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Abstract. There is a growing concern on algorithm fairness, according
to wider adoption of machine learning techniques in our daily life. Test-
ing of individual fairness is an approach to algorithm fairness concern.
Verification Based Testing (VBT) is a state-of-the-art testing technique
for individual fairness, that leverages verification techniques using con-
straint solving. In this paper, we develop a black-box individual fairness
testing technique Vbt-X, which applies hash-based sampling techniques
to the test case generation part of Vbt, aiming to improve its testing
ability. Our evaluation by experiments confirms that Vbt-X improves
the testing ability of Vbt by 2.92 times in average.
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1 Introduction

Decision making algorithms based on machine learning (ML) have been more
widely adopted in our daily life, in e.g., criminal sentencing [13], financial and
insurance [2], hiring [11], (see [19], for more examples). Such algorithmic decision
making can overcome some limitations of human decision making, however, there
is also a growing concern on fairness of such algorithms, since they tend to
be biased, unfairly treating individuals based on sensitive attributes, such as
race, gender, and age. For example, Compas algorithm, which predicts future
criminal, used to determine criminal sentencing, is known to be biased against
black defendants [13].

Testing of individual fairness is an approach to algorithm fairness concern.
Individual fairness is a concept of algorithm fairness, which states that an ML
classifier should give similar prediction to similar individuals [7]. Testing of indi-
vidual fairness aims to detect data that violate the concept (called, discrimina-
tory data), contained in the given ML classifier under test (CUT). The subject
has been studied extensively in previous years, which renders a variety of test-
ing techniques e.g., [1,8,16,23–25,27,28]. These testing techniques respectively
use their own search algorithms to generate a set of test cases (i.e., a test set),
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which can effectively detect discriminatory data, from the huge input space of
the given CUT.

Verification Based Testing (Vbt) [24,25], recently developed by Sharma and
Wehrheim, is a state-of-the-art black-box testing technique for individual fair-
ness. While Vbt detects the presence of discriminatory data in a given CUT, its
basic mechanism internally builds a decision tree (DT) classifier represented in
SMT (Satisfiability Modulo Theory) constraints as an approximation classifier
of CUT, and generates test cases applying SMT solving to the constraints. In
the mechanism, a key technical challenge lies on the test generation part, since a
technique is required to efficiently search a test set to effectively detect discrim-
inatory data, given the SMT represented DT classifier. Vbt proposes two test
search techniques, called data pruning and branch pruning. The more elaborated
one, i.e., branch pruning, tries to generate diverse test cases by traversing the
(SMT-represented) DT, using repetitive calls of SMT solver.

In this paper, we develop an individual fairness testing technique, named
Vbt-X, by applying the hash-based sampling [3–5,9] in the test generation part
of Vbt. The hash-based sampling techniques, given a logical formula φ, generate
diverse solutions of φ. Its advantage is the ability to sample diverse solutions at a
reasonable computational cost. The techniques have been studied actively, with
applications such as probabilistic inference [22], network reliability estimation [6],
and verification [18]. Our aim is to leverage its diverse sampling ability in the
test generation (i.e., test search) part of Vbt, to improve testing ability of Vbt.
We also devise several enhancement techniques to improve efficiency of Vbt-X.
Our evaluation confirms that Vbt-X achieves a higher testing ability than Vbt

by 2.92 times in average.
This paper is organized as follows: Sect. 2 reviews the concept of individ-

ual fairness, the algorithm of Vbt and the hash-based sampling. In Sect. 3, we
explain the basic approach of our proposed technique, as Basic Vbt-X, and
introduce several enhancements to Basic Vbt-X, proposing Vbt-X. Section 4 is
devoted to evaluation of Vbt-X by experiments. We discuss related studies in
Sect. 5, and mention validity threats of this study in Sect. 6. Section 7 concludes
this paper, discussing future work also.

2 Background

This section reviews individual fairness testing (referring to [16]), Vbt [27] and
hash-based sampling [3–5,9].

2.1 Individual Fairness Testing

Let P = {p1, p2, · · · , pn} be a set of attributes (or parameters), for n ∈ N. We
use pi to indicate the i-th attribute in P . Each attribute pi ∈ P is associated
with a set of values, called the domain of pi, denoted by Dom(pi), such that
(Dom(pi))i∈n is pairwise disjoint. The input space I of a set of attributes P is
the Cartesian product of the domains of p1, p2 · · · pn(∈ P ), i.e., I = Dom(p1) ×
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Algorithm 1: Vbt algorithm
Data: Classifier (f), Iteration limit (limit)
Result: Discriminatory data set (Ddisc)

1 Step-0: Make a training dataset Dtrain with randomly generated data;
2 repeat
3 Step-1: Make an approximation f ′ of CUT f by training a decision tree

classifier with Dtrain ;
4 Step-2: Construct SMT constraints φf ′ from approximation f ′ ;
5 Step-3: Generate test cases by SMT solver;
6 Step-4: Execute test cases against CUT f , to detect discriminatory data;
7 Step-5: Update the training dataset Dtrain with failing test cases;
8 until Iteration exceeds limit ;

Dom(p2)×· · ·×Dom(pn). An element I of I is called a data item or data instance.
We also introduce Pprot ⊆ P as the set of protected attributes (e.g., gender, race,
age). An ML classifier, whose input space is I, is a function f such that f(I) is
the output (i.e., decision) that the classifier f makes for input I.

