the non-functional aspects and architecture.
– Make sure that the architecture will enable all the usage scenarios.
– While the architecture is designed, proceed with the user-centered discussions

related to functional features with light prototypes.

8 A. Koski

4.3 Validation and Verification

For any software system, the functional quality must be understood in a broad
sense and dependent on the specific context the system is used in. Functional
quality does not just mean that a certain function is available for certain user
to perform some action. High functional quality means that the functionality
is for the user to use in all needed situations, informs the user in appropriate
way about any issues related to the functionality and in case the functionality is
somehow not fully available, offers the user options how to act to achieve wanted
results.

To cope with the enormous amount of work involved in testing, the full
automation of the release and build test cycles must be enabled from the start
of the project. Emphasis needs to be on the automated testing, but the manual
testing is also crucial. For example, ad hoc testing cannot be performed using
automation and negative testing is done more rigorously with manual testing
[15]. The skill-set required from an effective manual tester includes good scripting
skills, ability to think critically and outside the box, ability to find out missing
parts of information needed and true will to break the system under test.

A good question is that do we need to hire testers or are the people who do
the testing, including both running automated tests and ad hoc testing, more
like designers and developers with extended and broader skill-sets?

The lessons learned on testing can be summarized as follows:

– One should concentrate on the test automation from day one of the project,
making sure that everything that can be automatized, will be automatized.

– One should regard the code-base related to the test automation as an artefact
as valuable as the actual code-base and treat it accordingly - by refactoring,
testing, maintaining and validating the test code on regular basis.

– One should not treat the testers as a necessary single part of the software
construction process but as a crucial and irreplaceable function that inspects,
ensures and improves the design and quality of the whole process. Test early
and Shift left movements are good examples of this, but require careful plan-
ning and changes in the existing processes.

– The testers need to have a real tester attitude: passion to learn how things
work and find ways to end in situations where things do not work anymore.
The aim should always be to find what makes the system break. If we do not
know how to break it, we do not know how to keep it safely running.

4.4 Performance, Reliability and Security

Any software development project faces the performance and reliability issues.
Defining and knowing the limits of the performance cannot be overlooked.

Regarding reliability, the main question is, how reliable system needs to be
and what is enough? For a critical system an availability of 100% is desirable but
in practice this is not achievable by any cost. In addition to the cost of required
redundancy mechanisms to enhance the reliability, the increased complexity of

The End-Users of Software Systems Deserve Better 9

the redundant system comes into play. How are we able to say that certain
mechanism intended for improving reliability make the system more reliable if
we have not tested all possible scenarios?

The same that applies to performance and reliability, applies also to the
security issues. What is enough when specifying the security measures and on
what basis we can say that a software system is secure? Economic aspects related
to the security cannot be overlooked and any security solution employed needs
to be fully justified, tested and monitored.

Lessons learned on the performance, reliability and security can be summa-
rized as follows:

– We need to understand what are the true performance and reliability require-
ments in the operative environment of the software.

– We should not waste time on testing performance and reliability in an envi-
ronment that does not correspond to the actual operative environment.

– The performance test results must always be thoroughly analysed and result-
ing in modifications in the system, if required.

– There is no limit on the amount of time and resources that can be spent on
the security issues. Therefore for any software system the threat modeling
plays crucial role: what are the actual threats and with what budget can we
do that. Having not enough money to secure the system does not free us from
identifying the threats and risks involved.

4.5 Collaboration and Customer Care

Recently there has been a trend in the public tenders that the customer requires
that customer representatives are involved in the software development project
and customer’s opinions are used to fine tune the direction the project is going
[11]. The actual format and practicalities related to the collaboration are typi-
cally not described but are left to be negotiated between the customer and the
software provider during the project.

While end users can be used as A/B, alpha, and beta testers of new features
to refine the usability of the software design, the situation is radically different
when developing enterprise software. Services provided by enterprise software
are typically business-oriented, which are useless unless they are complete and
reliable enough to fulfill their mission. Therefore, care must be taken what the
end-users are allowed to test and what we expect from them.

A typical solution for a feedback channel for end-users that use software is
to introduce a ticketing system in one form or another. For some contexts, like
generic IT problem reporting, the helpdesk systems have proved to work well
[12]. However, for many development projects similar ticketing systems are infa-
mous for being ineffective in multiple ways. Firstly, the information provided
in the created tickets is typically written by some customer representative, not
necessarily the end user, and in the language of the customer, most probably not
well understood by the developers trying to handle the problem at hand. Sec-
ondly, when the number of the tickets arise, the tickets are lost into the ticketing

10 A. Koski

system, and neither appropriate prioritization nor aggregation and classification
is possible without huge amount of time and effort.

In any case, to be successful in the development project some form of user
monitoring is a must-have in the agile era to ensure customer satisfaction. Mod-
ern customers expect, quite legitimately, that they are utilized as a resource when
software is designed, developed and tested and their voice is heard when they
want to give feedback based on their points-of-view. There is, however, a great
risk involved in the customer collaboration - listening to the customer feedback
easily leads to situation where we start to ensure the customer satisfaction by
giving in to wishes and nice-to-have improvements, which, in turn, cause feature
creep and eventually extra costs and slips in the schedule.

Managing customer expectations is a prerequisite to a satisfied customer. The
approach has long been to just meet customer expectations. However, appropri-
ate shaping strategies could be employed and much neglected customer expec-
tation shaping deserves attention, also from the research.

Lessons learned on collaboration and customer care are:

– Start building the trust between the customer and software provider from the
very beginning.

– Accept that building trust takes time, and its seeds are planted long before
any actual contracts are signed or development processes have started.

– Trust happens only between individuals, not that much on the company or
organization level. Find people who get along with the customer representa-
tives and give them enough time to get to know each other.

5 Possible Reasons Behind the Difficulties

Based on the discussion above, the reasons why building software is difficult
touches almost every phase and aspect of software engineering. Thus, perhaps
there are more fundamental, primary reasons behind them.

5.1 Primary Reason 1: Software Industry is Young

We have been building roads, bridges and houses for thousands of years. Pre-
sumably many projects have failed over the centuries, but we have learned and
found solid building techniques. The software industry is only about 50 years
old. We still have a long way to go before we have the body of experience behind
us that the construction and manufacturing industries have.

5.2 Primary Reason 2: Software is Complex

Large part of software projects are custom built. From this it follows that the
code is unproven and should be carefully and comprehensively tested. In the soft-
ware projects, this is totally impractical. Only for some extremely rare projects,
like space shuttle software, thorough testing can be performed.

The End-Users of Software Systems Deserve Better 11

The complexity of software means it is impossible to test every path. By
testing we only try to find ways increase the likelihood of the software working
in expected ways. Testing also comes at a cost. Every project must carefully
asses how critical the software is and how much testing should we do to ensure
the software is correct? Often the testing phase is rushed and the software goes
out with an unacceptable level of defects.

5.3 Primary Reason 3: We Are Optimists

Given the premise that new projects are custom built, that the project will suffer
from scope creep and that the development team is not be world’s best, it should
come as no surprise that estimating the duration of the project is not easy.

Experience guides us in estimating and the more experience we have the more
likely we will be to anticipate the unknowns. Still, too many projects run over
because overly optimistic estimates are set by inexperienced people who expect
everything to flow smoothly and who make no allowance for the unknowns.

5.4 Primary Reason 4: The Wrong People are Doing This

It has been said that software development is so hard because programming is
so easy. It is relatively easy to learn how to write code but there is a huge gap
between that and being a great software engineer.

Various studies have shown that the productivity ratio between different
developers can be huge and truly effective software teams are a very rare com-
modity. How do we know that we have the right people for our project? In my
experience, only after working with them. And if you find good ones, keep them.

5.5 Primary Reason 5: We Do Not Understand the External
Factors

Referring to building bridges and building, the physical structures obey physical
laws. Through experience much is known about the physical world and can
therefore be modelled and predicted.

Software does not obey physical laws to same extent. Software systems usu-
ally must conform to external constraints such as hardware, integration with
other systems, government regulations, security, legacy data formats, perfor-
mance criteria etc.

Understanding and catering for all of these external factors is a challenge and
even if we count in the external factors, things happen.

5.6 Primary Reason 6: Lack of User Input

The Standish Group has surveyed companies on their IT projects for decades and
the primary factor that has caused the software projects to become challenged
has long been “Lack of User Input”.

12 A. Koski

Reasons for this finding may be that the system is being promoted by the
management and so the actual users have no buy-in, or that the users are too
busy and have “more important” things to do than support the development of
the new system.

Without the involvement and input of users the projects are doomed to fail.
These persons should be subject matter experts with the authority to make
decisions and a commitment to the development project timescales. However,
user input is not an easy task, as the next topic explains.

5.7 Primary Reason 7: Customers Cannot Tell Us What They Need

Even with good input from the users no amount of analysis of user requirements
can take away an immutable fact that users only think that they know what they
want. Only when the users start using the software, they begin to understand
what they actually need.

6 Servitization as a Solution

In this article, the servitization refers to the shift from traditional business mod-
els to an outcome-based, product as a service model [17]. A subset of the servi-
tization is Software as a service (SaaS), a way of delivering applications over the
network, as a service, freeing the customer from complex software and hardware
management.

I feel that the rise in the interest to invest into SaaS and cloud solutions in
general has resulted partly due to the challenges outlined earlier in this article.

6.1 Enabling Agility

With the servitization model, the roles of the customer and the system provider
became clear. Customer pays for received value and provider provides the agreed
service. In the picture, there are no third parties whose role are ambivalent and
consequently there should not be situations where the responsibilities are not
clear.

The servitization in the form of SaaS, with easier release and deployment
scheme, enables us to focus on the right kind of MVP (valuable instead of viable)
system. Increments and iterations are more easily reachable by the customer
and end-users and confidence on the ability to deliver can be built. The SaaS
model also supports true communication and true co-operation while making
the feedback channels straight and the customer feedback easier to understand.
Allowing the system provider to monitor and analyse the user behaviour in
multitude of ways is the key [11].

Naturally the organizations procuring software need to ask themselves are
they really looking for some company to deliver software or are they more into
having a partner to help deliver results that need to be refined, modified and
even totally transformed during the project. This calls for crafting the RFQ’s
accordingly to allow cooperation and building of trust.

The End-Users of Software Systems Deserve Better 13

6.2 Enabling Acceleration

The reason we need speed in the development processes is related to the ability
to adjust, ability to invent and the ability to fail fast and learn. Furthermore,
speed enables feedback to be received and to be used for further development
and improvements of the services provided. The potential faster innovation of
solutions to customer requests and wishes is not only a necessity for deliver-
ing high quality software on continuous basis but also a key differentiator when
competing for customer projects and when trying to affect the customer expec-
tations. Naturally, to be able to improve competitiveness we need to convince
the customer on the advantages of the speed.

One of the biggest threats to the success of the software is time - the longer
it takes to make the system delivered to the operative environment, the harder
it will be to get the user acceptance to the system. Information systems become
old surprisingly fast and the requirements become invalid even faster than that.

To-do: Start discussions with the customer from delivering new features as
producing value to their end users. This helps them to understand that the right
speed is a joint benefit. Accept also that the speed is not automatically a shared
value. For instance, if the end users must be trained every time a change is made,
this is clearly an obstacle for frequent releases.

6.3 Enabling Prioritization

A servitization model enables us to work more effectively in an iterative and
incremental way and thus also the needs, let them be requirements, feature
descriptions or user stories, must be prioritized and handled with disciplined
way. In this regard, the following aspects need to be respected:

– Identifying the most valuable features. One of the downsides the continuous
interaction with the customers and the end-users has, is that along with
wide-band and frequent communication we inevitably also talk about features
and qualities that the customer representatives or the end-users think they
would like to have, the so called nice-to-have features and qualities. New
features are extremely easy to invent and fun to discuss about. However, each
feature should be associated with explicit stakeholder value and prioritized
accordingly.

– Strict no to feature creep. When the software projects are executed in a close
co-operation with the end-users and other customer-side stakeholders, the
software provider receives easily a lot of feedback on the functional quality
aspects of the system under development. When receiving the feed-back, the
system provider should be very careful to avoid the feature creep. However,
the responsibility on keeping the scope set by the system owner should not
be on the development teams solely but on the customer representatives and
end-users. To avoid feature creep, one needs to perform rigorous and visible
change management. Learning to say “No” in a nice way to customers and
end-users is obligatory.

14 A. Koski

6.4 Enabling Testability

Providing software as a service enables the software vendor to access the oper-
ative environment and observe the users doing their tasks in real-time – if only
agreed with the customer.

To-do: Allows the developers to better understand the workflows, bottlenecks
and pain-points, provided that the software is appropriately instrumented and
monitored.

6.5 Making Availability Concrete

When providing any kind of service to a customer probably the most relevant
question is how to measure the availability? Availability is the key in how much
the service costs and most typically monthly service fees are directly based on
some calculated availability measure defined in the service contract.

With pure servitization model, at least one thing is clear: who to blame when
things go wrong. This is a major improvement from the traditional models where
a considerable amount of time is potentially wasted when trying to find the party
who is responsible for a fix to a problem or who has the knowledge to fix it.

In typical service scenarios, the availability is measured at the server side
either polling the service with some predetermined set of requests or by relying
on the heartbeat of the services needed by the customer. Both surely give us a
measure of availability but leave a large part of the true situation into darkness
as these measures do not reflect the experience obtained by a real use of the
system.

Thus, if we want to define that the availability of the system is based on the
opinion of the end-user now she is using the service, measuring the health or just
existence of some process in a server not directly related to the functionalities a
user is using, does not make much sense.

To-do: Focus measurements to the only relevant point to measure the avail-
ability of a service, the point-of-view of the end-user. If the user feels that she is
given the promised service at the promised performance at the time she needs
the service, the subjective availability is 100%.

6.6 Uncovering Security

One of the most common reasons not to take SaaS into use has traditionally
been the concerns over data security. Security is naturally a key requirement
that must be addressed when engineering any modern SaaS applications. Tradi-
tional security approaches do not fit with the multitenantcy application model
where tenants and their security requirements emerge after the system was first
developed. Enabling run-time, adaptable and tenant-oriented application secu-
rity customization on single service instance is a key challenging security goal in
multi-tenant application engineering.

To-do: Create a comprehensive security strategy, and communicate that
clearly to the end users. The strategy should define the role of third parties and

The End-Users of Software Systems Deserve Better 15

their potential systems that might be involved, as well as required security mea-
sures. Place special focus on following the strategy; it is easy to diverge from the
strategy as the system and its environment evolve. Finally introduce scheduled
security related processes, such as audits, to ensure that security continuously
gets enough attention.

6.7 Enabling Continuous Delivery

The SaaS model emphasizes the needs and encourages us as the service providers
to automate and make the operations more continuous. So, the move to contin-
uous integration, deployment and delivery is natural since it is the easiest and
preferred way to handle the software delivery process in the SaaS era.

However, while the situation seems to be strongly in favour of the continuous
operations, not all customers are necessarily happy with the new continuous
delivery model.

Not all customers are a good fit with the continuous mode of operation.
The system providers need to carefully investigate to what customers the ser-
vices provided on continuous delivery model are a good fit and to what kind of
customers we do not provide the continuous services.

6.8 Enabling Customer Care

The SaaS model enables the service providers, if agreed appropriately with the
customers, to monitor and analyse the end-user behaviour in ways that open a
new repertory of opportunities to understand the end-users, to detect and assess
their problems and to discern their true needs and priorities. Through smart and
thorough analysis of the user information the service providers are enabled to
provide the end-users, as customers, appropriate customer care. The key point
in providing good customer service is to understand and consequently swiftly
respond to the user expectations.

To-do: Managing customer expectations is prerequisite to create a satisfied
customer. The approach to achieve this goal has long been to endeavour to meet
customer expectations. However, we as practicing system providers many times
under-utilize appropriate shaping strategies and therefore much neglected cus-
tomer expectation shaping deserves close attention from both system providers
and academician alike.

6.9 Enabling Continuous Improvement and Learning

I’ve often heard some manager or decision-maker, while adoring some new prin-
ciple, practice or even set of tools that enable new ways-of-working, settling up
with a blurt: “but that would not work in our project.”. And that conclusion is
solid – if you do not try it, it won’t work.

If it hurts, try to do it more often.

16 A. Koski

6.10 Enabling Trust

By dictionary, trust is a firm belief in the reliability, truth, or ability of someone
or something. What has trust to do with SE and why do we need it?

Simple graph, borrowed from John Cutler [3], tells it well (Fig. 2):

Fig. 2. Workflow of a decision with and without trust [3], courtesy of John Cutler,
@cutlerfish, Twitter, 2021.

Without trust, things slow down, decisions became harder to make and all
interactions are overshadowed by the thoughts that someone is cheating some-
how.

7 Conclusions

By pointing out many of the serious challenges we have with complex systems,
one could ask is it plausible to believe that in the near future we see better-
constructed software projects and streamlined delivery processes which lead to
deployment of systems in time and on budget? Based on my experience, it is
hard to believe that such changes happen soon, but even so, the first step in
the path of improving the current situation is to admit that there are serious
problems. What this article aims for is to point out the fact that we should not
continue as-is, but start thinking software delivery as a service and servitize the
whole process.

As a take-away, and in addition to the aspects related to the idea of more
service-oriented ways of working, there are two points that affect a lot how well
software projects succeed:

The End-Users of Software Systems Deserve Better 17

1. There cannot be too much focus on the details: the more agile we want to
be, the more disciplined the ways of working need to be and there is no room
for unfounded optimism or lightly made assumptions. We need to be almost
paranoid on checking that everything goes well and as planned, make sure
we measure the right things in a right way and that everyone understands
what is required. To be able to provide an efficient and effective development
process, constant focus and continuous improvement are needed. It is not
enough to do the tasks casually, everything needs to be done as well as we
can and unfortunately, due to the complexity of software, even that might
not be enough.

2. A good understanding on the domain and the users is a must. There is not
much sense in developing anything if we are not sure that what is specified and
developed has a chance to fulfill the needs it is developed for. If any assump-
tions are made, those need to be documented and discussed thoroughly, and
revisited to verify that the they still hold. The first step to better communica-
tion is to admit that communication just often does not work very well. After
that, we can start finding solutions that work better in a particular situation
and for particular set of people.

Principles that enable the servitization of software systems include strong,
wide-band and continuous customer collaboration. This calls for a new kind
of customer-vendor relationship, something that has its roots far deeper than
gained with typical customer relationships. In that relationship both parties,
the software provider as well as the customer, must step away from looking at
and playing with the requirements and set the needs and disciplined processes
first. The processes involved must be a supporting and helping structure, not one
that restricts or limits the design and development. Finding someone to blame
when something goes is not essential, we’re in this together. In other words,
processes need to be seen as a living thing; they evolve over time as needs evolve
and if the process does not work for some part, it should be changed.

What I have covered in this article is not all new, similar messages has been
communicated in numerous articles, blog posts and books over the years. In
his famous article from 1970 [14], Winston Royce already stated that the linear
development method, later labeled as the waterfall method, won’t work for any
larger-scale information system project. But somehow and for some reason, we
have been a bit deaf to all the valuable advice around us. Or, alternatively, we
know what do to but in practice we do not know exactly how to accomplish what
should be done. For these reasons, and since no-one was listening, the messages
needs to be repeated.

Many of the points I’ve emphasized in the article seem trivial and something
that should be considered self-evident on any software or information system
project. But if anyone who has been involved with any larger scale information
system can claim that all of these points were handled appropriately, without
room for improvement, and still the project failed, it is hard to state what else
we can do. Maybe complex software and information systems just cannot be
developed effectively?

18 A. Koski

This keynote’s message is that we are not doing the best we can, and we
certainly know better what we should do when specifying and creating software
and information systems. The end users of the systems deserve better.

Toutes choses sont dites déjà; mais comme personne nécoute, il faut
toujours recommencer.

André Gideǎ/Traité du Narcisse

References

1. Apotti: Hankkeesta yritykseksi. https://www.apotti.fi/apotti/apotti-yrityksena/
apotti-hankkeen-vaiheet/

2. Brooks Jr., F.P.: The Mythical Man-Month, Anniversary edn. (1995)
3. Cutler, J.: Trust? (2021). https://twitter.com/johncutlefish/status/

1370298106319753219/photo/1
4. DeMarco, T., Lister, T.: Peopleware: Productive Projects and Teams. Addison-

Wesley, Boston (2013)
5. Erder, M., Pureur, P.: Continuous Architecture: Sustainable Architecture in an

agile and Cloud-Centric World. Morgan Kaufmann, Burlington (2015)
6. Hofmann, H.F., Lehner, F.: Requirements engineering as a success factor in soft-

ware projects. IEEE Softw. 18(4), 58–66 (2001)
7. Jones, C.: Applied Software Measurement. McGraw-Hill Education, New York

(2008)
8. Kahneman, D., Egan, P.: Thinking, Fast and Slow. Farrar, Straus and Giroux, New

York (2011)
9. Koski, A.: On the Provisioning of Mission Critical Information Systems Based on

Public Tenders. Universtity of Helsinki, Helsinki (2019)
10. Koski, A.: Software Engineering Methods and Tools. Seinäjoki University of

Applied Sciences, Seinäjoki (2022, Unpublished)
11. Koski, A., Kuusinen, K., Suonsyrjä, S., Mikkonen, T.: Implementing continu-

ous customer care: first-hand experiences from an industrial setting. In: 2016
42th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 78–85. IEEE (2016)

12. Li, S.H., Wu, C.C., Yen, D.C., Lee, M.C.: Improving the efficiency of IT help-
desk service by six sigma management methodology (DMAIC) - a case study of C
company. Prod. Plann. Control 22(7), 612–627 (2011)

13. Randell, B.: The 1968/69 Nato software engineering reports. Hist. Softw. Eng. 37
(1996)

14. Royce, W.W.: Managing the development of large software systems Dr. Winston
W. Rovce introduction. In: IEEE Wescon, pp. 328–338 (1970)

15. Stobie, K.: Too much automation or not enough? When to automate testing. In:
Pacific Northwest Software Quality Conference (2009)

16. Tetlock, P.E., Levi, A.: Attribution bias: on the inconclusiveness of the cognition-
motivation debate. J. Exp. Soc. Psychol. 18(1), 68–88 (1982)

17. Vandermerwe, S., Rada, J.: Servitization of business: adding value by adding ser-
vices. Eur. Manag. J. 6(4), 314–324 (1988)

https://www.apotti.fi/apotti/apotti-yrityksena/apotti-hankkeen-vaiheet/
https://www.apotti.fi/apotti/apotti-yrityksena/apotti-hankkeen-vaiheet/
https://twitter.com/johncutlefish/status/1370298106319753219/photo/1
https://twitter.com/johncutlefish/status/1370298106319753219/photo/1

Cloud and AI

Managing the Root Causes of “Internal
API Hell”: An Experience Report

Guillermo Cabrera-Vives1,5 , Zheng Li2(B) , Austen Rainer2 ,
Dionysis Athanasopoulos2 , Diego Rodríguez-Mancini3 ,

and Francisco Förster4

1 Universidad de Concepción, 4070409 Concepción, Chile
guillecabrera@inf.udec.cl

2 Queen’s University Belfast, Belfast BT9 5AF, UK
{zheng.li,A.Rainer,D.Athanasopoulos}@qub.ac.uk

3 Data Observatory Foundation, 7941169 Santiago, Chile
diego.rodriguez@dataobservatory.net

4 Universidad de Chile, 8320000 Santiago, Chile
5 Millennium Institute of Astrophysics (MAS), Santiago, Chile

Abstract. When growing the software infrastructure for a large-scale
scientific project (namely ALeRCE, Automatic Learning for the Rapid
Classification of Events), we observed an “internal API hell” phenomenon
in which numerous and various API issues coexist and are inextricably
interwoven with each other. Driven by this observation, we conducted a
set of investigations to help both understand and deal with this compli-
cated and frustrating situation. Through individual interviews and group
discussions, our investigation reveals two root causes of the “internal
API hell” in ALeRCE, namely (1) an internal API explosion and (2) an
increased “churn” of development teams. Given the nature of the system
and the software project, each root cause is inherent and unavoidable. To
demonstrate our ongoing work on tackling that “hell”, we discuss five API
issues and their corresponding solutions, i.e., (1) using a multi-view cata-
log to help discover suitable APIs, (2) using a publish-subscribe channel
to assist API versioning management and negotiation, (3) improving the
quality of API adoption through example-driven delivery, (4) using oper-
ation serialisation to facilitate API development debugging and migra-
tion, and (5) enhancing the usability of long and sophisticated machine
learning APIs by employing a graphical user interface for API instantia-
tion. We also briefly consider the threats to validity of our project-specific
study. On the other hand, we argue that the root causes and issues are
likely to recur for other similar systems and projects. Thus, we urge col-
laborative efforts on addressing this emerging type of “hell” in software
development.

Keywords: API · Dependency hell · Experience report · Internal API
hell · Large-scale software system

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 21–36, 2022.
https://doi.org/10.1007/978-3-031-21388-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_2&domain=pdf
http://orcid.org/0000-0002-2720-7218
http://orcid.org/0000-0002-9704-7651
http://orcid.org/0000-0001-8868-263X
http://orcid.org/0000-0002-0720-1986
http://orcid.org/0000-0002-6984-2965
http://orcid.org/0000-0003-3459-2270
https://doi.org/10.1007/978-3-031-21388-5_2

22 G. Cabrera-Vives et al.

1 Introduction

Modern software engineering principles advise organising a system into subsys-
tems and making them communicate via reliable interfaces, and accordingly,
application programming interfaces (APIs) have become an integral part of soft-
ware projects [14]. When building up the software infrastructure for a large-scale
scientific project (namely ALeRCE [10], Automatic Learning for the Rapid Clas-
sification of Events), we also develop single-responsibility APIs to expose highly
cohesive and reusable components including machine learning models.

However, this API-oriented development strategy not only speeds up the
growth of ALeRCE but in turn also leads to an “internal API hell” within the
scope of the project. We define “internal API hell” as a situation where a large
and varied number of API issues coexist and are inextricably interwoven with
each other. These issues go beyond “dependency hell” [3] and cause various prob-
lems, e.g., for API debugging, maintenance, migration, discovery, delivery. Fur-
thermore, addressing one issue can aggravate another. The consequences are
that multiple issues need addressing concurrently, and that any single issue may
require a sequence of incremental solutions over time.

To help comprehensively understand this situation, we conducted a project-
specific investigation driven by a predefined research question RQ1: What are
the root causes of the “internal API hell” in ALeRCE? To help address or at
least relieve this situation, we investigated another research question RQ2: How
do we manage and mitigate an “internal API hell”? This paper reports our inves-
tigations and especially our ongoing efforts on tackling that “hell”. Considering
that such a complicated and frustrating situation may commonly exist across
large-scale software projects, our work makes a twofold contribution:
– For researchers, our experience of the emergence of “internal API hell” reveals

new challenges and research opportunities other than that for the well-known
“dependency hell”.

– For practitioners, our developed solutions can be reused in, or adapted to,
the other large-scale software projects for dealing with similar API issues.

In fact, we expect to use this experience report to raise the whole community’s
awareness of the “internal API hell” phenomenon, and we urge collaborative
efforts of both practitioners and researchers to address such a “hell”.

The remainder of this paper is organised as follows. Section 2 briefly explains
different software situations in which the joyless term “hell” has been used.
Section 3 introduces our ALeRCE project, and Sect. 4 explains the API-focused
strategy and the “internal API hell” phenomenon in ALeRCE. Section 5 demon-
strates five typical API issues and specifies how we have addressed them. The
threats to validity of this project-specific work is discussed in Sect. 6. Section 7
draws conclusions and highlights our future work plans.

2 Background and Related Work

The usage of the joyless term “hell” in describing complicated situations of
software development can be traced back to the “DLL hell” phenomenon

Managing the Root Causes of “Internal API Hell”: An Experience Report 23

endemic to the Microsoft Windows product in the mid-to-late 1990s [6]. To
make software systems’ development and run-time both efficient, Microsoft
invented the dynamic-link library (DLL) technology to facilitate sharing common
code/features among different Windows applications. In addition to the normal
benefits (e.g., improved code reusability) from static programming libraries, the
DLL technology further avoids loading multiple copies of a same functionality
implementation into memory, which is particularly meaningful for large software
ecosystems (e.g., the Windows software ecosystem).

Unfortunately, along with the development of DLLs (together with Win-
dows updates), and especially after installing and uninstalling numerous applica-
tions on Windows, developers and users frequently encountered troubles such as
incompatible DLL versions, missing DLLs, and increasingly accumulated legacy
DLL copies. Among these troubles, the conflicts between DLL versions soon
became a nightmare and were complained to be a “hell”, because the update of
DLLs would leave obsolete entries in the library registry on the machine. As
a result, the installation of a new application that also installs and registers a
new-version DLL will break the existing applications that rely on the DLL’s old
version. For the same reason, reinstalling the existing applications will make the
new application fail, unless the old-version DLL is forward compatible [7].

After observing similar phenomena beyond the scope of Microsoft products,
researchers and practitioners generalised the term “DLL hell” to “dependency
hell” [6], in order to continuously indicate the significance of, and meanwhile
imply the pervasiveness of, this problem. For example, dependency-related errors
have been identified as the most common error type for C++ projects (up to
52.68%) and Java projects (up to 64.71%) at Google [21]. By distinguishing
between declared dependency at design time and actual dependency at run-time,
Fan et al. [9] categorised dependency problems into two groups, namely miss-
ing dependencies and redundant dependencies. A missing dependency will lead
to failures due to an undeclared dependency that is actually needed, while a
redundant dependency will result in performance degradation due to a useless
dependency declaration. It should be noted that there can be cascade problems,
because a dependency may also require its own dependencies (direct vs. transi-
tive dependencies [5]).

Deinum et al. [5] further distinguished a “versioning hell” phenomenon from
the “dependency hell”: When a single application has multiple dependencies who
need different versions of a same library, there will be additional challenges and
troubles. In the extreme case, it will be impossible to reference multiple versions
simultaneously, if the library vendor does not change the assembly filenames
when growing product versions [13]. More generally, since versioning software
applications and libraries has become a de facto practice with respect to the
incremental development fashion [24], people also consider “versioning hell” or
“version hell” as the frustrating situation of version conflicts and incompatibility
between different libraries or applications. In addition to making troubles at
the end-user side (e.g., the incompatible versions between an application and its
underlying operating system [2]), such a “hell” seems to make software developers

24 G. Cabrera-Vives et al.

suffer more extensively in the era of DevOps. For example, a toolchain for CI/CD
could be broken due to a new version of any tool at anytime [8,15,19].

Recall that APIs are widely employed to speed up development, conceal back-
end complexity and heterogeneity, and reduce project overhead in the current
software industry [12,28,29]. Given more and more focuses that are switched to
APIs, it is claimed that the previous “hell” of DLL and dependency has been
replaced by “API version hell” [25]. Besides the aforementioned dependency and
version issues [27], people particularly noticed “API hell” as a result from the
intricate connections among the explosively increasing number of APIs [14,26].
It has been identified that the huge number of dependencies and interactions
between relevant APIs will result in bloated runtimes, and will limit the ability
of incremental software delivery [25].

The current discussions about “API hell” are generally related to the con-
sumption of third-party APIs. More importantly, few of them focus on how
to manage and mitigate such a “hell”. In contrast, after observing various and
numerous internal API issues within a large-scale system, we aim to manage
their root causes and mitigate this “internal API hell”. Note that in addition
to the different controllability over some common problems (e.g., versioning),
a distinctive feature of our work is: We argue the “hell” to be the diverse and
interwoven issues along the whole life cycle of internal APIs, rather than the intri-
cate connections between the involved third-party APIs, within a single software
project.

3 The ALeRCE Project

Detecting and classifying astronomical events is a crucial part of space research
that can not only help us understand the universe but may also save our planet
and ourselves. Detection and classification requires multiple observatories across
the planet and the information across these observatories needs managing. The
Automatic Learning for the Rapid Classification of Events (ALeRCE) project
(http://alerce.science/) was established to facilitate the detection and classifica-
tion of astronomical events.

ALeRCE was initially funded in 2017 by the Millennium Institute for Astro-
physics and the Center for Mathematical Modeling at the University of Chile.
Since then it has grown into a large-scale scientific project in collaboration with
researchers from over a dozen Chilean and international universities and organ-
isations, including two strategic institutes, Data Observatory and University of
Concepción, who joined ALeRCE in 2020 and 2022 respectively. The project’s
professional members include 37 researchers and engineers, with expertise mainly
in Astronomy, Machine Learning, and Software Engineering. ALeRCE also offers
thesis and internship opportunities to undergraduate and postgraduate students
(currently 29 students). Currently, almost 70 people work on different compo-
nents of ALeRCE.

http://alerce.science/

Managing the Root Causes of “Internal API Hell”: An Experience Report 25

ALeRCE has obtained outstanding achievements. For example, by imple-
menting the Supernova Hunter service based on neural network classifiers,
ALeRCE has reported 13017 supernovae candidates (11.8 candidates per day
on average), of which 1635 are confirmed spectroscopically. Using Google Ana-
lytics, we estimate the ALeRCE service has supported more than 7000 external
users from 125 countries. ALeRCE continues to grow rapidly, e.g., it is regularly
developing new machine learning tools for subsequent deployment in production.
At this moment, there are four active development teams, including one project
kernel team and three feature teams.

4 ALeRCE’s APIs and the “Internal API Hell”
Phenomenon

To maximise development consistency, ALeRCE [10] employs an API-oriented
strategy. The RESTful APIs are built on the Python web frameworks, Flask
and Django. Some internal APIs are integrated as libraries to enable project-
specific scaffolding. For legacy reasons, developed APIs are currently deployed
in a hybrid and multi-cloud environment. ALeRCE intends to remain with its
current cloud provider to further unify API deployment.

ALeRCE followed the single-responsibility principle [17] to wrap up highly
cohesive and reusable components into APIs. At the early stage of the project,
this API-focused strategy helped ALeRCE obtain multiple benefits, ranging from
enhanced development efficiency to reduced management overhead. But with
its rapid growth, ALeRCE encountered an increasing number of API-related
issues within the project. The issues were interwoven, were related to both API
provisioning and consumption, went beyond the known “dependency hell” [3]
and caused various problems, e.g., to API development, debugging, delivery,
maintenance, discovery, usage, etc.

To facilitate our discussion about this frustrating situation, we named this
phenomenon as “internal API hell” in ALeRCE. To help understand this situa-
tion, we investigated the following research question:

RQ1: What are the root causes of the “internal API hell” in ALeRCE?

By conducting a wide range of individual interviews and by organising group
discussions with team leaders, our investigation revealed two main root causes.
First, the growth of ALeRCE leads to an internal API explosion. Except for a few
APIs publicly available as ALeRCE services (http://alerce.science/services/),
most APIs are developed for internal use only. For example, ALeRCE designed
and created new APIs for newly included machine learning models, for data
cleaning and preprocessing, and for accessing the data produced by those new
models. Second, there is increasing “churn” in the development teams, arising
from growth and frequent changes over the years to members of these develop-
ment teams. Also, given the intensive collaborations with universities, ALeRCE
increasingly hosts short-term student interns; these interns appear more likely

http://alerce.science/services/

26 G. Cabrera-Vives et al.

to introduce disruptive technologies and hard-to-maintain codebases to the new
APIs or new API versions. As with Brook’s [4] essential difficulties of software,
these root causes are inherent within the nature of the ALeRCE system and
project.

5 The Typical Issues and How We Address Them

Given the identified root causes of our “internal API hell”, a natural follow-up
research question we investigated is:

RQ2: How do we manage and mitigate an “internal API hell”?

Since those two root causes are non-removable due to the nature of the
ALeRCE project (see more discussions in Sect. 6), we decided to mitigate their
negative influences, by addressing or relieving their resulting issues. For the pur-
pose of conciseness and representativeness, this paper highlights five issues to
exemplify the “internal API hell” in ALeRCE, as illustrated in Fig. 1 and listed
below.

– Issue #1: More APIs, especially the internal APIs, are increasingly developed,
and thus discovering suitable APIs (for further project development) becomes
more difficult and time consuming.

– Issue #2: Some development teams seem to release new versions of APIs
“impetuously”, which triggers frequent cascade updates and troubleshooting.

API Development

API Update

API Releasing

API Maintenance

API Provider

●●● ●●●

●●● ●●●

●●● ●●●

API Discovery

API Usage

API Receiving

API Instantiation

API Consumer

●●● ●●●

●●● ●●●

●●● ●●●

#1: Clueless API exploration

#2: Hasty versioning and
“dependency hell”

#3: Steep learning curve

#5: Fatigue effects in path and
parameter assembly

#4: Fatigue effects in deployment
debugging and migration

Fig. 1. Typical issues in the phenomenon of “internal API hell” in the ALeRCE project.
(The red-colour texts describe the API issues; and each arrow indicates the correspond-
ing issue “resulting from” one activity and “having impact on” another activity). (Color
figure online)

Managing the Root Causes of “Internal API Hell”: An Experience Report 27

– Issue #3: Newly developed APIs may have a steep learning curve, which also
often results in a high communication overhead between API providers and
consumers.

– Issue #4: Information on deployed APIs is incomplete or missing, which com-
plicates API deployment debugging and migration, and eventually results in
fatigue effects in API maintenance.

– Issue #5: Since different machine learning APIs have similar paths and mul-
tiple model-related parameters, it is confusing and tedious to assemble a par-
ticular machine learning API instance, by accurately locating the API and
appropriately assigning values to the corresponding parameters.

These five issues reflect some of the major problems we faced and demon-
strate the characteristics of the “internal API hell” (i.e. diverse and interwoven
issues). For example, Issue #5 in API instantiation is also related to Issue #3
for improving the usability of sophisticated APIs; and Issue #2 in API update
is also related to Issue #4 when providers need to clean up the environment of
(e.g., retire) previously deployed APIs. In the following subsections, we report
our workaround on each of these issues.

5.1 Solution to Issue #1: Using a Multi-view Catalog to Help
Discover Suitable APIs

As mentioned previously, there is an increasing trend in API accumulation in our
ALeRCE project. As a result, exploring and identifying reusable APIs become
increasingly inconvenient for the new API teams and especially for the new
developers. To relieve this situation, we firstly employed OpenAPI Specification
(OAS)1 to facilitate API recognition. Then, we developed a multi-view catalog
to cross-index and organise the APIs. This paper does not repeat the well-known
features and benefits of OAS, while mainly explaining our API organisation. In
fact, using a hierarchical organisation to supplement OAS is a practical strategy
for API discovery and management, e.g., [18]. We further argue to enable locating
APIs via various entrances with respect to different concerns, i.e. using a multi-
view API catalog.

The development of our multi-view API catalog is originally inspired by the
“4+1” architectural view model [11]. Given different aspects of a software project,
it is impossible to describe the software system and its components from a single
angle only. Accordingly, we need different ways to categorise software compo-
nents (APIs in this case) within different contexts. In ALeRCE, we classified
APIs respectively according to their (1) usage scopes2, (2) relevance to particu-
lar ALeRCE products, (3) corresponding steps in the processing pipeline3, and
(4) deployment environments, as illustrated in Fig. 2.
1 https://swagger.io/specification/.
2 There can be APIs used both internally and externally, e.g., https://api.alerce.

online/ztf/v1 for accessing Alerts with the corrected magnitudes, object statistics
and object data.

3 The ALeRCE pipeline: http://alerce.science/alerce-pipeline/.

https://swagger.io/specification/
https://api.alerce.online/ztf/v1
https://api.alerce.online/ztf/v1
http://alerce.science/alerce-pipeline/

28 G. Cabrera-Vives et al.

Deployment

Cloud
N

Cloud
A

Local
Server

External

Internal

Both Internal
and External

Usage Scope
Product

A-
specific Non-

Product-
specific

Product
M-

specific

Product

●●●

●●●

Pipeline

ZTF
stream

S3 upload

ALeRCE
stream Stamp classifier

Cross match

Outliers

Processing

Fig. 2. The multi-view catalog for API discovery.

In practice, we categorise an API by conveniently attaching multiple labels to
it, instead of registering the API in multiple places. Moreover, although inspired
by the “4+1” model, we do not stick to fixed architectural views for categorising
APIs. For example, our Usage Scope view may not reflect the software archi-
tecture of ALeRCE; and unlike the “4+1” model that requires depicting library
dependencies in the Development View, we let the API teams figure out their
dependencies via a publish-subscribe channel, as explained in the following sub-
section.

5.2 Solution to Issue #2: Using a Publish-Subscribe Channel
to Assist API Versioning Management and Negotiation

Despite Roy Fielding’s argument against using versions for APIs, versioning
APIs has been a common practice in the software industry [20]. We also advo-
cate versioning APIs, as enabling side-by-side versions has helped us implement
blue-green deployment and asynchronous update of ALeRCE components. In
particular, our versioning strategy is to include the version number as part of
the URL path, for two reasons. First, this strategy is widely adopted in industry
(e.g., by large companies like Twitter, Facebook and Google). Second, this is
the most straightforward strategy for novice developers (e.g., student interns) to
understand and employ.

However, the simplicity and flexibility of this URL versioning strategy seem
to have encouraged ALeRCE’s API developers to claim breaking changes and/or
retire previous versions “rashly”. To reduce the cost incurred by API changes
[3], we introduced a negotiation mechanism to API versioning by setting up a
publish-subscribe channel between the API providers and consumers, as illus-
trated in Fig. 3.

In practice, each API team publishes its developed APIs to, and subscribes its
directly-consumed APIs from, the aforementioned multi-view catalog. As such,
the open information about newly released updates will naturally flow to the

Managing the Root Causes of “Internal API Hell”: An Experience Report 29

Update notification
and artefact

location of API A

X Y Z

Publish
(or Retire API)

Subscribe
(or Unsubscribe)

Pub/Sub
Channel

Publish
(or Retire API)

Subscribe
(or Unsubscribe)

Update notification
and artefact

location of API B

Update notification
and artefact

location of API C

A B C

Fig. 3. The publish-subscribe channel for API versioning negotiation. (One API can
be consumed by multiple APIs, for example, API A is consumed by both API X and
API Y. One API can consume multiple APIs, for example, API Z consumes API B
and API C together. Naturally, an API team can be both a publisher with respect to
its developed APIs and a subscriber with respect to its consumed APIs).

relevant API consumers. In addition, plans about breaking changes of an API
are also shared with the API’s subscribers. When such a plan is communicated,
the subscribers can negotiate with the publisher on whether or not the potential
update deserves a major version.

The publish-subscribe channel essentially bridges the communication gap
between the API developers and API users [14], at least internally to ALeRCE.
Benefiting from this communication and negotiation mechanism, we saw that
some tentative breaking changes eventually became minor updates, e.g., by
supplementing new key-value pairs without modifying the existing parameters.
When a major version is truly unavoidable, the negotiation will become a nat-
ural reminder for the API stakeholders to prepare/update examples in advance
for delivering and receiving the new API version (explained in Sect. 5.3). This
“extra workload” encourages the API providers to be more prudent about the
backward compatibility and versioning in the future changes.

5.3 Solution to Issue #3: Using Example-Driven Delivery
to Improve the Quality of API Adoption

Similar to the steep learning curve when employing third-party APIs [26], we also
observed a frequent bottleneck in the adoption of internal APIs by other inde-
pendent development teams at ALeRCE. Although our communication chan-
nel enables collaborative troubleshooting, and even supports adaptive changes
after new APIs (or new versions) are received, the post-release troubleshooting
and changes significantly increase the coordination overhead among the relevant
teams. Since we did not obtain clear improvement by reinforcing the respon-

30 G. Cabrera-Vives et al.

sibility of API providers (e.g., addressing the documentation debt [22] in our
previous workflow), we switched our focus to the consumer side to investigate
how to improve the quality of development teams “receiving” new or changed
APIs.

In switching our focus, we then realise that, previously, we overstressed the
development independence and loose coupling between the individual API teams.
As a result, the downstream API teams generally waited for and adapted to the
upstream APIs, by viewing the upstream APIs as fixed artifacts. We (again)
changed our development strategy by viewing API consumers as business domain
experts. In principle, we wanted to involve the real-world context of use cases in
the API development at the earliest opportunity. In practice, every API team
is asked to figure out a minimal working example with each of its adjacent
downstream counterparts, and use the examples to drive API development and
to facilitate API delivery.

Compared with the methodology of example-driven development [1], our
practice further emphasises the example-driven delivery and adoption of APIs, by
including not only the source code but also the context stories, sample datasets
and serialised deployment operations (explained in Sect. 5.4). It should be noted
that the minimal examples are required to be always executable, to reduce the
implicit descriptions or assumptions of their contexts. Since the API to be devel-
oped may not be functional or not even exist at the beginning, it can be replaced
with a naive function or another API as a placeholder in the initial examples. For
instance, we directly extracted our existing forecasting programme into a min-
imal example, for developing alternative Forecast APIs4. After that, the initial
examples can gradually be updated whenever the developing API is testable.

Since such minimal working examples can often be merged into produc-
tion programs directly, the API consumers can conveniently bypass the learning
curve, and we have seen notable improvement of development in the ALeRCE
project, for example: (1) the delivery and receiving of executable examples have
largely reduced mutual complaints between partner API teams; and (2) the call-
back examples of async API usage have significantly benefited new developers
who are not familiar with asynchronous programming.

5.4 Solution to Issue #4: Using Operation Serialisation to Facilitate
API Deployment Debugging and Migration

We followed Infrastructure as Code (IaC) to implement continuous configuration
automation, however, we still faced challenges in API deployment debugging and
migration. On the one hand, it is unrealistic to have fully-fledged IaC during the

4 A Forecast API uses a particular machine learning technique to make predictions on
future supernova light curve brightness. Light curve is the variation of brightness of
a star as time goes by. The prediction here shows how the light curve would behave
in the future based on the existing measurements.

Managing the Root Causes of “Internal API Hell”: An Experience Report 31

growth stages of the system, especially when changing physical infrastructure.
For example, the scripts for utilising on-premises resources will not be reusable
on the cloud platform, not to mention the learning curve of switching the infras-
tructural environment.

On the other hand, IaC is essentially a modeling approach to abstracting the
objects and configuration processes of physical infrastructures, while abstract
models inevitably sacrifice the complete reflection of the reality [16]. Thus, the
implementation of IaC may lose some important environmental information.
For example, when working on APIs deployed on the Amazon cloud, our engi-
neers used to experience delays and even troubles in isolating API-specific EC2
instances from the whole system, especially when the engineers were not the orig-
inal operators (e.g., the student operators who graduated and left the project).

The lesson we learned is that we cannot expect to replace human actions
completely with IaC implementations. In fact, even if a “one click” automation
pipeline is realised, the automated configurations would still require three man-
ual steps at least, as specified by the comments within the pseudocode of IaC
execution (see Algorithm 1).

Algorithm 1. Execution of IaC Artifacts
Input: IaC artifacts.
Output: IaC execution results.

1: � Go to the place where the IaC artifacts will be executed.
2: Locate(IaC artifacts);
3: � Trigger the execution of the predefined IaC artifacts.
4: for each artifact unit in IaC artifacts do
5: Execute(artifact unit);
6: end for
7: � Verify the results from executing the IaC artifacts.
8: Return(results);

Consequently, we have tried to serialise the manual operations for APIs into
cheat-sheet style documents.5 Particularly, the verification steps and the contexts
of some operations are captured by using screenshots in the document. Although
preparing these documents can be time consuming, the later updates of available
documents are generally convenient, fast, and of beneficial to the subsequent
maintenance of the APIs.

Our practice also shows that the earlier operation serialisation can signifi-
cantly facilitate the later IaC implementation in a divide-and-conquer fashion.
In fact, before obtaining the ideal “one click” automation pipeline, a single docu-
ment naturally acts as a one stop manual that indexes and organises the separate

5 The snippets of some serialised operations are exemplified at https://doi.org/10.
5281/zenodo.5914452.

https://doi.org/10.5281/zenodo.5914452
https://doi.org/10.5281/zenodo.5914452

32 G. Cabrera-Vives et al.

IaC artifacts. Benefiting from the always up-to-date document, our engineers
confirm that the straightforward operation serialisation is more efficient than
the previous log tracing, for retrieving the environmental information of APIs.

5.5 Solution to Issue #5: Using a Graphical User Interface
to Facilitate Path and Parameter Assembly for API
Instantiation

As a machine learning-intensive project, ALeRCE is equipped with an increasing
bunch of machine learning models, and we also employ APIs to hide technical
details and to facilitate integrating machine learning solutions into functional
features [28]. Given the same context of machine learning models in ALeRCE
(e.g., classifying the astronomical events), different machine learning APIs have
many similar and even overlapped paths and parameters (e.g., the learning activ-
ities, the number of hidden neurons, the size of training samples, etc.). Based
on different expertise and experience, different development teams have used
inconsistent mechanisms (i.e. path parameters vs. query parameters), naming
conventions and abbreviations for those API paths and parameters, as shown in
Fig. 4.

Consequently, assembling paths and parameters for API instantiation
becomes a tedious task for the API consumers. It should be noted that the
legacy machine learning APIs have not got chance to implement the example-
driven delivery yet (see Sect. 5.3). In addition to the fatigue effects, we saw
frequent typos or mismatches between parameters and their values when the
consumer teams tried to instantiate sophisticated APIs to use. Since some of
the machine learning APIs have already been used in various ALeRCE services,
after conducting cost-benefit analyses, we are afraid that it is not worth refac-
toring those APIs for the terminology consistency issue. Besides, the potential
refactoring will not reduce the length of the machine learning APIs, i.e. the
model-specific parameters will not change.

To fix the problem here, we developed a graphical user interface (GUI) par-
ticularly to facilitate instantiating machine learning APIs. Firstly, we summarise
and standardise the names of our machine learning models’ activities and param-
eters. Then, we use predefined UI controls to make adaptation between the stan-

https://api.alerce.science/model1/v2/prediction/<evt_par1>/<evt_par2>/<evt_par3>...

https://api.alerce.science/model2/v4/predict/events?par1=xxx&par2=yyy&par3=zzz...

host base path path
path parameters

query parameters

Fig. 4. The inconsistent mechanisms, naming conventions and abbreviations of API
paths and parameters in ALeRCE.

Managing the Root Causes of “Internal API Hell”: An Experience Report 33

dardised names and the original API elements. In detail, a cascading drop-down
list is given to help users select wanted machine learning techniques and activities
(e.g., classification or prediction), which decides the corresponding API paths.
Once the selection is done, a set of text fields with labels will appear on the
GUI, which indicates the needed parameters of the selected machine learning
API (to be instantiated). Thus, users can conveniently input values (or vari-
ables) to those text fields according to the explanations in the labels, without
worrying about the sequence and names of the parameters in the original API
design. At last, the GUI can generate a well-assembled API for users to copy
and paste into their programmes.

Although this is a recent improvement in ALeRCE, we have received exten-
sive feedback that the GUI has made the legacy machine learning APIs more
easy-to-use than in the past. It is also worth highlighting that, by playing an
adapter role in the API instantiation, the GUI minimises the cost for enhancing
the usability of those machine learning APIs.

6 Threats to Validity

The unique characteristics of ALeRCE raise questions about the wider applica-
bility of our experiences. We consider two “threats” here. First, our experience
may not apply to mature API services with relatively fixed functionalities and
run-time environments, for which there is little, or less, need for API migration
and discovery. Second, our experiences are mainly extracted from and for APIs
internal to a system.

On the other hand, we believe that the two root causes we identified are
likely to occur for large-scale software services of the type we describe here. For
example, API explosion has become a common challenge in building artificial
intelligence systems [23]. The popular microservices architecture may also result
in (internal) API explosions, because a large system can involve thousands of
microservices (e.g., Uber uses over 4000 microservices6), and one microservice
can expose multiple APIs. Meanwhile, the decentralised development approach
that is fashionable in the current software ecosystems would increase the cost of
changes [3] and deepen the communication gap between API developers and con-
sumers [14]. Consequently, “internal API hell” might be a common phenomenon
across large-scale software services, even though different practitioners may expe-
rience, and focus on, contrasting subsets of the issues we’ve discussed here.

Furthermore, when it comes to the situation when external stakeholders
(i.e. either API providers or consumers) are involved in the “API hell”, we argue
that our lessons and solutions may still be adapted and employed. Take API
versioning negotiation via a Publish-Subscribe channel as an example, it could
be impractical to build up a negotiation channel beyond the project scope. Sim-
ilarly, for example-driven delivery and receiving of APIs, it is barely possible to
work out minimal examples immediately with external API consumers. In this

6 https://eng.uber.com/optimizing-observability/.

https://eng.uber.com/optimizing-observability/

34 G. Cabrera-Vives et al.

case, we have kept organising workshops7 to communicate with our collabora-
tion partners, in order to collect feedback and real-world contexts at least for
the later development and updates of external APIs.

7 Conclusions and Future Work

As part of the development and maintenance of the ALeRCE system we encoun-
tered a phenomenon we called, “internal API hell”. Compared with the existing
usage of “hell” in describing the intricate connections between third-party APIs
and libraries, we particularly emphasise the diverse and interwoven issues along
the whole life cycle of internal APIs within a single software project. Based on
our project-specific investigations, we report two root causes, demonstrate five
API issues, and explain how we sought to address these issues. We hypothesise
that the root causes and issues are likely to recur for other, similar systems and
projects, with those systems also encountering an “internal API hell”. Corre-
spondingly, we urge collaborative efforts from both practitioners and researchers
on addressing this emerging type of “hell” in software development.

We recognise that we report an experience report and have therefore sug-
gested directions in which further, more formal research, might extend. An obvi-
ous direction for further research is to undertake a more formal analyses of the
root causes and issues we’ve identified, e.g., to conduct a case study or interview
study within the ALeRCE project or with other similar projects. A comple-
mentary approach would be to widen this investigation, e.g., through a survey
of multiple systems and projects. A third approach is to conduct a systematic
review of published work in this area. Finally, given the diversity of the inter-
woven API issues, it is likely to be impossible to come up with a one-size-fits-all
solution. Therefore, we speculate (but have not yet investigated) there will be the
need for a systematic suite of methods to deal with this situation. This suggests
a further direction for research.

Acknowledgement. We want to thank the ALeRCE Engineering Team for their hard
work and effort on developing and maintaining all the services, Alberto Moya, Javier
Arredondo, Esteban Reyes, Ignacio Reyes, Camilo Valenzuela, Ernesto Castillo, Daniela
Ruz and Diego Mellis. ALeRCE and this paper would not exist without them.

We acknowledge support from CONICYT/ANID through the grants FONDECYT
Initiation Nž 11191130 (G.C.V.) and Nž 11180905 (Z.L.); BASAL Center of Mathemat-
ical Modelling (AFB-170001, ACE210010 and FB210005) and FONDECYT Regular
Nž 1200710 (F.F). This work has been partially funded by ANID -Millennium Science
Initiative Program - ICN12_009 awarded to the Millennium Institute of Astrophysics
(MAS). Powered@NLHPC: This research was partially supported by the supercomput-
ing infrastructure of the NLHPC (ECM-02). This work has been possible thanks to the
use of AWS credits managed by the NLHPC.

7 http://workshops.alerce.online/lsst-enabling-science-2020-broker-workshop/.

http://workshops.alerce.online/lsst-enabling-science-2020-broker-workshop/

Managing the Root Causes of “Internal API Hell”: An Experience Report 35

References

1. Adzic, G.: Specification by Example: How Successful Teams Deliver the Right
Software. Manning Publications, Shelter Island (2011)

2. Bajaj, G.: PowerPoint version hell, 04 March 2009. https://www.indezine.com/
products/powerpoint/ppversionhell.html. Accessed 3 Aug 2022

3. Bogart, C., Kästner, C., Herbsleb, J., Thung, F.: How to break an API: cost nego-
tiation and community values in three software ecosystems. In: Proceedings of
the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2016), pp. 109–120. ACM Press, Seattle, 13–18 November 2016

4. Brooks, F.P., Bullet, N.S.: Essence and accidents of software engineering. IEEE
Comput. 20(4), 10–19 (1987)

5. Deinum, M., Serneels, K., Yates, C., Ladd, S., Vanfleteren, C.: Configuring a spring
development environment. In: Pro Spring MVC: With Web Flow, chap. 1, pp. 1–23.
Apress, Berkeley (2012)

6. Dick, S., Volmar, D.: DLL Hell: Software dependencies, failure, and the mainte-
nance of Microsoft Windows. IEEE Ann. Hist. Comput. 40(4), 28–51 (2018)

7. Eisenbach, S., Sadler, C., Jurisic, V.: Feeling the way through DLL Hell. In: Pro-
ceedings of the First International Workshop on Unanticipated Software Evolution
(USE 2002) Co-located with ECOOP 2002, Malaga, Spain, pp. 1–11, 11 June 2002

8. Esch-Laurent, P.: Versioning hell, 19 February 2021. https://paul.af/versioning-
hell. Accessed 3 Aug 2022

9. Fan, G., Wang, C., Wu, R., Xiao, X., Shi, Q., Zhang, C.: Escaping dependency hell:
finding build dependency errors with the unified dependency graph. In: Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2020), pp. 463–474. ACM Press, Los Angeles, 18–22 July 2020

10. Förster, F., Cabrera-Vives, G., Castillo-Navarrete, E., et al.: The automatic learn-
ing for the rapid classification of events ALeRCE alert broker. Astronom. J. 161(5)
(2021). Article no. 242

11. Garcia, J., Kouroshfar, E., Ghorbani, N., Malek, S.: Forecasting architectural decay
from evolutionary history. IEEE Trans. Softw. Eng. (2022). Early access

12. Ginsbach, P., Remmelg, T., Steuwer, M., Bodin, B., Dubach, C., O’Boyle, M.F.P.:
Automatic matching of legacy code to heterogeneous APIs: an idiomatic approach.
In: Proceedings of the 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2018), pp. 139–153.
ACM Press, Williamsburg, 24–28 March 2018

13. Goodyear, J.: Welcome to multiple version hell, 26 March 2004. https://
visualstudiomagazine.com/articles/2004/05/01/welcome-to-multiple-version-hell.
aspx. Accessed 3 Aug 2022

14. Lamothe, M., Shang, W.: When APIs are intentionally bypassed: an exploratory
study of API workarounds. In: Proceedings of the 42nd IEEE/ACM International
Conference on Software Engineering (ICSE 2020), pp. 912–924. ACM Press, Seoul,
23–29 May 2020

15. Markan, Z.: Android versioning hell in the CI-land, 6 May 2014. https://markan.
me/android-versioning-hell/. Accessed 3 Aug 2022

16. Mellor, S., Clark, A., Futagami, T.: Model-driven development - guest editor’s
introduction. IEEE Softw. 20(5), 14–18 (2003)

17. Nesteruk, D.: Design Patterns in .NET Core 3, 2nd edn. APress (2021)
18. Nevatech: API discovery and description (2022). https://nevatech.com/api-

management/api-discovery-description. Accessed 3 Aug 2022

https://www.indezine.com/products/powerpoint/ppversionhell.html
https://www.indezine.com/products/powerpoint/ppversionhell.html
https://paul.af/versioning-hell
https://paul.af/versioning-hell
https://visualstudiomagazine.com/articles/2004/05/01/welcome-to-multiple-version-hell.aspx
https://visualstudiomagazine.com/articles/2004/05/01/welcome-to-multiple-version-hell.aspx
https://visualstudiomagazine.com/articles/2004/05/01/welcome-to-multiple-version-hell.aspx
https://markan.me/android-versioning-hell/
https://markan.me/android-versioning-hell/
https://nevatech.com/api-management/api-discovery-description
https://nevatech.com/api-management/api-discovery-description

36 G. Cabrera-Vives et al.

19. Ofosu-Amaah, K.: Version hell revisited, 01 July 2020. https://koranteng.blogspot.
com/2020/07/version-hell-revisited.html. Accessed 3 Aug 2022

20. Sabir, F., Gueheneuc, Y.G., Palma, F., Moha, N., Rasool, G., Akhtar, H.: A mixed-
method approach to recommend corrections and correct REST antipatterns. IEEE
Trans. Softw. Eng. (2022). Early access

21. Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., Bowdidge, R.: Programmers’
build errors: a case study (at Google). In: Proceedings of the 36th International
Conference on Software Engineering (ICSE 2014), pp. 724–734. ACM Press, Hyder-
abad, 31 May–7 June 2014

22. Shmerlin, Y., Hadar, I., Kliger, D., Makabee, H.: To document or not to document?
An exploratory study on developers’ motivation to document code. In: Persson, A.,
Stirna, J. (eds.) CAiSE 2015. LNBIP, vol. 215, pp. 100–106. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19243-7_10

23. Stoica, I.: Systems and ML at RISELab, 13 July 2020. https://www.usenix.org/
system/files/hotcloud20_hotstorage20_slides_stoica.pdf. Keynote speech at the
12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 2020)

24. Tanabe, Y., Aotani, T., Masuhara, H.: A context-oriented programming app-
roach to dependency hell. In: Proceedings of the 10th International Workshop on
Context-Oriented Programming: Advanced Modularity for Run-time Composition
(COP 2018), pp. 8–14. ACM Press, Amsterdam, 16 July 2018

25. Thomas, D.: The API field of dreams - too much stuff! It’s time to reduce and
simplify APIs! J. Object Technol. 5(6), 23–27 (2006)

26. VanSlyke, T.: API hell: the rise of application frameworks and the fall
of sanity (2021). http://www.teejayvanslyke.com/api-hell-the-rise-of-application-
frameworks-and-the-fall-of-sanity.html. Accessed 3 Aug 2022

27. de Villamil, F.: Always broken, inconsistent and non versioned, welcome to API
hell, 22 August 2014. https://thoughts.t37.net/always-broken-inconsistent-and-
non-versioned-welcome-to-api-hell-a26103b31081. Accessed on 3 Aug 2022

28. Wan, C., Liu, S., Hoffmann, H., Maire, M., Lu, S.: Are machine learning cloud APIs
used correctly? In: Proceedings of the 43rd IEEE/ACM International Conference
on Software Engineering (ICSE 2021), pp. 125–137. IEEE Press, Madrid, Spain,
22–30 May 2021

29. Zibran, M.F., Eishita, F.Z., Roy, C.K.: Useful, but usable? Factors affecting the
usability of APIs. In: Proceedings of the 18th Working Conference on Reverse
Engineering (WCRE 2011), pp. 151–155. IEEE Computer Society, Limerick, 17–
20 October 2011

https://koranteng.blogspot.com/2020/07/version-hell-revisited.html
https://koranteng.blogspot.com/2020/07/version-hell-revisited.html
https://doi.org/10.1007/978-3-319-19243-7_10
https://www.usenix.org/system/files/hotcloud20_hotstorage20_slides_stoica.pdf
https://www.usenix.org/system/files/hotcloud20_hotstorage20_slides_stoica.pdf
http://www.teejayvanslyke.com/api-hell-the-rise-of-application-frameworks-and-the-fall-of-sanity.html
http://www.teejayvanslyke.com/api-hell-the-rise-of-application-frameworks-and-the-fall-of-sanity.html
https://thoughts.t37.net/always-broken-inconsistent-and-non-versioned-welcome-to-api-hell-a26103b31081
https://thoughts.t37.net/always-broken-inconsistent-and-non-versioned-welcome-to-api-hell-a26103b31081

Requirements for Anomaly Detection
Techniques for Microservices

Monika Steidl1(B) , Marko Gattringer2 , Michael Felderer1 ,
Rudolf Ramler3 , and Mostafa Shahriari3

1 University of Innsbruck, 6020 Innsbruck, Austria
{Monika.Steidl,Michael.Felderer}@uibk.ac.at

2 Gepardec, Europaplatz 4 - Eingang C, 4020 Linz, Austria
Marko.Gattringer@gepardec.com

3 Software Competence Center Hagenberg GmbH, 4232 Hagenberg am Mühlkreis,
Austria

{Rudolf.Ramler,Mostafa.Shahriari}@scch.at

Abstract. Version configurations of third-party software are essential
to ensure a reliable and executable microservice architecture. Although
these minor version configurations seem straightforward as the function-
ality does not need to be adapted, unexpected behaviour emerges due to
the complex infrastructure and many dependencies. Anomaly detection
techniques determine these unexpected behaviour changes during run-
time. However, the requirements anomaly detection algorithms need to
fulfil are unexplored. Thus, this case study collects experiences from prac-
titioners and monitoring datasets from a well-known benchmark system
(Train Ticket) to identify five requirements - namely: (1) early detectabil-
ity, (2) reliability, (3) risk analysis, (4) adaptability, and (5) root causes
analysis. In this work, we additionally evaluate three anomaly detection
techniques on their practical applicability with the help of these identi-
fied requirements and extracted monitoring data.

Keywords: Anomaly detection · Monitoring data · Logs · Traces ·
KPI · Microservice · Practical requirements · Root cause analysis

1 Introduction

Frequent software updates are necessary to improve and enhance the software’s
functionality. One specific case is the update to new versions of third-party
libraries and frameworks to minimise the accumulation of maintenance debt
resulting from deferred updates [26]. However, such updates’ impact on the
system’s behaviour is often unpredictable due to complex dependencies, and
incompatible legacy configurations [5]. Version configurations in a microservice
architecture are even more challenging because microservices show character-
istics of distributed systems. An empirical case study conducted in 2021 with

This work was supported by the Austrian Research Promotion Agency (FFG) in the
frame of the project ConTest [888127] and the COMET competence center SCCH
[865891].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 37–52, 2022.
https://doi.org/10.1007/978-3-031-21388-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_3&domain=pdf
http://orcid.org/0000-0002-3410-7637
http://orcid.org/0000-0003-1659-3624
http://orcid.org/0000-0003-3818-4442
http://orcid.org/0000-0001-9903-6107
http://orcid.org/0000-0002-2881-1177
https://doi.org/10.1007/978-3-031-21388-5_3

38 M. Steidl et al.

five service systems in the commercial banking sector identified that the third
most common reason for anomalies is incompatible software versions (11%) [39].
In addition, compatibility issues may not reveal themselves when compiling the
software but result in failures, negative side-effects or deviations from expec-
tations at runtime, which are called anomalies [11]. Developers often need to
manually inspect heterogeneous monitoring and log data to identify the rea-
son for such failures when performing root cause analysis [31]. One extensively
researched solution to reduce the effort involved in this cumbersome work is
the application of automated anomaly detection techniques. Although research
puts a high emphasis on anomaly detection techniques, research is missing a set
of requirements an anomaly detection technique should fulfil to be used in an
industrial setting. This paper defines requirements based on IEEE [11], where
requirements describe (1) capabilities required by the user to achieve an objec-
tive, (2) which must be met by the system and (3) are documented accordingly.
In addition, anomalies due to version configurations are not used to evaluate
the proposed anomaly detection techniques. Section 1.1 identifies these research
gaps, which are the main contributions of this paper.

1.1 Related Work

Several different anomaly detection techniques have been proposed in the related
work based on microservices’ logs, traces, and Key Performance Indicator (KPI)
data. These approaches were quantitatively evaluated using case-specific datasets
or comparisons to other techniques as depicted in Table 1. However, anomaly
detection techniques provide no consensus on what requirements they need to
fulfil. The existing related work does not include research that qualitatively
evaluates anomaly detection techniques based on such requirements.

Table 1. Summary of related work where authors quantitatively evaluate the efficiency
of their anomaly detection technique for microservices

Input of anomaly detection

techniques

Specific use case evaluation Result comparison with other

techniques

Logs [12,13,21] [10](monolithic systems)

Traces [1,2,7,14,20,22,23,35,40] [17]

KPIs [4,8,18,19,24,29,37] [3,16,30,34,38]

In addition, related work does not consider anomalies specifically based on
version configurations. Artificial faults are mostly injected into the datasets for
evaluating the applied anomaly detection techniques. Zhou et al. [41] identified
several anomalies in microservices via an industrial survey. They did not focus
on version configurations but on improper parameter settings and asynchronous
interaction faults [40,41]. Other non-version configuration-dependent faults are
multi-instance faults [40], packet loss [4,8,18,19,35], configuration faults [35,
40], and delay and delete faults [2]. Memory leaks [4,8,18,19,24,37], CPU hog

Requirements for Anomaly Detection Techniques for Microservices 39

[3,18,19,37,38], CPU stress [4,8,37,38], decreased network bandwidth [8], and
increased network latency [4,8,38] are also among the injected anomalies.

The contribution of this paper is twofold. Firstly, we conduct a case study
to identify anomalous behaviour in a company’s context and to summarize and
collect a dataset with anomalies occurring due to version configurations from
a benchmark system. Based on this information, we derive requirements that
anomaly detection techniques for microservices need to fulfil in practice. Sec-
ondly, we use these requirements to evaluate three anomaly detection technolo-
gies described in the literature and for which the implementations have been
made available as open-source projects.

The remainder of this paper is organised as follows. Section 2 illustrates the
research questions and applied methodology. The next Sect. 3 focuses on the
anomalies in a software company, followed by the collection of monitoring data
with a benchmark system in Sect. 4. Section 5 specifies the requirements and
Sect. 6 evaluates anomaly detection algorithms with these requirements. The
paper discusses threats to validity in Sect. 7, and the conclusions in Sect. 8.

2 Methodology

Several techniques exist to detect anomalies in logs, traces and KPI data. How-
ever, a consensus is missing on what requirements anomaly detection techniques
should fulfil to be applicable in practice. Thus, the main objective of this paper
is to collect information about anomalies due to version configurations and base
respective requirements on these anomalies. The following research questions
further refine our main research objective:

RQ1 What are potential anomalies due to version configurations?
RQ2 What are the requirements regarding anomaly detection techniques in

practice?
RQ3 Do open-source anomaly detection techniques for microservices fulfil the

identified requirements?

2.1 Methods

This work is based on a descriptive case study following the guidelines of Runeson
and Höst [27,28]. Firstly, we defined the objectives, prepared and executed the
data collection procedure, and analysed and reported the data. This type of
study not only allows us to take the complex and dynamic characteristics of
the case company into consideration but also gathers evidence in a planned and
consistent way [28].

Figure 1 depicts the steps necessary to answer the three research questions.
This work’s first and second steps describe the proposed data collection proce-
dures using data triangulation to answer RQ1. Thus, the first step collects expe-
rienced anomalies in a software company via first-degree observations proposed
by Lethbridge [15] (3). We used the focus group approach with two experienced
software developers that lasted 60 min to gain an overview of the company’s

40 M. Steidl et al.

Fig. 1. Study design for this paper’s case study.

domain and experienced anomalies. We collected the statements via careful note-
taking. We further refined the statements via six individual open-ended inter-
views with company employees with five to twelve years of experience in software
development, DevOps and automation and configuration. The second step cross-
checks and extends the accumulated statements via collecting a dataset based
on an established benchmark system (4)1. The test suite to automatically trig-
ger Application Programming Interface (API) requests is created with Postman
to ensure that the same execution always provides reproducible results. To fur-
ther automate the data retrieval process, a respective Python script collects and
transforms logs, traces, and KPIs. In the third step, we answer RQ2 by applying
the requirements engineering principles established by Pohl and Rupp [25] and
Ebert [6]. Firstly, we analysed the collected anomalies to provide insights into the
anomalies’ characteristics (3.1 and 4.1). Secondly, we focused on how techniques
discover these characteristics, and we reported the requirements based on these
insights (5). However, we kept them general enough that other unanticipated
anomalies could also get detected. In addition, we established further require-
ments by looking at anomaly detection techniques explained in the related work
section. Then, the fourth step answers RQ3 by evaluating three selected open-
source anomaly detection techniques using the collected monitoring data from
the second step to evaluate whether the proposed anomaly detection techniques
can fulfil the established requirements.

2.2 Selected Anomaly Detection Techniques

Soldani et al. [31] identified anomaly and respective root cause detection tech-
niques for microservice-based software. The techniques under evaluation were
selected based on two requirements. Firstly, the case company requires easy
adaptability to new data sets and cannot guarantee that these are labelled. Thus,
we selected techniques based on unsupervised learning algorithms for evaluation
in this work. Secondly, we selected techniques that have been made available
as open-source because we follow a white-box view by inspecting the system’s
behaviour and adaptability with the generated input.

1 Train Tickets API documentation: https://github.com/FudanSELab/train-ticket/
wiki/Service-Guide-and-API-Reference, accessed 07.07.2022.

https://github.com/FudanSELab/train-ticket/wiki/Service-Guide-and-API-Reference
https://github.com/FudanSELab/train-ticket/wiki/Service-Guide-and-API-Reference

Requirements for Anomaly Detection Techniques for Microservices 41

In total, we found three techniques that fulfil these requirements. We selected
Loglizer2 [9,10,43], although it is for monolithic systems since Soldani et al.
[31] did not provide an open-source technique for microservices with logs as
input. Loglizer extracts static parts of the logs, counts its occurrences within
a session or time frame and applies several Artificial Intelligence (AI) models
for anomaly detection. This work focuses on the provided Principal Compo-
nent Analysis (PCA) model. TraceAnomaly3 [17] uses traces and extracts the
request-response times for each service call path and trains a deep Bayesian
neural network with posterior flow. MicroRCA4 [38] uses traces and KPI data
and represents request-response times via a graph and KPIs as vectors for each
service, where the BIRCH algorithm clusters the vectors to identify anomalies.

3 Experienced Anomalies in a Software Company

The case study is based on the industrial context of a software company that
offers to develop, integrate, and maintain custom Java and Jakarta EE (JEE)
solutions and cloud technologies, such as Kubernetes, Rancher, and OpenShift.
As the company also provides operations and support services, they identified the
need that their customers frequently require software updates due to deprecated
third-party software and library versions. The company runs a suite of regression
tests to ensure the quality of the customers’ software after such updates and
performs continuous automated system monitoring.

The remainder of this and the following section answers RQ1 by reporting
the company’s experience concerning frequently encountered anomalies, followed
by a summary of identified anomalies when executing version configurations in
the benchmark system. These gathered anomalies form the basis to answer RQ2
by identifying the requirements an anomaly detection technique needs to fulfil.

3.1 Anomalies in Software Company

This section describes five typical instances of anomalies that have been experi-
enced by the case company in practice; see also Table 2.
A1 - After an update of the JBoss version part of a complex software system,
the response time diminished continuously. After some time, requests were not
handled anymore due to an out-of-memory exception. The identified root cause
was that the session instances did not terminate and were not deleted, resulting
in increasing memory allocation and worsening runtime behaviour.
A2 - Another encountered anomaly was that a library version changed its threat
handling so that jobs were not executed in parallel but consecutively. The com-
pany became aware of this anomaly due to deteriorating system performance.

2 https://github.com/logpai/loglizer, accessed 25.07.2022.
3 https://github.com/NetManAIOps/TraceAnomaly, accessed 25.07.2022.
4 https://github.com/elastisys/MicroRCA, accessed 25.07.2022.

https://github.com/logpai/loglizer
https://github.com/NetManAIOps/TraceAnomaly
https://github.com/elastisys/MicroRCA

42 M. Steidl et al.

A3 - A different JBoss and Hibernate configuration caused performance issues
when writing a large amount of data to the database. The identified root cause
was that a new version of Hibernate changed the DirtyCheck strategy.
A4 - After upgrading JSF and JBoss, Context and Dependency Injection (CDI)
issues occurred. The JBoss injection configuration was incorrect, resulting in an
undiscovered instance and, as an issue directly observable by end users, links
referring from one to the next page did not work anymore.
A5 - Due to a new JBoss version’s new garbage collection strategy, performance
deteriorated, and out-of-memory issues occurred.

Table 2. Summary of company’s experienced anomalies

ID Anomaly Root cause Effect

A1 JBoss updates with

Session Bean

Session instances did not

terminate/were not deleted

Out-of-memory

A2 Threat handling Threats are handled

consecutively versus parallel

Slower execution, change in

metrics

A3 Dirty checks Database handling of dirty

checks

Slow write access

A4 CDI injection Wrong configuration setting Required instance not

found, broken links

A5 Garbage collection Different garbage collection

strategy

Performance deterioration,

out-of-memory

4 Collect Monitoring Data with Benchmark System

This work uses a popular and well-established microservice benchmark system
(Train Ticket [42]5) to identify anomalies, establish requirements, and evaluate
the anomaly detection techniques. It is a train booking system based on 41
microservices. It has been built using Java as the main programming language
and Spring, Node.js, Python, WebGo, and it includes Mongo and MySql as
databases.

This benchmark system allows for repeatably, transparently, and automati-
cally extracting the necessary monitoring data throughout different version con-
figuration combinations. The benchmark system also reduces the complexity
that a real-world system usually contains. Thus, we better identify anomalies
and more precisely investigate and validate the requirements as effects. Knowl-
edge about the characteristics of anomalies is essential to evaluate if the tech-
niques can find an anomaly with specific attributes. In addition, monitoring
data, especially logs, contain personal data for which restrictions such as strict
privacy protection rules apply. Therefore, as an additional bonus, this work con-
tributes to an openly available dataset regarding anomalies in version updates in
microservices that allows others to perform their research with this dataset. The
case company’s OpenShift cluster has been used to host the benchmark system
under typical conditions, such as realistic monitoring settings and other software
running in parallel that generates additional load.
5 https://github.com/FudanSELab/train-ticket, accessed 20.07.2022.

https://github.com/FudanSELab/train-ticket

Requirements for Anomaly Detection Techniques for Microservices 43

4.1 Anomalies Extracted from Benchmark System

This section summarizes the anomalies extracted from ten version configurations
of Train Ticket’s microservices, also depicted in Table 3. For further information
on the version configurations and resulting datasets, see [32].

B1 - Anomalies may produce unexpected values. The issue is that an anticipated
positive value became negative, depicted in 1.1 in line 2:

B2 - Intermittent time deterioration also occurred during the reservation
request. These types of failures were not explicitly stated in the logs, but are
moderately visible in the response times of each microservice.

B3 - A database value cannot be loaded or updated because the request does not
pass on the user authorization correctly. Thus, the logs indicate this anomaly
with an exception and a 403 error.

B4 - Functional behaviour changes due to the database version did not allow the
user to log in. When logging in unsuccessfully, the logs do not store the token,
whereas a successful login request stores the token in the logs (see 1.2)

Moreover, Table 4 shows seemingly anomalous behaviour concerning version
configurations, but it is not version specific.

No-B1 - Logging in requires longer than in previous test runs with the same
version configuration. Thus, the issue is not version specific but depends on the
node’s workload.

No-B2 - Train Ticket does not display some requested data. The issue is not
version specific because the database never had to store these values.

In summary, the collection of anomalies shows that anomalies heavily hinge
on unknown and restricted implementation changes of the third-party software
providers. Based on these changes and resulting dependencies, the behaviour of
the software changes unpredictably. In addition, the anomalies do not follow a
consistent pattern and affect the root cause and the behaviour unpredictably
and individually.

5 Requirements for Anomaly Detection Techniques

Based on the gathered knowledge of Sects. 3.1 and 4.1, this section answers RQ2
by identifying requirements that an anomaly detection technique needs to fulfil.
These requirements need to be defined broadly enough to encompass all related

44 M. Steidl et al.

Table 3. Summary of identified anomalies with Train Ticket

ID Anomaly Version Configured
microservice

Root cause Effect

B1 Unexpected
value

Spring Boot
Starter Data
MongoDB
1.5.22

ts-order-
service

Unknown Positive
value became
negative

B2 Request not
handled in
time

Spring Boot
MongoDB
Driver 3.0.4

ts-order-
service

Server did not
handle request
in time

504 Gateway
Time-out

B3 Forbidden
Access

MongoDB
4.4.15

ts-auth-
service

Authorization
not correctly
handled

User is not
updated as
required

B4 Unexpected
function
behaviour

MongoDB
4.4.15

ts-auth-
service

Unknown Login failure

Table 4. Anomalous behaviour not resulting from a version configuration

ID Anomaly Version Service Root cause Effect

No-B1 Performance
deterioration
with login

Spring Boot
Starter Data
MongoDB
2.0.0

ts-order-
service

Higher
workload in
node

Performance
deteriorates
when logging
in via UI

No-B2 Values not
loaded from
database

MongoDB
4.2.2

ts-order-
service

Values not
available in
database

Missing
values

instances of anomalies, and they must be comprehensive enough to provide a
foundation to evaluate anomaly detection techniques.

1. Early detectability
Anomalies may not be apparent at the system start but evolve during runtime.
Identified examples in the previous section are deteriorating performance,
such as A1 and A5. Thus, anomaly detection techniques must recognise
slight hints before the main issue occurs.

2. Reliability
Anomalies vary in their appearances and symptoms. Thus, a seemingly
anomalous behaviour may not be an anomaly. Although performance changes
are the most common identified effect (A1, A5, and B2), it does not neces-
sarily indicate an anomaly that requires attention [31]. For example, external
reasons, such as the node experiencing an increased workload, can also cause
performance deterioration, as described by No-B1. In addition, anomalies
usually occur rarely, as identified with the determined anomaly B2. Thus, it
is essential that the anomaly detection technique works reliably and does not
provide too many false positive alarms to avoid desensitizing developers.

Requirements for Anomaly Detection Techniques for Microservices 45

3. Risk Analysis
Anomalies vary in their impact on the whole software and their associated risk
level. For example, a slower execution of tasks as in A2 due to threat handling
may decrease the performance but does not interrupt system execution or
falsify results as in A1, A4 or B4, where users cannot log in anymore. Thus,
the anomaly detection technique must help to identify how critical the effect
of an anomaly is for the software’s functionality.

4. Adaptability
As indicated in the previous section, anomaly detection techniques must be
adaptable to different data with many different anomalies. In addition, mon-
itoring the software under test should require reasonable effort and expenses.

– Unlabelled data: In a real-life application, labelled datasets are impractical
as it is challenging to pinpoint unknown anomalies in a vast dataset.
Moreover, new anomalies may occur unforeseeably.

– Adaption of anomaly detection technique: The anomaly detection tech-
nique should work with heterogeneous systems. Extensive configuration
effort should not be necessary. Hence, a clear guideline for usage, limita-
tions, and potential advantages is necessary.

– Adaption of monitored software: The monitored software should not
require specific monitoring instruments because the customers decide on
the monitoring set-up. Thus, extracting and transforming data from inte-
grated monitoring instruments should be possible.

5. Root Cause Analysis
Anomalies may have the same symptoms, such as in example A1 and A5
with an out-of-memory anomaly, but they differ in their root cause. Thus, it
is not only sufficient to identify an anomaly, but the technique should also
provide information on the root cause or provide information on where to
start the troubleshooting.

6 Evaluation of Anomaly Detection Techniques

This section answers RQ3, i.e., whether the selected anomaly detection tech-
niques Loglizer, TraceAnomaly, and MicroRCA satisfy the identified require-
ments (see 5) by providing a qualitative analysis.

Table 5. Fulfilment of requirements by the selected anomaly detection techniques

Anomaly
detection
technique

(1) Early
detectability

(2) Reliability (3) Risk
analysis

(4) Adaptability (5) Root cause
analysis

Loglizer ∼ ✗ ✗ ∼ ✗

Trace
anomaly

∼ ∼ ✗ ∼ ✓

MicroRCA ∼ ∼ ∼ ∼ ✓

46 M. Steidl et al.

1. Early detectability
For performance-related issues, early detectability occasionally prevents more
serious anomalies because, as in example A1 and A5, performance deterio-
ration is an early sign of out-of-memory issues. Other identified anomalies
indicate the worst case immediately and do not exacerbate over time. Thus,
the further argumentation focuses on performance-related anomalies.
Loglizer does not consider the execution time and, ultimately, the response
time of each microservice when the logs are grouped based on session identi-
fiers. Thus, it does not identify deterioration in performance.
TraceAnomaly considers the response-request times of a microservice which
can identify deteriorating performance. However, it ignores that the execution
time of different methods within one microservice may vary heavily. For exam-
ple, Train Ticket’s methods within one specific microservice require between
23 ms and 206 ms.
MicroRCA also does not consider the varying time due to different methods
in a microservice. In addition, it depends on MicroRCA’s parameter setting
if it identifies slowly deteriorating response times. For example, if the last five
minutes are considered, and performance only slightly decreases, all activities
may fall within the same cluster.

2. Reliability
Loglizer achieved a high accuracy with our ten datasets. However, the cal-
culated precision and recall are low. Thus, we assume that Loglizer is inap-
plicable when identifying several types of anomalies because it only counts
the static part’s occurrences. Consequently, Loglizer does not detect changes
in variables, as in B1 or any response time-related issues. In addition, the
low precision and recall may result from the PCAs dimension reduction that
overlooks or parses a critical event [10].
TraceAnomaly works well with differences in the microservice execution
sequence as, for example, in A4 not being able to call the required instance
or in B3 not being able to add new order details. In addition, TraceAnomaly
also identifies deviations in the response time as an anomaly, although it does
not identify changes in a value as described in A4.
MicroRCA assumes that a service’s anomalies may influence other ser-
vices running on the same node. However, this should not be the case with
a correctly initialized OpenShift platform. OpenShift configures how many
resources it distributes to each service via resource quotas and limit ranges.
Thus, this assumption is suitable for identifying configuration errors, but they
may not depend on version updates.

3. Risk Analysis
Loglizer does not consider the degree of severity of an anomaly. The PCA
analysis identifies that an anomaly occurred. However, the results cannot be
reliably interpreted concerning where it happened because the PCA model
works as black-box.
TraceAnomaly uses the mean and standard deviation of the extracted
response times to identify if a response time deviates from the normal
behaviour. By modifying the implementation of the detection technique, one
can use this value to identify the severity of the deviation. However, these

Requirements for Anomaly Detection Techniques for Microservices 47

measurements do not signify how much this anomaly influences the software.
MicroRCA calculates the most likely faulty service by using monitoring data
of container and node resource utilization. This measurement just indicates
the likelihood of the microservice is the root cause but does not consider how
severely the anomaly influences the whole system.

4. Adaptability
All three anomaly detection techniques require some additional documen-
tation. It is challenging to adapt and understand the source code within a
reasonable time if the code is not sufficiently documented and only an example
implementation is provided.

– Unlabelled data: All three algorithms provide unsupervised learning algo-
rithms that do not require labelled data.

– Adaption of anomaly detection technique: Loglizer provides several dif-
ferent AI models and allows an easy exchange.
TraceAnomaly requires excessive hyperparameter tuning, which is
always essential for Deep Learning algorithms. However, to adapt
TraceAnomaly, we required documentation to understand the reasons for
the provided parameter setting in their example.
MicroRCA requires perfectly tuned hyperparameters for the clustering
of response times. The technique identifies up to four clusters when apply-
ing the predefined clustering to one extracted dataset, although no appar-
ent anomalies are present in the dataset. One of the reasons for this unex-
pected behaviour is that the response times deviate more than in the
authors’ test dataset. According to Liu et al. [17], it is ubiquitous for func-
tions in microservices to have highly distributed response times without
any anomaly. However, fewer clusters may exist when choosing a too high
threshold, but these clusters are too inaccurate and may miss anomalies.

– Adaption of monitored software: For all three anomaly detection tech-
niques, we were able to extract the required data from the available mon-
itoring instruments. However, transforming the data to the demanded
format requires extensive knowledge about the dataset itself, while essen-
tial documentation regarding the necessary data representation is missing.
Loglizer provides a Logparser6 to extract static and variable content of
the log, which does only need moderate adaption specifying the structure
of the log. We had to implement a function adapted to our input dataset
for the event count vector, counting the number of occurrences within a
time or session.
TraceAnomaly required a moderate amount of time to transform the
traces into a call sequence of traces with the associated execution time.
The challenge is to have the same order of the call sequence in every single
file. Thus, all potential call sequences need to be known in advance.
MicroRCA assumes that the monitored system uses Istio to store the
traces. However, Train Ticket uses Jaeger, which collects all the neces-
sary information in a different structure. Thus essential preprocessing was
required.

6 https://github.com/logpai/logparser, accessed 08.08.2022.

https://github.com/logpai/logparser

48 M. Steidl et al.

5. Root Cause Analysis
Loglizer does not identify the root cause because the PCA algorithm does
not provide interpretable results but only identifies whether an anomaly exists
or not. If TraceAnomaly identifies an anomaly, it assumes that the longest
call path with diverging performance (due to time propagation) is the failed
microservice. MicroRCA can identify a ranked list of identified root causes
based on a computed anomaly score.

7 Threats to Validity

This section discusses the four possible main threats to validity according to
Wohlin et al. [36] as well as how we mitigated these threats.

We avoid a lack of internal validity by not only collecting experiences
from the company and monitoring data via a benchmark system. With this
benchmark system, we only change one independent variable at a time and keep
the other variables constant. So it is possible to observe if and how a change
in one specific version configuration of one component affects the software’s
behaviour. We control and reduce confounding and intervening variables to a
minimum by extracting monitoring data with a fixed and automated setting.

External validity may suffer because we collected the dataset via a bench-
mark system in a semi-lab setting. Thus, the automated tests sent only a request
at a time to the benchmark system. Therefore, generalizability is limited in
multi-usage scenarios, as it may happen with real-world applications. Thus, we
carefully considered the company’s experiences to counteract this threat.

To minimize construct validity, we mitigated the mono-method bias by iden-
tifying anomalies via experience reports and experimenting with a benchmark sys-
tem. In addition, we further mitigated the mono-operation bias by choosing a spe-
cific microservice for version configurations that are frequently used in different
requests and have the most functionalities. In addition, we selected various ver-
sions based on their documentation, such as MongoDB’s documentation7.

Regarding conclusion validity, Wagstaff [33] indicated that performance
measurement scores, such as accuracy, precision, recall or the loss function,
are abstract and remove problem-specific details. Thus, we qualitatively discuss
anomaly-specific details to counteract this threat. It allows us to conclude if a
technique identifies a type of anomaly, even if the specific anomaly is unknown.

8 Conclusion

Version configuration due to deprecated third-party software and library versions
are essential to minimize the accumulation of maintenance debt. Although these
minor version configurations seem straightforward because the functionality does
not need to be adapted, we still observed unexpected behaviour, also called
anomalies, in this case study.

7 https://www.mongodb.com/docs/drivers/java/sync/current/upgrade/.

https://www.mongodb.com/docs/drivers/java/sync/current/upgrade/

Requirements for Anomaly Detection Techniques for Microservices 49

The identified anomalies and respective causes and effects are heterogeneous,
and anomaly detection techniques cannot identify them easily. Thus, we collected
different anomalies from an industrial setting as well as from a benchmark sys-
tem to derive five requirements an anomaly detection technique needs to fulfil:
(1) Early detectability, such as performance deterioration should be detected
before severe faults occur, and (2) reliability, indicating that the anomaly detec-
tion technique should reliably identify anomalies although they do not follow a
consistent pattern, affect the root cause and behaviour unpredictably and indi-
vidually or may not indicate an anomaly at all. In addition, (3) risk analysis
should be possible to estimate how much an anomaly influences the system, and
(4) adaptability is necessary due to different unlabelled data sets, monitoring sys-
tems, and monitored software. Finally, (5) root cause analysis should speed up
the troubleshooting process by providing at least an idea of where the anomaly
may have happened.

Using these requirements as basis, we evaluated three anomaly detection
techniques based on logs (Loglizer), traces (TraceAnomaly) and KPI data
(MicroRCA). Our evaluation showed that none of the three techniques thor-
oughly fulfilled the stated requirements.

Thus, for future work, we propose to adapt and enhance the proposed
anomaly detection techniques to improve (1) early detectability and (2) reliabil-
ity by considering more types of anomalies in advance. This is critical because
anomalies are heterogeneous, and the root causes or symptoms are unpredictable.
(3) Risk analysis requires further research on identifying the anomaly’s influence
on the observed system. One of the possible directions is to provide a risk cal-
culation based on the identified root cause. In addition, (4) establishing prepro-
cessing guidelines which are not only adapted to a specific dataset may improve
adaptability.

All identified microservice techniques use logs, traces, and KPI data to iden-
tify anomalies. Further research may also look into new techniques that use other
inputs, such as Heapdump, power usage, memory, and request-response data.

References

1. Bogatinovski, J., Nedelkoski, S., Cardoso, J., Kao, O.: Self-supervised anomaly
detection from distributed traces. In: Proceedings - 2020 IEEE/ACM 13th Inter-
national Conference on Utility and Cloud Computing, UCC 2020, pp. 342–347,
Dec 2020. https://doi.org/10.1109/UCC48980.2020.00054

2. Chen, H., Chen, P., Yu, G.: A framework of virtual war room and matrix sketch-
based streaming anomaly detection for microservice systems. IEEE Access 8,
43413–43426 (2020). https://doi.org/10.1109/ACCESS.2020.2977464

3. Chen, P., Qi, Y., Hou, D.: CauseInfer?: Automated end-to-end performance diag-
nosis with hierarchical causality graph in cloud environment. IEEE Trans. Serv.
Comput. 12(2), 214–230 (2016). https://doi.org/10.1109/TSC.2016.2607739

4. Du, Q., Xie, T., He, Yu.: Anomaly detection and diagnosis for container-based
microservices with performance monitoring. In: Vaidya, J., Li, J. (eds.) ICA3PP
2018. LNCS, vol. 11337, pp. 560–572. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-05063-4 42

https://doi.org/10.1109/UCC48980.2020.00054
https://doi.org/10.1109/ACCESS.2020.2977464
https://doi.org/10.1109/TSC.2016.2607739
https://doi.org/10.1007/978-3-030-05063-4_42
https://doi.org/10.1007/978-3-030-05063-4_42

50 M. Steidl et al.

5. Dumitraş, T., Narasimhan, P.: Why do upgrades fail and what can we do about
It? In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp.
349–372. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10445-
9 18

6. Ebert, C.: Systematisches Requirements Engineering: Anforderungen ermitteln
spezifizieren, analysieren und verwalten. dpunkt.verlag, 6. edn. (2019)

7. Gan, Y., et al.: Seer: leveraging big data to navigate the complexity of performance
debugging in cloud microservices. In: Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 19–33 (2019). https://doi.org/10.1145/3297858, https://
doi.org/10.1145/3297858.3304004

8. Gulenko, A., Schmidt, F., Acker, A., Wallschlager, M., Kao, O., Liu, F.: Detect-
ing anomalous behavior of black-box services modeled with distance-based online
clustering. In: IEEE International Conference on Cloud Computing, CLOUD 2018-
July, pp. 912–915, Sep 2018. https://doi.org/10.1109/CLOUD.2018.00134

9. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: An evaluation study on log parsing
and its use in log mining. In: Proceedings - 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2016, pp. 654–661, Sep
2016. https://doi.org/10.1109/DSN.2016.66

10. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for
anomaly detection. In: Proceedings - International Symposium on Software Relia-
bility Engineering, ISSRE, pp. 207–218, Dec 2016. https://doi.org/10.1109/ISSRE.
2016.21

11. IEEE: IEEE Standard 610.12-1990. IEEE Standard Glossary of Software Engineer-
ing Terminology (1990)

12. Jia, T., Chen, P., Yang, L., Li, Y., Meng, F., Xu, J.: An approach for anomaly
diagnosis based on hybrid graph model with logs for distributed services. In: Pro-
ceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017,
pp. 25–32, Sep 2017. https://doi.org/10.1109/ICWS.2017.12

13. Jia, T., Yang, L., Chen, P., Li, Y., Meng, F., Xu, J.: LogSed: anomaly diagnosis
through mining time-weighted control flow graph in logs. In: IEEE International
Conference on Cloud Computing, CLOUD 2017-June, 447–455, Sep 2017. https://
doi.org/10.1109/CLOUD.2017.64

14. Jin, M., et al.: An anomaly detection algorithm for microservice architecture based
on robust principal component analysis. IEEE Access (2020). https://doi.org/10.
1109/ACCESS.2020.3044610

15. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection
techniques for software field studies. Empir. Softw. Eng. 10(3), 311–341 (2005).
https://doi.org/10.1007/S10664-005-1290-X

16. Lin, J., Chen, P., Zheng, Z.: Microscope: Pinpoint performance issues with causal
graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03596-9 1

17. Liu, P., et al.: Unsupervised detection of microservice trace anomalies through
service-level deep bayesian networks. In: Proceedings - International Symposium
on Software Reliability Engineering, ISSRE 2020, pp. 48–58, Oct 2020. https://
doi.org/10.1109/ISSRE5003.2020.00014

18. Mariani, L., Monni, C., Pezze, M., Riganelli, O., Xin, R.: Localizing faults in cloud
systems. In: Proceedings - 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation, ICST 2018, pp. 262–273, May 2018. https://
doi.org/10.1109/ICST.2018.00034

https://doi.org/10.1007/978-3-642-10445-9_18
https://doi.org/10.1007/978-3-642-10445-9_18
https://doi.org/10.1145/3297858
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1109/CLOUD.2018.00134
https://doi.org/10.1109/DSN.2016.66
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ISSRE.2016.21
https://doi.org/10.1109/ICWS.2017.12
https://doi.org/10.1109/CLOUD.2017.64
https://doi.org/10.1109/CLOUD.2017.64
https://doi.org/10.1109/ACCESS.2020.3044610
https://doi.org/10.1109/ACCESS.2020.3044610
https://doi.org/10.1007/S10664-005-1290-X
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1109/ISSRE5003.2020.00014
https://doi.org/10.1109/ISSRE5003.2020.00014
https://doi.org/10.1109/ICST.2018.00034
https://doi.org/10.1109/ICST.2018.00034

Requirements for Anomaly Detection Techniques for Microservices 51

19. Mariani, L., Pezzè, M., Riganelli, O., Xin, R.: Predicting failures in multi-tier
distributed systems. J. Syst. Softw. 161, 110464 (2020). https://doi.org/10.1016/
J.JSS.2019.110464

20. Meng, L., Ji, F., Sun, Y., Wang, T.: Detecting anomalies in microservices with
execution trace comparison. Future Generat. Comput. Syst. 116, 291–301 (2021).
https://doi.org/10.1016/J.FUTURE.2020.10.040

21. Nandi, A., Mandal, A., Atreja, S., Dasgupta, G.B., Bhattacharya, S.: Anomaly
detection using program control flow graph mining from execution logs. In: Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining 13–17-Aug, pp. 215–224 (2016). https://doi.org/10.1145/
2939672.2939712

22. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection and classification using
distributed tracing and deep learning. In: Proceedings - 19th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, CCGrid 2019, pp.
241–250, May 2019. https://doi.org/10.1109/CCGRID.2019.00038

23. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection from system tracing
data using multimodal deep learning. In: IEEE International Conference on Cloud
Computing, CLOUD 2019-July, pp. 179–186. Jul 2019. https://doi.org/10.1109/
CLOUD.2019.00038

24. Pitakrat, T., Okanović, D., van Hoorn, A., Grunske, L.: Hora: Architecture-aware
online failure prediction. J. Syst. Softw. 137, 669–685 (2018). https://doi.org/10.
1016/J.JSS.2017.02.041

25. Pohl, K., Rupp, C.: Basiswissen requirements engineering: Aus-und Weiterbildung
nach IREB-Standard zum certified professional for requirements engineering foun-
dation level. dpunkt. verlag (2021)

26. Raemaekers, S., Van Deursen, A., Visser, J.: Measuring software library sta-
bility through historical version analysis. In: IEEE International Conference on
Software Maintenance, ICSM, pp. 378–387 (2012). https://doi.org/10.1109/ICSM.
2012.6405296

27. Runeson, P.: Case study research in software engineer-
ing: guidelines and examples. Wiley (2012), https://www.
wiley.com/en-ie/Case+Study+Research+in+Software+Engineering
%3A+Guidelines+and+Examples-p-9781118104354

28. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131–164, Apr 2009. https://
doi.org/10.1007/s10664-008-9102-8

29. Samir, A., Pahl, C.: DLA: Detecting and localizing anomalies in containerized
microservice architectures using markov models. In: Proceedings - 2019 Interna-
tional Conference on Future Internet of Things and Cloud, FiCloud 2019, pp.
205–213, Aug 2019. https://doi.org/10.1109/FICLOUD.2019.00036

30. Shan, H., et al.: ε-Diagnosis: Unsupervised and real-time diagnosis of small-window
long-tail latency in large-scale microservice platforms. In: The Web Conference
2019 - Proceedings of the World Wide Web Conference, WWW 2019, pp. 3215–
3222 (2019). https://doi.org/10.1145/3308558.3313653

31. Soldani, J., Brogi, A.: Anomaly detection and failure root cause analysis in (Micro)
service-based cloud applications: a survey. ACM Comput. Surv. (CSUR) 55, 39
(2022). https://doi.org/10.1145/3501297

32. Steidl, M., Felderer, M.: Anomalies in Microservice Arcitecture (train-ticket) based
on version configurations, Aug 2022. https://doi.org/10.5281/zenodo.6979726

https://doi.org/10.1016/J.JSS.2019.110464
https://doi.org/10.1016/J.JSS.2019.110464
https://doi.org/10.1016/J.FUTURE.2020.10.040
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1145/2939672.2939712
https://doi.org/10.1109/CCGRID.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1016/J.JSS.2017.02.041
https://doi.org/10.1016/J.JSS.2017.02.041
https://doi.org/10.1109/ICSM.2012.6405296
https://doi.org/10.1109/ICSM.2012.6405296
https://www.wiley.com/en-ie/Case+Study+Research+in+Software+Engineering%3A+Guidelines+and+Examples-p-9781118104354
https://www.wiley.com/en-ie/Case+Study+Research+in+Software+Engineering%3A+Guidelines+and+Examples-p-9781118104354
https://www.wiley.com/en-ie/Case+Study+Research+in+Software+Engineering%3A+Guidelines+and+Examples-p-9781118104354
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/FICLOUD.2019.00036
https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1145/3501297
https://doi.org/10.5281/zenodo.6979726

52 M. Steidl et al.

33. Wagstaff, K.L.: Machine learning that matters. In: Proceedings of the 29th Inter-
national Conference on Machine Learning, ICML 2012, vol. 1, pp. 529–534, Jun
2012. https://doi.org/10.48550/arxiv.1206.4656

34. Wang, P., et al.: CloudRanger: Root cause identification for cloud native systems.
In: Proceedings - 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGRID 2018, pp. 492–502, Jul 2018. https://doi.org/10.
1109/CCGRID.2018.00076

35. Wang, T., Zhang, W., Xu, J., Gu, Z.: Workflow-aware automatic fault diagnosis for
microservice-based applications with statistics. IEEE Trans. Netw. Service Manag.
17(4), 2350–2363 (2020). https://doi.org/10.1109/TNSM.2020.3022028

36. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering, vol. 9783642290. Springer Science & Business
Media (2012). https://doi.org/10.1007/978-3-642-29044-2

37. Wu, L., Bogatinovski, J., Nedelkoski, S., Tordsson, J., Kao, O.: Performance diag-
nosis in cloud microservices using deep learning. In: Hacid, H., et al. (eds.) ICSOC
2020. LNCS, vol. 12632, pp. 85–96. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-76352-7 13

38. Wu, L., Tordsson, J., Elmroth, E., Kao, O.: MicroRCA: root cause localization
of performance issues in microservices. In: Proceedings of IEEE/IFIP Network
Operations and Management Symposium 2020: Management in the Age of Soft-
warization and Artificial Intelligence, NOMS 2020, Apr 2020. https://doi.org/10.
1109/NOMS47738.2020.9110353

39. Zhao, N., et al.: Identifying bad software changes via multimodal anomaly detec-
tion for online service systems; identifying bad software changes via multimodal
anomaly detection for online service systems. In: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, vol. 21 (2021). https://doi.org/10.1145/
3468264, https://doi.org/10.1145/3468264.3468543

40. Zhou, X., et al.: Latent error prediction and fault localization for microservice
applications by learning from system trace logs. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, vol. 19 (2019). https://doi.org/
10.1145/3338906, https://doi.org/10.1145/3338906.3338961

41. Zhou, X., et al.: Fault Analysis and Debugging of Microservice Systems: Industrial
Survey, Benchmark System, and Empirical Study. IEEE Trans. Softw. Eng. 4(8)
(2018)

42. Zhou, X., et al.: Fault analysis and debugging of microservice systems: industrial
survey, benchmark system, and empirical study. IEEE Trans. Softw. Eng. 47(2),
243–260 (2021). https://doi.org/10.1109/TSE.2018.2887384

43. Zhu, J., et al.: Tools and benchmarks for automated log parsing. In: Proceedings -
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP 2019, pp. 121–130, May 2019. https://doi.org/
10.1109/ICSE-SEIP.2019.00021, https://github.com/logpai/logparser

https://doi.org/10.48550/arxiv.1206.4656
https://doi.org/10.1109/CCGRID.2018.00076
https://doi.org/10.1109/CCGRID.2018.00076
https://doi.org/10.1109/TNSM.2020.3022028
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-030-76352-7_13
https://doi.org/10.1007/978-3-030-76352-7_13
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1145/3468264
https://doi.org/10.1145/3468264
https://doi.org/10.1145/3468264.3468543
https://doi.org/10.1145/3338906
https://doi.org/10.1145/3338906
https://doi.org/10.1145/3338906.3338961
https://doi.org/10.1109/TSE.2018.2887384
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://github.com/logpai/logparser

Towards a DSL for AI Engineering
Process Modeling

Sergio Morales1(B) , Robert Clarisó1 , and Jordi Cabot1,2

1 Universitat Oberta de Catalunya, Barcelona, Spain
{smoralesg,rclariso,jcabot}@uoc.edu

2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Many modern software products embed AI components. As
a result, their development requires multidisciplinary teams with diverse
skill sets. Diversity may lead to communication issues or misapplication
of best practices. Process models, which prescribe how software should
be developed within an organization, can alleviate this problem. In this
paper, we introduce a domain-specific language for modeling AI engi-
neering processes. The DSL concepts stem from our analysis of scientific
and gray literature that describes how teams are developing AI-based
software. This DSL contributes a structured framework and a common
ground for designing, enacting and automating AI engineering processes.

Keywords: Domain-specific language · AI engineering · Process
modeling

1 Introduction

Modern business applications usually embed Machine Learning (ML) and other
Artificial Intelligence (AI) components as core of their logic [3,6]. The engineer-
ing of AI components requires the introduction of new development activities
and profiles in development teams beyond software engineers, e.g., data scien-
tists, psychologists and AI experts. As a result, there is a need for more support
and guidance when developing AI projects, as reported in recent studies [2,8,15].
Enterprises need to revise their practices and adopt a clear process for building
AI products.

A process model provides full visibility and traceability about the work
decomposition within an organization, along with the responsibilities of their
participants and the standards and knowledge it is based on. Process models are
guidelines for configuration, execution and continuous improvement.

In this sense, we propose a domain-specific language (DSL) to facilitate the
specification of AI engineering processes. The motivation for a DSL is to have
a shared language in a particular problem space that can foster communication
and collaboration. Our DSL encompasses standard process modeling concepts
plus AI-specific process primitives based on the analysis of research and gray
literature. We currently have introduced concepts from Machine Learning and
leave other AI activities and facets for future work.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 53–60, 2022.
https://doi.org/10.1007/978-3-031-21388-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_4&domain=pdf
http://orcid.org/0000-0002-5921-9440
http://orcid.org/0000-0001-9639-0186
http://orcid.org/0000-0003-2418-2489
https://doi.org/10.1007/978-3-031-21388-5_4

54 S. Morales et al.

Our DSL facilitates the definition of AI engineering processes by enabling
stakeholders to discuss and specify a single and formalized representation of such
processes. This also brings additional benefits. For instance, it opens the door to
automatic processing, e.g., as part of a process execution scenario, it facilitates
the detection of hidden or conflicting practices, and simplifies the onboarding of
new team members.

The remainder of this paper is organized as follows. Section 2 reviews existing
proposals for AI processes. In Sect. 3 we introduce our DSL, while in Sect. 4 we
present an example of its usage, leading to Sect. 5 where we analyze other related
work. Finally, Sect. 6 concludes and outlines the future work.

2 Background

There are several scientific papers and gray literature describing the develop-
ment of real AI projects. Among those, we have selected the most cited research
publications and influential contributions from the industry as inspiration for
our DSL.

In particular, we have chosen 3 industrial methods: CRISP-DM [5] as the
de facto standard process for data science projects; and Microsoft Team Data
Science Process [14] and IBM AI Model Lifecycle Management [9] as two major
players in the field. We have also included 3 scientific references that discuss
the Machine Learning lifecycle in actual applications [2,4,10]; and 1 paper that
blueprints a maturity framework for AI model management [1].

Each of those proposals has a slightly different grouping, distribution and
granularity of activities, but all share the following high level structure:

1. Business Understanding, to set the business objectives and criteria linked to
an AI project, and produce a plan along with an initial assessment of tools
and techniques.

2. Data Collection & Preparation, to perform activities to gather and clean data,
and prepare datasets and features for creating AI models.

3. AI Model Training & Evaluation, to select AI modeling techniques, optimize
hyperparameters and train the AI models, which will be evaluated and ranked
according to evaluation and business criteria.

4. Production & Operation, to finally make the AI models available for consump-
tion and to build a monitoring system and pipelines for continuous improve-
ment.

Our DSL generalizes and unifies these concepts to enable the specification of
end-to-end AI engineering processes.

3 DSL Design

A DSL is commonly defined through a metamodel that represents its domain
entities and their relationships. As shown in Fig. 2, at its core, our DSL contains

Towards a DSL for AI Engineering Process Modeling 55

the generic description of activities, the relationships between them, and the
main elements they are related to. Based on the analysis of existing literature, we
predefine four main activities (see Fig. 1): (1) BusinessActivity, (2) DataActivity,
(3) AIModelingActivity, and (4) AIModelDeploymentActivity.

Fig. 1. High-level view of activities and subactivities.

In the next sections, we focus on the two most AI-specific ones: DataActivity
and AIModelingActivity. We only briefly cover the AIModelDeploymentActivity
and leave the BusinessActivity for future work. Due to lack of space, we describe
an excerpt of the DSL. The complete metamodel is available online1.

Note that our DSL does not prescribe any concrete AI engineering process
model. Instead, it offers the modeling constructs so that each organization can
easily define its own process.

3.1 Activity Core Elements

An Activity constitutes the core element of any process. Activities are composed
of other activities (association composedOf). Completing an activity may require
completing all subactivities (attribute requiresAllSubactivities). Process creators
define if an activity is mandatory (attribute isOptional). There may also be a
precedence relationship between activities (association next).

Several Roles perform the activities during development. Their participation
could be specified according to the organization’s levels of responsibility, e.g., as
responsible or accountable (class Participant).

Activities consume (inputs) and produce (outputs) Artifacts. An artifact
could be a document that is generated as an output of an activity and is con-
sumed as an input by the following one. Other examples of artifacts will be
studied in the following sections.

Finally, Resources might be helpful to complete an activity. Resources are
not consumed nor produced by the process – they are supporting components.
An example would be a template for the document from the previous paragraph.

1 http://hdl.handle.net/20.500.12004/1/C/PROFES/2022/422.

http://hdl.handle.net/20.500.12004/1/C/PROFES/2022/422

56 S. Morales et al.

Fig. 2. Generic elements of an activity.

3.2 Data Activity

The DataCollectionActivity is the acquisition of DataInstances from Data-
Sources. The participants move data from internal or external data sources
(attribute isExternal) into a destination (attribute location) for further pro-
cessing.

In the DataProcessingActivity, data is cleaned and transformed via differ-
ent techniques (e.g., dummy substitution for cleaning empty values in relevant
attributes, and data reduction or augmentation) to overcome deficiencies that
might result in bad predictions if used for training an AI model. Additionally,
data could be labelled to help AI models identify concepts in production data.

Fig. 3. An excerpt of activities and other elements of the DataActivity.

The FeatureEngineeringActivity (not included in Fig. 3) comprehends the
tasks and statistical techniques used to transform data attributes of a DataIn-
stance into features that can be used by an AI model and enhance its prediction
accuracy. During this activity, correlations between features are identified. As a
result of this activity, a set of features are extracted from the data instances.

Data is then usually split into three disjoint sets: a training dataset, a vali-
dation dataset and a test dataset.

Towards a DSL for AI Engineering Process Modeling 57

3.3 AI Modeling Activity

The AIModelTrainingActivity is the activity for creating, training and validating
new AI models from the collected and prepared data. An AIModel is trained by
an AI algorithm using the observations held in the TrainingDataset.

Once an AI model is initially trained, a data scientist tunes its Hyperpa-
rameters looking for the OptimalValues that yield its best performance. The
ValidationDataset is applied in this procedure. Finally, the hyperparameter val-
ues that maximize an AI model performance are fixed for production.

The AIModelPerformanceCriteria will drive the AI model training and will
be used to pursue an AI model or discard it; in other words, they dictate when
it is not worthwhile to keep improving an AI model.

Fig. 4. An excerpt of the AIModelingActivity and its elements.

In the AIModelEvaluationActivity (not part of Fig. 4), a data scientist checks
if an AI model satisfies the AI model success criteria, along with its adequacy to
its AI model requirements. A test dataset is used to assess this. Data scientists
then set a ranking for each AI model.

3.4 AI Model Deployment Activity

In the AIModelDeploymentActivity, an AI model is deployed to a production
Platform to serve end users or other systems (Fig. 5). It may be useful to run
Scripts to automate its installation and setup. An AI model can be deployed
(attribute pattern) statically, dynamically (on the user’s device or on a server),
or via streaming. An AI model can make its inferences either: (a) in batch mode,
periodically making predictions offline and serving the results to a repository;
or (b) in real-time, making and serving predictions whenever requested to.

58 S. Morales et al.

Fig. 5. An excerpt of elements of the AIModelDeploymentActivity.

4 Tool Support

We have implemented our DSL on top of Sirius Web2, an open-source subproject
of Eclipse Sirius. Given a metamodel and its mapping to a set of visual notation
elements, Sirius Web generates a modeling environment that can then be used
by modelers to design new graphical models conforming to that metamodel.

As an example, Fig. 6 depicts an excerpt of the DataActivity of a simple
process model with four subactivities: (1) Ingest the data, (2) Clean the data,
(3) Reduce the data, and (4) Set the data pipeline. The first one is an instance of
the DataCollectionActivity and employs a technique (Load data to SQL Server
on Azure VM) for transferring data from the data source Employees ERP into
the data instance Extraction ref A0O451. The activity Ingest the data has one
participant, a Data engineer, who is responsible for its execution. The activities
Clean the data and Reduce the data are instances of the DataProcessingActivity,
and each of them performs different techniques to process the data instance.

Fig. 6. A sample process model created with our DSL on Sirius Web.

2 https://www.eclipse.org/sirius/sirius-web.html.

https://www.eclipse.org/sirius/sirius-web.html

Towards a DSL for AI Engineering Process Modeling 59

The DSL provides flexibility for adding elements that are specific to a
method. In the example, Set up the data pipeline does not correspond to any
predefined AI activity described in our DSL. Therefore, it is based on the generic
Activity.

5 Related Work

There are dozens of process modeling languages, e.g., BPMN & SPEM and their
extensions, UML profiles, and formal languages [7]. Specifically, SPEM is an
OMG standard for describing software development processes, but it purposely
does not include any distinct feature for particular domains or disciplines – like
Artificial Intelligence. To the best of our knowledge, none of the process modeling
languages includes AI specific extensions.

Regarding DSLs for AI, there are languages to model certain AI activities
such as OptiML [13], ScalOps [16], Arbiter [18] or Pig Latin [11]. There are also
DSLs for creating AI artifacts like ML-Schema [12], an ontology for interchang-
ing information on ML experiments, or DeepDSL [17] for the creation of deep
learning networks. Nevertheless, none of those DSLs focus on process aspects.

Therefore, as far as we know, our DSL is the first that provides elements for
describing AI-specific activities and enables modeling AI engineering processes.

6 Conclusions and Future Work

In this paper, we have presented a first version of a DSL to model AI engi-
neering processes. Our language covers the needs for such type of processes as
described in academic and industry proposals. We believe this DSL is a step
forward towards the adoption of software engineering practices in the AI area.

Our DSL will facilitate the formalization of AI processes within organizations.
Moreover, this formalization will also enable the manipulation of the models via
any of the existing model-driven tools – especially the EMF-based ones, which
will be directly compatible with our DSL implementation.

As further work, we plan to create a tool set that would enable enacting and
automating these modeled AI processes, thus providing real-time information of
running processes and guidance for intervention.

Additional future work will involve extending the DSL. In particular, we
will dive deep into the BusinessActivity for contextualizing and setting business
purposes to AI projects. Similarly, we plan to enrich the AIModelDeploymentAc-
tivity to incorporate monitoring elements to ensure the performance of deployed
AI models remains within acceptable limits. Besides, we will go beyond ML and
include other AI methods. We will also add process snippets and templates that
would help companies to create their own process without starting from scratch.
Finally, we will empirically validate the usability of our DSL.

Acknowledgements. This work has been partially funded by the Spanish govern-
ment (PID2020-114615RB-I00/AEI/10.13039/501100011033, project LOCOSS) and

60 S. Morales et al.

the AIDOaRt project, which has received funding from the ECSEL Joint Undertaking
(JU) under grant agreement No 101007350. The JU receives support from the Euro-
pean Union‘s Horizon 2020 research and innovation programme and Sweden, Austria,
Czech Republic, Finland, France, Italy and Spain.

References

1. Akkiraju, R., et al.: Characterizing machine learning processes: a maturity frame-
work. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS,
vol. 12168, pp. 17–31. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58666-9 2

2. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
ICSE-SEIP, pp. 291–300 (2019)

3. Anthes, G.: Artificial intelligence poised to ride a new wave. Commun. ACM 60(7),
19–21 (2017)

4. Ashmore, R., Calinescu, R., Paterson, C.: Assuring the machine learning lifecycle:
desiderata, methods, and challenges. ACM Comput. Surv. 54(5), 1–39 (2021)

5. CRISP-DM. https://cordis.europa.eu/project/id/25959. Accessed 6 June 2022
6. Deng, L.: Artificial intelligence in the rising wave of deep learning: the historical

path and future outlook. IEEE Signal Proc. Mag. 35(1), 180–187 (2018)
7. Garćıa-Borgoñón, L., Barcelona, M., Garćıa-Garćıa, J., Alba, M., Escalona, M.:

Software process modeling languages: a systematic literature review. Inf. Softw.
Technol. 56(2), 103–116 (2014)

8. Hill, C., Bellamy, R., Erickson, T., Burnett, M.: Trials and tribulations of devel-
opers of intelligent systems: a field study. In: 2016 IEEE Symposium on VL/HCC,
pp. 162–170 (2016)

9. IBM Ai Model Lifecycle Management. https://www.ibm.com/blogs/academy-of-
technology/ai-model-lifecycle-management-white-paper. Accessed 6 June 2022

10. Nascimento, E.D.S., Ahmed, I., Oliveira, E., Palheta, M.P., Steinmacher, I., Conte,
T.: Understanding development process of machine learning systems: challenges
and solutions. In: ESEM 2019, pp. 1–6 (2019)

11. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: SIGMOD, pp. 1099–1110. ACM (2008)

12. Publio, G.C., et al.: ML-schema: exposing the semantics of machine learning with
schemas and ontologies. arXiv preprint arXiv:1807.05351 (2018)

13. Sujeeth, A.K., et al.: OptiML: an implicitly parallel domain-specific language for
machine learning. In: ICML, pp. 609–616 (2011)

14. What is the Team Data Science Process? https://docs.microsoft.com/en-us/azure/
architecture/data-science-process/overview. Accessed 6 June 2022

15. Wan, Z., Xia, X., Lo, D., Murphy, G.C.: How does machine learning change software
development practices? IEEE Trans. Softw. Eng. 47(9), 1857–1871 (2021)

16. Weimer, M., Condie, T., Ramakrishnan, R., et al.: Machine learning in ScalOps, a
higher order cloud computing language. In: NIPS, vol. 9, pp. 389–396 (2011)

17. Zhao, T., Huang, X.: Design and implementation of DeepDSL: a DSL for deep
learning. Comput. Lang. Syst. Struct. 54, 39–70 (2018)

18. Zucker, J., d’Leeuwen, M.: Arbiter: a domain-specific language for ethical machine
learning. In: AAAI/ACM Conference on AI, Ethics, and Society, pp. 421–425
(2020)

https://doi.org/10.1007/978-3-030-58666-9_2
https://doi.org/10.1007/978-3-030-58666-9_2
https://cordis.europa.eu/project/id/25959
https://www.ibm.com/blogs/academy-of-technology/ai-model-lifecycle-management-white-paper
https://www.ibm.com/blogs/academy-of-technology/ai-model-lifecycle-management-white-paper
http://arxiv.org/abs/1807.05351
https://docs.microsoft.com/en-us/azure/architecture/data-science-process/overview
https://docs.microsoft.com/en-us/azure/architecture/data-science-process/overview

Classification of Changes Based on API

Masashi Iriyama(B), Yoshiki Higo, and Shinji Kusumoto

Graduate School of Information Science and Technology,
Osaka University, Suita, Japan

{m-iriyam,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract. In software maintenance process, software libraries are occa-
sionally updated, and their APIs may also be updated. API changes can
be classified into two categories: changes that break backward compati-
bility (in short, breaking changes) and changes that maintain backward
compatibility (in short, maintaining changes). Detecting API changes
and determining whether each is a breaking or maintaining change is
useful for code reviews and release note generations. Since it is burden-
some to check API changes manually, research on automatic detection
of API changes has been conducted. APIDiff is a tool that automatically
detects API changes and classifies the detected changes into breaking and
maintaining ones. APIDiff takes two versions of a Java library as input,
and it detects API changes based on the similarity of the input code.
Each detected change is classified into the two kinds of changes. How-
ever, since APIDiff identifies breaking changes for each type of change,
it tends to fail to correctly classify changes if multiple changes were
conducted to a single API. On the other hand, our proposed technique
in this paper groups changes by APIs and checks whether each group
contains changes that break backward compatibility. Classifying API
changes more correctly by our technique will be helpful for release note
generations in maintenance process. We conducted experiments on eight
open-source software and confirmed that our technique could detect API
changes more correctly than APIDiff. We also confirmed that the pro-
posed technique could classify API changes more correctly into breaking
and maintaining ones than APIDiff.

Keywords: API Evolution · Breaking changes · Mining software
repositories

1 Introduction

Libraries have been used in many software applications [6]. Libraries provide
functionality through application programming interfaces (in short, APIs). In
software maintenance process, software libraries are occasionally updated, and
their APIs may also be updated; API changes may include additions of new
features, removals of unnecessary features, or refactoring to improve maintain-
ability [4]. Those changes can be categorized as those that break backward com-
patibility (in short, breaking changes) and those that maintain backward compat-
ibility (in short, maintaining changes). Detecting API changes and determining
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 61–70, 2022.
https://doi.org/10.1007/978-3-031-21388-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_5&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_5

62 M. Iriyama et al.

Fig. 1. An example of an issue in APIDiff

whether the changes maintain backward compatibility of the API is useful for
code reviews and release note generations [7].

Since manually detecting API changes is burdensome, research has been con-
ducted on automatically detecting API changes. APIDiff is a tool that automat-
ically detects API changes and classifies them into breaking and maintaining
ones [1]. A variety of research has been conducted using APIDiff. For example,
research has been conducted to clarify the stability of libraries [10], the impact
of breaking changes on client code [10], reasons why developers made breaking
changes [2], and developers’ awareness of the dangers of breaking changes [11].

However, APIDiff tends to fail to correctly classify changes if multiple changes
were conducted to a single API since it identifies breaking changes for each
type of change. As a result, API developers (library developers) and API users
(library users) may have wrong perceptions of API changes. Figure 1 shows an
example of the issue in APIDiff. APIDiff should classify the API changes of
setValueFormatter into Pull Up Method and Change in Parameter List. Users
of setValueFormatter can no longer use it after the API changes because the
parameter of the API has been changed. That is, the backward compatibility
of setValueFormatter is broken by the changes, but APIDiff classifies Pull Up
Method incorrectly into the maintaining change based on its change type.

Our proposed technique groups changes by APIs and checks whether each
group contains API changes that break backward compatibility. Classifying API
changes more correctly by our technique will be helpful for release note gener-
ations in maintenance process. We conducted experiments on eight open-source
software and confirmed that our technique could detect API changes more cor-
rectly than APIDiff. We also confirmed that our technique could classify API
changes more correctly into breaking and maintaining ones than APIDiff.

Classification of Changes Based on API 63

2 Preliminaries

2.1 Catalog of API Changes

The backward compatibility considered in this paper is in the context of syntactic
changes and not semantic changes. The catalog of breaking changes is shown in
Table 1. The catalog of maintaining changes is shown in Table 2. Those catalogs
are based on the README file of APIDiff1 and the README file of RefactoringMiner2

2.2 APIDiff

APIDiff internally utilizes a refactoring detection tool called RefDiff [8]. RefDiff
outputs a list of refactoring operations applied to the later version of the two
input versions based on the similarity of the code.

The two versions of a Java library given as input to APIDiff are passed to
RefDiff, and classes, methods, and fields are extracted for each version. RefDiff
obtains a list of refactoring operations applied to the later version. Then refactor-
ing operations that are not related to APIs are discarded. APIDiff itself extracts
classes, methods, and fields for each version. APIDiff matches APIs between the
two versions based on the list of refactoring operations and information such
as fully qualified names of classes, APIs’ names, and sequences of parameters.
Based on the results of the API matching and information such as API qualifiers
and annotations, API changes are detected. The detected changes are classified

Table 1. Catalog of breaking changes

Type Rename, Move, Move and Rename, Remove, Lost Visibility, Add Final
Modifier, Remove Static Modifier, Change in Supertype, Remove
Supertype, Extract Type, Extract Subtype

Method Move, Rename, Remove, Push Down, Inline, Change in Parameter list,
Change in Exception List, Change in Return Type, Lost Visibility,
Add Final Modifier, Remove Static Modifier, Move and Rename

Field Remove, Move, Push Down, Change in Default Value, Change in Field
Type, Lost Visibility, Add Final Modifier, Rename, Move and Rename

Table 2. Catalog of maintaining changes

Type Add, extract supertype, Gain Visibility, Remove Final Modifier, Add
Static Modifier, Add Supertype, Deprecated

Method Pull Up, Gain Visibility, Remove Final Modifier, Add Static Modifier,
Deprecated, Add, Extract

Field Pull Up, Add, Deprecated Field, Gain Visibility, Remove Final
Modifier, Extract

1 https://github.com/aserg-ufmg/apidiff.
2 https://github.com/tsantalis/RefactoringMiner.

https://github.com/aserg-ufmg/apidiff
https://github.com/tsantalis/RefactoringMiner

64 M. Iriyama et al.

Fig. 2. Overview of the proposed technique

into breaking or maintaining changes based on their change types. Then APIDiff
creates a list of API change operations, including information such as its change
type, the API before and after the change, and the result of determining whether
the change breaks backward compatibility.

3 Proposed Technique

An overview of our technique is shown in Fig. 2. It is important to detect API
changes with high accuracy in our technique in advance to classify API changes.
The proposed technique detects API refactorings using RefactoringMiner [9]
instead of RefDiff. RefactoringMiner (in short, RMiner) is a tool that detects
refactorings with high accuracy because of syntax-aware replacements of abstract
syntax trees nodes and heuristics defined to match statements. Our proposed
technique matches APIs between versions based on the output of RMiner. Our
technique detects and groups changes by APIs and checks whether each group
contains changes that break backward compatibility.

3.1 Detection API Refactorings

The two versions of a Java library given as input to our technique are passed to
RMiner. The tool extracts classes, methods, and fields for each version. RMiner
outputs a list of refactoring operations applied to the later version. Then refac-
toring operations that are not related to APIs are discarded.

Classification of Changes Based on API 65

3.2 Detecting and Classifying API Changes

The API changes detection and classification procedure consists of the following
steps:

Step-1 matching APIs between versions,
Step-2 detecting/grouping API changes for each API, and
Step-3 classifying API changes into breaking or maintaining changes.

In Step-1, the classes having identical fully qualified names are associated
between the two versions. The methods having identical fully qualified names of
the class, method names, sequences of parameters, and return types are associ-
ated. The fields having identical fully qualified names of the class, field names,
and field types are associated. The unassociated APIs are classified into refac-
tored, deleted, or added APIs based on the list of refactoring operations. In
Step-2, based on the results of the API matching in Step-1 and information such
as API qualifiers and annotations, API changes are detected. Then changes are
grouped for each API based on the combination of the API before and after
the change. In Step-3, each detected change is classified into breaking or main-
taining changes based on its change type. Then our technique checks whether
each group includes at least a breaking change. If the group includes at least a
breaking change, our technique determines that the API is broken and reclassi-
fies all the changes included in the group into breaking changes. Then a list of
API change operations is created in the same way as APIDiff.

4 Experiment

We evaluated our technique in terms of the number of detected API changes, the
precision of classifying API changes, and execution time. Our tool and datasets
are available3.

4.1 Target Projects

In order to experiment with projects that are frequently updated and popular,
we selected eight open source software for the experiment from the experimen-
tal targets of the longitudinal study using RMiner [3]. The eight projects were
selected because their repositories included enough commits, and many users
gave stars to the repositories. The target projects are shown in Table 3.

4.2 The Number of Detected API Changes

We applied our technique and APIDiff to all the commits on the master branch
of the projects and compared the number of detected changes. The results
are shown in the column of Number in Table 3. While APIDiff detected 4,180
(=2,943+1,237) changes, our technique detected 7,883 (=2,943+4,940) changes.
In all the projects, our technique detected more API changes than APIDiff.
3 https://github.com/kusumotolab/APIMiner.

https://github.com/kusumotolab/APIMiner

66 M. Iriyama et al.

4.3 The Precision of Classifying API Changes

We used MPAndroidChart to calculate the precision because its calculation
required manual checking of detected API changes. MPAndroidChart was also
used in the experiment of APIDiff [1]. Due to the large number of API changes
detected by our technique and APIDiff, we visually checked 165 API changes of
which classification results are different from our technique and APIDiff. Due
to the large number of API changes detected by our technique alone, 311 were
sampled to achieve a tolerance of 5% and a confidence level of 95%. All the API
changes detected only by APIDiff were visually checked. The results are shown
in Table 4. The column of Num shows the number of detected API changes.
The column of Prec1 shows whether each change is correct in change type. The
column of Prec2 shows whether each change is correct in both change type
and classification results. The overall precision of APIDiff alone is the number
of API changes visually checked to be correct divided by 165, the number of
API changes detected by APIDiff alone. The overall precision of ours alone is
the number of API changes visually checked to be correct divided by the sample
size, 311. Although for Inline Method and Move Method, the precision of APIDiff
was higher than that of our technique, the overall precision of our technique was
89.7%, compared to 44.8% for APIDiff. The difference between Prec1 and Prec2
in the column of APIDiff alone indicates that APIDiff detected Pull up Method
correctly but classified some of them into breaking or maintaining changes incor-
rectly. On the other hand, our technique detected Pull up Method correctly and
classified them into breaking or maintaining changes correctly.

4.4 Execution Time

We applied our technique and APIDiff to all the commits on the master branch of
the projects and measured execution time. Then we compared the total execution
time between our technique and APIDiff. The results are shown in the column of
Execution Time of Table 3. In five out of the eight projects, the execution time
of our technique was shorter than that of APIDiff. In three projects out of the

Table 3. Target projects, the number of detected API changes, and execution time

Project name LOC Commits Number Execution time

Both Ours APIDiff Total Detect Refactorings

Alone Alone Ours APIDiff Ours APIDiff

OkHttp 72,696 4,839 675 460 396 11min53 s 12min30 s 11min49 s 6min20 s

Retrofit 26,995 1,865 243 338 84 2min36 s 3min07 s 2min35 s 1min19 s

MPAndroidChart 25,232 2,068 1,120 1,607 116 2min08 s 4min18 s 1min59 s 2min00 s

LeakCanary 26,269 1,609 41 79 51 24 s 2min59 s 24 s 18 s

Hystrix 50,510 2,108 292 722 183 19min58 s 4min36 s 19min56 s 2min10 s

Iosched 23,550 2,757 91 143 44 3 h16min39 s 6min57 s 3 h16min38 s 1min53 s

Fresco 7,194 2,897 452 1,514 359 2min25 s 20min18 s 2min18 s 5min46 s

Logger 1,441 144 29 77 3 11 s 8 s 11 s 3 s

Sum 2,943 4,940 1,237

Classification of Changes Based on API 67

eight projects, our technique took less time to detect API changes than APIDiff,
even though RMiner took more time to detect refactorings than RefDiff.

5 Discussion

Figure 3 shows an example of API change detected by APIDiff alone. APIDiff
detected and classified the API change of cloneEntry into Rename Method cor-
rectly, but our technique classified the API change into Remove Method and Add
Method incorrectly. Our technique matches APIs between two versions using the

Table 4. The precision of classifying API changes

API change type Both Ours alone APIDiff alone
Num Prec1 Ours Prec2 APIDiff Prec2 Num Prec1 Prec2 Num Prec1 Prec2

Change in field default Value 107 18 100 100 1 100 100
Change in return type method 125 56 100 100 3 100 100
Extract method 0 133 78.6 78.6 4 25.0 25.0
Inline method 5 19 84.6 76.8 4 100 100
Lost visibility in method 19 32 38.5 38.5 44 0.0 0.0
Pull up method 115 100 100 0.0 107 100 100 20 100 70.0
Push down field 6 2 100 100 1 100 100
Push down method 28 29 100 100 2 100 100
Move field 45 75 100 100 1 100 100
Move method 60 46 15.4 15.4 12 66.7 66.7
Rename method 147 67 100 100 22 68.2 68.2
Rename type 27 2 100 100 2 100 100
Add static modifier in method 1 3 100 100 0
Change in field type 53 10 100 100 0
Change in supertype 132 100 100 0.0 2 100 100 0
Deprecated method 6 48 100 100 0
Deprecated type 3 2 100 100 0
Gain visibility in field 43 35 100 100 0
Gain visibility in method 47 56 100 100 0
Gain visibility in type 2 4 100 100 0
Lost visibility in field 8 18 100 100 0
Move and rename type 3 2 100 100 0
Move type 69 8 100 100 0
Pull up field 28 100 100 0.0 45 100 100 0
Change in parameter list 0 626 100 100 0
Extract field 0 3 100 100 0
Extract subtype 0 2 100 100 0
Extract supertype 0 36 92.3 92.3 0
Extract type 0 25 100 100 0
Move and rename field 0 4 75.0 75.0 0
Move and rename method 0 32 84.6 84.6 0
Remove static modifier in method 0 2 100 100 0
Rename field 0 58 84.6 84.6 0
Add final modifier in field 1 0 0
Add supertype 28 0 0
Remove final modifier in field 5 0 0
Remove supertype 7 0 0
Overall 1,120 100 100 0.0 1,607 90.0 89.7 116 50.0 44.8

68 M. Iriyama et al.

Fig. 3. An example of API change detected by APIDiff alone

output of RMiner. RMiner did not detect the change, so our technique clas-
sified cloneEntry into a removed API and classified copy into an added API
incorrectly.

In the column of Ours alone in Table 4, the precision of Move Method was
as low as 15.4%. That is because RMiner classified some of Pull up Method and
Push Down Method into Move Method incorrectly. Our technique determines
the type of refactoring based on the output of RMiner. Even if our technique
classifies an API as a refactored API correctly, the type of refactoring may not
be correctly determined.

In the column of Execution Time in Table 3, our technique took a much longer
time to detect API changes than APIDiff in the project iosched. The majority of
our tool’s execution time was spent detecting refactorings by RMiner. RMiner
constructs abstract syntax trees of changed files and compares subtrees of them
between two versions to detect refactorings. If many files are changed in a single
commit, there will be more subtrees to compare between versions, and it will
take more time to detect refactorings.

6 Threats to Validity

We considered classes, methods, and fields with the access level of public or
protected as APIs. The access level may be set to public or protected for
internal processing rather than for exposing as an API. If such classes, methods,
and fields are excluded, the experiment results may change.

In order to calculate the precision, we visually check the detected changes.
Some API changes may not have been classified correctly.

Since some API change types were not detected so much, their precisions
may not have been correctly calculated.

7 Related Works

RefDiff [8] and RMiner [9] are refactoring detection tools. Those tools themselves
neither detect other changes (i.e., adding or removing API, etc.) nor classify
detected changes into breaking or maintaining changes.

Classification of Changes Based on API 69

Android applications, like libraries, are suffered from API-related compati-
bility issues. Li et al. proposed an automated approach named CiD for system-
atically modeling the lifecycle of the Android APIs and analyzing app bytecode
to flag usages that can lead to potential compatibility issues [5]. Our technique
is for detecting API changes of Java libraries, not Android APIs.

8 Conclusions and Future Work

We proposed a new technique to classify API changes into breaking and main-
taining ones automatically. Our proposed technique groups changes by APIs and
checks whether each group contains changes that break backward compatibil-
ity. Classifying API changes more correctly by our technique will be helpful for
release note generations in maintenance process.

By increasing the number of OSSs to be evaluated, we are going to visually
check a sufficient number of API change types that were not detected so much in
this experiment. We are also going to integrate our technique with CI platforms.

Acknowledgment. This research was supported by JSPS KAKENHI Japan
(JP20H04166, JP21K18302, JP21K11820, JP21H04877, JP22H03567, JP22K11985)

References

1. Brito, A., Xavier, L., Hora, A., Valente, M.T.: APIDiff: detecting API breaking
changes. In: Proceedings of International Conference on Software Analytics, Evo-
lution, Reengineering, pp. 507–511 (2018)

2. Brito, A., Xavier, L., Hora, A., Valente, M.T.: Why and how Java developers
break APIs. In: Proceedings of International Conference on Software Analytics,
Evolution, Reengineering, pp. 255–265 (2018)

3. Cedrim, D., et al.: Understanding the impact of refactoring on smells: a longitudinal
study of 23 software projects. In: Proceedings of Joint Meeting on Foundations of
Software Engineering, pp. 465–475 (2017)

4. Dig, D., Johnson, R.: How do APIs evolve? A story of refactoring. Softw. Maint.,
Evol. Res. Pract. 18(2), 83–107 (2006)

5. Li, L., Bissyandé, T.F., Wang, H., Klein, J.: CiD: automating the detection of API-
related compatibility issues in android apps. In: Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp. 153–163 (2018)

6. Michail, A.: Data mining library reuse patterns in user-selected applications. In:
Proceedings of International Conference on Automated Software Engineering, pp.
24–33 (1999)

7. Moreno, L., Bavota, G., Penta, M.D., Oliveto, R., Marcus, A., Canfora, G.:
ARENA: an approach for the automated generation of release notes. IEEE Trans.
Softw. Eng. 43(2), 106–127 (2017)

8. Silva, D., Valente, M.T.: RefDiff: detecting refactorings in version histories. In: Pro-
ceedings of IEEE/ACM International Conference on Mining Software Repositories,
pp. 269–279 (2017)

9. Tsantalis, N., Ketkar, A., Dig, D.: RefactoringMiner 2.0. IEEE Trans. Softw. Eng.
1–21 (2020)

70 M. Iriyama et al.

10. Xavier, L., Brito, A., Hora, A., Valente, M.T.: Historical and impact analysis of API
breaking changes: a large-scale study. In: Proceedings of International Conference
on Software Analysing, Evolution, Reengineering, pp. 138–147 (2017)

11. Xavier, L., Hora, A., Valente, M.T.: Why do we break APIs? First answers from
developers. In: Proceedings of International Conference on Software Analysing,
Evolution, Reengineering, pp. 392–396 (2017)

Empirical Studies

Defining Requirements Strategies
in Agile: A Design Science Research

Study

Amna Pir Muhammad1(B) , Eric Knauss1(B) , Odzaya Batsaikhan1,
Nassiba El Haskouri1, Yi-Chun Lin1, and Alessia Knauss2

1 Deprtment of Computer Science and Eng., Chalmers, University of Gothenburg,
Gothenburg, Sweden
amnap@chalmers.se

2 Zenseact AB, Gothenburg, Sweden

Abstract. Research shows that many of the challenges currently
encountered with agile development are related to requirements engi-
neering. Based on design science research, this paper investigates critical
challenges that arise in agile development from an undefined require-
ments strategy. We explore potential ways to address these challenges
and synthesize the key building blocks of requirements strategies. Our
design science research rests on a multiple case study with three indus-
trial cases in the domains of communication technology, security services,
and automotive. We relied on a total of 20 interviews, two workshops,
participant observation in two cases, and document analysis in each of
the cases to understand concrete challenges and workflows. In each case,
we define a requirements strategy in collaboration with process managers
and experienced engineers. From this experience, we extract guidelines
for defining requirements strategies in agile development.

Keywords: Requirements strategy · Design science research ·
requirements engineering · Large-scale agile development

1 Introduction

Agile development methodologies aim to shorten the time to market and incor-
porate maximum changes during the sprint to meet customer needs [21] and
have been adapted at small-scale as well as large-scale organizations [18]. With
its’ focus on interactions and working software over rigid processes and extensive
documentation, traditional well established Requirements Engineering (RE) pro-
cesses have been neglected. Research shows that many of the challenges currently
encountered with agile development are related to requirements engineering [14]
for example, misunderstanding customer needs, missing high-level requirements,
and difficulty to achieve having just enough documentation.

In this study, we identify specific RE-related challenges and related solution
strategies in agile development. Based on this knowledge, we derive necessary
building blocks as different viewpoints that should be considered when thinking
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 73–89, 2022.
https://doi.org/10.1007/978-3-031-21388-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_6&domain=pdf
http://orcid.org/0000-0001-8328-4149
http://orcid.org/0000-0002-6631-872X
https://doi.org/10.1007/978-3-031-21388-5_6

74 A. P. Muhammad et al.

strategically about RE in agile development. In this, we are inspired by test
strategies, which guide testing activities to achieve the quality assurance objec-
tives [8] and which mandate that each project must have its test plan document
that clearly states the scope, approach, resources, and schedule for testing activ-
ities [20]. We argue that defining a so called requirements strategy similar to a
test strategy for RE can be critical for successful agile development.

In this paper, we aim to establish the concept of requirements strategy for
agile development by investigating the following research questions based on
iterative design science research in three industrial case studies.

RQ1 Which challenges arise from an undefined requirements strategy?
RQ2 How do companies aim to address these challenges?
RQ3 Which potential building blocks should be considered for defining a

requirements strategy?

Since we particularly target agile development, we aimed to investigate
requirements challenges independent from process phases or specific documents.
Instead, we took the lens of shared understanding [7] to investigate different
RE activities (i.e., elicitation, interpretation, negotiation, documentation, gen-
eral issues). According to Fricker and Glinz, an investigation of shared under-
standing may primarily target how such shared understanding is enabled in an
organization, how it is built, and how it is assessed for relevance [7].

Therefore, our contribution are guidelines on how requirements strategies
should be described for agile development. Through building three complemen-
tary perspectives, we see that the requirement strategy guidelines capture rel-
evant information and provide a useful overview. We suggest that a strategy
defines the structure of requirements to create a shared language, define the
organizational responsibilities and ownership of requirements knowledge, and
then map both structure and responsibilities to the agile workflow.

In the next section, we provide the related work for our study. In Sect. 3 we
elaborate on our design science research method before revealing our findings in
Sect. 4 in order to answer our research questions. Then, in Sect. 5, we present
our artifact - guidelines on how to define a requirements strategy for RE in agile
development. Finally, we discuss and conclude our paper in Sect. 6.

2 Related Work

Literature shows that many companies adopt agile methods [13,17] due to its
numerous benefits, for example, flexibility in product scope which improves the
success rate of products [3], in contrast to traditional development methods
[27]. Furthermore, agile methods incorporate maximum change and frequent
product delivery [13], encourage changes with low costs, and provide high quality
products in short iterations [21]. Due to its success, agile methodologies are
become widely popular and adopted by both small and large companies [18]. The
term large-scale agile refers to agile development, which includes large teams and
large multi-team projects [4]. Dikert et al. define large-scale agile development
as agile development that includes six or more teams [3].

Defining Requirements Strategies in Agile 75

However, despite the success of agile methods, large-scale companies also
still face several challenges. Dikert et al. (2016) [3] conducted a systematic liter-
ature review of empirical studies. The authors identified several challenges and
success factors for adopting agile on a large scale. The most mentioned chal-
lenges are change resistance, integrating non-development functions, difficulty
to implement agile methods (misunderstanding, lack of guidance), requirement
engineering challenges (e.g., high-level requirements management largely miss-
ing in agile methods, the gap between long and short term planning). Based on
a literature review, Dumitriu et al. (2019) [5] identified 12 challenges of apply-
ing large-scale agile methods at the organization level. The most cited challenge
is the coordination of several agile teams. Kasauli et el. (2021) [14] identified
24 challenges through multiple case studies across seven large-scale companies.
Some of the identified challenges are building long lasting customer value, man-
aging experimental requirements, and documentation to complete tests and sto-
ries. The authors conclude that strong RE approaches are needed to overcome
many identified challenges.

When it comes to RE in agile development, challenges that have been identi-
fied include lack of documentation, project budget, time estimation, and shared
understanding of customer values [1,6,12,15,24] First attempts have been made
to tackle some of the challenges of RE in agile development, e.g., Inayat et al.
and Paetsch et al. [12,22]. suggest combining traditional RE with agile methods
and encounter challenges like how much documentation is just enough documen-
tation [11] to have a shared understanding of customer values.

Considering that there are many challenges related to RE that can be solved
through RE approaches, this paper proposes to use the concept of a requirements
strategy as a method to define requirements engineering practices to tackle chal-
lenges related to requirements engineering in agile development.

3 Design Science Research Method

Our research aims to design suitable ways of defining requirements strategies
for organizations with agile software development. Such requirements strategies
should be suitable for addressing real-world needs, incorporating state-of-the-art
knowledge, and ideally being empirically evaluated in practice. Thus, we decided
that design science research [10,28,29] is a good fit.

Design Science Research. Our research questions are targeted towards design
science research, with RQ1 focusing on the problem domain, RQ2 investigating
potential solutions, and RQ3 targeting towards deriving the artifact. Our arti-
fact are guidelines on how to define a requirements strategy in agile development.
Refining on well-known challenges with RE in agile development, we needed to
gain in-depth insights into those challenges related to a lack of a clear require-
ments strategy throughout the agile development organization (RQ1). Through-
out our cases, we discuss those challenges with respect to potential mitigation
strategies (RQ2) for those challenges. Finally, we systematically synthesize the
building blocks of requirements strategies (RQ3) from solution strategies.

76 A. P. Muhammad et al.

Table 1. Research questions in relation to cases and research cycles

Case 1 Case 2 Case 3

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Identify challenges (RQ1) ������ ������ ������ ������ ������
Identify solutions (RQ2) ������ ������ ������ ������ ������
Building blocks (RQ3) ������ ������ ������ ������ ������
Data source 11 Interviews, 9 Interviews, Participant

document participant observation, observation,

analysis document analysis, document

1 workshop analysis,

1 workshop

Inspired by the regulative cycle [29], the artifact (guidelines for defining a
requirements strategy based on good practices from our cases) has iteratively
evolved, allowing to refine the knowledge with respect to each research question.
Table 1 provides an overview of our research method. As can be seen, we relied
on three case studies over which we distribute a total of five research cycles. The
cycles differ in how much focus is given to each of our three research questions:

Case 1 - Exploring the problem through the lens of requirements engineering
and shared understanding: Case 1, an information and communication technol-
ogy company, focuses on a strategy to achieve a shared understanding about cus-
tomer value throughout the development organization. Our research aims were
two-fold: understand the real world problem and conceptualize a design artifact
that may address this problem. Within a Master’s thesis [2], we developed an
appropriate lens that combined both the concept of shared understanding (as
expressed by Glinz and Fricker through enabling, building, and assessing shared
understanding [7]) and commonly used RE activities (such as elicitation, inter-
pretation, negotiation, and documentation). We then relied on 11 interviews to
understand customer value and its common understanding, information sharing,
tools and channels for sharing, and tools and methods for documenting. Since
our first cycle focuses on the exploration of the problem we locally relied on the
case study research method for our research with respect to Case 1 [2]. As Table 1
shows, we complemented the interviews with document analysis to produce an
overview of challenges and related solution strategies.

Case 2 - Refining the requirements strategy artifact iteratively: We then fol-
lowed up in Case 2, a company producing security smart alarms and services.
In this case, the focus was on a more general requirements strategy that cov-
ers both stakeholder and system requirements. Again, through a Master’s thesis
[8], we investigated concrete requirements challenges of an agile team, defined a
requirements strategy along the lines of the result from Case 1, and investigated
in depth to what extent it could help with the challenges in practice. At this
point, we further focused on investigating whether there are reusable building
blocks for a requirements strategy.

Defining Requirements Strategies in Agile 77

Case 3 - Applying and evaluating the artifact: Finally, we brought our experi-
ence from the previous two cases into Case 3, an automotive supplier, focusing
on complex safety critical and software intense systems. Here, we focus less on
challenges and solution strategies, in particular, since the case company already
had compiled a good overview. Instead, our focus is to refine the artifact (guide-
lines for requirements strategies) by discussing, applying, and improving our
understanding of the building blocks of a requirements strategy. At the time of
the research, the first author of this paper did an internship with this automotive
supplier and helped to make the requirements strategy explicit. The company
did already identify some of the challenges and making a first step towards
implementing their solution strategies. Thus, she was able to investigate the
phenomenon as a participant observer, contrasting it with documents and ways
of working in the practical context, allowing us to fine-tune our guidelines for
requirements strategies to provide an overview of challenges and solution strate-
gies for continuous process improvement.

Data Collection. We relied on a mix of different methods for data collection,
including interviews, participant observation, document analyses, and workshops.

Interviews - We relied on interviews in Case 1 and Case 2, in particular, to
understand the problem (RQ1) in each specific case. 20 interviews were con-
ducted using interview guides (details in [2,8]), relying on a mix of closed and
open-ended questions. Interviews were recorded, transcribed, and then coded.
In both cases, we recruited interviewees through purposeful sampling [23]. We
relied on convenience sampling so that interviewees were both available and
knowledgeable. We employed diversity sampling to capture the views of multi-
ple relevant roles and stakeholders and similarity sampling to ensure that we
received multiple views for each relevant perspective for triangulation.

Participant Observation - The fourth author was very familiar with Case 2, in
which she had worked for several years before starting her Master thesis [8]. Her
work included defining a testing strategy, which provided intimate knowledge
about the agile ways of working in the case company, which were also helpful
for understanding the requirements-related challenges, defining a requirements
strategy, and conducting the evaluation in Case 2. The first and last authors
did work with RE and the continuous improvement of requirements processes
of Case 3. Through this work, we were able to verify that previously identi-
fied challenges in Case 3, as well as initiatives to address them, were of similar
nature and matched well with our recent work on requirements strategies. Both
co-authors relied on our requirements strategy work to support the ongoing ini-
tiatives on requirements processes and on integrating RE practices into agile
ways of working. This allowed us to evaluate the suitability of our requirements
strategy concept. Knowledge from these activities was collected through field
notes, presentations given at the case company, and discussions with other co-
authors.

Document Analysis - In all three cases, a subset of the authors studied the
documents related to the flow of requirements (Case 1: Author 3 and 5, Case 2:
Author 4, Case 3: Author 1 and 6). Since all three cases embraced agile ways of

78 A. P. Muhammad et al.

working, we considered that not all relevant information might be found in formal
documents. However, we ensured that documentation did match or at least not
contradict our data. We found relevant documentation of requirements, e.g.,
as user stories, in all three cases to match and support our other data sources.
Document analysis also allowed us to better understand the implied requirements
strategy and processes.

Workshops - We relied on two workshops in cases 2 and 3 to evaluate the pro-
posed requirements strategies and, by that, also our requirements strategy guide-
lines. In case 2, a workshop was conducted to present the challenges identified,
the proposed solution candidates, and different versions of the specific require-
ments strategy of each case. In case 3, a workshop was used to understand the
requirements strategy that was used to address certain challenges. Expert par-
ticipants were sampled similarly as for interviews. They were asked to bring up
additional challenges that we may have missed, give feedback on the criticality
of the challenges that we had found, provide their opinion about the solution
candidates, and evaluate the structure, presentation, and concrete advice on
the requirements strategies. Depending on the circumstances in each case, we
recorded and transcribed, took live notes for all participants to see, or shared
our notes after the workshop for validation.

Data Analysis. In order to analyze interview transcripts, field notes from par-
ticipatory observation and document analysis, and workshop notes/transcripts,
we relied on typical coding approaches for qualitative research [26]. This allowed
us to report on challenges that relate to a missing or undefined requirements
strategy. For example, the following quote from Case 1 contributed to identi-
fying the challenge d) lack of communication with customers: “The thing that
sometimes does not work as it should, is communication with some of the cus-
tomer units. It heavily depends on the competence of the customer unit people.”

In each case, we had access to an industry champion from the respective
company, who helped to suggest practical solutions. For example, the follow-
ing quote suggested a solution for challenge above as c) ability to initiate on
demand meetings with customer representatives: “The right people to nail down
a requirement should be put together in the meeting to have a requirement hand-
shake.” In addition, the second author was involved as an academic supervisor
in all three cases, providing pointers toward relevant published knowledge. We
regularly presented and discussed our findings at the case companies, focus-
ing on strong tracing between challenges, solution candidates, and the proposed
requirements strategies. Together with iterative refinements, this allowed us to
analyze the data in depth.

Threats to Validity. Internal validity aims to reveal factors that affect the
relationship between variables, factors investigated, and results. A key threat
to internal validity of this study is the risk of misinterpretations, particularly
during the interviews and observations. Construct validity defines the extent to
which the investigated measures describe what the researchers analyze and what
is studied according to research questions [25]. We mitigated threats to internal
and construct validity through interacting closely with industry partners in study

Defining Requirements Strategies in Agile 79

design and interpretation of results. We also worked iteratively and triangulated
across our iterations and cycles as well as different data sources. External validity
relates to identifying to what extent our findings can be generalized [19]. We
identified common challenges in all three case companies. Thus, we expect that in
particular the structure and perspectives of our requirements strategy guidelines
can be transferred to other contexts. Reliability reflects to what extent other
researchers can produce the same results repeating the same study methodology.
In a qualitative study, it is always hard to achieve reliability since one cannot
argue based on statistical significance. We mitigate this threat by elaborating
our research method in detail to support other researchers in replicating our
research and in recovering from any possible differences in results.

4 Findings

4.1 RQ1: Which Challenges Arise from an Undefined Requirements
strategy?

The left column of Table 2 depicts RE challenges identified based on our three
cases that are encountered without a clear requirements strategy existing for
agile development. The challenges are categorized in RE practices and related
to Glinz and Fricker’s [7] practices of shared understanding, grouped in three cat-
egories, i.e., enable, build, and assess. Enable practices describe what is needed
to form and establish a common foundation of knowledge. Building practices
aim to provide the structured knowledge that can be communicated within the
team or company through explicit artifacts or by constructing a body of implicit
knowledge for shared understanding. Assessing methods determine how all team
members have a shared understanding of a topic or artifact. Some methods can
be used for both building and assessing practices. Indices indicate in which of
the cases a challenge was relevant.

a) Teams struggle to integrate RE in their agile work efficiently1,2,3 - Agile
development enables organizations to respond to change. If there is a change in
code and tests, the requirements should usually be updated. Or if requirements
change, then the code and tests need to be adjusted accordingly. Teams struggle
with this since requirements tools do not integrate well with agile software devel-
opment work and do not support parallel changes from several teams. Thus, it
is hard to integrate RE work into the agile work effectively.

b) No formal event to align on customer value1 - There were no formal events
to create awareness of customer value in Case 1. Even when the customer unit
took the initiative and organized some events, there were only a few participants.
Such events must be better integrated in the organization and workflow.

c) Insufficient customer feedback1,2 - In Case 1 and 2, developers lack cus-
tomer feedback, which is crucial for agile workflows. This can be due to a lack of
formal events, or due to scale and distance to customers. It impacts the ability
of an organization to assess whether shared understanding has been reached.
Customer feedback should be integrated into the workflow across organizational
levels and take into account the specific needs of product owners and developers.

80 A. P. Muhammad et al.

d) Lack of communication with customer1 - Customer-facing units have a key
role and are on the boundary between development teams and customers. We
encounter difficulties with communication in both directions: between customer-
facing teams and development teams and between customer-facing teams and
the customers. These challenges are mainly due to a lack of systematic guidance
on how such communication should take place, thus depending completely on
the individual skills of those involved. Companies would have to find a way to
ensure good and transparent communication, for example by having product
owners moderating direct meetings between developers and customers.

e) Who owns customer value1 - Requirements enter the development organi-
zation mainly through the hierarchy of product owners (PO) in Case 1. However,
a significant amount of requirements originate from other sources, e.g., develop-
ment teams or system managers, and in those cases, it is less clear who is able
to define or who owns the customer value.

f) Inconsistent elicitation2 - POs or application specialists collect requirements
when needed and apply techniques such as interviews. There is, however, no sys-
tematic strategy to elicitation integrated into the workflow.

g) Lack of feedback on elicitation2 - Without a systematic validation of elici-
tation results, misunderstandings will only surface late in the agile workflow, e.g.
during acceptance testing and result in additional costs and effort.

h) Unclear why requirement is needed2 - Due to scale, distance to customers, or
because a customer value description is not available for developers (see Challenge
o), application specialists and POs may lack information on why specific low-level
requirements are needed. This can result in a gap between what product owners
want and how the development teams interpret their requirements.

i) Wrong assumptions about customer value1 - Interviewees highlighted that
one of the significant challenges is that people assume customer value based on
their tacit knowledge, leading to the development of faulty assumptions.

j) Unclear and volatile customer needs2 - Requirements change, for example
when the customer changes their mind or did not have a detailed opinion in the
beginning. When assessing the interpretation of requirements, this can cause fric-
tion, since the team tries to “hit a moving target”.

k) Decentralized knowledge building3 - Different teams develop requirements,
architecture, and also processes at the same time. This decentralized way of work-
ing is needed to yield the benefits of agile work at scale, but requires some infras-
tructure to enable knowledge sharing and alignment. Otherwise, conflicting deci-
sions will be made throughout the organization.

l) Focus on technical details1,2 - Often customer value is not explicitly
described; instead, customer needs and technical solutions are more explicit. When
we asked participants in Case 1 and 2 to describe the customer value of specific
requirements, they explained the technical solutions rather than customer values.
This finding is consistent with documentation, where often technical details are
described instead of linking to a business reason for motivating the requirement.

m) Requirements open for comments3 - In agile development, everyone who has
access to the system can create issues related to requirements in the requirements
management tool. While it is positive to include as many stakeholders as possible

Defining Requirements Strategies in Agile 81

Table 2. Overview of Challenges in Relation to the Solution Strategies. Indices (1,2 ,3)
show in which case study a challenge or strategy was encountered.

Shared understanding

RE Enable Build Assess Solution Strategy

General issues a) Teams struggle

to integrate RE in

their agile work

efficiently1,2,3

b) No formal

event to align on

customer value1

c) Insufficient

customer

feedback1,2

a) Tools that

allow developers

to take ownership

of req.1,2,3

b) Regular

meetings with

customer

representat.1,2

Elicitation d) Lack of com-

munication with

customer1

e) Who owns

customer value1

f) Inconsistent

elicitation2
g) Lack of

feedback on

elicitation2

c) Ability to

initiate on

demand meetings

with customer

representatives1,2

Interpretation h) Unclear why

requirement is

needed2

i) Wrong

assumptions

about customer

value1

j) Unclear and

volatile customer

needs2

d) Fast feedback

cycles1,2

Negotiation k) Decentralized

knowledge

building3

l) Focus on techni-

cal details1,2

m) Req. open for

comments3

n) No time for

stakeholder

involvement2

e) Req. template

includes customer

value & goals1,2

f) Define team

respon- sibilities

for different parts

of req. and review

updates

regularly2,3

Documentation o) Customer value

description lost

between systems1

p) Lack of knowl-

edge about writing

requirements1,2,3

q) No dedicated

time for

requirements1,2,3

r) Too much/not

enough

document.1,2

s) Trace the

requirements to all

levels, (test, and

code)3

t) Inconsistency

b/c of require-

ments change3

g) Rationale

must always be

provided1

h) Just enough

documentation1,2

i) Plan time for

requirements

updates3

j) Educate and

train the develop-

ment teams2,3

k) Tools need to

be setup to

support

traceability 3

in discussions, without a defined process that respects the development lifecycle,
this can result in an unstructured discussion and very late changes.

n) No time for stakeholder involvement2 - Getting stakeholders’ feedback after
interpreting the elicited requirements is challenging since stakeholders do not have
time for several meetings.

o) Customer value description lost between systems1 - At the scale of Case 1,
it is not unusual to use several different tools to manage requirements at various
abstraction layers. Customer-facing units use one tool, in which they define stake-
holder requirements and customer value. Development teams interact with differ-
ent tools, and it is the task of the POs to refine and decompose the stakeholder
requirements from tool 1 into work items for the agile teams in tool 2. At this step,

82 A. P. Muhammad et al.

documentation about customer value is often not transferred and thus not avail-
able to the developers.

p) Lack of knowledge about writing requirements1,2,3 -Throughout our cases, we
found that those who are responsible for documenting requirements often do not
have the right training. In addition, we frequently saw a lack of structure and no
requirements information model. Thus, teams mix stakeholder and system require-
ments and are challenged with writing high-quality user stories, system require-
ments, and in particular quality requirements. In particular, the quality require-
ments might not get documented at all and teams will work on them without mak-
ing them visible on the sprint dashboard.

q) No dedicated time for requirements1,2,3 - Since agile methods focus on reduc-
ing time to market, spending time on writing formal requirements is not consid-
ered. Instead, agile teams rely on verbal requirements. Dedicated time to work on
requirements should be integrated in the agile workflow, e.g. each sprint.

r) Too much/not enough documentation1,2 - Because agile focuses on less
documentation, some essential information could be missing (e.g., such as the
“why” part of the requirement). Thus, in agile development, determining the right
amount or sweet spot of documentation is challenging.

s) Trace the requirements to all levels, (test, and code)3 - Due to ISO26262 and
ASPICE compliance, the automotive company needs to guarantee full traceability
between all requirements levels, (tests, and code). This places a big challenge on
the entire company, since most teams work on something related to requirements,
tests, or code and those artifacts evolve in parallel.

t) Inconsistency because of requirements change3 - Agile methods embrace
change and, consequently, teams will make changes on requirements during their
work. However, it is challenging to handle sudden change requests and opinions
from different team members, especially at scale. The consequence can be that
teams inconsistently change related requirements, or that the scope is increased
without central control. The problem is known, yet there is a lack of guidance on
how to handle this in large-scale agile development to avoid expensive rework.

4.2 RQ2: How Do Companies Aim to Address These Challenges?

The last column of Table 2 summarizes the answers to RQ2 on solution strategies
associated with the challenges with each phase of RE in respective rows, derived
from interviews, literature, or workshops and confirmed by experts in each case.

a) Tools that allow developers to take ownership of requirements1,2,3 - In order
to allow developers to take ownership of requirements, we need to find require-
ments tooling that integrates into themindset and the development environment of
developers to provide an efficient way of manipulating requirements. For instance,
developers work closer to the code, so the requirements tool that supports com-
mit/git is highly encouraged.

b) Regular meetings with customer representatives1,2 - The customer-facing
unit should arrange regular meetings with customers. These meetings should be
well integrated in the agile workflow and mandatory for team members.

Defining Requirements Strategies in Agile 83

c) Ability to initiate on demand meetings with customer representatives1,2 -
There should be a setup to initiate meetings with customers whenever developers
need feedback. Since access to customer representatives is a sparse and valuable
resource, a strategy for such meetings should be well aligned with the organiza-
tional structure and the agile workflow.

d) Fast feedback cycles1,2 - All teams use direct communication with stakehold-
ers and fast feedback cycles as a baseline to get the correct interpretation. Cus-
tomer insight is abstract knowledge and could be hard to write down. There is a
need to arrange events where people can meet, interact, and share customer values
and feedback.

e) A requirements template that includes customer value and goals1,2 - To avoid
challenges related to a lack of awareness of customer value, there should be spe-
cific fields or tracelinks that show how each requirement adds customer value. It is
important to check their usage regularly.

f) Define team responsibilities for different parts of requirements and review
updates/comments regularly2,3 - In order to yield benefits from agile workflows,
RE must be integrated into the agile workflow. This means that agile teams need to
take responsibility of maintaining requirements and to monitor changes of require-
ments that are potentially related. This allows to manage requirements updates in
parallel and at scale. However, responsibilities have to be carefully delegated and
clearly assigned.

g) Rationale must always be provided1 - The rationale for the requirement
should mandatorily be provided by the role/person writing the requirement. More-
over, it should effectively be passed on from tool to tool.

h) Just enough documentation1,2 - Balancing sufficient communication and
documentation is crucial in agile development. We should not spend too much time
documenting; however, it should have all the necessary information. Developers
need clear guidelines to achieve this balance.

i) Plan time for requirements updates3 - Teams should plan (update, change,
review) the requirements in time to align with the updated scope. Such a plan
should consider that updating requirements in the scope of one team may imply
also requirements updates in other scopes.

j) Educate and train the development teams2,3 - If development teams should
take more responsibility of requirements, they need to be trained in RE as well as
in the specifics of the overall requirements processes in their organization. A clear
requirements strategy can be a good starting point to plan such training.

k) Tools need to be setup to support traceability3 - Requirements are usually rep-
resented in different forms (e.g., textual requirements, user stories) and on differ-
ent levels (e.g., system level and software level). Teams could get requirements at
higher level and then derive the lower level requirements (e.g., software/technical
requirements). Tracing requirements could be hard in a large complex system.
Tools are needed and they should be aligned with a requirements strategy for agile
workflows, i.e. allow parallel work for many teams.

84 A. P. Muhammad et al.

4.3 RQ3: Which Potential Building Blocks Should Be Considered
for Defining a Requirements Strategy?

This section systematically develops the building blocks of a requirements strategy
from our findings in all three cases.

In Case 1, the company was challenged to establish a shared understanding.
Proposed solution strategies for specific challenges in Case 1 can be categorized
as structural , organizational , or related to the work and feature flow . For
example, for the challenge l) focus on technical details), a related solution strat-
egy is e) requirements template includes customer value and goals. This strategy
explains that, to avoid the lack of awareness about customer value, there should
be specific fields related to customer value in the requirements templates. This
solution shows that there is a need for improvement at the structural level . In
contrast, b) no formal event to align on customer value is a challenge related to
stakeholders’ roles and responsibilities that needs to be well integrated into the
organization . The last column in Table 2 provides a solution strategy related to
this challenge as b) regular meetings with customer representative, which relates
not only to the organizational perspective , but also to the work and feature
flow .

In Case 2, we found the same perspectives (structural, organizational , as
well as work and feature flow) in in solution strategies for their specific chal-
lenges. As in Case 1, the solution strategy to introduce e) requirements templates
that include customer value and goals is a structural example. In contrast, the
challenge g) lack of feedback on elicitation can lead to misunderstandings late in
an agile workflow. The solution strategy is to establish the c) ability to initiate
on-demand meetings with customer representatives. Providing access to a sparse
and valuable resources such as a customer representative relates to the organi-
zational perspective. Another related solutions strategy, d) fast feedback cycles,
for the challenge j) unclear and volatile customer needs falls into the work and
feature flow perspective, by arranging events where people can meet, interact,
and share customer values and feedback.

After looking deep into the concrete solution strategies inCase 1 andCase 2 (see
Table 2), we found that many of these strategies were already successfully imple-
mented in Case 3. However, the company still faced some RE challenges in agile
development, allowing us to check whether the same building blocks are also appli-
cable in Case 3. For example, the challenge s) trace the requirements to all levels
can be addressed with the structural solution strategy k) tools to set up traceabil-
ity. Similarly, the challenge k) decentralized knowledge building can be addressed
by the organizational solution strategy define team responsibilities for different
parts of requirements and review updates/comments regularly. Finally, an example
of awork and featureflow related solutions strategy is to i) plan time for require-
ments updates in agile sprints to counter the challenge of having q) no dedicated
time for requirements.

In summary, in order to address specific challenges related to enabling, build-
ing, and assessing shared understanding of requirements in agile development, spe-
cific solution strategies fall into three distinct categories: structure , organiza-

Defining Requirements Strategies in Agile 85

tion , as well as work and feature flow . Thus, a requirements strategy that bun-
dles solution strategies for a concrete case should cover all three perspectives.

5 Artifact: Guidelines for Defining a Requirements
Strategy

Our artifact is a set of guidelines for defining a Requirements Strategy as a means
to define RE activities in agile development. As a design science research study,
we built this artifact in parallel to answering our research questions iteratively. In
particular, RQ3 provides empirical validation of the building blocks. At the time
of research, the term “requirements strategy” has not been widely used. This is in
contrast to, for example, “test strategy”, which has quite widely been accepted to
describe how testing practices can be integrated in development workflows, such
as in agile ways of working. In our work, we refer to “requirements strategy” as a
general strategy for including RE practices in agile methods.

Definition:RequirementsStrategy.Arequirements strategy is an outline that
describes the requirements engineering approach in systems or software develop-
ment cycles. The purpose of a requirements strategy is to support decision mak-
ers with a rational deduction from organizational, high-level objectives to actual
requirements engineering activities to meet those objectives and to build a shared
understanding about the problem space and requirements.

The creation and documentation of a requirements strategy should be done in
a systematic way to ensure that all objectives are fully covered and understood by
all stakeholders. It should also frequently be reviewed, challenged, and updated as
the organization, the ways of working, and the product evolve over time. Further-
more, a requirements strategy should also aim at aligning different requirements
stakeholders in terms of terminology, requirements types and abstraction levels,
roles and responsibilities, traceability, planning of resources, etc.

Table 3. Building blocks of a requirements strategy

Support for shared understanding of requirements

Perspective Common language Knowledge flow Examples

Structural Define reqts. levels Define structural

decomp.

Stakeholder, System,

Component Requirements

Define reqts. types Define traceability

demands

Requirements and Traceability

Information Model

Define templates User stories include customer

value and goal

Organizational Define ownership

of reqts. types

Define roles and

responsibilities

Training plan per type/role;

Team responsibility sheet

Work and

feature flow

Define lifecycle of

types

Map structure to

workflow

Elicitation strategy, definition

of done

Map organization

to workflow

Stakeholder map, requirements

review strategy

86 A. P. Muhammad et al.

Therefore, our contribution is a model of how requirements strategies should
be described for agile development. Through providing three complementary per-
spectives, the proposed guidelines help to capture relevant information and pro-
vide an useful overview. Our guidelines are summarized in Table 3 , including reoc-
curring examples and good practices abstracted from the three case studies. We
propose that a requirements strategy should include the following building blocks:
a structural perspective, an organizational perspective, and a work and feature
flow perspective. Across these perspectives, a requirement strategy aims to sup-
port a shared understanding of requirements, in particular with respect to estab-
lishing a common language (i.e., enabling perspective in Table 2) and with respect
to facilitating the exchange and flow of knowledge (i.e., building and assessing per-
spective in Table 2).

We suggest to start with a structural view to create a common language. A good
starting point can be the artifacts in the development lifecycle model, for example
the requirements information model in the Scaled-Agile Framework SAFe [16], or
to define templates for user stories including customer value. Based on these ini-
tial definitions, refinements can be provided based on experience, e.g., after sprint
reflections.

As a second step, we propose to make the organizational perspective explicit.
Define the roles and responsibilities with respect to the definitions in the struc-
tural view. This can, for example, be done with a one-pager that describes the
responsibilities of a team. Also, state who owns which part of requirements (e.g.,
requirements on certain subsystems) to determine specific training needs.

Finally, the work and feature flow perspective needs to be defined. A good start-
ing point can be a lifecycle model for each critical type, which is then mapped to the
intended workflow. In agile development, this can partially be provided by defin-
ing done criteria. In particular, it needs to be defined when and by whom certain
information must be provided. If requirements elicitation efforts are anticipated,
guidance should be given on obtaining the information from stakeholders. The
workflow should be related to the roles and responsibilities as well as ownership.
A stakeholder map can provide valuable information: who owns an artifact, who
should be kept informed, and who needs to review it. An explicit review strategy
can be very valuable, affecting not only the requirements quality but also keeping
reviewers informed about recent changes.

6 Discussion and Conclusion

In this design science research study, we identified challenges related to agile
requirements engineering in three case companies. Based on these three case stud-
ies, we identified solution strategies for resolving the identified challenges and
derived building blocks as substantial parts of a requirements strategy. For each
case we investigated a concrete requirements strategy. The individual require-
ments strategies have been well received by experts in each case company. Specif-
ically, we recognize the need to enable, build, and assess shared understanding of
requirements in agile development. As our experience grew, we noticed reoccurring

Defining Requirements Strategies in Agile 87

building blocks on what should be part of such a requirements strategy. For our
design science research, we choose therefore guidelines for creating requirements
strategies as our artifact, which we develop in parallel to investigating our knowl-
edge questions Our results suggest that a requirements strategy should describe
how requirements are structured, how work is organized, and how RE is integrated
in the agile work and feature flow.

Building on previously published challenges and solution proposals for RE in
agile development (e.g. [1,14]), our contribution is to enable organizations to define
a holistic approach to RE that integrates with their agile development. Since our
guidelines shall be applicable in agile development, they do not primarily relate to
explicit documentation or a dedicated requirements phase within a development
lifecycle, as for example custom in waterfall processes. Instead, we rely on the the-
ory of shared understanding to embrace RE as a knowledge management problem
and give suggestions on how organizations can approach it in their agile develop-
ment.

Ideally, such a strategy should be documented concisely and made available to
all stakeholders. Our requirements strategy can be interpreted as an instance of
situational method engineering [9] where we focus on the context of agile system
development and requirements methods in particular. By this, we aim to make it
easier for practitioners to integrate RE in their agile workflows. This supports its
evolution through the reflection opportunities built into agile methods. We hope
that our requirements strategy guidelines facilitate future research on how to man-
age knowledge related to requirements in agile development.

References

1. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements challenges in the con-
text of large-scale distributed agile: an empirical study. Inf. Softw. Technol. 110,
39–55 (2019)

2. Batsaikhan, O., Lin, Y.C.: Building a Shared Understanding of Customer Value in
a Large-Scale Agile Organization: A Case Study. Master’s thesis, Department of
Computer Science and Engineering, Chalmers | University of Gothenburg (2018).
https://hdl.handle.net/20.500.12380/304465

3. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119, 87–
108 (2016)

4. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale agile development. In:
Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.)
XP 2014. LNBIP, vol. 199, pp. 1–8. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-14358-3 1

5. Dumitriu, F., Mesnită, G., Radu, L.D.: Challenges and solutions of applying large-
scale agile at organizational level. Inform. Econ. 23(3), 61–71 (2019)

6. Elghariani, K., Kama, N.: Review on agile requirements engineering challenges.
In: International Conference on Computer and Information Sciences, pp. 507–512
(2016)

7. Glinz, M., Fricker, S.A.: On shared understanding in software engineering: an essay.
Comput. Sci. Res. Dev. 30(3), 363–376 (2015)

https://hdl.handle.net/20.500.12380/304465
https://doi.org/10.1007/978-3-319-14358-3_1
https://doi.org/10.1007/978-3-319-14358-3_1

88 A. P. Muhammad et al.

8. Haskouri, N.E.: Requirement Strategy in Large-Scale Agile Development: A Design
Science Research. Master’s thesis, Department of Computer Science and Engi-
neering, Chalmers | University of Gothenburg (2021). https://gupea.ub.gu.se/
bitstream/2077/69096/1/gupea 2077 69096 1.pdf

9. Henderson-Sellers, B., Ralyté, J.: Situational method engineering: state-of-the-art
review. J. Univ. Comput. Sci. 16, 424–478 (2010)

10. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28(1), 75–105 (2004)

11. Hoda, R., Noble, J., Marshall, S.: How much is just enough? Some documentation
patterns on agile projects. In: Proceedings of the 15th European Conference on Pat-
tern Languages of Programs, pp. 1–13 (2010)

12. Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S.: A systematic lit-
erature review on agile requirements engineering practices and challenges. Comput.
Hum. Behav. 51, 915–929 (2015)

13. Jorgensen, M.: Relationships between project size, agile practices, and successful
software development: results and analysis. IEEE Softw. 36(2), 39–43 (2019)

14. Kasauli, R., Knauss, E., Horkoff, J., Liebel, G., de Oliveira Neto, F.G.: Requirements
engineering challenges and practices in large-scale agile system development. J. Syst.
Softw. 172, 110851 (2021)

15. Kasauli, R., Liebel, G., Knauss, E., Gopakumar, S., Kanagwa, B.: Requirements
engineering challenges in large-scale agile system development. In: International
Requirements Engineering Conference (RE), pp. 352–361 (2017)

16. Knaster, R., Leffingwell, D.: SAFe 4.0 distilled: applying the Scaled Agile Framework
for lean software and systems engineering (2017)

17. Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., St̊ahl, D.: The impact
of agile principles and practices on large-scale software development projects: a
multiple-case study of two projects at ericsson. In: International Symposium on
Empirical Software Engineering and Measurement, pp. 348–356 (2013)

18. Larman, C.: Practices For Scaling Lean & Agile Development: Large, Multisite, and
Offshore Product Development with Large-scale Scrum. Pearson Education, London
(2010)

19. Maxwell, J.: Understanding and validity in qualitative research. Harv. Educ. Rev.
62(3), 279–301 (1992)

20. Méndez, E.M., Pérez, M.A., Mendoza, L.E.: Improving software test strategy with
a method to specify test cases (MSTC). In: ICEIS vol. 1, pp. 159–164 (2008)

21. Meyer, B.: The ugly, the hype and the good: an assessment of the agile approach.
In: Agile! pp. 149–154. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05155-0 11

22. Paetsch, F., Eberlein, A., Maurer, F.: Requirements engineering and agile software
development. In: International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pp. 308–313. IEEE (2003)

23. Palinkas, L.A., Horwitz, S.M., Green, C.A., Wisdom, J.P., Duan, N., Hoagwood, K.:
Purposeful sampling for qualitative data collection and analysis in mixed method
implementation research. Admin. Policy Mental Health Mental Health Serv. Res.
42(5), 533–544 (2015)

24. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and
challenges: an empirical study. Inf. Syst. J. 20(5), 449–480 (2010)

25. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

26. Saldaña, J.: The Coding Manual For Qualitative Researchers, 3rd edn. Sage, Thou-
sand Oaks (2015)

https://gupea.ub.gu.se/bitstream/2077/69096/1/gupea_2077_69096_1.pdf
https://gupea.ub.gu.se/bitstream/2077/69096/1/gupea_2077_69096_1.pdf
https://doi.org/10.1007/978-3-319-05155-0_11
https://doi.org/10.1007/978-3-319-05155-0_11

Defining Requirements Strategies in Agile 89

27. Serrador, P., Pinto, J.K.: Does Agile work? A quantitative analysis of agile project
success. Int. J. Project Manage. 33(5), 1040–1051 (2015)

28. Vaishnavi, V., Kuechler, W.: Design Science Research Methods and Patterns: Inno-
vating Information and Communication Technology. Taylor & Francis, Milton Park
(2007)

29. Wieringa, R.J.: Design science as nested problem solving. In: International Confer-
ence on Design Science Research in Information Systems and Technology, pp. 1–12.
Philadelphia (2009)

Analysing the Relationship Between
Dependency Definition and Updating
Practice When Using Third-Party

Libraries

Kristiina Rahkema(B) and Dietmar Pfahl

University of Tartu, Tartu, Estonia
{kristiina.rahkema,dietmar.pfahl}@ut.ee

Abstract. Using third-party libraries is common practice when devel-
oping software. Package managers have made it easy to add third-party
libraries as dependencies and to keep dependency versions up to date.
Nevertheless, research shows that developers are prone to not updating
their dependencies. We study how the type of version requirements used
in the package manager manifest files affect dependency updating lag
time (measured in days) and how this lag affects dependencies to vul-
nerable library versions. We focus on the package managers commonly
used in iOS development, i.e., CocoaPods, Carthage and Swift PM. We
first measure how the dependency updating lag time evolves over time
for each package manager. Then we analyze whether and how the chosen
type of version requirement affects the dependency updating lag time.
Third, we investigate how not re-running package manager version res-
olution affects library updates. Lastly, we analyse how many vulnera-
ble dependencies could have been fixed by updating the dependency.
We found that dependency updating lag time differs between package
managers but grows over time for all of them. We also found that the
preferred version requirement types differ between package managers.
As expected, version requirement types that are less restrictive produce
less dependency updating lag. Moreover, we found that keeping library
dependency versions up to date results in less vulnerable dependencies.
Interestingly, some of the vulnerable dependencies could have been fixed
by simply rerunning the package manager version resolution.

Keywords: Package manager · Dependency requirement · Third-party
libraries · iOS

1 Introduction

Using third-party libraries can speed up development and, therefore, it is a com-
mon practice when developing software. Solutions in the form of third-party
libraries are often better vetted and tested than custom implementations. For
example, security organizations such as the Open Web Application Security
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 90–107, 2022.
https://doi.org/10.1007/978-3-031-21388-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_7&domain=pdf
http://orcid.org/0000-0001-7332-2041
http://orcid.org/0000-0003-2400-501X
https://doi.org/10.1007/978-3-031-21388-5_7

Analysing the Relationship Between Dependency Definition 91

Project (OWASP), strongly recommend against the use of custom encryption
algorithms [6].

Sometimes, however, even well tested and popular libraries can introduce
security vulnerabilities. Therefore, it is important for developers to keep library
dependency versions up to date to guarantee that security updates are included.

Decan et al. [1] found that, for npm packages, 24% of library dependencies
are not up to date with dependency updates lagging behind from 215 to 267
days on average. Kula et al. [5] analyzed how developers update their library
dependencies in Java projects and found that 81.5% of projects use outdated
library dependencies. They also investigated reasons for developers to not update
their library dependencies and found that developers feared high cost of updating
and that developers were unaware of possible issues. Similarly Salza et al. [9]
found that developers rarely update the dependencies of their Android apps.
The reason might be that updating a library carries the risk of introducing
incompatibilities through changes in the new library version.

Package managers have made it very easy to update library dependency ver-
sions. Using semantic versioning makes it possible to set version requirements
and within these requirements the package manager finds and updates the depen-
dency to a suitable new version. Semantic versioning makes it possible to com-
municate through version numbers if the new version of a library is a small or
significant change. For example, a change from version 1.2.3 to 1.2.4 is expected
to be small while a change from 1.2.3 to 2.0.0 is so fundamental that it might
introduce incompatibilities.

Kikas et al. [4] studied the evolution of three library dependency networks.
When looking at the dependency version requirement types, they found that
the most popular requirement types were different for the three ecosystems.
JavaScript libraries preferred the ˆ notation (up to next major version), Ruby
libraries preferred the any notation (allowing any version of a library) while
Rust libraries mostly required an exact version of a library.

Our expectation is that the choice of the version requirement type affects how
library dependencies are updated. We investigate this expectation by answering
four research questions (RQs) using a previously created library dependency
network dataset.

The paper is structured into seven sections. Section 2 lists related work
regarding analysis of dependency updates, vulnerable library dependencies and
library version requirements. Section 3 explains necessary background, such as
the dataset, the three relevant package managers, dependency requirement types
and dependency updating lag. Section 4 describes the method. Section 5 gives
results and discusses them. Section 6 describes the threats to validity and Sect. 7
concludes the paper.

2 Related Work

In this section, we summarize related work about analysis of dependency
updates, vulnerable library dependencies and library version requirements.

92 K. Rahkema and D. Pfahl

2.1 Analysis of Dependency Updates

Kula et al. [5] analysed 4600 GitHub projects and found that 81.5% of the
projects still keep their outdated library dependencies. They asked developers
why they were reluctant to update. Some of the answers included fear of incom-
patibilities and lack of time to perform the migration.

Derr et al. [2] analysed third-party libraries in Android apps and found that
49.2% of the library dependencies could be updated to the latest version and 85%
of the library dependencies could be upgraded at least by one version without any
modification to the code. Salza et al. [9] analysed how developers update library
dependencies in Android apps and found that in 63% of the cases developers
did not update the library dependency after it was added to their project. They
found that some categories of libraries, e.g., UI libraries, are updated more often.

Decan et al. [1] analysed the evolution of dependency updating lag in the npm
library dependency network. They found that every fourth dependency suffers
from dependency updating lag and that the mean dependency updating lag time
ranges from 7 to 9 months.

We build on existing research by analysing the dependency updating lag time
(defined in Subsect. 3.4) for libraries available through CocoaPods, Carthage and
Swift PM, the three package managers used in iOS development. Analysing the
dependency updating lag for these package managers gives us insight into a
new ecosystem. Additionally we analyse if dependency updating lag only dif-
fers between ecosystems or if there are behavioural differences between users of
package managers within the same ecosystem.

2.2 Vulnerable Library Dependencies

Derr et al. [2] looked at vulnerable dependencies in Android apps and found
that vulnerable dependencies of 97.9% active library versions could be fixed by
upgrading to the fixed library dependency version. Similarly, Kula et al. [5] found
that many developers do not update their library dependency version even if a
vulnerability in the library dependency is made public.

Decan et al. [1] found that 54% of vulnerabilities in npm libraries are fixed
in a patch and 30% are fixed in a minor release indicating that even restrictive
version requirements such as ∼ > would help including vulnerability fixes.

Similarly to Derr et al. [2] we report how many vulnerable dependencies could
be fixed by a dependency version upgrade. Additionally we analyse how many
of these dependencies could have been fixed by simply rerunning the package
manager version resolution giving insights of how developers could mitigate risks
from third party libraries.

2.3 Library Version Requirements

Kikas et al. [4] studied the evolution of three library dependency ecoystems.
They also looked at the library version requirement types and found that they
differ depending on the ecosystem.

Analysing the Relationship Between Dependency Definition 93

Zerauli et al. [10] analysed dependency updating lag in npm and found that
there is a reluctance to upgrade library dependencies. They found that there
is a strong preference for specific use of version requirement types. They found
that the most often used version requirement type allows updates up to the next
major version (excluded).

We build on existing research by analysing the library version requirements
used through CocoaPods, Carthage and Swift PM. We analyse how the choice
of dependency version requirement type affect dependency version updates and
dependency updating lag. We compare results for the three package managers
and analyse if there are differences in version requirement type choice between
package managers in the same ecosystem.

3 Background

Below we describe the used dataset, the analyzed package managers (CocoaPods,
Carthage, Swift Package Manager), the types of dependency requirements and
dependency updating lag.

3.1 Dataset

Rahkema et al. [8] published a library dependency network dataset for the Swift
ecosystem. The dataset provides information on libraries available through the
package managers CocoaPods, Carthage and Swift Package Manager, in total
over 60 thousand libraries. The dataset is provided as a neo4j database consisting
of nodes and relationships between these nodes.

