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Preface

Message from the General Chair

I would like to welcome all readers to the proceedings of the 14th edition of
International SymposiumonSearchBasedSoftwareEngineering (SSBSE2022). SSBSE
continues to be the premier venue for researchers and practitioners who are interested
in the application of automated search techniques for challenging software engineering
problems. The 2022 edition of the symposium also marked its first return to a physical
event after the global pandemic during 2020 and 2021, being collocated with ESEC/FSE
in Singapore. However, considering the situations in many different parts of the world,
SSBSE 2022 was also hybrid: in addition to making all presentations available online,
it had a whole second day that took place online.

This complicated arrangement would not have been possible without the dedication
from the organization committee. I would like to thank Michail and Silvia, who worked
very hard to compile the excellent research track program. I also thank Marcio and
Jeongju, who led the Replications and Negative Results (RENE) track as well as the
New Ideas and Emerging Results (NIER) track, and Robert Feldt for the Journal First
track. I thank Giovanni, Gunel, and Thomas for working hard to run the Challenge track.
José and Chaima did an excellent job of maintaining the symposium’s online presence,
while Gabin provided impeccable web support.

Very special thanks go to our sponsors, Meta and the Korea Advanced Institute of
Science and Technology (KAIST). Finally, I would like to thank Vivy Suhendra at the
National University of Singapore for her support as the conference chair of ESEC/FSE
2022 - I do not know whether this collocation would have been possible without your
help.

November 2022 Shin Yoo
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Message from the Program Chairs

On behalf of the SSBSE 2022 Program Committee, it is our pleasure to present
the proceedings of the 14th International Symposium on Search-Based Software
Engineering. Search-Based Software Engineering (SBSE) is a research area focused
on the formulation of software engineering problems as search problems, and the subse-
quent use of complex heuristic techniques to attain optimal solutions to such problems.
A wealth of engineering challenges – from test generation to design refactoring and
process organization – can be solved efficiently through the application of automated
optimization techniques. SBSE is a growing field – sitting at the crossroads between
AI, machine learning, and software engineering – and SBSE techniques have begun to
attain human-competitive results. SSBSE 2022 continued the strong tradition of bring-
ing together the international SBSE community in an annual event to discuss and to
celebrate progress in the field.

This year, SSBSE had a total of 15 valid submissions in all tracks. We would like
to thank all authors and reviewers for their efforts in making the conference program
interesting and broad. Specifically, we received 11 papers to the Research track, one
paper to the Challenge track, and three to the RENE/NIER track. At the end of the
double-blind review process, where each submitted paper was reviewed by at least three
SBSE researchers, six papers were accepted to the Research track and one paper was
accepted to the Challenge track and the RENE/NIER tracks.

The program included two keynote talks, one from Lionel Briand, who reported
his experiences and lessons learned in applying search-based solutions to test and ana-
lyze ML-enabled systems, and one from Justyna Petke, who reported her experience
and research in genetically improving software systems. Additionally, the program also
included a tutorial on guidelines for evaluating multi-objective SBSE approaches from
Miqing Li and Tao Chen. Finally, the SSBSE community had the opportunity to discuss
the future of the Search-Based Software Engineering area with outstanding researchers
from the field.

We would like to thank the members of the SSBSE 2022 Program Committee. Their
continuing support was essential to further improve the quality of accepted submissions
and for the resulting success of the conference. Finally, the symposium would not have
been possible without the efforts of the Organizing Committee, which we would like to
thank. Particularly, we would like to thank:
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– General Chair: Shin Yoo
– Journal First Track Chair: Robert Feldt
– NIER and RENE Track Co-chairs: Márcio Barros and Jeongju Sohn
– Challenge Track Co-chairs: Giovani Guizzo, Gunel Jahangirova and Thomas Vogel
– Publicity Co-chairs: Chaima Boufaied and José Miguel Rojas
– Web Chair: Gabin An

We hope you will find the work presented in this volume interesting and enjoyable.

November 2022 Mike Papadakis
Silvia Regina Vergilio
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Applications of Search-based Software Testing
to Trustworthy Artificial Intelligence

Lionel C. Briand

University of Ottawa and University of Luxembourg

Abstract. Increasingly, many systems, including critical ones, rely on
machine learning (ML) components to achieve autonomy or adaptive-
ness. Such components, having no specifications or source code, impact
the way we develop but also verify such systems. This talk will report
on experiences and lessons learned in applying search-based solutions
to test and analyse such ML-enabled systems. Indeed, our results have
shown that metaheuristic search plays a key role in enabling the effec-
tive test automation of ML models and the systems they are integrated
into. Though other techniques are also required to achieve scalability
and enable safety analysis, for example, the black-box nature of ML
components naturally lends itself to search-based solutions.



Genetic Improvement of Software

Justyna Petke

University College London

Abstract. Genetic improvement uses computational search to improve
existing software with respect to a user-defined objective function, while
retaining some existing behaviour, usually captured by testing. Work
on genetic improvement has already resulted in several awards. GI has
been used, for instance, to automate the process of program repair, to
speed up software for a particular domain, and to minimize memory and
energy consumption. GI has also been used to transplant functionality
from one software to another in an automatedway. I will give an overview
of the genetic improvement area and present key components of a GI
framework.
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Methodology and Guidelines for Evaluating
Multi-Objective Search-Based Software Engineering

Miqing Li1 and Tao Chen2

1 University of Birmingham
2 Loughborough University

Abstract. Search-Based Software Engineering (SBSE) has been becom-
ing an increasingly important research paradigm for automating and
solving different software engineering tasks. When the considered tasks
have more than one objective/criterion to be optimised, they are called
multi-objective ones. In such a scenario, the outcome is typically a set of
incomparable solutions (i.e., being Pareto non- dominated to each other),
and then a common question faced by many SBSE practitioners is: how
to evaluate the obtained sets by using the right methods and indicators
in the SBSE context? In this tutorial, we seek to provide a systematic
methodology and guide- line for answering this question. We start off by
discussing why we need formal evaluation methods/indicators for multi-
objective optimisation problems in general, and the result of a survey on
how they have been dominantly used in SBSE. This is then followed by
a detailed introduction of representative evaluation methods and quality
indicators used in SBSE, including their behaviors and preferences. In the
meantime, we demonstrate the patterns and examples of potentially mis-
leading usages/choices of evaluationmethods and quality indicators from
the SBSE community, high-lighting their consequences. Afterwards, we
present a systematic methodology that can guide the selection and use
of evaluation methods and quality indicators for a given SBSE problem
in general, together with pointers that we hope to spark dialogues about
some future directions on this important research topic for SBSE. Lastly,
we showcase several real-world multi-objective SBSE case studies, in
which we demonstrate the consequences of incorrect use of evaluation
methods/indicators and exemplify the implementation of the guidance
provided.
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Search-Based Test Suite Generation
for Rust

Vsevolod Tymofyeyev and Gordon Fraser(B)

University of Passau, Passau, Germany

Gordon.Fraser@uni-passau.de

Abstract. Rust is a robust programming language which promises
safety and performance at the same time. Despite its young age, it has
already convinced many and has been one of the most popular program-
ming languages among developers since its first release. However, like any
other software, Rust programs need to be tested extensively. In this work,
we propose the first search-based tool, called RustyUnit, for automatic
generation of unit tests for Rust programs. RustyUnit incorporates a
compiler wrapper, which statically analyzes and instruments a given pro-
gram to generate and evaluate tests targeting high code coverage using
a many-objective genetic algorithm. An initial empirical study using 6
real-world open-source Rust libraries demonstrates the feasibility of our
approach but also highlights important differences and open challenges
for test generation for Rust programs.

Keywords: Rust · Search-based testing · DynaMOSA

1 Introduction

In the programming language world, there are two major sides: low-level lan-
guages, which offer better performance at the expense of safety, and high-level
languages, which provide safety for programmers through certain constructs such
as garbage collection that lead to runtime overhead. The young programming
language Rust tries to combine the best of both worlds: This statically typed lan-
guage for system programming promises a similarly high performance as C++
while maintaining extended type and memory safety by default, avoiding prob-
lems such as dangling pointers, data races, integer overflows, buffer overflows,
and iterator invalidation. This symbiosis makes the language particularly attrac-
tive to developers, which is demonstrated in a steady rise in popularity.

Even the Rust compiler cannot guarantee correctness, which means that
one still has to check the software, e.g., with unit tests. The vast majority of
existing search-based software testing (SBST) tools have been applied to man-
aged languages since the ideas rely on the ability to use some sort of reflection
and instrumentation. In contrast, Rust’s source code is compiled directly into
machine-executable code. It hardly provides any reflection capabilities, so both
analysis and instrumentation of the System under Test (SUT) need to be done
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Papadakis and S. R. Vergilio (Eds.): SSBSE 2022, LNCS 13711, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-031-21251-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21251-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-21251-2_1


4 V. Tymofyeyev and G. Fraser

during the compilation phase, i.e., statically. Another point in which Rust differs
strongly not only from managed languages is its affine type system [1], which
sets strict rules to how variables can be used. That is, they cannot be accessed
and passed around freely. This fact changes the view on how to design a typical
program in Rust. As a result, to the best of our knowledge there is no known
use of SBST for Rust as of this writing.

In this paper, we aim to investigate this gap in the literature by addressing the
problem of automatically generating test cases for Rust programs using a Genetic
Algorithm (GA). The generated tests represent sequences of statements, i.e., they
are built from a subset of the Rust language, and consider the peculiarities of the
language’s type and generic system. We implemented our approach as a wrapper
around the original Rust compiler and hook into different compilation phases to
execute our logic, such as extracting points of interest or instrumenting the SUT.

We evaluate our GA-based approach and compare it to the traditional base-
line of random search to obtain certainty about the correctness of the imple-
mentation and any performance gain of our approach over the minimum. The
evaluation is conducted using a case study built on our own library and a set
of 6 real-world Rust libraries, or crates as they are called in Rust’s jargon. We
provide the implementation of the tool as well as the case study [15].

