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Abstract

The most frequent special histological type of breast cancer is represented by
invasive lobular carcinoma (ILC), which makes up about 15% of all invasive
breast carcinomas. The molecular signature of ILC is the dysregulation of
E-cadherin due to CDH1 abnormalities. Although CDH1 germline mutations
are very uncommon in women with early-onset and/or familial ILC, they are
the most common detrimental non-BRCA mutations and are thought to be the
origin of a significant fraction of lobular breast cancer. Since the morphology and
immunophenotype of hereditary and non-hereditary ILCs are nearly identical, no
specific histopathological findings can be used to distinguish between the two.
High-throughput sequencing studies revealed that ILCs represent a separate entity
at the genomic level. This chapter addresses the very important topic of ILC
morpho-molecular characteristics in the setting of germline and/or somatic CDH1
abnormalities.

11.1 Introduction

Invasive lobular carcinoma (ILC) is the most common special type of breast cancer
and accounts for ~15% of invasive breast carcinomas [1]. Dysregulation of
E-cadherin due to CDH1 aberrations is considered the molecular hallmark of ILC
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[2, 3]. Although the frequency of CDH1 germline mutations is very low (~1%) in
women with early-onset or familial ILC, these mutations represent the most frequent
deleterious non-BRCA mutations, and they are considered founder genetic events in
a substantial proportion of lobular breast cancer [4–6]. No specific histopathological
features can help discriminate between hereditary and non-hereditary ILCs because
their morphology and immunophenotype are substantially identical [7]. However,
ILCs display peculiar clinic-pathologic characteristics as compared to other breast
cancer histotypes [1]. Moreover, high-throughput sequencing analyses showed that
ILCs also represent a distinct entity at the genomic level [2, 3, 8, 9]. This chapter
provides a comprehensive overview of the morpho-molecular characteristics of ILC
in the context of germline and/or somatic CDH1 aberrations.
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11.2 Pathology of Lobular Breast Cancer

Individuals with ILC typically have a diagnosis at an older age and come to the
physician’s attention with larger tumors than patients with invasive breast cancer
(IBC) of no special type [10]. Hereditary ILC is often bilateral and multicentric,
appearing as ill-defined palpable mass(es) or widespread breast nodularities
[11]. Classic ILC is composed of non-to-poorly cohesive small, roundish, monomor-
phic neoplastic elements, with uniform nuclei, inconspicuous nucleoli, and infrequent
mitotic figures interspersed into a variably dense fibrous stroma arranged in loose or
linear growth pattern. ILC exhibits a targetoid concentric distribution around ducts
and lobules and is usually associated with little host reaction [1, 12–16].

It is possible to identify different ILC variants, including solid, alveolar,
trabecular, tubule-lobular, signet ring cell, pleomorphic, and histiocytoid which
differ from classical ILC in their morphologic characteristics and behavior
(Fig. 11.1).

The traditional ILC and other ILC variants are occasionally mixed [13]. The
discohesive tumor cells that make up the solid variant of ILC grow in solid nests and
may exhibit pleomorphism or enhanced mitotic activity. The tumor cells of alveolar
ILC are grouped in distinct clusters or aggregates of 20 cells or more, which are
divided by thin fibrous septa. Tumor cells develop in bands thicker than two cells in
the trabecular ILC. The tubule-lobular type of ILC has a hybrid tubular and lobular
appearance. The growth pattern of pleomorphic ILC is identical to that of classic
ILC, but the tumor cells exhibit increased cytological atypia and pleomorphism as
well as a higher rate of mitosis [1, 12–16].

Classic ILC are of low or intermediate histological grade and the majority are
characterized by the positivity of hormone receptors and lack of HER2 expression;
however, HER2-positive and/or triple-negative (estrogen and progesterone receptor-
negative and HER-2 negative) phenotypes have been reported, particularly in ILC
variants [1, 12–18]. Consistently, more than 80% of ILCs fall into the category of
luminal molecular subtypes according to gene expression profile studies [3, 19]. Her-
2-enriched and basal-like lobular tumors are rare, usually of non-classic variant, and
associated with a worse prognosis [20]. Similar to invasive ductal carcinoma (IDC),



tumor staging, and nodal status are important prognostic factors also in patients with
ILC. Moreover, a high Ki67 proliferation index was found to be associated with a
high risk of early and late recurrence [19, 20].
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Fig. 11.1 Invasive lobular carcinoma, histiocytoid variant. These tumors are morphologically
characterized by sheets/cords of cells with abundant granular cytoplasm and variably eccentric
nuclei. Among the possible differential diagnoses of histiocytoid lobular carcinoma, it is worth
mentioning some non-neoplastic conditions, such as reactive histiocytic infiltrates and fat necrosis.
Hematoxylin and eosin, original magnification 100×; inset 400×. Note. Personal archive