Definition 1 (Individual discriminatory data and Fairness [27]). Let φ
be a classifier under test (CUT), γ be the pre-determined threshold (e.g. chosen
by the user), and I, I ′ ∈ I. Assume that there exists a non-empty set Q ⊆ Pprot

s.t. for all q ∈ Q, Iq �= I ′
q and for all p ∈ P\Q, Ip = I ′

p. If |f(I) − f(I ′)| > γ,
then I (also I ′) is called a discriminatory data item of the classifier f , as an
instance that manifests the violation of (individual) fairness in f .

Example 1. Consider an ML classifier f that, taking an individual as input,
predicts if the individual gets a loan. Individuals are schemed by three attributes
of ‘gender’, ‘income’, and ‘age’, and suppose ‘gender’ is the protected attribute.
Consider the following two individuals I1 and I2 that differ only in the protected
attribute:

I1 :(gender = male, income = 1000, age = 40) (1)
I2 :(gender = female, income = 1000, age = 40) (2)

Suppose the classifier f gives 1 (Yes) to individual I1, and 0 (No) to I2; i.e.,
f(I1) = 1 and f(I2) = 0. Since we have |f(I1) − f(I2)| > γ assuming γ = 0, I1
(and I2) is a discriminatory data item.

2.2 Verification Based Testing (Vbt)

We briefly review the algorithm of Vbt, shown in Algorithm 1. Vbt takes the
classifier under test (CUT) f , and outputs discriminatory data. Details of the
internal mechanism are given by steps as follows:
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Fig. 1. A decision tree for predicting who
gets a loan

Step-0: Make a training dataset
Dtrain with randomly generated data.
This step is executed once at the
beginning. The input data instances
in Dtrain are generated randomly, and
their output labels are obtained by
feeding them to CUT f .
Step-1: Make an approximation f ′ of
CUT f by training a decision tree (DT ) classifier with Dtrain. For the train-
ing in the first iteration, the data set Dtrain created in Step-0 is used. From
the second iteration, Dtrain updated in Step-5 is used, where training works as
re-training of the approximation f ′ for refinement. Figure 1 shows an example
trained DT (i.e., approximation f ′).
Step-2: Construct SMT constraints φf ′ from approximation f ′. The construction
of SMT constraints is designed to check the following: “Does a discriminatory
data instance exist in the given DT? ”

The construction first prepares two variable sequences x1
1 · · · xn

1 and x1
2 · · · xn

2 ,
where n is the number of attributes and denoted by x1 and x2. They express two
persons (person 1 and 2) as value assignments for the n variables. Using such
variables, the two constraint components ‘Unfair ’ and ‘DecTree’ are built.

The component ‘Unfair ’ is to check if two persons (x1, x2) that are identical
except for the protected attribute have different classifier outcomes as follows,
where classi represents the classifier output for individual i:

Unfair :=
∧

p∈P\Pprot

(xp
1 = xp

2) &

⎛

⎝
∨

p∈Pprot

(xp
1 �= xp

2)

⎞

⎠ & (class1 �= class2),

The component ‘DecTree’ specifies that the two persons (x1, x2) and classifier’s
outcomes should conform to the approximation f ′. The approximation f ′ is thus
encoded into SMT constrains as follows:

DecTreei(DT ) :=
∧

π: path

⎛

⎝
∧

1≤k<|π|
π.branch (k)

⎞

⎠ ⇒ π.leaf,

where π in the outer conjunction runs over all paths of DT ; each conjunct
is a predicate of implication form; for the k-th branch node of π, we denote
by π.branch(k) the (in)equality formula relating the value on an edge to the
attribute on the k-th branch node, and by π.leaf the (in)equality formula relat-
ing the value in the leaf node to the output label.

DT is encoded by conjoining each constraint of two individuals; i.e.
DecTree := DecTree1 & DecTree2. The constraint formula φf ′ is constructed
as φf ′ := DecTree ∧ Unfair . For example, the DecTree and Unfair constructed
from Fig. 1 are respectively expressed in line 1–14 and line 15–17 in Fig. 2.