The dataset contains Project, App (analyzed project version), Library,
LibraryDefinition and Vulnerability nodes. To answer our RQs we query App,
Library and LibraryDefinition nodes and the DEPENDS ON relationships from App
nodes to Library and LibraryDefinition nodes. The LibraryDefinition node con-
tains information on the library dependency and the version requirement from
the package manager manifest file. The Library node contains information on
the actual library version matched as a dependency.

3.2 Package Managers

When developing iOS or Mac OS applications three package managers can be
used: CocoaPods, Carthage and Swift Package Manager (Swift PM).

CocoaPods is the oldest package manager (released in 20111). It has a central
repository. Library dependencies are defined in a Podfile. When CocoaPods is
run, it generates a new Xcode workspace and embeds the libraries specified as
dependencies. Developers then have to use the Xcode workspace instead of the
original Xcode project, but they do not need to perform any additional steps to
embed the library dependency. Dependencies in CocoaPods are listed as pods
with an optional version requirement:
1 https://cocoapods.org.

https://cocoapods.org

94 K. Rahkema and D. Pfahl

pod ’AFNetworking’
pod ’FBSDKCoreKit’, ’~> 4.9’

A pod declaration following a pod name results in a dependency requirement
where the latest possible library version is used. The following requirements can
be used in a Podfile: ∼ >, >=, =, <=, <, :tag, :branch.

Carthage was released in 20142 and was developed as a lightweight alterna-
tive to the more heavyweight CocoaPods. Library dependencies are defined in a
Cartfile. When Carthage is run, it downloads and compiles the libraries speci-
fied as dependencies, but developers need to add these libraries manually to the
project’s Xcode project. Dependencies in Carthage are listed as origin, library
name or repo path and optional version requirement:

github "Alamofire/Alamofire" ~> 5.5
git https://repository-url/project

Carthage allows three types of origin: github, git and binary. The github
option requires a project name, the git option requires a path to a git repository
and the binary option requires a path to a json file, that specifies where to get
specific versions of the library. If no version requirement is specified the latest
possible version of the library is used. The following requirements can be used
in a Cartfile: ∼ >, ==, >=, :branch, :version.

Swift Package Manager (Swift PM) is the official package manager for Swift
(released by Apple in 20173). It has no central repository. Library dependencies
are defined in a Package.swift file. Running Swift PM not only downloads and
adds the libraries specified as dependencies but also serves as project build file.
In the Package.swift file the developer creates a new Package object and adds
library dependencies as a list under the dependencies argument:

let package = Package(
name: "TestPackage",
products: [

.library(name: "TestPackage", targets: ["TestPackage"]),
],
dependencies: [

.package(url: "https://github.com/Alamofire/Alamofire.git",
.upToNextMajor(from: "5.6.1"))

],
targets: [

.target(name: "TestPackage", dependencies: ["Alamofire"])
]

)

2 https://github.com/Carthage/Carthage.
3 https://www.swift.org/package-manager/.

https://github.com/Carthage/Carthage
https://www.swift.org/package-manager/

Analysing the Relationship Between Dependency Definition 95

A dependency package declaration consists of a URL and a version require-
ment. The following version requirements are supported: exact, upToNextMajor,
upToNextMinor, branch, revision, ..<, version.

3.3 Dependency Version Requirement Types

CocoaPods, Carthage, and Swift PM support different types of dependency ver-
sion requirements. Generally, there are eight different kinds of version require-
ments: latest, ==, ∼ >, >=, >, <=, < and ..<. The version requirement types
latest, >= and > behave similarly, by requiring the latest possible version with
the only difference that latest does not define a minimum version. The version
requirement types <=, < provide an upper bound for the version number, while
..< provides both an upper bound, as well as, a lower bound for the version
number. The version requirement ∼ > behaves similarly to ..< where the ver-
sion following ∼ > is the lower bound and the next minor or major version is the
upper bound for the version number.

Each package manager has slightly different ways of declaring the version
requirements. Table 1 lists how the dependency requirement types were unified
in the Swift library dependency network dataset used in our study. A blank entry
signifies, that this version requirement type is not supported by the package
manager. Entry ”empty” means that this version requirement type is used if no
version requirement is listed in the manifest file.

Table 1. Unification of version requirement types

Requirement type CocoaPods Carthage Swift PM

latest empty empty

== = == exact

∼ > ∼ > x.y ∼ > x.y upToNextMajor

∼ > ∼ > x.y.y ∼ > x.y.z upToNextMinor

== branch branch branch

== tag version revision

>= >= >= from

> >

<= <=

< <

..< ..<

3.4 Dependency Updating Lag

When defining dependency version requirements developers can choose the exact
version that should be used for a library dependency. They can, however, also
choose a version requirement type that allows the package manager to update
the library dependency version if a new version is available.

96 K. Rahkema and D. Pfahl

If a project is using a library dependency version where a newer version is
available we consider the project to have dependency updating lag. If a project
version uses the most up to date library dependency versions available at the
time of the project version release then there is no dependency updating lag. If,
however, the most recent library dependency version available at that time is not
used, the dependency updating lag time is measured as the difference between
the project version release time and the most recent library dependency version
release time. The dependency updating lag time is measured in days.

4 Method

In our study, we investigate whether the version requirement used affects the
updating of library dependencies. In the following, we first present and motivate
our RQs. Then we describe how we analyse our dataset to answer them.

4.1 Research Questions

We formulate the following four RQs:

– RQ1: How long is the dependency updating lag time?
– RQ2: Does the version requirement type affect the dependency updating lag

time?
– RQ3: How does not rerunning the package manager version resolution affect

library updating?
– RQ4: How many vulnerable dependencies could be fixed by upgrading the

library dependency?

To answer RQ1, we measure the dependency updating lag time for each
package manager. Since developers seem to be reluctant to update their library
dependencies our expectation is that this is also the case in the Swift ecosystem.
We do, however, not know to what extent. Given that Swift is a relatively new
language and not backwards compatible [3], we expect the lag time to be lower
than, e.g., for Java projects. Since all three analyzed package managers belong
to the same ecosystem, we do not expect big differences between them.

To answer RQ2, we analyze how a chosen version requirement type affects
the dependency updating speed. Previous work has shown that developers are
reluctant to update library dependencies [1,9]. Thus, our expectation is that ∼ >
is the most often used version requirement type for all package managers. This
requirement type allows updating until (but not including) the next minor or
major version. This provides benefits from updating, such as including security
fixes, while avoiding problems from major changes to the library functionality.
Furthermore, we expect that version requirements that do not provide an upper
bound result in a smaller updating lag time. If our assumption holds, it provides
a good incentive for developers to use such version requirements.

To answer RQ3, we analyze whether rerunning the package manager version
resolution affects the updating of dependency versions. We expect that when

Analysing the Relationship Between Dependency Definition 97

developers do not rerun the package manager version resolution then library
dependency versions are not updated although the version requirement would
allow an update, yielding increased dependency updating lag time.

To answer RQ4, we investigate how often a vulnerable library dependency
could be fixed by upgrading the library dependency version. Additionally, we
check how often the vulnerable library dependency could be fixed by simply
rerunning the package manager version resolution. Previous research shows that
most vulnerable dependencies could be fixed by upgrading the library depen-
dency version [2]. Our expectation is that this should also be the case in the
Swift ecosystem. We also expect that in some cases these vulnerable dependen-
cies could already be fixed by rerunning the package manager version resolution
without changing the version requirement itself.

4.2 RQ1: Dependency Updating Lag

For each analyzed project version, i.e., App node, we find library versions it
depends on. We then find the latest version of each dependent library that
was released before the analyzed project version. If the latest library version
is already used as a dependency then the dependency updating lag time is zero.
If a newer library version exists, then the dependency updating lag time is cal-
culated by subtracting the commit timestamp of the newest library version from
the analyzed project version. We record how many dependencies have a depen-
dency updating lag and calculate the mean dependency updating lag time for
dependencies that are not up to date.

Next, we calculate monthly snapshots of the library dependencies and calcu-
late the mean dependency updating lag time for each month. We then plot the
mean dependency updating lag time in days for each package manager.

4.3 RQ2: Version Requirement vs Dependency Updating Lag

First, we analyze the frequency of dependency version requirements used with
each of the package managers by finding all

(App)-[DEPENDS_ON]->(LibraryVersion)

chains. The LibraryVersion node contains information on the version requirement
type and the DEPENDS ON relationship contains information on the package
manager used. Then, we group the version requirements by package manager and
version requirement type and plot the frequencies for each package manager.

To investigate how the used version requirement affects the dependency
updating lag, we first need to match the correct LibraryDefinition and Library
nodes. The App-to-LibraryDefinition node relationship corresponds to how the
developer defined the library dependency in the package manager manifest file.
The App-to-Library node relationship corresponds to which actual library ver-
sion was resolved by the package manager a the given time.

We match LibraryDefinition and Library nodes by first finding the Library
and LibraryDefinition nodes connected to the same App node. We then pair

98 K. Rahkema and D. Pfahl

the Library and LibraryDefinition nodes where the name of the Library node
ends with the name of the LibraryDefinition node. We use the ends with match
instead of an exact match to account for cases where the LibraryDefinition only
contains a shorter version of the library name.

To analyze the relationship between version requirement types and the depen-
dency updating lag, we first find the percentage of dependencies with lag for
each version requirement type and package manager. Then we calculate the
mean dependency updating lag time for each version requirement type over all
dependencies that are not up to date.

We plot the dependency updating lag time for each version requirement type.
To take into account possible differences between package managers we plot the
dependency updating lag time per version requirement type additionally for each
package manager.

4.4 RQ3: Version Resolution Effect on Version Updating

To analyze whether or not rerunning the package manager version resolution
affects version updating, we check whether the library dependency versions
between two consecutive versions of a project changed. We then distinguish
between (i) library dependency versions that were directly extracted from pack-
age manager resolutions files in the project repositories and (ii) library depen-
dency versions that were calculated based on the version requirement in the
package manager manifest file. For the latter case, the calculation is done as if
the developers of the library had rerun the package manager version resolution
for each new library version [8].

As for RQ2, we match App nodes connected to matching LibraryDefinition
and Library node pairs. We then find the consecutive version of the App node
and check if it is connected to the same Library node as the previous version.
If the Library node changed and it is a previous version of the same library we
record this as a downgrade. If the Library node is a later version of the library
we record this as an upgrade. If the Library node remains the same we record
this as no change. In addition, we check whether the Library node was originally
extracted from the package manager resolution file.

Once having found all upgrades, downgrades and no changes in versions,
we plot the difference between version changes where the library version was
extracted from the package manager resolution file and version changes that
were calculated based on the package manager manifest file.

4.5 RQ4: Dependency Updating Lag Effect on Vulnerability

The library dependency dataset we use includes, in addition to data on library
dependencies, data on vulnerable library versions. For each project version with
a dependency to a vulnerable library version we check if the vulnerable library
dependency could be fixed by upgrading the library dependency version. Addi-
tionally we check if simply rerunning package manager version resolution would
have resulted in fixing the vulnerable dependency.

Analysing the Relationship Between Dependency Definition 99

For this we find App-Library-Vulnerability chains which indicates that the
project version depends on a vulnerable library version. For each of these App,
Library pairs we find the corresponding LibraryDefintion. We then check if there
is a Library node that is a future version of the previously found Library node,
but which is not connected to a vulnerability and where the library version was
released before the App commit time. In other words we find the next library
version that does not have a publicly reported vulnerability. We then check if
the LibraryDefintion is connected to the new Library node. If yes, then it means
that the vulnerable library dependency could be fixed by rerunning the package
manager version resolution. If not, then the vulnerable library dependency could
be fixed by upgrading the library dependency version. If no such Library node
was found then it means that the vulnerable library dependency could not be
fixed at the time of the project version release.

We then plot the number of projects with vulnerable library dependencies
that could have been fixed by a version update, that could have been fixed by
rerunning the version resolution and that could not have been fixed through a
version update.

5 Results and Discussion

In the following we present for each RQ our results with a brief discussion.

5.1 RQ1: Dependency Updating Lag

For RQ1, we studied to what extent dependency updates were lagging behind.
The proportions of dependencies having a lag was similar for all package man-
agers, i.e., 43% of dependencies in CocoaPods, 32% of dependencies in Carthage
and 39% of dependencies in Swift PM. For dependency updates that had a lag,
the mean lag time was 92 days for CocoaPods, 45 days for Carthage and 58 days
for Swift PM, as shown in Table 2.

Table 2. Lag time in days for dependencies with updating lag.

Package manager count mean std min 25% 50% 75% max

CocoaPods 52975 91.6 170.5 0.000046 10.6 34.4 97.2 2625.4

Carthage 19957 44.8 86.1 0.000023 4.7 17.4 50.0 1827.0

Swift PM 7863 58.2 86.8 0.000266 6.2 25.6 75.5 869.8

The mean lag time for monthly snapshots are shown in Fig. 1. The data
indicates that the lag time has been growing over time for all package managers.
In 2022, the mean dependency updating lag time for CocoaPods is over 80 days,
for Carthage it is over 40 days and for Swift PM around 50 days.

The lag time is similar for Carthage and Swift PM, but considerably larger
for CocoaPods. For all package managers, the lag time is growing linearly with

100 K. Rahkema and D. Pfahl

Fig. 1. Mean dependency updating lag time per package manager.

approximately the same speed. When Swift PM was released in the second half of
2017 it understandably started out with a near zero lag time which then quickly
rose to the same level as that of Carthage. A possible explanation for the growing
lag time is that there are projects that never update their dependencies.

5.2 RQ2: Version Requirement vs Dependency Updating Lag

For RQ2, we investigated the relationship between version requirements and
the dependency updating lag. Our expectation was that version requirements
without an upper bound would have a smaller lag time than version requirements
with an upper bound or strict version requirements.

First, we analysed which version requirements are used through CocoaPods,
Carthage and Swift PM. Figure 2 shows the proportion of each version require-
ment type. The analysis showed that when using CocoaPods, developers use
the latest version option almost exclusively. For Carthage the most often used
requirement type is ∼ >, followed by exact version and latest version. For Swift
PM the most common requirement types is >=, which is very similar to latest,
followed by ∼ > and exact version.

It is surprising that the version requirement type used with CocoaPods is
almost always latest. In terms of how requirements are declared in the Podfile,
this means that developers simply declare the library name without a version
requirement. The official documentation for CocoaPods4 suggest the use of ∼ >,
but it seems that developers prefer to use an even simpler notation.

For Carthage, version requirements are more restrictive. Over half of the
time, a version requirement specifying the major or minor version is given. This
corresponds to the recommendation in the Carthage documentation5. Surpris-
ingly, an exact version is used relatively often (20%). Perhaps developers using
Carthage prefer to be more in control of when a library version is installed and
they update the exact version requirement manually when needed.

4 https://guides.cocoapods.org/using/using-cocoapods.html.
5 https://github.com/Carthage/Carthage.

https://guides.cocoapods.org/using/using-cocoapods.html
https://github.com/Carthage/Carthage

Analysing the Relationship Between Dependency Definition 101

Fig. 2. Proportion of requirement type

Most library dependencies in Swift PM are declared with the >= requirement.
This is the version requirement type suggested by the official documentation6.
It can be seen as equivalent to the latest requirement in terms of potential
dependency updating lag, as it does not limit new updates. We checked the
version requirement types used in the README files of 30 popular libraries and
found no connection between the version requirement type in the README and
how developers declared library version requirements for these libraries.

A possible explanation for the difference between the version requirement
choices for CocoaPods and Carthage are that Carthage was created as an alter-
native to CocoaPods. Some developers did not like that using CocoaPods forced
them to use the Xcode workspace generated by the package manager. Carthage
was introduces as a more lightweight alternative that gave the developers more
control over the app project and how the library dependencies were integrated. It
might be that the desire for more control carried over to how developers declare
their dependency requirements.

Table 3 presents for each package manager the percentages of dependen-
cies with updating lag of the four most popular version requirement types. For
CocoaPods types ∼ > and >= were excluded as there were no or too few such
dependencies. For all three package managers we see that the more restrictive
version requirement types have a larger percentage of dependencies with lag than
the less restrictive requirement types. For Carthage and Swift PM this difference
is particularly big, as for the most restrictive == version requirement type almost
50% of dependencies experience lag, while for the least restrictive requirement
type latest the percentage is only 25%.

Table 4 presents information on the lag time for each dependency requirement
type and package manager. We excluded version requirement types with less than
50 uses (!= with 10 uses and ∼ > with 4 uses for CocoaPods; ..< with 30 uses for
Swift PM). The overall trend for CocoaPods and Carthage is that dependencies
with more restrictive version requirement types inhibit longer updating lag time.

6 https://www.swift.org/package-manager/.

https://www.swift.org/package-manager/

102 K. Rahkema and D. Pfahl

Table 3. Percentage of dependencies with updating lag per package manager and
version requirement type.

Package manager == ∼ > >= latest

CocoaPods 52% - - 44%

Carthage 46% 29% 27% 25%

Swift PM 47% 40% 38% 25%

Exceptions to this rule are requirement types that are used relatively little, i.e.,
>= for Carthage. These results confirm the initial expectation that less restrictive
version requirement types yield smaller lag time.

The results for Swift PM are not as conclusive. The lag times seem to be
relatively similar for all four version requirement types. It might be that the
nature of Swift PM - not being solely a package manager but a build system -
results in it being used differently than the other package managers.

Table 4. Lag time in days for dependencies with updating lag.

Package manager type count mean std min 25% 50% 75% max

CocoaPods == 907 207.5 280.6 0.002199 16.6 69.4 296.8 1268.2

latest 52054 89.6 167.3 0.000046 10.5 34.0 96.1 2625.4

Carthage == 5527 62.0 118.8 0.000590 8.7 28.7 71.2 1827.0

∼ > 11535 38.5 68.3 0.000116 3.9 14.3 42.4 1146.8

>= 299 48.8 68.6 0.003970 3.6 15.3 53.3 270.4

latest 2596 35.5 69.5 0.000023 3.0 11.8 35.0 751.7

Swift PM == 695 63.9 101.8 0.002326 7.7 29.0 70.8 671.4

∼ > 2232 55.6 67.0 0.000868 8.0 30.1 81.1 613.3

>= 4777 58.4 91.5 0.000266 5.4 23.2 74.2 869.8

latest 121 65.8 84.0 0.010046 12.9 33.7 90.6 390.7

Figure 3 (a) shows the evolution of lag time for the four most used ver-
sion requirement types over all package managers. The biggest lag time can be
observed for the latest and the exact version requirements.

Figures 3 (b)–(d), however, indicate that looking at each package manager
separately, the latest requirement has one of the smallest lag times. For all pack-
age managers the largest lag time corresponds to the exact version requirement.
The results for Swift PM, again, are less conclusive and the lag time seems to
converge for all version requirement types. Results for CocoaPods and Carthage,
however, show that the choice of version requirement type has a noticeable effect
on the lag time. This is an indication that developers should prefer less strict
version requirements, where possible. If a less strict version requirement is not

Analysing the Relationship Between Dependency Definition 103

possible, then developers should update library dependency versions manually
on a regular bases to keep the lag time low.

5.3 RQ3: Version Resolution Effect on Version Updating

For RQ3, we investigated how often library dependency versions are updated
depending on the version requirement and if the library dependency version was
extracted directly from the package manager resolution file or if it was resolved
based on the manifest file.

Figure 4 shows the proportions of library upgrade, downgrade and no change
for Carthage and Swift PM. We chose the most frequent library version require-
ment types for the respective package managers. From the data of both package
managers it is evident that library versions are upgraded more often when the
package manager version resolution is rerun for each new project version (left
column of each column pair). We have no results for CocoaPods, as all library
dependency versions were extracted from package manager resolution files.

Our results indicate that it is not enough, if developers choose a library
dependency version requirement type that allows for frequent automatic updates,
potentially resulting in shorter lag time for dependency updates. It is also neces-
sary to rerun the library dependency version resolution by running the package
manager more often.

There might be different reasons for developers not wanting to rerun the
package manager version resolution, e.g., fear of incompatibilities, no time to
check if everything works correctly, forgetting about the need to rerun the pack-
age manager. Although sometimes problems can be introduced by upgrading
library dependency versions, some of these concerns could be alleviated by using
a more restrictive version requirement such as ∼ >.

5.4 RQ4: Dependency Updating Lag Effect on Vulnerability

For RQ4, we investigated how not updating library dependency versions can lead
to more vulnerable projects. Figure 5 shows the number of projects with a direct
dependency to a vulnerable library over time that could have been and could not
have been fixed by a library dependency version upgrade. We found that 30% of
the projects with a direct dependency to a vulnerable library could have been
fixed by simply rerunning the package manager version resolution (3%) or by
updating the library version in the manifest file and then rerunning the package
manager version resolution (27%).

These results show that, at least in terms of vulnerable dependencies, keeping
the library dependency versions up to date results in safer projects. In this
analysis we did not consider transitive dependencies, but it is possible that the
dependency updating lag accumulates over dependencies of dependencies and
therefore results in even less projects that include the necessary security fixes.

104 K. Rahkema and D. Pfahl

(a
)
A
ll
p
a
ck
a
g
e
m
a
n
a
g
er
s

(b
)
C
o
co
a
P
o
d
s

(c
)
C
a
rt
h
a
g
e

(d
)
S
w
if
t
P
M

Fig. 3. Mean dependency updating lag time per requirement type for (a) all package
managers combined, (b) CocoaPods, (c) Carthage and (d) Swift PM.

Analysing the Relationship Between Dependency Definition 105

Fig. 4. Proportions of downgrades and upgrades for each new project version for depen-
dencies through Carthage and Swift PM (library version taken from resolution file is
shown in left column of each column pair).

Fig. 5. Number of projects with dependencies to vulnerable libraries that could not
have been fixed by an upgrade of the dependency (red line) versus those that could
have been fixed (blue and green lines). (Color figure online)

6 Threats to Validity

Only partial results for RQ2 (counting of version requirement types specified in
manifest files) were based on all library dependencies in the dataset, encompass-
ing dependency information for 8674 libraries. All other results were based on
a subset of 6329 libraries which included the package manager resolution file so
that it was possible to match the library dependency definition from the manifest
file to the actual library definition from the package manager resolution file. Out
of these libraries, 4250 libraries had at least one version that had dependency
updating lag. We have no reason to expect major differences between libraries
that included the package manager resolution file and the ones that did not.

Our results are based on libraries that are open source. There might be dif-
ferences in libraries that are open source and closed source. Most of the libraries
used through the three package managers in our analysis [7], however, are open
source. Further, our analysis only looked at libraries and not applications. There

106 K. Rahkema and D. Pfahl

might be differences in how dependency requirements are defined and dependen-
cies are updated as was shown by Kikas et al. [4] who reported version require-
ment types separately for JavaScript and Ruby libraries versus applications.

Due to the dependency updating lag definition used, our analysis only takes
into account library updating lag times in libraries that are actively developed.
The updating lag time is calculated based on the library dependency versions
that were available at the time the project version was released. This means that
if a project is no longer updated its dependency lag time is not growing. The
advantage of this approach is that projects that have been discontinued will not
inflate the dependency updating lag time. Nevertheless, it is possible that some
of these projects are still being used and could therefore result it other projects
having outdated transitive dependencies.

We use an existing library dependency network dataset [8]. The correctness of
the used dataset was validated by manually checking suspicious data subsets. In
each case there existed an explanation that made the correctness of the suspicious
data plausible. The description and code to reproduce the dataset is open source
and can be checked.

7 Conclusion

We show that the dependency updating lag time is growing steadily for all three
analyzed package managers. We analyzed how version requirement types can
affect dependency updating lag. As expected, more restrictive version require-
ments seem to yield longer lag time. The exception is Swift PM, where the
dependency updating lag time is relatively similar for all version requirement
types.

We recommend that developers choose less restrictive version requirements
where possible. Additionally, it is important to regularly run package manager
updates so that library dependency versions can be updated. One reason to
keep up to date with library dependency versions is to include security fixes. We
showed that around 30% of projects could fix their vulnerable dependencies by
upgrading the library dependency version and 3% of the projects could include
a fix by simply rerunning the package manager version resolution.

The version requirements of choice for package managers differ. It would be
interesting to find out why developers choose a certain version requirement type.

Acknowledgments. Funding of this research came from the Estonian Center of
Excellence in ICT research (EXCITE), European Social Fund via IT Academy program,
the Estonia Research Council grant (PRG 1226), the Austrian ministries BMVIT and
BMDW, and the Province of Upper Austria under the COMET (Competence Centers
for Excellent Technologies) Programme managed by FFG.

References

1. Decan, A., Mens, T., Constantinou, E.: On the evolution of technical lag in the
NPM package dependency network. In: 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 404–414. IEEE (2018)

Analysing the Relationship Between Dependency Definition 107

2. Derr, E., Bugiel, S., Fahl, S., Acar, Y., Backes, M.: Keep me updated: an empirical
study of third-party library updatability on android. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pp. 2187–
2200 (2017)

3. Ilseman, M.: Swift ABI Stability Manifesto (2022), github.com. https://github.
com/apple/swift/blob/main/docs/ABIStabilityManifesto.md. Accessed 17 Aug
2022

4. Kikas, R., Gousios, G., Dumas, M., Pfahl, D.: Structure and evolution of package
dependency networks. In: 2017 IEEE/ACM 14th International Conference on Min-
ing Software Repositories (MSR), pp. 102–112 (2017). https://doi.org/10.1109/
MSR.2017.55

5. Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K.: Do developers update
their library dependencies? Empir. Softw. Eng. 23(1), 384–417 (2018)

6. OWASP: M5: Insufficient Cryptography (2016). https://owasp.org/www-project-
mobile-top-10/2016-risks/m5-insufficient-cryptography. Accessed 3 Mar 2022

7. Rahkema, K., Pfahl, D.: Analysis of Dependency Networks of Package Managers
Used in iOS Development, June 2022. https://doi.org/10.36227/techrxiv.20088539.
v1

8. Rahkema, K., Pfahl, D.: Dataset: dependency networks of open source libraries
available through CocoaPods, Carthage and Swift PM. In: 2022 IEEE/ACM 19th
International Conference on Mining Software Repositories (MSR), pp. 393–397.
IEEE (2022)

9. Salza, P., Palomba, F., Di Nucci, D., D’Uva, C., De Lucia, A., Ferrucci, F.: Do
developers update third-party libraries in mobile apps? In: Proceedings of the 26th
Conference on Program Comprehension, pp. 255–265 (2018)

10. Zerouali, A., Constantinou, E., Mens, T., Robles, G., González-Barahona, J.: An
empirical analysis of technical lag in NPM package dependencies. In: Capilla, R.,
Gallina, B., Cetina, C. (eds.) ICSR 2018. LNCS, vol. 10826, pp. 95–110. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-90421-4 6

https://github.com/apple/swift/blob/main/docs/ABIStabilityManifesto.md
https://github.com/apple/swift/blob/main/docs/ABIStabilityManifesto.md
https://doi.org/10.1109/MSR.2017.55
https://doi.org/10.1109/MSR.2017.55
https://owasp.org/www-project-mobile-top-10/2016-risks/m5-insufficient-cryptography
https://owasp.org/www-project-mobile-top-10/2016-risks/m5-insufficient-cryptography
https://doi.org/10.36227/techrxiv.20088539.v1
https://doi.org/10.36227/techrxiv.20088539.v1
https://doi.org/10.1007/978-3-319-90421-4_6

On the Limitations of Combining
Sentiment Analysis Tools

in a Cross-Platform Setting

Martin Obaidi(B) , Henrik Holm, Kurt Schneider , and Jil Klünder

Software Engineering Group, Leibniz University Hannover,
Welfengarten 1, 30167 Hannover, Germany

{martin.obaidi,jil.kluender,kurt.schneider}@inf.uni-hannover.de,
hello@henrikholm.de

Abstract. A positive working climate is essential in modern software
development. It enhances productivity since a satisfied developer tends
to deliver better results. Sentiment analysis tools are a means to ana-
lyze and classify textual communication between developers according
to the polarity of the statements. Most of these tools deliver promising
results when used with test data from the domain they are developed
for (e.g., GitHub). But the tools’ outcomes lack reliability when used in
a different domain (e.g., Stack Overflow). One possible way to mitigate
this problem is to combine different tools trained in different domains.
In this paper, we analyze a combination of three sentiment analysis tools
in a voting classifier according to their reliability and performance. The
tools are trained and evaluated using five already existing polarity data
sets (e.g. from GitHub). The results indicate that this kind of combina-
tion of tools is a good choice in the within-platform setting. However, a
majority vote does not necessarily lead to better results when applying
in cross-platform domains. In most cases, the best individual tool in the
ensemble is preferable. This is mainly due to the often large difference in
performance of the individual tools, even on the same data set. However,
this may also be due to the different annotated data sets.

Keywords: Sentiment analysis · Cross-platform setting · Majority
voting · Development team · Machine learning

1 Introduction

The application of sentiment analysis in software engineering (SE) has many pur-
poses and facets ranging from identifying the actual mood in a team to extracting
information from app-reviews [9,18]. These tools usually analyze statements for
the pre-dominant sentiment and classify them according to their polarity (pos-
itive, negative and neutral). Sentiment analysis tools are frequently applied to
investigate the social component of a developer team (e.g., [5,21].

These sentiment analysis tools are most often trained on data emerging from
frequently used data bases such as Stack Overflow or GitHub [9,18]. Within these

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 108–123, 2022.
https://doi.org/10.1007/978-3-031-21388-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_8&domain=pdf
http://orcid.org/0000-0001-9217-3934
http://orcid.org/0000-0002-7456-8323
http://orcid.org/0000-0001-7674-2930
https://doi.org/10.1007/978-3-031-21388-5_8

On the Limitations of Combining Sentiment Analysis Tools 109

different SE specific domains (e.g., GitHub), tools like Senti4SD [2] or RoBERTa
[11] achieve high accuracies [13,25].

For a tool to be widely used in practice, it is important that it performs
sufficiently well among different SE specific domains, and not just within one.
Otherwise, it would be necessary to develop or train a separate tool for each
domain, complicating the use in practice and reducing the number of application
scenarios to a minimum.

However, several papers indicate that SE specific sentiment analysis tools
perform worse in domains in which they were not trained (e.g., [10,13,25]),
meaning that a tool trained and tested in one SE specific domain (e.g., GitHub
data) performs worse in another domain (e.g., JIRA data). Cabrera-Diego et
al. [1] identified that tools trained with JIRA did not perform well on Stack
Overflow. Novielli et al. [13] investigated the performance of pre-trained senti-
ment analysis tools in different, unknown domains, in a so called cross-platform
setting. They overall observed a poor cross-platform performance of the tools.
For example, they observed a 26% difference in the macro average F1 score in a
cross-platform setting with the tool Senti4SD [2].

One possible solution suggested by Obaidi et al. [18] and Zhang et al. [25]
is to combine different tools by using a majority vote. The basic idea is that by
combining different tools, a majority vote may be able to classify correctly, if a
well-performing tool alone misclassifies. Moreover, such an ensemble combining
different “domain expert knowledge” would allow the use in all domains instead
of needing a separate tool for each domain – if the approach works.

In this paper, we analyze how such a combination of different tools performs
compared to single tools and compared to different settings of training and test
data. That is, we present combinations of three different sentiment analysis tools
in a voting classifier (VC). In a first step of our approach, we combine three
sentiment analysis tools and train them with three data sets. In this scenario,
one tool at a time is an “expert” for a SE specific domain (as the tools are
specifically designed to be trained with one of the data sets). We first investigated
whether the tools achieve a better accuracy on the within-platform when they are
combined. Then, based on a quantitative approach, we tried several combinations
of pre-trained tools to investigate their accuracy in a cross-platform setting in
two different experiments.

Outline. The rest of the paper is structured as follows: In Sect. 2, we present
related work and background details. The concept of the voting classifier and
its application in the study is introduced in Sect. 3. Section 4 summarizes the
results that are discussed in Sect. 5, before concluding the paper in Sect. 6.

2 Background and Related Work

In this section, we present related work on sentiment analysis tools in general,
voting classifiers and on SE specific data sets used for sentiment analysis.

110 M. Obaidi et al.

2.1 Sentiment Analysis

For the field of software engineering, several sentiment analysis tools have been
developed or evaluated.

Calefato et al. [2] developed the tool Senti4SD and thus enabled training and
classification of models specific to the domain of SE. To do this, they used a
specialized word lexicon in combination with a support-vector machine. With
this approach, they were able to classify an input document in one of the three
polarities positive, negative, and neutral.

Zhang et al. [25] compared the performance of different pre-trained neu-
ral network models with those tools using more classical machine learning
approaches (but without training and thus without adapting them for each
domain). These included four neural network models like RoBERTa [11], and
five other existing tools (e.g., Senti4SD [2]). They found that the performance
of these tools changes depending on the test data set [25]. They observed that
the RoBERTa model [11] most often had the highest scores on average among
the pre-trained transformer models.

Novielli et al. [13] investigated in their cross-platform study to what degree
tools that have been trained in one domain perform in another unknown domain.
They used three data sets and four tools and concluded that supervised tools per-
form significantly worse on unknown domains and that in these cases a lexicon-
based tool performs better across all domains.

In their replication study, Novielli et al. [16] explained some sentiment anal-
ysis tools (e.g. Senti4SD [2]) in great detail and described the underlying data.
They also investigate the agreement between sentiment analysis tools with each
other and with manual annotations with a gold standard of 600 documents.
Based on their results, they suggest platform-specific tuning or retraining for
sentiment analysis tools [16].

All these mentioned tools perform well within one domain, but significantly
worse in cross-platform domains [13,25]. One possibility to counteract this is to
use a combination of several tools. To the best of our knowledge, this approach
has not yet been used for a cross-platform settings.

2.2 Voting Classifier

To the best of your knowledge, the concept of majority voting has been applied
in the context of sentiment analysis in SE in only three papers.

Herrmann and Klünder [6] applied a voting classifier (SEnti-Analyzer) con-
sisting of three machine learning methods for German texts especially for meet-
ings [6]. They used three different machine learning algorithms and an evolu-
tionary algorithm.

Uddin et al. [22] used different sentiment analysis tools in a majority voting
ensemble. They combined tools such as Senti4SD [2], or RoBERTa [11] in an
ensemble and investigated whether majority voting can improve the performance
of this ensemble compared to the best individual tool. In doing so, they combined
several data sets into one large benchmark data set. Overall, they conclude that

On the Limitations of Combining Sentiment Analysis Tools 111

while ensembles can outperform the best individual tool in some cases, they
cannot outperform it overall.

However, neither paper specifically examined how tools trained in several
different domains perform together in a cross-platform setting.

2.3 SE Data Sets for Sentiment Analysis

Several papers highlight the need of domain adaptation to the field of SE (e,g.,
[2]), leading to some SE specific data sets. Recent SMSs and SLRs about senti-
ment analysis in SE show an overview of the data sets used [9,18]

Novielli et al. [15] collected 4,800 questions asked on the question-and-answer
site Stack Overflow and assigned emotions to each sentence of the collected com-
munication. Afterwards, they labeled these sentences based on these emotions
with three polarities positive, negative and neutral. This labeling process was
done by a majority decision of three raters.

Another gold standard data set crawled from GitHub was developed by
Novielli et al. [14]. This data set contains over 7,000 sentences. Similar to the
Stack Overflow data set [15], they first assigned emotions to each sentence and
labeled polarities based on these emotions.

Ortu et al. [19] developed a data set consisting of about 6,000 comments
crawled from four public JIRA projects. They assigned each statement an emo-
tion label based on the Parrott emotion model [20].

Lin et al. [10] collected 1,500 discussions on Stack Overflow tagged with Java.
Five authors labeled the data supported by a web application they built. In their
paper no emotion model or guidelines for labeling were mentioned.

Uddin et al. [23] developed the API data set. It consists of 4,522 sentences
from 1,338 Stack Overflow posts regarding API aspects. The authors did not
follow an emotion model or any guidelines, but in their coding guide, an example
sentence was mentioned for each polarity with focus on the opinion expressed in
the text.

The APP reviews data set, labeled by Lin et al. [10], consists of 341 mobile
app reviews. No emotion model or guidelines for labeling are mentioned.

3 Study Design

In this section, we present our research questions, our voting classifier approach
and the used data sets. Afterwards, we describe our training methods, the used
metrics for evaluation and for the quantitative analysis.

3.1 Research Questions

We chose five different data sets and developed a tool which combines three
different sentiment analysis tools in a voting classifier. For this investigation, we
pose the following research questions:

112 M. Obaidi et al.

RQ1: How does the classification accuracy of an ensemble of sentiment analysis
tools vary in comparison to the individual tools trained and tested within the
same domain?

This allows us to evaluate whether a voting classifier in an already known
domain offers any additional benefit in terms of performance. Based on the out-
come of this research question, it would be conceivable to take an ensemble of
individual tools for a certain domain in order to achieve a better classification
accuracy.

RQ2: How does the classification accuracy of the voting classifier vary in a
cross-platform setting?

To explore this research question in more detail, we split it into two parts:

RQ2.1: Do different tools, pre-trained on different domains, perform better in a
cross-platform setting in an ensemble than the best individual tool?

In this first experiment, we consider all possible combinations of tools and
pre-trained three data sets, testing them on two other data sets.

RQ2.2: Do the best tools for different domains in an ensemble perform better
in a cross-platform setting than the best individual tool?

In the second experiment, we determine the best tool for each data set and
then test different combinations of these tools, in a cross-platform setting. It can
therefore happen that a tool occurs several times in an ensemble.

We call the analysis for the research questions RQ2.1 and RQ2.2 “experi-
ment” so that we can simply refer to it in the further course of our study.

3.2 Selection of Sentiment Analysis Tools

For our voting classifier, we selected three tools with different machine learn-
ing approaches which we described in Sect. 2. Therefore, it is likely that they
complement each other well regarding the strengths and weaknesses of these
methods.

– Senti4SD [2], a machine learning based tool which uses support-vector
machine and heuristics. It was originally developed for the analysis of Stack
Overflow data.

– RoBERTa [11], which is a BERT-based model, using a neural network.
RoBERTa was trained with several data sets consisting of, among others,
Wikipedia articles, books and news.

– SEnti-Analyzer [6], which implements different machine learning algorithms
(random forest, naive Bayes, support-vector machine) and an evolutionary
algorithm. This tool was developed specifically for software project meetings
and trained with student communication data from software projects.

Senti4SD [2] and SEnti-Analyzer [6] were trained and fine tuned with their
default settings. The settings for RoBERTa [11] were adopted from the previous
work of Zhang et al. [25] as they yielded the best accuracies.

On the Limitations of Combining Sentiment Analysis Tools 113

Each of the tools is combined in a majority voting. If there was a disagreement
between all of them (and therefore no majority voting possible), the output label
is set randomly.

3.3 Data Sets

We used a total of five different data sets for training and testing. The data
sets are described in Table 1. #Docs stands for the number of statements in the
respective data set.

Table 1. Overview of the used data sets

Data set #Docs #Positive (%) #Neutral (%) #Negative (%)

API 4522 890 (19.7%) 3136 (69.3%) 496 (11%)

APP 341 186 (54.5 %) 25 (7.3%) 130 (38.1%)

GitHub (G) 7122 2013 (28.3%) 3022 (42.4%) 2087 (29.3%)

JIRA (J) 3974 290 (7%) 3058 (77%) 626 (16%)

Stack Overflow (SO) 4423 1527 (35%) 1694 (38%) 1202 (27%)

Unlike the other data sets, the JIRA statements [19] have emotions as a
label. We took this data set and assigned polarities for each document similar to
Calefato et al. [2] corresponding to emotions. Since there were multiple duplicates
in the data set, we ended up with a total of 3974 statements.

3.4 Training

We trained each tool with 5-fold cross-validation. The data sets were shuffled and
then split into five stratified folds. These stratified folds were balanced just like
the data set. By using this kind of validation, we have decided against balancing
the data sets, because it seems to be “realistic” that there is a lot of neutral in
many data sets, which is the case for most data sets we use. The tools themselves
implemented certain procedures to deal with unbalanced data as well.

3.5 Evaluation Metrics

When evaluating a model, accuracy is considered as the first relevant measure-
ment value, since it represents the overall classification accuracy of a model [12].
Therefore, we present the accuracy in our results. However, for the choice of
the best tool or model, we also consider the macro average F1 value (F1macro),
because it considers both the precision and the recall of all classes.

114 M. Obaidi et al.

3.6 Interrater Agreement

To measure the extent to which the individual classification tools used within the
voting classifier agree in their decisions, we calculated Fleiss’ Kappa (κ) [3] as
agreement value. Fleiss’ kappa measures the interrater reliability between more
than two raters [3]. We classify the kappa value based on Landis and Koch [8].

3.7 Combination of the Tools

Table 2 shows all the combinations of tools and training data sets we used for the
evaluation of RQ1. Here we test the voting classifier in a within domain setting.

Table 2. Tested combinations of tools in a within domain setting with the same pre-
trained data set

ID Senti4SD RoBERTa SEnti-Analyzer

1 GitHub GitHub GitHub

2 JIRA JIRA JIRA

3 Stack Overflow Stack Overflow Stack Overflow

4 API API API

5 APP APP APP

We assigned an ID to each of the different combinations of tools so that we
can reference them in the results later.

For the research questions RQ2.1 and RQ2.2, we opted for a quantitative
approach to ensure the widest possible coverage of combinations. The different
combinations for the first experiment (RQ2.1) are presented in Table 3.

Table 3. First experiment for testing combinations of tools with the respective cross-
platform domains for RQ2.1

ID Senti4SD RoBERTa SEnti-Analyzer

6 GitHub Stack Overflow JIRA

7 GitHub JIRA Stack Overflow

8 Stack Overflow GitHub JIRA

9 Stack Overflow JIRA GitHub

10 JIRA GitHub Stack Overflow

11 JIRA Stack Overflow GitHub

Here we selected three different tools and then permuted the respective
domains within these tools.

In the second experiment (RQ2.2), we chose a deeper analysis and selected the
best performing tool per domain, regardless of whether it was already selected

On the Limitations of Combining Sentiment Analysis Tools 115

for another domain as well. Table 4 presents the list of combinations. Because in
all evaluations RoBERTa was the best performing tool, we listed the three tools
as “RoBERTa1”, “RoBERTa2” and “RoBERTa3”.

Table 4. Second experiment for testing combinations of tools with the respective cross-
platform domains for RQ2.2

ID RoBERTa1 RoBERTa2 RoBERTa3

12 GitHub JIRA Stack overflow

13 GitHub API JIRA

14 GitHub Stack Overflow API

15 Stack Overflow JIRA API

We marked each usage of a combination of tools with a number after the ID,
separated by a dot. For example, if the combination with ID 2 was used 3 times,
we wrote ID 2.1, 2.2 and 2.3 in the tables and in the text. This ensures that we
can definitively identify each run.

4 Results

We conducted the data analysis as described in Sect. 3. In the following, we
present the results for the different analysis steps.

4.1 Within-Domain Classification

The results of the analysis related to RQ1 can be found in Table 5. As mentioned
before, disagreement means that all three tools have assigned a different label
(see 3.2).

Table 5. Classification accuracy within the same domain

ID #Data VC Senti4SD RoBERTa SEnti-Analyzer Disagreement κ

1.1 (G) 1426 0.93 0.92 0.92 0.88 0.8% 0.83

2.1 (J) 796 0.89 0.85 0.87 0.88 0.1% 0.68

3.1 (SO) 885 0.90 0.87 0.90 0.86 1.2% 0.80

4.1 (API) 904 0.91 0.87 0.89 0.86 0.9% 0.68

5.1 (APP) 69 0.88 0.87 0.87 0.86 0.0% 0.84

For four out of five data sets, the VC achieved an accuracy 1–2% higher than
the best individual tool in its ensemble (ID 1.1, 2.1, 4.1 and 5.1). Only on Stack
Overflow (ID 3.1), the accuracy of 90% is identical between the voting classifier
and the RoBERTa model.

The Fleiss’ κ value for these combinations range from 0.68 to 0.84, which
shows that the tools have a substantial to almost perfect agreement. The rela-
tive amount of disagreements per document are under 1.2%.

116 M. Obaidi et al.

4.2 Cross-Platform Domains

To answer RQ2.1 and RQ2.2 we conducted an experiment for each research
question.

First Experiment The results of the evaluation on API [23] and APP [10] are
summarized in Table 6.

Table 6. Classification accuracies for RQ2.1. The best accuracy for each ID is high-
lighted in bold.

ID Testset #Data VC Senti4SD RoBERTa SEnti-Analyzer Disagreement κ

6.1 API 4522 0.72 0.72 (G) 0.72 (SO) 0.70 (J) 0.4% 0.33

7.1 API 4522 0.73 0.72 (G) 0.70 (J) 0.74 (SO) 0.9% 0.33

8.1 API 4522 0.72 0.72 (SO) 0.70 (G) 0.70 (J) 1.0% 0.23

9.1 API 4522 0.73 0.72 (SO) 0.70 (J) 0.73 (G) 1.5% 0.29

10.1 API 4522 0.73 0.70 (J) 0.70 (G) 0.74 (SO) 1.0% 0.28

11.1 API 4522 0.72 0.70 (J) 0.72 (SO) 0.73 (G) 0.9% 0.28

6.2 APP 341 0.55 0.57 (G) 0.70 (SO) 0.25 (J) 6.5% 0.20

7.2 APP 341 0.61 0.57 (G) 0.50 (J) 0.62 (SO) 7.0% 0.39

8.2 APP 341 0.60 0.59 (SO) 0.77 (G) 0.25 (J) 11.7% 0.14

9.2 APP 341 0.62 0.59 (SO) 0.50 (J) 0.61 (G) 4.7% 0.42

10.2 APP 341 0.52 0.35 (J) 0.77 (G) 0.62 (SO) 12.0% 0.24

11.2 APP 341 0.61 0.35 (J) 0.70 (SO) 0.61 (G) 5.9% 0.31

Overall, the voting classifier is either worse or exactly as good as the best of
the used individual tools within the ensemble. The highest accuracy achieved by
the voting classifier for API is 73% (IDs 9.1 and 10.1), and thus 1% worse than
the best individual tool. All individual tools trained with JIRA achieve notably
worse accuracy values compared to the other two data sets for the APP domain.
Only in one run (ID 9.2), the voting classifier is more accurate (62%) than the
three individual tools used in its ensemble. The RoBERTa model pre-trained
with GitHub data achieves an accuracy of 77% (ID 8.2 and 10.2) and, thus, has
the highest overall accuracy, beating the best VC by 15%.

The Fleiss’ κ values range from 0.14 to 0.42, which corresponds to slight to
fair agreement. The random label assignment per data point (disagreement) is
higher compared to RQ1. For ID 8.2 (11.7%) and 10.2 (12%.), they are even
above 10%, whereas the highest disagreement value in the API data set was
1.5%, the lowest was even 0.4%. Thus, the tools are less likely to agree on other
domains which they have not been trained with.

On the Limitations of Combining Sentiment Analysis Tools 117

Second Experiment In the second experiment, instead of three different tools,
we selected the best tool for each domain. For this purpose, we calculated the
average of accuracy and F1 score across all folds and chose the best ones. The
combination IDs are presented in Table 4 of Sect. 3.7 and the results are presented
in Table 7.

Table 7. Classification accuracies of the tools for each SE domain on multiple data
sets. The best accuracy for each ID is highlighted in bold.

ID Testset #Data VC RoBERTa1 RoBERTa2 RoBERTa3 Disagreement κ

12.1 API 4522 0.71 0.70 (G) 0.70 (J) 0.70 (SO) 0.3% 0.41

12.2 APP 341 0.70 0.77 (G) 0.50 (J) 0.65 (SO) 6.2% 0.40

13.1 SO 4423 0.82 0.85 (G) 0.73 (API) 0.67 (J) 2.5% 0.49

13.2 APP 341 0.73 0.77 (G) 0.67 (API) 0.50 (J) 7.9% 0.39

14.1 J 3976 0.79 0.79 (G) 0.76 (SO) 0.73 (API) 0.9% 0.51

14.1 APP 341 0.76 0.77 (G) 0.65 (SO) 0.67 (API) 3.2% 0.50

15.1 G 7122 0.75 0.79 (SO) 0.67 (J) 0.63 (API) 3.8% 0.42

15.2 APP 341 0.67 0.65 (SO) 0.50 (J) 0.67 (API) 7.9% 0.32

In one out of eight runs, the voting classifier has the highest accuracy (ID
12.1), in two other cases (ID 14.1 and 15.2), it shares the first place with another
tool. In the other five cases, it is second place.

Overall, the tools in experiment two performed the most robustly with a
range of 0.67 to 0.82 (0.74 in average), compared to experiment one with a
range of 0.55 to 0.73 (0.66).

4.3 Comparison of Results from RQ1 and RQ2

To study in more detail how the voting classifier performed among these two
experiments, we built Table 8 based on the results from RQ1 and RQ2. It shows
the performance of the best voting classifier from RQ1 (VC RQ1). In contrast,
it also shows the performance of the best individual tool from the first two
experiments (Tool RQ2) as well as best the voting classifier (VC RQ2).

The largest difference of accuracy between the voting classifier (0.91) and the
best VC from RQ2 (0.73) is 15% for API. The lowest is 8% for Stack Overflow.
Every single tool was better than the best voting classifier except for JIRA, where
the best voting classifier and individual tool had 79% accuracy. The deviations
for the rest are between 1% and 4%. In three out of five cases, a tool pre-trained
with GitHub performed best, for the other two it is Stack Overflow. No tool
performed best pre-trained with JIRA or API.

118 M. Obaidi et al.

Table 8. Performance of the best tools from RQ1 and RQ2 for each data set. The best
accuracy for each data set is highlighted in bold.

Data set VC RQ1 Tool RQ2 VC RQ2

GitHub (G) 0.93 0.81 (SO) 0.78

JIRA (J) 0.89 0.79 (G) 0.79

Stack Overflow (SO) 0.90 0.86 (G) 0.82

API 0.91 0.74 (SO) 0.73

APP 0.88 0.77 (G) 0.76

5 Discussion

5.1 Answering the Research Questions

Based on the results and the findings of Sect. 4, we answer the research questions
as follows.

RQ1: The results show that in most cases, we achieve higher classification accu-
racies using a voting classifier rather than using the individual tools in its ensem-
ble. For four of the five data sets considered, the voting classifier achieves a 1–2%
higher accuracy than the best individual tool and 2–5% higher than the worst
tool.

RQ2: The use of a voting classifier does not lead to an increase of accuracy in
a cross-platform setting in most cases. For a voting classifier, it is most often
better to choose the best performing tool for each SE domain (RQ2.2). However,
in most cases, the best individual tool should be preferred.

5.2 Interpretation

The basic idea of using a voting classifier can be useful, as our results showed
with respect to RQ1. Hence, if the domain is already known and data sets exist
for it, it is often useful to combine different, well-performing tools in one voting
classifier, since the implementation of a voting classifier is quite simple.

However, based on the results of RQ2, there is not always an improvement
by such a combination with different tools. Comparing RQ2.1 and RQ2.2, it can
be concluded that the best method to achieve a good, robust performance of the
voting classifier is to assemble the best tools for different data sets (RQ2.2).

It seems that the pre-trained data set plays a role in the performance of the
single tool in an ensemble. This is not surprising at first glance. However, even
though the API data contains statements from the Stack Overflow platform [23],
tools pre-trained with API performs worse on the data set Stack Overflow [15]
than tools pre-trained with the GitHub data set [14] (e.g. ID 13.1). One reason
could be the different labeling process and the subjectivity of it, as mentioned
by many papers (e.g., [7,10,23,25]).

On the Limitations of Combining Sentiment Analysis Tools 119

Our results also indicate that labels from some data sets were subjectively
labeled and may differ from labels from other data sets. For example, the tools
that were trained with JIRA in the first experiment all received the worst accu-
racies in both cross-platform domains. It is reasonable to assume that the JIRA
data set is very different from the APP review data set. The JIRA data set
is the oldest data set among the ones considered in our study (published with
labels 2016 [19]), so the labeling rigor back than might not have been the same.
Another indication is the good performance of the tools, which were pre-trained
by gold standard data sets. RoBERTa pre-trained with GitHub achieved the best
accuracies in experiment two. For all four other cross-platform data sets (API,
APP, Stack Overflow and JIRA), it was the best single tool. The GitHub data
set differs from the other data sets as it is by far the largest data set and was first
labeled by a guideline emotion model and then mapped to the polarities. This
is also true for the Stack Overflow and JIRA data sets, but the JIRA data set is
with 3974 statements smaller than GitHub (7122 statements) by almost 44% and
is very unbalanced in regard to the distribution of polarities(cf. Table 1). 77% of
the statements are neutral, which is much more compared to GitHub (42.4%).
The Stack Overflow data set has almost 40% less data (4423). Unsurprisingly,
RoBERTa pre-trained with Stack Overflow is the second best performing tool
for three out of four other cross-platform data sets. Therefore, one reason for
the good performance could be the large amount of data as well as the balanced
distribution and the annotation process. This supports the need for consistent,
noise-free gold standard sets [13,17]. These two assumptions (much data and
emotion guidelines annotation) is also supported by the fact that in the com-
parison of all tools and voting classifiers in RQ2, only those pre-trained with
GitHub or Stack Overflow performed best (cf. Table 8).

On the other hand, while the JIRA data set is poorly balanced, it was labeled
based on the Parrott emotion model [20], but by other authors [19] compared
to GitHub or Stack Overflow. However, RoBERTa pre-trained with JIRA per-
formed the worst compared to RoBERTa pre-trained with API in all cross-
platform data sets, except for GitHub. Therefore, another explanation could
be that people communicate differently on JIRA and during reviews, e.g., we
observe different levels of politeness. Another reason could be the unbalanced
distribution of the JIRA data set.

The performance of the voting classifier in the cross-platform setting shows
the tendency that it rather does not matter whether we choose different tools
and thus different machine learning approaches or not. Surprisingly, RQ2.1 has
shown that different tools, pre-trained in the same domain, have larger accuracy
differences among themselves in a cross-platform setting. As soon as one or
two tools in an ensemble perform significantly worse compared to the others,
the voting classifier will accordingly not perform better than the best individual
tool, and vice versa. Since we do not necessarily know the accuracies of individual
tools in a cross-platform setting (e.g., new unlabeled data), it is a matter of
luck whether the voting classifier performs better or a single tool. Therefore,
we can conclude that if the domain is unknown, a voting classifier may well be

120 M. Obaidi et al.

an alternative to the dictionary-based tools that have been proposed so far for
these cases [13]. But, our results do not show that a voting classifier can solve
the problem of poor cross-platform performance, but rather show the limitations
of such an approach in our setting.

5.3 Threats to Validity

In the following, we present threats to validity according to our study. We cate-
gorize the threats according to Wohlin et al. [24] as internal, external, construct,
and conclusion validity.

The 1–2% better performance of the voting classifier compared to the best
single tool observed in RQ1 is not high and thus could have occurred rather
by coincidence (construct validity). However, the performance was 2–5% higher
than the worst tool in the ensemble and we performed the evaluation multiple
times to minimize this threat.

For RQ2, we used two different cross-platform domains for testing. One of
them is the API data set from Uddin et al. [23]. This data is also from the
platform Stack Overflow like the data set from Novielli et al. [15], which we
used for training (internal validity). However, the API data set only includes
comments regarding API. Moreover, based on the results of RQ2, we found
indications that a tool being pre-trained with Stack Overflow had not resulted
in an advantage regarding the API data set.

In the second experiment (RQ2.2), we only used RoBERTa. This makes the
results of the voting classifier dependent on only one tool (construct validity).
However, for each domain, based on the evaluation metrics, RoBERTa was the
best performing tool.

In some circumstances it is possible that the results of this work are specific
to the data sets used (construct validity). The API data set of Uddin et al. [23]
and the APP review data set by Lin et al. [10] were presumably labeled ad hoc.
The label assignment may not be representative (construct validity). By using
the three data sets from Novielli et al. [14,15] and Ortu et al. [19], we attempted
to minimize this threat, as these three data sets were labeled based on the same
emotion model.

5.4 Future Work

Based on the results, interpretation, and to minimize the previously mentioned
threats, we propose the following:

Evaluating other data sets is a possible approach to possibly improve the
overall accuracy of the voting classifier. It would be beneficial to build more
gold standard data sets for as many different SE specific domains as possible.
Besides, the data sets should be examined for subjective labels. It should be
investigated whether these labels were assigned consistently and to what extent
subjectivity plays a role. Is a meaningful assignment of polarities possible at
all? Or is the degree of subjectivity too great? In addition, factors such as the

On the Limitations of Combining Sentiment Analysis Tools 121

context of sentences should be considered. Do developers pay more attention
to the perceived tone (e.g. “@Mark Not you again...”) or more to the content
(e.g. “I don’t like this phone”)? Here it could be researched in the direction of
linguistics and psychology, like Gachechiladze et al. [4] conducted.

Furthermore, it may also be interesting to expand the number of tools within
the voting classifier to allow for even greater domain coverage.

Our goal in this work was to combine pre-trained experts, because it was
already found by Novielli et al. [13] that dictionary tools often performed worse
compared to pre-trained tools in the same domain. Nevertheless, it is possible
that a mix of pre-trained tools as well as dictionary-based tools perform even
better, since dictionary-based tools have the advantage of hardly performing
very badly since they use a dictionary [13].

The statements of our results do not necessarily have to be limited to the
field of sentiment analysis. An similar analysis on other classification areas (such
as classification to bugs or feature requests) would also be interesting.

6 Conclusion

To successfully complete a software project, it’s important that developers are
satisfied. To be able to measure the sentiment in teams, sentiment analysis tools
have been developed. To train these machine learning tools to be used in the SE
domains, data from platforms such as GitHub or Stack Overflow were crawled
and manually assigned to sentiments.

However, tools trained in one of these SE specific domains perform notably
worse in another, cross-platform domain. We analyzed this issue in detail. We
first investigated whether a voting classifier can improve the accuracy of the
classification in the same domain. Our evaluation showed that a voting classifier
could improve the accuracy in three cases by 1% compared and in one case by
2% to the best performing tool of its ensemble.

Afterwards, we have examined the behavior of the voting classifier in a cross-
platform setting. For this purpose, we conducted two experiments. In both exper-
iments, we observed that the use of the voting classifier did not lead to an increase
in accuracy compared to the individual tools in most cases. There were constel-
lations in which the voting classifier was better than the individual tools within
this ensemble. However, the voting classifier was not able to prove itself in terms
of accuracy in an overall comparison.

When the three individual tools performed similarly well in the ensemble, the
voting classifier was often the best performing. However, if one or two tools per-
formed significantly worse than the rest in the ensemble, this had a corresponding
influence on the voting classifier. Surprisingly, this deviation in performance was
also observed and had a respective influence on the voting classifier when the
individual tools were pre-trained with the same data. The influence of the data
set chosen for pre-training has a more significant influence on the performance
of the individual tools and thus on the voting classifier.

122 M. Obaidi et al.

Acknowledgment. This research was funded by the Leibniz University Hannover as
a Leibniz Young Investigator Grant (Project ComContA, Project Number 85430128,
2020–2022).

References

1. Cabrera-Diego, L.A., Bessis, N., Korkontzelos, I.: Classifying emotions in stack
overflow and JIRA using a multi-label approach. Knowl. Based Syst. 195, 105633
(2020). https://doi.org/10.1016/j.knosys.2020.105633

2. Calefato, F., Lanubile, F., Maiorano, F., Novielli, N.: Sentiment polarity detection
for software development. Empir. Softw. Eng. 23(3), 1352–1382 (2017). https://
doi.org/10.1007/s10664-017-9546-9

3. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psycholog.
Bull. 76(5), 378–382 (1971). https://doi.org/10.1037/h0031619

4. Gachechiladze, D., Lanubile, F., Novielli, N., Serebrenik, A.: Anger and its direc-
tion in collaborative software development. In: Proceedings of the 39th Inter-
national Conference on Software Engineering: New Ideas and Emerging Results
Track, ICSE-NIER 2017, pp. 11–14. IEEE Press (2017). https://doi.org/10.1109/
ICSE-NIER.2017.18

5. Graziotin, D., Wang, X., Abrahamsson, P.: Do feelings matter? On the correlation
of affects and the self-assessed productivity in software engineering. J. Softw. Evol.
Process 27(7), 467–487 (2015). https://doi.org/10.1002/smr.1673

6. Herrmann, M., Klünder, J.: From textual to verbal communication: towards apply-
ing sentiment analysis to a software project meeting. In: 2021 IEEE 29th Inter-
national Requirements Engineering Conference Workshops (REW), pp. 371–376
(2021). https://doi.org/10.1109/REW53955.2021.00065

7. Herrmann, M., Obaidi, M., Chazette, L., Klünder, J.: On the subjectivity of emo-
tions in software projects: how reliable are pre-labeled data sets for sentiment
analysis? J. Syst. Softw. 193, 111448 (2022). https://doi.org/10.1016/j.jss.2022.
111448

8. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33(1), 159–174 (1977). https://doi.org/10.2307/2529310

9. Lin, B., Cassee, N., Serebrenik, A., Bavota, G., Novielli, N., Lanza, M.: Opin-
ion mining for software development: a systematic literature review. ACM Trans.
Softw. Eng. Methodol. 31(3) (2022). https://doi.org/10.1145/3490388

10. Lin, B., Zampetti, F., Bavota, G., Di Penta, M., Lanza, M., Oliveto, R.: Senti-
ment analysis for software engineering: how far can we go? In: Proceedings of the
40th International Conference on Software Engineering, ICSE 2018, pp. 94–104.
Association for Computing Machinery, New York (2018). https://doi.org/10.1145/
3180155.3180195

11. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach (2019).
https://doi.org/10.48550/ARXIV.1907.11692

12. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
reprinted Cambridge University Press, Cambridge (2009)

13. Novielli, N., Calefato, F., Dongiovanni, D., Girardi, D., Lanubile, F.: Can we use
se-specific sentiment analysis tools in a cross-platform setting? In: Proceedings of
the 17th International Conference on Mining Software Repositories, MSR 20220.
Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3379597.3387446

https://doi.org/10.1016/j.knosys.2020.105633
https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1037/h0031619
https://doi.org/10.1109/ICSE-NIER.2017.18
https://doi.org/10.1109/ICSE-NIER.2017.18
https://doi.org/10.1002/smr.1673
https://doi.org/10.1109/REW53955.2021.00065
https://doi.org/10.1016/j.jss.2022.111448
https://doi.org/10.1016/j.jss.2022.111448
https://doi.org/10.2307/2529310
https://doi.org/10.1145/3490388
https://doi.org/10.1145/3180155.3180195
https://doi.org/10.1145/3180155.3180195
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.1145/3379597.3387446
https://doi.org/10.1145/3379597.3387446

On the Limitations of Combining Sentiment Analysis Tools 123

14. Novielli, N., Calefato, F., Dongiovanni, D., Girardi, D., Lanubile, F.: A gold stan-
dard for polarity of emotions of software developers in GitHub (2020). https://doi.
org/10.6084/m9.figshare.11604597.v1

15. Novielli, N., Calefato, F., Lanubile, F.: A gold standard for emotion annotation
in stack overflow. In: 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR), MSR 2018, pp. 14–17. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3196398.3196453

16. Novielli, N., Calefato, F., Lanubile, F., Serebrenik, A.: Assessment of off-the-shelf
SE-specific sentiment analysis tools: an extended replication study. Empir. Softw.
Eng. 26(4), 1–29 (2021). https://doi.org/10.1007/s10664-021-09960-w

17. Novielli, N., Girardi, D., Lanubile, F.: A benchmark study on sentiment analysis for
software engineering research. In: Proceedings of the 15th International Conference
on Mining Software Repositories, MSR 2018, pp. 364–375. Association for Com-
puting Machinery, New York (2018). https://doi.org/10.1145/3196398.3196403

18. Obaidi, M., Nagel, L., Specht, A., Klünder, J.: Sentiment analysis tools in software
engineering: a systematic mapping study. Inf. Softw. Technol. 151, 107018 (2022).
https://doi.org/10.1016/j.infsof.2022.107018

19. Ortu, M., et al.: The emotional side of software developers in JIRA. In: Proceedings
of the 13th International Conference on Mining Software Repositories, MSR 2016,
pp. 480–483. Association for Computing Machinery, New York (2016). https://doi.
org/10.1145/2901739.2903505

20. Parrott, W.G.: Emotions in Social Psychology: Essential Readings. Psychology
Press (2001)

21. Schneider, K., Klünder, J., Kortum, F., Handke, L., Straube, J., Kauffeld, S.: Pos-
itive affect through interactions in meetings: the role of proactive and supportive
statements. J. Syst. Softw. 143, 59–70 (2018). https://doi.org/10.1016/j.jss.2018.
05.001

22. Uddin, G., Guéhénuc, Y.G., Khomh, F., Roy, C.K.: An empirical study of the
effectiveness of an ensemble of stand-alone sentiment detection tools for software
engineering datasets. ACM Trans. Softw. Eng. Methodol. 31(3) (2022). https://
doi.org/10.1145/3491211

23. Uddin, G., Khomh, F.: Automatic mining of opinions expressed about APIS in
stack overflow. IEEE Trans. Software Eng. 47(3), 522–559 (2021). https://doi.
org/10.1109/TSE.2019.2900245

24. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Berlin (2012). https://doi.org/10.
1007/978-3-642-29044-2

25. Zhang, T., Xu, B., Thung, F., Haryono, S.A., Lo, D., Jiang, L.: Sentiment analysis
for software engineering: How far can pre-trained transformer models go? In: 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pp. 70–80 (2020). https://doi.org/10.1109/ICSME46990.2020.00017

https://doi.org/10.6084/m9.figshare.11604597.v1
https://doi.org/10.6084/m9.figshare.11604597.v1
https://doi.org/10.1145/3196398.3196453
https://doi.org/10.1007/s10664-021-09960-w
https://doi.org/10.1145/3196398.3196403
https://doi.org/10.1016/j.infsof.2022.107018
https://doi.org/10.1145/2901739.2903505
https://doi.org/10.1145/2901739.2903505
https://doi.org/10.1016/j.jss.2018.05.001
https://doi.org/10.1016/j.jss.2018.05.001
https://doi.org/10.1145/3491211
https://doi.org/10.1145/3491211
https://doi.org/10.1109/TSE.2019.2900245
https://doi.org/10.1109/TSE.2019.2900245
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/ICSME46990.2020.00017

Marine Data Sharing: Challenges,
Technology Drivers and Quality

Attributes

Keila Lima1(B) , Ngoc-Thanh Nguyen1 , Rogardt Heldal1 ,
Eric Knauss2,3 , Tosin Daniel Oyetoyan1 , Patrizio Pelliccione4 ,

and Lars Michael Kristensen1

1 Western Norway University of Applied Sciences, Bergen, Norway
keila.lima@hvl.no

2 Chalmers University of Technology, Gothenburg, Sweden
3 University of Gothenburg, Gothenburg, Sweden
4 Gran Sasso Science Institute, L’Aquila, Italy

Abstract. Context : Many companies have been adopting data-driven
applications in which products and services are centered around data
analysis to approach new segments of the marketplace. Data ecosystems
rise from data sharing among organizations premeditatedly. However,
this migration to this new data sharing paradigm has not come that
far in the marine domain. Nevertheless, better utilizing the ocean data
might be crucial for humankind in the future, for food production, and
minerals, to ensure the ocean’s health. Research goal : We investigate the
state-of-the-art regarding data sharing in the marine domain with a focus
on aspects that impact the speed of establishing a data ecosystem for
the ocean. Methodology : We conducted an exploratory case study based
on focus groups and workshops to understand the sharing of data in
this context. Results: We identified main challenges of current systems
that need to be addressed with respect to data sharing. Additionally,
aspects related to the establishment of a data ecosystem were elicited
and analyzed in terms of benefits, conflicts, and solutions.

Keywords: Data sharing · IoUT · Data ecosystems

1 Introduction

Nowadays, we are observing an increasing interest of companies in data sharing
and data ecosystems, as part of a transition towards data-driven applications,
in which business value and innovation involves around data usage [30]. Limited
and restricted sharing of data can be catastrophic not only to national interests
but also to companies’ revenues. In the marine context, what happened in the
salmon aquaculture disease spread reported in 2009 in Chile [3] is a showcase of
the consequences of such limitations. Signs of the outbreak were misinterpreted
as single occurrences, combining unwillingness to report from some companies
and lack of regulations, which led the country to substantial losses in the sector.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 124–140, 2022.
https://doi.org/10.1007/978-3-031-21388-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_9&domain=pdf
http://orcid.org/0000-0002-6625-4199
http://orcid.org/0000-0003-1576-3345
http://orcid.org/0000-0002-0761-1811
http://orcid.org/0000-0002-6631-872X
http://orcid.org/0000-0003-0027-4522
http://orcid.org/0000-0002-5438-2281
http://orcid.org/0000-0002-1465-5791
https://doi.org/10.1007/978-3-031-21388-5_9

Marine Data Sharing 125

Marine data is produced by a network of underwater sensors. This network
is referred to as Internet-of-Underwater-Things (IoUT) [7] and is resembling to
Internet-of-Things (IoT) [19]. The collected marine data is transmitted to the
shore via cabled or wireless communication. While the former is reliable, it is
expensive to install. The latter is more affordable but has many technical limi-
tations affecting data integrity. Other issues are also observable on underwater
nodes such as limited power supply and high costs for deployment and main-
tenance. We refer the readers to [7,8,20] for detailed discussions. Those issues
make collecting marine data costly and challenging; explaining why not much
marine data is publicly available as pointed out in [26].

Concerning data sharing in other domains, products based on blockchain
technology and its smart contracts are considered to be enabling transparency
in sharing information among public and private stakeholders [21]. At the same
time, data workflows are being operationalized for optimizing big data appli-
cations [15]. These solutions are being deployed in the transition to the new
paradigm of data sharing called data ecosystems. In short, data ecosystems are
defined as systems constituted by actors which can either produce, provide, or
consume data. They do not necessarily depend on an explicitly shared data plat-
form [17]. Data ecosystems are now present in many domains, such as supply
chain and transportation [13], social media [24], and manufacturing [6]; but not
in the marine domain. Once established, it would facilitate collaboration among
stakeholders, improving operations and management of the oceans.

On the other hand, transitions to data ecosystem are strongly influenced by
sector-specific demands [11]. In the BYTE European project1, the relationship
between stakeholders from different sectors was analyzed to identify external
factors that can help increase the market share of this paradigm.

Before conducting this study, we held several meetings and discussions with
experts and practitioners in the marine domain. The purpose was to under-
stand technological challenges of marine data sharing. Interestingly, we identi-
fied conflicting views regarding data sharing by public and private stakeholders.
Therefore, we conducted this exploratory case study by following the guidelines
of Runeson et al. [22] to understand challenges, and benefits and drawbacks of
sharing data in the marine sector. To overcome the challenges, we identified the
need of a data ecosystem in the marine domain. Accordingly, this work aims to
address the following research questions:

RQ1. What are the current challenges that organizations in the marine domain
face when sharing data? Aspects such as barriers or limitations can contribute
to the understanding of the constraints and be considered as opportunities to
foster innovative solutions. All these domain characteristics represent current
open challenges and influence architectural choices and thus, must be taken
into account in the system development and evaluation processes.

RQ2. What could be the potential benefits or drawbacks of adopting the data
ecosystem paradigm for sharing marine data? We want to investigate moti-
vating reasons that can bring added values to participating organizations of

1 https://cordis.europa.eu/project/id/619551.

https://cordis.europa.eu/project/id/619551

126 K. Lima et al.

the newly established data ecosystem. Additionally, we show potential draw-
backs or hindrance that originates from the realization of this goal.

RQ3. What characteristics can accelerate this adopting process? We are focusing
on high-level goals for the overall systems that can help address current chal-
lenges in marine data workflows towards the realization of a data ecosystem.
We aim to determine technology drivers, system properties, and associated
quality attributes that can help add value to software products and services
in the marine domain.

The rest of this paper is structured as follows: Section 2 discusses related
works at the intersection of this study, i.e. the marine data sharing and data
ecosystems. Section 3 describes the research methodology of this study. In Sect. 4,
we present our results, answering RQ1-3 in Sects. 4.1–4.3, respectively. Section 5
discusses our findings. Finally, Sect. 6 concludes the study and presents our future
plans to extend this work.

2 Related Work

In the ocean context, the systems are divided into components with three main
roles: data acquisition, communication, and services for applications [7,20]. The
first two greatly influence the availability and quality of data along the delivery
chain from sensing sites to cloud platforms, which are essential in understanding
some of the technological challenges in the field. The last component is responsi-
ble for the accessibility of the data collected in the sensor network and typically
provides endpoints for different data-driven applications. Regarding the sharing
of data in this context, in the literature, there are some examples of practices
that encompass common data infrastructures that rely on open data provided by
public organizations [1,10,14]. These solutions result from the open-data prin-
ciples adopted at regional levels and target marine and other earth observation
data [27]. Inter-agencies collaborations allowed the adoption of common data
exchange formats, nomenclature conventions, and retrieval services APIs in the
different data management infrastructures, bringing together the marine com-
munity [18]. Nevertheless, these type of data and platforms are mostly under-
standable by expert users that know the context of these databases and what
to retrieve from them [4]. Additionally, the applications are mainly focusing on
providing data for marine science purposes and related scientific fields. In this
study, we expanded the stakeholders’ group to understand the views of organiza-
tions operating in the oceans for different purposes, but that are still considered
to be marine data producers.

When it comes to data ecosystems, the concept is formalized in [17] based on
a literature survey on the topic. The authors specify data ecosystems as being
composed by actors (data producers, providers and consumers), with a set of
roles that exchange data-related resources defined in the actor’s relationship.
Additionally, self-organization with feedback loops and actors networks (instead
of value chain) are identified as one of the main properties of these systems.

Marine Data Sharing 127

In the supply chain domain (which includes maritime operations) data ecosys-
tems are being deployed among different stakeholders to expedite processes and
logistics around cargo shipping [13,21]. This is an example of data ecosystems
implementation and deployment in production scenarios enabling transparent
and automated transactions bridging the gap between governmental and indus-
try organizations interactions.

Other examples of such ecosystems from different domains (Industry 4.0,
automotive, and labor market) were also reported in [23], where three cases
were studied in depth w.r.t. their collaboration around data, considered the
business driver in the data ecosystems context. The authors suggest a conceptual
model based on four high-level aspects to consider in open-data ecosystems:
value, data intrinsic, the governance of the ecosystem, and its evolution. When
it comes to data intrinsics, aspects such as standards, domain models, quality,
and common procedures should be considered. Nevertheless, properties such as
trust in the ecosystems can depend on multiple aspects. In the specific case
in the supply chain domain, blockchain infrastructure enables traceability and
access control [21], contributing to the overall trust of the system. In turn, trust
is also being used as an alternative heuristic for data quality in data sharing
in IoT settings [5]. These examples can illustrate the interdependencies of data
ecosystem properties.

In this study, we investigate how these data ecosystem characteristics mani-
fest in marine data sharing workflows and organizations’ relationships. In addi-
tion, we aim to understand which aspects and mechanisms are to be taken into
account to capture domain’s constraints and ease the migration process.

3 Research Methodology

We followed the exploratory case study approach [22] and employed qualita-
tive methods for data collection. The studied case is marine data sharing that
encompasses organizations currently collecting ocean data and related stake-
holders regarding the usage and sharing of data. Particularly, we are interested
in organizations that did not initiate the adoption of data ecosystems; help-
ing to understand the challenges, needs, and improvements around marine data
workflows.

Regarding the data collection, we combined focus group interviews (direct
observations) with workshops (participant observations) going for a deeper
understanding of issues on marine data sharing from the product management
point of view to data-centric discussion with practitioners and team leaders.
By having these two types of participants we were able to have top-down and
bottom-up views on data sharing in the marine domain, which lead us to inves-
tigate not only the technical aspects but also the business-related aspects.

The study had a total of twenty participants from ten different Norwegian
organizations, and details are presented in Tables 1 and 2. We combined the edit-
ing approach from [22] and the thematic approach from [29] for data analysis.
The editing approach allowed us to have an initial set of categories in the cod-
ing, based on our interview guide (both coding categories and interview guide

128 K. Lima et al.

are available in the companion package in [12]). In turn, the thematic approach
allowed us to cluster all the resulting sub-categories in broader themes, as pre-
sented in the next sections. The research methodology process is illustrated in
Fig. 1, where in the first analysis step we gathered the observable conclusions
regarding the challenges and implications. In the second stage, system proper-
ties, quality attributes, and technology drivers were derived.

Fig. 1. Overview of the research process

Focus Groups. We requested each of the organizations listed in Table 1 to nom-
inate 1–2 representatives. We specifically wanted to have people with a profile
towards the management of the products, which should include some decision
making roles but also some knowledge about the details of the products. We
ended up with 14 participants from five research institutes, five companies, and
a marine company cluster to technology innovation and synergies in the marine
sector. The subjects were divided into three focus groups used as units of anal-
ysis. The data collection for the study was conducted between March and April
of 2022. The data collection and recording for the study was performed online
using Zoom, complemented with the Miro2 tool. We have collected around 6 h
of data, having an average of 122 min per focus group interview.

Workshops. For the working sessions, we relied on notes that were validated by
different participants that took part in the working sessions. The data collection
for the workshops occurred on two occasions between May and June of 2022 and
took around two and a half hour each. The participants collaborated to discuss
the data flow among the different components ranging from data collection to
the data transmission, forwarding, and storage. There were ten subjects from six
different organizations. The profile of these subjects were more towards systems
design and development, which also included some of the subjects from the
previous round due to their technical background and expertise.

2 https://miro.com/.

https://miro.com/

Marine Data Sharing 129

Table 1. Organizations involved in the study.

ID Size
(empl.)

Profile Sector Operations
scope

RI1 4000 University with research focused on marine, climate
and energy

Public International

RI2 800 Research institute on technology development for
sensors and decision support

Public Regional
(Europe)

RI3 75 Research institute in climate change and sea ice Public Regional
(Arctic)

RI4 1700 Applied Sciences University focused on sustainable
development and technology

Public International

P1 1100 Marine Research Institute Public National

C1 70 Oceanographic sensors manufacturer and sensor ser-
vices provider

Industry Global

C2 7600 Supplier of products and systems for underwater
communication and marine robotics

Industry Global

C3 200 Offshore telecommunications carrier (wireless and
fiber communication)

Industry Global

C4 1477 IT consultancy in software products for environmen-
tal monitoring

Industry Regional
(Scandi-
navia)

C5 10 Integration of sensors and monitoring services
providers

Industry Global

O1 N/A Marine Companies Cluster to foster technology syn-
ergies

Industry National

Threats to Validity. Construct Validity: The semi-structured interview guide
[12] was the instrument used in focus group data collection, to foster discussions
among participants. Here we started with closed questions targeting each par-
ticipant towards open-ended ones, leaving space to additional questions on the
way. Although the questions were handed to the interview subjects in advance,
we proceeded to explain them along with our goals in the beginning of each one
of the meetings. We also relied on the Miro online tool as a virtual emulator
for stick notes to support the interview session, which allowed to have a better
picture of the panel ideas for each topic and triggered follow-up questions to
further understand each point of view.

Internal Validity: we do not aim to establish a cause-effect relation for data
sharing in the marine domain, but, instead, clarify how data sharing is performed
in the marine context, by eliciting aspects that influence the transition to data
ecosystems.

External Validity: our findings can help explain the case of data sharing in the
marine context. These findings can be limited to this specific context since we
focused on the particularities of the ocean domain and organizations at the
beginning of the transition. Thus, the recommendations might not hold for
organizations that are more advanced in the transition, and neither they can
be generalized for other domains.

130 K. Lima et al.

Table 2. Demography of the participants in data collection.

ID Organization Current role Experience Obs. Method

1 RI1 Chief scientist related to sensors 15 Focus group

2 RI2 Underwater and WSN researcher director 34 Both

3 RI2 Development manager related to sensors 33 Both

4 P1 Ocean senior research scientist 33 Both

5 RI4 Underwater and WSN senior researcher 26 Workshop

6 RI3 Ocean research scientist 10 Focus group

7 RI2 Senior researcher on digital systems N/A Workshop

8 P1 Software development director 15 Workshop

9 P1 Ocean research director 27 Focus group

10 P1 Marine data senior software developer 7 Workshop

11 C1 R&D Manager 21 Focus group

12 C4 Marine systems software consultant 4 Workshop

13 C1 Software development director & architect 30 Both

14 C2 Product manager related to sensors 20 Focus group

15 C3 Offshore network communication researcher 31 Focus group

16 C1 Marine systems engineer 14 Workshop

17 RI1 Principal investigator 40 Focus group

18 C4 Software development manager 10+ Focus group

19 C5 CEO 14 Focus group

20 O1 R&D manager 20 Focus group

Abbreviation: WSN – Wireless Sensor Network.

Reliability : we had a panel of observers, co-authors of this work, who took turns
during the interview and the workshops and they were responsible for the valida-
tion of the findings to reduce the risk of bias in the analysis stage. Moreover, to
increase the validation of the study, we have adopted the following measures: (i)
we combined two data sources based on different observational methods, extend-
ing the level of detail of our findings, especially on the technical side; (ii) we opted
to have a balance between different types of stakeholders in the marine domain,
which includes industry, public/government, and research institutes; and (iii)
a companion package to support the evidence chain of the findings presented
throughout this work is provided in [12], adopting the open science principles.
The package includes excerpts of raw data, coding details, summary of the work-
shops, and the focus group interview guide, preserving the confidentiality of the
subjects and organizations.

4 Results

In Sects. 4.1, 4.2, and 4.3, we provide our answers for RQ1, RQ2, and RQ3.

Marine Data Sharing 131

4.1 RQ1: Challenges in Marine Data Sharing

In relation to RQ1, in this section, we present various aspects that need to
be addressed in order to improve the sharing processes and bring added value
to current solutions. Figure 2 shows all challenges that we identified; they are
divided into limitations and risks, which are described in more detail below.

Fig. 2. Summary of challenges in marine data sharing (RQ1).

Limitations. We identified three sources of limitations from our data set (see
the right-hand branch in the diagram in Fig. 2). Firstly, as previously mentioned
and related to the surrounding environment in the data acquisition stage, the
communication bandwidth in IoUT is one of the major obstacles to data avail-
ability in real-time in the marine domain.

Secondly, there is a lack of automated procedures in quality control and
assurance. These solutions currently rely on expert knowledge, which makes the
task difficult to automate; this is a need when local data processing is performed
or there is a high volume of data. As a consequence, there is a demand for
processing data locally to fit important information on the available bandwidth
and to prioritize what is to be stored, as depicted by interviewee 19: “there’s a
lot of data captured and most of it is thrown away because there is not enough
bandwidth to send it to surface or somewhere it can be used.”. On the other hand,
communication devices are one of the main sources of battery consumption on
standalone systems, which implies that a thorough management is required to
balance the endurance and the data availability in (near) real-time.

Lastly, we were also able to capture challenges when it comes to the usage
of data from long-term observations (historical data). This is related to the
volume and variety of data, but it is in contrast to the challenges that come
from the need to have data in (near) real-time. An example of this challenge was
mentioned by interviewee 9: “...the data centers can be overflowed by data that
nobody knows what they actually have found.”. The main challenge resides in the
data co-relation since each sensor provider can have its associated visualization
and data handling tools making it difficult to have a uniform semantics.

132 K. Lima et al.

Risks. As shown in the left-hand branch of Fig. 2, two aspects (liabilities and
information disclosure) are tightly coupled to the risks in the sense that they are
perceived as a weakness when it comes to data sharing.

Concerning liabilities, some legal barriers are not negotiable and need to be
solved before the data producing system engages with the ecosystem. The legal
barriers range from national regulations to data ownership and stock market-
sensitive information. National regulations laws impose which and what type
of data can be shared by systems operating under certain territories. Examples
of such restrictions are bathymetry data used to produce navigational maps,
including underwater navigation which lays into the national defense category.
Imagery data are also another type of concern for territorial security and need
to be filtered carefully. In contrast, on the regulations side, there is data that is
required to be shared from companies by regulatory organizations, which is an
aspect counterbalancing legal barriers to data sharing. Another aspect closely
related to the risks is the breaches that can arise from the data sharing process
and that are seen as a fragility by the organizations. These risks concern the orga-
nization’s footprint and its responsibility towards society since the operations are
held in an important part of our global ecosystem: the oceans. Another concern
that is related to the organization’s reputation is the down-service exposure by
engaging a service shared with others. Lastly, regarding the market position, the
exposure of business or market critical information is a concern with respect to
cyber-security threats. Some of these concerns were referenced by interviewee
15, who has been working in the telecommunication field, which is responsible
for providing data from remote locations: “If you suddenly leak out the data
that the customers are transporting, this makes big headlines.” On the other
hand, the lack of data sharing also comes with some counterpointing risks. Cur-
rent practices can lead to data bias due to the shortage of available data. As
a consequence, decisions can be sub-optimal; this can also be a consequence of
having those made upon imprecise or incorrect data. These decisions, at a regula-
tory level, can also negatively affect industry organizations in the correspondent
sector.

Summary of RQ1: Several factors hinder the sharing process of marine data.
Technical limitations include restricted resources, lack of data understandability,
and automatic data quality control. Fear of business disclosure and legal liabili-
ties contribute to the hesitations of marine data producers for data sharing.

4.2 RQ2: Implications of Adopting Data Ecosystems

In this section, we address RQ2 by discussing the main characteristics that can
help the adoption of data ecosystems for marine data sharing. First, we present
results regarding the advantages that arise from the adoption process (see upper
branch in Fig. 3). Second, we analyze characteristics of the adoption process
to detect possible conflicts in materializing marine data ecosystems (see lower
branch in Fig. 3).

Marine Data Sharing 133

Benefits. We have identified some benefits or reasons to adopt this new way of
sharing data by having the different stakeholders in the same ecosystem; see the
upper branch in the diagram in Fig. 3. These benefits apply not only at a societal
level, which includes the environmental and political aspects, but also applies to
organizations operating at the oceans. On the industry side, data concerning sea
state conditions can be used to improve safety of operations by its incorporation
in the forecasting models to have more accurate predictions (data assimilation).
This models can be especially useful for those locations in which in situ data
can be sparse or non-existing. There are many services that currently rely on
marine sea state and its forecasts such as navigation, climate predictions, and
even human-recreational activities. As a result, the benefits bring value to both
intra- and inter-organizational levels and across sectors.

On the governmental side, data sharing more transparently can aid resource
management and regulations for the targeting sectors. The latter can also influ-
ence data producers, as mentioned by interviewee 9: “...if they (fishing fleet) don’t
report their catches we cannot calculate our fish-stories and we won’t give a good
quota next time.” This has an implication on decision-making, which can be data-
driven. By having more data, there is also a contribution to the understanding of
the ocean which can be used in the marine science fields and ultimately can help
explain political decisions and regulations to the general public.

Overall, in terms of benefits, there could be improvements in operations
within and across industries, fact-based and data-driven decision making, foster-
ing a better understanding of the oceans for different research-based studies. The
benefits are aspects that can help explain the relationship among stakeholders
and their associated value in the ecosystem.

Fig. 3. Summary of the implications of adopting data ecosystem (RQ2).

Conflicts. On the management side, as shown in the lower branch in Fig. 3,
many interviewees perceive data sharing only as an additional cost to their orga-
nization, where factors such as lack of resources or incentives are expressed as

134 K. Lima et al.

limiting reasons for not sharing data. This process, as it is seen currently is not
perceived as an investment, but instead as an expense by some of these compa-
nies and can present a great barrier to adherence to the ecosystem. There seems
to be a conflict between the data producers and third-party data consumers
when the sharing is perceived in the traditional transnational way, where the
former bears the risk and costs and the latter carries the benefits of using the
data.

Additionally, regarding the data availability, this type of data can represent
value at the ecosystem level, but can be irrelevant for internal operations. How-
ever, as we identified previously, a conflict arises when it comes to prioritization
of the transmission of the data from sensing sites in real-time, or even in the
storage of such data. This is a consequence of the physical limitations and con-
straints of data transmission in the marine domain.

Although these are issues that directly affect the data producers, the decision
made at this level influences the overall system and consequently, the resulting
applications, the availability of data to be shared, and the relations in the ecosys-
tem.

Summary of RQ2. There are advantages and disadvantages to promoting
marine data ecosystems. In terms of benefits, sharing more marine data will
improve understanding and facilitate the management of the ocean, leading to
its sustainable use. Regarding the drawbacks, data sharing processes can be
seen as an effort or expense for marine data producers in the ecosystem. This
can occur if the relationship among the ecosystem actors is not well defined, and
there is no value transferred back to data producers. Furthermore, this can also
raise some conflicts regarding the data provided to the ecosystem.

4.3 RQ3: Factors for Marine Data Ecosystem Adoption

In Sect. 4.2, we have shown that adopting the data ecosystem paradigm for
marine data sharing is beneficial in various ways when there is value shared
among all actors. In this section, we address RQ3, identifying factors (depicted
in Fig. 4) that can accelerate the adoption of a marine data ecosystem.

System Properties: The first step to embrace this adoption is to have the data
workflow automated. As one of the main drivers for the realization of a marine
data ecosystem, we identified automation of the following processes in data
sharing:

– Access Control - marine data varies both in parameters (e.g., environment,
structural integrity) and formats (e.g., time series, multimedia). It is often
difficult and time-consuming to find a suitable data sources, as indicated by
interviewee 4: “In this national marine data center, there is a lot of data.
I think many are struggling to access.” In addition, there are different con-
fidential levels that marine data producers want to impose. For some types
of data (e.g., oil drilling), open data access is not preferred. Others, such as
sea state conditions do not entails risks and can be openly shared. Therefore,

Marine Data Sharing 135

Fig. 4. Summary of the migration process analysis (RQ3).

automatic data access control should be realized, which is not available in
conventional data platforms.

– Data Quality Control - most of marine data producers have to perform
data quality control (i.e., mark and remove suspicious and bad data) in a
semi-automated manner. This process is time-consuming and costly due to
the required labor resources. In addition, data sharing is prolonged as this
process takes time. The possibility to integrate automatic data quality control
procedures in a data ecosystem would eliminate current issues of marine data
sharing.

– Data Filtering - the automation of mechanisms to indicate which data
can be shared and with which entities is of high importance. This property
fulfills not only privacy constraints, but also complies with regulations, and
represents a valuable component in the sharing system taking into account
the specificity of the domain described in the previous section.

Interoperability. Another fundamental property for the interchange of data
on the ecosystem is the specifications. All the information that helps make sense
of the data shared, i.e. the metadata, is relevant to the interoperability of the
ecosystem actors. Currently, marine data producers apply proprietary data for-
mats for data collection and storage, hindering interoperability. Interviewee 3
stressed that: “...subsea survey data often comes as a separate time series of one
for each instrument. The tricky part is how to merge these different time series
together so that you get a useful dataset out of it.”. The adoption of standard
data and metadata formats is one way to achieve a certain level of interoperabil-
ity. Furthermore, to have this interchangeability among different heterogeneous
data sources, besides the formats, their meanings must also be agreed upon
among all actors.

Trust. Taking into account the identified conflict among some stakeholders
regarding the risks for their businesses against the footprint and reporting
responsibilities to others, as referred by interviewee 19: “...if an oil company
shares data, that data can be mined. For example for blaming them for a dif-
ferent environmental contamination, ecosystem impact, etc. So I think there’s

136 K. Lima et al.

probably legal liability risk that they’re also avoiding to share data...”; the trust
in the data ecosystem becomes another crucial property in this context.

Quality Attributes. We identified related quality attributes to be taken into
account in the development and evaluation processes of marine data sharing, in
the light of the ISO/IEC 25010 model [25]. The following five quality attributes
are identified to be taken into account in the development and evaluation pro-
cesses of the data ecosystem.

In terms of usability, as mentioned in Sect. 4, there are clear needs with
respect to the integration and understanding of data being shared. Additionally,
the efforts that have to be made to engage the ecosystem will affect its usability
in terms of operability of the data ecosystem. Furthermore, compatibility is
another relevant attribute that will drive the whole ecosystem because of the data
format standards, conventions, and specifications for data quality assessment.
These attributes must be fine tuned in order to enable interoperability between
the stakeholders. Taking into account the nature of the participant stakeholders
in marine data ecosystems, reliability also comes into the picture. Aspects such
as the credibility and transparency are a reflection of the system’s maturity
and availability of the involved actors. Also related to reliability, in the marine
domain, there is a need to encompass fault-tolerance because of the nature of
the IoUT, particularly its devices which operate autonomously in remote and
harsh underwater locations and thus can experience down periods for various
reasons (e.g., maintenance, malfunction, damage). Concerning the volume of
data provided, the bandwidth usage optimization must also be considered, which
in other words is captured by the throughput of the performance attribute.
Lastly, comes the security attribute. As we analysed in the previous section,
guaranteeing that only the legitimate entities have access to the resources in the
ecosystem is another important property. This attribute is also transversal to the
whole data sharing ecosystem, starting from integrity of the data through the
traceability and filtering. The importance of this attribute is critical considering
territorial security threats which are associated with some types of data being
collected at the oceans.

Technology Drivers. Considering the limitations mentioned in Sect. 4.1 and
topics discussed in the Data-Centric Workshops (available in [12]), technology
solutions to address data availability and flow reliability in underwater and
marine deployment in the IoUT context are crucial to capture missing pieces
of data. Furthermore, these drivers also refer to other technical solutions regard-
ing the quality of data, the specification, and the meaning of fields, which are
important factors to the data relationships definition in the ecosystem. The tech-
nologies’ needs extracted, identified below, are crucial to different stages of data
sharing processing, becoming valuable to the whole ecosystem:
– Smart Sensors - with the increase of sensor capabilities related to resources

such as processing, storage, and battery life, the incorporation of most recent
advances in data analytics-related fields such as numerical models or artificial
intelligence can be brought into the early stages of the sensor network, helping
to improve the entire workflow.

Marine Data Sharing 137

– Standards and Conventions - on the software side, the creation, matu-
ration, and adoption of existing data, metadata specifications, and exchange
formats address the interoperability among different stakeholders and data
sources and types.

– Telecommunication - it is crucial for transmission devices used underwater
or in links to remote and coastal areas to get access to data as close as
possible to its acquisition. This technology driver is particularly important in
time-critical applications such as oil spill control, offshore structural safety,
or tsunami alerts, to name a few.

Summary of RQ3. There are multiple factors that need to be considered for a
data ecosystem. Automation, interoperability, and trust are crucial system prop-
erties. Considering the domain characteristics, five suitable quality attributes
from the ISO/IEC 25010 model were indicated for the design and evaluation
of newly established marine data ecosystems: usability, compatibility, reliability,
performance, and security. Finally, smart sensors, standards and conventions,
and telecommunication are three main technology drivers to help address cur-
rent challenges while also addressing some of the data ecosystem characteristics,
accelerating the adoption process.

5 Discussion

In the marine domain, there are constraining factors and limitations that depict
and explain how complex the sharing process is.

Firstly, there are strict liabilities that must be handled carefully by all par-
ties. Secondly, there is a clear conflict when it comes to management views on
data sharing paradigms. Thirdly, there are risks related to the disclosure of sen-
sitive information. While technology based on blockchain is being deployed in
production to address transparency and traceability on public-private data shar-
ing [21], a comprehensive survey on privacy and security challenges performed
in [2], recognizes the need for more practical end-to-end solutions in this field.
The authors investigated the challenges’ interdependencies, mapping those to
possible solutions to be considered by practitioners in the implementation of
data ecosystems. As also pointed out in [23], the licenses, the legal framework,
and liabilities must also be considered when establishing such ecosystems. In
this study, we took one step forward into specific legal liabilities in the domain
and associated processes such as data filtering, complementing the requirements
for the migration to data ecosystems in this specific context. Concerning the
access control models on data sharing, and to help formalize these systems, some
implicit relationships among the different actors were identified in Sect. 4.2, fol-
lowed by procedures and technology needed to address express such constraints
in Sect. 4.3. Such models should reflect contractually-dependent constraints to
data usage, covering processes from the engagement, update, as well as disen-
gagement of the ecosystem. All these aspects will be relevant to the security
attributes of the system.

138 K. Lima et al.

IoUT-related limitations, including the lack of interoperability, affect data
availability and prevent these processes to be further automated, having an
impact in the way the integration of the systems in the ecosystem paradigm.
Viewed as a long-term issue in the IoT field, at the application layer, interoper-
ability encompasses common specifications for data exchange and systems inter-
actions [28]. The adoption of standard data and metadata formats is one way to
achieve a certain level of interoperability, in this case, it refers to synthetic inter-
operability, for ensuring common data structures for information exchange [18].
Despite the existing standards with good levels of acceptance for historical/long-
term observation data, when it comes to real-time data, the scenario is similar to
other IoT domains since these existing standards present high redundancy that
translates into the overhead of this type of transmission. Furthermore, solutions
are needed in order to combine the different data sources improving the sit-
uational awareness regarding different types of data being shared, either from
heterogeneous sources or different processing levels. One solution is to introduce
a list of control vocabularies [9]. This requires marine data ecosystem actors
to agree on the data field’s meanings. These aspects are closely related to the
technology drivers identified in the previous section and can be reflected in the
usability, compatibility, and performance of the system.

There are some benefits starting to be recognized in the sharing process. It
is considered a 2-way process, having a feedback loop of values that can propa-
gate back into the ecosystem. The existence of values shared among ecosystem’s
actors make data quality and trust central properties in a marine data ecosys-
tem because it has implications on both management and technical sides. And
it reflects the value and the confidence in the data sources, influencing its fur-
ther usage inside the ecosystem. The quality assessment also influences whether
or not the data can be trusted in decision-making processes [16]. Nevertheless,
the definition of data quality across different IoT deployments and applications
is not trivial because of the existence of various metrics, and thus additional
heuristics such as trust are also being proposed to overcome this limitation [5].

6 Conclusion and Future Work

We have shown the need of adopting the data ecosystem paradigm to facilitate
the data sharing process in the marine domain. We have covered different dimen-
sions of the problem, starting from a management view from various stakeholders
to workflow solutions with respect to data sharing, uncovering aspects that need
improvement to help organizations in the domain transition to a data sharing
paradigm. Furthermore, we identified properties to help address the current lim-
itations in the data workflow and help foster new applications to underpin new
knowledge regarding the oceans and the operations that are held there. Finally, a
major challenge on the management side of these ecosystems is that the business
model does not seem clear to all stakeholders. In the data ecosystem paradigm,
there is supposed to be shared values among the actors, allowing data produc-
ers to get something back out of the ecosystem as well. More research in this
direction is needed, but falls out of the aims of this paper.

Marine Data Sharing 139

As a matter of future work, we will investigate the feasibility of existing solu-
tions in other domains in this context to identify which innovative approaches are
needed to address the particularities of this domain introduced. More specifically,
we are interested in investigating how data can be filtered automatically, data
flow relationships, and how these solutions can be combined with the remaining
components such as access control and data quality assessment for the overall
system architecture. To materialize the migration, another crucial aspect will be
to identify the business goals of the ecosystem. This aspect can lead to more
concrete definitions in terms of the governance model, which will influence the
data sharing properties as access control and legal framework.

Acknowledgements. We would like to thank the participants in the study. This work
was supported by SFI SmartOcean NFR Project 309612/F40.

References

1. Ansari, S., et al.: Unlocking the potential of NEXRAD data through NOAA’s big
data partnership. Bull. Am. Meteor. Soc. 99(1), 189–204 (2018)

2. Anwar, M.J., Gill, A.Q., Hussain, F.K., Imran, M.: Secure big data ecosystem archi-
tecture: challenges and solutions. EURASIP J. Wirel. Commun. Netw. 2021(1),
1–30 (2021). https://doi.org/10.1186/s13638-021-01996-2

3. Asche, F., Hansen, H., Tveteras, R., Tveter̊as, S.: The salmon disease crisis in
Chile. Mar. Resour. Econ. 24(4), 405–411 (2009)

4. Buck, J.J., et al.: Ocean data product integration through innovation-the next level
of data interoperability. Front. Mar. Sci. 6, 32 (2019)

5. Byabazaire, J., O’Hare, G., Delaney, D.: Using trust as a measure to derive data
quality in data shared IoT deployments. In: ICCCN, pp. 1–9 (2020)

6. Cui, Y., Kara, S., Chan, K.C.: Manufacturing big data ecosystem: a systematic
literature review. Rob. Comput. Integr. Manuf. 62, 101861 (2020)

7. Domingo, M.C.: An overview of the internet of underwater things. J. Netw. Com-
put. Appl. 35(6), 1879–1890 (2012)

8. Fattah, S., Gani, A., Ahmedy, I., Idris, M.Y.I., Targio Hashem, I.A.: A survey
on underwater wireless sensor networks: requirements, taxonomy, recent advances,
and open research challenges. Sensors 20(18), 5393 (2020)

9. Hankin, S., et al.: NetCDF-CF-OPeNDAP: standards for ocean data interoperabil-
ity and object lessons for community data standards processes. In: Oceanobs 2009,
Venice Convention Centre, 21–25 September 2009, Venise (2010)

10. Hansen, H.S., Reiter, I.M., Schrøder, L.: A system architecture for a transnational
data infrastructure supporting maritime spatial planning. In: Kő, A., Francesconi,
E. (eds.) EGOVIS 2017. LNCS, vol. 10441, pp. 158–172. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-64248-2 12

11. ul Hassan, U., Curry, E.: Stakeholder analysis of data ecosystems. In: Curry, E.,
Metzger, A., Zillner, S., Pazzaglia, J.-C., Garćıa Robles, A. (eds.) The Elements of
Big Data Value, pp. 21–39. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-68176-0 2

12. Lima, K., et al.: Marine data sharing companion package (2022). https://doi.org/
10.5281/zenodo.6901964

https://doi.org/10.1186/s13638-021-01996-2
https://doi.org/10.1007/978-3-319-64248-2_12
https://doi.org/10.1007/978-3-030-68176-0_2
https://doi.org/10.1007/978-3-030-68176-0_2
https://doi.org/10.5281/zenodo.6901964
https://doi.org/10.5281/zenodo.6901964

140 K. Lima et al.

13. Louw-Reimer, J., Nielsen, J.L.M., Bjørn-Andersen, N., Kouwenhoven, N.: Boosting
the effectiveness of Containerised supply chains: a case study of TradeLens. In:
Lind, M., Michaelides, M., Ward, R., Watson, R.T. (eds.) Maritime Informatics.
PI, pp. 95–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72785-
7 6

14. Mı́guez, B.M., et al.: The European marine observation and data network (EMOD-
net): visions and roles of the gateway to marine data in Europe. Frontiers Mar.
Sci. 6, 1–24 (2019)

15. Munappy, A.R., Mattos, D.I., Bosch, J., Olsson, H.H., Dakkak, A.: From ad-hoc
data analytics to dataOps. In: ICSSP 2020, pp. 165–174. ACM (2020)

16. Nakhkash, M.R., Gia, T.N., Azimi, I., Anzanpour, A., Rahmani, A.M., Liljeberg,
P.: Analysis of performance and energy consumption of wearable devices and
mobile gateways in IoT applications. In: Proceedings of the International Con-
ference on Omni-Layer Intelligent Systems, pp. 68–73 (2019)

17. Oliveira, M.I.S., Lóscio, B.F.: What is a data ecosystem? In: Proceedings of the
19th Annual International Conference on Digital Government Research: Gover-
nance in the Data Age, pp. 1–9 (2018)

18. Pearlman, J., Schaap, D., Glaves, H.: Ocean data interoperability platform (ODIP):
addressing key challenges for marine data management on a global scale. In: Oceans
2016 MTS/IEEE Monterey, pp. 1–7. IEEE (2016)

19. Peña-López, I., et al.: ITU Internet report 2005: the internet of things. Technical
report, International Telecommunication Union (2005)

20. Qiu, T., Zhao, Z., Zhang, T., Chen, C., Chen, C.P.: Underwater internet of things
in smart ocean: system architecture and open issues. IEEE Trans. Industr. Inf.
16(7), 4297–4307 (2019)

21. Rukanova, B., et al.: Realizing value from voluntary business-government infor-
mation sharing through blockchain-enabled infrastructures: The case of importing
tires to The Netherlands using TradeLens. In: DG.O2021, pp. 505–514 (2021)

22. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

23. Runeson, P., Olsson, T., Lin̊aker, J.: Open data ecosystems-an empirical investiga-
tion into an emerging industry collaboration concept. J. Syst. Softw. 182, 111088
(2021)

24. Schubert, R., Marinica, I.: Facebook data: sharing, caring, and selling. In: 2019
International Conference on Cyber Situational Awareness, Data Analytics And
Assessment (Cyber SA), pp. 1–3 (2019)

25. Systems and Software Engineering: ISO/IEC 25010: Systems and software quality
requirements and evaluation (SQuaRE) (2011)

26. Tanhua, T., et al.: What we have learned from the framework for ocean observing:
evolution of the global ocean observing system. Front. Mar. Sci. 6, 471 (2019)

27. Tanhua, T., et al.: Ocean FAIR data services. Frontiers Mar. Sci. 6 (2019)
28. Tayur, V.M., Suchithra, R.: Review of interoperability approaches in application

layer of Internet of Things. In: ICIMIA 2017, pp. 322–326 (2017)
29. Vaismoradi, M., Jones, J., Turunen, H., Snelgrove, S.: Theme development in quali-

tative content analysis and thematic analysis. Nurs. Educ. Pract. 6, 100–110 (2016)
30. Wixom, B.H., Sebastian, I.M., Gregory, R.W.: Data sharing 2.0: new data sharing,

new value creation. CISR-Res. Briefings 20(10) (2020)

https://doi.org/10.1007/978-3-030-72785-7_6
https://doi.org/10.1007/978-3-030-72785-7_6

The Viability of Continuous
Experimentation in Early-Stage Software

Startups
A Descriptive Multiple-Case Study

Vihtori Mäntylä , Bettina Lehtelä(B) , and Fabian Fagerholm

Aalto University, P.O. Box 15400, Espoo, Finland
vihtori.mantyla@protonmail.com,

{bettina.lehtela,fabian.fagerholm}@aalto.fi

Abstract. Background: Continuous experimentation (CE) has been
proposed as a data-driven approach to software product development.
Several challenges with this approach have been described in large organ-
isations, but its application in smaller companies with early-stage prod-
ucts remains largely unexplored. Aims: The goal of this study is to
understand what factors could affect the adoption of CE in early-stage
software startups. Method: We present a descriptive multiple-case study
of five startups in Finland which differ in their utilisation of experimen-
tation. Results: We find that practices often mentioned as prerequisites
for CE, such as iterative development and continuous integration and
delivery, were used in the case companies. CE was not widely recog-
nised or used as described in the literature. Only one company performed
experiments and used experimental data systematically. Conclusions:
Our study indicates that small companies may be unlikely to adopt CE
unless 1) at least some company employees have prior experience with the
practice, 2) the company’s limited available resources are not exceeded by
its adoption, and 3) the practice solves a problem currently experienced
by the company, or the company perceives almost immediate benefit
of adopting it. We discuss implications for advancing CE in early-stage
startups and outline directions for future research on the approach.

Keywords: Continuous experimentation · New product development ·
Startup · Continuous software engineering · Case study

1 Introduction

A mismatch between product features and customer needs is one of the most
common reasons for software startup failure [15]. While agile methods empha-
sise customer value [6], building the right product appears to be a feat that
few startups achieve. Continuous experimentation (CE) is a software engineer-
ing method where product development is driven by field experiments with real
users [2,8,9,29,41]. It strives to establish virtuous feedback loops between busi-
ness, development, and operations [11], and reportedly improves product quality
and business performance [7,8], with promising implications for startups.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 141–156, 2022.
https://doi.org/10.1007/978-3-031-21388-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_10&domain=pdf
http://orcid.org/0000-0002-0448-9494
http://orcid.org/0000-0002-2814-4386
http://orcid.org/0000-0002-7298-3021
https://doi.org/10.1007/978-3-031-21388-5_10

142 V. Mäntylä et al.

Previous studies have found that startups tend to run experiments as part of
their product development process [21,22]. However, the experiments are usually
neither planned nor run in the organised and systematic manner characteristic
of CE [21,25]. Startups are often reluctant to incorporate industry best prac-
tices, methods, and frameworks proposed by researchers into their business and
product development processes [15]. This raises the question of whether CE, as
envisioned in different frameworks and models in the literature, fits the needs of
small companies with early-stage products, such as software startups.

This paper aims to elucidate possible reasons for why adopting CE in early-
stage startup (ESS) settings might be difficult. Rather than producing a gen-
eral theory of adoption of CE in startups, we develop propositions that can be
extended and validated in future studies, and that can point to novel directions
for research. Specifically, we address the following research questions:

R1: Do ESS companies integrate experimentation into their software develop-
ment practices?

R2: How do ESS companies utilise user data in their software product devel-
opment process?

R3: What factors influence the adoption of CE in ESS companies?

We study these questions in the context of five startup companies. We con-
tribute 1) a description of the state of experimentation and overall mode of
operation in the case companies from the perspective of CE, providing insight
into what product development practices startups tend to adopt and why; and
2) a set of factors that affect the adoption of CE in startup companies, partly
supporting earlier findings from startups (e.g., [13,21,22,25,26]) and larger com-
panies (e.g., [41]), but with new and more detailed factors relevant to adoption
of CE. The paper builds on results obtained in a Master’s thesis [23].

2 Background

CE approaches software product development through experiments with real
users [2,8,9,29,41]. This includes collecting and analysing experimental data to
test product hypotheses, gaining insights for new feature ideas to be evaluated in
subsequent experiments. CE comes with various implications on organisational
structure and culture [11,19,41], product and software development processes [9,
29], and software architecture, construction, and deployment [9,34].

2.1 Scientific and Online Controlled Experiments

Scientific experiments can provide causal descriptions of what consequences vary-
ing a treatment has on a subject of interest [35]. Experimental setups vary with
the study they are used for, but they all share the same basic elements: 1) a
hypothesis to be tested, including evaluation criteria for its acceptance or rejec-
tion; 2) sufficient control of independent variables; 3) means for collecting data;
and 4) experimental subject(s) under investigation [35].

The Viability of CE in Early-Stage Software Startups 143

Online controlled experiments (OCE) [17] leverage the ease of access to users
through the Internet to deploy field experiments. These are often performed as
A/B tests where two different user groups receive a different treatment, e.g., the
old versus new version of a feature. The treatments are usually assigned randomly
to the target groups and statistical analysis is used to determine which of the
tested implementations produced better results in terms of improved metrics.
OCEs can be arranged into an ongoing process to implement CE.

2.2 Implementing Continuous Experimentation

CE can be seen as arising from advances in the use of experimentation in
product development [37], agile software development practices, and continuous
software engineering [11] practices such as continuous integration, continuous
delivery, and continuous deployment. Modern software engineering practices like
these are behind the experimentation processes in pioneering companies such as
Microsoft [18,19], Netflix [1,12], and others [10,36,38]. Applying experimenta-
tion to product development reportedly gives increased customer satisfaction,
improved and quantified business goals, and a transformation to a continuous
development process [4]. Holmström Olsson et al. [29] position experimentation
as the last step of an organisational evolution ladder, where agile software devel-
opment, continuous integration, delivery, and deployment are prerequisites.

Realising CE requires arranging experiments across time. A number of models
have been proposed to prescribe how CE can be implemented as a method.
For example, the HYPEX model describes a detailed experimentation process
model spanning the complete product development cycle [30]. A minimum viable
feature (MVF) is implemented and deployed, usage data is collected, and gap
analysis is applied to determine the next course of action. Experimental results
are fed back into the business strategy function, completing the feedback loop.

The RIGHT model describes an experimentation framework in detail [9]. It
features a continuous experimentation cycle encompassing business and prod-
uct vision, strategy, experiment design, and software construction activities. It
also describes an architectural model for the experimentation infrastructure and
related stakeholder roles. Furthermore, it covers experiment objects in the form
of minimum viable products (MVPs) and MVFs, which are used to rapidly test
product hypotheses. The RIGHT model assumes that CE capabilities can be
built little by little. Once multiple simultaneous experiments are running, the
full model becomes critical.

While other models are available, they share most of their essential char-
acteristics with HYPEX and RIGHT, and the latter is considered a reference
model in the literature [2].

2.3 Software Startups and Experimentation

Software startups are often characterised as being innovative and driven by small
teams, operating under high uncertainty and rapidly evolving, and being chal-
lenged by a lack of resources, time pressure to deliver a product to market, and

144 V. Mäntylä et al.

only little working and operating history [3,27,31]. Startups are thus distinctly
different from traditional enterprises, in which new product development is only
one concern alongside concerns related to existing products and customers.

Startups commonly fail [31], often by not achieving product-market fit [20,32]
– they create the wrong product [14]. To increase the chances of success, the Lean
Startup method proposes Build-Measure-Learn loops: testing hypotheses about
how users will react to software changes based on predefined metrics, and using
the results to make an MVP [32]. Many ideas from the Lean Startup model can
be found in continuous software engineering [11] and CE [9,30]. Camuffo et al. [5]
conducted a randomised study and concluded that the scientific experimentation
approach is beneficial for startups.

Research indicates that while experimentation in general is common in star-
tups, systematic experimentation is not widely adopted [22,25]. Previous studies
addressing CE adoption (e.g., [22,29,40,41]) acknowledge that it requires high
levels of skill and coordination, and advanced technological and organisational
capabilities. Auer et al. [2] identified six categories of challenges: 1) cultural,
organisational and managerial challenges, 2) business challenges, 3) technical
challenges, 4) statistical challenges, 5) ethical challenges, and 6) domain spe-
cific challenges. However, few studies address CE specifically for software star-
tups. Although some CE models allow for gradual adoption (e.g., the RIGHT
model [9]), knowledge about systematic adoption strategies and application of
the practice in software startups is scarce. Research on CE often describes the
benefits, but most studies rely on examples from a small number of industry lead-
ers whose methods are not necessarily suitable for, e.g., smaller companies [34]
or companies whose products do not share the same characteristics of flexibility.
Open questions thus revolve around the circumstances under which CE is suit-
able for startups and what characteristics of the product development and user
data practices of startups are compatible with CE.

3 Research Method

We conducted a descriptive multiple-case study [42] to investigate product
development practices in our case companies. Through semi-structured inter-
views [28], we obtained insights into the product development practices, utilisa-
tion of user data, and experimentation used in the companies, which we analysed
to develop propositions that address the research questions. We used interviews
because they provide relatively quick access to key information, and because
other data sources can be scarce in startup companies; for example, extensive
process documentation may not exist. Confidentiality requirements prevent us
from publishing the full set of collected data, but excerpts are given in this paper.
An online supplement gives details on the study design and results [24].

3.1 Case Companies

We selected case companies (see Table 1) from two startup communities in the
capital region of Finland: Maria 01 (https://maria.io/), with over 175 startups

https://maria.io/

The Viability of CE in Early-Stage Software Startups 145

residing in Kamppi, Helsinki; and A Grid (https://agrid.fi/), with around 150
startups located on the Aalto University campus in Otaniemi, Espoo.

For the company selection we used purposeful sampling: a convenience sample
guided by our research goals [28]. We sought to include companies at any stage
of the early product development life-cycle and with different kinds of software-
based products or services. Having a relaxed set of selection criteria provided
a heterogeneous set of cases and varied qualitative data. All companies remain
anonymous and we omit identifying information, such as product details.

Table 1. Case companies and their context at the time of the study.

ID Location Business model Distribution
channel

Product stage Participant role

A Maria 01 Free app, sell ads Mobile app V1.0 launch in
progress

Product owner (PO)

B Maria 01 B2B (provisiona) API as a ser-
vice

Released COO

C Maria 01 B2C (subscription) Side-loaded
application

Early access pro-
gram live

CTO

D A Grid B2B (provisiona) SaaS Live for over a year CEO
E A Grid B2C (subscription) Physical Live for over a year Lead software engineer

aProvision business model: the company receives a provision of sales from their B2B customer.

3.2 Data Collection

Semi-structured interviews are suitable when the topic and expected data are not
well understood before starting the data collection [28]. We expected startups to
operate in varied ways that we could not fully anticipate. We designed a semi-
structured interview format with open-ended questions based on the guide used
by Lindgren & Münch [21]. We extended the question set with new questions on
tool and practice selection and added CE as a distinct topic.

As shown in Table 1, we interviewed one expert participant from each case
company, identified through discussion with company representatives, and based
on their broad understanding of both the technical and business aspects of their
company. In addition to the main interviews, follow-up data collection with the
same or additional participants was conducted to verify and fill in some details.
The interviews were performed in Finnish.

3.3 Data Analysis

The first author iteratively analysed the interview transcripts. Insights obtained
from one case company often provided a new perspective into data from other
companies. Multiple passes allowed building higher-order categories from topics
that appeared across case companies. The analysis was supported by data review
sessions with the two other authors. In these, each transcript was walked through
and discussed, with the first author explaining the interview and preliminary
insights obtained. Gradually, the sessions moved to discussions about transcript
coding and emerging insights from the data. ATLAS.ti was used for the analysis
task. Coding was performed in English although the transcripts were in Finnish.

https://agrid.fi/

146 V. Mäntylä et al.

First-Cycle Coding. The analysis started without any predefined categories.
Codes produced from the first analysis iterations were long and descriptive, and
multiple coding passes were used to group similar codes under a single parent
code. Higher-level categories were built based on recurring themes.

Individual Case Analysis. After coding and category-building, each company
was analysed as an individual case. Practices for software and product develop-
ment and user data collection and use were extracted for closer inspection. The
information flow within each company was represented graphically, giving a pic-
ture of the organisation and the interactions between different stakeholders. The
graphics are provided in the supplementary material [24].

Cross-Case Analysis and Second-Cycle Coding. Combined data from all
five cases were also analysed. Tools and practices used by the companies were
analysed in tabular form. The coded interview data from all five individual cases
were re-coded into common themes that permeate the whole data set. In this
final phase, the analysis focused on uncovering categories that could potentially
explain the tool and practice choices made by the companies.

4 Results

Systematic experimentation was rare in the case companies. Our results question
the attractiveness of CE for startups as multiple factors detract from its use.

4.1 Case Company Descriptions

Company A. Lack of previous experience in mobile application development
was a major bottleneck for data acquisition in Company A. Challenges involved
understanding what data was possible to get, what data was valuable, and
which tools were worth using. The application was instrumented to log some
user actions, and the team was actively seeking to improve their data collection.

A feedback form was used to collect user data, and app store reviews were a
regular feedback channel, with in-app prompts to request reviews. The product
owner (PO) reviewed the collected data weekly, but would have wanted to better
understand the real-world usage of the application, and have the capability to
chat with individual users to gain insights on how and why they used the app.

The PO was not familiar with CE, but mentioned iterative user testing
– resembling experimentation – for the application’s on-boarding experience.
Think-aloud user tests had been used with a small number of new users. Based
on this, design adjustments were made and subsequent user testing indicated an
improvement. The PO considered most of their development as some form of
test.

Well, almost everything we do is maybe more like tests. (Product owner,
Company A)

The Viability of CE in Early-Stage Software Startups 147

However, it is not clear if these tests would qualify as planned experiments, and
whether hypotheses and measurable goals were set before starting development.

Company B. There was only restricted access to user data in this company,
as their service was used through a third-party UI. The company had to rely
on the limited data available from their own systems, as the business partners
owning the UI were not willing to share detailed user data. However, Company B
closely collaborated with current and potential customers for requirements elic-
itation. Data from weekly customer meetings were used extensively from early
on, and the products were engineered to meet partner-defined functional and
non-functional requirements. Overall, the company appeared to base their prod-
uct development decisions on the data received through their business partners
and less on the scarcely available user data.

Although Company B would likely be technologically capable of running con-
tinuous experimentation, the company’s B2B business model makes any exper-
imentation involving user data very difficult. The company claimed that the
pricing of their product was the only parameter they could adjust.

We do not have resources at the moment to do anything repeatedly or as
a process [. . .] this interest rate is the only parameter we could control.
(COO, Company B, on A/B testing).

Adjusting the pricing was also considered to be difficult, since any changes
would need to be coordinated with, and approved by, their business partners.
These obstacles to experimentation for companies operating in the B2B domain
are well recognised in earlier studies [2,41].

Company C. This company was in a transition phase where they had just
launched their application through an early access program (EAP). They used
a form of repeated experimentation when building the EAP version, working
closely with potential customers and industry experts to understand the require-
ments their future customers would have for the product. After establishing the
initial set of requirements, they executed numerous Build-Measure-Learn itera-
tions where each new version of the product was subjected to a user test by an
expert user, including observation and an interview for feedback. The collected
user data was then converted into software development tasks.

It has been this [. . .] very tight develop and test type of work where we
develop something and then go [try it out]. (CTO, Company C, on the
development process).

However, there was no sign of predefined metrics or evaluation criteria which
would have indicated a systematic approach for experimentation. The company
had thought about possible future A/B testing and had recently implemented
feature flags, but mainly for licensing purposes. Instrumentation data was not
automatically sent to the company due to user privacy expectations and offline

148 V. Mäntylä et al.

capability requirements. The company expected that most feedback would be
received via email and discussing with the users. This was seen as good enough
for now and they recognised that some other way of handling user feedback
would need to be implemented once their customer base grows.

Company D. This company used a well-defined process for product develop-
ment planning, following the Data-Insight-Belief-Bet (DIBB) framework [16].
The leadership defined a set of objective key results (OKR) for the next quarter,
to be implemented by the product development teams. Each OKR contained a
high-level goal and the metrics to evaluate whether or not the goal was reached
at the end of the quarter. The focus was on meeting investor goals.

The development teams regularly built feature prototypes, mostly used inter-
nally, but occasionally presented to end users or customer representatives. An
expert board reviewed the data from prototyping and selected the best imple-
mentation based on qualitative feedback. The data was used continuously as
company D was not only reacting to negative feedback, but also actively trying
to learn from the data and even predicting future needs based on historical data.

Ten percent of the features [have come from when we analysed all feedback]
and predicted what kind of things there would be coming. [We can say] we
actually need to build this kind of feature because [customers] are going
towards this kind of world. (CEO, Company D, on use of data).

The company employed numerous user data collection channels and used
data extensively in all stages of product development. Event-level quantitative
data was collected from different parts of the system and qualitative data was
collected through a chat embedded in the service. Research ops, a dedicated
business unit, analysed and refined all available data, and was responsible for
the data to be available to all members of the organisation.

Company E. The last company offered a physical service; their software pro-
vided internal support. There was no instrumentation for quantitative data col-
lection due to lack of interest in such feedback. To collect qualitative user data,
the company mainly observed office staff and read feedback from chat channels.
This internal feedback loop tied back to the development team’s Kanban board
where new input was entered as work items. A survey was used to collect feed-
back from company field workers, but it was not entirely clear how the data was
used, suggesting a lack of systematic usage.

We have sent our field workers these quick surveys just to see what is
the general opinion about this app and such. We did not have any specific
metrics like “rate this from 0 to 10” or anything. (Lead developer, Company
E, on user surveys).

Feedback on the physical service was collected through a form and email, was
handled by customer service agents, and was generally not available to everyone

The Viability of CE in Early-Stage Software Startups 149

in the company. Overall, Company E did not systematically use data in the
internal software product development. We found indications that data was seen
as a way to detect problems rather than understanding users’ needs.

[. . .] often not receiving any feedback about anything indicates that things
are probably quite ok as there is nothing to complain about. (Lead devel-
oper, Company E, on negative feedback).

The team had envisioned doing A/B testing once they have released
customer-facing applications. However, in its current state, the company lacked
the capabilities to effectively use experimentation since the software development
team was largely disconnected from the rest of the organisation.

4.2 Cross-Case Analysis

All case companies had an incremental software development process and used
lean and agile practices such as continuous integration and delivery. They also
had several prerequisites for continuous deployment in place but none of them
actually deployed automatically to production.

Different forms of experimentation were used in four out of five companies.
Company A did user testing with different UI implementations and a MVP
feature implementation. A price change experiment was going on in Company
B, prototyping and expert user testing in a continuous cycle in Company C, and
extensive prototyping and user testing in Company D. Company C appeared
to be using systematic prototyping, but their data collection and data analysis
practices were not systematic: they simply let expert test users try the product
without planning what data to collect. Company D had advanced data collection,
storage, and refinement capabilities, used the data systematically, and would
most likely be capable of continuous experimentation.

It appeared that the startups had set up their tools and practices based on
previous experience of founders or employees. There was isolated use of practices
such as user testing, prototyping, and even occasional A/B testing in the com-
panies, but those seemed to originate from individuals with previous experiences
with the techniques rather than the company actively adopting the practices.

Allocating resources to execute the product roadmap in the most efficient
way was central to work planning in all case companies. Only Company B did
not mention funding as a resource limitation. All companies had roadmaps with
far more work than they could ever implement given their available schedule
and resources. This chronic lack of resources forced the companies to prioritise
work that would be beneficial in the next funding round, even at the expense of
feature development with real value to customers.

There was a tendency in the companies to avoid advanced practices until a
strong need emerged – a fiercely pragmatic stance towards method adoption.
It became apparent that even experiencing problems was not enough to adopt
better ways to operate. Even if the team would know a better way of doing their
work, the effort to set up a new system and the opportunity cost of being unable

150 V. Mäntylä et al.

to work on other, more important, tasks, could prevent change from taking place.
Change was seen as a waste of resources unless a perceived tangible benefit was
in sight within the time horizon that is currently relevant for the company.

5 Discussion

The descriptive account given above allows us to construct a number of propo-
sitions to address the research questions, which we now discuss.

5.1 CE and Software Development Methods (RQ1)

To address RQ1, we propose that software startups do not generally integrate
experimentation into their software development methods, but may use CE-
support-ing methods. Experimentation in a loose sense was present in our case
companies, but systematic, statistically controlled experimentation was uncom-
mon, in line with existing research showing a lack of systematic CE in star-
tups [13,21,25]. Product domains and business models that limit the possibilities
for experimentation further reduce integration. Maturing startups may introduce
more structure into their methods, and we then expect systematic experimenta-
tion to be more frequent and deeply integrated into methods and practices.

Several practices supporting CE were in place in the case companies. All
developed their products incrementally using agile or lean software development
practices. Only Company A built their mobile app manually. The companies were
similar in development practices, the single major difference being automated
testing, used by only two. Version control and backlog were the only practices
with an adoption rate above 35% in a prior study [14]. Compared to this, the
case companies are fairly advanced in adopting key agile practices. However, a
closer look reveals rather selective adoption of agile practices in three of our case
companies, and some deviations were found in all. Method selectiveness has been
reported before, with a warning that picking only some agile practices without
supporting practices may lead to adverse effects [14].

The prerequisites for experimentation thus appear at first glance to be in
place in the case companies, but they have picked methods selectively. Experi-
mentation does not appear to be integrated with the methods. We found that
only one company had a systematic approach to experimentation, which is in
line with findings from a study with ten case companies [21] reporting that
non-systematic experimentation was common, but systematic experimentation
among startup companies was rare.

5.2 Use of Data (RQ2)

For RQ2, we propose that 1) utilisation of user data in startups tends to begin
with ad hoc collection and interpretation of rich, qualitative data when the user
base is small and the startup is in its early stages, but that 2) transitioning to
more systematic use of data, which allows reliable understanding of the effects

The Viability of CE in Early-Stage Software Startups 151

of product decisions, requires deliberately building specific technical capabilities
and adopting an experimentation framework.

Four of the five companies had good access to user data and established ways
for collecting qualitative feedback. Interviews, feedback forms, and email were
the most common channels, but social media, application store feedback, and
chat were also used. Company B’s B2B model practically prevented access to
qualitative end user data, and forced them to rely on data their business partners
were willing to share. These are known issues of the B2B context [33].

Four of the companies had built instrumentation for collecting event-level
quantitative data, but only companies A and D had automated access to UI level
events; both demonstrated product improvement as a result of using this data.
Company B was limited to backend data, and Company C had implemented an
opt-in data collection mechanism primarily for debugging purposes.

Prior work suggests that CE adoption relies on initial awareness [13], and
progresses through several stages, each with many challenges to overcome [26].
However, we add the consideration that CE in the form often proposed in the
literature may be inadequate for startups as its costs may be too large. Our
findings show that, in line with previous research on organisational development
towards CE (e.g., [4,11,29]), the transition to systematic and advanced use of
data in startups requires considerable investment in development of skills, proce-
dures, data acquisition, and customer collaboration in different forms. It requires
a mode of functioning that is not easily combined with the sparse resources of
startups nor with the culture of fast-moving innovation and a sharp focus on
realising the founders’ product vision. Adopting a systematic experimentation
approach may face resistance (c.f. [26]), pointing to the need for data acquisition
and utilisation methods that work for very early-stage startups, and can scale
up as they grow and mature.

5.3 The Appeal of Continuous Experimentation (RQ3)

The following three propositions concern conditions for adopting CE in startups.
P1. Adoption of a Practice Requires Previous Personal Experience. Only the
interviewee from Company D had heard about continuous experimentation, but
was unable to describe it in detail, which suggests that they had no prior expe-
rience with it. Our findings suggest that the strongest adoption pathway in this
context is word of mouth and personal experience.
P2. The Practice Must Not Require Large Resources to Adopt or Use. Four out
of the five companies mentioned funding as critical to their priorities. The fear
of running out of time and money may prevent startups from taking risks in
adopting practices, especially if large time and resource investments are per-
ceived to be needed. It is unclear what resources are required to adopt CE.
The case companies had already performed experiments, albeit in unstructured
ways. Becoming more systematic could be a matter of educating the company
employees. However, establishing an experimentation process and the required
technical infrastructure requires upfront work. Additionally, more resources are

152 V. Mäntylä et al.

needed to make variants for experiments than to build a single version. These
resource requirements may exceed what the companies believe they can afford.
P3. The Practice Must Solve a Serious Enough Problem within a Reasonable
Amount of Time. Whether CE solves a concrete enough problem and provides
enough perceived value is a question beyond personal experience and resource
requirements. From the company’s perspective, an issue must be serious enough
and timely, and the new practice must guide to a solution fast enough to keep up
with the speed dictated by investors. At least companies A and C, which had not
yet established a firm user base, were effectively looking for a product-market fit
and trying to test their ideas with early versions of their application. These two
companies seemed to be less inclined to do systematic experimentation than they
were to develop features from the roadmap and see what users would say about
the next version. Even though CE could have some benefits, these companies
may be more interested in increasing the speed of development. Therefore, the
companies would not recognise CE as a valuable solution for their problem.

Earlier studies covering CE adoption (e.g., [9,13,22,25,26,29,39]) indicate
that notable skill and coordination from the whole organisation is required. They
indicate that adopting CE is a journey that should be taken gradually, starting
with small-scale experimentation, and building increased technical and organisa-
tional capabilities in each subsequent experimentation round [22,39]. Yaman et
al. [39] propose having a CE champion with the required expertise and mandate
to facilitate adoption. This idea aligns well with the identified need for prior
experience, as well as the startup companies’ suggested inability to see the value
of systematic experimentation.

5.4 Implications for Practice

The propositions above suggest that CE is problematic for software startups.
On one hand, the possible benefits, especially the validation of value hypothe-
ses, are important for startups since they help avoid directions that do not lead
to a viable product. On the other hand, the considerable resources required for
full adoption, the many details and required rigour in currently existing meth-
ods, and the potential mismatch with fast-paced startup culture and the skills
that startup employees currently have, mean that adopting CE risks depleting
precisely those scarce resources that startups need to build their product.

As noted above, the current solution is to do a gradual, piecemeal adoption,
and to find a person or small team to spearhead the practice, using minimal
resources. However, we suggest that startups should consider CE without all the
prerequisites that are usually listed. Simple means of observing user behaviour,
such as sending back a single value from an app, and basic analyses in a spread-
sheet, can enable startups to focus on product questions rather than the infras-
tructure. This turns the order of adoption around to provide immediate value:
instead of large up-front investments in CI, CD, and other automation that must
be constantly updated as the product changes, the focus should be on developing
the capability to dress product development questions as simple experimental
designs and finding the quickest and least resource-intensive ways to execute

The Viability of CE in Early-Stage Software Startups 153

them. This leverages the key assets that startups have: knowledge about their
product and customers, a sense of the product vision, and an aptitude for fast-
paced innovation, turned towards the practice of experimentation itself.

5.5 Limitations

The credibility or internal validity [28] of this study is limited by the participa-
tion of only one main interviewee per company. To counter this threat, we sought
to include participants who had the best possible knowledge of the questions we
wanted to ask. We also included a small number of additional participants to
provide missing details on, e.g., technical matters. Credibility, as well as con-
sistency [28] is also strengthened by our use of researcher triangulation and the
repeated data sessions carried out during the analysis. Given the small size of
the companies, we argue that our study is credible and consistent in capturing
the reality of each of the five companies.

In terms of transferability or external validity [28], the variation in case com-
panies and the reporting of results and circumstances should help the reader
determine the extent to which our findings can be applied in specific future
cases. We have not sought to statistically validate the findings in a larger sam-
ple. Rather, the aim of this study is to develop a descriptive account of the
case companies and develop propositions that could be used, for example, to
design a larger survey study to examine the prevalence of the factors found here.
We argue that the propositions obtained in this study enable future studies to
examine CE in startups in more detail than what was possible based on existing
studies to date, and that they can be used as points of reflection for practitioners
if they are considering to adopt CE in a startup context.

6 Conclusions

We sought to understand the factors involved in adopting CE in software star-
tups. Through a descriptive multiple-case study in five Finnish startups, we
examined product development practices, and method choices, asking how these
companies collected and utilised user data in product development.

All companies used agile or lean software development practices and continu-
ous software development practices such as continuous integration and continu-
ous deployment. Most companies were able to collect qualitative user data. Two
were also doing automatic collection of user interface event level data from their
services. The companies used the collected data mostly for validating that their
services did not contain errors. Only one company appeared to be systematically
using the data for predicting future user requirements.

Continuous experimentation was not commonly known: only one participant
had heard about it and could not describe it in detail. Previous experience and
expected short-term value seem to be important factors when startups select
CE tools and practices. The companies struggled with limited resources, forcing
them to carefully prioritise work and foregoing the adoption of complex methods.

154 V. Mäntylä et al.

A well-resourced company can afford dedicating an extra team to experimen-
tation without negatively affecting the development work. This is not feasible for
a startup with only a handful of developers, where the effort of doing an exper-
iment might require halting other development. Thus, it is understandable that
a startup company would prefer to simply continue executing their roadmap.

More awareness of continuous experimentation could improve the adoption
rate of the practice among developers and entrepreneurs. Potential approaches
include teaching the practice in university curricula or to prepare entrepreneur-
ship training programs with CE-related material. The latter approach has been
tried with promising results [5] and may be worth pursuing in further research.

However, the CE practice should also adapt to the requirements of different
kinds of companies. The research community should seek ways to make CE more
affordable for a larger variety of companies, to lower the adoption barrier on both
organisational and individual levels, and to make it more attractive and easier
to benefit from the practice’s advantages.

Acknowledgements. We express our gratitude to the study participants and partic-
ipating companies for their generous sharing of information.

References

1. Amatriain, X.: Beyond data: from user information to business value through per-
sonalized recommendations and consumer science. In: Proceedings of the 22nd
ACM International Conference on Information & Knowledge Management, pp.
2201–2208. ACM, San Francisco (2013)

2. Auer, F., Ros, R., Kaltenbrunner, L., Runeson, P., Felderer, M.: Controlled exper-
imentation in continuous experimentation: knowledge and challenges. Inf. Softw.
Technol. 134, 106551 (2021)

3. Berg, V., Birkeland, J., Nguyen-Duc, A., Pappas, I.O., Jaccheri, L.: Software
startup engineering: a systematic mapping study. J. Syst. Softw. 144, 255–274
(2018)

4. Bosch, J.: Building products as innovation experiment systems. In: Cusumano,
M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30746-1_3

5. Camuffo, A., Cordova, A., Gambardella, A., Spina, C.: A scientific approach to
entrepreneurial decision making: evidence from a randomized control trial. Manage.
Sci. 66(2), 564–586 (2020)

6. Dingsøyr, T., Lassenius, C.: Emerging themes in agile software development: intro-
duction to the special section on continuous value delivery. Inf. Softw. Technol. 77,
56–60 (2016)

7. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The benefits of controlled exper-
imentation at scale. In: 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 18–26. IEEE, Vienna (2017)

8. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The evolution of continuous
experimentation in software product development: from data to a data-driven
organization at scale. In: IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pp. 770–780 (2017)

https://doi.org/10.1007/978-3-642-30746-1_3

The Viability of CE in Early-Stage Software Startups 155

9. Fagerholm, F., Sanchez Guinea, A., Mäenpää, H., Münch, J.: The right model for
continuous experimentation. J. Syst. Softw. 123, 292–305 (2017)

10. Feitelson, D.G., Frachtenberg, E., Beck, K.L.: Development and deployment at
Facebook. IEEE Internet Comput. 17(4), 8–17 (2013)

11. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

12. Gomez-Uribe, C.A., Hunt, N.: The Netflix recommender system: algorithms, busi-
ness value, and innovation. ACM Trans. Manage. Inf. Syst. 6(4) (2016)

13. Gutbrod, M., Münch, J., Tichy, M.: How do software startups approach experi-
mentation? empirical results from a qualitative interview study. In: Felderer, M.,
Méndez Fernández, D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D. (eds.)
PROFES 2017. LNCS, vol. 10611, pp. 297–304. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-69926-4_21

14. Klotins, E., et al.: Use of agile practices in start-up companies. e-Informatica Softw.
Eng. J. 15(1) (2021)

15. Klotins, E., Unterkalmsteiner, M., Gorschek, T.: Software engineering in start-up
companies: an analysis of 88 experience reports. Empir. Softw. Eng. 24(1), 68–102
(2019)

16. Kniberg, H.: Spotify Rhythm - how we get aligned (slides from my talk
at agile Sverige), June 2016. https://blog.crisp.se/2016/06/08/henrikkniberg/
spotify-rhythm. Accessed 29 Apr 2022

17. Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., Pohlmann, N.: Online con-
trolled experiments at large scale. In: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013,
pp. 1168–1176. Association for Computing Machinery, New York (2013)

18. Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled experi-
ments on the web: listen to your customers not to the hippo. In: Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, p. 959. ACM Press, San Jose (2007)

19. Kohavi, R., et al.: Online experimentation at Microsoft. Data Mining Case Stud.
11(2009), 39 (2009)

20. Kotashev, K.: Startup failure rate: how many startups fail and why? (2022).
https://www.failory.com/blog/startup-failure-rate. Accessed 29 Apr 2022

21. Lindgren, E., Münch, J.: Software development as an experiment system: a qualita-
tive survey on the state of the practice. In: Lassenius, C., Dingsøyr, T., Paasivaara,
M. (eds.) XP 2015. LNBIP, vol. 212, pp. 117–128. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18612-2_10

22. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experi-
mentation in product development. Inf. Softw. Technol. 77, 80–91 (2016)

23. Mäntylä, V.: Continuous experimentation in finnish startups - a descriptive case
study of A Grid and Maria 01 communities. Master’s thesis, Aalto University,
School of Science (2022). http://urn.fi/URN:NBN:fi:aalto-202201301571

24. Mäntylä, V., Lehtelä, B., Fagerholm, F.: Supplementary material for
“the viability of continuous experimentation in early-stage software
startups” (2022). https://docs.google.com/document/d/1Gx5dkKAZD-_
0L5uNP1pZWRaiceoDZDlDPpLxnyTtShc/edit?usp=sharing. Review version

25. Melegati, J., Chanin, R., Wang, X., Sales, A., Prikladnicki, R.: Enablers and
inhibitors of experimentation in early-stage software startups. In: Franch, X., Män-
nistö, T., Martínez-Fernández, S. (eds.) PROFES 2019. LNCS, vol. 11915, pp.
554–569. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35333-9_39

https://doi.org/10.1007/978-3-319-69926-4_21
https://doi.org/10.1007/978-3-319-69926-4_21
https://blog.crisp.se/2016/06/08/henrikkniberg/spotify-rhythm
https://blog.crisp.se/2016/06/08/henrikkniberg/spotify-rhythm
https://www.failory.com/blog/startup-failure-rate
https://doi.org/10.1007/978-3-319-18612-2_10
https://doi.org/10.1007/978-3-319-18612-2_10
http://urn.fi/URN:NBN:fi:aalto-202201301571
https://docs.google.com/document/d/1Gx5dkKAZD-_0L5uNP1pZWRaiceoDZDlDPpLxnyTtShc/edit?usp=sharing
https://docs.google.com/document/d/1Gx5dkKAZD-_0L5uNP1pZWRaiceoDZDlDPpLxnyTtShc/edit?usp=sharing
https://doi.org/10.1007/978-3-030-35333-9_39

156 V. Mäntylä et al.

26. Melegati, J., Edison, H., Wang, X.: XPro: a model to explain the limited adoption
and implementation of experimentation in software startups. IEEE Trans. Software
Eng. 48(6), 1929–1946 (2022)

27. Melegati, J., Guerra, E., Wang, X.: Understanding hypotheses engineering in soft-
ware startups through a gray literature review. Inf. Softw. Technol. 133, 106465
(2021)

28. Merriam, S.B., Tisdell, E.J.: Qualitative Research: A Guide to Design and Imple-
mentation. The Jossey-Bass Higher and Adult Education Series, 4 edn. Wiley, San
Francisco (2015)

29. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven” - a
mulitiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software. In: 38th Euromicro Conference on
Software Engineering and Advanced Applications, pp. 392–399 (2012)

30. Olsson, H.H., Bosch, J.: The HYPEX model: from opinions to data-driven software
development. In: Bosch, J. (ed.) Continuous Software Engineering, pp. 155–164.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11283-1_13

31. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: a systematic mapping study. Inf.
Softw. Technol. 56(10), 1200–1218 (2014)

32. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses, 1st edn. Crown Business, New York
(2011)

33. Rissanen, O., Münch, J.: Continuous experimentation in the B2B domain: a case
study. In: 2015 IEEE/ACM 2nd International Workshop on Rapid Continuous
Software Engineering, pp. 12–18. IEEE, Florence (2015)

34. Schermann, G., Cito, J., Leitner, P.: Continuous experimentation: challenges,
implementation techniques, and current research. IEEE Softw. 35(2), 26–31 (2018)

35. Shadish, W.R., Cook, T.D., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Houghton Mifflin, Boston
(2001)

36. Steiber, A., Alänge, S.: A corporate system for continuous innovation: the case of
Google Inc. Eur. J. Innov. Manag. 16(2), 243–264 (2013)

37. Thomke, S.H.: Managing experimentation in the design of new products. Manage.
Sci. 44(6), 743–762 (1998)

38. Wu, L., Grbovic, M.: How Airbnb tells you will enjoy sunset sailing in Barcelona?
Recommendation in a two-sided travel marketplace. In: Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 2387–2396 (2020)

39. Yaman, S.G.: Initiating the transition towards continuous experimentation: empir-
ical studies with software development teams and practitioners. Doctoral thesis,
University of Helsinki (2019). http://urn.fi/URN:ISBN:978-951-51-5543-6

40. Yaman, S.G., et al.: Transitioning towards continuous experimentation in a large
software product and service development organisation - a case study. In: Abra-
hamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen,
T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 344–359. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49094-6_22

41. Yaman, S.G., et al.: Introducing continuous experimentation in large software-
intensive product and service organisations. J. Syst. Softw. 133, 195–211 (2017)

42. Yin, R.K.: Case Study Research: Design and Methods, 5th edn. SAGE, Los Angeles
(2014)

https://doi.org/10.1007/978-3-319-11283-1_13
http://urn.fi/URN:ISBN:978-951-51-5543-6
https://doi.org/10.1007/978-3-319-49094-6_22

Data-Driven Improvement of Static
Application Security Testing Service: An

Experience Report in Visma

Monica Iovan1(B) and Daniela Soares Cruzes1,2

1 Visma Software, Romania, Norway
{monica.iovan,daniela.soares.cruzes}@visma.com

2 Department of Computer Science, NTNU, Trondheim, Norway

Abstract. Security is increasingly recognized as an important aspect
of software development processes. Improving processes for security in
agile teams is very important to streamline the focus on security and
keep the agility of the software development process. In Visma we use
data to drive improvement of security services provided to the software
teams. The improvement process involves changing the services or their
structures after some period of usage and experience with it, driven by
data collected during operations. We systematically identify the areas
that need changes in order to become more valuable for the development
teams and for the security program. In this paper we have described
the improvement process used on the security static analysis service in
Visma, the data we have used for that, how we extracted this data from
the Static Application Security Testing (SAST) tool, the lessons learned
and also provide some guidelines to other organizations that would like
to use this method in their own services.

Keywords: Security defects · Static analysis · Static application
security testing · Software security · Agile · Continuous software
development

1 Introduction

Nowadays, security focus needs to become a natural part of a constantly improv-
ing development process, meaning that the security activities needs to be merged
into the development lifecycle. Usually these activities are defined by the secu-
rity team, in a top-down approach, after making an analysis of what to include
in the lifecycle, and agreeing on what needs to be done to improve the security
of the software. The Secure Software Development Lifecycle (SSDLC) generally
refers to a systematic, multi-step process that streamlines software development
from inception to release. Software companies need to establish processes, meth-
ods, technologies and proven standards to ensure their customers have secured

Supported by Visma.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 157–170, 2022.
https://doi.org/10.1007/978-3-031-21388-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_11&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_11

158 M. Iovan and D. S. Cruzes

services. In Visma, these security add-ons to the lifecycle are part of a security
program and are provided as services to the software development teams.

Visma is currently a federation of around 200 individual companies with over
14,000 employees. Each company has one or more self-managed software develop-
ment teams and each with its own way of working and culture. Since 2015 a central-
ized Product Security Team (PST) is driving the software security efforts creating
a standardized way of working across teams [16]. Now after several years of offering
this program, surged the need to evaluate the different strategies of approaching
security and define program interventions based on the findings.

As the Static Application Security Testing (SAST) service is the oldest ser-
vice offered in the program, we have decided to start the service improvement
process from it. At the time of the writing, SAST was implemented in 155 teams
regularly, with over 40000 snapshots (each build generates a snapshot, a report
which contains the new discovered vulnerabilities or the ones that were fixed
since the previous run). The SAST service was one of the first services provided
by the PST as part of the security program. As also mentioned by Oyetoyan
et al. [4] in their study, the adoption strategy for the security services plays a
significant role in the end result. Therefore, as with all the other services in the
security program, in Visma’s SAST is offered free of charge to the development
teams and the teams have the power to decide if they are using the offered ser-
vice or if they want to use another similar tool. One of the benefits of using
the offered SAST service is that the servers are centrally configured by the PST
together with a centralized support team. The PST is responsible for the con-
figuration and access to the servers but also for the continuous monitoring and
improving of the SAST service. The service is provided using a commercial tool
since September 2016.

SAST tools generates large amount of data that can be used to understand the
dynamics of the service and to find points for improvement. The focus of this paper
is not on the tool itself, but how the SAST data can help on improving the SAST
service itself and also the other parts of the security program. In this paper we have
described the DMAIC (an acronym for Define, Measure, Analyze, Improve and
Control) for the SAST service. DMAIC refers to a data-driven improvement cycle
used for improving, optimizing and stabilizing business processes and designs. The
DMAIC improvement cycle is the core tool used to drive Six Sigma projects. Since
an authoritative or uniform account of the DMAIC method does not exist, we have
defined our steps to follow the improvement process.

The goal with this process was to improve the SAST service by innovating,
making it more efficient and useful for the development teams. Since SAST tools
generates large amount of data, we can use them to understand the efficiency
of the tool, the development teams’ behavior and possible ways to improvement
the service. We aim to automate this process as much as possible to be able to
reuse most of the analysis steps in future improvement.

We describe the process used on the security static analysis service, the data
we have used for that, how we extracted this data from the Static Application
Security Testing (SAST) tool, the lessons learned by doing the DMAIC process

Data-Driven Improvement of SAST Service 159

and also provide some guidelines to other organizations that would like to use
this method in their own services.

2 Background

Almost every software organization nowadays have a security lifecycle in which
SAST is an essential and fundamental part of it. SAST tools are reviewing the
application’ source code and check them for violations [9] and identify potential
source code anomalies early in the software development lifecycle, anomalies that
could lead to field failures [15]. The output of a SAST tool still requires human
evaluation, which means the team has to follow a process. Therefore, using a
SAST tool does not imply an automatic improvement in the security of the code
[4,10,11,13].

Many research papers discuss the effectiveness of the tools on finding vulner-
abilities or how to improve the tools to find less false positives. Excessive alert
generation and a large proportion of unimportant or incorrect alerts may hinder
the usage of SAST by developers [10–12]. Even if false positives are known con-
cerns towards static analysis tools, Goseva-Popstojanovaa and Perhinschi [13]
found that tools also suffer from a high number of false negatives, what is even
more worrisome because they lead to a false sense of security [9].

The second category of research papers in SAST focus on the developers’
perspective. Oyetoyan et al. [4] performed a study on the adoption of SAST on
a large Telecom organization. In his study one of the goals was to understand the
desired features in SAST tools that could increase the chance of adoption. The
authors found that the developers fear the effort to setup a third party SAST
tool and get it to work seamlessly in their development and build environments,
but also fear that the tool may disrupt the flow of their work and acting on the
issues reported from the tool depends on whether it overburden them or not.

The third category of papers focus on the SAST Tools as a “service”, as the
case reported in this paper. We found three main industrial cases (from Ericson,
Google and Facebook) and a study on five open source projects. Imtiaz et al
[5], empirically studied five open source projects as case studies that have been
actively using Coverity, a static analysis tool, with an aim to understand how
developers act on static analysis alerts. They found that the portion of total
alerts that developers fix through code changes vary between 27.4% to 49.5%
across projects; and that the developers generally take a long time to fix the
alerts despite the fixes being low in complexity.

Baca et al. [6] performed an industry case study at Ericsson AB that is also
using Coverity. The authors found out that just stating that SAST should be
used was not enough to achieve wide adoption. The adoption strategy for the
tools played a significant role in the end result. The authors conclude that a
configuration management approach where the tool is integrated in the develop-
ment process as a mandatory part is the best adoption strategy. That is efficient
if developers are educated in order to make use of the tool to correctly identify

160 M. Iovan and D. S. Cruzes

vulnerabilities as soon as possible after detection. Using a configuration man-
agement approach had a good success rate as developers started on their own
initiative to examine the tool’s output.

Sadowski et. al. [7] when describing the lessons from building Static Analysis
Tools at Google, affirms that for a static analysis project to succeed, developers
must feel they benefit from and enjoy using it. The authors also recommend
that SAST tools providers should focus on the developer and listen to their
feedback; they also conclude that careful developer workflow integration is key
for static analysis tool adoption. They recommend project-level customization
and analyzing the results during the development workflow, like on compiling
time, code review or presenting issues only when a developer is changing the code
in question. They also suggest to measure success in terms of defects corrected,
not the number presented to developers.

Distefano et. al. [8], describe the key lessons for designing static analyses
tools in Facebook. Their approach is to invest in advanced static analysis tools
that employ reasoning techniques similar to those from program verification.
They use the concept of “bugs that matter”, using static analysis to prevent
bugs that would affect their products and rely on their engineers’ judgment as
well as data from production to highlight the bugs that matter the most. To
analyze improvement needs to the SAST, they do analysis on actioned reports
and observable missed bugs. The actioned reports and missed bugs are related
to the classic concepts of true positives and false negatives from the academic
static analysis literature.

3 DMAIC: Data-Driven Improvement Process in Security

Visma is using data collected from SAST tool, similar with the previous expe-
riences of Google, Facebook and Ericsson and referring to DMAIC, process
improvement methodology. The proposed process involves decisions that are
supported by quantitative indicators and are shared among the involved stake-
holders. The process is composed of five not linear, but more iterative steps
(Fig. 1):

1. Define - The purpose of this step is to clearly pronounce the problem, goal,
potential resources, project scope and high-level project timeline.

2. Measure - The purpose of this step is to measure the specification of prob-
lem/goal. This is a data collection step, the purpose of which is to establish
process performance baselines;

3. Analyze - The purpose of this step is to identify, validate and select root
cause for elimination.

4. Improve The purpose of this step is to identify, test and implement a solution
to the problem; in part or in free of all whole.

5. Control - The purpose of this step is to embed the changes and ensure
sustainability, this is sometimes referred to as making the change’stick’.

Data-Driven Improvement of SAST Service 161

3.1 Defining the DMAIC Plan

The first step in the process is defining the improvement plan, determining
what one wants and appropriate levels of relevant objectives. Before starting
the improvement process it is important to understand the service, its history
and the reputation of the service from the users’ perspective, but also how the
other services complements it. This is more a requirements collection based on
the existing assumptions regarding the service, within a possible timeframe and
with an estimated budget.

In Visma case, during the onboarding process the software development team
and PST configures the SAST servers, the build agents and the build pipeline.
The software development team receives then a short training regarding the
usage of the tool with a link to the documentation pages on the tool’s features.
The development teams have the responsibility for running the automatic static
analysis of the code through their build pipeline, while also triaging and fixing
the discovered vulnerabilities. On the first time using the SAST tool, the team
has the possibility to mark all initial discovered vulnerabilities as legacy. The
PST advice the development teams to fix these legacy issues in time, prioritizing
them based on criticality, but in the same period of time to fix any new issue
that is discovered on the next runs.

Depending on the teams’ needs and technology they use, SAST configura-
tion can be adjusted, by creating project-level customization. Some of the teams,
mostly the ones with smaller products or the ones using microservices, decided
to run the SAST analyses on every commit. Other teams, with monolithic archi-
tecture, run the analyses on weekly bases due to time required for the analysis.
The time used by the SAST tool to analyze the code is between 2 min to 150 h.

The DMAIC team is composed of 5 members as follows: two researchers, one
developer, the SAST service owner, and the director of the PST. Regarding the
timeline the plan was to finish in 6 months.

Fig. 1. Key phases in a DMAIC process

162 M. Iovan and D. S. Cruzes

The plan includes:

– analyzing the development teams’ onboarding experience
– analyzing the usage of the tool
– analyzing the follow up of the discovered vulnerabilities.
– finding patterns on the usage of the tool on company level
– identifying specifics of each team
– understanding where the teams see benefits or lack of benefits from using

such a service
– understanding where teams would benefit from having more awareness.

3.2 Measuring the Existing Service

The second step is measuring the existing service. This is an iterative process
where Service Owner together with the researchers run through the measure-
ment and evaluation of the overall service. The scope is to identify the areas for
improvement and key performance indicators of the service. The outputs of this
step are:

– general information about the service;
– lists of data that can be collected;
– methods of collecting this data;
– performance indicators that can be measured;
– the pre-improvement values of these indicators, if exists.

The SAST service is now used by 155 development teams. Depending on the
product’ lifecycle phase and also the teams’ decisions, SAST run daily, weekly
or monthly independent for each product. The recommendation from the PST
is to run SAST on every code commit, but in some cases, products that are
in maintenance mode can run it once per month. It is important to run SAST
even if no new code was added because new vulnerability types are discovered.
Every run of the SAST service generates a snapshot, a report which contains
the new discovered vulnerabilities or the ones that were fixed since the previous
run. Last year over 40000 snapshots were taken in the company’ codebase which
consists of mostly C# and Java products, but also products that use different
technologies such as C++, Visual Basic or Ruby.

We automated the data collection from the SAST servers through the tool’
APIs:

– General service statistics: there are 155 projects, 84772 streams, 411 292 935
lines of code, 28 843 discovered issues and 17 463 fixed issues;

– Projects composition - for each project we extracted: total number of lines of
code, total number of discovered issues and total number of fixed issues;

– Snapshots details - for each snapshot we extracted: commit date, number of
new issues, number of fixed issues;

– Issues’ details - for each discovered security issue we extracted: its type, crit-
icality, classification, status.

Data-Driven Improvement of SAST Service 163

In addition, we have collected information from other systems:

– Product dashboard - a system that stores and analyze information regarding
the technology used for each product;

– Confluence - specific pages where the onboarding of each product to SAST is
done;

– Build systems - status of the last run build.
– Security Maturity Index - a system designed to measure the security maturity

level of the products. It collects data from different parts of the security
program. The system is based on penalty points and it has four levels, called
tiers (bronze, silver, gold and platinum). When a team is not following the
activities designed to given security activity, they receive a penalty, and this
affects their current tier.

We have created a database, specially designed for collecting and aggregating
data from these different sources. In a first phase we created different queries and
exported this aggregated data into Excel files. The data was aggregated based
on the following identified performance indicators that can be measured:

– usage of the tool
• number of snapshots per product per month - all teams create at least

one snapshot a month for each part of their product’ code;
• time to fix per project - new discovered issues are fixed immediately if

they are high severity, within 30 days if they are major severity and within
90 days if they are moderate severity;

• number of vulnerabilities of the top 3 most common types - decrease the
number of new discovered issues in the top 3 most common types;

• costs of the service - costs to run and maintain the service should be
reduced;

– catching errors
• number of projects with low number of lines of code
• number of projects with variations in number of lines of code - in every two

consecutive snapshots of the same code there is less than 20% unjustified
variations in number of lines of code (LOC);

• number of projects that are missing security checkers
– trust

• percentage of false positive - less than 20% false positive for each type of
vulnerability;

• teams’ satisfaction - increase teams’ satisfaction with the service;
• teams’ confidence - increase teams’ confidence in the tool.

3.3 Analyzing the Data

The third step is about analyzing and assessing the data. The focus is on the
implementation of manual and automatic data collection. After data is collected
the research team pre-process (clean and validate) and analyze it, thinking on
where the service needs to be modified to increase its value. Too much data is

164 M. Iovan and D. S. Cruzes

as bad as no data, therefore it is important to select relevant data, that give
value for the DMAIC process. This data analyzes is iterated with identifying
future improvement scenarios. Based on the collected data, multiple options for
improvement are discovered. For this non linear process we can have different
approaches: like, in less complex situations, we can use a trial and error approach
or selecting the obvious solution approach. In more complex situations we can
decide to divide up the problem (chunking) or brainstorm. The prioritization of
these options is very important for the success of the improvement process, and
should involve the service owner, as he is the one that understands the risks and
consequences of each scenario and can identify better each benefit.

Once the improvement scenarios are prioritized, the implementation of the
improvement work can start. Good scenarios alone does not ensure that the
improvement will be successful. Additional sub-steps may be needed to imple-
ment the scenarios in a way that can increase the likelihood the improvement
will achieve its intended outcomes. One important additional sub-step is identi-
fying the resources (funding, staffing and infrastructure, etc.) that can help with
the implementation.

After implementation, resources and other support from stakeholders may
decrease. Therefore, as with any change, there is a need or a controlled evaluation,
adding future monitoring of the service. The planning for sustainability can be
achieved through good automation.

4 Improving the SAST Service in Visma

Analysis Based on Project Composition. When a team decides to onboard
to SAST service they create a Confluence page based on a template and then to
fill-up the form. In these pages we maintain the onboarding status as follows:

– INITIATED = the page is created and the implementation of SAST in the
product has not started;

– IN PROGRESS = implementation has started;
– ENROLLED = implementation is done; usage is started;
– ON HOLD = language not yet supported or support is not good enough;
– CANCELLED = discontinued;

In our analysis, we compared the confluence status to the data extracted
from the SAST servers. We discovered some deviations, such as products that
had the status as ENROLLED in confluence but the analyses were missing from
the server, or the other way around.

Then we checked the commands used to analyze the code during the build
pipeline and one example of our findings is that 42.58% of the projects have
disabled CSRF checkers. Although this type has the biggest number of issues
discovered and one of the biggest percentages of false positives, only 2.16% are
marked as bugs by the developers in the SAST tool.

Next we divided the projects based on the number of lines of code (LOC)
covered by the tool, as follow:

Data-Driven Improvement of SAST Service 165

– Large (L) - 14,19% of projects have more than 5.000.000 LOC covered;
– Medium (M) - 36,77% of projects have within 1.000.000–5.000.000 LOC cov-

ered;
– Small (S) - 31,19% of the projects have within 100.000–1.000.000 LOC cov-

ered;
– XSmall (XS) - 14,84% of the projects have less than 100.000 LOC covered.

We reviewed all the projects from the XSmall category to make sure they include
the whole codebase of that product. This way we were able to discover some
projects that had hidden build failures, undetected by the development teams
or the PST. Then for each category we compared the number of vulnerabilities
discovered with the number of vulnerabilities fixed by the teams. Table 1 shows
the averages lines of code, discovered issues and fixed issues (issues that do not
appear in the last snapshots) for each category of projects.

As overall each one of the 155 projects fixed in average 60.5% of the issues
discovered. The medium size projects have a smaller ratio (49.39%) of fixed
issues compared with the discovered ones. Our assumption when verifying the
data is that projects with larger number of discovered issues tend to become
overwhelmed by the number of vulnerabilities to analyze and take actions. These
teams are more inclined to mark issues as false positive, intentional or to leave
them unfixed. The projects with smaller amount of issues discovered by the
SAST tool are more inclined to fix them because they have more time/issue to
fix or because of the reduced complexity of the code to fix and test the findings.

Analysis Based on Ignored Vulnerabilities. Our concern was on the unwill-
ingness of developers to act upon the suggestions of the SAST tool on changes
in the software code that shall improve security. We believe that the perceived
usefulness of the SAST tool is directly linked to the amount of issues that the
developers believe are important to fix. The high number of “ignored” issues
in the services is somehow alarming for the service. In the system, on the 4
years of the service, 5982 of the issues were marked as false positive, 5707 of the
issues were marked as intentional. 9886 of the false positive and intentional were
marked as “ignore”. Ignored in this case is defined as: developers classified the
issues as “False Positive” or “Intentional” and Action = “Ignore”.

From the analysis of the “ignored” issues, we noticed that developers tend
to ignore some types of issues were more than others. We then performed an
analysis on the ratio of ignored (false positives and intentional) issues for the top
10 vulnerability types in our database (Fig. 2). One specific type of vulnerability

Table 1. Averages for different project sizes.

Average lines of code Average issues discovered Average issues fixed

XSmall projects 39287 31.86 20.48

Small projects 501544 89.89 62.83

Medium projects 2655485 219.32 108.32

Large projects 10565673 492.95 340.36

166 M. Iovan and D. S. Cruzes

Fig. 2. Ratio of Ignored issues per Type.

reached to 61% of ignored issues and we decided to take a look further. The
service owner of SAST was not sure if this behavior is because of lack of awareness
on the risks and possible attacks that these vulnerabilities expose the systems
to, or because the tool is not performing well on the detection of vulnerabilities
for those types. We have recommended to create some awareness campaigns
regarding those types of vulnerabilities.

For Cross-site request forgery type, after discussing with the service owner,
we discovered that it was already known that that this SAST tool has problems
to identify such vulnerabilities, and provides high ratio of false positives. The
PST has previously given guidelines to the development teams to exclude this
type from the analysis during the build. Also the testing for such vulnerabilities
is provided by other security services.

4.1 Improving the SAST Service

The analysis done on the previous step helped us to identify different scenarios
and areas of the service that needs retrofitting. We have performed other analysis
using the collected data, and the definition of “done” on the analysis is not
always clear, but we decided that the saturation and the number of actions
we have found was enough for the analysis in this year. Based on the analysis
done before we brainstormed what possible options can increase the value of the
service and we drafted the retrofitting scenarios.

Next we will present some of the scenarios identified for each of the three
main categories:

– changes in the security program;
– changes on the security activities from the development teams;
– changes on the SAST service.

Changes in the Security Program. On the scenario suggested for the secu-
rity program in CompanyX, other stakeholders were involved in the process
because it affected other services. For example, one proposal was to change the

Data-Driven Improvement of SAST Service 167

security training to better fits the teams needs. For that we have created a top
10 list for each technology, list that can be used as input into developers train-
ing, while presenting the most common types of issues in the company. We also
created a list with types of vulnerability for each team. This way we can find
types of vulnerabilities that appears only in one or very few teams. Using such an
information the training can be tailored targeting a specific subject and specific
teams. Other scenarios were about changes we need to do on the security pro-
gram in order to mitigate deficiencies in the SAST service on detecting certain
vulnerabilities. Lastly, we added scenarios that impact (directly or indirectly)
other services like Software Composition Analysis, Manual Vulnerability Assess-
ment or Bug Bounty. Our proposition is that the service owners of those services
shall use this information for better planning in their services or for finding
more vulnerabilities using the following testing principle: “Use defect clustering,
as software problems tend to cluster around narrow areas or functions. By iden-
tifying and focusing on these clusters, testers can efficiently test the sensitive
areas while concurrently testing the remaining “non-sensitive” areas.”

Changes on the Development Teams. In these cases we needed to discuss
with specific teams to correct and/or verify some of the findings. For example, as
mentioned before, we discovered some deviations between the onboarding status
and the projects from the SAST servers. In such cases we verified with the teams
if those projects are still needed or what is the status from their point of view
and then correct either the onboarding page or the projects configuration. Other
scenarios included modification of the build pipeline to reduce the running time
or to better identify failures, or of the project configuration to better use the
SAST capabilities.

Changes on the SAST Service. The scenarios for the SAST service are
focusing on improving the well-functioning of the SAST as a service for the
software development teams. This includes automation of the onboarding process
or adding automatic monitoring of different performance indicators. As example,
one scenario is trying to improve the monitoring of the SAST usage therefore it
is needed to measure that the last snapshot for each part of the product is not
older than 30 days. This way we make sure that the code that is in production
is patched when new vulnerabilities are discovered.

After the full list of retrofitting scenarios was created, each scenario was
discussed with the service owner in order to understand the resources needed for
the retrofitting work, but also reviewed in order to understand its benefits and
risks.

4.2 Control

After discussion we decided which scenarios will bring benefits to the service and
the development teams, and then we started to implement them immediately. We

168 M. Iovan and D. S. Cruzes

Fig. 3. Security Retrofitting Analysis solution.

started with the deviations between the onboarding status and the projects from
the SAST servers, then we continued with some changes in the build template.

After implementing all the scenarios from the list we started improving the
automatic monitoring of SAST, by implementing some relevant graphs into the
Security Retrofitting Analysis solution (Fig. 3).

5 Discussion and Conclusions

The focus is improvement activities which should depend on the needs of the
service. This may include:

– fine-tuning the service - the ongoing day-to-day operation, either by lowering
the costs or for example creating a better image of the service;

– service innovation - the redesign of the service and the end-to-end processes
used, increasing productivity and lowering the maintenance needed;

– making the security program anti-fragile - releasing the stress of team mem-
bers and improving the serviceability.

Process improvement through DMAIC is a way to systematically identify the
areas that need changes in order to become more valuable for the development
teams and for the security program. As part of the service continuous improve-
ment this improvement process can be repeated every second year or when big
structural changes occur. In this case study we have identified improvement
opportunities to the SAST service in Visma. With the work done we have iden-
tified the following benefits to the service:

– Lowered cost of the service by reducing the number of projects on the server
which implicated lower costs on the maintenance and licenses;

– Better confidence/understanding of the service towards the stakeholders by
understanding the limitations and possibilities of the tools further;

– Increase the usability of the service - using this process and paying attention
to the way teams work we discover new ways of working and better ways of
supporting work, to help them work smarter;

Data-Driven Improvement of SAST Service 169

– Increasing productivity of the SAST tool usage by having focused awareness
trainings and by eliminating the vulnerability types that have too higher
percentage of false positives;

– Attracting more development teams to use the service - increasing the image
of the service and showing the benefits of using such a tool can help other
development teams decide to onboard on this service;

– Improved serviceability by improving how the service is provided to all stake-
holders.

As future work we will focus on measuring quantitatively the benefits of
the security retrofitting and run the process with other services in the security
program.

Acknowledgments. We would like to thank Visma and all the participants of the
Security process improvement.

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley, Boston (2004)

2. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices.
Prentice Hall, Upper Saddle River (2003)

3. Abril, P.S., Plant, R.: The patent holder’s dilemma: buy, sell, or troll? Commun.
ACM 50(1), 36–44 (2007). https://doi.org/10.1145/1188913.1188915

4. Oyetoyan, T.D., Milosheska, B., Grini, M., Cruzes, D.S.: Myths and facts about
static application security testing tools: an action research at telenor digital. In:
XP, pp. 86–103 (2018)

5. Imtiaz, N., Murphy, B., Williams, L.: How do developers act on static analysis
alerts? an empirical study of coverity usage. In: ISSRE, pp. 323–333 (2019)

6. Baca, D., Carlsson, B., Petersen, K., Lundberg, L.: Improving software security
with static automated code analysis in an industry setting. Softw. Pract. Exp.
43(3), 259–279 (2013)

7. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons
from building static analysis tools at google. Commun. ACM 61(4), 58–66 (2018)

8. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static analyses
at Facebook. Commun. ACM 62(8), 62–70 (2019)

9. Chess, B., McGraw, G.: Static analysis for security. IEEE Secur. Priv. 2(6), 76–79
(2004). https://doi.org/10.1109/MSP.2004.111

10. Austin, A., Williams, L.: One technique is not enough: a comparison of vulnera-
bility discovery techniques. In: ESEM, pp. 97–106 (2011)

11. Dukes, L.S., Yuan, X., Akowuah, F.: A case study on web application security
testing with tools and manual testing. In: 2013 Proceedings of IEEE Southeastcon,
pp. 1–6. IEEE (2013)

12. Satyanarayana, V., Sekhar, M.V.B.C.: Static analysis tool for detecting web appli-
cation vulnerabilities. Int. J. Modern Eng. Res. (IJMER) 1(1), 127–133 (2011)

13. Goseva-Popstojanova, K., Perhinschi, A.: On the capability of static code analysis
to detect security vulnerabilities. Inf. Softw. Technol. 68, 18–33 (2015)

https://doi.org/10.1145/1188913.1188915
https://doi.org/10.1109/MSP.2004.111

170 M. Iovan and D. S. Cruzes

14. Ma, Z., Cooper, P., Daly, D., Ledo, L.: Existing building retrofits: methodology
and state-of-the-art. Energy Build 55, 889–902 (2012). ISSN 0378–7788, https://
doi.org/10.1016/j.enbuild.2012.08.018

15. Heckman, S., Williams, L.: A systematic literature review of actionable alert iden-
tification techniques for automated static code analysis. Inf. Softw. Technol. 53(4),
363–387 (2011)

16. Cruzes, D.S., Johansen, E.A.: Building an ambidextrous software security initia-
tive, to appear in balancing agile and disciplined engineering and management
approaches for IT services and software products. In: Mora, M., Marx Gómez, J.,
O’Connor, R., Buchalcevova, A. (eds). IGI Global (2020)

17. Iovan, M., Cruzes, D.S., Johansen, E.A.: Empowerment of security engineers
through security chartering in Visma. In: XP 2020, Experience Report (2020).
https://www.agilealliance.org/wpcontent/uploads/2020/xxx

https://doi.org/10.1016/j.enbuild.2012.08.018
https://doi.org/10.1016/j.enbuild.2012.08.018
https://www.agilealliance.org/wpcontent/uploads/2020/xxx

Near Failure Analysis Using Dynamic
Behavioural Data

Masoumeh Taromirad(B) and Per Runeson

Lund University, 221 00 Lund, Sweden
{masoumeh.taromirad,per.runeson}@cs.lth.se

Abstract. Automated testing is a safeguard against software regres-
sion and provides huge benefits. However, it is yet a challenging subject.
Among others, there is a risk that the test cases are too specific, thus
making them inefficient. There are many forms of undesirable behaviour
that are compatible with a typical program’s specification, that how-
ever, harm users. An efficient test should provide most possible informa-
tion in relation to the resources spent. This paper introduces near fail-
ure analysis which complements testing activities by analysing dynamic
behavioural metrics (e.g., execution time) in addition to explicit out-
put values. The approach employs machine learning (ML) for classifying
the behaviour of a program as faulty or healthy based on dynamic data
gathered throughout its executions over time. An ML-based model is
designed and trained to predict whether or not an arbitrary version of
a program is at risk of failure. The very preliminary evaluation demon-
strates promising results for feasibility and effectiveness of near failure
analysis.

Keywords: Regression testing · Failure prediction · Dynamic metrics

1 Introduction

Automated testing (AT) is one of the cornerstones of agile software engineer-
ing, with its short development cycles. In continuous integration/deployment
(CI/CD) pipelines, AT is a safeguard against software regression due to side
effects, unintentional changes, or changes in the environment. To make testing
faster, cheaper and more reliable, it is desirable to automate as much of the
testing process as possible [3].

A risk of AT is that the typical test cases are too specific; only testing pairs
of input-output makes them ineffective. There are many forms of undesirable
program behaviour that are compatible with a typical program’s specification,
that however, impair users and/or are undesirable for developers, such as using
excessive computational resources or unnecessary complexity in a program [17].
An efficient test should provide most possible information in relation to the
resources spent.

This paper introduces near failure analysis (NFA) which complements testing
activities (and their outcome) by considering behavioural metrics (e.g., time
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 171–178, 2022.
https://doi.org/10.1007/978-3-031-21388-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_12&domain=pdf
http://orcid.org/0000-0002-0838-928X
http://orcid.org/0000-0003-2795-4851
https://doi.org/10.1007/978-3-031-21388-5_12

172 M. Taromirad and P. Runeson

and memory consumption) in addition to output values. In comparison to the
standard tests, where test cases include assertions against a specific output value
or condition, the approach considers implicit dynamic behavioural data and their
variation, additionally. The outcome of this analysis is not only a binary pass/fail,
but a pass/fail risk distribution. The proposal – inspired by near crash analysis
in traffic monitoring [6] – is expected to provide more information throughout
program executions.

The key idea is to employ machine learning to classify the behaviour of a pro-
gram under test (PUT), as Faulty or Healthy, considering dynamic data (e.g.,
execution time, memory consumption). Using the execution data gathered from
various faulty and healthy versions of a PUT, an ML-based model is designed
and trained to predict whether or not an arbitrary (and possibly new) version
of the PUT includes a defect. The prediction model is trained using a super-
vised learning classification technique. Tests executions are a potential source
of labeled behavioural data, and hence, we assume that enough labeled training
samples are available.

In addition to the aforementioned challenge, the proposed approach could
also contribute to the “test oracle problem”, i.e., the challenge of distinguish-
ing between the correct and incorrect behaviour of a program. Recent surveys
(e.g., [5,13]) show that automating the test oracle is still a challenging issue and
existing automated oracles are not widely applicable and are difficult to use in
practice. Our early experiment suggests that implicit behavioural data could be
an indication of the faulty or correct behaviour. Having the dynamic behavioural
model (pattern) of a program (w.r.t. various input values) would alleviate this
problem, since there is no need to know the exact output values for all the inputs.
In this context, when a program is executed with arbitrary inputs, for example
in regression testing (RT) or within operational environment, the behaviour of
the program can be analysed, regardless of the expected output values – that
are not specified or not available.

Through an early experiment of applying the proposed approach, within the
Math project from Defects4J repository [12], we found our approach effective and
applicable when a program incorporates substantial computation. In particular,
NFA is seemed to be useful for test case prioritisation. The results also show that
the implementation of the ML process provides acceptable accuracy (average of
95%) in predicting faulty behaviour.

2 Near Failure Analysis

We propose a supervised failure prediction framework that classifies the pro-
gram behaviour into two classes, namely Faulty and Healthy, based on dynamic
behavioural data gathered throughout its execution. Using dynamic data
(e.g., execution time) collected from various executions of different faulty and
healthy versions of a PUT, a machine learning-based model is designed and
trained to predict whether or not an arbitrary (and possibly new) version of the
PUT includes a defect. An overview of the proposed approach is presented in
Fig. 1.

Near Failure Analysis Using Dynamic Behavioural Data 173

Fig. 1. Overview of the proposed approach.

A supervised approach could usually produce acceptable detection results;
however, it requires enough labeled data. Tests executions are a potential source
of labeled behavioural data, and thus, at this stage, we assume that enough
labeled training samples (data correspondent to healthy and faulty versions) are
available.

Behavioural Data. The behavioural data represents the behaviour of a PUT,
w.r.t. a set of behavioural metrics (e.g., time, memory), throughout its exe-
cutions. It is demonstrated as a collection of tuple (Params, Bhvout, l) that
represents a single execution of the program, where

– Params is a map of values for the arguments and/or related parameters,
– Bhvout is a map of values of the behavioural metric(s), and
– l is the label for the program: faulty or healthy.

The Params could be either the immediate input parameters passed to the
program or other related parameters (e.g., global values) that involve in its
execution. Also, this map could be hierarchical in that the parameters have been
traced recursively to reach to primitive data types, i.e., the value of a parameter
might be a map itself. This makes the values useful within the context of this
work, for example a pointer to an array is not a meaningful value for learning
algorithms.

2.1 Data Preprocessing

Data preprocessing is an essential stage for the success of any machine learning
model. In almost all knowledge discovery tasks, this step takes the major part
of the overall development effort [9]

Shape and size of the input data vary widely, leading to a fundamental chal-
lenge when designing a machine learning model that accepts fixed length vectors

174 M. Taromirad and P. Runeson

representing a single execution. To address this, we developed DataPrep, a pro-
gram that prepares the input behavioural (raw) data for training. DataPrep
flattens the data, encodes values (e.g., values of parameters), and then transform
the variable-sized representations into fixed-length vectors.

Flattening and Vectorisation. The most preliminary task is to flatten the pro-
vided behavioural data through transforming the maps in the tuples, in par-
ticular the Params hierarchical map, into a flat representation. The resulting
representation may have different sizes, e.g., when a parameter in the Params
is a variable-length list. Therefore, the variable-sized sequences are also sum-
marised and transformed into fixed-length vectors, employing heuristics, such as
using the size of the list or the number of zeros (or negative values) in the list
rather than the original values.

Encoding. Values within each execution record provide useful indications for
classification. However, values – such as ints and strings – vary widely in shape
and format. Therefore, the values are encoded into a similar representation,
e.g., encode label-strings as numerical representations.

2.2 Prediction Model

In this phase, we perform the principal task of designing a model that trains
to classify a program as faulty or healthy regarding the given preprocessed
behavioural data (i.e., representing a set of executions of the program). The
model consists of three components that are trained and used jointly and end-to-
end: 1. CluCent that determines the clusters and their centroids with respect to
the values of Params, 2. EncoBe that encodes the behaviour of each version of
the program, w.r.t the identified centroids, into a single vector, called behaviour
trace, and finally, 3. Classict that accepts behaviour traces, and builds a model
that can predict whether a program is faulty or not.

Clustering. The values of the Params among all the input data (i.e., the input
domain of the program), are grouped into clusters such that the data samples
assigned to the same cluster are supposed to have similar (or close) values.
In order to have better results, K-Means++ [4] is used as the initialisation
scheme rather that the random initialisation. Note that this clustering is some-
how aligned with test input data partitioning and, hence, the number of test
cases for the program or input partitions are a promising, potential number for
clusters.

The main outcome of this task is the centroids of the clusters that are indexed
and then used as the reference throughout the later steps. The centroids are
represented as C = {c1, c2, ..., ck} where ci is the centroid of cluster i.

Encoding the Behaviour. Based on the previously identified centroids, the
behavioural data of each version of the PUT is summarized into a single trace
throughout the following steps:

Near Failure Analysis Using Dynamic Behavioural Data 175

1. The execution data are grouped with respect to the centroids, considering its
Params value.

2. For each group, the minimum and the maximum value of each behavioural
metric are determined (a group may have multiple executions), and assigned
to the group.

3. A single behaviour trace is generated by appending the label of the PUT
(faulty or healthy), the data corresponding to each and every cluster (i.e., clus-
ter’s ID, the min value, and the max values) together. The high-level structure
of a behaviour trace is illustrated in Fig. 2.

4. Finally, the behaviour trace is examined for missing clusters, in that for each
missing cluster a particular sequence of values, representing ’Not Available’
(e.g., (m,−1,−1) when the data for cluster m is unavailable), is inserted into
a proper position. In this way, all the behavioural traces have the same length.

Fig. 2. The structure of a behavioural trace, having k clusters and one behavioural
metric (Bhv1). The label indicates a faulty or healthy behaviour.

Classification and Prediction. Once the behaviour traces are generated, Random
Forest (RF) classification model [14] is employed; an RF classifier is trained over
the generated behaviour traces. The classifier can then predict if a given (unseen)
behaviour trace is faulty or healthy. Other classification models can also be used
that is left as future work.

3 Early Experimental Result

The feasibility and effectiveness of the architecture proposed was preliminary
investigated within the Math project from Defects4j, which provides the required
setup and data for our early/limited experiment.

Data Collection. For this experiment, we consider the timing behaviour in that
the time spent in a method w.r.t. different input values, were collected and
made available for the experiment. The behavioural data was collected through
running available test cases on different versions of the subject program. Using
tests provides the required knowledge to label the execution records.

A set of test cases, that relate to a selected method, were executed on about
120 (faulty and healthy) versions of the program. Additionally, a random num-
ber of versions of the program was selected for which the selected method was
executed with new arbitrary input values, providing a validation set of unseen
behaviour traces for further evaluation.

176 M. Taromirad and P. Runeson

Table 1. Experimental results of precision and recall using the validation set.

%Traces for test n estimator Precision Recall

15 50 0.86 1

20 50 0.86 0.86

15 100 0.87 0.93

20 100 0.93 0.94

Early Results. We applied our implementation on the experimental data, using
different parameters for configuration, e.g., size of traces for test, n estimator
in the RF classifier. The cross validation reported 95% on average for train-
ing accuracy, with an average standard deviation of 0.06. Also, the experiment
showed promising testing accuracy averaging to 95%. We additionally consid-
ered precision (the ratio of number of traces correctly classified as “faulty” to
the total number of traces labelled as “faulty”) and recall (the ratio of faulty
traces that were correctly identified) achieved by the model on the validation
set. We achieved acceptable precision and recall averaging to 88% and 93%,
respectively. Table 1 shows the early results. Nevertheless, more complex exper-
iments are required for a sound evaluation of the approach, e.g., how (much)
would NFA contribute and improve regression testing? Our early experiment
showed that NFA could provide a promising measure for test case prioritisation
by considering the behavioural data collected alongside testing other parts, e.g.,
executions predicated as faulty would guide the selection/prioritisation of the
next tests.

Feasibility and Applicability. We looked into different parts of the subject pro-
gram and investigated the applicability of our approach within each part. In par-
ticular, we looked for specific characteristics, given the designated behavioural
metric (i.e., execution time), that make the approach applicable and useful. We
also studied project-specific tasks, for example, in the preprocessing step. An
initial observation was that the proposed approach would work well if the PUT
shows distinguishable behaviour in terms of the given dynamic metrics. For
example, if the execution time is the target metric, then the timing behaviour
of a program should vary with respect to different inputs, in order to be able to
apply the proposed approach.

4 Related Work

Statistical analysis and machine learning techniques have been widely considered
and applied for addressing different testing challenges [8]. In particular, they
provide effective measures for understanding and specifying software behaviour
(i.e., the test oracle problem) using data gathered from a large set of test execu-
tions. ML-based approaches were presented for classifying program behaviours
using different types of data, such as frequency profile of single events in the

Near Failure Analysis Using Dynamic Behavioural Data 177

execution trace [7], traces of input and output [2], and dynamic execution trace
information including sequence of method invocations [18]. Neural networks were
also used for generating test oracles (e.g., [1,11,19]) that were however applied
to simple programs. The main difference between these works and our proposed
approach is that, in addition to explicit and typical data used in testing, we
consider implicit or indirect dynamic behavioural data.

Another relevant line of research is software defect prediction which predicts
defective code regions and, hence, can improve software testing. More recently,
defect prediction approaches extensively employ new and improved machine
learning based techniques (e.g., [16,20,21]), to automatically learn features from
the data extracted from source code, and then utilize these features to build
and train defect prediction models. In contrast, traditional techniques manually
design feature(s) or combination of features to effectively represent defects, and
then build a prediction model (e.g., [10]). While there are similarities between
these works and the proposed approach in this paper, our work basically differs
from them since it uses dynamic metrics rather than static software metrics,
e.g., McCabe features [15].

5 Conclusion

This paper introduced near failure analysis, alongside classical testing activi-
ties, which considers implicit dynamic behavioural data and their variation, in
addition to explicit output values. Using behavioural data, an ML-based predic-
tion model was designed that can predict whether or not an arbitrary version
of a program is at risk of failure. The very preliminary evaluation demonstrated
promising results for feasibility and effectiveness of near failure analysis. We are
working on more and complex experiments in addition to improving the learning
process and accordingly the implementation.

Acknowledgements. The work is funded by ELLIIT strategic research area (https://
elliit.se), project A19 Software Regression Testing with Near Failure Assertions.