2 Background

2.1 The RUST Programming Language

Rust syntax is mostly in line with the C family of languages. Enums and
structs are the custom data types available in Rust: Structs package related data
together and are like an object’s data attributes in object-oriented languages.
Enums define a type by enumerating its possible variants, which are most often
accessed via pattern matching, whereas struct fields can be accessed directly.

Associated Functions: Functions can be associated with types, e.g., with
enums or structs. Rust separates the definition of behavior from the definition
of data. Behavior for an enum or a struct is implemented in an impl block.
Associated functions whose first parameter is named self are called methods
and may be invoked using the method call parameter, for instance, x.foo(), as
well as the usual function call annotation. self is an instance of the type Self,
which, in the scope of a struct, enum, or trait, is an alias for the enclosing type.
Through self, we can access the state and methods of the instance. In Listing
1.1, the struct FixedSizeVector has two associated functions: new and size.

Traits: A trait describes an abstract interface that types can implement, consist-
ing of three types of associated items: functions, associated types, and constants.
Traits are implemented through separate impl blocks. The struct in Listing 1.1
provides an implementation of the trait HasSize in lines 15–19.

Generics and Trait Objects: Rust supports generic types and allows for
shared behavior via traits. Generics parametrize data structures and functions,
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such that different types can reuse the same code. This improves usability and
helps find type errors statically. The language provides static and dynamic dis-
patch. The former is realized through monomorphization, i.e., for each type a
generic implementation is used with, the compiler generates a concrete imple-
mentation of it and replaces the call sites with calls to the specialized functions.

Trait objects are usual instances of any type that implements the given trait,
where the precise type can only be known at runtime. A function that takes trait
objects is not specialized to each type that implements the trait: only one copy
of the code is generated, resulting in less code bloat. However, this comes at the
cost of requiring slower virtual function calls.

Listing 1.1. Example implementation of a generic vector struct with fixed size

1 trait HasSize {

2 fn size(&self) -> usize;

3 }

4

5 struct FixedSizeVector<T, const N: usize> {

6 elements: [T; N]

7 }

8

9 impl<T: Copy + Default, const N: usize> FixedSizeVector<T, N> {

10 fn new() -> Self {

11 Self { elements: [Default::default(); N] }

12 }

13 }

14

15 impl<T, const N: usize> HasSize for FixedSizeVector<T, N> {

16 fn size(&self) -> usize {

17 self.elements.len()

18 }

19 }

It is also possible to use trait bounds, i.e., constraints on generic type parame-
ters. Bounding ensures that generic instances are allowed to access the methods
of traits specified in the bounds. In Listing 1.1, the vector features a generic
element type T which is constrained to implement Copy and Default traits.

Unlike object-oriented languages, there is no inheritance in Rust. Common
behavior can be defined via traits, which can have super-traits. Besides structs,
it is also possible to parametrize methods and functions using generics. Traits
may also contain additional type parameters, which may be constrained by other
traits. Usually, the more constraints, the more difficult it is to find correct types
and automatically generate test cases that use those features and are compilable.
Listing 1.1 demonstrates that there might be different constraints for the same
type parameter (T) in different implementation contexts, and the program is
compilable, as we do not need any in the trait implementation. They are still
required to instantiate the struct, and it is not trivial to find the correct type to
comply with the appropriate set of constraints when generating tests.
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Ownership and Borrowing: In Rust, each value has an owner. There can only
be one owner of a value at a time, and once the owner goes out of scope, the value
is deallocated. For instance, the owner of a named value is the variable that is
initialized with that value. Literal expressions, e.g., a character or an integer, are
owned by the program itself and have a static lifetime. In cases where the value
needs to outlive a given scope, it can be moved to a new owner in a different
scope. This happens, for example, when a value is passed as a parameter to a
function, or on assignment, with the caveat that values allocated on the stack
are so cheaply copied that a move is never necessary.

Variable references can be immutable or mutable, meaning that the refer-
ence owner has write access. Creating a reference is also known as borrowing,
a fundamental interaction aspect in the ownership model. The reference owner
cannot modify the value by default when borrowing a value. It can only be bor-
rowed mutably if it is not referenced somewhere else during the borrowing. The
restrictive ownership model has particular implications for generating tests, i.e.,
we cannot use variables arbitrarily and need to observe their ownership state.

Lifetimes: A lifetime is an important aspect of borrowing and ensures that all
borrows are valid. A variable’s lifetime begins when it is created and ends when
it is destroyed. When we borrow a variable with &, the lifetime of the borrow
begins. Its end is determined by where the reference is still used.

2.2 Test Generation for Rust

Existing approaches for automatically testing Rust programs are mainly based
on fuzzing tools: AFL++ is a reengineered fork of the popular coverage-guided
fuzzer AFL [16], and afl.rs provides the ability to apply AFL++ to Rust.
LLVM libFuzzer is another coverage-guided evolutionary fuzzing engine. Some
tools build upon the libFuzzer and extend it with techniques like concolic test-
ing [9,12]. Both LLVM libFuzzer and AFL++ require manually written fuzz tar-
gets, though, i.e., a chain of invocations and a recipe where to put the generated
data. RULF is a fuzz target generator that, given the application programming
interface (API) specification of a Rust library, can generate a set of fuzz tar-
gets and seamlessly integrate them with AFL++ for fuzzing [8]. An essential
limitation of the tool is its inability to analyze and fuzz generic components.
SyRust explicitly targets Rust’s polymorphism and tries to generate compilable
tests by applying a semantic-aware synthesis algorithm [14]. The tool handles
the complicated trait system of the language by analyzing the compiler error
messages and iteratively refining the extracted API information from the SUT,
but for scalability reasons only targets few APIs in a crate at a time.

2.3 Search-Based Unit Test Generation

A state of the art approach to generate unit tests is by using the many-objective
search algorithm DynaMOSA [11], which is an extension to the many-objective
sorting algorithm (MOSA) [10]. Unlike a standard genetic algorithm, MOSA



Search-Based Test Suite Generation for Rust 7

considers each coverage target as an independent objective. Its peculiarity is
the preference sorting criterion to reward best test cases for each previously
uncovered target. In addition, the algorithm uses an archive to store tests that
cover new targets across iterations, rather than just returning best tests from the
last iteration. DynaMOSA addresses the problem that objectives are often not
independent of each other, e.g., the execution of one branch may depend on the
execution of another branch. DynaMOSA dynamically selects targets based on
the dependencies between the uncovered targets and the newly covered targets.

3 Search-Based Unit Test Generation for Rust

RustyUnit is a tool that implements search-based test generation for Rust. It
is based on established methods implemented in EvoSuite [6], and uses the
DynaMOSA algorithm to optimize tests for code coverage. The central differ-
ences of RustyUnit over prior work lie in the encoding, which has to ensure
that valid Rust code is produced, and the implementation of analysis, instrumen-
tation, and test execution, which are essential for guiding the search algorithm.

3.1 Encoding

RustyUnit models a chromosome as a test case, a sequence of statements or
program calls that execute parts of the SUT to reach and cover a particular
objective. We also need to take into account that Rust programs are not just
procedures but have a certain class-like structure. Test cases only need to call
functions with certain input data to achieve high coverage within a procedure-like
environment. However, instances of structs can have states that direct accesses
or method invocations can change. Similar to EvoSuite’s definition [5], each
statement si in a test case is a value v(si), which has a type τ(v(si)) ∈ T ,
where T is the finite set of types. There can be six different types of statements:

– Primitive statements represent numeric variables, e.g., let v = 42. The
primitive variable defines the value and type of the statement.

– Struct initializations generate instances of a given struct, e.g., let b =
Book { name: "The Hobbit" }. The object constructed in the statement
defines the value and statement’s type. A struct instantiation can have param-
eters whose values are assigned out of the set {v(sk) | 0 ≤ k < i}.

– Enum initializations generate instances of a given enum, e.g.,
let opt: Option<i32> = None;. The enum instance defines the value and
statement’s type. An enum instantiation can have parameters whose values
are assigned out of the set {v(sk) | 0 ≤ k < i}.

– Field statements access member variables of objects, e.g., let b = a.x.
The member variable defines the value and the field’s statement type. The
source of the member variable, i.e., a, must be part of the set {v(sk) | 0 ≤
k < i}. Since unit tests are usually contained in the same module as the unit
under test, tests can also legally access private fields.
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Fig. 1. The architecture of RustyUnit

– Associative function statements invoke associative functions of
datatypes, e.g., let b = a.len(). The owner of the function (if non-static)
and all of the parameters must be values in {v(sk) | 0 ≤ k < i}. The return
value determines the statement’s value and type. In the following, we refer
to associative functions, too, when we talk about functions, unless otherwise
stated.

– Function statements invoke loose functions, i.e., functions that are not
associated with any datatype, for instance, let a = foo(). The parameters
of the function must be values in {v(sk) | 0 ≤ k < i}. The return value
determines the statement’s value and type.

3.2 Implementation

To generate tests for a crate, RustyUnit has to complete several intermediate
steps that Fig. 1 illustrates:

1. First and foremost, the tool requires information about which data types the
Crate has and which functions the data types provide in order to be able to
model meaningful tests in the first place. Therefore, it performs analysis at the
High-level Intermediate Representation (HIR) level. HIR is a desugared and
compiler-friendly representation of the abstract syntax tree that is generated
after parsing, macro expansion, and name resolution. It is still close to what
the user wrote syntactically, but it includes implicit information such as elided
lifetimes and generated implementations. Also, some expression forms have
been converted to simpler ones, e.g., for loops are converted to a more basic
loop. The HIR analysis yields a collection of Generators. These provide an
overview of which data types can be instantiated in a test case, and which
methods can be invoked on those instances. RustyUnit also derives the
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ownership rules at this point, e.g., whether and how multiple statements may
use a certain variable in a valid way, as described in Sect. 3.1.