We can obtain a discriminatory data instance by solving the constraints φf ′ ;
i.e., there exists a discriminatory data instance if the constraint is satisfiable,
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Fig. 2. SMT formula used for test case generation

and such an instance can be retrieved from the solution, which is given as a
value assignment for the variables in φf ′ . For example, the set of the constraints
in Fig. 2 is satisfiable. We can thus retrieve the value assignment for two persons
(x1, x2) and their outcome of classifier from the solution below. Observe that x1

(and x2) is a discriminatory data instance for approximation classifier f ′.

x1 : [gender1 = 0, income1 = 1000, age1 = 40, class1 = 1]

x2 : [gender2 = 1, income2 = 1000, age2 = 40, class2 = 0]

Step-3: Generate test cases by SMT solver. This step generates numerous
test cases using SMT constraints φf ′ constructed in Step-2. Vbt uses data
instances satisfying φf ′ (i.e., discriminatory data in the approximation f ′) as
test cases. This is based on the idea that discriminatory data in an approxi-
mation f ′ is likely to be one in CUT f , too.

A technical difficulty here arises on how to generate as many test cases as we
want using the SMT constraints φf ′ . Vbt realizes it by two kinds of technique,
called data pruning and branch pruning. The data pruning generates test cases
by repeatedly solving the constraints φf ′ , while adding blocking clauses in each
iteration to block regenerating the test cases that have been generated so far. The
branch pruning generates test cases by traversing paths of the DT. It generates
a maximum of 2k test cases for a DT with k hight (i.e., k attributes) (Algorithm
3 of [25]). Appropriate clauses are added to φf ′ to guide traversing the DT. Test
cases are generated by repeatedly solving such constraints.

Step-4: Execute test cases against CUT f to detect discriminatory data. Not
all test cases (i.e., discriminatory data in the approximation f ′) are necessarily
discriminatory data in CUT f1. Test cases are thus actually tested against f .

1 Test cases are thus also called candidates in [24].
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We distinguish success test cases, which are actually discriminatory data for
f , from failing ones, which are not.
Step-5: Update the training dataset by adding failing test cases. Failing test
cases represent points where the approximated classifier f ′ differs from CUT
f . Vbt accumulates such failing test cases in Dtrain for re-training the approx-
imation f ′ for refinement in Step-1 in the next iteration. By repeatedly refin-
ing f ′, Vbt more efficiently detects discriminatory data.

2.3 Hash-Based Sampling

Overview. The concept of hash-based sampling techniques of Boolean formula
F is to randomly divide the input space of F (denoted by, {0, 1}n, where n is
the number of variables in F ) into “small cells” of roughly equal size, and to pick
a solution from one such cell. The partition of the input space is virtually done
by determining a random hash function h : {0, 1}n → {0, 1, . . . ,m − 1}, where
let m be the number of cells, so that the inverse images h−1(0), . . . , h−1(m − 1)
correspond to the partitioned cells.

A common practice to realize this is to impose random XOR clauses on
F . Here, an XOR clause is a formula constructed from Boolean variables or
constants (0, 1) using XOR operators. XOR clauses have effect of restricting the
solution space (i.e., the set of all solutions of F ) to one randomly chosen cell.
Since imposing a single XOR clause on F means roughly halving the solution
space of F (and selecting one of them), imposing s XOR clauses means dividing
the solution space into 2s cells of roughly equal size (and selecting one of them).
A solution is sampled by applying an off-the-shelf solver to the resulted formula,
i.e., the conjunction of XOR clauses and F . We repeat this procedure but with
fresh XOR clauses in each repetition, to generate as many samples as we need.

Algorithm 2: XORSample

Parameter : q ∈ (0, 1), a positive integer s
Data: A satisfiable propositional formula F
Result: A solution of F

1 while True do
2 G ← s XOR clauses, each variable chosen

with probability q and the constant 1
with 1/2;

3 if F & G is satisfiable then
4 σ ← GetSolution(F & G);
5 if there is no other solution then

return σ ;

Hash-Based Sampling by
Gomes et al. Since the
invention of the hash-based
sampling by Sipser [26], a
variety of techniques for it
have been investigated [3–5,
9]. Among them, we review
the technique XORSample

by Gomes et al. [9], which
captures the essence of the
hash-based sampling and is
easy to apply and implement
in the Vbt approach.

Algorithm 2 shows the algorithm of XORSample [9]. The steps in each
iteration are: Generate XOR clauses (G) so that each clause selects each variable
in F with probability q and the constant 1 with probability 1/2; Find a solution
for the conjunction of F and G by applying a generic solver; If a solution σ is



Efficient Fairness Testing Through Hash-Based Sampling 41

found, then find another solution2 except σ; If it is confirmed that there is no
other solution, return σ, and otherwise go to the next iteration. The former case
means that σ is a unique solution for F ∧ G, i.e., the cell is enough “small”. The
algorithm terminates only if this case happens.

3 Proposed Method

In this section, we develop Vbt-X, a method of integrating the hash-based sam-
pling with Vbt. Its basic idea is to apply the essence of the hash-based sampling
(explained in Sect. 2.3) to the test generation part (Step-3) of the Vbt algorithm
(Algorithm 1). The development is presented in two-steps. We first develop the
basic method as ‘Basic Vbt-X’ in Sect. 3.1, and next develop several enhance-
ment techniques, presenting ‘Vbt-X’ in Sect. 3.2.