References

1. Aggarwal, K.K., Singh, Y., Kaur, A., Sangwan, O.P.: A neural net based approach
to test oracle. SIGSOFT Softw. Eng. Notes 29(3), 1–6 (2004). https://doi.org/10.
1145/986710.986725

2. Almaghairbe, R., Roper, M.: Separating passing and failing test executions by
clustering anomalies. Softw. Qual. J. 25(3), 803–840 (2016). https://doi.org/10.
1007/s11219-016-9339-1

3. Ammann, P., Offutt, J.: Introduction to Software Testing, 2nd edn. Cambridge
University Press, Cambridge (2016)

4. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1027–1035. Society for Industrial and Applied Mathematics, USA (2007).
https://doi.org/10.1145/1283383.1283494

https://elliit.se
https://elliit.se
https://doi.org/10.1145/986710.986725
https://doi.org/10.1145/986710.986725
https://doi.org/10.1007/s11219-016-9339-1
https://doi.org/10.1007/s11219-016-9339-1
https://doi.org/10.1145/1283383.1283494

178 M. Taromirad and P. Runeson

5. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem in
software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015). https://
doi.org/10.1109/TSE.2014.2372785

6. Bornø Jensen, M., et al.: A framework for automated traffic safety analysis from
video using modern computer vision. In: Transportation Research Board Annual
Meeting (2019)

7. Bowring, J.F., Rehg, J.M., Harrold, M.J.: Active learning for automatic classifi-
cation of software behavior. SIGSOFT Softw. Eng. Notes 29(4), 195–205 (2004).
https://doi.org/10.1145/1013886.1007539

8. Briand, L.C.: Novel applications of machine learning in software testing. In: Pro-
ceedings of the 8th International Conference on Quality Software, pp. 3–10 (2008).
https://doi.org/10.1109/QSIC.2008.29

9. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in machine learning: a
new perspective. Neurocomputing 300, 70–79 (2018). https://doi.org/10.1016/j.
neucom.2017.11.077

10. Hassan, A.E.: Predicting faults using the complexity of code changes. In: Pro-
ceedings of the 31st International Conference on Software Engineering, pp. 78–88
(2009). https://doi.org/10.1109/ICSE.2009.5070510

11. Jin, H., Wang, Y., Chen, N.W., Gou, Z.J., Wang, S.: Artificial neural network for
automatic test oracles generation. In: Proceedings of the International Conference
on Computer Science and Software Engineering, vol. 2, pp. 727–730 (2008). https://
doi.org/10.1109/CSSE.2008.774

12. Just, R., Jalali, D., Ernst, M.D.: Defects4j: a database of existing faults to enable
controlled testing studies for java programs. In: Proceedings of the 2014 Inter-
national Symposium on Software Testing and Analysis, pp. 437–440. ACM, USA
(2014). https://doi.org/10.1145/2610384.2628055

13. Langdon, W.B., Yoo, S., Harman, M.: Inferring automatic test oracles. In: Pro-
ceedings of the 10th International Workshop on Search-Based Software Testing,
pp. 5–6 (2017). https://doi.org/10.1109/SBST.2017.1

14. Liaw, A., Wiener, M.: Classification and regression by random forest. R News 2(3),
18–22 (2002)

15. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE 2(4), 308–320
(1976)

16. Pradel, M., Sen, K.: Deepbugs: a learning approach to name-based bug detection.
Proc. ACM Program. Lang. 2(OOPSLA) (2018). https://doi.org/10.1145/3276517

17. Reichenbach, C.: Software ticks need no specifications. In: Proceedings of the
43rd International Conference on Software Engineering: New Ideas and Emerging
Results, pp. 61–65. IEEE Press (2021). https://doi.org/10.1109/ICSE-NIER52604.
2021.00021

18. Tsimpourlas, F., Rajan, A., Allamanis, M.: Supervised learning over test executions
as a test oracle. In: Proceedings of the 36th Annual ACM Symposium on Applied
Computing, pp. 1521–1531. ACM, USA (2021). https://doi.org/10.1145/3412841.
3442027

19. Vanmali, M., Last, M., Kandel, A.: Using a neural network in the software testing
process. Int. J. Intell. Syst. 17, 45–62 (2002). https://doi.org/10.1002/int.1002

20. Walunj, V., Gharibi, G., Alanazi, R., Lee, Y.: Defect prediction using deep learning
with network portrait divergence for software evolution. Empir. Softw. Eng. 27(5),
118 (2022). https://doi.org/10.1007/s10664-022-10147-0

21. Wang, S., Liu, T., Nam, J., Tan, L.: Deep semantic feature learning for software
defect prediction. IEEE Trans. Softw. Eng. 46(12), 1267–1293 (2020). https://doi.
org/10.1109/TSE.2018.2877612

https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1145/1013886.1007539
https://doi.org/10.1109/QSIC.2008.29
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1109/ICSE.2009.5070510
https://doi.org/10.1109/CSSE.2008.774
https://doi.org/10.1109/CSSE.2008.774
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/SBST.2017.1
https://doi.org/10.1145/3276517
https://doi.org/10.1109/ICSE-NIER52604.2021.00021
https://doi.org/10.1109/ICSE-NIER52604.2021.00021
https://doi.org/10.1145/3412841.3442027
https://doi.org/10.1145/3412841.3442027
https://doi.org/10.1002/int.1002
https://doi.org/10.1007/s10664-022-10147-0
https://doi.org/10.1109/TSE.2018.2877612
https://doi.org/10.1109/TSE.2018.2877612

Process Management

A Process Model of Product Strategy
Development: A Case of a B2B SaaS Product

Bogdan Moroz , Andrey Saltan(B) , and Sami Hyrynsalmi

LUT University, Lahti, Finland
mr.bogdan.moroz@gmail.com, {andrey.saltan,

sami.hyrynsalmi}@lut.fi

Abstract. A growing number of software companies nowadays offer their solu-
tions using the SaaS model. The model promises multiple business-related ben-
efits for these companies; however, existing software companies are forced to
re-develop products and reconsider product strategies to address all the aspects
of the new SaaS model. The existing literature provides a limited understand-
ing of how product strategies for newly productized SaaS solutions should be
developed. In this paper, we report the results of a longitudinal case study of a
Finnish B2B software company experiencing a transition towards the SaaS model
and developing the initial strategy for its newly productized SaaS solution. We
introduce a six-phase process model aligned with the ISPMA SPM framework.
Being implemented, the model created an initial shared understanding and vision
among stakeholders for their SaaS solution and provided guidance in developing
the required product strategy.

Keywords: Product strategy · Software-as-a-Service · Software industry ·
Business-to-Business · Productization · Software product management

1 Introduction

Inspired by the success of prominent Software-as-a-Service (SaaS) solutions offered by
ambitious startups and tech giants, a growing number of software companies seek to pro-
ductize their customer-specific software into SaaS solutions. This shift from customer-
specific software to standard software products, offered using the cloud-based service
model, calls for increased attention to software product management (SPM) [17]. How-
ever, quite often, the way processes and practices in companies should be reconsidered
is unclear, and companies struggle to cope with these challenges and cannot make the
transition coherent and systematic [13].

Software process improvement is defined as “understanding existing processes and
changing these processes to increase product quality and/or reduce costs and develop-
ment time” [15]. Companies look for process improvement approaches to accelerate
product development, improve quality, and reduce costs. However, literature indicates
that software companies often focus too much on project execution, technologies, and
features, while neglecting a sufficient understanding of markets, value, and products [5].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 181–200, 2022.
https://doi.org/10.1007/978-3-031-21388-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_13&domain=pdf
http://orcid.org/0000-0003-3136-4424
http://orcid.org/0000-0002-7921-986X
http://orcid.org/0000-0002-5073-3750
https://doi.org/10.1007/978-3-031-21388-5_13

182 B. Moroz et al.

As a result, products that were developed on time and within budget, but without proper
value and market awareness, may not be received as well as expected or may fail to
satisfy the customers [5].

SPM process improvement has received less focus in academic research than project
execution until recently [10].Maturitymatrices and competencemodels have been devel-
oped to gauge the maturity of various SPM processes and practices within companies.
An updated standardized product lifecycle with clear interfaces, milestones, and gov-
ernance, is identified among the success factors for implementing the product manager
role [5]. Core SPM activities with associated processes and practices can be divided into
two distinct groups: software product strategy and software product planning [9]. Activ-
ities in the software product strategy group are performed to develop and implement a
software product strategy, which is defined as a high-level plan that helps companies
achieve the vision for their products [11]. The purpose of developing a product strategy
is to determine the path to achieving a product vision that describes what the product will
be at the end of a certain strategic timeframe [9]. This is an essential step, describing the
value that the product will bring to the customers and the vendor. The product strategy
defines how the product should evolve over a certain timeframe (often 1 to 5 years, vary-
ing based on industry). Product planning converts the strategy into an executable plan
that a product team can follow day to day [9]. This study focuses on product strategy
practices and processes, omitting product planning activities, such as roadmapping and
setting milestones.

The SPM framework developed by the International Software Product Management
Association1 (ISPMA framework) consolidates multiple preceding frameworks and pro-
vides a holistic perspective on the product manager role [5, 10]. This framework was
employed as a foundation for the development of the proposed process model. The
ISPMA framework does not provide ready-made processes to its practitioners [10]. This
paper aims to address this gap and design a process that guides the development of a
comprehensive software product strategy at a company undergoing the productization
of customer-specific software into a B2B SaaS solution. To achieve this goal, the study
answers the following research questions:

RQ1:What process could be followed to develop an initial product strategy for a newly
productized SaaS solution?
RQ2: How do the B2B and SaaS contexts affect the product strategy development
process at the case company?

The rest of the paper is structured as follows. Section 2 provides the theoretical
background of the study. Section 3 describes the research approach employed. Section 4
introduces the case company and describes the proposed process model for the initial
product strategy development. Section 5 discusses the results of the study by providing
answers to the research questions. Section 6 concludes the paper.

1 https://ispma.org/framework/.

https://ispma.org/framework/

A Process Model of Product Strategy Development 183

2 Background

The transformation of software tailored to the needs of specific customers into a standard
software product is usually referred to as productization. Such transformation is driven
by recognizing similar needs and wishes of multiple customers [2]. Nowadays, producti-
zation is closely related to the cloud computing paradigm. Encouraged by the wide range
of benefits, companies try to productize their solutions into SaaS solutions – one of the
forms of cloud computing which is defined as “providing a standard software solution
to customers as a service over the Internet” [4, 13, 18]. The fast pace of technological
innovation forces product managers to make long-lasting and financially impactful deci-
sions about their products in the face of relative uncertainty. Having a clear strategy for
several years into the future provides a basis for making those decisions and aligns the
stakeholders involved in product development [9].

Several frameworks attempt to define elements of the product strategy, proposematu-
rity phases, and define the competencies needed [9–11]. These include the Scaled Agile
Framework (SAFe)2, the Pragmatic Framework3, Blackblot Product Manager’s Toolkit
(PMTK)4, the ISPMA framework, and the AIPMM framework5 [10] The frameworks
aim to give structure to the SPM discipline, categorize SPM activities and define the
responsibilities of software product managers [10]. Additionally, scholars and practi-
tioners offer various tools and techniques for different product strategy components [9,
11]. A comparison of several frameworks applicable to SPM revealed the ISPMA frame-
work to be themost balanced and purely focused on SPM, as opposed to addressing SPM
alongside other company functions [10]. The framework is described in literature as the
underlying knowledge area framework of the Software Product Management Body of
Knowledge (SPMBOK) [5].

Product strategy development is a continuous process that spans a product’s lifecycle
and consists of multiple activities. Defining a coherent process for product strategy activ-
ities can be challenging [9]. This leaves product managers charged with developing a
strategy for a new product in a perplexing position. They must develop a comprehensive
product strategy, considering multiple interrelated aspects, and work closely with Mar-
keting, Sales, and executive management [9]. Formally, according to the ISPMA SPM
framework, the product strategy should address the development or evolution of the fol-
lowing eight elements: (1) Positioning and Product Definition, (2) Delivery model and
Service strategy, (3) Sourcing, (4) Pricing, (5) Financial Management, (6) Ecosystem
management, (7) Legal and IPR management, (8) Performance and Risk management
[9].

2 https://scaledagile.com/what-is-safe/.
3 https://www.pragmaticinstitute.com/framework/.
4 https://www.blackblot.com/methodology.
5 https://aipmm.com.

https://scaledagile.com/what-is-safe/
https://www.pragmaticinstitute.com/framework/
https://www.blackblot.com/methodology
https://aipmm.com

184 B. Moroz et al.

3 Methodology

The research startedwith the awareness of a problem that became apparentwhileworking
with the case company. The company faced challenges in establishing a process for
product strategy development while undertaking the productization of customer-specific
software into B2B SaaS. The problem can be formulated as follows: “SPM is seen as a
continuous activity with many separate tasks, and no formalized process exists to guide
product managers in initial strategy development.” To propose a process model aimed
at supporting the company, we employed a mixed-method research design approach [1]
and combined a case study with design science research. This allowed us to analyze
the situation in a particular company and develop a design artifact that was successfully
adopted by it and could be used by other companies with the same or similar profiles.

Design science research is defined as “the scientific study and creation of artifacts
as they are developed and used by people with the goal of solving practical problems
of general interest” [7]. The desired outcome is not only a novel artifact itself, but also
knowledge about the artifact and its effects on its environment. We followed the design
science framework and guidelines proposed by Hevner et al. [6]. During the research
process, knowledge about the artifact is accumulated, including the influence of the B2B
SaaS context and the productization context on product strategy decisions.

A case study is an integral part of our research in all the main stages. The case study
can be classified as an exploratory single case study [12, 16] of a software company that
faces the challenge of developing a product strategy for a B2B SaaS product, which is
a productized version of a customer-specific software system. The required information
on the case was collected through a series of semi-structured interviews, open-ended
interviews, workshops, and surveys.

4 Process Model of Product Strategy Development

4.1 Case Description

The case company is a mid-sized Finnish company specializing in the development of
situational awareness solutions for chemical, biological, radiological, and nuclear recon-
naissance (CBRN), as well as environmental and industrial monitoring. The company
has extensive experience in delivering customized solutions for a wide variety of organi-
zations with different needs. The company’s focus nowadays is the cloud-based modular
software solution, Perception Cloud6.

The first version of Perception was offered as a standalone vehicle installation in
2016. The system was designed to be installed in a CBRN vehicle to provide awareness
to the operators inside. Themeasurements and status of the detectors were displayed on a
desktop clientUI, andvisual and audio alarmswere triggeredwhenCBRNmeasurements
exceeded certain thresholds.

6 For the sake of anonymity, we used a fabricated name for the product instead of the real one.

A Process Model of Product Strategy Development 185

In 2018, the company started a new vehicle project, with another shelter project on
the horizon. It became apparent that splitting the codebase for each new project would
not be sustainable long-term. Moreover, many completed features could be reused with
enhancements and customizations for the new projects. A new desktop client application
was created using a proprietary application model syntax. Using the syntax, it became
possible to modify the contents of the client by adding and removing panels, windows,
and components. Amodular backend architecture allowed adding and removing services
based on the project.

Another significant milestone was the creation of the Perception Go mobile app in
2019. The application allowed to pair portable CBRN detectors via Bluetooth and trans-
mit measurement data to the central Perception system in real-time. The desktop client
was enhanced to display the locations of smartphones running the app on a map and the
readings of CBRN detectors paired to the app. Perception Go was received enthusias-
tically in the CBRN industry. In 2021, the company developed a web-based version of
Perception for a customer. The project served as a learning experience for the upcom-
ing Perception Cloud, including developing new features and a better understanding of
customer and user needs.

4.2 Model Requirements

While the research started with the aim of solving a functional problem for the case
company, the proposed model can be useful to other software organizations wishing to
productize their customer-specific offerings and improve SPM practices.

The model itself is primarily a tool that is used to discuss critical decisions, consider
crucial details, elicit feedback from stakeholders, and formulate a shared and accepted
plan: “the final deliverable is not as valuable as the process you go through to write the
documentation” [3]. The following requirements have been identified for the process
model.

1. The model should provide direction to product managers in establishing a product
strategy.

2. The model should lead to the creation of a product strategy.
3. The resulting strategy should incorporate all eight elements of the product strategy

according to the ISPMA framework.
4. The resulting strategy should apply to a B2B SaaS software product.
5. The model should suggest effective methods and tools for strategy development.
6. The model should utilize company resources efficiently by ensuring that only the

necessary stakeholders are required to attend certain phases.
7. The resulting strategy should be documented in a single product strategy document,

which can be used to communicate the strategy across the organization.

186 B. Moroz et al.

With these requirements, the research aims to ensure that the resulting artifact is
helpful to the case company while remaining sufficiently generalizable and applicable
outside of the context of said company. Requirements 2, 4, 6, and 7 ensure that the
problems of the lack of strategy and limited resources are solved for the case company.
Requirements 1, 3, and 5 ensure that the artifact is developed according to the established
knowledge base and may provide guidance to SPM practitioners in companies of the
similar profile.

4.3 Model Structure

The proposed process model for initial product strategy development supporting the
productization of customer-specific software is depicted in Fig. 1. The boxes at the
center of the model are the eight elements of product strategy according to the ISPMA
framework. The bubbles around the boxes indicate the phases of the process model. The
dashed arrows from each bubble to the next indicate the order in which the phases should
be executed.

Fig. 1. Proposed process model of product strategy development

A Process Model of Product Strategy Development 187

Each bubble is linked to one or more elements of product strategy. Each bubble
and its arrows are color-coded to simplify the visual comprehension of the model. The
process model is described in more detail in Table 1. For each phase, the key questions
that need to be answered are specified, alongside the recommended tools and the strategy
elements impacted during the phase.

Table 1. Phases of the process model

Questions Tools Strategy elements

Phase 1: Collaborative Strategy Workshop

1. What is the motivation to create
the product? What positive
change will it bring?
2. Who are the target users? What
are the market segments?
3. What problem will the product
solve?
4. What is the product? What
makes it stand out?
5. How will the product benefit
the company? What are the
business goals?
6. Who are the competitors? What
are their strengths and
weaknesses?
7. How will the product be
monetized?
8. What are the main cost factors
in developing, marketing, and
selling the product?
9. How will the product be
marketed and sold? What
channels are needed to reach
customers?

Product Vision Board
Problem and position statement
template

Positioning and product definition
Sourcing
Financial management

Phase 2: Product definition refinement

1. What features will the product
include? What quality attributes
will the product possess?
2. How will the product compare
to the competition in terms of
functionality, user experience, and
quality?
3. Does the product offer some
feature or attribute that currently
does not exist in the market?

Blue Ocean Strategy Canvas
Blue Ocean
Eliminate-Reduce-Raise-Create
Grid

Positioning and product definition
Pricing

Phase 3: Architecture design

(continued)

188 B. Moroz et al.

Table 1. (continued)

Questions Tools Strategy elements

1. What is the defining technology
for the software product? What
technology enables our
competitive edge and market
differentiation over time?
2. What is the offering
architecture? Meaning, what are
the separately priced components
of the product?
3. What is the tailorability
architecture? Meaning:
a. How configurable do we want
the software to be? What
parameters are configurable?
b. How composable do we want
the software to be? What
components can be added or
removed?
c. How customizable do we want
the software to be?
4. What is our desired place in the
software ecosystem?
a. What organizations could we
partner with?
b. What external systems could
we integrate? Could we provide a
way for third parties to integrate
into our software?
5. What is the business
architecture?
a. What is the domain model of
the new software?
b. What business processes need
to be created to support the new
product?

UML Domain Model
BPMN business process models

Positioning and product definition
Delivery model and service
strategy
Ecosystem management
Pricing
Sourcing

Phase 4: Financial discussion

1. Is there any reason to choose
cost-based or competitor-based
pricing over value-based pricing?
2. What is the upper pricing
bound? What is the maximum
value the product has for
customers?
3. What is the lower pricing
bound? What are the fixed and
variable costs for the product?
4. Are there any reasons to charge
less than the maximum value?
5. What will the pricing structure
be for the product? What
combination of freemium,
consumption-based, and tiered
pricing can the product have? Is a
perpetual license an option?

Accion pricing framework Pricing
Financial management

(continued)

A Process Model of Product Strategy Development 189

Table 1. (continued)

Questions Tools Strategy elements

Phase 5: Legal review

1. Contracts. Who is responsible
for formulating service contracts
in the organization? What are the
terms of the service-level
agreement (SLA)? Does the
organization have templates for
such SLAs? Can any existing
SLAs be reused?
2. IPR protection. How will the
company protect the intellectual
property rights related to the
product? Does the company have
patents or trademarks that apply
to the product? Should the
company obtain new trademarks
or patents for the product?
3. Open-source. What
open-source components may be
used when developing and
running the software? What are
the distribution licenses for those
components? Are there any
restrictions or caveats?
4. Data protection. Who is
responsible for formulating the
privacy policy within the
organization? What are the terms
of the policy? Does the
organization have templates for
such policies? Can any existing
policies be reused?

Checklist of legal aspects to
review

Legal and IPR management

Phase 6: KPI selection and Risk analysis

1. What are the business goals of
the company? How can they be
measured? What targets should
we set for those goals?
2. What financial, customer,
product, process, and people KPIs
should we track to achieve the
business goals? How should those
KPIs be measured?
3. What elements of the overall
product strategy are we least
certain about?

Balanced Product Scorecard
(BSC),
“Digital Red Dot Game”

Performance and Risk
management

4.4 Model Implementation

The proposed process model was implemented at the case company during the period
between April and July 2022. Table 2 summarizes strategy development activities per-
formed at the case company according to the model. The product manager participated
in every session and is therefore not mentioned explicitly in the participants column.

190 B. Moroz et al.

Table 2. Model implementation schedule at the case company

Phase Date Participants

Collaborative Strategy Workshop April 27th, 2022 Chief Operating Officer, Chief
Technical Officer, Project Manager,
Sales Representative

Product definition refinement May 23rd, 2022 Project Manager and Sales
Representative

Architecture design – session 1 June 1st, 2022 CTO and Software Engineer

Architecture design – session 2 June 7th, 2022 CTO and Software Engineer

Financial discussion July 7th, 2022 Project Manager and Sales
Representative

Legal review – data protection
discussion

July 11th, 2022 Data Protection Officer

Legal review – open-source check-up July 23rd, 2022 Done independently

Legal review - Contract discussion &
IPR protection check-up

July 29th, 2022 Chief Operating Officer

KPI selection & risk analysis July 24th, 2022 Chief Operating Officer, Chief
Technical Officer, Project Manager,
Sales Representative

Phase 1. The first step of the proposed process model was the collaborative strategy
workshop. The COO and CTO of the company, as well as a project manager and a sales
representative, were present in the meeting with the product managers. The discussion
was structured using the Product Vision Board tool [11]. After each section of the board
was introduced, participantswere requested to share their ideas related to the section. The
sections of the board were followed in this order: target group, needs, product, business
goals, competitors, revenue streams, cost factors, and channels. After the meeting, the
product managers summarized the discussion using a Problem and position statement
template (see Table 3).

Table 3. Problem and position statement for Perception Cloud

Problem statement

The problem of Lack of complete vision of the operational picture during a CBRN
incident

Affects Civil defense, emergency services, and first responders

The impact of which is Increased delay in response to incidents and increased harm to the
wellbeing and lives of victims

(continued)

A Process Model of Product Strategy Development 191

Table 3. (continued)

Problem statement

A successful solution Unifies data from multiple types of CBRN detectors to provide a
comprehensive operational picture to decision makers, reducing the
time necessary to make informed decisions that save lives

Position statement

For Civil defense members, emergency services, first responders, as well
as border control and customs officials

Who Respond to a CBRN incident to reduce the hazard and avoid harm to
the population in the area of incident

The Perception Cloud solution

That Provides a centralized interface to view the collected measurements
of a variety of CBRN detection devices

Unlike The current approach of manually collecting and correlating data
from multiple CBRN detection devices

Our product Reduces response time to CBRN incidents by supporting informed
decision-making based on a comprehensive operational picture

The participants agreed that the main business goal for the product is to unlock a new
revenue source. The product will also simplify installation compared to an on-premises
solution, thus reducing some of the customer acquisition costs. Several possible competi-
tor products were identified. The revenue streamwill come from recurring subscriptions.
It was agreed that the product should be modular, with extra features available at extra
cost. It is possible that for certain customers, the software will have to be extended with
specific features and integrations, and the development of such custom modules can
be billed separately as a professional software service. The main cost factor will be the
development effort. Outsourcing customer support was agreed upon as a possibility. The
company will utilize existing channels to reach customers, including expos, magazine
ads, and private demonstrations.

Phase 2. The next phase of the process model involved product definition refinement.
A project manager and a sales representative were present in the meeting with the
product manager. The purpose of the phase is to advance the product definition. The
new product is compared to existing market offerings to determine what features or
attributes can be created, improved, reduced, or eliminated compared to competitor
offerings. The phase is structured around the Strategy Canvas and the ERRC Grid from
the Blue Ocean toolkit [8]. In preparation for this phase, the product manager studied
competitor products to determine the features and quality attributes offered. The product
manager also considered the existing customer-specific Perception system. Themanager
made a list of competing factors and added them to a Strategy Canvas template.

The product manager started the meeting by introducing the Strategy Canvas tool.
The groupwent through each category and estimated the industry offering and the desired

192 B. Moroz et al.

product offering. The product manager asked the participants whether any relevant cat-
egories were missing from the list and whether some could be eliminated from the new
product or offered at a reduced level. The product manager also elicited possible new
categories. During themeeting, several categories were eliminated, and several new ones
were added (see Fig. 2). The red line in Fig. 2 represents the current value offered to
buyers in the market space – the industry value curve [8, 11]. As established during the
collaborative strategy workshop, the core purpose of the Perception Cloud product is to
offer a comprehensive operational picture to enable informed decision-making quickly.
Therefore, features related to real-time measurement communication and displaying
were prioritized over features concerning the post-factum analysis of the data.

Fig. 2. Strategy Canvas at the end of the meeting. (Color figure online)

After the meeting, the product manager sorted the factors by their score from low to
high. This combines the Strategy Canvas with the ERRC grid (see Fig. 3). The top right
corner in Fig. 3 indicates the potential Blue Ocean for the product – competing factors
that are offered by the product at an excellent level and not offered by the industry at
all. For Perception Cloud, one factor was identified that is currently not offered by the
competition at all, indicating a new opportunity.

Fig. 3. Strategy Canvas combined with ERRC Grid

A Process Model of Product Strategy Development 193

Phase 3. During this phase, the initial architecture design was done. The phase is
split into two meetings where the offering architecture, business architecture, and tai-
lorability architecture are discussed. The place of the product in software ecosystems is
touched upon. The CTO and a software engineer participated in both meetings with the
product manager. In the first meeting, overall architecture considerations, the offering
architecture, and the place in the software ecosystem were discussed.

It was decided that the Perception Cloud product must be configurable and compos-
able to have broad appeal in the target market. Customers should be able to configure,
at minimum, the alarm limits for their detection equipment. Composability should be a
major focus. The product shall support multiple separately priced plugins. Competing
factors from the product definition refinement phase were discussed as possible plug-
ins. Unique customer requests could be addressed by developing custom plugins. The
company would seek to generalize such plugins to reuse them with other customers.

The company also wants to grow its role within the ecosystems of CBRN detector
manufacturers and software providers. The company could make it easier for willing
manufacturers to integrate devices into Perception Cloud by providing open APIs. APIs
could also be created for third parties to make plugins, but this open-source plugin
ecosystem will not be implemented in the early versions. At the end of the meeting, the
overall architecture and technical constraints were discussed, with several open-source
technologies agreed upon.

Based on this preliminary discussion, the product manager prepared a domain model
for the new product and relevant business process models in BPMN. These models were
presented in the second meeting of the phase to elicit further discussion and refine the
strategy.

Phase 4. This phase was devoted to the financial discussion. The Accion pricing frame-
work was followed7. Four questions about pricing needed to be answered as part of the
discussion: (1) What is the upper bound? (2) What is the lower bound? (3) What are the
reasons to charge less than the maximum value? (4) How to structure the pricing model
as a compromise between the upper and lower bounds?

Based on the discussion, the product manager prepared a mockup of a pricing page
for the new SaaS product. This page was presented to the stakeholders for feedback
and approval. Based on the feedback, a second draft of the pricing page was made and
accepted as the initial pricing structure for the product.

Phase 5. The legal review phase of the process model consists of discussing four legal
aspects: contracts, IPRprotection, open source, anddata protection.Theproductmanager
held a one-on-one discussionwith aData ProtectionOfficer (DPO). The productmanager
started the meeting by explaining the strategy so far, primarily focusing on aspects that
may involve personal data processing. The productmanager asked theDPOwhat existing
templates could be reused andwhat documents needed to be created to ensure compliance
with GDPR. The DPO proposed documenting all types of personal data processed in
Perception Cloud, data retention policies, and transfers outside EEA. A Data Processing
Agreement needs to be created and appended to the service-level agreement for the
product.

7 https://content.accion.org/wp-content/uploads/2018/08/Pricing-Your-SaaS-Product.pdf.

https://content.accion.org/wp-content/uploads/2018/08/Pricing-Your-SaaS-Product.pdf

194 B. Moroz et al.

The open-source check-up was carried out independently. The product manager
checked the licenses of open-source components selected for the product during the
architecture design phase and found no restrictions. The contract and IPR protection
discussions were conducted together, in a one-on-one meeting with the COO. It was
agreed that the company should purchase trademarks for the product. However, obtaining
patents was deemed unnecessary at this point. Obtaining a patent comes at a high cost,
which increases with the geographical scope of the patent. Both trademarks and patents
can be purchased via the Finnish Patent and Registration Office.

Phase 6. In the final phase, KPIs were selected. The product manager used the Balanced
Product Scorecard, as well as a list of sample KPIs. The selected KPIs were added to
the product strategy document and sent to the stakeholders from executive management,
Development, and Sales. The participantswere asked to comment on the product strategy
overall, including the KPIs. The participants were also requested to participate in a
“Digital Red Dot Game” and mark three statements or strategy elements that they were
least confident about. The “Red Dot Game” is a risk identification and prioritization
method where each stakeholder is asked to place a total of three red dots next to the
segments or statements in the strategy that they are least sure about [11].

The product strategy documentwas reviewed and approvedby the selected stakehold-
ers. The KPI selection was also approved, but an important issue was raised regarding
the selected targets for the business goals. Increasing annual revenue by 5% to 10% was
deemed unrealistic. Now, the annual revenue of the company is tied to the number of
contracts obtained for professional software services and the delivery of these services,
which varies each year. The goal for the new SaaS is to provide a steady and growing
source of revenue, but comparing it to the overall company revenue will not provide
a meaningful measure of success. A long-term average of the annual Perception rev-
enue was suggested as one possible point of comparison, but no decision was made.
Selecting the proper target for the financial success of the product thus requires further
consideration.

4.5 Model Evaluation

The case study described above could be considered a weak form of evaluation, suitable
to present the artifact convincingly and vividly [7]. All phases of the model implemen-
tation were documented, including the meeting minutes and observations of participant
behaviour. This documentation was used to develop coherent product strategy that meets
all the requirements defined in Sect. 4.2. Additionally, a survey was used to collect feed-
back from the process model implementation participants. Collected feedback and the
successfully developed strategy indicate the overall validity of the proposed process
model.

For the 1st requirement, the process model guided the product manager in creating
the product strategy. However, the process model was designed with the case company
in mind. Because of this, there is a risk of “over-fitting” the model to the case company’s
processes and organizational structure. Independent implementation of the process could
test whether the model is generalizable and illustrate how the model can be generalized
further.

A Process Model of Product Strategy Development 195

Regarding the 2nd requirement, the proposed processmodel produced an initial prod-
uct strategy for the case company. The strategy was reviewed and approved by company
stakeholders, creating alignment around the vision and priorities for the product. The
strategy solidified and developed the productization ideas that had been suggested by
various company stakeholders over the years but remained unrealized until now.

For the 3rd requirement, the strategy covered all the elements of product strategy as
classified by the ISPMA framework.

To address the 4th and the 5th requirements, the recommendations in the process
model were based on the academic and practitioner literature aimed at B2B SaaS. The
process model produced a product strategy for the B2B SaaS product. Most steps and
suggested tools also apply to licensed software products and hybrid models. Pricing and
legal aspects, however, are tied to the SaaS nature of the product. The legal discussion
was focused on the contract contents specific to SaaS (i.e., SLA) and the data protection
concepts applicable for delivering a service over a network (i.e., the data controller and
the data processor). An elaboration of the financial discussion and legal review phases
can make the process model more applicable to products other than SaaS.

The Accion framework – the tool selected for the pricing discussion – helped quickly
explain the SaaS pricing concepts and best practices to the stakeholders that were not
used to managing pricing decisions. The tool helped select the value metrics and the
price structure for the new product. The participants, however, could not determine an
upper bound that could be charged to customers. The BSC tool alone resulted in a non-
systematic KPI selection process, and the paper recommends a further study of rigorous
step-by-step KPI selection methodologies. Nonetheless, the Accion framework and the
BSC produced a useful starting point for further strategy work and illustrated which
areas are well-understood and which need to be developed further.

Considering the 6th requirement, the selection of attendees for each phase was not
fully systematic and relied on a tacit knowledge of the situation in the company. A
generic stakeholder selection approach can complement the processmodel. For example,
the Power-Interest Grid can be employed to determine the most influential participants
[11]. RACI matrices can also be developed to map the responsibilities of the available
stakeholders. The recommendations can also be adjusted depending on the size of the
organization.

For the 7th requirement, the strategy was defined in a single document shared with
stakeholders for feedback. The process model does not enforce a template for this doc-
ument, allowing each product manager to define it in a way that fits their company
best.

A questionnaire was created and shared with participants in the strategy develop-
ment process. All 6 stakeholders who participated in the strategy development process
responded to the questionnaire. All respondents agreed or strongly agreed that their
understanding of the product improved after participating in the sessions (4 agreed, 2
strongly agreed). All 6 respondents agreed that their expertise and contributions influ-
enced the results of the sessions, and they feel more confident in the product’s success
after attending the sessions (5 agreed, 1 strongly agreed).None of the participants thought
the sessions they attended were too long (4 disagreed, 2 strongly disagreed), nor felt they
had nothing to contribute (5 disagreed, 1 strongly disagreed).

196 B. Moroz et al.

In the open feedback section, the process model was commended as “good work”,
even “excellent work”, and a “well arranged, well thought and professional take on the
process”. One respondent was glad that a strategy for the product was finally created:
“This has beenmuch-needed clarification of Perception product strategy for SaaS service
provision”. Another respondent praised the “well prepared sessions with clear agenda”.
Finally, one of the respondents liked the way the materials were prepared, and the way
the product manager had a vision of how to move the discussion forward, especially
given the fact that most participants did not prepare before attending the meetings.

The collected feedback shows that the participants better understood the product and
its strategy after participating in the sessions, contributed with their expertise, and did
not waste their time. Moreover, those who shared open feedback indicated they were
happy with the resulting strategy.

5 Discussion

The prime goal of this studywas to design a process that develops a comprehensive prod-
uct strategy for a company undergoing the productization of customer-specific software
into B2B SaaS. This aim is reflected in the two research questions being addressed.

5.1 What Process Could be Followed to Develop an Initial Product Strategy
for a Newly Productized SaaS Solution?

The proposed process model for initial product strategy development is grounded in
the established ISPMA SPM framework and consists of six phases: (1) Collaborative
strategy workshop, (2) Product definition refinement, (3) Architecture design, (4) Finan-
cial discussion, (5) Legal review, and (6) KPI selection and Risk analysis. During each
phase, one or several elements of the product strategy were discussed and refined. The
results were combined into a product strategy document, which was evaluated by the
key stakeholders in the company.

The evaluation showed the model to be an efficient tool for product strategy devel-
opment within the productization context of the case company. It resulted in a detailed
product strategy that aligned multiple company stakeholders regarding the direction of
the new product. The participants of the process felt their time and expertise were used
efficiently, and the company approved the resulting product strategy document.

However, a review by an SPM expert revealed limitations in the applicability of the
process model for brand new B2B SaaS product development outside the productization
context. At the case company, there was an initial understanding of the market require-
ment, which would be satisfied by the new product, and a general idea of the features that
the product would offer. This helped follow the strategy development linearly. Brand
new product development calls for iterative approaches involving extensive learning and
prototyping, and the model could be enhanced by emphasizing this need for iteration.

Especially during the product definition refinement phase, it can be helpful for prod-
uct managers to have some experience in the product or market domain. This helps
evaluate competing products and existing software to create a list of competing factors
for the industry value curve. However, this is not a requirement, and most phases can

A Process Model of Product Strategy Development 197

be executed without deep domain experience. Incidentally, it would be natural to expect
that a manager assigned to a product in a certain domain has some relevant experience
in the area, or the means to acquire it.

The process model suggested and demonstrated the usefulness of several tools that
SPMand software business practitioners recommended, includingProductVisionBoard,
Strategy Canvas, Accion Pricing Framework, Balanced Product Scorecard, and “Digital
Red Dot Game.” The study also suggested software engineering and business modelling
tools – the domain model and BPMN business process models – to be used in the context
of SPM. Testing the applicability of practitioner tools allows the incorporation of new
tools into the knowledge base if they prove to be efficient. The demonstrated usefulness
of these tools in an academic context contributes to developing a reliable SPM toolkit.

5.2 How do the B2B and SaaS Contexts Affect the Product Strategy Development
Process at the Case Company?

The primary influence of theB2BandSaaS contexts is on the deliverymodel, tailorability
architecture, pricing, legal, and performance management aspects of the product strat-
egy. The impact on the delivery model is self-evident, since SaaS is a specific delivery
model that requires the product to be offered on demand over a network, supporting
scalability and multi-tenancy. The B2B SaaS context calls for the tailorability architec-
ture to incorporate configurability and composability of the software. In the B2B area,
customers often require customization to specific business needs, but the multi-tenant
SaaS model does not allow to freely customize the software for one customer without
impacting others. Companies customizing their SaaS products for customers that request
it embark on a dangerous route that might negate the benefits of the SaaS delivery model
and lead to isolated codebases for each customer. Focusing on a composable architec-
ture and giving the customer configuration options to personalize their experience is the
recommended approach for B2B SaaS vendors.

SaaS pricing is a complex area of research. At least 13 pricing frameworks can be
identified, with sometimes confusing recommendations [14]. Regardless of the specific
framework, the pricing model for SaaS products is subscription-based – companies pay
for the right to use the software on a recurring basis. The subscription fee incorporates
all or most product-related services, including maintenance, customer support, and data
storage. The pricing approach recommended for all types of software, including B2B
SaaS, is value-based, not market-based or cost-based [9]. In certain cases (e.g., when
entering a mature market or aiming to undercut competitors), it is still necessary to
understand the price offered by the competitors. In the B2B area this can be a challenge,
as some vendors ask potential clients to contact their own sales departments to check
the price.

In legal management, the B2B SaaS context determines the type of contract offered
to customers and the data protection measures that need to be taken. A SaaS contract
can be signed with individual customers but is often provided in the form of standard
terms and conditions. The contract includes an SLA, which may clarify the functional
scope, availability commitment, backup policies, and vendor liability should the terms be
breached. Advanced data protection regulation, such as GDPR, also imposes restrictions
on B2B SaaS software vendors, who host the server infrastructure where personal data

198 B. Moroz et al.

may be stored and processed. In GDPR terms, the B2B SaaS vendor can make a Data
Processing Agreement with customers, which describes the types of data processed and
the legal basis for processing the data. As countries worldwide follow in the footsteps of
GDPR, all B2B SaaS vendors must understand their regional data protection regulations.

In the performance management area, the process model recommends a balanced
approach to KPI selection – considering the financial, customer, product and process,
and people perspectives. However, most of the KPIs selected at the case company are
focused on revenue, customer lifetime value, and monitoring customer activity to ensure
retention and decrease the churn rate, another influence of the B2B SaaS context.

6 Conclusions

The paper proposes a process model for initial product strategy development for newly
productized SaaS solutions. The proposed model consists of the following six phases:
(1) Collaborative strategy workshop, (2) Product definition refinement, (3) Architec-
ture design, (4) Financial discussion, (5) Legal review, and (6) KPI selection and Risk
analysis. During each phase, one or several elements of software product strategy are
developed and refined. The process model was implemented at a Finnish B2B software
company, which is productizing its customer-specific system into a B2B SaaS solution.
Following the steps of the proposed model allowed the company to develop an initial
software product strategy for the SaaS solution and establish a shared understanding and
an alignment between company stakeholders. The case company adopted the developed
initial product strategy; various strategy elements will be revisited when more informa-
tion becomes available and certain decisions change. The successful implementation of
the process model at the case company calls for further testing of the model at other
companies undergoing productization.

This study implies that the process model may provide prescriptive knowledge for
developing initial product strategies for B2B SaaS, at least in the context of producti-
zation. This context implies that a company may know what the product should be and
what the market is, based on experience in providing professional software services to
that market. Product managers may use the model to introduce SPM practices in their
organizations, which can be unaware of the state-of-the-art SPM practices that would
benefit them immensely. The model proposed in this study could act as a template, and
the described implementation of the model at the case company could serve as an exam-
ple of its application. Following the process model, product managers can produce a
strategy that addresses, in some capacity, all the product strategy knowledge areas, with
no relevant aspects being overlooked during strategy design.

The process model was developed with the case company and its productized SaaS
solution in mind, which might affect its generalization. The linear structure of the pro-
posed model worked for the case company, which had an initial understanding of the
market for the product and the functionality it may offer in the SaaS version. However,
it is a limitation preventing the use of the model for new product development outside
of the productization context. In the cases when the product and the market are entirely
unknown at the beginning of the process, it is necessary to iterate and experiment, rapidly
moving back and forth across the process and executing strategy design activities in a

A Process Model of Product Strategy Development 199

different order and in an ad hoc fashion. A possible future modification of the model that
emphasizes iteration could make it more applicable for brand new product development
outside the productization context.

Another limitation of the process is that it addresses some of the elements of product
strategy to a lesser extent. In particular, the area of financial management is limited to the
business model’s revenue sources and cost factors. A business plan or cost management
aspects are not yet addressed. The study calls for further development and testing of
the process model and the continuous refinement of its phases. In the sphere of pricing
and financial management, cross-disciplinary researchwith scholars of management and
finance could further advance the model. A comprehensive toolkit for product strategy
development can also be created.

References

1. Anguera, M.T., Blanco-Villaseñor, A., Losada, J.L., Sánchez-Algarra, P., Onwuegbuzie, A.J.:
Revisiting the difference between mixed methods and multimethods: Is it all in the name?
Qual. Quant. 52(6), 2757–2770 (2018). https://doi.org/10.1007/s11135-018-0700-2

2. Artz, P., van de Weerd, I., Brinkkemper, S., Fieggen, J.: Productization: transforming from
developing customer-specific software to product software. In: Tyrväinen, P., Jansen, S.,
Cusumano, M.A. (eds.) ICSOB 2010. LNBIP, vol. 51, pp. 90–102. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13633-7_8

3. Bavaro, J., McDowell, G.L.: Cracking the PM career: the skills, frameworks, and practices
to become a great product manager. CareerCup (2021)

4. Buxmann, P., et al.: The Software Industry: Economic Principles, Strategies, Perspectives.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31510-7

5. Ebert, C., Brinkkemper, S.: Software product management – an industry evaluation. J. Syst.
Softw. 95, 10–18 (2014)

6. Bichler, M.: Design science in information systems research. Wirtschaftsinformatik 48(2),
133–135 (2006). https://doi.org/10.1007/s11576-006-0028-8

7. Johannesson, P., Perjons, E.: An Introduction to Design Science. Springer, Heidelberg (2021).
https://doi.org/10.1007/978-3-030-78132-3

8. Kim, W., Mauborgne, R.: Blue ocean strategy, expanded edition: how to create uncontested
market space and make the competition irrelevant (2014)

9. Kittlaus, H.-B.: Software Product Management: The ISPMA®-Compliant Study Guide and
Handbook. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-662-65116-2

10. Paajoki, A.: Best practices for and benefits from implementing ISPMA’s SPM framework.
University of Jyväskylä (2020)

11. Pichler, R.: Strategize: product strategy and product roadmap practices for the digital age
(2016)

12. Runeson, P., et al.: Case Study Research in Software Engineering: Guidelines and Examples.
John Wiley & Sons, Inc, Hoboken (2012)

13. Saltan, A., Seffah, A.: Engineering and business aspects of SaaS model adoption: insights
from a mapping study. In: CEUR Workshop Proceedings (2018)

14. Saltan, A., Smolander, K.: Bridging the state-of-the-art and the state-of-the-practice of SaaS
pricing: a multivocal literature review. Inf Softw Technol. 133, 106510 (2021). https://doi.
org/10.1016/j.infsof.2021.106510

15. Sommerville, I.: Software Engineering. Pearson Education Limited, Boston (2015)
16. Yin, R.: Case study research: design and methods (2009)

https://doi.org/10.1007/s11135-018-0700-2
https://doi.org/10.1007/978-3-642-13633-7_8
https://doi.org/10.1007/978-3-642-31510-7
https://doi.org/10.1007/s11576-006-0028-8
https://doi.org/10.1007/978-3-030-78132-3
https://doi.org/10.1007/978-3-662-65116-2
https://doi.org/10.1016/j.infsof.2021.106510

200 B. Moroz et al.

17. Yrjönkoski, T.: How to support transformation from on-premise products to SaaS?: position
paper for future research. In: Proceedings of International Workshop on Software- intensive
Business: Start-ups, Ecosystems and Platforms, pp. 144–157 (2018)

18. Yrjönkoski, T., Systä, K.: Productization levels towards whole product in SaaS business.
In: Proceedings of the 2nd ACM SIGSOFT International Workshop on Software-Intensive
Business: Start-ups, Platforms, and Ecosystems, pp. 42–47 (2019)

Communication Skills Requirements of Junior
Software Engineers − Analysis of Job Ads

Anu Niva(B) and Jouni Markkula

Empirical Software Engineering in Software, Systems and Services (M3S), University of Oulu,
90570 Oulu, Finland

anu.niva@oulu.fi

Abstract. Software engineering (SE) profession requires various technical and
non-technical skills. The skills required are influenced by the changes in the field,
industry, and global trends. The changes are also reflected in the recruitment.
To understand the current situation and expectations from jobseekers, this study
investigates how language, intercultural, and communication skills are presented
in the job ads applicable to junior software engineers. The study is based on job ads
published in the Vacancies job seeking service maintained by Public Employment
and Business Service in Finland. Data contained 166 job ads of which 60% were
published in Finnish and 40% in English. Data analysis was based on content and
thematic analysis. Based on the job ads, language, both Finnish and English, and
communication skills were largely presented and required from junior software
engineers, but intercultural skills and multiculturalism were almost missing. The
job ads described a multifaceted, multidisciplinary communication environment
where junior software engineers work. Moreover, Finnish SE labor markets have
needs for fluent Finnish and English speakers; Finnish SE working environment
is almost bilingual in practice. Intercultural aspects of communication were not
generally visible. The peculiarities of intercultural communication are either not
understood or not been aware of in designing the job ads. Moreover, the language
of the ad indicates the needs and awareness. The job ads written in English high-
light English skills, present Finnish skills mainly as an advantage, and emphasize
communication and intercultural skills.

Keywords: Software engineering · Junior software engineer · Job ads · Skill
requirements · Language proficiency · Communication ·Multiculturalism

1 Introduction

Software engineering (SE) profession requires various technical and non-technical
knowledge and skills. Those skills are expected from the jobseekers when they are
applying for jobs and hired by companies. The knowledge and skills should be taught,
learned, and practiced in SE education.

SE discipline is international, and very often SE work is conducted in international
teams. English is the de facto language. In many countries, such as in Finland, significant

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 201–216, 2022.
https://doi.org/10.1007/978-3-031-21388-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_14&domain=pdf
http://orcid.org/0000-0002-6461-4752
http://orcid.org/0000-0003-1075-5303
https://doi.org/10.1007/978-3-031-21388-5_14

202 A. Niva and J. Markkula

part of employees is non-Finnish, and foreign SE professionals are needed and required,
also due to skilled labor shortage.

In addition to the technical knowledge and skills, also other non-technical skills
are essential in SE. These skills have been characterized in SWEBOK V3.0 [1] that
contains knowledge areas significant to SE professionals. Professional Practice is one of
the knowledge areas and contains Communication Skills. Non-technical skills are often
referred as “soft skills”.

To understand the current situation what expectations SE companies and other orga-
nizations have for language, intercultural, and communication skills and what skills
jobseekers should possess and demonstrate when looking for a job, and have acquired
during education, job ads targeted for junior software engineers were studied.

This study is based on online job ads applicable to junior software engineers. The job
ads present skills and knowledge areas that are desired and required from graduates and
other novice software engineers and what kind of communicative working environment
these junior software engineers are hired for. This paper, especially, aims to specify the
content and scope of the necessary language, intercultural, and communication skills
required from junior software engineers.

As the SE working environment and its requirements are changing, there is a need to
understand the current skill requirements set for junior software engineers and increase
general understanding of the nature of communicative environmental factors considered
relevant in SE organizations in present day. This is especially relevant from the perspec-
tive of graduates and other novice software engineers seeking and recruited to open SE
jobs. Better understanding of the current communication skills requirements can also be
utilized in revising and improving SE education.

The rest of the paper is organized as follows. Section 2 reviews related work on
language, intercultural, and communication skills relevant to SE as well as skill iden-
tification based on job ads. Section 3 describes the research questions, data collection
process, anddata analysis. Section 4presents the results of the study. InSect. 5, the results
obtained are discussed and compared with those found in previous studies. Section 6
discusses validity issues, and Sect. 7 concludes this article and gives an outline of future
work.

2 Related Work

To succeed at work, a SE professional needs various language, intercultural, and com-
munication skills. Studying skill requirements is possible using job ads and skill count,
a skill identification method, to increase the understanding of the nature of essential
communication skills.

2.1 SE Professional Communication Skills

Software engineers’ work, characterized in SWEBOK [1], contains different software-
related practices from software construction and processes to software quality, eco-
nomics, and other foundations. Dealing with communication-related issues, SWEBOK
highlights that SE professionals must possess skills to be able to work with others,

Communication Skills Requirements of Junior Software Engineers 203

both internally in teams and with customers and other stakeholders also in multidisci-
plinary environments. SWEBOK also highlights team members’ tolerance, and rules
and their dependence on societal norms. Moreover, pure communication skills enable
clear understanding between a software engineer and customers, supervisors, cowork-
ers, and suppliers. Effective communication covers face-to-face meetings and written
communication such as documentation, emails, and collaboration tools. [1] Software
engineers are required a variety of skills and knowledge to succeed in the field.

The role of soft skills has been emphasized, for instance in SWEBOS [2] that high-
lighted that soft skills are equally important as technical knowledge, because software is
developed in teams and software engineers need to interact with each other and various
stakeholders. SWEBOS highlights issues such as cooperation, willingness to communi-
cate even across disciplinary boundaries, presenting ideas, and respect. [2] Furthermore,
even if technical skills can be regarded as a prerequisite in IT industry, soft skills can
bring commercial benefits: soft skills enable faster staff integration and happier, more
productive teams. Moreover, soft skills are vital in creating relationships and building
customer trust. IT industry calls for communication and interpersonal skills, and team-
work [3] which belong also to the most valued soft skills in SE along with analytic &
problem-solving, commitment & responsibility, and eagerness to learn [4].

English Skills. English is used as a lingua franca in ICT and very often English is the
main or one of the working languages in software companies. The importance of English
proficiency appears generally in the industry of IT and Computer Services [5]: 73% of
the employers in countries or territories where English is not an official language, stated
that English is significant for their organization. Reading was the most important skill,
followed by speaking, listening, and writing.

The importance of English proficiency is, naturally, emphasized when moving from
a domestic environment to a more international environment i.e. when changing from a
native language to a foreign language. Proficiency presupposes the understanding and
use of English of a professionally oriented domain to a necessary level [6]. Despite the
official working language(s), also other languages can be used in various contexts.

Intercultural Skills. While working together with practitioners of different cultural
origins, a software engineer needs intercultural skills,where intercultural communication
is regarded as interaction with people from different cultural backgrounds [7]. Cultural
sensitivity plays a role at the workplace, along with linguistic matters [8].

Cultural sensitivity is significant when people from different cultural backgrounds
collaborate. Business and social etiquette, meeting protocols, formality and rituals, ori-
entation to time, communication style, working methods, and decision-making process
are good examples demonstrating cultural differences that can be faced in international
SE. Moreover, the actions influenced by cross-cultural matters can be carried out both
online and onsite via emails and online meetings, as well as in face-to-face meetings.
[9] Culture is an omnipresent part of any communication activity [10].

Communication Skills. A software engineer needs communication skills that are
essential for personal but also for company success [11]. From the perspective of an

204 A. Niva and J. Markkula

organization, an employee needs organizational communication skills enabling interac-
tionwith a larger, external environment. Interpersonal communication skills are essential
when two or more people exchange thoughts in face-to-face contexts. [12] These skills
are significant for software engineers, who collaborate with people within and outside of
their teams. Software engineers collaborate mostly with other software engineers, both
on their team and other teams, but collaboration rates can also be high with engineering
and project managers as well as scientists outside of the team and operations specialists
of business and service operations. [13] Software developers can spend even 45% of
their time collaborating with their colleagues [14].

Communication can, in fact, be regarded as one of the critical success factors for soft-
ware projects. Failure in communication can prevent a team from achieving progress in
a project. Communication as a success factor covers project communication, leadership,
relationship between users and staff, ambiguity reduction, and stability maximization.
The centrality of communication becomes evident because communication factors have
impacts on other success factors such as team, technical, organizational, environmen-
tal, and product and project management. Moreover, the success of the project can
depend on more elementary tasks such as user and customer involvement, documen-
tation, team capability and competence, teamwork, selection of the right project team,
personnel recruitment, progress meetings, project review, feedback, and well-defined
project requirements. [15] Software development productivity can be extended by skills
and competences, team cohesion, collaboration among team members, ease of commu-
nication, work environment regarding collaborative work and software processes, and
stakeholder participation [16].

A software engineer’s communication toolbox covers a broad range of interpersonal,
professional, and team communication skills. Vital skills in SE could contain communi-
cation design, explaining, discussions, receiving communication, sharing information,
nonverbal communication, usage of forms and tools, and presentations [17] as well as
questioning, reinforcement, self-disclosure, listening, humor and laughter, and persua-
sion [18]. A software engineer’s “career success is affected by the ability to consistently
provide oral and written communication effectively and on time” [1]. Also, other studies
have stressed the importance of written and verbal communication [19].

Communication is a significant part of collaboration. In fact, communication is one
of the six facets in teamwork quality, covering the frequency of communication or time
spent on communication, ways of formal and informal communication, directness of
communication between team members, and openness in information sharing [20].

2.2 Skill Identification in Job Ads

“A job posting, also known as a job ad, is an announcement that informs people that a
certain job position is available. This announcement is written, generally in an engaging
tone, and describes the job position. It has a title and a description. The description
provides details about the position, including skill requirements. “[21].

Skill count is one of four methods identified for skill identification from job ads. It
is regarded as the most reliable and the most popular method for skill identification and
is based on manual reading. Job ads are labelled and tagged manually with 0/1, to count

Communication Skills Requirements of Junior Software Engineers 205

the skills for statistical analysis. Skill counts can be based on skill bases using a defined
list of skills, or alternatively, skill count methods can be used without skill bases relying
on expert judgments. Other skill identification methods comprise topic modelling, skill
embedding, and machine learning techniques. [21].

Skill identification can be based on three approaches. Skills can be identified as
single words or multi-word phrases, skills expressed in sentences, and, thirdly, as their
combinations. These methods can be used for many purposes such as skill extraction and
job market analysis, curricula development, skill mismatch and alignment, competitive
intelligence and talent search, and skill demand prediction. [21].

Various skill identification methods have been used before to identify in-demand
job roles [3, 22, 23] but also knowledge and skills. Knowledge and skills required by
software development industry including technical and non-technical skills revealed
that communication skills were the most often demanded topic. Also, teamwork skills
were significant along other identified topics: education, experience, technical skills, and
knowledge. [22]A corresponding study on SE labormarket revealed that communication
skills are the most demanded soft skill, followed by teamwork, management skills,
writing skills, leadership, and problem solving [24]. The results from similar studies
[23, 25, 26] regarding communication-related topics were collected to Table 1. It is,
however, important to notice that the skill bases were different in various studies.

Table 1. Skills identified on the job ads by their appearance.

Year (field) 2017 (RE)
[26]

2018 (SD)
[23]

2013 (SE)
[25]

%

Communication
skills

56 31 13

Interpersonal
skills

8 15

English skills 41 36 65

Local native
language

65 4

Other languages 9

As Table 1 shows, there are considerable variations in rates, for instance in com-
munication and local native skills. Identified communication skills requirements varied
between 28% and 56%, including interpersonal skills. Local native skills were required
only in the RE study [26] by 65%. English skills’ appearance varied from 36% to 65%.

Job ads are different and the number of references to non-technical skills can vary.
Based on the previous studies, it seems that soft skills play a significant role in job ads:
soft skills were mentioned in 72% [25] or 86% of the job ads [26]. Moreover, about 60%
of the employers were looking for two or more soft skills [3].

206 A. Niva and J. Markkula

3 Methodology

This study aims to explore junior software engineers’ employability-related language,
intercultural, and communication skills requirements in SE. The study is reviewing the
skills sought by companies based on the job ads. The ads reveal aspects of the employers,
workplaces, and positions aswell as needs, skill requirements, andworking environment.
The job ads describe the relevant issues employers consider important as well as indicate
what kind of working environment the jobseekers are hired for. The ads are regarded to
describe the requirements set for junior software engineers in job seeking.

3.1 Goals and Research Questions

For the purpose to investigate how language, intercultural, and communication skills are
presented in the job ads applicable to junior software engineers, the following research
questions (RQ) were formulated:

1. What language, intercultural, and communication skills are required from a junior
software engineer?

2. How is the communicative working environment characterized?

These research questions belong partly together, providing both quantitative and
qualitative views on the studied skill areas. Whereas RQ1 focuses mainly quantita-
tively on the skill requirements of all the studied skill areas, RQ2 concentrates more
on qualitative working environment descriptions of communication and collaboration
aspects.

3.2 Data Collection

Data for this study has been collected from the job ads published either in Finnish or in
English in the TE Offices’ Vacancies job seeking service maintained by Public Employ-
ment and Business Service in Finland during 27.1.-11.3.2022. Job ads were searched by
various Finnish and English keywords referring to SE positions: software engineer, soft-
ware developer, software designer, back-end developer, front-end developer, full stack
developer, and web developer as well as their Finnish counterparts, considering subtle
differences in their spelling.

The applicability of the job ad to this study was proved by reading. All the job ads
outside the field of SE were excluded. Also, web developers who only create content for
websites, without SE-related practices, were excluded.

The main inclusion criterion contained the requirement of having a job title listed
above. At this phase, the job titles with developer, engineer or designer endings specified
with a different technical prefixwithout the term ‘software’, ‘back-end’, ‘front-end’, ‘full
stack’, or ‘web’ were disregarded.

Next, each job ad was inspected by reading, and thus, according to the second-level
criteria, a position had to be permanent, or harnessed with a possibility of permanence,
and applicable to junior software engineers. All the senior and expert level job ads were
excluded, either based on the expert or senior term in the job title or secondly, based on

Communication Skills Requirements of Junior Software Engineers 207

a clearly specified requirement in the job description that the job was directed for more
experienced jobseekers, either having at least three years’ work experience or otherwise
expert-level competence. Based on the inclusion criterion, a position is applicable to a
junior if it is applicable to a jobseeker with work experience less than three years. The
difficulty of the job position was not judged based on the presented job tasks for the
inclusion purposes.

Lastly, all the summer job and trainee positions were excluded, as well as the SE
positions overseas. Also, identical copies of the ads, published by the same employer,
were excluded.

3.3 Data Analysis

The analysis of 166 job ads was based on content and thematic analysis. All the job ads
were read and analyzed thoroughly two to four times for coding purposes.Manual coding
was based on linguistic, cultural, and communicative elements, arising from both the
skill requirements and working environment descriptions. The first rounds of analysis
were conducted during the data collection process.

The codes covered the language of the ad, job title, skill requirements and work-
ing environmental descriptions for languages, multiculturalism, communication, and
collaboration issues. The coding was conducted for two purposes: to enable skill iden-
tification and calculation of relative proportions and to uncover working environmental
issues. Skill identification was based on judgments and manual labeling. The skills were
counted, and statistical content analysis was performed, similarly to other calculations
of relative proportions.

Skill identification was based on exact matches of skills in terms of exact names
of the skill, the alternate labels, or aliases of the skills. The skill requirements were
described as single words, multi-word phrases, and sentences. Importantly, this study
separated skill requirements from the working environment descriptions, and only clear
requirements were counted as requirements for the job. Judgments were also based on
the location of the phrase in the job ad in relation to other requirements. Often, skill
requirements were given as a list.

Generally, the analysis relied on skill identification and calculation of relative pro-
portions with the support of qualitative descriptions. In addition to percentages, the study
aimed to describe communicative working environment junior software engineers are
hired for.

The conclusions drawn are based on the occurrences of the skill requirements and
working environment descriptions in the ads. If an issue is mentioned in the job ad, then
it is regarded as important for the job. All the findings, classifications, and comparisons
made in the study are based on the occurrences of the issues. On the other hand, if an
issue is omitted, it is not assumed to be insignificant for the job.

Data analysis was based on content and thematic analysis. The codingwas conducted
using NVivo, based on codes and case classifications. Later, data was exported to MS
Excel, by copying code references and crosstab query results, to enable, first, analysis of
the contents of the themes, and second, a statistical analysis using IBM SPSS Statistics.
Originally the data collected for this study is bilingual. For reporting purposes, the job
titles and extracts from the job ads written in Finnish were translated into English.

208 A. Niva and J. Markkula

4 Research Results

Data chosen for this study contains 166 SE-related job ads published in Finland of
which 60% were written in Finnish and 40% were written in English. Of the ads written
in Finnish (n = 99), 33 had an English job title and 3 both English and Finnish titles.
Correspondingly, 1 of the ads written in English (n= 67) had a Finnish job title and 4 job
ads contained both Finnish and English titles. The job ads comprised various software
engineer professional titles, as shown in Table 2.

Table 2. Job titles (n = 166)

Job title %

Software Developer, Software Engineer,
Software Designer

60

Junior Frontend, Backend, Full Stack, Software,
Web Developer

13

Full Stack Developer 8

Frontend Developer 7

Web Developer 4

Backend Developer 4

Front-end/Back-End/Full Stack Developer
(combinations)

3

Total 100

Most of the ads (60%) were looking for various software developers, engineers, and
designers. The term ‘Junior’ was included in 13% of the job titles. Otherwise, the job
titles contained a variety of different frontend, backend, full stack, and web developers.

4.1 Language Skills

Language skills requirements were presented in the job ads as clear demands, but also
as the needs described more specifically. Along with clear language skills requirements,
also the language of the job ad hints language needs: 40% of the ads were written in
English.

Of all the job ads, 59% were looking for software engineers possessing English and
42%Finnish skills.Moreover, 4% of the ads contained requirements for other languages:
4 referred to Swedish, another domestic language in Finland, 2 to German, and 1 to
multilingualism in general. Table 3 shows what kind of language skills combinations
were presented in the job ads.

As Table 3 shows, employers’ language skills requirements were mainly split in
three main trends. Whereas one third of the employers (30%) required both English
and Finnish skills, almost one third (26%) required only English, and lastly, one third

Communication Skills Requirements of Junior Software Engineers 209

(31%) required no language skills at all. Additionally, the requirement of Finnish skills
occurred rarely on its own. Eventually, 69% of the job ads were looking for at least one
language skill.

Table 3. Language skills requirements (n = 166)

Skill %

Both English skills and Finnish skills 30

Only English skills 26

Only Finnish skills 8

English, Finnish, and other language skills 3

Only other language or multilingualism 1

No language skills requirements 31

Total 100

The requirements for English skills were typically presented as list items in the
job ads, as follows: “Fluency in English”, “Excellent written and spoken communica-
tion skills in English”, or “Full professional proficiency in English”. Rather often, the
requirement of English was specified, and connected to written (32%), verbal (31%), or
communication skills (19%). Moreover, 62% of the job ads demanding English skills
required fluency or excellent skill level. Sometimes, the specified requirement was con-
nected to the situations where English is necessary such as English as a working lan-
guage, test documents written in English, or need for technical English. Here, 4 of the
ads described that English is used as a working language.

Finnish skills were required similarly to English, despite that 23%of the ads demand-
ing Finnish skills described that Finnish skills are seen as an advantage, not mandatory
for the job, as seen in the following extracts: “Finnish language skills are seen as an
advantage” or “Fluent in either Finnish or English”. Especially, the job ads written in
English who demanded Finnish skills stated that proficiency in Finnish is not a pre-
requisite for the job, but a nice bonus, plus, or an advantage. In fact, almost three fourths
(71%) of the job ads written in English considered demanded Finnish skills as an advan-
tage, hinting that the job ads written in English seem partly to be targeted for non-Finnish
speaking jobseekers. In Finnish, this was not expressed in the same way: only 1 job ad
written in Finnish described Finnish skills as an asset. Of the job ads demanding Finnish
skills, 54% demanded fluent or excellent skill level.

Considering the different language skills requirements, 2 job ads demanded flu-
ency either in Finnish or English, in addition to that one job ad presented that some of
the projects require fluent Finnish, unlike most projects; then, fluent English would be
enough. The requirement of Finnish skills in a few job ads was established on the use
of Finnish as a working language with customers.

Language Skills Requirements by the Language of the Job Ad. Presuming that the
language of the job ad indicates language skills requirements, Finnish job markets have

210 A. Niva and J. Markkula

needs for both Finnish-speaking and English-speaking software engineers. The main
emphasis based on the language of the ad seems to be in the Finnish language, because
60% of the job ads were published in Finnish. On the other hand, a high rate of the job
ads published in English (40%) indicates a rather significant role of the English language
in the Finnish job markets.

Secondly, also clearly presented language skills requirements indicate language
needs. The impact of the language of the job ad on requirements is presented in Fig. 1.

49%

51%

30%

72%

0% 20% 40% 60% 80%

Finnish skills required

English skills required
Job ad written in
English (n=67)
Job ad written in
Finnish (n=97)

Fig. 1. Impact of the language of the job ad on language skills requirements

As Fig. 1 shows, the job ads written in both languages required more English than
Finnish skills even though the difference between languages is clear. Of the job ads
written in English, even 72% demanded English skills and 30% Finnish skills, whereas
51% of the job ads written in Finnish demanded English and 49% Finnish skills. The job
ads written in English required noticeably more English than Finnish, in contrast to the
ads written in Finnish whose requirements for English and Finnish were almost equal.

This figure reveals that the language of the job ad is associated with language skills
requirements. English skills are required relatively more by the ads written in English
and Finnish required more by the ads written in Finnish. Eventually, 75% of the ads
written in English and 65% of the ads written in Finnish required at least one language
skill. The job ads written in English required more language skills than the ads written
in Finnish.

4.2 Intercultural Skills

The role of intercultural skills in the job ads was assessed both by skill requirements
and working environmental descriptions, in terms of demands for intercultural skills and
descriptions of multiculturalism.

First, intercultural skills were referred in 4 of 166 job ads (2%), including require-
ments that a jobseeker is expected to demonstrate the “ability to work in Finnish and
international networks” or must be “well-suited for an international work environment”.
Only 1 of the job ads contained a clear requirement for intercultural communication
skills: “We expect you to be a professional − who is comfortable in communicating
with different people with different backgrounds and cultures.” Three of these four job
ads demanding intercultural skills were written in English.

Secondly, multiculturalism appeared in 7% of the job ads, according to working
environment descriptions. Only 4 job ads described their workplace as “a multicultural

Communication Skills Requirements of Junior Software Engineers 211

organization”, “an international, diverse, and sociable workplace”, or a diverse commu-
nity. These job ads described how they value or aim to promote diversity, or provide
“equal opportunities regardless of national origin”, and they do not “discriminate on the
basis of race, religion, color, or national origin”. A job ad referred to “the right mix of
people with diverse backgrounds, personalities, skills, and perspectives” by striving that
“people of all backgrounds are treated equally, respected, and valued for who they are.”
Some job ads described that practices and methods used in projects vary by extremely
diverse clients.

4.3 Communication Skills

Communication skills were already referred tangentially in company with language
and intercultural skills requirements. As examined separately, communication issues
appeared in many ways in the job ads. Skills requirements are presented in Table 4.

Table 4. Communication skills requirements (n = 166)

Skill %

Communication skills 24

People/Social skills 8

Documentation skills 7

Interaction skills 4

Reporting skills 2

Of the job ads, 24% demanded communication skills, most of which were defined
by a level such as good, great, or excellent. Moreover, some job ads specified demands
for documentation (7%) and reporting (2%) skills, as well as customer and end user
communication skills − also with non-technical persons, ability to bring up own view-
points, receive feedback from experts, and courage to ask for help. Interaction skills
were separately required by 4% of the job ads. Communication skills requirements were
presented more by ads written in English (36%) than ads written in Finnish (16%).

People or social skills were demanded by 8% of the job ads of which one fourth
referred directly to people or social skills. Other job ads described various characteristics
a jobseeker should have such as outgoingness, caringness, outspokenness, and kindness,
in addition to that some ads were just looking for nice persons and chaps.

The job ads contained a plenty of communication-related issues when the atten-
tion was shifted from skill requirements to working environmental descriptions. Based
on these descriptions, a software engineer must cope with rather diverse communica-
tion situations at work. The job ads elucidate how software engineers are encouraged to
share thoughts, opinions, and viewpoints, suggest solutions, participate in decision mak-
ing, influence, and ask for help. More specifically software engineers need to innovate,
brainstorm, discuss, share information and expertise, guide others, handle problems, and
receive feedback.

212 A. Niva and J. Markkula

Software engineers seem to ‘work alongside customers’ or closely with end users,
but also with industrial leaders, manufacturers, technology partners, subcontractors,
suppliers, and authorities as well as other internal customers and stakeholders. Software
engineers’ work includes encounters with rather diverse people occupying various roles,
hinting at the diversity of communication situations in the working environment.

The investigation of communication skills raised the viewpoint of interrelatedness
between communication and collaboration/teamwork. Based on the job ads, a soft-
ware engineer collaborates closely with different professionals, such as product owners,
Scrum Masters, team leads, customers and other developers in addition to different sys-
tem analysts, developers, testers, application specialists, DevOps engineers, engineering
leads, designers, hardware engineers, architects, UI/UX designers, security and network
experts, project managers, quality assurance, R & D, product management, business
operations, production, sales, marketing, service managers, graphics professionals, con-
tent creators, founders, and other experts. Collaboration with multidisciplinary actors
set additional challenges for communication skills.

5 Discussion

This job ad-based study focused on junior software engineers’ language, intercultural,
and communication skills requirements, regarding differences based on the choice of
the language of the job ad. The study aimed at exploring what skills employers present
in the job ads indicating the skills demanded from the junior software engineers. The
attention was also drawn to communicative working environment to describe what kind
of working environment junior software engineers are hired for.

Qualitative data analysis using both content and thematic analysis for the purposes of
relative proportions and qualitative descriptions turned out to be a good choice. Percent-
ages, supported by working environment descriptions, offered a comprehensive view on
the studied issues.

5.1 RQ1: What Language, Intercultural, and Communication Skills are
Required from a Junior Software Engineer?

Regarding the role English plays in the global settings, this study confirms that English
plays a significant role in SE and in Finnish SE labor markets. In addition to that 40%
of the ads were written in English and that 36% of the ads written in Finnish have an
English job title, English skills were mentioned as a requirement for the job in 59% of
the job ads. This result seems to be in line with previous studies, 41% in [26], 36% in
[23], and 65% in [25]. Rather often (62%) these demands for English were specified
with the demand of fluency or the excellent skill level.

Local native language skills (Finnish) were required by almost half of the ads (42%),
deviating from 65% in RE [26]. Although it seems that Finnish skills are significant, a
remarkable part of these Finnish skills requirements, especially in the job ads written in
English, regarded Finnish skills as an advantage, not as a requirement for the job, indicat-
ing the position to be open also for international jobseekers. Otherwise, the significance
of Finnish skills appears in the job ads of which 60% were written in Finnish.

Communication Skills Requirements of Junior Software Engineers 213

Intercultural skills requirements were almost missing. Surprisingly, only 2% of the
job ads demanded intercultural skills, although the English language and its clear role in
the ads could be seen as a reference to more intercultural working environment. It seems
that awareness of the specificity of intercultural skills in the workplace is either rather
low or that job ads just neglect intercultural skills. Previous job ad studies disregarded
intercultural skills requirements − perhaps because they were not presented.

The greatest variation occurred in the ways how communication skills requirements
were presented in the job ads. Communication skills were required but the need and the
way how they were presented dispersed considerably. Communication (24%), documen-
tation (7%), interaction (4%), and reporting (2%) skill requirements were extended by a
set of specific skills. In the light of figures, this result corresponds the previous studies,
13% in [25] and 56% in [26].

This study shows that language and communication skills requirements are rea-
sonably presented in the job ads, but intercultural skills requirements are almost
missing.

5.2 RQ2: How is the Communicative Working Environment Characterized?

The job ads present SE working environment as multidisciplinary where junior software
engineers communicate and collaborate with numerous parties, with team members,
customers, and other stakeholders. The working environment requires a jobseeker to
master a multifaceted variety of diverse communication situations. These numerous
communicative situations− including, for instance, information sharing, decision mak-
ing, brainstorming, discussing, and guidance − pose challenges for junior software
engineers and their skill acquisition. Communication environment seems to be similar
to [17]. This study confirms that software engineers deal with rather diverse people with
whom they communicate and cooperate [13].

Multicultural aspect was almost disregarded in working environment descriptions.
Only a minor part (7%) of the job ads referred to a multicultural working environment.
These sparse descriptions referred either to a multicultural or diverse workplace, or
respect for others regardless of origin.

High skill requirements for English and the number of job ads published in English
implies that proficiency in English is significant and English is used for communication
at work. Moreover, communication and multicultural aspects were emphasized in the
ads published in English. It seems that the employer who writes a job ad in English is
more aware of language, communication, and intercultural issues.

6 Validity Discussion

Data collection for this study took place on TE Offices’ Vacancies online service that
can still be regarded as one of the useful recruitment channels in Finland. Although job
change can take place via other channels, too, and all open positions cannot be analyzed,
the data source can be expected to provide relatively unbiased view of open job positions
in Finland. The study could be replicated in other countries.

214 A. Niva and J. Markkula

This study paid special attention to the selection of data. To reduce the dependence
of the choice of the ad on the researcher, clear inclusion and exclusion criteria were
created and applied. The inclusion was confirmed by thorough consideration of criteria.

Although analysis is based on free-form job descriptions different in length, con-
tent, and style, the language used in the job ads is primarily clear and concise. Despite
that requirements are described in many ways, the information given should produce
the same meaning for everyone. Special attention was drawn to the difference between
skills requirements and working environment descriptions. The requirements specify
what skills are expected from software engineers whereas descriptions of working envi-
ronment describe where software engineers work. These two approaches support each
other. Coding was conducted carefully and confirmed by re-reading by the same person.

The reasonable number of the job ads, 166, enabled both quantitative content anal-
ysis for skill identification and qualitative thematic analysis for working environment
descriptions. The analysis was based on the job ads written in Finnish and in English.
The extracts of the job ads written in Finnish were translated into English for reporting
purposes. A special attention was paid on subtle differences in some of the concepts and
translations from Finnish into English due to linguistic differences. The extracts were
chosen with care, to preserve the original message.

The study relies on the job ads used to investigate the requirements set for junior
software engineers. The results are based on the occurrences of the issues in the job
ads even if the absence does not make an issue insignificant for the job. The job ads
enable interpretations from many perspectives such as employers, workplace needs, job
positions, and skill requirements, albeit jobseekers’ perspective is the most significant.

The results can be regarded valid in Finland and could be generalized to the countries
having rather similar linguistic and cultural environment. Generalization to English-
speaking countries or the countries having remarkably greater multiculturalism and
foreign population is controversial. Finnish working environment is characterized by
the difficult Finnish language and relatively small proportion of foreign population.

7 Conclusions and Future Research Work

This study focused on junior software engineers’ language, intercultural, and commu-
nication skills requirements, to explore the skills employers present in the job ads. The
attention was also drawn to communicative working environment to describe what kind
of working environment software engineers are hired for.

This study highlightedEnglish skills and amultifaceted communication environment
where software engineers collaborate with various parties. Communication skills were
clearly visible in the job ads, referring to communication at work, as well as communica-
tion needs with various stakeholders and within the team. Software engineers’ working
environment is multidisciplinary. Labor markets have needs for skilled communicators
and collaborators. Lack of communication and language skills weaken opportunities in
job seeking.

The partition of language issues implies that Finnish SE working environment is
almost bilingual in practice. Finnish SE labor markets seeks employees by publishing
job ads in Finnish and in English with high rates for proficiency in English and moderate

Communication Skills Requirements of Junior Software Engineers 215

proficiency in Finnish. Finnish SE labor markets have needs for fluent Finnish and
English speakers.

Intercultural aspects of communication were not, in any case, generally visible.
The peculiarities and specific aspects of intercultural communication are either not
understood or not been aware of in designing the job ads.

Moreover, the language of the job ad indicates the needs. The ads written in English
highlight proficiency in English and presents Finnish skills as an advantage for the
job. Also, communication and intercultural skills were emphasized in the ads written
in English. The employer who writes a job ad in English is more aware of language,
communication, and intercultural issues. Respectively, the ads written in Finnish regard
English and Finnish skills as important; Finnish skills are regarded more important in
the ads written in Finnish than in the ads written in English. There is no need for other
languages is Finnish SE labor markets.

The study revealed that language and communication -related expectations are
widely presented in the job ads. However, it was observed that, despite of the language
requirements, other intercultural communication aspects are not explicated in the ads.
This is an aspect that would require further research, to explore and explain the reasons
for it: whether this aspect is just not well-understood by the employers or missed in the
job ads. Moreover, internationality aspects, qualification requirements, and teamwork,
which is culture-specific, would require further research and deeper investigation. The
study of these questions would require going beyond the job ad analysis and going into
companies to study the understanding of intercultural communication issues. In addi-
tion, an analysis of SE education would, possibly, be necessary, to understand how these
aspects are considered in education.

This single study could be replicated in other countries where similar comparisons
between job ads written in different languages could be made.

References

1. IEEE Computer Society: SWEBOK V3.0 Guide to the Software Engineering Body of
Knowledge (2014). https://www.computer.org/education/bodies-of-knowledge/software-eng
ineering

2. Sedelmaier, Y., Landes, D.: SWEBOS - Software engineering body of skills. In: IEEE Global
Engineering Education Conference, EDUCON, pp. 395–401 (2014)

3. Stevens, M., Norman, R.: Industry expectations of soft skills in IT graduates a regional
survey. In: ACM International Conference Proceeding Series, 01–05 February 2016, art. no.
a13 (2016)

4. Matturro, G., Raschetti, F., Fontán, C.: Soft skills in software development teams: a sur-
vey of the points of view of team leaders and team members. In: Proceedings - 8th Inter-
national Workshop on Cooperative and Human Aspects of Software Engineering, CHASE
2015, pp. 101–104 (2015)

5. Cambridge English: English at Work: global analysis of language skills in the workplace
(2016). http://www.cambridgeenglish.org/english-at-work

6. Knoch, U.,Macqueen, S.: Assessing English for Professional Purposes. Routledge, Abingdon
(2020)

7. Patel, F., Li, M., Sooknanan, P.: Intercultural Communication Building a Global Community.
SAGE, New Delhi, London (2011)

https://www.computer.org/education/bodies-of-knowledge/software-engineering
http://www.cambridgeenglish.org/english-at-work

216 A. Niva and J. Markkula

8. Lehtonen, T., Karjalainen, S.: University graduates’ workplace language needs as perceived
by employers. System 36, 492–503 (2008)

9. Jaakkola, H., Heimbürger, A., Linna, P.: Knowledge-oriented software engineering process
in a multi-cultural context. Software Qual. J. 18, 299–319 (2010)

10. Chen, L.: Cultures, communication, and contexts of intercultural communication. In: Chen,
L. (ed.) Intercultural Communication, pp. 3–15. De Gruyter Mouton, Boston/Berlin (2017)

11. Cress, J.A., Thomas, P.W.: Imbedding industry expectations for professional communication
into the undergraduate engineering curricula. In: ASEE Annual Conference and Exposition,
Conference Proceedings (2020)

12. Newberry, R., Conrad, D.: Identification of outcome based business communication skills.
In: Allied Academies International Conference. Academy of Organizational Culture, Com-
munications and Conflict. Proceedings, vol. 15, pp. 28–32 (2010)

13. Ford, D., Zimmermann, T., Bird, C., Nagappan, N.: Characterizing Software Engineering
Work with Personas Based on Knowledge Worker Actions. In: International Symposium on
Empirical Software Engineering and Measurement. pp. 394–403 (2017)

14. Gonçalves, M.K., de Souza, C.R.B., González, V.M.: Collaboration, information seeking
and communication: an observational study of software developers’ work practices. J. Univ.
Comput. Sci. 17, 1913–1930 (2011)

15. Sudhakar, G.P.: Amodel of critical success factors for software projects. J. Enterp. Inf.Manag.
25, 537–558 (2012)

16. Canedo, E.D., Santos, G.A.: Factors affecting software development productivity: an
empirical study. In: ACM International Conference Proceeding Series, pp. 307–316 (2019)

17. Ruff, S., Carter, M.: Communication learning outcomes from software engineering profes-
sionals: a basis for teaching communication in the engineering curriculum. In: Proceedings -
Frontiers in Education Conference, FIE, art. no. 5350442 (2009)

18. Hargie, O. (ed.): The Handbook of Communication Skills. Routledge, Abingdon (2019)
19. Exter, M., Caskurlu, S., Fernandez, T.: Comparing computing professionals’ perceptions of

importance of skills and knowledge on the job and coverage in undergraduate experiences.
ACM Trans. Comput. Educ. 18 (2018)

20. Hoegl, M., Gemuenden, H.G.: Teamwork quality and the success of innova-tive projects: a
theoretical concept and empirical evidence. Organ. Sci. 12, 435–449 (2001)

21. Khaouja, I., Kassou, I., Ghogho, M.: A survey on skill identification from online job ads.
IEEE Access. 9, 118134–118153 (2021)

22. Gurcan, F., Sevik, S.: Expertise roles and skills required by the software development
industry. In: 1st International Informatics and Software Engineering Conference: Innovative
Technologies for Digital Transformation, IISEC 2019 - Proceedings (2019)

23. Hiranrat, C., Harncharnchai, A.: Using text mining to discover skills demanded in software
development jobs in Thailand. In: ACM International Conference Proceeding Series, pp. 112–
116 (2018)

24. Papoutsoglou, M., Ampatzoglou, A., Mittas, N., Angelis, L.: Extracting knowledge from
on-line sources for software engineering labor market: a mapping study. IEEE Access. 7,
157595–157613 (2019)

25. Matturro, G.: Soft skills in software engineering: a study of its demand by software companies
in Uruguay. In: 2013 6th International Workshop on Co-operative and Human Aspects of
Software Engineering, CHASE 2013 – Proceedings, pp. 133–136 (2013)

26. Daneva, M., Wang, C., Hoener, P.: What the job market wants from requirements engineers?
an empirical analysis of online job ads from the Netherlands. In: International Symposium
on Empirical Software Engineering and Measurement, pp. 448–453 (2017)

Benefit Considerations in Project
Decisions

Sinan Sigurd Tanilkan(B) and Jo Erskine Hannay

Simula Metropolitan Center for Digital Engineering, Oslo, Norway
{sinan,johannay}@simula.no

Abstract. Software project success is often characterized in terms of
time, cost and scope – despite that delivering benefit is the main purpose
of a project. In this paper, we explore 1) to what degree benefit considera-
tions influence major project decisions, 2) to what degree a specific set of
benefits management challenge are handled and influence major project
decisions and 3) if there is any realization (over time) that benefit con-
siderations should receive greater attention. We investigate influence in
projects with four types of problem severity: completed projects with only
minor problems, completed projects with major problems, projects that
were disrupted but completed, and projects that were terminated before
completion. We asked 45 software professionals to what degree time, cost,
scope, benefit and benefit/cost, as well as benefits management challenges,
influence major project decisions. Our findings indicate that time, cost and
scope have a significantly higher degree of influence on project decisions
than benefit and benefit/cost. However, practitioners think that benefit
and benefit/cost should have significantly more influence on decisions than
cost. The benefits management challenges are found to have less influence
in the more severe projects. We argue that giving benefits considerations a
stronger voice in project decisions would be in line with the desire of prac-
titioners and the prime objective of delivering benefit to stakeholders. We
conclude that it is important to understand how to handle benefits man-
agement challenges at different stages of project life and that handling such
challenges should be integrated with other prime drivers of project success.

Keywords: Time · Cost · Scope · Benefit · Benefits management
challenges · Software project severity

1 Introduction

A central public sector agency in Norway terminated its information technology
modernization program prematurely after about one and a half years’ develop-
ment. The total budget was about EUR 400 million, to be spent over six years.
The sunk cost at termination was about EUR 180 million, of which EUR 36
million was spent on functionality that was never to be used [33,34]. Generally

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 217–234, 2022.
https://doi.org/10.1007/978-3-031-21388-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_15&domain=pdf
http://orcid.org/0000-0003-4216-5172
http://orcid.org/0000-0002-8657-7593
https://doi.org/10.1007/978-3-031-21388-5_15

218 S. S. Tanilkan and J. E. Hannay

presented by the press as yet another information technology scandal, the ter-
mination of the program was applauded in professional circles as a remarkably
insightful decision [46]. When things went bad, program management took the
bold decision to stop before further losses, thus countering the escalation of com-
mitment to a failing course of action phenomenon [27] and sunk cost effect [1]
otherwise so proliferant in high-stakes development initiatives. This, and other
similar stories, give reasons for optimism; some programs and projects no longer
simply spend up their allotted budget no matter what.

The reason, however, for taking action in the above program was, officially,
a lack of cost control. Whether they were on track in delivering benefit was not
explicitly evident in the decision to stop.

Delivering benefit is the prime reason for software development initiatives,
and empirical studies suggest that organizations that engage in benefits manage-
ment [43] perform better in terms of most success criteria [26]. Despite this, there
is a tendency to focus on success understood as being on time, being on budget
and delivering the specified functionality [18]. In other fields than software engi-
neering, success measured in terms of time, cost and scope, does not correlate
with client benefit and satisfaction [37]. This observation has lead researchers to
call for further research on the relations between these dimensions for software
projects [25].

In light of the above, we want to understand in more detail the extent to
which considerations regarding benefit have, or should have, an impact on deci-
sions to continue, disrupt or terminate projects, compared to the traditional
control metrics time, cost and scope. To further understand how benefits con-
siderations may play a role, we investigate the extent to which an identified set
of benefits management challenges influence these project decisions and project
flow. We also explore if there is a growing realization during projects that ben-
efits considerations should have a greater influence. We investigate these topics
in four types of projects, according to the severity of problems they encounter.

The next section presents relevant work for our discussion. We present our
research questions in Sect. 3, the research method in Sect. 4 and the results in
Sect. 5. After that, we discuss and conclude.

2 Background and Previous Work

Benefits Management, defined as “[t]he process of organizing and managing such
that potential benefits arising from the use of IT are actually realized” [43], has
been suggested to improve organizations’ ability to successfully realize benefits
of software investments [3,8,10,14,24,42,43], and benefits management practices
have been reported to increase benefits realization [13,23]. Notable characteris-
tics of projects that professionals perceived as “successful” are (a) the application
of benefits management practices before and during project execution, (b) the
application of core agile practices of frequent delivery to the client and scope
flexibility, and (c) that their clients were deeply involved in these practices [25].

The uptake of benefit management practices has been conspicuously slow in
light of the existing evidence and general consensus among IT professionals of

Benefit Considerations in Project Decisions 219

its relevance. There have been calls for research into what practices in bene-
fits management contribute to success, on how benefits management is actually
performed and what challenges practitioners are facing [5,25]. It seems par-
ticularly pertinent to investigate what it is that is hampering benefits man-
agement. There have been efforts to understand challenges in benefits manage-
ment [4,9,12,15,16,32] and barriers to benefits management [39]. However, there
are few empirical studies on organizations applying benefits management in the
context of software development [22], beyond professionals reporting a lack of
methodological support for benefits management [25].

A recent in-depth analysis of public-sector projects revealed six sets of con-
ceptual benefits management challenges [38]:

A: Identifying and describing the planned benefits of a solution
B: Ensuring that work in the project is aligned with the planned benefits
C: Ensuring the reception and acceptance of the planned benefits
D: Handling organizational issues related to realizing benefits
E: Maintaining an overview of whether the benefits can be realized by other

solutions or mechanisms
F: Measuring and evaluating realized benefits

These challenges were uncovered in a critical case study : The investigated
projects where critical cases [45] in that they had explicit incentives to employ
benefits management practices. Benefits management challenges uncovered in
these projects will arguably be accentuated in projects without such incentives.
To increase our understanding of how these challenges influence project deci-
sions, we use them in our further investigations in the next sections.

The so-called iron triangle of project management promotes time, cost and
scope as control mechanisms to obtain technical quality. The agile triangle intro-
duces benefit (extrinsic quality) as a goal together with technical quality; both
of which are obtained by controlling, or constraining the bundle of time, cost
and scope. However, it has been argued that benefit should be presented as a
control mechanisms in its own right; not merely as a fuzzy goal to be obtained
by controlling those other things [19, p. 17]. Further, the real control mechanism
should be the ratio of benefit/cost, since the point is not to maximize benefit
regardless, but to maximize benefit for the cost invested [21].

In the introductory anecdote, the program achieved project learning to the
extent that it was possible to make an informed decision based on cost control
in the midst of failure. The question arises as to what influence benefit has, or
should have, and what influence do benefits management challenges have, both
in plain sailing and when the going gets tough.

3 Research Questions

Our first objective is to study the extent to which considerations regarding ben-
efit have, or should have, an impact on project decisions compared to the tra-
ditional control metrics time, cost and scope. We compare the standard control

220 S. S. Tanilkan and J. E. Hannay

metrics from the “iron triangle” and metrics explicitly involving benefit. The
compared control metrics are time, cost, scope, benefit and benefit/cost.

Our second objective is to understand further how benefits considerations
may play a role, and we investigate the extent to which the identified set of
benefits management challenges (A–F above) influence project decisions.

A third objective is to see how the influence of both the control metrics and
the benefits management challenges might vary according to project problems.
For the purpose of this paper, we define four project severity types (S1–S4):

(S1) completed projects with only minor problems
(S2) completed projects with major problems
(S3) projects that were disrupted but completed
(S4) projects that were terminated before completion

These severity types are based on the work experience of the authors and three
experienced software project professionals.

Based on the above elaborations, we pose the following research questions.
Although partly exploratory, we also present expectations with rationales that
are not yet founded in theory, but rather, based on anecdotal evidence.

RQa To what degree do the control metrics time, cost, scope, benefit and bene-
fit/cost influence decisions on termination and disruption in a project?
Expectation: The measures time, cost and scope are more influential than
the measures of benefit and benefit/cost. Moreover, they are more influ-
ential than the benefits management challenges, and more so for severe
projects. There is a desire that benefit and benefit/cost should be more
influential.
Rationale: There is still a focus on the “iron triangle” when controlling
projects, and especially when things get difficult, where salvaging cost may
be perceived as the better face-saver. There is currently an increased focus
and awareness on benefits management that raises awareness that benefit
should ideally be the more prominent argument.

RQb To what degree do the benefits management challenges influence decisions
on termination or disruption of a project?
Expectation: The challenges have less influence on disruption or termina-
tion decisions in projects with more severe problems.
Rationale: Benefits management is not used in crises.

RQc Are there differences in how well benefits management challenges are han-
dled?
Expectation: At early stages of a project, the challenges are handled less
favorably, the more severe the project is.
Rationale: The lack of handling benefits management challenges might
have an adverse effect on a project.

RQd To what degree do practitioners improve their handling of benefits manage-
ment challenges during projects?
Expectation: The challenges are handled better at later stages than at early
stages, and more so for severe projects.
Rationale: Failure can create an opportunity for learning.

Benefit Considerations in Project Decisions 221

4 Research Method

We conducted a survey with an online questionnaire. A full list of survey ques-
tions and responses can be found at: https://tinyurl.com/becipd. Below, we
include a subset of the survey questions that are directly relevant to answer-
ing the research questions. To sample the participants’ personal experience, we
prompted them to choose one concrete project, among the four types of project
severity, from their experience in software development, and answer the sub-
sequent questionnaire items for that project. Based on the authors’ knowledge
of the Norwegian IT industry, we assumed that respondents would have fewer
terminated or disrupted projects to report on, compared to finished projects. To
increase the probability of receiving close to equal amounts of responses in each
severity group, the project selection question was phrased to promote selection
of disrupted and terminated projects. Respondents were also prompted for their
role in the project, as well as for their professional experience in terms of years
in software development and the number of projects they had participated in.

4.1 Survey Questions

The survey questions directly relevant to answering the research questions are
listed in Table 1 in the order they were posed on the questionnaire. This order
was designed for survey comprehension and differs from the (logical) order of
the research questions above.

Respondents were prompted for each benefits management challenge A–F
(Sect. 2), indicated by <benefits management challenges> in the questions, and
for each control metric (time, cost, scope, benefit and benefit/cost), indicated
by <control metrics>. Respondents were given variant phrases indicated by the
text in square brackets, according to their choice of project severity type.

The survey was piloted prior to data collection on five respondents (on two
research colleagues and three experienced managers from the IT industry). The
pilot resulted in changes to the wording of questions in the survey for better
comprehension and alignment with current terminology in the field. This applied
in particular to the project selection question. Minor adjustments were also
done to SQ1–SQ5. The project severity groups (S1–S4) were also finalized and
validated for meaningfulness and relevance during the pilot.

Data was collected during a webinar titled “Failed digitalization projects:
A source of learning and improvement?” in October 2021. In the webinar a
selection of IT professionals presented experiences from failed projects, including
lessons learned from these projects. A total of 71 professionals were present at the
webinar when the survey was conducted. A link to the questionnaire was given
as part of the opening remarks to the webinar, and participants were given ten
minutes to complete the questionnaire. Fifty-seven persons participated in the
survey, but twelve did not complete the survey, leaving 45 complete responses.

The number of software development projects in which the respondents had
participated ranged from two to 100 (median: 15, mean: 20.31). The number of
years of experience within development of digital solutions ranged from under

https://tinyurl.com/becipd

222 S. S. Tanilkan and J. E. Hannay

Table 1. Survey questions

In your opinion, Answer options

SQ1 how were the following <benefits management
challenges> handled in the early phases of the project?

seven-point ordinal
(poorly 1–7 well)

SQ2 to what extent did the following <control metrics> of
the project influence [decisions along the way], [the
decision to change course], [the decision to stop]?

seven-point ordinal
(minor 1–7 major)

SQ3 to what extent should the following <control metrics>
of the project have influenced [decisions along the
way], [the decision to change course], [the decision to
stop]?

seven-point ordinal
(minor 1–7 major)

SQ4 to what extent did problems in the following <benefits
management challenges> influence [decisions along
the way], [the decision to change course], [the decision
to stop]?

seven-point ordinal
(minor 1–7 major)

SQ5 compared to the early stages of the project, how
[were], [would] the following <benefits management
challenges> [handled at later stages of the project],
[handled after changing course], [have been handled if
the project had continued]?

seven-point ordinal
(worse –3– +3 better)

a year to 40 (median: 20, mean: 18.04). The number of years of experience as
a manager within this field ranged from zero to 30 (median: 5, mean: 7.78).
The project that each participant chose as a reference for the subsequent ques-
tions was owned by a public sector organization in (68.9%) of the cases and
the private sector in (31.1%) of the cases. The distribution per project severity
type was as follows: completed projects with only minor problems (24.5%), com-
pleted projects with major problems (22.2%), projects that were disrupted but
completed (28.9%), projects that were terminated before completion (24.4%).

4.2 Analysis

Ordinal data from the questionnaire was analyzed using percentile box-plots for
descriptive statistics.1 We used related-samples Friedman’s two-way analysis of
variance by ranks for comparison with and across benefits management chal-
lenges and control metrics. We used independent samples Jonckheere-Terpstra
non-parametric tests for comparisons across the four types of project sever-
ity. Both tests are specifically for ordinal data. The Jonckheere-Terpstra test
assumes directional comparisons and is one-tailed: We are expecting responses
to be higher for one severity level than another; for example we expect handling
to deteriorate from level S1 to level S4 (as described for RQc in Sect. 3). We

1 Data analyses were conducted using IBM SPSS Statistics version 27 using test-wise
deletion of missing data.

Benefit Considerations in Project Decisions 223

accept statistical significance at p ≤ α = 0.05. That is, we accept a 5% chance
of rejecting the null hypothesis when it is, in fact, true.

Traditionally, one performs an omnibus test, with ensuing pairwise compar-
isons if the omnibus test is significant. Our primary interest lies with the pairwise
comparisons, and we perform the pairwise comparisons even when the omnibus
test is not significant. There can be significant pairwise differences, even when
the omnibus test is not significant [40]. We are interested in single comparisons;
for example if a challenge is handled worse between two levels of severity. We
are also interested in composed comparisons; for example if a challenge inten-
sifies across a chain of severities. When composing multiple comparisons, the
probability of rejecting the null hypothesis for any one in the group of compar-
isons increases. If one intends to draw conclusions on a composed comparison on
the basis of any one constituent comparison, one should therefore use a stricter
αadj using, e.g., the Bonferroni adjustment. In the composed comparisons we
are interested in, the null hypotheses for all tests in the composition have to
be rejected, and using a stricter αadj is not relevant [2,17]. We do, however,
also report the Bonferroni-adjusted probability (padj) to cater for other kinds of
composed comparisons. For space reasons, we only display the significant results.

We wish to report effect sizes for the pairwise comparisons. The pairwise
comparisons for the Jonckheere-Terpstra tests are based on the Mann-Whitney U
statistic, and it is possible to report effect sizes estimates in terms of Cohen’s
d [30], where the following rules of thumb apply: <0.1 (very small), 0.1 – <0.3
(small), 0.3 – <0.5 (medium), 0.5 – <1.2 (large), 1.2 – <2.0 (very large) and
>=2.0 (huge) [36]. Pairwise comparisons for the Friedman test are in terms of
the Dunn-Bonferroni statistic with no straightforward effect size estimate, so for
the Friedman tests, we report effect sizes in terms of Kendal’s W for the omnibus
test [41] in lack of anything better. Kendal’s W ranges from 0 to 1, with the
following rules of thumb for evaluating effect sizes: 0.1 – <0.3 (small), 0.3 – <0.5
(medium) and >=0.5 (large) [11].

With our small sample size, statistical power is expectedly low. That is, there
is low probability of the data revealing (significant) effects, when, in fact, there
are effects in the intended population, and the probability of revealing small
effects is lower than that of revealing large effects. On the other hand, it is all
the more promising for further studies if our data does reveal effects under low
power. Given a sample size, one might calculate power for various effect sizes
(small, medium, large) and see if the commonly acceptable level of β = 0.8 is
achieved, but power calculations for non-parametric tests are not straightforward
[35], and we omit them for this initial study.

5 Results

The Friedman omnibus tests are all significant with effect sizes ranging from very
small to small. None of the Jonckheere-Terpstra omnibus tests are significant,
while several of the pairwise comparisons are; and except for two of the results
(on RQc), all significant results have large, very large or huge effect sizes. Larger

224 S. S. Tanilkan and J. E. Hannay

effect sizes are generally more useful for practitioners [28]. Nevertheless, a study
with higher statistical power would have a higher probability of finding signifi-
cant results with also smaller effects sizes. This would be particularly interesting
for establishing the expected linked relationships across all four severity types,
which are only partially seen in our data. In the following, we report these, and
other significant findings.

RQa: To What Degree Do the Control Metrics Time, Cost, Scope,
Benefit and Benefit/cost Influence Decisions on Termination and Dis-
ruption in a Project? This research question is answered using the responses
from survey questions SQ2 and SQ3. Figure 1a shows descriptive statistics,
regardless of project severity, for the influence the control metrics time, cost,
scope, benefit and benefit/cost (red shades) are reported to have on project
decisions, and the influence practitioners report that the control metrics “should

(b)
Omnibus test n: 41, p: .000, W : .19

Pair-wise two-sided tests p padj

Time > .002
>

Cost >
>

Scope >
>

(c)
Omnibus test n: 41, p: .000, W : .14

Pair-wise two-sided tests p padj

> Cost .006 .058
> Time .010 .098
> Cost .000 .002

Scope > Cost .043 .428

(d) n: 38, p: .000, W : .17

Pairwise two-sided tests p padj

actual <
<

Fig. 1. Analysis for RQa of SQ2 and SQ3 – the influence of control metrics on project
decisions – actual and should. Friedman tests. (Color figure online)

Benefit Considerations in Project Decisions 225

(b)

Actual Severity p padj d Should Severity p padj d

Cost S2<S4 .006 .039 1.250 Scope S1<S2 .016 .096 1.017
>S2 .011 .067 1.129 S1<S4 .035 .210 0.813

S1>S3 .023 .136 1.297 S2>S3 .035 .208 0.821
S1>S4 .017 .105 0.558 S3<S4 .041 .245 0.768

> >S3 .045 .270 0.756
>S3 .019 .114 0.949

S3<S4 .005 .028 1.264

Fig. 2. Analysis for RQa of SQ2 and SQ3 – the influence of control metrics on project
decisions – by project severity. Jonckheere-Terpstra tests.

have” (green shades). It is immediately apparent that benefit and benefit/cost
were perceived as less influential than the iron-triangle metrics (significant for
time, cost and scope – Fig. 1b), but that the respondents thought that benefit
and benefit/cost should have had more influence (significant for cost and time
– Fig. 1c). Figure 1d shows significance for comparisons between the influence
that a metric has, versus should have. The desire that benefit and benefit/cost
should have more influence shows up highly significantly in the data.

Figure 2a shows descriptive statistics again, but now per project severity (S1–
S4). One can see how respondents perceive that time, cost and scope were highly
influential in terminating projects, and that benefit and benefit/cost consider-
ations were not very influential (red boxplots for severity S4) in terminating
projects. However, respondents think benefit and the benefit/cost ratio should
have been highly influential when considering terminating the project (green
boxplots for severity S4). Similar remarks hold for severities S3 and S2. For
projects with minor problems, benefit and benefit/cost are perceived to have
had more influence, with a desire to increase that influence further.

The expectation that benefit is less influential the more severe the project, is
supported for project severities S1>S2, S1>S3 and S1>S4 (Fig. 2b). The notion
of benefit/cost ratio looses influence for S1>S2. In contrast, cost is perceived to
have greater influence the more severe the project (S2<S4). Thus, the difference
in influence between cost and benefit clearly increases to the disadvantage of
benefit, over project severities.

226 S. S. Tanilkan and J. E. Hannay

RQb: To What Degree Do the Benefits Management Challenges Influ-
ence Decisions on Termination or Disruption of a Project? For this, we
analyzed responses for SQ4. From Fig. 3a and b, we see that challenge C has
significantly more influence on decisions, regardless of severity, than challenges
A, D, and F. Also, challenge B is significantly more influential than challenge A.

Comparing across project severity (Fig. 3c), we see that influence is uniformly
higher for severity S1 (minor issues). Pairwise comparisons (Fig. 3d) support
the expectation of less influence the more severe the project, with significant
differences for all challenges in the expected direction. (The data exhibits the
opposite direction, across severities S2 and S3, for challenge F.)

challenges on project decisions:
(b)
agement challenges:

Omnibus test n: 38, p: .011, W : .078

Pairwise two-sided tests p padj

B (Alignment) > A (Ident.) .034 .516
C (Reception) > A (Ident.) .008 .115

> D (Org issues) .050 .746
> F (Evaluation) .027 .409

(c)

(d)

Chal. Severity p padj d Chal. Severity p padj d Chal. Severity p padj d

A S1>S2 .000 .002 2.185 C S1>S2 .030 .183 0.872 F S1>S2 .000 .001 2.911
S1>S3 .002 .015 1.415 D S1>S2 .012 .074 1.132 S1>S3 .010 .057 1.130

B S1>S2 .017 .104 1.017 E S1>S2 .001 .005 1.896 S1>S4 .030 .183 0.910
S1>S4 .021 .123 0.974 S1>S3 .002 .011 1.564 S2<S3 .045 .272 0.764

S1>S4 .039 .231 0.849
S2<S3 .045 .272 0.764

Fig. 3. Analysis for RQb of SQ4– influence of benefits management challenges on
project decisions. Friedman tests (a, b), Jonckheere-Terpstra tests (c, d).

Benefit Considerations in Project Decisions 227

RQc: Are There Differences in How Well Benefits Management Chal-
lenges Are Handled? To answer this research question, we used responses
to SQ1. Figure 4a indicates that challenges C, D, E and F are handled poorer
(at early stages) than A and B. Looking at Fig. 4b, we see that challenge A is
handled significantly better than all the other challenges. Also, challenge B is
handled significantly better than challenges D, E and F.

Our expectation that challenges are handled less favourably the more severe
the project, is supported to some extent: Visual inspection of the boxplots
(Fig. 4c) suggests a general tendency of decreasing early handling of challenges as
project severity increases, which is supportive of our expectation. Pairwise com-
parisons (Fig. 4d) give significant differences for challenges A, B (small effect
size), C, D and F, where early handling is better for severity S1 than for a
variety of higher severities. Still, the data does not give evidence of a steadily
decreasing trend through severities.

challenges were handled early:

(b)
agement challenges were handled early:

Omnibus test n: 39, p: .000, W : .27

Pairwise two-sided test p padj

A (Ident.) > B (Alignment) .032 .475
> C (Reception) .000 .003
> D (Org issues) .000 .000
> E (Alternative) .000 .000
> F (Evaluation) .000 .000

B (Alignment) > D (Org issues) .001 .018
> E (Alternative) .018 .274
> F (Evaluation) .009 .139

(c)

(d)
ities (one-sided):

Chal. Severity p padj d Chal. Severity p padj d Chal. Severity p padj d

A S1>S4 .046 .277 0.747 C S1>S4 .038 .226 0.799 D S1>S4 .015 .089 1.002
B S3<S4 .034 .202 0.214 S2<S4 .042 .251 1.956 F S1>S4 .002 .0125 1.558

S3>S4 .022 .131 0.275 S2>S4 .009 .052 2.437

Fig. 4. Analysis for RQc of SQ1 – handling of benefits management challenges in early
stages of projects. Friedman tests (a, b), Jonckheere-Terpstra tests (c, d).

228 S. S. Tanilkan and J. E. Hannay

RQd: To What Degree Do Practitioners Improve Their Handling
of Benefits Management Challenges During Projects? We analyzed
responses on SQ5. The boxplots in Fig. 5a indicate that respondents perceive
a weak improvement of the handling of the benefits management challenges at
later stages, thus supporting the expectation of project learning on these chal-
lenges. Improvement is similar across challenge types, except for challenge E,
where practitioners report significantly less improvement compared to challenges
A, B and C (Fig. 5b).

When comparing improvement across severity types (Fig. 5c), pairwise com-
parisons (Fig. 5d) reveal that for some of the challenges, improvement in handling
challenges was greater for severity S1 than for severity S2 and severity S3. There

management challenges:

(b)

Omnibus test n: 36, p: .018, W : .076

Pairwise two-sided test p padj

A (Ident.) > E (Altern. .044 .657
B (Alignment) > E (Altern.) .038 .565
C (Reception) > E (Altern.) .044 .657

(c)

(d)
project severities (one-sided):

Challenge Severity p padj d

A S1>S2 .020 .121 1.090
S1>S3 .048 .290 0.727

B S1>S2 .015 .090 1.160
C S1>S2 .027 .164 0.923
E S1>S2 .035 .209 0.867

Fig. 5. Analysis for RQd of SQ5 – improvement in handling of benefits management
challenges. Friedman tests (a, b), Jonckheere-Terpstra tests (c, d).

Benefit Considerations in Project Decisions 229

are also some indications in the data that improvement was lowest for severity
S2 and that improvement increases from S2 to S3 and S4 (challenges A, B, E),
in line with our expectations of increased improvement for severe projects, but
these latter observations fail to be significant at our chosen level.

6 Discussion

The results above suggest clearly that practitioners think that more emphasis
should be placed on benefit and benefit/cost when making project decisions,
compared to the iron-triangle metrics of time, cost and scope. But given that
practitioners seem to be aware of the importance of increasing the influence of
benefit and benefit/cost considerations, the question arises as to how to make this
happen. To provide actionable guidance to practitioners, we must understand
what is keeping practitioners from prioritizing the right factors when making
decisions. We observed that benefit considerations have less influence in more
severe projects, and that challenges A, C and F are handled less favorably in
more severe projects. These challenges may therefore be a good starting point to
understanding why benefit does not get the attention it should in project deci-
sions. In particular, it seems important to understand better the characteristics
of challenges A, C and F that can affect practitioners ability to manage benefit,
and therefore to employ considerations of benefit in project decisions.

The deterioration of the early handling of challenge A (Identifying and
describing the planned benefits of a solution) as project severity increases, could
be due to difference in predictability of benefits identification. Several papers
have reported that practitioners find it challenging to identify all benefits before
project initiation [3,14,25,38], but it is reasonable to assume that the identifi-
cation of benefits of some projects are more predictable than others. As such,
less favorable handling of challenge A in more severe projects, might be due
to greater challenges in identifying benefits, rather than poor handling of the
challenge. Also, it is reasonable to expect that some projects are more aware
of the need to update planned benefits during the project [38]. If unpredictable
changes to benefits is the underlying problem , then measures to handle such
unpredictability are called for. The incremental and agile approach of not over-
planning early then applies also to benefit, and it becomes correspondingly more
important to open up the project to changes to planned benefits in addition to
time, cost and scope. Techniques to declare and update benefits and monitor the
progress in developing beneficial code may be useful [20,21,29]. Keeping track of
realized benefit in terms of beneficial code, as one keeps track of the cost of code,
can then aid in early and sound decisions on continuation, disruption or termi-
nation of projects. However, even with such techniques, organizational issues
may add to the challenge, because updating the business case of the project
often requires effort from people outside the project organization [39]. An agile
approach to business cases is called for.

Challenge C (Ensuring the reception and acceptance of the planned benefits)
is likely to be affected both by a difference in difficulty of the challenge and

230 S. S. Tanilkan and J. E. Hannay

a difference in practitioners handling, which can help explain the deterioration
in handling as severity increases. Difference in difficulty is likely to occur as a
result of varying resistance to new solutions [8] and a varying interest in benefits
themselves [9]. It is unclear if it is possible to predict the degree of difficulty
that will be encounter in the reception and acceptance of benefits in different
projects. There seems to be differences between benefits that are internal and
external to the organization, but further research is needed to understand the
characteristics of benefits and stakeholders, that affect the challenges of reception
and acceptance of benefits [38]. Previous empirical research has documented a
difference in effort put into handling of challenge C. Even when practitioners are
aware that more work is needed in order to realize benefits, the extra needed
effort is sometimes not spent [38]. Influencing stakeholders to receive and accept
new solutions and benefits is a topic where we have not found any research in
the field of benefits management, and it is likely that practitioners do not have
much empirical or actionable guidance available, other than normative guidance
to the effect that the problem is important to keep in mind [42].

Challenge F (Measuring and evaluating realized benefits) has gained much
attention in research on benefits management [6,31], but the challenge still
remains very much alive for practitioners [38]. Here we discuss three issues of
measuring and evaluating realized benefits that are relevant to project decisions
and the handling of challenge F.

First, while measures of time, cost and scope are fairly standardized, and
fits nicely into business decisions, measures of benefits varies largely. The char-
acteristics used to describe benefits, such as qualitative/quantitative [23] and
financial/non-financial [44] is one example. It is reasonable that financial mea-
sures are easier to include in business decisions than qualitative evaluations.

Secondly, measures must be taken after benefits realization has started. This
is usually in late phases of a project or after a project has ended. Hence, the nec-
essary data is often not available to be used for project decisions. One mitigation
is the use of leading measures [24] which are measurement of indicators that are
available early. The problem with indicators, is that they are not measures of
the actual benefit, and might not give a true representation of the benefits.

Third, it seems practitioners do not prioritize evaluation. Organization may
put little emphasis on evaluation because their limited IT resources would be
better spent on new projects, rather than on evaluating old projects [7].

7 Limitations

Statistical Conclusion Validity. The low statistical power decreases the prob-
ability of the data exhibiting effects where there might, in fact, be effects in
the population. The opposite threat of the data exhibiting effects, when there
might, in fact, be none, is handled by the significance tests. Even with this small
a sample, the data exhibits significant effects. Replicating studies that use larger
samples may find additional effects.

Benefit Considerations in Project Decisions 231

External Validity. Based on the characteristics of the sample itself one can gen-
eralize the results to similar groups (populations) of interest. This can be prob-
lematic for our sample for the following reasons:

1. The sampling strategy was designed to increase the number of disrupted and
terminated projects (compared to the population of IT-projects).

2. We have limited information on the characteristics of the projects in the study.
Some characteristics, such as the technology applied or the type of solution
created, are less likely to influence the studied topics. Other characteristics,
such as project size and organization, are likely to have an influence, but were
not collected, due to time limitations duration the webinar.

3. It is possible that practitioners attending a seminar in Norway on failed
projects have different experiences than other practitioners.

Experiences from this, and other similar webinars and seminars, suggests
that participants represent a varied selection of IT professionals that together
have a broad experience in many types of software project. We therefore hold
that our results are genealizable to the situation of termination and disruption
decisions, as long as one takes the above threats into consideration.

Construct Validity. Although response rates and pilots of the survey suggest
that participants were able to relate to the given challenges, we do not know to
what degree the challenges occurred or how difficult they were to handle. This
is likely to have caused different perceptions of the challenges as concepts and of
the concepts of “good” and “poor” handling. In retrospect, asking for success in
handling, could have mitigated part of this problem. There are similar issues with
the influence that challenges have on project decisions (e.g., a challenge that did
not occur, is likely to be reported to have low influence on project decisions).
Not asking about the occurrences of challenges was a conscious choice when
designing the study, because we did not want to confuse the respondents with
too many similar questions. However, this issues should be dealt with in later
studies. We hold that our findings are relevant as a basis for further study and
as initial advice to practitioners in software projects.

8 Conclusion and Further Research

We conclude that benefit and benefit/cost considerations should have more influ-
ence in project decisions than they currently have. This would help align project
decisions with the primary objectives of projects – to deliver benefits. However,
the characteristics of benefits together with benefits management challenges,
seems to make considerations of benefit more difficult than time, cost and scope.
As a result, we propose three topics for further improvement and research:

– Guidance to help practitioners handle changes to understanding of benefits
– Explore how practitioners can influence others to ensure benefits realization
– Improved guidance to practitioners on benefits evaluation

232 S. S. Tanilkan and J. E. Hannay

Further research in these topics is needed in order to understand the diffi-
culties of benefit considerations and how practitioners can gain the information
they need to make timely project decisions, influenced by benefit considerations.

Acknowledgments. The authors are grateful to experienced IT professionals Kjetil
Strand, Hans Christian Benestad and Bjørn Olav Salvesen for feedback on the ques-
tionnaire. The authors are further grateful to the survey respondents.

References

1. Arkes, H.R., Ayton, P.: The sunk cost and concorde effects: are humans less rational
than lower animals? Psychol. Bull. 25(5), 591–600 (1999)

2. Armstrong, R.: When to use the bonferroni correction. Ophthal. Physiol. Opt. 34
(2014)

3. Ashurst, C., Doherty, N.F.: Towards the formulation of a ‘best practice’framework
for benefits realisation in it projects. Electr. J. Inf. Syst. Eval. 6(2), 1–10 (2003)

4. Askedal, K., Flak, L.S., Aanestad, M.: Five challenges for benefits management in
complex digitalisation efforts-and a research agenda to address current shortcom-
ings. Electr. J. e-Govt. 17(2), 64–78 (2019)

5. Aubry, M., Boukri, S.E., Sergi, V.: Opening the black box of benefits management
in the context of projects. Proj. Manag. J. 52(5), 434–452 (2021)

6. Ballantine, J.A., Galliers, R.D., Stray, S.J.: Information systems/technology eval-
uation practices: evidence from UK organizations. J. Inf. Technol. 11(2), 129–141
(1996)

7. Berghout, E., Nijland, M., Powell, P.: Management of lifecycle costs and benefits:
lessons from information systems practice. Comput. Ind. 62(7), 755–764 (2011)

8. Bradley, G.: Benefit Realisation Management: A Practical Guide to Achieving
Benefits through Change. Routledge, London (2016)

9. Breese, R.: Benefits realisation management: panacea or false dawn? Int’l J. Project
Manag. 30(3), 341–351 (2012)

10. Breese, R., Jenner, S., Serra, C.E.M., Thorp, J.: Benefits management: lost or
found in translation. Int. J. Project Manage. 33(7), 1438–1451 (2015)

11. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Rout-
ledge, London (1988)

12. Coombs, C.R.: When planned IS/IT project benefits are not realized: a study of
inhibitors and facilitators to benefits realization. Int. J. Project Manag. 33(2),
363–379 (2015)

13. Doherty, N.F., Ashurst, C., Peppard, J.: Factors affecting the successful realisation
of benefits from systems development projects: findings from three case studies. J.
Inf. Technol. 27(1), 1–16 (2012)

14. Farbey, B., Land, F., Targett, D.: The moving staircase - problems of appraisal
and evaluation in a turbulent environment. Inf. Technol. People 12(3), 238–252
(1999)

15. Fernandes, G., O’Sullivan, D.: Benefits management in university-industry collab-
oration programs. Int. J. Project Manag. 39(1), 71–84 (2021)

16. Flak, L.S., Eikebrokk, T.R., Dertz, W.: An exploratory approach for benefits man-
agement in e-government: Insights from 48 Norwegian government funded projects.
In: Proceedings of 41st Annual Hawaii International Conference on System Sciences
(HICSS) (2008), article no. 210

Benefit Considerations in Project Decisions 233

17. Gigerenzer, G.: Mindless statistics. J. Socio-Econ. 33, 587–606 (2004)
18. Gingnell, L., Franke, U., Lagerström, R., Ericsson, E., Lilliesköld, J.: Quantifying

success factors for it projects-an expert-based Bayesian model. Inf. Syst. Manag.
31(1), 21–36 (2014)

19. Hannay, J.E.: Benefit/Cost-Driven Software Development with Benefit Points and
Size Points. Springer, Simula Springer Briefs (2021). https://doi.org/10.1007/978-
3-030-74218-8D

20. Hannay, J.E., Benestad, H.C., Strand, K.: Benefit points–the best part of the story.
IEEE Softw. 34(3), 73–85 (2017)

21. Hannay, J.E., Benestad, H.C., Strand, K.: Earned business value management–see
that you deliver value to your customer. IEEE Softw. 34(4), 58–70 (2017)

22. Hesselmann, F., Mohan, K.: Where are we headed with benefits management
research? Current shortcomings and avenues for future research. In: Proceedings
of 22nd European Conference on Information Systems (ECIS) (2014)

23. Holgeid, K.K., Jørgensen, M.: Benefits management and agile practices in soft-
ware projects: how perceived benefits are impacted. In: IEEE 22nd Conference on
Business Informatics (CBI), vol. 2 (2020)

24. Jenner, S.: Managing Benefits: Optimizing the Return from Investments. The Sta-
tionery Office, APMG-International, High Wycombe (2014)

25. Jørgensen, M.: A survey of the characteristics of projects with success in delivering
client benefits. Inf. Softw. Technol. 78, 83–94 (2016)

26. Jørgensen, M., Mohagheghi, P., Grimstad, S.: Direct and indirect connections
between type of contract and software project outcome. Int. J. Project Manag.
35(8), 1573–1586 (2017)

27. Keil, M., Mann, J., Rai, A.: Why software projects escalate: an empirical analysis
and test of four theoretical models. MIS Q. 24(4), 631–664 (2000)

28. Kirk, R.E.: Practical significance: a concept whose time has come. Educ. Psychol.
Measur. 56(5), 746–759 (1996)

29. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for
Teams. Addison Wesley, Programs and the Enterprise (2011)

30. Lenhard, W., Lenhard, A.: Computation of effect sizes (2016). https://www.
psychometrica.de/effect size.html Psychometrica. https://doi.org/10.13140/RG.2.
2.17823.92329

31. Lin, C., Pervan, G.: Is/it investment evaluation and benefits realisation issues in a
government organisation. In: ACIS 2001 Proceedings, vol. 49 (2001)

32. Lin, C., Pervan, G.: The practice of IS/IT benefits management in large Australian
organizations. Inf. Manag. 41(1), 13–24 (2003)

33. Lystad, J.: Det er ingen skam å snu - erfaringer fra Mattilsynet og NAV. Presenta-
tion given at Conference of the Agency for Public Management and eGovernment
(DIFI), 6 December 2017

34. Olaussen, S., Tendal, Ø, et al.: KSP-rapport nr. 1 for Modernisering av IKT i NAV
- Rapport til Finansdepartementet og Arbeids- og sosialdepartementet, Versjon:
1.0 (2015)

35. Rabbee, N., Coull, B.A., Mehta, C.: Power and sample size for ordered categorical
data. Stat. Methods Med. Res. 12, 73–84 (2003)

36. Sawilowsky, S.S.: New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8(2),
596–599 (2009)

37. Shenhar, A.J., Dvir, D., Levy, O., Maltz, A.C.: Project success: A multidimensional
strategic concept. Long Range Plan. 34(6), 699–725 (2001)

https://doi.org/10.1007/978-3-030-74218-8D
https://doi.org/10.1007/978-3-030-74218-8D
https://www.psychometrica.de/effect_size.html
https://www.psychometrica.de/effect_size.html
https://doi.org/10.13140/RG.2.2.17823.92329
https://doi.org/10.13140/RG.2.2.17823.92329

234 S. S. Tanilkan and J. E. Hannay

38. Tanilkan, S.S., Hannay, J.E.: Perceived challenges in benefits management–a study
of public sector information systems engineering projects. In: 2022 IEEE 24th
Conference on Business Informatics (CBI), June 2022

39. Terlizzi, M.A., Albertin, A.L., de Oliveira Cesar de Moraes, H.R.: IT benefits
management in financial institutions: practices and barriers. Int’l J. Project Manag.
35(5), 763–782 (2017)

40. Tian, C., Manfei, X., Justin, T., Hongyue, W., Xiaohui, N.: Relationship between
omnibus and post-hoc tests: An investigation of performance of the F test in
ANOVA. Shanghai Arch. Psychiatry 30(1), 60–64 (2018)

41. Tomczak, M., Tomczak, E.: The need to report effect size estimates revisited. An
overview of some recommended measures of effect size. Trends Sport Sci. 1(21),
19–25 (2014)

42. Ward, J., Daniel, E.: Benefits Management: How to increase the Business Value of
Your IT Projects, 2nd edn. Wiley, New York (2012)

43. Ward, J., Taylor, P., Bond, P.: Evaluation and realisation of IS/IT benefits: an
empirical study of current practice. Eur. J. Inf. Syst. 4, 214–225 (1996)

44. Williams, T., et al.: A cross-national comparison of public project benefits man-
agement practices - the effectiveness of benefits management frameworks in appli-
cation. Prod. Plan. Control 31, 1–16 (2020)

45. Yin, R.K.: Case Study Research: Design and Methods, Applied Social Research
Methods Series, 3rd edn., vol. 5. Sage Publications 2003)

46. Zachariassen, E.: Nav stanser IT-prosjekt til 3,3 milliarder - Moderniseringspro-
grammet var feil metode. Nav f̊ar skryt fra statlig ekspert, article published 25
October 2013

Towards Situational Process Management
for Professional Education Programmes

Dennis Wolters(B) and Gregor Engels

Department of Computer Science, Paderborn University, Paderborn, Germany
{dennis.wolters,engels}@uni-paderborn.de

Abstract. Designing and running professional education programmes
involves various processes that responsible parties must manage. The
knowledge gathered during development and with each new programme
iteration is seldom externalized and it cannot be guaranteed that it will
be applied in the next programme or iteration. This work-in-progress
paper proposes a situational process management approach for profes-
sional education programmes. The basis for our approach is a modelling
language to describe the high-level perspective of such programmes. Pro-
cesses, best practices and existing content elements can be extracted from
these models and added to a knowledge base alongside situational factors
in which these items apply. If a relevant situation is observed in a model
representing a professional education programme, the applicable items
from the knowledge base are suggested to users. Our approach allows
persisting the knowledge gained while developing/running professional
education programmes and makes it accessible to others.

Keywords: Professional education · Process management

1 Introduction

Professional education is crucial in finding, developing and retaining highly
skilled employees [12]. Companies turn towards education providers to develop
and run professional education programmes. Examples of education providers are
companies providing education on their products, companies focused on profes-
sional education or universities. Depending on the size, a company may even
have a dedicated department that serves as an education provider. Education
providers gain insights and refine their processes with each new programme and
iteration. This gained knowledge is not always documented or taken into account
when developing a new programme or doing another iteration of an existing one.
For instance, a designer might not recall a lesson learned due to a high workload,
or a different person is responsible for a programme.

Many instructional design processes exist [1,4,5,8] to develop education pro-
grammes and there is no one-size-fits-all. Instead processes have to selected and
adapted based on the situation [3]. This selection and adaptation is often done
based the experience of instructional designers. Unfortunately, not everybody
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 235–242, 2022.
https://doi.org/10.1007/978-3-031-21388-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_16&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_16

236 D. Wolters and G. Engels

developing and running a professional education programme is an experienced
instructional designer or even educated in the field [14]. Hence, standard prac-
tices maybe unknown and learning from more experienced colleagues, literature
and past projects is crucial.

In this paper, we present our ongoing work in assisting with the design and
management of professional education programmes. Our research follows the
design science research method from Kuechler and Vaishnavi [11], which is struc-
tured into “Awareness of Problem”, “Suggestion”, “Development”, “Evaluation”
and “Conclusion”. The awareness of the problem of missing process management
assistance while designing and running professional education programmes is
based our work in this area, discussion with fellow education providers and lit-
erature. To address this, we suggest a situational process management approach
for professional education programmes that can extract and store knowledge on
processes and best practices and offer them in relevant situations. The approach
builds upon our modelling approach for professional education programmes out-
lined in [16]. The paper provides insights on the development phase, and we plan
to evaluate our approach in a user study once development is completed.

The remainder of this paper is structured as follows: Sect. 2 covers related
work. Section 3 describes the context of professional education programmes.
Section 4 explains our situational process management approach for professional
education programmes and its current development status. Section 5 concludes
the paper and gives an outlook on future work.

2 Related Work

This paper is concerned with designing and running education programmes,
which falls within the instructional design scope. Moreover, we apply techniques
from Situational Method Engineering (SME). The following discusses related
work from instructional design and existing SME approaches.

ADDIE [5] is probably the most well-known instructional design process. It is
an acronym for Analysis, Design, Development, Implementation and Evaluation.
The interpretations of ADDIE reach from a waterfall-like process to a descrip-
tion of basic life cycle phases occurring in an instructional design project [3].
The Successive Approximation Model (SAM) is an Agile instructional design
process [1]. While ADDIE phases can still be mapped to SAM, it advocates
shorter development iterations and early testing by using prototypes and prelim-
inary versions of programmes. Further process models exist like Dick and Carey
Model [4] or ASSURE [8]. Our approach does not dictate a specific process but
instead suggests processes based on given situations. Hence, these processes can
be incorporated as suggestions into our approach.

The IMS Learning Design Specification (IMS-LD) [10] is an XML-based for-
mat for describing online learning programmes. In contrast to the modelling
language that is the basis for our approach, IMS-LD targets eLearning and the
related design/management processes are not covered. STOPS [2] is a curriculum
visualisation and development technique. Its focus is on course structures and

Towards Situational Process Management for Professional Ed. Programmes 237

aspects like educators, time planning or the intended audience are neglected.
MISA [14] is an instructional engineering method to build IMS-LD-compliant
learning programmes. While we stay agnostic of concrete processes, they define
their own design process. In contrast to our approach, the educational design
assistant myScripting [13] provides more in-depth assistance in designing learn-
ing activities but the process management aspect is not their focus.

SME approaches exist for software engineering projects in general [9] as
well as for specific types of projects, e.g. software migration projects [7]. SME
approaches also exist in fields outside of software engineering, e.g. Gottschalk
et al. [6] apply this technique to business model development and Tsai and
Zdravkovic [15] for developing digital business ecosystems. While the terminol-
ogy, application fields and details of these approaches differ, the core ideas remain
the same: Store existing knowledge in a repository, identify situations in which
the knowledge is applicable and assist in its application. These core ideas are
also the basis for our approach.

3 The 3Ps of Professional Education Programmes

In this section, we provide the context for our work by explaining the 3Ps of
professional education programmes: product, people and processes. Most of the
presented concepts also apply to other types of education programmes. Nonethe-
less, there are differences regarding the 3Ps depending on the type of programme,
e.g. university study programmes require an accreditation process.

As visualised in the left part of Fig. 1, the product is a professional educa-
tion programme requested by a company and provided by an education provider.
Professional education programmes consist of a number of educational activities
which address the goals a company is pursuing with such a programme. Usually
a programme runs for multiple iterations, each with a new cohort of participants.
For instance, new talents are identified and trained regularly in talent develop-
ment programmes. Programmes are updated based on changing company needs
or evaluations, e.g. assessment results or feedback of participants.

We can differentiate between various types of people on each side. On the
company’s side, we can differentiate between clients and participants. Clients are
the representatives of a company that request a programme and work together
with education providers to create and run it. The participants are the audience
for which a programme is intended, e.g. new employees or talents.

On the side of education providers, we can distinguish between designers,
educators and managers. Designers are responsible for designing professional
education programmes that address the needs of a company. For this, design-
ers closely work together with clients. Once the learning goals of a programme,
the intended audience and the client’s environment are understood, designers
involve educators. Together they develop the educational activities that help
reach these learning goals, are suited for the audience and fit the company’s
environment. Different types of educators exist, e.g. instructors, coaches or sub-
ject matter experts, and they are involved in developing activities and their

238 D. Wolters and G. Engels

Fig. 1. Visualisation of people and product on the left and processes on the right.
Dashed content on the right indicates additions of our approach.

execution. While educators are involved in executing individual activities, pro-
gramme managers are responsible for the broader management of an iteration.
For instance, managers schedule the activities, book rooms, provide participants
and educators with information and collect feedback.

Designer, educator and manager are roles and a single person can have mul-
tiple roles. Additionally, throughout the lifetime of a programme, the people
having these roles change. A designer might manage the first few iterations until
a programme is mature enough that someone else can continue managing it.

Regarding the processes related to a professional education programme,
we distinguish between design and management processes. In the right part of
Fig. 1, we visualised their interconnection and already hinted at what is added
by our approach. Explanations of our additions (dashed content starting in ❹
and ❺) are given in Sect. 4.

Design processes (see ❶) are typically based on a instructional designer’s
expertise and/or instructional design processes from literature, such as
ADDIE [5], SAM [1], Dick and Carey [4] or ASSURE [8]. Design processes are
concerned with analysing what is needed, designing a programme addressing
the needs and developing the actual content. Furthermore, design processes also
cover the adaption of a programme based on feedback. During the design of a
programme, designers and educators perform certain tasks (see ❷). Some of these
tasks occur due to the design process, e.g. perform need analysis. In contrast,
other tasks are added ad hoc because they were not covered by the initial design
process or represent refinements to more actionable tasks. The design phase does
not necessarily need to be finished before an iteration of a programme starts.
Assume a programme consists of two one-week modules. When the first module
runs, the second may still be under development.

A set of management processes may result as part of the design phase (see ❸).
Similar to the design phase, various tasks are performed by managers in the man-
age phase. While some of these tasks result from of the management processes,
managers identify and perform additional tasks as they manage a programme.
Based on feedback and assessment results, a programme is adapted, which again
requires a design phase before the next iteration starts.

Towards Situational Process Management for Professional Ed. Programmes 239

4 Situational Process Management for Professional
Education Programmes

This section explains how people designing and managing professional education
programmes can be supported by suggesting processes, best practices and exist-
ing content elements in relevant situations. As mentioned at the end of Sect. 2,
our approach follows the core ideas of situational method engineering of external-
izing knowledge, giving situation-specific recommendations and assisting in the
application. The following gives an overview of how our approach incorporates
these ideas and explains the current development status.

4.1 Solution Overview

Figure 2 shows an overview of our situational process management technique for
professional education programmes. As a basis for our approach, we propose the
Professional Education Programme Modelling Language (PEPML) that allows
describing professional education programmes across their entire life cycle.

PEPML focuses on the high-level perspective of professional education pro-
grammes and allows the usage of existing tools for detailed planning. For
instance, a designer might state that a programme contains an assessment,
which is realized as a quiz in a learning management system. In any case,
designers create high-level descriptions of programmes, but they are usually
spread across multiple informal documents, e.g. slides, spreadsheets or draw-
ings. With PEPML, the high-level description is formalized and the descriptions
are reusable. The effort for designers to create such models can be reduced by
leveraging information from existing tools. For instance, PEPML allows to spec-
ify tasks for any part of an education programme and integrates with existing
project management tools to provide more advanced task management capabili-
ties. Additionally, task information can be retrieved from these tools and added
to PEPML models. Moreover, PEPML models are persisted in a Neo4j1 graph
database, which makes them queryable. Further details are outlined in [16].

The possibility to query and reuse (parts of) PEPML models is the basis
for the knowledge base used for storing and applying gained knowledge from
past professional education programmes and iterations. To fill this knowledge
base, we suggest a reflection phase after each design/manage phase, as indicated
by ❹ and ❺ on the right side of in Fig. 1. In this reflection phase, designers
and managers look at the tasks performed in the design/manage phase. Since
PEPML allows managing tasks in relation to the programme, it is possible to
view tasks based on individual entities of a programme, such as a specific activity
like an instructor-led session on a particular topic. During reflection, designers
and managers can then state if it was a one-off or recurring task. In the sim-
plest case, recurring tasks can be reset and put into the backlog for the next
iteration. Resetting tasks already helps repeating of a programme. Addition-
ally, we allow externalizing the process knowledge represented by these tasks.

1 https://neo4j.com.

https://neo4j.com

240 D. Wolters and G. Engels

used to model

Processes Portfolio Best Practices

based on

Knowledge Base Experience

Recommendations

Professional Education Programme Modelling Language (PEPML)
Situational Context

PM LMS

Neo4j

Professional Education Programmes

…

Ex
ist

in
g

To
ol

s

persisted in

PM = Project Management
LMS = Learning Management System

= Information Flow

Fig. 2. Overview of our situational process management technique for professional
education programmes

A task may be one out of a sequence of tasks always occurring in a specific
situation. Such a process can be extracted, the situation in which it applies can
be described and both be added to the knowledge base. For instance, a process
consisting of tasks like “Ask instructor for availability”, “Set Date/Time for Ses-
sion”, “Inform Instructor About Date/Time” and “Send Online Meeting Link”
is typical for instructor-led online sessions. We utilize Neo4j’s query language
Cypher to describe applicable situations since PEPML are persisted in a Neo4j
graph database. Parameterized query templates are used to simplify the descrip-
tion of applicable situations. In particular, we have such a query template for
describing the type of educational activity. These parameterized query templates
reduce the effort of writing a full Cypher query to providing parameter values,
e.g. the activity type. PEPML models are queried to check if a particular situa-
tion occurs, and the tasks or processes applicable in the respective situation are
recommended to the designer or manager. If they follow the recommendation,
the respective tasks are added to the task backlog for the next iteration.

In addition to processes, the knowledge base can also contain best practices
and a portfolio of existing content elements. A best practice could be a process
recommendation, e.g. remind participants about handing in a deliverable. Other
types of best practices exist as well, like ensuring in an international programme
that online sessions are scheduled during working hours for all participants, using
virtual background themes as conversations for online programmes or having a
break at least every 90 min. Best practices which are not processes are hard
to apply automatically but suggestions can be given. For instance, information
on participants could be extracted from a learning management system and
reflected in the PEPML model. A suitable timeframe for delivery can be sug-
gested automatically using this information.

With each education programme, education providers also build a portfolio
of content elements that designers can reuse in other programmes. Such elements
can be catalogued based on topic or type and added to the knowledge base. The
portfolio forms the basis for new programmes and can provide alternatives if
elements need to be replaced in an existing programme.

Towards Situational Process Management for Professional Ed. Programmes 241

4.2 Status of Development

We have developed a metamodel for PEPML and a visual syntax to describe
dependencies between elements and the temporal structure of an education pro-
gramme. To model the dependencies and the temporal structure, we have devel-
oped an app for the digital whiteboard Miro2. Basing our modelling tool support
on Miro makes it also suitable for remote collaboration with clients. We have
already successfully used PEPML in the analysis and design of a new professional
education programme provided by the Software Innovation Campus Paderborn.

PEPML models are extracted from Miro and persisted in a Neo4j graph
database, as indicated in Fig. 2. PEPML has basic support for defining tasks and
their relation to entities of an education programme. Additional support for task
management is realized by integrating with existing project management tooling.
For now, we implemented an example integration with the project management
tool OpenProject3, but it is not a tight coupling to a specific tool.

Similar to the integration with OpenProject, we plan to integrate other exist-
ing tools, like learning management systems that manage participants and activ-
ities or file storage solutions used for storing and distributing materials. Thereby,
designers and managers can rely on existing tooling but simultaneously have the
benefits provided by our approach. Tool support for filling the knowledge base
and extracting processes by reflecting on done tasks is currently under develop-
ment.

5 Conclusion and Future Work

Not every professional education programme is developed or run by experienced
instructional designers. Hence, it is vital that proven processes, best practices
or existing content elements are suggested when relevant. This paper presents
our ongoing work towards a situational process management approach for pro-
fessional education programmes. A modelling language is used to describe pro-
fessional education programmes on a high abstraction level and manage tasks
related to elements of a programme. By reflecting on these tasks, processes
that apply in specific situations can be extracted. These processes as well as
best practices and existing content elements can be stored in a knowledge base.
The models representing professional education programmes are used to suggest
applicable elements from the knowledge base. Thereby, this knowledge can be
shared and recalled automatically in relevant situations.

In the future, we plan to conduct a user study to evaluate the benefits of
our approach. Moreover, by tracking tasks in correspondence to elements of a
programme, processes and situational factors could be deduced automatically
using process mining techniques.

2 https://miro.com.
3 https://openproject.org.

https://miro.com
https://openproject.org

242 D. Wolters and G. Engels

References

1. Allen, M.W., Sites, R.: Leaving ADDIE for SAM. American Society for Training
and Development, Alexandria (2012)

2. Auvinen, T., Paavola, J., Hartikainen, J.: STOPS: a graph-based study planning
and curriculum development tool. In: KOLI CALLING 2014, pp. 25–34. Associa-
tion for Computing Machinery, New York, NY, USA (2014)

3. Branch, Robert Maribe, Kopcha, Theodore J..: Instructional design models. In:
Spector, J. Michael., Merrill, M. David., Elen, Jan, Bishop, M.. J.. (eds.) Handbook
of Research on Educational Communications and Technology, pp. 77–87. Springer,
New York (2014). https://doi.org/10.1007/978-1-4614-3185-5 7

4. Dick, W., Carey, L., Carey, J.O.: The Systematic Design of Instruction. Pearson
Education Ltd., Upper Saddle River (2005)

5. Gagne, R.M., Wager, W.W., Golas, K.C., Keller, J.M., Russell, J.D.: Principles of
Instructional Design. Wiley Online Library, New York (2005)

6. Gottschalk, Sebastian, Yigitbas, Enes, Nowosad, Alexander, Engels, Gregor:
Situation- and domain-specific composition and enactment of business model devel-
opment methods. In: Ardito, Luca, Jedlitschka, Andreas, Morisio, Maurizio, Torchi-
ano, Marco (eds.) PROFES 2021. LNCS, vol. 13126, pp. 103–118. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-91452-3 7

7. Grieger, Marvin, Fazal-Baqaie, Masud, Engels, Gregor, Klenke, Markus: Concept-
based engineering of situation-specific migration methods. In: Kapitsaki, Georgia
M.., Santana de Almeida, Eduardo (eds.) ICSR 2016. LNCS, vol. 9679, pp. 199–
214. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-35122-3 14

8. Heinich, R., Molenda, M., Russel, J.D., Smaldino, S.E.: Instructional Media and
Technology for Learning. Pearson Education Ltd., Upper Saddle River (2002)

9. Henderson-Sellers, B., Ralyté, J., Ågerfalk, P.J., Rossi, M.: Situational Method
Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
41467-1

10. IMS Global Learning Consortium: Learning Design Specification version 1 (2003).
http://www.imsglobal.org/learningdesign/

11. Kuechler, B., Vaishnavi, V.: On theory development in design science research:
Anatomy of a research project. Eur. J. Inf. Syst. 17(5), 489–504 (2008)

12. Kyndt, E., Dochy, F., Michielsen, M., Moeyaert, B.: Employee Retention: Organi-
sational and Personal Perspectives. Vocat. Learn. 2(3), 195–215 (2009)

13. Müller, C., Erlemann, J.: Educational design for digital learning with myScripting.
In: EDEN Conference 2022 (2022)

14. Paquette, G., de la Teja, I., Léonard, M., Lundgren-Cayrol, K., Marino, O.: An
Instructional Engineering Method and Tool for the Design of Units of Learning. In:
Learning Design: A Handbook on Modelling and Delivering Networked Education
and Training, pp. 161–184. Springer, Heidelberg (2005). https://doi.org/10.1007/
b138966

15. Tsai, Chen Hsi, Zdravkovic, Jelena: A Foundation for design, analysis, and man-
agement of digital business ecosystem through situational method engineering. In:
Serral, Estefańıa, Stirna, Janis, Ralyté, Jolita, Grabis, J.ānis (eds.) PoEM 2021.
LNBIP, vol. 432, pp. 134–149. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-91279-6 10

16. Wolters, D., Engels, G.: Model-driven Design and Management of Professional
Education Programmes. In: ICSOB’22 Companion Proceedings. CEUR Workshop
Proceedings, CEUR-WS.org, (in press)

https://doi.org/10.1007/978-1-4614-3185-5_7
https://doi.org/10.1007/978-3-030-91452-3_7
https://doi.org/10.1007/978-3-319-35122-3_14
https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.1007/978-3-642-41467-1
http://www.imsglobal.org/learningdesign/
https://doi.org/10.1007/b138966
https://doi.org/10.1007/b138966
https://doi.org/10.1007/978-3-030-91279-6_10
https://doi.org/10.1007/978-3-030-91279-6_10

Change Management in Cloud-Based Offshore
Software Development: A Researchers

Perspective

Muhammad Azeem Akbar1(B) , Kashif Hussain2, Saima Rafi3,
Rafiq Ahmad Khan4, and Muhammad Tanveer Riaz5

1 Software Engineering, LUT University, 53851 Lappeenranta, Finland
azeem.akbar@lut.fi

2 Computer Science, National College of Commerce and Education, Hasilpur 63000, Punjab,
Pakistan

3 Epartment of Informatics and Systems, University of Murcia, Murcia, Spain
4 Department of Computer Science and IT, University of Malakand, Malakand, Pakistan
5 Department of Mechanical Mechatronics and Manufacturing Engineering, UET Lahore,

Faisalabad Campus, Faisalabad, Pakistan

Abstract. Cloud based Offshore Software Development Outsourcing (COSDO)
concept is complex and comes with various challenges, specifically related to the
RequirementsChangeManagement (RCM)process. This study aims to investigate
the success factors (SF) that could positively influence RCM activities in COSDO
firms and to propose a theoretical framework for the investigated aspects. A sys-
tematic literature review (SLR) method was adopted to investigate SF. Finally,
based on the investigated factors, we developed a theoretical framework that
shows the relationship between the identified factors and the implementation of
the RCM process in the COSDO domain. The findings of this study could help
researchers and practitioners address the key issues of theRCMprocess inCOSDO
organizations.

Keywords: Systematic Literature Review (SLR) · Change management ·
Success factors

1 Introduction

A software development phenomenon, COSDO spanned social, geographic, and tempo-
ral borders among its members [1]. More than half the software development industry
has adopted COSDO [2–4] because of its financial characteristics. 20% of client soft-
ware development organizations re-appropriate their improvement activities to vendor
associations to benefit from COSDO phenomena, as revealed in a Standish Group study
[5]. As a result of the lower development costs, the availability of a skilled labor, and
better market access, there has been a noticeable rise in offshore software development
outsourcing [5]. Despite this, the COSDO team also deals with questions that aren’t

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 243–251, 2022.
https://doi.org/10.1007/978-3-031-21388-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_17&domain=pdf
http://orcid.org/0000-0002-6880-4991
http://orcid.org/0000-0002-4391-9821
https://doi.org/10.1007/978-3-031-21388-5_17

244 M. A. Akbar et al.

commonly seen in a collocated setting [6, 7]. Their inability to effectively carry out-
growth exercises, is a result of communication and coordination issues [1, 4]. The poor
requirement change management could cause system decline [8–10]. Standish Group
led a survey of thirteen thousand programming projects and featured that 18% of the
tasks were flop because of poor management of requirements change [11].

Models of management that may effectively implement the RCM cycle have been
created based on various requirements. Niazi et al. [12], for instance, established amodel
for RCM utilizing the CMMI level-2 specialized practice known as SP 1.3-1. A request,
validation, implementation, verification, and update are all steps in the model’s lifecy-
cle. Research undertaken with RCM experts yielded insights into the model’s design
based on the existing empirical data. RCM problems faced by industry practitioners
have been addressed in another study by Keshta and colleagues [14]. Initiate, validate,
verify, implement, update, and release are the six primary steps of the Keshta et al.
paradigm. However, the model does not allow the execution of RCM operations in large
organizations that are internationally scattered [14]. It does, however, provide a detailed
guideline on how to make the requested adjustments to the criteria. In overseas soft-
ware development concept, Akbar et al. [14] develop a change management model in
offshore software development domain (Fig. 1). They cover important aspect of change
management in overseas software development, but communication aspects does not fit
well with this model. Using these models and frameworks, members of the team may
more easily adapt to changing requirements, create high-quality products, cut down on
development costs, and meet customer expectations [15–17]. The RCM cycle has only
been included into the collocated and offshore software development environment by
these models and frameworks, but COSD issues have been completely ignored [18].

Fig. 1. Change management in outsources software development [reference]

In order to fill this knowledge void,wewill design amodel formeasuring thematurity
of software requirements changes and implementations (SRCMIMM). Based on the idea
of leaving maturity models in many elements and domains that could affect the RCM

Change Management in Cloud-Based Offshore Software Development 245

program in COSDO environment, the proposed model (SRCMIMM) will be developed.
In this article, we have covered the first stage toward the construction of themodel, which
is the preliminary phase of discussing the success elements of RCM. We followed the
step-by-step process of systematic literature review to conduct this study and report on
RCM’s success factors [26]. Understanding the success aspects of change management
can assist the experts in addressing the essential areas of requirement change prior to
implementing the RCM method. These research questions were formulated to address
the issue under consideration:

[RQ1]:What are the key success factors forRCMinCOSDO, reported by researcher?

[RQ2]: What would be an example of a hypothetical RCM success factors
framework?

2 Research Methodology

Research Questions
In Sect. 1, we talk about the research questions formulated to perform this study.

Systematic Literature Review (SLR) Process
ConsideringChen et al. [27] study,we have selected themost appropriate digital libraries.
The selected digital repositories include: “IEEE Xplore”, “ACM Digital Library”,
“Springer Link”, “Wiley Inter Science”, “Google Scholar” and “Science Direct”. There
are variety of ways to search in digital libraries. Using RCM and COSDO research
publications, phrases from study questions and their alternatives we came-up with a
list of synonyms for search terms. The primary keywords and their alternatives were
concatenated utilizing the Boolean “OR” and “AND” operators to process the search
strings.

In next steps we have performed the quality assessment along with inclusion and
exclusion criteria. By conducting the QA check, we examine that according to the AQ
checklist, 70% of the selected studies score more than 80%. The detailed results are
given at: https://tinyurl.com/m7z4fzwp.

Fig. 2. Literature selection and temporal distribution

https://tinyurl.com/m7z4fzwp

246 M. A. Akbar et al.

Finally, 25 essential studies were shortlisted from total of 860 articles by following
the five periods of the tollgate approach (Fig. 2). The Fig. 2 also shows the temporal
distribution of selected studies along with research methodology used in those studies.
Themost common usedmethods are case studies (CS= 35.0%) andmixedmethod (MM
= 16.0%). List of the selected studies along with quality score is given at: https://tin
yurl.com/m7z4fzwp, and each studymakes identical with ‘SP’ to introduce them as SLR
primary studies. From 25 primary research, a list of success factors (SF) was compiled.
According to the primary studies, the research questions of this study were evaluated.
The result is given in Table 1.

3 Results and Discussions

This section presents the findings of the SLR.

3.1 RQ1 (Identified Success Factors)

Using the detailed guidelines provided in Sect. 2 of the SLR technique, our team has
conducted an in-depth analysis of the chosen25primary studies and identified ten success
factors for RCM. Table 1 lists the identified success factors with frequency distribution.

Table 1. Identified success factors

S. No Success factors Frequency (N = 25) Percentage of occurrence

SF1 Management support 12 48

SF2 Strong relationship with
practistioners

13 52

SF3 Information sharing 15 60

SF4 RCM expertise 10 40

SF5 Roles and responsibilities 8 32

SF6 Effective RCM leadership 11 44

SF7 RCM process awareness 16 64

SF8 Skilled human resources 14 56

SF9 Standard and procedures 11 44

SF10 3Cs (communication,
coordination, control)

18 72

https://tinyurl.com/m7z4fzwp

Change Management in Cloud-Based Offshore Software Development 247

SF1 (Management Support, 48%)
Organizational management must support and commit to requirement change manage-
ment efforts during the system development process [SP4]. Khan et al. [SP23] empha-
sized the importance of involving both upper and lower management in the RCM pro-
cess. For prerequisites and change management, Lavazza [SP10] said that the manage-
ment’s involvement and commitment could be helpful. The following hypothesis has
been developed based on the given discussion.

Hypothesis (H1):Management support has a positive association with RCM process in
COSDO.

SF2 (Strong Relationship Between Practitioners, 52%)
Effective communication and coordination between teammembers in a dispersed context
are two key indicators of strong working relationships [SP25]. Strong relationship assist
towards team, risk and system quality management [SP4]. The following hypothesis has
been developed based on the above discussion:

Hypothesis: (H2): Strong relationship between the practitioners could positively impact
the RCM activities in COSDO environment.

SF3 (Information Sharing, 60%)
Dispersed team members’ ability to exchange program-related information has been
identified as a critical component of the RCM’s success [SP25]. Data management,
coordination and knowledge integration for change management can be simplified with
proper information exchange [SP2]. As a result, we believe that information exchange
could have a favorable effect on COSDO’s RCM efforts.

Hypothesis (H3): The RCM process in a COSDO context benefits from the sharing of
information among the team members.

SF4 (RCM Expertise, 40%)
According to Damian et al. [SP3], the level of RCM expertise is defined as the ability
of RCM practitioners to successfully and efficiently implement requested requirements
modification. According to Khan et al. [SP25], the RCM process’s success is dependent
on the practitioners’ skills level. In order to successfully complete the project activities,
the RCM team members must have the necessary skills and knowledge [SP11, SP25].
As a result of this, our working hypothesis is as follows:

Hypothesis (H4): RCM expertise has a positive association with the RCM process in
COSDO.

SF5 (Roles and Responsibilities, 32%)
According to Williams et al. [SP2], assigning roles and tasks to the appropriate team
members is critical. Furthermore, according to Firesmith et al. [SP5], the roles and
duties of the team members must be clearly defined, which is essential for controlling
and managing misconceptions during the execution of RCM process activities.

248 M. A. Akbar et al.

Hypothesis (H5): Roles and responsibilities allocation process positively correlate with
RCM activities in COSDO.

SF6 (Effective RCM Leadership, 44%)
Management of change control board (CCB) should have suitable leadership talents
and knowledge to assess and deal with change demands, according to Ahmed et al.
[SP17]. You’ll be able to quickly and effectively respond to the certain modification
request [SP10, SP16] because of your leadership qualities. COSDO’s RCM process
relies heavily on strong leadership to move forward. Therefore, we come up with the
following theory.

Hypothesis (H6): Effective RCM leadership has beneficial influence on RCM process
in COSDO environment.

SF7 (RCM Process Awareness, 64%)
According toMavin et al. [SP20], organizational management must promote RCM team
members for training and certification. By conductingworkshops and seminars, youmay
successfully convey the RCM practices, and this will help encourage your employees.
This is why we came up with the following theory.

Hypothesis (H7): Successful change management in the COSDO context necessitates
familiarity with the RCM methodology.

SF8 (Skillful Human Resources, 56%)
The significance of skill human resources has been shed light in different research studies
[3, 7, 8]. Minhas et al. [SP21] described that, the practitioners should have expertise
and good skills in the computer programming and task the management areas. They
further referenced that people with an appropriate skill are the foundations of distributed
software development. Therefore, we hypothesize that:

Hypothesis (H8): Key to the success of COSDO’s RCM implementation is a well-
trained workforce.

SF9 (Standard and procedures, 44%)
According to Khan et al. [SP25], it is critical to use the correct standard and method
when implementing RCM process activities. The members of the team should adhere
to the established guidelines, frameworks, and standards. Additional research by Khan
et al. [25] suggests that the RCM programme may fail because of the lack of established
RCM models and standards. Consequently, we hypothesize that:

Hypothesis (H9): Formal RCM standards and procedures have positive association
with change management program in COSDO.

SF10 (3Cs “COmmunication, Coordination, Control”, 72%)
Knowledge transfer between distributed team members and the method they use to
better contact are referred to as 3Cs by Khan et al. [SP23]. Both coordination and
control depend on the communication. Strong communication channels could help the
distributed teams to properly coordinate and control the RCM activities [3]. Control

Change Management in Cloud-Based Offshore Software Development 249

is “the process of keeping goals, strategies, principles, and quality levels in place” [3].
Coordination and control deals with the key components (i.e., budget, time, and quality),
that are essential for the execution of the RCM process [SP25].

Hypothesis (H10): 3Cs “communication, coordination, control” has a positive
association with the RCM process in COSDO.

3.2 RQ5 (Proposed Theoretical Framework)

Theoretical framework was proposed for highlighting the association between the inde-
pendent variables (success factors) and dependent variable (RCM implementation in
COSDO) as shown in Fig. 3. The hypothetical relationship between the two types of
variables (independent, dependent) is briefly discussed in Sect. 3.1. In addition, we come
up with total ten hypotheses (H1–H10) to empirically investigate the association of the
reported success factors and RCM implementation process. The empirical study will
conduct in the future, where we will comparatively analyze the results of SLR and the
hypotheses reported in this study.

Fig. 3. Proposed theoretical framework

4 Threats to Validity

The first author of this study leads the SLR process and extract data. Thus, there is a
possibility of biased data collection as the one member can be prejudiced. But the other
authors’ participation in the inspection of the SLR results arbitrarily to observe any
difficulties that might occur has attempted to reduce the danger in this way.

In most recent studies, the key causes of the observed success variables have not
been explored, and this could be a threat to the study’s internal validity. There is a good
chance that specific types of factors are overrepresented in some research. In addition,
because the researchers in the 25 primary papers chosen are primarily from academia,
it is possible that they lack familiarity with contemporary RCM process methods in the
software development business.

250 M. A. Akbar et al.

5 Conclusion

Increasing number of global software development (COSDO) projects motivated us to
scrutinize the success factors that could positively impact the RCM activities in COSDO
environment. Conducting SLR, total of 10 RCM success factors were identified, and
five of these factors were deemed the most critical. RCM’s important success criteria
highlight the areas on which an organization must place a heavy emphasis.

Moreover, the identified factors were also presented in the form of theoretical frame-
work considering ten hypotheses we came up with to show the association of the inde-
pendent variables (success factors) with the dependent variable (RCM implementation
in COSDO). The aim of the theoretical framework is to compare the findings of this study
(SLR) and the industrial empirical study that will conduct in the future. The comparative
study of both data sets (SLR, empirical) will give insight about the available literature
and the views of the RCM practitioners working in COSDO industry. In future, we will
design a factors based conceptual model to make RCM process successful in COSDO
organizations.

References

1. Niazi, M., El-Attar, M., Usman, M. and Ikram, N. (2012) GlobReq: A Framework for
Improving Requirements Engineering in Global Software Development Projects. 4th IEEE
International Conference on Global Software Engineering, Ciudad Real, 14–15 May 2012,
166–170

2. Minhas, N.M., Zulfiqar, A.: An improved framework for requirement change management in
global software development. J. Softw. Eng. Appl. 7(9), 779 (2014)

3. Shameem, M., Kumar, C., Chandra, B., Khan, A.A.: Systematic review of success factors for
scaling agile methods in global software development environment: a client-vendor perspec-
tive. In: 2017 24th Asia-Pacific Conference Software Engineering Conference Workshops
(APSECW), pp. 17–24. IEEE, December 2014

4. Lai, R., Ali, N.: A requirements management method for global software development.“ AIS:
Adv. Inf. Sci. 1(1), 38–58 (2013)

5. Khatoon, A., et al.: Requirement change management for global software development using
ontology. Emerg. Technol. (ICET), In: 2013 IEEE 9th International Conference on. IEEE
(2013)

6. Khan, A.A., Basri, S., Dominic, P.D.D.: A propose framework for requirement change
management in global software development. In: International Conference on Computer &
Information Science (ICCIS), 2012, vol. 2. IEEE (2012)

7. Ramzan, S., Ikram, N.: Requirement change management process models: activities, artifacts
and roles. In: IEEEMulti topic Conference, INMIC 2006, Islamabad, 23–24 December 2006,
219–223 (2006). https://doi.org/10.1109/INMIC.2006.358167

8. Lai, R., Ali, N.: A requirements management method for global software development. Adv.
Inf. Sci. 1(1) 38–58 (2013)

9. Khan, J.K:Systematic reviewof success factors andbarriers for software process improvement
in global software development, IET Softw. (2016) ISSN 1751-8814

10. J. Zhu, et al., “The Requirements Change Analysis for Different Level Users,” in Intel-
ligent Information Technology Application Workshops, 2008. IITAW 2008. International
Symposium on, 2008, pp. 987–989

https://doi.org/10.1109/INMIC.2006.358167

Change Management in Cloud-Based Offshore Software Development 251

11. Khan, A.A., Keung, J., Niazi, M., Hussain, S., Ahmad, A.: Systematic literature review and
empirical investigation of barriers for software process improvement in global software devel-
opment: client-vendor perspective. Inf. Softw. Technol. 87, 180–205 (2017). .https://doi.org/
10.1016/j.infsof.2017.03.006

12. Riaz, M.T., et al.: A wireless controlled intelligent healthcare system for diplegia patients [J].
Math. Biosci. Eng. 19(1), 456–472 (2022). https://doi.org/10.3934/mbe.2022022

13. Niazi, M., et al.: A model for requirements change management: implementation of CMMI
level 2 specific practice. In: International Conference on Product Focused Software Process
Improvement. Springer, Berlin, Heidelberg (2008)

14. Khan, A.A., Shuib, B., Dominic, P.D.D.: A process model for Requirements Change Man-
agement in collocated software development. In: 2012 IEEE Symposium on E-Learning,
E-Management and E-Services (IS3e), IEEE (2012)

15. Akbar, M.A., Shafiq, M., Ahmad, J., Mateen, M., Riaz, M.T.: AZ-Model of software require-
ments changemanagement in global software development. In: 2018 InternationalConference
on Computing, Electronic and Electrical Engineering (ICE Cube), pp. 1–6. IEEE November
2018

16. Akbar, M.A., et al.: Multicriteria decision making taxonomy of cloud-based global software
development motivators. IEEE Access 8, 185290–185310 (2020). https://doi.org/10.1109/
ACCESS.2020.3030124

17. Akbar, M.A., Mahmood, S., Alsalman, H., Razzaq, A., Gumaei, A., Riaz, M.T.: Identification
and prioritization of cloud based global software development best practices. IEEE Access 8,
191242–191262 (2020). https://doi.org/10.1109/ACCESS.2020.3031365

18. Akbar, M.A., et al.: Requirements change management challenges of global software devel-
opment: an empirical investigation. IEEE Access 8, 203070–203085 (2020). https://doi.org/
10.1109/ACCESS.2020.3035829

19. Riaz,M.T., Ahmed, E.M., Durrani, F., Mond,M.A.:Wireless android based home automation
system. Adv. Sci. Technol. Eng. Syst. J. 2(1), 234–239 (2017)

https://doi.org/10.1016/j.infsof.2017.03.006
https://doi.org/10.3934/mbe.2022022
https://doi.org/10.1109/ACCESS.2020.3030124
https://doi.org/10.1109/ACCESS.2020.3031365
https://doi.org/10.1109/ACCESS.2020.3035829

Half-Empty Offices in Flexible Work
Arrangements: Why Are Employees Not

Returning?

Darja Smite1,2(B) , Nils Brede Moe1,2 , Anastasiia Tkalich1 ,
Geir Kjetil Hanssen1 , Kristina Nydal1, Jenny Nøkleberg Sandbæk1,

Hedda Wasskog Aamo1, Ada Olsdatter Hagaseth1, Scott Aleksander Bekke1,
and Malin Holte1

1 SINTEF Digital, Trondheim, Norway
{nils.b.moe,anastasiia.tkalich,geir.k.hanssen}@sintef.no,

hedda.aamo@live.no, malin@byremoholte.no
2 Blekinge Institute of Technology, Karlskrona, Sweden

darja.smite@bth.se

Abstract. Although the forced working from home during the pandemic crisis
seem to have ended, many knowledge workers choose to continue working pre-
dominantly fromhome as a partial or permanent practice. Related studies show that
employees of companies from various industries, diverse in size and location, pre-
fer to alter working in the office with working at home, coined as hybrid or flexible
working arrangements. As a result, offices remain empty, managers are confused,
and organizational leaders do not know what to do with the often-expensive rental
contracts. In this short paper, we investigate the employee presence in the offices
in two software companies and dive deeper into the reasons behind the prefer-
ences to work remotely, and practices that help to attract employees back into the
offices. The latter are based on the qualitative analysis of interviews and survey
responses. Our findings suggest that between the fall of 2021 and the summer of
2022, the offices were half-empty and that, on average, the daily office presence
varies between 13–30%. The peaks of office presence in both companies are on
Wednesdays, reaching up to 50% during weeks with low virus spread in one com-
pany, and in the spring months in 2022 in the other company. The reasons for
remote work include behavioral and practical motivations, factors related to office
equipment and facilities, and the nature of the work tasks.

Keywords: Remote work ·Work from home ·WFH · Hybrid workplace

1 Introduction

The forced work from home (WFH) during the pandemic in many software companies
demonstrated that perceived productivity not only remains stable, but in some cases
improves [1]. As a result of the better-than-expected experiences with remote working,
many employees choose to continueWFH if not full time, then at least part-time, altering

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 252–261, 2022.
https://doi.org/10.1007/978-3-031-21388-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_18&domain=pdf
http://orcid.org/0000-0003-1744-3118
http://orcid.org/0000-0003-2669-0778
http://orcid.org/0000-0001-7391-4194
http://orcid.org/0000-0003-2718-6637
https://doi.org/10.1007/978-3-031-21388-5_18

Half-Empty Offices in Flexible Work Arrangements 253

the days in the office with days at home [2], which is referred to as a hybrid model
or flexible work arrangement [3]. As offices remain half-empty, there is a growing
realization that flexible work arrangements are here to stay [3, 4].

While there are many benefits of WFH [2, 5, 6], remote communication weakens
the connection between colleagues [7, 8] and makes non-verbal signals harder to notice,
even in video meetings [9]. Communication challenges significantly complicate the
teammanagers’ job, which often depends on the ability to observe, communicate in-the-
moment feedback with team members, engage in conversations, and debate [3]. This is
not only about Tayloristicmanagers who rely on command and control, but equally about
participative and supportive leadership styles prevalent in agile environments. Besides,
face-to-face interactions are important for commitment, assistance, collaboration, and
knowledge sharing [9]. Similarly, innovation depends on face-to-face contact with cus-
tomers and colleagues, who generate ideas in planned and spontaneous brainstorming
sessions and conversations [3]. Such cooperation finds place in the hallways, by the
coffee machines, water coolers, copiers or between meetings [3, 9]. Evidently, attracting
the employees back into the offices is of crucial importance, but how to achieve this
when even onboarding is performed remotely and the degree of flexibility the company
offers becomes the make-or-break point for many job seekers? Motivated by the hybrid
future challenges, in this short paper, we seek to answer the following RQs:

RQ1: How often are employees present in the office?
RQ2: What hinders and motivates employees to visit the office?
The rest of the short paper is organized as follows. In Sect. 2 we outline the back-

ground and motivation for our study. Section 3 details the methodology and describes
the empirical cases. In Sect. 4 we share our findings, discussed in Sect. 5.

2 Background

A growing number of organizations implement flexible work arrangements for their
employees, including Google, Telenor, Microsoft, and Spotify. Further, a large amount
of research studying WFH have concluded that remote work per se does not hinder
software engineers [10] and is here to stay [1, 4, 6, 11]. Yet, However, little literature
has attempted to predict how flexible arrangements should be performed in practice.

Researchers report more effective individual task solving and work coordination
when WFH due to better focus time, fewer interruptions, more time to complete work,
more efficient meetings, and more comfortable work environments [5, 12]. In our ear-
lier study of pandemic WFH, we found fewer distractions and interruptions, increased
scheduling flexibility, and easier access to developers [1]. Ford et al. report that a more
flexible schedule and lack of commute improved work-life balance [5]. On the other
hand, working in isolation is not challenge free. Tasks that require coordination or
brainstorming are not easy to perform virtually [1]. A study of remote coordination
when co-located teams work exclusively from home [6] found that coordination needs
increase whenworking remotely since group cohesion and communication are impaired,
and these challenges will likely persist in hybrid work. Similar concerns arise from our
work [1] that found remote work to weaken socialization and informal communication,
team cohesion, problem-solving, and knowledge sharing. Alienation of colleagues and

254 D. Smite et al.

weakening of the knowledge networks has been found over time as employees con-
tinue working remotely [7]. Some companies introduce work policies that constrain the
number of WFH days or introduce mandatory office days [13]. However, forced office
presence can backfire with increased attrition as a study suggests that 40% of employees
who currently WFH, even if only one day a week, would seek another job if employers
require a full return to the office [2]. Thus, there is a growing interest in research that
would shed light on why employees prefer to work remotely.

3 Methodology

This short paper presents a multiple-case holistic study [14], in which we study one
phenomenon, the role of office-based work, in two companies. We collected data from
two companies, Knowit and Sparebank 1 Dev, developing software-intensive products,
that implemented WFH during the pandemic, and reopened the offices in fall 2021 with
an episodic WFH advice during winter 2022. We ended data collection in the summer
of 2022. The choice of the companies was driven by convenience sampling, i.e., both
companies are a part of an ongoing research project and had readily available data that
helps to answer our research questions.

Knowit is a large IT consultancy company with a large presence in Nordic countries
and other parts of Europe. The focus of this study was Knowit Objectnet, a subsidiary
with approximately 175 consultants, located inOslo.Consultantsmostlywork for clients,
often at the client site, but they may also WFH, or from the main Oslo office. In April
2022 they moved to a brand new office downtown, which no longer offers free parking,
deliberately has fewer work places than employees and is designed and equipped for
physical meetings and socializing. But this does not mean that the management prefers
remote working.

Sparebank 1 Dev is a Fintech company developing software for Norwegian Banks.
The organization offers a wide area of services and caters to both the consumer and
professionals. Counting both their in-house employees and consultants, Sparebank 1 had
650 employees at the moment of our study. The teams had considerable freedom in their
work, and the company regularly performed surveys to understand the work-from-home
situation. The bank offices were renovated during the pandemic.

Data Collection and Analysis. Data collection in Knowit was done by a team of sum-
mer internship students (authors five-ten) under supervision (authors one-four), while the
second author collected data in Sparebank 1 Dev.We collected office presence data from
desk booking records at Knowit and access card entries at Sparebank 1 Dev, extracted
and analyzed in Excel quantitatively (Figs. 1 and 2). Qualitative data containing personal
preferences for working in the office or WFH was obtained from interviews in Knowit
and employee surveys in Sparebank 1 Dev. In Knowit, we performed 12 semi-structured
interviews, which were transcribed and analyzed using thematic analysis (See a sum-
mary of data sources in Table 1). Thematic analysis was done through open and axial
coding with a constant comparison [15] resulting in a set of hypotheses and 32 themes.
In Sparebank 1 Dev, we surveyed personal experiences receiving 244 responses from
650 employees (36%). Reasons for working remotely were extracted and comparatively
analyzed together with responses from the qualitative interviews conducted in Knowit.

Half-Empty Offices in Flexible Work Arrangements 255

Table 1. Overview of the data sources.

Company Data collection

Office presence Reasons for remote working

Knowit Archival data from a desk booking
system Seatit during
2021–10–13–06–04–2022

12 semi-structured interviews about
remote work preferences and office
presence in June 2022

Sparebank 1 Dev Access card data during
2021–10–01–30–04–2022

244 survey responses on remote work
preferences and office presence
October and December 2021

4 Results

4.1 Office Presence

Our analysis of the office presence in both companies shows that the offices during the
studied time period varied but has been relatively low (see Fig. 1 and Fig. 2). In the fall
2021 the office presence in Knowit was below 25% and below 50% in Sparebank 1 Dev.
One exception in Sparebank 1 Dev was the third week of October when the company
organized an after-work social event with food, drinks and activities.

In winter, the new pandemic wave started and employees were advised to WFH,
which is evident in the low office presence during January 2022. In spring 2022, the
office presence in Knowit returned to the level of the fall 2021 and started to spike to
around 60–70% on certain days in the end of March motivated by the office-based social
events. In Sparebank 1 Dev, January and February showed low office presence, which
returned in the beginning of March to the level evidenced in the fall 2021 (around 50%).

%
of

de
sk
sb

oo
ke
d

Oct 2021 Nov 2021 Dec 2021 Jan 2022 Feb 2022 Mar 2022 Apr 2022
75%

50%

25%

0

Knowit

%
of

ac
ce
ss
ca
rd

en
tri
es

75%

50%

25%

0

Oct 2021 Nov 2021 Dec 2021 Jan 2022 Feb 2022 Mar 2022 Apr 2022

Sparebank 1Dev

Fig. 1. Overview of office presence in Knowit (desks booked per day, excluding days with no
presence) and Sparebank 1 Dev (access entries per day, including weekends and holidays).

When plotting the average number of office visitors fromOctober 2021 to April 2022
during the different workdays, patterns across the companies varied. InKnowit, theweek

256 D. Smite et al.

started with the lowest office presence onMonday (13%), and the highest onWednesday
(19%), followed by Friday (18%, the afterwork day). In contrast, the office presence in
Sparebank 1 Dev was evenly distributed with the highest presence on Wednesdays and
the lowest on Fridays. In general, it is worth noting that the weekly patterns in the two
companies are quite different. We believe this is because in Knowit we collected data
about the desks booked, while in Sparebank 1 Dev we solicited data from the access
card entries, which represents the office presence more accurately.

Monday Tuesday

15%

30%

0

Wednesday Thursday FridayMonday Tuesday

15%

30%

0

Wednesday Thursday Friday

Knowit Sparebank 1 Dev

Fig. 2. Average office presence during the week.

4.2 Factors that Motivate Remote Working

In the following, we summarize the key factors that we found to be linked with the
motivation of software developers to work remotely.

Long or inconvenient commute to the office was the main reason for WFH in
Sparebank1 Dev (over 1/2 of respondents). 1/3 commuted to work by train, 1/3 by tram
or bus and 2/3 required more than 1,5h to get to work one way. In Knowit, commute was
also an important factor that motivated WFH. After moving into a new building without
a parking lot, employees had to walk, bike, or use public commute, which was more
difficult than driving for some. Commute time also made a difference. Two interviewees
admitted that living closer would make them visit the office more, as one said: “I use
an express bus about 45–50 min to work and over 1h back. It affects my preferences for
WFH.”

Superior Ability to Focus At Home: Home office environment was reported to be
superior in providing the ability to concentrate as reported by the survey respondents
from Sparebank1 Dev. One respondent commented: “For me, the noise [in the office] is
a real problem. I use a lot of energy just to keep my concentration”.

Better-Equipped Home-Office: In Knowit and Sparebank 1 Dev, company man-
agement provided financial support for purchasing office equipment for WFH (desks,
chairs, and monitors) that remained at homes after the reopening of the offices. Thus,
many informants mentioned better conditions for working at home.

Convenience for Running Personal Routines at Home: Some interviewees men-
tioned various ways their needs are difficult to meet in the office. For example, for one
interviewee, it was about the gym and exercising. Convenience for completing personal
issues when working from home was also mentioned in Sparebank 1 Dev’s survey.

Half-Empty Offices in Flexible Work Arrangements 257

Habit of Working From Home: Besides, the very habit of WFH motivated during
the pandemic times resulted in many continuing to work remotely, as reported by a large
number of respondents in the Sparebank1 Dev’s survey. As a respondent commented:
“I believe that people have become comfortable with home offices and the extra time it
brings to the family etc.”.

Schedule Full of OnlineMeetings:We learned that some in Sparebank1 Dev found
it impractical to commute to the officewhen their workdays are packedwith onlinemeet-
ings. As a respondent commented, “[We have] challenges with equipment in meeting
rooms, not adapted for having [hybrid] meetings. When you are a presenter, you need
two screens. So, when there are many meetings it is more practical to sit at home.”

Other Reasons. A few participants also mentioned better coffee machines, food, light-
ing and air ventilation at home, and the good weather conditions. As one of the
interviewees described: “When the weather is nice, I rather stay at home”.

4.3 Factors that Motivate Office Presence

In the following, we summarize the key factors that we found to be linked with the
motivation to work in the office.

Social Interaction with Colleagues:Many informants in both companies revealed
that the prime purpose for coming into the office is to meet colleagues and get to know
new people. To make offices more attractive, both companies invested into more social
zones. A few interviewees said that being in the office provided the unique feeling of
inspiration from interactions with colleagues that is absent whenWFH. A recently hired
developer fromKnowit explained,“I love being in the office. I enjoyworkingwith people.
I like meeting other people. I absolutely depend on that to do a good job, I depend on
being happy, so I want to be in the office as much as possible.”

Presence andAvailability of Colleagues in theOffice:Many commented about the
desk booking system that allowed checking who else is planning to be in the office on a
particular day. Colleagues’ presence had a profound influence on the personal choices:
people were more likely to come in when others reported to be onsite and when their
calendars did not show that they were fully booked, and vice versa. As an interviewee
from Knowit explained: “It’s not only about knowing that Erik will be at work, but also
that Erik actually has time for visitors”. A product manager further explains “If I see
that my colleague booked a desk, I book one next to him”.

Tasks that Require Interaction: Several interviewees mentioned that the nature of
work and the nature of daily tasks might have a large influence on their decision to come
to the office. For example, some meetings were easier to conduct and more productive
when held in person, while individual tasks felt more appropriate for focused work in
isolation at home. As one interviewee explained: “So I’m trying to set up this work-
from-home day for focused work, I need concentration then. The meetings are also best
held in the office”. These onsite meetings included planning meetings, brainstorming
meetings, first customer meetings, workshops, and task assignment meetings.

258 D. Smite et al.

Enhanced Work/Life Balance: A few mentioned the need to come to the office
to differentiate between work and home and improve the work/life balance. An intervie-
wee who preferred the office explained: “It’s a lot easier for me to separate work from
not working when I’m in the office […]. When I’m at home, […] it blurs a little”.

Other Reasons: Finally, some of the interviewees mentioned reasons that would
occasionally influence their choice for commuting to the office, such as the need to
leave the house and additional errands planned that require commuting anyway, which
all increased the likelihood of working in the office but were not permanent motivators.
Besides, a few research participants speculated that better food in the canteens, coffee
machines and availability of a gym in the office would make them change their mind
and come more often to the office.

5 Concluding Discussion

In this short paper, we explored the state of office presence in twoNorwegian companies,
the reasons for continuing working remotely and factors that motivate office presence,
after the reopening of the society (see a summary of our findings in Table 2). The current
work policies in both companies allowed employees to spend two days at home and three
days at the office, which were subject to negotiation in the team, and with the customers
and the manager. At Knowit, employees also need to have a suitable home-office to be
allowed to work from home.

Employee Presence in the Office (RQ1): Our findings provide field evidence that
supports the results of surveying employee preferences for continuing to work remotely
[2, 13]. We found that the offices in both companies were half-empty with the lowest
attendance in the winter months, Jan-Feb 2022. The office presence increased only in
Knowit due to the long-term negative impacts of remote working and the importance of
social interaction. However, it is also fair to state that we are still witnessing the transition
from the forced WFH during the pandemic to what we believe will be the hybrid work
arrangements. As a respondent from Sparebank 1 Dev explains: “It’s difficult to go from
100% home office to 100% office in such a short time, now Norway just opened too, and
before that there was a lot of infection, so a longer transition phase is needed”.

Factors that Influence Where People Work From (RQ2): We identified factors
that motivate remote work and factors that motivate office presence. The reasons can
be behavioral, practical or task-related. The main driver of WFH is the commute. One
implication is that if a company wants a high office presence, they need to be located
in a place that is easy and fast to reach. However, it might be also fair to expect that
companies situated in large cities, in general, might resort to low office presence, as
found in a study comparing employee preferences for WFH in large cities vs smaller
towns [13]. Themain driver for being at the office is socialization. If one’s colleagues are
not there, it is more likely that one will stay at home. We also found that, besides being
able to see who else is planning to be at the office, it is also important to see colleagues’
availability and thus the ability to socialize. Seat booking systems and solutions inside
the joint digital calendars can thus be used to increase the awareness of who is available
in the office.

Further, as we found that social activities right after work motivate people to come
to the office, social arrangements can be used as a tool to increase office presence. While

Half-Empty Offices in Flexible Work Arrangements 259

Table 2. Factors motivating remote work and office presence.

Factors motivating remote work Factors motivating office presence

Knowit Sparebank 1 Dev Knowit Sparebank 1 Dev

Long or
inconvenient
commute to the
office

X X Social
interaction with
colleagues

X X

Superior ability
to focus at home
(noise and
interruptions in
the office)

X X Presence of
colleagues in
the office and
their availability

X X

Better-equipped
home office

X X Tasks that
require
interaction

X

Convenience for
running personal
routines while at
home

X X Enhanced
work/life
balance

X

Habit of working
from home

X Need to leave
the house

X

Schedule full of
online meetings

X Additional
errands planned
that require
commuting
anyway

X

Better conditions
at home: coffee,
food, lighting or
ventilation

X

Good weather
conditions

X

all developers and team members appreciate focused time alone, they also appreciate
being with their colleagues. Our findings indicate that employees might be more likely
to work onsite in the offices that satisfy the majority of their needs, including zones
for collaboration and social interaction and silent zones for focused, undisturbed work,
good quality office equipment, and good quality food in the canteen.

Yet, our findings are likely to indicate that hybrid work arrangements, in which the
office days are mixed with the WFH days, are likely to remain the trend for the future,
since this is an easy way to satisfy the diverse needs of the employees. This is also
consonant with prior studies that demonstrated that WFH has both its advantages and
disadvantages [1, 3, 5, 7, 10, 12]. A fair implication is that companies might consider

260 D. Smite et al.

repurposing their office space on the days the offices are mostly empty, since the office
presence never reaches 100%. The solutions to this problem include hot desking, having
onsite work divided into shifts, moving to smaller offices or maybe renting out company
offices to startups or partners on the days with the lowest attendance. However, we also
warn that employee preferences might change, as we transition away from the pandemic
and as the habit of working in the office resurface.

5.1 Future Work

Our exploratory findings show a need for a deeper understanding of what are good teams
and company strategies when introducing flexible work arrangements. It is evident that
when software developers, product owners, or managers know that their colleagues will
be working onsite, it is more likely that they will show up themselves. Therefore, more
research is needed to study desk booking systems and other systems providing visibility
into the office presence. Further, the current task a team member is working on affects
the preferences for where to work from. Our related study [16] confirms that developers
chose to perform taskswith vague requirements in co-locationwhile individual tasks that
require focus are best performed at home. Future research shall explore how to plan and
organize a hybrid work week optimized for individuals, the team, and the company. As
long commute time is the main driver for working from home, more research is needed
to understand how team members’ geographical distance to the office affects hiring
and team composition strategies. Should companies that expect a high office presence
employ people only living near the office? Should companies compose teams based on
themember location andwith similar office presence preferences inmind? Finally, future
research shall also explore how to onboard new team members, given that traditionally
new hires are onboarded through close onsite mentoring requiring high office presence
both from the new people and their senior team members.

Acknowledgements. We thank Knowit AS and Sparebank 1 Dev for their engagement in our
research, and the Norwegian Research Council for funding the research through the projects
Transformit (grant number 321477) and 10xTeams (grant number 309344).

References

1. Smite, D., Tkalich, A., Moe, N.B., Papatheocharous, E., Klotins, E., Buvik, M.P.: Changes
in perceived productivity of software engineers during COVID-19 pandemic: the voice of
evidence. J. Syst. Softw. 186, 111197 (2022)

2. Barrero, J.M., Bloom, N., Davis, S.J.: Let Me Work From Home, or I Will Find Another Job.
University of Chicago, Becker Friedman Institute for Economics Working Paper, 2021–87,
(2021)

3. Gratton, L.: How to do hybrid right. Harv. Bus. Rev. 99(3), 66–74 (2021)
4. Šmite, D., Moe, N.B., Klotins, E., Gonzalez-Huerta, J.: From forced working-from-home to

voluntary working-from-anywhere: two revolutions in telework. J. Syst. Softw. 195, 111509,
(2022)

5. Ford, D., et al.: A tale of two cities: software developers working from home during the
covid-19 pandemic. ACM Trans. Softw. Eng. Methodol. 31(2), 1–37 (2022)

Half-Empty Offices in Flexible Work Arrangements 261

6. Santos, R.E., Ralph, P.: Practices to improve teamwork in software development during
the COVID-19 pandemic: an ethnographic study. CHASE arXiv preprint arXiv:2203.09626
(2022)

7. Yang, L., et al.: The effects of remote work on collaboration among information workers.
Nat. Hum. Behav. 6, 43–54 (2021)

8. Blanchard, A.L.: The effects of COVID-19 on virtual working within online groups. Group
Process. Intergroup Relat. 24(2), 290–296 (2021)

9. Fayard,A.L.,Weeks, J.,Mahwesh,K.:Designing the hybrid office. fromworkplace to “culture
space.” Harv. Bus. Rev. (2021)

10. Russo, D., Hanel, P.H., Altnickel, S., Van Berkel, N.: The daily life of software engineers dur-
ing the covid-19 pandemic. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 364–373 (2021)

11. Ozkaya, I.: The future of software engineering work. IEEE Softw. 38(5), 3–6 (2021). https://
doi.org/10.1109/MS.2021.3089729

12. Oliveira, Jr. E., et al.: Surveying the impacts of COVID-19 on the perceived productivity of
Brazilian software developers. In: Proceedings of the 34th Brazilian Symposium on Software
Engineering, pp. 586–595 (2020)

13. Smite, D., Moe, N.B., Hildrum, J., Huerta, J.G., Mendez, D.:Work-from-home is here to stay:
call for flexibility in post-pandemic work policies. arXiv preprint arXiv:2203.11136 (2022)

14. Yin, R.K.: Case Study Research: Design and Methods. Sage, Thousand Oaks (2009)
15. Seaman, C.B.: Qualitative methods in empirical studies of software engineering. IEEE Trans.

Softw. Eng. 25(4), 557–572 (1999)
16. Sporsem, T., Moe, N.B.: Coordination strategies when working from anywhere: a case study

of two agile teams. In: Stray, V., Stol, K.J., Paasivaara, M., Kruchten, P. (eds.) Agile Processes
in Software Engineering and Extreme Programming. XP 2022, LNBIP, vol. 445. Springer,
Cham. (2022). https://doi.org/10.1007/978-3-031-08169-9_4

http://arxiv.org/abs/2203.09626
https://doi.org/10.1109/MS.2021.3089729
http://arxiv.org/abs/2203.11136
https://doi.org/10.1007/978-3-031-08169-9_4

Refactoring and Technical Department

Technical Debt in Service-Oriented Software
Systems

Nikolaos Nikolaidis1(B) , Apostolos Ampatzoglou1 ,
Alexander Chatzigeorgiou1 , Sofia Tsekeridou2 , and Avraam Piperidis2

1 University of Macedonia, Thessaloniki, Greece
nnikolaidis@uom.edu.gr

2 NetCompany-Intrasoft, Athens, Greece

Abstract. Service-Oriented Architectures (SOA) have become a standard for
developing software applications, including but not limited to cloud-based ones
and enterprise systems. When using SOA, the software engineers organize the
desired functionality into self-contained and independent services, that are invoked
through end-points (API calls). At the maintenance phase, the tickets (bugs, func-
tional updates, new features, etc.) usually correspond to specific services. There-
fore, for maintenance-related estimates it makes sense to use as unit of analysis
the service-per se, rather than the complete project (too coarse-grained analysis)
or a specific class (too fine-grained analysis). Currently, some of the most emer-
gent maintenance estimates are related to Technical Debt (TD), i.e., the additional
maintenance cost incurred due to code or design inefficiencies. In the literature,
there is no established way on how to quantify TD at the service level. To this
end, in this paper, we present a novel methodology to measure the TD of each
service considering the underlying code that sup-ports the corresponding end-
point. The proposed methodology relies on the method call graph, initiated by the
service end-point, and traverses all methods that provide the service functional-
ity. To evaluate the usefulness of this approach, we have conducted an industrial
study, validating the methodology (and the accompanying tool) with respect to
usefulness, obtained benefits, and usability.

Keywords: Technical debt · Service analysis · Endpoint analysis · Quality

1 Introduction

The notion of Technical Debt (TD) was introduced byWard Cunningham [1] to describe
the shipment of first-time code with inefficiencies, due to early deployment. To quantify
the amount of technical debt, various types of TD and ways of identification / quantifica-
tion have been proposed in the literature. Since one of the most recognized types of TD,
both in industry [2] and academia [3] is the code TD, a significant number tools [4] have
been developed to quantify code TD: i.e., identify code inefficiencies and estimate the
required effort for fixing them. The main mechanism beneath code TD identification
/ quantification is source code static analysis, pointing to classes that violate certain

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 265–281, 2022.
https://doi.org/10.1007/978-3-031-21388-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_19&domain=pdf
http://orcid.org/0000-0002-7958-9393
http://orcid.org/0000-0002-5764-7302
http://orcid.org/0000-0002-5381-8418
http://orcid.org/0000-0003-3830-1936
https://doi.org/10.1007/978-3-031-21388-5_19

266 N. Nikolaidis et al.

pre-defined quality rules. For example, calculate specific metric scores (e.g., cognitive
complexity or lines of code) that when surpass a certain threshold an inefficiency is
recorded.

One of the most known tools for TD identification / quantification is SonarQube,
which is able to quantify the technical debt of projectswritten in almost any programming
language. SonarQube counts the number of inefficiencies and calculates the remediation
time that is needed to bring the code to an optimum (or near-optimum) state. According
to Tamburri et al. [5] this process is, and should be, a continuous practice, since the
concept of an optimum state is constantly changing. However, despite the support for
various languages and programming paradigms, the approach for the quantification of
technical debt remains unchanged, regardless of the system architecture (e.g., whether
the software is service-based or monolithic).

Lately, the Service-Oriented Architecture (SOA) has become quite popular due to
its ability to create quick and easy applications by using existing micro-services [6].
In the SOA model, services form self-contained units of software that communicate
across different platforms and languages to form applications. Communication takes
place through their end-points, while a loose coupling is promoted to either pass data
or coordinate activities. Several studies have assessed different kinds of technical debt
quantification in SOA, introducing several approaches [7, 8, 9]. Most of these research
approaches treat each service as a black-box and quantify TD, based on the effort to
compose these services. For instance, by focusing on their interface: e.g., the amount of
exchanged data, the different types of data, the number of different services, etc. On the
other hand, on the limited cases that TD quantification treats services as a white-box, the
amount of TD is calculated again with SonarQube (or similar tools)—considering as the
unit of analysis either the whole project or isolated classes, without taking into account
the fact that the project’s architecture differs substantially than a software project that is
not based on services.