In addition to traditional prognostic and predictive factors, other actional
biomarkers, such as tumor-infiltrating lymphocytes (TILs) and PD-L1 expression,
have been recently included in the pathological characterization of IBC. PD-L1
expression in ILC has been observed both on lymphocyte and tumor cells. Overall,
the level of TILs and PD-L1 reported in ILCs are lower than those observed in IDC
and with different patterns, suggesting that ILC may be associated with a distinct
immune microenvironment [21–24].

As mentioned above, most ILCs are currently classified as HER-2 negative.
According to the American Society of Clinical Oncology (ASCO) and College of
American Pathologists (CAP), the HER2 test positivity is defined by protein
overexpression (score 3+) at immunohistochemistry (IHC) and/or HER2 score 2+
with gene amplification at in situ hybridization (ISH), while score 2+/ISH negative,
score 1+ and score 0 were considered negative [25]. However, the introduction of
novel anti-HER2 antibody-drug conjugates requires an in-depth categorization of
this “HER2-negative” group, distinguishing tumors with no HER2 expression by
IHC (or in less than 10% of tumor cells; score 0) from those with low HER2



expression (HER2-low IBC) showing immunohistochemistry HER2 score 1+ or 2+/
ISH- [26–28]. Considering ILC, fewer cases have been observed among HER2-low
IBC compared to HER2-zero tumors [29, 30].
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Fig. 11.2 Histological features of lobular carcinoma in situ (LCIS). (a) Monomorphic proliferation
of polygonal discohesive cells with clear cytoplasm that distend the acini with the maintenance of
the lobular architecture. (b) Non-invasive lesion with lobular phenotype, showing eccentric large
pleomorphic nuclei, conspicuous nucleoli and large eosinophilic granular cytoplasm, consistent
pleomorphic lobular carcinoma in situ. Hematoxylin and eosin, original magnification 200×.
Adapted from: Guerini-Rocco and Fusco. Premalignant and preinvasive lesions of the breast. In:
Breast Cancer: Innovations in Research and Management. Veronesi U, Goldhirsh A, Veronesi P,
et al., editors. Springer International Publishing; 2017. p. 103–20 [33]

Non-invasive lobular neoplasia, including lobular carcinoma in situ (LCIS) and
atypical lobular hyperplasia (ALH), are frequently seen in combination with ILC
[31–34]. ALH and LCIS are considered risk indicators and non-obligate precursors
of invasive breast cancer [35, 36]. The neoplastic cells of ALH/LCIS morphologi-
cally resemble those of ILC distending the acini with the maintenance of the lobular
architecture. Moreover, akin to the invasive counterpart, these types of non-invasive
lobular neoplasia lack E-cadherin expression, confirming the early oncogenicity of
CDH1 alterations in hereditary and non-hereditary lobular breast cancer [35–37]
(Fig. 11.2).

11.3 CDH1 Aberrations: The Hallmark of Lobular Breast Cancer

The CDH1 gene (16q22.1) encodes for the E-cadherin protein, which is responsible
for cell adhesion and suppresses cell motility and invasion [38, 39]. The rationale for
the use of E-cadherin as a biomarker in ILC is related to its very biology. This protein
has an extracellular domain responsible for cell-to-cell adhesion via
homodimerization with other E-cadherin molecules on adjacent cells [40]. The
intracellular domain interacts with the actin cytoskeleton indirectly, through a
complex formed by several mediators such as α-, β-, and p120-catenins. Therefore,
the presence and functionality of E-cadherin are crucial not only in maintaining



cell-to-cell adhesion but through the interaction with these mediators, in different
intracellular pathways [40, 41] (Fig. 11.3).
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Fig. 11.3 Molecular events mediated by loss of E-cadherin in hereditary lobular carcinoma.
E-cadherin is a 120 kDa glycoprotein encoded by the CDH1 gene, located on chromosome
16q22.1, and belongs to the classical Cadherin subgroup. It has an extracellular domain formed
by five extracellular ~100 amino acid residue motifs, termed extracellular cadherin repeats. The
calcium binding sites are located in the pockets between the repeats. This extracellular domain is
mainly responsible for cell-to-cell adhesion via homodimerization with other E-cadherin molecules
present on adjacent cells. E-cadherin has a single transmembrane domain that links the extracellular
domain with the smaller intracellular domain. The intracellular domain interacts with the actin
cytoskeleton indirectly, through a complex formed by several mediators such as α-, β-, and p120-
catenins. Therefore, the presence and functionality of E-cadherin are crucial not only in maintaining
cell-to-cell adhesion but through the interaction with these mediators, which plays also a role in a
variety of intracellular pathways