3.1 Basic Method (Basic Vbt-X)

Introducing Auxiliary Variables. The first difficulty we encounter in apply-
ing the hash-based sampling to Vbt is that the variables in SMT constraints
are inherently non-binary, i.e., their domains are often integers and real values.
Take, for instance, the constraint at line 2 in Fig. 2:

(gender1 = 0) ∧ (income1 < 1000) ⇒ (class1 = 0). (3)

The variable income1 is real-valued, although gender1 and class1 happen to be
binary in the current case. In general, the input space of SMT constraints is the
Cartesian product of the domains of multi-valued variables. In order to adapt
the hash-based sampling to this setup, we need to somehow consider dividing
this space into small cells.

To resolve this issue, we introduce auxiliary Boolean variables, called sam-
pling variables (denoted by z1, z2, · · · ), for the node constraints in DecTree, and
sampling constraints that assign the node constraints to the sampling variables
using the logical equivalence relation. Based on the setting, we impose random
XOR clauses over those sampling variables on an SMT formula, simulating Algo-
rithm 2.

For example, for constraint (3), we introduce the two sampling variables, z1
and z3, and two sampling constraints z1 ⇔ (gender1 = 0) and z3 ⇔ (income1 <
1000). Suppose here a single XOR clause, say z1 ⊕ z3, happens to be imposed.
Because of the sampling constraints to z1 and z3, the effect is that one of
(gender1 = 0) and (income1 < 1000) is true, but not both of them, and the
input space is partitioned into two: one satisfying z1 ⊕ z3 and the other. It is
thus expected that random XOR clauses introduced as above bring similar effect
as in XORSample to our SMT setup.

2 One more run of the solver is sufficient to do this, but we omit the details due to
the space limitation.
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Automatically Deciding the Number of XOR Clauses (s). To fully auto-
mate the testing process of the proposed technique, we decide the number of
XOR clauses (s) in the following way: increment s from 0 to 20 until for s XOR
clauses (G) randomly generated as in line 1, the formula φ′

f & I & G becomes
unsatisfiable; let the final value for s be multiplied by 0.5.

Basic Test Case Generation Using XOR Sampling. Based on the prepara-
tion explained in Sect. 3.1, Algorithm 3 shows the basic test generation algorithm
of our proposed method. The steps are: Introduce sampling variables for all node
constraints in DecTree and generate the sampling constraints for them (line 1).
For instance, the sampling constraints for the SMT formula in Fig. 2 are listed
in Fig. 3. Next, estimate the parameter s as explained in Sect. 3.1. In the while
loop, generate XOR clauses (G) each time; find a solution for φ′

f & I & G, if
exists, by applying an SMT solver; accumulate it.

Algorithm 3: Test case generation by XOR con-
straints
Parameter : q ∈ (0, 1)
Data: A positive integer k, a satisfiable SMT formula

φf ′ = DecTree ∧ Unfair
Result: k (possibly duplicate) solutions of φf ′

1 I ← Sampling constraints;
2 s ← estimated the number of XOR clauses

// Section 3.1
3 Sol ← ∅ // multiset
4 while |Sol| < k do
5 G ← s XOR clauses, each sampling variable

chosen with probability q, constant 1 with 1/2;
6 if φf ′ & I & G is satisfiable then

Sol ← Sol ∪ GetSolution(φf ′ & I & G) ;

7 return Sol;

Remark. We remark
that (1) the heuristic
search (in Sect. 3.1)
is ad-hoc and (2)
checking of unique
solutions (in line 5
of Algorithm 2) is
skipped in Algorithm
3. These may affect
the degree of unifor-
mity, but there are
several reasons for the
design choices. First,
we find it technically
difficult to determine
optimal s as well as
make solutions unique. Second, the proposed method performs better than Vbt

even with the ad-hoc search and without the uniqueness checking, as will be
shown in Sect. 4, which accomplishes our purpose. Third, modern techniques
(e.g., [3–5]) in SAT solving use different techniques, such as independent sup-
ports and solution enumeration (BSAT), instead of considering uniqueness of
solutions, and they not only lead to large performance gain but also provide
a theoretical guarantee of almost-uniformity, which we are more interested in
employing but it seems to cause unacceptable overhead if those techniques are
simulated in our SMT setup in a straightforward way.
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3.2 Enhancement (Vbt-X)

z1 ⇔ (gender1 = 0) z9 ⇔ (gender2 = 0)

z2 ⇔ (gender1 = 1) z10 ⇔ (gender2 = 1)

z3 ⇔ (income1 < 1000) z11 ⇔ (income2 < 1000)

z4 ⇔ (income1 >= 1000) z12 ⇔ (income2 >= 1000)

z5 ⇔ (income1 < 5000) z13 ⇔ (income2 < 5000)

z6 ⇔ (income1 >= 5000) z14 ⇔ (income2 >= 5000)

z7 ⇔ (age1 < 40) z15 ⇔ (age2 < 40)

z8 ⇔ (age1 >= 40) z16 ⇔ (age2 >= 40)

Fig. 3. Sampling constraints of the basic version

Reducing Sampling Vari-
ables. Properly determin-
ing sampling variables to
be used affects the degree
of uniformity as well as
time required for sampling.
We present three ways
of reducing sampling vari-
ables. The first two lever-
age the notion of indepen-
dent supports, and we begin
with reviewing it.