Fig. 1. Generic SOA structure example.

To address the specificities of developing service-based systems, when it comes
to maintainability assessment, our paper introduces the SmartCLIDE approach that is
tailored for such systems. One of the most prominent characteristics of service-based
systems is that they encapsulate, to some extent, traceability in their design: i.e., they

Technical Debt in Service-Oriented Software Systems 267

offer end-points that deliver a very specific functionality, and this stands for an entry
point to the method call sequence in the code that offers this functionality–see Fig. 1.
By considering that maintenance tickets, coming either from the customer or the preven-
tive maintenance team, are usually describing the problem in a natural language [10], it
becomes evident that a specific requirement can be easily spotted. Next, given the iden-
tification of the corresponding end-point, the effort estimation for serving the ticket can
be more accurately performed, by focusing only on the parts of the system that are suc-
cessively invoked through the end-point. In other words, using end-points as the units
of analysis for technical debt quantification, in service-based software system, seems
as a promising and more accurate alternative compared to working at the class- or at
the system-level. As a first step towards this approach, we have developed a methodol-
ogy and a supporting tool (in the form of Eclipse Theia extension) that quantifies the
amount of TD that a developer will face when performing maintenance to all parts of the
system that are invoked through a specific end-point of a given web service. To assess
the TD at the method level, we relied on SonarQube so as to identify code inefficiencies,
reuse the estimated remediation time, enabling the TD quantification of each endpoint.
To validate both the methodology and the accompanying tool, we conducted an empiri-
cal study, involving 15 developers, working in 5 companies, spread across Europe. The
evaluation targeted the exploration of current approaches for TD quantification in SOA
systems, the validation of the approach, and the usability assessment of the tool.

2 Related Work

Technical Debt Quantification: One of the most known studies in the field of TD
management has been performed by Alves et al. [11], who performed a systematic
mapping study on over 100 primary studies. Alves et al. described the different types
of TD and the strategies for identifying TD items. Based on their results, it becomes
evident that the majority of the top indicators of TD presence is the existence of “code
smells”. The same conclusion has also been validated by the first secondary study on
TD management, by Li et al. [12]. The identification of code smells is the basis of TD
quantification, by themajority ofTD tools.Due to existence of various such tools, a recent
direction has pursued the identification of the best and more accurate one [4, 12, 13].
Even though there have been a lot of studies and even methodologies that combine
different tools [14], there isn’t still a consensus on the quantification of TD.Nevertheless,
according to a recent analysis ofTDquantification tools [4], it seems that themost popular
TD quantification tool is SonarQube [15], which is widely known to track the quality
and maintainability of source code. The tool quantifies TD bymultiplying the number of
issues from each category, with the time that is needed to resolve these issues. To provide
TD in monetary terms, effort in time can be multiplied with an average man-hour cost.
The origins of SonarQube lie on the SQALEmethod, to provide a pyramid of issues that
aids in TD prioritization.

Technical Debt in SOA and Services: Bogner et al. [16] conducted a large-scale sur-
vey in order to find the TD management techniques used in service- and microservice-
based systems. The results suggested that SonarQube is the most used tool, followed by

268 N. Nikolaidis et al.

FindBugs.Moreover, 67% of the participants have responded that they do not treat main-
tainability differently, compared to non-service-based software development. However,
an important fraction of the participants, mentioned that they should. Finally, 26% of
the participants apply somewhat different controls, and approximately 7% mentioned
significantly different treatments. Therefore, the authors concluded that it is very impor-
tant to distinguish between the service-based and the non-service systems. Additionally,
based on other studies, it becomes evident that the only analyzed code part of the web
services is the interface of the different web services [17, 18]. For instance, Ouni et al.
[17] created a machine learning approach to detect defects in the interfaces of web ser-
vices. The results suggested that this methodology is promising for specific types of
services; however, for others (e.g., REST) the methodology is not applicable. Regard-
ing the TD management of microservice-based application, we can find a variety of
studies that are focused on defining what can be considered as technical debt in SOA
and how it can be quantified. For the quantification of TD in service-based systems all
related studies focus outside the code of each service and explore the composition of
the services [19]. For instance, de Toledo et al. [8] organized an industrial case study to
identify (among others) what is TD in SOA. The results of the study suggested that, as
TDwe can characterize: (a) the existence of too many point-to-point connections among
services; (b) the insertion of business logic inside the communication layer; (c) the lack
of a standard communication model; (d) the weak source code and knowledge manage-
ment for different services; and (e) the existence of different middleware technologies.
Even though these issues are related more to the composition of services, it is clear that
there is a need for TD evaluation, within the source code of each service. Similarly, the
study by Pigazzini et al. [7] suggests that the existence of: (a) cyclic dependency; (b)
hard-coded end-points; and (c) shared persistence can be characterized as indicators of
poor quality in SOA. Nevertheless, we need to again make clear that for this study each
end-point is treated as a black box, even though it’s internals are critical in case of future
changes. Furthermore, Taibi et al. [9] conducted a similar study and reported additional
quality indicators. Among them, as the most important ones, the authors characterize:
(a) hardcoded endpoints; (b) no API-gateway; (c) inappropriate service intimacy; and
(d) cyclic dependency. Finally, some studies report as the main TD indicator the easiness
of changing a microservice for another [9, 19].

3 SmartCLIDE Approach for Calculating TD of Services

In this section, we present the proposed approach for quantifying TD in service-based
applications, bringing two important advancements, compared to the state-of-the-art: (a)
in our approach services are not treated as black-boxes; and (b) we refine the unit of
analysis from the project or class level, to the service level.

The SmartCLIDE methodology for quantifying the amount of TD that is accumu-
latedwithin software services is straightforward. Since a service has a number of different
entry points (e.g., end-points), we propose that each one of these end-points deserves its
own evaluation of TD. In a way, each entry point could be treated as a different applica-
tion, since it provides a distinct functionality. The benefit lies in the fact that TD analysis

Technical Debt in Service-Oriented Software Systems 269

can highlight individual end-points which are in need of improvement, rather than blam-
ing the entire project. The methodology is based on the generation of the call graph of
the services end-points. With the term call graph, we refer to the user-defined methods
that are being called successively from a given point in the code. This information is
critical in order to report only the TD issues appearing in the methods invoked by the
given end-point. By knowing the total TD issues reported for all the invoked methods,
we are able to quantify the amount of TD that a developer will face, when maintaining
the specific end-point from end-to-end, as effort (time) and inmonetary terms. To be able
to quantify the TD of each endpoint, we had to overcome two major challenges. First,
the call graph construction should be initiated from a given starting point (e.g., method).
To resolve this issue, the code of the target project should be parsed. To this end, we
used the JavaParser library [20] which is a very well-known parsing library for Java
projects (the downside is that currently only projects written in the Java programming
language are supported). Given a source file, or in our case a project, the different syn-
tactic elements are recognized and an Abstract Syntax Tree (AST) is generated.
This AST is then analyzed by the JavaSymbolSolver and locates the declarations
associated with each element. We should also note that JavaParsermakes use of the
Visitor design pattern to traverse the created AST and execute the desired operation on
the visited nodes. In particular, we developed a new Visitor that finds the annotations
of each user-declared method, to identify the methods that all end-points start from. We
have been able to find the end-points of projects that use the JAX-RS specification, or
the Spring Boot framework. Once the end-points of the project are known, we
then created a Visitor that finds all the methods that are being called successively. For
each method, we retain the file path as well as the methods’ starting and ending lines.

Illustrative Example: In this subsection, we present an illustrative example through
an open-source Java e-commerce software. The Shopizer1 project contains a large
number of endpoints as it exposes its functionalities through a RESTful API. As a first
step, we analyzed the entire project with SonarQube. The project-level analysis yields
all code inefficiencies and the time that is needed to resolve them, as follows:

TD: 478.8h / 14362.5€
Number of Issues: 3426

By applying the proposed methodology, we were able to map the total TD to the
project end-point, and identified cases for which the total number is not representative.
Below, we report our calculations for two endpoints: namely, Shipping Modules
and List Permissions. The call graphs for the two end-points are presented in
Fig. 2 and Fig. 3, respectively. By applying the proposed methodology for the two cases,
we have calculated TD, as follows:

It goes without saying that by focusing TD quantification at the end-point level, a
more accurate information is provided, allowing stakeholders to take more informed
decisions: while the entire project appears to suffer from a large number of issues, the

1 https://github.com/shopizer-ecommerce/shopizer.

https://github.com/shopizer-ecommerce/shopizer

270 N. Nikolaidis et al.

Shipping Modules
TD: 22min / 10.5€
Number of Issues: 3

Fig. 2. Shipping modules example call graph

List Permissions
TD: 0min / 0€
Number of Issues: 0

Fig. 3. List permissions call graph.

List Permissions end-point is code technical debt free (no TD-related issues);
whereas the Shipping Modules end-point is responsible only for the very limited
amount of three technical debt-related issues, not raising any alarm for the maintenance
team. Therefore, we argue that differentiating between the healthy and problematic parts
of a service-based project can help developers prioritize their refactorings, improve their
effort estimation, and improve their decision-making processes.

SmartCLIDE Eclipse Theia Extension: The proposed approach for quantifying the
TD of ser-vice-based systems is part of the SmartCLIDE project, and has been inte-
grated into the SmartCLIDE IDE, as an Eclipse Theia Extension. Eclipse Theia is a
web-based IDE that acts as a code editor, in which a developer is able to create and add
extra functionalities as extensions or plugins. We chose to create an extension, due to the
extra available functionalities that it offers, and the customizable User Interface (UI).
With the only drawback being that the extensions in Theia cannot be dynamically added,
as Theia needs to be built from the beginning with the selected extensions. But since the
proposed approach is part of the SmartCLIDE IDE, this is not an important drawback,
in the sense that the Theia image needs only to be built once, and then installed with
the desired functionality. Moreover, with respect to the backend part of the system that
undertakes the actual analysis, we have developed a web service that exposes all the
necessary functionalities via a RESTful API.

TheSmartCLIDEEclipseTheia extension is an official EclipseResearchLab project,
and is freely available through the Eclipse Research Labs Git repository2. For research
purposes, we provide online an already deployed instance of the Eclipse Theia, con-
taining the proposed extension3. Once the Eclipse Theia is opened, the extension can be
reached under themenu “View” through the “SmartCLIDETDandReusability”
option. After that, the user is able to provide the URL of the git repository that he / she
wants to analyse (GitHub, GitLab, etc.). Also, the project key of the SonarQube installa-
tion is required so that a new analysis is generated according to the git owner and git
name (e.g., owner:name). By providing these values the user is able to start a new

2 https://github.com/eclipse-researchlabs/smartclide-td-reusability-theia.
3 http://195.251.210.147:3131.

https://github.com/eclipse-researchlabs/smartclide-td-reusability-theia
http://195.251.210.147:3131

Technical Debt in Service-Oriented Software Systems 271

analysis for a new project or load an existing analysis, through the “New Analysis”
and “Project Analysis” buttons.

In Fig. 4, we present the analysis, i.e., the amount of TD for the entire project along
with all the reported issues (SonarQube). By starting an “Endpoint Analysis” the
user can take advantage of the proposed approach. The GUI action, enables the backend
service, which locates all the end-points of the provided project and presents the results
for them (Fig. 5). The extension is populated with all the end-points, along with the
quantified TD amount for each service, as well as the number of issues that have been
identified in the method call chain for each end-point. Finally, if the user expands a
specific end-point, he / she will get access to the list of issues related to the specific
endpoint, along with their criticality and remediation time.

Fig. 4. Tool instance of project analysis Fig. 5. Tool instance of endpoint analysis.

Finally, through the Eclipse Theia Extension, the user can specify one or more end-
points, getting results only on the selected endpoints—see “Add endpoints manu-
ally” in Fig. 6 providing the method and filename. We should note that since a method
name is not sufficient (there can be many methods with the same name), we require the
full method signature. The method signature has the following format:

[accessSpecifier] [static] [abstract] [final] [native] [synchronized]
returnType methodName ([paramType [paramName]]) [throws exceptionsList]

private void getGivenEndpointsFromAllFiles
(List<RequestBodyEachEndpoint> requestBodyEachEndpointList) throws File-
NotFoundException, IOException

4 Validation Study Design

In this section we report the protocol that we have followed for validating the proposed
approach and the accompanying tool, in an industrial setting. To evaluate the current
status of TD quantification in software-based systems, as well as the proposed approach

272 N. Nikolaidis et al.

and tool we have performed an empirical study, designed and reported, based on the
guidelines of Runeson et al. [21].

Research Objectives: The goal of the validation is three-fold: (a) explore and assess
the current state-of-practice for approaches and tools that can be used to quantify the
TD of service-based systems; (b) validate the proposed approach; and (c) evaluate the
developed Eclipse Theia Extension; leading to three research questions:

[RQ1]What are the adopted approaches and tools for TD quantification in service-based
software development, in the context of the studied organizations?
[RQ1] How is the proposed approach evaluated by practitioners in terms of usefulness
and ease-of-usage?
[RQ3] Does the developed endpoint-level analysis tool meet the expectations of the
practitioners?

Study Design: The validation study was conducted with the participation of 15 devel-
opers in the field of software services. The group of developers is spread to 5 soft-
ware industries across Europe (2 Large and 3 Small-Medium Enterprises). In terms of
demographics: 4 participants have a low experience as backend developers (with about
1–3 years of experience), 4 of them are medium experienced (with about 4–8 years of
experience) and 7 are highly experienced (with over 8 years of experience). The valida-
tion study was conducted in the form of a half-day workshop—see Table 1. The same
workshop structure was replicated 5 times, one for every involved industry.

Table 1. Workshop Activities.

Activity Duration

Introduction /Goals of the
workshop

20 min

Interviews for RQ1 20 min (for each
participant)

Demonstration of end-point
level analysis

20 min

Break 20 min

Interviews for RQ2 30 min (for each
participant)

Task RQ3 20 min (for each
participant)

Interviews for RQ3 30 min (for each
participant)

First, the researchers’ team has first given a short introduction of TD in case some
of the participants were not familiar with the terminology. Subsequently, the first part

Technical Debt in Service-Oriented Software Systems 273

of the workshop that was aiming to understand the current practices, along with their
benefits and limitations, was carried out so as to get acquainted with the TD practices
that our study participants are aware of and use. The data collection was made in the
form of interviews. At this point we need to note that a major parameter for opening up
the workshop to 5 industries was the nature of RQ1, which required a broad recording of
practices in SOA-based projects, obtained by various companies. For better organization
and timemonitoring, we have split each interview into three blocks. The questions asked
during the interviews can be found as supplementary material4.

Being aware of the current technical debt quantification status, we continued by pre-
senting the proposed approach and the developed Eclipse Theia Extension. We demon-
strated the approach and tool on how to quantify the technical debt amount for each
end-point of the service, along with the examples presented in Sect. 3. Assuring that
all participants have understood in sufficient detail the SmartCLIDE approach for TD
quantification, and after a short break, we proceeded to the second round of interviews,
aiming to shed light on RQ2. Finally, in order to assess the usability of the Eclipse Theia
Extension, we needed to involve the participants in a simple task, so that they get a hands-
on experience with the tool. In particular, each participant was asked to do the following
actions through the Eclipse Theia Extension, for a private service of their own: (a) get
and check the project analysis report; (b) get and check the end-point analysis report for
all the endpoints; and (c) provide one or more end-points and get and check the analysis
report. After completing the given task, the subjects participated in a final interview
round, aiming to the evaluation of the functionality and usability of the tool (answer
RQ3). The first block of this interview guide was related to functionality, whereas the
second to usability. Usability evaluation was performed, based on the System Usability
Scale (SUS) instrument [22].

Data Collection: To validate the proposed TD quantification approach and the corre-
sponding tool implementation, we have relied on both quantitative and qualitative anal-
ysis. To synthesize qualitative and quantitative findings, we have relied on the guidelines
provided by Seaman [23]. On the one hand, to obtain quantitative results, we employed
descriptive statistics. For usability, we assessed the total SUS score, along with the most
common scales for interpretation, in terms of acceptance, adjective, and grade. On the
other hand, to obtain the qualitative assessments, we use the interviews data, which we
have analyzed based on theQualitative Content Analysis (QCA) technique [24], which is
a research method for the subjective interpretation of the content of text data through the
systematic classification process of coding and identifying themes or patterns. In partic-
ular, we used open coding to create categories, and abstraction. To identify the codes to
report, we used the Open-Card Sorting [25] approach. Initially we transcribed the audio
file from the interviews and analyzed it along with the notes we kept during its execution.
Then a lexical analysis took place: in particular, we have counted word frequency, and
then searched for synonyms and removed irrelevant words. Then, we coded the dataset,
i.e., categorized all pieces of text that were relevant to a particular theme of interest,
and we grouped together similar codes, creating higher-level categories. The categories
were created during the analysis process by both the 3rd and the 4th author, and were

4 https://www.dropbox.com/s/vagrr2wdc9p6nu9/SupplementaryMaterial.pdf?dl=0.

https://www.dropbox.com/s/vagrr2wdc9p6nu9/SupplementaryMaterial.pdf?dl=0

274 N. Nikolaidis et al.

discussed and grouped together through an iterative process in several meetings of all
authors. The reporting is performed by using codes (frequency table) and participants’
quotes. Based on Seaman [23] qualitative studies can support quantitative findings by
counting the number of units of analysis that certain keywords and compare the counts,
or comparing the set of cases containing the keyword to those that do not.

5 Results and Discussion

In this section, we present the findings of our validation study, organized by research
question. Along the discussion, codes are denoted with capital letters, where-as quotes
in italics. In Table 2, we present the codes that have been identified along the interviews,
accompanied by quotes and the number of participants that used them.

Table 2. Codes of the Qualitative Analysis.

Code Quote #

Accuracy “I think it will be really accurate on the end-point understudy”
“The challenge would be how it measures these endpoints
with accuracy”
“Having an approach like this, a developer can estimate the
TD for the code path that is going to be executed for an
end-point, or for any new feature”
“it makes sense, I would try it”
“…but is not reliable with the actual transform action that
needs to be done: If I have 5 end-points with almost the same
issues, I will see the same issues almost 5 times, and 1 fix will
delete 5 issues”

14

No service specific TD “No, not really, we are not changing anything in SOA”
“We are interested more in scalability and reliability, but no
special treatment for TD”

12

Prioritization “…lets developers focus only to specific end-points (with the
higher TD)”
“I think it’s a very good approach. It offers the keys that any
manager needs in which issues to focus first.”
“Seems more structured and easier to focus on end-points that
matter most”
“Measuring each endpoint’s TD, as a standalone application
would be really helpful for the developers to understand the
complexity of each service, to keep an eye on the most
complicated ones”

10

(continued)

Technical Debt in Service-Oriented Software Systems 275

Table 2. (continued)

Code Quote #

Vosualization 8

Time Savings “Probably requires less time to find issues”
“if you are interested on specific functionalities its great
because it saves you time to find the issues for a specific case”

6

Usefulness “In terms of usability I think it’s easy and helpful”
“Seems simple and easy to use”
“Its helpful to know how many issues you can met on each
flow”
“Seems easy and it make a lot of sense. It would be very
helpful for services”
“The other practices just perform a static code analysis and
detect the code-level issues, but do not make the link to
higher-level artifacts”

6

Need for Tailoring “We follow the same model, regardless of business needs or
the architecture”
“No specific metrics and indicators (e.g., specific
SOA-related metrics)”

4

Hidden parts of the system “A limitation could be that complexity of hidden aspects of
the end-point are ignored, such as related classes (i.e., entities
or other utility classes)”
“A limitation is that it will not count the functions and classes
that are not called right now from end-points”

3

Monitoring “The team could potentially watch the TD graph rate, as the
project grows to monitor and deal with bad code early
enough”

3

Rationalle “…the TD analysis matches the thought process of
developers”
“…it is very close to what I do manually to check the quality
the code, before maintenance”

2

Quality gates “…for each new end-point that is added, in terms of not
exceeding the average (or any limit) of TD that the project has
configured”

1

Current Approach for Service TD Measurement: The vast majority of the participants
in the study (~85%)have performedTDquantification at least one time into their projects;
more than half of them rely their assessment on SonarQube. Other options for TD assess-
ment in the participants’ group of our study are: SIG, CAST; whereas for more generic
quality assessment the participants have used: code reviewwithout tooling, Jaccoco, and
CheckStyle. In terms of unit of measurement, most of the participants’ organizations are
recording the number of issues, since only 2 (out of 15) are recording themonetary values
of TD, as calculated by SonarQube. The TDmanagement practices target both front- and
back-end components, but the majority of the participants of the study (since our goal

276 N. Nikolaidis et al.

was to propose a SOA-based approach) are focusing on back-end software development
technologies. Additionally, 75% of the participants are willing to (and usually do) apply
the suggestions that they receive from the technical debt management tool; whereas the
frequency of getting such suggestions vary from a daily basis to a one-off evaluation
before the first release of the project. In terms of prioritization, several options have been
discussed by the participants, such as based on the tool assessment of criticality, priority
to custom rules based on organization’s standards, SonarQube severity, build blocking
issues only, etc. Finally, based on the policy of the involved organizations, technical
debt assessment is performed by project managers, software architects, or team leaders.
Regarding the assessment of TD in SOA projects, the participants have claimed that
they are not following a different strategy (NO SERVICE-SPECIFIC TD), compared
to “traditional” software development. With respect to more “generic” quality assess-
ment one participant mentioned the different quality properties that are of interest, such
as scalability, availability, resilience, etc., but such run-time quality properties usually
do not fall in the context of TD Management. In general, the participants are satisfied
with process, raising two concerns: “We have to follow the given model regardless the
business needs or the architecture, and sometime this produces delays or inaccuracies”
and “No specific quality metrics and indicators (e.g., specific SOA-related metrics)” sug-
gesting the need for some tailoring of the process (NEED FOR TAILORING). On the
positive side, the well-established generic (i.e., non-SOA related) benefits of technical
debt management have been highlighted, such as “Automated reports, and in some cases
good catches”, “Easy to explain and fix, with clear feedback”, “The code repo is cleaner
and more secure”, etc.

Evaluation of the Proposed Approach: This section reports on the evaluation of the
proposed approach by the practitioners. More specifically, with respect to the accu-
racy of the results obtained by applying the approach, the mode response value was
“Accurate” (4.0 out of 5.0), followed by “Very Accurate” (5.0 out of 5.0) given by
33% of the respondents. In total 86.6% of the practitioners characterized the results
as “Accurate” or “Highly Accurate”. In terms of usefulness 93% of the participants
graded the approach as either “Useful” or “Very Useful” (mode value: “Very Useful”).
Finally, in terms of industrial-readiness of the approach, and how frequently would the
developers use it in their daily routine, the mode value was “Sometimes” and “Often”.
Notably, there were no responses for “Never” or “Very Often”. One of the main points
that have been raised by the participants was the ACCURACY of the results that are
obtained through the approach. The majority of the participants were positive in their
evaluation on the accuracy of the obtained results (mentioning that “they make sense”
or that “they seem as very accurate”), but some were hesitant: For instance, in terms of
double-counting the same issue in the same class for the same end-point (e.g., if two
end-points invoke the same method), or that accuracy in any kind (and with any tool)
of TD quantification is challenging and probably not accurate. Also, the participants
highlighted the USEFULNESS of the approach, e.g., in terms of TD items PRIORI-
TIZATION and TD MONITORING. While discussing the main idea of the proposed
approach, i.e., promoting the end-point as the main unit of analysis, some interesting
findings have been identified. One of the most positive judgements on this part of the
discussion was provided by a practitioner, describing the main benefit of the approach

Technical Debt in Service-Oriented Software Systems 277

rationale, in terms of ACCURACY, as follows: “The idea of measuring the TD from
the entry point of a web service request is very nice, because any developer is aware
of that, but Sonar cannot see that difference (compared to other types of projects). So
having a tool like this, a developer can estimate the TD for the code path that is going
to be executed for a single end-point, and even for any new feature”. In this round of
discussion, it is important to note that no practitioner had a negative comment on the
methodology, validating that the approach RATIONALE is conceptually very close to
what a developer would do mentally. The importance of PRIORITIZATION manage-
ment benefits, as well as in terms of bringing a highly systematic and structured process
for TD items prioritization is service-based software development, was highlighted.

Finally, we discuss the benefits that the approach brings, compared to the state-of-
practice approaches, as well as its limitations. In general, the participants were very
positive on the proposed approach, and they acknowledge that it advances state-of-
the-art, since “it keeps all the benefits of existing tools and appends them”. A specific
advancement compared to the state-of-the-art, as described by one practitioner suggests
that this approach is not a simple source code analysis, but amore tailored and informative
one: “The benefit of the approach is that it focuses on the end-points and the source code
that is required to execute them. The other practices just perform a static code analysis
and detect the code-level issues, but do not make the very useful linking to higher-level
artifacts”. Nevertheless, some participants mentioned that the proposed approach might
lack in terms of ACCURACY since it does not evaluate someHIDDEN PARTSOF THE
SYSTEM, such as “related classes (i.e., entities or other utility classes)”, or “functions
and classes that are not called right now from end-points”, or “configuration classes”.
In addition, one practitioner brought up an interesting future feature of the approach
that increases its potential. The suggestion would be to incorporate QUALITY GATES
in the approach: i.e., check the quality of the code of every new end-point (compared
to some pre-configured threshold) before the pull request before merging, and accept
or reject it. Finally, one participant mentioned that the USEFULNESS of this approach
might depend on the goals of the quality assessment: e.g., if the quality assurance team
is interested in a panoramic view of the project quality, then the proposed approach is
not useful. However, if the team wants to focus on some specific functionalities, the
proposed approach “is great because it saves you time to find the issues for a specific
one case” (TIME SAVINGS).

Evaluation of the Eclipse Theia Extension: In termsof Functional Suitability, a high-
level representation of the results is presented in Fig. 6. The stacked bar chart corresponds
to the evaluation in a 0 to 10 scale of each main functionalities offered by the tool. As we
can see there are no features of the tool that have been evaluated with a grade lower than
5, by any participant. The features that were best received by the practitioners were the
two ways of VISUALIZATION of the results (light blue and orange bars). The two ways
of visualization (at service and at project level) have received a similar evaluation. The
slightly more positive evaluation of the visualization at the system level can probably be
attributed to the habitual tendency of developers to check quality assurance evaluations
at the project level. Nevertheless, the fact that the novel way of representation was as
well adopted, as the one dictated by a habit of 5–10 working years, is a very positive
indication for the success of the proposed approach. Regarding the ACCURACY of TD

278 N. Nikolaidis et al.

quantification, we can observe that it corresponds to the feature with most participants
votes higher or equal to 8 out of 10 (sum of green, orange, and light blue bars)—meaning
that only two low evaluations (dark blue, red, or yellow bars) have been assigned to this
feature. Regarding the addition of end-points and new projects the results were similar
and rather balanced. This is a bit unexpected finding, in the sense that these features
were considered as trivial from the researchers’ team.

Fig. 6. Functionality analysis. Fig. 7. SUS analysis per question

To further interpret the aforementioned results, next, we present the main outcomes
of the qualitative analysis. First, regarding the addition of a new project, the participants
believed that: (a) it was not really obvious how to fill in the needed information in the
GUI; and (b) how to add a private repository. On the other hand, the addition of a new
end-point and the execution of the analysis was characterized as extremely user-friendly.
Nevertheless, a suggestion to select the end-points from a drop-downmenu seemed to be
favorable among the participants. However, as a tentative improvement, the participants
mentioned that an Abstract Syntax Tree-like structure for choosing the method instead
of copying and pasting text (i.e., the signature of the method) would be preferable. As an
overall comment, the participants mentioned that: (a) a better space organization would
make the visualization of the results easier to read. For instance, a pagination library
could have been used in reporting the results per service or the issues that service suffers
from; and (b) the use of different colors in the GUI would lead to more distinguishable
items. For example, a different color per issue or service would be very helpful “to catch
the eye”. In terms of missing functionalities, the participants explained that enabling the
customization of the rule-set of SonarQube through the Theia Extension would be very
helpful, since many times organizations create custom ruleset and replace the default
configuration of SonarQube. With respect to desired functionalities, the participants
noted that future versions of the extension, could: (a) provide various sorting / filtering
options (e.g., by criticality); (b) enable the navigation to the location of the code smell
through GUI interaction (e.g., when clicking on the issue or the class, the corresponding
part of the code to open in the Theia Editor); (c) provide help on how TD Principal

Technical Debt in Service-Oriented Software Systems 279

is calculated and configure the constants (e.g., remediation times, default costs); (d)
integrate Continuous Integration features to enable the quality gates and the continuous
and automated monitoring of TD (e.g., link with Jenkins or build tools); and (e) export
reports and import past analysis fromprevious versions or commits providemore detailed
explanations on the issues.

6 Threats to Validity and Conclusions

Construct validity reflects to what extent the phenomenon under study really repre-
sents what is investigated according to the research questions [21]. To mitigate construct
validity threats, we established a research protocol to guide the case study, which was
thoroughly reviewed by two experienced researchers in the domain of empirical studies.
Additionally, during the data collection process we aimed at data triangulation to avoid
a wrong interpretation of a single data source. Another threat is the fact that the tool
and the approach have been evaluated separately, and without a long-term usage of the
tool before the study; this has introduced both negative or positive bias. On the one hand
(negative bias), the evaluation of the stakeholders was probably stricter, since the users
were completely inexperienced with the tool, they have probably faced more usability
issues, compared to an evaluation that would have been performed after some training
or self-training period. Therefore, we believe that the presented results, correspond to
the worst-case scenario of usage and evaluation. On the contrary (positive bias), the
evaluation might have been positively biased by using only a demo session, in which
unclear parts were explained by the researchers, making them easier to understand by
the practitioners. In terms of external validity (i.e., the generalizability of the findings
derived from the sample [21]), it is difficult to claim that the same results would be
derived in other companies. However, emphasizing on analytical generalization we can
report on mitigation actions, which allow us to argue that the findings are representative
for other cases with common characteristics (especially for RQ2 and RQ3). Specifically,
the participants of the study were professional software engineers with various years
of experience in software development. Regarding RQ1, however, the results might be
difficult to generalize outside the five involved companies. Finally, the reliability of an
empirical study concerns the trustworthiness of the collected data and the analysis per-
formed, to ensure that same results can be reproduced [21]. We support the reliability
of our study by creating a rigor case study protocol and interview guides, which were
tested through pilots. To minimize potential reliability threats during the data collection
process, we preferred to ask open-ended questions and we requested motivation for the
provided answers. To assure the correct and unbiased data analysis, three researchers
collaborated during thewhole analysis phase. Finally, we have internally archived all col-
lected data (both raw and coded), due to a non-disclosure agreement with our industrial
partners. On the other hand, interview guides are presented in Section IV.

Conclusions: Service-based software systems have been widely adopted because of
their inherent benefits including, but not limited to, reliability, scalability, platform inde-
pendence, agility and easy maintenance. As in any other software system, the code
behind services needs to be maintained to adapt to new requirements and fix bugs. To

280 N. Nikolaidis et al.

assess the maintainability of services the Technical Debt metaphor can be used; how-
ever, it should be adapted to the particular features of Service-Oriented Architecture. In
this paper, we have introduced an approach and an accompanying tool (in the form of
an Eclipse Theia extension) to quantify TD in service-based applications, refining the
analysis from the project or class level, to the individual service level. An industrial val-
idation study with 15 engineers from 5 companies revealed the importance of assessing
TD for service-based systems at the level of services. In particular, the results suggested
that the proposed approach can be considered as more accurate compared to the ‘tradi-
tional’ project-level approaches. The main benefits are related to TD prioritization and
monitoring, time savings, and is perceived as useful by the practitioners. The tool has
been evaluated as highly usable.

Acknowledgment. Work reported in this paper has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 871177 (project:
SmartCLIDE).

References

1. Cunningham, W.: The WyCash portfolio management system. In: Proceedings on Object-
Oriented Programming Systems, Languages, and Applications, p. 29 (1992)

2. Zazworka, N., Spínola, R.O., Vetro’, A., Shull, F., Seaman, C.: A case study on effectively
identifying technical debt. In: Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering, New York, USA, Apr 2013

3. Amanatidis, T., Mittas, N., Moschou, A., Chatzigeorgiou, A., Ampatzoglou, A., Angelis, L.:
Evaluating the agreement among technical debt measurement tools: building an empirical
benchmark of technical debt liabilities. Empir. Softw. Eng. 25(5), 4161–4204 (2020). https://
doi.org/10.1007/s10664-020-09869-w

4. Avgeriou, P.: An overview and comparison of technical debt measurement tools. IEEE Softw.
(2021)

5. Tamburri, D.A., Kruchten, P., Lago, P., van Vliet, H.: What is social debt in software engi-
neering? In: 6th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), pp. 93–96 (2013)

6. Zimmermann, O.: Microservices tenets. Comput. Sci. Res. Dev. 32(3–4), 301–310 (2016).
https://doi.org/10.1007/s00450-016-0337-0

7. Pigazzini, I., Fontana, F.A., Lenarduzzi, V., Taibi, D.: Towardsmicroservice smells detection.
In: Proceedings of the 3rd International Conference on Technical Debt, Jun 2020

8. Soares deToledo, S.,Martini, A., Przybyszewska,A., Sjøberg,D.I.K.:Architectural Technical
Debt in Microservices: A Case Study in a Large Company. In: IEEE/ACM International
Conference on Technical Debt (TechDebt), vol. 2019, pp. 78–87 (2019)

9. Taibi, D., Lenarduzzi, V., Pahl, C.: Microservices Anti-patterns: A Taxonomy. Springer
International Publishing, pp. 111–128 (2020)

10. Hasan, M., Stroulia, E., Barbosa, D., Alalfi, M.: Analyzing natural-language artifacts of the
software process. In: International Conference on Software Maintenance, pp. 1–5 E. (2010)

11. Alves, N.S., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Seaman, C.: Identi-
fication and management of technical debt: A systematic mapping study. Inf. Softw. Technol.
70, 100–121 (2016)

https://doi.org/10.1007/s10664-020-09869-w
https://doi.org/10.1007/s00450-016-0337-0

Technical Debt in Service-Oriented Software Systems 281

12. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and its
management. J. Syst. Softw. 101, 193–220 (2015)

13. Lefever, J., Cai, Y., Cervantes, H., Kazman, R., Fang, H.: On the lack of consensus among
technical debt detection tools. In: Proceedings of the International Conference on Software
Engineering (SEIP), pp. 121–130 (2021)

14. Tsoukalas, D., et al.: Machine Learning for Technical Debt Identification. IEEE Trans. Softw.
Eng. (2021)

15. Campbell, G.A., Papapetrou, P.P.: SonarQube in action. Manning Publications (2013)
16. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Limiting technical debt with main-

tainability assurance: an industry survey on used techniques and differences with service- and
microservice-based systems. In: International Conference on Technical Debt (2018)

17. Ouni, A., Daagi, M., Kessentini, M., Bouktif, S., Gammoudi, M.M.: A machine learning-
based approach to detect web service design defects. In International Conference on Web
Services (ICWS), pp. 532–539 (2017)

18. Král, J., Zemlicka, M.: Popular SOA antipatterns. In: 2009 Computation World: Future
Computing, Service Computation, Cognitive, Adaptive, Content, Patterns (2009)

19. Alzaghoul, E., Bahsoon, R.: Evaluating technical debt in cloud-based Architectures using
real options. In: 2014 23rd Australian Software Engineering Conference (2014)

20. Smith, N., Van Bruggen, D., Tomassetti, F.: Javaparser: visited. Leanpub, Oct 2017
21. Runeson, P.,Höst,M.,Austen,R.,Regnell, B.:CaseStudyResearch inSoftwareEngineering –

Guidelines and Examples. John Wiley & Sons Inc. (2012)
22. Brooke, J.: System Usability Scale (SUS): A quick-and-dirty method of system evaluation

user information. Taylor & Francis (1996)
23. Seaman, C.B.: Qualitative methods in empirical studies of software engineering. IEEE Trans.

Software Eng. 25(4), 557–572 (1999)
24. Elo, S., Kyngäs, H.: The qualitative content analysis process. J. Adv. Nurs. 62(1), 107–115

(2008)
25. Spencer, D.: Card Sorting: Designing Usable Categories. Rosenfeld Media, Apr 2009

An Investigation of Entropy
and Refactoring in Software Evolution

Daniel Keenan, Des Greer(B) , and David Cutting

Queen’s University Belfast, BT7 1NN Belfast, UK
{dkeenan21,des.greer,david.cutting}@qub.ac.uk

Abstract. As software evolves, the source code tends to become more
complex and therefore harder to maintain, something that is exacerbated
by poor development practice, where a disorderly development process
is more likely to yield a disorderly and more complex result. Disorder
in source code evolution may be quantified by using source code change
entropy, a measure of the scattering pattern of code changes, i.e., how
widely spread throughout the codebase are individual changes. Refactor-
ing is an important activity for improving the structure of existing code
and reducing its complexity, but it is unclear if refactoring can effec-
tively counteract software entropy. Understanding how or if refactoring
can reduce entropy could provide insights on software evolution and help
reduce maintenance cost.

We empirically investigate how entropy at the system and file level
evolves in software systems and how it is influenced by refactoring activ-
ities as well as non-refactoring changes. We identify refactorings in the
version history of open-source projects through the analysis of source
code and change metadata. We observe that system-level entropy fluc-
tuates up and down, but remains relatively stable over time on average.
We also observe that file-level entropy tends to decrease over time in
response to both refactorings and non-refactoring changes, challenging
the findings of previous studies. We observe factors which may lessen
the utility of existing entropy metrics and suggest future avenues for
exploring this intriguing but little-studied concept in software evolution.

Keywords: Software evolution · Software entropy · Refactoring ·
Mining software repositories

1 Introduction

Software systems evolve continuously over time through different kinds of
changes. These may include introducing new features to satisfy users and keep
the product competitive, fixing bugs to solve errors or security vulnerabilities,
and carrying out maintenance activities, such as adapting the product to work
in a new environment. With pressures from end-users, software practitioners
often end up taking expedient approaches to deliver new functionality, incur-
ring technical debt, and not prioritising refactoring activities in favour of new

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 282–297, 2022.
https://doi.org/10.1007/978-3-031-21388-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_20&domain=pdf
http://orcid.org/0000-0001-6367-9274
http://orcid.org/0000-0002-1088-4749
https://doi.org/10.1007/978-3-031-21388-5_20

An Investigation of Entropy and Refactoring in Software Evolution 283

development. Such poorly managed change processes lead to the degradation of
the source code structure, orderliness, and overall quality, therefore increasing
complexity and making maintenance an increasingly arduous task.

The second law of thermodynamics states that a closed system naturally
tends to degenerate into a more disordered state over time. This is the notion
of entropy, which has also been extended to software systems. Jacobson et al.
[10] has stated: “As a system is modified, its disorder, or entropy, tends to
increase. This is known as software entropy”. There are different specific notions
of software entropy, but in essence they all measure complexity and disorder,
which by their nature undermine a system’s maintainability over time. Lehman
[13] defined his second law of software evolution as follows: “As an E-type system
evolves, its complexity increases unless work is done to maintain or reduce it”.
This law acknowledges that it is possible to work against the natural growth of
software entropy. Refactoring is one way to achieve this.

Hassan and Holt [8] introduced the concept of software entropy that is con-
cerned with the amount of disorder in the development process, rather than
the more traditional approach of measuring the complexity of source code. This
is source code change entropy (for brevity, referred to in this paper simply as
‘entropy’), which adapts Shannon entropy [16] as a way to quantify the scat-
tering pattern of source code changes. The intuition is that the more scattered
across the codebase changes are, the harder they are for developers to recall,
leading to diminished comprehension of the system. Indeed, code scattering has
been recognised as a significant barrier in software evolution [15]. Code scatter-
ing together with code tangling causes poor traceability because of the difficulty
of reading dispersed code, decreasing code quality, and more difficult software
reuse and maintenance [6].

Greater disorder (‘chaos’) in the development process will lead to greater
disorder in the outputs of that process, i.e., the source code itself. File entropy is
an individual file’s contribution to entropy in a given period of time, and Hassan
showed that file entropy is a more accurate metric for predicting faults in files
than using the number of prior modifications or prior faults in the file [7].

File entropy has been shown to increase after non-refactoring changes and
decrease after refactoring activity [3,4]. These approaches identified refactor-
ings by inspecting commit notes to find keywords such as ‘refactoring’ and
‘cleanup’, which indicate refactoring-related changes. Limitations of this app-
roach, as acknowledged by Canfora et al. [3,4], are that it misses refactorings
not explicitly mentioned in the commit notes, and that non-refactoring changes
may also be present within a refactoring commit. In another study on refactor-
ing practice, [14] it was found that commit messages are unreliable indicators
of refactoring activity. A better approach would be to analyse the source code
itself, facilitated by automatic detection of refactorings. In this paper, Refactor-
ingMiner [17], a refactoring mining library for Java projects, is used. To the best
of our knowledge, it has not yet been applied in a study on entropy.

We build upon the work of previous studies on entropy, especially those by
Canfora et al. [3,4], and empirically investigate how entropy varies as software

284 D. Keenan et al.

systems evolve, as well as the effect of refactorings on file entropy compared to
non-refactoring changes. We compute system- and file-level entropy over suc-
cessive periods within the Git version histories of 10 open-source Java projects.
We identify refactorings by analysing changes in source code, leveraging Refac-
toringMiner to do this automatically. We then compare the file entropy before
and after refactorings, as well as between periods of no refactoring, to better
understand how file entropy varies and how it is influenced by refactoring.

The paper is structured as follows. The next section introduces the notion
of entropy as applied in this paper. Section 3 details the research questions and
methodology used. Section 4 presents and discusses the results of our investiga-
tion and discusses threats to validity. Section 5 outlines how the work relates
to existing work in this domain. Section 6 summarises the contributions and
discusses directions for future work.

2 Background on Entropy

This section explains the concept of entropy as it relates to this investigation.
This includes a discussion of Shannon entropy and its derivative, source code
change entropy.

2.1 Shannon Entropy

Shannon [16] defined entropy in the context of information theory. Shannon
entropy is defined as follows. For a discrete random variable X, with possible
outcomes x1, x2, ..., xn, the entropy of X is defined as:

H(X) = −
n∑

i=1

P (xi) logP (xi) (1)

Here, P (xi) is the probability of outcome xi occurring. The logarithmic base
used corresponds to the unit used for measuring information. Base 2 is tra-
ditionally chosen, relating to the unit of ‘bits’. Shannon entropy quantifies the
average amount of information required to represent an outcome drawn from the
probability distribution. It can also be understood as the average level of ‘sur-
prise’ inherent in the possible outcomes. As an example, consider a coin with
probability p of landing on heads and probability 1−p of landing on tails. When
p = 0.5, there is the greatest average level of surprise, as no outcome is more
likely than another. When p = 0.9, the average level of surprise is lower, since,
while it is possible for the coin to land on tails, it is much more likely to land
on heads. When p = 1 or p = 0, there is no surprise, as the outcome is certain.

For a given number of possible outcomes, entropy is maximum when all out-
comes have an equal probability of occurring P (xi) = 1

n . Conversely, when a
single outcome xa has a probability of occurring P (xa) = 1, and all others
have P (xi) = 0, then entropy is minimum (0 bits). Having more possible out-
comes increases the maximum potential entropy. For example, a fair coin toss
has entropy of 1 bit, whereas rolling a fair six-faced die has entropy of 2.58 bits.

An Investigation of Entropy and Refactoring in Software Evolution 285

2.2 Source Code Change Entropy

Hassan et al. [8] brought Shannon entropy into the context of software evolution
by deriving from it the metric of source code change entropy, which is defined as
follows. For a software system S composed of a set of source files f1, f2, ..., fn,
the entropy of a period in its evolution is defined as:

H(S) = −
n∑

i=1

chglines(fi)
chglines(S)

log2

(
chglines(fi)
chglines(S)

)
(2)

where chglines(fi) is the number of line changes made to the file fi, and
chglines(S) is the sum of the line changes made to each file in the system S.

This system-level metric can then be adapted to the level of an individual
file, where the file’s contribution to the total entropy of a period is quantified.
The entropy of a specific file fi in a given period is defined as:

H ′(fi) = H(S) · chglines(fi)
chglines(S)

(3)

Entropy measures how ‘scattered’ changes are in terms of the distribution of
line changes across files. Entropy increases with both the number of files changed
and how evenly distributed the line changes are across the changed files. When
most line changes are concentrated in a small number of the files in a change,
entropy is low. Conversely, when line changes are scattered across many files in
similar proportions, entropy is high. If no more than one file is changed, entropy
is minimised. If multiple files are changed, each by an equal number of lines,
entropy is maximised for that number of changed files. The potential maximum
entropy increases with the number of files changed. It should be emphasised that
entropy does not quantify the magnitude of changes, but the pattern of their
occurrence.

Hassan’s hypothesis was that the more scattered across the codebase changes
are, the more difficult they are for developers to keep up with and recall later,
deteriorating the shared understanding of the system and increasing the likeli-
hood that bugs will be introduced. Moreover, intuitively, a well-structured and
readily extensible codebase should be conducive to changes which have a low
entropy footprint. In other words, when fewer lines of existing code need to be
changed to realise new functionality, entropy should be lower.

3 Research Questions and Methodology

The aim of this investigation is to analyse how entropy changes within systems as
they evolve and how refactoring affects entropy. The intuition is that developer
understanding of a system breaks down more as entropy increases, so it should be
controlled. Our research questions and corresponding null hypotheses are defined
formally below.

286 D. Keenan et al.

3.1 Research Questions

RQ1: How does system entropy change over time?
Our conjecture is that system entropy increases over time due to the increased

scattering of changes occurring as a system evolves, becomes increasingly com-
plex, and falls further into disorder.

Null hypothesis H01: system entropy does not significantly change over time.

RQ2: How do non-refactoring changes affect file entropy?
To meaningfully investigate how refactoring affects file entropy, we need to

establish how non-refactoring changes affect file entropy. Our conjecture is that
non-refactoring changes increase file entropy due to the increasingly scattered
changes that must be made when the file is not being refactored to be more
maintainable.

Null hypothesis H02: there is no significant difference in file entropy before
and after a non-refactoring change.

RQ3: How do refactorings affect file entropy?
Our conjecture is that refactorings decrease file entropy due to the files being

more maintainable after refactoring, reducing the scattering of changes necessary
to realise new functionality.

Null hypothesis H03: there is no significant difference in file entropy before
and after a refactoring.

RQ1 is an exploratory question, intended to help us understand more about
entropy at the system level. RQ2 and RQ3 concern file-level entropy and reiterate
questions posed by [3,4].

3.2 Systems Studied

We applied the following criteria to select suitable software systems for analysis:
the system must:

1. be publicly available;
2. have its source code under Git version control;
3. be composed of at least 90% Java code;
4. have at least 10,000 physical lines of Java code;
5. have a version history of at least 1,000 commits;
6. have at least 10 contributors.

Criterion 1 was applied to support the replication of experiments. Criterion 2
was a necessary constraint of using RefactoringMiner, which only works with
projects under Git version control. Criterion 3 was applied to ensure that the
systems were mostly Java-based, since RefactoringMiner only supports analy-
sis of Java code. Criteria 4 and 5 were applied to ensure the systems were of
reasonably substantial size and evolutionary history, respectively; we assumed
that small or little-developed systems would be unlikely to exhibit a level of

An Investigation of Entropy and Refactoring in Software Evolution 287

Table 1. Software systems analysed in this investigation

System kLoC (Java) Size # Commits # Contributors

Apache Dubbo 274 Large 4,785 346

Fresco 136 Large 2,963 205

Glide 104 Medium 2,592 131

Hystrix 79 Medium 2,109 109

MPAndroidChart 43 Medium 2,070 69

Nacos 212 Large 3,645 199

Retrofit 37 Medium 1,879 154

SirixDB 180 Large 2,652 38

Termux App 30 Intermediate 1,082 57

Zerocode 25 Intermediate 1,357 43

developmental complexity worth analysing. Criterion 6 was applied to ensure
these were ‘industrial’ projects, worthy of being contributed to by many devel-
opers, as opposed to personal projects. 10 systems that met the criteria were
arbitrarily chosen and are listed in Table 1. System size was classified using the
kLoC-based thresholds proposed by Boehm [2]. Only physical lines of Java code
were counted.

3.3 Filtering of Source Files Considered

It is important that only relevant source files are considered when computing
entropy. The specific file types that may be appropriate to include vary by project
but should exclude configuration files, test files, and documentation, in our view.
This is because the development of these files is not guided by the same design
principles and patterns as functional code, so it is not appropriate to relate
the patterns of changes applied to them to the software’s maintainability. As we
analysed Java-based systems exclusively, we considered only Java source (.java)
files.

Excluding test files from our analysis proved challenging, as each system may
store test files in various codebase-specific locations, and it is not always clear
whether a file exists for testing purposes. For example, some files contain test
utilities and runners but do not contain tests themselves. We used a lightweight,
generalised approach of excluding files whose path contains any of the following
patterns:

– Test.java
– Tests.java
– Tester.java
– Testers.java
– test/

288 D. Keenan et al.

– tests/
– tester/
– testers/
– androidTest/

These represent common naming conventions for test files and locations. While
not an infallible approach, it should be reliable enough to remove almost all test
files from consideration.

3.4 Filtering of Refactoring Types Considered

Canfora et al. [3] acknowledged that “ideally, to identify refactorings, it would be
appropriate to analyze a source code change, and determine if such a change is
related or not to refactoring”. With RefactoringMiner, we achieved this program-
matically. RefactoringMiner is capable of classifying a wide range of refactoring
types, including high-level refactorings, such as class extractions, and low-level
refactorings, such as reordering parameters. To designate a period as contain-
ing a refactoring for a given file, we had to decide which refactoring types were
appropriate to consider. We believe that certain low-level refactoring types (e.g.,
simple renames) are not substantial enough to meaningfully influence entropy,
and, due to their prevalence, including them would result in almost every period
being designated as containing a refactoring. Below is the list of refactoring types
we chose to consider (grouped by program element):

– superclass: extract
– subclass: extract
– class: extract
– interface: extract
– attribute: extract, merge, split, move, replace, move and rename, pull up,

push down
– method: extract, inline, merge, move, extract and move, move and inline,

move and rename, pull up, push down
– miscellaneous: introduce polymorphism

3.5 Dividing Version Histories into Periods

The version history of each project had to be divided into periods for which
entropy would be computed and the presence of refactorings would be deter-
mined. Different approaches exist for defining what constitutes a period in this
context. For example, a time interval or a specified number of commits. We dis-
counted a time-based approach on the basis that our analysis of how the software
is evolved should be independent of real-world time, so as to not be influenced by
the level of development activity at a given time, which would naturally fluctuate
(e.g., dropping during holiday periods).

For a consistent and time-independent approach, we defined a period as a
sequence of 100 commits, as it is not disproportionate to the length of the ver-
sion histories in our systems for analysis (mean = 2,513 commits). If the total

An Investigation of Entropy and Refactoring in Software Evolution 289

number of commits is not a factor of 100, then the final (most recent) period
in a version history will have fewer than 100 commits. As a technicality, only
non-merge commits are considered; merge commits (i.e., those with two parents)
are discarded before the division into periods. This is because merge commits
yield duplicate changes during the file/line change extraction process. On the
same basis, RefactoringMiner also disregards merge commits.

3.6 Performing Analysis and Collecting Data

A Java-based software tool was written to perform analysis. It uses the JGit
library to mine the version history of a system, extracting the necessary infor-
mation about file/line changes occurring in each period to compute system- and
file-level entropy. The tool also leverages RefactoringMiner to detect and mark
periods containing refactorings. The tool’s source code and the data generated
using it are available on GitHub.1 To address RQ1, for each system, we com-
puted the system-level entropy according to (2) for each period in its version
history. To address RQ2, for each system, the following approach was applied.

Given a file and the sequence of periods in which it was changed p1, p2, ...,
pn:

1. let fe1, fe2, ..., fen be the file-level entropy of the file, computed according
to Eq. (3), for each period in which it was changed

2. calculate the percentage change in file entropy between each pair of adjacent
periods pi and pj where neither period contains a refactoring of the file

Repeat the above steps for each file in the system, and then calculate the median,
across all files, of the percentage change in file entropy between each pair of
adjacent periods not containing refactorings of the file. To address RQ3, for
each system, we applied a similar approach to [3] to calculate average entropy
before and after refactorings, defined as follows.

Given a file and the sequence of periods in which it was changed p1, p2, ...,
pn:

1. let fe1, fe2, ..., fen be the file-level entropy of the file, computed according
to Eq. (3), for each period in which it was changed

2. let pr1, pr2, ..., prm be the periods in which a refactoring was applied to the
file

3. for each period in which a refactoring was applied to the file, pri:
(a) calculate the mean file entropy across each previous period not containing

a refactoring of the file, up to the previous period in which the file was
refactored or the beginning of the project (this is the mean file entropy
before refactoring)

(b) calculate the mean file entropy across each subsequent period not con-
taining a refactoring of the file, up to the next period in which the file
was refactored or the end of the project (this is the mean file entropy
after refactoring)

1 https://github.com/Daniel-Keenan-QUB/entropy-project.

https://github.com/Daniel-Keenan-QUB/entropy-project

290 D. Keenan et al.

4. calculate the percentage change between the mean file entropy before refac-
toring and the mean file entropy after refactoring

Repeat the above steps for each file in the system, and then calculate the median,
across all files, of the percentage change between the mean file entropy before
refactoring and the mean file entropy after refactoring.

4 Results

4.1 RQ1: How Does System Entropy Change over Time?

In all systems studied, the system entropy exhibited no significant consistent
trend of continuous increase or decrease. Figure 1 shows the entropy variation
for the studied systems. The pattern observed was that entropy tends to fluctuate
up and down within a range of values but remains relatively stable on average
within that range throughout the life of the project. To quantify the variation
in entropy over time for each system, the line of best fit was calculated (using
the ‘least squares’ method) for the entropy data points. Half of the systems
had a best fit line gradient that was negative, and the other half had a positive
gradient, but in all cases the gradient was very shallow. The lowest gradient was
–0.07 and the highest gradient was 0.19. The mean gradient across all systems
was 0.04. This value is close to zero, reflecting the relative stability of entropy
over time, irrespective of system size. Thus, we cannot refute the null hypothesis
H01 that system entropy does not significantly change over time.

Table 2. File entropy for non-refactoring periods and before/after refactoring periods
(significant in bold)

Median % change in file entropy
between adjacent periods
(Wilcoxon 1-Sample)

System a) Non-refactoring b) Refactoring c)= a− b (Wilcoxon 2-Sample)

Apache Dubbo –15.21(p�0.001) –28.64(p = 0.815) –13.43(p = 0.019)

Fresco –10.83(p�0.001 –48.03(p = 0.021) –37.20(p<0.001)

Glide –19.68(p�0.001) –21.71(p = 0.252) −2.03(p = 0.453)

Hystrix –1.11(p�0.001 –45.00(p = 0.677) −43.89(p = 0.084)

MPAndroidChart –12.91(p�0.001) –13.17(p = 0.747) −0.26(p=0.627)

Nacos –21.45(p = 0.012) –67.43(p�0.001) –45.98(p�0.001)

Retrofit –5.92(p �0.001) + 18.46(p = 0.165) + 24.38(p = 0.156)

SitrixDB + 0.65(p�0.001 –35.24(p = 0.220) –35.89(p=0.001)

Termux App –28.46(p = 0.777) –62.07(p = 0.040) –34.24(p = 0.127)

Zerocode –50.30(p = 0.254) –38.47(p = 0.507) + 11.83(p = 0.509)

An Investigation of Entropy and Refactoring in Software Evolution 291

(a) Apache Dubbo (b) Fresco

(c) Glide (d) Hystrix

(e) MP Android Chart (f) Nacos

(g) Retrofit (h) SirixDB

(i) Termux App (j) Zerocode

Fig. 1. System-wide entropy over time

4.2 RQ2: How Do Non-refactoring Changes Affect File Entropy?

Table 2 shows the median percentage change in file entropy between adjacent
non-refactoring periods. Referring to the first column of figures, in 9 out of
10 systems, file entropy follows a decreasing trend between each non-refactoring
period. On average, file entropy decreases by approximately 17% between periods
in which the file was changed but not refactored. Using a one-sample Wilcoxon
test (α = 0.95)to determine if the change in file entropy is significantly different

292 D. Keenan et al.

from zero in each system, we find that all except Termux App and Zerocode
show significance. This provides evidence to reject the null hypothesis H02 that
there is no significant difference in file entropy before and after a non-refactoring
change. We infer that, in our sample, file entropy generally decreases after a non-
refactoring change.

4.3 RQ3: How Do Refactorings Affect File Entropy?

Table 2 b) shows the median percentage change in file entropy in after a refac-
toring period. The median values all show a negative trend except for Retrofit.
However, a Wilcoxon signed-rank test shows a p-value <0.05 in only Nacos and
Termux. Thus, the data does not confidently support the hypothesis that there
is a falling file entropy following refactoring periods. It might also be informative
to compare the paired samples of non-refactoring periods and refactoring periods
for average file entropy change. Table 2 c) shows the difference between medians
for the two samples. In 8 out of 10 systems, file entropy follows a decreasing trend
when comparing the mean before and after a refactoring of the file. Retrofit and
Zerocode were exceptions. On average, mean file entropy is approximately 34%
lower in the periods following a refactoring compared to those before.

Using a Wilcoxon Two Sample test (α = 0.95), to test the null hypothesis
that there is no difference between average file entropy change between non-
refactoring and refactoring periods, as shown in Table 2, we find that 5 systems
(Apache Dubbo, Fresco, Nacos, Retrofit SirixDB) suggest that we refute the null
hypothesis but the other 5 do not (Glide, Hystrix, MPAndroidChart, Termux
App and Zerocode).

4.4 Discussion

Regarding RQ1, we conjectured that system entropy would increase with time,
since the disorder of changes should grow as the system becomes more complex,
but what we observed instead was levels of entropy fluctuating within a range and
not tending to increase or decrease in general. On reflection, dividing a version
history into segments based on a fixed length of time or number of commits
represents a high degree of arbitrariness. These approaches have been used in
previous studies, such as [4] and [8], so we assumed that this approach would
be good enough for our measurements, but it may not be the most appropriate
way to measure entropy. A period in which development includes more features
(by necessity or coincidence), and therefore spans more parts of the codebase
than usual, is not necessarily a cause for concern in itself. An entropy increase
(and subsequent decrease) would be expected in this case, and not inherently
indicative of poor management of code structure or change. If entropy is to be
an indicator of either of these, then system-wide entropy measures over arbitrary
periods may be of limited practical interest.

Regarding RQ2, we conjectured that changes not related to refactoring would
increase file entropy, since the scattering of changes would increase generally
while the file is not being refactored to be more maintainable (this is what [4]

An Investigation of Entropy and Refactoring in Software Evolution 293

observed). What we observed instead was file entropy tending to decrease over
time. We believe this may be explained by the fact that most files see fewer
changes later in their existence. When they are newly created, there is a high
initial entropy footprint for the file. As it ultimately takes shape and stabilises in
its functionality, it may see few changes, if any, for the rest of the project’s life.
Assuming most files follow this pattern, their individual contribution to entropy
will naturally decrease over time.

Interestingly, Canfora et al. [4] observed the opposite trend, that is non-
refactoring changes lead to an increase in file entropy, in their initial study of
entropy. This may be explained by their measurement technique. If it is assumed
that they measured the difference in file entropy between each non-refactoring
period and the period following it, then one may expect moving from a non-
refactoring period to a refactoring period to exhibit an increase in entropy, and
the converse to exhibit a decrease in entropy, based on the intuition that refac-
torings themselves tend to have high entropy by nature. They acknowledge the
need to exclude refactoring periods themselves in their follow-up paper [3] but do
not repeat the investigation of how non-refactoring changes affect file entropy.
The two projects analysed in their case study are also older and have longer
commit histories than ours, and were not under Git version control at the time.

Regarding RQ3, we conjectured that refactorings would decrease file entropy,
since changes would be less scattered as a file becomes easier to maintain due to
being refactored. We observed that this was the case, consistent with Canfora’s
findings in both previous studies [3,4]. However, as discussed previously, we
observed that file entropy generally decreases between periods over time even in
the absence of refactorings. If our conjecture about the reasons for file-specific
entropy diminishing over time holds true, then it challenges previous findings by
showing that the relationship between refactorings and reductions in file entropy
is non-causative, i.e., file entropy is decreasing no matter what.

5 Threats to Validity

This section discusses the main threats to the validity of our study.

5.1 Internal and Construct Validity

The software for extracting change information from system version histories
is fallible, but to maximise confidence, it was carefully scrutinised, verified with
unit tests, and manually tested on controlled samples (in a test repository) before
being applied to external systems. A crucial factor in the construct validity of our
findings for RQ2 and RQ3 is the accuracy of refactoring detection. Tsantalis et al.
[17] provide confidence of this by reporting a precision of 98% and recall of 87%
for RefactoringMiner, the library on which we rely for refactoring detection. A
mitigation to this threat is that we believe our approach is more accurate than
previous studies that relied relied on documentation and human judgment to
identify refactorings [3,4]. Additionally, we are limited to the, albeit extensive,

294 D. Keenan et al.

22 refactorings detectable by RefactoringMiner that were deemed appropriate
for our investigation.

A factor that will pollute results but is not explicitly mentioned in previous
studies, is the inclusion of test files in entropy computations. We believe that
test files are not relevant to the measurement of entropy, so they should be
deliberately excluded from analysis. Our results would be less accurate if any test
files were not excluded and/or any non-test files were excluded by accident. We
acknowledge that our approach to test file exclusion makes assumptions about
naming conventions that will not hold in all cases. A better, albeit manual, way
to identify test files may be to inspect each system and determine the conventions
for naming and storing test files before exclusion.

Since changes are quantified by analysing each commit and determining the
differences in its source code compared to its parent, the pattern in which com-
mits are made influences the emerging pattern of changes. For example, a devel-
oper may implement a feature by making small, frequent commits to a feature
branch before it is ultimately merged into the master branch. This practice
ensures code is regularly backed up and allows for work-in-progress commits;
the developer need not worry about each commit being deployable. The issue
with this pattern when computing entropy is that ‘intermediate’ commits con-
taining changes which are subsequently overwritten or discarded represent a
contribution to entropy which is actually subsequently invalidated, and their
inclusion pollutes the measurement. Variance in commit etiquette, e.g., between
developers’ styles, policies on projects, and merging strategies, will influence the
level of this pollution and may be difficult to control for.

5.2 External and Conclusion Validity

While we analysed more systems than previous studies [3] and [7], it must be
acknowledged that our sample is small and of limited diversity. Our sample
included intermediate, medium, and large systems, but no very large systems.
We analysed systems with between 1,000 and 5,000 commits, but there exist
systems with commit counts in the order of 10,000 and 100,000. For example,
the IntelliJ IDEA Community Edition project on GitHub has 349,905 commits
at the time of writing. These systems could exhibit different trends in entropy, as
they have evolved through many more commits. Due to constraints inherent to
the tooling used in our study, we analysed only Java-based systems, but systems
developed using other languages may exhibit different entropy trends due to
differences in language features, coding standards, paradigms, etc. To reinforce
the generalisability of our findings, future studies should strive for a sample size
in the region of 50-100, with greater variety in system size, version history length,
and development languages. Furthermore, we have limited our investigation to
open-source software, which means that the findings and conclusions may not
apply to other settings.

An Investigation of Entropy and Refactoring in Software Evolution 295

6 Related Work

Bianchi et al. [1] defined software entropy as a class of metrics aimed at assessing
source code quality degradation. These metrics consider the entropy of the source
code itself in terms of the links between components, rather than considering
the entropy of the code change process. Hassan & Holt [8] introduced software
entropy as a measure of the disorder in a code change process by adapting
Shannon entropy [16] to quantify the pattern of code changes. They carried out
follow-up studies [7,9] which showed that file change entropy is correlated with
the presence of bugs, and that file-level entropy is a better predictor of faults in
files than historical predictors, such the number of prior modifications and prior
bugs.

D’Ambros et al. [5] evaluated a range of defect-prediction approaches, includ-
ing Hassan’s ‘entropy of changes’, and found that software entropy performed
less well than most other metrics and exhibited the highest variability in perfor-
mance. This observation on variability aligns quite well with our interpretation
of the findings of our investigation; excessive ‘arbitrariness’ of the measurement
targets for entropy may play a part in this.

Canfora et al. [4] investigated the relationship of file-level software entropy
with refactorings and non-refactoring changes, and found that entropy tends
to increase following non-refactoring changes and decrease following refactor-
ings. They also carried out a more in-depth follow-up study [3] investigating
the relationship between software entropy and four different factors: refactoring
activities, the number of active contributors to a source code file, the partici-
pation of classes in design patterns, and the different kinds/topics of changes
occurring. They reinforced their finding from the previous paper that entropy
tends to decrease following refactoring activity but did not repeat their inves-
tigation of variance in entropy following non-refactoring changes. Our findings
challenge any interpretation from these studies that refactoring practices are the
cause of decreasing entropy.

Kaur et al. [11] applied the software entropy metrics to a subsystem of
Android and found that they were unsuitable for bug prediction. This contrasted
with a previous study by the same authors which found that the metrics were
suitable for predicting bugs in a subsystem of Mozilla. This apparent variation
in performance has been seen in other studies, as mentioned earlier. Kaur et
al. [12] applied the software entropy metrics with a range of machine learning
techniques, and suggest GEP and SVR as stable regression techniques for bug
prediction using software entropy.

7 Conclusion and Future Work

As an exploratory research question, we investigated system entropy trends over
time in a sample of Java-based systems. Using a commit count-based approach
to define periods, we observed that entropy remains surprisingly stable over time
and does not tend to grow continuously. There may be an undesirable level of

296 D. Keenan et al.

arbitrariness in dividing version histories using this approach, and the system-
level metric may primarily reflect the amount of development activity occurring
in a given period and not sufficiently reflect a ‘disorder’ of code changes.

Hassan [7] showed a correlation between file entropy and fault-proneness,
highlighting a need to control entropy. Canfora et al. [3] showed a correlation
between refactorings of a file and reduction in its entropy, suggesting that refac-
toring may be an effective countermeasure to the entropy of files. We used mod-
ern tooling available to enhance the methodology of Canfora et al. and repeat
their investigations into how file entropy varies in response to refactorings and
non-refactoring changes. Our results challenged previous findings by showing
that, rather than non-refactoring changes increasing file entropy and refactor-
ings reducing it, file entropy follows a decreasing trend over time irrespective
of the presence of refactorings. We conjecture that this is due to files naturally
seeing fewer modifications later in their existence, meaning their contribution to
entropy in given periods will tend to reduce compared to newer files that are
being more actively developed.

We propose that there may be value in experimenting with different ‘targets’
on/over which to measuring entropy. We suspect that system-level entropy is
highly sensitive to the natural variation in the source files worked on at differ-
ent times which may devalue its practicality as an indicator of potential future
problems. Instead, we would suggest that entropy may be most appropriately
computed over cohesive change sets. That is, for example, a full feature imple-
mentation or maintenance activity, isolated from any other changes. Our intu-
ition is that lower entropy exhibited in the implementation of a feature reflects
software which is more readily extensible. In this way, the notion of ‘the entropy
necessary to realise a feature’ becomes reflective of the quality of the software
itself. It would be valuable to investigate the effectiveness of this approach to
measuring entropy. For example, could the entropy of feature implementations
be a predictor of faults in those same features?

Software entropy, as a measure of the disorder in code change patterns, is an
intriguing and relatively little-studied concept. There remains a strong need to
critically evaluate its ability to accurately capture the disorder of a development
process, potentially investigate relationships with well-established software qual-
ity attributes, such as coupling and cohesion, and ultimately determine whether
it truly holds enough utility to be considered and monitored in real-world devel-
opment settings. To our knowledge, metrics for software entropy of this kind
have not been tested in any industrial collaborations. A more comprehensive
study, ideally with some industry input, is required. There is also a clear need
to perform a sensitivity analysis of the entropy metrics. It may be necessary to
adapt existing entropy metrics or propose new ones which are robust to the con-
founding factors discussed in this paper. Nonetheless, software entropy provides
a useful measure for considering the impact of code changes and the type of code
change.

An Investigation of Entropy and Refactoring in Software Evolution 297

References

1. Bianchi, A., Caivano, D., Lanubile, F., Visaggio, G.: Evaluating software degrada-
tion through entropy. In: 7th IEEE International Software Metrics Symposium, p.
210. IEEE Computer Society (2001)

2. Boehm, B.W.: Software Engineering Economics. Prentice Hall (1981)
3. Canfora, G., Cerulo, L., Cimitile, M., Penta, M.D.: How changes affect software

entropy: An empirical study. Empir. Softw. Eng. 19(1), 1–38 (2014)
4. Canfora, G., Cerulo, L., Penta, M.D., Pacilio, F.: An exploratory study of fac-

tors influencing change entropy. In: The 18th IEEE International Conference on
Program Comprehension, pp. 134–143. IEEE Computer Society (2010)

5. D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches:
A benchmark and an extensive comparison. Empir. Softw. Eng. 17(4–5), 531–577
(2012)

6. França, J.M., Dos Santos, C.A.R., de Oliveira, K.S., Soares, M.S.: An empirical
evaluation of refactoring crosscutting concerns into aspects using software metrics.
In: 2013 10th International Conference on Information Technology: New Genera-
tions, pp. 674–679. IEEE (2013)

7. Hassan, A.E.: Predicting faults using the complexity of code changes. In: 31st
International Conference on Software Engineering, pp. 78–88. IEEE (2009)

8. Hassan, A.E., Holt, R.C.: The chaos of software development. In: 6th International
Workshop on Principles of Software Evolution, pp. 84–94. IEEE Computer Society
(2003)

9. Hassan, A.E., Holt, R.C.: Studying the chaos of code development. In: 10th Work-
ing Conference on Reverse Engineering, pp. 123–133. IEEE Computer Society
(2003)

10. Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G.: Object-oriented Software
Engineering - A Use Case Driven Approach. Addison-Wesley (1992)

11. Kaur, A., Chopra, D.: Reasons for non-applicability of software entropy metrics
for bug prediction in android. Int. J. Comput. Syst. Eng. 10(6), 1170–1175 (2016)

12. Kaur, A., Kaur, K., Chopra, D.: An empirical study of software entropy based bug
prediction using machine learning. Int. J. Syst. Assurance Eng. Manage. 8(2s),
599–616 (2017)

13. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-
program life cycle. J. Syst. Softw. 1, 213–221 (1980)

14. Murphy-Hill, E.R., Parnin, C., Black, A.P.: How we refactor, and how we know it.
IEEE Trans. Software Eng. 38(1), 5–18 (2012)

15. Sehgal, R., Nagpal, R., Mehrotra, D., et al.: Measuring code smells and anti-
patterns. In: 2019 4th International Conference on Information Systems and Com-
puter Networks (ISCON), pp. 311–314. IEEE (2019)

16. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948)

17. Tsantalis, N., Mansouri, M., Eshkevari, L.M., Mazinanian, D., Dig, D.: Accurate
and efficient refactoring detection in commit history. In: Proceedings of the 40th
International Conference on Software Engineering, pp. 483–494. ACM (2018)

“To Clean Code or Not to Clean Code”
A Survey Among Practitioners

Kevin Ljung and Javier Gonzalez-Huerta(B)

Blekinge Institute of Technology, 371 79 Karlskrona, Sweden

javier.gonzalez.huerta@bth.se

Abstract. Context: Writing code that is understandable by other col-
laborators has become crucial to enhancing collaboration and productiv-
ity. Clean Code has become one of the most relevant software craftsman-
ship practices and has been widely embraced as a synonym for code quality
by software developers and software development organizations all over the
world. However, very little is known regarding whether developers agree
with Clean Code principles and how they apply them in practice.

Objectives: In this work, we investigated how developers perceive
Clean Code principles, whether they believe that helps reading, under-
standing, reusing, and modifying Clean Code, and how they keep their
code clean.

Methods: We conducted a Systematic Literature Review in which
we screened 771 research papers to collect Clean Code principles and a
survey among 39 practitioners, some of them with more than 20 years of
development experience.

Results: So far, the results show a shared agreement with Clean Code
principles and their potential benefits. They also show that developers
tend to write “messy” code to be refactored later.

Keywords: Clean code · Survey · Code quality

1 Introduction

The development of software systems has turned into a collective endeavor that,
in some cases, involves thousands of engineers, distributed globally into hun-
dreds of teams that have to work with code written by others. In this scenario,
writing code that is understandable by others becomes crucial. The selection of
identifiers, or the length of methods and classes, are, among others, principles
that developers should have in mind when writing their code.

However, there are no measures that can assess the quality of code universally,
and there is a lack of standards for code quality. Even the understanding of what
code quality is somehow diffuse [9].

Clean Code [27] has become one of the most relevant craftsmanship prac-
tices for developers worldwide, and several research studies have analyzed its
nature and effects. The principles and practices described in the book have been
widely embraced as a synonym for code quality by many software developers
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 298–315, 2022.
https://doi.org/10.1007/978-3-031-21388-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_21&domain=pdf
http://orcid.org/0000-0003-1350-7030
https://doi.org/10.1007/978-3-031-21388-5_21

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 299

and software development organizations worldwide. However, the evidence of its
use in practice, how developers perceive its principles, and how they apply them
is scarce in the software engineering literature.

There are several studies reporting the benefits of Clean Code (e.g., [14,20]),
how to support it (e.g., [21]), analyzing challenges and hindrances of its adoption
in practice (e.g., [30]), or how refactoring might impact the “the cleanliness” and
the quality of code (e.g., [2–5,7,12,13,18,29,31,33,36,39]). However, it is still
unclear how professional developers perceive Clean Code.

In this paper, we report a Questionnaire Survey study that explores the
practitioners’ perceptions regarding Clean Code. The goal of the survey is to
gain an understanding of: (i) the degree of agreement with its principles and
practices amongst practitioners; (ii) whether they believe that Clean Code can
help them be more efficient and effective while reading, understanding, reusing
and maintaining code; (iii) and how developers keep their code “clean”.

To gather a more complete list of Clean Code principles and practices,
we conducted a Snowballing [37] Systematic Literature Review using a hybrid
method [28], in which we selected 28 papers in addition to the Clean Code sem-
inal book [27].

The remainder of the paper is structured as follows: Sect. 2 discusses related
works in the area. Section 3 describes the details of the Systematic Literature
Review and the Questionnaire Survey planning and execution. Section 4 reports
the results of the study. Section 5 discusses the main findings. In Sect. 6 dis-
cusses the limitations and threats to the validity. Finally, Sect. 7 draws the main
conclusions and discusses further works.

2 Related Work

The Clean Code seminal book somehow refines one of the aspects of Software
Craftsmanship, with a deep emphasis on writing high-quality, understandable
code, all surrounded by a shared professional culture.

Since its publication in 2009 there have been several research studies assessing
its benefits (e.g., [14,20]), how to support it (e.g., [21]), analyzing challenges
and hindrances to its adoption in practice (e.g., [30]), or different aspects of
refactoring and how it impacts on Clean Code or code quality (e.g.,[2–5,7,12,
13,18,29,31,33,36,39])

Several studies also assess what affects code readability, understandabil-
ity, and maintainability (e.g. [5,8,13,17,21–23,32]) and complexity (e.g., [1]).
Börstler et al. [9] also carried out an exploratory study focusing on understand-
ing code quality.

Some other studies, like the ones reported by Stevenson et al. [35], or
Yamashita and Moonen [38], follow a similar methodology, a questionnaire sur-
vey study, but with a different focus: code quality aspects or whether developers
care about code smells.

However, we know very little about the practitioners’ perceptions of the Clean
Code and whether and how they use it in practice [30]. It is still unclear how

300 K. Ljung and J. Gonzalez-Huerta

professional developers perceive Clean Code, whether they agree with its princi-
ples and practices, and whether they believe that Clean Code can help them to
be more efficient and effective while reading, understanding, reusing and main-
taining code. To the best of our knowledge, this is the first attempt that aims
at understanding developers’ perceptions of clean code and how they keep their
code clean.

3 Research Methodology

In this paper, we employ two research methods: (i) a Snowballing Systematic Lit-
erature Review (SLR) [37] with a hybrid search method [28] and (ii) a Question-
naire Survey developed following the guidelines by Kitchenham and Pfleeger [19].

We focus on the following research questions:

– RQ1: Do developers agree with Clean Code principles?
– RQ2: Do developers believe that clean code eases the process of reading,

understanding, modifying, or reusing code?
– RQ3: How do developers keep their code “Clean”?

3.1 Systematic Literature Review Planning and Execution

To gather a more complete list of clean code principles, going beyond the ones
presented by “Uncle” Bob Martin in his Clean Code seminal book [27], we con-
ducted the SLR using snowballing [37]. The objective of this SLR is not to
analyze or describe the state-of-the-art regarding the Clean Code, but rather to
identify Clean Code principles in addition to the ones presented in the Clean
Code book. We employed a hybrid approach, combining the database search to
define the start set with the iterative citations and references analysis (snow-
balling) [28]. The list of clean-code principles is the one used to survey prac-
titioners, investigating the developers’ degree of agreement with Clean Code
principles.

Inclusion Criteria - We defined the following inclusion criteria1:

– Is the paper published in a peer-reviewed English-language journal, conference
or workshop proceedings indexed in Google Scholar?

– Does the paper include the terms “clean code” or “code quality” in the title,
abstract, or full text?

– Is the paper published after 2009?
– Does the paper define principles and practices of clean code or report their

usage in practice?

1 We applied the abovementioned inclusion and exclusion criteria to define the start
set and during the snowballing iterations.

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 301

We opted for excluding papers written before and during 2009 since the Clean
Code book was originally published in 2009.

Exclusion Criteria - We also defined the following exclusion criterion:

– Is the paper talking only about static analysis techniques without a strong
emphasis on their use in practice?

The only exception to the criteria above is the inclusion of the Clean Code
book [27], which appears in Table 2 as B.

To define the start set (seed), we carried out a database search in March 2021
using Google Scholar with the search string: “clean code” OR “code quality”.
The automated search on Google Scholar found 723 papers that were analyzed
applying the abovementioned inclusion criteria, which resulted in the inclusion
of 9 papers as starting set (designated as S01 to S09 in Table 1).

We then performed four snowballing iterations summarized in Table 1 and
stopped when we achieved saturation (i.e., we did not find new papers to
include), applying the inclusion and exclusion criteria listed above, resulting
in the inclusion of 18 papers. Each snowballing iteration consisted of backward
(i.e., references analysis) and forward snowballing (citations analysis), which
improve precision and recall, respectively. In the citation analysis, we found that
some papers had hundreds of citations, most of them irrelevant, and therefore we
narrowed the scope of the citations inspection to the ones that included “clean
code” OR “code quality”, similar to the one used in the start set definition.

Table 1. SLR snowballing iteration statistics and results

Stage Citations and references
screened

Papers included

Seed S01 [21], S02 [30], S03 [9], S04 [23], S05 [14],
S06 [24], S07 [5], S08 [13], S09 [26]

Iteration 1 23 references and 6 citations P1 [35], P2 [34], P3 [38], P4 [1], P5 [8], P6
[22], P7 [7], P8 [3], P9 [2], P10 [18], P11 [12]

Iteration 2 10 references and 6 citations P12 [31], P13 [33], P14 [29], P15 [36]

Iteration 3 0 references and 3 citations P16 [4], P17 [32], P18 [17]

Iteration 4 0 references and 0 citations

3.2 Questionnaire Survey Design and Execution

The Questionaire Survey allowed us to gather developers’ opinions regarding
Clean Code practices, their benefits, and the way they keep their code “clean”.
The survey was designed following the guidelines by [19]. The questionnaire
contained a mixture of closed and open questions to understand the participants’

302 K. Ljung and J. Gonzalez-Huerta

views and opinions better. However, for the sake of brevity and clarity, the results
presented in this paper focus only on the closed questions.2

The closed questions in the questionnaire mainly were seven items Likert-
scale questions, including a neutral response, which avoids forcing a positive
or negative choice, which seems adequate for an exploratory survey. The sur-
vey questions were grouped into pages to prevent respondents from being over-
whelmed with a long list of questions.

Before its distribution, we conducted a pilot to assess the questionnaire, by
sending it to one developer with more than 20 years of experience in industry
that is also an experienced researcher. The questionnaire was completed, and the
main feedback was regarding some questions that focused on assessing the time
developers would save in tasks when code is clean vs when code is not so clean,
the structure of some multiple choice questions regarding qualities, and small
language corrections. We first removed the questions that aimed at quantifying
the savings in time when dealing with clean code and then corrected all the other
reported issues before sending out the survey.

The questionnaire was developed, spread out, and analyzed using Quest-
back survey software3. The questionnaire was distributed by email and using
social networks, as well as shared with contacts within some companies we col-
laborated with, who redistributed the survey internally within their respective
organizations. Therefore we used non-probabilistic convenience sampling with
snowballing [25].

Following the guidelines in [25] the Target Audience, Unit of Analysis, Unit
of Analysis, Unit of Observation, and Search Unit are software developers with
industrial experience, whilst the Source of Sampling are the authors’ contacts in
Swedish and Spanish software industry.

The survey began on April 19th, 2021 and had a programmed end on May
18th, 2021. The Total Gross Sample was 645 potential invitees. A total of 110
respondents (i.e., 17.05%) started the questionnaire (Net Participation). How-
ever, only 39 completed the questionnaire (35.35% of the Net Participation).
The completion rate from the Total Gross Sample was 6.05%.

We examined the partially completed questionnaires and found out that there
was a wide range of cases, but mostly few questions were answered. Therefore
we decided to exclude the non-completed questionnaires from the analysis.

Finally, aiming to answer our research questions, we applied the Wilcoxon
test to check if the responses for a given question were greater or smaller than
the neutral value = 4 (i.e., agreement or disagreement) to see if the differences
were statistically significant.

2 The questionnaire is available for download in the companion materials in Zenodo
DOI: 10.5281/zenodo.6973656.

3 https://www.questback.com.

https://doi.org/10.5281/zenodo.6973656
https://www.questback.com

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 303

4 Results

4.1 SLR Results: Clean Code Principles

In Table 2 we report the Clean Code principles extracted from the papers
included in the SLR. We also list the papers in which each principle is men-
tioned, and whether the papers report evidence of their usage in practice. Most
of the principles listed in Table 2 come from the Clean Code book, with one
exception: Minimize Nesting [32]. The principles listed in Table 2 were the input
for the creation of the survey questionnaire questions that aim at answering
RQ1. As an additional result, we observed very little evidence of the usage of
Clean Code principles in practice.

4.2 Survey Results

Demographics As shown in Fig. 1, from the 39 participants that have com-
pleted the survey, the majority are in the age group 31–40 (Fig. 1.(a)), 36 are
male 3 are female (Fig. 1.(b)), a big proportion have more than 20 years of expe-
rience (Fig. 1.(c)), and most of them, i.e., 22 participants, have a BSc degree
(Fig. 1.(d)). Only 4 participants reported not having any higher education degree
(i.e., No HE degree in Fig. 1.(e)).

Figure 1.(e), shows the degree of familiarity of the participants with Clean
Code. For presenting the results to Likert questions4, we show on the right
and with green colors the number of participants agreeing with a particular
statement; on the right and with brown colors, we show the participants that
disagree with a particular statement. Finally, in the center and with a grey
color, we show the number of participants that neither agree nor disagree with
a particular example. As can be seen in Fig. 1.(e), most respondents are familiar
with the Clean Code concept.

Based on these demographics, although the number of participants is not
very big, we believe the participants constitute a relevant group of respondents
for addressing the research questions.

RQ1: Do Developers Agree with Clean Code Principles? Fig. 2 shows
the developers’ degree of agreement with the General, Naming, and Function
an Method Principles. The majority of the participants tend to agree with the
principles listed, being OCP - Open Closed Principle [27] and Extract Try-Catch
block [27] the most controversial in these groups. The Wilcoxon signed-rank test
results (p− value < 0.05) show that the answers were significantly greater than
the neutral value (i.e., the answers were greater than the neutral value equals 4)
for all the principles listed in Fig. 2. These results confirm that the participants
agree with these Clean Code principles5.

4 As the one shown in Fig. 1.(e).
5 The complete results of the Wilcoxon signed-rank test are available in the companion

materials in Zenodo DOI: 10.5281/zenodo.6973656.

https://doi.org/10.5281/zenodo.6973656

304 K. Ljung and J. Gonzalez-Huerta

Table 2. Clean Code Principles extracted from the SLR, including sources where the
principle is mentioned, and wether there is evidence of its usage in practice

Type Principle Source

General The Boy Scout Rule B, P02, S05

Minimize nesting P17

KISS - Keep It Simple, Stupid! B, P01, S02

OCP - Open Closed Principle B, P01, S06

Separate constructing a system from Its use B

Naming Use meaningful names B, S01, S02, S04, S06

Use intention-revealing names B

Pronounceable names B

Searchable names B

Avoid disinformation B

Avoid mental mapping B

Function and Method Do one thing B, P02,S06

Command query separation B

Extract Try-catch block B

Have no side effects B, S06

DRY - don’t repeat yourself B, S02, S07, P09, P11, P14, P17

Function arguments B, S06

Structured programming B

Methods/functions should be small B,S06, P01∗

Comments Amplification B

Clarification B

Explain yourself in code B

Explanation of Intent B

TODO comments B

Warning of consequences B

Formatting Team coding standards B, S03, S08, S09, P17

Horizontal formatting - indentation B

Dependent functions B

Vertical distance and ordering B

Organizing for change B

Object and Data Structures Data/Object Anti-Symmetry B

Law of Demeter B

Error Handling Prefer exceptions to returning error codes B

Don’t pass null B

Don’t return null B

Write your try-catch statement first B

Unit Tests Keeping tests clean B

One assert per test B

Single concept per test B

Class Class organization B

High cohesion B, S02, S03, S04, S05, S06, S08,
P01∗, P8, P9, P11, P12, P14, P16

Low coupling B, S02, S03, S04, S05, S06, S08,
P1∗, P8, P9, P11, P14, P16

Encapsulation - separation of concerns B, P11, P14

Isolating from change B

SRP - Single responsibility principle B, S02, S06, S07, S08, P01∗, P3,
P16

Minimal classes and methods B

One level of abstraction per function B, P4∗, P14, P16

Classes should be small B, S02, S06, P01∗

∗ Reports evidence of the use of the principle in practice.

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 305

Fig. 1. Participants’ demographics including age group, gender, years of programming
experience, education, and familiarity with clean code.

Similarly, Fig. 3 shows the degree of agreement with the Comments, Format-
ting and Object and Data Structures Clean Code principles. Although there are
some disagreements with the Comments principles. Again, the Wilcoxon signed-
rank test results are statistically significant (p− value < 0.05), confirming that
the participants tend to agree with these principles.

Finally, Fig. 4 shows the degree of agreement with the Error Handling, Unit
Test, and the Class Clean Code principles. In this case, all the principles were
statistically significant except two: Write Your Try-Catch First (p − value =
0.47) and One Assert Per Test (p − value = 0.41). Therefore we can conclude
that developers agree with the majority of the Clean-Code principles except 2
(Write Your Try-Catch First and One Assert Per Test).

RQ2: Do Developers Believe that Clean Code Eases the Process of
Reading, Understanding, Modifying, or Reusing Code? As shown in
Fig. 5, participants agree that Clean Code eases the different code-related devel-
opment activities, i.e., reading, understanding, reusing and maintaining the code.
The participants also believe that Clean Code improves the quality attributes of
the code, i.e., understandability, reusability, and maintainability (see Fig. 5.(b)).
They also agree that reading, reusing, and modifying Clean Code takes a shorter

306 K. Ljung and J. Gonzalez-Huerta

Fig. 2. Developers’ degree of agreement with the General, Naming, and Function, and
Method Principles.

time than working with “messy” code. The Wilcoxon signed-rank test results
(p − value < 0.05) show that the answers were significantly greater than the
neutral value for all these questions.

RQ3: How Do Developers Keep Their Code “Clean”? Figure 6 shows
the participants’ responses to the questions regarding how they deal with Clean
Code:

– whether respondents find it more difficult to write clean code initially as
compared to writing “messy” code to be later refactored.

– their perceptions about the impact that refactoring has on code quality.
– whether they believe that requirements need to be clear to be able to write

Clean Code initially.
– whether they believe that it is easier to write clean code at the beginning

(i.e., in early phases) of a project.

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 307

Fig. 3. Developers’ degree of agreement with the Comments, Formatting and object
and Data Structures Principles.

– whether writing clean code makes it easier to modify the code later.
– whether they perceive they have less time to write clean code towards the

end of a project due to deadlines (i.e., time pressure).

Participants generally agree with all the statements. They seem to only dis-
agree with the one about their perception regarding the impact of time pressure
at the end of a project and their ability to write clean code. Indeed the Wilcoxon
signed-rank test results (p − value < 0.05) show that the answers were signifi-
cantly greater than the neutral value for all these questions but the last one. In
this case, we also ran the test with the symmetric hypothesis (to check whether
the disagreement was statistically significant) since the visual inspection of Fig. 6
seems to have more disagreeing answers. However, the results were not statisti-
cally significant (p− value > 0.05).

5 Discussion

RQ1: Do Developers Agree with Clean Code Principles? As reported
in Sect. 4.2, the participants agree with most of the Clean Code principles; there
are only two in which the statistical test did not find any agreement: Write Your
Try-Catch First and One Assert Per Test. Write Your Try-Catch First might be
controversial since it probably dictates too much about how to do Test-Driven
Development (TDD) (or one can argue that it forces you even to do it). TDD

308 K. Ljung and J. Gonzalez-Huerta

Fig. 4. Developers’ degree of agreement with the Error Handling, Unit Test, and the
Class Clean Code principles

Fig. 5. Developers’ perceptions regarding whether Clean Code eases the tasks of read-
ing, understanding, reusing, and maintaining the code, its impact on readability, under-
standability, and maintainability, and whether it is faster to interact with Clean Code.

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 309

Fig. 6. Participant’s perceptions regarding how they deal with Clean Code.

is not just tests-first or test-last but making sure developers take fine-grained
develop-test steps and shorten the feedback loops [16]. One might prefer the
exception to be thrown until they have finished writing and testing the actual
code.

Regarding One Assert Per Test, although it has been found that the usage
of asserts has a direct impact on the number of defects [10], having more than
one does not seem to have an impact on the number of defects [11]. Similarly,
using multiple asserts does not seem to have a relationship with code complexity
either [6], and might be a source of test clones. The Comments principles prob-
ably generate reluctance since the principles advocate for not commenting on
the code but instead writing “clean” and “clear”, self-explanatory code. In the
open questions, some of the participants refer to the use of comments to clarify
what the code does, which contradicts the Clean Code principles. However, most
participants tend to agree with the Comments principles.

RQ2: Do Developers Believe that Clean Code Eases the Process of
Reading, Understanding, Modifying, or Reusing Code? As shown in
Fig. 5, developers believe that Clean Code eases the different code-related devel-
oper activities, i.e., reading, understanding, reusing and maintaining the code.
The participants also agree with the fact that Clean Code improves the quality
attributes in the code (i.e., understandability, reusability, and maintainability).
Although there are results that report improvements in maintainability (e.g., [7]),
there are also other studies that report that the impact on understandability is

310 K. Ljung and J. Gonzalez-Huerta

not that obvious. For example, Ammerlan et al.,[5] report that understandability
can sometimes be hindered when we refactor to clean our code.

We also asked our participants in the questionnaire survey if they believe
that it takes a shorter time to read, understand, modify, or reuse clean code
compared to unclean code. The respondents strongly agreed with this. Only
some developers disagreed that clean code would take a shorter time to read
and understand than unclean code. Arif and Rana [7] reported that if developers
remove code smells in advance and make the code clean, it will take 7% less effort
to add new features to the code than with unclean code. Other research studies
(e.g., [20]) suggest that Clean Code has an impact on the time required to change
current functionality, although it does not seem to have an impact on the time
used to implement new significant functionality or solve bugs, or to solve small
coding tasks. Therefore more research seems to be required to analyze these
phenomena in industrial settings.

RQ3: How Do Developers Keep Their Code “Clean”? As shown in Fig. 6,
participants first acknowledge that they find it more difficult to write Clean Code
and that they tend to write “messy” code that they refactor later. All partici-
pants agree with the fact that refactoring has a positive effect on code quality
and, therefore, helps keep the code clean. Refactoring is probably the most pop-
ular technique to keep the code clean and repay Technical Debt [14]. However, it
can also negatively affect code quality and introduce Technical Debt Items [39].
In the open questions, in the question “What are/would be the challenges with
refactoring unclean code to become clean code?”, some participants mentioned
“Breaking the Functionality”. However, Clean Code has a strong emphasis on
testing and having enough test coverage might solve that issue since tests are
the “safe net” when refactoring [15].

In addition, we also found that developers agreed that the requirements must
be specified clearly to write clean code. Only a few developers disagreed with
the previous statement. Therefore, the findings in the literature and our results
seem aligned. Lucena and Tizzei [26] also mention that writing more precise
requirements helped the team to reduce Technical Debt and to keep their code
clean. It also showed that the development had a more sustainable velocity
and could deliver a more valuable project to the customer when applying these
practices.

There was a mixture of opinions regarding whether participants feel they have
less time to write clean code towards the end of the project due to deadlines (or
when they approach deadlines). These results somehow contrast previous works
(e.g., [30]), in which time pressure was one of the main reasons for developers
not writing clean code.

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 311

6 Threats to Validity

In this section, we discuss threats to construct, internal, and external validity,
as well as reliability.

Construct Validity concerns mapping the constructs (research questions) to
the questions in the survey questionnaire. The results and discussion are reported
per research question to clarify this mapping. However, it is still possible that
some of the questions do not connect to the construct.

Internal Validity is mainly affected by the fact that we derive the findings and
conclusions from several questions by “merging” or “abstracting out” the con-
clusions. This might open the door to researcher bias since we might cherry-pick
and give more value to some questions. We have tried to minimize this threat
by describing and analyzing the questions separately and using the Wilcoxon
signed-rank test to check the significance of each variable individually. Another
potential threat to the internal validity is the participants’ degree of familiarity
with the different clean code principles. We only investigated the fact that the
participants were generally familiar with clean code but not whether they knew
about each principle. This threat could have been minimized by offering the par-
ticipants the opportunity of clicking “Unknown” for these principles they were
unfamiliar with. However, we tried to partially minimize the threat by including
a brief explanation for each principle that the participants could access while
answering the survey6.
The selection of participants in this study is another threat to the internal valid-
ity. The survey was shared through social networks (i.e., LinkedIn, Twitter) and
using the authors’ industrial contacts. This sharing strategy results in a lim-
ited selection procedure. In addition, more than half of the participants did not
finish the questionnaire (we discarded their responses), which also represents a
self-selection protocol and might bias the results. Respondents with more nega-
tive views toward Clean Code or less mainstream opinions might have left the
questionnaire unfinished. Finally, there might be a tendency to respond with best
practices instead of reporting bad behaviors. Once distributed, the researchers
had little control over the questionnaire, which had only a closing deadline, which
somehow mitigates some validity threats.

External Validity is concerned with the potential generalizability of the
results. The number of respondents compared to the potential target population
(the software developers working in the industry around the world) is minimal.
However, it is in line with similar studies in the area. We could have exposed
the survey during a more extended period to have more participants, improving
generalizability. However, we designed the survey to close automatically after a

6 The additional explanations for each principle is available in the companion materials
in Zenodo DOI: 10.5281/zenodo.6973656.

https://doi.org/10.5281/zenodo.6973656

312 K. Ljung and J. Gonzalez-Huerta

certain period (i.e., one month). The question is whether the sample is repre-
sentative of the Target Audience [19]. However, the respondents’ experience is
higher as compared to other studies (e.g., [35,38]).

Reliability to enhance reliability, we have published the multiple choice ques-
tions and the results of the statistical test as companion materials in Zenodo. We
have not published the answers to the open questions since, in some cases, those
can help identify the respondents’ affiliation, which would break the anonymity
clauses on the pre-questionnaire consent form.

7 Conclusions and Further Work

This paper reports a Questionnaire Survey with 39 participants that explores
how professional developers perceive Clean Code. To collect Clean Code princi-
ples beyond the seminal book, we conducted a Snowballing Systematic Litera-
ture Review using a hybrid search strategy. We screened 771 research papers: 723
papers to define the start set and 48 papers in the four snowballing iterations.
The Systematic Literature Review resulted in including in the questionnaire
one more Clean Code principle not listed in the seminal book (i.e., Minimize
Nesting).

The survey results indicate that developers tend to agree with most of the
Clean Code principles, except for two, namely Write Your Try-Catch First and
One Assert Per Test. The results also indicate that developers believe that Clean
Code eases reading, understanding, reusing and maintaining the code. They
also believe clean code improves readability, understandability, reusability and
maintainability. Moreover, clean code is perceived to shorten the time required
to read, understand, reuse, and modify the code (in this case, empirical evidence
exists that confirms and disproves these results). Our results also indicate that
developers tend to write “messy” code that they refactor later and perceive
refactoring positively affecting code quality. They find it more challenging to
write clean code initially than to write messy code to be refactored later. The
results also show that developers perceive that at the beginning of a project
seems to be easier to write clean code. There is no consensus on whether time
pressure impacts the time they can devote to writing Clean Code.

These results are the first step toward understanding what principles devel-
opers are more prone to adopt and how they try to clean their code. Our results
can also help us to understand the support they need and the potential risks
they might incur when refactoring. However, these results are only valid in the
context of the study, and it is, at this point, difficult to establish generalizations.
Therefore there is still a need to conduct similar studies, or replications of this
survey in other contexts, even among contributors to Open-Source systems, to
strengthen the evidence.

Acknowledgements. This research was supported by the KKS foundation through
the SHADE KKS Hög project (Ref: 20170176) and through the KKS SERT Research
Profile project (Ref. 2018010) Blekinge Institute of Technology.

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 313

References

1. Ajami, S., Woodbridge, Y., Feitelson, D.G.: Syntax, predicates, idioms - what really
affects code complexity? Empir. Softw. Eng. 24, 287–328 (2019). https://doi.org/
10.1007/S10664-018-9628-3

2. Almogahed, A., Omar, M., Zakaria, N.H.: Impact of software refactoring on
software quality in the industrial environment: A review of empirical studies.
In: Knowledge Management International Conference (KMICe), pp. 25–27, Miri
Sarawak, Malaysia (2018)

3. Almogahed, A., Omar, M., Zakaria, N.H.: Categorization refactoring techniques
based on their effect on software quality attributes. Int. J. Innov. Technol. Explor-
ing Eng. (IJITEE) 8 (2019)

4. Alomar, E.A., Alrubaye, H., Mkaouer, M.W., Ouni, A., Kessentini, M.: Refactoring
practices in the context of modern code review: An industrial case study at xerox.
In: 43rd International Conference on Software Engineering (ICSE), pp. 348–357.
IEEE, Madrid, Spain (Virtual Event) (2021)

5. Ammerlaan, E., Veninga, W., Zaidman, A.: Old habits die hard: Why refactor-
ing for understandability does not give immediate benefits. In: 22nd International
Conference on Software Analysis. Evolution, and Reengineering (SANER), pp.
504–507, Montreal, QC, Canada (2015)

6. Aniche, M.F., Oliva, G.A., Gerosa, M.A.: What do the asserts in a unit test tell
us about code quality? a study on open source and industrial projects. In: 17th
European Conference on Software Maintenance and Reengineering (CSMR), pp.
111–120. Genova, Italy (2013)

7. Arif, A., Rana, Z.A.: Refactoring of code to remove technical debt and reduce
maintenance effort. In: 14th International Conference on Open Source Systems
and Technologies (ICOSST), IEEE, Lahore, Pakistan (2020)

8. Avidan, E., Feitelson, D.G.: Effects of variable names on comprehension: An empir-
ical study. In: 25th IEEE/ACM International Conference on Program Comprehen-
sion (ICPC), pp. 55–65. Buenos Aires, Argentina (2017)

9. Börstler, J., et al.: ”i know it when i see it” - perceptions of code quality. In: 2017
ITiCSE Conference - Working Group Reports, pp. 70–85. ACM, Bologna, Italy
(2017)

10. Casalnuovo, C., Devanbu, P., Oliveira, A., Filkov, V., Ray, B.: Assert use in github
projects. In: 37th IEEE International Conference on Software Engineering (ICSE),
pp. 755–766. IEEE, Florence, Italy (2015)

11. Counsell, S., Hall, T., Shippey, T., Bowes, D., Tahir, A., MacDonell, S.: Assert use
and defectiveness in industrial code. In: IEEE 28th International Symposium on
Software Reliability Engineering Workshops (ISSREW), pp. 20–23. IEEE, Wuhan,
China (2017)

12. Dallal, J.A., Abdin, A.: Empirical evaluation of the impact of object-oriented
code refactoring on quality attributes: A systematic literature review. IEEE Trans.
Softw. Eng. 44, 44–69 (2018). https://doi.org/10.1109/TSE.2017.2658573

13. Dibble, C., Gestwicki, P.: Refactoring code to increase readability and maintain-
ability: A case study. J. Comput. Sci. Coll. 30(1), 41–51 (2014)

14. Digkas, G., Chatzigeorgiou, A.N., Ampatzoglou, A., Avgeriou, P.C.: Can clean new
code reduce technical debt density. IEEE Trans. Software Eng. 48, 1–18 (2020).
https://doi.org/10.1109/TSE.2020.3032557

15. Fowler, M., Beck, K.: Refactoring Improving the Design of Existing Code. Addison
Wesley, 2nd edn. (2018)

https://doi.org/10.1007/S10664-018-9628-3
https://doi.org/10.1007/S10664-018-9628-3
https://doi.org/10.1109/TSE.2017.2658573
https://doi.org/10.1109/TSE.2020.3032557

314 K. Ljung and J. Gonzalez-Huerta

16. Fucci, D., Erdogmus, H., Turhan, B.: A dissection of test-driven development?:
Does it really matter to test-first or to test-last? IEEE Trans. Software Eng. 6,
1–20 (2015). https://doi.org/10.1109/TSE.2016.2616877

17. Johnson, J., Lubo, S., Yedla, N., Aponte, J., Sharif, B.: An empirical study assess-
ing source code readability in comprehension. In: IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 513–523. IEEE, Dallas, TX,
USA, Sep 2019

18. Kim, M., Zimmermann, T., Nagappan, N.: A field study of refactoring challenges
and benefits. In: ACM SIGSOFT 20th International Symposium on the Founda-
tions of Software Engineering (FSE), p. 1. ACM Press, Cary, NC, USA (2012)

19. Kitchenham, B.A., Pfleeger, S.L.: Principles of survey research: Part 3 - construct-
ing a survey instrument. In: ACM SIGSOFT Software Engineering Notes, p.20
(2002). https://doi.org/10.1145/511152.511155

20. Koller, H.G.: Effects of Clean Code on Understandability An Experiment and
Analysis. Master’s thesis, Department of Informatics, University of Oslo (2016)

21. Latte, B., Henning, S., Wojcieszak, M.: Clean code: On the use of practices and
tools to produce maintainable code for long-living. In: Collaborative Workshop in
Evolution and Maintenance of Long-Living Systems EMLS2019, Stuttgart, Ger-
many, vol. Vol-2308, pp. 96–99 (2019), ’CEUR-WS.org’

22. Lee, T., Lee, J.B., Peter, H.I.: Effect analysis of coding convention violations on
readability of post-delivered code. IEICE Trans. Inf. Syst. 98, 1286–1296 (2015).
https://doi.org/10.1587/transinf.2014EDP7327

23. Lerthathairat, P., Prompoon, N.: An approach for source code classification to
enhance maintainability. In: 2011 Eighth International Joint Conference on Com-
puter Science and Software Engineering (JCSSE), Nakhon Pathom, Thailand, pp.
319–324 (2011)

24. Lerthathairat, P., Prompoon, N.: An approach for source code classification using
software metrics and fuzzy logic to improve code quality with refactoring tech-
niques. In: Zain, J.M., Wan Mohd, W.M., El-Qawasmeh, E. (eds.) ICSECS 2011.
CCIS, vol. 181, pp. 478–492. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22203-0 42

25. Lin̊aker, J., Sulaman, S.M., Höst, M., Mello, R.M.D.: Guidelines for conducting
surveys in software engineering v. 1.1. Tech. rep., Department of Computer Science,
Lund University, Lund, Sweden (2015)

26. Lucena, P., Tizzei, L.P.: Applying software craftsmanship practices to a scrum
project: an experience report. In: 1st Workshop on Social, Human and Economics
Aspects of Software (WASHES), Maceió, Brazil, arxiv.org/abs/1611.05789 (2016)

27. Martin, R.C.: Clean Code - A Handbook of Agile Software Craftmanship. Prentice
Hall (2009)

28. Mourão, E., Kalinowski, M., Murta, L., Mendes, E., Wohlin, C.: Investigating
the use of a hybrid search strategy for systematic reviews. In: Empirical Software
Eninneering and Measurements (ESEM), Toronto, ON, Canada (2017)

29. Pantiuchina, J., et al.: Why developers refactor source code. ACM Tran. Softw.
Eng. Methodology (TOSEM) 29 (2020). https://doi.org/10.1145/3408302

30. Rachow, P., Schroder, S., Riebisch, M.: Missing clean code acceptance and support
in practice - an empirical study. In: Proceedings - 25th Australasian Software
Engineering Conference, pp. 131–140. IEEE, Adelaide, Australia (2018)

31. Sae-Lim, N., Hayashi, S., Saeki, M.: Toward proactive refactoring: An exploratory
study on decaying modules. In: Proceedings - 2019 IEEE/ACM 3rd International
Workshop on Refactoring (IWOR), pp. 39–46. IEEE, Montreal, QC, Canada (2019)

https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1145/511152.511155
https://doi.org/10.1587/transinf.2014EDP7327
https://doi.org/10.1007/978-3-642-22203-0_42
https://doi.org/10.1007/978-3-642-22203-0_42
http://arxiv.org/1611.05789
https://doi.org/10.1145/3408302

“To Clean Code or Not to Clean Code” A Survey Among Practitioners 315

32. Sedano, T.: Code readability testing, an empirical study. In: 29th Conference on
Software Engineering Education and Training (CSEE&T), pp. 111–117. IEEE,
Austin, TX, USA (2016)

33. Sharma, T., Suryanarayana, G., Samarthyam, G.: Challenges to and solutions for
refactoring adoption: An industrial perspective. IEEE Softw. 32, 44–51 (2015).
https://doi.org/10.1109/MS.2015.105

34. Steidl, D., Deissenboeck, F., Poehlmann, M., Heinke, R., Uhink-Mergenthaler, B.:
Continuous software quality control in practice. In: IEEE International Conference
on Software Maintenance and Evolution (ICSME), Victoria, BC, Canada, pp. 561–
564 (2014)

35. Stevenson, J., Wood, M.: Recognising object-oriented software design quality: a
practitioner-based questionnaire survey. Softw. Quality J. 26, 321–365 (2018).
https://doi.org/10.1007/s11219-017-9364-8

36. Vakilian, M., Chen, N., Negara, S., Rajkumar, B.A., Bailey, B.P., Johnson, R.E.:
Use, disuse, and misuse of automated refactorings. In: International Conference on
Software Engineering (ICSE), pp. 233–243. Zurich, Switzerland (2012)

37. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: 18th International Conference on Evaluation
and Assessment in Software Engineering (EASE), London, UK, pp. 1–10 (2014)

38. Yamashita, A., Moonen, L.: Do developers care about code smells? an exploratory
survey. In: 20th Working Conference on Reverse Engineering (WCRE), pp. 242–
251. IEEE, Koblenz, Germany (2013)

39. Zabardast, E., Gonzalez-Huerta, J., Smite, D.: Refactoring, bug fixing, and new
development effect on technical debt : An industrial case study. In: 46th Euromi-
cro Conference on Software Engineering and Advanced Applications (Euromicro-
SEAA), pp. 376–384. IEEE, Kranj, Slovenia (Virtual Event) (2020)

https://doi.org/10.1109/MS.2015.105
https://doi.org/10.1007/s11219-017-9364-8

Software Business and Digital
Innovation

Counter the Uncertainties in a Dynamic World:
An Approach to Creating Outcome-Driven

Product Roadmaps

Stefan Trieflinger1(B), Dominic Lang2, and Jürgen Münch1

1 Reutlingen University, Alteburgstraße 150, Reutlingen, Germany
{stefan.trieflinger,juergen.muench}@reutlingen-university.de

2 ETAS GmbH, Borsigstraße 24, 70469 Stuttgart, Germany
Dominic.lang2@bosch.com

Abstract. Context: Nowadays the market environment is characterized by high
uncertainties due to high market dynamics, confronting companies with new
challenges in creating and updating product roadmaps. Most companies are still
using traditional approaches which typically fail in such environments. Therefore,
companies are seeking opportunities for new product roadmapping approaches.
Objective: This paper presents good practices to support companies better under-
stand what factors are required to conduct a successful product roadmapping in
a dynamic and uncertain market environment. Method: Based on a grey litera-
ture review, essential aspects for conducting product roadmapping in a dynamic
and uncertain market environment were identified. Expert workshops were then
held with two researchers and three practitioners to develop best practices and
the proposed approach for an outcome-driven roadmap. These results were then
given to another set of practitioners and their perceptions were gathered through
interviews. Results: The study results in the development of 9 good practices
that provide practitioners with insights into what aspects are crucial for prod-
uct roadmapping in a dynamic and uncertain market environment. Moreover, we
propose an approach to product roadmapping that includes providing a flexible
structure and focusing on delivering value to the customer and the business. To
ensure the latter, this approach consists of the main items outcome hypothesis,
validated outcomes, and discovered outputs.

Keywords: Product roadmap · Roadmapping · Product management · Product
discovery · Problem discovery · Solution discovery · User research · Ux ·
Customer value · BANI

1 Introduction

Nowadays, the market environment for the development of digital products or services is
characterized by high dynamics, rapidly evolving technologies, and shifting user expec-
tations [1–3] In addition, disruptive approaches threaten established market participants
and try to drive them out of the market [4, 5]. Often this situation is referred to with the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 319–333, 2022.
https://doi.org/10.1007/978-3-031-21388-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_22&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_22

320 S. Trieflinger et al.

acronymBANI [6, 7, 8, 9]. BANI stands for Brittle, Anxious, Non-Linear, and Incompre-
hensible, which is intended to describe and emphasize the uncertainty in today’s market
more clearly. Brittle describes the strong fragility and instability of a system (e.g., a
business model) due to the high dynamics and the associated uncertainty in the market.
A system that is brittle often seems strong and is often trimmed for maximum efficiency,
but it can break down all at once. One example, therefore, is the cultivation of monocul-
tures, which is very efficient and successful but brittle since a simple change in climate
or plant disease can destroy it instantly. Anxious means the fear of making decisions in
a dynamic market environment. This usually leads to passivity, as managers and leaders
feel perplexed and helpless and conclude that if they don´t make decisions, they can´t
make wrong decisions. However, such an approach usually leads to stagnation while the
world keeps in change and evolving. This behavior will lead to the circumstance that
such a company will not acquire new abilities to survive in a dynamic and uncertain mar-
ket environment. Finally, non-linear means that cause and effect appear to be incoherent
or disproportionate. Reasons for this could be, that other factors (e.g., rapidly changing
customer behavior or disruptive approaches) distort the cause and effect, or that a delay
between the visible cause and the visible effect appears. This can also be found in the
last part of BANI, which is incomprehensible. Incomprehensible refers to the difficulty
of interpreting phenomena such as the underlying reasons why a feature is not used by
the customers or why something worked and something else did not, even if obviously
it should be the other way round. Often such situations involve a large amount of data,
which makes it almost impossible to analyze and understand such phenomena [6–9].

Against this backdrop, companies are increasingly struggling to create reliable prod-
uct planning [10]. In order to plan the future product portfolio, product roadmaps are
widely used [11–13]. The basic purpose of product roadmaps is to serve as a guide for
the product team in order to achieve the corporate vision, allowing them to recognize
and act on events that require a change of the strategic direction. Consequently, product
roadmaps are strategic communication tools, that map out the vision and direction of a
company and the work that is required to get there [2, 3]. Moreover, a product roadmap
aims to create alignment and a common understanding of the future direction to gather
support and to be able to coordinate the effort among all stakeholders [14]. However,
most companies are using a traditional format of product roadmaps that consist of a
fixed-time-based chart that provides a forecast of specific products, features, or ser-
vices, including concrete release dates. Such a format is called feature-driven product
roadmaps [2, 3]. However, feature-driven roadmaps lack two main factors that are cru-
cial to surviving in the BANI world. On the one hand, feature-driven product roadmaps
consider only outputs such as products or features, not the outcome to be delivered to
the customer and the business by providing an output. On the other hand, the structure
of feature-driven product roadmaps in the BANI world leads to frequent adjustments to
the product roadmap. This results in a high effort, and the roadmap loses trust among its
stakeholders. Another problem of feature-driven product roadmaps is that management
or experts often decide which features will be included in the product roadmap without
considering the problems and needs of the customers. This is because the creation of
traditional feature driven product roadmaps does not include a process for identifying

Counter the Uncertainties in a Dynamic World 321

customer needs and validating feature ideas to fulfill those needs [2, 3]. A detailed dis-
cussion of the problems caused by the use of feature-driven product roadmaps in the
BANI world can be found in Münch et al. [3].

For these reasons, feature-driven product roadmaps work well in market environ-
ments that are predictable, stable, and reliable, which can not be assumed for the BANI
world [3, 5, 15]. Consequently, using feature-driven product roadmaps in the BANI
world leads to several problems. First, feature-driven roadmaps are just a scheduled list
of products or features that are subject to many changes due to the high uncertainty in
the BANI world. These frequent adjustments lead to the fact that stakeholders, employ-
ees, and external partners lose trust in the reliability of the product roadmap. Second,
feature-driven roadmaps are often understood as a commitment to developing the fea-
tures they contain. This leads to a shift in focus from the current needs and problems
of the customers to the functionality of a product or service with its features. There-
fore, the criterion of success is no longer customer satisfaction, but on-time delivery
to the customer. This approach leads to the risk that the company moves in the wrong
direction and, in the worst case, runs out of business. Third, feature-driven roadmaps
often include unrealistic expectations (e.g., delivering many and extensive features in a
too short development period). This tends to force the product team to sacrifice product
quality in order tomeet these expectations. In addition, meeting these expectations puts a
lot of stress on the product team which lowers the atmosphere and morale of the product
team [16].

By experiencing these problems, many companies have realized that new approaches
and procedures regarding the development and handling of product roadmaps are
required. However, many companies are struggling to transform their traditional product
roadmapping practice to the requirements of the BANIworld [10, 14]. Existing literature
or practical case studies offers little help on what the BANI world requires for a suc-
cessful product roadmapping. In order to close this gap, this paper aims to provide good
practices that are essential to the success of product roadmapping in the BANI world.
The paper is organized as follows: Sect. 2 covers related work. Section 3 discusses our
research approach, while Sect. 4 presents our results in form of the good practices as well
as a proposed product roadmap format for use in the BANI world. Section 5 addresses
the validation of our approach, and Sect. 6 discusses the threats to the validity of our
study. Finally, in Sect. 7 a summary is given, and further research is outlined.

2 Related Work

In the scientific literature, few authors considered practical experiences and lessons
learned regarding product roadmapping.

Wilby [17] reports on his practical experience regarding the adaption of the roadmap
during the agile transformation of Borland Software Corporation. Wilby describes the
following requirements of the roadmap: 1) the roadmap should be a living document
designed to answer key strategic questions; 2) the roadmap should be reviewed and
updated quarterly; 3) the roadmap should include a written distribution plan in order to
keep all employees and stakeholders up to date; 4) the roadmap should provide the flex-
ibility to maximize the advantages of agile development. In order to meet these require-
ments, Borland Software reviewed and changed the roadmap in a two-dayworkshopwith

322 S. Trieflinger et al.

different keymembers of the department’s productmanagement, engineering,marketing,
sales, and support. After the introduction of the “agile roadmap”, the greatest perceived
benefit was that communication barriers between the different teams were overcome.
Furthermore, the author firmly believes that the introduction of the “agile roadmaps”
has positively affected the development and delivery of a better product-market fit.

De Oliveira et al. [18] analysed three roadmapping project and identified the fol-
lowing learning points: 1) the conduction of individual interviews can be more efficient
that workshops with large groups for gathering information regarding the development
and updating of a roadmap, 2) Some experts prefer to meet via online conference calls
due to agenda issues, lack of initial interest, or unclear facts concerning the project,
3) splitting the roadmapping process into shorter and focused workshops can reduce
uncertainties and ensure flexibility to cope with unexpected issues, 4) the project team
receives insights while conducting and evaluating expert interviews that prepare them
to facilitate workshops and ensure that the most important issues are addressed, 5) the
project team should apply an interview protocol and use strategic management tools
in order to define the information that should be considered during the interviews, 6)
the roadmap architecture is an ideal standard framework for conducting interviews and
supports organizing and consolidating data into a preliminary roadmap.

Moreover, many authors describe challenges regarding product roadmapping [3, 4,
19]. One example is the study by Lehtola et al. [20] which describes the challenges of a
Finnish software product company that developed and evaluated its own roadmapping
process in its organization. In this context, the authors identified the following findings.
1) Roadmapping strengthened the link between business decisions and requirements
engineering, 2) product managers consider roadmaps as tools for communicating their
ideas to stakeholders, 3) the point of view of engineering was less taken into account
compared to that of other stakeholders, 3) Stakeholders of the roadmap complained
that roadmaps were immediately outdated, 4) practitioners missed ways to link product
development resources to roadmaps and 5) practitioners wrote product roadmaps for a
shorter time period than that required. Besides this, the authors mentioned that if just
one person or function of the company is responsible for the roadmapping process, the
other stakeholders may not see the benefits from their viewpoints and therefore may feel
unmotivated.

With regard to the construction and handling of product roadmaps, the scientific
literature predominantly covers the reporting of practical experience and the challenges
associated with them. However, this is done on a very abstract level. This means that
the scientific literature does not provide detailed insights into what aspects need to be
considered in order to develop successful product roadmaps in a dynamic and uncertain
market environment. This is the focus of the study at hand.

3 Research Approach

The overall goal of our research is to support practitioners that operate in the software-
intensive business in developing product roadmaps in a dynamic market environment
with high uncertainties. In order to achieve our objective, we formulated the following
research questions:

Counter the Uncertainties in a Dynamic World 323

• RQ1:What good practices are recommended when developing product roadmaps in
a dynamic and uncertain market environment?

• RQ2: How does a product roadmap for a dynamic and uncertain market environment
look like?
We developed the results of this study within expert workshops attended by one
practitioner operating in a large software-intensive company and two researchers. We
define an expert as a person that has authorization to a certain field and is involved in
decision making processes based on his or her position. We selected the practitioner
since he has many years of experience in leading an agile product team and extensive
knowledge of the issue of product roadmapping.

The expert workshop was held on 21 July 2022 via the online tool Zoom and lasted
3 h. In order to discuss the development of the good practices systematically, we have
taken the following approach: The first task was for the participants to share and discuss
their previously experienced challenges related to product roadmapping. Therefore, each
participant had 10 min to write down his or her experiences. Afterward, each participant
presented their previously experienced challenges and discussed them with the other
participants. After each participant had presented their challenges, we presented the
challenges that we had identified through the grey literature review mentioned above.
Then, the mentioned challenges were summarized in order to build a common context
including the motivation for why the good practices, as well as the product roadmap
format, should be developed. Subsequently, the development process of these artifacts
starts which contains the following tasks: 1) What are the most important aspects of
product roadmapping in a dynamic and uncertain market environment from the point of
view of the participants? 2) what structure is appropriate for a product roadmap for a
dynamic and uncertain market environment and 3) what elements should be included in
the roadmap? Each participant was given 10 min to answer this question, which was fol-
lowed by a 30-min discussion with all participants. To enable participants to collaborate
as well as to document their ideas and input of the participants we used the online tool
“Mural”. In this context, the blind mode provided byMural was activated to prevent par-
ticipants from influencing each other while working on the tasks. Activation of this mode
has the effect that each participant could see the answers of the other participants only
after the time to complete the task had expired. Within the 30-min session between the
participants, one researcher acted as moderator, while another researcher documented
the key statements. Both researchers were excluded from the discussions.

4 Results

In order to answer RQ1, we developed the good practices presented below within expert
workshops. The good practices are intended to help managers and product managers
to get a better understanding of what aspects are supportive for a successful product
roadmapping in a dynamic market environment. These insights should help compa-
nies to transform their often traditionally applied product roadmapping practices to the
requirements of a dynamic and uncertain market environment.

324 S. Trieflinger et al.

4.1 Good Practice for Conducting Product Roadmapping

Good Practice 1: Connect the Corporate Visions to the Product Roadmap via Prod-
uct Strategy: In order to identify the items that should be put on the roadmap it is highly
beneficial to derive the items directly from the company’s product strategy, which should
be determined by its vision. In developing and revising the product roadmap, the vision
and strategy provide guidance and direction to the product teams in making decisions.
The product teams can also benefit from making use of a product vision. A product
vision describes the ultimate reason for the development of the product as well as the
positive changes the product should bring about. When creating the product vision,
care should be taken to ensure that the product vision reflects the current problems and
needs of the customers. This encourages a shift in discussion from “What should we
develop” to “would decision A or decision B support us more in achieving the product
vision? To unfold a product vision’s full effect, it is crucial that it is communicated and
lived throughout the whole company. This motivates and inspires the various teams and
external stakeholders to participate in order to make the product vision a reality.

Good Practice 2: Identify Outcomes and Include them in the Product Roadmap:
A suitable product roadmap for a dynamic and uncertain market environment should
contribute to delivering value to the customer and the business. Therefore, the product
roadmap should not only describe what should be developed but also why it should
be developed. In order to achieve this, it is necessary that outcomes are included in the
product roadmap. Outcomes help clearly communicate the goals and purpose of the next
product version to all stakeholders and support including customer-oriented content for
the next release. It should be noted that each outcome should contribute to fulfilling
the product vision. One suitable method to uncover outcomes is the Jobs-to-be-done
framework [21]. The framework says that people buy products and services to get a job
done, i.e., to solve a problem. On this base, the framework aims to identify customer
needs as well as underserved areas. In this context, it is not enough to scratch the surface,
but the underlying needs and desires of the customers must be identified and understood.

GoodPractice 3:FailCheapbySpendingEffort at theLatest PossiblePoint inTime:
IN a dynamic and uncertain market environment, it only seems possible to plan a maxi-
mum of threemonths in advance. This can be observed and gets even enforced by the fact
that many companies nowadays work in a quarterly cadence in order to respond to the
challenges of the BANI environment. One of these challenges is the high volatility of the
market which increases the likelihood of planning and long-term preparation becomes
a waste of resources. Therefore, it is considered as good practice to invest as little effort
as possible into roadmap items and only focus your work on detailing out them when
they are successfully tested and close in time. Therefore, only those items on the product
roadmap that are next for implementation should be more detailed and broken down to a
feature level. This provides the flexibility to react to changes in the market (e.g. chang-
ing customer behaviour) rapidly and efficiently since items can be replaced or removed
from the roadmap with low loss of effort. For example, the long-time horizon should
include outcomes that are formulated as hypotheses, the mid-term time horizon contains
confirmed outcomes with possible solution hypotheses that have to be validated, and the
short-term time horizon include only validated outputs such as products or features.

Counter the Uncertainties in a Dynamic World 325

Good Practice 4: Change your Roadmap only Systematically and Transparently:
Often, unfounded changes to the roadmaps cause those employees and stakeholders
to lose trust in the product roadmap. In order to counter this circumstance, a product
roadmap should be stable in a way that changes are only carried out justifiably and
systematically. This requires a regular cadence for reviewing and updating the product
roadmap involving all people involved in product planning (e.g., product managers,
product owners, marketers and distributors, and engineers). This helps to get a better
understanding of what contents of the product roadmap should be adjusted and avoid
that uncertain features being seen as delivery promises.

Good Practice 5: Consider the Confidence for Each Roadmap Item: Confidence
means the probability that a product or feature on the product roadmap will achieve the
expected objectives or outcomes to acceptable costs as well as the confidence to deliver
the corresponding output. Consequently, the factor of confidence should influence the
decision of whether a feature should be developed or not. Hence, the short time horizon
should only include those items that are deemed to have high confidence in achieving
their respective goals. A possible approach to work with confidence is to rate it by using
a Likert-type scale as shown in Table 1.

Table 1. Confidence levels

Confidence level Description

1 Declining

2 Hesitant

3 Undecided

4 Confident

5 Convinced

GoodPractice 6: Integrate ProductDiscoveryActivities into theProductRoadmap-
ping Process: Discovery in this case means the ability of a company to identify needs
and validate features on the product roadmap with regards to their ability to respond to
those needs before they are developed. This includes the identification and researching
of customer problems as well as finding solutions to those problems that are useful, fea-
sible and economically viable. Consequently, a benefit of product discovery activities
is to avoid developing features that customers do not want or need. Concrete exam-
ples for the conduction of product discovery activities are interviews with customers,
rapid prototyping, or customer focus groups. We consider the consequent integration
of such discovery activities into the roadmapping process as a success factor since it
supports the identification, validation, and detailing of the roadmap items. Additionally,
this ensures that only validated solution outcomes that provide a valuable outcome enter
the implementation backlog, leading to waste avoidance. A possible approach to how
Design Thinking can systematically improve the roadmapping process is presented later
in this work with regards to RQ2.

326 S. Trieflinger et al.

Good Practice 7: Make Sure that Priorities are Set by the Market and not byMan-
agement or Experts: IN practice, it often occurs that management or experts (e.g.,
product managers or product owners) decide what should be delivered first. This brings
the risk of not developing those features first that deliver the most value to the customer
and jeopardizing the opportunity to develop them later. Therefore, a well-established
product roadmapprioritization process is essential for the success of the product roadmap
and the development of innovative and customer-oriented products. Overall, there are a
variety of prioritization techniques that help to avoid biases with different approaches
such as mapping-based techniques (Assumption Mapping or the Systemico Model),
scoring-based techniques (e.g., Opportunity Scoring or the RICE scoring model), or
game-based techniques (e.g., Buy a feature or Feature Buckets) [22]. In this context, it
should be noted that each product manager has his own preferences and can choose his
prioritization method accordingly. For example, product manager A prefers a games-
based technique, while product manager B favors a scoring-based technique. However,
what needs to be ensured when applying the technique selected is that the customer
value, as well as the ability to develop the product, must be taken into consideration.

Good Practice 8: Create Alignment Around the Product Roadmap: A product
roadmap is almost useless without alignment and buy-in from the key stakeholders.
Alignment around the product roadmap is essential to ensure that each employee is
aware of the outcomes of the product roadmap that should be achieved so that all prod-
uct development activities can be orchestrated to achieve those outcomes. Therefore,
we recommend sharing the roadmap internally and externally to get employees and cus-
tomers excited about the features planned to come next. However, in this context, it is
crucial to consider the audience for which the product roadmap is shared. The reason for
this is that different stakeholders require different information. For example, the man-
agement will be interested in objectives and how to achieve them at an abstract level,
while engineering or marketing, and sales need detailed information in order to perform
their activities. Sharing the product roadmap with customers brings the advantage that
feedback can be gathered early so that the customer feels involved and committed to the
company. However, it has to be considered that all stakeholders require individual but
consistent representations of a common roadmap that reflects their information needs.
For this purpose, the creation of a central roadmap that enables to derive different rep-
resentations for various groups of stakeholders is recommended. Besides this, various
methods to achieve alignment exists. Examples, therefore, are the application of OKRs,
the conduction of the method Shuttle Diplomacy, or the Behavioural Change Stairway
Model [23].

Good Practice 9: Assign Responsibility and Ownership of the Product Roadmap
to Product Management: Responsibility answers the question of who is responsible
for placing items on the roadmap and conduction of the roadmapping process. The term
ownership means who is accountable, i.e., signs off and approves the product roadmap.
Especially the ownership has a strong influence on how the roadmapping process is
lived and which values are practiced (e.g., management decides about the content of the
roadmap vs. product discovery is being conducted). Therefore, the owner of the product
roadmap has a high impact on the success of the entire product roadmapping process.

Counter the Uncertainties in a Dynamic World 327

Since product management usually has the task of shaping the future of a product or
product portfolio aswell as coordinating the various interests of all stakeholders involved,
it is advisable to assign responsibility to product management. Also, the ownership
should be with product management to fully enable them to take responsibility, increase
their independency from stakeholders in a hierarchy and let them act according tomarket
demands. In addition, this approach enables product management to define suitable
validation measures and conduct them most quickly (without lengthy discussions with
other parties). The management should focus on steering the entire company’s direction
by providing a vision and strategy while giving autonomy and trust to the product
management on the future direction of the product portfolio.

4.2 Proposed Product Roadmap Format for a Dynamic Market Environment

In the following, we provide answers to RQ2 by presenting a product roadmap format
that emerged from the expert workshops. This product roadmap format aims to provide
a flexible structure as well as on delivering value to the customer and the business. The
former is intended to react rapidly to changes and adjust the roadmap accordingly, while
the latter strives to steer the focus on developing products that customers really want
and need. This roadmap format served as the starting point in the expert workshops for
discussions and was adjusted based on the feedback from the participants. This revised
version will be presented below.

Fig. 1. Proposed product roadmap format (created by the authors)

The roadmap, as shown in Fig. 1, indicates the time horizon by the three columns
“Now”, “Next”, and “Later”. The “Now” column indicates what validated outcomes

328 S. Trieflinger et al.

are currently being tackled with which outputs, i.e., which features are currently being
implemented by the team. The “Next” column describes which validated outcomes are
planned to tackle next, i.e., for which outcomes possible solutions will be researched.
The “Later” column contains outcome hypotheses that are not validated and that are
therefore prioritized lower for now but that should be considered in more detail at a later
point in time. One key aspect of this is, that the team focuses the efforts on outcomes
that are closer in time but still has an outlook on things to come without spending much
effort.

To identify the corresponding roadmap items (outcome hypothesis, validated out-
comes, and discovered outputs), we propose applying the double diamond process from
design thinking [24]. Overall, this process consists of the two phases “finding the prob-
lem” and “finding the solution”. The phase “finding the problem” focuses on identifying
and understanding problems from the Customer’s perspective, while the phase “finding
the solution” addresses the identification of concrete solutions in the form of a prod-
uct, service, or feature for the previously identified problems. The separation of problem
identification and solution finding is intended to counteract the behaviour of focusing too
early and exclusively on an identified solution. Thismeans the risk of focusing on the first
idea and rushing to implement it. As a result, no other potential solutions are accepted
and consequently, solutions that contribute more to solving the customer’s problem are
not considered. In the worst case, starting with the solution idea without understanding
the customer problem first, might lead to implementing outputs with no customer value.
Therefore, the separate consideration should ensure that the first step is to systematically
capture the problem, and subsequently the creation of possible solutions is considered.

The process of creating and maintaining a product roadmap, as shown before, starts
with the identification of possible customer pain points (outcomes) that are formulated
as outcome hypotheses (see column “Later”). If necessary, the term outcome can also
be defined more broadly in the sense of a customer outcome (pain point, need, desire) or
a business outcome (that needs to be converted into customer outcomes). The outcome
hypothesis articulates the overreaching problem to be solved and sets the scope for
the next steps. The collection of possible customer pain points takes place in the first
divergent phase in the diamond “finding the problem”.Divergentmeans that awide range
of possible problems is collected to find the most relevant customer problems. Typical
examples of methods in this phase are conducting customer interviews, workshops, or
customer focus groups.After finishing the collection, the large number of problems found
is reduced by rating and validating them (see convergent section of the diamond “finding
the problem”). The validated problems can then be formulated as validated outcomes
and added to the “Next” column of the roadmap. The problems (outcome hypothesis)
that are not validated are discarded. In this case we recommend documenting the reasons
why the hypothesis is discarded so that decisions can be traced at any time.

Regarding the decision on which outcome hypotheses can be selected to be validated
from the “Later” column in order to get shifted to the “Next” column, we recommend
that each company choose their individual set of prioritization criteria like clarity about
the customer need or potential value to be created [25]. This includes also defining a
minimum priority in order to invest effort in addressing the customer problem. The
outcome hypotheses with a priority higher than this minimum are validated and then

Counter the Uncertainties in a Dynamic World 329

assigned to the “Next” column, while the outcome hypotheses with lower prioritization
are assigned to the “Later” column. This fact might also lead to realizing the roadmap in
a non-sequential order since outcome hypotheses with higher priority might be inserted
before outcome hypotheses that are in the roadmap for a long time already. Nevertheless,
this only happens in the back part of the roadmap and does not majorly affect the “Now”
and “Next” columns. In order to ensure this, the validation and testing of hypotheses
should always be considered as an important aspect in prioritization, so that only cus-
tomer problems that are very well understood and whose effects are proven should have
high priority.

The next step focuses on determining solutions for the validated outcomes listed in
the “Next” column. This is done in the diamond “finding the solution”. Therefore, as in
the diamond “finding the problem”, the collection of ideas is conducted divergently, i.e.,
by applying a broad perspective and with the aim of collecting as many ideas as possible
(see divergent phase of the diamond “finding the solution”). To collect a large number
of ideas, it is advisable to use techniques such as visual brainstorming. The result of this
stage is a multitude of unvalidated ideas. Subsequently, these unvalidated ideas must be
reduced into a smaller number of conceivable solutions in a converge section. For this
purpose, the feasibility and technological implementation are discussed for each idea, as
well as the costs in relation to the value generated. This includes conducting experiments
(such as the development of minimum viable products (MVPs) or prototypes) to verify
that the solution idea contributes to the achievement of the corresponding outcome. In
this context, it is recommended to formulate a hypothesis that includes a measure to
verify this assertion as well as an indicator when the measure is reached. The feasible
ideas that contribute to the achievement of the corresponding outcome is moved to the
“Now” column, otherwise, the solution idea is discarded. If a solution is discarded,
we recommend to document the hypotheses. This approach ensures that only validated
outputs are released for implementation. It should be noted that the product delivery track
(“Now” column) and product discovery track (“Next” column) take place in parallel. This
means that, for example, in the first quarter the product delivery track implements those
features that have already been successfully tested and at the same time the discovery
track identifies which outputs should be developed for the second quarter as well as
which outcomes should be defined in the long-term. Finally, it should be noted that after
the implementation of the validated output, it should be tracked whether it is used by
the customers and contributes to solving the identified problem.

5 Validation

The good practices and the proposed product roadmap format were developed with the
aim of supporting practitioners to conduct their product roadmapping in a dynamic and
uncertain market environment. Hence the practical value of our results should guide
the validation process. Therefore, we organize a workshop with four practitioners from
Germany that aims to discuss the comprehensibility and usefulness of the results of
this study. We have ensured through preliminary discussions that each participant is
involved in the roadmapping process in the respective companies. Furthermore, we have
included a heterogeneous set of practitioners, i.e. wemade sure that the participants work

330 S. Trieflinger et al.

in different companies of various sizes. This was done with the intention of ensuring
that the results of this study are developed not only on the basis of the knowledge and
experience of participants of large companies but also from the perspective of participants
from small and medium-sized companies. The workshop was held online on 02 August
2022 with a duration of 2 h. It should be noted that while these practitioners are from
our network, they are not involved in the development of the findings of this study or
otherwise in our research. During the workshop, we presented our results in order to
collect feedback from the participants. One researcher acted as a facilitator to initiate
and lead the group discussions. The discussions revealed that, from the participant’s
point of view the good practices, as well as the proposed product roadmap format, is
comprehensible and useful. Nevertheless, some practices have been reformulated to
clarify their utility. The application of design thinking in order to identify the items
on the product roadmap was also perceived as useful. The use of the design thinking
process to identify the items on the product roadmap was also perceived as useful as well
as the presentation using the double diamond diagram was found to be understandable.
Practitioners’ criticisms focus on the fact that when using this model, every employee
involved must have a deep understanding of how to apply design thinking. On the one
hand, this means costs for trainings to ensure that any employee who does not already
have this ability can acquire it. On the other hand, this limits hiring opportunities because
not every potential product management candidate has this skill. In this context, it should
be noted that the participants’ companies are struggling to find employees for product
management at all. Therefore, a further requirement would make it more difficult to find
employees. An overview of the participants in the workshop to validate the results is
shown in Table 2. The column “experience” refers to the amount of years in which the
participants have been involved in product roadmapping activities.

Table 2. Participants in the workshops to validate the results

Participant Position Experience

Participant 1 Product owner 5 years

Participant 2 Product manager 3 years

Participant 3 Product manger 2 years

Participant 4 Head of product
management

8 years

6 Threats to Validity

In order to discuss the validity and trustworthiness of our study,we applied the framework
provided by Yin [26]. This framework consists of four aspects 1) construct validity, 2)
internal validity, 3) external validity, and 4) reliability. Each aspect is discussed below.

Construct Validity: The construct validity is threatened by the risk that the experts
participating in the workshops misunderstood the goal of developing the good practices

Counter the Uncertainties in a Dynamic World 331

and the proposed product format. To counteract this, the purpose and goal of the expert
workshops were developed with the participants before embarking on answering the
research questions. Technical terms were defined and explained throughout the expert
workshop to ensure that all participants use the same terms with the same meanings.
In addition, participants had the opportunity to ask questions at any time during the
workshop. Internal validity: Concerning internal validity, there is the threat that the
opinions and views of the experts used to develop the artifacts in this study may be
incorrect or only valid only in a particular context. Therefore, we conducted preliminary
interviews with each participant prior to the workshop to ensure that they are suitable
to participate in our workshop. In addition, we recruited several experts from various
companies and industry sectors in the software-intensive business. This was done with
the intention to ensure that multiple perspectives were incorporated into the development
of the results of this study and that incorrect assumptions or approaches were discussed
and corrected. Consequently, the good practices and the content of the proposed product
roadmap format were not finally documented until all practitioners agreed. External
validity:The results of this studywere developedwith the help of the views and opinions
of three practitioners operating in the software-intensive business in Germany. This
limits the scope of the study to German companies that operate in such environments.
Moreover, all participants originate from German companies. Therefore, the impact of
cultural differences cannot be excluded.Reliability: In order to support the reliability of
our results, two moderators were established in order to reduce research bias. Another
threat is that the participants in the expert workshops provide input that does not fully
reflect their company´s experience and reality. This is mitigated by the fact that the
participants had no incentive or motivation to report false facts.

7 Summary

In this paper, the authors present good practices for product roadmapping as well as a
proposed product roadmap format for operating in the BANI world. The BANI world is
characterized by high market dynamics, which cause high uncertainties. The develop-
ment of the good practices as well as the proposed product roadmap format is motivated
by the fact that previous studies have shown that companies operating in the BANI world
often use so-called feature-driven product roadmaps. Feature-driven roadmaps are not
suitable for operation in a dynamic and uncertain market environment. The reason for
this is that feature-driven roadmaps are too static to conduct frequent adjustments that are
necessary to operate in the BANI world. Moreover, feature-driven roadmaps focus only
on outputs such as products and features and do not consider outcomes that should be
delivered to the customer and the business. Therefore, the results of this study should sup-
port practitioners to escape feature-driven product roadmaps by shifting their mindset to
outcome-driven. This includes identifying problems of (potential) customers and deriv-
ing hypotheses for possible solutions and validating which solution solves the previously
identified customer problemmost effectively and efficiently. In order to achieve this, our
results provide insights into what aspects are critical for this purpose, which structure
and elements a roadmap for the operation in the BANIworld should at least contains, and

332 S. Trieflinger et al.

an approach to create these items. Moreover, we conducted an initial validation of the
artifacts developed in this study by having them reviewed by five practitioners operating
in a dynamic and uncertain market environment. This set of practitioners perceived the
good practices as well the roadmap format as comprehensible and useful. Nevertheless,
further research is required in order to increase the validity of the results of this study.
Therefore, we plan to further validate the results with more participants from various
companies.

References

1. Suomalainen, T., Abrahamsson, P., Similä, J.: Software product roadmapping in a volatile
business environment. J. Syst. Softw. 84(6), 958–975 (2011)

2. Lombardo, C.T.,McCarthy, B., Ryan, E., Conners,M.: Product roadmaps relaunched -How to
set direction while embracing uncertainty. O’Reilly Media Inc, Gravenstein Highway North,
Sebastopol (2017)

3. Münch, J., Trieflinger, S., Lang, D.: What’s hot in product roadmapping? Key practices and
success factors. In: Proceedings of the International Conference on Product-Focused Software
Process Improvement (profes), pp. 401–416. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-35333-9_29

4. Kim, E., Yao, S., Agogino, A. M.: Design roadmapping: challenges and opportunities. In:
Proceedings of the 20th International Conference on Engineering Design (ICED), pp.85–94.
Vol 6: Design Methods and Tools-Part 2, Milan (2015)

5. Münch, J., Trieflinger, S., Lang,D.:Why feature-based roadmaps fail in rapidly changingmar-
kets: a qualitative survey. In: Proceedings of the InternationalWorkshop onSoftware-intensive
Business: Start-ups, Ecosystems and Platforms (SiBW), pp. 202–218. CEUR workshop
proceedings, Aachen (2018)

6. DeGodoy,M. F, Fernandes,M., Ribas FilhoD.: Facing the BANIWorld. International Journal
of Nutrology 14.02 (2021)

7. Grabmeier, S.: BANI versus VUCA: a new acronym to describe the world. https://stephan-
grabmeier.de/bani-versus-vuca/. Accessed 05 Aug 2022

8. Think Insights: BANI: A new framework to make sense of a chaotic world. https://thinkinsi
ghts.net/leadership/bani/. Accessed 05 Aug 2022

9. Temmen, M.: BANI vs VUCA— a new acronym for a new world. https://marian-tem-
men.medium.com/bani-vs-vuca-a-new-acronym-for-a-new-world-59c7be2dddce. Accessed
05 Aug 2022

10. Münch, J., Trieflinger, S., Lang, D.: DEEP: the product roadmap maturity model: a method
for assessing the product roadmapping capabilities of organizations. In: Proceedings of the
2nd ACM SIGSOFT International Workshop on Software-Intensive Business: Start-ups,
Platforms, and Ecosystems, pp. 19–24. Association for Computing Machinery, New York
(2019)

11. Phaal, R., Farrukh, C JP, Propert, D.: Characterisation of technology roadmaps: purpose and
format. In: PICMET’01. Portland International Conference on Management of Engineering
and Technology. Proceedings, vol. 1: Book of Summaries (IEEE Cat. No. 01CH37199),
pp. 367–374. IEEE (2001)

12. Arslan, M., Haug, F., Heitger, N., Kraemer, L.: Don’t get stuck in complexity: coping with
strategic complexity in the context of Product Generation Engineering. Sci. Soc. Innov. Value
Creation 3, 1–14 (2016)

13. Kostoff, R.N., Schaller, R.R.: Science and technologies roadmaps. IEEE Trans. Eng.Manage.
48(2), 132–143 (2001)

https://doi.org/10.1007/978-3-030-35333-9_29
https://stephan-grabmeier.de/bani-versus-vuca/
https://thinkinsights.net/leadership/bani/
https://marian-tem-men.medium.com/bani-vs-vuca-a-new-acronym-for-a-new-world-59c7be2dddce

Counter the Uncertainties in a Dynamic World 333

14. Trieflinger, S.: Münch, J., Lang, D.: The product roadmap maturity model DEEP: validation
of a method for assessing the product roadmap capabilities of organizations. In: Proceedings
of the International Conference on Software Business (ICSOB), pp. 97–113. Springer, Cham
(2019). Doi: https://doi.org/10.1007/978-3-030-33742-1_9

15. Münch, J., Trieflinger, S., Bogazköy, E., Eißler, P., Roling, B., Schneider, J.: Product roadmap
formats for an uncertain future: a grey literature review. In: Proceedings of the 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pp. 284–291.
IEEE (2020)

16. Cagan. M.: Inspired: How to Create Tech Products Customers Love. Wiley, Hoboken, New
Jersey (2018)

17. Wilby, D.: Roadmap transformation: from obstacle to catalyst. In: 2009 Agile Conference,
pp. 229–234 (2009)

18. De Oliveira, M.G., Freitas, J.S., Pereira, B.S., Guerra, P.V.: Exploring the involvement of
experts in strategic roadmapping with large groups. IEEE Trans. Eng. Manage. 69(1), 56–66
(2020)

19. Komssi, M., Kauppinen, M., Töhönen, H., Lehtola, L.: Integrating analysis of customer´s
process into roadmapping: the value-creation perspective. In: Proceedings of the 19th IEEE
International Requirements Engineering Conference (RE), pp. 57–66. IEEE (2011)

20. Lehtola, L., Kauppinen, M., Kujala, S.: Linking the business view to requirements engi-
neering: long-term product planning by roadmapping. In: Proceedings of the 13th IEEE
International Conference on Requirements Engineering (RE’05), pp. 439–443. IEEE (2005)

21. Ulwick, A.: Jobs to Be Done - Theory to Practice. IDEA BITE PRESS (2016)
22. How to prioritize your product roadmap when everything feels important: a grey literature

review. In: Proceedings of the International Conference on Engineering, Technology and
Innovation (ICE), pp. 1–9. IEEE (2021)

23. Trieflinger, S., Münch, J., Bogazköy, E., Eißler P., Schneider, J., Roling, B.: Product
roadmap alignment–achieving the vision together: a grey literature review. In: Proceedings
of the International Conference on Agile Processes in Software Engineering and Extreme
Programming-Workshops (XP), pp. 50–57. Springer, Cham (2020)

24. Design Council: Eleven lessons: managing design in eleven global brands – A study of
the design process. https://www.designcouncil.org.uk/fileadmin/uploads/dc/Documents/Ele
venLessons_Design_Council%2520%25282%2529.pdf. Accessed 10 Aug 2022

25. Lang, D., Spies, S., Trieflinger, S.,Münch, J.: Tailored design thinking approach-a shortcut for
agile teams. In: Proceedings of the International Conference on Software Business (ICSOB),
pp. 37-49. Springer, Cham (2021)

26. Yin, R.K.: Case Study Research: Design and Methods, 5th edn. SAGE Publications Inc.,
London (2014)

https://doi.org/10.1007/978-3-030-33742-1_9
https://www.designcouncil.org.uk/fileadmin/uploads/dc/Documents/ElevenLessons_Design_Council%2520%25282%2529.pdf

Designing Platforms for Crowd-Based
Software Prototype Validation: A Design

Science Study

Sebastian Gottschalk(B), Sarmad Parvez, Enes Yigitbas, and Gregor Engels

Software Innovation Lab, Paderborn University, Paderborn, Germany
{sebastian.gottschalk,enes.yigitbas,gregor.engels}@uni-paderborn.de,

sparvez@mail.uni-paderborn.de

Abstract. Designing a software product based on early user feedback
aligns it faster with the user’s needs rather than validating them after the
development. This feedback can be provided iteratively on software pro-
totypes before the development to judge the idea behind the product and
save development resources. Here, crowdsourcing techniques can be used
to collect feedback from many potential users. However, less research
focused on software support for this crowd-validation process. Therefore,
we conducted a design science research study with three design cycles
to develop a platform for software developers to support the prototype
validation process using the crowd. We present abstracted design knowl-
edge in the form of design principles and an overall solution concept
together with a situated implementation of design features and a soft-
ware artifact. Our research contributes knowledge to software designers
in research and practice designing new and extending existing tools with
iterative crowd-validation support.

Keywords: Prototype validation · Software product design ·
Crowd-based validation

1 Introduction

Nowadays, the constantly chaining VUCA (Volatility, Uncertainty, Complexity,
Ambiguity) world has a high impact on developing new software products. Due to
the increasing market uncertainties [27] and the wish for users to get integrated
solutions for their problems instead of rare software products [40], early feedback
from potential users in the market is essential for building successful software
products. This feedback can be used to validate the most important assumptions
about the software product before the actual development [22]. This validation
can be used to decide to go or go not with an overall idea and guide the further

This work was partially supported by the German Research Foundation (DFG) within
the CRC “On-The-Fly Computing” (CRC 901, Project Number: 160364472SFB901)
and the German Federal Ministry of Education and Research (BMBF) through Soft-
ware Campus grant (Project Number: 01IS17046).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 334–350, 2022.
https://doi.org/10.1007/978-3-031-21388-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_23&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_23

Crowd-Based Software Prototype Validation 335

development of certain software features. This is especially important in highly
competitive markets like mobile ecosystems with millions of already developed
software products (i.e., apps) [2].

This validation of the product, in turn, is possible with product discovery
that aims to “quickly separate the good ideas from the bad to answer the ques-
tion of which products, features or services should be developed to fulfill the
needs of the customer” [29]. This discovery process, in turn, could be guided
by management tools like Product Board1. Within the discovery, the current
ideas about the product can be visualized using UI prototypes and evaluated by
potential users. Those visualizations can be supported by prototyping tools like
Figma2. However, a key challenge of effective product discovery is the access to
the potential users during the discovery [29].

The access to users can be supported by using crowdsourcing. Crowdsourcing
proposes the outsourcing of different activities to a large undefined set of users
by using an open call [21]. To support such open calls, digital platforms for
organizing the crowdsourcing and providing access to the crowd worker like
Amazon Mechanical Turk Platform3 have been established. Here, the crowd
could also be used to support the different stages of the product development
[41] like the product discovery. However, to the best of our knowledge, there is a
gap in how to design platforms that support the prototype development based on
the iterative feedback from a crowd of potential users and reduce uncertainties
in product discovery. Therefore, we aim to gain knowledge about designing such
a platform for crowd-validation by answering the following research question
(RQ): How to design platforms that integrate crowdsourcing techniques in the
iterative validation of prototypes?

To answer the research question, we conducted a design science research
(DSR) study [20] with three design cycles to develop abstracted design knowledge
and a situated implementation. In this paper, we present the evolvement of our
existing study in [15], where we conduct the first design cycle. In contrast to
that, this paper shows two additional design cycles that were evaluated using
user studies. For the abstracted design knowledge, we have developed nine design
principles and an overall solution design. In this design, the software developers
iteratively validate their prototypes with the potential users (i.e., the crowd). For
that, they receive the individual answers to predefined questionnaires together
with support for aggregation and visualization. Moreover, incentive processes for
motivating the users and approval processes for supporting secrecy are included.
For the situated implementation, we have developed concrete design features
and an instantiation of a platform prototype. We evaluated both with an expert
workshop and two user studies. With both contributions, we support software
designers in research and practice to extend their software with crowd validation.

In the following, we first show the research background of our approach in
terms of crowdsourcing and design principles (Sect. 2). Based on that, we intro-

1 Product Board Tool: https://www.productboard.com/.
2 Figma Tool: https://www.figma.com/.
3 Amazon Mechanical Turk Platform: https://www.mturk.com/.

https://www.productboard.com/
https://www.figma.com/
https://www.mturk.com/

336 S. Gottschalk et al.

duce our research approach with the methodology and the conducted process
(Sect. 3). Next, we show our abstracted design knowledge with the design princi-
ples and the overall solution design (Sect. 4). Based on that, we derive a situated
implementation with the design features and the platform prototype (Sect. 5).
Moreover, we show the user evaluation with the setting, the conduction, the
interpretation, and current threats to validity (Sect. 6). Finally, we draw a con-
clusion and provide future work (Sect. 7).

2 Research Background

To build the foundation of our approach, we have provided a research back-
ground. For that, we present the usage of crowdsourcing in software development
and explain design principles for digital platforms.

2.1 Crowdsourcing of Software Products

The development of software products is a resource-intensive task that can be
improved with the iterative feedback of potential customers [37]. To gather that
feedback, one concept is crowdsourcing which describes the outsourcing of value-
creating activities from a company to a large undefined set of users by using an
open call [21]. Crowdsourcing has been established in different research direc-
tions like crowd testing, crowd funding, crowd ideation, crowd logistic, crowd
production, crowd promotion, and crowd support over the last years [9]. Here,
the sub directions of crowd tests and ideation are mostly related to the solution
for our approach.

Crowd Testing can be used to evaluate different running software products
with the users. Here, CrowdStudy [31] is an approach to allow developers to
test the usability of their web interfaces with the crowd workers of Amazon
Mechanical Turk. Mechanical Turk is also used by CrowdCrit [24] to support
designers to validate created posters in the form of uploaded images.

Crowd Ideation can be used to generate new and improve existing ideas
for software products with the users. Here, a recent study by Shixuan et al. [13]
analyses the cognitive load during the idea generation and convergence with the
crowd under the manipulation of the task complexity, the idea representation,
and the procedural guidance. Another study by Zaggl et al. [46] focuses on
integrative solutions by reusing the already existing public knowledge of the
crowd. ERICA [35] is a tool to use expert knowledge to validate diverse crowd
answers. However, none of the approaches directly focused on the application
area of prototypes.

2.2 Design Principles for Digital Platforms

In order to develop abstracted design knowledge, design science research (DSR)
[34] has been established as one often used method. With DSR, a class of prob-
lems is solved by focusing on a specific problem and abstracting the results
of the solution. To make those abstracted knowledge transferable to different

Crowd-Based Software Prototype Validation 337

problems, design principles (DP) can be used. Here, DPs capture and codify
that knowledge in an explicit way by focussing on the implementer, the aim,
the user, the context, the mechanism, the enactors, and the rationale [17]. DPs
can be designed in a supportive way based on identified knowledge sources and
the derivation of design requirements at the beginning or in a reflective way
by extracting them directly from an instantiated software artifact [28]. More-
over, DPs can be formalized in different abstraction levels, directly impacting
the researchers’ reusability and practitioners’ applicability [43]. Recently, DPs
for different software tools and crowd interactions have been proposed.

For Software Tools, those DPS describe the design knowledge from which
features can be derived. Here, the Crowd-based Business Model Validation Sys-
tem [7] provides DPs to validate uncertainties in the business model development
using crowdsourcing. Based on that, the Hybrid Intelligence Decision Support
System for Business Model Validation [8] combines crowdsourcing with machine
learning aspects to improve the validation. Moreover, a recent study by Schoor-
mann et al. [38] works on DPs for tools to reflect sustainability in design thinking
projects, where prototyping plays a major role. Last, a study by Reibenspiess et
al. [36] designs DPs for an intrapreneurial platform to generate ideas.

For Crowd Interactions, those DPs describe the design knowledge from
which interactions can be derived. Here, an approach by Tavanapour et al. [39]
provides DPs for crowd collaboration based on different intrinsic and extrinsic
incentives. Moreover, a study by Chasin et al. [6] builds DPs for managing digital
community currencies on software platforms. However, none of those developed
DPs of the approaches directly focused on the application area of prototypes.

3 Research Approach

To answer our research question, we use design science research (DSR). For that,
we explain the underlying methodology and show our applied process.

3.1 Design Science Research Methodology

For our research, we use DSR as it aims to solve a class of problems by developing
a solution to a specific problem and then generalize that gained knowledge [16]
based on the development and evaluation of a corresponding software artifact
[34]. Here, we aim to solve the problem of crowd-validation of mobile application
prototypes but also ensure that they can be generalized to related application
areas. For this, we use design principles (DP) to codify the knowledge in a
transferable way [17]. Moreover, we base our DSR on the opportunity creation
theory (OCT) [1] as kernel theory to stick in line with similar approaches like
business model validation [7] or venture ideation [42] from digital entrepreneur-
ship [30]. Here, OCT originally states that businesses (and their products) are
co-created under high uncertainty [42]. Therefore (product) development is an
entrepreneurial process where assumptions have to be validated directly with
the customer using exploration and exploitation.

338 S. Gottschalk et al.

According to Gregor and Hevner [16], we position the contribution type of
our design principles as operational principles that can be transferred to other
domains together with our software prototype as situated implementation of the
artifact. Moreover, we use an exaptation according to the knowledge contribution
framework by a refinement of the existing concept of crowdsourcing.

3.2 Design Science Research Process

For DSR, we use the cycle of Kuechler and Vaishnavi [20]. The cycle, as shown in
Fig. 1, consists of the following five iteratively conducted steps. First, we identify
the (1) Awareness of [the] Problem based on a real-world problem and provide a
(2) Suggestion of a possible solution. Next, we work on the (3) Development of
the software artifact and conduct an (4) Evaluation of it. Based on the evaluation
results, another iteration is conducted, and/or our research contributions as (5)
Conclusion are provided.

In the First Cycle, which was presented in [15], we got aware of the problem
by conducting a literature review and tool analysis in the application areas of
lean development, UI prototyping, and crowdsourcing to derive initial design
requirements (DR) for our approach. Based on mapping the theoretical and
empirical DRs, we suggested our first design principles (DPs) together with a
preliminary concept. Out of that DPs we developed the first design features
(DFs) and instantiated them in a software prototype. Last, we evaluated them
in an online expert workshop (n = 6), where we explained the overall concept,
showed the software platform, and asked for feedback. Subsequently, we gave
the experts access to the platform. We sent out a questionnaire to rate the
importance of the DPs and provide feedback on the overall idea, the proposed
solution, the current drawbacks of the platform, and additional feedback.

In the Second Cycle, we took the lessons learned from the expert work-
shop together with additional literature to revisit the underlying DRs. Based on
that, we also revisited our DPs and the suggested concept. This lead also to a
redevelopment of the DFs and a complete new instantiation of the software pro-
totype. We evaluated the DPs and the prototype in a student seminar on the lean
development of mobile applications. Here, the students (n = 14) were divided
into different groups (g = 6) to develop an idea for an app within the seminar
iteratively. Here, one student per group needed to upload their prototype with
questions to the platform. Next, every student gave feedback on two predeter-
mined prototypes by answering the questions that could be used to improve the
prototypes. Last, the students evaluated the prototype of the platform on the
platform itself by rating the importance of the DPs together with feedback on
the overall idea, the proposed solution, current drawbacks of the platform, and
additional feedback.

In the Third Cycle, which results are also shown within this paper, we
took the lessons learned from the user study to revisit our DRs. Out of that, we
improved the DPs and the overall solution concept. Moreover, we improved the
DFs and the existing software platform based on those changes. We evaluated
the DPs and the prototype similar to the second cycle in a student lecture for

Crowd-Based Software Prototype Validation 339

Fig. 1. Research approach (based on Kuechler and Vaishnavi [20])

the systematic development of AR/VR applications. Within the lecture, the
students (n = 26) had a mini project where they needed to develop such an
AR/VR application in a group (g = 8). Again, one student needed to upload
the prototype, each student needed to evaluate two predefined prototypes, and
all students needed to evaluate the DPs together with the platform.

4 Abstracted Design Knowledge

To make our study results transferable, we have developed abstracted design
knowledge with the design principles and the overall solution design.

4.1 Design Principles (DPs)

We codify our knowledge during the design study within the DPs. Here, each DP
shows a certain aspect of the platform and is based on the revisited DRs during
the three cycles. Here, those DRs were derived from a literature review and tool
analysis on the topics of lean development, UI prototyping, and crowdsourcing
[15]. In the following, we show the nine DPs together with references to literature
and tools that build the foundation for the mapped DRs.

DP1: User Variety states that the solution should provide functions for inte-
grating different internal and external users (e.g., platform user, crowd worker)
to allow developers to participate with a heterogeneous group of users within the
validation process. In literature, this is reasoned by the fact that developers in
the early product development have high uncertainties that can be validated by
testing the underlying assumptions [4]. By using the knowledge of a crowd, the
assumptions can be proofed [25], and the biases of the developers can be reduced
[5]. Here, the users can come from internal sources like employees or external
sources like Amazon Mechanical Turk4.

DP2: Task Iteration states that the solution should provide functions for con-
ducting tasks iteratively to allow developers an incremental improvement of the
4 Amazon Mechanical Turk: https://www.mturk.com.

https://www.mturk.com

340 S. Gottschalk et al.

prototypes over time. In literature, this is reasoned by the fact that user feedback
support the adjustment of product features [37] and the business model [27] to
the market. For that, that feedback can be provided by a crowd of users like
with ClickWorker5 where the rapidness of the given feedback is a critical factor
of success [4].

DP3: Prototype Diversity states that the solution should provide functions
for integrating different types of prototyping (e.g., mockups, click dummies) to
allow developers a flexible choice for their current validation developments. In
literature, this is reasoned by the fact that because depending on the stage of the
product development, also different prototypes like textual descriptions, images,
or click dummies can be used [23]. Here, different prototypes can ensure the
refinement of the product features or business model over time [32]. For the
visualizations, also external tools like Figma6 can be used.

DP4: Feedback Diversity states that the solution should provide functions for
integrating different types of feedback (e.g., free texts, ratings) to allow develop-
ers a flexible choice for their current validation challenges. In literature, this is
reasoned by the fact that depending on the type of the development stage also,
different types of feedback are necessary [3]. Depending on the type of test, that
feedback can consist of qualitative or quantitative information [32]. Different
types of feedback are also integrated within the prototyping tool of UIGiants7.

DP5: Filter Mechanisms states that the solution should provide functions for
the filtering between users and tasks to allow developers and users to shortlist
evaluations based on specific criteria (e.g., skill set, interests). In literature, this
is reasoned by the fact that to ensure the quality of the feedback, the tasks
must be just conducted by users of a relevant target group of the developer [26].
Conversely, users should see only tasks in which they are interested [19]. Amazon
Mechanical Turk also uses two-sided filtering between the task provider and the
crowd worker.

DP6: Aggregation Mechanisms states that the solution should provide func-
tions for aggregating and visualizing the feedback to allow developers to provide
understandable and traceable improvements to the prototypes. In literature, this
is reasoned by the fact that depending on the number of individual user feed-
back, it can be a time-consuming and challenging activity to process them. Here,
the feedback should be provided to the developer in an aggregated form for fast
processing [14]. Moreover, appropriate visualizations should support the devel-
opers in interpreting the feedback [44]. ClickWorker also aggregates the results
of conducted tasks from different crowd workers.

DP7: Incentive Mechanisms states that the solution should provide functions
for supporting extrinsic and intrinsic incentives (e.g., rank lists, money) to allow

5 ClickWorker: https://clickworker.com.
6 Figma: https://www.figma.com.
7 UIGiants: https://www.uigiants.com.

https://clickworker.com
https://www.figma.com
https://www.uigiants.com

Crowd-Based Software Prototype Validation 341

developers to motivate users in the validation process. In literature, this is rea-
soned by the fact that giving valuable feedback is time-consuming and should
ideally be done regularly [37]. Therefore, users should be offered extrinsic incen-
tives like money or intrinsic incentives like fame [18]. While money is used as an
extrinsic incentive by Amazon Mechanical Turk, intrinsic incentives like ratings
and views are used by social media platforms like YouTube8.

DP8: Non-disclosure Mechanisms states that the solution should provide
functions for integrating non-disclosure agreements to allow developers to protect
their prototypes from user thefts. In literature, this is reasoned by the fact that
developing new ideas is a creative and challenging activity that often needs the
collaboration of various stakeholders [10]. Depending on the trust between the
developers and the users, non-disclosure agreements can be necessary for a more
intensive idea exchange [12]. Those agreements are also often requested by clients
on projects with a larger volume on the micro job platform Fiverr9.

DP9: Governance Mechanisms states that the solution should provide func-
tions for integrating governance into the process to allow the platform owner to
take necessary actions against developers and users that misusage the validation
process. In literature, this is reasoned by the fact that providing valuable inter-
actions between the developers and the users is the key task for the platform
to stay successful. Good governance of those interactions will let the users stick
much longer on the platform [11]. Here, governance in terms of policies, regula-
tions, and accountability should be provided by the platform [33]. This, in turn,
exists in nearly every platform like Innocentive10, which aims to solve problems
by finding innovative solutions.

4.2 Solution Design Concept

Out of the codified DPs, we conceptualize a solution design as shown in Fig. 2.
It consists of the three roles of the Developer, the User, and the Platform Owner
and the five components of the Task Creation, the Task Conduction, the Task
Evaluation, the Task Incentivisation, and the Task Approval.

In the beginning, different Developers and Users (i.e., DP1) register to the
platform, each with a specific profile. After that, the Developer creates a new
or iterates an existing task (i.e., DP2) in the Task Creation by creating differ-
ent types of prototypes (i.e., DP3), preparing different types of questions (i.e.,
DP4), and selecting specific criteria for users (i.e., DP5). Next, the User selects
different tasks (i.e., DP5) in the Task Evaluation, depending on the approval
process, executes the prototype (i.e., DP3), and provides feedback (i.e., DP4).
This feedback is aggregated and visualized (i.e., DP6) in the Task Evaluation
and displayed to the Developer. Based on that, the Developer can provide intrin-
sic and extrinsic incentives (i.e., DP7) to the Users in the Task Incentivisation.

8 YouTube: https://www.youtube.com/.
9 Fiverr: https://www.fiverr.com.

10 Innocentive: https://www.innocentive.com.

https://www.youtube.com/
https://www.fiverr.com
https://www.innocentive.com

342 S. Gottschalk et al.

Moreover, the Developer can decide on an automatic selection of access to the
prototypes with or without the usage of a non-disclosure agreement (i.e., DP8) in
the Task Approval. Moreover, a manual selection is possible where the users ask
for approval and get access to the prototype. Last, the Platform Owner governs
the whole platform against misuse (i.e., DP9) by moderating users and tasks.

Fig. 2. Solution design for a crowd-based prototype validation platform

5 Situated Implementation

To demonstrate our approach, we have developed a situated implementation.
For that, we show our revisited design features and the software platform.

5.1 Design Features (DFs)

We represent the features of our platform using DFs. Here each DP is translated
to a set of DFs that can be directly implemented in the platform. In the following,
we describe the DFs for each of the nine derived DPs.

For the DP1: User Variety, we allow the registration of developers and
users both by a registration form (DF1) and a single sign-on service (DF2). More-
over, we provide user profiles with specific information like skills (DF3) and a
messaging system between different users (DF4). As DP2: Task Iteration, we
provide the creation of tasks with essential information (DF5), the provision of
feedback with a questionnaire (DF6), and the representation of feedback (DF7).
For the DP3: Prototype Diversity, we allow the provision of prototypes as
textual descriptions (DF8), uploaded images (DF9), and integration of external
prototyping tools (DF10). In addition to that, the DP4: Test Diversity con-
tains the test of single prototypes (DF11), the comparison of multiple prototypes
(DF12), and the usage of split-tests (DF13). Here, also the questionnaire allows

Crowd-Based Software Prototype Validation 343

multiple types of questions like stars rating, thumbs-rating, radio buttons, and
free text fields (DF14).

For the DP5: Filter Mechanisms, we support the adding of required user
profile criteria to the tasks (DF15) and the shortlisting of tasks by the preferences
of the users. As DP6: Aggregation Mechanism, we provide visualization
charts of aggregatable answers to questions (DF16), investigation of individual
feedback of each user (DF17), additional feedback for revealing unconsidered
questions (DF18), and the comparison of split-test results (DF19). Based on that,
the DP7: Incentive Mechanism allows the extrinsic motivation of sending
virtual money (DF20) and the intrinsic motivation of publicly displaying the
user’s trustworthiness (DF21). As DP8: Non-Disclosure Mechanisms, we
support the direct approval of tasks to all users (DF22), the deposit of a non-
disclosure agreement that the users have to accept (DF23), and the manual
approval of users (DF24). Finally, for the DP9: Governance Mechanism, we
provide an admin control panel (DF25) together with the reporting of tasks and
users (DF26).

5.2 Implemented Platform Prototype

Out of the developed DFs, we have implemented a software platform to test the
features and the underlying principles with real users. While for the first cycle,
we developed a rapid prototype to test the overall idea, the second cycle was
reimplemented in a scalable and extensible way so that improvements to the
third cycle could be easily added.

For the implementation, our Crowd-based Prototype Validation (CBPV)
Platform uses Angular11 in the frontend, NestJS12 in the backend, and Post-
greSQL13 as a database. Based on those core techniques, we build a microservice
architecture so that new DPs and DFs can be easily implemented. Screenshots
of our current version applied to the self-evaluation of the platform can be seen
in Fig. 3. Here, the a) Task Creation shows the creation of tasks (i.e., DF5),
the choice of a basic test for a single prototype (i.e., DF11), and the usage of
uploaded images (i.e., DF9). The b) Task Conduction shows the provision
of feedback (i.e., DF6) and the usage of star ratings (i.e., DF14). The c) Task
Evaluation shows the representation of the feedback (i.e., DF7) and the aggre-
gation of numerical feedback to questions (i.e., DF16).

6 Evaluation Results

As evaluation, we have conducted a user study for the third design cycle. For
that, we explain the setting of our study, describe the derived results, analyze
and interpret those results, and point out potential threats to validity.

11 Angular: https://www.angular.io.
12 NestJS: https://www.nestjs.com.
13 PostgreSQL: https://www.postgresql.org.

https://www.angular.io
https://www.nestjs.com
https://www.postgresql.org

344 S. Gottschalk et al.

6.1 Setting

We conducted our user study in a student lecture for developing AR/VR applica-
tions at Paderborn University. Here, the lecture aims to give students an overview
of the different topics in the systematic development of AR/VR applications,
together with the skill-set to develop such an application from scratch. For that,
those students had a mini-project where they grouped themselves into teams of
3–4 students to develop a prototype of their application.

Fig. 3. Platform prototype applied to the self-evaluation of the concept

At the beginning of the mini-project, the teams developed an idea (e.g., a
JengaVR game, a smARt note app, an ARmomix cooking app) for the appli-
cation. For that, they created a description, first screenshots, or a mockup of
Figma together with a questionnaire of open questions for which they wanted to
receive feedback. After that, one student from each team (g = 8) uploaded their
idea in the form of a prototype on the situated implementation of the CBPV
Platform. Next, each student (n = 26) provided feedback on the prototypes of
two other groups by executing the prototypes and filling out the questionnaires.
Here, the matching of the students to prototypes was made by us manually to
provide a similar amount of feedback for every team. Last, the platform should
be self-evaluated by every student (see Fig. 3 for an excerpt). Here, the prototype
consists of images of the platform where the instantiations of the DPs on the
platform are labeled. Moreover, the questionnaire provided a 5-stars rating ques-
tion for each DP and four free text questions on the overall idea, the proposed
solution, current drawbacks of the platform, and additional feedback.

Crowd-Based Software Prototype Validation 345

6.2 Results

We present the user study results by referring to the created prototypes and
filled-out questionnaire by most students (n = 20) during the self-evaluation.
For that, we divide between quantitative and qualitative results.

For the Quantitative Results, we have answers for the 5-stars rating ques-
tions for the nine DPs that mostly relate to the abstracted design knowledge of
the prototype validation. An overview of those results as boxplots is shown in
Fig. 4. As an overall impression, we see that nearly every DP is rating as crucial
for such a platform. The variety of users (i.e., DP1) and iteration of tasks (i.e.,
DP2) should be provided by every platform. Also, the diversity of prototypes
(i.e., DP3) and feedback (i.e., DP4) together with the aggregation of feedback
(i.e., DP6) that are specific for prototype crowd-validation are rated as essential.
The same holds for providing overall governance (i.e., DP9). The function for
filtering (i.e., DP5) and incentives (i.e., DP7) are rated lower by the students as
they got predetermined prototypes to validate and no additional incentives for
the validations. Last, a higher discrepancy exists for the non-closure agreements
(i.e., DP8), which some students could interpret as just additional overhead.

Fig. 4. Evaluated importance of design principles based on boxplots

For the Qualitative Results, we have answers for the free text fields of
the additional questions for the concept that are mostly related to the situated
implementation of the platform prototype but can partially also be abstracted
to the design knowledge. An overall impression of that feedback was that most
of the students liked the overall idea of the platform. Just one student was
curious if the additional effort would be worth the feedback, and one student
commented that crowd validation should be just done in addition to regular
customer interviews. Most of the feedback was regarding some general issues
with the current version of the platform prototype, like better support for mobile
web browsers, UI issues, simplified account management, or bug fixes. However,
some feedback also suggested improvements to the most important features of
the users, the prototypes, and the feedback. For the users, there was feedback
to create groups for collaborative working on the prototypes and invite links
to share the prototype with colleagues. For the prototypes, there was feedback
to add additional types of non-visual prototypes and directly create clickable

346 S. Gottschalk et al.

mockups on the platform. For the feedback, there was feedback for “if not, why”
questions and blocks for Likert scale questions. Last, there was the wish to
integrate the prototypes and the questions deeper.

6.3 Discussion and Implications

We interpret the user study results by analyzing the created prototypes by the
teams and the filled-out questionnaire by the students. Out of that, we provide
an analysis of the abstracted design knowledge and the situated implementation.

The Abstracted Design Knowledge refers to the developed design prin-
ciples and the overall solution design. We currently see no major issues with the
current set of principles. However, some DPs could be slightly improved in the
future. For the variety of the users (i.e., DP1), the external users, and in the iter-
ation of tasks (i.e., DP2), the incremental improvements could be described more
precisely. Moreover, the deeper integration of prototypes (i.e., DP3) and feedback
(i.e., DP4) could be mentioned. Next, the reasoning for the incentivization (i.e.,
DP7) and the non-disclosure agreements (i.e., DP8) could be improved. Last,
based on the analysis of the created prototypes, a minor design principle that
could be investigated in the future would be guidance in creating a task (e.g.,
choosing the best type of prototype, generating good questions for feedback).

The Situated Implementation refers to the design features and the plat-
form prototype. Here, we currently see a need to fix the current issues that were
identified by the students. Moreover, we want to work on specific features that
were mentioned during the evaluation. For that, in addition to single sign-on
services (i.e., DF2) we want to allow the sending of invitation links for concrete
task evaluations. Moreover, we want to allow the sharing of prototypes with
other developers at the task creation (i.e., DF5). To improve the diversity of
the prototypes, we want to add an internal prototyping tool in addition to the
external one (i.e., DF10). Furthermore, the diversity of the feedback should be
supported by multi-questions based on Lickert scales (i.e., DF14). As a larger
project, we want to combine the creation of prototypes and the provision of
questions deeper based on the integrated prototyping tool. Last, we want to
implement the guidance in task creation as mentioned as a possible DP above.

6.4 Threats to Validity

We discuss our threats to validity according to Yin [45], who divides between
Constructs Validity, Internal Validity, External Validity, and Reliability. Con-
struct Validity refers to guaranteeing that the most verifiable case study results
are based on the research question. To achieve that, we clarify the goal and pur-
pose to the students of the lecture and provide additional explanations of the
platform together with an email address for solving occurring problems. Never-
theless, there can be misunderstandings of the purpose, especially on the trans-
ferability of the DPs to different application domains. Internal Validity refers
to establishing trustworthiness due to casual relationships during the case con-
duction. A threat here is the non-systematic literature review in the first cycle.

Crowd-Based Software Prototype Validation 347

While we cover different areas and use a technique like snowballing to reduce
that threat, we can not completely ensure missing some literature. However,
those issues should be reduced by conducting multiple design cycles. External
Validity refers to the extent to which the results can be applied to other cases.
A threat here is the evaluation in a student lecture and seminar because of the
biased view of the students. While we conducted two different user studies to
reduce this bias, additionally evaluations with other target groups are necessary
in the future. Moreover, we reduced this bias by interviewing experts in the
first design cycle. Reliability refers to the reproducibility of repeating the case
study. For that, we record the whole expert workshop and export the raw data
of all data created in the two user studies. While this increases the reliability
of the study result, it could also harm the experts and students of providing
negative feedback.

7 Conclusion and Future Work

The gathering of early feedback from users is vital to develop successful prod-
ucts. This feedback can be provided iteratively by a large number of crowd
workers. However, currently, it is unclear how to design platforms for such a
crowd-validation of software products. Therefore, we have conducted a design
science study with three design cycles to develop abstracted design knowledge
(i.e., design principles, concept) and a situated implementation (i.e., design fea-
tures, platform prototype) for a platform that solves that challenge. Our research
contributes knowledge to software designers in research and practice designing
new and extending existing tools with iterative crowd-validation support.

Our future work around the crowd-validation of software products is three-
fold: First, we want to improve the abstracted design knowledge and situated
implementation based on interviews (e.g., interviewing experts from the indus-
try). Second, we want to transfer the design knowledge to other application areas
(e.g., validating prototypes in AR/VR). Third, we want to compare our solu-
tion against other existing approaches (e.g., combining a prototyping tool and
questionnaire to manually collect feedback).

References

1. Alvarez, S.A., Barney, J.B., Anderson, P.: Forming and exploiting opportunities:
the implications of discovery and creation processes for entrepreneurial and orga-
nizational research. Organ. Sci. 24(1), 301–317 (2013)

2. App Annie Inc: The State of Mobile 2021 (2021). www.appannie.com/en/go/state-
of-mobile-2021/

3. Bland, D.J., Osterwalder, A.: Testing Business Ideas. Wiley, Hoboken (2020)
4. Blank, S.: Why the lean start-up changes everything. Harv. Bus. Rev. 91, 63–72

(2013)
5. Burmeister, K., Schade, C.: Are entrepreneurs’ decisions more biased? An experi-

mental investigation of the susceptibility to status quo bias. J. Bus. Ventur. 22(3),
340–362 (2007)

www.appannie.com/en/go/state-of-mobile-2021/
www.appannie.com/en/go/state-of-mobile-2021/

348 S. Gottschalk et al.

6. Chasin, F., Schmolke, F., Becker, J.: Design principles for digital community cur-
rencies. In: Proceedings of HICCS, vol. 53. AIS (2020)

7. Dellermann, D., Lipusch, N., Ebel, P.: Developing design principles for a crowd-
based business model validation system. In: Maedche, A., vom Brocke, J., Hevner,
A. (eds.) DESRIST 2017. LNCS, vol. 10243, pp. 163–178. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59144-5 10

8. Dellermann, D., Lipusch, N., Ebel, P., Leimeister, J.M.: Design principles for a
hybrid intelligence decision support system for business model validation. Electron.
Mark. 29(3), 423–441 (2019)

9. Durward, D., Blohm, I., Leimeister, J.M.: Crowd work. Bus. Inf. Syst. Eng. 58(4),
281–286 (2016)

10. Ebel, P., Bretschneider, U., Leimeister, J.M.: Leveraging virtual business model
innovation: a framework for designing business model development tools. Inf. Syst.
J. 26(5), 519–550 (2016)

11. Evans, D.S., Schmalensee, R.: Matchmakers: The New Economics of Multisided
Platforms. Harvard Business Review Press, Boston (2016)

12. Fanimokun, A.O., Castrogiovanni, G., Peterson, M.F.: Developing high-tech ven-
tures: entrepreneurs, advisors, and the use of non-disclosure agreements (NDAs).
J. Small Bus. Entrepreneurship 25(1), 103–119 (2012)

13. Fu, S., et al.: Exploring idea convergence and conceptual combination in open
innovative crowdsourcing from a cognitive load perspective. In: Proceedings of
HICCS, vol. 52. AIS (2019)

14. Geiger, D., Seedorf, S., Schulze, T., Nickerson, R.C., Schader, M.: Managing the
crowd: towards a taxonomy of crowdsourcing processes. In: Proceedings of AMCIS
2011. AIS (2011)

15. Gottschalk, S., Aziz, M.S., Yigitbas, E., Engels, G.: Design principles for a crowd-
based prototype validation platform. In: Wang, X., Martini, A., Nguyen-Duc, A.,
Stray, V. (eds.) ICSOB 2021. LNBIP, vol. 434, pp. 205–220. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-91983-2 16

16. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for
maximum impact. MIS Q. 37(2), 337–355 (2013)

17. Gregor, S., Kruse, L., Seidel, S.: Research perspectives: the anatomy of a design
principle. J. Assoc. Inf. Syst. 21, 1622–1652 (2020)

18. Hammon, L., Hippner, H.: Crowdsourcing. Bus. Inf. Syst. Eng. 4(3), 163–166
(2012)

19. Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing user studies with Mechanical Turk.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems (CHI), p. 453. ACM (2008)

20. Kuechler, B., Vaishnavi, V.: On theory development in design science research:
anatomy of a research project. Eur. J. Inf. Syst. 17(5), 489–504 (2008)

21. Leimeister, J.M.: Crowdsourcing. Controlling Manag. 56(6), 388–392 (2012)
22. Lindgren, E., Münch, J.: Raising the odds of success: the current state of experi-

mentation in product development. Inf. Softw. Technol. 77, 80–91 (2016)
23. Linsey, J., Clauss, E., Kurtoglu, T., Murphy, J., Wood, K.L., Markman, A.B.: An

experimental study of group idea generation techniques: understanding the roles
of idea representation and viewing methods. J. Mech. Des. 133(3) (2011)

24. Luther, K., et al.: Structuring, aggregating, and evaluating crowdsourced design
critique. In: Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing, pp. 473–485. ACM (2015)

25. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements
engineering. IEEE Softw. 33(1), 48–54 (2016)

https://doi.org/10.1007/978-3-319-59144-5_10
https://doi.org/10.1007/978-3-030-91983-2_16

Crowd-Based Software Prototype Validation 349

26. Mao, K., Yang, Y., Wang, Q., Jia, Y., Harman, M.: Developer recommendation for
crowdsourced software development tasks. In: Proceedings of the IEEE Symposium
on Service-Oriented System Engineering, pp. 347–356. IEEE (2015)

27. McGrath, R.G.: Business models: a discovery driven approach. Long Range Plan.
43, 247–261 (2010)

28. Möller, F., Guggenberger, T.M., Otto, B.: Towards a method for design principle
development in information systems. In: Hofmann, S., Müller, O., Rossi, M. (eds.)
DESRIST 2020. LNCS, vol. 12388, pp. 208–220. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64823-7 20

29. Münch, J., Trieflinger, S., Heisler, B.: Product discovery - building the right things:
insights from a grey literature review. In: Proceedings of ICE/ITMC, pp. 1–8. IEEE
(2020)

30. Nambisan, S.: Digital entrepreneurship: toward a digital technology perspective of
entrepreneurship. Entrep. Theory Pract. 41(6), 1029–1055 (2017)

31. Nebeling, M., Speicher, M., Norrie, M.C.: CrowdStudy. In: Proceedings EICS, p.
255. ACM (2013)

32. Olsson, H.H., Bosch, J.: Towards continuous customer validation: a conceptual
model for combining qualitative customer feedback with quantitative customer
observation. In: Fernandes, J.M., Machado, R.J., Wnuk, K. (eds.) ICSOB 2015.
LNBIP, vol. 210, pp. 154–166. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19593-3 13

33. Parker, G., van Alstyne, M., Choudary, S.P.: Platform Revolution: Platform Rev-
olution: How Networked Markets Are Transforming the Economy - and How to
Make Them Work for You. W.W. Norton & Company, New York (2016)

34. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. J. Manag. Inf. Syst. 24(3),
45–77 (2007)

35. Quoc Viet Hung, N., Chi Thang, D., Weidlich, M., Aberer, K.: ERICA. In: Pro-
ceedings of the 38th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 1037–1038. ACM (2015)

36. Reibenspiess, V., Drechsler, K., Eckhardt, A., Wagner, H.T.: Tapping into the
wealth of employees’ ideas: design principles for a digital intrapreneurship platform.
Inf. Manag., 103287 (2020)

37. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, USA (2014)

38. Schoormann, T., Hofer, J., Knackstedt, R.: Software tools for supporting reflection
in design thinking projects. In: Proceedings of the HICSS 2020. AIS (2020)

39. Tavanapour, N., Bittner, E.A.C.: Towards supportive mechanisms for crowd col-
laboration – design guidelines for platform developers. In: Zaphiris, P., Ioannou, A.
(eds.) HCII 2019. LNCS, vol. 11591, pp. 353–372. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-21817-1 27

40. Teece, D.J.: Business models, business strategy and innovation. Long Range Plan.
43(2–3), 172–194 (2010)

41. Tran, A., Hasan, S.U., Park, J.Y.: Crowd participation pattern in the phases of a
product development process that utilizes crowdsourcing. Ind. Eng. Manag. Syst.
11(3), 266–275 (2012)

42. Vogel, P.: From venture idea to venture opportunity. Entrep. Theory Pract. 41(6),
943–971 (2017)

43. Wache, H., Möller, F., Schoormann, T., Strobel, G., Petrik, D.: Exploring the
abstraction levels of design principles: the case of chatbots. In: Proceedings of WI
2022. AIS (2022)

https://doi.org/10.1007/978-3-030-64823-7_20
https://doi.org/10.1007/978-3-030-64823-7_20
https://doi.org/10.1007/978-3-319-19593-3_13
https://doi.org/10.1007/978-3-319-19593-3_13
https://doi.org/10.1007/978-3-030-21817-1_27
https://doi.org/10.1007/978-3-030-21817-1_27

350 S. Gottschalk et al.

44. Xu, A., Huang, S.W., Bailey, B.: Voyant: generating structured feedback on visual
designs using a crowd of non-experts. In: ACM Conference on Computer Supported
Cooperative Work & Social Computing, pp. 1433–1444. ACM (2014)

45. Yin, R.K.: Case Study Research: Design and Methods, Applied Social Research
Methods Series, vol. 5. Sage, Los Angeles (2009)

46. Zaggl, M.A., Sun, Y., Majchrzak, A., Malhotra, A.: Integrative solutions in online
crowdsourcing innovation challenges. In: Proceedings of HICCS, vol. 54. AIS (2021)

Rapid Delivery of Software: The Effect
of Alignment on Time to Market

Kouros Pechlivanidis(B) and Gerard Wagenaar

Department of Information and Computing Sciences, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, The Netherlands

{k.pechlivanidis,g.wagenaar}@uu.nl

Abstract. In Scrum, teams working collaboratively on interdependent
pieces of software face alignment issues as they need to coordinate their
work. Organisations aim to minimise time to market of their products,
which makes it relevant to identify how alignment issues affect time to mar-
ket. Currently, empirical evidence of the effect of implementing alignment
activities on delivering software is scarce. This research aims to identify
those alignment activities that shorten the time tomarket of backlog items.
First, examination of key concepts led to a grounded choice of alignment
activities taken into account. Use of alignment activities in development of
features was identified by sending feature owners a close-ended question-
naire on the alignment of their collaborating Scrum teams. The cycle times
of backlog items were measured by using the application programmable
interface of the agile tool used for tracking backlog items. Results show that
when user stories were developed using a shared Definition of Ready, pro-
cess and lead time decreased significantly. Process and lead time also dif-
fered between user stories implementing a different number of shared feed-
back sessions, where using two shared feedback sessions per sprint resulted
in the lowest process and lead time.