2. To evaluate the Generated Tests in terms of their coverage, RustyUnit
instruments the Mid-level Intermediate Representation (MIR) and compiles
the crate yielding an Instrumented Binary. MIR is a Control Flow Graph
(CFG). It shows the basic blocks of a program and how control flow connects
them. During instrumentation, the tool injects instructions into the MIR to
trace the execution of individual basic blocks and branches. If a generated
test executes a code location in the crate, the event is stored in the Execution
Traces. If an executed basic block is an entry point of a branch, RustyU-
nit computes how the values, which the conditional depends on, need to be
changed to hit other branches in that context, i.e., branch distance (BD). The
BD is 0 for all basic blocks that a test case executes.

3. The collected BDs in the execution traces are only one part. To calculate
the overall fitness value with respect to each coverage target, RustyUnit
must additionally determine the approach level (AL) from the corresponding
Control Dependence Graphs (CDGs), which it computes by analyzing the
MIR of a SUT. This implies building a post-dominator tree from the CFG,
which a MIR effectively is, and then computing the control dependencies.
AL describes how far a test case was from a target in the corresponding
CDG when the test case deviated from the course, i.e., the number of missed
control dependencies between the target and the point where the test case
took a wrong turn. With the CDGs and execution traces in place, RustyUnit
calculates the overall fitness value of a test t with respect to target m as
follows:

Fm(t) = Approach Level + α(Branch Distance)

To ensure that the branch distance, which can become very large, does not
dominate approach level, we use the normalization function α proposed by
Arcuri [2]:

α(x) =
x

x + 1
That is, the goal is to push the fitness value F of a test case with respect
to a coverage target to zero to cover the target. In each iteration, RustyU-
nit selects test cases that execute previously uncovered coverage targets and
stores them in the Archive.

4. Now, RustyUnit can either generate a new population and evolve it in the
next iteration, or, when the search budget is exhausted, return the archive,
i.e., the best tests found up to that point in the form of Rust source code.

RustyUnit implements these steps using compiler hooks, which invoke our
callbacks that perform analysis steps at an appropriate point of time. The tool
also employs a constant pool analysis in which it extracts string and numerical
constants from the source code, and several testability transformations based
on prior work by Fraser and Arcuri [6]. That is, RustyUnit exploits assertions
that the Rust compiler automatically inserts in some cases in the MIR of a
program, e.g., to check whether an array is accessed with an appropriate index
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or an integer addition does not overflow. Such an assertion is a branching point
with one of the branches leading to a program crash. Thus, RustyUnit tries to
direct the search into covering the failure branches generated by the compiler.

Handling Generics and Traits: When tests are generated for generic ele-
ments, it is sometimes difficult to replace a generic type parameter with a match-
ing concrete type because execution depends on the one concrete type [7]. The
problem of generics becomes relevant whenever the test generation algorithm
attempts to instantiate a new instance of a generic type, or to satisfy a param-
eter for a newly inserted method call. There are two scenarios of how RustyU-
nit handles statements with generic types: If RustyUnit generates a statement
whose return value is to be used as a parameter for another statement, the tool
replaces the generic type parameters of the return type by concrete ones, while
any other generic types are chosen at random; for instance, to generate an argu-
ment of type Option<i32>, RustyUnit could invoke foo from Listing 1.2 with
type parameter A being i32. Since B is not constrained by the concrete return
type and any trait bounds, the type is free to choose. Otherwise, all generic type
parameters of the corresponding statement are selected randomly.

Listing 1.2. Generic types A and B are used as parameters and return value

1 impl<A, B> for FooBar<A, B> {

2 fn foo(&self, x: B, v: &Vec<A>) -> Option<A> { /* ... */ }

3 }

In general, RustyUnit mainly uses primitive data types for a SUT to keep
the generated tests simple as far as this satisfies the defined trait bounds.

Test Execution: With Cargo, Rust provides a build system and a testing
framework out-of-the-box. In Java, generated tests can be executed directly
using Reflection and bytecode instrumentation, and coverage information can
be collected in the same runtime process. In Rust, we need to run the tests
“traditionally”, i.e., synthesize them into Rust source code, write them into the
appropriate source file of the SUT, compile, and execute. Due to incremental
compilation, the compiler generally only needs to recompile the changed test
modules. Nevertheless, this introduces a non-negligible runtime overhead that
RustyUnit tries tominimize by compiling all tests in a population at once and
concurrently executing them.

4 Evaluation

4.1 Experimental Setup

For evaluation we randomly chose 6 open-source crates from the Cargo’s crate
registry, resulting in a total of 2,965 functions and 12,842 MIR-level branches.
The libraries were chosen with respect to their testability: For experiments, it is
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Table 1. Number of lines of code, functions, and MIR-level branches in the case study
subjects

Case study Version LOC Functions Branches

time 0.3.7 5123 1158 1147

gamie 0.7.0 328 116 594

lsd 0.21.0 3151 654 5609

humantime 2.1.0 414 87 437

quick-xml 0.23.0 3408 832 2025

tight 1.0.1 921 118 3030
∑

13,345 2,965 12,842

necessary that the units are testable without complex interactions with external
resources (e.g., databases, networks, and filesystem) and are not multi-threaded.
We also ignored crates that used native features such as foreign function inter-
faces. Table 1 summarizes the properties of the case study subjects in terms of
the number of functions, branches, and lines of code.

We limited the length of test cases to L = 100 because we experienced this
to be a suitable length at which the test case execution does not take too long,
although the initial test cases are generated with only 30 statements each. The
population size for the GA was chosen to be 50. Additionally, we evaluated
two versions of the GA of RustyUnit, seeded and non-seeded. The seeded
version uses two optimizations. First, it samples available functions from the
SUT in generated tests in a specific order determined by a ring buffer, so that all
functions are guaranteed to be called in generated statements as long as enough
tests are generated, rather than randomly sampling the functions. Second, it
extracts constant literal values from the SUT’s MIR and uses them with the
probability of 0.4 whenever a primitive value is needed, instead of generating a
random one.

For evaluation, we also implemented a random search algorithm in RustyU-
nit, which generates random test cases in a manner similar to the initial pop-
ulation in the genetic algorithm of RustyUnit, although it does not apply
optimizations like recombination and mutation. It also exploits an archive and
stores test cases that execute previously uncovered targets in a SUT. The ran-
dom search approach in our evaluation uses the same probability parameters as
those set for the genetic algorithms. We compare the algorithms using the MIR
basic block coverage of test cases that remain after the algorithms have used
up the budget of executed tests. Other objectives could also be used but are
not implemented in RustyUnit yet. The budget is set to k = 5000. To prevent
long-running tests, we set a hard timeout of 3 s for the execution of a single
test case using the timeout attribute from the ntest1 crate. If a test execution
exceeds the timeout, it gets aborted and its coverage is recorded only until that

1 https://web.archive.org/web/20220522213803/https://crates.io/crates/ntest.

https://web.archive.org/web/20220522213803/https://crates.io/crates/ntest
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point. For each case study subject and each algorithm, we ran the experiments
30 times with different seeds for the random number generator to minimize the
influence of randomness.

Fig. 2. Basic block coverage results per crate

4.2 Results

The boxplot in Fig. 2 compares the actual obtained basic block coverage values
over 30 runs of RustyUnit’s GA and random search on the 6 open-source crates.
In total, the coverage improvement of RustyUnit using the seeded DynaMOSA
ranged up to 5% than that of random search. Meanwhile, vanilla DynaMOSA
performed worse on every crate in the case study. Calculated on all the crates
we evaluated, seeded DynaMOSA obtained an average coverage of 32%, whereas
random search and vanilla DynaMOSA obtained 31% and 23%, respectively.
The overall coverage results are not particularly high mostly due to traits that
we cannot handle or types that are too advanced for our primitive analysis. For
instance, we do not call functions that derived traits provide, e.g., Serialize
and Deserialize by the serde crate, which is a wide-spread (de-)serialization
library found in almost any mature crate. Other than that, seeded DynaMOSA
missed a few functions which random search did not miss; for example, the new
functions of some structs, which, once called, get covered completely due to
branchless structure. Similar limitations apply to the other crates. It seems that
at this point, a higher number of hit functions still plays a greater role than local
search of uncovered decision branches. This is also indicated by the fact that the
seeded GA performs much better than its vanilla variant. Our seeding strategy
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incorporates sampling all possible methods from the SUT one-by-one and usage
of the SUT’s constant pool. However, the first three crates hardly contain any
constants RustyUnit can practically leverage.

The squeezed boxes in the Fig. 2 suggest that the better performing algo-
rithms have reached the technical limit of our implementation in quite every run
for each crate. However, random search has a slight lead for some crates, i.e.,
time, gamie, and lsd, while the results of seeded algorithms are roughly similar
for the remaining ones, that is, humantime, quick xml, and tight. For the latter
ones, even vanilla DynaMOSA has caught up. The results seem to confirm the
findings of Shamshiri et al. [13] who demonstrated that for branchless code or
functions having predominately plateau branches, random search can yield at
least as good coverage values as GAs, while GAs excel at gradient branches.
Plateau branches are, for instance, comparisons of boolean values returned by
a function call; we cannot compute a meaningful distance for those branches
to guide genetic search, as opposed to gradient branches, e.g., comparisons of
two integers. The average depth of the CDGs for time and gamie is close to
1, which is a sign that most of their functions are shallow, or branchless, i.e.,
most basic blocks are control dependent on the root of the respective CDG. The
phenomenon especially involves generated functions, e.g., derived trait imple-
mentations. In turn, a shallow function code structure means that it is sufficient
to call it once to reach all basic blocks, which is why random search achieves
decent results on the evaluated crates. That also means that RustyUnit cannot
develop its full potential and employ guided search as it is mainly dependent on
branch distances, which for plateau branches can only be 0 or 1. As a result, for
some crates, random search continues to generate new test cases independently
and hits more uncovered functions faster, while the genetic algorithm tries to
surgically improve test cases that often cannot be improved in terms of fitness.