Independent Support. Independent support of Boolean formula F [12] is a subset
of variables in F such that in every solution of F , the truth values of these
variables determine those of the other variables. In the hash-based sampling, it
is desirable to focus on as a small independent support as possible and perform
sampling by generating XOR clauses over independent support only. This is
because XOR clauses have to decouple the dependency between variables in the
independent support; if XOR clauses included many other variables, they would
bring bias in such a way that the truth values of some variables in drawn samples
were unfairly tied. What is worse, it is extremely hard to find a solution of F
constrained by long XOR clauses. We will thus consider variables that turn out,
from the Vbt setup, to have the dependency in their truth values.

Equivalence. Because of the unfairness constraint Unfair , some pairs of SMT
variables having common non-protected attributes, say age1 and age2, must
have the same value. Hence, from the following two sampling constraints, the
sampling variables z7 and z15 must be logically equivalent: z7 ⇔ (age1 < 40)
and z15 ⇔ (age2 < 40). Clearly, it is sufficient to consider only one of them, say
z7, to be included in XOR clauses, and introduce only the sampling constraint
for the variable considered: z7 ⇔ (age1 < 40).

Exclusive OR. Consider the following constraints: z7 ⇔ (age1 < 40) z8 ⇔
(age1 >= 40). Clearly, one of (age1 < 40) and (age1 >= 40), is true, but not
both of them; the same applies to their sampling variables z7 and z8. Hence, it
is sufficient to consider only one of z7 and z8 to be included in XOR clauses, and
introduce only the sampling constraint for it.

Symmetry. Suppose we have a solution σ for the SMT constraints in Fig. 2, that
induces the following discriminatory data instance x1 (and x2):

x1 : [gender1 = 0, income1 = 1000, age1 = 40, class1 = 1]

x2 : [gender2 = 1, income2 = 1000, age2 = 40, class2 = 0]
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The following assignment σ′, obtained from σ by swapping x1 and x2, is also
satisfying the constraints.

x′
1 : [gender1 = 1, income1 = 1000, age1 = 40, class1 = 0]

x′
2 : [gender2 = 0, income2 = 1000, age2 = 40, class2 = 1]

This symmetry holds in general because of the construction of Unfair and
DecTree. That is, for any solution σ of φ′

f = DecTree & Unfair for x1 and x2,
the assignment, σ′, obtained from σ by swapping x1 and x2 is also satisfying. The
truth values of sampling variables differ only in those of the protected attribute,
i.e., gender in the above case. We do not want to distinguish σ and σ′. We
hence do not include all sampling variables of the protected attribute in XOR
clauses, and do not introduce the sampling constraints for them. For the running
example, the followings are ignored: z1 ⇔ (gender1 = 0), z2 ⇔ (gender1 = 1),
z9 ⇔ (gender2 = 0), and z10 ⇔ (gender2 = 1).

Figure 4 lists all sampling constraints for the version in which all variable
reductions are applied.

Shortening XOR Clause Length. As mentioned in Sect. 3.2, short XOR
clauses are preferable in practice. The variable reductions given so far are effec-
tive for shortening XOR clause length because the expected length is determined
by the number of sampling variables and the probability with which each variable
is chosen.

z3 ⇔ (income1 < 1000)
z5 ⇔ (income1 < 5000)
z7 ⇔ (age1 < 40)

Fig. 4. Sampling constraints of the
improved version

We here present another way, which is
expected to not sacrifice the degree of uni-
formity so much. In order to build an XOR
clause, for each attribute we randomly choose
one from the sampling variables having the
attribute in common and determine with
given probability q whether or not it is
included in the current XOR clause. For
instance, we have three sampling variables z3, z5, z7 in Fig. 4. Since z3 and z5
have the same attribute income, we choose one of z3 and z5 at random, and
then determine with probability q whether or not it is included. Clearly, the
expected length of an XOR clause is related to the number of non-protected
attributes.

4 Evaluation

This section reports our evaluation of the proposed technique by experiments.
For evaluation, we set the following two RQs.