Keywords: Agile · Agile tools · Alignment · Scrum · Scrum
collaboration · Time to market

1 Introduction

Before agile software development methods emerged, the dominant approach
used for managing the software engineering process was the Waterfall method
[22]. This model dictates a sequential design process, from requirement analy-
sis to system maintenance. Various comparative studies discuss the differences
between traditional sequential phased approaches and agile methods. McCormick
[13] states that using an agile method in the software engineering process results
in faster delivery of a software solution. Almeida [1] adds that implementing agile
methods allows greater flexibility and responsiveness to changing requirements.
The most widely adopted framework implementing agile principles is Scrum [18].
Scrum implements the advantages of agile methods discussed above by applying
an iterative, incremental process skeleton [16].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 351–365, 2022.
https://doi.org/10.1007/978-3-031-21388-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_24&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_24

352 K. Pechlivanidis and G. Wagenaar

Whereas Scrum in its early years would only be applied in a single team
at a single location, its rapid rising crossed both the single team as well as
the single location boundary. Hossain et al. [9], already in 2009, made a plea
for more empirical study to understand Scrum practices in teams at different
locations, more notably globally distributed projects. The introduction of Scrum
frameworks like SAFe1 or LeSS2 emphasize the need for guidance in scaling
Scrum from a team to an organizational level.

Collaboration, co-ordination and communication were already key elements
in Scrum teams in their single context [17]. Working with multiple teams work-
ing at multiple locations also brings the 3 C’s to a new level, where especially
co-ordination, the process of managing dependencies among activities, requires
attention. Edison et al. [8] identified nine categories of challenges that organisa-
tions are confronted with when applying large scale agile development methods
with inter-team Collaboration as one of them. Vlietland and Van Vliet [23] iden-
tified issues in interdependent Scrum team chains, with alignment being the
most prominent one. Vlietland and Van Vliet [24] even suggest that Scrum’s
focus on independent agile teams causes issues: “The focus on the single back-
log in combination with the ‘owned’ IT applications likely results in a bounded
Scrum team focus rather than a feature delivery focus. Such focus likely results
in collaboration (related) issues.” (p.3). Alignment issues between interdepen-
dent Scrum teams even may cause features to be delayed [23]. Cohen et al. [5]
concludes that in today’s intensive competitive environment, each day of delay
reduces the delivered business value of a product.

However, empirical evidence of the effect of coordinating alignment activities
on improvements in delivering working software are scarce, if not absent. At the
same time, this is something software engineering is looking for: “... the software-
intensive systems industry is under severe pressure to improve their capability to
deliver on ... software needs” [3, p. 82]. This study aims to do so by answering the
question: “What effect does alignment between interdependent Scrum teams have
on time to market of backlog items?”. Its answer will scientifically contribute to
an empirical foundation for the use of agile methods, Scrum especially. At the
same time it guides managers operating in a chain of Scrum teams in selecting
effective alignment activities.

The remainder of this paper is structured as follows: Section 2 presents
related work, laying the foundation for the research approach discussed in Sect. 3.
Section 4 proposes hypotheses used to structure our research. Section 5 presents
the study results. The study is concluded in Sect. 6 by summarizing the key
takeaways and discussing future research avenues.

2 Background and Related Work

In this section, the context of our work will be introduced by examining related
work with regard to alignment activities in Scrum teams (Sect. 2.1) and the time
1 https://www.scaledagileframework.com/.
2 less.works.

https://www.scaledagileframework.com/.

Rapid Delivery of Software 353

to market of backlog items (Sect. 2.2). At the same time, both sections introduce
key concepts in our research, also to support the research approach in Sect. 3.

2.1 Related Work and Key Concepts Alignment Activities

In our introduction we identified alignment of codependent Scrum teams as a
main issue of applying Scrum at an organisation level. Yet, alignment is necessary
to reduce the amount of unnecessary work done [15]. Several models have been
put forward to describe coordination in multiple Scrum teams.

Formal methods and automated tools do not aid in predicting software devel-
opment performance, where the role of formal coordination and informal coordi-
nation and communication do account for variation in the software development
performance [14]. Although this statement was not drawn up in the context of
agile software development - the Agile Manifesto hadn’t been written by then
- its validity has not really been contradicted. More recent work, such as that
of Strode [19,20] on the effectiveness of coordination, confirms the observation.
Her work describes and distinguishes several strategies of coordination, now in
an agile context. However, in this work strategies are characterized rather than
practices identified.

Edison et al. [8] do include in their systematic literature review a list of prac-
tices that could be used for inter-team coordination. Examples are: Common
goal for the sprint, synchronised sprint cycle, collaborative platform, PO coor-
dination meetings, and many others. Most practices were based on observation
from one or two case study organizations. Results were also based on organiza-
tions using one or another framework, which causes this work to be characterized
as a kind of top-down approach. In contrast, practices that could be identified
as just being used, regardless of (organizational) influences, constitute a more
bottom-up approach.

In various (other) studies, Scrum activities and artifacts that influence align-
ment have been suggested. Table 1 specifies a list of activities we derived from
them. We draw here mainly on the work of Vlietland and Van Vliet [24], but
added specific alignment activities from other sources.

We assume activities A1-A3 and A7-A8 to be self-explanatory. Applying
predefined workflow stages (A4) means that the status of product backlog items
are similar for all of the teams involved, for instance defined/build/tested [24].
Aligning the Scrum heartbeat (A5) indicates the length of a sprint being the same
for all teams. Feedback moments (A6) are Scrum meetings where communication
with external stakeholders takes place, most notably a Sprint Planning Meeting
or a Sprint Review Meetings.

2.2 Related Work and Key Concepts Time to Market

Rapid delivery of a software product with a short Time to Market (TtM) requires
interdependent Scrum teams to align on activities and deliverables [23]. Studies
providing quantitative measures of TtM are scarce. However, TtM was identified
to be a key performance indicator for measuring software development processes

354 K. Pechlivanidis and G. Wagenaar

Table 1. List of alignment activities

Index Activity Source

A1 Using a shared Definition of Ready [24]

A2 Using a shared Definition of Done [24]

A3 Using a shared Product Backlog [6]

A4 Applying predefined workflow stages [24]

A5 Aligning the Scrum heartbeat [7,11]

A6 Planning shared feedback moments [24]

A7 Sharing information on a centralized (digital) work space [17]

A8 Communicating testing activities through the entire chain of Scrum teams [23]

at a large organization [21]. This factor, among others, allowed for a coherent
analysis across all organizational boundaries to achieve an end-to-end monitoring
of the software development processes, thus improving capabilities to identify
potentials for improving process and system quality.

To operationalize TtM in our research, two options are available. First, pro-
cess time of a backlog item could be the time between starting development
on the work item and finishing the work item following the Definition of Done
(DoD). Alternatively, lead time is defined as the time between creation of the
backlog item and completion of the item according to the DoD [10]; this option
is more or less equal to the one in Sürücü et al. [21]: Time in days from creating
user stories to delivering a system. Usually, lead times are used when trying to
shorten the TtM. However, Kim et al. [10] argue that the proportion of process
time to lead time is an important metric that can be used when measuring the
efficiency of the process. This proportion determines how much time the backlog
item is in queue before development starts. A visualisation of process time and
lead time is shown in Fig. 1. We will use both in the remainder, also to allow for
drawing conclusions about similarities and/or differences between them.

Fig. 1. Process times and lead times (based on Kim et al. [10])

Rapid Delivery of Software 355

3 Methodology

In this section, we introduce our approach to answer the research question.
Section 3.1 discusses how TtM of backlog items was retrieved. Section 3.2 elabo-
rates on the method used for measuring alignment in a chain of interdependent
Scrum teams.

3.1 Extracting Empirical Data

With the aim of managing the decision making process in Agile teams, organ-
isations use agile project management tools [2,12]. Common software tools for
managing the agile software development process are Rally, Trac, Mingle, Scrum-
Works, VersionOne, JIRA, MS Team Foundation Server, XPlanner and Assem-
bla [2]. Organisations expect agile tools to contain a broad set of functionalities,
including features for bug tracking, backlog management and burn-down chart
visualization [25]. Moreover, most tools provide functionality for time tracking
of user stories. By using such functionality, organisations can record the process
and lead time of backlog items.

The data set used for analysis was collected data from an international enter-
prise operating in the logistics sector; for confidentiality reasons we will refer to
this company as LogCom. LogCom has a data solutions department consisting of
approximately hundred employees. The department is divided into Scrum teams
with data engineers, data scientists, machine learning operation engineers and
business intelligence specialists. The dedicated Scrum teams work together on
user stories to create, deploy and maintain a platform that provides the organ-
isation insights derived from its data. As a result, multiple Scrum teams in a
highly interdependent environment collectively build software systems, in a large
organisation that deals with complex logistic processes.

LogCom uses the Rally platform developed by Broadcom Inc. to manage
agile processes [4]. Rally allows collaboration between multiple agile teams by
providing a central hub for tracking work in shared backlogs. Users of Rally can
use entities called projects to create a hierarchical structure of teams. LogCom
uses projects to represent organisational components, such as departments or
development teams. Each user story has a project assigned to specify which
Scrum team is responsible for completing the user story. The user stories that
are part of the product backlog have one of five workflow stages:

– Undefined: A user story is created, but does not yet implement the criteria
from the Definition of Ready (DoR).

– Defined: A user story is created and satisfies the DoR. Development on a user
story can be started.

– In Progress: Development on a work item has started, but is not yet finished.
– Completed: Development on a user story has finished, but the product owner

(PO) still needs to evaluate whether the produced solution satisfies the DoD.
– Accepted: A delivered work item satisfies the DoD and is accepted by the

PO.

356 K. Pechlivanidis and G. Wagenaar

In Rally, user stories can be containerized into features, where each feature
contains at least one user story. Thus, a feature is a logical collection of user
stories that aim towards satisfying the same business need. LogCom facilitates
alignment at feature level, meaning all user stories with the same parent fea-
ture are developed using the same alignment activities. As our work focuses on
aligning interdependent Scrum teams, we only consider features that have user
stories assigned to at least two different Scrum teams.

Rally offers a Web Services Application Programmable Interface (WSAPI)
to expose information to third party applications. A Python API consumer has
been developed to request data from the WSAPI. Process times and lead times
will be calculated for all of the collected user stories. Each user story has a
creation date, in progress date and accepted date saved as date time attribute.
Following the definition of lead times and process times by Kim et al. [10], the
lead time of a user story can be calculated with the following formula:

LeadT ime = UserStory.AcceptedDate − UserStory.CreationDate

Similarly, the process time of a user story can be retrieved by subtracting the in
progress date from the accepted date:

ProcessT ime = UserStory.AcceptedDate − UserStory.InProgressDate

Table 2 lists all the fields captured in the resulting data set, together with a brief
description and example value of the recorded variables.

Table 2. User story set

Variable name Variable description Example value

FeatureID Unique identification code for feature F8103

UserStoryID Unique identification code for user story US90033

CreationDate Date and time the user story was created 2021–04-08T12:03:40.222Z

InProgressDate Date and time the user story was moved
to the in progress state

2021–04-13T15:42:19.520Z

AcceptedDate Date and time the user story was moved
to the accepted state

2021–04-26T08:11:05.954Z

LeadTime User story lead time in days 17.84

ProcessTime User story process time in days 12.69

3.2 Questionnaire

To enrich the data set described in Table 2 with data on alignment, a question-
naire was distributed.

The questions used in the questionnaire are deducted from the list of align-
ment activities. As LogCom already implements an aligned Scrum heartbeat
throughout the organisation, activity A5 (Aligning the Scrum heartbeat) will be

Rapid Delivery of Software 357

excluded in the list of questions. Additionally, Rally uses predefined workflow
stages to manage the product backlog. Because of this, a question on A4 (Using
predefined workflow stages) will also be excluded from the questionnaire. The
questionnaire introduces each activity with a brief definition of the activity, sup-
ported by literature. The questions asked in the questionnaire can be found in
Table 3.

Table 3. Questionnaire implementation

Activity Question

A1 When working on the specified feature, did the collaborating Scrum
teams implement a shared Definition of Ready?

A2 When working on the specified feature, did the collaborating Scrum
teams implement a shared Definition of Done?

A3 When working on the specified feature, did the collaborating Scrum
teams use a shared Product Backlog?

A4 When working on the specified feature, did the collaborating Scrum
teams use the same predefined workflow stages?

A5 When working on the specified feature, did the collaborating Scrum
teams use an aligned Scrum heartbeat?

A6 When working on the specified feature, how many shared feedback
sessions did the collaborating Scrum teams plan per sprint?

A7 When working on the specified feature, did the collaborating Scrum
teams actively use a centralized work space to share information on?

A8 When working on the specified feature, was the entire chain of
Scrum team involved in setting up testing environments?

Each feature has an owner assigned. Selective sampling is chosen as sampling
method for the questionnaire. As feature owners are involved in feature produc-
tion, it is appropriate to send the questionnaire to them. The survey starts by
explaining the study objectives, the time the survey would take and an informed
consent form. Participants were then asked to respond to statements about how
collaborating Scrum teams aligned during feature development. The questions
used in the questionnaire are deducted from the list of alignment activities sug-
gested in Table 1.

4 Hypotheses

To further describe how the the implementation of various alignment activities
relates to the time to market of backlog items, hypotheses will be proposed.
Vlietland and Van Vliet [24] substantiate that misalignment causes features to
be delayed. As a result, the hypotheses have been formulated to test whether
the implementation of alignment activities causes features to be delivered faster.

358 K. Pechlivanidis and G. Wagenaar

– H1A: User stories that were developed implementing A do not have a shorter
lead time compared to those that were not.

– H2A: User stories that were developed implementing A do not have a shorter
process time compared to those that were not.

H1 and H2 will be tested for all activities found in Table 1 measuring a
dichotomous variable (A1, A2, A3, A7, A8). Hypotheses for the activity mea-
suring a discrete variable (A6) were formulated as follows:

– H3A6: There are no differences in lead time between user stories implementing
a different amount of shared feedback sessions.

– H4A6: There are no differences in process time between user stories imple-
menting a different amount of shared feedback sessions.

5 Results

Before analysing the results, inaccurate measurements of process and lead time
were removed. Measurements are considered inaccurate if the recorded metric is
smaller than one day, due to the unlikeliness of a user story being started and
finished according to the DoD in one day. The inaccuracy of these records can
be attributed to multiple factors:

– Developers started working on the user story but forgot to update the user
story state in Rally, resulting in process time shorter than a day.

– The Scrum team worked on a task that was not defined as a user story in
Rally. To make work visible, the Scrum team created a user story in Rally,
putting it on accepted after making it. Hence, the lead time for such a story
is shorter than a day.

5.1 Process and Lead Times: Descriptive Statistics

Process times of 219 user stories were recorded after the removal of 55 inaccurate
process time measurements. In total, the 219 selected user stories had 8 parent
features (M = 27.38, SD = 17.84). Figure 2 visualises the distribution of process
times.

After removing 32 inaccurate lead time measurements, the data set contain-
ing lead times consisted of 242 user stories with 8 parent features (M = 30.25,
SD = 20.15). Figure 3 gives an overview of the distribution of lead times.

5.2 Questionnaire: Descriptive Statistics

The questionnaire was filled in by the appropriate stakeholder for the selected
features (N=8). Figure 4 shows a stacked count plot visualising the answers given
to the Boolean questions by the respondents. Since A6 (The amount of shared
feedback moment) describes a discrete variable, this activity is not shown in the
figure. For A6, an average of 2.5 feedback sessions per sprint was recorded (SD
= 2.07).

Rapid Delivery of Software 359

Fig. 2. Distribution of user story lead
times

Fig. 3. Distribution of user story process
times

Fig. 4. Count of activity implementations

5.3 Combining Empirical Data and Questionnaire Results:
Descriptive Statistics

A more detailed overview of the process times, lead times and group size for
each activity is shown in Table 4 and Table 5. For activities A1, A2, A3, A7 and
A8, groups with value 1 implement the activity, where as groups with value 0
do not implement the activity. For A6, the group value indicates the number of
shared feedback moments.

5.4 Inferential Statistics

Figure 2 and Fig. 3 show that the populations for both process times and lead
times are not normally distributed. Hence, the non-parametric Mann-Whitney
U Test and Kruskal-Wallis H Test were used. All statistical tests were performed
using significance level α = .01.

A Mann-Whitney U Test show that user stories that were developed imple-
menting a shared Definition of Ready (Mdn = 15.11) have a shorter lead time

360 K. Pechlivanidis and G. Wagenaar

Table 4. Descriptive statistic of lead time

Activity Group Mean Standard deviation N

A1 1 23.42 16.99 40

0 45.67 43.38 202

A2 1 44.23 45.11 129

0 41.58 45.28 54

A3 1 47.33 43.58 144

0 34.16 35.81 98

A6 5 33.55 23.64 69

4 28.73 22.60 19

3 25.05 14.54 44

2 18.62 7.24 21

1 112.27 42.15 13

0 57.23 53.32 76

A7 1 42.54 41.71 232

0 29.25 16.58 10

A8 1 40.28 39.27 199

0 49.93 48.19 43

Table 5. Descriptive statistic of process time

Activity Group Mean Standard deviation N

A1 1 12.42 7.38 34

0 25.09 26.19 185

A2 1 18.26 14.03 113

0 29.39 37.13 52

A3 1 22.51 20.64 123

0 23.92 29.12 96

A6 5 23.99 24.78 63

4 14.26 11.37 13

3 17.46 12.64 44

2 11.29 2.95 21

1 91.50 29.35 12

0 19.17 14.66 66

A7 1 23.49 25.14 209

0 15.50 7.97 10

A8 1 20.33 18.55 178

0 35.28 40.10 41

Rapid Delivery of Software 361

compared to those that were not (Mdn = 28.13) (U = 2413). Thus, H1A1 will
be rejected. Similarly, user stories that were developed implementing a shared
Definition of Ready (Mdn = 12.01) have a shorter process time compared to
those that were not (Mdn = 13.85) (U = 2214). Thus, H2A1 will be rejected.

Furthermore, a Kruskal-Wallis H Test demonstrates that there are differences
in lead time between user stories implementing a different number of shared
feedback sessions. Thus, we reject H3A6. Likewise, there are differences in process
time between user stories implementing a different number of shared feedback
sessions. The lowest TtM was realised when teams implemented two shared
feedback moments per sprint. Thus, we reject H4A6.

Table 6 and Table 7 show the more elaborate results of hypotheses testing.

Table 6. Statistical test results for process time hypotheses

Index Hypothesis Test Result p < .01

H2A1 User stories that were developed implementing
a shared Definition of Ready (Mdn = 12.01) do
not have a shorter process time compared to
those that were not (Mdn = 13.85)

U = 2214 Yes

H2A2 User stories that were developed implementing
a shared Definition of Done (Mdn = 12.00) do
not have a shorter process time compared to
those that were not (Mdn = 12.06)

U = 2792 No

H2A3 User stories that were developed using a shared
Product Backlog (Mdn = 13.97) do not have a
shorter process time compared to those that
were not (Mdn = 12.96)

U = 6225 No

H2A7 User stories that were developed while actively
using a centralized digital work space to share
information on (Mdn = 13.03) do not have a
shorter process time compared to those that
were not (Mdn = 12.98)

U = 1084 No

H2A8 User stories that were developed while
communicating testing activities to the entire
chain of Scrum teams (Mdn = 13.01) do not
have a shorter process time compared to those
that were not (Mdn = 13.19)

U = 3206 No

H4A6 There are no differences in process time
between user stories implementing a different
amount of shared feedback sessions

HA(5) = 36.57 Yes

362 K. Pechlivanidis and G. Wagenaar

Table 7. Statistical test results for lead time hypotheses

Index Hypothesis Test Result p < .01

H1A1 User stories that were developed implementing
a shared Definition of Ready (Mdn = 15.11) do
not have a shorter lead time compared to those
that were not (Mdn = 28.13)

U = 2413 Yes

H1A2 User stories that were developed implementing
a shared Definition of Done (Mdn = 27.88) do
not have a shorter lead time compared to those
that were not (Mdn = 18.85)

U = 3828 No

H1A3 User stories that were developed using a shared
Product Backlog (Mdn = 31.48) do not have a
shorter lead time compared to those that were
not (Mdn = 18.85)

U = 8729 No

H1A7 User stories that were developed while actively
using a centralized digital work space to share
information on (Mdn = 27.14) do not have a
shorter lead time compared to those that were
not (Mdn = 22.30)

U = 1261 No

H1A8 User stories that were developed while
communicating testing activities to the entire
chain of Scrum teams (Mdn = 27.16) do not
have a shorter lead time compared to those
that were not (Mdn = 24.86)

U = 3870 No

H3A6 There are no differences in lead time between
user stories implementing a different amount of
shared feedback sessions

H(5) = 53.49 Yes

6 Conclusions, Discussion and Future Work

In this paper, we empirically measured the effect of alignment in a chain of
Scrum teams on the TtM of backlog items. First, a list of activities relating
to the latent variable alignment were identified from examining related work.
Subsequently, their application was tested in a chain of Scrum teams. While at
the same time, process and lead times were retrieved by consuming the REST
API of an agile platform. Significant lower process and lead times were found for
the user stories that were developed using a shared DoR. Differences in process
and lead time were found between user stories implementing a different number
of shared feedback sessions.

Our findings are in line with the suggestions made by Vlietland and Van
Vliet [24], who suggest that alignment issues in interdependent Scrum teams
result in delivery delays. Our results provide a crumb of empirical quantitative
evidence with regard to the effect of alignment activities, an area in which this
kind of proof is not too abundant. Practitioners, for instance Scrum masters

Rapid Delivery of Software 363

or agile coaches, may find our results supportive for the use of a DoR or the
implementation of a certain number of Scrum events, for instance Sprint Reviews.
On the contrary, we would not like our results to lead to abolition of alignment
activities for which we currently did not find support in our research.

6.1 Limitations

Our findings are subject to limitations which are in turn threats to the validity
of our research.

We are aware of the limited scope of our research: One organization, LogCom,
with several Scrum teams, yet one software product. This necessitates us to be
hesitant with regard to the generalizability of our results.

We removed outliers in the Rally data as some values were simply impossible.
We came up with explanations, such as the proposition that developers might
forget to update the status of a user story in the agile tool. In the end we did
not use around 20% of the process times and slightly over 10% of the lead times
data. Hence, the recorded TtM may show inaccuracies due to our interventions.

Furthermore, the results of the questionnaire are subject to the respondents
understanding of the question. We tried mitigating this limitation by providing
a definition of the activities before asking questions on activity implementation.
Moreover, there might be more alignment activities not uncovered in existing
work. This may have resulted in an incomplete list of observable activities used
to measure the latent variable alignment.

6.2 Future Work

When addressing the discussed limitations, the methods used in our work can
still serve as an inspiration for future studies. One future research avenue is to
empirically test the construct validity of the found alignment activities and to use
qualitative research to enrich the current activity list. A next step in our research
will be to use the findings from Vlietland and Van Vliet [24] to empirically test
the total set of collaboration issues in chains of Scrum teams (coordination,
prioritization, alignment, predictability, visibility). For this research avenue, the
alignment activities described in this research paper can be used as a framework
for assessing alignment.

References

1. Almeida, F.: Challenges in migration from waterfall to agile environments. World
J. Comput. Appl. Technol. 5(3), 39–49 (2017)

2. Azizyan, G., Magarian, M.K., Kajko-Matsson, M.: Survey of agile tool usage and
needs. In: 2011 Agile Conference, pp. 29–38 (2011)

364 K. Pechlivanidis and G. Wagenaar

3. Bosch, J.: Speed, data, and ecosystems: the future of software engineering. IEEE
Software 33(1), 82–88 (2015)

4. Broadcom: Rally Software. www.broadcom.com/products/software/value-stream-
management/rally Accessed 19 Nov 2021

5. Cohen, M.A., Eliasberg, J., Ho, T.-H.: New product development: the performance
and time-to-market tradeoff. Manage. Sci. 42(2), 173–186 (1996)

6. Cristal, M., Wildt, D., Prikladnicki, R.: Usage of scrum practices within a global-
company. In: 2008 IEEE International Conference on Global Software Engineering,
pp. 222–226 (2008)

7. Deemer, P., Benefield, G., Larman, C., Vodde, B.: The scrum primer (2010). www.
brianidavidson.com/agile/docs/scrumprimer121.pdf

8. Edison, H., Wang, X., Conboy, K.: Comparing methods for large-scale agile soft-
ware development: a systematic literature review. IEEE Trans. Softw. Eng. 99,
1–1 (2021)

9. Hossain, E., Ali, M., Paik, H.: Using Scrum in Global Software Development: a
systematic literature review. In: 2009 Fourth IEEE International Conference on
Global Software Engineering, pp. 175–184 (2009)

10. Kim, G., Humble, J., Debois, P., Willis, J.: The DevOps handbook: How to Cre-
ate World-Class Agility, Reliability, and Security in Technology Organizations. IT
Revolution, p. 486 (2016)

11. Leffingwell, D.: Mastering the iteration: an agile white paper [white paper] (2007).
www.hosteddocs.ittoolbox.com/mastering-the-iteration-an-agile-white-paper.pdf

12. Lin, J., Yu, H., Shen, Z., Miao, C.: Studying task allocation decisions of novice
agile teams with data from agile project management tools. In: Proceedings of the
29th ACM/IEEE International Conference on Automated Software Engineering,
pp. 689–694 (2014)

13. McCormick, M: Waterfall vs. agile methodology (2012). www.mccormickpcs.com/
images/WaterfallvsAgileMethodology.pdf

14. Sawyer, S., Guinan, P.: Software development: processes and performance. In: IBM
Syst. J. 37(4), 552–569 (1998)

15. Scheerer, A., Hildenbrand, T., Kude, T.: Coordination in large-scale agile software-
development: a multiteam systems perspective. In: 2014 47th Hawaii International
Conference on System Sciences, pp. 4780–4788 (2014)

16. Schwaber, K.: Agile project management with Scrum. Microsoft press (2004)
17. Sharp, H., Robinson, H.: Three ‘C’ of agile practice: collaboration, coordination

and communication. In: Agile software development, pp. 61-85. Springer, Berlin
(2010). https://doi.org/10.1007/978-3-642-12575-1 4

18. Stavru, S.: A critical examination of recent industrial surveys on agile method
usage. J. Syst. Softw. 94, 87–97 (2014)

19. Kuhrmann, M., et al. (eds.): PROFES 2018. LNCS, vol. 11271. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03673-7

20. Strode, D., Huff, S.: A Coordination perspective on agile software development,
pp. 64–96 (2015)

21. Sürücü, C., Song, B., Krüger, J., Saake, G., Leich, T.: Establishing key performance
indicators for measuring software-development processes at a large organization,
pp. 1331–1341 (2020)

22. Szalvay, V.: An introduction to agile software development. Danube technologies,
vol. 3 (2004)

23. Vlietland, J., van Vliet, H.: Improving it incident handling performance with infor-
mation visibility. J. Softw. Evol. Process 26(12), 1106–1127 (2014)

www.broadcom.com/products/software/value-stream-management/rally
www.broadcom.com/products/software/value-stream-management/rally
www.brianidavidson.com/agile/docs/scrumprimer121.pdf
www.brianidavidson.com/agile/docs/scrumprimer121.pdf
www.hosteddocs.ittoolbox.com/mastering-the-iteration-an-agile-white-paper.pdf
www.mccormickpcs.com/images/Waterfall vs Agile Methodology.pdf
www.mccormickpcs.com/images/Waterfall vs Agile Methodology.pdf
https://doi.org/10.1007/978-3-642-12575-1_4
https://doi.org/10.1007/978-3-030-03673-7

Rapid Delivery of Software 365

24. Vlietland, J., van Vliet, H.: Towards a governance framework for chains of scrum
teams. Inf. Softw. Technol. 57, 52–65 (2015)

25. Abraham, A., Gandhi, N., Hanne, T., Hong, T.-P., Nogueira Rios, T., Ding, W.
(eds.): ISDA 2021. LNNS, vol. 418. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-96308-8

https://doi.org/10.1007/978-3-030-96308-8
https://doi.org/10.1007/978-3-030-96308-8

Exploring the “Why”, “How”, and “What”
of Continuous Digital Service Innovation

Jenny Elo(B) , Kaisa Pekkala , Tuure Tuunanen , Juuli Lumivalo ,
and Markus Salo

University of Jyväskylä, Jyväskylä, Finland
jenny.m.elo@jyu.fi

Abstract. Today’s rapidly advancing technologies and highly competitive and
dynamic markets make continuity essential in organizations’ service development
and innovation activities. However, little is known about why and how organiza-
tions organize for continuous digital service innovation (DSI) and what follows.
To address this gap, this paper explores the “why,” “how,” and “what” of con-
tinuous DSI. We present findings from a thematic analysis of 23 semi-structured
interviews with six case organizations to shed light on the external and inter-
nal drivers (why), principles, practices, methods (how), and outcomes (what) of
continuous DSI for organizations. We observe that, externally, continuous DSI
is driven by the rapid and dynamic changes in the business environment, rapid
technological advancements, and customers’ expectations of continuity. Multi-
ple customer, profitability, performance, and technology-related objectives exist
internally. The organization for continuous DSI emphasizes customer- and other
stakeholder-related principles and practices, as well as continuity-related princi-
ples and practices for the development and innovation activities. In addition, we
find that service organizations implement various methods for continuous DSI.
The effects of continuous DSI on organizations include diverse customer, devel-
opment and innovation, communication, and collaboration-related outcomes. We
contribute by offering a novel, practice-based understanding of continuous DSI in
organizations, which may inform future research on this emerging phenomenon.

Keywords: Continuous digital service innovation · Service-dominant logic ·
Innovation process · Qualitative research

1 Introduction

In today’s digitalized world, services are increasingly characterized by digital technolo-
gies that present organizations with novel opportunities for value creation and innova-
tion [1, 2]. Over the past two decades, driven by such technological advancements and
the ever-growing demands of competitive and dynamic market environments, service
organizations have become increasingly interested in utilizing lightweight and iterative
development methods (e.g., Agile, Lean) for systems and software [3–5], with recent
developments in the field focusing on continuity in organizations’ service development

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 366–381, 2022.
https://doi.org/10.1007/978-3-031-21388-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_25&domain=pdf
http://orcid.org/0000-0002-1149-6529
http://orcid.org/0000-0002-8431-8985
http://orcid.org/0000-0001-7119-1412
http://orcid.org/0000-0001-7458-7869
http://orcid.org/0000-0001-5229-0300
https://doi.org/10.1007/978-3-031-21388-5_25

Exploring Continuous Digital Service Innovation 367

and innovation activities. As the latest phenomenon, theDevOps (development and oper-
ations) approach [6] has attracted increasing interest from practitioners and researchers,
especially within the software engineering (SE) community [7, 8]. With DevOps, orga-
nizations aim to eliminate silos, align actors’ incentives, and achieve a continuous flow
in their service development and innovation processes to propose customers with value
rapidly while maintaining high service quality [5, 9, 10]. The resulting process, which
we refer to as “continuous digital service innovation” (DSI), has become essential for
service organizations to remain competitive and ultimately survive in today’s markets.

To date, the research on continuous methods (e.g., DevOps) has primarily focused
on software-intensive organizations or focused on service organizations’ IT functions
with little attention to continuity from the entire organization’s perspective [8, 11, 12].
Although some valuable openings have been made [e.g., 10, 12], we argue that there is a
scant understanding of why and how different digital service organizations organize for
continuous DSI and what follows. Moreover, there is currently no established definition
of continuous DSI to guide research on the phenomenon.

To address this gap, this paper explores continuous DSI in six Finnish service orga-
nizations. Based on the service-dominant (S-D) logic-founded understanding of service
innovation [see 13, p. 161], we propose a working definition of continuous DSI as the
continuous rebundling of diverse resources to create novel resources that are beneficial
to actors in a digital service context. We employ a qualitative research approach [14]
with the primary goal of exploring and explaining the drivers (why), principles, practices,
methods (how), and outcomes (what) of continuous DSI for organizations. More specif-
ically, we present the findings from a thematic analysis of 23 semi-structured interviews
with industry informants addressing the following research questions:

RQ1. Why do digital service organizations organize for continuous DSI?

RQ2. How do digital service organizations organize for continuous DSI?

RQ3. What are the outcomes of continuous DSI for organizations?

As our main finding, we present a preliminary framework that identifies six dimen-
sions of continuous DSI in organizations. Thus, we contribute to research and practice
by increasing our understanding of continuous DSI and how organizations organize for
this in practice. As digital service organizations increasingly need to ensure continuity
both in terms of day-to-day operations and long-term growth and survival, such insights
should be of great interest to SE and information systems (IS) researchers and practi-
tioners alike. We hope to generate interest in and discussion of continuous DSI among
SE and IS scholars, as we believe these domains hold valuable knowledge and theories
to advance the understanding of this multifaceted, socio-technical phenomenon.

The remainder of our paper proceeds as follows. First, we present the theoretical
background uponwhich the working definition of continuous DSI is based, including the
concepts of DSI, continuity in DSI, andmethods/approaches to continuous DSI. Second,
we present the methodology with descriptions of the data collection and analysis. Then,
we present our findings, followed by a discussion and conclusion.

368 J. Elo et al.

2 Theoretical Background

2.1 Digital Service Innovation (DSI)

The theoretical understanding of DSI in our study is founded on S-D logic [15–17],
which has been found to be a particularly suitable lens for studying and understanding
service innovation [e.g., 13, 18, 19]. S-D logic views service as a co-created process in
which actors apply their resources (e.g., competencies such as knowledge and skills) for
the benefit of others (or themselves) [15]. The traditional view of services (plural) as
intangible outputs (similar to products) is replaced with the concept of service (singular),
that is, the process of reciprocal value creation between actors [20], allowing for a broader
and more systemic view of service innovation in organizations [19].

Although service innovation can also be used to describe the outcome of innovation,
S-D logic emphasizes innovation as a dynamic and interactive process driven by actors’
collaborative efforts to find or develop novel ways for value creation [13, 20–22]. By
enabling new and better ways for actors to co-create value [13, 21], service innovation
supports the creation of novel and/or improved service offerings, processes, and business
models for organizations [22, 23]. Building on these notions, we signify DSI as a process
rather than an outcome in our research. More specifically, we build on the definition
provided by Lusch and Nambisan [13, p. 161] and understand DSI as “the rebundling of
diverse resources that create novel resources that are beneficial (i.e., value experiencing)
to some actors” in a digital service context. “Digital” denotes the core or enabling role of
digital technologies (artifacts) as part of the service. The following subsections expand
on the concept of DSI by examining continuity in this context from a theoretical and
practical perspective.

2.2 Continuity in DSI

The notion of continuity is built into the S-D logic view of service innovation. That is,
innovation in S-D logic is not seen as an exceptional event but as a continuous and sys-
temic process based on the complex interactions between actors, activities, and resources
[24]. Similarly, Nambisan et al. [1, p. 226] underlined that DSI “involves the continu-
ous matching of the potential (or capabilities) of new and/or newly recombined digital
technologies with original market offerings.” Furthermore, reconciling notions of con-
tinuous innovation in the innovation management literature, Lianto et al. [25, p. 773]
defined continuous innovation as a “continuous process in building and shaping innova-
tion capabilities to increase a company’s potential to produce innovation performance
(combination of incremental or radical innovation) continuously.” Continuous DSI can
therefore be understood as a continuous process and activity in organizations in which
diverse resources are rebundled to generate short- and long-term benefits (for individuals
and organizations), as well as the continuous building of capabilities to enable this.

Furthermore, the expression ‘continuous’ is often connected to the extent to which
innovation occurs, that is, incremental (small and gradual change) versus radical inno-
vation (significant change) [26]. The general perception seems to be that the two go
hand in hand. For example, Lianto et al. [25, p. 772] described continuous innovation as
a “continuous process in generating incremental or radical innovation combinations.”

Exploring Continuous Digital Service Innovation 369

Also, Steiber and Alänge [27] found it irrelevant to distinguish between radical inno-
vation and incremental improvement, as continuous innovation activities are typically
a combination of both. Similarly, we find that the concept of continuous DSI is ideal
for characterizing all the continuous development and innovation activities that occur
in the described continuous manner in organizations enabling the emergence of novel
resources that are beneficial to actors, be they new capabilities for the organization or
novel value proposed to customers through an offering not previously available to them
(i.e., improvement in the existing service or a completely new service).

2.3 Methods/approaches to Continuous DSI

Looking into the practical side of continuous DSI, over the past two decades, traditional
service development methods (e.g., Waterfall) based on rigid step-by-step development
projects, usually ending with the first major release of a system, have increasingly been
replaced in organizations with lightweight and iterative development methods for sys-
tems and software [3, 5, 9]. The first wave in the industry gave rise to a broad spectrum of
agile methods (e.g., eXtreme Programming, Scrum) aimed at facilitating organizations
and individuals’ flexibility in coping with recurrent changes in the business environment
[12]. Whereas research and practice around agile methods initially focused on the soft-
ware development context, in recent years, there has been a recognized need for a more
holistic approach, that is, scaling the agile concept to span the whole organization. This
has led, for example, to the introduction of the Scaled Agile Framework (SAFe) and
the concept of ‘Enterprise Agile’ [11, 12]. Further, the Lean approach [28] has attracted
interest from organizations as a means of optimizing resources, eliminating “waste,” and
achieving a continuous flow of development and innovation through all functions of an
organization [11, 12].

As the most recent phenomenon, the DevOps approach [6], built on the above-
mentioned agile and lean principles, has gained popularity as a means of increasing the
flexibility and efficiency of service development and innovation processes in organiza-
tions through the continuous delivery of relevant features demanded by customers [7].
DevOps signifies an organizational shift aimed at aligning actors’ incentives (especially
those of development and operations), fostering continuous collaboration, and relying
on various continuous practices (e.g., continuous integration, deployment, and delivery)
that shorten the time between committing a change and deploying it to production while
ensuring high service quality [9]. DevOps enables themanagement of service throughout
its lifecycle, offering automating solutions for the build, test, and deployment processes
[5]. Consequently, DevOps allows organizations to propose value quickly and contin-
uously to customers and increases the awareness of customer needs through frequent
releases and rapid and continuous feedback [8].

To optimize the whole, DevOps should be applied to the entire organization, not
just development and operations [6, 10]. To this end, Fitzgerald and Stol [11, 12] pro-
pose the term ‘BizDev’ to emphasize the need for continuity and alignment between
business and development functions within organizations. Adopting a holistic approach
and drawing on the lean concept of ‘flow,’ they identify a set of continuous practices
(activities) towards continuous development and innovation, assigning them under the

370 J. Elo et al.

umbrella term ‘Continuous*.’ The authors emphasize that tight integration between dif-
ferent continuous functions is required to create an end-to-end flow between customer
demand and the rapid delivery of service [11, 12].

3 Methodology

We follow a qualitative interpretive research approach [14, 29] with the primary goal of
exploring and explaining the drivers (how), principles, practices, methods (how), and
outcomes (what) of continuous DSI for organizations. Our research objective benefits
from a qualitative and exploratory approach, as little extant research and understand-
ing exists on the topic. In addition, the qualitative approach was deemed effective in
addressing the “why,” “how,” and “what” questions guiding our research.

3.1 Data Collection

The data were collected by employing semi-structured interviews with six medium-
sized and large service organizations in Finland (Table 1). As a common criterion,
organizations were expected to strive towards continuity in their service development
and innovation activities and operate in the context of digital or digitally enabled services.

Table 1. Organizations and informants.

Industry Size * Informant roles

IT services and consulting 23,000 + employees (global; 20
countries)

4 Lead Business Developer, Head
of
Advisory (Design and
Innovation), Head of
Innovation, Head of R&D

Telecommunications, ICT, and
online services

5,000 + employees 2 5G Development Director,
Startup Analyst

Industrial and fiber laser
equipment

70 + employees (Finland);
global parent company 4,800 +
employees

4 CEO, Senior Global Service
Account & Market Manager,
Director (Infrastructure and
Service), Product Line Manager

HR service solutions 300 + employees 6 Development Director, Business
Development Manager,
Development Manager (2), HR
Manager, Director (Industry)

Textile rental service 4000 + employees (global; 24
countries)

3 Development Manager, Service
Owner,
Director (Service Concepts)

Language services and language
management solutions for digital
environments

150 + employees plus 2 000 +
freelance experts

4 Service Manager, Account
Manager, Solution Architect,
Chief Solutions Business
Officer

* Number of informants

Exploring Continuous Digital Service Innovation 371

Still, the cases ought to differ from each other to enable an understanding of howdifferent
types of organizations organize for continuous DSI (i.e., to avoid industry bias).

Informants from each case organization represented various roles and were selected
with the company representatives based on their knowledge and suitability. A com-
mon expectation was an understanding of both the strategic-level objectives and the
operational-level activities related to the service development and innovation areas. Two
to six people from each company were interviewed between August and October 2021,
resulting in a data set of 23 interviews (13males, 10 females; ages 25 to 57 years; average
working experience in the company/the current role 9 + years).

All interviews followed the same interview guide [30], which included four main
themes (1. Current state and perspectives on service development and innovation within
the organization 2. Perceptions of continuity and how it is reflected in practice in the
development and innovation activities, 3. Focal (internal/external) stakeholders, and
4. Digital technologies and continuous service innovation) with complementary open-
ended questions. Semi-structured interviewswere considered particularly suitable for the
data collection, as they allowed the informants to speak freely and share their knowledge
and experiences and welcomed the emergence of new perspectives. However, the themes
and questions guided the discussion appropriately to gain a sufficient understanding of
the topics of interest. The interviews lasted from 45 to 80 min and were conducted via
an online video conferencing tool due to the COVID-19 pandemic. The interviews were
recorded and transcribed.

3.2 Data Analysis

The analysis was carried out as a thematic analysis [31], which allows the identification
and interpretation of thematic structures by searching for common features, relationships,
and comprehensive models from the data. To support the reliability of the study [32],
the analysis was performed by two authors. The first author was primarily responsible
for coding and analysis; however, weekly discussions (four 1.5-h meetings) were held
about the progress of the analysis by the two authors. The coding and interpretationswere
reviewed and assessed at each phase by the second author. The progress of the analysis
was also discussed with the other authors, especially at later stages of the analysis and
in formulating the framework.

Following the guidelines of Braun and Clarke [31], the analysis began by carefully
reading each transcript to understand its context and content. After familiarizing them-
selves with the data, the authors discussed based on their notes and impressions and
agreed on rules for the analysis. Preliminary themes were also discussed. The second
phase of the analysis was initiated by open coding of one of the transcripts by the first
author. The test codingwas reviewedwith the second author, and the necessarymodifica-
tions to the coding as well as questions were addressed. The qualitative data analysis tool
Atlas.ti was utilized to perform the open coding. The inductive coding process resulted
in 1,066 quotations and 766 determined codes. The codes were at first descriptive of the
informants’ descriptions, but very similar codeswere combined in the later phases result-
ing in a final number of 405 codes. In the third phase, we combined the codes to form
first-order categories that were further assigned under second-order themes and then

372 J. Elo et al.

third-order dimensions to construct the preliminary framework describing the “why,”
“how,” and “what” of continuous DSI.

4 Findings

The findings of our analysis have been compiled into a preliminary framework depict-
ing the “why,” “how,” and “what” of continuous DSI (Fig. 1). Six representative
dimensions emerged from the analysis: (1) external drivers (why), (2) organizational
drivers (why), (3) strategic principles (how), (4) operational practices (how), (5) meth-
ods/approaches/techniques (how), and (6) outcomes (what). Each dimension includes a
list of identified themes (bolded titles) and categories, followed by numbers that describe
the number of codes they comprise. Next, we present the meaning and interesting first
findings for each dimension.

Fig. 1. The “why,” “how,” and “what” of continuous DSI.

4.1 The Why of Continuous DSI

External drivers represent the factors from outside organizations that guide operations
towards continuous DSI. In this regard, the industry informants shared their experi-
ences, for example, of the demands of the ever-changing business environment and its
impact on the continuous need to assess and stay up to date with operations. Many of the
informants described today’s operating environments as dynamic and complex. Further-
more, the market and customer needs are constantly evolving, necessitating continuity.

Exploring Continuous Digital Service Innovation 373

Also, rapidly emerging and changing trends and circumstantial factors (e.g., COVID-19
pandemic) emerged as matters that demand continuity and timeliness in operations.

The truth is that the operating environment changes so enormously all the time
and all the trends and others that affect it. (Informant 3)

The informants also reported the continuous advancements in technology to increase
the opportunities and expectations for continuous DSI without overlooking the influence
of external expectations toward continuity (e.g., from customers).

Technology is advancing so strongly now that what was brand new two years ago
is now ancient and no one wants to invest in it anymore, and then these changes
make everything change all the time. (Informant 19)

Organizational drivers explain the internal objectives that drive continuous DSI
in organizations. Our preliminary findings highlight four themes for organizational
drivers: customer-related, profitability-related, performance-related, and technology-
related objectives. Regarding the first, our findings underline, for example, the objective
of proactive, fast, and flexible responding to market/customer needs and the importance
of promoting customer value and experience through continuous DSI.

As a service provider, you should always be able to be up-to-date and respond to
those very rapidly changing [customer] needs. (Informant 7)

The profitability objectives comprise organizations’ targets for profitability and
growth, competitive advantage, and business value, which are sought through imple-
menting continuous DSI. Within performance objectives, the pursuit of agility appears
to be linked to the pursuit of continuous DSI in organizations. The industry informants
emphasized the importance of flexibility and agility at the team and the entire organiza-
tion level. This effort connects to, among other things, the objective of circulating ideas
morewidely and continuouslywith customers andof engaging customers in development
at the early stages. Furthermore, one reported aimwas to establish clear decision-making
points, through which ideas are promoted and tested as soon as possible to determine
whether the ideas are worth more investment.

We’ve tried to make the development more agile and such that ideas would be
circulated a little more with the customers as well so that the customer would
be involved as early as possible…And then achieve such decision-making points,
where we can either decide not to continue developing the idea, or decide that yes,
this looks good, and let’s continue. (Informant 11)

Further, the objectives of speed, efficiency, and quality of development, and fore-
casting and readiness for change emerged as internal drivers for continuous DSI. The
technology-related objectiveswere related to transferring the technical architecture to the
cloud, continuous and fast utilization of data, and automation of development/processes
(e.g., data processing).

374 J. Elo et al.

Collecting data and then getting a continuous flow of data from those products...we
should be able to quickly collect data from all the necessary sources, process it
and give as simple an answer as possible to the customer. (Informant 3)

4.2 The How of Continuous DSI

Answers to the “how” question were sought through exploring the strategic princi-
ples, operational practices and methods, approaches, and techniques of continuous
DSI in organizations. The strategic principles represent common understandings and
fundamental guidelines that communicate an organization’s strategy for organizing
operations. Our analysis identified five themes: customer-related, continuity-related,
teams/internal stakeholders-related, development and innovation activities-related, and
technology-related principles.

First, our findings emphasize the organizations’ fundamental orientation towards
customers. The principle of co-creation also emerged from the discussions.

I think there are quite a few different principles that we do that we work by…but
I would say the good place to start is always with the customer and everything
that we are doing we are doing because we are trying to find value for a customer.
(Informant 17)

We now want to do more with customers close to the market with this co-creation
model as well. (Informant 5)

Whereas some organizations are well advanced in this process, others are only
beginning to think about/looking for systematic and continuous ways to benefit from
this.

It’s always a certain challenge, that customer orientation; maybe we quite easily
start from our own needs. In that we have a challenge, that how to actually listen
to the customer and get ahead of the customer more. This is the learning place for
us. (Informant 12)

The principles linked to continuity concerned, among others, continuous develop-
ment and innovation, and continuous improvement, prioritization, and resourcing.

We try to review and prioritize continuously. So even if some X project was taken
as a priority last month, if we look at it today and see that hey, this is no longer on
the priority list, we have also learned that hey, we can put it aside and take on the
more important priority at the top of the list. (Informant 3)

The found principles toward teams/internal stakeholders included active and trans-
parent communication, the culture of working/learning together, sharing expertise across
team boundaries, and autonomy of operation for teams.

The development is going is more towards cross functional cooperation, agile
development, trying something on a small scale before launching on a global
level. So, the basics of agile development work. (Informant 16)

Exploring Continuous Digital Service Innovation 375

Principles toward development and innovation activities, in turn, included infor-
mants’ common descriptions of the strategy’s important role in guidingDSI by providing
a common direction that is then broken down into smaller objectives and activities.

Of course, everything is connected to our strategy. That strategy is then divided
into smaller strategies or goals. (Informant 18)

Another interesting finding is the organization of development and innovation activ-
ities within the organizations. Some case organizations seem to operate with service
development and innovation linked closely together, while others have separate innova-
tion units where continuous innovation and proof-of-concept/value are conducted (via
Lean Startup). The latter seems to be more common, especially in larger organizations.
From the perspective of organizing for continuous DSI, this preliminary finding reveals
exciting opportunities for further examination. Further, as technology-related principles,
continuous technological development and timeliness were mentioned as important.

Operational practices are understood as concrete activities that companies imple-
ment in continuous DSI. Our findings highlight four themes connected to this. First,
customer-related practices include various forms of attaining customer understanding
in organizations (e.g., continuous market feedback and continuous testing). However, a
shared experience seems to be that more systematic ways of gaining such understanding
are being sought, and continuity is not yet where it could be in practice.

So now we’re learning this model, how do we sort of see how this big vision, how
to break it down into small, reasonably sized pieces. And then that we can also
reflect often enough on what needs to be done and changed. And on the other
hand, get the constant feedback from the market. (Informant 5)

Regarding development and innovation practices, we found that characteristics of
continuous DSI include continuous identification and prioritization of development tar-
gets, continuous joint review of activities and outcomes, continuous connection and
communication, division of development targets (into smaller units), diverse utilization
of expertise, rapid testing, development, deployment, and release, and process automa-
tion. Our analysis also shows interesting findings related to the development timeline.
Although there are differences in practices within the organizations, what was common
was the annual refinement of development and strategy, the semi-annual or quarterly
reviews of the portfolio and targets, the general cyclical development toward the strate-
gic objectives, eight-week sprints, and weekly joint meetings bringing together different
stakeholders.

Furthermore, roles and responsibilities were seen as part of practices, as they were
often related to organizing in practice in the informants’ descriptions. In connection
with this, the steering role of the management, the visioning of long-term goals at the
management level and the active support of the management to the teams emerged as
important practices.

The senior management routinely does two things. One, they’re very engaged
themselves on emerging trends, development efforts and supportive of the teamand

376 J. Elo et al.

the business looking at new ways, new areas, new things, new skills. They’re con-
stantly looking at that and supportive of it…The support is a huge thing. (Informant
9)

The connections and roles of IT and business included different experiences in orga-
nizing activities within organizations. We find that the different operating cycles and
methods followed by IT and business functions, as well as the alignment of IT and
business in continuous DSI, are especially interesting areas for future exploration.

Lastly, several different methods, approaches, and techniques connected to the enact-
ment of continuous DSI emerged in the analysis. Our first observation is that approaches,
especially on the business side, are often ambiguous, and followed practices are often a
combination of different methods (e.g., Agile and Lean). Agility and agile methods gen-
erally seem to guide the operations on the business side, whereas continuous approaches
such as DevOps are familiar on the IT/software development side. On the other hand,
the type of service also affects the methods that can be used and how they can be used.

4.3 The What of Continuous DSI

The “what” of continuous DSI explores the outcomes (i.e., consequences) of continuous
DSI for organizations. Further analysis is needed to determine potential cause-and-effect
relationships. However, thus far, four themes emerged from the analysis: customer-
related outcomes, outcomes toward development and innovation activities, outcomes for
communication, and various experienced outcomes related to working together, which
is one of the characteristics of continuous DSI described by informants. The customer-
related outcomes included mentions of continuous DSI directed at operating close to the
market and contributing to improved know-how to develop “right things” and propose
relevant value and better service to customers.

It has probably helped in knowing how to develop the right things. And maybe
then the solutions that have been brought to the market, they have probably taken
off better then. (Informant 11)

Continuous DSI was also reported to positively affect development and innovation
itself, for example, through improved quality, operational transparency, speed, efficiency,
and elimination of silos.

[It makes] our service more efficient, easier and of higher quality (Informant 6)

In my opinion, we have gotten rid of silos very well. (Informant 3)

However, adverse outcomes were also found, such as a distorted picture of the
wholeness, frustration, and architectural challenges.

It may cause slight frustration, because you yourself have worked in environment
A, and the other has worked in environment B, so it is very likely that these have
not met at any point, and recognizing and understanding each other’s operating
environment, its logic, then it brings, can bring challenges. (Informant 3)

Exploring Continuous Digital Service Innovation 377

There are quite big problems there, which in my opinion are primarily related
to company and business architecture. And how to solve architectural problems
across different units...the typical enterprise architecture function is now in a bit
of a bad situation because of that, because all the agile, DevOps and others are so
popular that such a cementing function, no one likes. That is found so legacy and
terribly old fashioned and all that. But on the other hand, you can’t build a house
if you don’t have an architecture... (Informant 13)

Continuous DSI was also reported to facilitate communication and contribute toward
an up-to-date understanding of what is going on.

In a certain way, this has dismantled such, or lowered the threshold to be in contact
with different parties within the organization, even in everydaymatters. (Informant
3)

Finally, several positive consequences were found from working closely together,
such as a sense of relevance and togetherness, positive challenging and a broader per-
spective on things, learning from others, more explicit responsibilities and roles, and
better use of expertise.

So yes, the fact that we are in constant contact...yes, of course it brings that sense
of relevance. (Informant 4)

Youget a bit of a broader perspective on things,maybe sometimes being challenged
and things like that, that’s good... It’s also good, of course, that you get to learn
from others. (Informant 8)

However, a potential decrease in efficiency from increasingly working together was
also reported.

In a certainway it also slows things down, “themore cooks there are in the kitchen”,
then it might not always be the most efficient so to speak, so it’s maybe something
that could still be improved. (Informant 3)

5 Discussion

This paper explores and explains continuous DSI in organizations. The presented frame-
work describes six dimensions—external drivers (why), organizational drivers (why),
strategic principles (how), operational practices (how), methods, approaches, and tech-
niques (how), and outcomes (what) of continuous DSI in organizations. As an answer
to our first research question, we identify a variety of external and internal drivers for
continuous DSI within organizations. Whereas external drivers such as the rapid and
dynamic changes in the business environment and rapid technological advancements are
frequently presented in the existing literature as motivations for continuous development
and innovation, our study is one of the first to reveal the internal drivers for continuous
DSI. Multiple customer, profitability, performance, and technology-related objectives
exist within organizations. For example, the objective of meetingmarket/customer needs

378 J. Elo et al.

and ensuring customer experience/value through continuous DSI emerged as highly rel-
evant for organizations, as did performance-related objectives such as speed and agility
in operation.

In response to the “how” question, the examined principles, practices, and methods
provide insight into how various digital organizations organize around continuous DSI.
As previous research has primarily focused on software-intensive organizations oper-
ating web or SaaS applications [8], our research provides interesting insights into how
continuous DSI is approached and managed in different digital service contexts (such as
services combining digital and physical elements) and supports an understanding of con-
tinuity as a matter for the entire service organization [e.g., 10, 11]. We find, for example,
that the organization for continuous DSI emphasizes customer- and other stakeholder-
related principles and practices, as well as continuity-related principles and practices for
the development and innovation activities, all of which present intriguing future research
opportunities. In addition, we find that service organizations employ a variety of meth-
ods for continuous DSI. On the business side of operations, agility and agile methods
appear to guide operations, whereas on the IT/software development side “continuous”
approaches such as DevOps are prevalent. Still, these methods are all associated with
the pursuit of continuity and continuous DSI in the informants’ descriptions. This also
creates intriguing opportunities and a need for additional research, such as regarding the
definition of continuity and the methods utilized by various digital service organizations.
What constitutes continuous? What is the relationship between agility and continuity,
which appear so intertwined in our informants’ descriptions but are frequently discussed
as distinct phenomena in the literature? In addition, how do differences in applied meth-
ods and approaches manifest themselves in various organizational functions, and what
are the implications? Our findings provide initial thoughts on the subject, but additional
research is called for.

Thirdly, the outcomes of continuous DSI demonstrate some of its potential effects
within organizations. We find that continuous DSI produces diverse customer, develop-
ment and innovation, communication, and collaboration-related outcomes in organiza-
tions. However, it should be noted that the presented findings and framework are also
considered preliminary in this regard. The examples from the interviews are not exhaus-
tive, and additional research is required to provide a more comprehensive view of the
positive and negative effects of continuous DSI to enforce / mitigate in organizations.

While preliminary, our findings contribute to research and practice in multiple ways.
First, we offer a valuable, practice-based understanding of the continuous DSI phe-
nomenon in organizations. For practice, our research provides organizations with a foun-
dation on which to reflect on their personal objectives and drivers, as well as approaches
toward continuous DSI. For research, we introduce continuous DSI as a fruitful ground
for novel research contributions, particularly for SE and IS researchers. The working
definition and conceptualization of continuous DSI presented in this paper can guide
such future research on this interdisciplinary phenomenon. However, it is important to
view this definition as preliminary and our work surrounding it continues. To this end,
we contend that future development on the phenomenon should be based around the S-D
logic’s [15–17] process-based understanding of service innovation combined with the
tangible continuous development methods and practices [e.g., 11, 12] and the context

Exploring Continuous Digital Service Innovation 379

of digital services having digital technologies at their core. In addition, the existing lit-
erature on continuous innovation (innovation management) and digital innovation (IS)
should be considered.

Lastly, our paper reveals additional avenues for future research on the phenomenon.
For example, while our analysis and presentation of the external and internal drivers
remains descriptive at this stage, future research could investigate how the external and
internal drivers are connected (e.g., whether external drivers influence the emergence of
internal drivers), which types of drivers best explain the pursuit of continuity in DSI and
why, and how the drivers are realized as outcomes through the continuous DSI process.
Future research could also seek to explain how and why the outcomes identified in our
analysis occur in order to provide insights for promoting the positive and mitigating
the negative outcomes. In relation to this, as part of our ongoing research effort, we
have recently completed a second set of interviews with the case organizations (51
interviews) to further focus on the continuous DSI activities in practice and to identify
factors enabling and hindering the continuous DSI activities within the organizations,
as well as with customers and partners, as part of the continuous DSI process. With this,
we aim to provide organizations with additional insights for managing continuous DSI.

6 Conclusion

This study represents the first step in theory building to increase the understanding of
how digital service organizations organize for continuous DSI. The proposed working
definition andpreliminary framework for continuousDSIprovide a foundation for further
theoretical development on the topic that should aim to establish stronger links between
theory and practice. As limitations, we acknowledge that while the presented drivers,
organization, and outcomes provide an intriguing first understanding of continuous DSI
in organizations, the findings should be considered preliminary. Second, we recognize
that our study examined a limited number of organizations. While we included service
organizations from a variety of industries to avoid industry bias and obtain a diverse
perspective on continuous DSI, we acknowledge that additional research is required to
generalize and theorize the findings. Considering this, we intend to establish continuous
DSI as an engaging, interdisciplinary topic to which the SE, IS, and service research
disciplines, among others, can contribute.

Acknowledgement. This research is partly funded by the Foundation for Economic Education,
Finland [grant number 34014860].

References

1. Nambisan, S., Lyytinen, K., Majchrzak, A., Song, M.: Digital innovation management: rein-
venting innovation management research in a digital world. MIS Q. 41, 223–238 (2017).
https://doi.org/10.25300/MISQ/2017/41:1.03

2. Yoo, Y., Henfridsson, O., Lyytinen, K.: The new organizing logic of digital innovation: An
agenda for information systems research. Inf. Syst. Res. 21, 724–735 (2010). https://doi.org/
10.1287/isre.1100.0322

https://doi.org/10.25300/MISQ/2017/41:1.03
https://doi.org/10.1287/isre.1100.0322

380 J. Elo et al.

3. Conboy, K.: Agility from first principles: Reconstructing the concept of agility in information
systems development. Inf. Syst. Res. 20, 329–354 (2009). https://doi.org/10.1287/isre.1090.
0236

4. Agerfalk, P.J., Fitzgerald, B., Slaughter, S.A.: Introduction to the special issue--flexible and
distributed information systems development: state of the art and research challenges. Inf.
Syst. Res. 20, 317–328 (2009). https://doi.org/10.1287/isre.1090.0244

5. Humble, J., Molesky, J.: Why enterprises must adopt devops to enable continuous delivery.
Cutter IT J. 24, 6–12 (2011)

6. Debois, P.: Devops: a software revolution in the making? Cutter IT J. 24, 3–5 (2011)
7. Stahl, D., Martensson, T., Bosch, J.: Continuous practices and devops: beyond the buzz,

what does it all mean? In: 2017 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pp. 440–448 (2017). https://doi.org/10.1109/SEAA.2017.
8114695

8. Lwakatare, L.E., Kuvaja, P., Oivo, M.: An exploratory study of DevOps: extending the
dimensions of DevOps with practices. In: The 11th International Conference on Software
Engineering Advances. IARIA, pp. 91–99 (2016)

9. Mäkinen, S., et al.: Improving the delivery cycle: A multiple-case study of the toolchains in
Finnish software intensive enterprises. Inf Softw Technol. 80, 175–194 (2016). https://doi.
org/10.1016/j.infsof.2016.09.001

10. Osmundsen, K., Bygstad, B.: Making sense of continuous development of digital infrastruc-
tures. J. Inf. Technol. 37, 144–164 (2022). https://doi.org/10.1177/02683962211046621

11. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017). https://doi.org/10.1016/j.jss.2015.06.063

12. Fitzgerald, B., Stol, K.J.: Continuous software engineering and beyond: Trends and chal-
lenges. In: 1st International Workshop on Rapid Continuous Software Engineering, RCoSE
2014 - Proceedings. Association for Computing Machinery, pp. 1–9 (2014). https://doi.org/
10.1145/2593812.2593813

13. Lusch, R.F., Nambisan, S.: Service innovation: a service-dominant logic perspective. MIS Q.
39, 155–175 (2015)

14. Myers, M.D.: Qualitative Research in Business & Management. Sage Publications, London
(2020)

15. Vargo, S.L., Lusch, R.F.: Evolving to a new dominant logic for marketing. J. Mark. 68, 1–17
(2004)

16. Vargo, S.L., Lusch, R.F.: Institutions and axioms: an extension and update of service-dominant
logic. J. Acad. Mark. Sci. 44(1), 5–23 (2015). https://doi.org/10.1007/s11747-015-0456-3

17. Vargo, S., Lusch, R.: Service-dominant logic: continuing the evolution. J. Acad. Mark. Sci.
36, 1 (2008). https://doi.org/10.1007/s11747-007-0069-6

18. Ordanini, A., Parasuraman, A.: Service innovation viewed through a service-dominant logic
lens: a conceptual framework and empirical analysis. J. Serv. Res. 14, 3–23 (2011). https://
doi.org/10.1177/1094670510385332

19. Akaka, M.A., Vargo, S.L.: Technology as an operant resource in service (eco)systems. IseB
12(3), 367–384 (2013). https://doi.org/10.1007/s10257-013-0220-5

20. Barrett, M., Davidson, E., Prabhu, J., Vargo, S.L.: Service innovation in the digital age: key
contributions and future directions. MIS Q. 39, 135–154 (2015)

21. Vargo, S.L., Wieland, H., Akaka, M.A.: Innovation through institutionalization: a service
ecosystems perspective. Ind. Mark. Manage. 44, 63–72 (2015)

22. Edvardsson, bo., Tronvoll, B.: A new conceptualization of service innovation grounded in
S-D logic and service systems. Int. J. Qual. Serv. Sci. 5, 19–31 (2013). https://doi.org/10.
1108/17566691311316220

23. Ostrom, A.L., et al.: Moving forward and making a difference: Research priorities for the
science of service. J. Serv. Res. 13, 4–36 (2010). https://doi.org/10.1177/1094670509357611

https://doi.org/10.1287/isre.1090.0236
https://doi.org/10.1287/isre.1090.0244
https://doi.org/10.1109/SEAA.2017.8114695
https://doi.org/10.1016/j.infsof.2016.09.001
https://doi.org/10.1177/02683962211046621
https://doi.org/10.1016/j.jss.2015.06.063
https://doi.org/10.1145/2593812.2593813
https://doi.org/10.1007/s11747-015-0456-3
https://doi.org/10.1007/s11747-007-0069-6
https://doi.org/10.1177/1094670510385332
https://doi.org/10.1007/s10257-013-0220-5
https://doi.org/10.1108/17566691311316220
https://doi.org/10.1177/1094670509357611

Exploring Continuous Digital Service Innovation 381

24. Mele, C., Colurcio, M., Spena, T.R.: Alternative Logics for Innovation: a call for service
innovation research. In: Proceedings of the Naples Forum on Service Conference (2009)

25. Lianto, B., Dachyar, M., Soemardi, T.P.: Continuous innovation: a literature review and future
perspective. Int. J. Adv. Sci. Eng. Inf. Technol. 8, 771–779 (2018). https://doi.org/10.18517/
ijaseit.8.3.4359

26. Hyland, P., Boer,H.:AContinuous InnovationFramework: SomeThoughts forConsideration.
In: Prepared byCausal Productions [for]Continuous InnovationNetwork.CINet, pp. 389–400
(2006)

27. Steiber, A., Alänge, S.: A corporate system for continuous innovation: the case of Google Inc.
Eur. J. Innov. Manage. 16, 243–264 (2013). https://doi.org/10.1108/14601061311324566

28. Poppendieck, M., Poppendieck, T.: Lean software development: an agile toolkit. Addison-
Wesley (2003)

29. Creswell, J.W.: Research Design: Qualitative, Quantitative, andMixedMethods Approaches.
Sage Publications Ltd., Thousand Oaks, CA (2014)

30. Patton, M.Q.: Qualitative Research & Evaluation Methods. Sage Publications, Inc (2002)
31. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101

(2006)
32. Nowell, L.S., Norris, J.M., White, D.E., Moules, N.J.: Thematic analysis: striving to meet the

trustworthiness criteria. Int. J. Qual. Methods. 16, 1–13 (2017). https://doi.org/10.1177/160
9406917733847

https://doi.org/10.18517/ijaseit.8.3.4359
https://doi.org/10.1108/14601061311324566
https://doi.org/10.1177/1609406917733847

Why Traditional Product Roadmaps Fail
in Dynamic Markets: Global Insights

Stefan Trieflinger1(B), Jürgen Münch1, Dimitri Petrik2, and Dominic Lang3

1 Reutlingen University, Alteburgstraße 150, 72768 Reutlingen, Germany
{stefan.trieflinger,juergen.muench}@reutlingen-university.de

2 University of Stuttgart, Keplerstr. 17, 70174 Stuttgart, Germany
dimitri.petrik@bwi.uni-stuttgart.de

3 ETAS, GmbH, Borsigstraße 24, 70469 Stuttgart, Germany
dominic.lang2@bosch.com

Abstract. Context: Companies that operate in the software-intensive business
are confronted with high market dynamics, rapidly evolving technologies as well
as fast-changing customer behavior. Traditional product roadmapping practices,
such as fixed-time-based charts including detailed planned features, products, or
services typically fail in such environments. Until now, the underlying reasons for
the failure of product roadmaps in a dynamic and uncertain market environment
are not widely analyzed and understood. Objective: This paper aims to identify
current challenges and pitfalls practitioners face when developing and handling
product roadmaps in a dynamic and uncertain market environment. Method: To
reach our objective we conducted a grey literature review (GLR). Results: Over-
all, we identified 40 relevant papers, from which we could extract 11 challenges
of the application of product roadmapping in a dynamic and uncertain market
environment. The analysis of the articles showed that the major challenges for
practitioners originate from overcoming a feature-driven mindset, not including a
lot of details in the product roadmap, and ensuring that the content of the roadmap
is not driven by management or expert opinion.

Keywords: Product roadmap · Product management · Agile methods · UX

1 Introduction

For each company, it is essential to provide a strategic direction in which the product
offering will be developed over time. For the development and visualizing of the future
product strategy usually, product roadmaps are used in practice. A product roadmap
describes how an organization intends to achieve a product vision and the way that
is required to get there [1, 2]. However, especially the software-intensive business is
characterized by high market dynamics, rapidly evolving technologies as well as fast-
changing customer behavior. These factors impact the level of certainty, forcing compa-
nies to change the mindset of their approaches to developing and maintaining product
roadmaps [3]. A recent study reveals that firms use fixed-time-based charts including

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 382–389, 2022.
https://doi.org/10.1007/978-3-031-21388-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_26&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_26

Why Traditional Product Roadmaps Fail in Dynamic Markets: Global Insights 383

specific planned products including concrete release dates over a long-time horizon.
Such roadmaps are called feature-driven product roadmaps. Feature-driven roadmaps
can be considered traditional since it is driven by features to inform stakeholders about
the market launch of certain features, products, or services to a certain time point [4].
However, in a dynamic and uncertain market environment with associated uncertainties,
it is almost impossible to predict which products, features, or services will satisfy the
needs of the customers, especially in the mid and long term. Therefore feature-driven
product roadmaps work well in market environments that are stable, predictable, and
reliable but are not suitable for a dynamic and uncertain market environment [5]. In the
scientific literature, several authors deal with the issue of product roadmapping but do
not provide detailed insights into the challenges of product roadmapping and the under-
lying reasons why practitioners face these challenges [6]. This indicates an existing
research gap and justifies further empirical research on the challenges of using product
roadmapping. To close this gap, the paper at hand aims to identify and understand current
challenges and pitfalls with product roadmaps in practice.

2 Research Approach

We conducted our grey literature review according to the guidelines of Garousi et al.
[7]. These guidelines helped us to conduct the study in a systematic and reproducible
manner. Overall, the guidelines consist of three main phases 1) planning the review, 2)
conducting the review, and 3) reporting the review. Our activities in each of these phases.

2.1 Planning the Review

Need and Aim of the Grey Literature Review: First of all, we assess whether a grey
literature review is the appropriate research method for our study. Therefore, we used
the checklist according to Garousi et al. [7]. The justification for conducting a GLR
is as follows: First, we conduct a Systematic literature review, [6] which showed that
most papers discuss the issue of product roadmapping at an abstract level and therefore
provide little insights. Furthermore, we conduct an expert interview study that revealed
a high level of practitioners’ interest in the issue of product roadmapping in a dynamic
and uncertain market environment. Therefore, insights regarding product roadmapping
would be particularly useful for product managers, product owners, or similar roles.
From the scientific point of view, the findings of the grey literature review represent
a transfer of novel knowledge to the scientific community. These insights can be used
to apply abductive reasoning and extend the existing scientific literature. Based on our
study goals we have defined the following research questions:

• RQ: What challenges in product roadmapping are reported in the grey literature

Identification of the Search String: The identification of our search string was con-
ducted in a brainstorming session in which three researchers participated. As the first
step, we create a list of search terms that seemed to be relevant to our search. Sub-
sequently, we validated these search terms within an initial search and adjusted them
iteratively. This validation leads to the following final search terms.

384 S. Trieflinger et al.

A1: Innovation, A2: Product*, A3: Agile, A4: Outcome*Driven, A5: Out-
come*Oriented, A6: Goal*oriented, A7: Theme*, A8: Roadmap*

The complete string used in our study was: (A1 OR A2 OR A3 OR A4 OR A5 OR
A6 OR A7) AND A8.

Definition of Inclusion and Exclusion Criteria: To filter irrelevant from relevant
articles, we defined the inclusion and exclusion criteria as shown in Table 1.

Table 1. Inclusion and exclusion criteria

Inclusion • The topic of the article discusses challenges of product roadmapping in a
dynamic and uncertain market environment

• The article was published in English

• The URL is working and freely available

Exclusion • The source is non-text-based

• The article contains duplicated content of a previously examined article

• The article is not related to software development

2.2 Conducting the Review

StudySelectionProcess: Datawas collected using the above search string in theGoogle
search engine (www.google.com). The search was conducted on January 17, 2020, and
yielded 426 results. Since new articles may be published after this search, we performed
an update on July 20, 2022, using the same search string. This leads to the additional
inclusion of 196 articles published between 17 January 2020 and 20 July 2022. In addi-
tion, we performed a snowballing process i.e., we considered articles that were recom-
mended in our identified articles. This resulted in the inclusion of 66 additional articles.
Thus, we subjected a total of 622 articles to our aforementioned selection process, which
resulted in the identification of 193 relevant articles. In the next step, we categorized
these 193 articles according to their subject areas. This leads to the identification of
the following subject areas 1) product roadmap processes 2) product roadmapping for-
mats, 3) challenges and pitfalls regarding product roadmapping, 4) product roadmap
prioritization techniques and 5) alignment of various stakeholders around the product
roadmap. Consequently, each category was analysed individually. It should be noted
that this paper focuses on the results of the subcategory challenges and pitfalls regarding
product roadmapping, which includes 40 relevant articles. Moreover, we conducted a
quality assessment according to Garousi et al. [7]. The reason,therefore, is that grey
literature is not peer-reviewed like scientific literature. The procedure and results of the
quality assessment can be found on Figshare [8].

http://www.google.com

Why Traditional Product Roadmaps Fail in Dynamic Markets: Global Insights 385

3 Results

First, we determined the origin of the authors of the relevant articles. For this purpose,
we extract the author’s respective place of work by researching social media networks
such as LinkedIn or Twitter. This was done with the intention to identify to what extent
the results obtained can be generalized. As a stopper, we defined that the author has been
employed in the specified country for at least one year. This was done to ensure that the
author reported his or her perception based on the impressions gained from the country
concerned. The set of authors are heterogeneous and includes North America, Europe,
South Africa, and Australia. The most frequently common countries are the United State
of America, 2) the United Kingdom, and 3) Canada. In the following, our challenges are
identified and the underlying reasons and consequences for each challenge are described.

Feature-Driven Mindset: First of all, several authors reported that product roadmaps
often consist of features, including exact delivery dates, on a timeline over a long-time
horizon (usually one year) [9, 10]. Such a roadmap format is called feature-driven prod-
uct roadmaps. The first problem with feature-driven roadmaps is that all the details in
a feature-driven roadmap are planned upfront. However, such detailed feature planning
upfront does not work in a dynamic and uncertain market environment [11]. The reason
for this is that features estimate beyond the next release tend to change as new risks or
dependencies are uncovered [12]. Therefore, feature-driven product roadmaps are usu-
ally often subjected to frequent adjustments [13]. These adjustments are associated with
a high effort since all the features that have beenworked out in detail including their asso-
ciated responsibilities have to be rescheduled [2]. Another problem with feature-driven
product roadmaps is that, when customers or stakeholders see a feature to be delivered
on a specific date in the product roadmap, they will interpret this as commitment, and
expectations are raised [14]. However, the uncertainty that comes with developing prod-
ucts in a dynamic market environment makes it very likely that features will not be
delivered as planned and communicated. This applies in particular to features planned
in the mid and long term in the product roadmap [15]. This leads to the circumstance
that customers or stakeholders perceive the non-delivery as a broken promise and are
disappointed and dissatisfied [2]. Third, feature-driven roadmaps consider features, but
they do not include the value to be delivered by the feature to the customer and the busi-
ness [9]. This can lead to the problem that the features planned on the product roadmap
do not contribute to the solution of customer problems and are therefore not bought or
used by customers [2].

Too Many Details in the Product Roadmap: Another problem is the inclusion of too
many details in the product roadmap This means for example very detailed descriptions
of user stories, requirements, or resources. [16]. The main reason for including too
many details in the product roadmap is that product managers feel obliged to include the
wishes of every stakeholder in the product roadmap [11]. However, including too many
details blurs recognizing the strategy to achieve the product vision of a company. This
causes the product roadmap to be difficult to understand by all stakeholders, leading to
misunderstanding and a decrease in the execution of the product strategy [17] In addition,
if the underlying reason for conducting the planned product development in the roadmap

386 S. Trieflinger et al.

is buried under details, it will be difficult to generate enthusiasm and excitement across
the employees [15].

IndividualOpinionsDecideWhich Itemswill be Included in the ProductRoadmap:
IN many companies’ management or experts (e.g. product managers, product owners,
etc.) decide which items to place on the product roadmap [18]. The problem with this
approach is that only individual opinions determine the content of the product roadmap,
but the perspective of the perspectives of the customers are not included [19]. This
approach can lead to the development of products based on false assumptions and use
cases [20]. In the worst case, this can lead that the team members feeling unappreciated
and, losing their commitment to the company [21].

Not Reviewing and Updating the Roadmap: Furthermore, several authors point out
that the creation of the product roadmap is seen as a one-time activity rather than a
continuous process [22]. This means that often companies create and work on their
product roadmap at the beginning of the year and use them subsequently as a fixed
documentwith no further changes [23].However, the problem is that priorities, resources,
budget, and external factors such as competitors or major customers can change at
any time, affecting the content of the product roadmap [24]. Therefore, it is crucial to
continuously review and update the product roadmap at a short time interval (e.g., every
week or as a cadence of stakeholder meetings takes place [23]. Otherwise, the company
forgoes the opportunity to incorporate findings into the product development process
after the time the product roadmap is created [22].

Lack of an Enterprise-Wide Known Product Vision: Wick [25] points out that many
companies do not have a product vision or companies have a product vision but never
use it [25]. The danger of not having or communicating a product vision is that the
teams involved in product development are unclear about the overall goal of developing
the planned products in the product roadmap. First, this situation makes it difficult for
the teams to identify and prioritize measures that contribute to product success [26].
Consequently, the teams will not be able to identify which measures contribute most to
achieving the product vision and will struggle to prioritize various measures [11].

Identification and Implementation ofCustomerFeedbackChannels: Another prob-
lem is that companies often struggle to identify and implement data collection channels
for customer feedback [17]. Umbach [27] reports that one reason for this is that often
product managers stay in their office and do not leave the building to talk to (potential)
customers. Datta [12] added that another reason is that in the race to meet deadlines,
product teams do not have enough time and resources to devote to identifying cus-
tomer feedback channels. The risk of not involving customer feedback in the product
roadmapping process is that the development of the product roadmap will be based
on assumptions without validation [28]. This affects that may products are included in
the product roadmap and developed that do not create the intended change in customer
behaviour (e.g., the start of using a certain product instead of another product from a
competitor). Consequently, these products will not succeed on the market [12].

TheUse of theWrongProductRoadmappingTool: Kabisch [22] points out thatmany
product roadmap tools include themapping of features on a timeline. As described above

Why Traditional Product Roadmaps Fail in Dynamic Markets: Global Insights 387

such a product roadmap format is called feature-driven. If a company uses such a tool,
it will adapt its product roadmapping to the proposed format of the tool. As a result,
the company will be operating in a dynamic and uncertain market environment with
an inappropriate product roadmap format with all its disadvantages [22] In addition,
Dhiman [23] points out that many companies are using Excel or PowerPoint which are
not suitable for creating and handling a product roadmap. The main reason for this is
that these tools are too static, making it difficult and exhausting to create or update the
product roadmap.

Unrealistic Expectations: Another pitfall is to make unrealistic and arbitrary expec-
tations on the roadmap [17, 23, 29] Setting unrealistic expectations can originate from
various sources, for example from management to the operational level but also from
product management to software development. In general, such behaviour will result in
damaging the relationship between the expectation setter and recipient [24]. A typical
example of the setting of unrealistic expectations is the specification of non-realistic
release dates[29].

Lack of Criteria for the Conduction of the Product Roadmap Prioritization Pro-
cess: Another problem is that often product managers prioritize their roadmap items
based on individual opinions. This includes views of the management or various mem-
bers of the product team as well as customer requests [27]. However, this includes the
pitfall that often subjective opinions are influenced by personal bias and often present
only a single point of view. Therefore, there is a low probability that these opinions reflect
the most important current customer problems and are therefore inappropriate for appli-
cation in the prioritization process of the product roadmap. According to Semick [17],
this circumstance is because product managers often have no idea which prioritization
technique to use.

Creation of a Single Product Roadmap for all Stakeholders: Dhiman [23] points
out that a common mistake in the creation of the product roadmap is to create a single
product roadmap. The problemwith this approach is that a product roadmap is an artefact
that needs to be refereed by many stakeholders such as the CEO, CPO, marketing, sales
engineering as well as customers. This means that the information that is focused on
and emphasized should be tailored to the stakeholder to whom the product roadmap is
presented [30]. Therefore, creating a single roadmap will not be sufficient for informing
and collecting feedback from these stakeholders [23].

Considering the validity of the results it should be mentioned that Google does not
allow the user access to all articles that match our search string. Therefore, it is not
known whether the articles returned by the Google search engine are representative of
the overall population of the articles. Moreover, the results of this study refer to the chal-
lenges and pitfalls of product roadmapping by practitioners operating in a dynamic and
uncertain market environment. Therefore, the results are not transferable to companies
participating in a stable market environment.

388 S. Trieflinger et al.

4 Summary

In this study, we conducted a grey literature review to identify challenges that companies
face in developing andmaintaining product roadmaps in a dynamic and uncertainmarket
environment. The study revealed that the main challenge of product roadmapping is a
feature-driven mindset. A feature-driven mindset means that discussions about detailed
outputs guide the roadmapping process, but the outcomes that should be delivered to
the customers and the business are not considered. This leads to the creation of so-
called feature-driven product roadmaps that contain detailed planned features over a
long-time horizon. However, through the high market dynamics, such feature-driven
product roadmaps are subjected to frequent ad-hoc adjustment that leads to a decrease
in reliability. The findings of our study confirm the results from the expert interviews
conducted byMünch et al. [5]. Therefore, it can be concluded that the problems identified
by Münch et al. in 2019 are currently valid. Moreover, it can be said that these problems
apply not only to the German-speaking regions but also in an international context.

References

1. Lombardo, C.T.,McCarthy, B., Ryan, E., Conners,M.: Product roadmaps relaunched -How to
set direction while embracing uncertainty. O’Reilly Media Inc, Gravenstein Highway North,
Sebastopol, CA, USA (2017)

2. Cagan.M.: Inspired:How to create tech products customers love.Wiley&Sons, IncHoboken,
New Jersey (2018)

3. Suomalainen, T., Abrahamsson, P., Similä, J.: Software product roadmapping in a volatile
business environment. J. Syst. Softw. 84(6), 958–975 (2011)

4. Münch, J., Trieflinger, S., Lang, D.: What’s hot in product roadmapping? Key practices and
success factors. In: Franch, X., Männistö, T., Martínez-Fernández, S. (eds.) PROFES 2019.
LNCS, vol. 11915, pp. 401–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
35333-9_29

5. Münch, J., Trieflinger, S., Bogazköy, E., Eißler, P., Roling, B., Schneider, J.: Product roadmap
formats for an uncertain future: a grey literature review. In: Proceedings of the 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pp. 284–291.
IEEE (2020)

6. Münch J., Trieflinger S., Lang, D.: Product Roadmap – From vision to reality: A systematic
literature review. In: ICE/IEEE ITMC: International Conference on Engineering, Technology
and Innovation, IEEE (2019)

7. Garousi, V., Felderer,M.,Mäntylä,M.V.:Guidelines for including grey literature and conduct-
ing multivocal literature reviews in software engineering. Inf. Softw. Technol. 106, 101–121
(2019)

8. Figshare: Quality Assessment conducted by the authors:
https://figshare.com/s/9471896af513b54b38ee Accessed 1 Aug (2022)

9. Kazmi, R.: https://www.koombea.com/blog/common-product-roadmap-mistakes/. Accessed
20 Aug (2022)

10. Sahu, S.: https://www.linkedin.com/pulse/product-roadmap-dilemma-suchismita-
sahu/. Accessed 20 Aug (2022)

11. Pereira, D.: https://medium.com/serious-scrum/why-most-roadmaps-make-poor-results-ine
vitable-dd3372b183c8. Accessed 20 Aug (2022)

12. Datta, A.: https://rangle.io/blog/building-product-roadmaps/. Accessed 20 Aug (2022)

https://doi.org/10.1007/978-3-030-35333-9_29
https://figshare.com/s/9471896af513b54b38ee
https://www.koombea.com/blog/common-product-roadmap-mistakes/
https://www.linkedin.com/pulse/product-roadmap-dilemma-suchismita-sahu/
https://medium.com/serious-scrum/why-most-roadmaps-make-poor-results-inevitable-dd3372b183c8
https://rangle.io/blog/building-product-roadmaps/

Why Traditional Product Roadmaps Fail in Dynamic Markets: Global Insights 389

13. Marshall, J.: https://www.productplan.com/blog/5-things-that-can-ruin-your-product-roa
dmap/. Accessed 20 Aug (2022)

14. Gilley, C.: https://uservoice.com/blog/organizational-alignment-roadmap. Accessed 20 Aug
(2022)

15. Gottesdiener, E.: https://medium.com/@ellengott/7-ways-of-creating-and-sustaining-an-
agile-product-roadmap-9e4410a25a60. Accessed 20 Aug (2022)

16. McCloskey,H.: https://www.usertesting.com/blog/agile-product-roadmap .Accessed 20Aug
(2022)

17. Semick, J.: https://productschool.com/blog/product-management-2/nine-roadmap-mistakes/.
Accessed 20 Aug (2022)

18. Rex, A.: https://www.mindtheproduct.com/escape-from-the-feature-roadmap-to-outcome-
driven-development/. Accessed 20 Aug (2022)

19. Pragmatic: https://www.pragmaticinstitute.com/resources/articles/product/pitfalls-in-pro
duct-decision-making/ Accessed 20 Aug (2022)

20. TheProduct´sManagerToolbox:. https://theproductmanagerstoolbox.com/product-roadmap-
challenges/. Accessed 20 Aug (2022)

21. ProductPlan:. https://www.productplan.com/webinars/feature-less-roadmap/. Accessed 20
Aug (2022)

22. Kabisch, E.: https://productcrunch.substack.com/p/escaping-the-roadmap-trap. Accessed 20
Aug (2022)

23. Dhiman, M.: https://www.mindtheproduct.com/mistakes-to-avoid-while-creating-a-product-
roadmap/. Accessed 20 Aug (2022)

24. ProductPlan:. https://www.productplan.com/learn/reasons-product-roadmaps-fail/. Accessed
20 Aug (2022)

25. Wick,A.: https://www.ba-squared.com/blog/happens-dont-product-vision/.Accessed 20Aug
(2022)

26. Wong, A.: https://productmasterynow.com/blog/tei-154-pitfalls-that-can-trap-new-product-
managers-with-aero-wong/. Accessed 20 Aug (2022)

27. Umbach, H.: https://medium.com/fresh-tilled-soil/dear-product-roadmap-im-breaking-up-
with-you-a47cfa6ca4f7. Accessed 20 Aug (2022)

28. Bowler, M.:. https://www.productledalliance.com/the-common-pitfalls-preventing-product-
managers-reaching-their-highest-potential/. Accessed 20 Aug (2022)

29. Naji, C.: https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3831/7-Tactics-
to-Solve-Common-Product-Roadmap-Problems.aspx. Accessed 20 Aug (2022)

30. ProductPlan: https://www.productplan.com/learn/product-roadmap-sharing-mistakes/.
Accessed 20 Aug (2022)

https://www.productplan.com/blog/5-things-that-can-ruin-your-product-roadmap/
https://uservoice.com/blog/organizational-alignment-roadmap
https://medium.com/%40ellengott/7-ways-of-creating-and-sustaining-an-agile-product-roadmap-9e4410a25a60
https://www.usertesting.com/blog/agile-product-roadmap
https://productschool.com/blog/product-management-2/nine-roadmap-mistakes/
https://www.mindtheproduct.com/escape-from-the-feature-roadmap-to-outcome-driven-development/
https://www.pragmaticinstitute.com/resources/articles/product/pitfalls-in-product-decision-making/
https://theproductmanagerstoolbox.com/product-roadmap-challenges/
https://www.productplan.com/webinars/feature-less-roadmap/
https://productcrunch.substack.com/p/escaping-the-roadmap-trap
https://www.mindtheproduct.com/mistakes-to-avoid-while-creating-a-product-roadmap/
https://www.productplan.com/learn/reasons-product-roadmaps-fail/
https://www.ba-squared.com/blog/happens-dont-product-vision/
https://productmasterynow.com/blog/tei-154-pitfalls-that-can-trap-new-product-managers-with-aero-wong/
https://medium.com/fresh-tilled-soil/dear-product-roadmap-im-breaking-up-with-you-a47cfa6ca4f7
https://www.productledalliance.com/the-common-pitfalls-preventing-product-managers-reaching-their-highest-potential/
https://www.modernanalyst.com/Resources/Articles/tabid/115/ID/3831/7-Tactics-to-Solve-Common-Product-Roadmap-Problems.aspx
https://www.productplan.com/learn/product-roadmap-sharing-mistakes/

Understanding Low-Code or No-Code
Adoption in Software Startups:

Preliminary Results from a Comparative
Case Study

Usman Rafiq(B) , Cenacchi Filippo , and Xiaofeng Wang

Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
{urafiq,filippo.cenacchi,xiaofeng.wang}@unibz.it

Abstract. Low-code or no-code application development is a new jargon
in the software development community. In response, large and medium-
sized companies, are seen triggered to join the bandwagon. Existing
research on why small and innovative companies, like software startups,
apply this paradigm is limited. The current literature shows that soft-
ware startups are different from established software companies in terms
of their focus on innovation, market-driven context, limited resources,
and uncertainty. Therefore, in this paper, we study and report our ini-
tial understanding of why software startups apply low-code or no-code.
We studied two cases, in the first phase, to address the research question.
Our preliminary results show that software startups apply this paradigm
in an ad-hoc manner and use it for experimentation, prototyping, and
idea validation. On the flip side, large companies enjoy a stable workflow
of low-code or no-code development. The motivations include achiev-
ing rapid product development, fast feedback, and empowering busi-
ness users. These results provide a good starting point for discussion
and demand for further research. Including additional data, particularly,
more cases, therefore, is our essential next step to get a deeper under-
standing and report final results.

Keywords: Low code · No code · LCNC · LCAP · Startup · Digital
transformation

1 Introduction

Recent years have seen a continuing surge in demand for digitalization and
automation. As a result, software companies are striving to find possible ways to
deliver requirements rapidly and economically [1]. In addition, such companies
are hit hard by the challenge of recruiting software developers, showing a gap in
the demand and supply of tech talent acquisition [2]. This challenge is considered
the biggest challenge to economic growth, which can affect the delivery timeline
of the software applications as well [3].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 390–398, 2022.
https://doi.org/10.1007/978-3-031-21388-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_27&domain=pdf
http://orcid.org/0000-0003-3198-851X
http://orcid.org/0000-0003-2732-186X
http://orcid.org/0000-0001-8424-419X
https://doi.org/10.1007/978-3-031-21388-5_27

Low-Code or No-Code Adoption in Software Companies 391

To mitigate such barriers, companies have started embracing a relatively
new way of software development, known as Low-Code Application Development
(LCAD) or sometimes referred to as No-Code Application Development (NCAD).
This paradigm is introduced with an intent to promote digitalization and hyper-
automation by enabling quick development and delivery of software applications
[3]. It claims to facilitate developers as well as end-users, to contribute to the
software development process with minimal effort. End users participating in the
development process are assumed to have no prior knowledge of development and
are known as citizen developers [3,4].

LCAD/NCAD is gaining unprecedented traction since its inception [8]. Sev-
eral research surveys, conducted by known technological and market research
firms, such as Gartner and Forrester, forecast this paradigm to continue to boost
in the upcoming years [5,7,9]. In the same vein, Gartner predicts that by 2023,
over 50% medium to large enterprises will adopt LCAD/NCAD and by 2024,
the adoption rate will surpass 65% [9].

While the research highlights the adoption of such technologies by established
companies, it lacks in reporting the adoption for small and innovative companies
like for example, software startups. Recently, considerable scientific literature has
started emerging (e.g. [4,11–14]), intending to understand LCAD/NCAD, their
challenges, characteristics, taxonomy and relevancy with model-driven engineer-
ing. However, as we could tell, no empirical studies have been reported on a
comparative understanding of adoption for startup and established companies.
On the contrary, even though the research on software startups is emerging [10],
it does not take account of LCAD/NCAD so far. Therefore, there might be
varying determinants and contexts for both types of companies to adopt and
practice LCAD/NCAD. This is the gap that the current research intends to
address. Therefore, the guiding research question for our study is:

RQ: Why do software startups apply low-code or no-code application
development?

To answer the research question, we performed a comparative case study and
studied two companies, initially, as part of our ongoing research project. In our
sample, the first company is a software startup with a functional product. The
second case is a large and well-established company, which is studied to make
a comparative assessment. We conducted semi-structured interviews to collect
the data. Later, we analyzed the data using thematic analysis and reported our
comparative understanding of low-code adoption.

The remainder of the paper is structured as follows. Section 2 reports the
background and related work. Section 3 describes the research methodology that
we used to answer the research question and related validity threats. Likewise,
Sect. 4 reports our preliminary findings while Sect. 5 summarizes further steps
required to conclude the research.

392 U. Rafiq et al.

2 Background and Related Work

Low-Code or No-Code Application Development (LCAD/NCAD).
Originally inspired by model-driven engineering principles, LCAD facilitates
developers, of varying expertise, in developing applications rapidly [4]. The term,
low-code, was first coined by Forrester in 2014 [15] and a more detailed definition
was provided in 2017. Oftentimes, low-code and no-code, both are considered as
related terms [12]. Practitioners also indicate other synonyms like zero-code,
what you see is what you get, drag and drop, and visual programming, to refer
to low-code [13]. However, low-code and no-code are two common terminologies.
It is claimed that no-code requires no prior knowledge of programming. While
on the other hand, in low-code, a developer might need to write code or scripts.
For some authors, like [9] and [14], no-code is a subset of low-code and it is not
thought of as a separate market segment.

Much of the research on LCAD/NCAD has been carried out in recent years
and yet it is emerging. Sahay et al. [4] reported a comparison of available
LCAD platforms. Luo et al. [13] studied the characteristics and challenges of
LCAD/NCAD. A similar study is carried out by Alamin et al. [8] where authors
studied the perspective of developers in the adoption of this paradigm. In the
same vein, Ruscio et al. [12] made a comparison of it with model-driven engi-
neering. However, the literature lacks in making a comparison of its adoption by
startups and established companies.

Software Startups. Software startups are often characterized as compa-
nies with limited resources [10], trying to develop market-driven requirements
under uncertain environments [18]. These young companies yield innovation and
empower the economy by developing software-intensive applications [10]. How-
ever, products are generally developed by applying tailored software engineer-
ing practices. Startups constantly face multiple challenges during this develop-
ment. Time pressure, technology uncertainty, team formation, and fast-growing
markets are some major challenges in the startup context [16]. However, in
recent years, practitioners promoted the use of lean startup methodology to
find a product-market fit [17]. In this methodology, a startup hypothesizes an
idea, builds a minimum viable product, and based on the feedback, adjusts its
directions.

3 Research Method

Our study aims to understand the LCAD/NCAD adoption in context-specific
settings. We base our assumption on the fact that software startups are sig-
nificantly different entities when compared with established software companies
[10,18,21]. These realities make our study exploratory and therefore, the case
study approach seems to be a good fit for this research. The existing body of
research on startups suggests them as good candidates for low-code or no-code
adoption. However, the existing literature lacks reporting on such practices for

Low-Code or No-Code Adoption in Software Companies 393

startups. Going in the same vein, we further need a multiple-case study app-
roach [19] to guide our research. It is planned because a comparative assessment
of startup and established companies is aimed to answer the research question.

In the first phase of this research, therefore, we analyze and report two cases,
aliased as C1 and C2 to protect anonymity. Our unit of analysis is the company
itself. We approached the cases through personal email and LinkedIn invitations.
While we found the established company (C2) easily, we had great difficulty in
identifying the startup (C1) with experience in LCAD/NCAD. Moreover, we also
looked for a startup with a functional product, software as the main business, and
paying customers. Once found, we verified through available online information
that the startup company (C1) is venture-backed, growing fast, and fulfills our
criteria of case selection. We conducted semi-structured interviews to collect
the data. The participants were asked about the company or team background,
experiences, common practices, benefits, barriers, and lessons learned regarding
LCAD/NCAD. Both interviews were conducted in English through Microsoft
TEAMS. Each interview lasted 60min approximately and it was recorded after
the consent of the interviewees.

After data collection, we systematically analyzed the transcribed interviews
using thematic analysis [20]. We started by reading the interviews, extracting
related data, coding the chunks found useful according to the research question,
and classifying codes into themes. During this process, we followed the open
coding technique. The process had several iterations and it was performed by the
first author, however, outcomes were discussed in joint meetings as the analysis
process evolved. We used Nvivo to manage the analysis procedure. Lastly, we
narrated the results for each case and made a cross-case comparison according
to the guidelines provided by Yin [19].

3.1 Threats to Validity

Regarding validity threats to our study, one of the threats is the generalizability
of the findings. In our comparative study, we tried to understand the adoption
of LCAD/NCAD in startup companies and compare it with established ones.
We feel that more cases, particularly from varying business domains, should
be included in the sample to produce more concrete results. Though, as a first
step, we included one case from each group to get clues on the differences in
practices. Another threat to the validity of our findings is construct validity.
We mitigated this threat by applying triangulation during the data collection
and analysis phase. In this regard, we also developed the interview guide and
provided questions to interviewees beforehand. Likewise, the analysis results were
discussed among all authors. Lastly, one threat is related to the selection of a real
startup. We reduced this threat by establishing criteria for a startup selection.

4 Preliminary Results

Case (C1) is a venture-backed software startup that works in a digital health
care setup and offers services for practitioners and patients. The startup was

394 U. Rafiq et al.

launched six years ago and it pivoted multiple times before achieving the
problem-solution fit. Currently, the startup is striving to acquire the market.
It has two co-founders, working as Chief Executive Officer (CEO) and Chief
Technology Officer(CTO) respectively. The CEO (interviewee) is a tech enthu-
siast with a background in the medical field but holds extensive experience in
software product management and launching. The CEO also possesses hands-
on experience in LCAD/NCAD. Similarly, the CTO is an experienced software
developer.

Our data analysis revealed a few remarkable findings about startup com-
pany C1. Findings suggest that the startup is using both LCAD and NCAD
in developing several applications. It is somewhat different from C2 where only
LCAD is in practice. Interestingly, we also observe that LCAD/NCAD paradigm
in C1 is mainly adopted for prototyping, experimenting with new features, and
building internal products and a by-product. The following excerpt explains dif-
ferent usages of LCAD/NCAD: “It is used for various purposes. First of all,
on prototyping, second of all on designing, and third of all on conducting the
service”. The use of LCAD/NCAD for these purposes was indicated at three
separate instances in the data. However, surprisingly, we also noticed that it is
not used for the main product itself. When asked about it, the CEO highlighted
the domain limitation of LCAD/NCAD platforms: “basically, you can’t find the
platforms or ready solutions, at least for our product, because our product has
no similar products in the world ”.

While discussing the scarcity of resources in a startup environment, the CEO
alluded to the lack of technical resources as a primary reason for this adoption.
For example, in one instance, the CEO explained the scenario for early-stage
startups in the following words: “because they plan to struggle with their own,
let’s say assumptions. To create a prototype, I need to hire developers and create
it so in this sense”. The CEO further compared this with the traditional software
development approach and highlighted the need for deep development knowledge
for the later case: “you have to discover, you have to learn and you have to try
and then see how to do it traditionally because the traditional way you cannot do
this like without deep knowledge”.

We did not notice any particular workflow to develop applications in the
startup company. Therefore, in contrast to the company C2, the practice of
LCAD/NCAD in startup C1 is pretty ad-hoc, non-consistent, and significantly
different. However, on the question of the overall process they follow to develop,
the CEO mentioned the use of design thinking: “It’s always the design thinking,
you brainstorm You make a prototype. You validate, you deliver ”. Alongside this,
the difference applies to the platforms used by the company as well. We found
in the data that the startup is using multiple LCAD/NCAD tools. When we
asked the reasons, the CEO explained it in detail: “I used to read articles and
make researches on which platforms can be easier to penetrate for myself. This is
because I don’t want to spend time and money on creating prototypes. So I made
the research, and these platforms showed the best match for myself because still I
need to iterate(product ideas) fast and I need to make things today and test them

Low-Code or No-Code Adoption in Software Companies 395

tomorrow, so I don’t want to go deep (on a technology)”. This excerpt shows
that according to the need and within scarce resources, the startup searched the
internet for the appropriate LCAD/NCAD tools for a better fit.

Overall, we found that the key motivations behind this adoption include
reduced time to market, rapid problem/idea validation, and lastly mitigating
the absence of developers during the early times of the startup. In the same
vein, the CEO mentioned one of the significant challenges in the adoption of
LCAD/NCAD i.e. needs to educate investors as well as other team members to
adopt these technologies. The CEO revealed that if, as a startup founder, you
intend to use LCAD/NCAD as the paradigm to develop the idea then investors
won’t fund the startup. It is illustrated in the following words: “how are you going
to spend, for development, for coding and blah...if you say that you are using no
and low code technologies to create your business idea, then investors just won’t
give you money for that”. One possible reason is that investors are not aware of
this paradigm and there is a need to educate them on its benefits, as explained by
the CEO. The CEO commented: “This makes it much more complicated to raise
money in this market because investors have no clue regarding what this means
to develop a product using low and no code”. Ultimately, this challenge restricts
startup founders from fully utilizing the power of LCAD/NCAD. According to
the CEO, this particularly applies to early-stage startups.

Figure 1 illustrates the overview of preliminary findings explaining why
software startups apply LCAD/NCAD and why established companies do.
In the figure, C1 and C2 denote startup and established companies, respec-
tively. Similarly, the rectangles indicating C1 or C2 represent primary types of
LCAD/NCAD workflows, determinants of its usage, and lastly, types of prod-
ucts benefiting from it. In addition, the bordered lines as well as rectangles
show expected or realized benefits and domain areas where LCAD/NCAD is in
practice.

Fig. 1. Overview of preliminary findings

396 U. Rafiq et al.

Case (C2) is an established firm with international clients and multiple-site
offices. It offers software services, such as ERP, CRM, business intelligence, and
service management. The company works as an official partner of Microsoft. The
interviewee belongs to a five-member Business Intelligence (BI) team, headed by
a team leader, with the responsibility to develop and manage solutions for cus-
tomers within and outside the work group. The team consists of people with soft-
ware development and business background. The business resources are respon-
sible to educate customers on the developed solutions. The interviewee has an
informatics background with a professional degree and holds several years of
experience in development.

Our analysis suggests that rapid application development, faster feedback
loops, a reduced workload of developers, and empowerment of business users are
among the significant reasons for LCAD adoption in this company. The company
applies LCAD using Microsoft Power BI tool and facilitates customers in getting
self-service analytics at an enterprise scale. The use of this tool is not an option
for the company as they are obliged to use it. This is evident from the following
excerpt of the team lead: “We are a partner of Microsoft and Microsoft is pushing
in this direction”.

On the other hand, the practice of LCAD in C2 follows a structural work-
flow. It starts with aggregating multiple data sources and building a data model.
Thereafter, an interface is provided to customers. It is interesting to report that
customers, primarily business users from teams like sales, purchase, finance, and
management, can generate data visualizations according to their needs. They are
educated through training as well as their participation in the system develop-
ment phase. Therefore, business users don’t need to contact the developers again
for the new requirements. This ultimately reduces the developer’s workload and
therefore allows them to focus on the essential part of the system development.
Talking about the motivation for using LCAD, the team lead said: “visualization
of the data is not anymore just the task of the IT/ of the developer ”. He con-
tinued explaining the developer’s relief from such requirements change requests:
“each user in his department, I don’t know, finance sales purchase, they can cre-
ate their reports and have not any more to explain all the processes to the IT ”. It
is further highlighted that empowerment of business users eventually privileges
companies with a low number of developers to do large and multiple projects
as the technical tasks are now limited because of the LCAD. He put it in this
excerpt: “if you have a low number of technical people with this approach, you
can do bigger projects because you have a smaller amount of tasks to handle with
the technical people”.

While explaining the outcomes of LCAD adoption, the team lead also
expressed that LCAD made the development process faster and less hectic. He
expressed his opinion in the following excerpt: “process is much faster and a lot
of effort is not anymore locked ”. Perhaps the involvement of business users dur-
ing the system development as well as empowering them to fulfill their technical
requirements are the possible reasons for this rapid application development and
fast feedback loops. The data analysis also suggests that users are involved in

Low-Code or No-Code Adoption in Software Companies 397

the process during the prototype building and they start using the system even
before the deployment. The following comment illustrates this notion: “we get
really quick feedback because they are doing it on their own so the loop is in-
house”. The team lead added further: “(for) the technical parts, we are getting
really quick answers because they (users) are using it already during and before it
goes live”. Likewise, while comparing the LCAD paradigm with traditional soft-
ware development, the interviewee further added: “with this approach (LCAD),
they are made part of the project and the feedback is much quicker ”.

Our data analysis further reveals that the company C2 achieves faster feed-
back loops by involving business users after developing a solution prototype.
The prototype is evolutionary and technical steps, for instance, the essential
data model is already built by the development team. Afterward, the users are
shown the prototype and they provide feedback. Commenting on this, the team
lead said: “we are preparing prototypes so that the customer can see what are
the possibilities”. According to the team lead, most of the visualization work is
developed after involving users. It is expressed in the following statement:“as
just a prototype and I would say 90% of the final solution is then done during
the project, especially if we talk about the visualization”. We also found that
the company educates users through training and empowers them by expressing
usage scenarios so that users can think out of the box. The interviewee expressed
their practice in educating users in the following words: “for the training and so
on, we use this solution and yeah, of course, we have to show examples of what
are the possibilities and how it can look like”.

5 Next Steps

Our preliminary results provide a good starting point for discussion and fur-
ther research. Therefore, an immediate next step is to refine our understanding
of LCAD/NCAD adoption by interviewing more people from selected cases. In
this iterative step, we intend to interview CTO from company C1 and the devel-
oper role from company C2. Adding other interviewees might provide additional
insights on the topic. In the next phase, we plan to include two more cases, one
from each category, to produce comprehensive results. Including additional cases
to our data, therefore, is our essential next step to get a deeper understanding
and report final results.

References

1. Sanchis, R., Garcıa-Perales, Ó., Fraile, F., Poler, R.: Low-code as enabler of digital
transformation in manufacturing industry. Appl. Sci. 10, 12 (2019)

2. Torres, C.: Demand for Programmers Hits Full Boil as US Job Market Simmers.
Bloomberg, Com (2018)

3. Waszkowski, R.: Low-code platform for automating business processes in manufac-
turing. IFAC-PapersOnLine. 52, 376–381 (2019)

398 U. Rafiq et al.

4. Sahay, A., Indamutsa, A., Di Ruscio, D., Pierantonio, A.: Supporting the under-
standing and comparison of low-code development platforms. In: 2020 46th Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA), pp.
171–178 (2020)

5. Richardson, C., Rymer, J.: The Forrester Wavetm: Low-Code Development Plat-
forms. Forrester, Cambridge, MA, USA (2016)

6. Gartner Gartner forecasts worldwide low-code development technologies market to
grow 23% in 2021. https://www.gartner.com/en/newsroom/press-releases/2021-
02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-
to-grow-23-percent-in-2021

7. Rymer, J., et al.: The forrester waveTM: Low-code development platforms for ad&d
professionals, q1 2019. Forrester Report, Forrester (2019)

8. Al Alamin, M., Malakar, S., Uddin, G., Afroz, S., Haider, T., Iqbal, A.: An empirical
study of developer discussions on low-code software development challenges. In:
2021 IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR), pp. 46–57 (2021)

9. Vincent, P., Iijima, K., Driver, M., Wong, J., Natis, Y.: Magic quadrant for enter-
prise low-code application platforms. Gartner Report (2019)

10. Unterkalmsteiner, M., et al.: Software startups-a research agenda. E-Inf. Softw.
Eng. J. 10, 89–123 (2016)

11. Bock, A., Frank, U.: Low-code platform. Bus. Inf. Syst. Eng. 63, 733–740 (2021)
12. Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.:

Low-code development and model-driven engineering: two sides of the same coin?
Softw. Syst. Model. 21(2), 437–446 (2022). https://doi.org/10.1007/s10270-021-
00970-2

13. Luo, Y., Liang, P., Wang, C., Shahin, M., Zhan, J.: Characteristics and challenges
of low-code development: the practitioners’ perspective. In: Proceedings of the
15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1–11 (2021)

14. Prinz, N., Huber, M., Riedinger, C., Rentrop, C.: Two perspectives of low-code
development platform challenges-an exploratory study (2022)

15. Richardson, C., Rymer, J., Mines, C., Cullen, A., Whittaker, D.: New develop-
ment platforms emerge for customer-facing applications. Forrester, Cambridge,
MA, USA. vol. 15 (2014)

16. Giardino, C., Bajwa, S., Wang, X., Abrahamsson, P.: Key challenges in early-stage
software startups. In: International Conference on Agile Software Development,
pp. 52–63 (2015)

17. Ries, E.: The lean startup: how today’s entrepreneurs use continuous innovation
to create radically successful businesses. Currency (2011)

18. Rafiq, U.: Towards understanding analytics in software startups. In: 2022
IEEE/ACM International Workshop on Software-Intensive Business (IWSiB), pp.
31–38 (2022)

19. Yin, R.: Case study research: design and methods. In: SAGE (2009)
20. Cruzes, D., Dybå, T., Runeson, P., Höst, M.: Case studies synthesis: a thematic,

cross-case, and narrative synthesis worked example. Empir. Softw. Eng. 20, 1634–
1665 (2015)

21. Melegati, J., Chanin, R., Sales, A., Prikladnicki, R.: Towards specific software
engineering practices for early-stage startups. In: International Conference on Agile
Software Development, pp. 18–22 (2020)

https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1007/s10270-021-00970-2

Testing and Bug Prediction

Test Case Selection with Incremental ML

Markus Mulkahainen, Kari Systä(B) , and Hannu-Matti Järvinen

Tampere University Unit of Computing Sciences, Tampere, Finland
{kari.syst,hannu-matti.jarvinen}@tuni.fi

Abstract. Context: Software projects applying continuous integration
should run the tests very frequently, but often the number of test is
huge and their execution takes a long time. This delays the feedback to
the developer. Objective: Study if heuristic and especially incremental
machine learning can help in finding an optimal test set that still finds
the errors. Method: Several methods for reducing the tests were tested.
Each method was applied to the example software its commit history,
and the performance of the methods were compared. Results: The test
set size can be radically reduced with automatic approaches. Further-
more, it was found that the incremental machine learning based test
selection techniques eventually perform equally well or better than the
best heuristic.

Keywords: Test case selection · Continuous integration

1 Introduction

This paper documents research that has been inspired by a practical need in
a company. The research was originally conducted for a master thesis [13], and
this paper summarizes the research for an international audience.

Continuous Integration (CI) is a software engineering practice that automates
software integration and encourages developers to commit more often. Testing in
CI should be automatic [18] and extensive. Every change in the software should
be validated in the context of the whole software to maintain quality.

Test suites tend to grow large during the development and lead to long-
lasting test suites. In the context of the case company, Space Systems Finland1,
the problem culminates in validation tests, which exercise multiple end-to-end
tests, and even the execution of a single test can take a long time. Test case
selection and prioritization can be used in such situations to reduce the time for
developer feedback.

The case context was satellite instrument control software for the Meteosat
Third Generation Sounder (MTG-S) satellites. The instrument, namely Sentinel-
4/UVN, is a high-resolution spectrometer and will be used to monitor air quality
parameters over Europe, and the case of this paper was a command and control

1 http://www.ssf.fi/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 401–417, 2022.
https://doi.org/10.1007/978-3-031-21388-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_28&domain=pdf
http://orcid.org/0000-0001-7371-0773
http://orcid.org/0000-0003-0047-2051
http://www.ssf.fi/
https://doi.org/10.1007/978-3-031-21388-5_28

402 M. Mulkahainen et al.

software for the Sentinel-4/UVN instrument. The software and its validation
tests are programmed in Ada.

Test case selection (TCS) selects a subset of the test suite for repeated testing.
Ideally, the selected subset of the tests finds the same number of faults with lesser
effort compared with the original test suite. However, the reduced test set may
not include all fault-revealing test cases, but TCS discards some of them. Finding
the optimal subset in TCS is a non-obvious task, especially in large systems with
a large number of test cases. Machine learning (ML) is an interesting approach
for this. Because each project is new and different from the others, incremental
ML may be more suitable than approaches with a separate learning phase.

The goal of this research was to evaluate different TCS techniques in order
to speed up the testing and facilitate continuous integration. Specifically, the
research question was How effective is incremental machine learning for test
case selection and how does it compare to heuristics-based methods?

Machine learning has become more popular in the domains of TCS [2,8,9,17].
These studies have shown promising results in using ML for TCS.

The paper is organized as follows. Section 2 introduces the background and
Sect. 3 summarizes the related research. The experiment is described in Sect. 4
and the results are presented in Sect. 5. The results are discussed in Sect. 6.
Finally, Sect. 7 gives the conclusions.

2 Background

2.1 Dependency Coverage

All heuristic methods used in this study rely on dependency coverage. A modi-
fication can break functionality in the modified module, but also in the modules
that depend on the modified module. This can be troublesome as faults can show
up in surprising components or sub-systems [19].

A rather safe way to reduce the number of tests, but to still reveal faults in
the dependent modules, is to recognize tests that target the modified modules
and their dependents and execute them. The aim is to recognize every test case
that could be transitively affected by a change. A test case is affected if the test
or any of its dependencies is modified [19].

2.2 Machine Learning

The gist of ML is a piece of software, that is capable of improving its performance
in a set of tasks, based on experience [12]. In this paper, incremental machine
learning means the application of machine learning algorithms so that the model
continuously learns from the new input while being used.

Before machine learning techniques can be applied to test cases, the problems
need to be coded to the ML algorithm, i.e., they have to be represented as feature
vectors. The values used in feature vectors are described below.

Seven features are used to represent test cases as feature vectors, namely
statement coverage, modification coverage, similarity score, duration, failure rate,

Test Case Selection with Incremental ML 403

latest pass and history length. The features are somewhat similar to features used
in a related study [2]. The following describes how these features are attained.

Statement Coverage is a floating-point number with a closed interval between
0 and 1. It is the total percentage of statements (or lines) covered by a test
case. The statement coverage is updated every time the test case is executed
and remains unchanged until the test case is re-executed. Line coverage is used
instead of statement coverage, because that information was available.

Modification Coverage is similar to statement coverage, but the coverage
is calculated over the modified lines of a commit instead of all software code
lines. More closely, the modification coverage is calculated as |Ct∩M |

|M | where Ct

is the coverage of the test case and M is the set of modified lines. The test
coverage, Ct, is produced by gcov -tool. Git diff command was used to find M .
The full coverage of previous test executions is needed to deduce coverage over
the modified lines, e.g. |Ct ∩M |. Therefore, the full coverage produced by gcov -
tool needs to be persisted and transferred between any two commits.

Similarity Score is a similarity measure between a code change (git commit)
and a test case, where a higher value means that certain keywords occur more
often in both texts suggesting a higher similarity. The similarity score is calcu-
lated with TF-IDF transformation and cosine similarity [10]. A similarity score
is a floating-point number with a closed interval between −1 and 1.

Duration is the test execution time of the test case in seconds. Duration is
updated every time the test case is executed.

Failure Rate is a floating-point number in a closed range between 0 and 1,
and it is calculated by Tf

Tp+Tf
where Tf is the total number of failures and Tp

is the total number of passes of a single test case. Every test execution updates
this value because either Tf or Tp is incremented.

Latest Pass is a left-closed and right-unbounded discrete value from 1 to
infinity. It is the number of failing test executions that precedes a passing test
execution. Every failing test execution increments this value by one and passing
execution resets the value back to 1. The initial value 1 is set because of the
assumption that initially, every test case is passing.

History Length is a left-closed and right-unbounded discrete value from 1 to
infinity which denotes the number of executions for the test case. The initial
value is 1 and each test execution increments the value by one.

2.3 Test Case Selection

Test case selection techniques are a group of regression testing techniques where
a subset of the test suite is selected for execution. It reduces the execution time,
but at the same time risks neglecting fault-revealing test cases.

Test case selection techniques have been evaluated in the literature using
metrics such as test suite reduction (TSR) and reduction in fault detection effec-
tiveness [3,4,16]. Test suite reduction is expressed as [16]

TSR = 1 − |T ′|
|T | (1)

404 M. Mulkahainen et al.

where T is the original test suite and T ′ is the reduced test suite. Reduction in
fault detection effectiveness (RFDE) is given as [16]

RFDE = 1 − |FT ′ |
|FT | (2)

where FT is the set of faults found by the original test suite T and FT ′ is the set
of faults found by the reduced test suite T ′. The test case selection techniques
should maximize the test suite reduction and minimize RFDE.

In this study, FT is unknown, e.g. the number of actual faults in the system
is not known. The failing test cases are known, but a failing test does not always
reveal one unique fault. One failing test can reveal any number of actual faults.
Because FT is not known, RFDE cannot be used to measure the performance of
TCS techniques. Instead, it is assumed that finding the failing test cases helps
to find the actual faults in the system. Therefore, TCS techniques are used to
find the failing test cases, fT , from T . The reduced test suite is not wanted to
contain anything else but the failing test cases. In addition to TSR, the objective
becomes to maximise the proportion of test failures in the reduced test suite T ′:

|fT ′ |
|fT | (3)

where fT ′ is the set of failing tests in T ′, and fT is the set of failing tests in
the original test suite T . The expression 3 can be rewritten with true positives
(Tp), false positives (Fp), true negatives (Tn) and false negatives (Fn) by using
Knauss et al. [7] descriptions:

– Tp: Test cases that were correctly selected to the reduced test suite (predicted
to fail and failed).

– Fp: Test cases that were incorrectly selected to the reduced test suite (pre-
dicted to fail but passed).

– Tn: Test cases that were correctly omitted from the reduced test suite (pre-
dicted to pass and passed).

– Fn: Test cases that were incorrectly omitted from the reduced test suite (pre-
dicted to pass but failed).

The expression 3 can be rewritten with Tp, Fp, Tn and Fn:

|fT ′ |
|fT | =

|Tp|
|Tp| + |Fn| (4)

which is the same as recall in information retrieval theory [5,15]. The same can
be done for test suite reduction, and rewrite it with Tp, Tn, Fn and Fp:

TSR = 1 − |T ′|
|T | =

|T | − |T ′|
|T |

=
(|Tn| + |Fn| + |Fp| + |Tp|) − (|Tp| + |Fp|)

|Tn| + Fn + |Fp| + |Tp|
=

|Tn| + |Fn|
|Tn| + |Fn| + |Fp| + |Tp|

(5)

Test Case Selection with Incremental ML 405

There are now two conflicting performance scores for TCS techniques: test
suite reduction and recall. The goal is to find a TCS technique that maximises
both of these scores. It is not trivial, because increasing one potentially decreases
the other and vice versa.

Thus, the Matthews correlation coefficient (MCC) is introduced. MCC was
found to be a good surrogate for a combination of test suite reduction and recall.
The MCC score is a single value and gives us a more robust way to compare the
performances of TCS techniques. B.W. Matthews introduced the MCC-score in
1975 [11] and defined it as:

MCC =
|Tp| × |Tn| − |Fp| × |Fn|√

(|Tp| + |Fp|)(|Tp| + |Fn|)(|Tn| + |Fp|)(|Tn| + |Fn|)
(6)

The highest possible MCC score is 1. It is achieved when Fp = 0, Fn = 0,
Tp �= 0 and Tn �= 0. In such a case, there are no incorrect predictions. Selecting
only the failing predictions, the ”perfect selection” is got. The perfect selection
never fully satisfies test suite reduction, e.g. TSR �= 1, but always results in the
maximum recall value of 1. In other words, MCC = 1 evaluates to the highest
possible test suite reduction for a recall of 1.

2.4 Evaluated Algorithms for TCS

In the case study, there were three heuristic methods based on data coverage;
the fourth one is a random method.

Random. In the random technique, both the number of tests and the tests
themselves are selected randomly. This means that from |T | test cases n random
tests are selected. Hence, n (the size of the selected test suite) can have any
value between 0 and |T |.

Coverage. The coverage technique selects every test case that covers a modified
statement as described in Sect. 2.1. The size of the selected test suite varies
between 0 to |T | as in the case of the Random technique.

Coverage (H). This technique includes all the cases of the Coverage technique
and tests that have failed in the previous iteration. Naturally, the size of the test
suite is between 0 to |T |.

Coverage (PH). In this technique, the first step is to select the tests in similarly
to Coverage(H). Furthermore, if the selection size is greater than 2% of |T |, the
selected tests are prioritized and n top test cases are selected until the 2% limit
is reached. The prioritization step calculates the average of test history and
coverage, sorts the test cases descending and selects n top test cases from the
sorted list. In this technique, the test suite size falls between 0 and 0.02 × |T |.

406 M. Mulkahainen et al.

The machine learning techniques apply binary classification over the test case
samples and categorize the samples into bins of passing and failing. The selected
techniques, except the unlimited version of RandomForest(U), guarantee 98%
test suite reduction.

RandomForest. Select every test case that is predicted failing using random
forest classifier from scikit-learn toolkit [14]. The random forest implementation
follows Breiman’s implementation [1]. Furthermore, if selection size is greater
than 2% or less than 2, prioritize the test suite T using class probabilities and
select 2% of the most promising tests. This means that the size of the test suite
is between 2 and 0.02 × |T |.

RandomForest(U). As above, but the test suite size is not limited. Hence,
prioritisation is not needed and the size of the test suite is between 2 and |T |.

LogReg. Select every test case that is predicted failing using logistic regression
classifier from scikit-learn. If the selection size is greater than 2% or less than 2,
use the same prioritisation method as in RandomForest. This leads to the test
suite size of 2 to 0.02 × |T |.

XGBoost. Select every test case that is predicted failing using gradient boosting
technique (XGBClassifier) from xgboost-library. Also in this case, if the selection
size is greater than 2% or less than 2, prioritisation is done as in the case of
RandomForest resulting in the test suite size between 2 and 0.02 × |T |.

3 Related Work

Spieker et al. [17] used reinforced learning and multi-layer perceptron to predict
failing test cases based on test history. They actualized both test case selection
and prioritization in test suites. The idea was to 1) prioritize the test suite T, and
2) repeat selecting the topmost test from T as long as the summed duration of the
selected tests goes under a time threshold M. They used the normalized average
percentage of faults detected (NAPFD) to measure the performance of their
technique and concluded that approximately 60 CI cycles are needed to perform
equally or better than the reference techniques. The reference techniques were a
random technique, which ordered test cases randomly, a sorting technique, which
ordered recently failed test cases with higher priority, and a weighing technique,
which ordered test cases by a weighted sum of the test features. Spieker et al.
were the first to apply reinforcement learning in TCS.

Di Nardo et al. [11] applied TCS in an industrial system with real regression
faults. They measured reductions in test suite sizes and fault detection effective-
ness with their coverage-based TCS techniques. They were barely able to reduce
test suite sizes at all. The maximum reduction was 2%. Because of the small

Test Case Selection with Incremental ML 407

reductions, fault detection was not compromised. Di Nardo et al. discussed, that
the small reductions in test suite sizes were likely due to modifications to the core
components of the software. Such parts are covered by a multitude of test cases.
Additionally, Di Nardo et al. examined only four different software versions, and
the modifications between versions were arguably large.

Beszédes et al. [6] used priority-based TCS to reduce test suite size in the
WebKit web browser engine. In their initial experiments, they selected every test
case that covered the modified procedures in the software, or that had failed
previously. Using this initial selection, they witnessed a test suite reduction of
79.43% with 95.08% recall on average. In their study, Beszédes et al. used the
term “inclusiveness” instead of a recall, but both measures are the same.

When Beszédes et al. applied their selection technique in an actual live system
they witnessed a test suite reduction of 51% with 75.38% recall on average.
Beszédes et al. extended their selection technique with an extra prioritization
step. The prioritization was based on coverage information. With this extra
step, Beszédes et al. were able to further reduce the selection size. With this
technique, they showed a test suite reduction of over 90% with half the recall
compared with the non-prioritized test suite. Thus, the recall was interpreted to
be approximately 38%. Comparing this result with the result by Busjaeger and
Xie [10], the ML-based TCS technique seems to have superior performance.

Harrold et al. [19] experienced fluctuating test suite reductions with their
code-based regression-test-selection technique. Their TCS technique relied on
code coverage information. Harrold et al. recorded test suite reductions from 0%
to almost 100%. They discussed, that the large reductions were due to small
modifications in the software, where only a few methods covered by a few tests
were changed. Harrold et al. did not analyze thoroughly the reasons behind the
small reductions but mentioned that the location of a change can affect test suite
reduction. As Harrold et al. applied their technique over four different software
with less than eleven software versions, it is possible that the modifications
between two consecutive versions were still quite large. Applying TCS in such
versions can bring no reduction in test suite size.

Gligoric et al. [17] used dynamic dependency tracking from tests to files to
reduce the number of tests. Their tool, “Ekstazi”, can track any changes in files
that are dependent on the tests, and execute only part of the test suite that is
relevant for a set of file changes. The tool is capable of tracking source code files,
but also configuration files. The tool monitors the execution of tests running on
JVM and collects the accessed files using bytecode instrumentation and listening
to all standard Java library methods that might open a file. After the collection
of the dependent files is done, the tool can select a subset of tests to be executed
for any change made in the dependent files. Gligoric et al. report, that their tool
is capable to reduce end-to-end testing time by 32%.

Yoo et al. [45] used dependency coverage among other features to select and
prioritize tests. The optimization technique by Yoo et al. balanced three com-
peting objectives: dependency coverage maximization, historical fault detection
maximization and execution time minimization. Yoo et al. reported an average
test suite reduction of 68% with their technique.

408 M. Mulkahainen et al.

4 The Experiment

4.1 Data Collection

The research is based on the version control history of an existing project (528
tests and 87 commits – for further details see [13]). The first phase collected data
about tests in each commit in the version control history. An essential part of
this data collection was re-executing tests for each version of the software. Then,
different test case selection algorithms were applied.

Because data was collected by executing the tests, it took a long time. To
reduce the time, handling of source modifying commits and test modifying com-
mits were separated. When a commit modifies only test/ directory and not src/
directory at all, a transitive dependency selection includes only test cases that
are transitively affected by the modification. This reduced the number of tests to
execute. To further optimize the data collection, consecutive instances of test/*
modifying commits were merged. This was done as a preprocessing step before
running the data collection algorithm. Every commit that had no source or test
modifications was also removed since they had no effect on the functionality of
the software. The data collection algorithm used is the following:

1. Checkout newest commit
2. Repeat:

(a) If the current commit has src/* modifications:
i. Execute test suite

(b) Else if the current commit has test/* modifications:
i. Find modified tests through transitive dependency selection (see 2.1)
ii. Execute modified tests

(c) Save executed test verdicts, coverage and durations
(d) Checkout previous commit

The output of this algorithm is an ordered set of tuples D = {commit, tests},
where commit is a commit’s checksum (identification in Git) and tests is a set of
tuples {verdict, coverage, duration}. Verdict is the output: pass or fail, coverage
is the full gcov-coverage for the test, and duration is the length in seconds.

Step 2ai, test suite execution, lasted about 17 h. The algorithm was continu-
ously being executed for approximately two months for the preprocessed version
control history. 87 commits ended up in the dataset, where 45 commits had only
source code modifications, 17 commits had both test and source code modifica-
tions and 25 commits had only test modifications. Unfortunately, the test suite
contained many non-deterministic test cases due to differences in the test envi-
ronments. Those tests were removed from the dataset As a result, a portion of
the commits ended up having no faults. These commits were not removed from
the dataset.

The characteristics of the collected dataset are shown in Table 1. Note, that
the build or execution failures are test cases that had passed at least once before.
Every test case that was recently added and had build or execution failures were
removed because it was impossible to gather coverage information for them. As

Test Case Selection with Incremental ML 409

soon as the removed tests passed again in the following commits, they were
added back to the test suite. The oldest commit in the dataset did not luckily
contain any failing tests after the non-deterministic tests were removed.

Surprisingly, many of the test cases failed because of build or execution errors.
The reason behind this was not thoroughly studied, but it could possibly relate
to differences between the test environments used in this research and the real
one. It is also possible that the developers were aware of these build failures all
along, and they had no intention to fix them.

Table 1. Charasteristics of the data used in this research.

Modifications Source code Source and test code Test code

Commits 45 17 25

Commits with at

Least one failing test case 36 14 11

Failing tests 142 124 119

Normal failures 32 66 39

Build or execution failures 110 58 80

Passing tests 22590 8513 7109

More details about the data and its collection can be found in the original
thesis [13].

4.2 Test Case Selection

All test case selection algorithms were applied by iterating through the collected
data. The algorithm below presents the procedure. The algorithm was run for
every test case selection technique t and for every tuple d ∈ D:

1. If d.commit has test/* modifications:
(a) Let Ttmod be the tests selected with transitive dependency selection

2. If d.commit has src/* modifications:
(a) Let Tsmod be the tests selected with t according to current knowledge C

3. Let T ′ = Ttmod ∪ Tsmod

4. Simulate the execution of T ′

5. Update current knowledge C

C represents the current knowledge about the test cases. This includes the
coverage, duration, and test verdict histories (history of passes and fails) for every
test case. In the first commit, this information is not available, and therefore one
commit is needed to initialize the test case selection techniques. During the first
commit, the initial coverage, duration, and test verdicts were collected.

In the first step, a transitive dependency selection to the d.tests is applied, if
d.commit type is “test” or “source&test”. In the second step, the TCS technique

410 M. Mulkahainen et al.

t to d.tests using the current knowledge C is applied. The selected tests were
saved in Tsmod. In the third step, the transitively affected tests Ttmod and the
selected tests Tsmod are combined. Ttmod is empty, if d.commit type is “source”.
Tsmod is empty, if d.commit type is “test”, respectively. If d.commit type is
“source&test”, both Ttmod and Tsmod can contain test cases, but not the same
test cases. In the fourth step, it is not necessary to execute the reduced test suite
T ′, because it was already done during the data collection phase. Instead, the
existing information of T ′ was used, and current knowledge was updated about
test histories.

The last step 5 is rather complex. The selection Tsmod is turned into feature
vectors, but only if d.commit type is “source”. Using the coverage, duration and
verdict the feature vector {statement coverage, modification coverage, similarity
score, duration, failure rate, latest pass} is created for every test case. This is done
for all tests in Tsmod, and they are saved for the next iteration di+1. This idea is
applied for every source commit, and eventually, the training data accumulates
and grows larger. The training dataset is a set of {Tsmod1 , ..., Tsmodn−1 , Tsmodn

},
where n is an index of a source commit. During every iteration, the machine
learning model is re-trained with this training dataset.

It is also necessary to calculate the MCC metric, recall and test suite reduc-
tion between the steps 4 and 5 if the d.commit is a source commit and the
commit has at least one failing test case. If there are no failing tests, the output
of MCC is undefined, recall is zero, and test suite reduction would be the only
indicator worth measuring. Therefore, measuring performances is skipped when
the commit has no failing tests. In addition to non-faulty commits, performances
in “test&source” commits or “test” commits were not measured either.

5 Results

Test case selection techniques were compared using Matthews correlation coeffi-
cient (MCC) values. The boxplot in Fig. 1 shows MCC-scores for each technique
over 35 commits. The green triangle is the mean and the orange line is the
median. The box presents values from lower to upper quartile. The whiskers
display the range of the data, and the dots are outliers. Coverage(PH) technique
has the highest median and mean MCC-score, and Random technique the lowest.

To examine the significance of the techniques, a Kruskal-Wallis test was done
for the MCC scores across 35 source-modifying commits with a failing test. The
result showed an H-statistic of 117.9 and the p-value of 2.07 · 10-22 allowing the
rejection of the null hypothesis (medians of the groups are equal). To find which
of the groups were different, a pairwise posthoc test was done using Dunn’s test
with Bonferroni adjustment. The pairwise comparison is shown in Fig. 2.

Figure 3 shows MCC-trend for each heuristic (top) and each machine learning
technique (bottom) across 35 source modifying commits. All machine learning
techniques have fairly low MCC values during the first 19 commits. Towards the
end, the machine learning techniques improve.

Test Case Selection with Incremental ML 411

Fig. 1. MCC of each test case selection method over 35 commits.

Fig. 2. Pairwise significance analysis using Dunn’s test with Bonferroni adjustment.
Any value below 0.05 indicates a significant difference in MCC.

6 Discussion

6.1 Test Case Selection

This test case selection case study, compared the performance of eight test case
selection techniques. Four of the techniques were based on heuristics, and the
rest four were based on machine learning. For each technique three different
performance indicators were measured, namely test suite reduction, recall, and
Matthews correlation coefficient. The MCC-score was used to differentiate the
well and poorly performing techniques in a form of significance analysis using
Dunn’s test with Bonferroni adjustment (Fig. 2).

412 M. Mulkahainen et al.

Fig. 3. MCC per method and commit. Trends for heuristics are shown in the top plot,
and for machine learning techniques in the bottom plot.

Heuristics. The significance analysis revealed, that Coverage and Random
techniques were outweighed by other techniques. Interestingly, Coverage and
Random techniques did not have a statistical difference in their performances.

The coverage based test case selection (Coverage) achieved test suite reduc-
tion of 64.7% while having a recall of 39.5% on average. The MCC scores had
no significant differences from Random technique.

The Coverage(H) technique was able to resolve part of the issues of Coverage,
providing significantly better results. It had an additional way to predict a test
failure, namely the latest pass. It selected every test case that either covered a
modification or failed in the previous commit.

The Coverage(PH) technique was the most promising technique among the
heuristics of this paper. It used priority-based test case selection over modifica-
tion coverage and test history. It selected every test case that covered a change or
failed in the previous commit. If the selection size was still too large, it reduced
the selection by prioritizing the selected tests using failure rate, latest pass, and
modification coverage.

Machine Learning. The assumption was that the performance of the machine
learning models gradually increases as tests are being executed and new labeled
data samples are accumulated in the training dataset. It was interesting to know,
whether the machine learning techniques eventually reach the same performance

Test Case Selection with Incremental ML 413

as the heuristics, and if so, then how long time does it take to reach a similar
performance? To investigate this, Fig. 3 shows the performance of each technique
over time. Indeed, every machine learning technique shows a positive trend for
the MCC scores, where the techniques performed better in the end than in
the beginning and towards the end they performed equally or better than the
heuristics. It looks like that at commit number 20 all techniques gained a positive
boost, and they perform better than in commit 19.

During the first 19 commits, the machine learning techniques had fairly low
MCC scores possibly due to the low amount of negative samples in the training
data. Between commits 20 and 35 however, the machine learning techniques
seem to perform better. The Table 2 collects the recall and test suite reduction
values of each technique between the commits 20 and 35.

Table 2. Average recall, test suite reduction and Matthews correlation coefficient for
each test case selection technique.

Commits 1-19 Commits 20–35

Technique Recall TSR MCC Recall TSR MCC

Random 0.316 0.588 −0.010 0.489 0.528 0.003

Coverage 0.553 0.524 0.047 0.215 0.793 0.007

Coverage(H) 0.886 0.523 0.387 0.947 0.778 0.600

Coverage(PH) 0.781 0.988 0.515 0.790 0.986 0.736

LogReg 0.412 0.982 0.189 0.783 0.987 0.771

RandomForest 0.623 0.980 0.220 0.790 0.990 0.854

RandomForest(U) 0.702 0.980 0.255 0.871 0.983 0.881

XGBoost 0.570 0.980 0.203 0.755 0.990 0.798

Comparing the columns of commits 1–19 with columns of commits 20–35,
the machine learning techniques had increased their recall but also improved test
suite reduction a bit. RandomForest(U) technique outperformed Coverage(PH)
in recall with a slightly lesser test suite reduction. The rest of the techniques
also provided competitive results to Coverage(PH). Coverage(H) still remained
the technique with the highest recall.

The best performing machine learning model was an unlimited random forest
(RandomForest(U)), which achieved a test suite reduction of 98.2% and recall of
73.1% on average. Towards the end the recall was notably higher, rendering MCC
score also higher. This is a promising result for incremental learning-based test
case selection and shows that machine learning techniques have the capability
to outperform heuristics in a relatively small number of commits.

Spieker et al. [17] used reinforcement learning to select and prioritize test
cases, and their technique required 60 consecutive commits to perform equally
or better than comparison techniques. The test case selection results in this study

414 M. Mulkahainen et al.

suggest, that approximately 20 source code modifying commits to provide sim-
ilar results with the comparison techniques. The machine learning techniques
provided similar or better MCC scores compared to the Coverage(PH) tech-
nique after 20 commits. This could indicate, that using a different model (e.g.
random forest classifier instead of multilayer perception), accumulating training
data and re-training the machine learning model in every iteration, and using
more features in addition to test histories, such as coverage information and
text similarity scores, can help to reach the saturation point faster. The results
achieved in this study, are not outright comparable to the results of Spieker
et al., because experimentation setups were different, the comparison methods
were different and the used measures were different, namely NAPFD and MCC.
Also, the results were not validated with other projects but the techniques were
applied to a single software project only. Therefore, more investigation is required
to compare results more reliably with Spieker et al. and this research.

Busjaeger and Xie [2] used supervised learning and pointwise ranking to
prioritize test cases. They were able to select 3% of the topmost test cases and
provide 75% recall. Such selection equals to 97% test suite reduction. The results
of this study are approximately similar, but the results were achieved with less
training data. The results in this study suggest, that even if initial training data
does not exist, incremental learning can eventually achieve similar performance
to supervised batch learning. The saturation point was at about 20th commit,
and then the performance was similar to [2].

In many cases, false positives and false negatives have different impacts. One
disadvantage of the MCC score is that it values false positives and false negatives
similarly, i.e. it is invariant to the changes in false positives and false negatives
when their sum is constant. Small amount of false negatives and a greater amount
of false positives is more beneficial than the contrary in test case selection. The
MCC score could be biased to penalize false negatives more than false positives,
but this is left to future research.

6.2 Threats to Validity

There are many threats to validity. Firstly, all non-deterministic tests were
deleted from the test suite before the experiments. This arguably distorts the
results. However, the test history features, such as the latest pass and failure rate
described in Sect. 2.2 are the key features to explain even the non-deterministic
test case failures.

A different test environment was used in the data collection (Sect. 4.1) than
in the actual project. These two test environments are similar, but they use
a different amount of hardware simulation. This could have brought excessive
discrepancies in test verdicts between the test environments.

Because of separating how code (src/*) and test (test/*) commits are han-
dled, the experiment setup became complex. MCC, recall and test suite reduction
were calculated for source modifying commits only and ignored the values for
the test commit types. Using dependency coverage as a new machine learning
feature could have fixed this issue.

Test Case Selection with Incremental ML 415

Code-coverage-based test case selection is not able to trace every kind of
change in the codebase. These are generally the non-instrumental parts of the
code repository, such as meta- or configuration files, but also source code. For
example, a global variable value change cannot be traced.

The coverage information produced by gcov -tool was not accurate when a
statement contains line breaks. In such situations, the first line is only detected
by gcov, and the rest of the lines are ignored. The software code contained
statements that split into multiple lines. Therefore, the coverage-based selection
techniques could have been affected.

Finally, the test case selection was applied to one software project only. This
suggests that external validity can be affected. The plan included another project
but there was not enough time.

7 Conclusions

Because CI aims to provide rapid feedback for the developers, slow testing can
be harmful [6]. As software evolves, the test suites become large and at some
point, they can no longer be executed in a short time. The aim of this research
was to find ways to enhance or speed up testing in order to facilitate CI, and
that test case selection techniques can be used to reduce the time required for
testing. The incremental machine learning was found especially interesting for
its capability to eventually outperform comparison heuristics.

Incremental machine learning was used to predict failing tests out of the test
suite using information such as test history, code coverage, and modifications
introduced in a commit. With these predictions, the system effectively selected
a small number of test cases for execution when a new commit was made to the
software repository. The incremental machine learning-based test case selection
techniques eventually performed equally well or better than the best heuristic.
Similar results have already been suggested by Spieker et al. [17], who used
reinforcement learning and neural networks to select a subset of tests based on
test history. Their technique required 60 consecutive CI cycles to perform equally
well or better than the comparison techniques in NAPFD values. The research
reported in this pare was based on the MCC score, and the ML techniques
produced equal or better MCC scores than the best heuristic after 20 source code
modifying commits. The research supports the results of Spieker et al. and brings
in more evidence that when initial training data does not exist, machine learning
can be applied incrementally to eventually produce as good or better results as
comparison techniques. In addition to that, the results give a cautious hint that
accumulating training data and re-training the models in every iteration, using
more features such as code coverage and similarity score and using a different
classifier, e.g. random forest, can make the models learn faster and predict failing
tests correctly earlier.

Despite the positive results in favour of using machine learning in test case
selection, the results need further verification. There was a single software project
in the case study, and therefore external validity is risked. Secondly, the machine

416 M. Mulkahainen et al.

learning models were fully trained in every commit, which can become infeasible
when the training data increases.

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. Busjaeger, B., Xie. T.: Learning for test prioritization: an industrial case study.

In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, , New York, NY, USA. ACM, pp.
975–980 (2016)

3. Di Nardo, D., Alshahwan, N., Briand, L., Labiche, Y.: Coverage-based regression
test case selection, minimization and prioritization: a case study on an industrial
system. Softw. Test. Verification Reliab. 25(4), 371–396 (2015)

4. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Inf. Softw. Technol. 52(1), 14–30 (2010)

5. Fawcett, T.: An introduction to roc analysis. ROC analysis in pattern recognition.
Pattern Recognit. Lett. 27(8), 861–874 (2006)

6. Fowler, M., Foemmel, M.: Continuous integration. Thought-Works), 122:14 (2006).
http://www.thoughtworks.com/ContinuousIntegration.pdf

7. Knauss, E., Staron, M., Meding, W., Söder, O., Nilsson, A., Castell, M.: Supporting
continuous integration by code-churn based test selection. In: 2015 IEEE/ACM
2nd International Workshop on Rapid Continuous Software Engineering, pp. 19–
25 (2015)

8. Lachmann. R.: Machine learning-driven test case prioritization approaches for
black-box software testing. In: European Test and Telemetry Conference ettc2018,
pp. 300–309 (2018)

9. Lachmann, R., Schulze, S., Nieke, M., Seidl, C., Schaefer, I.: System-level test case
prioritization using machine learning. In: 2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA), pp. 361–368 (2016)

10. Christopher, D., Raghavan, P., Schütze, H.: Manning. In: Introduction to Informa-
tion Retrieval, Cambridge University Press, New York, NY, USA (2008)

11. Matthews. B.W.: Comparison of the predicted and observed secondary structure
of t4 phage lysozyme. Biochim. Biophys. Acta Protein Struct. 405(2), 442–451
(1975)

12. Thomas, M.: Mitchell, 1st edn. Machine Learning. McGraw-Hill Inc, New York,
NY, USA (1997)

13. Mulkahainen. M.: Test case selection and prioritization in continuous integration
environment. Master Thesis, Tampere University, Faculty of Information Technol-
ogy and Communication, Tampere (2019)

14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

15. Powers, D.: Evaluation: from precision, recall and f-factor to roc, informedness,
markedness & correlation. Mach. Learn. Technol. 2, 01 (2008)

16. Rothermel, G., Harrold, M. J., Ostrin, J., Hong, C.: An empirical study of the
effects of minimization on the fault detection capabilities of test suites. In: Proceed-
ings. International Conference on Software Maintenance (Cat. No. 98CB36272), pp.
34–43 (1998)

http://www.thoughtworks.com/Continuous Integration.pdf

Test Case Selection with Incremental ML 417

17. Spieker, H., Gotlieb, A., Marijan, D., Mossige, M.: Reinforcement learning for
automatic test case prioritization and selection in continuous integration. In: Pro-
ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2017, New York, NY, USA. ACM, pp. 12–22 (2017)

18. Virmani. M.: Understanding devops & bridging the gap from continuous integra-
tion to continuous delivery. In: Fifth International Conference on the Innovative
Computing Technology (INTECH 2015), pp. 78–82 (2015)

19. Yoo, S., Nilsson, R., Harman, M.: Faster fault finding at google using multi objec-
tive regression test optimisation. In: European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’11) (2011)

Inferring Metamorphic Relations
from JavaDocs: A Deep Dive
into the MeMo Approach

Alejandra Duque-Torres(B) and Dietmar Pfahl

Institute of Computer Science, University of Tartu, Tartu, Estonia
{duquet,dietmar.pfahl}@ut.ee

Abstract. Identifying and selecting suitable Metamorphic Relations is
a complex process since it necessitates a thorough grasp of the sys-
tem under test and its problem domain. Recently, an approach sup-
porting unit testing at the method level called MeMo was proposed.
Through a module called MR-Finder, MeMo infers Equivalent Metamor-
phic Relations (EMRs) by identifying sentences in Javadoc’s comments
that describe equivalent behaviours between different methods of the
same class. MR-Finder has three main components: (i) a predefined set
of 10 words that express an equivalence (S10W). (ii) A mechanism that
measures the semantic similarity between two sentences by using Word
Move Distance (WDM). (iii) A binary classifier that decides whether a
given sentence points to an EMR. The goal of our research is to determine
if MeMo’s MR-Finder module can be improved. For that purpose, we
first re-build the MR-Finder module and use the same dataset provided
by MeMo’s authors to verify the reported results in the original study
and establish the basis for further experiments. Second, we explore two
strategies, STRTG No.1 and STRTG No.2, to improve the MR-Finder. In
STRTG No.1, we increase the set S10W. In STRTG No.2, we keep S10W
unchanged but add a second template sentence to the MR-Finder mod-
ule. We successfully re-implemented the MR-Finder module and achieved
comparable results using the same S10W. Our results indicate that the
overall performance of MR-Finder is very likely to improve when the
initial set of equivalent words increases, i.e., with STRTG No.1.

Keywords: Software testing · Metamorphic testing · Metamorphic
relations

1 Introduction

Software testing is an essential quality assurance activity as it helps to ensure
the correct operation and quality of software. One of the major challenges in
software testing is known as the test oracle problem. A test oracle determines
the correct output of the System Under Test (SUT) for a given input. The
test oracle problem arises when the SUT lacks an oracle or when developing
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 418–432, 2022.
https://doi.org/10.1007/978-3-031-21388-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_29&domain=pdf
http://orcid.org/0000-0002-1133-284X
http://orcid.org/0000-0003-2400-501X
https://doi.org/10.1007/978-3-031-21388-5_29

A Deep Dive into the MeMo Approach 419

one to verify the computed outputs is practically impossible [5]. Metamorphic
Testing (MT) is a software testing technique that attempts to alleviate the test
oracle problem [2]. MT differs from traditional test techniques in that, instead of
checking the individual outputs of the SUT, it examines the relations between the
inputs and outputs of the test runs. These relations are known as Metamorphic
Relations (MRs). An MR defines how the outputs should vary in response to a
defined change of inputs when executing the SUT [10,15]. If a particular MR is
violated for at least one test input (and its change), there is a high probability
that the SUT has a fault. On the other hand, if a particular MR is not violated,
it does not guarantee that the SUT is fault-free. Therefore, the effectiveness of
MT depends largely on the suitability of the MRs used [10].

Identifying and selecting adequate MRs is a complex process since it neces-
sitates a thorough grasp of the SUT and its problem domain. As a result, the
automatic identification of MRs is recognised as a big challenge. Some techniques
for automatically identifying MRs have been proposed, however, they either focus
on specific domains or work under strict assumptions. One of the biggest prob-
lems for automatically identifying MRs is knowing what kind of information is
needed to infer an MR, as well as where to extract information about SUT to
infer a suitable MR. Kanewala et al. [7,9] propose to use code structure infor-
mation to train Machine Learning (ML) model that predicts whether a method
in a newly developed SUT can be tested using a specific MR. In particular, this
approach is based on a pre-defined set of six MRs and a classifier trained on
the control-flow graph (CFG) extracted from a pool of sample methods. Duque-
Torres et al. [4] and Rahman et al. [12] follow the Kanewala et al. approach,
but instead of using CFB-based features, Duque-Torres et al. [4] used software
metrics extracted from the method’s source code, and Rahman et al. [12] use
Bag of Words (BoW) model over Javadoc as the feature representation.

Recently, an approach supporting unit testing at the method level called
MeMo was proposed by Blasi et al. [1], published in the Journal of Systems
and Software, to “automatically derive metamorphic equivalence relations from
natural language documentation, and use such metamorphic relations as oracles
in automatically generated test cases”. MeMo infers MRs by identifying sentences
in the comments that describe equivalent behaviours between different methods
of the same class. Then, the inferred MRs get automatically translated into
executable assertions. In order to see whether and how MeMo’s mechanism for
inferring MRs can be improved. We decided to perform further research on this.

The rest of the paper is structure as follows: In Sect. 2, we introduce MeMo’s
approach by Blasi et al. [1]. In Sect. 3, we describe the methodology. In Sect. 4 we
present the answers to our research questions, and discuss our results. Section 5
presents the related work. Finally, we conclude the paper in Sect. 6.

2 The MeMo Approach

One approach that has been suggested to automatically identify MRs is MeMo.
We focus on automated MR inference from natural language documentation by
following the MeMo approach. In this section, we first present MeMo’s procedure

420 A. Duque-Torres and D. Pfahl

proposed by Blasi et al. [1] (Sect. 2.1) as well as the dataset used in their study
(Sect. 2.2). Then, we summarise the evaluation result reported in the original
study (Sect. 2.3).

2.1 MeMo’s Procedure

Overall, MeMo’s architecture comprises four modules: Comment Processor Mod-
ule (CPM), Metamorphic Relations Finder Module (MR-Finder), Translator
Module (TM), and Executor Module (EM). The CPM parses the input source
code and generates a clean version of the Javadoc comments for each method.
The MR-Finder analyzes the sentences in the comment and recognizes those that
point to an MR. If a sentence points to an MR, the TM interprets and parses the
whole comment together with the sentence that points to the MR to generate a
Java assertion. The EM embeds the generated assertions into existing code to
determine if the MR is maintained at run time. We are only interested in CPM
and MR-Finder. We describe them in detail below.

2.1.1 Comment Processor Module (CPM)
Figure 1 shows an example of how looks like Javadoc comments. As shown Fig. 1,
the comment begins with a free-text summary description and is followed by tag
blocks (@param, @return, @throws, @since, @version, and so on). The official Ora-
cle documentation1 states that in the method’s summary should offer a general
description of the method, including any interesting semantic attribute, whereas
the tag blocks should express more detailed, narrower information. Based on that,
MRs are very likely to occur or be described in method summaries. Therefore,
MeMo analyses and infers MRs from the method’s summary. The main purpose of
the CMP is to generate a clear representation of the Javadoc comments for each
method in a given class. It gets rid of formatting information like HTML markup.
It saves content using @code and @link inline tags for later use. In addition, the
CMP divides each method’s cleaned summary text into sentences.

2.1.2 Metamorphic Relations Finder Module (MR-Finder)
As we mention above MRs define how outputs should vary in response to a defined
change of inputs when executing the SUT. The MRs explored in MeMo MRs are
defined in a different way. The MR definition in MeMo is related to the equiva-
lence of two different functions or methods. For instance, let’s consider the func-
tion f(x) = sin(x), we know that the sin(x) function is equivalent to the func-
tion cos(π

2 − x). MeMo consider the equivalence between sin(x) and cos(π
2 − x)

as a potential MR. Therefore, one can express a equivalent MR as sin(x) ==
cos(π

2 − x). It is important to highlight that this definition of MR proposed by
MeMo, differs from the its traditional definition. In MeMo the MRs needs another
function instead of (directly) exploiting knowledge about the original function.

1 https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#tag.

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html#tag

A Deep Dive into the MeMo Approach 421

Fig. 1. Javadoc’s comment from Common Math library, class “Interpolation”, method
“smooth”

Thus, hereinafter we use the expression Equivalent Metamorphic Relation (EMR)
instead of MR to refer to the MR definition used in the MeMo approach.

The MR-Finder module determines if a sentence given by the CMP points
to an EMR. This module has three main components: (i) a predefined set of
10 words that express an equivalence or equality, e.g., equivalent, equal, similar,
etc. (ii) A mechanism that measures the semantic similarity between two sen-
tences. (iii) A binary classifier that decides whether a given sentence points to
an EMR or not. The predefined set of 10 words, hereinafter S10W, are: “equiva-
lent”, “similar”, “analog”, “like”, “identical”, “behaves as”, “equal to”, “same as”,
“alternative”, “replacement for”. Blasi et al. [1] manually identified the S10W
by inspecting around 4,741 Javadoc comment sentences selected randomly from
the documentation of seven Java projects: Apache Commons Collections, Apache
Commons Math, Apache Hadoop, Apache Lucene, Eclipse Vert.x, Google Guava
and GWT.

Because the word or term used to describe an equivalence can vary between
different comments, using only a set of predefined words to recognise sentences
pointing out EMR would restrict MeMo’s capabilities. Therefore, identifying
EMRs is based on semantic analysis of sentences rather than searching and
matching individual words in the comment sentences. The semantic analysis is
based on the semantic similarity between two sentences. The most straightfor-

422 A. Duque-Torres and D. Pfahl

ward way to decide whether two sentences are similar is to assume that sentences
are similar if they have words in common. However, the most significant limita-
tion of methods that uses that assumption, like Euclidean Distance, Cosine Dis-
tance or Jaccard Similarity, is that they do not handle synonym scenario. The
Word Move Distance (WMD) is designed to overcome that limitation. WMD
uses word embeddings to determine the distance even without a common word.
It is assumed that words with similar meanings should have similar vectors.

The mechanism in charge of measuring semantic similarity uses the words
in S10W to generate ten template sentences, from now on TS_S10W, with the
structure “This method <S10W> to that method.”. Then, WMD is calculated
between each TS_S10W and each sentence in the comment. The similarity score
provided by WMD is between 0 and 1. A score of 0 indicates that the sentences
are semantically the same, while one means that the sentences do not have
any semantic similarity. The binary classifier receives the obtained WDM score
and decides whether the given sentence points to an EMR or not. This classifier
determines by checking if the WDM score is less than 0.2, which means similarity
of at least 80%.

Table 1. Dataset description used by Blasi et al. [1] as well as their result

Library Dataset info Results achieved in [1]
Classes Sent⊥ EMR TP FN FP SP‡ Pre± Rec∗

Colb 9 477 19 11 8 0 0 1 0.58
ElasticS 10 228 14 8 6 0 0 1 0.57
GWT 17 448 44 12 31 1 1 0.86 0.27
GraphStr 3 126 11 9 2 0 0 1 0.82
Guava 33 1558 80 9 2 0 0 1 0.82
Hibernate 5 126 5 62 16 2 2 0.94 0.78
JDK 23 3381 72 59 11 2 6 0.88 0.82
Math 9 653 30 26 4 0 2 0.93 0.87
Weka 4 192 6 3 1 2 0 0.6 0.5
Total 113 7189 281 193 81 7 11 0.91 0.69

⊥Sentences, ‡Spurious, ±Precision,∗Recall.

2.2 MeMo’s Dataset

To create the ground truth, Blasi et al. manually identify EMRs by inspecting
the Javadocs comments of 194 classes from 9 open-source Java libraries and
translating them into a code assertion. They provide the constructed ground
truth in their GitHub repository2.

2 https://github.com/ariannab/MeMo/tree/master/expected-equivalences.

https://github.com/ariannab/MeMo/tree/master/expected-equivalences

A Deep Dive into the MeMo Approach 423

The MeMo’s approach was evaluated by randomly selecting a reduced set of
classes from the ground truth. Table 1 summarises the total number of classes
that they select, the total number of sentences among all the comments of the
classes selected and the total number the EMRs. Although the authors provided
a replication package3, it is not clear which classes they selected, making exact
replication difficult.

2.3 MeMo’s Results - Original Study

Table 1 summarises the results achieved by Blasi et al. MeMo was evaluated in
terms of effectiveness, and usefulness. Concerning effectiveness, it was computed
Precision and Recall. Regarding usefulness, Blasi et al. evaluated whether MeMo
assertions improve testing when used as oracles.

It is important to highlight that the evaluation reported by Blasi et al. [1] is
not about MR-Finder output but MeMo’s final output, i.e., the generation of the
assertion. Therefore, when comparing with the ground truth, two type of false
negative may occur, non-empty false positive and empty false positive. In the
former, MeMo’s output is non-empty and does not match the ground truth. In
empty false positive or Spurious, MeMo’s output is non-empty and the ground
truth is empty. Precision and Recall were computed using Eq. (1).

– True Positive (TP): MeMo’s output is non-empty and matches the ground
truth.

– True Negative (TN): MeMo’s output is empty and matches the ground truth,
i.e., the ground true is also empty.

– False Negative (FN): MeMo’s output is empty but the ground truth is not.
– False Positive (FP): MeMo’s output is non-empty and does not match the

ground truth.
– Spurious (Sp): MeMo’s output is non-empty and the ground truth is empty.

Precision =
TP

TP + FP + Sp
,Recall =

TP

TP + FN + Sp
(1)

3 Methodology

Our goal is to investigate whether the MeMo approach of Blasi et al. (i) can be
replicated when using our implementation of the pipeline for inferring EMRs,
and (ii) can be improved. We aim to answer the following research questions:

RQ1: [Replicability] How well does the MeMo approach identify natural
language sentences expressing EMR when our processing and training pipeline is
used on the full dataset?

RQ2: [Improvement] How to improve the capabilities of the MeMo approach
to infer EMR from natural language sentences?

3 https://github.com/ariannab/MeMo.

https://github.com/ariannab/MeMo

424 A. Duque-Torres and D. Pfahl

3.1 Replicability

In RQ1, we are interested in checking if the artefacts developed by us achieve
better or the same performance as those of Blasi et al. We follow exactly the same
steps as Blasi et al. (see Sect. 2.1.2). In the original work, MeMo is implemented
in Java and uses open source libraries. In particular, the libraries Standford
CoreNLP API and the wmd4j. The CoreNLP API allows to derive linguistic
annotations for text, including token and sentence boundaries, parts of speech,
named entities, numeric and time values, dependency analysis, etc. wmd4j is a
Java library for calculating WMD. Unlike the original MeMo implementation,
we use Python. In particular, the open source libraries NLTK (Natural Lan-
guage Toolkit), Gensim4, FastText5, and Word2Vec.wm.distance in Gensim to
calculate the WMD score.

NLTK is a collection of libraries and tools for symbolic and statistical natural
language processing. Gensim is an open-source framework that uses contempo-
rary statistical machine learning to do unsupervised topic modeling, document
indexing, retrieval by similarity, and other natural language processing functions.
FastText is an open-source, and lightweight software that enables users to learn
text representations and text classifiers.

As we mentioned in Sect. 2.3, the evaluation reported by Blasi et al. [1] is not
the output of MR-Finder but the final output of MeMo. Therefore, our evaluation
is slightly different. To evaluate our implementation, we use the ground truth
provided by Blasi et al., the basic truth is a set of JSON files. Each file contains
7 main fields: signature, name, wrapper class, target class, isVarArgs, parameter,
equivalence. The equivalence field contains the sub-fields: member, comment, type
and condition. We are interested in the sub-fields of the equivalence field, i.e.,
comment and condition. If the condition sub-field is not empty, it means that
the comment has a sentence that expresses an EMR. Based on that, we compute
Precision and Recall. Below is our definition of TP, TN, FN, and FP.

– True Positive (TP): The EMR has been identified and matches the ground
truth, i.e., the ground truth has something written in the sub-field condition.

– True Negative (TN): The EMR has not been identified and matches the
ground truth, i.e., the ground true is empty in the sub-field condition.

– False Negative (FN): The EMR has not been identified but the ground truth
has something written in the sub-field condition.

– False Positive (FP): The EMR has been identified and the ground true is
empty in the sub-field condition.

3.2 Improvement

In RQ2, we check if the MeMo approach can be improved in terms of precision
and recall. To do this, we use two different strategies. The first strategy (STRTG
No.1) is to increase the number of words in S10W. We first explore how many
4 https://pypi.org/project/gensim.
5 https://fasttext.cc.

https://pypi.org/project/gensim
https://fasttext.cc

A Deep Dive into the MeMo Approach 425

words that express an equivalence can be found in the full dataset. Also, we
investigate whether the S10W words are among the top equivalent words in the
dataset described in Table 2 in the columns ours. It is important to note that
the S10W were obtained from different libraries than those used in the MeMo
evaluation.

In STRTG No.1, we follow four steps: (i) convert text (comments) into
tokens, (ii) remove all stop words, (iii) lemmatization, and (iv) calculate the
word frequency. The step (iii), lemmatization, is used to ensure that words that
share the same base word are recorded in the frequency as the same word. After
this process, we manually filter out the words that express an equivalence. We
do this process with the full dataset. We use the open source Regex and NLTK
libraries. Regex is for processing regular expressions. Helps convert noise data
containing special characters and performs uppercase to lowercase conversion.
We use the NLTK library to tokenize the comment into sentences and then into
a list of words. With the new S10W, we repeat the process for inferring EMRs
with our own artefacts.

The second strategy (STRTG No.2) is to add a second “template sentence”
to the mechanism in charge of measuring semantic similarity. This second tem-
plate sentence, TS_S10W2, has the structure “Method_A and method_B are
<S10W>”. With both templates, TS_S10W and TS_S10W2, we repeat the pro-
cess for inferring EMTs by using our own artefacts. In both strategies, STRTG
No.1 and STRTG No.2, we report TP, FN, FP, Precision, and Recall.

4 Results and Discussion

4.1 Replicability

RQ1: How well does the MeMo approach identify natural language
sentences expressing EMR when our processing and training pipeline
is used on the full dataset?

Table 2 reports the number of libraries, number of classes, number of parsed
methods, number of methods with comments, number of methods without com-
ments, number of sentences, and number of EMRs, used by Blasi et al. [1] and
in this paper. Some information is not provided by the authors, for instance,
the number of parsed methods, number of methods with comments, and number
of methods without comments. It is notable that in our evaluation, we analyse
more classes than the Blasi et al., however, we discard the methods that do not
have comments. We believe that the author did the same.

From the Table 2 in the EMRs column, one can see that the number of MRs
in our dataset and the original study’ dataset do not differ drastically. In fact, 5
of 9 libraries, have the same amount of EMR, and the extra EMRs in our dataset
do not exceed more than 5. As for the number of sentences, we expected to have
more sentences per library in our dataset as we analysed more classes. This was
true for 8 of 9 libraries, where indeed the number of sentences was greater than
that used in the [1]. However, the GWT library got 15 fewer sentences than the
GWT library used by Blasi et al.. We checked the repository and discovered that

426 A. Duque-Torres and D. Pfahl

Table 2. Comparison of dataset used in Blasi et al. [1] and the dataset created based
on the JSON files

Library Classes No. Meth. Meth. WC⊥ Meth. W/o± Sent∗ EMRs
Ours [1] Ours [1] Ours [1] Ours [1] Ours [1] Ours [1]

Colt 13 9 348 NR! 268 NR! 80 NR! 577 477 21 19

ElasticS 19 10 299 NR! 184 NR! 115 NR! 260 228 14 14

GWT 18 17 273 NR! 253 NR! 20 NR! 433 448 44 44

GraphStr 9 3 187 NR! 154 NR! 33 NR! 381 126 11 11

Guava 78 33 1347 NR! 1118 NR! 229 NR! 2813 1558 81 80

Hibernate 13 5 151 NR! 113 NR! 38 NR! 188 126 5 5

JDK 36 23 1175 NR! 1106 NR! 69 NR! 4393 3381 77 72

Math 29 9 727 NR! 372 NR! 355 NR! 766 653 34 30

Weka 19 4 530 NR! 514 NR! 16 NR! 858 192 6 6

TOTAL 234 113 5037 NR! 4082 NR! 955 NR! 10669 7189 293 281
⊥Total number of methods with comments, ±Total number of methods without comments
∗Sentences, NR!: Not Reported.

the GWT library was modified after MeMo’s paper was submitted. Also, there
were some commits pointing to the deletion of some comments. Another possible
explanation has to do with the method used during the sentence tokenization
process. The authors do not provide information on this. From our side, we use
the “sent_tokenize” method of the nltk.tokenize library.

Table 3. Results achieved by Blasi et al. [1] VS our results

Library Results achieved by Blasi et al. [1] Our results
TP FN FP ‡Sp Pre± Rec∗ TP FN FP Pre± Rec∗

Colt 11 8 0 0 1 0.58 14 3 3 0.82 0.82

ElasticS 8 6 0 0 1 0.57 10 4 0 1 0.71

GWT 12 31 1 1 0.86 0.27 29 10 5 0.85 0.74

GraphStr 9 2 0 0 1 0.82 8 3 0 1 0.72

Guava 62 16 2 2 0.94 0.78 53 21 7 0.88 0.71

Hibernate 3 2 0 0 1 0.6 3 2 0 1 0.6

JDK 59 11 2 6 0.88 0.82 56 13 8 0.87 0.81

Math 26 4 0 2 0.93 0.87 18 10 6 0.75 0.64

Weka 3 1 2 0 0.6 0.5 5 1 0 1 0.64

Average 21.4 9.0 0.8 1.2 0.9 0.6 21.8 7.4 3.2 0.9 0.7
‡Spurious, ±Precision, ∗Recall.

Table 3 reports TP, FN, FP, Precision and Recall of our MR-Finder imple-
mentation. Overall, the Precision has satisfactory results, achieving the maxi-
mum value, i.e., 1, in 4 of 9 classes, and a minimum of 0.75 over all classes. Our
Recall is quite high, too, with a minimum of 0.6. In our context, we want to

A Deep Dive into the MeMo Approach 427

keep the Recall metric to a minimum value. A high Recall indicates there are
several EMRs that could not be identified. When analysing the EMRs that were
not identified, we saw the following patterns:

– The sentences that had more than one equivalent word were more likely not
to be identified; for instance, the sentence in the Weka library’s BinarySpar-
seInstance class: does exactly the same as value() if applied to an instance.

– Sentences with equivalent term “as”, for example, in the sentence from Colb
library’s matrix.linalg.Algebra class: also known as dot product.

– When the equivalent term is at the very end of the sentence, it is likely that it
will not be identified, for instance, in the class matrix.DoubleMatrix2D from
the Colb library: Linear algebraic matrix-matrix multiplication C = A x B
Equivalent to A.zMult(B,C,1,0,false,false).

– Sentence with the equivalent term ’synonym’, for example, in the graph.Path
class of the GraphStream library: A synonym for #add(Edge).

With regards to replicability (RQ1), our results indicate that we can
achieve similar results as Blasi et al. when re-implementing the MR-
Finder using different libraries and programming language. In terms of
Precision, we achieved the same results for three of nine libraries, better
for one of nine, and slightly worse for five of nine libraries. However, when
our results get worse, the maximum difference between the Blasi et al.
results and ours does not exceed 0.12. In terms of Recall, our results are
clearly better for four of nine libraries, equal for one of nine, and slightly
worse for four of nine libraries. When our results get worse, the maximum
difference between the Blasi et al. results and ours does not exceed 0.23.

4.2 Improvement

RQ2: How to improve the capabilities of the MeMo approach to infer
EMR from natural language sentences?

Table 4 reports the results obtained in RQ1, and the results obtained in RQ2.
Regarding the analysis for STRTG No.1, we identified eighteen words or terms
that express an equivalence in the full dataset. Our results also indicate that the
initial ten words, S10W, are among the words found. The eighteen words listed
in order from most to least frequent are: “equivalent”(180), “same” (54), “like”
(28), “equal” (27), “identical” (15), “instead” (13), “similar” (9), “equivalently”
(9), “exactly as” (3), “synonym” (2), “behaves as (2)”, “comparable” (2), “acts
as” (2), “replacement for” (1), “preferred” (1), “substitute” (1), “analog” (1),
“alternative” (1). We call this set of new equivalent words, S18W.

The STRTG No.1 column in Table 4, reports TP, FN, FP, Precision and
Recall when repeating the process for inferring EMR by using S18W and our
MR-Finder module artefacts. As Table 4 shows, by increasing the initial set of
equivalent words, the results improved considerably in terms of FN, Precision

428 A. Duque-Torres and D. Pfahl

Table 4. Replication results from RQ1 VS STRTG No.1 and STRTG No.2 from RQ2

Library RQ1 results [replicability] RQ2 results [improvement]

STRTG No.1 STRTG No.2

TP FN FP Pre± Rec∗ TP FN FP Pre± Rec∗ TP FN FP Pre± Rec∗

Colt 14 3 3 0.82 0.82 16 1 3 0.84 0.94 14 3 3 0.82 0.82

ElasticS 10 4 0 1 0.71 14 0 0 1 1 10 4 0 1 0.71

GWT 29 10 5 0.85 0.74 35 4 5 0.88 0.90 29 10 5 0.85 0.74

GraphStr 8 3 0 1 0.72 10 1 0 1 0.91 8 3 0 1 0.73

Guava 53 21 7 0.88 0.71 65 9 7 0.90 0.88 62 12 7 0.90 0.84

Hibernate 3 2 0 1 0.6 5 0 0 1 1 3 2 0 1 0.60

JDK 56 13 8 0.87 0.81 66 3 8 0.89 0.96 60 9 8 0.88 0.87

Math 18 10 6 0.75 0.64 26 2 6 0.81 0.93 21 7 6 0.78 0.75

Weka 5 1 0 1 0.64 6 0 0 1 1 5 1 0 1 0.83

Average 21.8 7.4 3.2 0.9 0.7 27.0 2.2 3.3 0.9 0.9 23.6 5.7 3.2 0.9 0.8
‡Spurious, ±Precision, ∗Recall.

and Recall. As for FN, it is expected that by increasing from S10W to S18W, the
module will be able to identify some sentences it could not identify before. For
example, when using S10W, the lowest WMD score for sentences with the word
“synonym” was 0.38, meaning it did not meet the threshold to be considered
an EMR. When using S18W, the lowest score was 0.164, meaning it met the
point to be considered a WMD. By lowering the number of FNs and increasing
the number of FPs, it is clear that Recall will be positively affected. As Table 4
shown, three out of nine libraries achieved the maximum Recall, i.e., 1. The
minimum Recall was 0.88 for the Guva library, and the rest of the libraries
achieved a Recall ranging between 0.90 and 0.96.

From the Table 4, one can also see that the Precision increased. This is
because the number of TP increased, and the number of FP remained the same.
The minimum value of Precision achieved is 0.81 for the Colb library. For the
rest of the libraries, the Precision ranges between 0.84 and 1. The same libraries
with maximum Precision in RQ1 remained in RQ2 -STRTG No.1. When we
inspect the sentences that were marked as FP, we find that they mostly have
phrases like: exactly the same and the same. For example, the comment sen-
tence in the Colb library’s DoubleMatrix2D method: “Both matrices must have
the same number of rows and columns”. Furthermore, the WDM scores of those
sentences are quite close to the decision limit, that is, between approximately
0.193 and 0.198.

The STRTG No.2 column in Table 4, reports TP, FN, FP, Precision and
Recall when repeating the process for inferring EMR by using TS_S10W2 and
our MR-Finder module artefacts. The table shows that most of the results
remained the same, like with TS_S10W in RQ1. Only three libraries bene-
fited from TS_S10W2: Guava, JDK, and Math. Inspecting those libraries, we
notice that the sentences that were successfully identified using TS_S10W2, and
were not identified in RQ1, are those where the equivalent term is at the end
of the sentence, for example, in the class matrix.DoubleMatrix2D from the Colb
library: Linear algebraic matrixmatrix multiplication C = A x B Equivalent to
A.zMult(B,C,1,0,false,false).

A Deep Dive into the MeMo Approach 429

Regarding to improvement (RQ2), our results indicate that we can
achieve better results than in RQ1. Also, we can achieve more similar
results as Blasi et al. when using STRTG No.1, i.e., by using our artefacts
and increasing the number of words in S10W. Regarding STRTG No.2,
we only improved on three out of nine libraries. However, the improve-
ment is around 0.03 for Precision and 0.06 for Recall. We can conclude
that the best way to improve the MR-Finder module is by increasing
the initial set of equivalent words. However, it is necessary to consider
that increasing S10W could increase the processing time. In our case, the
processing time increased by 2490 ms.

4.3 Threats to Validity

In the context of our study, two types of threats to validity are most relevant:
threats to internal and external validity. To achieve internal validity, we used the
same set of Javadocs provided by Blasi et al. [1]. However, due to the authors
randomly taking subsets of the Javadocs provided, it was not possible to do a
direct comparison with their results. Another potential validity threat in our
study is that we recreated all steps of the MR-Finder approach using different
NLP libraries with potentially different parameter settings. Regarding external
validity, our study uses the same data provided by the original study. For the sake
of generalisability, it would have been preferable to include additional Javadocs
or documentation from other programming languages to overcome any potential
bias introduced by the selection of Javadocs in the original study. As a conse-
quence, our replication cannot determine the actual scope of the effectiveness of
the MR-Finder from MeMo approach.

5 Related Work

Kanewala and Bieman [8], were the first to show that, for previously unseen
methods, applicable MRs can be predicted using supervised ML techniques.
Their work showed that classification models created using a set of features
extracted from CFGs, in particular, features related to CFG’ nodes and paths,
and a set of predefined MRs are effective in predicting whether a method in a
newly developed SUT can be tested using a specific MR taken from the pre-
defined set. Kanewala [7] extend the Kanewala and Bieman [8] approach, by
conducting a feature analysis to identify the most effective CFG’s related features
for predicting MRs. Their results showed that Support Vector Machine (SVM)
models built with features based on CFG similarity measurements, in particular
using Random Walk Kernel, perform better than SVM models using nodes- and
paths-based features with linear kernel. This approach is known as Predicting
Metamorphic Relations, PMR.

430 A. Duque-Torres and D. Pfahl

Hardin and Kanewala [6] extended the initial PMR study [8], but instead of
using supervising learning techniques, they used semi-supervised learning tech-
niques. Rahman and Kanewala [13] applied PMR approach for predicting three
MRs (Permutative, Additive, and Multiplicative) for matrix-based programs.
Duque-Torres et al. [3] extended the initial PMR approach to another program-
ming language, Python and C++. Nair et al. [11] explored and compared equiva-
lent and non-equivalent mutants as data augmentation technique to broaden the
training set using PMR. Their augmentation approach was tested on the PMR
original study dataset [8]. The study demonstrated that equivalent mutants are
a valid data augmentation technique to improve the PMR detection rate.

Zhang et al. [14] presented RBF-MLMR, a multi-label technique that predicts
MRs using radial basis function neural networks. Instead of using several binary
classifiers like in PMR, RBF-MLMR use a neural network to predict all potential
MRs for a given method. The major difference between this technique and PMR
is the usage of multi-label and neural networks, but it follows the same pipeline as
PMR original study. Also, the RBF-MLMR’s feature design is CFG’s node- and
path-based. Duque-Torres et al. [4] follows the PMR idea, but instead of using
CFG-based features, they used different software metrics that are extracted from
the method’s source-code.

Rahman et al. [12] introduce MRpredT which is a text classification-based
ML approach to predict MRs using software documentation. The idea behind
their MRpredT approach is to build a model that predicts whether a method
in a newly developed SUT can be tested using a specific MR. A total of 93
program’s Javadocs, which handle matrix operations, were used for their study.
Overall, the approach follows the same pipeline of PMR approach proposed
by Kanewala and Bieman [8], but instead of using features extracted from the
programme CFG-based, Rahman et al. use Bag of words (BoW) model as the
feature representation. The first step of their method is to extract the Javadoc
documentation from the source code using Java Parser and pre-processes them
using the lemmatization technique. Then, text feature extraction methods are
applied to those pre-processed Javadocs to obtain the feature vectors. These
feature vectors of the programs are then supplied into the SVM and Naive Bayes
classification algorithms with their associated MR labels. The MR labels are
identified manually for all the programs. A disadvantage of MRpredT approach
is the need of having a pre-defined set of MRs.

6 Conclusion

MeMo approach is the first approach that attempts to infer EMRs from for-
mal software documentation. We studied its procedure to see whether and how
MeMo’s approach could be improved. In particular, its module MR-Finder. This
module is in charge of determining if a sentence given in a comment points to an
EMR. The MR-Finder is based on three main components: (i) a predefined set
of 10 words that express an equivalence (S10W). (ii) A mechanism that mea-
sures the semantic similarity between two sentences using WMD. (iii) A binary

A Deep Dive into the MeMo Approach 431

classifier that decides whether a given sentence points to an EMR by checking
if the WDM score is less than 0.2

We start by exploring the Javadocs provided by Blasi et al. [1] in their repli-
cation package. Next, we implement the components of the MR-Finder module
using the Python programming language; our evaluation indicates satisfactory
results in precision but not in Recall. We also explore two strategies, STRTG
No.1 and STRTG No.2, to improve the MR-Finder. In STRTG No.1, we ana-
lyze the words that express an equivalence in the data set to increase S10W.
We found 18 words in total; we call them S18W. We repeat the process to infer
EMR using S18W. In STRTG No.2, we kept the same S10W but added a sec-
ond template sentence to the MR-Finder module. We get the best results with
STRTG No.1. Our results indicate that the overall performance of MR-Finder is
very likely to improve as the initial set of equivalent words increases. However,
it is necessary to consider that increasing S10W could increase the processing
time. In our case, the processing time increased by 2490 ms.

Acknowledgements. This research was partly funded by the Estonian Center of
Excellence in ICT research (EXCITE), the IT Academy Programme for ICT Research
Development, the Austrian ministries BMVIT and BMDW, the Province of Upper
Austria under the COMET (Competence Centers for Excellent Technologies) program
managed by FFG, and grant PRG1226 of the Estonian Research Council.

References

1. Blasi, A., Gorla, A., Ernst, M.D., Pezzè, M., Carzaniga, A.: Memo: automatically
identifying metamorphic relations in Javadoc comments for test automation. J.
Syst. Softw. 181, 111041 (2021). ISSN 0164-1212. https://doi.org/10.1016/j.jss.
2021.111041

2. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for
generating next test cases. Technical report HKUST-CS98-01, Department of Com-
puter Science, Hong Kong University of Science and Technology, Hong Kong (1998)

3. Duque-Torres, A., Pfahl, D., Claus, K., Ramler, R.: A replication study on pre-
dicting metamorphic relations at unit testing level. In: 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 1–11
(2022)

4. Duque-Torres, A., Pfahl, D., Klammer, C., Fisher, S.: Using source code metrics for
predicting metamorphic relations at method level. In: 5th Workshop on Validation,
Analysis and Evolution of Software Tests, VST’22 (2022)

5. Duque-Torres, A., Shalygina, A., Pfahl, D., Ramler, R.: Using rule mining for
automatic test oracle generation. In: 8th International Workshop on Quantitative
Approaches to Software Quality, QuASoQ’20 (2020)

6. Hardin, B., Kanewala, U.: Using semi-supervised learning for predicting meta-
morphic relations. In: 3rd IEEE/ACM International Workshop on Metamorphic
Testing (MET), pp. 14–17, MET’18 (2018). ISBN 9781450357296

7. Kanewala, U.: Techniques for automatic detection of metamorphic relations. In:
IEEE 7th International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW), pp. 237–238 (2014). https://doi.org/10.1109/ICSTW.
2014.62

https://doi.org/10.1016/j.jss.2021.111041
https://doi.org/10.1016/j.jss.2021.111041
https://doi.org/10.1109/ICSTW.2014.62
https://doi.org/10.1109/ICSTW.2014.62

432 A. Duque-Torres and D. Pfahl

8. Kanewala, U., Bieman, J.M.: Using machine learning techniques to detect meta-
morphic relations for programs without test oracles. In: IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE), pp. 1–10 (2013). https://
doi.org/10.1109/ISSRE.2013.6698899

9. Kanewala, U., Bieman, J.M., Ben-Hur, A.: Predicting metamorphic relations for
testing scientific software: a machine learning approach using graph kernels. Softw.
Test. Verif. Reliab. 26(3), 245–269 (2016)

10. Liu, H., Kuo, F.C., Towey, D., Chen, T.Y.: How effectively does metamorphic
testing alleviate the oracle problem? IEEE Trans. Softw. Eng. 40(1), 4–22 (2014).
https://doi.org/10.1109/TSE.2013.46

11. Nair, A., Meinke, K., Eldh, S.: Leveraging mutants for automatic prediction of
metamorphic relations using machine learning. In: Proceedings of the 3rd ACM
SIGSOFT International Workshop on Machine Learning Techniques for Soft-
ware Quality Evaluation. MaLTeSQuE 2019, pp. 1–6. Association for Comput-
ing Machinery, New York (2019). ISBN 9781450368551. https://doi.org/10.1145/
3340482.3342741

12. Rahman, K., Kahanda, I., Kanewala, U.: MRpredT: Using Text Mining for Meta-
morphic Relation Prediction, pp. 420–424. Association for Computing Machinery,
New York (2020). ISBN 9781450379632, https://doi.org/10.1145/3387940.3392250

13. Rahman, K., Kanewala, U.: Predicting metamorphic relations for matrix calcula-
tion programs. In: 3rd IEEE/ACM International Workshop on Metamorphic Test-
ing (MET), MET’18, pp. 10–13 (2018)

14. Zhang, P., Zhou, X., Pelliccione, P., Leung, H.: RBF-MLMR: a multi-label meta-
morphic relation prediction approach using RBF neural network. IEEE Access 5,
21791–21805 (2017). https://doi.org/10.1109/ACCESS.2017.2758790

15. Zhou, Z.Q., Sun, L., Chen, T.Y., Towey, D.: Metamorphic relations for enhancing
system understanding and use. IEEE Trans. Softw. Eng. 46(10), 1120–1154 (2020).
https://doi.org/10.1109/TSE.2018.2876433

https://doi.org/10.1109/ISSRE.2013.6698899
https://doi.org/10.1109/ISSRE.2013.6698899
https://doi.org/10.1109/TSE.2013.46
https://doi.org/10.1145/3340482.3342741
https://doi.org/10.1145/3340482.3342741
https://doi.org/10.1145/3387940.3392250
https://doi.org/10.1109/ACCESS.2017.2758790
https://doi.org/10.1109/TSE.2018.2876433

An Evaluation of Cross-Project Defect
Prediction Approaches

on Cross-Personalized Defect Prediction

Sousuke Amasaki1(B) , Hirohisa Aman2 , and Tomoyuki Yokogawa1

1 Okayama Prefectural University, 111 Kuboki, Soja 719-1197, Japan
{amasaki,t-yokoga}@cse.oka-pu.ac.jp

2 Center for Information Technology, Ehime University, Matsuyama 790-8577, Japan
aman@ehime-u.ac.jp

Abstract. Context: Just-in-time software defect prediction (JIT SDP)
helps to prioritize fault-prone commits for efficient software quality assur-
ance. As each commit can be attributed to each developer, JIT SDP can
also be personalized to each developer as a personalized defect predic-
tion. A question is whether the commit data of other developers, namely,
cross-personalized data, are still valuable for prediction. Cross-project
defect prediction (CPDP) approaches are a promising answer. Objective:
To clarify the effectiveness of cross-personalized defect prediction with
CPDP approaches. Method: An experiment with 23 CPDP approaches
was conducted on 9 project datasets. Results: Some CPDP approaches
using cross-personalized data were often better than the personalized
defect prediction using one’s data. Conclusion: It is recommended to
use the CPDP approach to achieve better predictions. Turhan09 is our
recommendation.

Keywords: Personalized defect prediction · Transfer learning ·
Comparative study

1 Introduction

Software is prevalent around the world. Safety social systems now depend on the
quality of software. Software developers care about their product’s quality and
try not to induce and leave bugs. Despite their devotion, buggy software is still
prevalent around the world.

Resource limitation is one of the reasons for remaining bugs after release.
Developers have little time to investigate all software elements and need a mea-
sure to find more suspicious elements than the others. Software defect predic-
tion (SDP) aims to help prioritize software elements according to their fault-
proneness.

Many studies on SDP have been published so far [18,39]. SDP studies target
different granularities: source files, classes, functions, methods, and lines. These
software elements were measured with static code metrics for building SDPs [24].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 433–448, 2022.
https://doi.org/10.1007/978-3-031-21388-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_30&domain=pdf
http://orcid.org/0000-0001-8763-3457
http://orcid.org/0000-0001-7074-5225
http://orcid.org/0000-0001-6681-2608
https://doi.org/10.1007/978-3-031-21388-5_30

434 S. Amasaki et al.

Recent studies also target code changes by developers. Code changes are recorded
in a version control system and can be attributed to each developer. Instead of
static code metrics, change metrics such as change size and developer experience
can be used for prediction.

Just-in-time SDP (JIT SDP) [17] uses code changes by developers for build-
ing prediction models at project-level. As each commit is attributed to each
developer, JIT SDP models can be built at developer-level. Personalized defect
prediction [15] aims to improve prediction accuracy by using personalized code
change data. On the one hand, the stratification by developers brings homoge-
neous data by excluding developers’ diversity. On the other hand, the stratifica-
tion decreases the data size supplied for training a prediction model.

Cross-project defect prediction (CPDP) is a research topic that tack-
les the small amount of training data available using data from other
teams/organizations. Although such cross-project data had been used barely
(e.g., [4]), cross-project data and target project data usually have different char-
acteristics. Most CPDP approaches thus adapt the cross-project data to a tar-
get project data. Recent studies have investigated CPDP approaches on JIT
SDP [6,16,36,47].

Cross personalized defect prediction [2] applies the idea of CPDP to person-
alized defect prediction. The commit data of other developers were considered
as cross-personalized data of a target developer. A bare (i.e., straightforward)
cross-personalized defect prediction is to use cross-personalized data for training.
It is like a JIT SDP, but target developer’s data are not used for training. Cross
personalized defect prediction is to find a transformation of such data based on
the characteristics of the target developer’s data. Many CPDP approaches have
been proposed for years, and the value of other cross-project defect prediction
approaches on cross-personalized defect prediction was still a question.

This paper explored the effectiveness of CPDP approaches where they were
applied to cross-personalized defect prediction. The rest of this paper was orga-
nized as follows: Sect. 2 describes past studies related to personalized software
defect prediction and CPDP. Section 3 gives the motivation of this research
and the research questions we addressed. Section 4 explains the methodology
we adopted. Sections 5 shows the experiment results with figures and tables,
and Sect. 6 answers the research questions. Section 7 discusses the threats to the
validity of our experiments. Section 8 provides a summary of this paper.