However, things look a bit different for humantime, quick xml, and tight.
humantime and quick xml feature a greater control dependence depth, which is
where both genetic algorithms start to shine at, as they now can additionally
leverage approach level for the fitness calculation. The average depth value of
quick xml is relatively low, though. At this point, however, our seeding strategy
helps the GA perform successfully. quick xml is an XML parser library, whose
API makes certain assumptions about the textual input it receives. For instance,
consider the implementation block for the new function of the BangType enum
in Listing 1.3, which, based on the input byte, decides which variant to return.
RustyUnit was able to extract the constant byte values used in the function
and inserted one of them in the test 4410.

The byte 91 is the ASCII value for ‘[’. That is, RustyUnit successfully cov-
ered one of the branches. That one is quite simple, though. Listing 1.4 demon-
strates another case of RustyUnit being able to extract and use a constant
value successfully. The function local name returns its name after stripping the
namespace, which is separated with a double colon usually. memchr is a function
that returns an Option with the index of the first occurrence of a symbol in a
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Listing 1.3. Enum BangType is part of the quick xml crate

1 impl BangType {

2 fn new(byte: Option<u8>) -> Result<Self> {

3 Ok(match byte {

4 Some(b’[’) => Self::CData,

5 Some(b’-’) => Self::Comment,

6 Some(b’D’) | Some(b’d’) => Self::DocType,

7 Some(b) => return Err(Error::UnexpectedBang(b)),

8 None => return Err(

9 Error::UnexpectedEof("Bang".to_string())

10 ),

11 })

12 }

13 }

14

15 #[test]

16 fn rusty_test_4410() {

17 let mut u8_0: u8 = 91u8;

18 let mut option_0: Option<u8> = Option::Some(u8_0);

19 let result_0: Result<BangType> = BangType::new(option_0);

20 }

Table 2. For each crate, the table reports the average basic block coverage obtained
by random search and DynaMOSA with seeding (and without)

Case study RS DynaMOSA Â12 p-value

time 0.58 0.56 (0.51) 0.11 (0.0) <0.001 (<0.001)

gamie 0.46 0.44 (0.34) 0.10 (0.0) <0.001 (<0.001)

lsd 0.37 0.35 (0.23) 0.22 (0.0) <0.001 (<0.001)

humantime 0.18 0.23 (0.18) 1.0 (0.52) <0.001 (<0.001)

quick-xml 0.09 0.12 (0.08) 1.0 (0.17) <0.001 (<0.001)

tight 0.18 0.22 (0.17) 0.96 (0.12) <0.001 (<0.001)

Average 0.31 0.32 (0.25) 0.52 (0.13)

string. If the name does not have a namespace, local name just returns the name
as is, otherwise it strips the namespace by returning a slice starting at i + 1.

In test 3247, RustyUnit invokes the function local name and builds a
dependency sequence, which initially uses a constant string “Attr::Empty”
in Line 10. RustyUnit again extracted the string value out of the constant pool
of the SUT. Since the string contains a colon, the execution hits the true case
when invoking local name in Line 15. In summary, although the crate quick xml
does not feature a particularly high control dependence degree, RustyUnit’s
seeded GA can still outperform random search using the seeding strategy.
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Listing 1.4. Struct BytesStart is part of the quick xml crate

1 impl<’a> BytesEnd<’a> {

2 pub fn local_name(&self) -> &[u8] {

3 let name = self.name();

4 memchr::memchr(b’:’, name).map_or(name, |i| &name[i + 1..])

5 }

6 }

7

8 #[test]

9 fn rusty_test_3247() {

10 let mut str_0: &str = "Attr::Empty";

11 let mut bcd_0: BytesCData = BytesCData::from_str(str_0);

12 let mut cow_0: Cow<[u8]> = BytesCData::into_inner(bcd_0);

13 let mut be_0: BytesEnd = BytesEnd {name: cow_0};

14 let mut be_0_ref: &BytesEnd = &be_0;

15 let mut u8_slice_0: &[u8] = BytesEnd::local_name(be_0_ref);

16 }

Fig. 3. Average basic block coverage development over generations

To better understand whether RustyUnit’s algorithm generally performs
better, we provide statistical results in Table 2. The table presents the Â12 effect
size values with respect to the basic block coverage we obtained for the crates in
the case study. We report the statistics of both, seeded and vanilla versions of
the GA (in brackets) in comparison to random search. For instance, for tight, the
Â12 value of 0.96 means that the seeded DynaMOSA obtained a higher coverage
in 96% of the cases. The table also provides results of the Mann-Whitney U
test that we conducted per crate with the H0 hypothesis that each pair of the
algorithms evaluated do not differ in terms of achieved coverage. We obtained
p-values lower than the traditional α = 0.05 for all crates, which means that the
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coverage differences over 30 executions are statistically significant. The seeded
DynaMOSA could only achieve better effect sizes for 3 out of the 6 crates.

All algorithms only achieve moderately high coverage up to 58%. The main
reason is that our analysis of the possible function invocations and types is still
very limited. We cannot execute functions of many generic traits since those
either require some advanced type and constraint analysis, or parameters that
we cannot instantiate. For instance, in case of Debug, which is one of the most
often implemented traits, its only method fmt requires an argument of type
std::fmt::Formatter that RustyUnit is not able to create using the current
implementation state. Usually, the parameter is provided automatically by the
compiler during macro expansion when one prints a value of a certain type that
implements Debug, e.g., with print!().

Figure 3 illustrates the development of the average basic block coverage over
all crates over the available 100 generations. For random search, we split the gen-
erated test cases into chunks to match the progress of the two other algorithms.
The line plot clearly indicates that the seeding strategy chosen has great impact
on the performance of the GA. It also outperforms random search on average.
In summary, we can answer the second research question as follows:

Summary: Despite the shallow search space of the crates used, which inhibits
the search, RustyUnit still achieves a comparable coverage to random test
generation, and for some crates, it achieves a significantly better coverage.

5 Conclusions

In this paper, we described our first foray into the challenging task of generating
unit tests for Rust code. This popular new language offers many new funda-
mental and engineering challenges. As our evaluation suggests, our RustyUnit
prototype tool manages to address many of these challenges, but there are many
remaining ones for future work. In particular:

– Traits: One of the most important aspects of Rust’s type system and, at the
same time, the biggest technical limitation of RustyUnit are traits, which
can become very complex and require advanced static analysis. To produce
compilable test cases that at least can invoke all possible functions in a SUT
and, moreover, achieve acceptable coverage results, one needs a sophisticated
approach to model the underlying type system, analyze constraints, and map
implementations to all appropriate datatypes. SyRust [14] presents a possible
approach to repairing tests that do not compile due to type errors in the
context of polymorphism.

– MIR: Rust compiles compound Boolean expressions into diamond-like sub-
graphs at the MIR level. Therefore, it is not trivial to determine what subex-
pression played a key role during a short-circuit evaluation and to trace the
correct branch distance.
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– Enums: Enumerations are first-class citizens in Rust. For instance, the two
most prominent enums, Option and Result, can be found in any crate using
the standard library. In contrast to other languages, enums are more powerful:
Their variants can wrap other datatypes or be structs themselves. Datatype
wrapping is especially a challenge when looking for suitable generators, if a
generator returns a datatype wrapped (possibly multiple times) into an enum.
Simply checking equality of types will fail in those cases.

– Tooling: Rust is a very young programming language, which implies that the
variety of tools tailored for very specific tasks is not yet as rich as it is for other
languages. For instance, there are no tools for program instrumentation such
as Javassist [4] or ASM [3] for Java. Therefore, we needed to write our own
compiler wrapper that parses crates’ internals and injects atomic instructions
for tracing. Given the size and complexity of the language, we had to limit
it to a reasonable minimum. Thus, the prototype of RustyUnit does not
support many language features of Rust, like slices or lamdas.

To support further research on test generation for Rust, RustyUnit is avail-
able as open source: https://github.com/foxycom/rusty-unit.
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Abstract. Since software faults are usually unknown, researchers and
developers rely on mutation analysis—i.e., seeding artificial defects,
called mutants—to measure the quality of their test suites. One aim of
test amplification techniques is to improve developer-written test cases
so that they kill more mutants and potentially find more real faults.
However, these tools tend to be limited in the types of changes and
improvements they can make to tests, while also receiving little guid-
ance to tests that kill new mutants. Alternatively, a tool like EvoSuite
can generate tests with the benefit of detailed fitness information and
have the benefit of more flexibility in terms of evolving a test’s struc-
ture. However, the process is typically not based on developer-written
tests, and consequently, the resulting test suites are less likely to be
accepted by human developers. In this paper, we propose modifications
to EvoSuite, in a technique we refer to as EvoSuiteAmp , which starts with
developer-written tests as seeds, and then aims to evolve these tests in
the direction of killing further mutants. We then empirically compare
EvoSuiteAmp with a state-of-the-art test amplification tool, DSpot , on 42
versions of 29 different classes from the Defects4J benchmark, using the
original developer-written test suites for each class as the starting point
for test generation. In total, EvoSuiteAmp achieves a statistically better
mutation score for 35 of these 42 versions when compared to DSpot .

Keywords: Search-based test case generation · Test amplification ·
Mutation analysis · Unit testing

1 Introduction

One of the challenges in software testing is deriving tests that are good at reveal-
ing faults [2]. But also, writing good tests manually is time-consuming, and
some consider it to be a tedious task [30]. For this reason, there has been a lot
of well-known work in automated test generation techniques, including in the
search-based software engineering community [21].

A widely used automatic test generation tool for Java is EvoSuite [13], which
generates JUnit tests. However, it has some limitations. Fundamentally, it cannot
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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solve the oracle problem [4]—human testers need to check that the assertions it
generates are correct. Furthermore, the tests it generates do not typically involve
human input, and require post-processing to make them more readable [8].