RQ1: Can Vbt-X detect discriminatory data more efficiently than Vbt?
RQ2: Are the enhancement techniques of Vbt-X effective?
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RQ1 is the main RQ, since efficient detection of discriminatory data is the
main motivation of this work, like other algorithm development for individual
fairness testing [1,8,24]. In addition, recall that our work is motivated to improve
the Vbt framework, which is shown to perform better than other main black-box
testing approaches in [24]. RQ2 quantitatively evaluates performance improve-
ment brought by the enhancement techniques explained in Sect. 3.2.

4.1 Experimental Setup

For experiments to run Vbt, we use the Vbt implementation3 by the authors
of [24]. For all experiments, we use Vbt branch pruning for test generation
strategy, instead of data pruning, since it is shown in [24] that branch pruning is
more efficient. We have implemented the basic version and the improved version
of Vbt-X (which are respetively called ‘Basic Vbt-X’ and just ‘Vbt-X’), using
Python version 3.8.10 and Scikit-learn version 0.22.1, modifying the original
Vbt implementation. For a fair comparison, we use the same setup regarding
classifiers, datasets, and protected attributes as in [24], which render 16 (=
4 × 2 × 2) configurations, as follows:

– Classifier: Logistic Regression (LR), Random Forest (RF), Naive Bayes (NB),
Decision Tree (DT)

– Dataset: ‘Adult’ Census Income4, ‘German’ Credit Card5

– Protected attribute: Gender (Male, Female), Race (White, others), Age

For RQ1, we compare the numbers of detected discriminatory data by Vbt

and Vbt-X within a given execution time limit. We also investigate the cause of
the result. We specifically investigate two possibilities for it: the result is mainly
caused by difference in (1) the numbers of generated (and hence executed) test
cases, and/or (2) precision scores (i.e., hit ratios of discriminatory data over
generated test cases) of Vbt and Vbt-X.

For RQ2, instead of using the heuristic search to decide the number of clauses
s explained in Sect. 3.1, we compare Basic Vbt-X and Vbt-X by executing them
with s = 10. This is because Basic Vbt-X with automatic decision of s runs too
slow to detect any discriminatory data for most of the configurations, within
our execution time limit. We also investigate the cause of the result, similarly
to RQ1. We thus measure (1) numbers of generated test cases, and (2) precision
scores of Basic Vbt-X and Vbt-X.

For all experiments, we set ten minutes (600 s) for the execution time limit.
For each configuration, we execute 10 trials and take the average of them.
Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz Processor, 32 GB memory, run-
ning Ubuntu 20.04.4 LTS.

3 https://github.com/arnabsharma91/fairCheck.
4 https://archive.ics.uci.edu/ml/datasets/adult.
5 https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).

https://github.com/arnabsharma91/fairCheck
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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Table 1. The results of experiments. The rows represent configurations, each combined
from datasets, classifiers, and Protected features. The columns for ‘Vbt’ and the two
versions of ‘Vbt-X’ respectively represent the results of three criteria of the numbers of
detected discriminatory data (‘#Disc’), the number of generated test cases (‘#Tests’),
and precision scores (‘Prec.’), while their improvement ratios are shown in the next
columns (for ‘Improvement ratio’). The columns for ‘Basic Vbt-X (s = 10)’ and ‘Imp.
Vbt-X (s = 10)’ represent those for Basic Vbt-X and Improved Vbt-X with s =
10, appended with their improvement ratios in the next columns. The bottom row
‘avg./total’ shows the total numbers (for ‘#Disc’ and ‘#Test’) or averages (for ‘Prec.’);
and the row ‘#wins’ shows the numbers of configurations that the technique in the
column outperforms the competitor in the respective three criteria.

No. Dataset Clf. Prot. feature VBT Imp. VBT-X (s: auto) Improvement ratio Basic VBT-X (s = 10) Imp. VBT-X (s = 10) Improvement ratio
#Disc #Tests Prec. #Disc #Tests Prec. #Disc #Tests Prec. #Disc #Tests Prec. #Disc #Tests Prec. #Disc #Tests Prec.