The loss of E-cadherin functionality caused by CDH1 mutations results in the
facilitation of epithelial-to-mesenchymal transition and tumorigenesis [42]. This
molecular aberration is directly reflected by the non-to-poorly cohesive morpholog-
ical appearance of lobular carcinoma cells and by the loss of immunohistochemical
expression of E-cadherin and cytoplasmic expression of p120-catenins [43]. How-
ever, up to 15% of ILC may show E-cadherin expression and abnormal E-cadherin
immunoreactivity has been seen in other breast cancer subtypes, including total
absence or diminished membrane staining, and punctate or cytoplasmic expression
[44, 45] (Fig. 11.4).

In the TCGA series, CDH1 genomic aberrations have been detected in nearly
12% of all breast cancers including truncating, missense and splice-site mutations,
copy number, and structural variants. Somatic CDH1 mutations have been reported



in 50–80% of lobular breast cancer [2, 3, 6] (Fig. 11.5). These mutations mostly
co-occur with heterozygous loss of 16q and they are frequently associated with
downregulation of CDH1 transcript and protein levels [46]. Interestingly, the com-
plete loss of CDH1 expression alone is not sufficient for invasive carcinoma
development, as demonstrated in transgenic animal models. Indeed, other genetic
alterations, such as Smad4 and p53, are required to promote invasiveness and
metastasis [47–49]. Besides alterations affecting the CDH1 gene, epigenetic
modifications and upregulation of transcriptional inhibitors have also been described
as mechanisms of E-cadherin inactivation [50]. An important and frequent epige-
netic modification is hypermethylation of the CDH1 promoter. This alteration has
been studied in hereditary and non-hereditary lobular breast cancers, which suggests
epigenetic silencing as an alternative CDH1 downregulation mechanism. CDH1
DNA hypermethylation has been demonstrated to be inversely proportional to
E-cadherin levels in tumor cells [51].
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Fig. 11.4 Spectrum of E-cadherin immunoreactivity in breast cancer. Representative micrographs
of (a) lobular carcinoma showing loss of E-cadherin immunohistochemical expression (dashed
arrow) and adjacent normal terminal duct-lobular units with strong membranous E-cadherin
staining (full arrow); invasive breast cancers of no special type showing partial loss (b) and strong
(c) membranous immunoreactivity for E-cadherin. E-cadherin immunohistochemistry, original
magnification 200×. Adapted from: Corso G, Figueiredo J, De Angelis SP, et al. E-cadherin
deregulation in breast cancer. J Cell Mol Med 2020;24:5930–6 [50]

Fig. 11.5 Distribution of CDH1 mutations in breast cancer. (a) Oncoprint visualization of the
CDH1mutations across different histological subtypes of breast cancer. (b) Lollipop plot presenting
frequencies and types of CDH1 mutations. TGCA Combined Study (3835 samples) from https://
www.cbioportal.org/, accessed 20th July 2022)

https://www.cbioportal.org/
https://www.cbioportal.org/
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Interestingly, it has been observed that CDH1 promoter hypermethylation is
associated with reduced HR expression, increased disease progression, a higher
metastatic rate, and a more aggressive clinical course overall. It is more frequent
in patients presenting with sentinel lymph node metastases at diagnosis and is
correlated with disease progression to distant metastases [52, 53]. This has led to
the proposal of CDH1 hypermethylation as a prognostic biomarker to predict poorer
outcomes [54]. Another mechanism of E-cadherin inactivation is represented by the
overexpression of its transcriptional inhibitors, namely Snail, SLUG, zinc finger E-
box-binding (ZEB1 and 2), and TWIST transcription factors [55]. Among these
molecules, the one with the highest affinity for the CDH1 promoter is Snail, which
acts by recruiting the mSin3A/Histone Deacetylase1 and 2 (HDAC1/2). Subsequent
deacetylation of histones H3 and H4 results in silencing of the gene, thus effectively
inhibiting E-cadherin synthesis [56, 57]. ZEB1 and ZEB2 behave similarly to Snail
in suppressing CDH1 transcription, but their mechanisms of action appear to be
independent. Thus, it has been hypothesized that at least two transcriptional
downregulation complexes of E-cadherin do exist, but whether they participate in
tumorigenesis within the same cell remains to be established [58]. High levels of
ZEB1 have been found in aggressive BCs and associated with advanced-stage and
lymph node metastases. Therefore, ZEB1 has been proposed as an additional
prognostic biomarker in breast cancers, in particular in lobular breast cancer
[41, 50, 59–61].