2 Related Work

Software quality assurance activities suffer from resource shortages and need a
measure to prioritize software elements to be examined. Software defect predic-
tion (SDP) aims for quality and efficient prioritization using machine-learning
algorithms. In past studies, SDP is thus targeting at different granularity lev-
els such as function and file for the recursive nature of software. As software
version control systems had been popular for code management, SDP at the
change-level (often called just-in-time (JIT) SDP [17]) got popular in software

An Evaluation of Cross-Project Defect Prediction Approaches 435

engineering research. JIT SDP approaches have been widely investigated so
far [6,14,21,42,43,47].

JIT SDP can specify who makes faulty changes because code changes are
recorded with the authors’ information. The relationships between developer
characteristics and faults are widely investigated. For instance, Schröter et al. [35]
reported that developers’ defect densities differed. Rahman et al. [32] also showed
that an author’s specialized experience in the target file is more important than
general experience.

Personalized defect prediction focuses on the diversity of developers. Jiang et
al. [15] constructed a personalized defect prediction approach based on charac-
teristic vectors of code changes. They also created another model that combines
personal data and the other developers’ change data with different weights. Fur-
thermore, they created a meta classifier that uses a general prediction model
and the above models. Empirical experiments with OSS projects showed the
proposed models were better than the general prediction model. Xia et al. [41]
proposed a personalized defect prediction approach that combines a person-
alized prediction model and other developers’ models with a multi-objective
genetic algorithm. Empirical experiments with the same data as [15] showed
better prediction performance. These personalized defect prediction approaches
utilized other developers’ data to improve the prediction performance. Ekan
and Tosun [7] investigated the performance and the developer characteristics in
detail. They identified some characteristics such as experiences that affect the
preference of personalized models.

The homogeneity of training data is expected to increase the quality of predic-
tion models. For instance, it was recommended that JIT defect prediction models
should regularly be refreshed with recent commits [23]. Personalized defect pre-
diction also follows this idea. However, it reduces the amount of training data
and affects the accuracy of prediction models. Cross-project SDP is a research
topic that aims to balance that trade-off using data from outside of a target to
overcome the small amount of dataset obtained. Many CPDP approaches have
also been proposed so far [11,13,46]. Cross-project SDP at the change level has
also been investigated and called JIT CPDP [1,6,16,36].

Cross personalized defect prediction follows the idea of JIT CPDP for person-
alized defect prediction. Instead of using cross-project, developers in the same
project are utilized for better prediction. Researchers investigated the effective-
ness of cross-personalized defect prediction partially. The personalized defect
prediction approaches in the above [15,41] can be considered cross-personalized
defect prediction approaches. Because combining defect prediction models based
on other projects was studied as a CPDP approach [28].

3 Motivation

In a previous study, the bellwether effect [20], a CPDP approach, was also exam-
ined for cross-personalized defect prediction [2]. Some studies [15,41] can be
considered cross-personalized defect prediction approaches. These studies were

436 S. Amasaki et al.

limited to one specific CPDP approach, and no comprehensive and compara-
tive investigation based on not a few approaches has not been conducted so far.
Through empirical experiments with 9 project data, we addressed the following
research questions:

RQ1. Do CPDP approaches affect the bare cross-personalized defect prediction
performance?

RQ2. Which CPDP approaches improve the bare cross-personalized defect pre-
diction performance?

RQ3. Do CPDP approaches contribute to improving personalized defect predic-
tion?

To answer these research questions, cross-personalized defect predictions with
23 CPDP approaches were carried out and compared with each other.

4 Methodology

4.1 Datasets

This study used the same datasets as [2]. The datasets were originally collected
by Cabral et al. [5] and provided through a replication package1. Table 1 describes
the definitions of change metrics in the datasets. The change metrics consist of
14 metrics of 5 dimensions defined in [17].

The datasets were preprocessed before dividing the whole commits into devel-
opers’ commits. The first step was to recover links between commits and authors,
as commits in the datasets had no author information. UNIX timestamps of the
commits and their corresponding git repositories were used to identify their
authors. Commits with the same timestamp (duplicates) were all removed as it
was impossible to connect those commits and their authors. The second step was
to cleanse the linked data to filter out suspicious cases. Commits were removed
if it has a negative value in a counting metric such as LA in Table 1. We also
removed suspicious cases that had zero values only, meaning nothing committed.

Our study focused on personalized defect prediction and used active devel-
opers data having enough commits for evaluating the performance of CPDP
approaches. The other commits were discarded in this study. In [2], the number
of commits was used to determine whether a developer was active or not. Active
developers must also make enough faulty and no-faulty commits to train a defect
prediction model. We adopted a criterion of [2] that active developers must have
at least 30 faulty commits and 30 non-faulty commits. Table 2 shows the num-
ber of active developers identified and the average commits per developer of
the datasets. These numbers varied among the datasets, and it was suitable for
evaluation.

1 http://doi.org/10.5281/zenodo.2594681.

http://doi.org/10.5281/zenodo.2594681

An Evaluation of Cross-Project Defect Prediction Approaches 437

Table 1. Changes measures

Dimension Name Definition

Diffusion NS Number of modified subsystems

ND Number of modified directories

NF Number of modified files

Entropy Distribution of modified code across each file

Size LA Lines of code added

LD Lines of code deleted

LT Lines of code in a file before the change

Purpose FIX Whether or not the change is defect fix

History NDEV The number of developers that changed the modified files

AGE The mean time interval between the last and the current
change

NUC The number of unique changes to the modified files

Experience EXP Developer experience

REXP Recent developer experience

SEXP Developer experience on a subsystem

Table 2. Statistics of Selected Datasets

Project name Period Active developers Average commits

Brackets 12/2011-12/2017 24 335

Broadleaf 11/2008-12/2017 14 674

Camel 03/2007-12/2017 17 1,509

Fabric8 12/2011-12/2017 10 914

Neutron 12/2010-12/2017 21 196

Nova 08/2010-01/2018 67 230

NPM 09/2009-11/2017 4 1,645

Spring-Integration 11/2007-01/2018 8 878

Tomcat 03/2006-12/2017 9 1,990

4.2 Experiment Design

Cross-personalized defect prediction assumes that an (active) developer needs
training data enough from other (active) developers to build prediction models.
Although developers’ commits in a project can be sorted and used following a
timeline, we made experiments straightforward so that cross-personalized defect
prediction models were made of all the other developers’ commits in the same
project. Detailed realistic emulation is our future work. This decision enabled us
to use a benchmark framework called CrossPare [12].

438 S. Amasaki et al.

Crosspare is a benchmark framework for cross-project defect prediction. This
study used 23 out of 24 CPDP approaches implemented. The rest, Nam13 [27],
was omitted for the out-of-memory error on a computer. As we focused on cross-
personalized defect prediction, the benchmark framework was applied to each
project instead of a set of projects. Nine projects were supplied to this experiment
and enabled us to observe the stability of performance of CPDP approaches.

Some approaches only transform cross-personalized data and can be com-
bined with arbitrary machine learning algorithms. Therefore, all combinations
of the approaches and learning algorithms implemented in CrossPare were evalu-
ated except for SVM for a long-time computation. The adopted approaches were
compared with two baselines. The first one is a bare cross-project defect predic-
tion that combines all cross-personalized data and uses a classification algorithm
for prediction. This configuration corresponded to a project-level defect predic-
tion and was called a general model in [7]. Another is cross-validation of target
data, often called WPDP (within-project defect prediction) in CPDP studies,
meaning a normal personalized defect prediction.

4.3 Performance Evaluation

This study adopted AUC (Area Under the Receiver Operating Characteristic
Curve) as the performance measure. AUC measure is not sensitive to thresholds
that determine faultiness or not. It is also robust to class imbalance, which
happened in defect prediction. A classifier is perfect if an AUC value is 1.0. A
meaningful classifier results in an AUC value of more than 0.5. If equal or less,
the classifier is random guessing at best.

The Scott-Knott Effect Size Difference (ESD) test [37] was used to compare
the performance of methods on each dataset statistically. The Scott-Knott ESD
test makes some clusters, each consisting of homogeneous configurations (i.e.,
combinations of a CPDP approach and a machine learning technique) regarding
their prediction performance. It corrects the non-normal distribution of an input
dataset and merges any two statistically distinct clusters with a negligible effect
size into one group. That is, the effect size between two distinct clusters made
by the Scott-Knott ESD test is more than negligible. A cluster with the highest
performance holds treatments that are clearly better than the others while the
performance of those treatments is equivalent.

5 Results

Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9 show the ranking of CPDP approaches on the
datasets introduced in Sect. 4.1. The figure shows only the best combination for
the approaches accepting arbitrary learning algorithms. The bare (i.e., project-
level) cross-personalized defect prediction and the normal personalized defect
prediction are named “ALL” and “CV,” respectively. That is, if CV were better
than ALL, it would imply that personalized defect prediction was more effective
than the bare cross-project defect prediction. The differences in colors among the

An Evaluation of Cross-Project Defect Prediction Approaches 439

A
U
C

0.
0

0.
2

0.
5

0.
8

1.
0

P
H
e1
5.
D
T

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

P
et
er
s1
3.
R
F

C
am

ar
go
C
ru
z0
9.
R
F

P
et
er
s1
2.
R
F

P
et
er
s1
5.
N
B

K
os
hg
of
ta
ar
08
.R
F

T
ur
ha
n0
9.
R
F

A
LL
.R
F

M
a1
2.
R
F

M
en
zi
es
11
.D
T

A
m
as
ak
i1
5.
LR

C
V
.R
F

K
aw

at
a1
5.
R
F

Y
Z
ha
ng
15
.A
V
G
V
O
T
E

W
at
an
ab
e0
8.
D
T

R
yu
15
.R
F

Z
im
m
er
m
an
n0
9.
R
F

H
er
bo
ld
13
.L
R

Z
H
e1
3.
N
E
T

N
am

15
.N
B

R
yu
14
.V
C
B
S
V
M

C
an
fo
ra
13
.M
O
D
E
P

U
ch
ig
ak
i1
2.
LE

Li
u1
0.
G
P
T
ra
in
in
g

P
H
e1
5.
D
T

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

P
et
er
s1
3.
R
F

C
am

ar
go
C
ru
z0
9.
R
F

P
et
er
s1
2.
R
F

P
et
er
s1
5.
N
B

K
os
hg
of
ta
ar
08
.R
F

T
ur
ha
n0
9.
R
F

A
LL
.R
F

M
a1
2.
R
F

M
en
zi
es
11
.D
T

A
m
as
ak
i1
5.
LR

C
V
.R
F

K
aw

at
a1
5.
R
F

Y
Z
ha
ng
15
.A
V
G
V
O
T
E

W
at
an
ab
e0
8.
D
T

R
yu
15
.R
F

Z
im
m
er
m
an
n0
9.
R
F

H
er
bo
ld
13
.L
R

Z
H
e1
3.
N
E
T

N
am

15
.N
B

R
yu
14
.V
C
B
S
V
M

C
an
fo
ra
13
.M
O
D
E
P

U
ch
ig
ak
i1
2.
LE

Li
u1
0.
G
P
T
ra
in
in
g

Fig. 1. Ranking of CPDP approaches in AUC (brackets) (Color figure online)

A
U
C

0.
0

0.
2

0.
5

0.
8

1.
0

P
et
er
s1
5.
N
B

C
am

ar
go
C
ru
z0
9.
N
B

T
ur
ha
n0
9.
N
B

A
m
as
ak
i1
5.
N
B

H
er
bo
ld
13
.L
R

Z
H
e1
3.
N
E
T

R
yu
14
.V
C
B
S
V
M

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

N
am

15
.D
T

Y
Z
ha
ng
15
.B
O
O
S
T
.D
T

P
et
er
s1
2.
R
F

C
V
.R
F

K
os
hg
of
ta
ar
08
.N
B

P
et
er
s1
3.
R
F

K
aw

at
a1
5.
D
T

A
LL
.R
F

M
a1
2.
R
F

M
en
zi
es
11
.D
T

P
H
e1
5.
R
F

R
yu
15
.N
B

W
at
an
ab
e0
8.
R
F

Z
im
m
er
m
an
n0
9.
R
F

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

P
et
er
s1
5.
N
B

C
am

ar
go
C
ru
z0
9.
N
B

T
ur
ha
n0
9.
N
B

A
m
as
ak
i1
5.
N
B

H
er
bo
ld
13
.L
R

Z
H
e1
3.
N
E
T

R
yu
14
.V
C
B
S
V
M

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

N
am

15
.D
T

Y
Z
ha
ng
15
.B
O
O
S
T
.D
T

P
et
er
s1
2.
R
F

C
V
.R
F

K
os
hg
of
ta
ar
08
.N
B

P
et
er
s1
3.
R
F

K
aw

at
a1
5.
D
T

A
LL
.R
F

M
a1
2.
R
F

M
en
zi
es
11
.D
T

P
H
e1
5.
R
F

R
yu
15
.N
B

W
at
an
ab
e0
8.
R
F

Z
im
m
er
m
an
n0
9.
R
F

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

Fig. 2. Ranking of CPDP approaches in AUC (Broadleaf) (Color figure online)

approach names indicate the statistically significant differences in AUCs based
on Scott-Knott ESD. The left side is better. The results of these datasets are
analyzed below.

Brackets: Figure 1 shows that one baseline named “ALL” (with Random Forests
(RF)) was found in the third group. The other named “CV” with RF was in
the fourth group. This order implied that the bare cross-personalized defect
prediction was better than personalized defect prediction. The group of the
bare cross-personalized defect prediction also has 9 CPDP approaches. These
CPDP approaches brought no improvement and were ineffective. Two CPDP
approaches, PHe15 [9] and Panichella14 [28] were significantly better than the
bare cross-personalized defect prediction. The top approach was PHe15 with
Decision Tree (DT). Contrastingly, not a few CPDP approaches were still signif-
icantly worse than the two baselines. Some approaches performed less than 0.5
of AUC, meaning a random guess.

Broadleaf: Figure 2 shows the ranking on Broadleaf dataset. In contrast to Fig. 1,
CV placed in the fifth group while ALL placed in the sixth group. This order
implied that the bare cross personalized defect prediction was worse than person-
alized defect prediction. The group of the bare cross-personalized defect predic-
tion also has 3 CPDP approaches. These CPDP approaches brought no improve-
ment and were ineffective. Fourteen CPDP approaches, namely, Peters15 [31],

440 S. Amasaki et al.
A
U
C

0.
0

0.
2

0.
5

0.
8

1.
0

T
ur
ha
n0
9.
N
B

P
et
er
s1
5.
N
B

C
am

ar
go
C
ru
z0
9.
N
B

A
m
as
ak
i1
5.
N
B

Z
H
e1
3.
R
F

H
er
bo
ld
13
.L
R

R
yu
14
.V
C
B
S
V
M

K
os
hg
of
ta
ar
08
.D
T

C
V
.R
F

R
yu
15
.N
B

N
am

15
.L
R

P
et
er
s1
3.
R
F

P
et
er
s1
2.
R
F

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

Y
Z
ha
ng
15
.B
O
O
S
T
.D
T

Z
im
m
er
m
an
n0
9.
R
F

M
en
zi
es
11
.N
B

P
H
e1
5.
N
B

A
LL
.R
F

M
a1
2.
R
F

K
aw

at
a1
5.
R
F

W
at
an
ab
e0
8.
N
B

Li
u1
0.
G
P
T
ra
in
in
g

C
an
fo
ra
13
.M
O
D
E
P

U
ch
ig
ak
i1
2.
LE

T
ur
ha
n0
9.
N
B

P
et
er
s1
5.
N
B

C
am

ar
go
C
ru
z0
9.
N
B

A
m
as
ak
i1
5.
N
B

Z
H
e1
3.
R
F

H
er
bo
ld
13
.L
R

R
yu
14
.V
C
B
S
V
M

K
os
hg
of
ta
ar
08
.D
T

C
V
.R
F

R
yu
15
.N
B

N
am

15
.L
R

P
et
er
s1
3.
R
F

P
et
er
s1
2.
R
F

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

Y
Z
ha
ng
15
.B
O
O
S
T
.D
T

Z
im
m
er
m
an
n0
9.
R
F

M
en
zi
es
11
.N
B

P
H
e1
5.
N
B

A
LL
.R
F

M
a1
2.
R
F

K
aw

at
a1
5.
R
F

W
at
an
ab
e0
8.
N
B

Li
u1
0.
G
P
T
ra
in
in
g

C
an
fo
ra
13
.M
O
D
E
P

U
ch
ig
ak
i1
2.
LE

Fig. 3. Ranking of CPDP approaches in AUC (Camel) (Color figure online)

A
U
C

0.
0

0.
2

0.
5

0.
8

1.
0

C
am

ar
go
C
ru
z0
9.
N
B

C
V
.D
T

P
et
er
s1
5.
N
B

T
ur
ha
n0
9.
N
B

A
m
as
ak
i1
5.
N
B

R
yu
14
.V
C
B
S
V
M

H
er
bo
ld
13
.L
R

K
os
hg
of
ta
ar
08
.N
B

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

N
am

15
.D
T

M
en
zi
es
11
.N
B

Y
Z
ha
ng
15
.B
A
G
.D
T

P
et
er
s1
2.
R
F

P
et
er
s1
3.
R
F

A
LL
.D
T

K
aw

at
a1
5.
D
T

M
a1
2.
D
T

Z
H
e1
3.
D
T

P
H
e1
5.
D
T

R
yu
15
.N
B

W
at
an
ab
e0
8.
R
F

Z
im
m
er
m
an
n0
9.
N
B

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

U
ch
ig
ak
i1
2.
LE

C
am

ar
go
C
ru
z0
9.
N
B

C
V
.D
T

P
et
er
s1
5.
N
B

T
ur
ha
n0
9.
N
B

A
m
as
ak
i1
5.
N
B

R
yu
14
.V
C
B
S
V
M

H
er
bo
ld
13
.L
R

K
os
hg
of
ta
ar
08
.N
B

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

N
am

15
.D
T

M
en
zi
es
11
.N
B

Y
Z
ha
ng
15
.B
A
G
.D
T

P
et
er
s1
2.
R
F

P
et
er
s1
3.
R
F

A
LL
.D
T

K
aw

at
a1
5.
D
T

M
a1
2.
D
T

Z
H
e1
3.
D
T

P
H
e1
5.
D
T

R
yu
15
.N
B

W
at
an
ab
e0
8.
R
F

Z
im
m
er
m
an
n0
9.
N
B

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

U
ch
ig
ak
i1
2.
LE

Fig. 4. Ranking of CPDP approaches in AUC (Fabric8) (Color figure online)

CamargoCruz09 [8], Turhan09 [38], Amasaki15 [3], Herbold13 [11], ZHe13 [10],
Ryu14 [33], Panichella14, Nam15 [26], YZhang15 [44,45], Peters12 [29], Koshgof-
taar08 [19], and Peters13 [30], were significantly better than the bare cross-
personalized defect prediction. Furthermore, 8 out of the 14 CPDP approaches
were also significantly better than the normal personalized defect prediction.
The top group has three approaches, namely, Peters15, CamargoCruz09, and
Turhan09. As well as Fig. 1, not a few approaches were worse than the two
baselines.

Camel: Figure 3 shows the ranking on Camel dataset. This figure also supported
CV in the fifth group against ALL in the seventh group. The group of the
bare cross-personalized defect prediction also has 3 CPDP approaches. These
CPDP approaches brought no improvement and were ineffective. Sixteen CPDP
approaches, namely, Turhan09, Peters15, CamargoCruz09, Amasaki15, ZHe13,
Herbold13, Ryu14, Koshgoftaar08, Ryu15 [34], Nam15, Peters13, Peters12,
Panichella14, YZhang15, Zimmermann09 [48], and Menzies11 [25], were signif-
icantly better than the bare cross-personalized defect prediction. Furthermore,
8 out of the 14 CPDP approaches were also significantly better than the nor-
mal personalized defect prediction. The top group has two approaches, namely,
Peters15 and Turhan09. Not a few approaches were worse than the two baselines.

An Evaluation of Cross-Project Defect Prediction Approaches 441

A
U
C

0.
0

0.
2

0.
5

0.
8

1.
0

A
m
as
ak
i1
5.
LR

T
ur
ha
n0
9.
LR

K
os
hg
of
ta
ar
08
.D
T

A
LL
.R
F

M
a1
2.
R
F

K
aw

at
a1
5.
R
F

W
at
an
ab
e0
8.
R
F

Y
Z
ha
ng
15
.B
A
G
.D
T

C
am

ar
go
C
ru
z0
9.
R
F

P
an
ic
he
lla
14
.C
O
D
E
P
.L
R

Y
Z
ha
ng
15
.A
V
G
V
O
T
E

P
H
e1
5.
N
E
T

P
et
er
s1
2.
R
F

P
et
er
s1
3.
R
F

R
yu
15
.R
F

H
er
bo
ld
13
.R
F

C
V
.R
F

M
en
zi
es
11
.R
F

P
et
er
s1
5.
LR

R
yu
14
.V
C
B
S
V
M

Z
H
e1
3.
R
F

N
am

15
.D
T

U
ch
ig
ak
i1
2.
LE

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

A
m
as
ak
i1
5.
LR

T
ur
ha
n0
9.
LR

K
os
hg
of
ta
ar
08
.D
T

A
LL
.R
F

M
a1
2.
R
F

K
aw

at
a1
5.
R
F

W
at
an
ab
e0
8.
R
F

Y
Z
ha
ng
15
.B
A
G
.D
T

C
am

ar
go
C
ru
z0
9.
R
F

P
an
ic
he
lla
14
.C
O
D
E
P
.L
R

Y
Z
ha
ng
15
.A
V
G
V
O
T
E

P
H
e1
5.
N
E
T

P
et
er
s1
2.
R
F

P
et
er
s1
3.
R
F

R
yu
15
.R
F

H
er
bo
ld
13
.R
F

C
V
.R
F

M
en
zi
es
11
.R
F

P
et
er
s1
5.
LR

R
yu
14
.V
C
B
S
V
M

Z
H
e1
3.
R
F

N
am

15
.D
T

U
ch
ig
ak
i1
2.
LE

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

Fig. 5. Ranking of CPDP approaches in AUC (Neutron) (Color figure online)

A
U
C

0.
0

0.
2

0.
5

0.
8

1.
0

K
aw

at
a1
5.
R
F

A
LL
.R
F

M
a1
2.
R
F

T
ur
ha
n0
9.
R
F

A
m
as
ak
i1
5.
R
F

W
at
an
ab
e0
8.
R
F

R
yu
15
.R
F

C
am

ar
go
C
ru
z0
9.
LR

P
et
er
s1
3.
R
F

Y
Z
ha
ng
15
.A
V
G
V
O
T
E

C
V
.R
F

P
an
ic
he
lla
14
.C
O
D
E
P
.L
R

P
et
er
s1
2.
R
F

P
et
er
s1
5.
R
F

M
en
zi
es
11
.R
F

K
os
hg
of
ta
ar
08
.R
F

H
er
bo
ld
13
.R
F

P
H
e1
5.
D
T

Z
im
m
er
m
an
n0
9.
R
F

R
yu
14
.V
C
B
S
V
M

Z
H
e1
3.
R
F

N
am

15
.D
T

U
ch
ig
ak
i1
2.
LE

Li
u1
0.
G
P
T
ra
in
in
g

C
an
fo
ra
13
.M
O
D
E
P

K
aw

at
a1
5.
R
F

A
LL
.R
F

M
a1
2.
R
F

T
ur
ha
n0
9.
R
F

A
m
as
ak
i1
5.
R
F

W
at
an
ab
e0
8.
R
F

R
yu
15
.R
F

C
am

ar
go
C
ru
z0
9.
LR

P
et
er
s1
3.
R
F

Y
Z
ha
ng
15
.A
V
G
V
O
T
E

C
V
.R
F

P
an
ic
he
lla
14
.C
O
D
E
P
.L
R

P
et
er
s1
2.
R
F

P
et
er
s1
5.
R
F

M
en
zi
es
11
.R
F

K
os
hg
of
ta
ar
08
.R
F

H
er
bo
ld
13
.R
F

P
H
e1
5.
D
T

Z
im
m
er
m
an
n0
9.
R
F

R
yu
14
.V
C
B
S
V
M

Z
H
e1
3.
R
F

N
am

15
.D
T

U
ch
ig
ak
i1
2.
LE

Li
u1
0.
G
P
T
ra
in
in
g

C
an
fo
ra
13
.M
O
D
E
P

Fig. 6. Ranking of CPDP approaches in AUC (Nova) (Color figure online)

Fabric8: Figure 4 shows the ranking on Fabric8 dataset. This figure also sup-
ported CV in the second group against ALL in the fourth group. The group of
the bare cross-personalized defect prediction also has 7 CPDP approaches. These
CPDP approaches brought no improvement and were ineffective. Eight CPDP
approaches, namely, CamargoCruz09, Peters15, Turhan09, Amasaki15, Ryu14,
Herbold13, Koshgoftaar08, and Panichella14, were significantly better than the
bare cross-personalized defect prediction. Furthermore, CamargoCruz09 was also
significantly better than the normal personalized defect prediction. Not a few
approaches were worse than the two baselines.

Neutron: Figure 5 shows the ranking on Neutron dataset. In contrast to Fig. 4,
ALL in the first group was supported against CV in the fourth group. The group
of the bare cross-personalized defect prediction also has 4 CPDP approaches.
These CPDP approaches brought no improvement, that is, ineffective. There
was no approach above the two baselines. Not a few approaches were worse than
the two baselines.

Nova: Figure 6 shows the ranking on Nova dataset. ALL in the first group was
also supported against CV in the second group. There was no approach above
the two baselines. Not a few approaches were worse than the two baselines.

NPM: Figure 7 shows the ranking on NPM dataset. In contrast to Fig. 6, CV in
the fourth group was supported against ALL in the sixth group. The group of

442 S. Amasaki et al.
A
U
C

0.
0

0.
2

0.
5

0.
8

1.
0

Z
H
e1
3.
D
T

H
er
bo
ld
13
.L
R

C
am

ar
go
C
ru
z0
9.
N
B

T
ur
ha
n0
9.
N
B

P
et
er
s1
5.
N
B

A
m
as
ak
i1
5.
N
B

C
V
.N
B

R
yu
14
.V
C
B
S
V
M

R
yu
15
.L
R

Z
im
m
er
m
an
n0
9.
N
B

K
os
hg
of
ta
ar
08
.N
B

Y
Z
ha
ng
15
.B
A
G
.N
B

N
am

15
.N
B

M
a1
2.
N
B

W
at
an
ab
e0
8.
N
B

A
LL
.N
B

K
aw

at
a1
5.
N
B

P
et
er
s1
2.
N
B

P
et
er
s1
3.
N
B

P
H
e1
5.
N
B

M
en
zi
es
11
.W

H
IC
H

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

U
ch
ig
ak
i1
2.
LE

Z
H
e1
3.
D
T

H
er
bo
ld
13
.L
R

C
am

ar
go
C
ru
z0
9.
N
B

T
ur
ha
n0
9.
N
B

P
et
er
s1
5.
N
B

A
m
as
ak
i1
5.
N
B

C
V
.N
B

R
yu
14
.V
C
B
S
V
M

R
yu
15
.L
R

Z
im
m
er
m
an
n0
9.
N
B

K
os
hg
of
ta
ar
08
.N
B

Y
Z
ha
ng
15
.B
A
G
.N
B

N
am

15
.N
B

M
a1
2.
N
B

W
at
an
ab
e0
8.
N
B

A
LL
.N
B

K
aw

at
a1
5.
N
B

P
et
er
s1
2.
N
B

P
et
er
s1
3.
N
B

P
H
e1
5.
N
B

M
en
zi
es
11
.W

H
IC
H

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

U
ch
ig
ak
i1
2.
LE

Fig. 7. Ranking of CPDP approaches in AUC (NPM) (Color figure online)

A
U
C

0.
0

0.
2

0.
5

0.
8

1.
0

P
et
er
s1
5.
N
B

C
am

ar
go
C
ru
z0
9.
N
B

H
er
bo
ld
13
.L
R

T
ur
ha
n0
9.
N
B

A
m
as
ak
i1
5.
N
B

P
et
er
s1
3.
R
F

C
V
.R
F

K
os
hg
of
ta
ar
08
.D
T

P
et
er
s1
2.
R
F

W
at
an
ab
e0
8.
R
F

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

R
yu
14
.V
C
B
S
V
M

Y
Z
ha
ng
15
.B
A
G
.D
T

P
H
e1
5.
D
T

A
LL
.R
F

M
a1
2.
R
F

K
aw

at
a1
5.
R
F

Z
H
e1
3.
R
F

R
yu
15
.R
F

M
en
zi
es
11
.D
T

N
am

15
.D
T

Z
im
m
er
m
an
n0
9.
N
B

C
an
fo
ra
13
.M
O
D
E
P

U
ch
ig
ak
i1
2.
LE

Li
u1
0.
G
P
T
ra
in
in
g

P
et
er
s1
5.
N
B

C
am

ar
go
C
ru
z0
9.
N
B

H
er
bo
ld
13
.L
R

T
ur
ha
n0
9.
N
B

A
m
as
ak
i1
5.
N
B

P
et
er
s1
3.
R
F

C
V
.R
F

K
os
hg
of
ta
ar
08
.D
T

P
et
er
s1
2.
R
F

W
at
an
ab
e0
8.
R
F

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

R
yu
14
.V
C
B
S
V
M

Y
Z
ha
ng
15
.B
A
G
.D
T

P
H
e1
5.
D
T

A
LL
.R
F

M
a1
2.
R
F

K
aw

at
a1
5.
R
F

Z
H
e1
3.
R
F

R
yu
15
.R
F

M
en
zi
es
11
.D
T

N
am

15
.D
T

Z
im
m
er
m
an
n0
9.
N
B

C
an
fo
ra
13
.M
O
D
E
P

U
ch
ig
ak
i1
2.
LE

Li
u1
0.
G
P
T
ra
in
in
g

Fig. 8. Ranking of CPDP approaches in AUC (Spring-Integration) (Color figure online)

the bare cross-personalized defect prediction also has 7 CPDP approaches. These
CPDP approaches brought no improvement and were ineffective. Ten CPDP
approaches, namely, ZHe13, Herbold13, CamargoCruz09, Turhan09, Peters15,
Amasaki15, Ryu14, Ryu15, Zimmermann09, and Koshgoftaar08, were signifi-
cantly better than the bare cross-personalized defect prediction. Furthermore, 6
out of the 10 CPDP approaches were also significantly better than the normal
personalized defect prediction. The top group has one approach, namely, ZHe13.
Not a few approaches were worse than the two baselines.

Spring-Integration: Figure 8 shows the ranking on Spring-Integration dataset.
CV in the third group was supported against ALL in the sixth group. The group
of the bare cross-personalized defect prediction also has 4 CPDP approaches.
These CPDP approaches brought no improvement and were ineffective. Twelve
CPDP approaches, namely, Peters15, CamargoCruz09, Herbold13, Turhan09,
Amasaki15, Peters13, Koshgoftaar08, Peters12, Watanabe08 [40], Panichella14,
Ryu14, and YZhang15, were significantly better than the bare cross-personalized
defect prediction. Furthermore, 4 of the 12 CPDP approaches were significantly
better than the normal personalized defect prediction. The top group has one
approach, namely, Peters15. Not a few approaches were worse than the two
baselines.

Tomcat: Figure 9 shows the ranking on Tomcat dataset. CV in the sec-
ond group was supported against ALL in the fifth group. The group of the

An Evaluation of Cross-Project Defect Prediction Approaches 443

A
U
C

0.
0

0.
2

0.
5

0.
8

1.
0

Z
H
e1
3.
LR

H
er
bo
ld
13
.L
R

T
ur
ha
n0
9.
N
B

P
et
er
s1
5.
N
B

C
am

ar
go
C
ru
z0
9.
N
B

C
V
.R
F

P
et
er
s1
2.
D
T

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

W
at
an
ab
e0
8.
D
T

R
yu
14
.V
C
B
S
V
M

P
et
er
s1
3.
R
F

P
H
e1
5.
D
T

M
en
zi
es
11
.D
T

Y
Z
ha
ng
15
.B
O
O
S
T
.D
T

A
m
as
ak
i1
5.
N
B

R
yu
15
.N
B

K
aw

at
a1
5.
D
T

A
LL
.D
T

M
a1
2.
D
T

K
os
hg
of
ta
ar
08
.D
T

N
am

15
.D
T

Z
im
m
er
m
an
n0
9.
D
T

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

U
ch
ig
ak
i1
2.
LE

Z
H
e1
3.
LR

H
er
bo
ld
13
.L
R

T
ur
ha
n0
9.
N
B

P
et
er
s1
5.
N
B

C
am

ar
go
C
ru
z0
9.
N
B

C
V
.R
F

P
et
er
s1
2.
D
T

P
an
ic
he
lla
14
.C
O
D
E
P
.B
N

W
at
an
ab
e0
8.
D
T

R
yu
14
.V
C
B
S
V
M

P
et
er
s1
3.
R
F

P
H
e1
5.
D
T

M
en
zi
es
11
.D
T

Y
Z
ha
ng
15
.B
O
O
S
T
.D
T

A
m
as
ak
i1
5.
N
B

R
yu
15
.N
B

K
aw

at
a1
5.
D
T

A
LL
.D
T

M
a1
2.
D
T

K
os
hg
of
ta
ar
08
.D
T

N
am

15
.D
T

Z
im
m
er
m
an
n0
9.
D
T

C
an
fo
ra
13
.M
O
D
E
P

Li
u1
0.
G
P
T
ra
in
in
g

U
ch
ig
ak
i1
2.
LE

Fig. 9. Ranking of CPDP approaches in AUC (Tomcat) (Color figure online)

bare cross-personalized defect prediction also has 4 CPDP approaches. These
CPDP approaches brought no improvement and were ineffective. Fourteen
CPDP approaches, namely, ZHe13, Herbold13, Turhan09, Peters15, Camar-
goCruz09, Peters12, Panichella14, Watanabe08, Ryu14, Peters13, PHe15, Men-
zies11, YZhang15, and Amasaki15, were significantly better than the bare cross-
personalized defect prediction. Furthermore, 5 of the 14 CPDP approaches
were significantly better than the normal personalized defect prediction. They
were ZHe13, Herbold13, Turhan09, Peters15, and CamargoCruz09. Not a few
approaches were worse than the two baselines.

6 Discussion

6.1 RQ1 Do CPDP Approaches Affect Cross-Personalized Defect
Prediction Performance?

Some CPDP approaches were grouped with the bare cross-personalized defect
prediction noted as “ALL” as shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8 and 9. The other
CPDP approaches performed significantly better or worse than the bare cross-
personalized defect prediction and formed different groups. Therefore, CPDP
approaches could change the bare cross-personalized defect prediction perfor-
mance.

Answer to RQ1: Yes, not all, but some CPDP approaches significantly
changed the bare cross-personalized defect prediction performance positively
or negatively.

6.2 RQ2 Which CPDP Approaches Improve the Bare
Cross-Personalized Defect Prediction Performance?

Figures 1, 2, 3, 4, 5, 6, 7, 8 and 9 show some groups having CPDP approaches
significantly better than the bare cross-personalized defect prediction. However,

444 S. Amasaki et al.

there was no CPDP approach that was effective on all projects. The bare cross-
personalized defect prediction was placed in the first group on Neutron and
Nova. Amasaki15, Ma12 [22], and Turhan09 were common between Neutron and
Nova and equivalent to the bare cross-personalized defect prediction at most.
For the other projects, the most frequently appearing CPDP approaches were
Amasaki15, CamargoCruz09, Herbold13, Panichella14, Peters15, Ryu14, and
Turhan09. These approaches were better than the bare cross-personalized defect
prediction on six projects. Among those CPDP approaches, only Panichella14
appeared as a better one on Brackets dataset, while it was significantly worse on
Neutron and Nova. Contrastingly, on Brackets dataset, Amasaki15 and Turhan09
were equivalent to the bare cross-personalized defect prediction. Therefore, they
were not the best but the practical choices.

Answer to RQ2: Some CPDP approaches improved the bare cross-
personalized defect prediction on some projects but not on all projects. To
avoid performance degradation due to the CPDP approach, Amasaki15 and
Turhan09 were not the best but the practical choices. These approaches were
significantly better on 6 projects and equivalent on 3 projects compared to
the bare cross-personalized defect prediction.

6.3 RQ3 Do CPDP Approaches Contribute to Improving
Personalized Defect Prediction?

We found that on 6 out of 9 projects, namely, Broadleaf, Camel, Fabric8, NPM,
Spring-Integration, and Tomcat, the normal personalized defect prediction was
better than the bare cross-personalized defect prediction, namely, project-level
defect prediction. This result revealed the advantage of personalized defect pre-
diction against project-level defect prediction. CPDP approaches improved cross-
personalized defect prediction, so their performance was significantly better than
the normal personalized defect prediction. The top group on these projects had
CPDP approaches only. Especially, Turhan09 was always better than or equiva-
lent to the normal personalized defect prediction. On the rest, namely, Brackets,
Neutron, and Nova, the bare cross-personalized defect prediction was better
than the normal personalized defect prediction. That is, on all projects, cross-
personalized defect prediction was effective.

Answer to RQ3: Yes. There was no project that the normal personal-
ized defect prediction was the best one. Among the CPDP approaches we
examined, Turhan09 was the best one.

7 Threats to Validity

Internal Validity: One threat is the selection bias of projects. The project data
were collected by other researchers for a different purpose. These projects also

An Evaluation of Cross-Project Defect Prediction Approaches 445

look diverse regarding size, active developers, and so on. These measures helped
to mitigate this threat.

External Validity: The number of software projects was limited and might
not represent a typical project distribution enough. Although the diversity of
projects helped to mitigate this threat, a different set of projects might lead to
a different conclusion.

Construct Validity: The links between developers and commits were based on
timestamps, and not a few commit data were dropped off, as shown in Table 2.
Although it seems difficult to obtain perfect linking, exploring better linking
methods is future work. JIT metrics in Table 1 are common in this research area
but not comprehensive. Improving predictive performance with such metrics
might change our results.

8 Conclusion

This study evaluated the effectiveness of cross-project defect prediction
approaches on cross-personalized defect prediction. The empirical experiment
revealed that some CPDP approaches could achieve better prediction perfor-
mance than the bare cross-personalized defect prediction, namely, project-level
defect prediction. Furthermore, the performance of the normal personalized
defect prediction was also surpassed by using CPDP approaches.

An implication for practitioners is to use CPDP rather than the normal per-
sonalized defect prediction. Utilizing cross-personalized data based on the char-
acteristics of the developer’s data will be beneficial. Especially, Turhan09 was our
recommendation among 23 CPDP approaches. It worked at least equivalent to
the normal personalized defect prediction and the bare cross-personalized defect
prediction.

In future work, experiments with more realistic situations are required. This
study used all commits of developers to train personalized defect prediction. One
of the purposes of cross-personalized defect prediction is to support developers
with a small number of commits. Whether even a small number of commits helps
to select cross-personalized data is still a question. Furthermore, a chronological
situation along with the timeline is preferable for evaluation. Using developer
data of other projects might be an interesting question to be explored.

Acknowledgment. This work was partially supported by JSPS KAKENHI Grant
#21K11831, #21K11833, and Wesco Scientific Promotion Foundation.

446 S. Amasaki et al.

References

1. Amasaki, S., Aman, H., Yokogawa, T.: A preliminary evaluation of CPDP
approaches on just-in-time software defect prediction. In: Proceedings of Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA), pp.
279–286 (2021)

2. Amasaki, S., Aman, H., Yokogawa, T.: Searching for bellwether developers for
cross-personalized defect prediction. In: Proceedings of Product-Focused Software
Process Improvement, pp. 183–198 (2021)

3. Amasaki, S., Kawata, K., Yokogawa, T.: Improving cross-project defect prediction
methods with data simplification. In: Proceedings of SEAA 2015, pp. 96–103. IEEE
(2015)

4. Briand, L.C., Melo, W.L., Wust, J.: Assessing the applicability of fault-proneness
models across object-oriented software projects. IEEE Trans. Softw. Eng. 28(7),
706–720 (2002)

5. Cabral, G.G., Minku, L.L., Shihab, E., Mujahid, S.: Class imbalance evolution and
verification latency in just-in-time software defect prediction. In: 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pp. 666–676 (2019).
https://doi.org/10.1109/ICSE.2019.00076

6. Catolino, G., Di Nucci, D., Ferrucci, F.: Cross-project just-in-time bug prediction
for mobile apps: an empirical assessment. In: 2019 IEEE/ACM 6th International
Conference on Mobile Software Engineering and Systems (MOBILESoft), pp. 99–
110 (2019). https://doi.org/10.1109/MOBILESoft.2019.00023

7. Eken, B., Tosun, A.: Investigating the performance of personalized models for
software defect prediction. J. Syst. Softw. 181, 111038 (2021)

8. Erika, C.C.A., Ochimizu, K.: Towards logistic regression models for predicting
fault-prone code across software projects. In: Proceedings of ESEM 2009, pp. 460–
463. IEEE (2009)

9. He, P., Li, B., Liu, X., Chen, J., Ma, Y.: An empirical study on software defect
prediction with a simplified metric set. Inf. Softw. Technol. 59, 170–190 (2015)

10. He, Z., Peters, F., Menzies, T., Yang, Y.: Learning from open-source projects: an
empirical study on defect prediction. In: Proceedings of ESEM 2013, pp. 45–54.
IEEE (2013)

11. Herbold, S.: Training data selection for cross-project defect prediction. In: Pro-
ceedings of PROMISE 2013, pp. 6:1–6:10. ACM (2013)

12. Herbold, S.: CrossPare: a tool for benchmarking cross-project defect predictions.
In: Proceedings of ASEW 2015, pp. 90–96. IEEE (2015)

13. Hosseini, S., Turhan, B., Gunarathna, D.: A systematic literature review and meta-
analysis on cross project defect prediction. IEEE Trans. Softw. Eng. 45(2), 111–147
(2019)

14. Huang, Q., Xia, X., Lo, D.: Revisiting supervised and unsupervised models for
effort-aware just-in-time defect prediction. Empir. Softw. Eng. 24(5), 2823–2862
(2018). https://doi.org/10.1007/s10664-018-9661-2

15. Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: Proceedings of
International Conference on Automated Software Engineering, pp. 279–289 (2013)

16. Kamei, Y., Fukushima, T., McIntosh, S., Yamashita, K., Ubayashi, N., Hassan,
A.E.: Studying just-in-time defect prediction using cross-project models. Empir.
Softw. Eng. 21(5), 2072–2106 (2015). https://doi.org/10.1007/s10664-015-9400-x

17. Kamei, Y., et al.: A large-scale empirical study of just-in-time quality assurance.
IEEE Trans. Softw. Eng. 39(6), 757–773 (2013). https://doi.org/10.1109/TSE.
2012.70

https://doi.org/10.1109/ICSE.2019.00076
https://doi.org/10.1109/MOBILESoft.2019.00023
https://doi.org/10.1007/s10664-018-9661-2
https://doi.org/10.1007/s10664-015-9400-x
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1109/TSE.2012.70

An Evaluation of Cross-Project Defect Prediction Approaches 447

18. Kamei, Y., Shihab, E.: Defect prediction: accomplishments and future challenges.
In: Proceedings of International Conference on Software Analysis, Evolution and
Reengineering, pp. 33–45 (2016). https://doi.org/10.1109/SANER.2016.56

19. Khoshgoftaar, T.M., Rebours, P., Seliya, N.: Software quality analysis by combin-
ing multiple projects and learners. Softw. Qual. J. 17(1), 25–49 (2009)

20. Krishna, R., Menzies, T., Fu, W.: Too much automation? The bellwether effect and
its implications for transfer learning. In: Proceedings of International Conference
on Automated Software Engineering, pp. 122–131 (2016)

21. Li, W., Zhang, W., Jia, X., Huang, Z.: Effort-aware semi-supervised just-in-time
defect prediction. Inf. Softw. Technol. 126, 106364 (2020). https://doi.org/10.
1016/j.infsof.2020.106364

22. Ma, Y., Luo, G., Zeng, X., Chen, A.: Transfer learning for cross-company software
defect prediction. Inf. Softw. Technol. 54(3), 248–256 (2012)

23. McIntosh, S., Kamei, Y.: Are fix-inducing changes a moving target? A longitudinal
case study of just-in-time defect prediction. IEEE Trans. Softw. Eng. 44(5), 412–
428 (2018). https://doi.org/10.1109/TSE.2017.2693980

24. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2007)

25. Menzies, T., Butcher, A., Marcus, A., Zimmermann, T., Cok, D.: Local versus
global models for effort estimation and defect prediction. In: Proceedings of ASE
2011, pp. 343–351. IEEE (2011)

26. Nam, J., Kim, S.: CLAMI: defect prediction on unlabeled datasets. In: Proceedings
of ASE 2015, pp. 452–463. IEEE (2015)

27. Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: Proceedings of ICSE 2013,
pp. 382–391. IEEE (2013)

28. Panichella, A., Oliveto, R., De Lucia, A.: Cross-project defect prediction models:
L’Union fait la force. In: Proceedings of CSMR-WCRE 2014, pp. 164–173. IEEE
(2014)

29. Peters, F., Menzies, T.: Privacy and utility for defect prediction: experiments with
MORPH. In: Proceedings of ICSE 2012, pp. 189–199. IEEE (2012)

30. Peters, F., Menzies, T., Gong, L., Zhang, H.: Balancing privacy and utility in cross-
company defect prediction. IEEE Trans. Softw. Eng. 39(8), 1054–1068 (2013)

31. Peters, F., Menzies, T., Layman, L.: LACE2: better privacy-preserving data sharing
for cross project defect prediction. In: Proceedings of ICSE 2015, pp. 801–811.
IEEE (2015)

32. Rahman, F., Devanbu, P.: Ownership, experience and defects: a fine-grained study
of authorship. In: Proceedings of International Conference on Software Engineer-
ing, pp. 491–500 (2011)

33. Ryu, D., Choi, O., Baik, J.: Value-cognitive boosting with a support vector
machine for cross-project defect prediction. Empir. Softw. Eng. 21(1), 43–71
(2014). https://doi.org/10.1007/s10664-014-9346-4

34. Ryu, D., Jang, J.I., Baik, J.: A hybrid instance selection using nearest-neighbor
for cross-project defect prediction. J. Comput. Sci. Technol. 30(5), 969–980 (2015)

35. Schröter, A., Zimmermann, T., Premraj, R., Zeller, A.: Where do bugs come from?
SIGSOFT Softw. Eng. Notes 31(6) (2006)

36. Tabassum, S., Minku, L.L., Feng, D., Cabral, G.G., Song, L.: An investigation of
cross-project learning in online just-in-time software defect prediction. In: Proceed-
ings of International Conference on Software Engineering, New York, NY, USA,
pp. 554–565 (2020). https://doi.org/10.1145/3377811.3380403

https://doi.org/10.1109/SANER.2016.56
https://doi.org/10.1016/j.infsof.2020.106364
https://doi.org/10.1016/j.infsof.2020.106364
https://doi.org/10.1109/TSE.2017.2693980
https://doi.org/10.1007/s10664-014-9346-4
https://doi.org/10.1145/3377811.3380403

448 S. Amasaki et al.

37. Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: An empiri-
cal comparison of model validation techniques for defect prediction models. IEEE
Trans. Softw. Eng. 43(1), 1–18 (2017)

38. Turhan, B., Menzies, T., Bener, A.B., Di Stefano, J.: On the relative value of
cross-company and within-company data for defect prediction. Empir. Softw. Eng.
14(5), 540–578 (2009)

39. Wan, Z., Xia, X., Hassan, A.E., Lo, D., Yin, J., Yang, X.: Perceptions, expectations,
and challenges in defect prediction. IEEE Trans. Softw. Eng. 46(11), 1241–1266
(2020). https://doi.org/10.1109/TSE.2018.2877678

40. Watanabe, S., Kaiya, H., Kaijiri, K.: Adapting a fault prediction model to allow
inter language reuse. In: Proceedings of PROMISE 2008, pp. 19–24. ACM (2008)

41. Xia, X., Lo, D., Wang, X., Yang, X.: Collective personalized change classification
with multiobjective search. IEEE Trans. Reliab. 65(4), 1810–1829 (2016)

42. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: 2015 IEEE International Conference on Software Quality, Reliability
and Security, pp. 17–26 (2015). https://doi.org/10.1109/QRS.2015.14

43. Yang, X., Lo, D., Xia, X., Sun, J.: TLEL: a two-layer ensemble learning approach
for just-in-time defect prediction. Inf. Softw. Technol. 87, 206–220 (2017)

44. Zhang, Y., Lo, D., Xia, X., Sun, J.: An empirical study of classifier combination for
cross-project defect prediction. In: Proceedings of COMPSAC 2015, pp. 264–269.
IEEE (2015)

45. Zhang, Y., Lo, D., Xia, X., Sun, J.: Combined classifier for cross-project defect
prediction: an extended empirical study. Front. Comp. Sci. 12(2), 280–296 (2018).
https://doi.org/10.1007/s11704-017-6015-y

46. Zhou, Y., et al.: How far we have progressed in the journey? An examination of
cross-project defect prediction. ACM Trans. Softw. Eng. Methodol. 27(1), 1–51
(2018)

47. Zhu, K., Zhang, N., Ying, S., Zhu, D.: Within-project and cross-project just-in-
time defect prediction based on denoising autoencoder and convolutional neural
network. IET Softw. 14(3), 185–195 (2020). https://doi.org/10.1049/iet-sen.2019.
0278

48. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process. In:
Proceedings of ESEC/FSE 2009, pp. 91–100. ACM (2009)

https://doi.org/10.1109/TSE.2018.2877678
https://doi.org/10.1109/QRS.2015.14
https://doi.org/10.1007/s11704-017-6015-y
https://doi.org/10.1049/iet-sen.2019.0278
https://doi.org/10.1049/iet-sen.2019.0278

A/B Testing in the Small: An Empirical
Exploration of Controlled

Experimentation on Internal Tools

Amalia Paulsson1,2, Per Runeson1(B) , and Rasmus Ros1

1 Lund University, Lund, Sweden
paulssonamalia@gmail.com, {per.runeson,rasmus.ros}@cs.lth.se

2 Netlight, Stockholm, Sweden

Abstract. Previous research on A/B testing and continuous experimen-
tation has mostly focused on large-scale settings with company-external
customers. However, work efficiency and satisfaction for company co-
workers may be highly related to internal tools and their fit-for-use. In
this study, we therefore explore A/B testing for online services exclusively
used by company co-workers. We A/B tested two versions of Customer
Admin, a tool that helps 34 500 IKEA co-workers to interact with cus-
tomer data. The study comprised i) stakeholder interviews to understand
objectives and phrase the experimentation goals, and ii) A/B test exe-
cution where data was collected and processed from approximately 350
users for 33 days. While the user base is relatively large for this internal
system, the primary metric data collected was too scarce to allow distinc-
tion between the two versions. However, secondary metrics and a user
questionnaire suggest that the users are more efficient in the new menu
design and that the users prefer it to the old. We conclude that A/B test-
ing requires lots of data, making it less feasible for internal users, also
for large, global organizations. Thus, we propose combining quantitative
and qualitative evaluation of internal tools and propose further research
on how to adapt A/B testing for smaller-scale settings.

1 Introduction

The interest for data-driven development is growing globally and A/B testing
is a commonly used methodology for large-scale experimentation in the Internet
industry [1]. An A/B test is a setup of a controlled experiment—an experi-
ment used to find probable causal relationships, by randomly splitting subjects
between versions and instrumenting behavior to determine some evaluation met-
rics [2]. The value of A/B tests lays in insights into the actual user behaviour,
which helps software developers to quickly evaluate design ideas and expand
their knowledge about their users.

Even though large actors in the internet industry such as Microsoft, Facebook
and Google started applying A/B testing a decade ago, it is still considered to be

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 449–463, 2022.
https://doi.org/10.1007/978-3-031-21388-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_31&domain=pdf
http://orcid.org/0000-0003-2795-4851
http://orcid.org/0000-0002-0183-0407
https://doi.org/10.1007/978-3-031-21388-5_31

450 A. Paulsson et al.

in an early stage of development [3]. Research and practice in online controlled
experimentation focuses on external websites and tools, i.e., commercial services
where the users are customers to the company, counted in millions, enabling
experimentation with statistically significant outcomes. Meanwhile there are
multiple types of services that are exclusively used internally, aiming to assist
co-workers in managing their tasks. These internal tools evolve continuously and
can be critical to the company’s operational success, particularly as they con-
tribute to the co-workers (lack of) work efficiency and satisfaction. However, the
number of users is much smaller, even for large companies, being questioned for
such usage, although there is limited empirical evidence for such claims.

Therefore we explore the feasibility of using A/B testing in the development
of internal tools. The overall research question was: How can A/B testing be
effectively applied to the development of internal tools? We aimed to provide
“field-tested and grounded” exemplars of how the problem can be solved [4].

We launched a case study with the multinational retail company IKEA on
their internal customer administration tool, called Customer Admin (CA) [5]. We
focused on the start menu of the tool, evaluating whether a new implementation
would be better for the co-workers, providing more efficient customer service.

Data were collected through interviews with stakeholders to understand the
operational conditions and guide the set-up of a feasible set of metrics for exper-
imentation. Next, operational data were collected during 33 days from approx-
imately 350 out of the global 34 500 users in an A/B test, where the original
start menu of the CA tool was compared to a redesigned version. The overall
evaluation metric was time spent per customer errand.

The contribution of this paper is a thorough exploration of A/B testing for a
typical internal user admin tool, with a reasonably large user base. We conclude
from the study that the collected data set was not sufficient to statistically reject
the hypotheses and thus we propose certain changes to the approach for further
application of A/B testing in the small.

2 Background

2.1 A/B Testing and Continuous Experimentation

In essence, an A/B test is an experimentally controlled comparison between
two versions of a software, the control (A) version, which usually is the default
version, and the treatment (B), which contains a change [6]. This method is
often applied to evaluate software updates that are believed to have a positive
impact on user behavior, exposing one randomly assigned user group to the
existing version and another group to the new version—i.e. the control and the
treatment respectively. The primary aim of A/B testing in decision making is
to bring insights into the real-world user experience through a direct feedback
loop with the users [1]. Giving developers access to continuous flows of data from
this feedback loop increases their ability to detect and fix problems, as well as
simplifying code and removing unnecessary features [7].

Fabijan et al. [8] defined an A/B testing process, divided into three phases:

A/B Testing in the Small 451

– Ideation—creating a hypothesis related to some metrics that efficiently encap-
sulate a relevant problem.

– Design & Execution—setting up the experiment and collect data.
– Analysis & Learning—interpreting the results and drawing conclusions on

how the different versions perform.

Continuous experimentation (CE) is an approach to software development,
in which A/B tests are integrated. Fagerholm et al. [9] defined a comprehensive
CE framework model, named the RIGHT model. It displays the roles, tasks,
technical infrastructure, and information needed to run CE at large scale and
integrate it with the development cycle. Fitzgerald and Stol [10] describe many
more continuous practices that encompass not only development and opera-
tions (DevOps), but also business strategy (BizDev). Ros [11] recently presented
an empirically based theory on factors that affect continuous experimentation
(FACE), linking DevOps and BizDev aspects together.

In software engineering, a controlled experiment is usually used to tweak the
user-facing parts of the software or to validate a new product feature with user
data [3]. The metric in the experiment can be anything from the user experience
(e.g. clicks), software stack (e.g. duration of a request), or sales process (e.g.
conversion rate of potential customers).

2.2 Related Work on Smaller Scale A/B Testing

In their systematic literature review of controlled experimentation [3], Auer, Ros
et al. conclude that the research on infrastructure for experimentation primarily
focuses on large-scale applications within large organizations, e.g. Microsoft [12].
They further advice that “it should not restrict the community’s focus on large
scale applications only. The application of continuous experimentation within
smaller organizations has many open research questions.”

In a business-to-business (B2B) setting, Rissanen and Münch [13] analyzed
the development process of two different software products in a medium-sized
software company to examine whether CE can be applied in B2B cases. They
anticipate three aspects of challenges: technical, customer, and organizational
challenges. They advice that major software changes should be avoided to not
jeopardize the user experience. Additionally, they stress the organizational chal-
lenge to adapt to the experimental mindset and rely on quantitative data rather
than opinions when making design decisions.

In another case study Kevic et al. [14] characterize the experimentation pro-
cess through observation of 21 220 online experiments with Bing—Microsoft’s
search engine. They discover that experiments can slow down the deployment
cycle and argue that practice should focus on identifying experiments worth
running and making sure they run smoothly. The efficiency can be increased by
tailoring experiments to the characteristics of the code changes, i.e. not phras-
ing a hypothesis for every little change. Even though their study issues the
controlled experimentation method in a large-scale and mature product, these
findings would reasonably be further applicable in the context of internal tools.

452 A. Paulsson et al.

Fig. 1. The original menu design assigned to the control group (A)

2.3 The Case

Customer Admin (CA) is a tool with a user base of 34 500 IKEA co-workers, in
the Customer Support Center (CSC) and on the store floor, through which they
can interact with customer data. CA consists of an API and a UI and has been
created by IKEA Digital’s Customer Engagement Team, organized within the
INGKA Holding B.V, which is operating close to 400 IKEA stores in more than
30 markets. This project targets the part of CA managing private customers.

CA allows the co-worker to search for a customer, get access to customer
information, contact details, transactions with the customer etc. Depending on
their role of reader, editor or admin, the user may or may not change and delete
information. Figure 1 shows the original version (A) of the start menu and Fig. 2
shows the new version (B), which are compared in our A/B testing.

The A version has five navigation buttons in a top menu and Overview as
the default tab. The B version menu displays six navigation buttons in the
center section, including a link to the FAQ page. The first four tabs of the A
version lead to the same view as the Purchase, Rewards details, Order history
and Interactions details, respectively, of the B version.

3 Research Approach

To answer the research question on effectively applying A/B testing to internal
tools, we conducted a case study of a proof of concept A/B test implementation
in CA, providing a practical example and a base for discussion. The A/B testing
process follows the three steps defined by Fabijan et al. [8]: ideation, design &
execution and analysis & learning.

We frame the research in the design science paradigm [4], with its main con-
stituents of problem conceptualization, solution design, and empirical validation,

A/B Testing in the Small 453

Fig. 2. The test menu design assigned to the treatment group (B)

largely mapping to the three A/B testing steps. Figure 3 depicts an overview of
the research, in a visual abstract format, adapted from Storey et al. [15]

The technological rule under study is “to learn about the users of internal
tools, apply A/B testing”. The problem conceptualization is based on interviews
with users of the CA tool, understanding user behaviour and defining evaluation
metrics. The proposed solution was to implement established A/B testing prac-
tices in the small-scale internal tool case context. The solution was evaluated by
execution the A/B tests and analyzing the outcomes.

The study was initiated from the office of INGKA Holding B.V. in Malmö,
Sweden. Their staff implemented the versions of the tools. The first author con-
ducted the interviews, implemented the monitoring tools, and performed the
analysis. The second and third authors guided the work.

3.1 Ideation: Interviews to Define Goals and Metrics

Firstly interviews were held with six stakeholders in the Swedish office, 1–2)
Data Management Leader, 3) a Process Specialist & Sales Coordinator, 4) a
Database Specialist, 5) an Engineering Manager, and 6) a Loyalty Leader, all
with a connection to CA, either as a user or developer. The interviews laid the
groundwork for forming a hypothesis that addressed the actual goal of a new
design element. Interview guides are available in a technical report [5].

The interviews were analyzed using Gioia et al.’s three-step model [16] of
qualitative analysis, defining 1st order concepts of answers and statements, 2nd
order themes with a phrasal description, condensed from 1st order concepts, and
finally aggregate dimension from 2nd order themes into overarching statements.
The final analysis results are aggregate dimension to be turned into metrics for
the A/B testing.

454 A. Paulsson et al.

Fig. 3. Visual abstract for the A/B testing for internal tools from a design science
perspective.

3.2 Design and Execution

Thereafter the experiment was designed, comparing the two versions in Figs. 1
and 2. For practical reasons, the experimentation was limited to users of the
CA client for the Australian market, comprising approximately 350 users. The
selection of market was made in agreement with product management and devel-
opment team members. Even through a larger user group would create more
generous amounts of data, it was considered more cautious to conduct the proof
of concept test on a small scale. In line with organizational procedures, the Data
Management Leader in Australia was informed about the test and the new menu
design and communicated the launch to all Australian co-workers.

For each visit, users of the CA Client were randomly exposed to each of
the versions of the start menu, 50% on the control and the treatment group,
respectively. First, an A/A test was executed during five days to validate the
A/B testing platform. Then the A/B experiment was executed during 33 days,
given by the time constraints for this study.

The test was monitored using Google Analytics, a web analytics service that
denotes tracking website traffic in realtime. The aggregated data was analyzed
through post-collection processing script, written in Python, that calculated the
evaluation metrics and associated statistics.

3.3 Analysis and Learning

Errands were extracted, containing all events triggered between entering and
leaving a customer profile. If no clicks were made between entering and leaving
a customer profile, that errand was discarded, assuming that the user had entered
wrong customer profile. Each evaluation metric was calculated per errand and
90% confidence intervals were calculated for respective metric. In this project the

A/B Testing in the Small 455

number of samples and consequently also the variance was different in the control
and the treatment. Thus Welch’s t-test was applied [17] with a significance level
of 10%. This relatively low level was selected due to low traffic, which gave
reasons to presume small data volumes.

The data processing script was written and used in an A/A test when all
users were still using the original menu. This dry run facilitated testing the
script, detecting bugs and other systematic failures. Moreover the standard devi-
ation of respective metric was derived, from which the minimum sample size was
calculated as advised by Kohavi et al. [6]: n = 16σ2/Δ2 ; where n is the number
of observations in each variant, σ is the standard deviation of the of the metric,
and Δ is the absolute change to be detected.

4 Results

In this Section, data gathered from the interviews to define goals and metrics
for the A/B testing are presented in Sect. 4.1. The data from the A/B test are
presented for respective metric in Sect. 4.2. Finally, the hypothesis evaluation is
reported in Sect. 4.3.

4.1 Goals and Metrics

The interviews were analyzed as described in Sect. 3.1 , resulting in overall goals
for the use of CA. The analysis towards the overall goal is showed in full detail
in Fig. 4, while all the four resulting dimensions are summarized in Table 1.

Informant statements addressing the overall objective and purpose of CA are
compiled into 1st order concepts, as shown in Fig. 4. In the 2nd order themes,
three main components were derived from these informant statements: i) making
customer data visible and manageable for the co-worker, ii) providing the co-
worker with an instrument to manage customer requests, and iii) that it should

Fig. 4. First order concepts, second order themes and aggregate dimension of the
overall goal of CA [16]

456 A. Paulsson et al.

Table 1. Dimensions of CA, emerging from the interview analysis

Dimension Description

Overall goal The goal of CA is for an IKEA co-worker to help a customer to
edit or find information in their customer profile as fast as
possible

Use of CA The most common use case is for a co-worker in the CSC to
first locate the right customer, then to look up or update some
profile data, that can either be customer information or login
credentials

User friendliness Prioritize and display the most important information will
shorten the time spent on an errand, which will improve the
usability of CA

The “save changes” pop up is a good indication of a completed
information update. However, it is not an indication of that the
information was correctly updated

Time allocation An errand usually takes 6 min. Nevertheless there are factors
that impact on the time, such as chatty customers or customer
search complications

support the co-workers’ time efficiency. Lastly, these components are summed
in one aggregate dimension. All four dimensions emerging from the analysis are
shown in Table 1, namely overall goal, use of CA, user friendliness, and time
allocation. The analysis is reported in full detail in the technical report [5].

The interviews revealed user efficiency as the main objective of the tool, i.e.
its ability to assist the co-workers in finishing their respective tasks as fast as
possible. Moreover, clarity and simplicity was stressed, making it intuitive for the
co-workers to find what they are looking for. From the insights created during the
interviews, a hypothesis was phrased for the proof of concept implementation:

”We predict that a new start menu for co-workers in the Australian market
will shorten the average time spent per customer errand because it makes the
orientation in Customer Admin easier to comprehend. We will know this is true
when we see a decreasing time difference from entering a customer profile and
saving a change”.

Based on the interviews, a set of metrics were defined to be collected during
experimentation, in collaboration with the development team:

– Metric of interest: Time to save (sec)
– Key Metrics: Saved Changes, Time per Errand (sec), and Clicks per Errand

In addition, 25 additional Secondary Metrics were collected on specific types
of clicks, which are available in the technical report [5].

Although the time of finding information is quantifiable, it is not necessarily
easy to automatically identify at a user click level what overall activities the
users perform. For example, as observed from the interviews about the user

A/B Testing in the Small 457

friendliness dimension in Table 1 the “save changes” pop up is a good indication
of a completed update sequence, but it does not indicate a correct update.

Secondary metrics, such as page views, average time spent on page and
bounce rate, were all automatically tracked and displayed in Google Analyt-
ics (GA). Clicks on specific buttons and timestamps of those clicks, however,
was not available and had to be customized through different tags in Google
Tag Manager (GTM). Similar to the tracking configuration in GA, a tracking
code was added into the source code using react-gtm. In GTM, each tag was
associated with a trigger that was activated on a specific button. Once a tag was
triggered, an event was created in GA.

4.2 A/B Test Data and Statistics

During the 33 days of A/B testing, 14 421 customer errands were identified. Out
of those, 396 involved a change to a customer profile, i.e. 12 changes per day.

The null hypotheses that there are no difference between treatment and con-
trol were tested, using Welch’s t-test [17]. Descriptive statistics and p-values
for respective metric are presented in Table 2. The metrics that are significantly
differing at a 90% confidence level are marked in bold.

Table 2. Mean values and 90% confidence intervals on the A/B test metrics

Metric name Mean control (A) Mean treatment (B) p-value

Time to save change (sec) 89.8± 14.0 90.4± 31.4 0.488

Saved Changes 0.0289± 0.0032 0.0339± 0.0080 0.167

Time per Errand (sec) 232± 8 186± 15 0.099

Clicks per Errand 8.33± 0.19 9.03± 0.39 0.00418

4.3 Hypothesis Evaluation

In the control version (A), it took on average 89.8 s for a user to save a change
in a newly entered customer profile, compared to 90.4 s in the treatment version
(B). Since the p-value of 0.488 suggest low probability of them differing we can
not reject the null hypothesis. Moreover, the average time spent per errand was
232 s in the control (A) and 186 s in the treatment (B), and the average number
of clicks per errand was 8.33 in the control and 9.03 in the treatment. Thus, the
total time per errand was reduced, but the time to save was slightly increased.

The share of saved changes was higher for the new version. The control (A)
had on average a change saved during 2.89% of the visits. In the treatment (B)
a change was saved during 3.39% of the visits. Whether this is induced by the
changed design cannot be assessed from the collected data.

The main reason for the lack of significance is the limited size of the exper-
iment. Using Kohavi et al.’s minimum sample calculation for experiments [6],

458 A. Paulsson et al.

the experiment should have to run for 130 days, under the observed frequency
of customer errands (12 per day):

n =
16σ2

Δ2
=

16 ∗ 992

102
= 1568

where n is the number of observations in each variant, σ is the standard deviation
of the of the metric (here σ = 99), and Δ is the absolute change to be detected
(here we set Δ = 10 s).

To analyze the influence of potential learning effect of the new version, we
deployed an Augmented Dickey Fuller (ADF) test. ADF is a unit root test used
for determining stationarity in time series data [18]. The ADF tests gave 0 in
p-value for both the control and the treatment and hence there is no sign of
non-stationarity that would indicate a user learning effect being present.

5 Discussion

In this section we discuss insights from the study, comparing small-scale and
large-scale experimentation, related to the CA tool (Sect. 5.1) and to A/B test-
ing on internal tools in general (Sect. 5.2). Recommendations for further imple-
mentation and research are discussed in Sect. 5.3 and threats to the validity of
our findings in Sect. 5.4.

5.1 Customer Admin User Behavior Insights

As seen in the results, increased time to update a customer profile in the new
menu was not statistically significant. On the contrary, the time difference per
errand where the time stops whenever the user has left the customer profile (also
without saving), indicates that the new menu design (B) has shortened the time
spent per errand on average 46 s. Here, the standard deviations are significantly
smaller due to more use cases, resulting in a bigger sample size.

The observation in the Use of CA dimension in Table 1, also indicates that
looking up profile data is a more common use case than updating profile data.
Thus, the User friendliness dimension of Table 1 of prioritizing and displaying
the most important information first, argues for the new menu design were those
tabs are displayed on the landing page.

Like in large-scale experimentation, capturing the phenomena in quantitative
metrics is not easy. The combination of qualitative data from the interviews
is needed to get insights, which cannot be gained from the experiment only,
particularly if it does not provide significant results.

5.2 A/B Testing Challenges

Challenges encountered during the experiment obviously relate to the traffic
flow and data volume. Further, we discuss potential sources of error in the data
collection. Thirdly, the network effect across participants, observed in A/B tests
in general, is even further emphasized for internal experiments.

A/B Testing in the Small 459

Traffic Flow and Data Volume. The low flow of traffic – approximately 12
collected errands per day where the 350 observed users have saved a change –
leads to insignificant hypothesis evaluation. In comparison, according to Statista1

Facebook had on average 1.85 billion daily active users in 2020, Amazon had over
2.44 billion visitors in 2020, and Netflix over 207 million subscribers in the first
quarter of 2021. These numbers are hugely exceeding the amount of co-workers
at IKEA and potential users of CA. Therefore A/B tests of internal tools will
not reach the same level of significance as for external websites. Still the need
for understanding the impact of a proposed change remains.

The abundant traffic in external tools allows for collecting enough data in
only a few days, unlike for internal tools where it can take months to get a
sufficient result. This duration places the users’ experiences into jeopardy during
the execution phase. It comprises both having the users in a potentially poorer UI
and giving the user an ambiguous experience, alternating between two versions.

An option, more viable for internal tools, is to assign co-workers randomly to
A and B versions for the full experimental period, rather than for each use of the
tool. That would reduce the ambiguity and enable further statistical analysis on
learning effects.

Sources of Error in Data Collection. Apart from the insufficient amount of
collected data, the quality of the data varied. As observed in the time allocation
dimension in Table 1, there are multiple factors affecting the time it takes to
manage an incoming customer request. These factors are external and cannot be
mitigated by the design of the UI. Even though they do not distort the average
values, they increase the variance of the test result.

Secondly, as concluded in the User friendliness dimension in Table 1, the
“save changes” are not necessarily an indication of that the user successfully
finished the task of updating a customer detail. This should not affect the A
and B versions differently, yet there are reasons to believe that the calculated
average time to save a change may be an underestimation for both versions.

Finally there is the uncertainty about whether the user has even located the
right customer. As seen in the Use of CA dimension in Table 1 occasionally the
user does not find the right customer at once. The consequence of this is that
those errands presumably take shorter time than an errand were the user lookup
or update information, and thereby shorten the average errand time.

These potential data collection errors further stress the need for triangulating
the analysis with qualitative understanding of the experimental context.

Internal Tools and the Network Effect. Another challenge that generates a
source of error is the users’ awareness of being tested. In accordance with IKEA’s
working process, concerned co-workers have to be briefed about the new version
before launch. Even though they were not informed of the test’s purpose and
how performance was measured, the users’ awareness might affect the result.

1 https://www.statista.com.

https://www.statista.com

460 A. Paulsson et al.

Since the users are very familiar with the CA tool, they will notice any changes
and might inadvertently modify their behavior.

Since co-workers in the same Customer Support Center work in the same
office building and inevitably collaborate, the test users influence each other,
which violates the stable unit treatment value assumption (SUTVA) [19]. Saveski
et al. [19] claim that in an A/B test the treatment should only have an impact
on the users being treated, not other users that are in connection with them.
In alignment with Backstrom et al. [20] the co-workers’ influence on each other
would be described through the term “Network Effect” which creates an inter-
dependence in the random sample, violating the assumption of independence.

This effect is present also in large-scale A/B testing, but the proportional
impact of a connection between two users is much smaller, and fewer users have
joint networking opportunities, compared to co-workers within a company.

Tools for Internal Vs. External A/B Testing. When introducing A/B
testing on CA as an internal tool, the ideation phase outlined the fundamentals
and objectives of CA. To serve the goal in Fig. 4—to shorten the time spent
per customer interaction—most metrics of interest were about minimizing time
or the number of clicks between two specific events. Plausibly, this principle
applies for internal tools in general as the users’ i.e. co-workers’ time efficiency
is a matter of interest from a profit perspective.

In contrast, available web analytic services and test tools, e.g. Google Opti-
mize, are designed for the objectives of external websites and their inverted
optimization problems, such as maximizing pageviews, subscriptions, and con-
versions, which are common metrics for publishing and e-commerce websites.
The process of setting up an A/B test for internal tools is therefore not as
straight forward as in the external domain.

5.3 Recommendations

Based on the observations from the case study, we discuss recommended actions
to mitigate the identified problems for A/B testing of internal tools.

Expand Data Source. In order to get better significance, the user group
could be expanded to include more markets. The enhanced data flow would
both increase the significance levels and shorten the execution time needed.

However, there are risks in exposing a larger group of users to the test. If A/B
testing behavior becomes more common, the ambiguity of alternating between
two UI versions will disturb the user experience. For that reason, it would be
sensible to select a more local scope for the market wide tests. On the other hand,
a local scope would likely generate a smaller impact on the users’ behavior and
thereby make it even harder to detect significant differences. To mitigate the
alternation problem, we recommend assigning co-workers to A and B groups for
the duration of the experiment, but still larger user groups are needed.

A/B Testing in the Small 461

Specify Insensitive Metrics. Another way to respond to the scarce data is
to include more frequent use cases, for example, the use case where the coworker
looks up some customer information. As shown in Table 2, the key metric time
per errand provided a comparable measurement with high statistical significance.

As described in Sect. 5.2, time is a unit that is sensitive to disturbance of
other factors that are not a part of the UI. Hence, the number of clicks to finish
an errand would be a more suitable unit to quantify the co-workers’ efficiency.
Yet, attention should be payed to that the number of clicks does not take into
account the effort the user puts into finding the data field or button, which
certainly is a factor in the coworkers’ efficiency. A similar problem can be found
in external A/B tests of e-commerce websites, where clicks are used as proxies
for complete purchases, which is the ultimate goal for the A/B test.

Streamline Setup. In order to minimize the effort and hence the cost of execut-
ing the test, the setup should be built so that redundancy is avoided. Foremost it
is about choosing web analytic services that efficiently track the data of interest
and forward it to platforms and tools that are already deployed and used.

Besides, the analysis scripts should extract as generic metrics as possible that
quantify the goal of most UX redesigns. In this case the time spent per errand
and the number of clicks could be considered usable metrics in succeeding A/B
tests, and hence it is in ambition to reuse the script in the future.

5.4 Threats to Validity

This work contains recommendations on applying A/B tests to the domain of
internal tools. The validity of the recommendations is contingent on that the
experimentation process is implemented correctly. This internal threat to validity
is mitigated by following established procedures for experimentation [6,8]. It
is possible that further refinement of the applied statistical methods (such as
segmenting the user base or using different metrics) would generate different
results in the experiment. Though such refinements requires an ongoing process
improvement through conducting plenty of experiments. As such, the question
of applicability remains open.

The external validity of our findings is related to the size of the organization.
IKEA is a huge corporation, while our study scope is set to 350 co-workers in
one unit in one country. Our quantitative findings are relevant for organizations
or branches of similar size, while we for the specific case company could have
extended the population to more countries or departments.

6 Conclusion and Further Work

We explored how A/B testing can be effectively applied to the development of
internal tools. We launched an A/B test of two versions of an internal Customer
Admin tool. We could not statistically assess the difference with respect to the
chosen metric, although the qualitative data helped understand more about the

462 A. Paulsson et al.

user needs and preferences. Our main finding is problems with scarce data, due
to relatively low traffic as a challenge when A/B testing internal tools. Still, the
A/B test helps learn about users of internal tools, and thus A/B test can be a
recommended practice.

In order to mitigate the consequences of low traffic, we propose larger test
groups and more frequently triggered metrics for evaluation. Moreover sources
of error in the used metrics were discussed and the conflict between having
independent test users for the sake of statistics and maintaining a coherent
working culture where co-workers communicate and collaborate. We also identify
that the combination with qualitative data is even more important for A/B
testing in the small.

More research is needed before sufficiently validating the technological rule
on A/B testing’s applicability in the internal domain. Focus should be kept
on enhancing rigour by gathering more practical case studies on other types
of internal tools. Further, the combination of quantitative and qualitative user
studies should be further explored.

Acknowledgment. Thanks to INGKA Holding B.V. (IKEA) employees, Joakim
Månsson, Magnus Pettersson and Customer Admin team. The 2nd and 3rd authors
were funded by the Wallenberg AI, Autonomous Systems and Software Program
(WASP).

References

1. King, R., Churchill, E., Tan, C.: Designing with Data. O’Reilly Media Inc, USA
(2017)

2. Kohavi, R., Longbotham, R.: Online controlled experiments and A/B testing. In:
Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Min-
ing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7687-1 891

3. Auer, F., Ros, R., Kaltenbrunner, L., Runeson, P., Felderer, M.: Controlled exper-
imentation in continuous experimentation: knowledge and challenges. Inf. Softw.
Technol. 134, 106551 (2021)

4. Runeson, P., Engström, E., Storey, M.-A.: The design science paradigm as a frame
for empirical software engineering. In: Contemporary Empirical Methods in Soft-
ware Engineering, pp. 127–147. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-32489-6 5

5. Paulsson, A.: A/B testing customer admin - an empirical validation of controlled
experimentation of internal tools, Lund University, Master Thesis LU-CS-EX:
2021–18 (2021)

6. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled exper-
iments on the web: survey and practical guide. Data Min. Knowl. Disc. 18(1),
140–181 (2008)

7. Fabijan, A., Olsson, H.H., Bosch, J.: Time to say ‘good bye’: feature lifecycle. In:
42th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 9–16 (2016)

8. Fabijan, A., Dmitriev, P., Olsson, H.H., Bosch, J.: The online controlled experiment
lifecycle. IEEE Softw. 37(2), 60–67 (2020)

https://doi.org/10.1007/978-1-4899-7687-1_891
https://doi.org/10.1007/978-3-030-32489-6_5
https://doi.org/10.1007/978-3-030-32489-6_5

A/B Testing in the Small 463

9. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: The right model for contin-
uous experimentation. J. Syst. Softw. 123, 292–305 (2017)

10. Fitzgerald, B., Stol, K.-J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

11. Ros, R.: Understanding and improving continuous experimentation: from
A/B testing to continuous software optimization, Ph. D thesis, Lund Uni-
versity, 2022. https://portal.research.lu.se/sv/publications/understanding-and-
improving-continuous-experimentation-from-ab-te

12. Gupta, S., Ulanova, L., Bhardwaj, S., Dmitriev, P., Raff, P., Fabijan, A.: The
anatomy of a large-scale experimentation platform. In: IEEE International Con-
ference on Software Architecture (ICSA), pp. 1–109 (2018)

13. Rissanen, O., Münch, J.: Continuous experimentation in the B2B domain: a case
study. In: IEEE/ACM 2nd International Workshop on Rapid Continuous Software
Engineering. IEEE May 2015

14. Kevic, K., Murphy, B., Williams, L., Beckmann, J.: Characterizing experimenta-
tion in continuous deployment: A case study on Bing. In: 39th International Con-
ference on Software Engineering: SE in Practice Track (ICSE-SEIP), pp. 123–132.
IEEE/ACM (2017)

15. Storey, M.-A., Engström, E., Höst, M., Runeson, P., Bjarnason, E.: Using a visual
abstract as a lens for communicating and promoting design science research in soft-
ware engineering. In: International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 181–186. IEEE/ACM (2017)

16. Gioia, D.A., Corley, K.G., Hamilton, A.L.: Seeking qualitative rigor in inductive
research: Notes on the Gioia methodology. Organ. Res. Methods 16(1), 15–31
(2013)

17. Ruxton, G.: The unequal variance t-test is an underused alternative to student’s
t-test and the Mann-Whitney U test. Behav. Ecol. 17, 04 (2006)

18. Dickey, D.A., Fuller, W.A.: Likelihood ratio statistics for autoregressive time series
with a unit root. Econometrica 49(4), 1057–1072 (1981)

19. Saveski, M., et al.: Detecting network effects: randomizing over randomized exper-
iments. Series KDD 2017, pp. 1027–1035. New York, NY, USA: ACM (2017)

20. Backstrom, L., Kleinberg, J.: Network bucket testing. In: Proceedings of the 20th
International Conference on World Wide Web. Series www 2011, pp. 615–624. New
York, NY, USA: ACM (2011)

https://portal.research.lu.se/sv/publications/understanding-and-improving-continuous-experimentation-from-ab-te
https://portal.research.lu.se/sv/publications/understanding-and-improving-continuous-experimentation-from-ab-te

TEP-GNN: Accurate Execution Time
Prediction of Functional Tests Using

Graph Neural Networks

Hazem Peter Samoaa1 , Antonio Longa2(B), Mazen Mohamad1(B),
Morteza Haghir Chehreghani1(B), and Philipp Leitner1(B)

1 Chalmers—University of Gothenburg, Gothenburg, Sweden
{samoaa,mazenm,morteza.chehreghani,philipp.leitner}@chalmers.se

2 Fondazione Bruno Kessler and University of Trento, Trento, Italy
alonga@fbk.eu

Abstract. Predicting the performance of production code prior to
actual execution is known to be highly challenging. In this paper, we
propose a predictive model, dubbed TEP-GNN, which demonstrates
that high-accuracy performance prediction is possible for the special case
of predicting unit test execution times. TEP-GNN uses FA-ASTs, or
flow-augmented ASTs, as a graph-based code representation approach,
and predicts test execution times using a powerful graph neural net-
work (GNN) deep learning model. We evaluate TEP-GNN using four
real-life Java open source programs, based on 922 test files mined from
the projects’ public repositories. We find that our approach achieves a
high Pearson correlation of 0.789, considerable outperforming a baseline
deep learning model. Our work demonstrates that FA-ASTs and GNNs
are a feasible approach for predicting absolute performance values, and
serves as an important intermediary step towards being able to predict
the performance of arbitrary code prior to execution.

Keywords: Performance · Software testing · Machine learning

1 Introduction

Performance is a critical quality property of many real-live software systems.
Hence, performance modeling and analysis have gradually become an increas-
ingly important part of the software development life-cycle. Unfortunately, pre-
dicting the performance of real-life production code is well-known to be a difficult
problem – predicting the absolute execution time of applications based on code
structure is challenging as it is a function of many factors, including the under-
lying architecture, the input parameters, and the application’s interactions with
the operating system [22]. Consequently, works that attempted to predict abso-
lute performance counters (e.g., execution time) for arbitrary applications from
source code generally report poor accuracy [19,21].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 464–479, 2022.
https://doi.org/10.1007/978-3-031-21388-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_32&domain=pdf
http://orcid.org/0000-0001-5293-3388
https://doi.org/10.1007/978-3-031-21388-5_32

TEP-GNN 465

However, recent research has shown that predicting performance characteris-
tics is indeed possible in more specialized contexts, via the application of modern
machine learning architectures. For example, Guo et al. successfully predict the
execution time of a specific untested configuration of a configurable system [6,7],
Samoaa and Leitner have shown that the execution time of a benchmark with
specific workload configuration can be predicted [24], and Laaber et al. have
shown that a categorical classification of benchmarks into high- or low-variability
is feasible [12].

In this work, we demonstrate that another context where performance pre-
diction is possible is the prediction of execution times of functional tests. Test
execution times are crucial in agile software development and continuous inte-
gration. While individual test cases might have short execution times, software
products often have thousands of test cases, which makes the total execution
time in the build process high. Researchers have been working on solutions to
speed up the testing process by optimizing the code or prioritizing test cases
[4,11,18,28]. The goal of this study is to provide the developers with predic-
tions of the execution times of their test cases, and consequently giving them an
early indication of the time required to run the cases in the build process. We
believe that this would support decisions regarding code optimization and test
case selection in early stages of the software life-cycle.

Graphs are mathematical structures used to model pairwise relations between
objects. A graph can be used to model a wide number of different domains, rang-
ing from biology [9], face-to-face human interactions [17] and software. Indeed,
we propose an approach dubbed TEP-GNN (Test Execution Time Prediction
using Graph Neural Networks) that makes use of structural features of test cases
(the abstract syntax tree, AST). We enrich the AST with various types of edges
representing data and control flow. Following Wang and Jin, we refer to this
resulting graph as flow-augmented abstract syntax trees (FA-AST) [30]. We use
a graph neural network (GNN) model, GraphConv [20], on the resulting FA-
ASTs. We train and test our model on a dataset collected from four well-known
open source projects hosted on GitHub: H2 database1, a relational database,
RDF4J 2, a project for handling RDF data, systemDS3, an Apache project to
manage the data science life cycle, and finally the Apache remote procedure call
library Dubbo4. As labelled ground truth data, we collect 922 real test execution
traces from these projects’ publicly available build systems.

We conduct experiments with our TEP-GNN model to answer the following
research questions:

– RQ1: How accurately can the absolute execution time of a test file consisting
of one or multiple test cases be predicted using FA-ASTs and GNNs?

1 https://github.com/h2database/h2database.
2 https://github.com/eclipse/rdf4j.
3 https://github.com/apache/systemds.
4 https://github.com/apache/dubbo.

https://github.com/h2database/h2database
https://github.com/eclipse/rdf4j
https://github.com/apache/systemds
https://github.com/apache/dubbo

466 H. P. Samoaa et al.

– RQ2: Does our usage of GraphConv improve execution time prediction
compared to a baseline using Gated Graph Neural Networks (GGNN), as
frequently used in previous software engineering research [1,5]?

Our results show that using TEP-GNN, test execution time can be predicted
with a very high prediction accuracy (Pearson correlation of 0.789). Further,
we show that our usage of GraphConv indeed improves the model significantly
over GGNN. We conclude that test execution times can indeed be predicted
using GNN models with high accuracy, even based on performance counters that
have been collected “in the wild” by real projects (as opposed to performance
measurements collected on a dedicated performance testing machine). The main
novelty of our work lies in the application of a rarely used way of graph-encoding
source code (FA-AST), combined with a powerful GNN model (GraphConv), to
the problem of performance prediction. Even though test cases are shorter and
structurally simpler than arbitrary programs, we see our results as an important
stepping stone towards the prediction of the performance of arbitrary software
systems prior to execution.

2 The TEP-GNN Approach

In this section, we introduce TEP-GNN. We first provide a general overview
of the model and discuss the problem addressed in this paper, followed by a
detailed discussion of the main components of TEP-GNN (FA-ASTs and the
machine learning pipeline based on the GraphConv [20] higher order GNN).

Fig. 1. Schematic overview of the main phases of TEP-GNN.

2.1 Approach Overview

Our goal in this paper is to predict the execution time of test cases based on
static code information alone, i.e., without access to prior benchmarking of the
test case or dynamic analysis data. The general procedure of our TEP-GNN
approach is sketched in Fig. 1. To process a test file, we first parse it into its AST.
Next, we build a graph representation (FA-AST) by adding edges representing
control and data flow to the AST. We then initialize the embeddings of FA-AST
nodes and edges before jointly feeding a vectorized FA-AST into a GNN.

2.2 Problem Definition

Given a test file (source code containing test cases) Ci and the corresponding
run-time value Xi (execution time of all test cases in the file), for a set of test
files with known execution times we can build a training set D = (Ci,Xi). We
aim to train a deep learning model for learning a function φ that maps a test
file Ci to a feature vector v mapped to the corresponding value Xi.

TEP-GNN 467

2.3 Building Flow-Augmented Abstract Syntax Trees

Recent studies [25] emphasize the importance of the code representation when
using deep learning in software engineering. Hence, and given the complex-
ity of predicting performance, prediction based on the syntactical information
extracted from ASTs alone is not sufficient to achieve high-quality predictions.
In TEP-GNN, the basic structural information provided by the AST is enriched
with semantic information representing data and control flow. Consequently, the
tree structure of the AST is generalized to a (substantially richer) graph, encod-
ing more information than code structure alone. This idea is based on the earlier
work by Wang and Jin [30], who have also introduced the term FA-AST for this
kind of source code representation.

1 package org . myorg . weather . t e s t s ;
2
3 import s t a t i c
4 org . j u n i t . j u p i t e r . ap i . As s e r t i on s . a s s e r tEqua l s ;
5 import org . myorg . weather .WeatherAPI ;
6 import org . myorg . weather . Flags ;
7
8 pub l i c c l a s s WeatherAPITest {
9

10 WeatherAPI api = new WeatherAPI () ;
11
12 @Test
13 pub l i c void testTemperatureOutput () {
14 double currentTemp = api . currentTemp () ;
15 Flags f = api . getFreezeFlag () ;
16 i f (currentTemp <= 3.0d)
17 as s e r tEqua l s (Flags .FREEZE, f) ;
18 e l s e
19 as s e r tEqua l s (Flags .THAW, f) ;
20 }
21 }

Listing 1.1. A Simple JUnit 5 Test Case

AST Parsing. We demonstrate our approach for constructing FA-ASTs for
test files using the example of a Java JUnit 5 test case (see Listing 1.1). In this
example, a single test case testTemperatureOutput() is presented that tests
a feature of an (imaginary) API. As common for test cases, the example is
short and structurally relatively simple. Much of the body of the test case con-
sists of invocations to the system-under-test and calls of JUnit standard meth-
ods, such as assertEquals. We speculate that these properties make predicting
test execution time a more tractable problem than predicting performance of
general-purpose programs, which previous authors have argued to be extremely
challenging [19,21].

A (slightly simplified) AST for this illustrative example is depicted in Fig. 2.
The produced AST does not contain purely syntactical elements, such as com-
ments, brackets, or code location information. We make use of the pure Python
Java parser javalang5 to parse each test file, and use the node types, values, and
production rules in javalang to describe our ASTs.
5 https://pypi.org/project/javalang/.

https://pypi.org/project/javalang/

468 H. P. Samoaa et al.

testTemperatureOutput

DECL

double =

currentTemp CALL

currentTemp

DECL

IF

PRED

<=

currentTemp LIT

3.0d

IF-BLOCK

CALL

assertEquals ARGS

Flags.FREEZE f

ELSE-
BLOCK

CALL

assertEquals ARGS

Flags.THAW f

CU

WeatherAPITest

PACKAGE
IMPORT CLASS

DECL

WeatherAPI =

api CONSTR

WeatherAPI

api

Fig. 2. Simplified abstract syntax tree (AST) representing the illustrative example pre-
sented in Listing 1.1. Package declarations, import statements, as well as the declaration
in Line 15 are skipped for brevity.

Capturing Ordering and Data Flow. In the next step, we augment this
AST with different types of additional edges representing data flow and node
order in the AST. Specifically, we use the following additional flow augmentation
edges, in addition to the AST child and AST parent edges that are produced
readily by AST parsing:

FA Next Token (b):
This type of edge connects a terminal node (leaf) in the AST to the next

terminal node. Terminal nodes are nodes without children. In Fig. 2, an FA Next
Token edge would be added, for example, between WeatherAPI and api.

FA Next Sibling (c):
This connects each node (both terminal and non-terminal) to its next sibling,

and allows us to model the order of instructions in an otherwise unordered graph.
In Fig. 2, such an edge would be added, for example, connecting the first usage
of api and with the CONSTR node (representing a Java constructor call).

FA Next Use (d):
This type of edge connects a node representing a variable to the place where

this variable is next used. For example, the variable api is declared in Line 10
in Listing 1.1, and then used next in Line 14.

Figure 3 shows an example augmenting the AST in Fig. 2 (and, consequently,
the example test case in Listing 1.1). Solid black lines indicate the AST parent
and child relationships (for simplicity indicated through a single arrow, read from
top to bottom). Red dashed arrows refer to the new edges added to represent the

TEP-GNN 469

Fig. 3. Flow-Augmented AST (FA-AST) for the example presented in Listing 1.1. Solid
lines represent AST parent and child edges, and dashed lines different types of flow
augmentations. (Color figure online)

data and control flow in the FA-AST, with letter codes indicating the edge type.
Terminal nodes are connected with FA Next Token edges (b), modelling the
order of terminals in the test case. Similarly, the ordering of siblings is modelled
using FA Next Sibling edges (c). Finally, data flow is modelled by connecting
each variable to their next usage via FA Next Use edges (d). Edge types (e),
(f), and (i) represent a control flow statement, which will be discussed in the
following. Multiple edges of different types are possible between the same nodes.
For example, the terminal nodes Flags.FREEZE and f are connected via both,
an FA Next Token (b) and an FA Next Sibling (c) edge.

Capturing Control Flow. In a second augmentation step, we now add further
edges representing the control flow in the test cases. We currently support if
statements, while and for loops, as well as sequential execution. We currently do
not support switch statements or do-while loops, as these are less common in test
cases. Test files containing these elements will still be parsed successfully, but
these control flow constructs will not be captured by the FA-AST. Specifically,
the following further edges are added: An overview over the additional edges
introduced by these control flow statements is given in Fig. 4.

FA If Flow (e):
This type of edge connects the predicate (condition) of the if-statement with

the code block that is executed if the condition evaluates to true. Every if
statement contains exactly one such edge by construction.

470 H. P. Samoaa et al.

Fig. 4. Additional flow augmentations for different control flow constructs (Color figure
online)

FA Else Flow (f):
Conversely, this edge type connects the predicate to the (optional) else code

block.
FA While Flow (g):
A while loop essentially entails two elements - a condition and a code block

that is executed as long as the condition remains true. We capture this through
a FA While Flow (g) edge connecting the condition to the code block, and an
FA Next Use (d) edge in the reverse direction. The latter is used to model the
next usage of a loop counter.

FA For Flow (h):
For loops are conceptually similar to while loops. We use FA For Flow (h)

edges to connect the condition to the code block, and an FA Next Use (d) edge
in the reverse direction. Similar to the modelling of while-loops, FA Next Use
(d) relates to the usage (typically incrementing) of a loop counter.

FA Next Statement Flow (i):
In addition to the control flow constructs discussed so far, Java of course also

supports the simple sequential execution of multiple statements in a sequence
within a code block. FA Next Statement Flow edges (i) are used to represent this
case. Different from the constructs discussed so far, a code block can contain an
arbitrary number of children, and the FA Next Statement Flow edge is always
used to connect each statement to the one directly following it.

Referring back to Fig. 3, two types of control flow annotations are visible -
the modelling of the if-statement in lines 16 to 19 of the test case on the right-
hand side, and various sequential executions (FA Next Statement flow (i)) edges.

TEP-GNN 471

Further note how flow annotation adds a large number of edges to even a very
small AST, transforming the syntax tree into a densely connected graph. This
rich additional information can be used in the next step by our GNN model to
predict highly accurate test execution times.

2.4 GNN Model for Test Execution Time Prediction

Once the FA-AST graph has been built for a test file using the three steps
discussed above, we use a higher order GNN model to predict the execution
time of the Java code. As Fig. 5 shows, we use a 3-layer higher order graph
convolution neural network to predict the execution time. Each layer is followed
by a ReLU activation function. Since GNN learns node embedding, we use global
max pooling to compute a graph embedding. Finally, the graph embedding goes
into two Linear layers with a ReLU and a sigmoid activation function to perform
the prediction of the test execution time. To train our model we use the mean
square error loss.

Fig. 5. Architecture of the GNN Model used in TEP-GNN.

3 Evaluation

We now present the results of an experimental evaluation of TEP-GNN based
on open source Java projects. As training and test data we make use of existing
test suite execution traces from the study subjects’ build systems. A replication
package containing the scripts used to implement the TEP-GNN approach, all
data used in the evaluation, as well as all analysis scripts, are available [8].

3.1 Dataset

Related studies in performance engineering frequently collect their own perfor-
mance data, for example by repeated execution of the projects on a researcher’s
laptop [26], in cloud virtual machines [13], or on controlled hardware [27]. To
increase the realism of the study we have chosen a different approach – we har-
vest existing execution traces from an open source build system (GitHub), and
extract test execution times from this public data. This data represents actual,
real-life test execution times. However, we do not have the option to collect more
data on-demand, and we do not know what precise hardware has been used to
collect the data.

472 H. P. Samoaa et al.

To collect the data, we searched for projects to serve as study subjects. We
applied the following selection criteria: (i) projects written in Java; (ii) available
on GitHub; (iii) include test results published on GitHub; and (iv) use GitHub
shared runners as build system.

Table 1. Overview of study subjects.

Project Description Files Runs Nodes Vocabulary size

systemDS Apache Machine Learning
system for data science lifecycle

127 1321 110651 3161

H2 Java SQL database 194 1391 405706 17972
Dubbo Apache Remote Procedure Call

framework
123 524 75787 4499

RDF4J Scalable RDF processing for
Java

478 1055 214436 10755

Total 922 4291 806580 36387

Based on these criteria, we selected four projects of diverse application
domains, i.e., databases, web servers, and data science life-cycle (systemDS, H2,
Dubbo, and RDF4J). These are depicted in Table 1. The first column shows the
project’s name, the second provides a brief description of the project. The third
column shows the number of distinct test files extracted from the project. As for
the fourth column, it shows the total number of runs performed in the testing job.
The last two columns show the total number of tokens in the entire project test files
and the vocabulary size (the number of distinct nodes in the graphs). We observe
that RDF4J, a triplestore database used in semantic web contexts [23], contains
more test files than the other projects. For the H2 relational database and sys-
temDS we were able to collect the most test runs. Finally, it should be noted that
H2 has the highest code density as measured by the number of nodes and the result-
ing vocabulary size by a wide margin. This indicates that H2 tests are generally
larger and more complex than the test cases in the other study subjects.

All data was extracted from GitHub-hosted runners, which are virtual
machines hosted by GitHub with the GitHub Actions runner application
installed. All shared runners can be assumed to use the same hardware resources,
which is available at GitHub’s website6 and each job runs in a fresh instance of
the virtual machine. Additionally, all jobs from which the data is extracted uses
the same operating system, specifically Ubuntu 18.04. This allows us to minimize
bias introduced by variations in execution environment or hardware.

For collecting test execution traces we looked at the latest successful action
workflow run for each project. We then extracted the run times from the test
report in the workflow, and mined the corresponding source code files from
the respective project repositories in order to feed them to the parser. For H2,

6 https://docs.github.com/en/actions/using-github-hosted-runners/about-github-
hosted-runners#supported-runners-and-hardware-resources.

https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources

TEP-GNN 473

some test cases are run several times during the same build job. In these cases,
we recorded the average of the run times. As the execution times of tests can
vary dramatically between and within projects, to increase the efficiency of the
model training, we normalize each execution time to interval [0; 1]. Hence, our
final dataset includes distinct test files, each associated with one runtime value
between 0 and 1. Then after model training, we denormalize the runtime value
and present the results based on the original values.

Table 2. Occurrences of control flow nodes in each project

Control flow statement systemDS H2 Dubbo RDF4J

If Statement 166 1322 53 161
While Loop 2 222 3 22
ForStatement 196 1114 42 158
Block Statement 293 2900 116 395

Total 707 5612 214 736

Table 2 indicates how prevalent different control flow nodes were in the test
cases of our study subjects. For all projects, block statements are the most
frequent control flow construct, since sequential executions widely exist in nearly
all programs. For loops are substantially more common than while loops, and if
statements are also frequent. Do-while loops and switch statements, which are
currently unsupported by TEP-GNN, are both quite rare in the tests of our
subjects (not shown in the table).

3.2 Results

In this section, we investigate the results of applying TEP-GNN to our dataset,
answering RQ1 and RQ2 introduced in Sect. 1.

RQ1: Quality of Predictions. In order to answer the first research question,
we combine the collected data for all projects into one dataset entailing 922
code fragments and associated normalized execution times. After that, we apply
TEP-GNN as discussed in Sect. 2. For model training, we split the dataset into
train and test sets using 80% and 20%, respectively. Each network is trained
for 100 epochs. As optimizer we use Adam [10] with a learning rate = 0.001. To
evaluate the results of our model, we use a Pearson correlation metric, a measure
of linear correlation between two sets of data. In addition, as a loss function, we
use mean squared error, which is the average squared difference between the
estimated and actual values. All experiments have been executed in a machine
equipped with a GeForce 940MX graphics card and 16GB of RAM.

Results illustrate that our model trained on FA-AST is able to predict test
execution times with a very high accuracy, as can be seen in the Pearson cor-
relation (between predicted and actual execution times in the test data set) of

474 H. P. Samoaa et al.

0.789, and a mean squared error of 0.02. These results substantially outperform
the accuracy values reported in previous studies that attempted to predict abso-
lute software performance counters [19,21]. We argue that the key innovation
that enables this high accuracy is the combination of FA-AST as a powerful
code representation model and GraphConv as a modern GNN.

RQ2: Comparison of TEP-GNN Against a Baseline GNN. To validate
the suitability of our approach and the selected GNN model, we compare it to
a commonly used GNN baseline, called Gated Graph Neural Networks (GGNN)
[16]. GGNNs are widely used in studies that attempt to learn code semantics [1,
5]. We compare the methods at two levels – for the entire dataset (similar to the
analysis presented for RQ1) and at the level of individual projects.

Comparison for the Entire Dataset. We first apply both TEP-GNN and
the baseline method to the dataset consisting of all projects. Figure 6 depicts the
respective results. Our model outperforms the baseline, with a Pearson correla-
tion that is higher almost up to 0.1 (i.e., 0.789 versus 0.697). Hence, we conclude
that our model and GNN architecture is indeed more appropriate to predict the
execution time of test cases than a more standard GGNN approach.

Fig. 6. Comparison of TEP-GNN and a baseline (applying GGNN to the same FA-AST
graphs). Dot points show real (y axes) and predicted (x axes) denormalized (original)
execution times produced by our model. The dash line refers to the perfect prediction.

Analyzing the results, we observe that TEP-GNN is able to achieve highly
accurate predictions in most cases. However, there are rare outliers where our
prediction model misses by approximately 20%. The baseline GGNN method, on
the other hand, has a tendency to predict fairly uniform execution times between
102 and 103, almost independent of what the actually observed test execution
time is. Hence, it suffers from lower accuracy scores.

Comparison for Individual Projects. In the next step, we conduct a similar
analysis, but focused on individual projects. This study answers the question of
how well TEP-GNN works if trained on and used by a single project. Thus,
we train and test TEP-GNN and the baseline on each of the four projects
individually. The results for each project are depicted in Fig. 7.

TEP-GNN 475

Fig. 7. Overview of TEP-GNN and the GGNN baseline trained for each individual
project.

We observe that in general the prediction quality is substantially lower if the
model is trained on individual projects, both for TEP-GNN and the baseline.
TEP-GNN still outperforms the baseline for each project, but only with negligi-
ble prediction performance differences in the case of H2 and Dubbo. For RDF4J,
which contains the largest number of test cases (and, consequently, the largest
number of graphs to learn from), the difference between our approach and the
baseline remains larger.

From these results we conclude that (a) TEP-GNN indeed outperforms
the baseline in all the settings we tested, but (b) our approach works best if
sufficient training graphs are available in comparison to the size of the graphs and
vocabulary (if graphs are complex and/or training data is sparse the difference
between our approach and the baseline is insignificant); (c) finally, we conclude
that both approaches appear to learn some transferable knowledge even when
training on graphs that originate from a different project.

4 Discussion

Our study results show that the accurate prediction of execution times of test
suites is possible. This gives developers an early indication of the time required
to run the cases in the build process, deciding in the process if techniques such
as test case selection are required.

476 H. P. Samoaa et al.

4.1 Lessons Learned

FA-ASTs are a promising approach to represent source code for perfor-
mance prediction. Unlike previous work [19,21,31], our goal in this study was
to treat performance prediction as a regression rather than a classification (slow
or fast) problem. Our results in Sect. 3.2 indicate that using flow augmentation
we are able to achieve good prediction quality. Furthermore, more information
could be added to the FA-AST, such as program dependency graphs. We spec-
ulate that this approach is also promising to predict the performance of more
complex, arbitrary code; however, more specific experiments in this direction
need to be carried out as future research.

GraphConv substantially outperforms the more common GGNN mod-
els in performance prediction as long as sufficient data is available.
As discussed in Sect. 3.2, our GraphConv based GNN model substantially outper-
forms GGNN, which is a currently commonly used graph neural network model
in software engineering research [1,5]. However, this is only true if sufficient data
is available – when training models for individual projects, we observed that, due
to the limited amount of training data available in these cases, the performance
difference between our GraphConv based model and the GGNN baseline was min-
imal. We conclude that, as long as sufficient data is available, GraphConv should
also be investigated in other software engineering contexts that make use of GNNs.

4.2 Threats to Validity

Internal Validity Threats. A key design choice in our study was the usage
of existing, real-world data from GitHub’s build system, rather than collecting
performance data ourselves (e.g., on a dedicated experiment machine). This has
obvious advantages with regards to the realism of our approach, but raises the
threat that our training and test data may be subject to confounding factors out-
side of our knowledge. In particular, prior research has shown that even identi-
cally configured cloud virtual machines can vary significantly in performance [14].
However, the high accuracy achieved by our prediction models indicates that this
is not a major concern with the data we used.

Another design choice was that we predict execution times for entire test
classes (files). More fine-grained predictions (e.g., for individual test cases) would
of course be doable. However, individual test cases often have very short execu-
tion times in relation to the precision with which build systems typically measure
execution times, and the resulting graphs would be very small. We argue that
our choice of test class granularity constitutes a good trade-off that is still useful
for developers.

External Validity Threats. An obvious question raised by our work is how
well the results reported in Sect. 3.2 would generalize to other projects. To mit-
igate this threat, we have chosen four relatively different Java projects as study
subjects following a diversity sampling strategy [2]. However, our study does not
allow us to conclude whether the TEP-GNN approach would generalize to other
programming languages or closed-source software.

TEP-GNN 477

5 Related Work

Predicting Software Performance. Predicting the absolute value of perfor-
mance, such as execution time, based on the source code alone is challenging.
Hence, existing studies often struggle with poor prediction accuracy [19,21]. One
way to simplify the problem (and hence make it more tractable) is to convert it
into a classification problem. Examples of this approach include Zhou et al. [31],
who predict if a program from a programming competition website exceeds the
time limit, Ramadan et al. [22], who predict whether a performance change is
introduced by a code structure change, or Laaber et al. [12], who have shown
that a categorical classification of benchmarks into high- or low-variability is
feasible.

However, recent research has shown that predicting absolute performance
values can be feasible in more specialized contexts like Guo et al. in the context of
configurable system [6,7], and Samoaa and Leitner in the context of benchmark
with a specific workload configuration [24].

Graph Neural Networks for Software Engineering. Graph Neural Net-
works (GNNs) constitute an up-and-coming machine learning model in the con-
text of software engineering research [25]. Li et al. [16] use a GRU cell in gated
graph neural networks (GGNNs) for updating the nodes’ states. To evaluate their
model they run the model on a basic program and try to detect null pointers.

Phan et al. [29] use graph convolutional networks (GCNs) based on compiled
assembly code to detect defects on control flow graphs in C. Another application
of control flow graphs is using graph matching networks (GMN) between two
graphs of binary functions proposed by Li et al. [15]. Other researchers propose
the creation of program graphs based on the AST. Allamanis et al. [1] and
Brockschmidt et al. [3] use GGNN in C# for naming variables and generating
program expressions for code completion respectively.

6 Conclusion and Future Work

In this work, we provide the developers with predictions of the execution times
of their test cases, and consequently give them an early indication of the time
required to run the cases in the build process. We presented TEP-GNN, an effec-
tive method for predicting the execution time of Java test files. Our approach
leverages explicitly capturing control and data flow information as augmenta-
tions to the program AST. Further, our approach applies high order convolution
graph neural networks over this flow-augmented AST (FA-AST). By building
FA-AST using original ASTs and flow edges, our approach can directly capture
the syntax and semantic structure of test classes. Experimental results on four
diverse test subjects demonstrate that by combining graph neural networks and
control/data flow information, we can predict absolute test execution times with
high accuracy.

As the future work, we plan to further extent the FA-AST model currently
used by TEP-GNN, as well as explore other ways of program representation

478 H. P. Samoaa et al.

to capture more syntactic and semantic code features. Additionally, we plan to
apply our approach to the execution time of general-purpose programs rather
than test cases. Finally, we would like to extend our current labeled data set by
applying active learning to systematically increase the amount of training data.

Acknowledgements. This work received financial support from the Swedish
Research Council VR under grant number 2018-04127 (Developer-Targeted Perfor-
mance Engineering for Immersed Release and Software Engineering).

References

1. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs
with graphs (2017). https://arxiv.org/abs/1711.00740

2. Baltes, S., Ralph, P.: Sampling in software engineering research: a critical review
and guidelines. EMSE 94(27) (2022)

3. Brockschmidt, M., Allamanis, M., Gaunt, A.L., Polozov, O.: Generative code mod-
eling with graphs (2018). https://arxiv.org/abs/1805.08490

4. de Oliveira Neto, F.G., Ahmad, A., Leifler, O., Sandahl, K., Enoiu, E.: Improving
continuous integration with similarity-based test case selection. In: Proceedings
of the 13th International Workshop on Automation of Software Test, pp. 39–45
(2018)

5. Fernandes, P., Allamanis, M., Brockschmidt, M.: Structured neural summarization
(2018). https://arxiv.org/abs/1811.01824

6. Guo, J., Czarnecki, K., Apel, S., Siegmund, N., Wąsowski, A.: Variability-aware
performance prediction: a statistical learning approach. In: ASE, pp. 301–311
(2013)

7. Guo, J., et al.: Data-efficient performance learning for configurable systems. EMSE
23(3), 1826–1867 (2018)

8. Samoaa, H.P., Longa, A., Mohamed, M., Chehreghani, M.H., Leitner, P.: TEP-
GNN: accurate execution time prediction of functional tests using graph neural
networks. Zenodo, August 2022. https://doi.org/10.5281/zenodo.7003881

9. Huber, W., Carey, V.J., Long, L., Falcon, S., Gentleman, R.: Graphs in molecular
biology. BMC Bioinform. 8(6), 1–14 (2007)

10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://
arxiv.org/abs/1412.6980

11. Knauss, E., Staron, M., Meding, W., Söder, O., Nilsson, A., Castell, M.: Supporting
continuous integration by code-churn based test selection. In: 2015 IEEE/ACM
2nd International Workshop on Rapid Continuous Software Engineering, pp. 19–
25. IEEE (2015)

12. Laaber, C., Basmaci, M., Salza, P.: Predicting unstable software benchmarks using
static source code features. EMSE 26(6) (2021)

13. Laaber, C., Scheuner, J., Leitner, P.: Software microbenchmarking in the cloud.
How bad is it really? EMSE 24(4), 2469–2508 (2019)

14. Leitner, P., Cito, J.: Patterns in the Chaos - a study of performance variation and
predictability in public IaaS clouds. ACM TOIT 16(3), 15:1–15:23 (2016)

15. Li, Y., Gu, C., Dullien, T., Vinyals, O., Kohli, P.: Graph matching networks for
learning the similarity of graph structured objects. In: Proceedings of the 36th
International Conference on Machine Learning, vol. 97. PMLR (2019)

https://arxiv.org/abs/1711.00740
https://arxiv.org/abs/1805.08490
https://arxiv.org/abs/1811.01824
https://doi.org/10.5281/zenodo.7003881
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

TEP-GNN 479

16. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural
networks (2015). https://arxiv.org/abs/1511.05493

17. Longa, A., Cencetti, G., Lepri, B., Passerini, A.: An efficient procedure for mining
egocentric temporal motifs. Data Min. Knowl. Disc. 36(1), 355–378 (2022)

18. Marijan, D., Gotlieb, A., Liaaen, M.: A learning algorithm for optimizing con-
tinuous integration development and testing practice. Softw. Pract. Exp. 49(2),
192–213 (2019)

19. Meng, K., Norris, B.: Mira: a framework for static performance analysis. In: CLUS-
TER (2017)

20. Morris, C., et al.: Weisfeiler and leman go neural: higher-order graph neural net-
works. In: AAAI, vol. 33 (2019)

21. Narayanan, S.H.K., Norris, B., Hovland, P.D.: Generating performance bounds
from source code. In: International Conference on Parallel Processing Workshops,
pp. 197–206 (2010)

22. Ramadan, T., Islam, T.Z., Phelps, C., Pinnow, N., Thiagarajan, J.J.: Comparative
code structure analysis using deep learning for performance prediction. In: ISPASS,
Los Alamitos, CA, USA. IEEE Computer Society, March 2021

23. Samoaa, H., Catania, B.: A pipeline for measuring brand loyalty through social
media mining. In: Bureš, T., et al. (eds.) SOFSEM 2021. LNCS, vol. 12607, pp.
489–504. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67731-2_36

24. Samoaa, H., Leitner, P.: An exploratory study of the impact of parameterization
on JMH measurement results in open-source projects. In: ICPE. Association for
Computing Machinery (2021)

25. Samoaa, H.P., Bayram, F., Salza, P., Leitner, P.: A systematic mapping study of
source code representation for deep learning in software engineering. IET Softw.
(2022)

26. Sandoval Alcocer, J.P., Bergel, A., Valente, M.T.: Learning from source code his-
tory to identify performance failures. In: ICPE. Association for Computing Machin-
ery (2016)

27. Schulz, H., Okanović, D., van Hoorn, A., Tůma, P.: Context-tailored workload
model generation for continuous representative load testing. In: ICPE. Association
for Computing Machinery (2021)

28. Spieker, H., Gotlieb, A., Marijan, D., Mossige, M.: Reinforcement learning for auto-
matic test case prioritization and selection in continuous integration. In: ISSTA,
pp. 12–22 (2017)

29. Viet Phan, A., Le Nguyen, M., Thu Bui, L.: Convolutional neural networks over
control flow graphs for software defect prediction. In: ICTAI (2017)

30. Wang, W., Li, G., Ma, B., Xia, X., Jin, Z.: Detecting code clones with graph neural
network and flow-augmented abstract syntax tree. In: SANER (2020)

31. Zhou, M., Chen, J., Hu, H., Yu, J., Li, Z., Hu, H.: DeepTLE: learning code-level
features to predict code performance before it runs. In: APSEC (2019)

https://arxiv.org/abs/1511.05493
https://doi.org/10.1007/978-3-030-67731-2_36

Improving Software Regression Testing
Using a Machine Learning-Based Method

for Test Type Selection

Khaled Walid Al-Sabbagh(B) , Miroslaw Staron , and Regina Hebig

Computer Science and Engineering Department, Chalmers — University of
Gothenburg, Gothenburg, Sweden

{khaled.al-sabbagh,miroslaw.staron,regina.hebig}@gu.se

Abstract. Since only a limited time is available for performing software
regression testing, a subset of crucial test cases from the test suites has to
be selected for execution. In this paper, we introduce a method that uses
the relation between types of code changes and regression tests to select
test types that require execution. We work closely with a large power
supply company to develop and evaluate the method and measure the
total regression testing time taken by our method and its effectiveness in
selecting the most relevant test types. The results show that the method
reduces the total regression time by an average of 18,33% when compared
with the approach used by our industrial partner. The results also show
that using a medium window size in the method configuration results in
an improved recall rate from 61,11% to 83,33%, but not in considerable
time reduction of testing. We conclude that our method can potentially
be used to steer the testing effort at software development companies by
guiding testers into which regression test types are essential for execution.

Keywords: Software regression testing · Machine learning · Code
types · Regression test types

1 Introduction

Modern software development projects evolve rapidly as software engineers add
new features, fix faults, or refactor code smells. To prevent faults from breaking
existing functionality in the evolving system, software engineers frequently per-
form software regression testing. A safe and straightforward approach to perform
regression testing is to execute a pre-defined set of test cases, usually a selection
of unit, system and function tests. Such an approach is often referred to as a
retest-all strategy. Despite benefits in set-up time, this strategy does not take into
consideration changes done to the system – these are often tested during system
or function test phases. The frequent execution of these retest-all test suites can
also be extremely time and resource consuming. As a remedy to this, a number
of Test Case Selection (TCS) methods have been developed, e.g., selecting tests
based on their relevance to the modifications made in the SUT (System Under
Test), in this way reducing the time and cost of testing.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 480–496, 2022.
https://doi.org/10.1007/978-3-031-21388-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_33&domain=pdf
http://orcid.org/0000-0003-2571-5099
http://orcid.org/0000-0002-9052-0864
http://orcid.org/0000-0002-1459-2081
https://doi.org/10.1007/978-3-031-21388-5_33

Improving Software Regression Testing Using Test Type Selection 481

A recent family of approaches for TCS employs statistical models to predict
test cases based on their historical verdicts [11], [3], and [16]. These approaches
are based on the assumption that a dependency between code changes and test
case execution results (pass/fail) exists. For example, Knauss et al. [11] proposed
an automatic recommender that analyzes the frequency in which test cases fail
on a particular day given code changes made to software modules, achieving 78%
reduction in the studied test suite. Similarly, one of the first implementations
of ML for test case selection was presented in our previous work [3], where we
introduced a TCS method that utilizes textual analysis and a conventional tree-
based model to predict test case execution results.

All of these approaches create a prediction model using historical test execu-
tion results and the code changes against which these tests were exercised. How-
ever, there are several inherent challenges to the application of these approaches.
One of the major challenges is the need to develop a database of source code
changes over time and a database of the related test case verdicts.

In response to this challenge, we have been investigating strategies for apply-
ing test selection without the need to use historical information about test exe-
cution results. Instead of the historical verdicts, we focus on the relation between
types of code changes (e.g., including new conditional statements) and type of
regression tests (e.g., statement test, [1]). We have constructed a facet-based
taxonomy of dependencies between code changes and test cases of specific types
[2]. The knowledge presented in the dependency taxonomy is used to instrument
tools for TCS by only analyzing the content of code changes, and thus determine
which set of test types will be affected by the change. We address the following
research question:

How to reduce the time of regression testing by selecting only the most
relevant test types?

We address this question by developing a machine learning-based method
(and a tool) – HiTTs (Human-in-the-loop Approach for Test Type Selection)–
that automatically identifies types of code changes and then selects the relevant
types of tests. By using test types and source code changes types, we do not
require historical data about the test case verdicts and therefore, HiTTs can be
used already from the start of software development.

We work closely with a large power supply provider that develops soft-
ware solutions to revise the taxonomy and validate the results. To evaluate our
method, we used an embedded system that is owned and developed by our
industrial partner. The results of this study show that our method has promis-
ing potentials in reducing the regression testing time at a high fault detection
rate.

2 Related Work

Previous studies have been conducted to examine SW regression testing
approaches, as surveyed in [8] and [9]. The majority of these approaches differ

482 K. W. Al-Sabbagh et al.

from our approach in their used artifacts (i.e., they require information about
test cases) and the underlying concepts (i.e., they operate on a test level granu-
larity). Unlike our approach, existing approaches require updating dependency
graphs or coverage information to select or prioritize tests. In this section, we
discuss some of these approaches and report their time usage of testing.

Greedy-Based: Chi et al. [7] proposed an algorithm that traces method
call sequences under each test case to construct a call graph. The call graph is
then used to sample the testing order based on method call sequence coverage
criterion. The method was valuated and compared for effectiveness in terms of
fault detection and time usage against 22 state-of-the-art techniques. The results
showed that the algorithm outperformed the other 22 techniques in terms of fault
detection, but not in time usage. Specifically, the proposed technique was found
to take 20,5% more than the next best technique compared for effectiveness.

Similarity-Based: De Oliveira Neto et al. [13] conducted a case study
to investigate the efficiency of 3 similarity-based approaches for test selection,
namely, the Normalised Levenshtein, Jaccard Index, and Normalised Compres-
sion Distance. The results showed that using the Normalized Levenshtein and
Jaccard Index outperformed the Normalised Compression Distance in terms of
their coverage rate of test requirements, dependencies, and steps. Specifically,
the Normalized Levenshtein reduced the amount of executed tests by 65% and
could still cover distinct combinations of test dependencies required to execute
test cases. In terms of the saved time, the results showed that the Normalized
Levenshtein reduced the testing time by 15,1% compared to random selection.

ML-Based: Bertolino et al. [6] proposed an approach that seeks to find tran-
sitively dependent classes on changed ones in new versions of the SUT along with
their associated test classes. The approach prioritizes the selected tests based on
several code and test metrics which then get fed into an ML model for training.
The evaluation of the approach was done by comparing 10 ML algorithms using
6 Java projects in terms of the Rank Percentile Average metric and the sum of
time required for ranking the selected tests. The results showed that using the
MART algorithm outperforms the others in terms of Rank Percentile Average,
whereas the Coordinate ASCENT performed best in terms of ranking time.

Graph-Based: Orso et al. [14] proposed a two-phase algorithm that builds
a graph representation of the SUT and then identifies, based on information
on changed classes, the parts of the SUT that need to be tested. As a result,
tests that traverse the changed parts of the SUT are selected for execution. The
authors compared the regression testing time of their approach against a retest-
all baseline on 3 programs. The results showed that using their approach reduced
the regression testing time between 5.9% to 89.7%, with an average of 42.8%.

3 Core Concepts and Background

This section presents core concepts and defines several types of code changes
and tests presented in [2].

Improving Software Regression Testing Using Test Type Selection 483

3.1 Core Concepts

We use the definition of a software program P to be a collection of lines of
code L < L1, . . . , Ln >. P’ denotes a modified revision of P, and includes one or
more combinations of added/removed/modified L, distant from P. We use the
term ‘revision’ to refer to a modified version of P. A test case, denoted by tc,
is a specification of the inputs and expected results to verify that P’ complies
without issues. The result of executing a tc is referred to as ‘test case verdict’
(passed or failed) and is denoted with te. A set of test cases T =< tc1, tc2, . . . >
is the test suite for testing P’. Regression test selection refers to the strategy of
testing that given a P’ selects a subset of tc that is crucial for execution.

3.2 The Dependency Taxonomy

The method presented in this study is based on the knowledge depicted in the
dependency taxonomy that we created in collaboration with SW testers from the
industry [2]. Each branch in the taxonomy refers to a single dependency between
a test and a code change type, where a dependency means that a change in a
code type results in a failure of tests of a specific type. In this study, we utilize
and validate 8 dependency links from the original taxonomy since our industrial
partner could only provide us with information about 4 test types.

Figure 1 illustrate the 8 dependency links between the test and code types.
All dependencies in the original taxonomy were identified from two sources of
information - SW testers and literature studies. The solid connectors in Fig. 1
correspond to dependencies that were identified by testers, whereas dotted lines
correspond to dependencies that were identified from the literature. Table 1 sum-
marizes the definitions of the 4 test types depicted. We refer the reader to [2]
for more details about each type of code and test.

Fig. 1. The taxonomy of dependency between code and test types.

484 K. W. Al-Sabbagh et al.

Memory management: This category concerns the management of system
memory during run-time. Changes in this category include introducing/fixing
memory leaks, buffer overflow, dangling pointers, and resource interference with
multi-threading.

Design: This category involves changes that include code refactoring, adding
or removing methods, classes, interfaces, enumerators, or code smells.

Complexity: This category represents changes that add to or reduce the
time complexity of the SUT. It includes changes such as adding or removing
loops, conditional statements, nesting blocks or recursive functions.

Dependency: This category describes a change where a dependency between
a module/fragment/library is added/modified. It can be importing a new library,
a namespace, or a class.

Conditional: This category occurs when a logical operator or in a condi-
tional statement is added/modified.

Data: This category involves changing 1) function parameters, 2) value
assignment to variables, 3) casting, 4) array allocations, or 5) declaring vari-
ables.

Table 1. Definitions of test case types in the taxonomy of dependency.

Test case type Definition

Statement Constructed to force execution of individual statements.

Performance Evaluate the degree to which a test item accomplishes its
designated functions within a given time.

Capacity Evaluate the level at which increasing load affects a test
item’s ability to sustain required performance.

Procedure Evaluate whether procedural instructions for interacting
with a test item to meet user requirements

4 Research Design

In this section, we describe how our method was designed and implemented.

4.1 HiTTs Implementation

The basic idea behind HiTTs is to utilize the relations presented in the depen-
dency taxonomy for automating the classification of L in P’ into several code
types, and as a result select regression test types that are sensitive to the changes
introduced in the code. To achieve this, we use a three-phase process, which we
call 1) Annotation and Training, 2) Calibration, and 3) Selection (Fig. 2).

Improving Software Regression Testing Using Test Type Selection 485

Fig. 2. Human in the loop for test type selection.

Annotation and Training (Phase 1): The first phase in HiTTs consists of 4
steps that concern the extraction of code changes, annotation and class balanc-
ing, features extraction, and building a classifier. A step-by-step description of
each step in this phase is as follows:

1. Code change extraction: the method starts by extracting historical code
changes between pairs of consecutive versions of P, P’ from the version con-
trol system (e.g., git). Only modified and added L at different P’ are retained,
whereas all deleted L are discarded since the scope of this study is to identify
regression tests that will react to new/modified code changes. The tool then
parses the content of extracted L and filters out all L that belong to config-
uration files (e.g., .xml and .json), comments, empty and unit test L. Once
the filtering step is complete, we save the extracted set of L for each P’ in a
‘csv’ file.

2. Annotation and class balancing: each L in the ‘csv’ file is then annotated
by two or more SW architects into one of the 6 categories of code change. L
that are annotated with the same code types are retained, and the remaining
ones get discarded. Once the annotation is complete, we inspect the distri-
bution of instances under the 6 code types. If the number of instances in
one code type heavily outnumbers those in the other types, we oversample
instances in the minority class to balance out the data. This activity is nec-
essary to mitigate the effect of introducing a classification bias toward one of
the classes [4].

3. Features extraction: In this step, we transform the collected revision files
into feature vectors using the bag of words (BoW) approach. We use a tool
that, for each L in the collected revision files:

– creates a vocabulary for all L (using the BoW technique, with a cut-off
parameter of how many words should be included1)

– creates a token for words that fall outside of the frequency defined by the
cut-off parameter of the bag of words

1 BoW is essentially a sequence of words/tokens, which are descendingly ordered
according to frequency. This cut-off parameters controls how many of the most
frequently used words are included as features – e.g. 10 means that the 10 most
frequently used words become features and the rest are ignored.

486 K. W. Al-Sabbagh et al.

– finds a set of predefined keywords in each line,
– checks each word in the line to decide if it should be tokenized or if it is

a predefined feature.
The output of this step is a large array of numbers, each representing the
token frequency of a specific feature in the bag of words space of vectors.

4. Building a multi-class model: the final step in this phase concerns feeding
the set of extracted feature vectors into a multi-class ML model for training.

Calibration (Phase 2): In order for HiTTs to select crucial regression test
types for execution, it requires knowledge about the types of tc that are available
in the suites. Thus, the pool of tc from which HiTTs can operate must include
information about the type of the tc. This requires SW architects to calibrate
the type of test in every new/existing tc. This can be done, for example, by
creating a variable in each test class and use it to tag/calibrate the test type of
the tc. Note that this step can be performed independently from phase 1.

Selection (Phase 3): The final phase of HiTTs concerns the analysis of code
types that are found in new code revisions and selecting regression test types
that are sensitive to the changes. The phase can be described in two steps:

1. Classification of lines of code: The first step in this phase utilizes the
trained model in phase 1 for classifying L that appear in P’ into one of the
6 code types. As soon as the classification is complete, the method measures
the count of L under each code type and generates a list of ranked code types
from highest to lowest in terms of L count.

2. Test type selection: The next step in this phase is to select regression
test types that are important for execution. For this, HiTTs uses a set of
predefined rules that specify which test types are sensitive to what code types.
These rules are derived from the taxonomy of dependency (see Sect. 3.2) and
their usage is determined by a window size. The larger the window size, the
more code types that HiTTs will use for selecting test types. Specifically,
HiTTs will select all test types that are in dependency with the code types
that fall within the window boundary. For example, a window size of 1 would
trigger HiTTs to select test types that are in dependency with the first top
ranked code type only. Since the taxonomy of dependency consists of 6 code
types, HiTTs can currently utilize a window size between 1 and 6.

Note that the first phase of HiTTs needs to be performed only once for
training the classifier. Similarly, the second phase is performed only when a new
tc is created or existing tc requires calibration.

4.2 Usage Scenario

In this section, we describe a usage scenario to show how test orchestrators can
use HiTTs. The scenario assumes that the first and second phases of HiTTs were
performed and a classifier was already built.

Improving Software Regression Testing Using Test Type Selection 487

Suppose that Bob is a SW architect who is modifying a feature in the SUT.
After Bob concludes his implementation, he commits his code changes to the
development repository (step 1 in Fig. 3). Lines 3, 4, and 5 in Fig. 3 corresponds
to the modified L that Bob submitted in his commit. At this point, HiTTs will
analyze Bob’s commit by classifying each L into one of the 6 categories of code
changes (step 2 in Fig. 3). After classifying the modified/added L, HiTTs will
measure the count of classifications made with respect to each code type and
accordingly generates a ranked list of code types based on their lines’ count. In
this example, HiTTs classified two-third of the L in Bob’s commit as memory
management related and one-third as design. Assuming that the test orchestra-
tors at Bob’s company set the window size of HiTTs to 1, then HiTTs will decide
to select regression test types that are in dependency with the memory manage-
ment code only (step 3 in Fig. 3). As a result, performance, load, soak, stress,
volume, and capacity tests will be executed to test Bob’s commit. Now sup-
pose that the test orchestrators at Bob’s company decide to change the window
size of HiTTs to 2. In this case, HiTTs will decide to select test types that are
dependent on both memory management and design code types. Consequently,
performance, load, soak, stress, volume, capacity, back-to-back, portability, and
backup and recovery tests will be executed.

Fig. 3. An illustrative example of a usage scenario for HiTTs.

5 Evaluation of HiTTs

In this section, we present the evaluation results of our method.

5.1 Annotation and Training (Phase 1)

This study was performed over a period of two weeks at a large power supply
provider organization that develops software solutions for managing energy con-
sumption in different products. The organization provided us with access to a
data-set that belonged to an embedded system written in the C++ language.

488 K. W. Al-Sabbagh et al.

Code Change Extraction (Step 1). In this study, a total of 9 code revisions
were extracted from the SUT repository. We restricted the extraction of revi-
sions to 9, since we were mainly interested in understanding the effectiveness
of our method in reducing the regression testing time. The extracted revisions
comprised a total of 2,103 modified and added L from which 1,321 L belonged
to source code files (‘.cpp’ and ‘.h’)2.

Annotation and Class Balancing (Step 2). Five SW architects that work
at the collaborating company were employed to perform the annotations. First,
we organized a workshop with the SW architects, where we began by presenting
definitions and code examples for each code type in the dependency taxonomy.
This was necessary to ensure that all architects posses a good understanding
of each type of code change in the dependency taxonomy before starting the
annotation. At the end of the workshop, architects were asked to individually
annotate each L in the 9 revision files and to send us the annotated L. After
receiving the annotated L, we filtered out L that were not mutually annotated
by the 5 architects and retained L that were annotated with the same code
types. In total, we found 523 L in the annotated files to be similar in their
annotation values (level of agreement = 40%). While a common rule of thumb in
the literature demands a higher level of agreement between annotators, several
studies have shown that comparing annotations by independent and multiple
annotators can yield agreement rates as low as 22% [5] and [10].

Figure 4 shows the distribution of code types in the set of annotated L. The
Figure shows that the majority of L belonged to the ‘Design’ code type (25%),
whereas the minimal count of L belonged to the ‘Conditional’ type (4%). The
‘Other’ category is used by the annotators when encountering L that does not
belong to the 6 code categories. Since the distribution of code types is imbal-
anced, we decided to use the SMOTE module available in the Scikit-learn library
[15] to balance the distribution of L in the code types. Applying SMOTE to the
data-set resulted in oversampling instances in the minority code types to the
same number of instances in the ‘Design’ code type (the majority class). As a
result, we retrieved a total of 903 annotated L.

Features Extraction and Building the Classifier (Step 3). HiTTs employs
a textual analysis technique that extracts features from the set of annotated code,
where each feature corresponds to a code token that appears in the input file. In
this study, we employ the tool proposed by Ochodek et al. [12] to perform the
features extraction using the BoW model. Applying BoW on the annotated set
of L resulted in a multi-dimensional array that consisted of 895 feature tokens.

HiTTs employs a multi-class classifier that classifies L into one of 6 code
change types. This study employed a random forest (RF) model as the multi-
classifier in HiTTs. Our choice of using RF was mainly due to the promising

2 Due to non-disclosure agreements with our industrial partner, our data-set can not
be made public for replication.

Improving Software Regression Testing Using Test Type Selection 489

Fig. 4. The distribution of code types in the annotated lines.

potentials that it showed in our recent series of publications (e.g., in [3]). In
this study, the hyper-parameters of the RF model were kept in their default
state as found in the scikit-learn library (version 0.20.4). The only alteration
that we made was in the n estimator (the number of trees) parameter, where
we changed its value from 10 to 100. This was a design choice that we adopted
based on our findings in [3], where we experimented the use of an RF model for
TCS without tuning the model’s parameters. Our findings showed that using an
untuned parameters in RF would yield better predictive performance for TCS
than other four deep learning and tree-based models.

5.2 Calibration (Phase 2)

In this study, we decided to calibrate tests whose execution verdicts changed
from one state to another (e.g., from ‘passed’ to ‘failed’), at least once, during
the last six months from the time of conducting this study. This was done to
maximize the probability of working with tests that are sensitive to changes in
the code-base. As a result, information about 868 tests were extracted from the
test logs of the SUT. Architects were required to jointly agree on an ISO test
type [1] that best describes each extracted test, and then use that test type for
annotation. The keyword ‘Other’ was used by the architects to annotate tests
whose specifications do not match the description of any ISO test types. Four
distinct test types were used for annotating the 868 tests. The distribution of the
annotated tests was as follows: procedure tests had the highest proportion with a
total of 546 tests (62.9%); statement tests had the second highest proportion with
302 tests (34.7%); performance and capacity tests had the lowest proportion with
one test respectively; 18 tests (2%) were annotated with the ‘Other’ keyword.
We discarded all tests that were annotated with ‘Other’, as we do not know
which types of code changes would trigger these tests to react.

5.3 Selection (Phase 3)

To evaluate the effectiveness of HiTTs, we extracted code changes committed
to the SUT repository and their associated test information after the time of

490 K. W. Al-Sabbagh et al.

performing the annotation and training phase. A total of 9 code revisions and
26,576 executions of the 868 calibrated tests were extracted. Each code revision
was fed into the trained RF model for classifying L into their relevant code
types. Figure 5 shows, for each code revision, the number of classified L under
each category of code type. All L that were classified as ‘Other’ by the model
were removed from the next step of the selection phase. For the remainder of
this paper, we refer to these revisions as ‘evaluation revisions’.

5.4 Baseline Construction

To understand whether our method is effective in reducing the regression testing
time, we needed to measure and compare its performance against one or more
baseline measures. For this purpose, two baselines were used in this study - the
actual and retest-all. The actual baseline is a measure of the total time taken
to execute all tc that we calculated from the test logs of the build server of the
SUT. The retest-all baseline is a measure of the total time taken to execute all
available tc under the four test types in similar ratios.

Fig. 5. The distribution of code types in the evaluation revision.

Actual. Table 2 summarizes the information of the execution times of the four
test types. The Table shows, for each revision, the number of non-commented
lines of code (column 2). The ‘actual baseline’ column corresponds to the total te
time taken to execute all tc of the four test types, as found in the test log files of
the SUT. Total execution times spans from 0,91 h to several days. Columns 4 to
7 summarize the actual te for capacity, procedure, statement, and performance
tests respectively, whereas columns 8 to 12 show the number of te performed
for each test type. By observing the number of te under each test type, we

Improving Software Regression Testing Using Test Type Selection 491

notice that not all test types are executed against the majority of the evaluation
revisions. For example, capacity tc were only exercised against revisions 1, 2, 3,
5, 8 and 9 (as denoted with ‘–’ in the ‘nu. Capacity’ column).

Table 2. Information about the actual test execution (in hour) for every revision.

Revision Lines of
code

Actual
baseline

Capacity Procedure Statement Performance nu.
Capacity

nu.
Procedure

nu.
Statement

nu.
Performance

nu.
Others

1 51 5,73 0,02 3,25 1,77 0,00 5 510 260 – 45

2 53 20,66 0,02 11,02 8,50 0,03 5 1990 1320 5 80

3 201 87,57 0,06 58,23 25,23 0,09 14 9366 1320 14 266

4 65 20,46 0,00 11,68 8,09 0,00 – 2030 2281 – 42

5 10 7,67 0,02 4,08 3,03 0,00 4 816 468 – 44

6 354 22,10 0,00 15,52 5,93 0,00 – 2303 882 – 42

7 19 0,91 0,00 0,91 0,00 0,00 – 192 – – –

8 520 12,08 0,03 5,36 6,00 0,00 8 1040 936 – 56

9 19 1,14 0,00 1,14 0,00 0,00 – 240 – – –

Retest-All. Since we do not have information about the actual te times of every
test type across all revisions, we needed to normalize the te times of capacity,
performance, procedure, statement in order to simulate a retest-all scenario on
the 9 evaluation revisions. The normalized te times for capacity, performance,
procedure, statement tests are presented in Table 2 using the following procedure.
First, we calculate the average time required to execute a tc under each type
in every evaluation revision. Second, for each evaluation revision, we subtract
the number of executed tests from those executed against the revision with the
highest number of te. Third, we multiply the number of missing te under each
test type with the average te time for the same test type. Finally, we add the
te time of the estimated tc to the actual te time that we found in the test
log data. The advantage of retaining the actual te time of existing tests lies
in minimizing the probability of using over/under-estimated te time. Table 3

Table 3. Normalized execution times (in hour) for each test types in all revisions.

Revision Retest-all baseline Capacity Procedure Statement Performance

1 70,63 0,06 56,51 10,09 0,09

2 67,81 0,06 55,38 8,50 0,08

3 87,57 0,06 58,23 25,23 0,09

4 67,97 0,06 55,80 8,09 0,09

5 69,12 0,06 55,51 9,72 0,09

6 71,40 0,06 58,00 9,37 0,09

7 70,44 0,06 56,09 10,35 0,09

8 68,32 0,06 55,44 9,01 0,09

9 70,38 0,06 56,03 10,35 0,09

492 K. W. Al-Sabbagh et al.

summarizes the normalized te times for all test types across the 9 evaluation
revisions. The ‘Retest-all baseline’ column in Table 3 corresponds to the total te
time calculated by summing up the normalized values under each test type.

5.5 Results and Analysis

The goal of the evaluation is to identify the total amount of reduced time in
performing regression testing. To that end, we compare the testing time required
by HiTTs with the two baseline measures. We use a window size of 1, 2, and 3
{w1, w2, w3} respectively for the comparison. Results of applying HiTTs with
each window size are depicted in Table 4. The Table shows, for each revision and
window size, the types of selected tc (column 3), the actual failing test types
(column 4), the actual te time for all tc (column 5), the te time of a retest-
all approach (column 6), the amount of reduced time relative to the retest-all
(column 8) and the actual baseline (column 10) time.

The results reported in Table 4 suggest that using any window size in HiTTs
reduces the total testing time by more than eight hours across the majority
of evaluation revisions. The total reduced time, as measured by correct dese-
lection of passing test types, reached 52,94% when compared with the actual
baseline. Similarly, the percentages of improvement in time reduction relative to
the retest-all baseline reached between 0,18% and 15,78%. This reduced time can
potentially save architects the hurdle of doing large code rework after testing,
since bugs found earlier in the development cycle are often easier to fix than bugs
found after the time of adding new code. For instance, applying HiTTs with a
window size of 1 on revision 8 was found to reduce the testing time by 6,03 h
compared with the actual baseline. Hence, instead of waiting for 11,4 h to exe-
cute integration and system level tests, architects will wait for 5,37 h to receive
feedback about their code. This allows architects to spare 6,03 h for bug fixing,
feature development, or executing other types of test suites. Further, by compar-
ing the values in the ‘selected test types’ and the ‘failing test types’ columns, we
notice that the selection rate of fault-revealing tests was best when using w2 in
HiTTs. However, what stands out in the results is that statement and capacity
test types were only selected once for revision 6 when using w3. This can be due
to missing dependency links in the taxonomy or code types. Hence, future work
need to investigate additional dependencies between the capacity and statement
tests, and existing code types.

To gain a better understanding of the method’s effectiveness, we measured
its fault detection capability in terms of recall and precision when using the
three window sizes. While precision is the proportion of correctly identified test
types, recall is the proportion of relevant test types that were identified as such.
Having both precision and recall high ensures the detection of larger amount of
test types that will reveal faults in the SUT. Further, we calculated the mean
reduced time by HiTTs using the three window sizes and compared the results
with the two baselines. Figure 6 shows a bar chart that depicts the results of the
comparison. The results indicate that using w2 or w3 improves the rate of faults
detection by 22,2% compared to when using w1 (recall improvement from 61%

Improving Software Regression Testing Using Test Type Selection 493

to 83,33%). Conversely, the precision rate remained unchanged for w2 (77,78%)
and dropped to 69,44% for w3. Taken together, these results suggest that using
w3 leads to the least effective performance of HiTTs, whereas w2 yields the
highest performance. On the other hand, the mean reduced times attained when
using w1 or w2 was found to be similar, which implies that using either of the
two window sizes leads to a similar reduction rate of the testing time.

Fig. 6. Mean performance and reduced testing time using three windows.

RQ. How to reduce the time of regression testing by selecting
only the most relevant test types?
The results confirm that using our method with a window size of 2 reduces
the time of regression testing by 9,94% on average compared to a retest-all
approach and by 18,33% compared to the testing approach adopted by our
industrial partner.

6 Threats to Validity

We use the framework in [17] to discuss the limitations of our paper.
External Validity. We evaluated the effectiveness of HiTTs on 9 revisions

that belong to a single industrial system. Thus, we cannot claim that our findings
generalize well to other types of systems. However, we increase the likelihood of
drawing a representative sample by using all revisions that were committed to
the development repository after the time of building HiTTs. Further, we trained
the classifier in HiTTs on a small sample of data, which could have resulted in
a lower classification performance than what we could achieve with a larger
sample. However, our evaluation shows that the performance of HiTTs is high.

Construct Validity. The dependency links used for defining the static rules
of procedure tests were drawn from the literature, and thus not validated. How-
ever, our evaluation results showed that HiTTs was effective in selecting this
type of tests across the 9 evaluation revisions.

494 K. W. Al-Sabbagh et al.

Table 4. The evaluation results of HiTTs compared to two baselines.

Window size of 1, 2, and 3

Revision Window Selected test types Failing test types Actual
baseline

Retest-all
baseline

Reduced
time (retest-all)

% of reduced
time (retest-all)

Reduced
time (actual)

% of reduced
time (actual)

1 w1 Procedure Procedure, Statement 5,04 66,74 0,14 0,22 0,02 0,40

w2 Procedure Procedure, Statement 5,04 66,74 0,14 0,22 0,02 0,40

w3 Procedure, Performance Procedure, Statement 5,04 66,74 0,06 0,08 0,02 0,40

2 w1 Procedure Procedure, Statement 19,56 64,02 0,14 0,22 0,05 0,24

w2 Procedure, Performance Procedure, Statement 19,56 64,02 0,06 0,09 0,02 0,10

w3 Procedure, Performance Procedure, Statement 19,56 64,02 0,06 0,09 0,02 0,10

3 w1 Procedure Procedure, Statement 83,61 83,61 0,15 0,18 0,15 0,18

w2 Procedure Procedure, Statement 83,61 83,61 0,15 0,18 0,15 0,18

w3 Procedure Procedure, Statement 83,61 83,61 0,15 0,18 0,15 0,18

4 w1 Procedure Procedure 19,77 64,04 8,24 12,86 8,09 40,93

w2 Procedure Procedure 19,77 64,04 8,24 12,86 8,09 40,93

w3 Procedure Procedure 19,77 64,04 8,24 12,86 8,09 40,93

5 w1 Performance Procedure 7,13 65,37 9,77 14,95 3,05 42,76

w2 Performance, Procedure Procedure 7,13 65,37 9,77 14,95 3,05 42,76

w3 Performance, Procedure Procedure 7,13 65,37 9,77 14,95 3,05 42,76

6 w1 Procedure Procedure 21,45 67,51 9,51 14,09 5,93 27,65

w2 Procedure Procedure 21,45 67,51 10,50 15,55 5,93 27,65

w3 Procedure, Performance, Capacity, Statement Procedure 21,45 67,51 0,00 0,00 0,00 0,00

7 w1 Performance Procedure 0,91 66,59 10,41 15,63 0,00 0,00

w2 Performance. Procedure Procedure 0,91 66,59 10,41 15,63 0,00 0,00

w3 Performance. Procedure Procedure 0,91 66,59 10,41 15,63 0,00 0,00

8 w1 Procedure Procedure 11,40 64,60 9,16 14,17 6,03 52,94

w2 Procedure Procedure 11,40 64,60 9,16 14,17 6,03 52,94

w3 Procedure Procedure 11,40 64,60 9,16 14,17 6,03 52,94

9 w1 Procedure Procedure 1,14 66,53 10,50 15,78 0,00 0,00

w2 Procedure Procedure 1,14 66,53 10,50 15,78 0,00 0,00

w3 Procedure Procedure 1,14 66,53 10,50 15,78 0,00 0,00

Internal Validity. An internal threat is the presence of undetected defects
in the tools that we used for features extraction, code change extraction, and
baseline measurements. To increase our confidence in the tools’ implementation,
we tested our code on smaller examples. The results might differ if we employ
other types of models. However, in this study we were only interested in under-
standing the effectiveness of HiTTs in reducing the regression testing time.

Conclusion Validity. There is a probability that some tests failed due to
non-deterministic executions (i.e., flaky tests) or environmental factors (e.g., a
hardware element goes offline). As a result, the test execution times that we
used for calculating the baselines may belong to tests that failed due to factors
unrelated to code changes, and thus lead us to wrong conclusions. To minimize
this threat, we collected data of several thousand test executions and minimized
the probability of selecting tests that have non-deterministic behaviors.

7 Conclusion and Future Work

In this paper, we introduced HiTTs - a machine learning based method that
selects regression test types based on their relation with code types that appear
in new revisions without the need of history test information. The presented
method was evaluated on an industrial data-set for effectiveness in reducing
the regression testing time and faults detection. The results of the study are
encouraging: 1) for the subject considered, our method showed considerable time
reduction in regression testing - up to 52,94%, 2) increasing the window size of
HiTTs to a medium level improves the effectiveness rate of faults detection and
still reduces the total time of regression testing.

The results of our study suggest several avenues for future work. First,
working on refining and extending the taxonomy to capture more dependen-

Improving Software Regression Testing Using Test Type Selection 495

cies between the statement and capacity test types and existing code types is
needed to improve the effectiveness of the method in TCS. Second, we plan to
extend HiTTs by adding an ensemble of classifiers to predict the verdict of tests
that belong to each selected test type. This allows HiTTs to operate on a finer-
level of granularity (i.e., test case level). Finally, future work needs to compare
the effectiveness of HiTTs with state-of-the-art approaches for TCS.

References

1. Iso/iec/ieee int. standard - software and systems engineering - software testing-part
1: Concepts and definitions. Technical report (2020)

2. Al-Sabbagh, K., Staron, M., Hebig, R., Gomes, F.: A classification of code changes
and test types dependencies for improving machine learning based test selection.
In: Proceedings of the 17th International Conference on Predictive Models and
Data Analytics in Software Engineering, pp. 40–49 (2021)

3. Al-Sabbagh, K.W., Staron, M., Hebig, R., Meding, W.: Predicting test case verdicts
using textual analysis of committed code churns. In: (IWSM Mensura 2019), vol.
2476, pp. 138–153 (2019)

4. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several meth-
ods for balancing machine learning training data. ACM SIGKDD Explorations
Newsl 6(1), 20–29 (2004)

5. Bayerl, P.S., Paul, K.I.: What determines inter-coder agreement in manual anno-
tations? a meta-analytic investigation. Comput. Linguist. 37(4), 699–725 (2011)

6. Bertolino, A., Guerriero, A., Miranda, B., Pietrantuono, R., Russo, S.: Learning-to-
rank vs ranking-to-learn: strategies for regression testing in continuous integration.
In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, pp. 1–12 (2020)

7. Chi, J., Qu, Y., Zheng, Q., Yang, Z., Jin, W., Cui, D., Liu, T.: Relation-based test
case prioritization for regression testing. J. Syst. Softw. 163, 110539 (2020)

8. Dahiya, O., Solanki, K.: A systematic literature study of regression test case pri-
oritization approaches. Int. J. Eng. Technol. 7(4), 2184–2191 (2018)

9. Durelli, V.H., et al.: Machine learning applied to software testing: a systematic
mapping study. IEEE Trans. Reliab. 68(3), 1189–1212 (2019)

10. Esuli, A., Sebastiani, F.: Proceedings of the 5th conference on language resources
and evaluation (2006)

11. Knauss, E., Staron, M., Meding, W., Söder, O., Nilsson, A., Castell, M.: Supporting
continuous integration by code-churn based test selection. In: 2015 IEEE/ACM
2nd International Workshop on Rapid Continuous Software Engineering, pp. 19–
25. IEEE (2015)

12. Ochodek, M., Staron, M., Bargowski, D., Meding, W., Hebig, R.: Using machine
learning to design a flexible loc counter. In: 2017 IEEE Workshop on Machine
Learning Techniques for Software Quality Evaluation, pp. 14–20. IEEE (2017)

13. de Oliveira Neto, F.G., Ahmad, A., Leifler, O., Sandahl, K., Enoiu, E.: Improving
continuous integration with similarity-based test case selection. In: Proceedings
of the 13th International Workshop on Automation of Software Test, pp. 39–45
(2018)

14. Orso, A., Shi, N., Harrold, M.J.: Scaling regression testing to large software sys-
tems. ACM SIGSOFT Soft. Eng. Notes 29(6), 241–251 (2004)

496 K. W. Al-Sabbagh et al.

15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

16. Wang, K., Zhu, C., Celik, A., Kim, J., Batory, D., Gligoric, M.: Towards
refactoring-aware regression test selection. In: 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pp. 233–244. IEEE (2018)

17. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering. Springer Science & Business Media (2012)

Early Identification of Invalid Bug
Reports in Industrial Settings – A Case

Study

Muhammad Laiq1(B), Nauman bin Ali1, Jürgen Böstler1,
and Emelie Engström2

1 Blekinge Institute of Technology, Karlskrona, Sweden
{muhammad.laiq,nauman.ali,jurgen.bostler}@bth.se

2 Lund University, Lund, Sweden
emelie.engstrom@cs.lth.se

Abstract. Software development companies spend considerable time
resolving bug reports. However, bug reports might be invalid, i.e., not
point to a valid flaw. Expensive resources and time might be expended
on invalid bug reports before discovering that they are invalid. In this
case study, we explore the impact of invalid bug reports and develop and
assess the use of machine learning (ML) to indicate whether a bug report
is likely invalid. We found that about 15% of bug reports at the case com-
pany are invalid, and that their resolution time is similar to valid bug
reports. Among the ML-based techniques we used, logistic regression and
SVM show promising results. In the feedback, practitioners indicated an
interest in using the tool to identify invalid bug reports at early stages.
However, they emphasized the need to improve the explainability of ML-
based recommendations and to reduce the maintenance cost of the tool.

Keywords: Bug reports · Invalid bugs · Machine learning · Valid
bugs · Bug classification · Software analytics

1 Introduction

Bug reports are submitted to describe undesired behavior of software products.
For large projects, the number of such reports may be high [6]. However, not
all of the submitted bug reports may be valid, i.e., indicate an actual deviation
from acceptable system behavior. For example, for Mozilla and Firefox 31% and
77% of the submitted bug reports were resolved as invalid, respectively [6].

Invalid bug reports may cause a lot of unnecessary effort. In addition to the
direct cost of managing them, they make the process of identifying and priori-
tizing valid bug reports challenging. In large companies, manually checking the
validity of each bug report is laborious and error-prone. A tool that determines
the likelihood of a bug report’s validity may significantly reduce the maintenance
cost by assisting practitioners in prioritizing the resolution of bug reports.

Previous research on handling invalid bug reports has primarily focused on
the open-source software (OSS) context. Fan et al. [6], He et al. [9] and Zanetti
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 497–507, 2022.
https://doi.org/10.1007/978-3-031-21388-5_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_34&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_34

498 M. Laiq et al.

et al. [19], for example, proposed automated approaches to predict the validity
of newly submitted bug reports in OSS. However, OSS differs from closed-source
contexts in facets such as bug handling processes, development processes, level
of detail in bug reports and skills and motivation of submitters and testers.
In addition, the proportion of invalid bug reports in closed-source contexts is
smaller [2]. Thus, it is unclear how well the prediction algorithms and approaches
developed for OSS contexts will work on closed-source data.

Furthermore, research on determining bug reports’ validity is limited to eval-
uating ML techniques on prediction accuracy. However, companies consider a
number of other factors in their adoption decisions [1]. Thus, this study adapts
the technology adoption framework proposed by Rana et al. [14] to investigate
important factors practitioners are concerned about when deciding to adopt an
ML-based solution for determining the validity of bug reports.

In this paper, we report an industrial case study characterizing the challenge
of invalid bug reports and evaluating a state-of-the-art ML-based approach to
address some of the challenges in a closed-source context.

RQ1: What are the characteristics of invalid bug reports in a closed-
source context? We explore the prevalence and the characteristics of valid and
invalid bug reports, such as the amount and lead time.

RQ2: How effective are existing approaches at predicting bug reports’
validity when applied in a large-scale closed-source context? We are
interested in utilizing existing approaches to determine the validity of bug reports
in a large-scale closed-source context.

RQ3: What are the important factors for practitioners when deciding
to adopt an ML-based tool for the validity prediction of bug reports?
We aim to evaluate the proposed approach and identify practitioners’ adoption
concerns for an ML-based approach to predict invalid bug reports.

2 Research Method

To answer the research questions (stated in Sect. 1), we conducted an indus-
trial case study [15]. We broadly followed a two step approach. First, we man-
ually analyzed bug reports to investigate the prevalence and characteristics of
invalid bug reports using descriptive statistics and graphs. Then, we applied
existing ML-based approaches to determine the validity of incoming bug reports
in a large-scale closed-source context. We assessed ML models’ accuracy on a
telecommunication company’s two products (see Sect. 2.3).

2.1 Case Description

The case company is a large telecommunication vendor in Sweden, developing
and maintaining large critical software products. We collect and analyze data of
two large products at the company (see Sect. 2.3 for the products’ details).

Early Identification of Invalid Bug Reports 499

The company has several hundreds of employees distributed over several
countries. The development context of the company is embedded systems. Teams
use agile practices and principles in development. Most of the code at the com-
pany is written in C++, JavaScript (JS) and Java.

Bug reports about a perceived issue in a product are filed from different
sources, e.g., testers, customers, or the developers themselves. As shown in Fig. 1,
bug reports are first manually screened by the Change Control Board (CCB) to
ensure that only bug reports that describe faults in the code are assigned to a
team. Despite this approach, several bug reports related to configuration, insuf-
ficient data, or future improvements are still assigned to teams as bug reports
(which later turn out to be invalid bug reports). Thus, consuming resources and
affecting bug management scheduling and prioritization adversely.

2.2 Invalid Bug Reports

In prior studies [6,9,19], a definition of valid and invalid bug reports was used.
It is based on the resolution of bug reports in Bugzilla.

At the case company, valid bug reports describe a fault in the code with one
of the following resolutions: already fixed, will be fixed in a future update, the
document will be corrected, and will be corrected in a future update. Likewise,
invalid bug reports (i.e., not a fault in the code) are those with one of the follow-
ing resolutions: insufficient information, future requirement, misunderstanding
of functionality, no such requirements exist, and configuration issue.

In the present case study, we relied on the case company’s definition of a
valid bug report.

2.3 Data Collection

We collected bug reports data from BTS for over five years of two products
(both products, P1 and P2, had approx. 3500 bug reports, and the percentage
of invalid bug reports was 14 and 17, respectively). For the context of this study,
we are only using bug reports having a final verdict of being valid or invalid. We
also removed duplicate bug reports to avoid potential bias and overfitting.

Furthermore, to collect practitioners’ feedback we used both focus groups
and a questionnaire. The following six practitioners participated in the focus
groups: Two managers with approx. 20 years of experience, a domain expert,
and a software engineer with approx. 8 years of experience, a data scientist
with 10 years of experience, and a data scientist with 2.5 years of professional
experience.

2.4 Development of the Diagnostic and Predictive Tool

We performed three iterations to develop the support tools. In each iteration,
we conducted a focus group with practitioners to collect their feedback.

500 M. Laiq et al.

Diagnostic Tool. The tool supports analysis of various characteristics of bug
reports: (a) a visualization of data to identify and compare trends in the preva-
lence of bug reports, e.g., to understand if the number of invalid bug reports is
increasing or decreasing, and (b) a grouping of bug reports by origins, priority,
lead time, and their mapping to software/system quality characteristics.

Predictive Tool. To answer RQ3, we built a predictive tool that uses a super-
vised ML-based model to determine the likelihood of the validity of a newly
submitted bug report. We collect past bug reports from the Bug Tracking Sys-
tem (BTS) to train an ML-based model using labeled data. Once a new bug
report is submitted, we convert information present in the new report into fea-
tures as input to the predictive tool. The predictive tool then predicts the class
of a newly submitted bug report, i.e., valid or invalid. As shown in Fig. 1, the
dotted line is used for the predictive tool suggestion to the CCB, development
teams, or developers in the decision-making process.

Assign to Team

CCB Screening

Test
Development

Customer
Valid? Yes

Development Team

Automatic Validity
Prediction

Yes
Valid?

BTS
Resolve

Invalid
NoNo

Developers

Legend: Proposed automatic validity supportExisiting bug assingment flow at the case company

Fig. 1. Existing bug assignment flow at the case company and proposed support

2.5 Feature Selection

We used textual (Heading, and Observation), categorical (Priority), and numer-
ical features (Submitter Experience). These features have been commonly used
in previous work in the context of bug reports classification [6,9]. Fan et al. [6]
used summary, description, and submitter experience with other features in the
OSS context to determine the validity of bug reports. Likewise, He et al. [9]
applied a deep learning-based approach using summary and description.

The heading is a short description of a bug report, and observation is a
detailed explanation of the issue that occurred on the user side. Unlike heading,
observation includes steps to reproduce the issue.

The submitter experience can affect the bug reporting quality/validity, i.e.,
people with less experience are more likely to submit invalid bug reports, such
as duplicate ones [4]. In contrast, people with more experience usually provide
complete information [11]. Submitter experience is based on historical data and
comprises the validity rate and total number of bug reports submitted by an
individual. The validity rate is a ratio of valid to total bug reports submitted by
a person. Unlike OSS, in a closed-source context, the submitters keep themselves

Early Identification of Invalid Bug Reports 501

familiar with systems and processes at the company. Thus, we do not use the
recent behavior of submitters for the submitter experience feature (i.e., we only
used validity rate and total bug reports) as used by Fan et al. [6].

Furthermore, we do not use readability, completeness, and collaboration net-
work dimensions because readability and completeness have negligible signifi-
cance [6] in distinguishing valid and invalid bug reports, and the collaboration
network is not available in the case company. Furthermore, the quality of bug
reports in a closed-source context is usually higher than in OSS [2]. Thus, read-
ability and completeness will likely be less important in a closed-source context.

2.6 Experimental Setup

Similar to previous studies [5,6,17], we conducted our experiments using an
incremental setup, see Fig. 2. We first sort bug reports chronologically based
on their initial submission time. Then we divide them into 11 equal folds. We
perform our experiments using ten runs as follows: In the first run, fold-1 is used
for training and fold-2 for testing. In the second run, fold-1 and fold-2 are used
for training and fold-3 for testing. In the final run, fold-1 to fold-10 are used for
training and fold-11 for testing. We then measure the average prediction results
over each fold.

DATA (Sorted Chronologically)

Fold-2

Training

Training

Fold-1

Training Testing

Fold-3Split into Fold-11

Testing

Run 1

Run 2

TestingRun 10

Fig. 2. Experimental setup

2.7 Evaluation Metrics

To evaluate the performance of the models, we choose Area Under the Curve
(AUC) of receiver operator characteristic (ROC) [10]. AUC is robust towards
imbalanced datasets and unbiased towards classifiers [12,16].

We also measure Matthew’s Correlation Coefficient (MCC) [13], F1-score,
recall, and precision. These metrics are calculated to compare the reliability
of their results with AUC (i.e., underlying evaluation metric) on imbalanced
datasets. MCC is a widely used performance evaluation metric in the biomedical
field [13]. The metric is suitable for an imbalanced data set [7].

2.8 Technology Adoption Evaluation Framework

The ML-based technique to determine the likelihood of bug reports’ validity can
be helpful in the practitioners’ decision-making process. However, when compa-
nies consider adopting such approaches, they also look at further factors. This

502 M. Laiq et al.

Table 1. Factors that effects the adoption of ML-based solution [14]

Factors Attributes

Need and importance Need and importance for early detection of invalid bug reports

Potential use-cases of tool Additional review, deprioritization, and flagging

Familiarity and experience
with ML

Understanding of ML-based technology

Collaborated with academics in ML-based projects

Tried ML previously and ability to implement in-house

Ability to interpret and assess results of ML-based tool

Other important aspects, i.e.,
perceived benefits and
barriers and tool availability

Accuracy and explainability of the predictions by tool

Adoption/operationalization cost of tool

Buy-in from the concerned stakeholders

Integration in the current workflow and long term maintenance

Adaptability to different product units such as P1 and P2

Ability to handle a large amount of bug reports data

Integration with existing systems and obtaining results at a low cost

Availability as an open-source tool

study adapts the technology adoption framework proposed by Rana et al. [14]
to investigate such factors (see Table 1) for the ML-based solution to determine
the validity of bug reports.

3 Results and Analysis

RQ1: What are the characteristics of invalid bug reports in a closed-
source context? We developed a diagnostic tool (see Sect. 2.4) to answer this
question. The average lead time for valid and invalid bug reports is similar. For
P1, we get around 18, and for P2 around 16 mean calendar days. The average
priority for invalid bug reports is medium for both products. This signifies the
seriousness of the invalid bug reports problem at the company.

Furthermore, we analyzed the origin of invalid bug reports for P1 and P2
by segmenting the sorted data into yearly chunks and mapping each bug report
to the various testing levels used at the company. However, we observed that
most faults slip through to later stages for both products, i.e., verification or
verification on the target environment. The mapping of software/system quality
characteristics yields similar results for P1 and P2, i.e., most of the bug reports
are mapped on identical quality characteristics.

RQ2: How effective are existing approaches at predicting bug
reports validity when applied in a large-scale proprietary context? To
answer this research question, we developed classification models using features
described in Sect. 2.5. Table 2 presents the results of Logistic Regression and
SVM for both products. At best, we achieve 0.84 AUC using Logistic Regression
on P1. Our approach is rather simple, but the results are comparable to previous
work in the OSS context, i.e., Fan et al. [6] used 33 features and achieved the 0.73
(lowest) AUC for Netbeans and 0.87 (best) on Firefox dataset. We also trained
Decision Tree and KNN; best, we got 0.63 AUC and 0.62 AUC, respectively.

Early Identification of Invalid Bug Reports 503

As shown in Table 2, the F1-score, precision, accuracy, and recall results are
misleading and biased towards valid class. The possible explanation for these
biased results is an imbalanced dataset, i.e., only about 14–17% of the bug
reports are invalid in our dataset. In this context, the choice of AUC metric and
nMCC is more suitable.

In comparison to the work on invalid bug reports in the OSS context by
Zanetti et al. [19], He et al. [9], and Fan et al. [6], our approach is relatively
simple. However, it still achieves comparable results in a closed-source context.

Table 2. Model performance: AUC, nMCC, F1-score (F1), Precision (P) and Recall
(R) for Valid (V) and Invalid (I) bug reports

Model Product Algorithm AUC nMCC F1(I) P(I) R(I) F1(V) P(V) R(V)

M1 P1 Logistic regression 0.84 0.71 0.42 0.71 0.31 0.94 0.91 0.98

M2 P1 SVM 0.77 0.69 0.40 0.60 0.31 0.94 0.91 0.97

M3 P2 Logistic regression 0.76 0.62 0.25 0.54 0.17 0.91 0.86 0.97

M4 P2 SVM 0.71 0.63 0.30 0.51 0.22 0.91 0.86 0.96

RQ3: What are the important factors for practitioners when deciding
to adopt an ML-based tool for the validity prediction of bug reports?
We evaluated the proposed ML-based technique with practitioners using an
adaption of Rana et al.’s [14] framework (see Sect. 2.8). We collected practition-
ers’ (see practitioner’s profile in Sect. 2.3) feedback using a questionnaire and
open discussion. A total of six participants were involved in each focus group
and a questionnaire was answered by three. Since the number of participants and
respondents to the questionnaire were small, we do not claim statistical gener-
alizability. Still, we got useful input for further investigations. The respondents
represent different roles and have extensive experience.

Practitioners indicated an interest in having a tool to determine invalid bug
reports at early stages. However, they would like to have an explainability aspect
in the tool. Further, practitioners indicated that integration with existing sys-
tems is possible. However, they highlighted that the tool should be adaptable to
other products and handle a large amount of data with low maintenance costs.

4 Discussion

This section discusses our findings and the related work on invalid bug reports.

Identification of Bug Report Validity. There are few studies on determining
the validity of bug reports automatically. The most relevant studies to our work
are Zanetti at al. [19], Fan et al. [6], and He et al. [9]. However, all three are
conducted in the OSS context. Zanetti et al. [19] built collaborative networks
on OSS bug reports datasets. The collaborative network was formed based on

504 M. Laiq et al.

the bug reports relations., i.e., assigned fixer and its cc email address. Then nine
features were obtained from the network as input for an SVM classifier to predict
the validity of bug reports. Fan et al.’s [6] approach uses 33 features to determine
the validity of the bug reports. These features were extracted in five dimensions:
submitter experience, collaboration network, and a bug report’s text, complete-
ness, and readability. The approach was applied to an OSS dataset using Ran-
dom forest and SVM classifier. The model’s performance indicates considerable
improvement over Zanetti et al.’s [19] approach. However, it is worth noting that
the strategy utilizes 33 features that might cause the curse-of-dimensionality [8].
He et al. [9] applied deep learning using convolutional neural networks using
only summaries and descriptions of bug reports to identify the validity of bug
reports automatically. The approach was evaluated on five OSS projects and
results indicate improvements over Fan et al.’s [6] approach.

Our approach is relatively simple and applied in a large-scale closed-source
context. The performance of our models is comparable to the work discussed
above (see Table 2). Furthermore, we evaluated our approach using Rana et
al.’s [14] technology adoption framework for ML-based solutions (see Sect. 2.8).

Prevalence of Bug-Reports. We found that around 14% and 17% of all sub-
mitted bug reports are invalid for P1 and P2, respectively. In OSS, Fan et al. [6]
reported 31% and 77% of invalid bug reports for Mozilla and Firefox, respec-
tively. In contrast to OSS, the percentage is smaller. A possible explanation for
this are the rigorous processes followed in a proprietary context for writing and
reviewing bug reports, and the disparity in skills and motivation of submitters [2].

Evaluation Setup. Similar to previous studies [5,6,17], we use an incremen-
tal approach. It is suitable in our context since we aim to predict the validity
of future bug reports. It also reduces experimental bias [18]. Other approaches
might produce better results, however, the selected approach is a realistic sim-
ulation of the BTS environment and provides a pragmatic assessment of our
experiments.

Benefits of Validity Assessment. Early identification of invalid bug reports
has implications for practitioners. For instance, bug reports that are likely to
be invalid: (a) could undergo an additional review before assignment, (b) could
be deferred, i.e., prioritize valid ones, and (c) could be flagged for downstream
developers, indicating that a bug report is likely to be invalid. Practitioners also
acknowledged these as relevant use-cases in their feedback.

5 Threats to Validity

In this case study, we evaluate ML-based approaches to validity prediction in
large-scale closed source contexts. Both human and technical aspects are con-
sidered. The main threats to validity regard the representatives of our case and
the validity of the empirical evaluations.

Generalization of Results: We consider that the case company and their two
large products are an example of a large-scale closed-source software development

Early Identification of Invalid Bug Reports 505

context. As the approach delivers similar accuracy as in the OSS context, we are
confident that ML-based approaches for validity prediction will likely generalize
to other cases similar to the case and context described in this study.

Evaluation of Human Aspects: The main conclusions about the identified
use cases for the validity predictions at the case company and the need to improve
the prediction model’s explainability are based on feedback from a small group
of practitioners. The small sample is a threat to generalizability both within the
company and externally. We used focus groups to collect data. Two researchers
participated in all focus groups to improve the reliability of the collected feed-
back. One researcher took notes in each focus group, and the other led the dis-
cussion. Afterward, the researchers discussed the feedback and documented their
interpretation. We also performed member checking by presenting our interpreta-
tion and analysis results back to the practitioners. We used an existing adoption
framework [14] to guide our feedback collection from the case company. Further-
more, we internally reviewed and revised the questionnaire before sending it to
the respondents.

Evaluation of ML Performance: We used AUC and MCC to evaluate the
performance of the models, as they produce more reliable results when the data
is imbalanced (please see Sects. 3 and 2.7 for a detailed discussion). To have
training data with high reliability, we used only bug reports with final validity
labels since they often represent the judgment of more than one domain expert.
In this study, we did not investigate the impact of “concept drift” [3], i.e., how
often the model needs to be retrained to capture major changes in the ways of
working, technology, or personnel involved in the bug management process.

6 Conclusion and Contributions

The number of invalid bug reports, estimated severity, and their resolution time
indicate a significant source of waste in large-scale closed-source systems. They
cost substantial resources and adversely affect the scheduling and resolution of
valid bug reports. The main contributions of this work are as follows:

Practical Contributions: We developed a tool that supports exploratory anal-
ysis of bug reports by giving practitioners visibility in their current practice and
facilitate trend analysis. The tool also has a predictive component that provides
practitioners a determination whether a defect report is likely to be valid.

Scientific Contributions: 1) We evaluated the ML-based approaches to valid-
ity prediction in a new context, i.e., in a large-scale closed-source context, 2) In
previous work, the human aspects/concerns of practitioners are entirely missing.
However, we used focus groups and a technology adoption framework to col-
lect practitioners’ feedback. We identified that practitioners consider the need
to explain the justification for each recommendation by the predictive tool as
essential for its widespread adoption.

Acknowledgment. This work has been supported by ELLIIT; the Swedish Strategic
Research Area in IT and Mobile Communications.

506 M. Laiq et al.

References

1. Ali, N.B.: Is effectiveness sufficient to choose an intervention? considering resource
use in empirical software engineering. In: 10th International Symposium on Empir-
ical Software Engineering and Measurement, pp. 54:1–54:6 (2016)

2. Bachmann, A., Bernstein, A.: Software process data quality and characteristics: a
historical view on open and closed source projects. In: Joint ERCIM Workshops
on Principles of Software Evolution and Software Evolution, pp. 119–128 (2009)

3. Bennin, K.E., Ali, N.B., Börstler, J., Yu, X.: Revisiting the impact of concept drift
on just-in-time quality assurance. In: 20th International Conference on Software
Quality, Reliability and Security, pp. 53–59 (2020)

4. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., Zimmermann, T.:
What makes a good bug report? In: 16th International Symposium on Foundations
of Software Engineering, pp. 308–318 (2008)

5. Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S.: Duplicate bug reports
considered harmful...really? In: International Conference on Software Maintenance,
pp. 337–345 (2008)

6. Fan, Y., Xia, X., Lo, D., Hassan, A.E.: Chaff from the wheat: characterizing and
determining valid bug reports. Trans. Softw. Eng. 46(5), 495–525 (2018)

7. Halimu, C., Kasem, A., Newaz, S.S.: Empirical comparison of area under roc curve
(auc) and mathew correlation coefficient (mcc) for evaluating machine learning
algorithms on imbalanced datasets for binary classification. In: 3rd International
Conference on Machine Learning and Soft Computing, pp. 1–6 (2019)

8. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques. Elsevier (2011)
9. He, J., Xu, L., Fan, Y., Xu, Z., Yan, M., Lei, Y.: Deep learning based valid bug

reports determination and explanation. In: 31st International Symposium on Soft-
ware Reliability Engineering, pp. 184–194 (2020)

10. Huang, J., Ling, C.X.: Using auc and accuracy in evaluating learning algorithms.
Trans. Knowl. Data Eng. 17(3), 299–310 (2005)

11. Just, S., Premraj, R., Zimmermann, T.: Towards the next generation of bug track-
ing systems. In: Symposium on Visual Languages and Human-centric Computing,
pp. 82–85 (2008)

12. Lessmann, S., Baesens, B., Mues, C., Pietsch, S.: Benchmarking classification mod-
els for software defect prediction: a proposed framework and novel findings. Trans.
Softw. Eng. 34(4), 485–496 (2008)

13. Matthews, B.W.: Comparison of the predicted and observed secondary structure of
t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struct. 405(2),
442–451 (1975)

14. Rana, R., Staron, M., Hansson, J., Nilsson, M., Meding, W.: A framework for
adoption of machine learning in industry for software defect prediction. In: 9th
Intern. Conference on Software Engineering and Applications, pp. 383–392 (2014)

15. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

16. Tantithamthavorn, C., Hassan, A.E.: An experience report on defect modelling
in practice: pitfalls and challenges. In: 40th International Conference on Software
Engineering: Software Engineering in Practice, pp. 286–295 (2018)

17. Wang, S., Zhang, W., Wang, Q.: Fixercache: unsupervised caching active develop-
ers for diverse bug triage. In: 8th International Symposium on Empirical Software
Engineering and Measurement, pp. 1–10 (2014)

Early Identification of Invalid Bug Reports 507

18. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and tech-
niques with java implementations. ACM SIGMOD Rec. 31(1), 76–77 (2002)

19. Zanetti, M.S., Scholtes, I., Tessone, C.J., Schweitzer, F.: Categorizing bugs with
social networks: a case study on four open source software communities. In: 35th
International Conference on Software Engineering, pp. 1032–1041 (2013)

Posters

RESEM: Searching Regular Expression
Patterns with Semantics

and Input/Output Examples

Hiroki Takeshige(B), Shinsuke Matsumoto, and Shinji Kusumoto

Graduate School of Information Science and Technology,
Osaka University, Osaka, Japan

{h-takesg,shinsuke,kusumoto}@ist.osaka-u.ac.jp

Abstract. Regular expression is widely known as a powerful and general-
purpose text processing tool for programming. Though the regular expres-
sion is highly versatile, there are various difficulties in using them. One
promising approach to reduce the burden of the pattern composition is
reuse by referring to past usages. Still, several source code-specialized
search engines have been proposed, they are not suitable for the scenario
of reusing regular expression patterns. The purpose of this study is the effi-
cient reuse of regular expression patterns. To achieve the purpose, we pro-
pose a usage retrieval system Resem specialized in regular expression pat-
terns. Resem adopts two key features: search by semantics and collecting
input/output examples. Resem will smoothly connect what to do to how
to do in the implementation process of string manipulation.

Keywords: Regular expression · Pattern · Usage search ·
Input/output example · Dynamic analysis · Semantics

1 Introduction

Regular expression is widely known as a powerful and general-purpose text pro-
cessing tool for programming. In regular expression, any strings can be expressed
in a special character sequence. This paper calls such a character sequence pat-
tern. An example of a pattern is \d+\.\d+1 which accepts any version number
consisting of a major and a minor number.

Though the regular expression is highly versatile, there are various difficul-
ties in using them. One of the reasons is on non-intuitive metacharacters in a
pattern [4]. While metacharacters enable flexible text manipulation with only a
few characters, they do not intuitively represent what they mean. In addition, it
is difficult to analyze and generalize the string to be processed and manipulated
[4]. Wang et al. reported that 46% of regular expression-related bugs were caused
by incorrect behaviors of patterns [5].

1 \d, +, and \. respectively means a single digit, one or more repetitions of the pre-
ceding character, and a single dot.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 511–517, 2022.
https://doi.org/10.1007/978-3-031-21388-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_35&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_35

512 H. Takeshige et al.

One promising approach to reducing the burden of the pattern composition is
reusing past pattern usages. Several source code-specialized search engines have
been proposed to support the reuse of program APIs [1,6] and code snippets
[2,3]. Although these engines can be used to retrieve usages of regular expression,
they are not suitable for the scenario of reusing regular expression patterns. The
reason is that the existing approach provides “how to use an API”, not “how to
compose a pattern using regular expression literals”. Furthermore, although the
existing approach queries code snippets themselves (e.g., API names), we need
to query the meaning of the pattern.

The purpose of this study is the efficient reuse of regular expression patterns.
To achieve the purpose, we propose a usage retrieval system, Resem, specialized
in regular expression patterns. Resem adopts two key features: search by seman-
tics and collecting input/output examples. Resem accepts patterns’ meaning or
purpose as a search query. This idea enables to query by the semantics of patterns
rather than their contents. In addition, multiple sets of input/output examples
corresponding to the usages are presented in the search result. The concrete I/O
examples are powerful information that helps to understand the pattern. These
features reduce the user’s burden of analyzing the manipulation and reading
special characters. To evaluate the effectiveness of Resem, we conducted an
experiment with 12 subjects. As a result, we confirm that Resem decreased the
time required for describing patterns by 16%. Currently, prototype of Resem is
available on https://tyr.ics.es.osaka-u.ac.jp/resem/.

2 RESEM

2.1 Overview

In order to alleviate the burden of composing regular expressions, this paper pro-
poses a usage retrieval system Resem specialized in regular expression. Resem
has the following two features. One is that it enables search by the meaning of
the pattern (F1). The other is to present an example of inputs and outputs of a
pattern (F2). These features make it possible for users who have little experience
in using regular expression to search for usages efficiently.

The appearance of Resem is shown in Fig. 1. Users enter search queries in
the upper input area. The search queries are the meaning of the pattern they
want. In Fig. 1, “version” is entered to search for a pattern that accepts strings
representing a version number. As the first search result, a usage using with
the pattern \d+(\.\d+(\.d+)?)? is shown. One usage consists of a pattern,
semantics, I/O examples, and code snippet around an API call. The users select
the pattern that fits their purpose from the results and use it in their programs.

2.2 F1: Search by Semantics

Resem accepts the meanings of a pattern as a search query. This feature allows
users to search by what they want to achieve rather than how to compose a pat-
tern. For example, considering searching for a pattern that matches the version

https://tyr.ics.es.osaka-u.ac.jp/resem/

Resem: Searching Regular Expression Patterns 513

Pattern

Semantics
I/O examples

Snippet

Search by semantics

Fig. 1. A screenshot of Resem

number of software that uses semantic versioning. The users can enter words
such as “version” or “semantic” without having to think about how to express
numbers or repetitions in regular expression.

In order to realize this feature, Resem collects meanings of patterns by static
analysis. The meanings are collected from identifiers around use of a regular
expression API. We assumed that variables storing patterns and input strings,
and names of the methods that make API calls are set concerning the meaning
of the patterns.

2.3 F2: Presentation of I/O Examples

Resem outputs usages of regular expression with I/O examples. The examples
enable users to imagine easily what the set of strings the pattern accepts with-
out interpreting the special characters it contains. This feature improves the
efficiency when the user selects a reference pattern from the search result.

The I/O examples are gathered by dynamically analyzing patterns given to
the regular expression API, input strings, and their outputs when the program
is tested. The flow of I/O analysis is as follows. First, an instrumentation code
is embedded in the regular expression APIs call detected by Sect. 2.2. When the
instrumentation code is executed, it writes out the patterns given to the API,
input strings, and outputs of the API to a file. Next, the embedded code is
executed by software test. Finally, the inputs and the outputs for the patterns
are collected by analyzing the output file of the embedded code.

2.4 Collecting from Open Source Projects

We collected usages from public Java projects on GitHub. Because Resem uses
Gradle, a build automation tool, to run test suite, we selected target projects

514 H. Takeshige et al.

Scenario
You want to validate a string as a version number. The number consists of
major, minor, and patch numbers. Create a pattern to be passed for
String#matches.
I/O examples

input output

2.10.3 → true
11.2 → false
3.0.a → false
(empty string) → false

Expected answer
\d+\.\d+\.\d+

Fig. 2. An example of tasks

which contain the word “gradle” in their README.md. The target regular
expression APIs are String class, Pattern class, and Matcher class. As a result,
3,120 usages were collected from 68 projects. The other projects did not output
any examples, or failed in running their tests.

3 Experiment

We carried out experiment with subjects to evaluate the effect of presenting
usages by our system on pattern description, and to investigate the impression
of subjects using the system.

We design the experiment to answer the following questions:

Qa Can Resem reduce the time to describe patterns?
Qb Can search by semantics (F1) make creating patterns easy?
Qc Can presenting I/O examples (F2) help to select a usage?

To answer Qa, we ask the subjects to perform a string processing task and
compare the time required depending on whether Resem is used. In addition,
to answer Qb and Qc, subjects’ impressions about Resem are collected.

3.1 Experiment Design

In this experiment, subjects are asked to perform a task of string processing.
The task consists of a scenario for the process and I/O examples.

One of the tasks is shown in Fig. 2. The scenario asks to verify that the input
string follows the format of the version number, and provides input examples
and expected output to assist in understanding the scenario. The subject cre-
ates a pattern according to this scenario. The expected answer for this task is
\d+\.\d+\.\d+.

We prepare the scenarios under the following conditions. First, be generic
and independent of specific applications. Second, some usages in the Resem
database can be used for reference.

Resem: Searching Regular Expression Patterns 515

1 2 3 4 5 6 7 8 9 10
Task ID

0s

100s

200s

300s
A
ve
ra
ge

re
qu

ir
ed

ti
m
e

w/ Resem
w/o Resem

Time limit(300s)

Fig. 3. Average required time for each
task

Presented usages are userful
for describing patterns

Search by semantics is

I/O examples are helpful
to grasp behaviors of patterns

The order of usages
in search result is appropriate

2 6 4

1 2 6 3

2 5 5

4 4 2 2

Strongly disagree Disagree Neutral Agree Strongly agree

Fig. 4. Result of questionnaire

The first condition is set because a scenario that depends on a specific appli-
cation is inappropriate for evaluation. Such scenarios can confirm the useful-
ness only when Resem is used with the application. To conduct the experiment
assuming general situations, we do not make a scenario which depends on spe-
cific applications. The second condition is set to focus on the effectiveness of the
usage presentation. The aim of Resem is reuse patterns in past usages. When no
usage is useful for a scenario, we cannot evaluate the utility of proposing usages.
Therefore, the scenarios are created based on the collected usages.

After completing all tasks, we ask the subjects to answer a questionnaire.
The subjects were 12 people, one graduate school teacher and 11 students.

In this experiment, we pay attention to the difference in required time between
Resem users and non-users. The subjects are divided into two groups. One group
uses Resem and the other does not for each task. Both groups can use Web search
throughout the experiment. In the grouping, we avoid bias in programming and
regular expression skills. In addition, whether a group can use Resem is switched
in half of the tasks so that the experiment results are not affected by the skill
difference between the two groups.

3.2 Results and Discussion

The average time required for each task by each group is shown in Fig. 3. The
horizontal axis is the number of tasks, and the vertical axis is the average time
required for each task. Blue is the group in which the Resem was available,
and gray is the group in which the use was prohibited. The required time for
subjects who made an incorrect answer or reached the time limit is treated as
300 s, which is the same as the time limit.

The average required time of the group using Resem was short for all tasks
except for Task 4. The average reduction rate of all tasks was about 16%. Though
no person gave the correct answer on task 10 in the group which did not use
Resem, two of six people answered correctly in the group which used it. The task
cannot be solved without using lookahead and lookback. Therefore, we expected
that some knowledge of these functions was necessary to answer this task by Web
search. On the other hand, subjects who used Resem and correctly answered
this task found the effective usage using “alphabet num” as a search query. From

516 H. Takeshige et al.

this, it can be said that Resem allows users with little knowledge of regular
expression to search for usages that use advanced features.

The questionnaire result is shown in Fig. 4. More than half of the respondents
answered that the presented usages were useful, therefore it was revealed that
the description support by the usage retrieval was effective. In addition, Resem’s
characteristics (F1, F2) were useful because there were many favorable answers
to the retrieval by the meaning and the presentation of I/O examples.

On the other hand, more than half of the subjects answered that the order in
which search results were displayed was undecided or inappropriate. Therefore,
it can be said that the order needs to be improved.

From the results of the subject experiment, we answer Qa, Resem can shorten
the time required for the description of the pattern. The large difference in the
difficult tasks suggests that this method can contribute to creating complex
patterns that take a long time to be composed in actual development.

As for Qb and Qc, we judged Resem’s features facilitate searching for and
selecting usages because of two reasons. First, there were many favorable answers
on the retrieval by the meanings and presenting I/O examples. Second, it was
effective for the creation of patterns which is difficult to search from the Web.

4 Conclusion

In this paper, we propose a search system Resem, which realizes semantic search,
to support regular expression pattern description. The evaluation experiment
was carried out. As a result, Resem can collect regular expression usages from
public projects. We confirmed that the time required for the description of the
patterns was reduced by our method.

Acknowledgments. This research was partially supported by JSPS KAKENHI
Japan (Grant Number: JP21H04877, JP20H04166, JP21K18302, JP21K11829,
JP21K11820, JP22H03567, and JP22K11985).

References

1. Asyrofi, M.H., Thung, F., Lo, D., Jiang, L.: AUSearch: accurate API usage search
in GitHub repositories with type resolution. In: Proceedings of International Con-
ference on Software Analysis, Evolution and Reengineering, pp. 637–641 (2020)

2. Chatterjee, S., Juvekar, S., Sen, K.: Sniff: A search engine for java using free-form
queries. In: Proceedings of International Conference on Fundmental Approaches to
Software Engineerng, pp. 385–400 (2009)

3. Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes, C., Baldi, P.: Sourcerer:
mining and searching internet-scale software repositories. IEEE Trans. Data Mining
Knowl. Discov. 18(2), 300–336 (2009)

4. Michael, L.G., Donohue, J., Davis, J.C., Lee, D., Servant, F.: Regexes are hard:
Decision-making, difficulties, and risks in programming regular expressions. In: Pro-
ceedings of International Conference on Automated Software Engineering, pp. 415–
426 (2019)

Resem: Searching Regular Expression Patterns 517

5. Wang, P., Brown, C., Jennings, J.A., Stolee, K.T.: An empirical study on regular
expression bugs. In: Proceedings of International Conference on Mining Software
Repositories, pp. 103–113 (2020)

6. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: Mining and recommending
api usage patterns. In: Proceedings of European Conference on Object-Oriented
Programming, pp. 318–343 (2009)

Building a Unified Ontology for Behavior Driven
Development Scenarios

Konstantinos Tsilionis , Yves Wautelet(B) , and Samedi Heng

KU Leuven, Leuven, Belgium
{konstantinos.tsilionis,yves.wautelet,samedi.heng}@kuleuven.be

Abstract. Behavior Driven Development (BDD) offers a way to write scenarios
in structured natural language on how to successfully fulfill a requirement. We fail
to find documentation on how to use existing BDD templates. A set of templates
with a clear definition of the keywords to use would provide guidance. This paper
empirically explores the keywords found in the different dimensions of BDD
scenarios to build a reference set of non-redundant concepts.