1 Adult LR Gender 15 269 0.06 28 735 0.04 1.87 2.73 0.67 28 750 0.04 86 2015 0.04 3.07 2.69 1.00
2 LR Race 69 1864 0.04 52 2145 0.03 0.75 1.15 0.75 72 2365 0.03 91 4015 0.02 1.26 1.70 0.67
3 RF Gender 728 2161 0.34 1545 2925 0.53 2.12 1.35 1.56 1236 1950 0.63 1878 3475 0.54 1.52 1.78 0.86
4 RF Race 10 1896 0.006 110 2845 0.04 11.00 1.50 6.67 38 1980 0.02 86 3300 0.03 2.26 1.67 1.50
5 NB Gender 1669 3329 0.5 4580 5865 0.78 2.74 1.76 1.56 2233 4165 0.54 5033 6645 0.76 2.25 1.60 1.41
6 NB Race 784 3822 0.21 3837 5635 0.68 4.89 1.47 3.24 1780 4120 0.43 3908 6170 0.63 2.20 1.50 1.47
7 DT Gender 1688 2127 0.79 5075 5685 0.89 3.01 2.67 1.13 2784 3580 0.78 5777 6600 0.88 2.08 1.84 1.13
8 DT Race 1748 2531 0.69 5225 5960 0.88 2.99 2.35 1.28 1844 3265 0.57 5040 6325 0.80 2.73 1.94 1.40
9 German LR Gender 214 1772 0.12 244 2205 0.11 1.14 1.24 0.92 230 2065 0.11 324 2875 0.11 1.41 1.39 1.00
10 LR Age 173 1879 0.09 289 2615 0.11 1.67 1.39 1.22 307 2200 0.14 328 2990 0.11 1.07 1.36 0.79
11 RF Gender 168 1269 0.13 92 1805 0.05 0.55 1.42 0.38 89 1545 0.06 111 2175 0.05 1.25 1.41 0.83
12 RF Age 66 1286 0.05 116 1870 0.06 1.76 1.45 1.20 125 1615 0.08 129 2180 0.06 1.03 1.35 0.75
13 NB Gender 77 1297 0.06 82 1850 0.04 1.06 1.43 0.67 70 1605 0.04 127 2535 0.05 1.81 1.58 1.25
14 NB Age 165 2674 0.06 518 3245 0.16 3.14 1.21 2.67 421 2820 0.15 523 3695 0.14 1.24 1.31 0.93
15 DT Gender 1343 2403 0.56 3942 4440 0.89 2.94 1.85 1.59 1770 3085 0.57 3519 5060 0.70 1.99 1.64 1.23
16 DT Age 1081 2471 0.44 3505 4380 0.80 3.24 1.77 1.82 1930 3185 0.60 3109 4955 0.63 1.61 1.56 1.05

avg./total 9998 33050 0.26 29249 54205 0.38 2.92 1.64 1.47 14957 40295 0.30 30069 65010 0.35 2.01 1.61 1.16
#wins 2 0 5 14 16 11 N/A N/A N/A 0 0 6 16 16 8 N/A N/A N/A

4.2 Results

Table 1 shows the results of experiments, based on which we answer the RQs.

RQ1: Can Vbt-X detect more discriminatory data than Vbt? From
the columns for #Disc of Vbt and Vbt-X in Table 1, we can observe that Vbt-
X detects more discriminatory data than Vbt, by around 2.92 times in average,
for 14 out of 16 configurations, and by upto 11 times for configuration No. 4.

From the columns for ‘#Tests’ and ‘Prec.’ of Vbt, Vbt-X and their ‘Improve-
ment ratio’, we can observe the following: (1) Vbt-X generates more test cases
than Vbt by 1.64 times in average and for all the 16 configurations, and (2) the
precision of Vbt-X is higher than that of Vbt by 1.47 times in average and for
11 out of 16 configurations. We thus may be able to ascribe the above conclusion
to both of the number of generated test cases and precision scores.

However, with a finer analysis, we can more likely ascribe the conclusion to
the number of generated test cases than the precision score. First, we can say
that the improvement in the number of generated test cases (1.64) of Vbt-X is
higher than that of precision score (1.47). Second, Vbt-X wins Vbt for all the 16
configurations in the number of test cases, but only for 11 configurations in the
precision score. Third, for several configurations (No. 1, 9, 13), although precision
score of Vbt-X is lower than that of Vbt, Vbt-X can find more discriminatory
data since it generates more test cases.
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Answer for RQ1: Yes. Vbt-X can detect more discriminatory data than Vbt

by 2.92 times in average and for more than 87 (= 14/16) % configurations.

RQ2: Are the enhancement techniques of Vbt-X effective? From the
columns for ‘#Disc’ of ‘Basic Vbt-X(s = 10)’ and ‘Imp. Vbt-X (s = 10)’, we
can observe that Vbt-X detects more discriminatory data than Basic Vbt-X by
2.01 times in average and for all the 16 configurations.

From the columns for ‘#Tests’ and ‘Prec.’ of Basic Vbt-X, Vbt-X, and their
‘Improvement ratio’, we can observe that (1) Vbt-X generates more test cases
than Basic Vbt-X by 1.61 times in average and for all the 16 configurations,
and (2) the precision score of Vbt-X is higher than that of Basic Vbt-X by
1.16 times in average and for 8 out of 16 configurations, while Basic Vbt-X wins
for 6 configurations. We may ascribe the above conclusion to that Vbt-X can
generate more test cases, since the improvement on precision score may not be
enough significant.

Answer for RQ2: Yes, enhancement techniques explained in Sect. 3.2 are
effective, as they improve discriminatory-detecting ability of Basic Vbt-X by
2.01 times in average.