E-cadherin and many RTKs tend to co-localize at the basolateral portion of the
cell membrane. In particular, the complex formed by the E-cadherin intracellular
domain and EGFR has been extensively studied to be involved in adhesion-
dependent bidirectional crosstalk. On one hand, cell-to-cell adhesion via
E-cadherin inhibits the EGFR signaling pathway, including downstream mediators
such as MAPK/ERK with downregulation of cell cycle progression and cellular
proliferation [62]. Conversely, it has been demonstrated that cell adhesion tran-
siently activates the EGFR/MAPK signaling cascade, and has a role in tissue growth
[63]. Moreover, the upregulation of several RTKs pathways is known to inhibit E-
cadherin-dependent cell-to-cell adhesion and promote epithelial-to-mesenchymal
transition (EMT), suggesting that E-cadherin plays a role in tumorigenesis even
when not directly affected by inactivating mutations [64]. E-cadherin is also known
to form a complex with β-catenin. The E-cadherin/ β-catenin complex is crucial in
maintaining not only cell-to-cell adhesion but also tissue’s architectural homeostasis.
Beta-catenin is well known for being a central component of the WNT signal
transduction pathway. It has been demonstrated that when catenin is bound by
E-cadherin, the result is the promotion of tissue stasis by inhibition of cell prolifera-
tion and architectural stabilization. The disruption of the cadherin-catenin complex
causes an increase of cytoplasmic un-bound β-catenin. This alters the WNT signal-
ing pathway shifting the balance toward cell growth and proliferation. This effect has
been demonstrated to be unrelated to E-cadherin adhesive properties and to be
entirely dependent on its β-catenin binding region. In addition, β-catenin has an
inhibitory effect on PTEN, a well-known tumor suppressor gene, further promoting
uncontrolled cell proliferation [65, 66]. Another signaling pathway influenced by the



interaction between E-cadherin and catenins at the cell membrane is that of the Rho
GTPases. The Rho GTPases are a family of proteins involved in the interaction of
E-cadherin with the cytoskeleton, a process influenced also by p120-catenin. They
promote and regulate the organization of the cytoskeletal network during the forma-
tion of adherens junctions. The two Rho GTPase subfamilies most known for being
influenced by E-cadherin are Rac and Rho. In normal conditions, E-cadherin
activates Rac1 and inhibits Rho through the interaction of p120, increasing cell
adhesion and cellular structural stability. Loss of E-cadherin causes an increase in
unbound p120, which in turn creates an inversion of this balance. This not only
promotes loss of cell-to-cell adhesion by disruption of the adherens junctions but
also enhances cellular motility and migration due to rearrangement of the cytoskele-
tal network. Therefore, the Rho GTPase family has an important role in the process
of EMT mediated by E-cadherin loss [67, 68]. Moreover, increased levels of p120
upregulate the NF-kB pathway, which contributes to tumorigenesis by promoting
inflammation, cell proliferation, and apoptosis escape [69]. During EMT, when cells
have detached from their tissue of origin they start to migrate within the extracellular
matrix. E-cadherin loss has been demonstrated to enhance cellular motility in this
new environment by upregulation of secretion and activity of metalloproteinases
(MMP) [70]. These molecules play a role in matrix digestion and remodeling and,
when their activity is increased, tumor cell migration is facilitated. In addition,
MMPs have been shown to inactivate E-cadherin by cleavage of its extracellular
domain, further demonstrating the close interplay of these two effectors in tumor
spread [71]. Besides the loss of cell-to-cell adhesion and EMT, E-cadherin loss also
increases the resistance of cells to apoptotic stimuli. This effect is mediated by the
inverse relationship between E-cadherin expression and the Notch pathway. Reduc-
tion in E-cadherin levels is correlated with upregulation of this pathway, leading to
an increase in intracellular levels of Bcl-2. The Bcl-2 family of proteins is known to
be involved in the regulation of programmed cell death. Specifically, they have an
anti-apoptotic role, thus their upregulation following E-cadherin loss promotes
tumor resistance to apoptotic stimuli and improves the survival of neoplastic cells
[72]. The interplay between E-cadherin and a plethora of intracellular signaling
pathways demonstrates how the role of this molecule in tumorigenesis goes well
beyond the loss of cell-to-cell adhesion. This also highlighted the need for detailed
characterization and reporting of CDH1 variants identified, especially at the
germline level.
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11.4 The Genomic Landscape of Lobular Breast Cancer