In contrast, test amplification explicitly aims to strengthen developer-written
tests [9]. The aim is to generate a new version of the developer’s test suite so
that it covers more corner cases and is more effective at finding faults. Since the
“amplified” test suite is based on the developers set of tests, it is likely more
understandable and acceptable to them [6]. The current state-of-the-art test
amplification tool, DSpot [10], utilizes developer-written tests to increase the
number of mutants (artificially seeded defects [17]) that they kill. DSpot “ampli-
fies” developer-written test cases by changing the values of literals in the tests,
method calls, or by adding assertions. Test cases that kill more mutants and
have fewer modifications are retained. However, test amplification tools them-
selves are subject to some limitations. Firstly, the types of changes they can
make to tests are limited and not as flexible as EvoSuite’s evolution process.
Furthermore, unlike search-based tools, they do not utilize fine-grained fitness
information to guide them to new tests. Test cases generated by DSpot that do
not kill new mutants, for example, will be discarded even if the test is actually
“close” to killing a new mutant and could be usefully improved in future.

The aim of this paper is to evaluate a potential “best of both worlds” app-
roach, in which we evaluate a version of EvoSuite that is capable of reading
developer-written tests as a starting point for test case generation. Leveraging
its ability to make more fundamental changes to the structure of a test case,
it then evolves those tests with the benefit of fine-grained fitness information
for killing new mutants. We then evaluate whether EvoSuite’s evolution and
mutation analysis technique could have a better performance in terms of killing
mutants when compared to DSpot ’s amplification technique. The motivation
behind this study is to understand how many more mutants could be killed by
test amplification tools if the principles of test amplification were applied dif-
ferently, in the flavor of a more flexible and more guided search-based style of
approach.

We compare this modified EvoSuite version, which we refer to as
EvoSuiteAmp , with DSpot using the developer-written tests in open source
projects as the starting point for test suite generation—specifically, 42 differ-
ent versions of 29 different Java classes in 7 different projects of Defects4J
(v2.0.0) [19]. Our experiments reveal that EvoSuiteAmp outperforms DSpot for 35
of the 42 Java class versions studied in terms of mutation score achieved. Over
30 repeated runs, EvoSuiteAmp was further capable of killing more “unique”
mutants that DSpot was not able to kill in any run for 36 of these 42 subjects.
EvoSuiteAmp and all the data collected is available in our replication package [1].

In summary, the contributions of this paper are as follows:

1. A new test improvement strategy that utilizes the flexibility of EvoSuite,
EvoSuiteAmp , that evolves test cases and leverages fitness information for
killing specific mutants (Sect. 3).



An Empirical Comparison of EvoSuite and DSpot 21

2. An empirical study with seven open-source projects comparing EvoSuiteAmp

with an existing state-of-the-art test amplification tool, DSpot (Sect. 4).
3. Results and analysis of the effectiveness of both tools in terms of mutation

score and mutants uniquely killed by each tool (Sect. 5).

2 Background

Mutation Analysis. Mutation Analysis is a way to evaluate the quality of a
test suite [11]. The idea is to make small artificial changes, known as mutants,
that mimic the mistakes that programmers could make in a program. Mutation
Analysis tools generate mutants by applying a set of rules, known as mutation
operators, to the program. The program that contains the mutants is executed
against the test suite, to assess the quality of the tests in it. If the result of run-
ning the mutated program is different from the original program, the mutant is
considered killed, and if it is the same, the mutant is considered alive—indicating
that the test suite needs some change/improvement to kill it. The proportion of
mutants that are killed as a percentage of all the mutants seeded is known as the
test suite’s mutation score. A test suite that achieves a higher mutation score is
generally considered better at detecting faults than one with a lower score [15].

Test Amplification. Unit test suites are usually written by developers man-
ually. This is a common practice as developers who wrote the program have
domain knowledge about the program [2]. A study by Grano et al. [16] shows
that tests that have been written by a developer tend to be more readable than
those automatically generated by a tool. However, the biggest challenge is to
create a good test suite that can detect faults [20]. Test amplification, a tech-
nique that improves a test suite by utilizing the existing developer-written tests
could improve a variety of goals, such as improving code coverage and mutation
score [9]. The main distinction between test amplification and general automated
test generation tools is that test amplifiers use existing developer-written tests
as a starting point, that they aim to improve/“amplify”.

Two main parts of the process of test amplification are input amplification
and assertion amplification. Input amplification involves forming new test cases
by changing values, literals, objects, or method calls in some original, developer-
written test case. Assertion amplification involves adding new assertion state-
ments to the test that verify the expected output of the amplified inputs. After
amplifying the inputs and assertions, a test amplification tool will derive several
new test cases from the developer-written tests. A test selector then selects the
test cases that kill new mutants with the fewest modifications from the original
developer-written tests they were based on.

DSpot [10] is a well-known test amplification tool that amplifies developer-
written tests. It takes, as input, the developer-written tests and the class that will
be tested. The amplifiers used in input amplification of DSpot are the changing
of literal values and method calls (by duplicating calls, removing them, or adding
new invocations). After the tool amplifies the inputs, it further changes a test
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case by adding new assertions. Finally, to select which test cases are to be kept,
DSpot measures the test cases based on the criteria that are used by the test
selector it is configured with. The default test selector of DSpot uses the PITest
mutation analysis tool [7] (a configuration of DSpot we refer to as DSpotMut),
which keeps test cases that kill mutants not killed by the original test suite,
and the number of changes from the original test case (with smaller changes
preferred over bigger ones). Another test selector option available on DSpot uses
the JaCoCo1 coverage test selector (that we refer to as DSpotCov ), which keeps
test cases that increase code coverage and execute unique paths.

Search-Based Test Generation. EvoSuite is an automatic test generation
for Java that uses genetic algorithms to generate a test suite [13] that has been
evaluated on many open-source projects in terms of code coverage and detecting
faults [31]. The default configuration of EvoSuite can produce a JUnit test suite
that maximizes the code coverage for each class. However, it can also be config-
ured to use a fitness function that aims to maximize the generated test suite’s
mutation score [14]. The fitness function that guides test generation towards
strongly killing mutants is formulated using three different distance metrics.
Firstly, it calculates the distance of the calling function on the test case if it
does not contain the function of the mutated statement. Secondly, it calculates
the distance to executing the mutant using the approach level and branch dis-
tance Finally, it calculates the mutation impact, where the mutants need to
infect the state and could propagate to an observable state.

EvoSuite typically starts by generating a random initial population of tests
that calls the class methods. However, this population can bee seeded using a
technique called carving [28] that harvests sequences of statements from the test
cases of an existing test suite. Assuming that developers have written some tests,
EvoSuite can take those tests and execute them to collect all potential reusable
objects. The objects will then be inserted as part of a newly created test case
(initialization). However, there are two limitations of this technique. It needs
the developer-written tests to be converted into a representation that could be
used in the EvoSuite search algorithm, and all the assertions from the developer-
written tests will be removed. This means that it does not preserve exactly the
same format that is being written by a developer.

3 Modifications Made to EvoSuite—EvoSuiteAmp

EvoSuite was originally designed to generate a test suite from scratch. In this
study, we need EvoSuite to read developer-written tests, remove mutants that
are killed by developer-written tests, and not to add new random test cases
during the search. With this in mind, we made four different modifications to
EvoSuite, which we refer to as EvoSuiteAmp , and are as follows:

1. Removing Killed Mutants by the Developer-Written Tests. We
set the fitness criteria of EvoSuiteAmp to both branch coverage and strong

1 Available at: https://www.eclemma.org/jacoco/.

https://www.eclemma.org/jacoco/
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mutation testing. Before starting the evolution, we remove the goals that
were met by the developer-written tests. This is to make sure that the search
focuses on the goals that are not covered yet. As an example, the class under
test will have mutant A,X ,Y , and Z . If the developer-written test could kill
mutant X ,Y , and Z , the only criteria that it needs to meet is to kill mutant
A only.
2. Seeding Developer-Written Tests into the Initial Population of
the GA. The second modification we made is on the initial population of
the test cases. The default behavior of EvoSuite is to randomly generate
new test cases. Instead of randomly generating new test cases, we used the
developer-written tests as the initial population of the search. This utilizes
the developer’s domain knowledge of the program. The initial population size
on the EvoSuite is set to 50 individuals, but in our study, we changed the
population size depending on the developer-written test suite size. This is all
done by using the carving technique that has been implemented in EvoSuite
[28], introduced in Sect. 2.
3. Tuning the Add New Random Test Case Rate to Zero. We tune
the settings of the parameter values of the evolutionary algorithm responsible
for generating the test suite. The default configuration of EvoSuite is to use
crossover, mutation, and randomly add new test cases into the population.
However, we change the rate of adding new random test cases to the popula-
tion of test cases to zero. This change means that the developer-written tests
are kept during evolution, without the addition of completely new, randomly
generated tests. This is crucial for maintaining similarity of the generated
tests to the original test suite, and keeping the test suite free of tests or part
of tests that are completely new or alien to the original developer. We still
allow modifications to inputs featuring in the tests, however, so that there is
scope for improving the original tests to kill more mutants, and for tests to
be recombined by the crossover operator. After a few generations, the fitness
of all individual chromosomes improves, where it will stop if it meets all the
criteria or if the search budget is exhausted. A study by Aniche et al. shows
that developers tend to copy and paste from previous test methods and mod-
ify their name, inputs, and assertions [2]. This effect is simulated, in part,
by crossover, with mutation focussed on modifying the developer-written test
inputs only.
4. Turning Off Test Suite Minimization. We turned off the EvoSuite test
suite post-process minimization feature in order to maintain the developer-
written tests, else they may be discarded following test suite evolution.

4 Empirical Study

This section details the experiment design of the empirical study we conducted
to assess EvoSuiteAmp , DSpotMut , and DSpotCov with respect to killing mutants.
We also include DSpotCov into the experiment because the EvoSuiteAmp fitness
criteria includes branch coverage. In the following, we refer to EvoSuiteAmp and
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Table 1. Subject programs used in this study

Subject Acronym Lines of Code Avg. # of
Mutants

# of
Unique
Classes

Evaluated

# of
Versions

Evaluated

Min Max Avg.