1 Introduction and Research Approach

A Behavior Driven Development (BDD) scenario describes a way to execute the
requirement depicted in a user story. Tsilionis et al. [7] presents the first version of an
ontology depicting the keywords most usually found in BDD templates without details
on how it was built. This paper describes these; to this end, we applied a method similar
as in Wautelet et al. [8] consisting of collecting and associating semantics to the most
frequently found keywords in the GIVEN, WHEN and THEN dimensions.

1.1 Descriptive Concepts in BDD Test Scenarios

To build the ontology, the goal is to collect the keywords and thus the concepts that are
effectively used in practice when building BDD scenarios and to bring more formal-
ity and consistency in their use. The research process first required to collect data; the
latter was gathered online in order to list and evaluate the most commonly used BDD
test scenario templates. Scenarios are typically structured around the GIVEN, WHEN,
and THEN dimensions (these will be referred to as the BDD scenarios’ dimensions in
this study). We consider each keyword found in such BDD templates as a Descrip-
tive Concept (D C) which is a class of concepts containing (as attributes) a dimension
(GIVEN, WHEN or THEN), a syntax (i.e. the keyword itself) and a semantic (a defini-
tion). The D C-based approach was defined and applied in Wautelet et al. [8]. D C as
well as their dimension and syntax attributes can immediately be instantiated when a
template is found in a formal or informal source (so typically we have one instance per
dimension). Further investigation is generally needed to fill out the semantic attribute.
We seldom find a definition associated to a keyword so it needs to be associated with it
in another way (this is documented in Sect. 2).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 518–524, 2022.
https://doi.org/10.1007/978-3-031-21388-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_36&domain=pdf
http://orcid.org/0000-0001-9702-6941
http://orcid.org/0000-0002-6560-9787
http://orcid.org/0000-0002-6037-0914
https://doi.org/10.1007/978-3-031-21388-5_36

Building a Unified Ontology for Behavior Driven Development Scenarios 519

1.2 Building the Dataset

This section depicts the process of collecting data to gather the most commonly used
test scenario templates used by BDD practitioners. We distinguish between formal
sources (i.e., published scientific articles and books on BDD, see Appendix A1) and
informal sources (i.e., blogs and forums addressing BDD, see Appendix B). Over-
all, these primary data sources yielded 120 formal and informal BDD test scenario
templates widely used (see Appendix E). The formal sources came from searches on
Google Scholar, Limo libis, IEEE Xplore and Springer Link using the keywords “sce-
nario acceptance test”, “bdd”, “gherkin”, “given when then”, “behavior driven devel-
opment”, “bdd scenario”. The first 10 pages of the returned results, per source, were
consulted. The templates extracted from these sources can be found in Appendix A.
Informal sources were found them using the same keywords as for formal sources but
also including the following ones: “feature file”, “bdd feature file”, “feature file tem-
plate”, “bdd template”, and “scenario template”; we used the Google search engine. As
for the formal sources, the first 10 pages of the returned results were consulted. The
templates extracted from these sources can be found in Appendix B.

During the elaboration of the dataset, each element that we find in a BDD scenario
template that relates to one of the three dimensions becomes an instance of the D C
class. As an example, for the template ‘GIVEN <a context>, WHEN <an event>,
THEN <an outcome>’, we will have three instances: one for context, one for event,
and one for outcome. Each of these instances is related to the corresponding dimension
of the template; the attribute dimension of the D C class must therefore take one of the
values GIVEN, WHEN or THEN. The attribute syntax will take the term found within
the dimensions themselves (i.e., context for GIVEN, event for WHEN and outcome
for THEN). Finally, the attribute semantic will be instantiated later through the use
of publications addressing agile processes, Goal-Oriented Requirements Engineering
(GORE) frameworks and other references in requirements/software engineering.

1.3 Building the Ontology

The elaboration of our data sources (formal and informal) yielded 120 test scenario
templates containing multiple keywords. Each keyword has been considered separately
and included in a list related to the dimension it supports. From that point, a series
of refinements were made to keep the most relevant keywords. Relevant means here
precise, specific and complementary to the other keywords ensuring the coherence of
all the scenarios’ dimensions. More specifically, these refinements were necessary to i)
filter-out non-significant/vague/overlapping keywords allowing the remaining ones to
serve as the candidate D C for inclusion in an ontology, and ii) associating a semantic
to each of the candidate D C. The refinement process is described below.

First, on the basis of the dataset, we listed all of the keywords in a table where
each dimension is considered separately. The number of occurrences of the key-
word in formal and informal sources was noted; In total, 21 different instances were

1 Appendices are consolidated in Appendix Consolidated BBD templates.docx. at: https://data.
mendeley.com/datasets/svmcxt5z5f/1.

https://data.mendeley.com/datasets/svmcxt5z5f/1
https://data.mendeley.com/datasets/svmcxt5z5f/1

520 K. Tsilionis et al.

recorded for the GIVEN dimension, 22 for the WHEN and 19 for the THEN dimen-
sion (see Appendix F). Next, informal non-significant and vague terms were removed
(e.g. ‘Something’, ‘Scenario’, ‘It’, ‘Future’, ‘Past’, ‘Present’, etc.). We then associated
semantics to all of the potential D C instances. Since no semantics were ever found
with the collected templates, we had to find semantics in another way. A first overview
has been done in BDD related books to evaluate if more information on templates was
available. We looked for definitions of the keywords, found in the previous stage, in
a list of sources in the domain of agile processes, GORE frameworks, and software
engineering to find a matching semantic. When a match was found between the syn-
tax appearing in a test scenario template dimension and a semantic given in the former
sources, we proceeded to a preliminary adoption and did not go through the rest of the
sources in the list. The keywords for which we could associate a semantic were allowed
to proceed to the next stage asD C candidates. Otherwise, the keyword was being aban-
doned and considered irrelevant. The list of sources from the most to the least preferred
one were: (i) User Stories Applied: a publication elucidating the ways for improve-
ments in agile processes in requirements engineering [1]; (ii) KAOS: a framework for
requirements engineering based on goal modeling [2,4]; (iii) Requirements Engineering
Fundamentals: a study guide for the Certified Professional for Requirements Engineer-
ing Foundation Level exam as defined by the International Requirements Engineering
Board (IREB) [5]; (iv) BABOK: a professional guide describing the terms and concepts
related to the role of a business analyst [3]; and (v) SEVOCAB: a glossary of concepts
and their definition in the field of Software and Systems Engineering [6]. Next, we com-
pared the semantics associated to the keywords that were retained in the previous stage.
This was done to highlight any similarities/overlapping/mismatches between semantics
into a same dimension. Explicitly, every initial semantic overlap between two (or more)
keywords was further analyzed. In several occasions, a presumed semantic overlap was
eventually being dismissed as one upon further investigation. Each D C instance can-
didate was then allowed to pass to the next stage of evaluation. If the semantic overlap
was persisting, we were checking whether the use of another source from the afore-
mentioned list could attribute a different semantic definition to either of the two (or
more) keywords. The D C instance of which the semantic was the most alienated to the
purpose of the scenario’s dimension was taking a new semantic from another source. If
no new semantic could be allocated to the keyword through another source, the most
generic one was retained. The kept D C were included to form our base ontology and
their semantics were then evaluated one last time on the basis of the secondary data,
i.e. the set of test scenario examples. Few D C remained at the end of this process; they
were consolidated as an ontology.

2 Building the Ontology for BDD Scenarios

A Table summarizing the relevant keywords from each BDD scenario template found
in the primary data set can be found in Tsilionis et al. [7]. We discuss in this section the
choices that have been made to select D C instances for the 3 dimensions.

Building a Unified Ontology for Behavior Driven Development Scenarios 521

2.1 The GIVEN Dimension

Syntax Included and Semantic Association: Using the method and the list of sources
depicted in Sect. 1.3, the semantics associated to the kept syntaxes were: (i) Context:
The system context is the part of the system environment that is relevant for the definition
as well as the understanding of the requirement of a system to be developed [5]; (ii)
Precondition: A required precondition captures a permission to perform the operation
when the condition is true [4]; (iii) State: A state defines a period of time in which a
system shows a particular behavior and waits for a particular event to occur [5]; and
(iv) Input: An input represents the information and precondition necessary for a task
to begin; it may be: explicitly generated outside the scope of business analysis (e.g.
construction of a software application) or generated by a business analyst task [3].

Comparison of Associated Semantic: A complementarity was noted between the
semantics associated to the keywords Precondition and Input. More detailed, the Inter-
national Institute of Business Analysis (IIBA) [3] states that an input can be regarded
as a precondition to start a task; all in all the Precondition encompasses the Input but
is more general than it so we decided to keep the former as one of the D C candidates
to be integrated in the ontology. Additionally, State and Context are both described
in [5] as (system) behavior-communicating elements. However, the former seems to
focus on the time-dimension of the system’s expressed behavior in-between transitions
while the latter focuses on the system’s surrounding circumstances to better understand
the behavior itself. Therefore, despite their slight initial convergence in their meaning,
these two elements seem not to be overlapping each other. To be sure, we allowed the
D C class instantiated with both of these keywords to proceed to the next stage so they
can be further evaluated semantically based on our assembled BDD scenario examples.

Semantic Evaluation on Examples: The semantics for Context, Precondition, and
State were further evaluated on the basis of BDD scenario examples gathered from
our secondary dataset. This revealed that the word Precondition was used in 59% of
the scenarios’ instances, compared to a corresponding 25% use of the word Context
and 16% use of the word State. Despite the predominance of the word Precondition
compared to the other two terms, their semantic interpretation could not be easily dif-
ferentiated within the examples where it was suggested that Context was incorporating
a set of necessary Preconditions required for the BDD testing phase landing the system
in a specific State. The State is the examples related to a set of Preconditions rather than
behavior as suggested in its definition. We decided thus to keep the State element but to
change its semantics to “a set of preconditions” rather than the original semantics that
were associated to it in order to match the empirical use of the term. Hence, all three
concepts were kept as candidates for the ontology.

2.2 The WHEN Dimension

Syntax Included and Semantic Association: Using the method and the list of sources
depicted in Sect. 1.3, the semantics associated to the kept keywords were: (i) Event:
Actions and events are the plot of a scenario. They are the steps an actor can take to
achieve his goal or a system’s response [1]; (ii) Action: Actions and events are the plot

522 K. Tsilionis et al.

of a scenario. They are the steps an actor can take to achieve his goal or a system’s
response [1]; (iii) Interaction: An interaction is an action that takes place with the par-
ticipation of the environment of the object [6]; (iv) Behavior: Observable activity of a
system, measurable in terms of quantifiable effects on the environment whether arising
from internal or external stimulus [6].

Comparison of Associated Semantic: Sevocab [6] details that an Interaction can be
uni-directionally regarded as an Actionwhile the opposite does not seem to hold. Hence,
out of the two, the latter being more generic, it seems like the better candidate for a pos-
sible integration in the ontology. Moving on, Cohn [1] yields an exact overlap between
the semantic definition of Event and Action so we had to proceed to the next source to
see whether the meaning of the two could be extended further. The IIBA [3] describes
an Event as a system trigger initiated by humans whereas Darimont et al. [2] describe
an Action as an input-output relation over objects; action applications define state tran-
sitions; actions may be caused, stopped by events and they are characterized by pre-,
post- and trigger-conditions. So Darimont et al. [2] present actions to be initiated by
events rendering the latter as a trigger of the former; with their semantic being aligned
it is equal to take one or the other but one must be selected. So the Event was allowed
to move on to the next phase of evaluation as a candidate D C.

Semantic Evaluation on Examples: The words Event and Behavior were prevalent in
the test scenario examples (76% and 22%). Also, 2% of the examples contained the
word Precondition, but the last one was not part of our primary syntax selection for this
dimension so it was not further considered. Given the clear predominance in the use of
the word Event within the examples, corresponding also to the semantic definition as
prescribed in the previous phase, we decided to keep this syntax as candidate for the
D C instance for this dimension. The term Behavior was also kept because of the clear
difference in its definition with respect to the other concepts.

2.3 The THEN Dimension

Syntax Included and Semantic Association: Using the method and the list of sources
depicted in Sect. 1.3, the semantics associated to the kept syntaxes were: (i) Outcome:
The business benefits that will result from meeting the business needs and the end state
desired by stakeholders [3]; (ii) Postcondition: A required postcondition captures an
additional condition that must hold after any application of the operation [4]; (iii) Out-
put: An output is a necessary result of the work described in the task. Outputs are
created, transformed or change state as a result of the successful completion of a task
[3]; (iv) Change: No semantic was found so it was considered non-relevant.

Comparison of Associated Semantic: A semantic complementarity was noted
between Outcome and Output as the IIBA [3] portrays both as the culminating effect
of a task/operation. This similarity can be problematic as no clear differentiating factor
can be found between these D C instances so we proceeded to the next source seeking
whether the meaning of the two can be extended. Sevocab [6] defines Outcome as an
artefact, a significant change of state or the meeting of specified constraints and Output
as a a product, result or service generated by a process or as an input to a successor

Building a Unified Ontology for Behavior Driven Development Scenarios 523

process. The latter definition outlines the process-driven nature of an Output signaling
a temporary result being in a transient state while waiting to contribute as input to the
start of the next activity; on the other hand, an Outcome is deemed as an enduring effect
signifying the achievement of a specific purpose. Considering the culminating disposi-
tion of the THEN dimension in a BDD scenario, we considered the instance of the D C
class associated to the syntax Outcome as more relevant for constructing the ontology.

Semantic Evaluation on Examples: Our consulting examples depicted a 57% use of
the term Postcondition compared to a 29% use of the word Outcome. They also showed
a 14% use of the word Event but as the last one was not part of the selection process for
the THEN dimension, it was not considered further. Despite the predominance of the
term Postcondition, we encountered difficulties dissociating it from a State in the sense
that one or multiple postconditions were required to be satisfied for the achievement of
an outcome within the examples. Hence, both D C instances through their associated
semantics were considered relevant for the construction of the ontology.

3 Ontology for BDD Test Scenarios

The remaining concepts have been placed in an ontology. From the selection process,
two kind of concepts can be distinguished: user-driven and system-driven scenarios.
The former refer to human-related concepts, i.e., the Context, the Event and the Out-
come. These are typically instantiated by depicting the behavior taken by the user to
achieve the outcome; these are expressed using a pronoun. Conversely, the system-
driven concepts refer to software related concepts, i.e. the Precondition, the Behavior
and the Postcondition; these are typically instantiated by describing successively the
state of the system before, and after the occurrence of a specific event. In the ontol-
ogy, the keywords Behavior and Event are difficult to evaluate (and differentiate) in
nature without their associated semantics. Moreover, the keyword Behavior is mislead-
ing since it refers to system behavior in the semantics but, by nature, it is matching to the
topic of behavior driven development which is theoretically centered on the user. The
true element that assists in the discrimination of instances is the WHEN dimension so
that particular attention needs to be dedicated to it. We thus change the keyword Event
to User Behavior and the keyword Behavior to System Behavior while keeping their
associated semantics. Finally, a State is seen as a set of preconditions; this is here also
extended to the postconditions. The State thus only concern the system-driven context.

Outcome

User_Behavior

Context GIVEN_Dimension

WHEN_Dimension

1..n
0..n

THEN_Dimension

1..n
0..n

System_Behavior

PostCondition

State

PreCondition

induces

leads to

name : String

name : String

name : String

User-driven scenario System-driven scenario

Fig. 1. Ontology for BDD test scenarios.

524 K. Tsilionis et al.

References

1. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley (2004)
2. Darimont, R., Van Lamsweerde, A.: Formal refinement patterns for goal-driven requirements

elaboration. ACM SIGSOFT Softw. Eng. Notes 21(6), 179–190 (1996)
3. IIBA, K.B.: A Guide to the Bus. Anal Body of Knowledge. International Institute of Bus

(2009)
4. Letier, E., Van Lamsweerde, A.: Deriving operational software specifications from system

goals. ACM SIGSOFT Softw. Eng. Notes 27(6), 119–128 (2002)
5. Pohl, K.: Requirements Engineering Fundamentals: A Study Guide for the Certified Profes-

sional for Requirements Engineering Exam-foundation Level-IREB Compliant. Rocky Nook,
Inc. (2016)

6. SEVOCAB: Software and Systems Engineering Vocabulary. IEEE Computer Society (2015)
7. Tsilionis, K., Wautelet, Y., Faut, C., Heng, S.: Unifying behavior driven development tem-

plates. In: 29th IEEE International Requirements Engineering Conference, RE 2021, pp. 454–
455. IEEE (2021)

8. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story models. In:
Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 211–225. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07881-6 15

https://doi.org/10.1007/978-3-319-07881-6_15

Quality Metrics for Software Development
Management and Decision Making: An
Analysis of Attitudes and Decisions

Hannes Salin1,2(B), Yves Rybarczyk1, Mengjie Han1, and Roger G Nyberg1

1 School of Information and Engineering, Dalarna University, Borlänge, Sweden
{hasa,yry,mea,rny}@du.se

2 Swedish Transport Administration, Borlänge, Sweden
hannes.salin@trafikverket.se

Abstract. We combine current literature in software quality metrics
with an attitude validation study with industry practitioners, to estab-
lish how quality metrics can be used for data-driven approaches. We
also propose a simple metric nomenclature and map our findings into a
decision making model for easy adoption and utilization of data-driven
decision-making methods.

Keywords: Quality metrics · Agile software development ·
Decision-making · Project management

1 Introduction

Frameworks and established concepts such as Software Development Lifecycles
(SDLC) and DevOps, seem to increase in all of IT, where agile methods are
natural components of the total software delivery. All of these building blocks of
modern software development provide the potential of collecting a broad range of
metrics; many of them even by the use of automation. This in turn may enable
a strong data-driven approach for software development [11,17]. Data-Driven
Decision-Making (DDDM) is the ability to collect, analyse and make decisions
based on available data. It seems that there is no clear scientific understand-
ing of the complete utilization of quality metrics in agile software development,
and it may even conflict with more traditional methods of quality measurements
[10]. Thus, we need a stronger scientific understanding of how to define qual-
ity within the context of (hybrid) agile software development. Moreover, for a
DDDM process in place, we need adequate and proper data to feed such process
for best output. Our contribution consists of an analysis of current definitions
of software development quality metrics in the academic literature, combined
with an attitude validation study with industry practitioners. We provide a sta-
tistical analysis on the results and map metric factors into a decision model.
Many different software quality models have been proposed and used in prac-
tice, and a comprehensive literature study in the subject is provided by Galli
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 525–530, 2022.
https://doi.org/10.1007/978-3-031-21388-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_37&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_37

526 H. Salin et al.

et al. [4]. Although the research is extensive regarding the models, these are
not frameworks where metrics are mapped into processes or decision-making
models, and the metric definitions differs in both nomenclature and structure.
Decision-making is often context specific. However, for upper management to
better understand goals and expectations in the organization, it would be bene-
ficial to map quality metrics in all decision levels (team, project, management)
into a decision model.

2 Method

Our research method consisted of a combination of a literature analysis and
a validation survey with industry practitioners. The final stage of the analysis
consisted of an article weight computation, in terms of importance, by counting
number of citations each study used in their analysis: 1 point for <10 articles
cited, and 2 points for >=10 articles cited. Moreover, 1 additional point is given
if the study also included any empirical studies for validation. The validation
survey consisted of 9 questions based on the findings from the literature analy-
sis. The target group was practitioners from the software development industry:
agile management (G1), i.e., product owners and scrum masters, project manage-
ment (G2), i.e., project leaders, and (G3), i.e., IT- and engineering managers.
There were 6 respondents in each group and all were from two Swedish gov-
ernment agencies and three companies in IT-consultancy and finance sectors
respectively. All participants worked in hybrid or agile environments. The ques-
tionnaire aimed to measure the level of decision and impact (importance) of the
selected metrics from the literature. Before publishing the questionnaire, a pilot
with 5 practitioners was conducted to test and adjust the questions and format.
The quality notion we use in this work refers to the overall quality a project
has. To clarify, we define a metric nomenclature. The fundamental structure is
based on the work of Mladenova [13] and López et al. [10]. Three categories are
defined: Project metrics, e.g. project’s risks, plan and budget. Process metrics,
e.g. team performance, incidents and defects. Product metrics, e.g. anything
that can be measured of the deployed software, e.g., telemetry. We attribute
each metric a decision factor and impact factor, indicating the perceived level of
importance for decision-making, and level of the metric being reliable data for
quality indication. We measure these properties in a scale from 1 to 3. We use
our quality metric analysis into a managerial decision-making model, and use
the same structure as in [1], i.e., a model where three layers of decision-making
occur in the organisation: Operational level, mapped to G1, consists of team
management decisions and is mostly in an ad-hoc manner with structural deci-
sions on a day-to-day basis. Tactical level, mapped to G2, consists of decisions
made with a bearing on the upcoming weeks, months or even up to a year in
future and includes understanding of aggregated deliveries in terms of system
and software life-cycles, middle-management business decisions, resource man-
agement and annual budgets. Strategic level, mapped to G3, consists of highly
strategic decisions with a bearing on several years in future, e.g., adoption of
new technologies and new business directions.

Quality Metrics for Software Development Management 527

3 Results

In total we filtered and included 12 primary studies. The main conclusion from
the literature analysis was that there are many different software quality factors
(often stated within models, e.g. FURPS, SQUALE, IEC/ISO), but very few
consider the project-, process-, and product categorization. The resulting anal-
ysis is shown in Table 1 where the scores for empirical evaluation (Empirical) is
given together with the total score (Total). The chosen metrics for each factor are
analyzed further in Table 2. When comparing attitudes of quality versus keeping
deadlines (in a scale from 1 to 5), all respondents valued quality over cost (mean
4.22) more than quality over keeping deadlines (mean 3.89). Next, ΔGi

is the
difference of group Gi’s aggregated decision factor (scale 1 to 3) compared to the
aggregated attitude of using the metric in data-driven approaches. Δ is the total
difference of all groups aggregated. We investigated possible correlations between
project, process, and product metric categories. Since the data points are opin-
ions and not strict interval data, i.e. ordinals, we applied the non-parametric
measure of Spearman’s rank correlation (ρ) method. All categories correlates as
follows: ρproject = −0.768, ρproces = 0.728 and ρproduct = 0.882. We conclude that
the weaker correlation on project level may be due to team performance type of
metrics only implicitly impact quality decisions and is more difficult to quantify;
metric aggregation and long term decision-making would then be more difficult

Table 1. Quality metric factors, mapped into project-, process- and product categories.
These factors (and metrics thereof) were indicated as the most important ones from
the selected articles in the literature analysis.

Project category Factor Research articles Empirical Total

Performance [3,5,6,9,10,12,15] 3 14
Reliability [5,16,18] 3 7

Process category
Performance [3,5,6,8–10,12,15,18] 5 18
Security [3,6,10,16] 2 10
Testability [3,6,9,12,15,18] 3 12
Productivity [3,9] 0 4

Product category
Functionality [5,7–10,18] 3 11
Performance [3,5–10,14,15,18] 7 25
Security [3,6,10,15,16,18] 4 14
Reliability [3,5–10,12,15,18] 6 22
Maintainability [3,5,6,8–10,14,15] 5 18
Testability [3,6,7,9,10,12,15,18] 4 17
Satisfaction [3,6–8,10,18] 3 13
Business value [3,6,9,10,18] 2 11

528 H. Salin et al.

Table 2. Overview of selected quality metrics from the literature study, including
factors and surveyed properties from the questionnaire. ΔGi is the difference in the
group’s decision factor (Dec.) and the aggregated attitude towards using the metric for
data-driven approaches (Data).

Project metric Factor Dec. Imp. Data. ΔG1 ΔG2 ΔG3 Δ

Work estimation Performance 2.17 1.39 1.83 −0.50 −0.33 −0.17 −0.33

Team velocity Performance 2.22 1.83 2.00 −0.50 −0.33 0.17 −0.22

Risk management Reliability 2.11 2.33 2.00 0.17 −0.17 −0.33 −0.11

Process metric

Test automation level Testability 2.56 2.33 2.56 0.00 0.00 0.00 0.00

Deployment frequency Productivity 2.33 2.17 2.17 −0.17 −0.33 0.00 −0.17

Lead time for change Performance 2.28 2.22 2.28 0.33 −0.17 −0.17 0.00

Feature lead time Productivity 2.06 1.78 2.11 0.17 0.00 0.00 0.06

Product metric

Bug correction time Reliability 2.28 2.28 2.17 −0.17 0.00 −0.17 −0.11

Response time Performance 2.28 2.22 2.33 0.17 −0.33 0.33 0.06

Test coverage Testability 2.61 2.56 2.72 0.00 0.33 0.00 0.11

Customer satisfaction Satisfaction 2.72 2.83 2.67 −0.33 0.00 0.17 −0.06

Perceived value Business value 2.28 2.28 2.22 0.00 0.00 −0.17 −0.06

Number of defects Reliability 2.67 2.50 2.61 −0.17 0.00 0.00 −0.06

Technical debta Maintainability 2.56 2.44 2.67 0.17 0.00 0.17 0.11

Mean time to recover Maintainability 2.06 2.22 2.33 0.33 0.67 −0.17 0.28

Service Level Agreement Reliability 2.22 2.33 2.39 −0.33 0.33 0.50 0.17

Vulnerability counta Security 2.39 2.50 2.61 0.00 0.33 0.33 0.22

Requirement fulfilment Functionality 2.11 2.22 2.17 0.00 0.00 0.17 0.06
aRefers to classification as both process and product metric.

to perform. Also, as noted in [2] with difficulties in agile quality measurements
it may be plausible to conclude that on project level using team performance
metrics, the linkage between the final product quality and work estimation is
highly unclear. Further research is needed to investigate other type of perfor-
mance metrics on project level, e.g. motivation and team maturity, although
that would require a separate study in itself. In Table 3 all factors are listed with
the perceived average decision- and impact factors (denoted Dec. and Imp.) for
each decision-making level (i.e. mapped from G1, G2 and G3), together with the
overall importance weight from the literature analysis. We analyzed the correla-
tion between the validation study results and the score of the literature analysis,
and preliminary results shows that the strongest correlation (using Spearman’s
ρ coefficient) is for team level decision-making ρG1−dec = −0.677, but weak for
all other comparisons: ρG1−imp = −0.051, ρG2−dec = 0.157, ρG2−imp = 0.327,
ρG3−dec = −0.139 and ρG3−imp = −0.051 respectively.

Quality Metrics for Software Development Management 529

Table 3. Metric factor structure to be used for decision-levels with guiding importance
weights from the literature analysis score (Lit.) and validation study averages (Dec. is
decision factor and Imp. is impact factor). The highest metrics are highlighted in bold.

Factor Operational Tactical Strategic Lit
Dec. Imp. Dec. Imp. Dec. Imp. Score

Performance 2.33 1.96 2.25 2.12 2.13 1.67 19.0
Reliability 2.42 2.42 2.17 2.29 2.38 2.38 14.5
Testability 2.58 2.25 2.50 2.42 2.67 2.67 14.5
Productivity 2.08 1.92 2.25 2.00 2.25 2.00 4.0
Business value 2.00 2.00 2.33 2.50 2.50 2.33 11.0
Satisfaction 2.83 2.83 2.67 2.83 2.67 2.83 13.0
Maintainability 2.25 2.42 2.17 2.08 2.50 2.50 18.0
Security 2.33 2.50 2.33 2.50 2.50 2.50 12.0
Functionality 2.00 2.00 2.33 2.50 2.00 2.17 11.0

4 Conclusions

Our findings shows that the attitudes towards several metrics found in the lit-
erature differs depending on the decision-maker’s level (in the model) and that
correlations are more diffuse on the strategic decision level. The highest ranked
metric factor for all decision levels is satisfaction, and for strategic level also
testability. Our study provides indications of the impact and decision weights of
the chosen quality metrics, which can serve as a guideline for industry practi-
tioners in their decision-making processes.

References

1. Aurum, A., Wohlin, C.: Wohlin, c.: The fundamental nature of requirements engi-
neering activities as a decision making process. Inf. Softw. Technol. 45, 945–954
(2003). https://doi.org/10.1016/S0950-5849(03)00096-X

2. Behutiye, W., et al.: Management of quality requirements in agile and rapid soft-
ware development: A systematic mapping study. Inf. Softw. Technol. 123, 106225
(2020). https://doi.org/10.1016/j.infsof.2019.106225. https://www.sciencedirect.
com/science/article/pii/S095058491930240X

3. Colakoglu, F.N., Yazici, A., Mishra, A.: Software product quality metrics: a sys-
tematic mapping study. IEEE Access 9, 44647–44670 (2021). https://doi.org/10.
1109/ACCESS.2021.3054730

4. Galli, T., Chiclana, F., Siewe, F.: Software product quality models, developments,
trends, and evaluation. SN Comput. Sci. 1(3), 1–24 (2020)

5. Garomssa, S.D., Kannan, R., Chai, I., Riehle, D.: How software quality mediates
the impact of intellectual capital on commercial open-source software company
success. IEEE Access 10, 46490–46503 (2022). https://doi.org/10.1109/ACCESS.
2022.3170058

https://doi.org/10.1016/S0950-5849(03)00096-X
https://doi.org/10.1016/j.infsof.2019.106225
https://www.sciencedirect.com/science/article/pii/S095058491930240X
https://www.sciencedirect.com/science/article/pii/S095058491930240X
https://doi.org/10.1109/ACCESS.2021.3054730
https://doi.org/10.1109/ACCESS.2021.3054730
https://doi.org/10.1109/ACCESS.2022.3170058
https://doi.org/10.1109/ACCESS.2022.3170058

530 H. Salin et al.

6. Haindl, P., Plösch, R.: Value-oriented quality metrics in software development:
practical relevance from a software engineering perspective. IET Softw., November
2021. https://doi.org/10.1049/sfw2.12051

7. Kabir, M.A., Rehman, M.U., Majumdar, S.I.: An analytical and comparative study
of software usability quality factors. In: 2016 7th IEEE International Conference on
Software Engineering and Service Science (ICSESS), pp. 800–803 (2016). https://
doi.org/10.1109/ICSESS.2016.7883188

8. Kassie, N.B., Singh, J.: A study on software quality factors and metrics
to enhance software quality assurance. Int. J. Productivity Qual. Manage.
29(1), 24–44 (2020). https://doi.org/10.1504/IJPQM.2020.104547. https://www.
inderscienceonline.com/doi/abs/10.1504/IJPQM.2020.104547

9. Kupiainen, E., Mäntylä, M.V., Itkonen, J.: Using metrics in agile and lean soft-
ware development - a systematic literature review of industrial studies. Inf. Softw.
Technol. 62, 143–163 (2015). https://doi.org/10.1016/j.infsof.2015.02.005. https://
www.sciencedirect.com/science/article/pii/S095058491500035X

10. López, L., et al.: Quality measurement in agile and rapid software development:
a systematic mapping. J. Syst. Softw. 186, 111187 (2022). https://doi.org/
10.1016/j.jss.2021.111187. https://www.sciencedirect.com/science/article/pii/
S0164121221002661

11. Maalej, W., Nayebi, M., Johann, T., Ruhe, G.: Toward data-driven requirements
engineering. IEEE Softw. 33(1), 48–54 (2016). https://doi.org/10.1109/MS.2015.
153

12. Maddox, M., Walker, S.: Agile software quality metrics. In: 2021 IEEE MetroCon,
pp. 1–3 (2021). https://doi.org/10.1109/MetroCon54219.2021.9666049

13. Mladenova, T.: Software quality metrics - research, analysis and recommendation.
In: 2020 International Conference Automatics and Informatics (ICAI), pp. 1–5
(2020). https://doi.org/10.1109/ICAI50593.2020.9311361

14. Molnar, A.-J., Neamţu, A., Motogna, S.: Evaluation of software product quality
metrics. In: Damiani, E., Spanoudakis, G., Maciaszek, L.A. (eds.) ENASE 2019.
CCIS, vol. 1172, pp. 163–187. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-40223-5_8

15. Padmini, K.V.J., Dilum Bandara, H.M.N., Perera, I.: Use of software metrics in
agile software development process. In: 2015 Moratuwa Engineering Research Con-
ference (MERCon), pp. 312–317 (2015). https://doi.org/10.1109/MERCon.2015.
7112365

16. Siavvas, M., Kehagias, D., Tzovaras, D., Gelenbe, E.: A hierarchical model for
quantifying software security based on static analysis alerts and software metrics.
Softw. Qual. J. 29(2), 431–507 (2021). https://doi.org/10.1007/s11219-021-09555-
0

17. Svensson, R.B., Feldt, R., Torkar, R.: The unfulfilled potential of data-driven deci-
sion making in agile software development. In: Kruchten, P., Fraser, S., Coallier,
F. (eds.) XP 2019. LNBIP, vol. 355, pp. 69–85. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19034-7_5

18. Tsuda, N., et al.: Wsqf: comprehensive software quality evaluation framework and
benchmark based on square. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 312–321
(2019). https://doi.org/10.1109/ICSE-SEIP.2019.00045

https://doi.org/10.1049/sfw2.12051
https://doi.org/10.1109/ICSESS.2016.7883188
https://doi.org/10.1109/ICSESS.2016.7883188
https://doi.org/10.1504/IJPQM.2020.104547
https://www.inderscienceonline.com/doi/abs/10.1504/IJPQM.2020.104547
https://www.inderscienceonline.com/doi/abs/10.1504/IJPQM.2020.104547
https://doi.org/10.1016/j.infsof.2015.02.005
https://www.sciencedirect.com/science/article/pii/S095058491500035X
https://www.sciencedirect.com/science/article/pii/S095058491500035X
https://doi.org/10.1016/j.jss.2021.111187
https://doi.org/10.1016/j.jss.2021.111187
https://www.sciencedirect.com/science/article/pii/S0164121221002661
https://www.sciencedirect.com/science/article/pii/S0164121221002661
https://doi.org/10.1109/MS.2015.153
https://doi.org/10.1109/MS.2015.153
https://doi.org/10.1109/MetroCon54219.2021.9666049
https://doi.org/10.1109/ICAI50593.2020.9311361
https://doi.org/10.1007/978-3-030-40223-5_8
https://doi.org/10.1007/978-3-030-40223-5_8
https://doi.org/10.1109/MERCon.2015.7112365
https://doi.org/10.1109/MERCon.2015.7112365
https://doi.org/10.1007/s11219-021-09555-0
https://doi.org/10.1007/s11219-021-09555-0
https://doi.org/10.1007/978-3-030-19034-7_5
https://doi.org/10.1007/978-3-030-19034-7_5
https://doi.org/10.1109/ICSE-SEIP.2019.00045

Are NLP Metrics Suitable for Evaluating
Generated Code?

Riku Takaichi1(B), Yoshiki Higo1, Shinsuke Matsumoto1, Shinji Kusumoto1,
Toshiyuki Kurabayashi2, Hiroyuki Kirinuki2, and Haruto Tanno2

1 Graduate School of Information Science and Technology,
Osaka University, Suita, Osaka, Japan

r-takaic@ist.osaka-u.ac.jp
2 Nippon Telegraph and Telephone Corporation, Minato, Tokyo, Japan

Abstract. Code generation is a technique that generates program
source code without human intervention. There has been much research
on automated methods for writing code, such as code generation. How-
ever, many techniques are still in their infancy and often generate syn-
tactically incorrect code. Therefore, automated metrics used in natural
language processing (NLP) are occasionally used to evaluate existing
techniques in code generation. At present, it is unclear which metrics in
NLP are more suitable than others for evaluating generated codes. In
this study, we clarify which NLP metrics are applicable to syntactically
incorrect code and suitable for the evaluation of techniques that auto-
matically generate codes. Our results show that METEOR is the best of
the automated metrics compared in this study.

Keywords: Automated metric · Code generation · Deep learning

1 Introduction

Code generation is a technique that generates program source code without
human intervention. It significantly changes the software process and is known
as a promising way to reduce the burden of programming on developers [14].
In recent years, there has been much research on automated methods for writ-
ing code, such as code generation [1,4,14]. In these studies, automated metrics
(hereinafter, referred to it simply as “metrics”) are used to evaluate generated
code, and several metrics for code evaluation have already been proposed [13,15].
These metrics use abstract syntax trees or program dependency graphs, assum-
ing that code is syntactically correct. However, research on code generation is
still in its infancy, and it is not uncommon for syntactically incorrect code to be
generated. For example, 7.0% of code generated by SNM [14] and 90% of code
by Coarse-to-Fine [4], which are recently proposed code generation models, are
syntactically incorrect. Therefore, metrics for code that assume that generated
code is syntactically correct may not be usable.

In some cases, metrics used in natural language processing (NLP) are used
to evaluate the code generation techniques in place of metrics for code [12]. For
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 531–537, 2022.
https://doi.org/10.1007/978-3-031-21388-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_38&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_38

532 R. Takaichi et al.

example, BLEU is frequently used to evaluate the quality of generated code.
However, this metric has limitations when used in code evaluation [5,13]. It is
thus still unclear which metrics are suitable for evaluating code without assuming
the syntactic correctness of the code.

In this study, we clarify which metrics are suitable for evaluating code, and in
particular, can be applied to syntactically incorrect code. More specifically, we
focus on the code generation task by deep learning, and clarify which metrics are
suitable for evaluating code that are automatically generated from requirements
written in natural language.

Currently, it is difficult to generate complete code from requirements
described using natural language [7]. When using code generation, human modifi-
cation of the generated code is required to make the code meet the requirements.
Therefore, it is desirable that the generated code be easy to modify into code
that satisfies the requirements. The suitability of metrics for generated code can
be evaluated by the ease with which the generated code can be modified into
code that satisfies the requirements.

In this study, we measure the ease of modifying various examples of gener-
ated code into code that satisfies given requirements. The results suggest that
METEOR is the best metric that correlates with the ease of modifying gener-
ated code and is thus the most suitable for evaluating code created via code
generation [3].

2 Research Questions

RQ1: Which metrics can be used to evaluate the ease of modifying
generated code in terms of modification time?

The ease of modifying generated code can be evaluated in terms of the time a
developer take to modify it. To evaluate the ease of modification of generated
code in terms of modification time, we investigate which metrics can evaluate
the ease of modification. More specifically, we examine the correlation between
the time it takes a developer to modify generated code into code that satisfies
their requirements and the evaluation values of metrics.

RQ2: Which metrics can be used to evaluate the ease of modifying
generated code in terms of the size of changes to the code needed to
modify it?

The ease of modification of generated code can also be evaluated by the amount
of modification of the code by a developer. When evaluating the ease of modi-
fication of generated code by the amount of modification, we investigate which
metrics can evaluate the ease of modification. As in RQ1, we examine the corre-
lation between the amount of modification and the evaluation values of metrics,
where the strongest correlation between these is considered indicative of ease of
modification. In this study, the amount of modification is defined as the number
of tokens to modify the generated code.

Are NLP Metrics Suitable for Evaluating Generated Code? 533

3 Background

3.1 Code Generation

Code generation is a method by which source code is written automatically. It
can be classified in terms of the following elements:

– Input, for example, requirements written in natural language [7], DSL [10],
or input/output examples [9].

– Approach, for example, translation-based [7] or search-based [11].

This study focuses on translation-based code generation using deep learning,
which takes requirements written in natural language as input.

3.2 Edit Distance

The edit distance is the minimum number of edits (insertions, deletions, or sub-
stitutions) required to make one sequence X equivalent to another sequence Y .

The normalized edit distance (NED) between X and Y is computed as

NED(X,Y) =
EditDistance(X,Y)

max (length(X), length(Y))

where EditDistance(X,Y) is the edit distance between the sequence X and Y .
Here, length(S) refers to the length of the sequence S. The value of normalized
edit distance is between 0 and 1. In this study, the edit distance is calculated by
considering the code as a sequence of tokens.

3.3 Metrics

Metrics are used for the automated evaluation of the quality of translation
results. Ideally, automated evaluations should correlate highly with human evalu-
ation because metrics are meant to be a feasible alternative to human evaluation.
The metrics used in this study are as follows:

BLEU [8] is an metric for evaluating the quality of natural language machine
translation results. It is calculated using the n-gram of two sequences.

STS [13] is calculated using the edit distance.
ROUGE-L [6] is calculated using the length of the longest common subse-

quence.
METEOR [3] is an metric for evaluating the quality of automated translation

results in the field of NLP [2]. In this study, a code was regarded as English
text because a code is usually written using English words.

These metrics are between 0 and 1. A higher value means a higher evaluation.
BLEU, STS, and ROUGE-L were selected because there are studies that used
them to evaluate code [12,13]. METEOR was selected because it is designed to
address BLEU’s weaknesses [2].

534 R. Takaichi et al.

4 Experiment

We conducted an experiment to measure the ease of modifying code created
with a code generation model to code satisfying given requirements. The ease of
modification we measured involves either the modification time or the modifica-
tion amount. The higher these, the lower the ease of modification. The amount
of modification is measured by the normalized edit distance between generated
code and modified code. We also examine the correlation between the ease of
modification and evaluations of the generated code using metrics. The stronger
the negative correlation, the more suitable the automated evaluation value is for
evaluating code generated from requirements described in natural language.

4.1 Code Generation Model

We created a code generation model using a deep neural network for NLP avail-
able on GitHub1. The code generation model was trained on the dataset ReCa
[7] comprising requirement text, correct code, and test cases used in program-
ming contests. The dataset includes 5,149 requirements and 16,673 Python code.
The code generation model was trained using 300 data entries for testing, 200
for validation, and the remainder for training.

The input of the model is text that has been preprocessed with lowercasing,
lemmatization, and removing stopwords. The original text before preprocessing
is requirement text written in English. The output of the model is tokens of
Python code. It can be automatically transformed into actual Python code. The
generated code may not satisfy the requirement described in the input text. The
correct code satisfies the requirement and passes the test cases.

4.2 Measuring Ease of Modification

We conducted an experiment with human subjects to measure the ease of mod-
ification of generated code. In this experiment, 10 data entries were randomly
sampled from the 300 test data. The sampled data have an average of 53.4 test
cases per requirement. The subjects were 11 people, one associate professor and
ten students. Each subject had a different skill level in Python. A cheat sheet
with the code that might be needed when modifying the generated code was
supplied for the subjects who were less skilled. Each subject experiments with
the 10 sampled data. The experimental steps are as follows:

STEP-1 [Understanding Requirements]. Subjects receive the requirements
text and test cases. They understand the requirements by reading the text.

STEP-2 [Modifying Generated Code]. Subjects receive the generated code.
They modify the generated code to satisfy the requirements given in STEP-1.

STEP-3 [Testing]. Subjects check whether the code modified in STEP-2 passes
all the test cases given in STEP-1. If it passes, STEP-3 is completed. Other-
wise, they return to STEP-2 to modify the generated code once more.

1 https://github.com/nazim1021/neural-machine-translation-using-gan.

https://github.com/nazim1021/neural-machine-translation-using-gan

Are NLP Metrics Suitable for Evaluating Generated Code? 535

We count the seconds from STEP-2 to the end of STEP-3 and took this value to
be the time developers took to modify the generated code. In the above steps,
the modified generated code is called “modified code”. We cannot obtain both
the modification time and the modified code if the subject cannot successfully
modify the generated code so that the requirements are met.

4.3 Results

Table 1 lists the Pearson’s correlation coefficients between the evaluation value
of each metric and the ease of modification (such as the modification time and
the modification amount), with p-values. According to the results in Table 1, the
correlation between the evaluation and the modification time and modification
amount is strongest for METEOR. However, it is only weakly correlated with
modification time.

Table 1. Correlation between metrics and the ease of modification

Metric RQ1: the modification time RQ2: the amount of modification
COR p-value COR p-value

BLEU −0.181 0.117 −0.392 4.64× 10−4

STS −0.100 0.389 −0.555 1.99× 10−7

ROUGE-L 0.011,5 0.921 −0.481 1.08× 10−5

METEOR −0.251 0.028,6 −0.696 3.03× 10−12

Answer to RQ1 and RQ2: Among the examined metrics, METEOR is the
best metric to evaluate the ease of modifying generated code in terms of the
modification time and the modification amount. In addition, BLEU, which is
widely used to evaluate generated code, is not a good metric in these context.

5 Conclusion

The purpose of this study was to clarify which NLP metrics can be applied to
syntactically incorrect code. We investigated which metrics strongly correlate
with the evaluation values obtained in the experiment with subjects. The results
of the study showed that METEOR has a relatively strong correlation with both
amount of modification and the time required to modify code created by code
generation to meet the given requirements. We conclude that METEOR is a bet-
ter metric for generated code than the frequently used BLEU. However, metrics
may not be suitable for evaluating generated code because of its weak correla-
tion with the modification time. In addition, note that there are limitations in
applying these results to real projects because the subject experiment in this
study was conducted using programming contest data.

536 R. Takaichi et al.

For future research, we are going to examine the evaluation values that corre-
late stronger with the coding time reduced by using the generated code. This is
why we plan to compare the time required for subjects to read the requirements
and write a program with the time required for them to modify generated code
to satisfy the requirements.

Acknowledgements. This research was supported by JSPS KAKENHI, Japan (grant
numbers JP20H04166, JP21K18302, JP21K11820, JP21H04877, JP22H03567, and
JP22K11985).

References

1. Ahmad, W., Chakraborty, S., Ray, B., Chang, K.W.: Unified pre-training for pro-
gram understanding and generation. In: Proceedings of Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies (2021)

2. Banerjee, S., Lavie, A.: METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In: Proceedings of ACL Intrinsic
and Extrinsic Evaluation Measures for Machine Translation and/or Summarization
(2005)

3. Denkowski, M., Lavie, A.: Meteor universal: language specific translation evalua-
tion for any target language. In: Proceedings of Workshop on Statistical Machine
Translation (2014)

4. Dong, L., Lapata, M.: Coarse-to-Fine decoding for neural semantic parsing. In:
Proceedings of Annual Meeting of the Association for Computational Linguistics
(2018)

5. Karaivanov, S., Raychev, V., Vechev, M.: Phrase-based statistical translation of
programming languages. In: Proceedings of ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (2014)

6. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Proceed-
ings of ACL Text Summarization Branches Out (2004)

7. Liu, H., Shen, M., Zhu, J., Niu, N., Li, G., Zhang, L.: Deep learning based program
generation from requirements text: are we there yet? IEEE Trans. Softw. Eng.
48(4), 1268–1289 (2022)

8. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evalu-
ation of machine translation. In: Proceedings of Annual Meeting of the Association
for Computational Linguistics (2002)

9. Parisotto, E., Mohamed, A., Singh, R., Li, L., Zhou, D., Kohli, P.: Neuro-symbolic
program synthesis. In: Proceedings of International Conference on Learning Rep-
resentations (2017)

10. Rabinovich, M., Stern, M., Klein, D.: Abstract syntax networks for code generation
and semantic parsing (2017). https://arxiv.org/abs/1704.07535

11. Spector, L.: Autoconstructive evolution: Push, PushGP, and Pushpop. In: Pro-
ceedings of Genetic and Evolutionary Computation Conference (2001)

12. Svyatkovskiy, A., Deng, S.K., Fu, S., Sundaresan, N.: Intellicode compose: code
generation using transformer. In: Proceedings of ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (2020)

https://arxiv.org/abs/1704.07535

Are NLP Metrics Suitable for Evaluating Generated Code? 537

13. Tran, N., Tran, H., Nguyen, S., Nguyen, H., Nguyen, T.: Does BLEU score work
for code migration? In: Proceedings of IEEE/ACM International Conference on
Program Comprehension (2019)

14. Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation.
In: Proceedings of Annual Meeting of the Association for Computational Linguis-
tics (2017)

15. Zhao, G., Huang, J.: Deepsim: deep learning code functional similarity. In: Pro-
ceedings of ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (2018)

Automated and Robust User Story
Coverage

Mickael Gudin and Nicolas Herbaut(B)

Centre de Recherche en Informatique Université Paris 1 Panthéon-Sorbonne, Paris,
France

nicolas.herbaut@univ-paris1.fr

Abstract. Current practices in software testing such as Test Driven
Development or Behavior Driven Development aim at linking code to
expected behavior. In this context, code coverage is widely used to
improve code quality, reduce bugs and ssure requirements satisfaction.
Even if change tracking software allows finely analyzing code evolution,
associating a particular code chunk to the requirements at the origin of
the code modification is difficult for a large code base. In this preliminary
work, we propose a new “user story coverage” metric that reports lack-
ing requirement coverage quality, to help developers focus their efforts
on enhancing unit and integration tests. We propose a methodology to
compute this metric in a robust and automated fashion and evaluate its
feasibility on open-source projects.

Keywords: Requirements · Code coverage · Abstract-syntax-tree ·
Software quality

1 Introduction

In the software industry, testing best practices such as Test-Driven Development
(TDD) or Behavior-Driven Development (BDD) are now mainstream. TDD’s
goal is to have consistent test cases with the produced code whereas BDD’s goal
is to have consistent test cases with the expected behavior, which is the actual
business needs [1]. In the unit testing phase, developers use the code coverage
metric to assess how well the code base is tested, as a high coverage rate is
deemed to make a software program less error-prone [2].

Another common practice is the use of software configuration management
(SCM), to track code changes and facilitate collaboration. A good practice in
SCMs is to have traceability between requirements and implementation [3],
through commit messages. Commits often mentions the issue ID, which in turns
contains a reference to the business needs behind the code modification, com-
monly formalized as User Stories (US) in agile teams. This precious traceability
information, however, tends to degrade over time. The reason is that SCM-
provided tools, such as blame, are line-centric: newer commits mask the previous
ones, effectively breaking the traceability chain. As a consequence, there is no
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 538–543, 2022.
https://doi.org/10.1007/978-3-031-21388-5_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_39&domain=pdf
http://orcid.org/0000-0003-1540-2099
https://doi.org/10.1007/978-3-031-21388-5_39

Automated and Robust User Story Coverage 539

easy way, given a chuck of code, to backtrack to the requirement which led to
its inclusion into the codebase.

This paper fills the gap in requirements to code traceability code by com-
bining unit test coverage, SCM history and issue tracker data to compute a
new metric, User Story coverage, which can be considered as a proxy to assess
Requirement coverage. In the rest of the paper, we present some background,
methods, evaluation and discussion before concluding.

2 Background and Related Work

Requirements and User Story Coverage. In this paper, we make the
assumption that issues contains User Stories, which is a form of requirement
expressed from the perspective of an end-user goal. Agile teams often use USs
as a proxy for proper requirements to facilitate developers’ understanding of the
desired features [4].

A semi-automated requirement coverage tool was proposed in [5], where
authors demonstrated the feasibility of the concept. The main difference with
our approach is that we rely on robust code differencing to prevent recent com-
mits masking previous ones, and we also make the hypothesis that the process
linking requirements and code are fully automated, through commit messages
containing issue IDs pointing to USs.

In [6], authors present a new metric based on the Requirements Traceability
Matrix (RTM) to better allocate testing efforts based on requirements coverage.
We have a related goal, but we do not assume the existence of an RTM and use
the existing unit tests to cover testing intents.

Robust Code Differencing. Code differencing is commonly performed
through a text-based approach with git diff and git blame commands
relying by default on the Myers algorithm [7]. Abstract syntax tree (AST)-based
tools are the current state-of-the-art and bring more accurate differences, which
are especially efficient at detecting refactoring and minor code modification [8].

In this paper, we decided to use vanilla GumTree for the AST-based app-
roach and compare it with a text-based approach, leaving out considering recent
enhancements in this field for future work.

3 Methods and Evaluation

In this section, we detail how we built the proof of concept1 to compute the
requirement coverage metric. To aggregate the code chunks to a given require-
ment, we aggregate the code of all commits that references the corresponding
issues. We implemented two coverage approaches as two code chunks aggrega-
tion techniques: line-based and method-based which are in turn based on unit
test coverage metrics: line coverage and method coverage.
1 https://github.com/nh-group/dextorm.

https://github.com/nh-group/dextorm

540 M. Gudin and N. Herbaut

3.1 US Coverage Metric Computation

Data Collection. Data collection uses 3 different data sources: The Issue Man-
ager (IM), Repository and Code Coverage (CC) from unit tests. In this section,
we present the data sources and the different steps that lead to the generation
of US Coverage data (Fig. 1).

Fig. 1. High-level architecture

Code Mapping. Code mapping aims at correlating each code chunk with a
commit from the repository. This operation is trivial when using the blame
command, but offers poor precision: since (1) each line of code is associated
with exactly one commit and (2) whenever any token from the line is modified
by a commit, the line becomes associated with the said commit. This means that
refactoring, reformatting and commenting on a line will destroy the connection
between the statements and the associated commit, hence the user story.

For this paper, we developed a more robust method to compute Code Map-
ping, relying on GumTree. This method reads the git history for each file, and
analyze each modification done on the file, producing ASTs labeled with the
commit and line. More precisely, for each file F , for each commit t, we com-
pare the two versions of the file Ft−1 and Ft, before and after commit t. We
subsequently parse the files as AST Tt−1 and Tt, and compute the mapping Mt

between Tt−1 and Tt. If there is a mapping between nodes N ∈ Tt−1 and M ∈ Tt,
we add all the labels of N to M . If no mapping exists, then M is labeled with
commit t.

US Mapping. First, we connect to the issue manager and assemble every
issue corresponding to the project. The user can apply specific filters (e.g., date,

Automated and Robust User Story Coverage 541

label, issue status) to restrict which issues are included in the analysis. Then, we
scan the whole history of the project, and gather commit messages containing
references to IM issues. We finally associate each commit with the corresponding
US.

Code and User Story Coverage. Due to lack of space, we do not present
the full description of the US coverage metric, but instead intuitions and usage
examples. The line-based User story coverage metric is the ratio of the number
of lines associated with a US, which are marked as covered by unit tests, over the
total number of lines associated to the US. Likewise, method-based User story
coverage metric follows the same principle based on method coverage.

3.2 Illustrative Example

To illustrate our approach, we take the example of a US where some contact
information is retrieved from a phone number, implemented in commit1.

1 public class ContactService {
2 RepositoryContact repo = new RepositoryContact();
3
4 public Contact findContactWithPhoneNumber(String
5 number) {
6 return repo.getContactWithPhoneNumber(number);
7 }
8 }

Listing 1.1. commit 1

1 +++ a/ContactService.java
2 --- b/ContactService.java
3 @@ -2,9 +2,6 @@ public class ContactService {
4 RepositoryContact repo = new RepositoryContact

();
5
6 public Contact findContactWithPhoneNumber(

String number) {
7 + if(number != null && number.length() == 10)

{
8 + return repo.getContactWithPhoneNumber(

number);
9 + }

10 + return null;
11 - return repo.getContactWithPhoneNumber(

number);
12 }
13 }

Listing 1.2. commit2 (patch format)

Assuming that the US coverage is 100% in commit1, it would stay at 100%
in commit2 when computed with GumTree, since line 6 of Listing 1.1 would still
be associated with commit1, thanks to Gumtree being resistant to code moves.

If we were to use git blame however, the result would change drastically:
none the news lines in Listing 1.2 would be associated with commit 1 and with
the US anymore: since git blame is line-based, the US would not be covered
at all, since no line linked with commit1 would be executed in the unit tests.

3.3 Performance Evaluation

We evaluated the presented US coverage computation techniques on several real-
world open source projects RxJava, Shenyu and dnsjava, which use GitHub SCM
to support both issues and version tracking:

We carried out computations on an Intel Xeon W-10855M CPU @ 2.80GHz
with SSD and 32GB of RAM. We used the Java Microbenchmark Harness and

542 M. Gudin and N. Herbaut

Table 1. Performance and runtime comparison

Project DA Scope Execution time (s) # Classes # Versions # NCLOC # Issues GitBlame Loss ratio GitBlame method loss ratio

RxJava GitBlame Instructions 337.54 2941 6001 368,268 3096 7.84% 23.89%
Methods 52.59

GumTree Instructions 5384.89
Methods 5360.19

Apache/shenyu GitBlame Instructions 32.28 1807 2488 100,399 1559 4.48% 20.96%
Methods 15.42

GumTree Instructions 846.75
Methods 841.76

dnsjava GitBlame Instructions 15.91 277 2066 22,308 147 6.25% 25.62%
Methods 8.63

GumTree Instructions 101.17
Methods 105.25

we report the execution time with the AverageTime method over 10 executions
for each combination.

We show static metrics for each project (number of classes, number of ver-
sions, number of significant line of codes and number of collected issues) and
the computation runtime for each combination of diff algorithms (GitBlame
and GumTree) and scope (instruction-based or method-based). We also report
two performance metrics: the gap between the most accurate coverage com-
putation method (GumTree algorithm computed on instructions) and another
reference method: Gi (GitBlame Loss ratio, which represents the normalized
average difference between GumTree and GitBlame coverage with instruction
scope) and Ii (GitBlame Method Loss Ratio, that represent the normalized
average difference between instruction-based coverage for the GumTree algo-
rithm and method-based coverage for GitBlame). We define these metrics as:

Gi =
√∑

i∈I (c
g,inst
i − cb,insti)2/#I, and Ii =

√∑
i∈I (c

g,inst
i − cb,meth

i)2/#I

where I is the set of the issues for the project, cg,insti (resp., cb,insti) is the cover-
age ratio reported by GumTree (resp., GitBlame) for issue i with the instruction
scope and cb,meth

i is the coverage ratio for the method scope for the GitBlame
algorithm.

4 Discussion

As we can see from Table 1, computations using the GitBlame algorithm outper-
form GumTree by one order of magnitude and shows a coverage precision loss
of 4.48% to 7.84%. The main factor explaining this is the necessity for GumTree
to compute as many diff trees as there are revisions for each file with an O(N2)
worst-case complexity (with N equals the number of nodes in the AST), while
git blame relies on a diff algorithm [9] requiring only O(M) space (where M is the
number of tokens of the file). Interestingly, using the method scope (based on
comparing method signatures), does not provide a large benefit in runtime for
the GumTree algorithm, since the main bottleneck is the computation of AST
mappings that need to be computed anyway. For GitBlame, however, the time
reduction seems significant (from 50% to 84% improvement) while increasing the
loss ration from 20.96% to 25.62%. While the precision erosion is substantial, it

Automated and Robust User Story Coverage 543

stays limited. This suggests that we could use both approaches conjointly: using
GumTree with instructions (the slowest but most precise) in an off-line setting
(e.g., on a software factory while computing the other continuous integration
tasks), along with GitBlame with methods (the fastest, bit least precise) on the
developer’s workstation for a fast feedback loop.

5 Conclusion

In this article, we proposed a methodology to compute a proxy for requirement
coverage that we called User Story coverage. Thanks to AST-based code differ-
encing and data aggregation from issue manager, SCM and unit tests coverage,
the metric can be automatically obtained robustly. As future work, we plan to
integrate this metric in an IDE and follow a design science approach to evalu-
ate how it can improve code quality throughout the development lifecycle. We
also expect performance improvement through more advanced AST-based code
differencing techniques.

References

1. Zampetti, F., Di Sorbo, A., Visaggio, C.A., Canfora, G., Di Penta, M.: Demystifying
the adoption of behavior-driven development in open source projects. Inf. Softw.
Technol. 123, 106311 (2020). https://doi.org/10.1016/j.infsof.2020.106311

2. Bach, T., Andrzejak, A., Pannemans, R., Lo, D.: The impact of coverage on bug
density in a large industrial software project. In: 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 307–
313 (2017)

3. Standard for configuration management in systems and software engineering. IEEE
Standard 828–2012 (2012)

4. Cohn, M.: User stories applied: For agile software development. Addison-Wesley
Professional (2004)

5. Mordinyi, R., Biffl, S.: Exploring traceability links via issues for detailed require-
ments coverage reports. In: 2017 IEEE 25th International Requirements Engineering
Conference Workshops (REW)

6. Ziftci, C., Kruger, I.: Getting more from requirements traceability: requirements
testing progress. In: 2013 7th International Workshop on Traceability in Emerging
forms of Software Engineering (TEFSE) (2013). https://doi.org/10.1109/tefse.2013.
6620148

7. Nugroho, Y.S., Hata, H., Matsumoto, K.: How different are different diff algorithms
in git? Empirical Softw. Eng. 25(1), 790–823 (2020)

8. Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.: Fine-grained
and accurate source code differencing. In: Proceedings of the 29th ACM/IEEE Inter-
national Conference on Automated Software Engineering, pp. 313–324 (2014)

9. Myers, E.W.: An o(ND) difference algorithm and its variations. Algorithmica 1(1),
251–266 (1986)

https://doi.org/10.1016/j.infsof.2020.106311
https://doi.org/10.1109/tefse.2013.6620148
https://doi.org/10.1109/tefse.2013.6620148

Tidy Up Your Source Code! Eliminating
Wasteful Statements in Automatically

Repaired Source Code

Takumi Iwase(B), Shinsuke Matsumoto, and Shinji Kusumoto

Graduate School of Information Science and Technology,
Osaka University, Osaka, Japan

{tk-iwase,shinsuke,kusumoto}@ist.osaka-u.ac.jp

Abstract. Automated program repair (APR) is a concept of automat-
ically fixing bugs in source code to free developers from the burden of
debugging. One of the issues facing search-based APR is that repaired
code contains wasteful or meaningless statements that do not affect exter-
nal behavior. This paper proposes a concept named source code tidying
that eliminates wasteful statements in source code repaired by search-
based APR. Our proposed method applies pre-defined tidying rules to
repaired code and evaluates the effect of tidying using source code met-
rics such as lines of code. By repeating this process based on a genetic
algorithm, unnatural and full of wasteful source code is gradually brought
close to natural with preserving its behavior. Our method will be involved
in a process of APR by improving the readability of repaired code.

Keywords: Automated program repair · Source code tidying ·
Wasteful statements · Dead code · Refactoring

1 Introduction

Automated program repair (APR) is a concept of automatically fixing bugs in
source code to free developers from the burden of debugging [5]. APR can be
broadly classified into search-based [6] and semantics-based [9] approaches. This
paper focuses on genetic algorithm-based APR (GA-APR), one search-based
APR that introduces bio-inspired evolution into program repair. GA-APR takes
as input source code containing one or more bugs and test cases. GA-APR
repeatedly applies tiny modifications to the buggy code until all test cases pass.
While the semantics-based approach is limited to a specific type of bug, such as
conditional bug [12], the search-based approach has the significant advantage of
generality in that it can theoretically fix any kind of bug.

One of the issues facing GA-APR is that repaired code contains wasteful or
meaningless statements that do not affect external behavior. Usually, GA-APR
repeatedly applies predefined modifications without considering semantic infor-
mation. Typical modifications include insertion/deletion/reuse of AST nodes

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 544–550, 2022.
https://doi.org/10.1007/978-3-031-21388-5_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_40&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_40

Tidy Up Your Source Code! 545

[6], insertion/deletion of method calls [2], and modification of variable names
or operators [1]. These blind and random modifications lead to a problem that
repaired source code tends to be far from the source code written by developers.
For example, repetitive insertion of AST nodes will generate wasteful statements
such as “n++; n–-;”, which negate each other, or “n++; n=10;”, in which the
former statement is overwritten. There is also a case where only an empty block
“{}” is left due to repetitive deletion. The number of applied modifications will
increase if a bug is difficult to repair. Many modifications make repaired code
full of wasteful statements. As a result, overall repair performance (i.e., search
performance) will gradually decrease with increasing the generations because
wasteful statements affect the performance of compilation and test execution.

This paper proposes a concept named source code tidying that eliminates
wasteful statements in source code repaired by GA-APR. We define wasteful
statements as executable statements that do not affect external behavior. This
definition includes not only dead code [4,10], which is a well-known concept of
unused and unreachable code, but also used and reachable but unnecessary. Our
proposed method applies predefined tidying rules to repaired code and evaluates
the effect of tidying using source code metrics such as lines of code. By repeating
this process based on a genetic algorithm, unnatural and full of wasteful source
code is gradually brought close to natural with preserving its behavior. Our
method will be involved in a process of GA-APR by improving the readability
of repaired code.

Apply a predefined
tidying rule Evaluation Selection

Proposed
method

Repaired code Cleaned code

Fig. 1. Overview of proposed method

2 Proposed Method

2.1 Overview

The purpose of the proposed method is to tidy source code that contains wasteful
statements. We define wasteful statements as executable statements that do
not affect external behavior and tidy as eliminating these wasteful statements.
Figure 1 shows an overview of the proposed method. The input is repaired source
code by GA-APR, and the output is tidied source code which is same behavior

546 T. Iwase et al.

as the input. The proposed method consists of three iterative processes using
genetic algorithm: tidying, evaluation, and selection. First, the source code is
partially tidied by a randomly selected rule from predefined tidying rules. At
this time, the decision on which rule to use is made several times. This results
in multiple tidied source codes from a single source code. Next, evaluate each
partially tidied source code. As fitness, we use metrics such as lines of code and
cyclomatic complexity. Then, good source codes are selected to the next tidying
based on fitness. If the fitness does not improve after repeating these processes,
the iteration finishes and the proposed method outputs source code with the
best fitness.

The proposed method has two features: tidying rules can be added, and the
source code is tidied based on GA. Even if the proposed method fails to tidy
some source codes, the proposed method will be able to tidy them by adding
rules. GA-based tidying enables natural tidying as humans do.

2.2 Tidying Rules

Table 1 shows the tidying rules adopted in this paper. If rule affects the behavior
of source codes when applying, it does not apply. For example, the swap rule for
D1 in Table 1 does not apply to “n++; m=n;”. Tidying rules are broadly classified
into two. One is “direct rules”, which directly eliminate wasteful statements. The
other is “detour rules”, which add or swap statements in the opposite direction
to wasteful statements elimination. Wasteful statements in repaired source codes
may not be adjacent. Direct rules eliminate adjacent wasteful statements and
cannot eliminate nonadjacent wasteful statements. Therefore, we adopted detour
rules in the role of gathering scattered wasteful statements. Detour rules are
a major difference from related works, and we believe it works effectively for
tidying of repaired source codes.

Step1: Inject a bug by
Step1: mutation analysis

Step2: Repair by APR to retrieve
Step2: code containing wasteful stmts

Step3: Tidy by the
Step3: proposed method

Compare the
effect of tidying

Fig. 2. Overview of experiment

3 Preliminary Experiment

3.1 Overview

We conduct a preliminary experiment using a programming contest as the sub-
ject. Figure 2 shows an overview of the experiment. This experiment consists of
three steps. First, we inject bug into bug-free source codes (Sorigin) and obtain

Tidy Up Your Source Code! 547

bug-injected source codes (Smutated). Next, we repair Smutated by APR and obtain
bug-repaired source codes (Srepaired). Finally, we tidy Srepaired by the proposed
method and obtain tidied source codes (Stidied). We compare Stidied with Sorigin
and Srepaired to confirm effectiveness of tidying.

3.2 Experimental Procedure

Table 2 shows a list of the experimental settings and each step is described below.
Step1: Bug injection. Sorigin are correct answers for twenty 100-point tasks

of the past AtCoder Beginner Contest (ABC), held at AtCoder1. We inject bug
into these correct answers. Mutation analysis [8] is used for the bug injection. In

Table 1. Tidying rules (Rn: direct rule, Dn: detour rule)

ID Rule Before After
R1 Eliminate

unary
operator
stmts that
negate
each other

n++;
n--;

R2 Eliminate
overwrit-
ten stmts

n++;
n=1;

n=1;

R3 Eliminate
a block
without
having
control
stmt

{ n++; } n++;

R4 Eliminate
an empty
block stmt

n++;
{ }
n--;

n++;
n--;

R5 Omit a
control
stmt whose
condition
is always
true or
false

if(true){
n++;

}

n++;

R6 Merge a
duplicate
return
stmt

if(m>0){
n++;
return n;

}
return n;

if(m>0){
n++;

}
return n;

ID Rule Before After
D1 Swap two

stmts
that have
no order
depen-
dence

n++;
m--;

m--;
n++;

D2 Inline
a stmt
located
below
control
stmt

if(m>0){
n--;

}else{
}
n++;

if(m>0){
n--;
n++;

}else{
n++;

}

D3 Inline
a stmt
located
above con-
trol stmt
that has
no depen-
dence on
condition

n++;
if(m>0){
n--;

}else{
}

if(m>0){
n++;
n--;

}else{
n++;

}

D4 Copy
return
stmt
located
below
control
stmt

if(m>0){
n++;

}
return n;

if(m>0){
n++;
return n;

}
return n;

1 https://atcoder.jp/.

https://atcoder.jp/

548 T. Iwase et al.

Table 2. Experimental settings

Parameter Setting

Sorigin ABCa 100-point tasks

Number of tasks 20

Applied mutations 5 operations (see Table 3)

Used APR tool kGenProg [7]

Number of Srepaired 76

Fitness in prop. method Lines of code

ahttps://atcoder.jp/

Table 3. Mutation operations

Operation Before After

Replace + and – n = a + b n = a - b

Replace * and / n = a * b n = a/b

Replace % to * n = a % b n = a * b

Negate condition if (n > 0) if (n <= 0)

Change boundary if (n > 0) if (n >= 0)

mutation analysis, a single line in source code is modified by mutation. Table 3
shows the mutations adopted in this experiment. There are multiple operators
and conditions that can be modified in a source code. We use all candidates and
one candidate is used to generate one Smutated. Therefore, multiple Smutated are
generated from one Sorigin. A total of 76 Smutated are generated from 20 Sorigin.

Step2: Apply APR. The APR tool to repair Smutated is kGenProg [7]. Source
codes of programming contest are simple and unlikely to contain wasteful state-
ments when repaired. This makes it difficult to confirm effectiveness of the pro-
posed method. Therefore, we generated multiple bug-repaired source codes from
a single Smutated. This increases the probability of generating source code with a
lot of wasteful statements. The most wasteful source code is selected as Srepaired
among these multiple bug-repaired source codes.

Step3: Apply proposed method. The proposed method is applied to 76
Srepaired. As mentioned earlier, source codes for programming contest are simple.
With metrics other than the lines of code (LOC), it is difficult to make a differ-
ence before and after tidying. Therefore, we use LOC as fitness in the proposed
method.

11

Li
ne

s
of

 c
od

e

Subject #

70

20

10

1 2 3 4 5 6 7 8 9 10

Srepaired

Stidied

Sorigin

12 13 14 1615 17 18 19 20

Fig. 3. Number of lines before and after tidying per subject

https://atcoder.jp/

Tidy Up Your Source Code! 549

3.3 Results and Discussion

The Effect of Tidying: We confirm how many wasteful statements have been
eliminated by the proposed method. Figure 3 shows LOC before and after tidying
for each subject. The horizontal axis represents each subject, and the vertical
axis represents LOC. The red dots represent LOC of Sorigin. LOC decreased
in all subjects, and we confirmed some source code tidied to LOC of Sorigin.
Next, manual check was carried out for each Stidied. In 66 of the 76 source codes,
wasteful statements were completely eliminated. Some source code had a differ-
ent number of lines from Sorigin, but no wasteful statements. This is because
structure of conditional branches changed due to repair by APR. In the remain-
ing 10 source codes, wasteful statements were not eliminated completely. The
reason is the lack of tidying rules. By adding rules, we can eliminate wasteful
statements in these source codes. From the above results, we consider that the
proposed method can eliminate wasteful statements of source code.

4 Conclusions and Future Work

In this paper, we proposed the method to tidy APR-generated unnatural source
code into natural source code. The proposed method tidies source code based on
GA. We devised detour rules that do not directly eliminate wasteful statements.
We conducted experiment using programming contest as subject. The obtained
results showed that the proposed method could eliminate wasteful statements.

In future work, we expand tidying rules to improve the generality of the
proposed method. This paper only focuses on fundamental arithmetic operators
and basic control statements. Tidying rules for method invocation are necessary
to apply our method to more practical source code. We consider that the key is
checking the program dependences [3] and side-effect [11] of each statement.

Acknowledgments. This research was partially supported by JSPS KAKENHI
Japan (Grant Number: JP21H04877, JP20H04166, JP21K18302, JP21K11829,
JP21K11820, JP22H03567, and JP22K11985).

References

1. Assiri, F.Y., Bieman, J.M.: An assessment of the quality of automated program
operator repair. In: Proceedings of International Conference on Software Testing,
Verification and Validation, pp. 273–282 (2014)

2. Dallmeier, V., Zeller, A., Meyer, B.: Generating fixes from object behavior anoma-
lies. In: Proceedings of International Conference on Automated Software Engineer-
ing, pp. 550–554 (2009)

3. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. on Program. Lang. Syst. 9(3), 319–349 (1987)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, Boston (1999)

550 T. Iwase et al.

5. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE
Trans. on Softw. Eng. 45(1), 34–67 (2019)

6. Goues, C.L., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for
automatic software repair. IEEE Trans. on Softw. Eng. 38(1), 54–72 (2012)

7. Higo, Y., et al.: kGenProg: a high-performance, high-extensibility and high-
portability APR system. In: Proceedings of Asia-Pacific Software Engineering Con-
ference, pp. 697–698 (2018)

8. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. on Softw. Eng. 37(5), 649–678 (2010)

9. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: program repair
via semantic analysis. In: Proceedings of International Conference on Software
Engineering, pp. 772–781 (2013)

10. Romano, S., Vendome, C., Scanniello, G., Poshyvanyk, D.: A multi-study investi-
gation into dead code. IEEE Trans. on Softw. Eng. 46(1), 71–99 (2020)

11. Rountev, A.: Precise identification of side-effect-free methods in java. In: Proceed-
ings of International Conference on Software Maintenance, pp. 82–91 (2004)

12. Xuan, J., Martinez, M., et al.: Nopol: automatic repair of conditional statement
bugs in java programs. IEEE Trans. Softw. Eng. 43(1), 34–55 (2017)

Tutorials

Utilizing User Stories to Bring AI Ethics
into Practice in Software Engineering

Kai-Kristian Kemell1(B) , Ville Vakkuri2 , and Erika Halme3

1 University of Helsinki, Helsinki, Finland
kai-kristian.kemell@helsinki.fi

2 University of Vaasa, Vaasa, Finland
3 University of Jyväskylä, Jyväskylä, Finland

Abstract. AI ethics is a research area characterized by a prominent gap
between research and practice. With most studies in the area being con-
ceptual in nature or focused on technical ML (Machine Learning) solu-
tions, the link between AI (Artificial Intelligence) ethics and SE (Software
Engineering) practice remains thin. Establishing this link, we argue, is
vital going forward. While conceptual discussion is required to define AI
ethics, much progress has already been made in this regard. Similarly,
though technical ML solutions are also required for practical implemen-
tation, ML systems are ultimately still software, and thus SE cannot
be forgotten. In this paper, we propose one way of bringing AI ethics
closer to conventional SE practice: utilizing user stories to implement
AI ethics by means of Ethical User Stories (EUS). EUS can be used to
formulate both functional and non-functional requirements, although an
ethical framework is required produce them. By treating AI ethics as a
part of the development process in this fashion, as opposed to a separate
task, it can ideally become a part of SE for ML systems.

Keywords: Artificial Intelligence · AI ethics · User story · Ethical
user story · Ethical tool

1 Introduction

Implementing ethics in practice is challenging in SE. In practice, doing so often
means converting abstract ethical principles into tangible requirements. This
requires extensive ethical consideration and discussion, which developers can
seldom devote time to among their other work. Ethical guidelines are a typical
way of approaching ethics in SE, though such documents seem to see little use.
For example, it has been argued that one of the more prominent such documents,
the ACM Code of Ethics, has had very little impact on practice in SE [9].

Arguably the most topical research area related to ethics in SE has recently
been AI ethics, following rapid advances in AI technology in the past two decades.
For example, issues such as bias and data privacy, even though not exclusive to AI
systems, have received notable media attention following ethical shortcomings in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 553–558, 2022.
https://doi.org/10.1007/978-3-031-21388-5_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_41&domain=pdf
http://orcid.org/0000-0002-0225-4560
http://orcid.org/0000-0002-1550-1110
http://orcid.org/0000-0003-0750-1580
https://doi.org/10.1007/978-3-031-21388-5_41

554 K.-K. Kemell et al.

such systems out on the field. Thus far, discussion in the area has been predomi-
nantly conceptual, focusing on defining what is AI ethics and what issues should
be addressed. On the other hand, empirical studies have been rare [7,11,13].
Studies discussing the current state of pracitce in the area point towards guide-
lines having had limited impact on practice in the context of AI ethics as well
(e.g., [14–16,18]).

Indeed, despite various ethical issues being acknowledged, tackling these
issues in practice remains one of the key challenges in the area [14]. For exam-
ple, guidelines, which have been the most common tools for implementing AI
ethics, are abstract and difficult to utilize in practice. Guidelines merely present
sets of ethical principles to tackle but often fall short when it comes to provid-
ing instructions for doing so. Translating abstract ethical principles into tangible
requirements is a difficult task. [10,14] Aside from guidelines, various specific ML
techniques for implementing AI ethics exist [11,13], such as techniques related to
bias detection, which are arguably useful for their intended purposes, but require
their users to already know what ethical issues they are tackling and how. How-
ever, SE process related tools, such as practices or methods, are lacking.

To help tackle this issue by better linking AI ethics with conventional SE, we
discuss the idea of utilizing of user stories for implementing AI ethics. We argue
that user stories can function as a way of converting AI ethics principles into
tangible requirements. However, rather than doing so directly through AI ethics
guidelines, we utilize a recent method for implementing AI ethics, ECCOLA [17],
to support the creation of such user stories. Such Ethical User Stories (EUS)
are one way of linking ethics more closely to conventional SE practice. EUS
is a concept we have begun to explore in an existing paper through empirical
evidence [5]. Though this approach is not exclusive to AI ethics and can be of
interest when it comes to ethics in SE in general, AI ethics is arguably one of
the areas where such approaches are most needed currently.

2 Background and Related Work

2.1 AI Ethics

Though discussion on ethical issues related to AI systems is highly active, bring-
ing this discussion into practice is a prevalent issue [14]. This discussion on AI
ethics has recently converged around a set of recurring principles, which in prac-
tice are umbrella concepts comprising various more specific issues [4,6,11]. Some
issues are more tangible and consequently have more tangible solutions, while
others are more abstract or general and require far more effort to implement in
practice.

To provide a practical example of these principles, let us briefly discuss fair-
ness as a principle. Fairness deals with diversity, inclusiveness and, equality. In
practice this manifests as the prevention, monitoring or mitigation of unwanted
bias and discrimination in AI/ML systems. [6] Fairness could be argued to be
one of the more practical principles in terms of its technical implementation.

Utilizing User Stories to Bring AI Ethics 555

This is highlighted by various existing papers proposing technical ML solutions
dedicated to tackling bias in ML [11,13].

Yet, in part, it is exactly this focus on technical tools and conceptual discus-
sion that is currently a large problem in AI ethics, we argue. Whereas numerous
technical ML tools for implementing AI ethics exist, and while the conceptual
discussion on the topic is highly active, few empirical studies exist [7,11,13]. To
this end, the point of view of SE is also largely still missing [14,17]. Technical
ML solutions are ultimately specific solutions for specific problems, and only as
far as ML is considered. Yet ML is but a part of any AI system, and engineering
AI systems is still SE at the end of the day.

2.2 User Stories

User stories are a commonly utilized tool for formulating requirements in SE
[3], and particularly in Agile development [2]. Having originated from eXtreme
Programming XP, user stories are now utilized in most Agile approaches [12].
Though the purpose of user stories is to help formulate and communicate require-
ments, their implementation in practice varies in form. I.e., there are various
templates and approaches used to formulate user stories.

User stories commonly take on the form of a card or a sheet of paper, such as
a post-it note, or more formally a user story template. Of course, this may also
be done using digital tools. They are written using natural language and their
purpose is to communicate the goals of the system that is being developed [19].
One of the more popular approaches to user stories formulates them as follows:
“As a [user], I want to [capability], so that [receive benefit]” [2]. Many variants
of this three-part-template exist. On the other hand, for example, Lucassen [8]
proposes a four-part one that consists of format, role, means, and end.

2.3 Related Work: Implementing AI Ethics

This topic is at the intersection of user stories in the context of ICT-related
ethics and implementing ethics in practice, with AI ethics being the specific
context here. Though this idea of using user stories to implement ethics is not
exclusive to AI ethics, it is currently an area for tools to implement ethics are
sorely needed. Overall, the idea of utilizing user stories to for the purpose of
implementing ethics seems to be quite novel.

In terms of implementing AI ethics in practice, empirical studies are scarce.
Guidelines have been the most common approach to doing so [6], but are argued
to not work [10], given the limited impact they have had on practice [14]. Tech-
nical tools for ML, on the other hand, are highly specific [11]. Focus on SE in
implementing AI ethics has been lacking [14], which we argue is currently a key
gap in the area. As far as SE methods are concerned, we are only aware of a
method for implementing ethics we ourselves have proposed, ECCOLA [17], as
well as one other method, RE4AI [1]. On the other hand, general-purpose tools
and methods related to ethics are numerous in fields such as design.

556 K.-K. Kemell et al.

3 Devising Ethical User Stories Using the Ethical
Framework Method

Ethical User Stories (EUS), in brief, are user stories devised to help tackle and
formalize ethical issues in SE, from the point of view of a particular ethical
framework. EUS are a novel concept we have begun to explore in an existing
paper [5], which provides empirical evidence of EUS in practice.

Figure 1 describes the process of devising EUS. EUS are formulated based on
the case at hand, like user stories in general. However, when devising EUS, an
ethical framework must be present to motivate and direct ethical consideration.
The ethical framework provides the lens through which ethics is approached in
the particular project context. EUS are then written like a conventional user
story, aside from them also including ethical consideration or being motivated
by ethical consideration. EUS can be used to formulate both functional and
non-functional requirements.

The ethical framework used to create EUS can be any ethical tool: a method,
a set of guidelines, or even an ethical theory. The purpose of the ethical frame-
work is to define what is ’ethical’ in the given context, as well as to provide
guidance for, e.g., which ethical issues should be tackled. To this end, the frame-
work of choice would ideally be as closely related to the context at hand as
possible (e.g., AI ethics framework for AI ethics, as opposed to a generic one).

Below, we provide a tangible example of an EUS. In this case, a large number
of EUS were devised for a real use case of Smart terminal1 using an AI ethics
method, ECCOLA [17], as the ethical framework. This is a part of a larger
research endeavor on the topic (see footnote) that we are currently working on,
which this paper provides an initial look at.

ECCOLA is an empirically tested developer-focused AI ethics method that
is presented in card-format. Each ECCOLA card discusses an AI ethics principle
or issues related to a principle. Thus, EUS devised using ECCOLA can typically
be linked to a specific card, as seen in Fig. 2. Figure 2 showcases the relevant
ECCOLA card and an EUS discussing features related to the card.

Fig. 1. Process of devising ethical user stories

1 Ethical User Stories in SMART Terminal Digitalization Project: Use Case Passenger
Flow: https://doi.org/10.48550/arXiv.2111.06116.

https://doi.org/10.48550/arXiv.2111.06116

Utilizing User Stories to Bring AI Ethics 557

Fig. 2. Example of an ethical framework and the resulting EUS (from real case)

4 Summary

AI ethics is an area of research where the gap between research and practice
remains prominent. In particular, the link between AI ethics and SE practice
is thin [14]. Studies in the area are generally either conceptual in nature or
most focused on technical tools for ML. Engineering ML systems is still SE, and
focusing purely on the ML components results in a narrow focus.

We propose Ethical User Stories (EUS) as one tool for bringing AI ethics
closer to conventional SE practice. User stories are commonly used SE tools
in Requirements Engineering. By incorporating ethical issues into this process
through an ethical framework, we argue that user stories could help implement
ethics in practice. We provide some initial empirical evidence of their use in an
existing paper [5].

In this light, we strongly urge future research to conduct further empirical
studies in AI ethics, particularly with a focus on solutions for tackling AI ethics
in practice in SE. Such studies should focus on incorporating AI ethics as a part
of SE practice. EUS provide one example of how this could perhaps be done.

References

1. Siqueira de Cerqueira, J., Azevedo, A., Tives, H., Canedo, E.: Guide for artificial
intelligence ethical requirements elicitation - re4ai ethical guide. In: Proceedings
of the 55th Hawaii International Conference on System Sciences, January 2022

2. Cohn, M.: User Stories Applied: for Agile Software Development. Addison-Wesley,
Boston (2004)

3. Dimitrijević, S., Jovanović, J., Devedžić, V.: A comparative study of software tools
for user story management. Inf. Softw. Technol. 57, 352–368 (2015)

4. Hagendorff, T.: The ethics of AI ethics: an evaluation of guidelines. Mind. Mach.
30(1), 99–120 (2020)

558 K.-K. Kemell et al.

5. Halme, E., et al.: How to write ethical user stories? impacts of the ECCOLA
method. In: Gregory, P., Lassenius, C., Wang, X., Kruchten, P. (eds.) XP 2021.
LNBIP, vol. 419, pp. 36–52. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-78098-2 3

6. Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nat.
Mach. Intell. 1(9), 389–399 (2019)

7. Johnson, B., Smith, J.: Towards ethical data-driven software: Filling the gaps in
ethics research & practice. In: 2021 IEEE/ACM 2nd International Workshop on
Ethics in Software Engineering Research and Practice (SEthics), pp. 18–25 (2021)

8. Lucassen, G., Dalpiaz, F., Van Der Werf, J.M.E., Brinkkemper, S.: Forging high-
quality user stories: towards a discipline for agile requirements. In: 2015 IEEE
23rd International Requirements Engineering Conference (RE), pp. 126–135. IEEE
(2015)

9. McNamara, A., Smith, J., Murphy-Hill, E.: Does ACM’s code of ethics change
ethical decision making in software development? In: Proceedings of the 2018 26th
ACM ESEC/FSE, pp. 729–733. ESEC/FSE 2018, ACM, New York, NY, USA
(2018)

10. Mittelstadt, B.: Principles alone cannot guarantee ethical AI. Nat. Mach. Intell. 1,
501–507 (2019)

11. Morley, J., Floridi, L., Kinsey, L., Elhalal, A.: From what to how: an initial review
of publicly available AI ethics tools, methods and research to translate principles
into practices. Sci. Eng. Ethics 26(4), 2141–2168 (2020)

12. Schön, E.M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering:
a systematic literature review. Comput. Stand. Interf. 49, 79–91 (2017)

13. Sloane, M., Zakrzewski, J.: German AI start-ups and “ai ethics”: Using a social
practice lens for assessing and implementing socio-technical innovation. In: 2022
ACM Conference on Fairness, Accountability, and Transparency, FAccT 2022, pp.
935–947. Association for Computing Machinery, New York, NY, USA (2022)

14. Vakkuri, V., Kemell, K., Kultanen, J., Abrahamsson, P.: The current state of
industrial practice in artificial intelligence ethics. IEEE Softw. 37(4), 50–57 (2020)

15. Vakkuri, V., Kemell, K.-K., Abrahamsson, P.: Implementing ethics in AI: ini-
tial Results of an Industrial Multiple Case Study. In: Franch, X., Männistö, T.,
Mart́ınez-Fernández, S. (eds.) PROFES 2019. LNCS, vol. 11915, pp. 331–338.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35333-9 24

16. Vakkuri, V., Kemell, K.-K., Jantunen, M., Abrahamsson, P.: This is just a pro-
totype: how ethics are ignored in software startup-like environments. In: Stray,
V., Hoda, R., Paasivaara, M., Kruchten, P. (eds.) XP 2020. LNBIP, vol. 383, pp.
195–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49392-9 13

17. Vakkuri, V., Kemell, K.K., Jantunen, M., Halme, E., Abrahamsson, P.: ECCOLA-a
method for implementing ethically aligned AI systems. J. Syst. Softw. 182, 111067
(2021)

18. Vakkuri, V., Kemell, K.K., Tolvanen, J., Jantunen, M., Halme, E., Abrahamsson,
P.: How do software companies deal with artificial intelligence ethics? A gap anal-
ysis. In: The International Conference on Evaluation and Assessment in Software
Engineering 2022, pp. 100–109. EASE 2022, Association for Computing Machinery,
New York, NY, USA (2022)

19. Wang, X., Zhao, L., Wang, Y., Sun, J.: The Role of requirements engineering prac-
tices in agile development: an empirical study. In: Zowghi, D., Jin, Z. (eds.) Require-
ments Engineering. CCIS, vol. 432, pp. 195–209. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43610-3 15

https://doi.org/10.1007/978-3-030-78098-2_3
https://doi.org/10.1007/978-3-030-78098-2_3
https://doi.org/10.1007/978-3-030-35333-9_24
https://doi.org/10.1007/978-3-030-49392-9_13
https://doi.org/10.1007/978-3-662-43610-3_15

Workshop on Engineering Processes and
Practices for Quantum Software

(PPQS’22)

Workshop on Engineering Processes
and Practices for Quantum

Software (PPQS’22)

Co-located with PROFES 2022, Finland

Mahdi Fehmideh1, Muhamed Waseem2, Aakash Ahmad3,
and Naveed Ikram4

1 University of Southern Queensland, Australia
Mahdi.Fahmideh@usq.edu.au

2 Wuhan University, China
m.waseem@whu.edu.cn

3 Lancaster University Leipzig, Germany
a.ahmad13@lancaster.ac.uk
4 EYCON PVT Limited, Pakkistan
naveed.ikram@riphah.edu.pk

Abstract. This report provides a synopsis of a planned workshop titled Workshop on
Engineering Processes and Practices for Quantum Software (PPQS’22). The PPQS’22
workshop, as a pioneering effort aims to organise a community of researchers and prac-
titioners on process-centered development of quantum software systems and applications.
The workshop will have a keynote session from industry expert, presentation of an
accepted article, followed by plenary discussion and will be held on November 21, 2022 as
a co-located event of the International Conference on Product-Focused Software Process
Improvement in Jyväskylä, Finland.

Keywords: Quantum software engineering � Quantum computing � Software process

1 Introduction to the Workshop (PPQS’22)

Quantum Software Engineering (QSE) is a recent genre of Software Engineering
(SE) discipline - relying on engineering processes and practices - to design, develop,
validate and evolve quantum software (QSW) systems effectively and efficiently [1].
Traditional SE processes and practices can still be useful in QSE context. However,
they need to be augmented with the unique characteristics of quantum software [2].

The Workshop on Engineering Processes and Practices for Quantum Software
(PPQS’22) is as a pioneering effort that aims to establish a community, fostering
academic research and industrial solutions, focused on QSE principles and practices for
process-centric design, development, validation, deployment and maintenance of
quantum software systems and applications [3]. The workshop intends to attract
publishable, applicable research as empirical studies, industrial experience reports, and
solution proposals etc. on process-centric QSE.

Keynote Session: The workshop will open with a Keynote presentation by industry
representative (Dr. Valtteri Lahtinen the CSO and co-founder of Quanscient [4]). The

focus of the keynote will be Process-centered and iterative development of quantum
software systems.

Accepted Workshop Paper(s):The workshop received one submission as a full
paper. The research area is relatively young and rapidly evolving with much less
research on processes and practices of quantum software engineering when compared
to classical software engineering processes. The submitted paper was reviewed by at-
least two experts and both recommended their acceptance along with comments,
inviting the authors to improve their work in the final version.

Paper title: Classical to Quantum Software Migration Journey Begins: A Con-
ceptual Readiness Model

Paper focus and contributions: The research presents a readiness model that can
help an organization assess its capability of migration from classic software engi-
neering to quantum software engineering. The model is based on the existing multi-
vocal literature, industrial empirical study, understanding of the process areas,
challenging factors and enablers that could impact the quantum software engineering
process.

Plenary Discussion: The discussion among workshop participants also welcomes
other participants at PROFES to share their ideas, experiences, and open discussion on
the software engineering processes and practices for quantum computing platforms.
The workshop can also help to streamline the points and agenda for future research on
processes and practices for quantum software systems.

2 Program Committee

Mahdi Fahmideh, University of Southern Queensland, Australia
Muhamemd Waseem, Wuhan University, China
Aakash Ahmad, Lancaster University Leipzig, China
Naveed Ikram, Ripah International University, Pakistan
Liang Peng, Wuhan University, China
Zularnain Hashmi, Terablu, Pakistan
Rabie Ramadan, University of Ha’il, Saudi Arabia
Arif Ali, University of Oulu, Finland
Amna Asif, Lancaster University, Leipzig

References

1. Piattini, M., Serrano, M., Perez-Castillo, R., Petersen, G., Hevia, J.L.: Toward a
quantum software engineering, IT Prof. 23(1), 62–66 (2021)

2. Gemeinhardt, F., Garmendia, A., Wimmer, M.: Towards model-driven quantum
software engineering. In: IEEE/ACM 2nd International Workshop on Quantum
Software Engineering (Q-SE), pp. 13–15, IEEE (2021)

Workshop on Engineering Processes and Practices for Quantum Software 561

3. Ali, S., Yue, T.: Modeling quantum programs: Challenges, initial results, and
research directions. In: Proceedings of the 1st ACM SIGSOFT International
Workshop on Architectures and Paradigms for Engineering Quantum Software,
pp. 14–21 (2020)

4. QUANSCIENT. Simulations for the Industry 4.0. https://quanscient.com/

562 M. Fehmideh et al.

https://quanscient.com/

Classical to Quantum Software Migration
Journey Begins: A Conceptual Readiness Model

Muhammad Azeem Akbar1(B), Saima Rafi2, and Arif Ali Khan3

1 Department of Software Engineering, LUT University, Lappeenranta, Finland
azeem.akbar@lut.fi

2 Department of Informatics and Systems, University of Murcia, Murcia, Spain
3 M3S Empirical Software Engineering Research Unit, University of Oulu, 90570 Oulu, Finland

arif.khan@oulu.fi

Abstract. With recent advances in the development of more powerful quantum
computers, the research area of quantum software engineering is emerging. Quan-
tum software plays a critical role in exploiting the full potential of quantum com-
puting systems. As a result, it has been drawing increasing attention recently to
provide concepts, principles, and guidelines to address the ongoing challenges
of quantum software development. The importance of the topic motivated us to
voice out a call for action to develop a readiness model that will help an orga-
nization assess its capability of migration from classic software engineering to
quantum software engineering. The proposed model will be based on the exist-
ing multivocal literature, industrial empirical study, understanding of the process
areas, challenging factors and enablers that could impact the quantum software
engineering process. We believe that the proposed model will provide a roadmap
for software development organizations to measure their readiness concerning to
transformation from classic to quantum software engineering by suggesting best
practices and highlighting important process areas, challenges, and enablers.

Keywords: Quantum software engineering · Readiness model · Process areas ·
Challenges · Enablers · Best practices

1 Introduction

Quantum computing promises to solvemany problemsmore precisely than possible with
classical computers, e.g., simulating complex physical systems or applying machine
learning techniques [1, 2]. Presently, that quantum computing has become widespread
in developing more powerful quantum computers, and their need in terms of quantum
software and applications, development process and frameworks, quantum software
architectures and styles are becoming increasingly important [3, 4]. Quantum computing
is a technological revolution that demands a new software engineering paradigm to
develop and conceive quantum software systems. Quantum software engineering calls
for novel techniques, tools, processes, and methods that explicitly focus on developing
software systems based on quantum mechanics [5]. Though, the development of such

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 563–573, 2022.
https://doi.org/10.1007/978-3-031-21388-5_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_42&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_42

564 M. A. Akbar et al.

quantum applications is complex and requires experts with knowledge from various
fields, e.g., physics, mathematics, and computer science [6, 7].

Quantum software engineering is an emerging research area investigating concepts,
principles, and guidelines to develop, maintain, and evolve quantum applications [8, 9].
Therefore, it is important to enhance the quality and reusability of the resulting quan-
tum applications by systematically applying software engineering principles during all
development phases, from the initial requirement analysis to the software implementation
[10]. In classical software engineering, software development processes often document
the different development phases a software artefact or application goes through [11,
12]. Furthermore, such software development process also summarizes best practices
and methods that can be applied in the various phases and corresponding tools [9, 13].
Hence, they can be used for educating new developers by providing an overview of
the development process or serving as a basis for cooperating with experts from differ-
ent fields [14]. Today’s quantum applications are often hybrid, consisting of quantum
and classical programs [15]. Thus, the development process for quantum applications
involves developing and operating both kinds of programs. However, existing lifecycles
from classical software engineering [16] and quantum software development process
[13, 17] only target one of these kinds and do not address the resulting integration
challenges.

Furthermore, the execution of the quantum and classical programs must be orches-
trated, and data has to be passed between them [18]. The workflow process is a means
for these orchestrations to provide benefits, such as scalability, reliability, and robust-
ness [19]. Thus, to transform from classic to quantum software development process, we
need to analyze the software development community’s tools, standards, and guidelines.
Stefano et al. [20] highlighted that “the challenge of quantum software engineering is to
rework and extend the whole of classical software engineering into the quantum domain
so that programmers can manipulate quantum programs with the same ease and confi-
dence that they manipulate today’s classical programs. ”Ahmad et al. [21] presented the
architectural view of quantum software engineering architecture (Fig. 1). The presented
architecture view helps to reflect in designing and envisioning an overall system, to avoid
errors and future bugs in quantum system. Hence, the role of architecture is empowered
in quantum software applications to abstract complexities of source code modules and
their interactions as architectural component and connectors [22].

Motivation Scenario
Despite the significance of quantum software engineering, no standards and models
are available to handle quantum software development processes. For example, if an
organization want to transform from classic to quantum software development, they
need guidelines and strategies to put the process on the right path. Thus, it is required to
estimate all aspects of a software development process like time, cost, integration aspect,
scope, quality, human resources, risk, communication, stakeholders, and procurements.
The transformation from classic to the quantum system is a challenging exercise due to
issues such as:

Little research has been conducted on the development of models and strategies.
The problems faced by organizations during the implementation of quantum software
development activities are quite different from the traditional or classical paradigm.

Classical to Quantum Software Migration Journey Begins 565

Therefore, existing literature doesn’t examine the transformation from classic to quan-
tum software engineering in sufficient detail as there is little research that highlights the
important process areas and challenges to address for the adoption of quantum software
development. Therefore, lack of proper guidelines that help practitioners to imple-
ment quantum technology for software development. Presently, there are no assessment
tools and frameworks for determining an organization’s readiness concerning transform-
ing from a classic to a quantum software development process. No such practices are
available that assist practitioners in improving quantum software engineering in their
organization.

Moreover, there is a lack of a roadmap to help organizations choose the appropriate
patterns, particularly for their problems. No study addresses the project management
changes caused due to the migration from classic to quantum software engineering.
Thus, it is demanded to deeply study the important process areas, challenges, enablers,
and guidelines that could influence the adoption of quantum software development.
Furthermore, discussing the different software artefacts usually constituting a quantum
application and presenting their corresponding process areas is required. It is critical to
identify the plug points between the classic and quantum software modules to enable
their integration into overall application, for execution of hybrid quantum applications.
To address all the highlighted concerns, there is need of practically robust roadmap and
guidelines to assist the practitioners to make the migration from classic to quantum soft-
ware development successful. Hence, the readiness model is one of the key instruments

Fig. 1. Architecture of quantum software engineering [21]

566 M. A. Akbar et al.

to assists software development organizations to assess the capability of an organiza-
tions concerning to transform from classic software engineering to quantum software
engineering.

Readiness Models and Standards
A readiness model is a technique to assess an organization or team based on the specified
criteria to represent their level of readiness. Readiness models are intended to help orga-
nizations appraise their process readiness and develop it for improvement. They serve
as points of reference for different stages of readiness in an area. Software engineering
readiness models intend to help organizations move from ad-hoc processes to mature
and disciplined software processes [23].

In software engineering research, a readiness model has been utilized in several
studies. It was used by Niazi et al. [24] to assess organizational readiness in terms of
software process improvement. Their readiness model has several levels: aware, defined,
and optimizing. Critical factors and barriers support each level. The researchers vali-
dated their readiness model by performing case studies in three software organizations.
Similarly, Ali and Khan [25] presented a model to measure the readiness of a software
organization to form outsourcing relationships. They utilized critical partnership fac-
tors to develop a readiness model and examined their practical implementation. Their
readiness model has several levels: contract, success, readiness, conversion and matu-
rity. Similarly, Khan et al. [26] proposed a software outsourcing vendor readiness model
(SOVRM). The readiness levels of the SOVRM consist of critical barriers and critical
success factors. Similarly, a recent study conducted by Sufi et al. [27] proposed secu-
rity requirements engineering readiness (SRERM). The levels of SRERM are based on
security requirements categories. All the above-discussed readiness models followed
the capability maturity model Integration (CMMI) staged representation structure and
considered the critical barriers and success factors as the key process areas (KPA’s). The
software engineering institute developed CMMI almost twenty years ago [28].

CMMI helps organizations to streamline process improvement. It clearly shows
what organizations should do to mature software processes. CMMI model is integrated
into five maturity levels, i.e., (initial, managed, defined, quantitatively managed, and
optimizing). CMMI had proved itself for decades yet has had no meaningful impact
in providing detailed information about broader technology space such as quantum
computing in implementing strategies and key practices.

ISO/IEC 15504 Information Technology: SPICE is an international framework for
accessing software development [29]. It provides a detailed description of standard
documents for the software development process and related management functions
within an organization. It includes two dimensions, i.e., capability dimension and process
dimension. It also introduces assessment indicators that help an organization with brief
guidelines to assess the quality of theirmanagement process. To see in terms of improving
quantum computing process areas, SPICE does integrate existing process improvement
methodologies. Still, it does not provide an explicit process improvement path regarding
quantum software.

International Standards Organization (ISO) 9000/9001: ISO 9000 is a series of stan-
dards in quality management that helps organizations maintain their customer and other

Classical to Quantum Software Migration Journey Begins 567

stakeholder needs related to a product or service [30]. It helps organizations to docu-
ment the elements needed for quality software systems effectively. ISO 9001 consists of
generic standards that are not specific to the only software industry and can be applied to
different types of organizations. These standard guidelines focus on the industry’s man-
ufacturing and services aspects, including quality standards. However, it still lags behind
process improvement aspects of software systems while using quantum technology.

Several readiness andmaturitymodels have been proposed by researchers and practi-
tioners in the traditional software development domain, providing a framework to assess
an organization’s current effectiveness and supporting figuring out what capabilities they
need to acquire next to improve their performance. Indeed, this apparent popularity of
these models out on the field has partly motivated us to propose a readiness model in
the context of transformation from classic to quantum software development. In an area
where we struggle with a gap between research and practice, we argue that looking at
frameworks, models, and other tools actively used out on the field is a good starting point
for further steps. Thus far, guidelines have been used to make quantum software engi-
neering more tangible, but further steps are still needed, and a robust readiness model
could be one such step.

2 Call for Action

We propose developing a readiness model to provide a roadmap for migrating from
classical to quantum software development. Such a readiness model would help the field
move from ad hoc implementation of quantum software development to a more mature
process. Furthermore, we argue that this model should not be an effort for a single
researcher or research group but a multidisciplinary project that builds on a combination
of theoretical models and empirical results. The research work is classified in four steps
to developing the proposed readiness model.

Step 1: This step will give a broad overview of the available literature and identify the
key process areas and challenging factors that can influence the transformation from
classic to quantum software development process. To meet this objective, we plan to
conduct a multivocal literature review (MLR) which is a viable approach to extracting
data from the grey and white literature. As the topic under investigation is not maturely
studied in mainstream research, thus the grey literature could give critical insights about
it. The key finding of this step revolves around the following questions.

[What process areas of transformation fromclassic software development to quantum
software development are reported in the existing literature?.

[What are the key challenging factors of transforming the classic software develop-
ment process to quantum, reported in the literature?.

[What enablers are essential for transforming the existing classic to quantum
software development process, reported in the literature?

Step 2: This step leads to empirically Quantum Software Engineeringvalidating the
literature findings (Steps 1) with industry practitioners by conducting the questionnaire
survey, case study, and interviews. This step aims to confirm significant process areas

568 M. A. Akbar et al.

and challenges identified in step 1 and to enlist additional influencing areas towards
transforming the traditional software development process into quantum. In this step,
we will find the answers to the following questions:

[What process areas are critical to consider while transforming from classic to
quantum software development process?].

[What are the key challenges faced by industrial practitioners while transforming
the existing classic software development process to quantum software development?].

[What enablers are essential for transforming the existing classic to quantum
software development process? discussed in real-world practice?].

Step 3:This step will investigate best practices against each identified challenging factor
and enabler (in Steps 1 and 2). To achieve this step, we will conduct MLR to investigate
the state-of-the-art best practices reported in grey and formal literature. Furthermore, we
will empirically explore the best practices against each challenging factor and enabler
by conducting a questionnaire, case study, and interviews. This step will answer the
following questions:

[What best practices address the challenging factors (Step 1), reported in the
literature and real-world industry?].

[What are the best practices to achieve the enablers identified in Step 2, reported in
the literature and real-world industry?].

Step 4: Finally, a readiness model will be developed to assist the software development
organizations in assessing, adapting and improving their process toward the migra-
tion from classic to quantum software development paradigm. To develop the readiness
model, we will consider the findings of steps 1, step 2, and steps 3.

The readiness model will consist of three components, i.e., the assessment compo-
nent, factors component (process areas, challenges, enablers), and guidelines component.
The identified best practices will be mapped against each enabler and challenging factor
to achieve that certain level. If an organization wants to move to the next level, they
need to address each enabler and challenging factor by implementing its respective best
practices.

The developed readiness model will help the organizations assess their ability with
respect to the transformation from classic to quantum software development and provide
a roadmap to improve their capability concerning the adoption of quantum software
development.

To check the practical robustness of the model, we will conduct case studies
in software development organizations and update them according to their sugges-
tions. The final model will be available for software development organizations to
adopt and improve their adaptability and executability concerning to quantum software
development process.

[How to develop and evaluate the effectiveness of the proposed model?].

[What would be the readiness levels of the proposed model?].

[How to check the robustness of the proposed model in the real-world industry?].

Classical to Quantum Software Migration Journey Begins 569

3 Architecture of Proposed Model

The basic architecture of the proposed quantum software engineering readiness model
(QSERM) will be designed based on Process areas and their associated challenges and
key enablers identified from literature and industry practices. To align identified compo-
nents in the structured model, we will use the concept of existing software engineering
standards such as CMMI, IMM and SPICE. Figure 2 shows the relationship between
key components of the proposed model. It depicts the proposed model’s complete com-
ponent, highlighting how the results of existing models, literature and industry findings
will be used to design the key components of the proposed QSERM.

The four components of QSERM are:

• Readiness level component
• Process areas
• Challenge
• Key enablers

Fig. 2. Structure of the proposed model

3.1 Readiness Level Component

The proposedmodel consists of readiness levels based on the standardmodel for software
engineering i.e., CMMI. Several adjustments are required in the structure of CMMI to

570 M. A. Akbar et al.

make it applicable for quantum software applications. The structure of each readiness
level is given in Fig. 3, and brief explanation is given below:

Process Areas (PAs): Process areas are the building blocks that indicate the areas an
organization should focus on to improve software processes. These areas consist of a
cluster of related practices that when implemented collectively, satisfy the goals related
to that area. Therefore, we will identify the process areas related to quantum software
engineering to improve the software development process.

Challenging Factors (CFs): The architecture of the proposed model consists of various
process areas. The identified challenging factors will be mapped to all maturity levels
and process areas associated with each level. This formulation has been used previously
by many researchers. Therefore, we can justify the use of challenging factors in our
study.

Enablers (ENs): The Key enablers will be identified to support the proposed model
to accomplish the goals associated with all five maturity levels of QSERM. To justify
the use of key enablers, it provides the best support to perform essential tasks. We will
perform an SLR study to identify the key enablers from software engineering experts
working with quantum development.

Fig. 3. Structure of each readiness level

The proposed QSERMwill be based on five readiness levels (Fig. 4). Each readiness
level encompasses specific process areas. The process areas highlight the important
zones that need to be addressed by an organization. Furthermore, important, challenging
factors and enablers will be aligned with each process area. To achieve a higher level, an
organization must address all the process areas of a readiness level. And to address all
the process areas, organizations must address all the challenging factors and enablers.

Classical to Quantum Software Migration Journey Begins 571

The best practices will be mapped against each challenge and enabler, which will assist
the organizations in addressing them effectively. For example, if organization-A wants
to move to level 2, they need to address all the process areas of level 1. To achieve this,
they need to address all the challenging factors and enablers of level-1 by implementing
their associated best practices.

Fig. 4. Example of proposed readiness model

3.2 Assessment Dimension

To evaluate the model, we will use the Motorola assessment tool [31]. Many researchers
in software engineering field have used this tool to evaluate their proposed readiness
model. Therefore, we have selected the same tool for the evaluation of QSERM. This
tool will assist the organization in identifying the areas that need further improvement.
The three dimensions of the Motorola assessment tool are:

Approach: Emphasize the top management’s commitment to implementing the specific
practice.

Deployment: Focus on the consistent and uniform practice implementation across
quantum project areas.

Results: Assess the breadth and consistency of the results of deployed practice across
different project areas.

4 Expected Outcomes

Since in the early stage, the study will highlight only a few contributions. One of the
contributions is identifying process areas, challenges, enablers, and associated practices
that will help quantum software development. The process areas consist of a cluster of

572 M. A. Akbar et al.

related practices that, when implemented collectively, satisfy the goals related to that
area. The second contribution is to develop a quantum software engineering readiness
model. Thismodel will assist organisations in assessing readiness and suggest guidelines
for successfully adopting the quantum software engineering paradigm. And the third
contribution is to help organizations in “identifying”, “analyzing” and “mitigating” the
challenges faced during the migration from classic to quantum software engineering.
The novelty of this research work is the development of a readiness model that will state
activities, guidelines or roadmap that can be assist in migrating from classic to quantum
software development.

Acknowledgement. This research is supported by the PHP Foundation with the grant 20220006.

References

1. Outeiral, C., et al.: The prospects of quantum computing in computational molecular biology.
Comput. Mol. Sci.. 11(4), e1481 (2021)

2. De Stefano, M., et al.: Software engineering for quantum programming: How far are we?,” J.
Syst. Softw. 190, 111326 (2022)

3. Häner, T., Steiger, D.S., Svore, K., Troyer, M. J. Q. S. and Technology, “A software
methodology for compiling quantum programs. Quant. Sci. Technol. 3(2), 020501 (2018)

4. Ahmad,A., Khan,A.A.,Waseem,M., Fahmideh,M.,Mikkonen, T.: Towards process centered
architecting for quantum software systems. In: IEEE International Conference on Quantum
Software (QSW) (2022)

5. Gemeinhardt, F., Garmendia, F., Wimmer, M.: Towards model-driven quantum software
engineering. In: Towards Model-Driven Quantum Software Engineering. pp. 13–15 (2021)

6. Nita, L., et al.: Education, “The challenge and opportunities of quantum literacy for future
education and transdisciplinary problem-solving, Res. Sci. Technol. Educ. pp. 1–17 (2021)

7. Altman, E., et al.: Quantum simulators: architectures and opportunities. PRX Quant.
2(1),017003 (2021)

8. Piattini, M., Peterssen, G., Pérez-Castillo, R.: Quantum computing: a new software engineer-
ing golden age, ACM SIGSOFT Softw. Eng. Notes 45(3), 12–14 (2021)

9. Zhao, J.: Quantum software engineering: landscapes and horizons. In: Serrano, M.A., Pérez-
Castillo, R., Piattini, M. (eds.) Quantum Software Engineering. Springer, Cham (2020).
https://doi.org/10.1007/978-3-031-05324-5_2

10. LaRose, R.J.Q.: Overview and comparison of gate level quantum software platforms. Qunat.
Comput. 3, 130 (2019)

11. Akbar, M.A., et al.: Improving the quality of software development process by introducing a
new methodology–AZ-model. IEEE Acces 6, 4811–4823 (2017)

12. Mohammed, N.M., Munassar, A., Govardhan, A.: A comparison between five models of
software engineering. Int. J. Comput. Sci Iss. 7(5), 94 (2010)

13. Weder, B., Barzen, J., Leymann, F., Salm, M., Vietz, D.: The quantum software lifecy-
cle. In: APEQS 2020: Proceedings of the 1st ACM SIGSOFT International Workshop on
Architectures and Paradigms for Engineering Quantum Software, pp. 2–9 (2020)

14. Campbell, E., Heyfron, L..E.: An efficient quantum compiler that reduces T count, Quant.
Sci. Technol. 4(1) (2018)

15. Leymann, F., Barzen, J.: Hybrid quantum applications need two orchestrations in superposi-
tion: a software architecture perspective (2021)

https://doi.org/10.1007/978-3-031-05324-5_2

Classical to Quantum Software Migration Journey Begins 573

16. Akbar, M.A., et al.: Statistical analysis of the effects of heavyweight and lightweight
methodologies on the six-pointed star model. IEEE Access 6, 8066–8079 (2018)

17. N. Dey,M. Ghosh, Kundu, S.S., Chakrabarti, A.: QDLC--the quantum development life cycle
(2020)

18. Weder, B., Breitenbücher, B., Leymann, F., Wild, K.: Integrating quantum computing into
workflow modeling and execution. In: 2020 IEEE/ACM 13th International Conference on
Utility and Cloud Computing (UCC), pp. 279–291 (2020)

19. Weder, B., Barzen, J., Leymann, F., Vietz, D.: Quantum software development lifecycle. In:
Serrano,M.A., Pérez-Castillo, R., Piattini,M. (eds)QuantumSoftware Engineering. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-05324-5_4

20. Bettelli, S., Calarco, T., Serafini, L.: Toward an architecture for quantum programming. Mol.
Opt. P. Phys. 25(2), 181–200 (2003)

21. Ahmad, A., Khan, A.A., Waseem, M., Fahmideh, M., Mikkonen, T.: Towards Process cen-
tered architecting for quantum software systems. In: 2022 IEEE International Conference on
Quantum Software (QSW), pp. 26–31 (2022)

22. Murali, P., Linke, N.M., Martonosi, M., Abhari, A.J., Nguyen, N.H., Alderete, C.H.:
Full-stack, real-system quantum computer studies: Architectural comparisons and design
insights. In: ISCA 2019, Proceedings of the 46th International Symposium on Computer
Architecturepp, pp. 527–540 (2019)

23. VTetlay, A., John, P.: Determining the lines of system maturity, system readiness and capa-
bility readiness in the system development lifecycle. In: 7th Annual Conference on Systems
Engineering Research 2009 (CSER 2009) (2009)

24. Niazi, M., Wilson, D., Zowghi, D.: Organisational readiness and software process improve-
ment. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 96–107.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73460-4_11

25. Ali, S., Khan, S.U.: Software outsourcing partnership model: an evaluation framework for
vendor organizations. J. Styst. Softw. 117, 402–425 (2016)

26. Khan, S.U.: Software outsourcing vendors readiness model (SOVRM). In: Profes Doctoral
Symposium, Keele University (2011)

27. Mufti, Y.,Niazi,M.,Alshayeb,M.,Mahmood, S.:A readinessmodel for security requirements
engineering. IEEE Acces. 6, 28611–28631 (2018)

28. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.: Capability maturity model, version 1.1.
IEEE Softw.10(4), 18–27 (1993)

29. ISO.ISO/IEC 15504-4: Information Technology—Process Assessment—Part 4: Guidance
on Use for Process Improvement and Process Capability Determination. International
Organization for Standardization (2004)

30. Committee, I.T.: ISO 9000: 2005 qualitymanagement systems–fundamentals and vocabulary.
Technical report, International Organization for Standardization 55, 89 (2005)

31. Daskalantonakis„ M.K.: Achieving higher SEI levels. IEEE Softw. 11(4), 17–24, (1994)

https://doi.org/10.1007/978-3-031-05324-5_4
https://doi.org/10.1007/978-3-540-73460-4_11

1st Workshop on Computational
Intelligence and Software Engineering

(CISE 2022)

1st Workshop on Computational Intelligence
and Software Engineering (CISE 2022)

Pasquale Ardimento1 , Akhtar Jami2 , and Michele Scalera1

1 Department of Informatics, University of Bari Aldo Moro, Via Orabona 4,
Bari, Italy

{pasquale.ardimento,michele.scalera}@uniba.it
2 Department of Computer Science, National University of Computer and

Emerging Sciences, Pakistan
akhtar.jamil@nu.edu.pk

Abstract. In the last decades, despite the introduction of innovative approaches and
paradigms useful in the SE (Software Engineering) field, their technological transfer on a
larger scale has been very gradual and still almost limited. This is due to the critical
aspects in SE with respect to other well-founded engineering disciplines since SE is
strongly influenced by social aspects (i.e., human knowledge, skills, expertise, and
interactions) that are highly context-driven, non-mechanical and strongly based on context
and semantic knowledge. The rise of artificial intelligence (AI) has the potential to define
effective approaches for improving software quality allowing a growth in the project
success rates. AI can provide the capabilities to assist software teams in many aspects,
from automating routine tasks to providing project analytics and actionable recommen-
dations, and even making decisions where non-trivial context detection and information
processing are needed. Recent works reported that several software engineering problems
could effectively tackled using a combination of AI techniques such as NLP, machine
learning, fuzzy logic, multi-objective search, metaheuristics, and clustering algorithms.

1 Introduction

The overall goal of this interdisciplinary workshop is to raise the level of engagement
and discussion about SE and AI communities to identify opportunities to improve the
quality of scientific results and improvements on software product development.
A further goal of the workshop is to identify opportunities to improve the quality of
scientific discourse and progress on human aspects within software processes, as well
as to identify opportunities able to assist researchers about how to make decisions
where non-trivial context detection and information processing in the context of
software engineering. To achieve these goals, it is important to bring together
researchers and practitioners who face the problem of integrating AI methods in
software processes and have tried effective methods to resolve it.

1.1 Target Audience

The objective of this workshop is to foster the integration between SE and AI com-
munities to improve research results, teaching and mentoring, and ultimately industrial
practice.

https://orcid.org/0000-0001-6134-2993
https://orcid.org/0000-0002-2592-1039
https://orcid.org/0000-0002-2455-2032

2 Workshop Papers

Below is the list of accepted papers.

2.1 Paper 1: Technical Debt Forecasting from Source Code Using
Temporal Convolutional Networks

This paper was written by Lerina Aversano (University of Sannio, Department of
Engineering), Mario Luca Bernardi (University of Sannio, Department of Engineering),
Marta Cimitile (Unitelma Sapienza University Rome) and Martina Iammarino
(University of Sannio, Department of Engineering).

ABSTRACT: Technical Debt describes a deficit in terms of functions, architecture,
or integration, which must subsequently be filled to allow a homogeneous functioning
of the product itself or its dependencies. It is predominantly caused by pursuing rapid
development versus a correct development procedure. Technical Debt is therefore the
result of a nonoptimal software development process, which if not managed promptly
can compromise the quality of the software. This study presents a technical debt trend
forecasting approach based on the use of a temporal convolutional network and a broad
set of product and process metrics, collected commit by commit. The model was tested
on the entire evolutionary history of two open-source Java software systems available
on Github: Commons-codec and Commons-net. The results are excellent and
demonstrate the effectiveness of the model, which could be a pioneer in developing a
TD reimbursement strategy recommendation tool that can predict when a software
product might become too difficult to maintain.

2.2 Paper 2: Adagio: a bot for AuDio processing AGainst vIOlence

This paper was written by Vito Nicola Convertini, Giuseppe Pirlo, Ugo Lopez,
Antonella Serra, and Rosa Conte (all from University of Bari Aldo Moro).

ABSTRACT: Within social networks, audio is a vehicle for violent, bullying or
generally unwanted content. This research intends to propose an automatic tool for
extracting text from an audio stream. Microsoft azure cognitive cloud services, and in
particular, Speech SDK and bot SDK are used for extraction and recognition tasks. The
extracted text can then be analyzed using techniques and algorithm known for ana-
lyzing critical situations such as violence or bullying but is applicable in any context.

2.3 Paper 3: End Users’ Perspective of Performance Issues in Google Play
Store

This paper was written by Anam Noor (Mohammad Ali Jinnah University), Muhammad
Daniyal Mehmood (Mohammad Ali Jinnah University), and Teerath Das (University of
Jyvńäskylä).

ABSTRACT: The success of mobile applications is closely tied to their perfor-
mance which shapes the user experience and satisfaction. Most users often delete
mobile apps from their devices due to poor performance indicating a mobile app’s
failure in the competitive market. This paper performs a quantitative and qualitative

1st Workshop on Computational Intelligence and Software Engineering (CISE 2022) 577

analysis and investigates performance-related issues in Google Play Store reviews. This
study has been conducted on 368,704 reviews emphasizing more 1- and 2-star reviews
distributed over 55 Android apps. Our research also reports a taxonomy of 8 distinct
performance issues obtained using manual inspection. Our findings show that end-users
recurrently raised Updation (69.11%), Responsiveness (25.11%), and Network (3.28%)
issues among others. These results can be used as preliminary steps towards under-
standing the key performance concerns from the perspective of end users. Furthermore,
our long-term objective will be to investigate whether developers resolve these per-
formance issues in their apps.

2.4 Paper 4: Predicting Bug-Fixing Time: DistilBERT Versus Google
BERT

This paper war written by Pasquale Ardimento (University of Bari Aldo Moro).
ABSTRACT: The problem of bug-fixing time can be treated as a supervised text

categorization task in Natural Language Processing. In recent years, following the use
of deep learning also in the field of Natural Language Processing, pre-trained con-
textualized representations of words have become widespread. One of the most used
pre-trained language representations models is named Google BERT (hereinafter, for
brevity, BERT). BERT uses a self-attention mechanism that allows learning the bidi-
rectional context representation of a word in a sentence, which constitutes one of the
main advantages over the previously proposed solutions. However, due to the large size
of BERT, it is difficult for it to put it into production. To address this issue, a smaller,
faster, cheaper, and lighter version of BERT, named DistilBERT, has been introduced
at the end of 2019. This paper compares the efficacy of BERT and DistilBERT,
combined with the Logistic Regression, in predicting bug-fixing time from bug reports
of a large-scale open-source software project, LiveCode. In the experimentation carried
out, DistilBERT retains almost 100% of its language understanding capabilities and, in
the best case, it is 63.28% faster than BERT. Moreover, with a not time-consuming
tuning of the C parameter in Logistic Regression, the DistilBERT provides an accuracy
value even better than BERT.

2.5 Paper 5: Proposing Isomorphic Microservices Based Architecture
for Heterogeneous IoT Environments

This paper was written by Pyry Kotilainen, Teemu Autto, Teerath Das, Viljami
Järvinen and Juho Tarkkanen (all from University of Jyväskylä).

ABSTRACT: Recent advancements in IoT and web technologies have highlighted
the significance of isomorphic software architecture development, which enables easier
deployment of microservices in IoT-based systems. The key advantage of such systems
is that the runtime or dynamic code migration between the components across the
whole system becomes more flexible, increasing compatibility and improving resource
allocation in networks. Despite the apparent advantages of such an approach, there are
multiple issues and challenges to overcome before a truly valid solution can be built. In
this idea paper, we propose an architecture for isomorphic microservice deployment on
heterogeneous hardware assets, inspired by previous ideas introduced as liquid

578 P. Ardimento et al.

software. The architecture consists of an orchestration server and a package manager,
and various devices leveraging WebAssembly outside the browser to achieve a uniform
computing environment. Our proposed architecture aligns with the long-term vision
that, in the future, software deployment on heterogeneous devices can be simplified
using WebAssembly.

3 Workshop Organization

– Pasquale Ardimento, organizing chair (University of Bari Aldo Moro, Italy)
– Akhtar Jamil, organizing chair (National University of Computer and Emerging

Sciences, Pakistan)
– Michele Scalera, organizing chair (University of Bari Aldo Moro, Italy)

1st Workshop on Computational Intelligence and Software Engineering (CISE 2022) 579

Technical Debt Forecasting from Source
Code Using Temporal Convolutional

Networks

Aversano Lerina1 , Mario Luca Bernardi1 , Marta Cimitile2 ,
and Martina Iammarino1(B)

1 Engineering Department, University of Sannio, Benevento, Italy
{aversano,bernardi,iammarino}@unisannio.it

2 Unitelma Sapienza University, Rome, Italy
marta.cimitile@unitelmasapienza.it

Abstract. Technical Debt describes a deficit in terms of functions,
architecture, or integration, which must subsequently be filled to allow
a homogeneous functioning of the product itself or its dependencies. It
is predominantly caused by pursuing rapid development versus a correct
development procedure. Technical Debt is therefore the result of a non-
optimal software development process, which if not managed promptly
can compromise the quality of the software. This study presents a tech-
nical debt trend forecasting approach based on the use of a temporal
convolutional network and a broad set of product and process metrics,
collected commit by commit. The model was tested on the entire evo-
lutionary history of two open-source Java software systems available on
Github: Commons-codec and Commons-net. The results are excellent
and demonstrate the effectiveness of the model, which could be a pio-
neer in developing a TD reimbursement strategy recommendation tool
that can predict when a software product might become too difficult to
maintain.

Keywords: Technical debt · SonarQube · Software quality metrics ·
Process metrics · Feature selection · Temporal convolutional network

1 Introduction

The term “Technical Debt” (TD) was first coined by programmer Ward Cun-
ningham in a 1992 article stating that while an organization may be able to
save money in the short term by writing imperfect code, over time, interest
from TD will build up, just like with monetary debt, making the initial problem
increasingly expensive to solve [13].

With his metaphor, Ward describes debt as the natural result of writing code
on something that you don’t have an adequate understanding of. He doesn’t talk
about poor code which - according to him - represents a very small part of the
debt. Instead, it speaks of the disagreement between the needs of the business
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 581–591, 2022.
https://doi.org/10.1007/978-3-031-21388-5_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_43&domain=pdf
http://orcid.org/0000-0003-2436-6835
http://orcid.org/0000-0002-3223-7032
http://orcid.org/0000-0003-2403-8313
http://orcid.org/0000-0001-8025-733X
https://doi.org/10.1007/978-3-031-21388-5_43

582 A. Lerina et al.

and how the software was written. Consequently, in terms of quality, TD may be
viewed as a collection of design decisions that, as they build up over time, make
the system challenging to maintain and develop. It stands for something that
has a detrimental impact on a system’s internal and non-functional properties,
particularly its maintainability and evolvability [19].

There are effective tools, such as CAST1, and SonarQube2, which are mostly
used due to their features and functionality, to measure and track TD in source
code [4]. But these tools are no longer sufficient because they only allow you to
identify the debt once it has been introduced, and sometimes it may be too late
to remedy it.

More research is needed because to date few studies have focused on pre-
dicting TD [5,6,21–23]. Therefore, this study aims to test a model based on a
temporal convolution neural network on two open-source software systems to
forecast the progress of the TD according to the variation of the product and
process metrics considered. Given a certain instant t in the history of a software
system, the model is capable of verifying whether the TD at instant t+1 will
remain stable or will undergo an increase or decrease in its value, even before
the developer makes the change, and then commit.

This document is structured as follows. Related works are listed in the fol-
lowing section. Section 3 describes the approach in each phase, while the experi-
mental results are in Sect. 4. Finally, Sect. 5 presents the conclusions and future
work.

2 Related Work

Numerous research has been undertaken and published in the literature on the
methodology that might support developers and project managers in estimating
and measuring TD [3,8,9,15,18]. The authors of the study [11] made a com-
parison based on the functionality and popularity of all existing tools capable
of identifying TD. Authors in [19] meticulously mapped out the TD and its
management. This study has shown that more empirical research with solid sup-
porting data is needed to fully understand the management process as a whole.
Therefore, the opinion has become widespread that in addition to monitoring
the TD it has become of fundamental importance to predict its progress to adopt
preventive strategies that avoid compromising the quality of a software system.

Numerous research has looked at the relationship between the TD’s presence
and the quality of the source code, establishing the quality measures of the TD
indications. [14,20,25]. In [10] the main goal was to predict changes in qualitative
properties, such as CK metrics or other traits closely associated with TD. The
results show that when the measure of technical debt worsens, so do the software
quality metrics.

Few studies have focused on TD forecasts. Tsoukalas et al. conducted three
different studies on the subject, in the first [22] they presented an empirical
1 https://www.castsoftware.com.
2 https://www.sonarqube.org.

https://www.castsoftware.com
https://www.sonarqube.org

TCN for TD Forecasting 583

analysis on TD prediction using time series and creating a repository containing
750 commits at weekly intervals, which belong to five software systems. This
model was found to be able to predict only 8 weeks into the future. In the sec-
ond study, [23] they used multivariate methods of Machine Learning, expanding
the dataset to 15 systems, but always considering commits at intervals. The
results show that linear regularization models perform better over short periods
while Random Forest regression as a predictor works better over extended peri-
ods. Finally, the most recent study [24] investigated whether clustering may be
thought of as a method to increase the accuracy of TD prediction. They gath-
ered information from several software products and organized it into clusters
based on similarities. The results are encouraging and allow for the assignment
of known clusters to unknown software systems to anticipate TDs.

Therefore, we propose a method for predicting the variation of TD in the code
of software systems, using finely collected data relating to a big set of metrics.

3 Approach

The model’s function is to forecast the TD’s trend in the code. In particular,
given a specific Java class to a specific commit, the model can forecast whether
the TD would remain stable, rise or decrease in the following commit based on
the metrics gathered. This section describes the approach proposed, presenting
the data extraction and collection process, the set of features considered, the
predictive model with the parameters set, and finally the metrics used to validate
the performance of the predictive model.

3.1 Data Collection and Extraction

Figure 1 shows the four main steps used to extract and collect the data used to
conduct the study. The first step has been to extract the history of changes to
the software system from Github. In particular, the source code, revision data,
and logs were extracted. Those information have been used in the second phase
of the process, in which the source code for each commit has been analyzed
to detect the measures showing the TD’s existence and its value; revision data
made it possible to collect the metrics of the quality indicators of the source
code and the extraction of the logs has been used to collect data necessary for
obtaining the process metrics. Respectively, the tools that have been used are
Sonarqube, CK tool3, and some python scripts. The third step consisted of the
integration of all the extracted information, to allow the creation of a dataset
for each software system, in a single CSV file in which there is the history in
terms of changes (commits) made for each java class considered, with the metrics
of the attachments considered. The next step involved the creation of a set of
ethical traces, in a normalization and data windowing phase, where each line of
the trace represents an instance of the system that has been assigned a label

3 https://github.com/mauricioaniche/ck.git.

https://github.com/mauricioaniche/ck.git

584 A. Lerina et al.

Fig. 1. Process of extraction and collection of data

indicating the value of the TD. In particular, to prepare the data and better
represent their temporal evolution, we used the sliding window methodology,
setting 5 or 10 as the window size.

Finally, Table 1, shows the characteristics of the software systems considered,
Commons-codec4 and Commons-net5.

Table 1. Characteristics of the software systems considered

System Name Numbr of classes Number of commit Commit time-interval
Commons-Codec 2266 340 25 April 2003 | 6 September 2022

Commons-Net 2612 819 3 April 2002 | 6 September 2022

3.2 Features Model

A very large set of metrics has been used to train the predictive model, which
can be divided into two main groups, product metrics, and process metrics.

In the first group, there are the metrics resulting from the analysis of the
source code, which can be considered indicators of the TD, such as bugs and
code smells. These identify the presence of the TD because they compromise
the understanding and maintainability of the code and indicate the need for
refactoring [2,7,16]. In addition to these, indicators closely related to the quality
of the code were also considered for the product metrics, such as the metrics
defined by Chidamber and Kemerer [12] that evaluate the cohesion, complexity,
coupling, and size of the code, and other quantitative metrics related to methods,
fields and other constructs present in the source code.

To the second group belong four metrics that refer to the quality with which
the developers have worked, such as the cost and effort of the activities, taking
into account their experience.

4 https://github.com/apache/commons-codec.
5 https://github.com/apache/commons-net.

https://github.com/apache/commons-codec
https://github.com/apache/commons-net

TCN for TD Forecasting 585

Fig. 2. Predictive model architecture

Table 2 describes in detail the set of features considered. More specifically,
the first column indicates whether the metrics refer to product metrics - more
specifically related to TD or software quality -, or process metrics. In the second
column, there is the name followed by a short description of the metric.

3.3 Predictive Model

For the prediction, we have chosen a Temporal Convolutional Network (TCN),
built to have very long historical dimensions [1]. With its broad receptive fields
and temporality, it is a version of convolutional neural networks that use convo-
lutions and random dilations to adapt to sequential data.

More specifically, in Fig. 2 we report the proposed architecture, which is com-
posed of an input level, n hidden layers, an attention level, a batch normalization
level, and the final output level. Respectively, the first is composed of as many
nodes as there are attributes received at the input, while the hidden levels are
used to interpret the relationships between the data by returning the weighted
sum of the inputs after the calculation of the activation function. With the levels
of attention, we introduce in the model the hierarchical mechanism of attention
[26] to model relationships, regardless of the distance, while reducing the impact
of unstable gradients with the level of normalization, we can achieve more pre-
cision during both the testing and validation phases. Finally, the final level is
made up of three neurons, like the three classes, which represent the three values
that the progress of the TD can assume in the code (stable, increase, decrease).

The model has been created in Python, using the Keras6 and Tensorflow7

APIs.

3.4 Experimental Setting

To prevent wasting time and resources and to avoid over-adaptation, we have
imposed a limit of 50 epochs for the trials and introduced an early stop for

6 https://keras.io.
7 https://www.tensorflow.org.

https://keras.io
https://www.tensorflow.org

586 A. Lerina et al.

Table 2. Feature set considered

Kind Name Description

Bugs Quantity of Bugs
Code Smell Quantity of code smells
Classes Quantity of classes: nested interfaces, classes, annotations and enumerations.
Vulnerabilities Quantity of vulnerabilities.
Functions Methods that are actually present in the classes, omitting any that are found in nameless
Ncloc Quantity of lines of code.
Comment lines Quantity of lines with comments and commented code inside.

Comment lines density

Comment line density = Comment lines / (Code lines + Comment lines) * 100
With such a formula, values equal to:
a) 50% mean that the number of lines of code equals the number of comment lines
b) 100% indicates that the file contains only comment lines

Complexity

The number of linearly distinct paths through the source code serves
as a measure of the cyclomatic complexity of a particular portion of code.
The complexity will be 1 if the source code lacks any decision points, such as IF or FOR loops.
There will be two possible paths if the code contains a single IF with a single condition.

Cognitive complexity Evaluation of how difficult it is to comprehend control flow

Sqale rating
The score assigned to the technical debt ratio. It is divided into several intervals:
A = 0–0.05, B = 0.06–0.1, C = 0.11–0.20, D = 0.21–0.5, E = 0.51–1.

P
ro

d
u
ct

M
et

ri
cs

T
D

R
el

at
ed

Sqale debt ratio
Remediation cost / Development cost, which can be expressed as:
Remediation cost / (Cost for developing 1 line of code * Total of lines of code).
Ratio of the cost of developing the software to the cost of repairing it.

Weight Method
Count per Class

Weighed sum of a class’s methods, where each method’s weight is determined
by a custom complexity factor.

Lack of Cohesion
of Methods

The ability of a method to only access class characteristics is expressed by the cohesiveness
of the method. The fact that there are numerous methods to access similar
features is what causes the lack of cohesiveness.

Coupling Between
Objects

Number of a class’s collaborations, or the number of other classes it is associated with

Response for a class
A measurement of the "volume" of communication between classes. High values result
in an increase in the class’s design complexity and testing effort.

Depth of
Inheritance Tree

Maximum separation between a node (a class) and the tree’s root,
which represents the hereditary structure. The number of methods a class can inherit
increases with the depth of the hierarchy.

Number of static invocation How often do static methods make invocations
Number of methods Quantity of methods
Number of fields Quantity of fields
Number of unique words Total of words that are unique
Non-Commented,
non-empty Lines of Code

Quantity of code lines, excluding blank lines.

Parenthesized expressions Quantity of expressions in parentheses.
Math Operations Quantity of mathematical operations
Anonymous classes,
subclasses
and lambda expressions

Quantity of anonymous declarations of classes or subclasses

String literals
Quantity of string literals.
Repetition counts the number of times that a string appears.

Usage of each variable Determine how much of each variable is used in each method.
Usage of each field Determine how much of each field is used in each method
Comparison Quantity of comparisons
Try/catches Quantity of try and catches
Variables Total of variables
Modifiers Total of public / private / abstract / protected / native modifiers of classes / methods.
Returns Number of returns instructions.
Numbers Total of numbers
Loops Total of loops (for, while, do while, generalized for)

P
ro

du
ct

M
et

ri
cs

So
ft

w
ar

e
Q

ua
li
ty

R
el

at
ed

Max nested blocks The highest number of blocks nested together.

Seniority of Developers
Calculate the difference between the commit date and the dates of the commit that
preceded it in the repository to get the developer seniority for a specific commit
in terms of days.

Ownership of the commit
The group of developers who together made at least 50% of the most important
single changes to a particular file.

Number of Files Owners The collection’s cardinality for a certain file and commit.

P
ro

ce
ss

M
et

ri
cs

Owned File Ratio
calculates the ratio of modifications made by developer dj on file fj to all changes (cdot)
made by other users from the beginning of the observation period
on the same file in the commit interval [cs, . . . , ck]

TCN for TD Forecasting 587

the target measure. In this approach, training can be terminated if no improve-
ment occurs, and the model can then be put away for testing. Additionally, the
experiments’ environment involved optimizing the network architecture’s hyper-
parameters. The parameters shown in Table 3 have all been put together in
every possible combination, but only the best combination will be reported in
the Results Section.

To validate the performance of the model we used the F1 score, which rep-
resents the accuracy and the weighted and harmonic average of the recall.

Finally, in addition to testing the model on the complete set of metrics col-
lected, we also tested the predictive model after making the selection of features,
to compare the results. In particular, we applied a hierarchical cluster analysis,
based on the Spearman coefficient, to evaluate the redundancy and collinear-
ity measures between the [17] features. Thanks to this method, metrics with
high redundancy and collinearity values were grouped into a single cluster and
by choosing 0.50 as the pruning threshold we reduced the number of features
considered.

In detail, we have eliminated the threshold crossing features common to
the two systems: Nloc, Complexity, Functions, Code Smell, RFC, WMC, LOC,
ComparisonQty, MaxNestedBlocks, TotalMethods, PublicMethods, StaticFiels,
FinalFields, AssignmentsQty, VariablesQty, NumbersQty and Owner of the com-
mit. In this way, the model that follows the selection of characteristics considers
42 characteristics instead of the initial 58.

Table 3. Hyperparameter optimization

Parameter Description Range

Network Size Indicates how many learning parameters the network contains. Small-Medium

Activaction Function
Describes the transformation of the input
to the output using a weighted sum

RELU

Learning Rate
The learning rate is a hyperparameter that determines
how much to alter the model each time the model weights
are updated in response to the predicted error

3÷ 6

Number of layers Number of levels considered 6÷ 8

Batch size
The number of samples that are processed
before the model is changed

128–256

Dropout Rate
Indicates the rate of randomly selected neurons
that are ignored during training

0.15–0.20

Optimization Algorithms
It is used to reduce losses by altering neural network
characteristics like as weight and learning speed

SGD

Timestamp Window size 5–10

4 Experimental Results

Table 4 reports the results of the best permutations of the proposed predictive
approach. The first column contains the name of the analyzed system, the second
indicates whether the feature selection has been made or not. The third to eighth
columns show the parameters for which the optimization has been done, while

588 A. Lerina et al.

the last two columns show the value of the F1-Score metric in percentage, used
to validate the model, and the training times in seconds for the epoch.

As can be seen, for both systems the parameters with which the network
obtained the best result are the same, both on the original dataset and on the
one on which the selection of characteristics was made.

More specifically, for Commons-codec the results are very good, in fact, in
both cases, the model has got an F-Score of 99%, 99.47% on the dataset with
58 features, and 99.50% on the reduced one. The result that it is necessary to
underline is the training time which in the case of the feature selection is reduced
by 60%, going from 253 s to 80 s. This shows the efficiency of the model and the
chosen metrics.

In the case of Commons-net, an F1-score of 97% is reached, 97.63% in the
case without feature selection, and 96.91% on the reduced dataset. Therefore,
with this system, there has not been an improvement in performance in terms
of the F1 score, but here too there is a significant reduction in the training time
necessary for the model to learn the data. A decrease of 40% is noted, passing
from 355 s to 210 s per epoch.

For the Commons-codec system, in Fig. 3 we also report the trend of the
accuracy and the loss during the training and validation of the model for the best
permutation carried out on the dataset with feature selection. The graphs show
the epochs on the abscissa axis and the values on the ordinate axis. In particular,
the first graph compares the accuracy during the training in pink, with the
accuracy during the validation phase in green. While the second compares the
loss during the training in pink, with the loss during the validation vase in
green. The graphs show that the accuracy and the loss during training improve
considerably between the first and third epochs, and then settle down. Instead,
the values during the validation phase are good already from the first epoch and
remain stable for the entire duration of the permutation.

Table 4. Best permutation results

Project
Feature
Selection

Network
Size

Learning
Rate

Batch
Size

Number of
Layers

Dropout Rate Timestamp F1-Score
Training

Time

Commons-
codec

NO Small 3 128 6 0.15 10 99.47 % 252,80 s

Commons-
codec

YES Small 3 128 6 0.15 10 99.50 % 79.62 s

Commons-
net

NO Small 3 128 6 0.15 10 97.63 % 355.01 s

Commons-
net

YES Small 3 128 6 0.15 10 96.91 % 210.97 s

TCN for TD Forecasting 589

Fig. 3. Precision and loss plots of the best Commons-Codec permutation with feature
selection

5 Conlusions and Future Works

Technical Debt refers to the idea that organizations will have to pay later for a
fundamentally flawed, little-known, or “quick and sporadic” solution to a software
development problem. Technical debt is generated for various reasons related to
processing, people, and technical factors, reducing the quality and maintainabil-
ity of the code. This is why it has aroused great interest, making it a hot topic in
the literature. A lot of research has focused on its identification, management, or
resolution, but as far as we know, there have been relatively few contributions
to its prediction. In this regard, this study aims to investigate the extent to
which the use of deep learning models represents an accurate approach for pre-
dicting TD in open-source software projects. Specifically, we present a Temporal
Convolutional Network-based model that can forecast the progress of the TD
in each class of a software system, commit by commit, given the TD informa-
tion, the software quality, and the process metrics. The model has been tested
on two Java software systems, Commons-codec and Commons-net, for each of
which a dataset has been created which contains all its evolutionary history in
terms of class, commit by commit, with all the metrics collected. To date, no
study has focused on the prediction of the TD commit by commit. The experi-
ment has been originally run on a metric model with 58 different features and,
after a feature selection process, they were reduced to 42, resulting in excep-
tional prediction model performance and much shorter lead times. The results
are good because both in the first and in the second case, for Commons-codec
we have got an F-Score of 99%. For Commons-net the approach has reached
97%. The model has so far proved very effective in anticipating the growth of
TD in source code and aims to pave the way for the development of a tool for
creating recommendation systems and decision-making mechanisms to improve
TD reimbursement strategy and predict when a software product may become
too difficult to maintain.

590 A. Lerina et al.

References

1. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neu-
ral network. In: 2017 International Conference on Engineering and Technology
(ICET), pp. 1–6 (2017). https://doi.org/10.1109/ICEngTechnol.2017.8308186

2. Alves, N.S., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Seaman,
C.: Identification and management of technical debt: A systematic mapping study.
Inf. Softw. Technol. 70, 100–121 (2016). https://doi.org/10.1016/j.infsof.2015.10.
008, https://www.sciencedirect.com/science/article/pii/S0950584915001743

3. Alves, N.S., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Seaman,
C.: Identification and management of technical debt: a systematic mapping study.
Inf. Softw. Technol. 70, 100–121 (2016)

4. Amanatidis, T., Mittas, N., Moschou, A., Chatzigeorgiou, A., Ampatzoglou, A.,
Angelis, L.: Evaluating the agreement among technical debt measurement tools:
building an empirical benchmark of technical debt liabilities. Empir. Softw. Eng.
25(5), 4161–4204 (2020). https://doi.org/10.1007/s10664-020-09869-w

5. Ardimento, P., Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M.: Using
deep temporal convolutional networks to just-in-time forecast technical debt princi-
pal. J. Syst. Softw. 194, 111481 (2022). https://doi.org/10.1016/j.jss.2022.111481,
https://www.sciencedirect.com/science/article/pii/S0164121222001649

6. Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M.: Technical debt predic-
tive model through temporal convolutional network. In: 2021 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8 (2021). https://doi.org/10.1109/
IJCNN52387.2021.9534423

7. Aversano, L., Bernardi, M.L., Cimitile, M., Iammarino, M., Romanyuk, K.: Inves-
tigating on the relationships between design smells removals and refactorings. In:
15th International Conference on Software Technologiesp, pp. 212–219 (2020)

8. Aversano, L., Bruno, M., Di Penta, M., Falanga, A., Scognamiglio, R.: Visualiz-
ing the evolution of web services using formal concept analysis. In: Eighth Inter-
national Workshop on Principles of Software Evolution (IWPSE’05), pp. 57–60
(2005). https://doi.org/10.1109/IWPSE.2005.33

9. Aversano, L., Cerulo, L., Palumbo, C.: Mining candidate web services from legacy
code. In:10th International Symposium on Web Site Evolution, 2008. WSE 2008,
pp. 37–40 (2008). https://doi.org/10.1109/WSE.2008.4655393

10. Aversano, L., Iammarino, M., Carapella, M., Vecchio, A.D., Nardi, L.: On the rela-
tionship between self-admitted technical debt removals and technical debt mea-
sures. Algorithms 13(7) (2020)). https://www.mdpi.com/1999-4893/13/7/168

11. Avgeriou, P.C., et al.: An overview and comparison of technical debt measurement
tools. IEEE Softw. 38(3), 61–71 (2021). https://doi.org/10.1109/MS.2020.3024958

12. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994). https://doi.org/10.1109/32.295895

13. Cunningham, W.: The WyCash portfolio management system. In: Addendum to
the Proceedings on Object-oriented Programming Systems, Languages, and Appli-
cations. ACM (1992)

14. de Freitas Farias, M.A., de Mendonça Neto, M.G., d. Silva, A.B., Spínola, R.O.: A
contextualized vocabulary model for identifying technical debt on code comments.
In: 2015 IEEE 7th International Workshop on Managing Technical Debt (MTD),
pp. 25–32 (2015). https://doi.org/10.1109/MTD.2015.7332621

https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1016/j.infsof.2015.10.008
https://www.sciencedirect.com/science/article/pii/S0950584915001743
https://doi.org/10.1007/s10664-020-09869-w
https://doi.org/10.1016/j.jss.2022.111481
https://www.sciencedirect.com/science/article/pii/S0164121222001649
https://doi.org/10.1109/IJCNN52387.2021.9534423
https://doi.org/10.1109/IJCNN52387.2021.9534423
https://doi.org/10.1109/IWPSE.2005.33
https://doi.org/10.1109/WSE.2008.4655393
https://www.mdpi.com/1999-4893/13/7/168
https://doi.org/10.1109/MS.2020.3024958
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/MTD.2015.7332621

TCN for TD Forecasting 591

15. Iammarino, M., Zampetti, F., Aversano, L., Di Penta, M.: An empirical study
on the co-occurrence between refactoring actions and self-admitted technical debt
removal. J. Syst. Softw. 178, 110976 (2021). https://doi.org/10.1016/j.jss.2021.
110976, https://www.sciencedirect.com/science/article/pii/S016412122100073X

16. Iammarino, M., Zampetti, F., Aversano, L., Di Penta, M.: An empirical study
on the co-occurrence between refactoring actions and self-admitted technical debt
removal. J. Syst. Softw. 178 (2021). https://doi.org/10.1016/j.jss.2021.110976

17. Köhn, H.F., Hubert, L.J.: Hierarchical Cluster Analysis, pp. 1–13 Wiley StatsRef:
Statistics Reference Online (2014)

18. Letouzey, J.: The sqale method for evaluating technical debt. In: 2012 Third Inter-
national Workshop on Managing Technical Debt (MTD), pp. 31–36 (2012). https://
doi.org/10.1109/MTD.2012.6225997

19. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical
debt and its management. J. Syst. Softw. 101, 193–220 (2015). https://doi.
org/10.1016/j.jss.2014.12.027, https://www.sciencedirect.com/science/article/pii/
S0164121214002854

20. Li, Z., Liang, P., Avgeriou, P., Guelfi, N., Ampatzoglou, A.: An empirical investi-
gation of modularity metrics for indicating architectural technical debt. In: Pro-
ceedings of the 10th International ACM Sigsoft Conference on Quality of Software
Architectures, pp. 119–128. Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2602576.2602581, https://doi.org/10.1145/
2602576.2602581

21. Skourletopoulos, G., Mavromoustakis, C.X., Bahsoon, R., Mastorakis, G., Pallis,
E.: Predicting and quantifying the technical debt in cloud software engineering. In:
2014 IEEE 19th International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD), pp. 36–40 (2014). https://doi.
org/10.1109/CAMAD.2014.7033201

22. Tsoukalas, D., Jankovic, M., Siavvas, M., Kehagias, D., Chatzigeorgiou, A., Tzo-
varas, D.: On the applicability of time series models for technical debt forecasting.
In: 15th China-Europe International Symposium on Software Engineering Educa-
tion (2019)

23. Tsoukalas, D., Kehagias, D., Siavvas, M., Chatzigeorgiou, A.: Technical debt
forecasting: an empirical study on open-source repositories. J. Syst. Softw.
170, 110777 (2020). https://doi.org/10.1016/j.jss.2020.110777, https://www.
sciencedirect.com/science/article/pii/S0164121220301904

24. Tsoukalas, D., Mathioudaki, M., Siavvas, M., Kehagias, D., Chatzigeorgiou, A.: A
clustering approach towards cross-project technical debt forecasting. SN Comput.
Sci. 2(1), 1–30 (2021). https://doi.org/10.1007/s42979-020-00408-4

25. Wehaibi, S., Shihab, E., Guerrouj, L.: Examining the impact of self-admitted tech-
nical debt on software quality. In: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 179–188
(2016). https://doi.org/10.1109/SANER.2016.72

26. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 1480–1489. Association for Computational Linguistics,
San Diego, California (Jun 2016). https://doi.org/10.18653/v1/N16-1174, https://
www.aclweb.org/anthology/N16-1174

https://doi.org/10.1016/j.jss.2021.110976
https://doi.org/10.1016/j.jss.2021.110976
https://www.sciencedirect.com/science/article/pii/S016412122100073X
https://doi.org/10.1016/j.jss.2021.110976
https://doi.org/10.1109/MTD.2012.6225997
https://doi.org/10.1109/MTD.2012.6225997
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/j.jss.2014.12.027
https://www.sciencedirect.com/science/article/pii/S0164121214002854
https://www.sciencedirect.com/science/article/pii/S0164121214002854
https://doi.org/10.1145/2602576.2602581
https://doi.org/10.1145/2602576.2602581
https://doi.org/10.1145/2602576.2602581
https://doi.org/10.1109/CAMAD.2014.7033201
https://doi.org/10.1109/CAMAD.2014.7033201
https://doi.org/10.1016/j.jss.2020.110777
https://www.sciencedirect.com/science/article/pii/S0164121220301904
https://www.sciencedirect.com/science/article/pii/S0164121220301904
https://doi.org/10.1007/s42979-020-00408-4
https://doi.org/10.1109/SANER.2016.72
https://doi.org/10.18653/v1/N16-1174
https://www.aclweb.org/anthology/N16-1174
https://www.aclweb.org/anthology/N16-1174

Adagio: A Bot for Audio Processing Against
Violence

Rosa Conte, Vito Nicola Convertini(B) , Ugo Lopez , Antonella Serra ,
and Giuseppe Pirlo

Università degli Studi di Bari Aldo Moro, Bari, Italy
{vitonicola.convertini,ugo.lopez,antonella.serra,

giuseppe.pirlo}@uniba.it

Abstract. Within social networks, audio is a vehicle for violent, bullying or gen-
erally unwanted content. This research intends to propose an automatic tool for
extracting text from an audio stream. Microsoft azure cognitive cloud services,
and in particular, Speech SDK and bot SDK are used for extraction and recog-
nition tasks. The extracted text can then be analyzed using techniques and algo-
rithm known for analyzing critical situations such as violence or bullying but is
applicable in any context.

Keywords: Adagio · Audio extraction · Speech recognition ·Microsoft Azure ·
Speech SDK · Bot SDK

1 Introduction

The rapid increase in the use of Internet technology by all kinds of social groups has
created the need to protect individuals from harmful content. Due to the huge number
of audio and video files present, there is a need to introduce automatic tools to detect
inappropriate content. Furthermore, many films are not violent in the video part, but are
violent in the audio part [1]. This makes it essential to improve efficient violence detec-
tors with automatic violence detectors based on digital content. However, the solutions
presented in the related works require sophisticated code-side implementations reducing
the ability to use sophisticated audio analysis tools to non-professionals.

In thisworkwe presentAdagio, a cloud-based speech recognition and content extrac-
tion solution that can be easily implemented and customized for each context of use. In
particular, the solution is based on the Microsoft Azure services Speech SDK and Bot
SDK. Speech SDK exposes many of the Speech service capabilities, to develop speech-
enabled applications. The Speech service provides speech-to-text and text-to-speech
capabilities with an Azure Speech resource. Microsoft Bot Framework and Azu-re Bot
Service are a collection of libraries, tools, and services to build, test, deploy, and manage
intelligent bots. The Bot Framework includes a modular and extensible SDK for build-
ing bots and connecting to AI services. With these frameworks, Adagio can extract and
recognize text containing inappropriate content such as violence or bullying [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 592–602, 2022.
https://doi.org/10.1007/978-3-031-21388-5_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_44&domain=pdf
http://orcid.org/0000-0002-2567-5819
http://orcid.org/0000-0002-3202-1573
http://orcid.org/0000-0002-0852-7734
http://orcid.org/0000-0002-7305-2210
https://doi.org/10.1007/978-3-031-21388-5_44

Adagio: A Bot for Audio Processing Against Violence 593

2 Related Works

C. Clavel [2] proposed an audio analysis system based on the Gaussian mixture model
(GMM) to detect events of interest in non-silent locations. Events such as shouting,
gunshots and explosions were considered for the detection of anomalous situations.

In this approach many experimentations are carried out to reduce false rejection
(FR) and False Detection (FD) rate. Giannakopoulos T. [3] introduced the vector-based
audio feature (SVM) for the classification of violence content using audio extracted from
real films and not audio samples. Giannakopoulos T. [4] extended his work by using a
multiclass classification algorithm. Each audio segment was classified into six classes,
three for violence and three for non-violence. D.Impedovo et al. [5, 6] used feedback-
basedmulti-classifier systems to reduce themisclassified entities. EsraAcar [7] proposed
a violent scene detection (VSD) system using two different methods, namely the vector
quantization-based (VQ-based) method and the sparse coding-based (sparse coding-
based) method. Zaheer et al. [8] used Deep Boltzmann Machines (DBM) for scream
detection in different contexts. By using its self-recorded scream dataset 100% accuracy
is achieved by the proposed system.

The work is structured as follows. Section 2 describes the related work on audio
recognition and classification. Section 3 describes the speaker recognition functionali-
ties used in Adagio using Microsoft Speech SDK. Section 4 describes the NLU used.
Section 5 illustrates the use of the Microsoft Bot Framework SDK for the creation and
composition of Adagio with the technologies illustrated above.

3 Speaker Recognition in Adagio

The functionality of speaker recognition, in our proposal, is provided through two APIs
[9].

Speech Software Development Kit (SDK) [10] is a tool that exposes various features
of the Voice service to enable the development of speech recognition-enabled applica-
tions. Speech SDK can be found in several programming languages and on all platforms.
To configure and subsequently used Speech SDK with Microsoft Visual C++ for Visual
Studio 2019 and Visual Studio 2019. Once the tools are installed, we proceeded to install
the NuGet Speech SDK package to use it in our code.

.NETSpeech SDKcan be installed from the command line interface. Formicrophone
input, theMedia Foundation collections that are part ofWindows 10 andWindows Server
2016 need to be installed. Speech synthesis or speech recognition transcribes audio
streams into text that applications, tools, or devices can use or display. Voice translation
can be used to translate speech input into a different language with a single call. Speech
recognition can be used on a variety of platforms. Specifically, C++ /Windows&MacOS
Linux# (Framework &.NET Core)/Windows & UWP & Unity & Xamarin & Linux &
macOS, Java (Jre e Android), JavaScript (Browser e NodeJS), Python, Swift, Objective-
C, Go (only SR). The input text is a literal value of type string or an SSML language
(Speech Synthesis Markup Language) [11].

Voice assistants using Speech SDK enable the creation of natural, human-like con-
versational interfaces for collected applications and experiences. Speech SDK provides

594 R. Conte et al.

fast and reliable interaction that includes speech synthesis and conversational data [12]
in a single connection. The implementation can use Bot Framework [13] of the Direct
Line Speech or custom command service for task completion. In addition, voice assis-
tants can use custom voices created in the dedicated portal to add a unique voice output
experience. Voice assistant support can be used on all platforms.

Keyword speech recognition is supported within the Speech SDK algorithm and can
identify a keyword while speaking followed by an action such as “Hey Siri” or “Alexa.”

In addition, the algorithm is ideal for transcribing meetings from both a single device
and multiple devices simultaneously. The Speech Recognition Service offers advanced
functionality with predefined templates for speech synthesis. The Recognition Service
offers a wide range of code-free customization tools that simplify and enable you to
create a competitive advantage with customized templates based on your own data that
are available only to you or your organization.

Once the “NuGet Speech SDK” package is installed, we begin by creating our first
project to use the Speech SDK algorithm.

If we needed to use a specific input device, we would enter and specify the device id
using the code: audioConfig = AudioConfig.FromMicrophoneInput (“<device id>”);

The capabilities of the Speech SDK algorithm are many. If we want to perform voice
recognition directly from an audio file, we can still configure the “AudioConfig” object,
but instead of calling the “FromDefaultMicrophoneInput()” function, we will have the
“FromWavFileInput()” function and the file path will be passed.

3.1 Continuous Recognition and Dictation Mode

In the previous examples we saw that it is possible to have vocal recognition only at the
beginning when we have a single expression. The end of the expression is determined
by staying listening to the silence at the end or until a maximum of 15 s of audio is
processed. But if we wanted to have a device that continuously recognizes the sound
then have continuous recognition, it is needed to have “Recognizing”, “Recognized”
and “Canceled” events. To stop recognition “StopContinuosRecognitionAsync” must
be called [14, 15]. Next, it is necessary to create a property to manage the state of
speech recognition [15]. Finally, it is necessary to create the SpeechRecognizer events.
Specifically:

• Recognizing: Signal for events containing intermediate recognition results.
• Recognized: Signal for events that contain the results of the final recognition and
signal that the recognition was successful.

• SessionStopped: Signal for events indicating the end of a recognition session
(operation).

• Canceled: Signal for events containing recognition results cancelled due to a direct
cancellation request or transport or protocol error.

Once the configuration is finished, the “StartContinuousRecognitionAsync” function
must be called to start the recognition [16]. With the continuous recognition described
in the previous paragraph, it is possible to enable dictation processing using the cor-
responding function. With this mode the instance of “SpeechConfig” interprets textual

Adagio: A Bot for Audio Processing Against Violence 595

descriptions of sentence structures such as punctuation. To enable this method, it is
necessary to enable: “speechConfig.EnableDictation()”.

3.2 Improve Recognition Accuracy and Customized Voice Recognition

Phrase lists [17] are used to identify known phrases within audios such as a person’s
name, an unwelcome word, or a specific location. If we provide the algorithm with a
list of phrases or words, the accuracy of speech recognition can be improved. Anything
from a single word or an entire sentence can be added to the list of phrases. Note: The
“Phrase List” feature should be used with no more than a few hundred phrases. If we
have a larger list of phrases, it is necessary to use a custom template, which we will see
in the following paragraphs.

To use the phrase list, it is necessary to create the object ‘PhraseListGrammar’ and
add phrases with ‘Add Phase’. All changes made to ‘PhraseList-Grammar’ become
effective at the next speech recognition [15, 18]. If we want to clear the list of phrases
and then configure others, we use the function: phraseList.Clear().

3.3 Customized Voice Recognition

When testing the accuracy of Microsoft speech recognition or testing custom patterns,
audio data and text data are needed.

The text and audio used to test and train a personalized model must include examples
of the heterogeneous set of speakers and scenarios that you want to recognize from the
model. Several factors should be kept in mind when collecting data:

• Text and voice audio data must cover the types of verbal statements that users will
generate during interaction with the model. For example, a model that increases and
decreases temperature requires training on the instructions that users might make to
request such changes.

• The data must include all the vocal variances that the model needs to recognize. Many
factors can vary the voice, including accents, dialects, language combination, age,
gender, vocal tone, stress level, and time of day.

You must include examples of different environments (indoor, outdoor, street noise)
in which the model will be used. It is necessary to collect audio using the hardware
devices that will be used by the production system. If the model is to identify the voice
recorded in the recording devices of varying quality, the audio data provided to perform
model training must also represent these different scenarios.

More data can be added to the model later, but it is necessary to keep the dataset
heterogeneous and representative of the project needs.

Inclusion of data not included in the recognition requirements of the custom model
may harm the quality of recognition overall. Include only the data that the model needs
to transcribe.

596 R. Conte et al.

Files used for training must be grouped by type into a dataset and uploaded as a.zip
file, and each dataset must contain only one type of data.

Training with Audio Data
If a data model does not support training with audio data, the voice service will only
use the text of the transcripts and ignore the audio. If you change the base model used
for training and have audio in the training dataset, you should always check if the newly
selected base model supports training with audio data.

Data Uploading
Speech Studio must be used to upload the data.

1. After creating a project, go to the Item Data Sets tab and select Upload Data to start
the wizard and create the first data set.

2. Specify whether the dataset will be used for training or testing. Each carica1ted
dataset must be properly formatted before loading and must meet the requirements
per chosen data type.

3. After loading the data set you can:
4. Switch to the “Train custom models” tab to perform training of a custom model.
5. Switch to the “Test models” tab to visually examine quality with audio-only data or

evaluate the accuracy with audio and human-labeled transcription data.

The REST API Voice Recognition v3.0 can automate any-any operations related to
custom templates.We have used the RESTAPI to load a dataset. This is especially useful
when the dataset file exceeds 128 MB, because you cannot upload large files using the
Local File option in Speech Studio. We used Azure’s BLOB or shared path option in
Speech Studio for the same purpose, as described in the previous section. To create and
load a dataset, we used a Create Dataset request.

A dataset created using theRESTAPI SpeechRecognition v3.0will not be connected
to any Speech Studio project unless you specify a special parameter in the body of the
request (see code block later in this section). Connection to a Speech Studio project is
not required for model customization operations if they are performed using the REST
API. When Speech Studio is accessed, the user interface will send a notification when
an unconnected object is found, such as datasets loaded via the REST API without
reference to the project. The interface will also offer a connection of such objects to
an existing project. To connect the new dataset to an existing project in Speech Studio
during loading, use Create Dataset and fill in the body of the request according to the
format [15].

Plain Text Data for Training
To improve the accuracy of recognition of specific names or jargon, it is possible to
use domain-related phrases and specify phrases in a single file and use text data that are
increasingly close to the expected spoken expressions. To create a custommodel,we need
to provide a list of example expressions. They need not be complete or grammatically
correct, a must-no reflect the expected spoken input in the production environment.

Adagio: A Bot for Audio Processing Against Violence 597

Table 1. Text properties for training.

Property Value

Text encoding UTF-8 BOM

Number of utterances per line 1

Maximum file size 200 MB

To see whether the data fil o use the list of sentences, it is necessary to create the
object is formatted correctly, we need to observe the properties in Table 1.

It is also necessary to specify restrictions:
Avoid repeating characters, words, or groups of words more than three times, as in

“aaaa,” “yes yes yes,” or “that’s all there is to it.“ The Voice service may delete lines
with too much repetition. URIs will be rejected.

Structured Text Data for Training
Expressions follow a certain criterion. A common criterion is that expressions differ
only by words or phrases in a list.

To simplify the creation of training data and enable custommodeling, structured text
inMarkdown format can be used to define lists of items. These lists can then be referenced
within training expressions. The Markdown format also supports the specification of
phonetic pronunciation of words.

The Markdown file must have an md extension. The syntax of Markdown is the
same as that of Language Understanding templates, especially list entities and example
expressions; an example of the Markdown format [19].

Just as with regular text, training with structured text typically takes several minutes.
In addition, sample sentences and lists should reflect the type of spoken input expected in
the production environment. Even for the Markdown file there are limits and properties
that one must respect.

Data Audio for Test
Audio data are better for testing the accuracy of Microsoft’s basic speech recognition
model or custom model. Audio data is used to check the accuracy of speech against the
performance of the model.

The default audio streaming format is WAV but through GStreamer other formats
such as: MP3, OPUS/OGG, FLAC, ALAW nel contenitore WAV, MULAW in WAV
container.

4 Definition of the Purpose of Expression (Natural Language
Understanding) in Adagio

Natural language Understanding (NLU) is the focus of a conversational bot. It is a
machine learning tool whose main purpose is to convert an input from users who speak
natural language, into objects in which the bot can understand and react.

598 R. Conte et al.

NLUengines are unable to understandwhat the user says on their own, but developers
must provide a set of training examples. After the training, the NLU engine gets the
ability to identify the words and phrases that the user may say and perform the mapping
to a user’s intention in the form of purpose, which represents a task or action that
the user wants to perform and entities. The file with the lu extension allows the user to
create understandingmodels that define them for the bot developed using Bot framework
SDK and Composer. A.lu file contains simple text-based definitions in a Markdown-like
format. Purpose represents an activity or action that the user wants to perform, as seen
in a user’s expressions. Purposes are added to the bot to enable it to identify groups of
questions or commands that represent the same intention as the user.

Some examples of hints, taken from Microsoft Ignite documentation [17] are
presented in Table 2:

Table 2. Purpose examples.

Intent Example utterances

BookFlight “Book me a flight to Maui next
week”
“Fly me to Maui in the 17Th”
“I need a plane ticket next Friday
to Maui”

Greeting “Hi”
“Hello”
“Good afternoon”

CheckWeather “What’s the weather link in Maui
next week?”

None “I like cookies”
“Bullfrogs have been recorded
jumping over 7 feet”

When theNone (none) purpose is used, it is amandatory purpose thatmust be created
with expressions outside the domain. Purposes with example expressions are declared.

In which #<intent-name> describes a new purpose definition section and purpose
definition are example expressions describing purposes with <utterance>.

An entity definition defines how to recognize a range in an expression as an entity
that you can then use in the bot. There are several types of entities, including: machine-
learned, precompiled, lists, regular expressions, and templates. Entity definitions in files
with the lu extension start the entry with the at () symbol followed by the entity type
@ and the entity name. Each entity can also have roles that identify different uses of
the same entity. It is also possible to add features that enable a better entity recognition
process. The general syntax is specified in the entity definition file [15].

Adagio: A Bot for Audio Processing Against Violence 599

4.1 Machine Learning-Based Entity

Machine learning entities provide examples in which to label example expressions. This
type of entity is ideal when identifying data that is not properly formatted but has the
same meaning. When a user says something like “I need a flight booked from London to
Madrid,” LUIS will detect the purpose “bookFlight” and extract both London and Paris
as city entities. Roles are essentially an additional layer of contextual information that
can be added to machine-learning entities, which also learn from context. The following
example expression shows the start and destination roles associated with the city entity
[15]. Machine-learned entities can also be complex in which they have a hierarchy of
related entities. For example, you can have an entity-like element with the following
pizzaOrder child entities: quantity, size, crust, toppings, and so on.

Machine Learning works by taking features and learning how they are related to
purposes and entities. Features are the words that make up expressions. Phrase lists
allow multiple words to be grouped into a new feature. In this way, machine learning
generalizes better from fewer examples. Phrase lists come are global and apply to all
models and can also be associated with specific purposes and entities.

Another feature is the addition of metadata. This will allow the parser to properly
handle the content of the Language Understanding, and they are added to the beginning
of the lu file property [15]. Specifically, the metadata are presented in Table 3:

Table 3. Purpose examples.

Metadata Description

Name Application name

Versionid Specific version name

Culture Application language

Version schema LUIS schema is updated for every additional feature and setting. Use the
schema version number set when the LUIS model has been created or updated

5 Bot Framework SDK

The bot, accompanied by the Azure Bot service, provides the tools to compile, test,
deploy, and manage intelligent bots. The Bot Framework SDK includes a modular and
extensible SDK for creating bots and tools for artificial intelligence (Fig. 1). Bots are like
robots but can be used for simple tasks such as making dinner reservations or collecting
information. Users can converse with a bot using text and speech, and a sophisticated
conversation can be established. The bot can be thought of as an application with a
conversational interface such as Facebook, Microsoft teams. The bot underlies the input
and performs relevant tasks. This can include accessing services on behalf of the user.
The bot performs user input recognition to interpret what the user asks or says. It can

600 R. Conte et al.

Fig. 1. Bot overview

generate responses by saying what it has done and depending on the configuration users
can interact.

Bots are very similar to modern Web applications, which connect to the Internet and
use APIs to send and receive messages. The content of a bot varies greatly depending
on the type of bot. Modern bot software relies on a range of technologies and tools to
provide increasingly complex experiences across a wide range of platforms. However,
a simple bot can simply receive a message and send it back to the user with the need for
very little code.

Bots can perform the same operations as other types of software: reading and writ-
ing files, using databases and APIs, and performing normal computational tasks. The
peculiarity of bots lies in their use of mechanisms generally reserved for communication
between humans.

Bots can be integrated with other Azure services such as the cognitive services
described in the previous paragraphs.

As mentioned earlier, the bot can be linked to all social networks and can be linked
to different channels.

To create the bot, you need to assign a virtual machine and use the following software
components:

• ASP.NET Core Runtime 3.1
• Bot Framework Emulator
• Knowledge of ASP.NET Core and asynchronous programming in C#
• Visual Studio 2019 or later versions
• Bot Framework models SDK v4 for Visual Studio

In visual studio we have created a new bot project using the Echo Bot template.
Thanks to the template, the newly created project contains within it all the neces-

sary code. To start the bot, it is necessary to open the project without debugging. The
application will be compiled and deployed to localhost and the browser will be started
to display the “default.htm” page of the application.

6 Conclusions

In this preliminary work, we presented the Adagio. It uses two frameworks hat combined
can offer interesting perspective in the extraction and detection of texts from audio.

Adagio: A Bot for Audio Processing Against Violence 601

Through Speech SDK it is possible to start speech recognition and set up a set of
phrases and expressions ready to be recognized. If known derogatory words or expres-
sions are set within the training file, it is possible, through the bot synchronized with the
social networks of interest, to intercept these expressions. The Bot Framework includes
a modular and extensible SDK for building bots and connecting to AI services. The
potential of the combination of Speech SDK and Bot SDK finds both law enforcement
agencies and forensic experts as natural users. The next step will be to test the perfor-
mance of the bot on known datasets such as VSD [18], UCF-Crime [19], XD-Violence
[20] and then test it in real-life usage contexts connected to social networks of interest.

References

1. Bautista-Durán, M., García-Gómez, J., Gil-Pita, R., Mohíno-Herranz, I., Rosa-Zurera, M.:
Energy-efficient acoustic violence detector for smart cities. Int. J. Comput. Intelli. Syst. 10(1),
1298–1305 (2017). https://doi.org/10.2991/IJCIS.10.1.89

2. Clavel, C., Ehrette, T., Richard, G.: Events detection for an audio-based surveillance system.
In: IEEE International Conference onMultimedia andExpo, ICME2005, vol. 2005, pp. 1306–
1309 (2005). https://doi.org/10.1109/ICME.2005.1521669

3. Giannakopoulos, T., Kosmopoulos, D., Aristidou, A., Theodoridis, S.: Violence content clas-
sification using audio features. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis,
D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 502–507. Springer, Heidelberg (2006).
https://doi.org/10.1007/11752912_55

4. Giannakopoulos, T., Pikrakis, A., Theodoridis, S.: A multi-class audio classification method
with respect to violent content in movies using Bayesian Networks. In: 2007 IEEE 9Th
InternationalWorkshop onMultimedia Signal Processing,MMSP2007 - Proceedings, pp. 90–
93 (2007). https://doi.org/10.1109/MMSP.2007.4412825

5. Pirlo, G., Trullo, C.A., Impedovo, D.: A feedback-based multi-classifier system. In: Pro-
ceedings of the International Conference on Document Analysis and Recognition, ICDAR,
pp. 713–717 (2009). https://doi.org/10.1109/ICDAR.2009.75

6. Impedovo, D., Pirlo, G.: Updating knowledge in feedback-based multi-classifier systems.
In: Proceedings of the International Conference on Document Analysis and Recognition,
ICDAR, pp. 227–231 (2011). https://doi.org/10.1109/ICDAR.2011.54

7. Acar, E., Hopfgartner, F., Albayrak, S.: Detecting violent content in Hollywood movies by
mid-level audio representations. In: Proceedings - International Workshop on Content-Based
Multimedia Indexing, pp. 73–78 (2013). https://doi.org/10.1109/CBMI.2013.6576556

8. Zaheer, M.Z., Kim, J.Y., Kim, H.G., Na, S.Y.: A preliminary study on deep-learning based
screaming sound detection. In: 2015 5th International Conference on IT Convergence and
Security, ICITCS 2015 - Proceedings, October 2015. https://doi.org/10.1109/ICITCS.2015.
7292925

9. Microsoft.com: QuickStart: Recognize and verify who is speaking. February 2022
[Online]. https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-sta
rted-speaker-recognition?tabs=script&pivots=programming-language-csharp. Accessed 26
Sep 2022.

10. Microsoft.com: What is the Speech SDK? September 24 2022. https://learn.microsoft.com/
en-us/azure/cognitive-services/speech-service/speech-sdk?tabs=windows%2Cubuntu%2Ci
os-xcode%2Cmac-xcode%2Candroid-studio. Accessed 26 Sep 2022

11. Microsoft.com: Improve synthesiswithSpeechSynthesisMarkupLanguage (SSML). Sep. 20,
2022. https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-syn
thesis-markup?tabs=csharp. Accessed 26 Sep 2022)

https://doi.org/10.2991/IJCIS.10.1.89
https://doi.org/10.1109/ICME.2005.1521669
https://doi.org/10.1007/11752912_55
https://doi.org/10.1109/MMSP.2007.4412825
https://doi.org/10.1109/ICDAR.2009.75
https://doi.org/10.1109/ICDAR.2011.54
https://doi.org/10.1109/CBMI.2013.6576556
https://doi.org/10.1109/ICITCS.2015.7292925
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-speaker\xmlbreak -recognition?tabs=script%26pivots=programming-language-csharp
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-sdk?tabs=windows%2Cubuntu%2Cios-xcode%2Cmac-xcode%2Candroid-studio
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-synthesis-markup?tabs=csharp

602 R. Conte et al.

12. Scalera, M., Serra, A.: Customer centric strategies for value creation: academic experi-
mentation. J. e-Learn. Knowl. Soc. 10(2), 65–76 (2014). https://doi.org/10.20368/1971-882
9/922

13. Microsoft.com.What is the Bot Framework SDK?. Sep. 2022 [Online]. https://docs.micros
oft.com/en-us/azure/bot-service/bot-service-overview-introduction?view=azure-bot-servic
e-4.0.Accessed 26Sep 2022

14. GitHub - vnconvertini/audioprocessingbot. https://github.com/vnconvertini/audioprocessin
gbot. Accessed 29 Sep 2022

15. Microsoft.com.Improve recognition accuracy with phrase list. Feb. 2022 [Online]. https://lea
rn.microsoft.com/en-us/azure/cognitive-services/speech-service/improve-accuracy-phrase-
list?tabs=terminal&pivots=programming-language-csharp. Accessed 26 Sep 2022

16. lu file format - Bot Service | Microsoft Learn. https://learn.microsoft.com/en-us/azure/bot-
service/file-format/bot-builder-lu-file-format?view=azure-bot-service-4.0. Accessed 30 Sep
2022

17. Demarty, C.-H., Penet, C., Soleymani, M., Gravier, G.: VSD, a public dataset for the detection
of violent scenes in movies: design, annotation, analysis and evaluation. Multim. Tools Appl.
74(17), 7379–7404 (2014). https://doi.org/10.1007/s11042-014-1984-4

18. Sultani, W., Chen, C., Shah, M.: Real-world Anomaly Detection in Surveillance Videos.
January 2018 [Online]. http://arxiv.org/abs/1801.04264

19. Wu, P., et al.: Not only look, but also listen: learning multimodal violence detection under
weak supervision. July 2020 [Online]. http://arxiv.org/abs/2007.04687

https://doi.org/10.20368/1971-8829/922
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-overview-introduction\xmlbreak ?view=azure-bot-service-4.0
https://github.com/vnconvertini/audioprocessingbot
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/improve-accuracy-phrase-list?tabs=terminal&pivots=programming-language-csharp
https://learn.microsoft.com/en-us/azure/bot-service/file-format/bot-builder-lu-file-format?view=azure-bot-service-4.0
https://doi.org/10.1007/s11042-014-1984-4
http://arxiv.org/abs/1801.04264
http://arxiv.org/abs/2007.04687

End Users’ Perspective of Performance
Issues in Google Play Store Reviews

Anam Noor1 , Muhammad Daniyal Mehmood1 , and Teerath Das2(B)

1 Department of Computer Science, Mohammad Ali Jinnah University,
Karachi, Pakistan

{fa19mscs0018,sp21msse0009}@maju.edu.pk
2 Faculty of Infromation Technology, University of Jyväskylä, Jyväskylä, Finland

teerath.t.das@jyu.fi

Abstract. The success of mobile applications is closely tied to their
performance which shapes the user experience and satisfaction. Most
users often delete mobile apps from their devices due to poor perfor-
mance indicating a mobile app’s failure in the competitive market. This
paper performs a quantitative and qualitative analysis and investigates
performance-related issues in Google Play Store reviews. This study has
been conducted on 368,704 reviews emphasizing more 1- and 2-star
reviews distributed over 55 Android apps. Our research also reports
a taxonomy of 8 distinct performance issues obtained using manual
inspection. Our findings show that end-users recurrently raised Upda-
tion (69.11%), Responsiveness (25.11%), and Network (3.28%) issues
among others. These results can be used as preliminary steps towards
understanding the key performance concerns from the perspective of
end users. Furthermore, Our long-term objective will be to investigate
whether developers resolve these performance issues in their apps.

Keywords: Android mobile apps · Google play reviews · Performance
related issues

1 Introduction

Technological breakthroughs have largely influenced modern society, particularly
in the field of mobile apps. It is expected that the App Economy will rise to a
new peak from $693 Billion in 2021 to $935.2 Billion in 20231. The performance
aspect of the apps is a significant indicator of their successful growth. Developers
implement new resource-intensive features in the apps to meet the end users’
requirements showcasing efficient performance. Thus, performance is a crucial
parameter for determining the success or failure of any mobile app, as the user
experience highly depends on it: the more flawless performance, the better the
user-acceptance ratio.
1 https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-

forecast/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 603–609, 2022.
https://doi.org/10.1007/978-3-031-21388-5_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_45&domain=pdf
http://orcid.org/0000-0001-7854-5025
http://orcid.org/0000-0002-2667-5060
http://orcid.org/0000-0003-2024-6545
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/
https://doi.org/10.1007/978-3-031-21388-5_45

604 A. Noor et al.

To date, performance issues have been analyzed in various systems like web
applications [1], heterogeneous environments [3], and large scale applications [6].
Further, Liu et al. [4] have explored 70 performance smells in mobile apps and
classified them into three broad categories. To the best of our knowledge, one
of the studies [2] closely resembles our study. However, the significant difference
between the two is that the former [4] analyzed the performance issues in GitHub
commits, and the latter explored the reviews of android apps available on the
Google Play Store. Our approach is different and novel because we are analyzing
performance related issues from end users perspective i.e., exploiting Google
reviews of Android apps. Our results shows how the performance reviews vary
across different android app categories. Furthermore, we produced a taxonomy
of performance issues after manual inspection of 1 and 2-star reviews.

The main contributions of this paper are:

– Analysis of performance issues in Google Play Store reviews of 55 Android
apps.

– A taxonomy of most common types of performance issue in Android apps.

2 Study Design

The goal of this study is to analyze the performance in rich Google reviews, with
the purpose to comprehend their connectivity with the end-users and attributes
of the projects. The context of our study is 55 android apps from Google Play
Store and examined their 1 and 2- star reviews from the point of view of the end
users. This research aims to address the following research questions:

RQ1: To what extent do end users perceive the performance-related issues in
Android app reviews?

RQ2: What are the performance issues that end users raise in Android apps
reviews?

RQ1 focuses on estimating the prevalence in which the end users consider
performance issues in android apps, whereas RQ2 dedicates to classifying Google
reviews with respect to the performance issues as raised by the end users. The
design of our study mainly comprises a set of mobile apps distributed across
the Google Play Store. The purpose of selecting Google Play Store as our target
area of the population lies in its increasingly huge popularity among all the other
marketplaces for apps. Figure 1 represents the step-by-step process adopted to
get our targeted apps; (i) firstly, we selected the most popular apps from the
first quarter of 2021 using different sources2 (S), which resulted in identifying
55 android apps, (ii) then, we extracted all the reviews of selected apps using
a Python script and collected a total of 355,687,535 reviews, (iii) after that,
we filtered 368,707 reviews based on their 1 and 2-star reviews. The reason
for selecting these reviews is that the end users express their dissatisfaction by
giving 1- and 2-star reviews. We inscribed a dedicated script to extract 1- and

2 https://github.com/anam-noor/Replication-package-.

https://github.com/anam-noor/Replication-package-

Performance Issues in Google Play Store Reviews 605

2-star Google reviews from the selected apps. Thus, the final population for this
research is 368,707, which is spread over 55 different apps.

The designed variables for addressing RQ1 include (i) pReviews: the
performance-related reviews out of the total number of reviews (tReviews) of
android apps, and (ii) android apps categories in the Google play store. For
RQ2, the reviews are categorized into different categories addressing performance
issues. We identified a review as a performance-related review (pReviews) if it
contains one of the following keywords: update, wait, slow, lag, response, time,
speed, graphic, perform, hang, memory, leak, connect, image, not. These key-
words were considered by looking, evaluating, and combining mining methodolo-
gies from past empirical studies [2,5,7,8] on software performance (both mobile
and not mobile-specific). The script ensures all the possible combinations of the
upper and lower case keywords.

Fig. 1. Google reviews extraction

The matching of the keywords resulted in detecting a set of 64,444
performance-related reviews of 1- and 2-star ratings. After a manual analysis,
8,877 reviews are discarded for being categorized as False Positive. The whole
process finally produced a total of 55,567 performance-related reviews.

Furthermore, we investigated the categories of performance concerns by
manually labeling the 55,567 reviews. We used manual labeling to categorize
performance-related reviews into relevant groups in two phases: the first phase
is dedicated to tagging each review with its relevant keywords (e.g., graphics
from GUI, slow, and hang). Subsequently, in the second phase, we labeled those
tags into more significant groups with an explanatory title (e.g., Memory man-
agement issues, Networking issues). The second phase of labeling resulted in 8
different types of categories. The manual inspection of both the phases are con-
ducted by two masters students separately and then supervisor cross check the
labels.

606 A. Noor et al.

3 Results

In this section, we will discuss the results by addressing all research questions of
our study, as mentioned in the previous section.

RQ1: To what extent do end users perceive the performance-related issues in
Android app reviews?

To answer this research question, we primarily compute the ratio of identi-
fied number of performance-related reviews (pReviews) to the total number of
reviews (tReviews) present in our dataset. It is interesting to note that all 55
apps in our dataset have at least one performance-related review. A total of
55,567 (15%) performance issues have been identified out of 368,704 reviews.

Table 1 reports the apps categories, the frequency of each app category,
total number of reviews (tReviews), and performance related reviews (pReviews)
identified. Performance issues vary across different natures of the applications.
For example, the Entertainment app category holds the highest percentage of
performance-related reviews (22.23%) as shown in Table 1. This is understand-
able because such apps have a captivating user experience, and users tend to
spend more time on these apps due to online sessions. The Game app category
holds the second highest performance reviews (17.23%) followed by Shopping
(15.53%) category. The Game category mainly relies on the user experience of
long sessions, whereas the shopping category is a utility that included in task-
based apps with short usage sessions. This shows that performance issues are
orthogonal across each category and distributed without the application context.

Table 1. Distribution of performance related issues over various app categories.

App category App frequency tReviews pReviews

Entertainment 4 28,558 6350 (22.23%)

Games 11 116,691 20161 (17.27%)

Shopping 9 80219 12294 (15.3%)

Education 6 31054 4310 (13.87%)

Tools 8 34391 3459 (10.3%)

Lifestyle 6 1918 190 (9.90%)

Books and references 1 684 56 (8.18%)

Food and drink 3 14635 886 (6.05%)

Music and audio 8 60538 2653 (4.35%)

RQ2: What are the performance issues that end users raise in Android apps
reviews?

To answer this research question, we manually analyzed the 55,567 reviews,
which resulted in 8 different performance categories. Table 2 depicts eight cate-
gories extracted from the manual inspection along with an example of represen-
tative review (the representative review is randomly selected from our observed

Performance Issues in Google Play Store Reviews 607

dataset) and pReviews (in terms of frequency percentage) of performance-related
reviews for each category. In the following, we will consider each of the listed
categories of performance issues obtained from manual analysis.

As mentioned in Table 2, the most frequent concern of end-users while using
android apps is the updation (69.11%), e.g., “In terms of chat during the games,
lags due to update.” From the manual inspection of reviews, we derive that
the end user’s perspective of app performance is of paramount importance
for app developers. Some examples of updation issues after manual inspection
are“Crashing of apps after update,” “App stops working after update” and “Fea-
tures unavailability”. Therefore, Performance enhancements constitute a signifi-
cant part of app updates.