During the last decades, broad genomic profiling with high-throughput next-genera-
tion sequencing technologies has shown that breast cancers are highly heterogeneous
at the molecular level harboring few recurrent genomic aberrations and potentially
actionable drivers [2, 4, 5, 73–77]. Overall, PIK3CA and TP53 are the most
frequently mutated genes with different mutation rates based on breast cancer
subtype. Nearly 40% of estrogen receptor-positive/luminal breast cancer harbor



somatic driver mutations in the PIK3CA gene. TP53 mutations can be detected in
20–30% of luminal tumors but nearly 85% of basal-like/triple-negative breast
cancers. Indeed, these triple-negative tumors show also high genomic instability
and DNA repair gene aberrations, including BRCA1/2 alterations [75, 77]. ILC
represents a special breast cancer type also at the genomic level. As mentioned
above, ILC is characterized by a higher rate of CDH1mutations as compared to IDC
(63% versus 2% in the TCGA study). Other recurrently mutated genes (reported
rate > 2%) in ILC included: PIK3CA, TBX3, RUNX1, FOXA1, ERBB2, ERBB3,
PTEN, MAP3K1, AKT1, ARID1A, and TP53. Besides CDH1 heterozygous deletion
(16q loss) detected in more than 90% of the cases, other recurrent copy number
variations involve gain of CCND1, FGFR1, andMYC genes. Although amplification
of the HER2 gene is not frequently seen in ILC, somatic mutations of ERBB2 have
been reported in 2%–15% of cases [2–6, 8, 9, 78]. Overall, as compared to estrogen
receptor-positive luminal breast cancer, invasive lobular carcinoma is enriched for
CDH1 mutations and loss, mutation of TBX3 and FOXA1, mutation, and loss of
PTEN with activation of AKT pathway but low mutation rate of GATA-3 [3]
(Fig. 11.6).
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Triple-negative (hormone receptors-negative and HER2-negative) ILC is a rare
disease accounting for nearly 1% of triple-negative breast cancers and it has a poor
prognosis. Although no significant differences in gene mutation frequency have
been found compared to hormone receptor-positive/her2-negative cases, enrichment
for alterations in ErbB and androgen receptor signaling pathways were observed in
triple-negative ILC. Moreover, these tumors show a genomic profile distinct from
triple-negative IDCs, including higher frequencies of CDH1, ERBB2, PI3KCA, and
FOXA1 mutations [8, 79, 80].

Considering primary and metastatic ILC, similar repertoires of genomic
alterations have been described. However, in the metastatic setting higher
frequencies of TP53, ESR1, NF1, and ERRB2 alterations have been reported. Indeed,
these genomic alterations may represent mechanisms of endocrine therapy resis-
tance. Moreover, a higher tumor mutational burden has been observed in metastatic
ILC as compared to primary tumors [81].

11.5 Conclusion

Lobular breast cancers display peculiar characteristics including morphologic, phe-
notypic, and transcriptomic features, genomic aberrations, immune microenviron-
ment composition, and clinical behavior. Given the rarity of and maybe low
awareness about hereditary CDH1-related ILC, few studies have been specifically
focused on this entity and, so far, similar characteristics have been reported. Dedi-
cated investigations are warranted to elucidate the molecular profiles of ILC that
arise in women harboring CDH1 germline mutations. Indeed, there are numerous
questions to be uncovered in the molecular mechanisms driving tumorigenesis and
disease progression. A focused characterization of the molecular profile of hereditary
CDH1-related ILC may enhance our understanding of these tumors and ultimately
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Fig. 11.6 Recurrent genomic alterations in CDH1-mutated invasive lobular carcinoma. Oncoprint
visualization of the most frequently mutated genes in lobular breast carcinomas harboring somatic
CDH1 mutations. TGCA Firehose Legacy series (99 samples) from https://www.cbioportal.org/,
accessed 20th July 2022

https://www.cbioportal.org/


might aid in establishing effective prevention, screening, and tailored treatment
strategies for women carrying CDH1 germline mutations.
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