Commons-Cli Cli 56 200 104 261 2 3

Commons-Codec Cdc 162 355 242 253 3 4

Commons-Compress Crs 92 370 205 182 5 5

Commons-Csv Csv 105 1152 675 117 3 9

Jsoup Jsp 85 280 193 48 5 7

Commons-Lang Lng 52 1366 907 568 3 5

Commons-Math Mth 148 1091 469 662 8 9

Total 29 42

DSpot as distinct “tools”, while we breakdown the analysis of DSpot in terms of
the two configurations DSpotMut and DSpotCov (Sect. 2 for more information).
We designed our empirical study to answer the following four research questions:

RQ1: Which tool (EvoSuiteAmp or DSpot) kills the most mutants?
RQ2: Which tool kills the most “unique” mutants (mutants not killed by the
alternative tool)?
RQ3: Which tool kills the most mutants with the smallest test suites?
RQ4: Which tool provides the most consistent results when re-run multiple
times?

Subjects. We performed our experiment on the widely used benchmark
Defects4J (v2.0.0) [19], which contains 835 reproducible real faults on 17 open-
source projects. Although we are not specifically interested in the individual
bugs provided by this benchmark, it provides us with an ideal set of subject
classes and utilities with which we can evaluate the performance of both the
EvoSuiteAmp and DSpot tools. This includes an interface for test generation,
which among other things help with removing flaky tests—tests that pass and
fail without any changes to code [26]. It also incorporates the Major [18] muta-
tion analysis tool, which we use as independent arbiter of the mutants killed by
the test suites generated by both EvoSuiteAmp and DSpot tools (since DSpot
relies on PITest [7], while EvoSuite uses its own in-built mutation analysis).

We selected subject classes from Defects4J with which to perform our exper-
iment based on the following rules:

1. The project includes developer-written tests;
2. DSpotMut , DSpotCov , and EvoSuiteAmp were capable of using the provided

original developer-written tests,
3. Major [18], PITest [7], and EvoSuite could generate mutants for the project.
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After running every faulty version of each project in the Defects4J dataset,
42 faulty versions of 29 unique classes in 7 libraries met the requirements
above. Table 1 shows the details of these subjects. We found a large number
of Defects4J ’s classes/versions to be unusable for our study due to an issue with
DSpot ’s interface with its mutation analysis tool PITest needed for the study,
and problems compiling the class under test. We have contacted the owner of
the DSpot project, and it could not be resolved to date. Despite this, our final
subject set comprises a wide and diverse set of classes over a number of projects
that are suitable for our study.

DSpotMut &  
DSpotCov 

EvoSuiteAmp
Developer-

Written Tests

Mutants

Remove failing
tests

Test Suite
Regression Test

Suite Run Tests

MAJOR

Mutants Remove mutants
that is killed by
the Developer-
Written Tests

Defects4j 

Checkout a
version

Fig. 1. Overview of the experimental setup. We amplified the test suite using
EvoSuiteAmp , DSpotMut , and DSpotCov .

4.1 Experimental Procedure

Figure 1 shows the overview of our experiment. The tools are fed with developer-
written tests that were gathered from the test files in every project version (with
a particular fault) from Defects4J . For each version, as shown in Table 2, we
improved each class of the study’s original developer-written test suite (as pro-
vided by Defects4J ) using EvoSuiteAmp (using EvoSuite v1.2.0), and DSpotMut

and DSpotCov (using v3.2.0 of DSpot). We ran all experiments on the same work-
station, with 32 GB RAM and Intel i5 CPU @ 3.10 GHz, running Ubuntu 20.04.4
LTS. For both tools, we set the search budget time limit to 120 s, a commonly
used value for test suite generation, and one that is applied in the search-based
testing tool competition [25].

To take into account the non-deterministic nature of the tools, we repeat test
suite generation 30 times for each tool/configuration studied. While we did not
perform any internal modifications to DSpot—the build was downloaded from
their repository2 and configured to form DSpotMut and DSpotCov . We made the
modifications to EvoSuite to form EvoSuiteAmp detailed in Sect. 3.

2 Available at: https://github.com/STAMP-project/dspot.

https://github.com/STAMP-project/dspot
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To make sure that there will not be any failing (flaky) tests generated by
either tool, we used the fix test suite feature of Defects4J that removes failing
tests from the test suite until all of them pass. Without removing the failing tests,
flaky tests could interfere with the mutation score result. For all the developer-
written and generated regression test suites, we used the Major mutation testing
tool [18] to compute the mutation score. Major includes a summary of which
mutants are killed by each test suite. The summary helps in finding the additional
number of mutants that the generated test suites kill. We calculate the relative
increase of mutation score for each automatically improved test suite, over the
original developer-written version as:

%IncreaseKilled =
AverageMutantsKilledAmplified

TotalNumberOfMutants
× 100

Generated Test Suites. EvoSuiteAmp and DSpot generate the test cases in a
single test file. There are some cases where it has dependencies from other test
files that developers wrote, such as a utility class. Without importing dependen-
cies in EvoSuiteAmp and DSpot , the improved test suite files will have compila-
tion errors. For this reason, we made sure the improved test suite files always
imported these test suite dependencies.

Handling of Mutation Analysis in the Experiment. In this experiment,
we used strong mutation testing to evaluate the amplified tests. There were, in
effect, three different mutation testing tools involved in the study. EvoSuite uses
its own mutation analysis tool, while DSpot uses the PITest mutation analysis
tool as part of its test amplification process. Since both EvoSuite and DSpot use
different mutation analysis tools, it is not fair to compare the number of mutants
it kills with different tools, which could produce different results for the same
test suite. To avoid any bias in our study, we used a third mutation analysis
tool, in the form of Major [18] to perform mutation analysis after both EvoSuite
and DSpot generate the improved test suite. Since Major is Defects4J ’s default
mutation analysis tool, it was straightforward for us to apply this analysis.

Statistical Analysis. Since we are assessing algorithms that are making ran-
dom choices, we analyzed the data that we collected using well-established sta-
tistical analysis recommendations [3]. We repeated each experiment 30 times.
We then used the Mann-Whitney U-test to check for the significant differences
regarding the number of mutants killed, comparing EvoSuiteAmp with DSpotMut

improved test suites, and then EvoSuiteAmp with DSpotCov test suites, for each
version of each subject class. We used the 99% confidence interval, which means
that if the p-value is less than 0.01, our result is statistically significant. We
further calculate effect sizes, using Vargha-Delaney’s (Â) test. Again, we com-
pared EvoSuiteAmp with DSpotMut , and then EvoSuiteAmp with DSpotCov . An
Â value that is over 0.5 indicates that EvoSuiteAmp outperforms DSpot . Another
statistical analysis that we performed was finding the correlation between the
size of the test suite, and the mutation score. We used Spearman’s rank correla-



An Empirical Comparison of EvoSuite and DSpot 27

tion coefficient to find the relationship between the two variables. We used 99%
confidence interval to indicate if the result is statistically significant.

4.2 Threats to Validity

Naturally, there are threats to validity associated with our study. The first is
associated with subject selection. We chose to use versions of classes that are
part of the Defects4J benchmark, yet not all of the classes it provides could
be used in our study, due to problems in getting DSpot to work. However, we
were able to use 42 versions of 29 unique classes in 7 projects, which still pro-
vides a suitable number and diversity of subjects with which to carry out our
experiments and draw conclusions from the results. Another threat is related to
how mutation score is calculated, since EvoSuite and DSpot use different mecha-
nisms. EvoSuite provides its own implementation of a mutation analysis pipeline,
while DSpot uses PITest . To control this threat, we used a third tool, Major , to
provide an unbiased assessment across the results of the two tools. To control
the threats related to the non-deterministic behavior of both tools, we repeated
our experiments 30 times. To mitigate the threats associated with our statistical
analysis, and assumptions about the normality of the statistical distributions
of our results, we used non-parametric statistical tests. Finally, after generating
the test cases using both EvoSuiteAmp and DSpot , there are some cases where
it needs other test files to run, due to dependencies. This could have an impact
when calculating the mutation score. To mitigate this problem, we ensured all
improved test suites retained access to any dependent libraries and code.

5 Results

Answer to RQ1: Mutation Score. Table 2, part B, shows the mean of the
mutants killed by EvoSuiteAmp , DSpotMut , and DSpotCov . The table further
shows that EvoSuiteAmp is more effective at killing mutants for 35 out of the
42 versions (83.3%) than DSpotMut . It is also better at killing mutants for 27
out of the 42 (64.3%) versions compared to DSpotCov . EvoSuiteAmp is most
effective at killing mutants with classes from the Math project. All the class
versions that EvoSuiteAmp achieves a better mutation score have a p-value less
than 0.01. Where DSpotCov and DSpotMut achieve a better mutation score than
EvoSuiteAmp , the p-value is less than 0.01. When using the Â statistic to measure
effect size, we found that EvoSuiteAmp has a score that favours it over DSpotMut

in 35 out of the 42 projects and DSpotCov in 25 out of 42 versions (59.5%), each
time with an Â value greater than 0.8 (i.e., a large effect size).

Conclusion for RQ1. EvoSuiteAmp performs better than DSpotMut and
DSpotCov in terms of killing mutants.