5 Related Work

Testing of individual fairness is first tackled by Galhotra et al. in [8]. The main
contribution is establishing its concept, including the concepts of similarity of
individuals and discriminatory data, which are explained in Sect. 2.1. The con-
cept has become the basis of most existing studies of individual fairness testing,
including our study. They also develop a black-box testing algorithm for this
concept, named Themis, which detects discriminatory data, given a classifier as
input.

Udeshi et al. [27] proposed an efficient black-box testing algorithm for indi-
vidual fairness, improving the algorithm by Galhotra et al. [8], The algorithm
enhances efficiency, by structuring it into two steps of global and local search.
This two-step structure of the algorithm leverages robustness of ML classifiers.

Another well-known technique for individual fairness testing is SG [1], fea-
tured with its efficient testing ability. Its mechanism is similar to Vbt, as it
internally builds an approximation classifier of the CUT using a decision tree,
and apply symbolic execution using SMT solver to generates test cases. How-
ever, Vbt differs from Sg in many details. E.g., Sg approximates the CUT in a
partial decision tree using local model explainer (LIME [21]), while Vbt do so
in an entire decision tree using training. Our work applies hash-based sampling
technique to Vbt, because it is reported that Vbt has a higher testing ability
than Sg [24]; however, our proposed technique is basically applicable to Sg, too.

Sharma and Wehrheim developed Vbt originally for testing monotonicity of
ML classifiers [25], which is similar but different concept from individual fairness.
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After extend the work [25] to fairness testing as Vbt in [24], they further extend
Vbt in several respects, as a technique called MLCheck [23]. An extension is to
apply other properties than monotonicity and fairness, such as security. Another
direction is to use Relu-based Deep Neural Network, (instead of using decision
trees,) for making approximation classifier of classifier under test.

Several other recent studies on black-box individual fairness testing are as
follows: A technique developed by Morales et al. [16] (Cgft) improves efficacy
of Aequitas, by applying combinatorial t-way testing (CT) [14] to the global
search of Aequitas. Patel et al. [20] investigates efficacy of applying combination
of CT and a counterfactual explanation technique, called DiCE[17].

Although above-mentioned techniques all take the black-box (a. k. a.,, model-
agnostic) testing approach, the algorithm proposed by Zhang et al. [28] takes a
white-box approach, targeting Deep Neural Networks (DNNs). The algorithm,
named Adversarial Discrimination Finder (Adf), employs adversarial sample
generation techniques using gradient analysis [10,15]. Although Adf can be only
applicable for DNN-based classifiers, their experiments show Adf finds more
discriminatory data than Aequitas and Sg.

6 Validity Threats

Our experiments use two datasets (‘Adult’ and ‘German’), the four classifiers
(LR, RF, NB, DT), and two attributes (‘Gender’ and ‘Race’), which are exactly
the same as those used in [24]. There are other datasets available in algorithm
fairness literature (see e.g., the survey of [19]), countless kinds of classifiers,
and more kinds of protected attributes (such as age, nationality). However, it
is practically infeasible to experiments all combinations, due to combination
explosions. Experiments in most of other studies on fairness testing [8,16,24,27]
thus also use two or three datasets, classifiers, and attributes.

Vbt-X inherently contains random behaviours, as it samples different data
on different executions. This threat is mitigated by taking average over 10 trials
for all experiments. In experiments for RQ2, we use s = 10 for the number of
XOR clauses s for a conservative evaluation, since Basic Vbt-X best performs
with s = 10 by preliminary experiments with s = 5, 10, 15. Our experiments
use 10min (600 s) for the execution timeout limit. There is no standard criteria
for execution time limit in fairness testing literature, but more studies seem to
use several hundred seconds for it; e.g., [24] uses 930 s and [28] uses 500 s. Our
timeout setting follows this convention.

7 Conclusion and Future Work

In this paper, we developed a black box testing technique for individual fair-
ness Vbt-X, by applying hash-based sampling techniques [3–5,9] to the test
generation of Vbt, a state-of-the-art fairness testing technique by Sharma and
Wehrheim [24,25]. The novelty of this work is to show the mechanism to apply
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hash-based sampling, which substantially different approach from Vbt, actually
works, and performs better than Vbt.

There are several directions for future work. One direction is to refine our
ad-hoc heuristic search to decide the number of XOR clauses, and improve the
degree of uniformity of sampled data in Vbt-X, as mentioned in Sect. 7. Several
related techniques proposed in SAT solving settings [3–5] may be applicable for
the purpose, although we may encounter difficulty to adapt them to our SMT
setting. Another direction in the technical side is to apply our proposed technique
to MLCheck [23], which uses Deep Nueral Network (DNN) for approximation
classifiers in Vbt framework, instead of decision trees. We are also interested in
applying Vbt-X to other properties such as security (e.g., Trojan attack) than
fairness as in [23]. The fourth direction is to conduct more thorough experi-
ments to evaluate our proposed techniques using more datasets, classifiers, and
protected attributes to generalize obtained results, as explained in Sect. 6.
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