The second most common performance-related complaint expressed by end
users’ is Responsiveness (25.6%), which is determined by evaluating Speed, Lag,
and Delay keywords. “Slow apps”, “Waiting a long time for an app to load,”
“App lagging, app stuck,” and “App hang” are all examples of Responsiveness
issues. The Network (3.28%) related performance issues are also commonly doc-
umented by end-users in their reviews, e.g., “The apps seems useless if it does
not connect to the server”, “Disconnecting from the server” and “Network shar-
ing, and several connection issues”. Despite being reported in lesser frequency,
Memory Management issue ((0.36%)) is still one of the most critical as it can
paralyze the app by halting key processes. Examples of such issues are “Using
three times of memory than other apps” and “Immediately ate up over 17MB of
memory without ever loading”.

Loading Time of any app plays an important role in the overall app perfor-
mance for the end user. Loading time makes up for 0.14% of pReviews. Some
examples are “It takes ages to start the screen” and “Never ending loading time”.
Moreover, about 0.85% of the pReviews are generic and do not point to a spe-
cific issue category. In these reviews, users do not describe any specific category;
instead, they talk in general without explaining the reason. Some examples are
“Improve the app” and “Good game but with performance issues”.

4 Threats to Validity

The use of keyword matching to detect performance-related reviews poses a
threat to construct Validity. In our study, we assume that a review contain-
ing specified keywords should be considered a performance-related review. This
approach may omit a few performance-related reviews because we may miss a
few keywords. In order to mitigate this threat, we consider all the keywords
in the previous studies [2,5,7,8]. False positives have been reduced by manual
inspection of extracted reviews.

External Validity threats primarily affect the generalization of our findings,
which are related to the representation of different app categories studied in this
study. We were able to mitigate this risk by using a relatively large data set (i.e.,
368,704 reviews consisting of 55 apps) and picking apps belonging to diverse app
categories and built as part of real-world apps (i.e., all apps are released on the
Google Play store and are publicly available).

608 A. Noor et al.

Table 2. Identified categories of performance-related reviews

Performance category Representative review pReviews

Updation This is horrible, the update ruined
everything, when you are done finding
what you want to say the meeting is over

38,404 (69.11%)

Responsiveness Hangs at startup logo. Unusable 14,247 (25.6%)

Network Slow server... Always lost connection
when almost win

1,826 (3.28%)

Generic concern As game is growing it is becoming very
dull performance

475 (0.85%)

GUI Outdated user interface, not quite
intuitive and audio

319 (0.57%)

Memory management Don’t you guys have any good devs? Your
app is full of memory leaks!

205 (0.36%)

Loading time I either receive an error message or it’s
stuck on a loading screen

82 (0.14%)

Image Image loading is awful on the app. its
really frustrating to have to wait over 20 s
for images to load

6 (0.010%)

5 Related Work

Various studies have been done which analyze performance issues in android
apps for example Das et al. [2] takes similar approach, but in the context of per-
formance related commits of the android apps having versioning history hosted
on GitHub repositories whereas our study focuses on performance issues as per
end user reviews. Another study by Liu et.al [4] investigates performance bugs
and categorizes them into categories. They identify 70 performance related bugs
and characterize these bugs into 3 categories. In our study we not only consider
more performance issue categories in our taxonomy but also relate app categories
to these issues forming a pattern. Malavolta et al. [5] conducts a similar study
but into hybrid mobile apps, by mining free apps and reviews from the Google
Play Store.

6 Conclusion and Future Work

This paper reports the results of a study by analyzing performance related
reviews in Android apps. We investigated a total of 55,567 Google Play Store
reviews which were rated 1 and 2-stars out of 368,704 distributed over 55 apps.
We proposed a taxonomy for such reviews using manual inspection and identi-
fied a total of 8 performance related issue categories. The main findings of our
study show performance issues are mostly found in the app due to Updation.
In addition to that, we also observed numerous reviews for the responsiveness
of apps and Network related issues. This study will help developers understand
different performance bottlenecks in their apps from end users perspective.

Performance Issues in Google Play Store Reviews 609

Future work aims to exploit these labelled performance issue categories of
this study to automatically classify using different machine learning algorithms.
It is also interesting to analyze the performance-related reviews using natural
language processing techniques. Future work also aims to analyze other aspects
of non-functional issues in the google reviews.

References

1. Tarek, M.: Studying the effectiveness of application performance management
(APM) tools for detecting performance regressions for web applications: an expe-
rience report. In Miryung Kim, Romain Robbes, and Christian Bird, editors. In:
Proceedings of the 13th International Conference on Mining Software Repositories,
MSR 2016, Austin, TX, USA, May 14–22, 2016, pp. 1–12. ACM (2016)

2. Das, T., Di Penta, M., Malavolta, I.: a quantitative and qualitative investigation
of performance-related commits in android apps. In: 2016 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA,
October 2–7, 2016, pp. 443–447. IEEE Computer Society (2016)

3. Foo, K.C., Jiang, Z.M., Adams, B., Hassan, A. E., Zou, Y., Flora, P.: An indus-
trial case study on the automated detection of performance regressions in hetero-
geneous environments. In: Bertolino, A., Canfora, G., Elbaum, S.G., eds. In: 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015, Flo-
rence, Italy, May 16–24, 2015, Vol. 2, pp. 159–168. IEEE Computer Society (2015)

4. Liu, Y., Xu, C., Cheung, S.C.: Characterizing and detecting performance bugs for
smartphone applications. In Pankaj Jalote, Lionel C. Briand, and André van der
Hoek, editors, In: 36th International Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014, pp. 1013–1024. ACM (2014)

5. Malavolta, I., Ruberto, S., Soru, T., Terragni, V.: End users’ perception of hybrid
mobile apps in the google play store. In Onur Altintas and Jia Zhang, editors, In:
2015 IEEE International Conference on Mobile Services, MS 2015, New York City,
NY, USA, June 27 - July 2, 2015, pp. 25–32. IEEE Computer Society (2015)

6. Malik, H., Hemmati, H., Hassan, A. E.: Automatic detection of performance devi-
ations in the load testing of large scale systems. In: Notkin, D., Cheng, B.H.C.,
Pohl, K., eds. In: 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18–26, 2013, pp. 1012–1021. IEEE Computer Society
(2013)

7. Selakovic, M., Pradel, M.: Performance issues and optimizations in javascript: an
empirical study. In: Dillon, L.K., Visser, W., Williams, L.A., eds. In: Proceedings
of the 38th International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14–22, 2016, pp. 61–72. ACM (2016)

8. Zaman, S., Adams, B., Hassan, A. E.: A qualitative study on performance bugs. In:
Lanza, M., Di Penta, M., Xie, T., eds. In: 9th IEEE Working Conference of Mining
Software Repositories, MSR 2012, June 2–3, 2012, Zurich, Switzerland, pp. 199–208.
IEEE Computer Society (2012)

Predicting Bug-Fixing Time: DistilBERT
Versus Google BERT

Pasquale Ardimento(B)

University of Bari Aldo Moro, Department of Informatics, Via Orabona 4, Bari, Italy

pasquale.ardimento@uniba.it

Abstract. The problem of bug-fixing time can be treated as a super-
vised text categorization task in Natural Language Processing. In recent
years, following the use of deep learning also in the field of Natural Lan-
guage Processing, pre-trained contextualized representations of words
have become widespread. One of the most used pre-trained language
representations models is named Google BERT (hereinafter, for brevity,
BERT). BERT uses a self-attention mechanism that allows learning the
bidirectional context representation of a word in a sentence, which consti-
tutes one of the main advantages over the previously proposed solutions.
However, due to the large size of BERT, it is difficult for it to put it into
production. To address this issue, a smaller, faster, cheaper and lighter
version of BERT, named DistilBERT, has been introduced at the end of
2019. This paper compares the efficacy of BERT and DistilBERT, com-
bined with the Logistic Regression, in predicting bug-fixing time from
bug reports of a large-scale open-source software project, LiveCode. In
the experimentation carried out, DistilBERT retains almost 100% of its
language understanding capabilities and, in the best case, it is 63.28%
faster than BERT. Moreover, with a not time-consuming tuning of the C
parameter in Logistic Regression, the DistilBERT provides an accuracy
value even better than BERT.

Keywords: Google BERT · DistilBERT · Bug-fixing · Deep learning ·
Software maintenance process · Defect tracking systems

1 Introduction

Software bugs can originate from all stages of the software life cycle. Bug fixing
has become an important activity during the software development and main-
tenance process. A bug report contains a large amount of text information that
can help software developers and maintainers understand bugs well and com-
plete bug fixing. Many open-source software projects use bug tracking systems
(BTS) to store and manage bug reports, such as Bugzilla. A large number of
new bug reports are submitted to BTS every day which contain a wealth of
bug knowledge. In recent years, lots of work utilized information retrieval tech-
nology to explore these massive bug repositories to help developers understand,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 610–620, 2022.
https://doi.org/10.1007/978-3-031-21388-5_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_46&domain=pdf
http://orcid.org/0000-0001-6134-2993
https://doi.org/10.1007/978-3-031-21388-5_46

Predicting Bug-Fixing Time: DistilBERT Versus Google BERT 611

localize and fix bugs [3,11,13]. However, bug reports are submitted by different
users, with free grammar and different structures, including a large number of
phrases and short text. The very fast development knowledge in bug repositories
shows the characteristics of heterogeneity, diversity and fragmentation. Tradi-
tional information retrieval technology is based primarily on statistical methods
that treat bug reports as a collection of words, which breaks the context and does
not fully explore the semantic knowledge in bug reports. Accurately extracting
and expressing rich semantics and knowledge in bug reports is important for vari-
ous bug analysis activities, such as diagnosis, fixing, testing, and documentation
of bugs. For example, when developers encounter software bugs, they usually
search various software sources, such as bug libraries, software control versions,
etc., to obtain reference solutions. The search results are usually large, and most
of them are irrelevant. By understanding the semantic information of the bug
report, it will be helpful to recommend a related bug report that is closer and
reasonable to the bug content retrieved by the developer, and further study the
code repair link of the report to obtain repair suggestions.

Several predictive models have been proposed to automatically predict the
time to fix a bug. These approaches share the idea of using all textual information
of bug reports and adopt context-free word representations (e.g., the bag-of-
words representation model). Recently, two waves arose paving new ways in the
field of bug-fixing time. Firstly, the revolution of deep learning used in the field
of Natural Language Processing (NLP), thanks to which it is possible having
“(1) distributed representations of linguistic entities via embedding, (2) semantic
generalization due to the embedding, (3) long-span deep sequence modeling of
natural language, (4) hierarchical networks effective for representing linguistic
levels from low to high, and (5) end-to-end deep learning methods to jointly
solve many NLP tasks” [9]. Secondly, the extraction of semantic features from
the textual messages through topic modeling, such as Latent Dirichlet allocation
[5], Non-negative matrix factorization [10] and its recent applications [8], and
several other techniques initially applied in different domains.

This work focuses on the use of deep learning in the field of NLP. Recently,
following the use of deep learning in the field of Natural Language Process-
ing (NLP), pre-trained contextualized representations of words have become
widespread. However, current techniques restrict the power of the pre-trained
representations, especially for the fine-tuning approaches. The major limitation
is that standard language models are unidirectional, but language understand-
ing is bidirectional. The unidirectionality limits the choice of usable architec-
tures during pre-training. Such restrictions are “sub-optimal for sentence-level
tasks, and could be very harmful when applying fine-tuning based approaches
to token-level tasks such as question answering, where it is crucial to incorpo-
rate context from both directions.” [14]. BERT, which stands for Bidirectional
Encoder Representations from Transformers, is a language representation model
whose key novelty consists in applying the bidirectional training of Transformer,
an attention-based mechanism that can accurately extract contextual relation-
ships in words to realize unsupervised learning by combining text input and

612 P. Ardimento

output through the decoder-encoder framework. BERT reads the text from both
directions at once (bidirectional) having a deeper sense of language context and
flow than single-direction language models. In recent work, the BERT model has
been demonstrated to be effective in bug-fixing time prediction problem [4].

However, BERT suffers from fixed input length size limitations, wordpiece
embedding problems, and computational complexity [1]. For this reason, in
this work it is also used DistillBERT, “a general-purpose pre-trained version
of BERT, 40% smaller, 60% faster, that retains 97% of the language under-
standing capabilities” [14]. To confirm or reject this statement for the problem
of bug-fixing time prediction, performances of the BERT and DistilBERT mod-
els on LiveCode, a large-scale open-source project, have been compared. The
results obtained show that DistilBERT is better than BERT since it achieves
the same accuracy values being greatly faster than BERT. The paper is orga-
nized as follows. Section 2 provides the necessary background of BTS, techniques
used to analyze the text corpus of a bug report and the approach of the proposed
prediction model. In Sect. 3 the results and a discussion of the empirical investi-
gation carried out are presented. Section 4, finally, draws some conclusions and
future work.

2 Material and Methods

This section provides, in brief, necessary background information about the Bug
Tracking Systems and a description of the main components of the proposed
classifier model of the bug-fix time prediction process adopted, shown in Fig. 1.

2.1 Bug Tracking Systems

The life cycle of a bug in a BTS can be described as follows. Life cycle starts
when the bug is discovered and ends when the bug is closed, after ensuring
that it has been fixed. Bug life cycle can be slightly different depending on the
BTS used. General BTS as well as Bugzilla BTS, a popular BTS, allow users
to report, track, describe, comment on and classify bug reports. A bug report is
characterized by several predefined fields, such as the relevant product, version,
operating system and self-reported incident severity, as well as free-form impor-
tant text fields, such as bug title, called summary in Bugzilla, and description.
Moreover, users and developers can add comments and submit attachments to
the bug report, which often take the form of patches, screenshots, test cases or
anything else binary or too large to fit into a comment.

2.2 Proposed Classifier Model

Figure 1 depicts the main components of the proposed classifier model: dataset
extraction (Fig. 1a), dataset generation (Fig. 1b), the classifier architecture
(Fig. 1c), and evaluation metrics (Fig. 1d).

Predicting Bug-Fixing Time: DistilBERT Versus Google BERT 613

Fig. 1. Overall process and classifier architecture.

2.3 Dataset Extraction

The process deployed for the bug report extraction is shown in Fig. 1a. This
preliminary research is focused on bug reports extracted from only one Bugzilla
installation. Basically, Bugzilla has been selected because has a wide public
installation base and offers a native well documented REST API as a preferred
way to interface with Bugzilla from external applications. On Bugzilla’s official
page there is a list, whose last update is on February 25th, 2021, of 140 companies
[7], organizations, and projects that run public Bugzilla installations. The choice
of which project to select fell on LiveCode [12], since currently it is a mature and
active open-source software project, exposing a public Bugzilla installation. Data
were collected by performing a web scraping of bug reports from the Bugzilla
platform. This process was made possible by using the APIs made available from
Bugzilla, collecting bug reports of the LiveCode project in a JSON file. Only bug
reports whose status field has been assigned to VERIFIED and the resolution
field has been assigned to FIXED were selected. Since the time spent to fix a bug
was not publicly available an additional field, named Days resolution, has been
introduced. This field calculates, in calendar days, the time distance between
the time where bug field Status was set to RESOLVED and the date where the
bug report was assigned for the first time. Calculation in calendar days is due
to the absence of information about the actual time spent by developers respon-
sible for fixing bugs. As consequence, the Days resolution field may be not very
accurate and potentially affect the results. Fields, such as “Short description”,
“First comment” and “Comments”, containing relevant natural language infor-
mation to perform fine-tuning on BERT pre-trained model have been selected.

614 P. Ardimento

Days resolution field, instead, has been used to discretize resolution time. The
remaining fields of the bug report, instead, have been discarded. Finally, all bug
reports without both the description and at least one comment were discarded.

2.4 Dataset Generation

The process deployed for the training/test datasets generation is shown in
Fig. 1b. Natural language sentences contained in the selected fields have been
aggregated into a derived field called Text, since BERT is unable to handle
natural language information coming from multiple fields. Bug description and
comments usually contain a combination of free unstructured text, code snip-
pets and stack traces, making the data highly noisy; a pre-processing of the input
text is required. The following operations were carried out in sequence: URL,
symbols and isolated dashes removal; numbers removal; conversion of dashes to
underscores. The objectives of the pre-processing task are to reduce the data
noise as much as possible but, at the same time, preserve the context of words
within sentences. For this reason, common text pre-processing operations that
could negatively influence the context of words, such as stop word removal, have
been avoided. Text conversion into lowercase letters is an operation not necessary
since the uncased version of BERT will be adopted, which performs this oper-
ation before the WordPiece tokenization, a technique used by the pre-trained
model to segment words into subword-level in Natural Language Processing
(NLP) tasks. To address the bug-fixing time prediction issue as the result of
a binary text categorization task, it is necessary to discretize the number of days
of resolution of each bug into two classes called Fast and Slow. Fast class refers
to all bugs that can be fixed in a relatively short time and Slow class to bugs
requiring more time and resources. The Days resolution field, representing the
time necessary to fix a bug, was discretized in two classes via the median split
procedure. In this way, the problem of unbalanced classes was avoided and there
was not any need to use balancing techniques.

2.5 BERT

The BERT-based architecture is shown in Fig. 1c. BERT (Bidirectional Encoder
Representations from Transformers) is a language representations model that,
conceived in late 2018, introduced the key innovation factor to apply the bidirec-
tional training of a Transformer, a popular attention model, to language mod-
eling. Previous approaches, instead, looked at a text sequence either from left
to right or combined left-to-right and right-to-left training, as described in [5].
BERT makes use of a Transformer, a model introduced in [6], characterized by a
self-attention mechanism that learns contextual relations between words (or sub-
words) in a text. Generally, a Transformer includes two separate mechanisms: an
encoder that reads the text input and a decoder that produces a prediction for
the specific task. Since BERT’s goal is to generate a language model, only the
encoder mechanism is necessary. The input to BERT can be a single sentence
or a sentence pair in a sequence of words (e.g., for question answering tasks, the

Predicting Bug-Fixing Time: DistilBERT Versus Google BERT 615

input can be a pair [question, answer]). For a given word, its input representation
can be constructed by summing token, segment and position embeddings. The
token embedding represents the word vector. The first word is the CLS special
token, which can be used for subsequent classification tasks; for the other down-
stream tasks, the CLS token can be ignored. The segment embedding is used to
distinguish between two sentences since pre-training is not only a language mod-
eling but also a classification task with two sentences as input. The positional
embedding is used to encode the position of the word to the sentence. The main
phases of BERT are pre-training and fine-tuning: during the pre-training, the
model is trained using unlabeled data over different pre-training tasks. For fine-
tuning, BERT is first initialized with the pre-trained parameters, and all of the
parameters are fine-tuned using labeled data from the downstream tasks, term
indicating the main supervised tasks of NLP. It is important to note how BERT
fine-tuned model performs prediction for a binary text classification task: during
the tokenization of the input text, a special token called CLS, which stands for
classification, is prepended to the beginning of every sentence. BERT’s architec-
ture is composed of a stack of encoders, each encoder generates an embedding
that is passed to the next one. The output word embedding of the last encoder,
related to the CLS token, can be provided as input to a classifier (a feed-forward
neural network with a softmax layer, which normalizes an input vector into a
range that leads to a probabilistic interpretation) to perform a classification of
the input text. The fine-tuning approach is not the only way to use BERT, since it
can also be used as a feature-based approach. It is possible to use the pre-trained
version of the model to generate contextualized word embeddings and feed these
embeddings to other existing models. The feature-based approach, according to
the authors of the model, has certain advantages. First, not all tasks can be eas-
ily represented by a Transformer encoder architecture, and therefore require a
task-specific model architecture to be added. Second, there are major computa-
tional benefits to pre-compute an expensive representation of the training data
once and then run many experiments with cheaper models on top of this repre-
sentation. However, there is the issue of determining which vector, among those
provided as output by each encoder, works best as a contextualized embedding.

2.6 DistilBERT

DistilBERT, proposed in [14], is a smaller version of BERT developed based on
open-source code and technologies by the team at HuggingFace [2].

DistilBERT uses a technique called knowledge distillation, which approxi-
mates BERT, i.e. the large neural network by a smaller one. The idea is that
once a large neural network has been trained, its full output distributions can be
approximated using a smaller network. Knowledge distillation [6] is a compres-
sion technique in which a compact model, the student, is trained to reproduce
the behaviour of a larger model - the teacher - or an ensemble of models.

In brief, the student (DistilBERT) has the same general architecture as the
teacher (BERT). In the student, the token-type embeddings and the pooler are

616 P. Ardimento

removed while the number of layers is reduced by a factor of 2. Most of the opera-
tions used in the Transformer architecture (linear layer and layer normalisation)
are highly optimized in modern linear algebra frameworks and investigations
in [14] showed that variations on the last dimension of the tensor (hidden size
dimension) have a smaller impact on computation efficiency (for a fixed param-
eters budget) than variations on other factors like the number of layers. Thus,
DistilBERT focuses on reducing the number of layers. In addition to the pre-
viously described optimization and architectural choices, an important element
in DistilBERT training procedure is to find the right initialization for the sub-
network to converge. Taking advantage of the common dimensionality between
teacher and student networks, the student is initialized from the teacher by
taking one layer out of two.

3 Empirical Investigation and Results

To conduct the experiment, using the pre-trained model described in Sects. 2.5
and 2.6, additional data operations were required.

3.1 Experimental Settings

The classifier proposed is constructed by using the Python library called Sim-
ple Transformers [16], version 0.63.9. This library is based on the Transformers
library by HuggingFace. The high-level process of using Simple Transformers
models follows the same pattern: (i) initialize a task-specific model; (ii) train
the model; (iii) evaluate the model; (iv) make predictions on unlabelled. Google
Colaboratory (CoLab) was chosen as execution environment. It is a free Jupyter
notebook interactive development environment useful to disseminate machine
learning education and research fully configured for deep learning approaches.
Colab requires no setup for being used and runs entirely in the cloud. One of
the main features of this environment is the possibility to use a cloud GPU to
execute notebooks, which speeds up the training process of very complex models
like BERT. In the experiment carried out, a free-tier Colab was available. Since
it allows access to high-memory Virtual Machines with up to 25 GB RAM, only
300 bug reports were randomly selected out from the entire dataset. This num-
ber represents approximately the threshold above which the session ran out of
memory in GPU.

To evaluate the model, the accuracy metric is used. It expresses the ratio of
the number of correct predictions to the number of instances in the test set, i.e.
it denotes the proportion of bugs correctly predicted. As stated above, it was
decided to use the Slow labeled class as the positive class, because of its larger
impact in terms of cost/effectiveness. In this work, in particular, DistilBERT
processes bug report and passes along some information it extracted from it to
the next model. The result of DistilBERT’s processing is taken as input by a
basic Logistic Regression (LR). LR classifies the bug report as either FAST or
SLOW (1 or 0, respectively). To improve the performance, a search for the best

Predicting Bug-Fixing Time: DistilBERT Versus Google BERT 617

value of the C parameter, which is the inverse of the regularization strength of a
LR, has been made. Any modification of the learning method to improve perfor-
mance on unseen datasets is called regularization. Regularization is necessary to
introduce bias to the model and decrease the variance. Regularization strength
applies a penalty to increase the magnitude of parameter values to reduce data
overfitting. Smaller values of C specify stronger regularization which will cre-
ate simple models which underfit the data. For bigger values of C, instead, the
power of regularization is lower which implies the model is allowed to increase
its complexity, and therefore, overfit the data.

Two different notebooks were created, one for BERT and the other for Dis-
tilBERT.

3.2 Results and Discussion

Table 1 shows the result set of the experiment. Both the models, first of all,
proved to be very effective in the correct classification of bug reports, accuracy
values are 0.91 or 0.92. Thus, performing fine-tuning on a pre-trained deeply
bidirectional Transformer is an effective approach to predicting bug-fixing time.
Another remark relates to DistilBERT that is faster than BERT [14] and even
better performing when combined with both Logistic Regression and the search-
ing for the best value of the C parameter. To evaluate if there is an improvement
in the speed of execution of the prediction task, from applying BERT to Distil-
BERT, Amdahl’s law was used. This law is an observation of the improvement
in the execution time of a task by speeding up a particular portion of a task. It
quantifies performance by comparing two elapsed time values. The equation of
speedup is:

S =
Told

Tnew
=

1
1 − p + p

s

(1)

where

– Tnew – represents the execution time of the overall task after improvements
have been made to some part of the task (in this case the improvement
concerns the entire task);

– p – represents the proportion of the task that has been improved, sped up,
or parallelized (in this case p is equal to 100%);

– Told – represents the execution time of the overall task prior to any improve-
ments;

– s – represents the factor by which p proportion of the task has been improved
or sped up;

– S – represents the theoretical speedup of the overall task (in this case s and
S assume the same value).

DistilBert, combined with both Logistic Regression and the tuning of param-
eter C, takes 199 s instead of 522 in the case of BERT, to execute the prediction
task. Applying Amdahl’s law the speedup achieved by DistilBert is equal to

618 P. Ardimento

2.7236 with a time percentage change of 63.28%. In the case of DistilBert with-
out the tuning of parameter C, the speedup is equal to 2.5566 achieving a time
percentage change of 60.89%. DistilBert, thus, in each case is faster than BERT
and both the percentage changes represent a significant boost in execution time,
are very similar to the result reported in [14] where DistilBERT is faster by 60%
than BERT.

However, several limitations to the validity of the results have to be high-
lighted. First of all, only one project has been used. This project, therefore, is not
representative of the population of all open-source software and, thus, the results
cannot be generalized to commercial systems that, as known, have different pro-
cess management of bugs. From a technical perspective, moreover, the hyper-
parameters tuning has not been carried out for both BERT and DistilBERT.
Only the search for the best C parameter value has been carried out. Finally,
it is also possible that a bug report, selected as VERIFIED and CLOSED, has
been reopened one or more times. When this situation happens, since the bug
is treated as a new insertion of a report it introduces a significant noise in the
selected dataset.

Table 1. Comparison of accuracy and execution time, expressed in seconds, of BERT,
DistilBERT and DistilBERT with the best C on the LiveCode dataset

Models Accuracy Execution time

BERT 0.915 542

DistilBERT 0.913 199

DistilBERT with Best C=15.789 0.922 212

4 Conclusions

In this paper, a preliminary assessment of the efficacy of the BERT and Dis-
tilBERT pre-trained transformer models in predicting bug-fixing time was per-
formed. These models were applied to the bug reports gathered from a very
large open-source software, LiveCode. Both the models proved efficient in pre-
dicting bug-fixing time from the reports, with DistilBERT, combined with both
a basic Logistic Regression and the best value of the C parameter, attaining the
highest accuracy. In the future, an ensemble of the model would be considered
to improve predicting performance. Also, strategies to inculcate commonsense
knowledge into the model would be considered to improve its generalization
ability. A possible avenue of this work is the possibility to perform fine-tuning
on BERT pre-trained model; such an approach could provide more accurate
estimates of bug resolution time. Additionally, as a more challenging target, it
is planned to investigate which sentence embedding (e.g., bug report embed-
ding) works best as a contextualized embedding, among those generated by each

Predicting Bug-Fixing Time: DistilBERT Versus Google BERT 619

encoder layer. To the aim of supporting bug triage a different, but likewise valid,
avenue could be the construction of a semi-automatic tool for recognizing neol-
ogisms reported in the bug reports. It could support software companies in the
creation of neologisms capable of evoking semantic meaningful associations to
customers [15], that are the programmers in our case. Furthermore, by using
this tool bug reporters and fixers could be inspired and led when they report or
comment on a bug report.

References

1. Acheampong, F.A., Wenyu, C., Nunoo-Mensah, H.: Text-based emotion detection:
Advances, challenges, and opportunities. Engineering Reports 2 (2020)

2. Aggarwal, A.: Huggingface implmementation of distilbert. https://huggingface.co/
docs/transformers/model doc/distilbert

3. de Almeida, C.D.A., Feijó, D.N., Rocha, L.S.: Studying the impact of contin-
uous delivery adoption on bug-fixing time in apache’s open-source projects. In:
2022 IEEE/ACM 19th International Conference on Mining Software Repositories
(MSR). pp. 132–136 (2022). https://doi.org/10.1145/3524842.3528049

4. Ardimento, P., Mele, C.: Using BERT to predict bug-fixing time. In: 2020 IEEE
Conference on Evolving and Adaptive Intelligent Systems, EAIS 2020, Bari, Italy,
May 27–29, 2020. pp. 1–7. IEEE (2020). https://doi.org/10.1109/EAIS48028.2020.
9122781

5. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. In: Dietterich,
T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Process-
ing Systems 14 [Neural Information Processing Systems: Natural and Synthetic,
NIPS 2001(December), pp. 3–8, 2001. Vancouver, British Columbia, Canada].
pp. 601–608. MIT Press (2001). https://proceedings.neurips.cc/paper/2001/hash/
296472c9542ad4d4788d543508116cbc-Abstract.html

6. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Eliassi-Rad,
T., Ungar, L.H., Craven, M., Gunopulos, D. (eds.) Proceedings of the Twelfth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
Philadelphia, PA, USA, August 20–23, 2006. pp. 535–541. ACM (2006). https://
doi.org/10.1145/1150402.1150464

7. Bugzilla: Bugzilla installation list. https://www.bugzilla.org/installation-list/
Accessed 09 Sept (2022)

8. Casalino, G., Castiello, C., Buono, N.D., Mencar, C.: A framework for intelligent
twitter data analysis with non-negative matrix factorization. Int. J. Web Inf. Syst.
14(3), 334–356 (2018). https://doi.org/10.1108/IJWIS-11-2017-0081

9. Deng, L., Liu, Y. (eds.): Deep Learning in Natural Language Processing. Springer,
Singapore (2018). https://doi.org/10.1007/978-981-10-5209-5

10. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Leen,
T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing
Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000,
Denver, CO, USA. pp. 556–562. MIT Press (2000). https://proceedings.neurips.
cc/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html

11. Liu, Q., Washizaki, H., Fukazawa, Y.: Adversarial multi-task learning-based bug
fixing time and severity prediction. In: 2021 IEEE 10th Global Conference on
Consumer Electronics (GCCE). pp. 185–186 (2021). https://doi.org/10.1109/
GCCE53005.2021.9621355

https://huggingface.co/docs/transformers/model_doc/distilbert
https://huggingface.co/docs/transformers/model_doc/distilbert
https://doi.org/10.1145/3524842.3528049
https://doi.org/10.1109/EAIS48028.2020.9122781
https://doi.org/10.1109/EAIS48028.2020.9122781
https://proceedings.neurips.cc/paper/2001/hash/296472c9542ad4d4788d543508116cbc-Abstract.html
https://proceedings.neurips.cc/paper/2001/hash/296472c9542ad4d4788d543508116cbc-Abstract.html
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://www.bugzilla.org/installation-list/
https://doi.org/10.1108/IJWIS-11-2017-0081
https://doi.org/10.1007/978-981-10-5209-5
https://proceedings.neurips.cc/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/f9d1152547c0bde01830b7e8bd60024c-Abstract.html
https://doi.org/10.1109/GCCE53005.2021.9621355
https://doi.org/10.1109/GCCE53005.2021.9621355

620 P. Ardimento

12. LiveCode: Livecode bug tracking system - bugzilla installation for livecode project.
https://quality.livecode.com/ Accessed 09 Sept 2022

13. Noyori, Y., et al.: Extracting features related to bug fixing time of bug reports
by deep learning and gradient-based visualization. In: 2021 IEEE International
Conference on Artificial Intelligence and Computer Applications (ICAICA). pp.
402–407 (2021). https://doi.org/10.1109/ICAICA52286.2021.9498236

14. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. CoRR abs/1910.01108 (2019). http://
arxiv.org/abs/1910.01108

15. Schicchi, D., Pilato, G.: WORDY: A semi-automatic methodology aimed at the cre-
ation of neologisms based on a semantic network and blending devices. In: Barolli,
L., Terzo, O. (eds.) Complex, Intelligent, and Software Intensive Systems - Proceed-
ings of the 11th International Conference on Complex, Intelligent, and Software
Intensive Systems (CISIS-2017), Torino, Italy, July 10–12, 2017. Advances in Intel-
ligent Systems and Computing, vol. 611, pp. 236–248. Springer (2017). https://doi.
org/10.1007/978-3-319-61566-0 23

16. simpletransformers: Simple transformers library. https://pypi.org/project/
simpletransformers/ (2022). Accessed 09 Sept 2022

https://quality.livecode.com/
https://doi.org/10.1109/ICAICA52286.2021.9498236
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.1007/978-3-319-61566-0_23
https://doi.org/10.1007/978-3-319-61566-0_23
https://pypi.org/project/simpletransformers/
https://pypi.org/project/simpletransformers/

Proposing Isomorphic Microservices
Based Architecture for Heterogeneous

IoT Environments

Pyry Kotilainen(B) , Teemu Autto , Viljami Järvinen , Teerath Das ,
and Juho Tarkkanen

University of Jyväskylä, Seminaarinkatu 15, 40014 Jyväskylä, Finland

pyry.kotilainen@jyu.fi

Abstract. Recent advancements in IoT and web technologies have high-
lighted the significance of isomorphic software architecture development,
which enables easier deployment of microservices in IoT-based systems.
The key advantage of such systems is that the runtime or dynamic code
migration between the components across the whole system becomes
more flexible, increasing compatibility and improving resource alloca-
tion in networks. Despite the apparent advantages of such an approach,
there are multiple issues and challenges to overcome before a truly valid
solution can be built. In this idea paper, we propose an architecture for
isomorphic microservice deployment on heterogeneous hardware assets,
inspired by previous ideas introduced as liquid software [12]. The archi-
tecture consists of an orchestration server and a package manager, and
various devices leveraging WebAssembly outside the browser to achieve a
uniform computing environment. Our proposed architecture aligns with
the long-term vision that, in the future, software deployment on hetero-
geneous devices can be simplified using WebAssembly.

Keywords: Isomorphic software architecture · WebAssembly ·
Internet of Things

1 Introduction

Internet of Things (IoT) and related emerging technologies are already playing
a crucial role in almost all domains of daily life, e.g., healthcare, banking, and
smart home, among others. In addition, technologies such as cloud computing,
virtualisation, and artificial intelligence complement these IoT systems to expand
to a wide range of applications. The introduction of edge devices in IoT architec-
ture allows users to acquire desired delay-critical services. This recent transition
in IoT development complements the concept of a programmable world, where
devices are connected and programmed to fulfil the end user’s needs.

The complexity of current IoT systems is increasing at a dynamic pace due
to the integration of several software technologies at different levels, complex
software architectures, unnecessary use of virtualization, and package handling
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 621–627, 2022.
https://doi.org/10.1007/978-3-031-21388-5_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_47&domain=pdf
http://orcid.org/0000-0002-4645-074X
http://orcid.org/0000-0003-4462-2621
http://orcid.org/0000-0002-3275-4347
http://orcid.org/0000-0003-2024-6545
http://orcid.org/0000-0002-4279-4094
https://doi.org/10.1007/978-3-031-21388-5_47

622 P. Kotilainen et al.

approach [10]. To ease managing complex dependencies and for rapid develop-
ment of non-trivial applications with a higher level of abstraction language, the
usage of containers has exploded. Even though containers are regarded as a more
lightweight solution than virtual machines, they are generally too resource-heavy
for IoT use-cases and require underlying homogenous architecture. More plat-
form agnostic solutions such as using JavaScript can make the interpreter code
execution slow and resource-heavy due to the dynamically-typed nature [7].

WebAssembly (WASM) is another promising technology used to implement
an isomorphic runtime in web applications. It is a binary instruction format
for a stack-based virtual machine [4], and can be seen as a reliable option to
accomplish dynamic isomorphism, where a standard runtime interpreter is used
to execute the code of the IoT applications. WebAssembly can be used as a com-
mon runtime architecture, meaning that the web application can be developed
entirely in various languages and compiled for the WebAssembly interpreter.
Moreover, the use of WebAssembly is not merely limited to web browsers, but
instead the developer community started to realise its significance even beyond
the browser [6,13], i.e., on heterogeneous devices.

In this idea paper, we propose a novel system for isomorphic microservices
deployment on heterogeneous hardware assets leveraging recent developments
in WebAssembly outside the browser. The proposed system consists of a varied
number of heterogeneous devices and a central command and control server, here
referred to as an orchestration server, which also serves software as WebAssembly
modules. The devices leverage a WebAssembly runtime to provide a uniform
and dynamic computing environment for various software modules that can be
deployed on the devices by the server.

The motivation behind our research is the fragmented nature of IoT develop-
ment. In this paper, we propose a system that allows development in a multitude
of programming languages while deploying on a variety of heterogeneous devices.
The system also aims to solve the problem of configuration and continuous man-
agement of a diverse IoT hardware deployment. With the creation of such a
system, we aim to explore the feasibility and limitations of such an approach.

2 Background

In the background section, we will discuss the important concepts used in our
study.

2.1 WebAssembly

Assembly language is a term used for the low-level language that is usually
used as an intermediary between high-level programming languages and machine
code. WebAssembly (WASM) is a variation of assembly, targeting a virtual pro-
cessor, which is used to bring near-native behaviour and compact memory usage
to the browser. WebAssembly Virtual Machines (WASM VM) enable WASM
to operate outside browsers [13], while making reasonable presumptions about

Proposing Isomorphic Microservices Based Architecture for IoT 623

underlying machine capabilities. These VMs can implement a system call inter-
face called WebAssembly System Interface(WASI), which allows WASM VMs to
provide capabilities for accessing system resources. WASM’s optimised memory
usage and near-native performance make it suitable for constrained environments
like IoT devices [8].

2.2 Orchestration

Orchestration is a process exploited to automatically configure, manage, and
coordinate computer systems, applications, and services. Traditionally, manag-
ing these tasks requires a lot of manual effort, and hence can become very cum-
bersome. Orchestration allows the developers’ team to manage these complex
tasks and workflows.

An orchestration server is responsible for storing, supplying, and executing
independent workflows to set up working environments. Orchestration has sev-
eral use cases, i.e., provisioning, incident response, cloud server management, etc.
Key processes can be executed in a streamlined manner to optimise the imple-
mentation and reduce DevOps intervention. Orchestration enables the DevOps
team to focus on business requirements instead of setting up environments in a
repetitive manner. In this paper, we describe an orchestration server to manage
all the tasks automatically.

2.3 IoT Device

An IoT device is a networked node, a device capable of having one or more net-
work communication addresses, processing ability and network communication
capabilities. In the proposed system, an IoT device can be any hardware/software
platform, as long as it can run the host control middleware that will manage the
system functions on the device.

3 Architecture

The proposed system shown in Fig. 1 consists of an orchestration server and a
variable amount of heterogeneous node devices in the same local area network.
An actor (user or another system that interacts with our system) can control
the system through the orchestration server.

System functionality can be split into three phases: device discovery, deploy-
ment and execution. Upon first discovery, the orchestration server requests con-
figuration information from the device and adds it to the device database the
server maintains. Upon a request for deployment, the orchestration server gener-
ates a deployment solution, and dishes out the microservices to suitable devices

Aside from communication and application logic, the orchestration server has
three components:

624 P. Kotilainen et al.

– Device database contains the hardware configurations of the various devices
and is populated by listening to the network and requesting information from
devices.

– Deployment registry contains all executed deployments by the orchestrator,
each deployment listing the devices involved and the services they provide.

– Package manager maintains a database of all available WebAssembly software
modules which can be sent to the devices. It is also capable of resolving
dependencies to provide a complete list of required modules for a given module
to run.

Fig. 1. Proposed architecture

3.1 Device Discovery

The discovery depicted in block 1 of Fig. 1 follows a two-stage process described
in the W3C Web of Things specification; Exploration and Introduction [2]. In
the Introduction phase devices advertise themselves on the link-local network
with mDNS. After the orchestration server receives a new device introduction,
the exploration phase begins; The orchestrator queries the capabilities of the
device using REST with a well-known URI, and the device replies with an CoRE
description [5]. For the applicable parts device description follows WoT-Thing
description [3], and additional details of the device, such as which are needed for
the deployment solution, follows the OpenAPI specification [1]. Upon receiving
the description data, the orchestrator adds the device and its capabilities to the
device database.

3.2 Deployment

Deployment is triggered when an actor requests desired functionality, depicted
in block 2 of Fig. 1. The Orchestrator looks for suitable deployment solutions

Proposing Isomorphic Microservices Based Architecture for IoT 625

for such functionality by comparing available packages, and devices with suit-
able capabilities on its devices database. Upon finding a solution, a new service
namespace is created for a service, which contains a suitable list of devices, their
connections and needed packages. For some of the tasks machine- to-machine
(M2M) schema can be one-to-many and many-to-many. For the initial MVP only
one- to-many requests are supported and within a single namespace, as finding
if such rule selection can be generalised and automated needs more research.

After the target devices have been selected, the orchestrator creates a deploy-
ment solution manifest based on the capabilities of the devices and metadata
of the available software modules. The solution manifest is created on a device
basis and contains a list of microservices and their associated modules, config-
uration for microservices, attribute-based access control rules (ABAC), inter-
connectivity declarations and security tokens. Deployment manifests are sent to
the devices, which then pull the necessary packages from the package repository.
This process is depicted in block 3 of Fig. 1.

3.3 Execution

The device host controller, which we are calling hypervisor, configures the down-
loaded modules and the runtime interface according to the module configuration
information and required device-to-device and service-to-service communication.
The hypervisor then sets up WASM runtime access controls and runs the soft-
ware modules in the runtime environment, facilitating communication between
devices and services through the runtime.

A new WASM-runtime is created on a service basis, and required modules for
running are linked. The deployment configuration can require multiple WASM-
runtimes to be run on the device. A simple atomic service, such as “hello world!”
would only require one runtime; the hypervisor links the REST API with the
declared entry point of the module. Upon receiving a request, the hypervisor
runs the entry point function and returns the response as a REST response.

For more complex setups, such as composite services requiring multiple
microservices cooperation, the deployment solution contains intra-connectivity
declarations. In such cases, the underlying microservice does not need to care
about network topology, protocol or node connections, as the complexities are
in the hypervisor, which is responsible for setting up services pointing to the
correct node. Thanks to the abstractions provided by WASM runtimes, declared
entry point functions from other microservices can be called as they would be
local; Hypervisor makes a selection based on the deployment solution and its
own status checks where to redirect that call, and upon receiving a reply returns
the function as it would be local.

3.4 Implementation Considerations

A significant challenge in developing the system is the immaturity of WebAssem-
bly outside the browser. The WebAssembly System Interface (WASI) is under

626 P. Kotilainen et al.

development and the available runtimes have implementations varying in capa-
bilities and provide different ways of granting the WebAssembly modules access
outside the runtime.

As a result, most of the work on the devices lies in writing code to augment
the interface between the runtime and the platform to allow the WebAssembly
modules access to OS/hardware functions. The varying state of available run-
times and their bespoke interfaces also means that the significant amount of
boilerplate code required makes changing runtimes challenging. An important
consideration is also the platforms which a runtime supports, as there are only a
few currently available runtimes capable of running on popular microcontrollers
used in many IoT devices.

To minimise potential issues related to network unreliability, the devices use
Constrained Application Protocol (CoAP) for M2M communication, which can
run over a myriad of protocols and is designed for use with constrained nodes
and constrained networks [11]. Also, if the deployment solution declares multiple
possible end-points for a service, the hypervisor can select the best-suited device
based on multiple rulesets, such as network distance/latency, physical distance,
suitability, or best performance/availability. The call can be a one-to-one sce-
nario, or a call to multiple hosts simultaneously in one-to-many scenarios, where
the fastest response is used. Furthermore, the hypervisor constantly keeps track
of the latency of the external nodes, and if it is over the threshold, it triggers a
circuit breaker call, and calls to that end-point are suspended. The best way to
handle cases when no endpoint is available is not yet clear.

A suitable method for establishing a secure and trustworthy communication
approach must be considered. Common approaches are federated identity in form
of security tokens, and client certificates [9].

4 Discussion and Future Work

In this paper, we have introduced a system for isomorphic microservices based
architecture for IoT, which aims to offer ease of development. However, Running
code as WebAssembly modules in runtime does result in a performance hit com-
pared to native code and requires more both working memory and persistent
storage [8]. It also complicates deploying real-time applications. With increas-
ing computational power and memory of IoT devices, the trade-off for ease of
development and flexibility of deployment will likely become less and less of a
problem.

In future it is also our hope that the functionality of the orchestration server
can be expanded. For example, the deployment requests need not be as spe-
cific as outlined above. The server could make decisions about device selection
and deployment topology based on device availability and their dynamic state
according to a deployment task describing desired deployment outcome without
necessarily naming specific devices or their arrangement.

Including dynamic state for devices could also enable improved persistence
and self-healing properties, as detection of failed devices could trigger a change

Proposing Isomorphic Microservices Based Architecture for IoT 627

in deployment topology and either a replacement device could be selected or
the responsibilities of the failed device could be moved to a device in the same
namespace.

References

1. OpenAPI Specification v3.1.0 — Introduction, Definitions, & More. https://spec.
openapis.org/oas/latest.html

2. Web of Things (WoT) Discovery. https://www.w3.org/TR/wot-discovery/
3. Web of Things (WoT) Thing Description 1.1. https://www.w3.org/TR/wot-thing-

description11/
4. WebAssembly Core specification. Tech. rep., W3C (2019)
5. Amsüss, C., Shelby, Z., Koster, M., Bormann, C., der Stok, P.V.: CoRE resource

directory. In: Internet-Draft draft-ietf-core-resource-directory-26, Internet Engi-
neering Task Force/Internet Engineering Task Force

6. Bryant, D.: Webassembly outside the browser: a new foundation for pervasive
computing. Keynote at ICWE 20, 9–12 (2020)

7. Haas, A., et al.: Bringing the web up to speed with WebAssembly. In: Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI 2017, Association for Computing Machinery, New York,
NY, USA, pp. 185–200 (2017). https://doi.org/10.1145/3062341.3062363

8. Hall, A., Ramachandran, U.: An execution model for serverless functions at the
edge. In: Proceedings of the International Conference on Internet of Things Design
and Implementation. IoTDI ’19, Association for Computing Machinery, New York,
NY, USA, pp. 225–236 (2019). https://doi.org/10.1145/3302505.3310084

9. Li, S., et al.: Understanding and addressing quality attributes of microservices
architecture: a Systematic literature review. Inf. Softw. Technol. 131, 106449
(2021). https://doi.org/10.1016/j.infsof.2020.106449

10. Mikkonen, T., Pautasso, C., Taivalsaari, A.: Isomorphic internet of things archi-
tectures with web technologies. Computer 54(7), 69–78 (2021). https://doi.org/
10.1109/MC.2021.3074258

11. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP).
RFC 7252 (2014). https://doi.org/10.17487/RFC7252

12. Taivalsaari, A., Mikkonen, T., Systä, K.: Liquid Software Manifesto: The era of
multiple device ownership and its implications for software architecture. In: 2014
IEEE 38th Annual Computer Software and Applications Conference, pp. 338–343
(2014). https://doi.org/10.1109/COMPSAC.2014.56

13. Tomassetti, F.: WASI: How to run WebAssembly code outside of your browser
(2021)

https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/latest.html
https://www.w3.org/TR/wot-discovery/
https://www.w3.org/TR/wot-thing-description11/
https://www.w3.org/TR/wot-thing-description11/
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3302505.3310084
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.1109/MC.2021.3074258
https://doi.org/10.1109/MC.2021.3074258
https://doi.org/10.17487/RFC7252
https://doi.org/10.1109/COMPSAC.2014.56

Doctoral Symposium

Ethical Tools, Methods and Principles
in Software Engineering and Development:

Case Ethical User Stories

Erika Halme(B)

University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
erika.a.halme@jyu.fi

https://www.jyu.fi/en/frontpage

Abstract. The great leap with the development of Artificial Intelligence
(AI) and Machine Learning (ML) technology has increased the range of
different requirements for software quality, especially in terms of ethics.
To implement high-level requirements, like ethical principles, into the
workflow of software engineering, new requirements engineer tools are to
be developed. Ethical User Stories (EUS) offers a simple way of imple-
menting ethics in software development. This research has investigated
the idea of using familiar requirements engineering artifacts, User Stories,
to implement ethical principles, into the workflow of software engineer-
ing and operationalizing the studied phenomena of EUS. The prelimi-
nary results, found through two ongoing empirical studies with a data
collection of 600+ EUS, show that EUS is a pressure-free, human-centric
and accessible approach to Ethically Aligned Design (EAD) that inter-
twines with quality characteristics and relieves the developer from the
heavy burden of ethical consideration to a smooth workflow of software
engineering. An effective EUS is consistent throughout the user story
and shares the idea that user-driven ethical motivation generates sys-
tem functionality or benefits non-functional software design for quality
assurance.

Keywords: AI ethics · User stories · Agile software engineering

1 Introduction

AI is a technology that serves a significant role in modern technology and has
several benefits. The downside to the technology development is unfortunately
witnessed in some real-life cases indicating that AI is failing in many ways. The
technology itself may harm people’s privacy issues [1] and be even discriminating
[2]. These cases and several others has caused different research fields in software
engineering to take action to ensure trustworthiness for the technology developed
and for ethically aligned software development. As the requirements increase in
the high-level of software development, e.g. aligning the ethics to the workflow of
software engineers, the engineering methods and tools are modulated within the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 631–637, 2022.
https://doi.org/10.1007/978-3-031-21388-5_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_48&domain=pdf
http://orcid.org/0000-0003-0750-1580
https://doi.org/10.1007/978-3-031-21388-5_48

632 E. Halme

paradigm shift. The research is then motivated by the industry, where EAD [3,4]
is challenged. To find out how to implement in practise ethical requirements into
the workflow of software engineers, the research in question studies the process
of Agile Requirements Engineering (ARE) [5,6], where a basic ARE artifact,
User Stories [7], are intensified with AI Ethics principles.

The research so far has studied the phenomena of ethical user stories with the
assistance of an EAD method called the ECCOLA method [8]. The ACM code
of ethics [9] could have been also chosen for framing the study but due to the dif-
ferent nature of AI technology, AI being probabilistic and not deterministic [10],
ECCOLA method, was specifically developed for delivering ethically aligned AI
software development and for the reason, chosen for framing the study along with
the Agile practises. Agile practises have been considered more people friendly
than traditional software development and emphasizing on human values [11]
and considered ethical minded approach to software development [12].

This research has been ramified into two empirical studies. The first branch
has been studying the functionality and operationalisation of the phenomena
of ethical user stories. The second branch took the phenomena into industrial
setting to explore the validation of the proof-of-concept artifact, ethical user
stories.

2 Related Work

Resent research state that at least 84 public-private AI ethics principles and
values initiatives were identified by Mittelstadt [13]. Also, a scoping review by
Jobin et al. [14], with an analysis including a search for grey literature con-
taining principles and guidelines for ethical AI, has been made with academic
and legal sources excluded [14]. The results present that there was a massive
increase (88%) after the year 2016 towards the number of released publications
or documents containing ethical principles or guidelines [14]. Indeed, AI Ethics
is regarded as necessary today as any information system standard that develop-
ers require. What the industry is utilizing or what is the developer’s professional
knowledge of AI ethics today should be reviewed. The AI ethics research so far
has created guidelines, principles, regulations, plans and frameworks for imple-
menting ethical consideration into software development. Even a typology, by
Morley et al. have been introduced for developers and practitioners to apply
ethics in different phases in machine learning development process [15].

Resent findings in research indicate however that principles and guidelines
do not turn easily into practice for developers. [13] There exist a gap between
research and practice, where developers consider ethics important in principle,
but perceive them to be distant from the issues they face in their work. [10]
Still, we cannot say that ethics hasn’t been a theme in IT as it has for several
decades. [16] Ethics in general has been a study field in IT forming branches
like IT ethics, Computer Ethics and lately, AI ethics that can be considered
the starting point and path to the EUS research in software engineering. Human
values in IT, as already mentioned, has been noticed through the agile manifesto,

Ethical Tools, Methods and Principles 633

but recently also in requirements engineering [17,18]. Also, there has been a user
story centered research with ethical tuning forming to ethical integration to user
stories [19] and ethically-sensitive user story that has been build on a conceptual
studies [20]. The field of AI ethics and also requirements engineering is missing
empirical studies of ethical user stories that this research has been, in large
measures, concentrating on.

3 Methodology

Fig. 1. Overview of the EUS research in compliancy with the Design Science Research
Methodology. Adapted from Peffers, Tuunanen, et al. (2007)

In the search for the right research method, we turn to Design Science Research
Method (DSRM) as it has origins in Information Systems, Engineering and
Requirements Engineering research in general [21]. DSRM was chosen also for
the reason that the output of the research was to design an artifact through a
process [22]. This research as a whole concentrates on all of these six process
steps observed and adapted specifically to this research in Fig. 1 adapted from
Peffers et al. [22]. The research takes a problem-centered motivation approach,
where the community of software engineering is lacking tools to implement ethics
in software engineering development. The output goal is to design and develop an
artifact, EUS, concentrating on developing the concept for EUS for practition-
ers and scholars for communication. Software engineering experimentation by
Wohlin [23] is applied to this research as empirical study design guidelines. The
following sections review the empirical studies and related research questions
following to results and the research outcome and contribution so far.

Empirical Study I. This first experimental study [24], was conducted through
a masters level course in the university of Jyväskylä, where students of real-life
software development project created 250+ user stories and in the context of this

634 E. Halme

research the user stories were ethically evaluated. The following research question
was set for the research as R1: How can Non-Functional ethically-oriented User
Stories be written with the assistance of the ECCOLA method? [24]

This study was further developed for the EUS operationalisation, where new
data collection of 137 user stories were analyzed through an empirical experiment
for ethical content. The goal of operationalisation of the phenomena was to find
the elements that frame the concept of EUS and also develop the model for
writing them. That inspired us to focus the study to find answer to our second
research question as R2: What is the concept of Ethical User Stories? With
supportive questions: “What are the traits/elements/attributes that frames the
EUS concept? Results from this are not yet released as the research is still under
construction.

Empirical Study II. The context of the second branch empirical study [25] was
in a digitalisation project called the Smarter [26]. The goal for the project was to
create blueprints for a digitalized and autonomous port terminals with certain
requirements, one of them being a trustworthy product outcome and EAD. EUS
process and ECCOLA method was then used in the study design for creating
project’s ethical requirements that proceeded as 273 EUS, jointly developed
in several workshops by the project industrial and institutional partners and
by the university of Jyväskylä AI ethics laboratory researchers. As this branch
of the research is heavily influenced by the industry the research question was
partially perceived from the project point-of-view but still keeping along the EUS
phenomena with the following research questions R3: How to make ethical user
stories? [25] R4: What are the ethical requirements in the Maritime industry,
especially in port terminals when switching over to SMART terminals? [25] Here
the research question R3 concentrates on the process of making the ethical user
stories rather than finding the functionality like in R1.

The heavy empirical approach points out to the fact that there is a knowledge
gap between implementing ethics into the practise of software development as
well as in agile requirements engineering research.

4 Preliminary Results

The preliminary results, based on the empirical findings, are listed below. Using
the ethical framework in the user story writing process, does not directly affect
the ethical outcome but can be seen indirectly when results are analyzed. The
compilation of the results is divided between the EUS experimentation and by
the operationalisation.

Ethical Tools, Methods and Principles 635

Results From The Experiments: Based on the empirical experiment - using
the ethical framework, here the ECCOLA method, in the user story process
seems to result in more human-centric user stories [24], which drives the devel-
opment out of the technology focused consideration and bring human values to
the surface to follow EAD in software engineering. The statistical results from
the research experimentation is not released yet, but indicate that using the eth-
ical framework in the user story writing process does not produce more ethical
user stories but affects positively to the quality of the software development. We
could expect that ethics and quality is then intertwined and can be worked in
both ways, ethics enhances the quality of software development and quality of
work enhances ethics. Still, we considered that in practise, Non-functional user
stories can be written with the assistance of the ethical framework [24].

Results From the Operationalisation: The model of writing EUS seems
to streamline the ethical consideration to the software development and “lib-
erate the software developers from the ethical theoretizising” [25]. EUS model
is an enjoyable learning process for developers, where the Ethical framework is
streamlined to developers to progress in the process efficiently [25]. The concept
of EUS is still under construction but findings so far indicate that the essence
of writing EUS starts from a motivation towards a particular ethical theme and
considers the user story outcome on behalf of the user consistently.

5 Expected Contributions

In recent years, AI ethics has been a famous topic globally in different forums.
Regardless of the different acts towards trustworthy AI applications and ethi-
cally aligned software design, software engineers are lacking tools when ethics
are considered. Even the research is lacking with empirical studies for how to
implement ethics into the AI software development.

EUS research offers State-of-the-Art tool for software engineers to implement
(AI) ethics to software development. The EUS artifact that has been evaluated
by practitioners of the field, is now in the progress of operationalizing for further
development and use.

Acknowledgements. This research is partially funded by the BusinessFinland pro-
gram Sea4Value and the Smarter project. The author is grateful for the funder for their
support.

References

1. Cambridge Analytica and Facebook: The Scandal and the Fallout So Far. https://
www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.
html. The New York Times (nytimes.com) Accessed 4 Apr 2018

https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html.
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html.
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html.

636 E. Halme

2. Real-life Examples of Discriminating Artificial Intelligence | by Terence
Shin | Towards Data Science, https://towardsdatascience.com/real-life-examples-
of-discriminating-artificial-intelligence-cae395a90070. The New York Times
(nytimes.com) Accessed 4 June 2020

3. AI, H.: High-level Expert Group on Artificial Intelligence (2019)
4. Ethics guidelines for trustworthy ai, https://ec.europa.eu/digital-single-market/

en/news/ethics-guidelines-trustworthy-ai. Accessed 26 Apr 2022
5. Schön, E.M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering:

a systematic literature review. Comput. Standards Interfaces. 49(4), 79–91 (2017)
6. Eberlein, A. and Leite, J.C.S.P.: Agile requirements definition: A view from

requirements engineering. In Proceedings of the international workshop on time-
constrained requirements engineering (TCRE’02), pp. 4–8 (2002)

7. Cohn, M.: User stories applied: For agile software development. Addison-Wesley
Professional (2004)

8. Vakkuri, v., Kemell, K.-K., Jantunen, M., Halme, E., Abrahamsson, P.: Eccola - a
method for implementing ethically aligned ai systems. J. Syst. Softw. 182 (2021)

9. Anderson, R.E.: ACM code of ethics and professional conduct. Commun. ACM
35(5), 94–99 (1992)

10. Vakkuri, V., Kemell, K.K., Kultanen, J., Abrahamsson, P.: The current state of
industrial practice in artificial intelligence ethics. IEEE Softw. 37(4), 50–57 (2020)

11. Miller, K.W., Larson, D.K.: Agile software development: human values and culture.
IEEE Technol. Soc. Mag. 24(4), 36–42 (2005)

12. Judy, K.H.: Agile principles and ethical conduct. In: 2009 42nd Hawaii Interna-
tional Conference on System Sciences, IEEE, pp. 1–8 (2009)

13. Mittelstadt, B.: Principles alone cannot guarantee ethical ai. Nature Mach. Intell.
1(11), 501–507 (2019)

14. Jobin, A., Ienca, M., Vayena, E.: The global landscape of ai ethics guidelines.
Nature Mach. Intell. 1(9), 389–399 (2019)

15. Morley, J., Floridi, L., Kinsey, L., Elhalal, A.: From what to how: an initial review
of publicly available AI ethics tools, methods and research to translate principles
into practices. Sci. Eng. Ethics 26(4), 2141–2168 (2022)

16. Bynum, T.W.: Milestones in the history of information and computer ethics. In:
The Handbook of Information and Computer Ethics, vol. 25 (2008)

17. Perera, H., et al.: The impact of considering human values during requirements
engineering activities (2021). arXiv preprint arXiv:2111.15293

18. Detweiler, C., Harbers, M.: Value Stories: putting human values into requirements
engineering. In REFSQ Workshops 1138, 2–11 (2014)

19. Kamthan, P., Shahmir, N.: On Integrating Ethicality in User Stories. In: The Thirty
Third International Conference on Software Engineering and Knowledge Engineer-
ing (SEKE 2021), Pittsburgh, USA (2021)

20. Kamthan, P., Shahmir, N.: On ethically-sensitive user story engineering. In: 2021
4th International Conference on Computer Science and Software Engineering
(CSSE 2021) pp. 71–79 (2021)

21. Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

22. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. J. Manage. Inform. Syst.
24(3), 45–77 (2007)

https://towardsdatascience.com/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070.
https://towardsdatascience.com/real-life-examples-of-discriminating-artificial-intelligence-cae395a90070.
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai.
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai.
http://arxiv.org/abs/2111.15293
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

Ethical Tools, Methods and Principles 637

23. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in software engineering. Springer Science & Business Media. (2012).
https://doi.org/10.1007/978-3-642-29044-2

24. Halme, E., et al.: How to write ethical user stories? impacts of the ECCOLA
method. In: Gregory, P., Lassenius, C., Wang, X., Kruchten, P. (eds.) XP 2021.
LNBIP, vol. 419, pp. 36–52. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-78098-2_3

25. Halme, E., et al.: Ethical User Stories: Industrial Study. In: REFSQ Workshops
(2022)

26. SMART TERMINALS - SMARTER. https://www.dimecc.com/dimecc-services/
smart-terminals-smarter/ Accessed 20 Jun 2021

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-030-78098-2_3
https://doi.org/10.1007/978-3-030-78098-2_3
https://www.dimecc.com/dimecc-services/smart-terminals-smarter/
https://www.dimecc.com/dimecc-services/smart-terminals-smarter/

Architectural Degradation and Technical
Debt Dashboards

Dario Amoroso d’Aragona(B)

Tampere University, Tampere, Finland
dario.amorosodaragona@tuni.fi

Abstract. Background. Companies frequently try to improve the qual-
ity of their software by resolving technical issues that are perceived to
have an impact on software quality. Technical information is any infor-
mation that may be gathered from the source code or the software devel-
opment process, for instance: code or documentation guidelines, and the
use of specific patterns. If these issues are not fixed they may generate
technical debt. Goal. The goal of the Ph.D., which started on January
2022, is to understand which are the causes of Architectural Technical
Debt in a real case study and to develop a Dashboard to notify develop-
ers as earlier as possible.

Methods and expected contribution. We first plan to investigate
the actual production code process and then, and then to work with
teams to find the best practices and strategies to easily manage Archi-
tectural Technical Debt.

Keywords: Technical debt · Architectural debt · Software quality

1 Introduction

Kruchten et al [4] in their work defined Technical Debt as “design of imple-
mentation constructs that are expedient in short term but that set up a technical
context that can make a future change more costly or impossible”.

The management of Technical Debt is not a trivial task in every context.
The field of software quality has reached a good level of maturity and several
tools/methods and techniques exist to support developers to manage Technical
Debt. However, understanding which are the best practices to adopt in a specific
context is challenging. Malakuti et al [8] conduct a study to understand which
are the most challenging quest for a company to find the right way to manage
Technical Debt. The authors find that the biggest issue is finding the starting
point for technical debt management. Other issues that may injure technical
debt management are [8]: a) The company’s history of quality improvements
and its potential (unfavorable) effects on how different people view the efficacy
of adopted methods; b) the lack of company-wide understanding of software

This work is funded by the Doctoral School of Industry Innovation (DSII), and ABB.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 638–643, 2022.
https://doi.org/10.1007/978-3-031-21388-5_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_49&domain=pdf
https://doi.org/10.1007/978-3-031-21388-5_49

Architectural Degradation and Technical Debt Dashboards 639

architecture and technical debt; c) the adoption of technical debt management
techniques that may not always produce the desired results; d) the need for
quality improvements outside of software, such as process debt.

Technical debt may exist at the architecture level as well as the coding level.
Static code analysis tools are available to detect technical debt at code level.
Without running the code, these tools can do static code analysis. These tools’
primary function is to identify issues in the source code and show developers vari-
ous metrics that can be used to fix those issues. One of the most well-known static
code analysis tools is SonarQube, for instance. [11] defines Architectural Tech-
nical Debt (ATD) in software-intensive systems as a metaphor used to describe
the “big” design decisions (e.g., choices regarding structure, frameworks, tech-
nologies, languages, etc.) that, while being suitable or even optimal when made,
significantly hinder progress in the future. In contrast to other types of technical
debt, architectural technical debt has an impact on software architecture rather
than the code itself. Architectural Technical debt may be produced as a result
of bad decision regarding the design of the software architecture, which has a
substantial impact on different system components.

In order to early detect Architectural Technical Debt, and to provide dash-
boards to make possible stakeholders aware of the amount of accumulated Tech-
nical Debt, we are planning to investigate the following Research Questions
(RQs):

– RQ1: Which are the commons causes of Architectural Technical Debt in a
company?

– RQ2: Which tools/techniques/best practices the company uses to manage
Architectural Technical Debt?

– RQ3: Which are the effects of these solutions on the Architectural Technical
Debt?

– RQ4: How is it possible to improve and reduce the Architectural Technical
Debt?

– RQ5: What visualization techniques can be adopted to visualize the Archi-
tectural Technical Debt?

2 Background and Related Works

Companies typically attempt to enhance the quality of their software by fixing
technical problems that are thought to affect software quality. Any information
that may be gleaned from the source code or the software development process
is referred to as technical information. Examples include the use of particular
patterns, adherence to coding or documentation rules, or architectural issues.
Such problems cause technical debt if they are not resolved.

Alves et al. [1] proposed a mapping study to identify the various type of Tech-
nical Debt and the known solution adopted for each of these. Their results show
how Architectural Technical Debt refers specifically to those problems encoun-
tered in the architecture of the system (e.g., high coupling, high cohesion, no

640 D. Amoroso d’Aragona

modularity). These types of issues may affect architectural requirements (per-
formance, robustness, among others).

Brown et al. [3] first and Krutchen et al [5] after in their works have investi-
gated the relationship between the Code Debt [1] and the Architectural Debt.
The results show how this type of debt cannot be resolved with simple refactoring
in the code but needs more extensive development activities.

Recently, Malakuti et al. [8] have investigated the Technical Debt in
their company finding that the cause of Architectural Technical Debt is to be
attributed to different factors: (i) Changes in Context: changes in the busi-
ness context, aging technology, ad-hoc approach for supporting multiple hard-
ware/software variants, natural evolution and aging; (ii) Business: time and cost
pressure, requirements shortfall, misalignment of business goals; (iii) Processes
and Practices: insufficient processes, insufficient documentation, inadequate soft-
ware engineering practices, and tools, inadequate planning; (iv) People: inex-
perienced teams, unclear quality-related roles, and responsibilities, insufficient
motivation concerning quality improvement, coordination and communication
shortfall, and lack of common understanding of technical debt.

Moreover, Malakuti et al.[7] have investigated which are the open challenge
in the management of Technical Debt reporting how there is still a lack of a
clear taxonomy of debt and their relations, how it is possible to introduce sys-
tematic management of each technical debt category, and finally how to manage
the relations between the technical debt issues between the technical debt cate-
gories. Lenarduzzi et al. [6] proposed a systematic literature review on Technical
Debt Prioritization, the findings demonstrate how software companies are under
increasing pressure to provide value to customers. Finding a compromise between
allocating developer time, effort, and resources to new feature implementation
and TD remediation tasks, bug repair, or other system upgrades is crucial. In the
work proposed by Besker et al. [2] this concept is summarized as “the pressure
of delivering customer value and meeting delivery deadlines forces the software
teams to down-prioritize TD refactoring continuously in favor of implementing
new features rapidly” Budget, resources, and available time are crucial consid-
erations in a software project, especially at the prioritization stage, as investing
time and energy in refactoring tasks typically means that less time can be allo-
cated to other tasks, such adding new features. This is one of the key causes,
along with their frequent focus on delivering customer-visible features, explain-
ing why software companies don’t always allocate additional funds and resources
to fixing Technical Debt in the source code [12].

Additionally, according to Martini, Bosch, and Chaudron [9], TD refactoring
activities typically have lower priority than the development of new features, and
Technical Debt that is not directly connected to the deployment of new features
is frequently put off.

Vathsavayi and Syst [10] echo this notion, stating that “Deciding whether
to spend resources for developing new features or fixing the debt is a challeng-
ing task.” The researchers highlight that software teams need to prioritize new
features, bug fixes, and TD refactoring within the same prioritization process.

Architectural Degradation and Technical Debt Dashboards 641

As the final results of the works proposed by Lenarduzzi et al. [6] the authors
demonstrate how studies frequently concentrate their prioritization techniques
on prioritization among various TD components, with the aim of determining
which item should be refactored first. None of the prioritizing strategies men-
tioned in the publications analyzed directly discusses how to prioritize between
putting time and effort into reforming TD and developing new features.

3 The Proposed Approach

The Ph.D. plan consists of the four following steps:

1. Analysis of Architectural Technical Debt in literature
2. Analysis of the strategies/best tools/practices adopted in the company (ABB)

to manage Architectural Technical Debt
2.1. Analysis of ABB code production process and comparison with the state

of the art
2.2. Analysis of the tools actually used in the CI process.
2.3. Survey with the developers to investigate why they used that specific tool

or why they don’t use any tool.
2.4 . Work with teams to understand how to mitigate the issues that arose.

3. Investigation on the effects of the solutions adopted
4. Implementation of a tool/dashboard that can help the developers to manage

technical debt showing the metrics more useful for them according to the
previous results.

Step one attempts to answer RQ1. RQ2 is answered in the second step. The
third step try to answer RQ3 and RQ4. Finally, the last step answers RQ5.

3.1 Research Methodology

Step 1. The first step is to analyze the Technical Debt in literature, under-
standing which is the starting point reached now, which are the most common
causes of Architectural Technical Debt identified in these last years, which are
the best practices identified, and how they are applied in different contexts. The
goal is to study in deep all the aspects of Technical Debt, considering all the
aspects of the coin. Thus, the issues related to the code, to the architecture, to
the lack of knowledge, to the lack of best practices but also the aspect related
to the social smells and how this impacts the introduction of Technical Debt in
a system.

Step 2. The second step is related to the state of the art of Technical Debt
management in the company (ABB). Thus, understand which are the best prac-
tices and the tools yet used to take under control the Technical Debt in their
code, focusing on which of these tools can be used also to manage Architectural
Technical Debt. This step is composed of 4 phases:

642 D. Amoroso d’Aragona

– Phase 1. In the first phase we will perform a manual analysis of their repos-
itories, of the Continuous Integration tools used, and of the configuration of
the pipelines to understand which is their production process;

– Phase 2. In the second phase we will perform a manual analysis of the Con-
tinuous Integration tools (e.g., Jenkins, Azure pipelines) to understand which
tools they have in their production process to manage Technical Debt (e.g.,
Lattix, SonarQube, Test framework, Lint);

– Phase 3. The third phase consists to dispense a survey to the developers to
understand why some tools are used at the expense of others, why some teams
do not use any tools (if there are), if there is some correlation between the
product that the teams are developing and the tools used by them, if there
is some adopted tool useful to manage Architectural Technical Debt (eg., to
prioritize ATD items; to minimize ATD in source code) and so on;

– Phase 4. Finally we want to select a subset of developer teams to work with
them improving their Technical Debt management.

Step 3. In the third step, we will evaluate the solutions adopted to understand
if they really improve the management of Technical Debt or not. In the latter
case, we plan to investigate other solutions, introduce them, and evaluate them.
In other words, steps 2 and 3 will be performed in an iterative cycle.

Step 4. Finally, in the last step, we intend to collect all the metrics of the tools
introduced in the previous steps that are really useful for developers and show
them in a dashboard.

4 Expected Contributions

Our research wants to help developers to manage (eg., prioritize/minimize)
Architectural Technical Debt. In the long-term, we expect to find which are
the best practices that a company with the same characteristic as the company
investigated by us can introduce to take under control the Architectural Techni-
cal Debt in their products. Moreover, we guess that the findings of our research
will help the community to better understand how Technical Debt grows up in a
real case study, which is the impact on a real production process, which solutions
can be adopted, which could be the causes of Technical Debt in a company.

References

1. Alves, N.S., Mendes, T.S., de Mendonça, M.G., Sṕınola, R.O., Shull, F., Seaman,
C.: Identification and management of technical debt: a systematic mapping study.
Inf. Softw. Technol. 70, 100–121 (2016). https://www.sciencedirect.com/science/
article/pii/S0950584915001743

2. Besker, T., Martini, A., Bosch, J.: Technical debt triage in backlog management.
In: 2019 IEEE/ACM International Conference on Technical Debt (TechDebt), pp.
13–22 (2019)

https://www.sciencedirect.com/science/article/pii/S0950584915001743
https://www.sciencedirect.com/science/article/pii/S0950584915001743

Architectural Degradation and Technical Debt Dashboards 643

3. Brown, N., et al.: Managing technical debt in software-reliant systems. In: Proceed-
ings of the Workshop on Future of Software Engineering Research, FoSER 2010,
at the 18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, Santa Fe, NM, USA, pp. 7-11 (2010)

4. Kruchten, P., Nord, R., Ozkaya, I.: Managing Technical Debt: Reducing Friction
in Software Development, Addison-Wesley (2019)

5. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: From metaphor to theory
and practice. IEEE Softw. 29(6), 18–21 (2012)

6. Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., Arcelli Fontana, F.: A systematic
literature review on technical debt prioritization: Strategies, processes, factors,
and tools. J. Syst. Softw. 171, 110827 (2021). https://doi.org/10.1016/j.jss.2020.
110827, https://www.sciencedirect.com/science/article/pii/S016412122030220X

7. Malakuti, S., Heuschkel, J.: The need for holistic technical debt management across
the value stream: Lessons learnt and open challenges (2021)

8. Malakuti, S., Ostroumov, S.: The quest for introducing technical debt management
in a large-scale industrial company. In: Jansen, A., Malavolta, I., Muccini, H.,
Ozkaya, I., Zimmermann, O. (eds.) ECSA 2020. LNCS, vol. 12292, pp. 296–311.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58923-3 20

9. Martini, A., Bosch, J., Chaudron, M.: Investigating architectural technical debt
accumulation and refactoring over time: a multiple-case study. Inf. Softw. Technol.
67, 237–253 (2015). https://doi.org/10.1016/j.infsof.2015.07.005, https://www.
sciencedirect.com/science/article/pii/S0950584915001287

10. Vathsavayi, S., Systä, K.: Technical debt management with genetic algorithms. In:
2016 42th Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), pp. 50–53 (2016)

11. Verdecchia, R., Kruchten, P., Lago, P., Malavolta, I.: Building and evaluating a
theory of architectural technical debt in software-intensive systems. Journal of
Systems and Software 176, 110925 (2021), https://www.sciencedirect.com/science/
article/pii/S0164121221000224

12. Vidal, S., Vazquez, H., Diaz-Pace, A., Marcos, C., Garcia, A., Oizumi, W.:
JSpIRIT: a flexible tool for the analysis of code smells. In: 2015 34th International
Conference of the Chilean Computer Science Society (SCCC), pp. 1–6 (2015).
https://doi.org/10.1109/SCCC.2015.7416572

https://doi.org/10.1016/j.jss.2020.110827
https://doi.org/10.1016/j.jss.2020.110827
https://www.sciencedirect.com/science/article/pii/S016412122030220X
https://doi.org/10.1007/978-3-030-58923-3_20
https://doi.org/10.1016/j.infsof.2015.07.005
https://www.sciencedirect.com/science/article/pii/S0950584915001287
https://www.sciencedirect.com/science/article/pii/S0950584915001287
https://www.sciencedirect.com/science/article/pii/S0164121221000224
https://www.sciencedirect.com/science/article/pii/S0164121221000224
https://doi.org/10.1109/SCCC.2015.7416572

The Impact of Business Design in Improving
the Offering of Professional Software Services

Sari Suominen(B)

Faculty of Information Technology University of Jyväskylä, Seminaarinkatu 15,
40014 Jyväskylä, Finland

sari.s.suominen@jyu.fi

Abstract. Companies offering professional software services face challenges
from many directions. Increased competition put downward price pressure even
as labor shortages drive up costs and the pressure for increasing profits is endless.
Many of the challenges in offering professional software services arise because
of the time and material pricing model. To overcome these problems, this study
brings the business design approach into the context of professional software
services to achieve more scalable and profitable service offering. To develop an
in-depth understanding of business design approach, a multiple case study will be
conducted. The business design framework developed in this study may enable
companies in software industry to develop their professional service offering with
the aim to overcome the problems with labor shortage, profitability, scalability,
efficiency and productivity.

Keywords: Business design · Professional software services · Software
industry · Profitability · Labor shortage · Time and material pricing · Service
productization

1 Introduction

Our economy, markets, and customers’ expectations evolve at an exhilarating pace. The
business models and infrastructures that have been the foundation for companies are
not sufficient to meet the demands of today, let alone the demands of tomorrow [5].
One of trends is that the money flows are shifting from agriculture and product-oriented
consumption to consuming services. Services comprise 70 to 80 percent of economics
in mature countries, and many industries have noticed that services are higher-margin
businesses than manufacturing [18].

Digitalization and technology have driven radical transformation and disruption and
in the core of change are the products and services of the software industry [2, 18].
Software industry can be divided into the following segments: professional software
services, software products (including enterprise solutions and packaged software) and
embedded software including services [11]. In this research I will focus on the profes-
sional software services, also called human services [17], which form 37 percent of the
revenue in the software industry [10].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 644–649, 2022.
https://doi.org/10.1007/978-3-031-21388-5_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_50&domain=pdf
http://orcid.org/0000-0001-7426-2378
https://doi.org/10.1007/978-3-031-21388-5_50

The Impact of Business Design 645

Companies offering professional software services face challenges frommany direc-
tions. As services are intangible and comparatively little capital is required to produce
them, market entry for new competitors is relatively easy [21]. Thus, increased competi-
tion creates need to lower prices even as talent shortages drive up costs and the pressure
for increasing profits is endless.

The main goal of the research is to provide a cohesive understanding of how the
challenges can be overcome utilizing the business design method in respect to the pro-
fessional software services. Conceptually, I will develop an industry specific business
design framework by supplying a solid foundation for practitioners and researchers. The
research question is “How can business design improve the offering of professional soft-
ware services?”. I will begin by clarifying what practical challenges I have identified in
the professional software service offering. These challenges spring from my own expe-
rience from the software industry where I have worked for 20 years in various positions
and supported by literature. Furthermore, I propose that by utilizing business design
in developing professional software services, a company can be more competitive and
profitable.

2 Background

The most common and simplest pricing model for professional software services is the
Time and Materials (T&M) pricing, also called the Time and Materials Contracting [4]
or Cost-Based pricing [9]. Themodel involves calculating the cost of the labor (time) and
other expenses (materials) and adding a desired margin to cover overhead and profit [9,
14]. When using the T&M pricing, the customer is buying resources to make a system,
rather than an outcome or a specific solution as in fixed-price contract [13, 15].

The literature suggests many advantages for using T&M pricing. As the pricing
model is simple and it offers a straightforward method to ensure that the costs of pro-
ducing the service are covered, it is used bymany professional software service providers
[20]. The pricing offers flexibility, especially when Agile methods are used and when
the scope is not predictable [4]. Thus, the customer is allowed to adjust the scope and
priorities to their needs during the project [4, 16]. Even though there are obvious benefits
for T&M pricing, this research focuses on the challenges and the limitation of the T&M
pricing model.

Based on literature, the downsides of using the T&M pricing in offering professional
software services are volatile productivity, lack of innovation and efficiency, limited
profitability and scalability and labor shortage [4, 15, 16, 20], which are illustrated in
Fig. 1. One of the challenges is that the productivity differs greatly depending on who is
producing the service, on their know-how, skills, experience and even motivation. The
productivity depends on the team build to execute the service and the communication
between the customer and the service provider is. Furthermore, as the service provider
receives compensation based on hours or man-days, they might not have an incentive
to exert effort [16]. This can cause that the service provider is not motivated to improve
efficiency or find solutions, that require less work. This eliminates the possibility for
innovation and more efficient ways of working. As Lichtenstein [15] states, on the
contrast to T&Mpricing, fixed-pricing rewards the service supplier as the supplier benefit
from cost savings and one the other hand, pays for cost overruns.

646 S. Suominen

Another significant downside of T&M pricing are the limited profits. The intangibil-
ity of services and the T&M pricing can be ineffective for service providers that have a
profit-maximizing goals [20]. Although, the hourly charge differs by roles and expertise
levels, the profits are still limited in relation to billable hours. The scalability can be only
done through recruiting more labor and performing more hours. A weakness is also that
T&Mmight overlook the customer’s willingness to pay a higher price and the value the
service adds to the customers business [20].

Another very critical problem that most of the companies in the software industry
are struggling with is the labor shortage. As the talent shortages drive up costs, the
software industry is keen to hire more inexperienced talent and to train them. However,
the customers often demand experienced teams and individuals as their resource. As the
customer is buying resources, they might be very conscious on the resources they are
paying for, whichmeans that the T&Mpricing can lead tomonitoring and controlling the
supplier’s actions and costs [4, 16] In practice, this complicates integrating new talent
to professional software services offerings.

Fig. 1. The challenges of offering professional software services

The challenges are faced everyday by companies offering professional software
services. They do not affect only the suppliers, but also their customers, who are relying
on getting the right knowhow to boost their business with technology and digitalization.
Furthermore, the challenges affect the labor. The shortage of labor is a verymajor struggle
for the whole industry. This leads to overburdening current talent and hampers finding
new talent, which is a major obstacle in achieving growth and profitability targets.

3 Business Design

Oneof the tendencies that shapes the software industry is the coopetition balance between
software products and professional software services. This means productization of ser-
vices and servitization of products [11]. Service productization is determined as “the pro-
cess for analyzing a need, defining and combining suitable elements into a product-like

The Impact of Business Design 647

object, which is repeatable and comprehendible” [8]. The benefits of service producti-
zation are more efficient way of working, lower costs, and greater customer satisfaction
[14]. Service providers that understand the strategic role of pricing and how the cus-
tomers value the alternative pricing models, can make better decisions throughout the
service development and implementation process [9].

However, service productization has not diminished the challenges for example the
labor shortages and the limited profits. My proposition in this study is that the chal-
lenges can be overcome by applying the business design approach to the development
of professional software service offering.

The practitioners see business design as a customer-centered approach to develop-
ing and innovating services. The approach applies design principles and practices to
build competitive advantage and profitable and sustainable offerings. Business design
is the totality how a company selects its customers, defines and differentiates offerings,
builds competitive advantage, creates value for the customer, configures its resources
and captures profit [10, 12]. It can be perceived as the gap between business strategy
and operational execution. Business design method deepens service productization by
adding design practices and principles to the development of services as illustrated in
Fig. 2.

Fig. 2. Business design in the context of professional software services

In literature, business design is often dealt from the designer perspective [1, 6], not
from the business perspective. Business design is acknowledged among practitioners in
the software industry and discussed commonly in managerial magazines and seminars,
but it is not discussed explicitly in the academic literature in the context of software
industry.

4 Research Methodology

As I am studying the impacts of using business design in professional software services,
which has not been studied nor is the business design term established in the context,
the case study method is chosen as the research methodology. Rowley [19] defines case
study as “an empirical method aimed at investigating contemporary phenomena in their
context”. Although case studies as a research method or strategy might been viewed as
lacking rigour and objectivity, they do offer insights that might not be achieved with
other methods [3, 19].

648 S. Suominen

The case study methodology offers a flexible design strategy, which includes a sig-
nificant amount of iterations over the steps. The iterations will allow us to evaluate and
develop the use of the framework with the business design method. Also, the data col-
lection and analysis can be conducted incrementally [19]. As I am investigating not only
use of the business design method but also the impact it has on profitability, I will use
mixed methods for data collection, which is typical for the case study method [19, 20].

A multiple case study approach seemed most appropriate because to be able to form
a practical and useful framework for companies, I need to discover replicable actions.
As Rowley [19] states, the greater the number of case studies that show replication, the
more robust are the research outcomes. I will choose from six to ten companies that
offer professional software services with time and material pricing. Selecting the most
suitable case companies is crucial, and the selection must be determined by the research
purpose, questions, propositions and theoretical context [19].

In a case study, the researchermust be familiar with the subject [3], and the researcher
has to make a speculation on the basis of the literature and other evidence as to what
they expect the finding of the research to be. The data collection and analysis can then
be structured to support or refute the research propositions [19].

Software engineering case studies tend to lean towards a positivist perspective, which
is suitable for my research as well. A positivist case study searches evidence for formal
propositions, measures variables, tests hypotheses and draws inferences from a sample
to a stated population [20]. Rowley [19] agrees by adding that the positivist approach
provides a firm foundation for understanding and managing issues such as validity and
reliability and for structuring data collection and analysis. This makes the positivist
approach more straightforward.

However, the literature also stresses that even though the case study method is a
flexible and the includes iterations over the steps, there should be a specific objectives
set the from the beginning [20]. If the set objectives change, a new case study should be
carried out rather than altering changing the existing one.

References

1. De Turi, I., Antonicelli, M.: A nebusiness design tool for digital business model innovation:
DEA approach. Can. Cent. of Sci. Edu. (2020). https://doi.org/10.5539/ibr.v13n6p86

2. Engel, C., Ebel, P.: Data-driven service innovation: a systematic literature re-view and devel-
opment of a research agenda. In: European Conference on Information Systems (ECIS)
(2019)

3. Fidel, R.: The case study method: a case study. Libr. Inf. Sci. Res. 6(3), 273–288 (1984)
4. Franklin, T.: Adventures in agile contracting: evolving from time and materials to fixed price,

fixed scope contracts. In: Agile 2008 Conference, pp. 269–273, (2008). doi: https://doi.org/
10.1109/Agile.2008.88

5. Fraser, H.M.A.: Designing business: newmodels for success. Des.Manage. Rev. 20(2), 56–65
(2009). https://doi.org/10.1111/j.1948-7169.2009.00008.x

6. Gaglione, S., dil Gaziulusoy, A.: Designers designing business. understanding howdesigners
create enterprises. Des. J. 22(sup1), 51–63. (2019)

7. Harkonen, J., Haapasalo, H., Hanninen, K.: Productisation: a review and research agenda.
Int. J. Prod. Econ. 164, 65–82 (2015)

https://doi.org/10.5539/ibr.v13n6p86
https://doi.org/10.1109/Agile.2008.88
https://doi.org/10.1111/j.1948-7169.2009.00008.x

The Impact of Business Design 649

8. Harkonen, J., Tolonen, A., Haapasalo, H.: Service productisation: systematising and defining
an offering. J. Serv. Manag. 28(5), 936–971 (2017). https://doi.org/10.1108/JOSM-09-2016-
0263

9. Harmon, R., Demirkan, H., Hefley, B., Auseklis, N.: Pricing strategies for information tech-
nology services: a value-based approach. In: 2009 42nd Hawaii International Conference on
System Sciences, pp. 1–10. IEEE. (2009)

10. Hong C., LiHua T., Ying H.: Business design for an on demand business enterprise. In: IEEE
International Conference onE-CommerceTechnology forDynamicE-Business, pp. 349–352.
(2004). https://doi.org/10.1109/CEC-EAST.2004.25

11. Hoch, D.J., Roeding, C., Lindner, S.K., Purkert, G.: Secrets of Software Success. Harvard
Business School Press, Boston (2000)

12. Hornbach, K.: Competing by business design—the reshaping of the computer industry. Long
Range Plan. 29(5), 616–628 (1996). https://doi.org/10.1016/0024-6301(96)00056-8

13. Lacity, M.C., Willcocks, L.P., Feeny, D.F.: The value of selective IT sourcing. Sloan Manage.
Rev. 37, 13–25 (1996)

14. Levitt, T.: The industrialization of service. Harv. Bus. Rev. 54(5), 63–74 (1979)
15. Lichtenstein, Y.: Puzzles in software development contracting. Commun. ACM 47(2), 61–65

(2004). https://doi.org/10.1145/966389.966391
16. Lichtenstein, Y., McDonnell, A.: Pricing Software Development Services. In: Proceedings of

the 11th European Conference on Information Systems (ECIS) (2003)
17. Popp, K.: Software industry business models. IEEE Softw. 28(4) (2011)
18. Reason, B., Lovlie, L., Brand, F.M.: Service Design for Business – A Practical Guide to

Optimizing the Customer Experience. John Wiley & Sons, Inc., New Jersey (2016)
19. Rowley, J.: Using case studies in research. Manag. Res. News 25(1), 16–27 (2002). https://

doi.org/10.1108/01409170210782990
20. Runeson, P., Höst,M.:Guidelines for conducting and reporting case study research in software

engineering. Empir. Softw. Eng. 14(2), 131–164 (2009). https://doi.org/10.1007/s10664-008-
9102-8

21. Schlissel, M.R., Chasin, J.: Pricing of services: an interdisciplinary review. Serv. Ind. J. 11(3),
271–286 (1991). https://doi.org/10.1080/02642069100000046

https://doi.org/10.1108/JOSM-09-2016-0263
https://doi.org/10.1109/CEC-EAST.2004.25
https://doi.org/10.1016/0024-6301(96)00056-8
https://doi.org/10.1145/966389.966391
https://doi.org/10.1108/01409170210782990
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1080/02642069100000046

Applications of MLOps in the Cognitive
Cloud Continuum

Sergio Moreschini(B)

Tampere University, Tampere, Finland

sergio.moreschini@tuni.fi

Abstract. Background. Since the rise of Machine Learning, the
automation of software development has been a desired feature. MLOps
is targeted to have the same impact on software development as DevOps
had in the last decade.
Objectives. The goal of the research is threefold: (RQ1) to analyze
which MLOps tools and platforms can be used in the Cognitive Cloud
Continuum, (RQ2) to investigate which combination of such tools and
platforms is more beneficial, and (RQ3) to define how to distribute
MLOps to nodes across the Cognitive Cloud Continuum.
Methods. The work can be divided into three main blocks: analysis,
proposal and identification, and application. The first part builds the
foundations of the work, the second proposes a vision on the evolution
of MLOps then identifies the key concepts while the third validates the
previous steps through practical applications.
Contribution. The thesis’s contribution is a set of MLOps pipelines that
practitioners could adopt in different contexts and a practical implemen-
tation of an MLOps system in the Cognitive Cloud Continuum.

Keywords: Software engineering · Machine learning · Mlops

1 Introduction

DevOps [2] is defined as a set of practices to encourage collaboration between
application development and IT operations teams. The main purpose of DevOps
is to ensure fast release of quality software changes and operating resilient sys-
tems. DevOps methodology has become a core concept of the software devel-
opment lifecycle for practitioners and with the increasing adoption of Machine
Learning (ML)-based software the methodology needs to be extended to include
the ML development steps that differ from the original software development.
The process of including an ML pipeline when developing software needs to be
addressed so that the new software system will ensure both long-term maintain-
ability and adaptable nature. These requirements are due to the hybrid nature

Supervisors:
David Hästbacka, Tampere University, david.hastbacka@tuni.fi
Davide Taibi, University of Oulu, davide.taibi@oulu.fi.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 650–655, 2022.
https://doi.org/10.1007/978-3-031-21388-5_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_51&domain=pdf
http://orcid.org/0000-0002-5582-9487
https://doi.org/10.1007/978-3-031-21388-5_51

Applications of MLOps in the Cognitive Cloud Continuum 651

of such ML-based as the long term maintainability is inherited from the DevOps
practices, while the adaptable nature is achieved through continuous training
of new data continuously provided to the ML algorithm. For this reason, such
extension is categorized as an evolution of the classical DevOps and denominated
MLOps [7].

With the increasing availability of devices connected to the Internet and the
ability to generate data, MLOps has the potential to become the reference model
to develop software capable of detecting anomalies, projecting future trends,
augmenting intelligence and so much more. However, as most of these devices
composing the environment have limited computational power it is important
to investigate also how to develop applications along the so-called COgnitive
CLoud CONtinuum (COCLCON).

The main goal of this thesis is to study the most common approaches when
developing ML-based software in the COCLCON. In this work I will attempt to
answer the following research questions:

RQ1. Which MLOps tools and platforms can be used in the COCLCON?
RQ2. What combination of MLOps tools and platforms can be used in the

COCLCON optimized pipeline?
RQ3. How to distribute MLOps across the COCLCON?

2 Background

The concept of MLOps is a new hype in academic literature [3]. Even if the
problem of automating ML applications was firstly addressed in 2015 [14], the
first mentions of the term MLOps itself are from 2018. In the last 4 years, the
engagement with the topic grew exponentially, so that at the time of writing
there are more than 200 million projects adopting ML on GitHub [15]. Conse-
quently multiple works, both in white and grey literature, tried to define their
vision on the concept of MLOps, but many of them differed on multiple aspects
mostly related to the pipeline [6,10,15]. One of the main goals of this work is to
propose a pipeline which has strong literature foundations, takes into account
common practices and the state-of-the-art of MLOps projects and, most impor-
tant, validates it through practical applications.

2.1 MLOps

Software development has seen its last revolution with the introduction of Dev-
Ops. The methodologies proposed by DevOps helped companies to improve
results and create a culture based on two fundamental factors: the increased
frequency of software releases and the reliability of the produced software. These
two factors that once seemed to be opposite of each other started not only to
coexist but also to grow together following the dynamic nature of DevOps prac-
tices. Such dynamic nature has been represented through the iconic DevOps
pipeline which aims to portray the division of application Developers (Dev) and
IT Operations (Ops) tasks in teams as an infinite loop.

652 S. Moreschini

The increased adoption of ML-based software has created a new figure in the
corporate organizational environment: the ML developer. Such a figure actively
participates in the development of the software, performing tasks that are parallel
to the Dev engineer. The natural evolution of the development cycle for agile
software, and therefore of the DevOps pipeline, which includes the development
of ML-based software has been defined as MLOps.

Fig. 1. Proposed MLOps pipeline [10]

The graphical representation for MLOps proposed in [10] is depicted in Fig. 1.
Such representation aims at highlight the diversification yet affinity when devel-
oping the ML-based software from the software developer and the ML developer
perspectives. The main differences between the proposed MLOps pipeline and
the original DevOps lie in the Plan and Code phases, moreover, a subsequent
phase has been added and defined as Validation.

2.2 Cognitive Cloud Continuum

Another important aspect to take into account is where to deploy the ML-
based software. One of the most recent hypes in the cloud computing domain is
the concept of Cloud Continuum, which together with the concept of Cognitive
Cloud has raised interests of funding agencies [1].

The first definitions of Cloud Continuum were presented in 2016 [4,5]; while
the first one presented it as a “continuum of resources available from the edge to
the cloud” the second focused on computationally related aspects. Since then,
more than 30 definitions have been proposed for Cloud Continuum. The defini-
tions have focused on the distribution of resources both from the point of view
of the entity responsible for the computation and of the computational power.

The term cognitive was originally used in computer science to refer to the
behavior of computers analogous or comparable to the human brain. In the
2010 s, “cognitive computing” became the new research trend aiming to develop

Applications of MLOps in the Cognitive Cloud Continuum 653

novel systems relying on extensive amounts of data from many sources. With
the advent of the era of big data, the increasing amount of unstructured data
caused problems in information analysis and processing; in this scenario, cogni-
tive computing provided solutions by imitating the human way of thinking.

Analyzing the evolution of both terms, the Cognitive Cloud Continuum is
moving towards an extension of the traditional Cloud towards multiple entities.
Such entities not only are capable of providing data, store it and processing it,
but they are also capable of sensing the environment and, by learning from it,
they can adapt the computational load.

Fig. 2. PhD structure

3 The Proposed Approach

The structure of the PhD is depicted in Fig. 2. It is composed by 3 main steps,
divided in 9 sub-steps, that might be submitted as individual publication:

– Step 1: Analysis of the literature for ML in the COCLCON
– Step 2: MLOps: platforms, tools, methods and processes

• Proposed MLOps pipeline
• Comparison of testing and tools
• Survey on the impact of MLOps in the industry domain

– Step 3: Applications of MLOps in the COCLCON
• Investigation of MLOps tools usage in the COCLCON
• ML distribution to the different nodes of the COCLCON.

The research method is based on both empirical methodology and practical
applications. The empirical methodology includes systematic literature reviews,
case studies, surveys, and interviews. Starting from the analysis of the literature
I aim at answering RQ1 in the first step. To answer RQ2 I make use of the afore-
mentioned empirical studies; the goal is to provide clear pipeline proposals by
finding the optimal combination of tools used at each step of the MLOps pipeline.
RQ3 revolves around the concept of Cognitive Cloud Continuum, therefore a fun-
damental part is the definition of the two concepts composing it. Following this, I
aim at investigating MLOps tools and their usage in this particular environment
to practically develop an MLOps system in the third step.

654 S. Moreschini

Step 1: Analysis of the Literature. The implementation of ML models
strongly relies on the capability of importing Open Source Libraries in the same
way that Open Source Software (OSS) has been integrated into commercial prod-
ucts. When talking about OSS it is important to estimate factors and metrics
to evaluate its reliability of it before embedding it [9]. Some key points desired
when integrating OSS are continuous updates and maintainability and based on
these it is possible to calculate the risk of abandonment [8]. Once the properly
available libraries have been selected the development of the software can begin.

Another important aspect to take into account is the device on which the
software needs to be developed, how the calculation needs to be carried out,
and in which environment such device is [11,12]. The analysis of the literature
focuses on these aspects which are the foundation on which the development of
the software lies.

Step 2: Identification of Methods and Tools. Developing software that
relies on ML techniques necessitates a different approach when compared to
normal DevOps. Among the various reasons, there is one based on the need
to include the figure of the ML developer who needs to develop the system in
parallel with the software engineer. For this reason, an extension of the DevOps
pipeline is required [10].

Once the pipeline is clearly stated, it is important to analyze the state of
the art of the current tools for ML-based projects and how they are used [13].
Particular attention needs to be placed on those tools used for testing the overall
systems [15]. Furthermore, it is also critical to investigate practitioners’ common
practices when working with such ML-based systems.

Step 3: MLOps in the COCLCON. In the last step, I aim at using the
knowledge acquired in the previous steps to provide an MLOps system capable
of delivering applications along the COCLCON.

4 Current Status

The Research work started in January 2021. During this period I investigated
Step 1, and Step 2.1. Step 1 consisted of four different works [8,9,11,12] aiming
at answer RQ1.

Step 2.1 is the first result towards answering RQ2 and has been achieved
through the proposition of an MLOps pipeline published in [10]. The work, not
only envisions a pipeline for MLOps but also produces a meaningful comparison
to classical DevOps. The publication is the first part of a roadmap for the devel-
opment of MLOps practices. At the stage of writing, I am currently developing
the second part of this step which will result in two publications.

As for the remaining steps I am currently collaborating with different partners
to investigate how to properly address problems related to RQ3.

Applications of MLOps in the Cognitive Cloud Continuum 655

5 Expected Contribution

The main contribution of this thesis is to analyze the evolution of the develop-
ment process of MLOps, particularly applied in the Cognitive Cloud Continuum.
The main contribution of this thesis will be a validated set of MLOps pipelines
that companies can adopt in different contexts, together with their pros and
cons.

References

1. Cognitive Cloud: Ai-enabled computing continuum from cloud to edge (RIA)
(2022). https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/
opportu-nties/topic-details/horizon-cl4-2022-data-01-02, Accessed 07 JULY 2022

2. Bass, L., Weber, I., Zhu, L.: DevOps: a software architect’s perspective. Addison-
Wesley Professional (2015)

3. Calefato, F., Lanubile, F., Quaranta, L.: A preliminary investigation of MLOps
practices in GitHub. In: IEEE ESEM, vol. 22, pp. 283–288 (2022)

4. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE
Internet Things J. 3(6), 854–864 (2016)

5. Gupta, H., Nath, S.B., Chakraborty, S., Ghosh, S.K.: SDFog: a software defined
computing architecture for QoS aware service orchestration over edge devices.
arXiv preprint arXiv:1609.01190 (2016)

6. Gupta, S.C.: MLops: Machine learning lifecycle. https://towardsdatascience.com/
machine-learning-lifecycle-in-mlops-era-5b45284c0e34 (2022)

7. John, M.M., Olsson, H.H., Bosch, J.: Towards MLOps: a framework and maturity
model. In: Euromicro/SEAA (2021)

8. Li, X., Moreschini, S., Pecorelli, F., Taibi, D.: OSSARA: abandonment risk assess-
ment for embedded open source components. IEEE Softw. 39(4), 48–53 (2022)

9. Li, X., Moreschini, S., Zhang, Z., Taibi, D.: Exploring factors and metrics to select
open source software components for integration: an empirical study. J. Syst. Softw.
188, 111255 (2022)

10. Moreschini, S., Lomio, F., Hästbacka, D., Taibi, D.: MLOps for evolvable ai inten-
sive software systems. In: SQ4AI@SANER (2022)

11. Moreschini, S., et al.: Cognitive Cloud: the definition. In: DCAI (2022)
12. Moreschini, S., Pecorelli, F., Li, X., Naz, S., Hästbacka, D., Taibi, D.: Cloud Con-

tinuum: the definition. In: Under Review (2022)
13. Recupito, et al.: A multivocal literature review of MLOps tools and features. In:

SEAA (2022)
14. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: NIPS,

vol. 28. Curran Associates, Inc (2015)
15. Symeonidis, G., Nerantzis, E., Kazakis, A., Papakostas, G.A.: MLOps - definitions,

tools and challenges. In: 2022 IEEE CCWC, pp. 0453–0460 (2022)

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportu-nties/topic-details/horizon-cl4-2022-data-01-02
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportu-nties/topic-details/horizon-cl4-2022-data-01-02
http://arxiv.org/abs/1609.01190
https://towardsdatascience.com/machine-learning-lifecycle-in-mlops-era-5b45284c0e34
https://towardsdatascience.com/machine-learning-lifecycle-in-mlops-era-5b45284c0e34

Implementing Artificial Intelligence
Ethics in Trustworthy System

Development - Making AI Ethics
a Business Case

Mamia Agbese(B)

University of Jyväskylä, Seminaarinkatu 15, 40014 Jyväskylä, Finland

mamia.o.agbese@jyu.fi

Abstract. Software businesses struggle to implement AI ethics or eth-
ical requirements in their development and engineering of AI. Current
tools mainly focus on the technical level, with scarce resources identi-
fied for the different groups across software business organizations. This
study focuses on developing a proposed solution, the ethical requirement
stack, as a toolkit software businesses can leverage to implement ethical
requirements. The tool aims to improve the understanding and visibility
of AI ethics by serving as a go-to in interpreting AI ethics guidelines,
thereby reducing the gap in transitioning AI ethics from principles to
practice.

Keywords: Artificial Intelligence · AI Ethics · Ethical requirements ·
AI ethics principles · Software businesses · Ethical requirement stack

1 Introduction

As software businesses increase their usage of Artificial Intelligence (AI) in devel-
oping software systems, so does the need for them to improve their understanding
of applicable ethical requirements [4]. Software systems are still rife with inci-
dents of AI collecting user data from third parties without consent at interaction
points, AI proffering sensitive solutions without explanations, AI making deci-
sions on behalf of humans, and autonomous AI accidents [1,5,6]. Suggesting
the need for a more hands-on approach to aid the implementation of ethical
requirements in their engineering and development. Ethical requirements are
requirements for AI systems derived from AI principles or ethical codes (norms)
similar to Legal Requirements derived from laws and regulations [7]. Ethical
requirements bring the visibility of AI ethics practices to the forefront in soft-
ware businesses as requirements [7]. AI ethics deals with the moral behavior of
humans in the design, usage, and behavior of machines [13]. Jain et al. [8] explain
AI ethics as a field of applied moral values that focuses on the various sociotech-
nical discrepancies or issues generated from the construction and function of AI
systems.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 656–661, 2022.
https://doi.org/10.1007/978-3-031-21388-5_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_52&domain=pdf
http://orcid.org/0000-0002-5479-7153
https://doi.org/10.1007/978-3-031-21388-5_52

Implementing Artificial Intelligence Ethics 657

Challenges identified by [4] for the lack of practical approach by most soft-
ware businesses, and AI practitioners include poor understanding of AI ethics
principles and dedicated tools to aid their implementation as ethical require-
ments [6,7,15]. Baker-Brunnbauer [1] explains that beyond the technical level,
middle to higher-level stakeholders’ perspectives on ethical requirements are rel-
atively low as they are viewed as unimportant and unprofitable due to inad-
equate visibility and understanding [1]. In addition, the primary approach to
implementing ethics in the form of AI ethics principles serving as guidelines is
considered too general, lacking in specificity and tools for these stakeholders
[9,10]. Consequently, the implementation of ethical requirements is often rele-
gated to technical teams and dealt with as non-functional requirements with
virtually no representation at higher levels [15]. However, the impact of failed
AI systems from ethical issues can be catastrophic [6], cutting across the entire
organizational structure and not just the technical level. Incidents such as the
“Volvo defeat device” scandal [3] have set the precedence for a hands-on app-
roach for implementing ethics practices within organizations. As such, critical
stakeholders at levels beyond the technical require tools and practices to inform
their understanding and representation of ethical requirements to enable their
involvement in implementing AI ethics [1].

To help tackle this challenge, which motivates our research, we focus our
study on ethics of practice and our research question (RQ) How to implement
ethical requirements or AI ethics principles for trustworthy software systems
development Wickramasinghe [16] explains that for AI systems to attain the
European Union standard of trustworthy AI, software businesses need to ground
their ethics practices or implement them in three components: ethical algorithms,
ethical data, and ethical practices. Ethics of data focuses on collecting, analyzing,
profiling, advertisements, and usage of data issues. Ethics of algorithms focus on
the application, autonomy, and increasing complexity of ML algorithms issues.
Ethics of practice focuses on the responsibilities and liabilities of human users
(such as developers, adopters, organizations, and system users) involved in the
AI life cycle [16].

2 Related Work

Most of the work on implementing ethics towards the development of trustwor-
thy AI focuses mainly on technical frameworks and methods targeted at ethical
algorithms and data. This direction may be due to the speed empirical multi-
disciplinary bottom-up research affords AI implementation as it tends to focus
on the technical needs and challenges of AI developers [2]. Morley et al., [12]
mapped machine learning initiatives, tools, and methods to implement AI ethics
in creating ethical or trustworthy AI. The work by [12] is extensive, with over
100 tools and frameworks identified. However, its translation of AI ethics prin-
ciples to actionable practices focuses on machine learning development and not
on the ethics of practices aspects that involve human users such as developers,
adopters, organizations, and system users.

658 M. Agbese

Mökander & Floridi [11] propose ethics-based auditing as a mechanism for
implementing AI ethics and helping organizations that design and deploy AI sys-
tems to influence ethical requirements challenges. An ethics-based audit involves
a structured process where auditors, which could be third-party, assess the safety,
security, privacy, and fairness-related claims made in the engineering and devel-
opment of AI to ascertain its ethical requirements [11]. The process can help
assess for consistency with relevant principles or norms. Ethics-based audits can
act as a mechanism to help software businesses identify, visualize, and communi-
cate the normative values embedded in their AI system. However, this approach
largely targets the technical aspects of ethical requirements. It highlights audit
areas such as functionality audits which focus on the rationale behind the deci-
sion, code audits which focus on reviewing the source code, and impact audits
which focus on the effects of algorithm’s outputs [11]. In addition, it also high-
lights the lack of uniformity around high-level ethics principles as a challenge in
determining optimal ethical requirements to be assessed against [11].

On the non-technical side, Baker-Brunnbauer [2] provides the Trustworthy
Artificial Intelligence Implementation (TAII) Framework within an organization.
The framework aims to decrease entry-level barriers to AI ethics implementa-
tion and provides a management perspective on the challenge of implementing
AI ethics. It analyses ethical inconsistencies and dependencies along the value
chain for AI projects using twelve iterative steps to aid AI ethics implemen-
tation. The framework is extensive. However, the TAII is broad in application
and skewed towards managerial perspectives. In addition, it requires that ethi-
cal requirements are generated in the implementation process, which may cause
them to be overlooked if they are not well defined early as integral to the process.

3 Research Gap and Proposed Solution

From the review of literature the following gaps were identified:

• Most tools focus on the technical layer of software businesses, particularly
data and algorithm practices.

• A gap exists for tools and practices for levels beyond the technical layer
• Existing tools targeted at these layers are broad and inadequately interpret

AI ethics principles as ethical requirements

In closing this gap, the use of literature reviews and empirical practices will be
used to develop the conceptual solution, an AI ethical requirement stack. Similar
to the concept of a technical stack used as a solution toolkit in projects, the
stack aims to represent ethical requirements across the different organizational
levels of software businesses. In achieving this stack, ethical requirements will
be elicited by associating congruent practices pertinent to AI ethical practices
at the targeted layer to help improve understanding and build up a stack of
ethical practices. These practices can provide a go-to set of techniques that may
simplify implementing ethical requirements at the relevant layer. The approach
is not meant to be solely top-down in its approach because, as [2] explains,

Implementing Artificial Intelligence Ethics 659

this approach is more challenging than a bottom-up approach that begins with
requirements and settings within specific use cases. Instead, ethical requirements
will be identified at the various organizational levels, from the technical to the
decision-making level, to help improve the visibility of AI ethics as a culture
disseminated across the organization.

The first phase of this research is to systematically analyze the knowledge
about ethical requirements studied in its application within software businesses.
Consequently, the (RQ) is subdivided into three sub-RQs.

[RQ1] How to identify vulnerabilities or knowledge gaps of AI ethics imple-
mentation as ethical requirements within software businesses?

[RQ2] What action can be taken to help mitigate these AI ethics implemen-
tation vulnerabilities?

[RQ3] How to measure the effectiveness of the proposed solution to determine
the viability?

Depending on the first RQ’s results, the dissertation’s next part will focus
on developing the proposed solution, the ethical requirement stack, and investi-
gating its viability.

4 Methodology

We envisage the development of an artifact as an outcome of the study. Therefore
the proposed process will follow a design science research utilizing the Design
Science Research Methodology (DSRM) for Information Systems Research pro-
posed by [14]. The DSRM illustrated in (Fig. 1) will be used as a framework for
the creation process and proposes an iterative, six-step-process for design science
research in IS, consisting of 1) problem identification and motivation, 2) defining
objectives of a solution, 3) design and development, 4) demonstration, 5) eval-
uation, and 6) communication. This process ultimately produces an artifact to
solve an identified organizational problem.

Peffers et al. [14] explain that the Design Research process might start with
identifying the problem and motivation. They explain that the problem defini-
tion can help develop the artifact to provide an effective solution [14]. Problem
definition is also helpful in atomizing the problem conceptually to enable a solu-
tion that can capture its complexity [14]. This phase reflects the current stage
of the research. We are currently in the process of effectively atomizing the
problem to enable us to conceptualize a solution that captures its complexity
[14]. Conceptualizing the solution allows us to pursue the solution to understand
the state of the problem, its importance, and the reasoning associated with our
understanding of the problem [14].

Following the completion of this stage, we will proceed to the next stages
following the nominal process sequence explained by [14] in (Fig. 1).

660 M. Agbese

Fig. 1. Illustration of the design science research methodology [14]

5 Preliminary Results

The outcome of the first year, as part of the first phase of the study, is a journal
paper evaluating an AI ethical developmental tool, ECCOLA, which we utilized
for our study. The evaluation was to determine areas where we could improve
the information robustness of method models used by developers at a higher
level for implementing ethical requirements. The tool was rigorously evaluated
with an Information governance framework, Generally Accepted Recordkeeping
Principles (GARP). The findings and recommendations for its improvement to
include Information governance practices as a more effective way of implement-
ing ethical requirements are communicated as a research article accepted for
publication in the e-informatica software engineering journal.

These findings and new empirical findings will inform the ongoing research.

6 Expected Contributions

This study aims to improve how AI ethics or ethical requirements can be rep-
resented and disseminated across software business organizations to help reduce
ethical challenges associated with AI using a proposed solution, the ethical
requirement stack. The stack can potentially aid stakeholders beyond the tech-
nical level of software businesses with a tangible representation of AI ethics,
thereby reducing the complexity and ambiguity associated with them. With
current tools and methods for implementing AI ethics currently concentrated
at the technical stage, a tool presenting AI ethics across the various levels of
the organization can help provide a more holistic approach to addressing ethi-
cal requirements implementation challenges. The proposed ethical requirement
stack can give visibility to ethical requirements that can help bring to the fore-
front pertinent AI challenges so that the necessary solution needed to address

Implementing Artificial Intelligence Ethics 661

them is implemented. The tool can also enable stakeholders to understand eth-
ical requirements to make more informed decisions. Overall, the study aims to
contribute to closing the current gap in transitioning AI ethics principles to
practice.

References

1. Baker-Brunnbauer, J.: Management perspective of ethics in artificial intelligence.
AI Ethics 1(2), 173–181 (2021)

2. Baker-Brunnbauer, J.: TAII framework for trustworthy AI systems. ROBO-
NOMICS: J. Automat. Econ. 2, 17 (2021)

3. Barn, B.S.: Do you own a Volkswagen? Values as non-functional requirements.
In: Bogdan, C., et al. (eds.) HESSD/HCSE -2016. LNCS, vol. 9856, pp. 151–162.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44902-9 10

4. Brendel, A.B., Mirbabaie, M., Lembcke, T.B., Hofeditz, L.: Ethical management
of artificial intelligence. Sustainability 13(4), 1974 (2021)

5. Collins, C., Dennehy, D., Conboy, K., Mikalef, P.: Artificial intelligence in infor-
mation systems research: a systematic literature review and research agenda. Int.
J. Inf. Manag. 60, 102383 (2021)

6. Falco, G., et al.: Governing AI safety through independent audits. Nat. Mach.
Intell. 3(7), 566–571 (2021)

7. Guizzardi, R., Amaral, G., Guizzardi, G., Mylopoulos, J.: Ethical requirements for
AI systems. In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol.
12109, pp. 251–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
47358-7 24

8. Jain, S., Luthra, M., Sharma, S., Fatima, M.: Trustworthiness of artificial intelli-
gence. In: 2020 6th International Conference on Advanced Computing and Com-
munication Systems (ICACCS), pp. 907–912. IEEE (2020)

9. Jobin, A., Ienca, M., Vayena, E.: The global landscape of AI ethics guidelines. Nat.
Mach. Intell. 1(9), 389–399 (2019)

10. Mittelstadt, B.: Principles alone cannot guarantee ethical AI. Nat. Mach. Intell.
1(11), 501–507 (2019)

11. Mökander, J., Floridi, L.: Ethics-based auditing to develop trustworthy AI. Minds
Mach. 31(2), 323–327 (2021)

12. Morley, J., Floridi, L., Kinsey, L., Elhalal, A.: From what to how: an initial review
of publicly available AI ethics tools, methods and research to translate principles
into practices. Sci. Eng. Ethics 26(4), 2141–2168 (2020)

13. Müller, V.C.: Ethics of artificial intelligence and robotics (2020)
14. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science

research methodology for information systems research. J. Manag. Inf. Syst. 24(3),
45–77 (2007)

15. Vakkuri, V., Kemell, K.K., Kultanen, J., Abrahamsson, P.: The current state of
industrial practice in artificial intelligence ethics. IEEE Softw. 37(4), 50–57 (2020)

16. Wickramasinghe, C.S., Marino, D.L., Grandio, J., Manic, M.: Trustworthy AI
development guidelines for human system interaction. In: 2020 13th International
Conference on Human System Interaction (HSI), pp. 130–136. IEEE (2020)

https://doi.org/10.1007/978-3-319-44902-9_10
https://doi.org/10.1007/978-3-030-47358-7_24
https://doi.org/10.1007/978-3-030-47358-7_24

Developing a Critical Success Factor
Model for DevOps

Nasreen Azad(B)

Department of Software Engineering, Lappeenranta, Finland

nasren.azad@lut.fi

Abstract. DevOps has presently become a mainstream software devel-
opment model in the software industry. DevOps is a software engineering
paradigm which is adopted and implemented by various software organi-
zations. There is a need for a model which could guide the professionals
and practitioners to achieve organizations goals and performance. To
address this study objective, we have developed an initial framework
for the critical success factors models which will be validated by three
research questions.

Keywords: DevOps · Critical success factors · DevOps success factor
model

1 Introduction

To compete in a highly volatile market, it is necessary for an organization to
release software that is both effective and has the capability to sustain in the
competition [5]. For customers, it is important to have new features with efficient
software delivery [3]. As the software business has matured over the years, also
the requirements for speed and efficiency have changed [8]. As a response to the
changing business environment, also the software development life cycles and the
development processes have been evolving.

The purpose of the agile practices is to discover user requirements and develop
solutions through collaboration with cross-functional teams and end users [9].
Agile practices have some limitations and create complexity while scaling agile
development framework [10]. In contrast, DevOps is the combined process of
‘development’ and ‘operations’, which is used for the software development to
speed up the delivery process with efficiency [13].

DevOps is a widely used development strategy that helps to minimize soft-
ware development costs through implementation and adoption. The aim of
DevOps is to provide continuous development and continuous delivery for the
software development process [12]. DevOps allows to make collaboration with
development and operations teams within the organization and provide an effec-
tive delivery process for software development.

Critical success factors are a management literature concept, which dates
back to the beginning of the 1960s [4]. While there is vast literature on the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 662–668, 2022.
https://doi.org/10.1007/978-3-031-21388-5_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_53&domain=pdf
http://orcid.org/0000-0002-2428-2984
https://doi.org/10.1007/978-3-031-21388-5_53

Eveloping a Critical Success Factor Model for DevOps 663

critical factors and their role, they can be briefly defined as “the few key areas
of activity in which favorable results are absolutely necessary for a particular
manager to reach his goals” [2, p. 4].

2 Methods and Goals

2.1 Methods

The aim of the research is to provide a deep understanding of DevOps critical
success factors in software development practices. To achieve this goal, we will
use four research methods in this thesis: Systematic literature review [10], Case
study research [11], multivocal literature review [7] and survey methods [6].
We have chosen multiple research methods because the quantitative along with
the qualitative analysis will provide an in-depth understanding of the topic at
hand by answering the research questions regarding the critical success factors
of DevOps project.

For the data collection process, at first we have conducted an SLR by selecting
empirical papers on DevOps domain. Second, we have conducted an open ended
online questionnaire survey with DevOps professionals. To get more clear idea
on the topic we have conducted semi-structured interviews with same DevOPs
professionals who participated in survey previously. Our next step would be to
design a 7-point Likert scale questionnaire to measure the constructs presented in
Fig. 1 and for that we will conduct an online survey to collect approximately 200
responses for our research purpose. We will also conduct a Multivocal literature
review to get an overall view of DevOps success factor for organizations.

The research will conduct a thorough study based on Software companies and
IT professional’s practices on DevOps use. Some of the hypotheses are presented
below.

2.2 Hypotheses

H1: Performance engineering factor for DevOps directly impacts DevOps project
success.

H2: Integration factor for DevOps process directly impacts DevOps project
success.

H3: Build and test automation factor directly impacts DevOps project success.
H4: Infrastructure factor directly impacts DevOps project success.
H5: DevOps as a service factor directly impacts DevOps project success.
H6: Intra organizational collaboration and communication factor directly

impacts DevOps project success.
H7: Organizational hierarchy factor directly impacts DevOps project success.
H8: Strategic planning factor directly impacts DevOps project success.
H9: Team dynamics factor directly impacts DevOps project success.
H10: Cultural shift factor directly impacts DevOps project success.
H11: Team Dynamics factor moderately effects the organizational success fac-

tors of DevOps project success.

664 N. Azad

H12: Cultural shift factor moderately effects the organizational success factors
of DevOps project success.

In this model, we suggested that technical factors and organizational factors
(intra-organizational collaboration, organization hierarchy, and strategic plan-
ning) would directly impact DevOps success. The social and cultural factors
(team dynamics and cultural shift) would moderate the effects of organizational
factors on DevOps success. In addition, social and cultural factors might also
impact DevOps success directly.

Fig. 1. DevOps critical success factor model (adapted from [1]).

2.3 Research Questions

To address the aim of this research topic we have one key research question
(RQ). The key research question is:

RQ What are the critical success factors of DevOps projects?

To understand the key research question, we need to understand three sub-
research questions. The sub-research questions are written below.

Eveloping a Critical Success Factor Model for DevOps 665

SRQ1 What are the critical success factors, as reported in the extant research
literature, of DevOps projects and how do the findings differ with an MLR
literature?

SRQ2 What are the critical success factors of DevOps projects as reported by
the professionals?

SRQ3 What are the challenges professionals face in DevOps projects? How do
they mitigate the challenges and risks?

3 Results

For the research we have three sub-research questions. The first sub-research
questions is about the critical success factors reported on the extant literature
and how do the findings differ with MLR literature, the second question describes
about the success factors of DevOps reported by the professionals. Third question
is about the challenges professionals face during DevOps practices and how they
mitigate the risks for the projects.

For the first research question We are still left with the MLR literature review.
We believe that after conducting the MLR literature we will get an overall view
of Critical success factors of DevOps and that will address the first research
question for our study. Then we will design a 7-point Likert scale questionnaire
to measure the constructs presented in Fig. 1 and will conduct an online survey
to collect data and address our research questions. We will analyse the data with
PLS (Partial least square) regression methods to find out what critical factors
that impact the success of DevOps projects. Below we discuss our three papers
findings.

SRQ1: What are the critical success factors, as reported on the extant
research literature, of DevOps projects? Critical success factor for DevOps SLR
(ICSOB2021).

DevOps fills the gap between the development and operations teams and
maintains the collaboration among information technology professionals
for delivering the software applications. Due to its recent emergence, there
are relatively little research done, at least when compared to the other
software process models, on DevOps and its successful usage. Previously,
some empirical research studies have been conducted on the success fac-
tors of DevOps, but a synthesis of these findings is needed. This paper
aims to find out various critical success factors of DevOps projects that
have been discussed in prior research by following a systematic literature
review. Based on our extensive keyword search and after applying inclu-
sion/exclusion criteria, we have included 38 research articles in this paper.
The identified critical success factors were categorized into technical, orga-
nizational, and social and cultural dimensions. Finally, this study offers a
comprehensive framework depicting how the critical success factors impact
or drive DevOps success.

666 N. Azad

SRQ2: What are the critical success factors of DevOps projects as reported by the
professionals? Understanding DevOps critical success factors and organizational
practices (IWSIB 2022).

DevOps is a combination of practices and a company culture that aims to
minimize the barriers between the operation and development teams in the
organization. As its adoption and use in the industry have been growing,
different kinds of research are trying to explore DevOps practices, processes
and implementations in organizations. Most of the extant research con-
ducted in the past was to investigate how DevOps worked, what impacts
it made on the organizations and how the adoption of DevOps played a
role in the overall success for companies. This paper presents a qualitative
analysis of a dataset collected via an open-ended survey from 15 software
professionals who are experienced in DevOps. The focus of the study is
on reporting DevOps practices in organizations, and how they impact the
success of DevOps. We discuss the DevOps professionals’ point-of-view on
DevOps practices and align their thoughts through a DevOps model of the
critical success factors.

SRQ3: What are the perceived challenges of DevOps projects for profession-
als?How to mitigate the challenges and risks for DevOps? DevOps challenges
in organizations: Through professional lens (ICSOB 2022).

While the success factors of DevOps adoption have been studied in the
extant literature, also the perceived challenges that a company faces dur-
ing the adoption are crucial to discover. This paper explores and highlights
these challenges through an open- ended survey (N=15) and in-depth inter-
views with DevOps professionals (N=16). According to the findings, there
are various challenges while implementing DevOps in organizations. The
research suggests that (i) lack of team coordination, (ii) risky change and
development, (iii) team members expertise level, (iv) lack of focus or dif-
ferences in development, (v) test and production environment, (vi) poorly
defined functional and technical requirements, (vii) poor integration and
test process, (viii) pipeline execution problems, (ix) tools integration chal-
lenges, (x) people challenges and silo-ed thinking, (xi) debugging challenges
due to remote execution, (xii) feature release challenges, (xiii) integrating
new standards, (xiv) challenges with clients, (xv) knowledge sharing, (xvi)
responsibility distribution issues are the challenges while using DevOps.
The found list of perceived challenges will help future research to suggest
mitigation and risk management strategies for successful use of DevOps.

4 Conclusion

Our research focus is to understand DevOps critical success factors. To under-
stand DevOps current state, we have conducted a systematic literature review,
which has given us an overview of a current research work, findings and gaps

Eveloping a Critical Success Factor Model for DevOps 667

that need to be addressed. we have designed a semi- structured questionnaire to
conduct interviews with IT professionals from various companies which helped
us to validate the success factors we have found in the literature review. We
have conducted interviews with DevOps professionals and got insightful infor-
mation regarding DevOps operations, success factors, DevOps challenges, and
risks. Next, we will develop a questionnaire for conducting an online survey
with different constructs we have found from our study. Thus, we will test the
hypothesis of our proposed model for DevOps success factors for (Fig. 1).

Acknowledgements. The dissertation work is supervised by Sami Hyrynsalmi from
LUT University.

References

1. Azad, N., Hyrynsalmi, S.: What are critical success factors of devops projects? a
systematic literature review. In: Wang, X., Martini, A., Nguyen-Duc, A., Stray, V.
(eds.) ICSOB 2021. LNBIP, vol. 434, pp. 221–237. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-91983-2 17

2. Bullen, C.V., Rockart, J.F.: A primer on critical success factors. Working papers
1220–81. Report (Alfred P. Sloan School of Management. Center for Information
Systems Research); no. 69, Massachusetts Institute of Technology (MIT), Sloan
School of Management (1981), https://econpapers.repec.org/paper/mitsloanp/
1988.htm

3. Colomo-Palacios, R., Fernandes, E., Soto-Acosta, P., Larrucea, X.: A case analysis
of enabling continuous software deployment through knowledge management. Int.
J. Inf. Manage. 40, 186–189 (2018)

4. Dickinson, R.A., Ferguson, C.R., Sircar, S.: Critical success factors and small busi-
ness. Am/ J. Small Bus. 8(3), 49–57 (1984)

5. Erich, F.M., Amrit, C., Daneva, M.: A qualitative study of devops usage in practice.
J. Softw. Evolut. Proc. 29(6), e1885 (2017)

6. Gable, G.G.: Integrating case study and survey research methods: an example in
information systems. Eur. J. Inf. Syst. 3(2), 112–126 (1994)

7. Garousi, V., Felderer, M., Mäntylä, M.V.: The need for multivocal literature
reviews in software engineering: complementing systematic literature reviews with
grey literature. In: Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering, pp. 1–6 (2016)

8. Järvinen, J., Huomo, T., Mikkonen, T., Tyrväinen, P.: From agile software devel-
opment to mercury business. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014.
LNBIP, vol. 182, pp. 58–71. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-08738-2 5

9. Krawatzeck, R., Dinter, B.: Agile business intelligence: Collection and classification
of agile business intelligence actions by means of a catalog and a selection guide.
Inf. Syst. Manag. 32(3), 177–191 (2015)

10. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case. J. Syst.
Softw. 82(9), 1479–1490 (2009)

11. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

https://doi.org/10.1007/978-3-030-91983-2_17
https://doi.org/10.1007/978-3-030-91983-2_17
https://econpapers.repec.org/paper/mitsloanp/1988.htm
https://econpapers.repec.org/paper/mitsloanp/1988.htm
https://doi.org/10.1007/978-3-319-08738-2_5
https://doi.org/10.1007/978-3-319-08738-2_5

668 N. Azad

12. Sacks, M.: Devops principles for successful web sites. In: Pro Website Development
and Operations, pp. 1–14. Springer (2012). https://doi.org/10.1007/978-1-4302-
3970-3 1

13. Sebastian, I.M., Ross, J.W., Beath, C., Mocker, M., Moloney, K.G., Fonstad, N.O.:
How big old companies navigate digital transformation. In: Strategic Information
Management, pp. 133–150. Routledge (2020)

https://doi.org/10.1007/978-1-4302-3970-3_1
https://doi.org/10.1007/978-1-4302-3970-3_1

Strategic ICT Procurement in Finland:
Tensions and Opportunities

Reetta-Kaisa Ghezzi(B)

University of Jyväskylä, Jyväskylä, Finland
reetta.k.ghezzi@jyu.fi

Abstract. This research proposal targets public sector ICT practices.
The goal is to explore in-depth the causes of issues in public ICT. Fur-
thermore, the goal is to fill research gaps in public agency and supplier
interrelationships, EA practices, and intended public sector technological
solutions. The proposed research binds these areas to establish a coherent
framework for how ICT should be built and led in public agencies.

Keywords: Public procurement · Enterprise architecture ·
Sustainable software · Interoperability

1 Introduction

Half of the ICT projects fail in Finland [5]. Globally the ICT project failure rate
varies from 70–90%. Meanwhile, ICT procurement, including services, software,
and hardware, is the largest Finnish state procurement category, worth 1,07
billion euros in 2021 [7]. For Finnish municipalities, the same number is 1,14
billion euros [7]. In European Union ICT procurement was worth of 3.8% of
total GDP in 2019 [6].

The previous research reveals ICT procurement issues such as ICT projects
exceeding original budgets and schedules; systems collapse before launch, project
resources being under-evaluated [10], requirements are inadequate and ambigu-
ous [10], and strict parameters set by laws and directives hinder the effective-
ness in ICT procurement [14]. However, the causes behind the issues above do
not receive attention in previous research. Therefore, one research gap is in the
ICT procurement preparation practices and how the inadequate and ambiguous
requirements repeatedly pass to the tender phase.

Furthermore, the previous research reveals that in agencies that do not have
controlled project management practices, the IT department may find out about
ICT procurement after it has been tendered [8]. Naturally, this causes issues in
establishing coherent enterprise architecture (EA). In many cases, the technical
interoperability with existing EA has not been in ICT procurement criteria in
the tender phase, and the problems yield to the post tender phase [8]. The issue
of non-existent interoperability is demanding to fix afterward [8]. The research
gap in building a coherent EA exists in missing connections between public sector
practices to purchase software solutions to the existing EA.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 669–674, 2022.
https://doi.org/10.1007/978-3-031-21388-5_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_54&domain=pdf
http://orcid.org/0000-0001-6897-4002
https://doi.org/10.1007/978-3-031-21388-5_54

670 R.-K. Ghezzi

Furthermore, combining perspective with public agency and supplier rela-
tionship is missing from the literature but is altogether vital to understand the
ICT procurement landscape. The assumption is that vendors and public agencies
may have differing views about the needs.

Therefore, this research agenda paper describes the interconnections of ICT
procurement, public EA, and supplier relationships. First, the literature back-
ground and motivation for the topic are presented. Second, the research questions
and methods are described. Finally, the research agenda is discussed, and final
thoughts are presented in conclusions.

2 Background and Motivation

Enterprise Architecture Adoption in Public Sector. For Finland, a certain level of
national EA is mandatory, and recommendation JHS179 [13] describes the EA
needs in detail. JHS179 has roots in the Open Group Architecture (TOGAF).
The problem is that even if TOGAF is well recognized and widely used [4], it
has not been adopted thoroughly. Furthermore, TOGAF’s practical implications
remain unknown because it lacks research, and the situation is similar to JHS179.
Bradley et al. [2] prove that EA maturity influences IT resource efficiency when
pursuing strategic goals. Finding relies on the considerations where IT planning
involves business planning and vice versa, which results in IT decisions becoming
more centralized [3,19]. Therefore, EA maturity mapping seems an important
topic to cover to understand how EA is established in Finnish public agencies
and how a more holistic EA could be formed in the public sector. Furthermore,
the acquisition practices miss researched.

Problems in ICT Procurement. Many issues in ICT procurement emerge from
under-evaluated project resources, which introduce bottlenecks and prolong the
project [10]. Tendering is a critical phase and a vital issue in ICT procurement
[12]. Inadequate and ambiguous requirement-set analysis for tender requirements
cause exceeding in budget and schedule [10].

Suppliers in ICT Procurement. The cooperation between public agency and ven-
dors aim to build a coherent view of the market, inform the market about the
upcoming procurement, and communicate the requirements for participating
vendors [12]. Cooperation is vital to plan and execute the procurement in a
way that does not violate the nondiscrimination and transparency principles [1].
The previous literature does not offer the perspective that combines and exam-
ines the interrelationship between public agencies and vendors. Therefore, the
interrelationship must be researched and evaluated thoroughly, as it might reveal
the causes behind the recognized issues in ICT procurement.

In addition, public agencies can buy in-house without setting the purchase to
tendering, which is a significant but allowed derogation to the Public Procure-
ment Act [18]. In-house procurement divides opinions, and it has its opponents
and proponents. Proponent arguments are that in-house procurement aids in

Strategic ICT Procurement in Finland: Tensions and Opportunities 671

controlling and regulating services, it is cheaper to provide services through it,
and it is a legislated method to be used in purchases [9]. In opposing arguments,
the view is that in-house procurement breaches competition rules by eliminat-
ing private undertakings, especially in IT services, it may hinder the adoption
of innovative solutions, and the solutions are more expensive than solutions
acquired from the market [9].

Technological Point of View. The final piece to cover is the technical point of
view. Outside the IT domain, public agency stakeholder groups fail to adopt
EA artifacts in practice [17,20]. Public sector software sustainability issues can
be overcome with EA, where different services and vendors can quickly deploy
and integrate into the ecosystem environment [21]. Nurmi et al. [17] reveal that
ecosystem thinking in EA software is missing and needed. An ecosystem, where
every piece gives something, may be achieved with services that interact via
well-defined APIs but with no direct access to other services [21]. However,
the previous literature does not explore how the technological requirements are
established holistically, and whether ecosystem-like EA is required in ICT pro-
curement.

To summarize, the holistic approach to composing interoperable technology
has been suggested in the literature. However, the practice contribution is miss-
ing, revealing a research gap.

3 Research Approach

The research approach is a combination of qualitative and quantitative research
methods. The goal is to publish research articles on ICT procurement practices
in Finnish public agencies. Semi-structured interviews, case studies, and surveys
are the research methods to answer the research questions and create a public
ICT management model for the practice.

3.1 Research Questions

The research question (RQ) is how to build sustainable and efficient public ICT?
The RQ will be examined through three sub-research questions in all of the
research articles:

– RQ1: What are the recognized problems in practice?
– RQ2: What are the causes of the problems?
– RQ3: What changes are needed to develop the practices?

3.2 Research Methods

Methods to Examine RQ1. Semi-structured interviews are the best way to
address the research gap, why inadequate requirements repeatedly pass to the
tender phase and do the existing EA belongs in the selection criteria in new

672 R.-K. Ghezzi

ICT procurement. Semi-structured interviews, with open-ended questions and
rein for free speech, combining structured and non-structured interview meth-
ods [15]. Semi-structured interviews offer narrowed focus with pre-formulated
questions and the possibility to discuss important topics in detail [15]. The par-
ticipants receive questions on ICT procurement, the existing EA procedures,
and ICT composition in the organization. In the interview situation, the topics
are discussed in detail to understand the problems’ magnitudes and the causes
(RQ2) behind them.

Methods to Examine RQ2. The purpose of case studies is to collect empirical
evidence from real people in real organizations to contribute to knowledge gen-
eration [15]. The goal is to increase the applicability of the results and to make
conclusions about the phenomenon at the general level as well [15]. In detail, the
case study type in this research is critical to evaluate the current practices [15].

The goal of the in-house procurement case study is to examine the interre-
lations between in-house companies and public agencies and whether in-house
procurement is problematic or not and to reveal how significantly the public
sector relies on in-house procurement. In this research, the focus groups are to
largest cities and in-house vendors in Finland, and the data is gathered from the
purchase invoice data.

In vendor relationships, the case study is a method to understand the ven-
dor intentions in public procurement and whether they differ from what public
agencies wish to receive. Therefore, public agency and vendor interrelationship
is examined through semi-structured interviews as a part of the case study and
through documents from the public agencies, procurement units, or vendors. In
Finland, small, medium, and large-sized ICT vendors participate in ICT pro-
curement, and therefore, the focus group is determined accordingly.

The survey examines public agencies’ software requirements to research tech-
nological points of view. The survey is an excellent way to reach a large number
of participants, has standardized questions, and is ideal for examining ideas and
attitudes [16]. In the survey, the wanted technological solutions are explored in
the same focus groups as in previous research; Finnish public agencies such as
municipalities, cities, welfare organizations, and administrations; most promi-
nent ICT in-house vendors; and ICT vendors who participate in tendering. The
intention is to discover the opinions on how public ICT should be composed and
with what technologies.

Methods to Examine RQ3. Drawing results from the abovementioned research,
design science research (DSR) is drafted to propose a solution to the practice.
DSR is a suitable method to create new solutions and knowledge and to establish
working solutions to real-world problems [11]. Hopefully, the examinations of
ICT procurement practices, EA practices, habits to define needed technologies,
and ICT management practices reveal the points for improvement. In DSR,
one way to create a working solution is to propose a methodology to achieve
the wanted result [11]. The problems seem recognized in Finnish public ICT

Strategic ICT Procurement in Finland: Tensions and Opportunities 673

practices, but a further understanding of how to improve practices is missing, at
least in the literature.

4 Discussion

The research question for this research agenda paper is how to build sustainable
and efficient public ICT?. Problems and causes in ICT procurement and EA
practices are evaluated through semi-structured interviews and case studies to
examine RQ1 and RQ2. The case studies suit the best to understand the inter-
relationship between public agencies and suppliers. Furthermore, to examine the
different needs and intentions technology-wise, which might cause issues in ICT
procurement, the survey is used as a research method to receive comparable and
standardized results from all focus groups [16].

Finally, to answer RQ3, the design science research is drafted to create a
working solution to real-world problems [11]. The research agenda is planned to
build a holistic view of the Finnish public ICT practices, especially acquisition
practices. However, the guidelines on what to do and what not to do are miss-
ing. Therefore, drafting strategic ICT methods for public agencies seems helpful
in practice and theory. The goal is to comprehensively explore ICT practices
in the public sector - how knowledge management, project management, pub-
lic EA with interoperability perspective, ICT supplier management, and ICT
procurement practices bind together. These interrelations and missing of them
might reveal the fundamental causes why public sector ICT projects often fail.
The purpose of the discussed research is to offer to understand methods for the
practice and propose how to manage ICT effectively in the public sector. The
theoretical implication is to understand the fundamental causes of public ICT
issues.

5 Conclusions

This research proposal targets public sector ICT practices. The goal is to explore
in-depth, what are the causes of issues in public ICT. Furthermore, the goal is to
fill research gaps in public agency and supplier interrelationships, EA practices,
and intended public sector technological solutions. Furthermore, the goal is to

674 R.-K. Ghezzi

offer tools to enhance ICT purchasing processes and suggest more effective col-
laboration practices to enhance the use of resources in society to aid innovation
in public sector ICT solutions.

References

1. Directive 2014/24/eu of the European parliament and of the council of 26 february
2014 on public procurement and repealing directive 2004/18/ec (2014)

2. Bradley, R.V., Pratt, R.M.E., Byrd, T.A., Outlay, C.N., Wynn, D.E.: Enterprise
architecture, it effectiveness and the mediating role of it alignment in us hospitals.
Inf. Syst. J. 22(2), 97–127 (2012)

3. Bradley, R.V., Pratt, R.M.E., Byrd, T.A., Simmons, L.L.: The role of enterprise
architecture in the quest for it value. MIS Q. Executive 10(2), 73–80 (2011)

4. Cameron, B.H., McMillan, E.: Analyzing the current trends in enterprise architec-
ture frameworks. J. Enterprise Archit., 60–71 (2013)

5. Tietojärjestelmien hankinta suomessa (2013)
6. ICT sector - value added, employment and R&D (2022)
7. Explore public spending (2022)
8. Ghezzi, R.-K.: State of public ICT procurement in Finland (2022)
9. Hartung, W., Kuźma, K.: In-house procurement - how it is implemented and

applied in Poland. Euro. Procurement Public Private Partnership Law Rev. 13(3),
171–183 (2018)

10. Nor Hayati, T., Maharoof, V.M., Burhanuddin, M.A.: Theoretical foundation in
analyzing gaps in information communication and technology (ICT) tender process
in public sector. J. Eng. Appl. Sci. 13(6), 407–1413 (2018)

11. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS, pp. 75–105 (2004)

12. Iloranta, K., Pajunen-Muhonen, H.: Overview of Enterprise Architecture work in
15 countries. Tietosanoma, Helsinki (2012)

13. Jhs 179 kokonaisarkkitehtuurin suunnittelu ja kehittäminen (2017)
14. Keränen, O.: Roles for developing public-private partnerships in centralized public

procurement. Industr. Market. Manag. 62, 199–210 (2017)
15. Myers, M.D.: Qualitative Research in Business and Management. SAGE Publica-

tions, London (2020)
16. Nardi, P.M.: Doing Survey Research: a Guide to Quantitative Methods, 4th edn.

Routledge, London (2018)
17. Nurmi, J., Penttinen, K., Seppänen, V.: Towards ecosystemic stance in finnish

public sector enterprise architecture. In: Pańkowska, M., Sandkuhl, K. (eds.) BIR
2019. LNBIP, vol. 365, pp. 89–103. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-31143-8_7

18. Act on public procurement and concession contracts (2016)
19. Ross, J.W., Weill, P., Robertson, D.C.: Enterprise Architecture As Strategy - Cre-

ating a Foundation for Business Execution. Harvard Business School Publishing,
Boston (2006)

20. Seppänen, V., Penttinen, K., Pulkkinen, M.: Key issues in enterprise architecture
adoption in the public sector. Electron. J. E-gov. 16(1), 46–58 (2018)

21. Setälä, M., Abrahamsson, P., Mikkonen, T.: Elements of sustainability for pub-
lic sector software - mosaic enterprise architecture, macroservices, and low-code.
Lecture Notes in Business Information Processing, 434 LNBIP, 3–9 (2021)

https://doi.org/10.1007/978-3-030-31143-8_7
https://doi.org/10.1007/978-3-030-31143-8_7

Leverage Software Containers Adoption
by Decreasing Cyber Risks and Systemizing

Refactoring of Monolithic Applications

Maha Sroor(B)

University of Jyväskylä, Mattilanniemi 2, Jyvaskyla, Finland
maha.m.sroor@jyu.fi

Abstract. Containers are one of the deployment solutions that possess attention.
It is always compared to virtual machines (VM). Thus, there is a debate about its
capabilities. It supports software agility that helps satisfy users’ requirements and
shorten deployment time. Many works of literature have discussed the advantages
of containers and promoted their role in developing the software industry. How-
ever, the actual migration rate in the software market is not as expected compared
to the advantages.

This research highlights the barriers to adopting containers. Also, it digs in
depth into two main barriers to adoption, namely security risks and refactoring of
monolithic applications. It aims to study the impact of cyber risks on the applica-
tions’ performance. The risks will be studied from a narrow view focusing on shar-
ing resources and a broader view focusing on using malicious container images in
project performance. Moreover, it will investigate the requirements and practices
of refactoringmonolithic applications into a container-based format. This research
aims to address the container security risks and provide a systemized refactoring
model for monolithic applications. The research is qualitative. The empirical data
will be collected from primary studies, surveys, and interviews to explain the con-
tainer adoption barriers. Providing more understanding of the adoption barriers’
causes will help to avoid them, consequently increasing container adoption.

Keywords: Software containers · Security risks ·Monolithic applications

1 Related Work

Software applications are an essential element in the software industry. The demand
for the applications has increased [1], and requesting advancing features such as usabil-
ity, integration, simple installation, and robustness also increased [2]. The accelerating
demandmade applications complex, and the software development process became chal-
lenging. As a result, Software companies are trying to adopt agile development methods
to ensure accessibility, maintainability, and shorter deployment time [2, 3].

Solutions such as virtual machines (VMs) and containers support software develop-
ment. VMs are virtual platforms that run individual software applications [4]. VMs can
run an entire software environment, including theOS. It extensively utilizes the hardware

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Taibi et al. (Eds.): PROFES 2022, LNCS 13709, pp. 675–680, 2022.
https://doi.org/10.1007/978-3-031-21388-5_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21388-5_55&domain=pdf
http://orcid.org/0000-0001-6998-7358
https://doi.org/10.1007/978-3-031-21388-5_55

676 M. Sroor

[5]. In comparison, containers are a software development approach that virtualizes an
isolated software environment to run applications and their dependencies [6]. Containers
are copied into a container image, and users use the container image to update and make
changes to applications. Unlike VMs, containers do not run OS but instead, utilize the
hosting machine’s OS to elasticate resources [7].

Containers and VMs both virtualize an operating software environment but signif-
icantly differ in structure. Understanding the differences between both approaches can
be noticed in the different behavior with the hosting OS, performance, isolation, and
startup time [8]. Table 1 presents a comparison between containers and VMs.

Table 1. Comparison between VMs and containers

Containers VMs

Hosting OS Share OS and kernel, kernel load on
physical memory

Has its OS and kernel load on its
memory space

Performance Has the same as the production
machine

Has overheads before production

Isolation Share subdirectories with the host VM cannot share any files or
libraries

Startup time Few seconds Few minutes

The advantages of containers are not limited to the advantages mentioned before;
they are also flexible, portable, and lightweight [8]. The remarkable advantage of con-
tainers is that their structure supports multiple software development approaches, such
as modularity [9], component-based software (CBS) [10], and microservices [11]. All
these approaches provide autonomous services to satisfy user needs [12] and support
agile software development [13].

2 Research Problem

Containers are essential in managing software products and creating new business
avenues for vendors. Although they highly support agile software development, many
software companies are hesitant to adopt them. The reason is that containers have not
reached their maturity compared to VM; for example, containers have challenges with
complex networking [14], security issues [15], refactoring monolithic applications [16],
and a lack of management tools [17]. This research project will focus on the top signif-
icant challenges to increasing container adoption in the software development market:
security issues and monolithic applications [6].

Security risks are the primary barrier to container adoption. The containers’ threat
model has three main players: container, application, and hosting machine [15]. The
most critical element in the threat model is the container. Its architectural styles make it
the primary security threat because tens of containers can share the operating system and
the hosting machine’s physical resources. This makes containers more likely to transfer

Leverage Software Containers Adoption by Decreasing Cyber Risks 677

malicious threats to other containers on the same environment, the hosting machine, and
applications. Also, if containers are reused, malicious container images would affect
multiple projects [18].

There are few papers on the impact of reusing faulty or infected containers on the
hosting environment. Also, the impact of faulty and infected containers on the applica-
tion’s operation and performance is not yet explored. The importance of studying the
impact will be beneficial when developers start to run the application on production or
when injecting a new function into a running system. If the risk likelihood is not calcu-
lated accurately and no risk mitigation plan is ready for the high-impact threats, no one
will expect the system’s performance. The impact might be fatal that the system might
hold or even collapse.

Refactoring monolithic applications is another challenge for container adoption.
Monolithic applications are complex applications encompassing independent services.
They are hard to deploy, upgrade and maintain. Refactoring them into container-based-
format does require not only architectural changes but also environmental changes [16].

Most available literature about refactoring monolithic applications discussed the
phases before the refactoring process [16] and the deployment process [19]. The literature
does not address the requirements, limitations, and best practices for refactoring. The
importance of addressing the refactoring requirements, limitations, and practices is to
save cost and time. A preliminary analysis before the refactoring process will help
determine the refactoring decision’s effectiveness.

3 Research Objectives

This research project’s holistic goal is to increase container adoption in developing and
deploying software applications. The project aims to overcome two main challenges
facing container adoption namely cyber risks and refactoring monolithic applications.
The project plan is built on two main pillars. The first pillar is reducing cyber risks
to a minimum level. It could be achieved by investigating the cyber risks emerging
from container architectural style and using container images in multiple projects. After
that, connect the security risks to a suitable mitigation plan. The second pillar is to
facilitate the refactoring of monolithic applications into containers by systemizing the
process. It could be achieved by addressing the basic requirements and limitations of the
refactoring process and studying the best practices of the refactoring process. Beating
these two challenges will increase container adoption.

4 Research Questions

The research project is conducted in two phases. The theme of phase one is container
cyber risks, whichwill answer RQ1 “How can the architectural style for containers affect
software system security?” It will be split into the following three questions.

• RQ1.1: What are the barriers to adopting containers?
• RQ1.2: What role can software containers’ architectural styles play in the cyber
security of the software application?

678 M. Sroor

• RQ1.3: How can the reuse container affect the software system’s security?

The theme of phase two is refactoring the monolithic applications, which answers
RQ2 “How to achieve systemization to refactoring monolithic applications into the
container-based format?” It will be divided into the following two questions.

• RQ2.1: What are the main requirements to refactor the monolithic applications to
container-based applications?

• RQ2.2: what are the best practices to transfer monolithic applications tomicroservices
using containers?

5 Research Approach

This research project is qualitative in nature. As Sect. 4 “research questions” mentions,
the project will have two research phases. The first phase aims to answer RQ1. Currently,
empirical data is being collected for the first paper. It is a systematic literature review.
The paper’s primary goal is to overview the advantages of adopting containers and the
barriers that obstruct their adoption. It will focus on challenges related to cyber and data
security, like compliance with GDPR, EU data, and AI acts.

The second and third papers are complementary to the first paper to answer RQ1.
The second paper is qualitative research on the cyber risks emerging from the container
architectural style. The paper’s primary goal is to highlight the cyber threats resulting
from sharing the OS and the host machine’s physical resources. The third paper is a
survey on the cyber risks that stem from using malicious container images on projects.
The paper’s primary goal is to identify if malicious images would cause new security
threats and how they would impact the performance and operation of the system overall.
The empirical data will be collected from companies that adopted containers earlier and
have faced cyber risks that emerged from reusing containers.

The second phase aims to answer RQ2. It includes the fourth and fifth papers. The
fourth paper is a case study on the requirements and limitations for refactoringmonolithic
applications. Empirical data will be collected from companies on refactoring require-
ments in different stages (destructure, reliable base, configuration, logging, and injec-
tion). The fifth and last paper is a survey on the best practices for refactoring monolithic
applications. Itwill study the differences and similarities among the refactoring practices.
The empirical data will be collected from companies adopting containers in deploying
applications.

6 Research Timeline

The research work will be organized into three stages. The first stage is planned from
one and a half years to two years. The second stage is planned. It is planned from one
year to 15 months. The third stage is dissertation writing. It would last for a year. This
research started in August 2022, and the plan and the submission dates might be subject
to changes according to the early findings of the research and the availability of the
empirical data. Table 2 presents a summary of the research status.

Leverage Software Containers Adoption by Decreasing Cyber Risks 679

Table 2. Summary of the research status.

Methodology Submission date

Paper 1 SLR June 2023

Paper 2 Qualitative research March 2024

Paper 3 Survey September 2024

Paper 4 Case study March 2025

Paper 5 Survey September 2025

7 Research Contribution

This research aims to create a new vision for software container utility outside the
generic cloud environment. This research will help software engineering researchers to
develop their knowledge of the containers’ cyber risks that were not explored before
in the literature. Also, it will help practitioners to minimize the cyber risk levels and
develop more effective risk mitigation plans to protect software applications. Moreover,
it will shorten the deployment time for refactoring monolithic applications by following
a refactoring model that provides a preliminary analysis of the validity of refactoring.

References

1. Donca, I.-C., Stan, O.P., Misaros, M., Gota, D., Miclea, L.: Method for continuous integration
and deployment using a pipeline generator for agile software projects. Sensors 22, 4637
(2022). https://doi.org/10.3390/s22124637

2. Crnkovic, I.: Component-based software engineering — new challenges in software devel-
opment. Softw. Focus 2, 127–133 (2001). https://doi.org/10.1002/swf.45

3. Reifer, D.J.: How good are agile methods? IEEE Softw. 19, 16–18 (2002). https://doi.org/10.
1109/MS.2002.1020280

4. Smith, J.E., Nair, R.: The architecture of virtualmachines. Computer 38, 32–38 (2005). https://
doi.org/10.1109/MC.2005.173

5. Zhang, Q., Liu, L., Pu, C., Dou, Q., Wu, L., Zhou, W.: A Comparative Study of Containers
and Virtual Machines in Big Data Environment. In: 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD). pp. 178–185 (2018). https://doi.org/10.1109/CLOUD.2018.
00030

6. Koskinen, M., Mikkonen, T., Abrahamsson, P.: Containers in software development: a sys-
tematic mapping study. In: Franch, X., Männistö, T., Martínez-Fernández, S. (eds.) PROFES
2019. LNCS, vol. 11915, pp. 176–191. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-35333-9_13

7. Hoenisch, P., Weber, I., Schulte, S., Zhu, L., Fekete, A.: Four-fold auto-scaling on a contem-
porary deployment platform using Docker containers. In: Barros, A., Grigori, D., Narendra,
N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 316–323. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48616-0_20

8. Dua, R., Raja, A.R., Kakadia, D.: Virtualization vs containerization to support PaaS. In: 2014
IEEE International Conference on Cloud Engineering. pp. 610–614 (2014). https://doi.org/
10.1109/IC2E.2014.41

https://doi.org/10.3390/s22124637
https://doi.org/10.1002/swf.45
https://doi.org/10.1109/MS.2002.1020280
https://doi.org/10.1109/MC.2005.173
https://doi.org/10.1109/CLOUD.2018.00030
https://doi.org/10.1007/978-3-030-35333-9_13
https://doi.org/10.1007/978-3-662-48616-0_20
https://doi.org/10.1109/IC2E.2014.41

680 M. Sroor

9. Woodfield, S.N., Dunsmore, H.E., Shen, V.Y.: The effect of modularization and comments
on program comprehension. In: Proceedings of the 5th International Conference on Software
Engineering, pp. 215–223. IEEE Press, San Diego (1981)

10. Crnković, I.: Component-based software engineering - new challenges in software devel-
opment. J. Comput. Inf. Technol. 11, 151–161 (2003). https://doi.org/10.2498/cit.2003.
03.02

11. Amaral, M., Polo, J., Carrera, D., Mohomed, I., Unuvar, M., Steinder, M.: Performance
evaluation of microservices architectures using containers. In: 2015 IEEE 14th International
Symposium on Network Computing and Applications, pp. 27–34 (2015). https://doi.org/10.
1109/NCA.2015.49

12. Jaramillo, D., Nguyen, D.V., Smart, R.: Leveraging microservices architecture by using
Docker technology. In: SoutheastCon 2016, pp. 1–5 (2016). https://doi.org/10.1109/SECON.
2016.7506647

13. Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility and reli-
ability in E-Commerce. In: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pp. 243–246 (2017). https://doi.org/10.1109/ICSAW.2017.11

14. Watada, J., Roy, A., Kadikar, R., Pham, H., Xu, B.: Emerging trends, techniques and open
issues of containerization: a review. IEEE Access. 7, 152443–152472 (2019). https://doi.org/
10.1109/ACCESS.2019.2945930

15. Sultan, S., Ahmad, I., Dimitriou, T.: Container security: issues, challenges, and the road
Ahead. IEEE Access. 7, 52976–52996 (2019). https://doi.org/10.1109/ACCESS.2019.291
1732

16. Auer, F., Lenarduzzi, V., Felderer, M., Taibi, D.: From monolithic systems to Microservices:
An assessment framework. Inf. Softw. Technol. 137, 106600 (2021). https://doi.org/10.1016/
j.infsof.2021.106600

17. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-of-the-art
review. IEEE Trans. Cloud Comput. 7, 677–692 (2019). https://doi.org/10.1109/TCC.2017.
2702586

18. Shu, R., Gu, X., Enck, W.: A study of security vulnerabilities on Docker Hub. In: Proceedings
of the Seventh ACM on Conference on Data and Application Security and Privacy, pp. 269–
280. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/302
9806.3029832

19. Kuryazov, D., Jabborov, D., Khujamuratov, B.: Towards decomposing monolithic applica-
tions into microservices. In: 2020 IEEE 14th International Conference on Application of
Information and Communication Technologies (AICT), pp. 1–4 (2020). https://doi.org/10.
1109/AICT50176.2020.9368571

https://doi.org/10.2498/cit.2003.03.02
https://doi.org/10.1109/NCA.2015.49
https://doi.org/10.1109/SECON.2016.7506647
https://doi.org/10.1109/ICSAW.2017.11
https://doi.org/10.1109/ACCESS.2019.2945930
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1145/3029806.3029832
https://doi.org/10.1109/AICT50176.2020.9368571

Author Index

Aamo, Hedda Wasskog 252
Agbese, Mamia 656
Akbar, Muhammad Azeem 243, 563
Ali, Nauman bin 497
Al-Sabbagh, Khaled Walid 480
Aman, Hirohisa 433
Amasaki, Sousuke 433
Amoroso d’Aragona, Dario 638
Ampatzoglou, Apostolos 265
Ardimento, Pasquale 610
Athanasopoulos, Dionysis 21
Autto, Teemu 621
Azad, Nasreen 662

Batsaikhan, Odzaya 73
Bekke, Scott Aleksander 252
Bernardi, Mario Luca 581
Böstler, Jürgen 497

Cabot, Jordi 53
Cabrera-Vives, Guillermo 21
Chatzigeorgiou, Alexander 265
Chehreghani, Morteza Haghir 464
Cimitile, Marta 581
Clarisó, Robert 53
Conte, Rosa 592
Convertini, Vito Nicola 592
Cruzes, Daniela Soares 157

Cutting, David 282
Das, Teerath 603, 621
Duque-Torres, Alejandra 418

Elo, Jenny 366
Engels, Gregor 235, 334
Engström, Emelie 497

Fagerholm, Fabian 141
Felderer, Michael 37
Filippo, Cenacchi 390
Förster, Francisco 21

Gattringer, Marko 37
Ghezzi, Reetta-Kaisa 669
Gonzalez-Huerta, Javier 298
Gottschalk, Sebastian 334
Greer, Des 282
Gudin, Mickael 538

Hagaseth, Ada Olsdatter 252
Halme, Erika 553, 631
Han, Mengjie 525
Hannay, Jo Erskine 217
Hanssen, Geir Kjetil 252
Haskouri, Nassiba El 73
Hebig, Regina 480
Heldal, Rogardt 124
Heng, Samedi 518
Herbaut, Nicolas 538
Higo, Yoshiki 61, 531
Holm, Henrik 108
Holte, Malin 252
Hussain, Kashif 243
Hyrynsalmi, Sami 181

Iammarino, Martina 581
Iovan, Monica 157
Iriyama, Masashi 61
Iwase, Takumi 544

Järvinen, Hannu-Matti 401
Järvinen, Viljami 621

Keenan, Daniel 282
Kemell, Kai-Kristian 553
Khan, Arif Ali 563
Khan, Rafiq Ahmad 243
Kirinuki, Hiroyuki 531
Klünder, Jil 108
Knauss, Alessia 73
Knauss, Eric 73, 124
Koski, Aapo 3
Kotilainen, Pyry 621
Kristensen, Lars Michael 124

682 Author Index

Kurabayashi, Toshiyuki 531
Kusumoto, Shinji 61, 511, 531, 544

Laiq, Muhammad 497
Lang, Dominic 319, 382
Lehtelä, Bettina 141
Leitner, Philipp 464
Lerina, Aversano 581
Li, Zheng 21
Lima, Keila 124
Lin, Yi-Chun 73
Ljung, Kevin 298
Longa, Antonio 464
Lopez, Ugo 592
Lumivalo, Juuli 366

Mäntylä, Vihtori 141
Markkula, Jouni 201
Matsumoto, Shinsuke 511, 531, 544
Mehmood, Muhammad Daniyal 603
Moe, Nils Brede 252
Mohamad, Mazen 464
Morales, Sergio 53
Moreschini, Sergio 650
Moroz, Bogdan 181
Muhammad, Amna Pir 73
Mulkahainen, Markus 401
Münch, Jürgen 319, 382

Nguyen, Ngoc-Thanh 124
Nikolaidis, Nikolaos 265
Niva, Anu 201
Noor, Anam 603
Nyberg, Roger G 525
Nydal, Kristina 252

Obaidi, Martin 108
Oyetoyan, Tosin Daniel 124

Parvez, Sarmad 334
Paulsson, Amalia 449
Pechlivanidis, Kouros 351
Pekkala, Kaisa 366
Pelliccione, Patrizio 124
Petrik, Dimitri 382
Pfahl, Dietmar 90, 418
Piperidis, Avraam 265
Pirlo, Giuseppe 592

Rafi, Saima 243, 563
Rafiq, Usman 390
Rahkema, Kristiina 90
Rainer, Austen 21
Ramler, Rudolf 37
Riaz, Muhammad Tanveer 243
Rodríguez-Mancini, Diego 21
Ros, Rasmus 449
Runeson, Per 171, 449
Rybarczyk, Yves 525

Salin, Hannes 525
Salo, Markus 366
Saltan, Andrey 181
Samoaa, Hazem Peter 464
Sandbæk, Jenny Nøkleberg 252
Schneider, Kurt 108
Serra, Antonella 592
Shahriari, Mostafa 37
Smite, Darja 252
Sroor, Maha 675
Staron, Miroslaw 480
Steidl, Monika 37
Suominen, Sari 644
Systä, Kari 401

Takaichi, Riku 531
Takeshige, Hiroki 511
Tanilkan, Sinan Sigurd 217
Tanno, Haruto 531
Tarkkanen, Juho 621
Taromirad, Masoumeh 171
Tkalich, Anastasiia 252
Trieflinger, Stefan 319, 382
Tsekeridou, Sofia 265
Tsilionis, Konstantinos 518
Tuunanen, Tuure 366

Vakkuri, Ville 553

Wagenaar, Gerard 351
Wang, Xiaofeng 390
Wautelet, Yves 518
Wolters, Dennis 235

Yigitbas, Enes 334
Yokogawa, Tomoyuki 433

	 Preface
	 Organization
	 Contents
	Keynote
	The End-Users of Software Systems Deserve Better
	1 Introduction
	2 The Paradox
	3 The Easy Things: What We are Good at
	4 The Hard Things: What We Should and Can Do Better
	4.1 Defining the Need and Requirements
	4.2 Design and Implementation
	4.3 Validation and Verification
	4.4 Performance, Reliability and Security
	4.5 Collaboration and Customer Care

	5 Possible Reasons Behind the Difficulties
	5.1 Primary Reason 1: Software Industry is Young
	5.2 Primary Reason 2: Software is Complex
	5.3 Primary Reason 3: We Are Optimists
	5.4 Primary Reason 4: The Wrong People are Doing This
	5.5 Primary Reason 5: We Do Not Understand the External Factors
	5.6 Primary Reason 6: Lack of User Input
	5.7 Primary Reason 7: Customers Cannot Tell Us What They Need

	6 Servitization as a Solution
	6.1 Enabling Agility
	6.2 Enabling Acceleration
	6.3 Enabling Prioritization
	6.4 Enabling Testability
	6.5 Making Availability Concrete
	6.6 Uncovering Security
	6.7 Enabling Continuous Delivery
	6.8 Enabling Customer Care
	6.9 Enabling Continuous Improvement and Learning
	6.10 Enabling Trust

	7 Conclusions
	References

	Cloud and AI
	Managing the Root Causes of ``Internal API Hell'': An Experience Report
	1 Introduction
	2 Background and Related Work
	3 The ALeRCE Project
	4 ALeRCE's APIs and the ``Internal API Hell'' Phenomenon
	5 The Typical Issues and How We Address Them
	5.1 Solution to Issue #1: Using a Multi-view Catalog to Help Discover Suitable APIs
	5.2 Solution to Issue #2: Using a Publish-Subscribe Channel to Assist API Versioning Management and Negotiation
	5.3 Solution to Issue #3: Using Example-Driven Delivery to Improve the Quality of API Adoption
	5.4 Solution to Issue #4: Using Operation Serialisation to Facilitate API Deployment Debugging and Migration
	5.5 Solution to Issue #5: Using a Graphical User Interface to Facilitate Path and Parameter Assembly for API Instantiation

	6 Threats to Validity
	7 Conclusions and Future Work
	References

	Requirements for Anomaly Detection Techniques for Microservices
	1 Introduction
	1.1 Related Work

	2 Methodology
	2.1 Methods
	2.2 Selected Anomaly Detection Techniques

	3 Experienced Anomalies in a Software Company
	3.1 Anomalies in Software Company

	4 Collect Monitoring Data with Benchmark System
	4.1 Anomalies Extracted from Benchmark System

	5 Requirements for Anomaly Detection Techniques
	6 Evaluation of Anomaly Detection Techniques
	7 Threats to Validity
	8 Conclusion
	References

	Towards a DSL for AI Engineering Process Modeling
	1 Introduction
	2 Background
	3 DSL Design
	3.1 Activity Core Elements
	3.2 Data Activity
	3.3 AI Modeling Activity
	3.4 AI Model Deployment Activity

	4 Tool Support
	5 Related Work
	6 Conclusions and Future Work
	References

	Classification of Changes Based on API
	1 Introduction
	2 Preliminaries
	2.1 Catalog of API Changes
	2.2 APIDiff

	3 Proposed Technique
	3.1 Detection API Refactorings
	3.2 Detecting and Classifying API Changes

	4 Experiment
	4.1 Target Projects
	4.2 The Number of Detected API Changes
	4.3 The Precision of Classifying API Changes
	4.4 Execution Time

	5 Discussion
	6 Threats to Validity
	7 Related Works
	8 Conclusions and Future Work
	References

	Empirical Studies
	Defining Requirements Strategies in Agile: A Design Science Research Study
	1 Introduction
	2 Related Work
	3 Design Science Research Method
	4 Findings
	4.1 RQ1: Which Challenges Arise from an Undefined Requirements strategy?
	4.2 RQ2: How Do Companies Aim to Address These Challenges?
	4.3 RQ3: Which Potential Building Blocks Should Be Considered for Defining a Requirements Strategy?

	5 Artifact: Guidelines for Defining a Requirements Strategy
	6 Discussion and Conclusion
	References

	Analysing the Relationship Between Dependency Definition and Updating Practice When Using Third-Party Libraries
	1 Introduction
	2 Related Work
	2.1 Analysis of Dependency Updates
	2.2 Vulnerable Library Dependencies
	2.3 Library Version Requirements

	3 Background
	3.1 Dataset
	3.2 Package Managers
	3.3 Dependency Version Requirement Types
	3.4 Dependency Updating Lag

	4 Method
	4.1 Research Questions
	4.2 RQ1: Dependency Updating Lag
	4.3 RQ2: Version Requirement vs Dependency Updating Lag
	4.4 RQ3: Version Resolution Effect on Version Updating
	4.5 RQ4: Dependency Updating Lag Effect on Vulnerability

	5 Results and Discussion
	5.1 RQ1: Dependency Updating Lag
	5.2 RQ2: Version Requirement vs Dependency Updating Lag
	5.3 RQ3: Version Resolution Effect on Version Updating
	5.4 RQ4: Dependency Updating Lag Effect on Vulnerability

	6 Threats to Validity
	7 Conclusion
	References

	On the Limitations of Combining Sentiment Analysis Tools in a Cross-Platform Setting
	1 Introduction
	2 Background and Related Work
	2.1 Sentiment Analysis
	2.2 Voting Classifier
	2.3 SE Data Sets for Sentiment Analysis

	3 Study Design
	3.1 Research Questions
	3.2 Selection of Sentiment Analysis Tools
	3.3 Data Sets
	3.4 Training
	3.5 Evaluation Metrics
	3.6 Interrater Agreement
	3.7 Combination of the Tools

	4 Results
	4.1 Within-Domain Classification
	4.2 Cross-Platform Domains
	4.3 Comparison of Results from RQ1 and RQ2

	5 Discussion
	5.1 Answering the Research Questions
	5.2 Interpretation
	5.3 Threats to Validity
	5.4 Future Work

	6 Conclusion
	References

	Marine Data Sharing: Challenges, Technology Drivers and Quality Attributes
	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Results
	4.1 RQ1: Challenges in Marine Data Sharing
	4.2 RQ2: Implications of Adopting Data Ecosystems
	4.3 RQ3: Factors for Marine Data Ecosystem Adoption

	5 Discussion
	6 Conclusion and Future Work
	References

	The Viability of Continuous Experimentation in Early-Stage Software Startups
	1 Introduction
	2 Background
	2.1 Scientific and Online Controlled Experiments
	2.2 Implementing Continuous Experimentation
	2.3 Software Startups and Experimentation

	3 Research Method
	3.1 Case Companies
	3.2 Data Collection
	3.3 Data Analysis

	4 Results
	4.1 Case Company Descriptions
	4.2 Cross-Case Analysis

	5 Discussion
	5.1 CE and Software Development Methods (RQ1)
	5.2 Use of Data (RQ2)
	5.3 The Appeal of Continuous Experimentation (RQ3)
	5.4 Implications for Practice
	5.5 Limitations

	6 Conclusions
	References

	Data-Driven Improvement of Static Application Security Testing Service: An Experience Report in Visma
	1 Introduction
	2 Background
	3 DMAIC: Data-Driven Improvement Process in Security
	3.1 Defining the DMAIC Plan
	3.2 Measuring the Existing Service
	3.3 Analyzing the Data

	4 Improving the SAST Service in Visma
	4.1 Improving the SAST Service
	4.2 Control

	5 Discussion and Conclusions
	References

	Near Failure Analysis Using Dynamic Behavioural Data
	1 Introduction
	2 Near Failure Analysis
	2.1 Data Preprocessing
	2.2 Prediction Model

	3 Early Experimental Result
	4 Related Work
	5 Conclusion
	References

	Process Management
	A Process Model of Product Strategy Development: A Case of a B2B SaaS Product
	1 Introduction
	2 Background
	3 Methodology
	4 Process Model of Product Strategy Development
	4.1 Case Description
	4.2 Model Requirements
	4.3 Model Structure
	4.4 Model Implementation
	4.5 Model Evaluation

	5 Discussion
	5.1 What Process Could be Followed to Develop an Initial Product Strategy for a Newly Productized SaaS Solution?
	5.2 How do the B2B and SaaS Contexts Affect the Product Strategy Development Process at the Case Company?

	6 Conclusions
	References

	Communication Skills Requirements of Junior Software Engineers - Analysis of Job Ads
	1 Introduction
	2 Related Work
	2.1 SE Professional Communication Skills
	2.2 Skill Identification in Job Ads

	3 Methodology
	3.1 Goals and Research Questions
	3.2 Data Collection
	3.3 Data Analysis

	4 Research Results
	4.1 Language Skills
	4.2 Intercultural Skills
	4.3 Communication Skills

	5 Discussion
	5.1 RQ1: What Language, Intercultural, and Communication Skills are Required from a Junior Software Engineer?
	5.2 RQ2: How is the Communicative Working Environment Characterized?

	6 Validity Discussion
	7 Conclusions and Future Research Work
	References

	Benefit Considerations in Project Decisions
	1 Introduction
	2 Background and Previous Work
	3 Research Questions
	4 Research Method
	4.1 Survey Questions
	4.2 Analysis

	5 Results
	6 Discussion
	7 Limitations
	8 Conclusion and Further Research
	References

	Towards Situational Process Management for Professional Education Programmes
	1 Introduction
	2 Related Work
	3 The 3Ps of Professional Education Programmes
	4 Situational Process Management for Professional Education Programmes
	4.1 Solution Overview
	4.2 Status of Development

	5 Conclusion and Future Work
	References

	Change Management in Cloud-Based Offshore Software Development: A Researchers Perspective
	1 Introduction
	2 Research Methodology
	3 Results and Discussions
	3.1 RQ1 (Identified Success Factors)
	3.2 RQ5 (Proposed Theoretical Framework)

	4 Threats to Validity
	5 Conclusion
	References

	Half-Empty Offices in Flexible Work Arrangements: Why Are Employees Not Returning?
	1 Introduction
	2 Background
	3 Methodology
	4 Results
	4.1 Office Presence
	4.2 Factors that Motivate Remote Working
	4.3 Factors that Motivate Office Presence

	5 Concluding Discussion
	5.1 Future Work

	References

	Refactoring and Technical Department
	Technical Debt in Service-Oriented Software Systems
	1 Introduction
	2 Related Work
	3 SmartCLIDE Approach for Calculating TD of Services
	4 Validation Study Design
	5 Results and Discussion
	6 Threats to Validity and Conclusions
	References

	An Investigation of Entropy and Refactoring in Software Evolution
	1 Introduction
	2 Background on Entropy
	2.1 Shannon Entropy
	2.2 Source Code Change Entropy

	3 Research Questions and Methodology
	3.1 Research Questions
	3.2 Systems Studied
	3.3 Filtering of Source Files Considered
	3.4 Filtering of Refactoring Types Considered
	3.5 Dividing Version Histories into Periods
	3.6 Performing Analysis and Collecting Data

	4 Results
	4.1 RQ1: How Does System Entropy Change over Time?
	4.2 RQ2: How Do Non-refactoring Changes Affect File Entropy?
	4.3 RQ3: How Do Refactorings Affect File Entropy?
	4.4 Discussion

	5 Threats to Validity
	5.1 Internal and Construct Validity
	5.2 External and Conclusion Validity

	6 Related Work
	7 Conclusion and Future Work
	References

	``To Clean Code or Not to Clean Code'' A Survey Among Practitioners
	1 Introduction
	2 Related Work
	3 Research Methodology
	3.1 Systematic Literature Review Planning and Execution
	3.2 Questionnaire Survey Design and Execution

	4 Results
	4.1 SLR Results: Clean Code Principles
	4.2 Survey Results

	5 Discussion
	6 Threats to Validity
	7 Conclusions and Further Work
	References

	Software Business and Digital Innovation
	Counter the Uncertainties in a Dynamic World: An Approach to Creating Outcome-Driven Product Roadmaps
	1 Introduction
	2 Related Work
	3 Research Approach
	4 Results
	4.1 Good Practice for Conducting Product Roadmapping
	4.2 Proposed Product Roadmap Format for a Dynamic Market Environment

	5 Validation
	6 Threats to Validity
	7 Summary
	References

	Designing Platforms for Crowd-Based Software Prototype Validation: A Design Science Study
	1 Introduction
	2 Research Background
	2.1 Crowdsourcing of Software Products
	2.2 Design Principles for Digital Platforms

	3 Research Approach
	3.1 Design Science Research Methodology
	3.2 Design Science Research Process

	4 Abstracted Design Knowledge
	4.1 Design Principles (DPs)
	4.2 Solution Design Concept

	5 Situated Implementation
	5.1 Design Features (DFs)
	5.2 Implemented Platform Prototype

	6 Evaluation Results
	6.1 Setting
	6.2 Results
	6.3 Discussion and Implications
	6.4 Threats to Validity

	7 Conclusion and Future Work
	References

	Rapid Delivery of Software: The Effect of Alignment on Time to Market
	1 Introduction
	2 Background and Related Work
	2.1 Related Work and Key Concepts Alignment Activities
	2.2 Related Work and Key Concepts Time to Market

	3 Methodology
	3.1 Extracting Empirical Data
	3.2 Questionnaire

	4 Hypotheses
	5 Results
	5.1 Process and Lead Times: Descriptive Statistics
	5.2 Questionnaire: Descriptive Statistics
	5.3 Combining Empirical Data and Questionnaire Results: Descriptive Statistics
	5.4 Inferential Statistics

	6 Conclusions, Discussion and Future Work
	6.1 Limitations
	6.2 Future Work

	References

	Exploring the “Why”, “How”, and “What” of Continuous Digital Service Innovation
	1 Introduction
	2 Theoretical Background
	2.1 Digital Service Innovation (DSI)
	2.2 Continuity in DSI
	2.3 Methods/approaches to Continuous DSI

	3 Methodology
	3.1 Data Collection
	3.2 Data Analysis

	4 Findings
	4.1 The Why of Continuous DSI
	4.2 The How of Continuous DSI
	4.3 The What of Continuous DSI

	5 Discussion
	6 Conclusion
	References

	Why Traditional Product Roadmaps Fail in Dynamic Markets: Global Insights
	1 Introduction
	2 Research Approach
	2.1 Planning the Review
	2.2 Conducting the Review

	3 Results
	4 Summary
	References

	Understanding Low-Code or No-Code Adoption in Software Startups: Preliminary Results from a Comparative Case Study
	1 Introduction
	2 Background and Related Work
	3 Research Method
	3.1 Threats to Validity

	4 Preliminary Results
	5 Next Steps
	References

	Testing and Bug Prediction
	Test Case Selection with Incremental ML
	1 Introduction
	2 Background
	2.1 Dependency Coverage
	2.2 Machine Learning
	2.3 Test Case Selection
	2.4 Evaluated Algorithms for TCS

	3 Related Work
	4 The Experiment
	4.1 Data Collection
	4.2 Test Case Selection

	5 Results
	6 Discussion
	6.1 Test Case Selection
	6.2 Threats to Validity

	7 Conclusions
	References

	Inferring Metamorphic Relations from JavaDocs: A Deep Dive into the MeMo Approach
	1 Introduction
	2 The MeMo Approach
	2.1 MeMo's Procedure
	2.2 MeMo's Dataset
	2.3 MeMo's Results - Original Study

	3 Methodology
	3.1 Replicability
	3.2 Improvement

	4 Results and Discussion
	4.1 Replicability
	4.2 Improvement
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	An Evaluation of Cross-Project Defect Prediction Approaches on Cross-Personalized Defect Prediction
	1 Introduction
	2 Related Work
	3 Motivation
	4 Methodology
	4.1 Datasets
	4.2 Experiment Design
	4.3 Performance Evaluation

	5 Results
	6 Discussion
	6.1 RQ1 Do CPDP Approaches Affect Cross-Personalized Defect Prediction Performance?
	6.2 RQ2 Which CPDP Approaches Improve the Bare Cross-Personalized Defect Prediction Performance?
	6.3 RQ3 Do CPDP Approaches Contribute to Improving Personalized Defect Prediction?

	7 Threats to Validity
	8 Conclusion
	References

	A/B Testing in the Small: An Empirical Exploration of Controlled Experimentation on Internal Tools
	1 Introduction
	2 Background
	2.1 A/B Testing and Continuous Experimentation
	2.2 Related Work on Smaller Scale A/B Testing
	2.3 The Case

	3 Research Approach
	3.1 Ideation: Interviews to Define Goals and Metrics
	3.2 Design and Execution
	3.3 Analysis and Learning

	4 Results
	4.1 Goals and Metrics
	4.2 A/B Test Data and Statistics
	4.3 Hypothesis Evaluation

	5 Discussion
	5.1 Customer Admin User Behavior Insights
	5.2 A/B Testing Challenges
	5.3 Recommendations
	5.4 Threats to Validity

	6 Conclusion and Further Work
	References

	TEP-GNN: Accurate Execution Time Prediction of Functional Tests Using Graph Neural Networks
	1 Introduction
	2 The TEP-GNN Approach
	2.1 Approach Overview
	2.2 Problem Definition
	2.3 Building Flow-Augmented Abstract Syntax Trees
	2.4 GNN Model for Test Execution Time Prediction

	3 Evaluation
	3.1 Dataset
	3.2 Results

	4 Discussion
	4.1 Lessons Learned
	4.2 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

	Improving Software Regression Testing Using a Machine Learning-Based Method for Test Type Selection
	1 Introduction
	2 Related Work
	3 Core Concepts and Background
	3.1 Core Concepts
	3.2 The Dependency Taxonomy

	4 Research Design
	4.1 HiTTs Implementation
	4.2 Usage Scenario

	5 Evaluation of HiTTs
	5.1 Annotation and Training (Phase 1)
	5.2 Calibration (Phase 2)
	5.3 Selection (Phase 3)
	5.4 Baseline Construction
	5.5 Results and Analysis

	6 Threats to Validity
	7 Conclusion and Future Work
	References

	Early Identification of Invalid Bug Reports in Industrial Settings – A Case Study
	1 Introduction
	2 Research Method
	2.1 Case Description
	2.2 Invalid Bug Reports
	2.3 Data Collection
	2.4 Development of the Diagnostic and Predictive Tool
	2.5 Feature Selection
	2.6 Experimental Setup
	2.7 Evaluation Metrics
	2.8 Technology Adoption Evaluation Framework

	3 Results and Analysis
	4 Discussion
	5 Threats to Validity
	6 Conclusion and Contributions
	References

	Posters
	Resem: Searching Regular Expression Patterns with Semantics and Input/Output Examples
	1 Introduction
	2 Resem
	2.1 Overview
	2.2 F1: Search by Semantics
	2.3 F2: Presentation of I/O Examples
	2.4 Collecting from Open Source Projects

	3 Experiment
	3.1 Experiment Design
	3.2 Results and Discussion

	4 Conclusion
	References

	Building a Unified Ontology for Behavior Driven Development Scenarios
	1 Introduction and Research Approach
	1.1 Descriptive_Concepts in BDD Test Scenarios
	1.2 Building the Dataset
	1.3 Building the Ontology

	2 Building the Ontology for BDD Scenarios
	2.1 The GIVEN Dimension
	2.2 The WHEN Dimension
	2.3 The THEN Dimension

	3 Ontology for BDD Test Scenarios
	References

	Quality Metrics for Software Development Management and Decision Making: An Analysis of Attitudes and Decisions
	1 Introduction
	2 Method
	3 Results
	4 Conclusions
	References

	Are NLP Metrics Suitable for Evaluating Generated Code?
	1 Introduction
	2 Research Questions
	3 Background
	3.1 Code Generation
	3.2 Edit Distance
	3.3 Metrics

	4 Experiment
	4.1 Code Generation Model
	4.2 Measuring Ease of Modification
	4.3 Results

	5 Conclusion
	References

	Automated and Robust User Story Coverage
	1 Introduction
	2 Background and Related Work
	3 Methods and Evaluation
	3.1 US Coverage Metric Computation
	3.2 Illustrative Example
	3.3 Performance Evaluation

	4 Discussion
	5 Conclusion
	References

	Tidy Up Your Source Code! Eliminating Wasteful Statements in Automatically Repaired Source Code
	1 Introduction
	2 Proposed Method
	2.1 Overview
	2.2 Tidying Rules

	3 Preliminary Experiment
	3.1 Overview
	3.2 Experimental Procedure
	3.3 Results and Discussion

	4 Conclusions and Future Work
	References

	Tutorials
	Utilizing User Stories to Bring AI Ethics into Practice in Software Engineering
	1 Introduction
	2 Background and Related Work
	2.1 AI Ethics
	2.2 User Stories
	2.3 Related Work: Implementing AI Ethics

	3 Devising Ethical User Stories Using the Ethical Framework Method
	4 Summary
	References

	Workshop on Engineering Processes and Practices for Quantum Software (PPQS’22)
	Workshop on Engineering Processes and Practices for Quantum Software (PPQS’22) Co-located with PROFES 2022, Finland
	1 Introduction to the Workshop (PPQS’22)
	2 Program Committee
	References

	Classical to Quantum Software Migration Journey Begins: A Conceptual Readiness Model
	1 Introduction
	2 Call for Action
	3 Architecture of Proposed Model
	3.1 Readiness Level Component
	3.2 Assessment Dimension

	4 Expected Outcomes
	References

	1st Workshop on Computational Intelligence and Software Engineering (CISE 2022)
	1st Workshop on Computational Intelligence and Software Engineering (CISE 2022)
	1 Introduction
	1.1 Target Audience

	2 Workshop Papers
	2.1 Paper 1: Technical Debt Forecasting from Source Code Using Temporal Convolutional Networks
	2.2 Paper 2: Adagio: a bot for AuDio processing AGainst vIOlence
	2.3 Paper 3: End Users’ Perspective of Performance Issues in Google Play Store
	2.4 Paper 4: Predicting Bug-Fixing Time: DistilBERT Versus Google BERT
	2.5 Paper 5: Proposing Isomorphic Microservices Based Architecture for Heterogeneous IoT Environments

	3 Workshop Organization

	Technical Debt Forecasting from Source Code Using Temporal Convolutional Networks
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Data Collection and Extraction
	3.2 Features Model
	3.3 Predictive Model
	3.4 Experimental Setting

	4 Experimental Results
	5 Conlusions and Future Works
	References

	Adagio: A Bot for Audio Processing Against Violence
	1 Introduction
	2 Related Works
	3 Speaker Recognition in Adagio
	3.1 Continuous Recognition and Dictation Mode
	3.2 Improve Recognition Accuracy and Customized Voice Recognition
	3.3 Customized Voice Recognition

	4 Definition of the Purpose of Expression (Natural Language Understanding) in Adagio
	4.1 Machine Learning-Based Entity

	5 Bot Framework SDK
	6 Conclusions
	References

	End Users' Perspective of Performance Issues in Google Play Store Reviews
	1 Introduction
	2 Study Design
	3 Results
	4 Threats to Validity
	5 Related Work
	6 Conclusion and Future Work
	References

	Predicting Bug-Fixing Time: DistilBERT Versus Google BERT
	1 Introduction
	2 Material and Methods
	2.1 Bug Tracking Systems
	2.2 Proposed Classifier Model
	2.3 Dataset Extraction
	2.4 Dataset Generation
	2.5 BERT
	2.6 DistilBERT

	3 Empirical Investigation and Results
	3.1 Experimental Settings
	3.2 Results and Discussion

	4 Conclusions
	References

	Proposing Isomorphic Microservices Based Architecture for Heterogeneous IoT Environments
	1 Introduction
	2 Background
	2.1 WebAssembly
	2.2 Orchestration
	2.3 IoT Device

	3 Architecture
	3.1 Device Discovery
	3.2 Deployment
	3.3 Execution
	3.4 Implementation Considerations

	4 Discussion and Future Work
	References

	Doctoral Symposium
	Ethical Tools, Methods and Principles in Software Engineering and Development: Case Ethical User Stories
	1 Introduction
	2 Related Work
	3 Methodology
	4 Preliminary Results
	5 Expected Contributions
	References

	Architectural Degradation and Technical Debt Dashboards
	1 Introduction
	2 Background and Related Works
	3 The Proposed Approach
	3.1 Research Methodology

	4 Expected Contributions
	References

	The Impact of Business Design in Improving the Offering of Professional Software Services
	1 Introduction
	2 Background
	3 Business Design
	4 Research Methodology
	References

	Applications of MLOps in the Cognitive Cloud Continuum
	1 Introduction
	2 Background
	2.1 MLOps
	2.2 Cognitive Cloud Continuum

	3 The Proposed Approach
	4 Current Status
	5 Expected Contribution
	References

	Implementing Artificial Intelligence Ethics in Trustworthy System Development - Making AI Ethics a Business Case
	1 Introduction
	2 Related Work
	3 Research Gap and Proposed Solution
	4 Methodology
	5 Preliminary Results
	6 Expected Contributions
	References

	Developing a Critical Success Factor Model for DevOps
	1 Introduction
	2 Methods and Goals
	2.1 Methods
	2.2 Hypotheses
	2.3 Research Questions

	3 Results
	4 Conclusion
	References

	Strategic ICT Procurement in Finland: Tensions and Opportunities
	1 Introduction
	2 Background and Motivation
	3 Research Approach
	3.1 Research Questions
	3.2 Research Methods

	4 Discussion
	5 Conclusions
	References

	Leverage Software Containers Adoption by Decreasing Cyber Risks and Systemizing Refactoring of Monolithic Applications
	1 Related Work
	2 Research Problem
	3 Research Objectives
	4 Research Questions
	5 Research Approach
	6 Research Timeline
	7 Research Contribution
	References

	Author Index