Answer to RQ2: Unique Mutants. We also evaluated the cumulative number
of uniquely killed mutants after executing each of the 30 test suites on every
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Table 2. The result of test amplification on 42 versions after 30 runs for EvoSuiteAmp

(Evo), DSpotMut (DS), and DSpotCov (DJ).
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F
a
u
lt

V
e
rs
io
n

# of Killed Mutants S
ta

n
d
a
rd

D
e
v
ia
ti
o
n

#
o
f
U
n
iq
u
e

M
u
ta

n
ts

K
il
le
d

O
ri
g
in
a
l
T
S

M
u
ta

ti
o
n

S
c
o
re

%

In
c
re

a
se

K
il
le
d

%

#
o
f
K
L
O
C
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Evo DS DJ Evo DS DJ Evo DS DJ Evo DS DJ Evo DS DJ Evo DS DJ

Cdc-11 †18.2 16.5 20.0 †18.0 16.0 20.0 ◦1.2 1.2 0.0 20 20 20 63.9 †21.9 19.9 24.1 ∗0.2 0.1 0.3

Cdc-16 †◦90.5 2.0 7.0 †◦90.5 2.0 7.0 †◦23.3 1.0 0.0 †◦139.0 3 7 50.6 †◦9.9 0.2 0.8 ∗•0.7 <0.1 0.1

Cdc-17 †◦7.3 1.0 2.0 †◦7.5 1.0 2.0 †◦1.4 0.0 0.0 †◦9.0 1 2 43.5 †◦31.6 4.3 8.7 ∗•0.3 0.2 0.2

Cdc-18 †◦6.9 1.5 2.0 †◦7.0 2.0 2.0 †◦1.5 0.5 0.0 †◦9.0 2 2 43.5 †◦30.0 6.7 8.7 ∗•0.3 0.2 0.3

Cli-37 †◦13.7 1.0 1.0 †◦13.0 1.0 1.0 †◦4.3 0.0 0.0 †◦23.0 1 1 76.5 †◦3.7 0.3 0.3 ∗•1.4 <0.1 <0.1

Cli-38 †◦10.8 2.0 2.0 †◦11.0 2.0 2.0 †◦2.4 0.0 0.0 †◦15.0 2 2 76.1 †◦2.9 0.5 0.5 ∗•1.5 <0.1 <0.1

Cli-39 1.0 2.0 2.0 1.0 2.0 2.0 0.0 0.0 0.0 1 2 2 14.3 7.1 14.3 14.3 ∗•0.2 <0.1 0.2

Crs-34 †◦39.0 35.0 35.0 †◦40.0 35.0 35.0 †◦3.0 0.0 0.0 †◦44.0 35 35 48.2 †◦34.8 31.2 31.2 ∗•0.4 0.2 0.2

Crs-39 †◦57.5 36.0 36.0 †◦58.5 36.0 36.0 †◦4.0 0.0 0.0 †◦62.0 36 36 32.1 †◦51.3 32.1 32.1 ∗•0.8 <0.1 <0.1

Crs-40 †9.0 4.4 17.0 †9.0 4.0 17.0 ◦2.1 3.1 0.0 †15.0 12 17 37.2 †0.9 0.5 1.8 ∗•0.2 <0.1 <0.1

Crs-44 12.1 15.3 17.0 12.5 14.0 17.0 †◦3.1 1.5 0.0 †◦18.0 17 17 0.0 52.6 66.5 73.9 ∗•0.2 <0.1 <0.1

Crs-45 †◦108.4 56.3 63.0 †◦110.0 57.0 63.0 †◦14.6 1.3 0.0 †◦132.0 57 63 54.2 †◦18.7 9.7 10.9 ∗•0.8 0.2 0.2

Csv-01 †◦6.7 2.1 3.0 †◦6.5 3.0 3.0 †◦2.9 1.1 0.0 †◦16.0 3 3 41.7 †◦8.0 2.5 3.6 ∗0.3 <0.1 0.5

Csv-02 †◦9.6 2.0 7.0 †◦12.0 2.0 7.0 †◦3.3 0.0 0.0 †◦12.0 2 7 36.8 †◦50.5 10.5 36.8 ∗•0.3 0.1 0.1

Csv-04 †16.8 14.8 27.0 †17.0 15.0 27.0 †◦1.4 1.0 0.0 †20.0 18 27 40.0 †24.0 21.2 38.6 ∗0.3 0.3 0.9

Csv-06 †◦12.2 8.4 9.0 †◦12.0 8.0 9.0 †◦0.6 0.5 0.0 †◦13.0 9 9 35.0 †◦61.2 41.8 45.0 ∗•0.4 0.2 0.2

Csv-07 †14.7 12.9 23.0 †14.0 12.0 23.0 †◦2.3 1.5 0.0 †19.0 16 23 47.1 †21.0 18.4 32.9 ∗0.3 0.2 1.0

Csv-10 16.2 56.0 108.0 14.5 54.5 108.0 ◦6.3 10.3 0.2 33 75 109 28.2 5.7 19.7 38.0 ∗•0.6 0.2 0.5

Csv-11 †18.1 13.4 31.0 †18.0 13.0 31.0 ◦2.0 2.1 0.0 †23.0 18 31 42.0 †22.3 16.5 38.3 ∗0.3 0.2 1.0

Csv-12 †31.7 0.0 108.0 †33.0 0.0 108.0 †◦3.4 0.0 0.0 †36.0 0 108 50.3 †10.1 0.0 34.6 ∗•2.1 0.1 1.0

Csv-16 †22.4 12.2 46.0 †22.5 8.0 46.0 ◦4.3 7.4 0.0 †31.0 26 46 36.8 †19.6 10.7 40.4 ∗0.8 0.3 1.3

Jsp-58 9.7 20.1 29.0 8.0 19.0 29.0 †◦4.4 2.2 0.0 23 25 29 22.5 13.7 28.4 40.8 ∗0.1 <0.1 0.2

Jsp-69 †14.3 2.0 24.0 †15.0 2.0 24.0 †◦2.8 0.0 0.0 †18.0 2 24 2.6 †37.6 5.3 63.2 ∗0.2 0.1 0.4

Jsp-79 †◦2.3 0.0 0.0 †◦2.0 0.0 0.0 †◦0.5 0.0 0.0 †◦4.0 0 0 53.8 †◦9.0 0.0 0.0 ∗0.2 0.2 0.3

Jsp-80 36.6 46.0 49.0 35.0 46.0 49.0 †◦4.4 2.2 0.0 45 49 49 11.1 45.1 56.8 60.5 ∗•0.3 <0.1 0.2

Jsp-84 16.0 26.0 27.0 16.0 26.0 27.0 †◦2.2 0.0 0.0 20 26 27 0.0 38.2 61.9 64.3 ∗•0.2 0.1 0.1

Jsp-86 †◦6.9 1.5 0.0 †◦7.0 1.5 0.0 †◦2.1 1.5 0.0 †◦12.0 3 0 51.4 †◦19.6 4.3 0.0 ∗0.2 <0.1 0.2

Jsp-93 †15.7 4.0 18.0 †16.0 4.0 18.0 †◦2.6 0.0 0.0 †◦19.0 4 18 2.5 †39.2 10.0 45.0 ∗0.3 0.2 0.4

Lng-03 †517.8 484.2 545.0 †517.5 485.0 545.0 †◦12.2 8.9 0.0 †543.0 499 545 0.4 †58.2 54.5 61.3 ∗•2.2 1.2 1.6

Lng-04 ◦0.8 1.0 0.0 ◦1.0 1.0 0.0 †◦0.5 0.0 0.0 †◦2.0 1 0 82.9 ◦2.0 2.4 0.0 ∗•0.3 <0.1 <0.1

Lng-05 †◦104.0 5.0 8.0 †◦104.0 5.0 8.0 †◦3.1 0.0 0.0 †◦112.0 5 8 0.0 †◦73.8 3.5 5.7 ∗•0.4 0.2 0.2

Lng-07 †◦530.8 406.0 492.0 †◦530.5 407.5 492.0 ◦11.0 13.3 0.0 †◦554.0 449 492 0.4 †◦59.3 45.4 55.0 ∗•2.4 1.0 1.5

Lng-16 †◦520.7 416.2 490.0 †◦520.0 415.0 490.0 ◦10.9 12.8 0.0 †◦545.0 445 490 0.5 †◦59.6 47.7 56.1 ∗•2.3 1.1 1.5

Mth-09 †◦26.2 20.0 20.0 †◦26.0 20.0 20.0 †◦3.4 0.0 0.0 †◦32.0 20 20 51.6 †◦28.8 22.0 22.0 0.4 0.9 1.7

Mth-25 †◦112.9 41.9 82.0 †74.5 32.0 82.0 †◦72.3 13.2 0.0 †◦233.0 59 82 0.0 †◦32.2 12.0 23.4 ∗•0.3 <0.1 0.1

Mth-26 †◦157.0 51.4 65.0 †◦157.0 51.0 65.0 †◦4.2 0.7 0.0 †◦168.0 53 65 45.6 †◦33.3 10.9 13.8 ∗1.0 0.8 1.2

Mth-27 †◦152.1 51.2 65.0 †◦152.0 51.0 65.0 †◦3.4 0.6 0.2 †◦157.0 53 65 46.0 †◦32.6 11.0 13.9 ∗1.1 0.8 1.1

Mth-36 †◦85.6 54.0 71.0 †◦86.0 54.0 71.0 †◦10.7 0.0 0.0 †◦101.0 54 71 48.4 †◦23.3 14.7 19.3 1.5 2.2 2.8

Mth-52 †◦1509.6 181.0 187.0 †◦1497.0 181.0 187.0 †◦244.0 0.0 0.0 †◦1869.0 181 187 6.0 †◦55.1 6.6 6.8 ∗•1.1 0.2 0.5

Mth-53 †244.1 88.3 307.0 †255.5 82.5 307.0 †◦60.0 24.2 0.0 †◦311.0 142 307 26.5 †46.5 16.8 58.5 1.4 3.1 13.1

Mth-55 †◦536.2 266.0 266.0 †◦542.0 266.0 266.0 †◦24.3 0.0 0.0 †◦567.0 266 266 19.0 †◦68.5 34.0 34.0 ∗•1.5 0.8 1.0

Mth-56 †◦89.8 45.0 47.0 †◦90.0 45.0 47.0 †◦9.5 0.0 0.0 †◦111.0 45 47 0.0 †◦57.2 28.7 29.9 ∗•0.5 <0.1 <0.1

† EvoSuiteAmp performs significantly better than DSpotMut (p-value < 0.01)
◦ EvoSuiteAmp performs significantly better than DSpotCov (p-value < 0.01)
∗ EvoSuiteAmp generates more KLOC than DSpotMut

• EvoSuiteAmp generates more KLOC than DSpotCov
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tool. This means that mutants that are still alive after 30 runs are considered
as either stubborn mutants or equivalent mutants. We found that EvoSuiteAmp

killed more unique mutants in 36 out of the 42 versions (85.7%) when compared
to DSpotMut , and 27 out of the 42 versions (64.3%) when compared to DSpotCov .
This and more detailed information regarding the performance of each tool on
each class version can be seen in part D of Table 2.

Conclusion for RQ2. EvoSuiteAmp kills more unique mutants after 30 runs
when compared to DSpotMut and DSpotCov .

Table 3. Spearman correlation value (ρ) between test suite size (LOC) and mutation
score.

Tool p-value Correlation (ρ)

EvoSuiteAmp <0.01 0.698

DSpotMut <0.01 0.588

DSpotCov <0.01 0.608

Answer to RQ3: Size of Test Suite. Even though EvoSuiteAmp can kill more
mutants, it generates bigger test suites in general. When comparing DSpotMut to
EvoSuiteAmp , 39 out of the 42 class versions studied involved an improved test
suite that is smaller number of lines of code (KLOC) when DSpotMut was used,
and when comparing DSpotCov to EvoSuiteAmp , 26 out of the 42 class versions
had smaller test suites with DSpotCov . Furthermore, when comparing DSpotMut

to EvoSuiteAmp , the improved test suites for 27 out of 42 class versions (64.3%)
had a better ratio of killing mutants per line of code with DSpotMut , and similarly
26 out of 42 versions (61.9%) were better with DSpotCov than EvoSuiteAmp . In
all seven versions in which DSpotMut has a better mutation score, it improves
test suites with a smaller KLOC compared to EvoSuiteAmp . As an example,
Cli-39 as shown in Table 2 part G, EvoSuiteAmp generates 0.2 KLOC to kill
one mutant, while DSpotMut generates 0.1 KLOC to kill two mutants. When
comparing EvoSuiteAmp to DSpotCov , where DSpotCov has a better mutation
score, 8 out of 15 class versions (53.3%) have a lower number of LOC. As an
example, for Cdc-11, EvoSuiteAmp generates 0.2 KLOC while killing around
18 mutants and DSpotCov generates 0.3 KLOC, while killing 20 mutants. On
the contrary, Jsp-84, EvoSuiteAmp generates 0.2 KLOC while killing around six
mutants, and DSpotCov generates 0.1 KLOC, while killing 27 mutants.

In order to verify whether there is a correlation between the generated test
suite KLOC size and the increase of mutation score, we used the Spearman
rank correlation measure. Table 3 presents the correlation coefficients of each
tool. There is a strong correlation (ρ) between the EvoSuiteAmp size of the test,
and the increase in mutation score. In both DSpotMut and DSpotCov , there is
a moderate (ρ >0.4) correlation between the size and increase of the mutation
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score, and high correlation (ρ >0.7) for EvoSuiteAmp . All the tools’ p-values are
less than 0.01, which shows that there is statistical significance.

Conclusion for RQ3. EvoSuiteAmp generates a larger final test suite when
compared to DSpotMut and DSpotCov .

Answer to RQ4: Consistency. In order to investigate the non-determinism
rate on each tool, we calculated the mean, median, and standard deviation (σ)
of the mutation score for all 42 subject class versions over each of the respective
30 re-runs. Table 2 (parts B and C) shows the result of the calculations. The
mutation score EvoSuiteAmp produces has a greater standard deviation when
compared to DSpotMut and DSpotCov . There were only 7 out of the 42 versions
(16.6%) for which the DSpotMut produced a higher standard deviation, while
there was zero for DSpotCov .

Conclusion for RQ4. EvoSuiteAmp tends to show more varied behavior
when compared to DSpotMut and DSpotCov .

5.1 Discussion

We now discuss some of the ramifications of our results, along with further
observations made during the course of the experiments.

Mutation Score. The EvoSuiteAmp tool, in general, kills more mutants than
DSpot , which shows that using the distance to mutation fitness function that is
provided in EvoSuite can kill mutants that DSpot finds hard to kill. In the case
of amplifying developer-written tests using DSpotCov , it is not surprising that an
increase in code coverage also helped to increase the mutation score, as mutants
that are not reached by developer-written tests could not be detected. Overall,
the results show that EvoSuite’s evolution and mutation analysis technique is
much more suited to improving test suites to kill mutants than DSpot .

Unique Mutants. Furthermore, EvoSuiteAmp finds and kills more unique
mutants after 30 runs when compared to DSpotMut and DSpotCov . This shows
that EvoSuite explores more parts of the program than DSpot within the 30
runs and that it could find more unique mutants, further adding to our finding
that it is better at improving test suites to kill mutants than DSpot .

Test Suite Size. In answering RQ3, we found that EvoSuiteAmp usually creates
a bigger test suite when compared to the two configurations of DSpot , and that
there is a high correlation between killing mutants and a big test suite. However,
by looking at the mutants killed per number of lines of code, the value is not
significantly bigger. We set EvoSuiteAmp to not run the minimization technique
that the default EvoSuite does (see Sect. 3), to avoid original developer-written
tests being discarded—however, enabling this technique could reduce the lines
of code while maintaining the mutation score. We leave this experiment as an
item for future work.
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Consistency of Results. Finally, RQ4 shows that both DSpotMut and
DSpotCov give more consistent results over the 30 runs with each subject class
version. This potentially means, however, that EvoSuiteAmp has a higher chance
of exploring more edge cases due the higher degree of stochasticity that it evolves
the developer-written tests, and thereby could find more unique mutants, as
shown by the answer to RQ2.

Readability of Final Tests. Anecdotally, we noted that the tests produced
by EvoSuiteAmp were less readable than DSpot ’s. Some of this was due to the
inevitable disruption caused by the evolutionary operators (although we delib-
erately turned some of these off for this reason—see Sect. 4.1). In particular, the
carving procedure adapts developer-written tests to EvoSuite’s internal test case
representation, which causes them to lose some of their original qualities. This
is something that needs to be investigated in future work.

6 Related Work

There have been many works that have sought to generate tests based on existing
tests, for example to speed up the process of test generation [32], or as seeds as
the initial population of a search-based technique [12,28].

Test amplification is a research area that comprises techniques designed to
improve a developer-written set of test cases in some aspect. One of these aspects
is the test suite’s coverage and mutation score [9]. There have also been tech-
niques that attempt to improve new tests generated by the amplification process,
for example with respect to their readability [22] and potential redundancy [24].
Popular test amplification tools include DSpot for Java [10], studied in this paper,
and AmPyfier for Python [29]. Test Cube is a developer-centric test amplification
tool for Java [6] that operates as a plugin for the IntelliJ integrated development
environment, and builds on the techniques of DSpot .

However, none of these works directly compare test amplification tools
with techniques capable of fine-grained fitness information to guide the test
case search towards strongly killing mutants—functionality that is available in
EvoSuite.

Elsewhere, Olsthoorn et al. [23] applied model seeding that could contribute
improving mutation score while maintaining readability of the test cases. There
have been some studies on how to amplify tests made by Google [27] and Face-
book [5], which asked the professional developer to generate new tests manually
that help in increasing mutation score. The two studies are different to ours,
however, as they focus on trying to amplify the tests manually, whereas in the
study of this paper, we focus on trying to automate this process.

7 Conclusions and Future Work

Test amplification tools aim to improve developer-written tests, but are limited in
the changes they can make and are not guided by fine-grained fitness information.
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Search-based test case generation tools like EvoSuite, on the other hand, can
benefit from the guidance provided by fitness functions, and have a lot more
control over the structure of tests, but are limited in terms of their re-use of
developer tests and the final readability of the tests they generate.

In this paper, we formulated a version of EvoSuite, EvoSuiteAmp , that uses
its carving functionality to start the search on the basis of developer-written test
code, and evolves the tests towards killing mutants. When evaluating it against
the state-of-the-art Java test amplification tool DSpot , EvoSuiteAmp was better
at killing more mutants and killing more unique mutants that DSpot was found
to never kill in any of the 30 re-runs of our experiments.

In essence, our paper shows that it is possible for automated tools to kill
more mutants when starting from developer-written tests, so long as they are
given more flexibility in terms of modifying those tests, as well as adequate
guidance. However, the downside is less readability of the final tests, since they
are further away from the original ones provided by developers. This suggests two
possible alternative avenues for future work. Firstly, test amplification tools like
DSpot could be improved with finer-grained fitness information, and modified to
not throw away tests that are improved with respect to fitness goals—with the
intention of further improving them so that they eventually kill more mutants;
and/or secondly, tools like EvoSuite should be adapted, so they are better at
utilizing developer-written tests as a starting point for the search, with the added
capability of retaining the characteristics of the original tests, where possible.
In particular, work needs to be done in improving EvoSuite data structure for
encoding tests, so that it can better accommodate the wide variety of styles in
which JUnit test cases are written.
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Abstract. There is a growing concern on algorithm fairness, according
to wider adoption of machine learning techniques in our daily life. Test-
ing of individual fairness is an approach to algorithm fairness concern.
Verification Based Testing (VBT) is a state-of-the-art testing technique
for individual fairness, that leverages verification techniques using con-
straint solving. In this paper, we develop a black-box individual fairness
testing technique Vbt-X, which applies hash-based sampling techniques
to the test case generation part of Vbt, aiming to improve its testing
ability. Our evaluation by experiments confirms that Vbt-X improves
the testing ability of Vbt by 2.92 times in average.

Keywords: Algorithm fairness · Fairness testing · SAT/SMT solving

1 Introduction

Decision making algorithms based on machine learning (ML) have been more
widely adopted in our daily life, in e.g., criminal sentencing [13], financial and
insurance [2], hiring [11], (see [19], for more examples). Such algorithmic decision
making can overcome some limitations of human decision making, however, there
is also a growing concern on fairness of such algorithms, since they tend to
be biased, unfairly treating individuals based on sensitive attributes, such as
race, gender, and age. For example, Compas algorithm, which predicts future
criminal, used to determine criminal sentencing, is known to be biased against
black defendants [13].

Testing of individual fairness is an approach to algorithm fairness concern.
Individual fairness is a concept of algorithm fairness, which states that an ML
classifier should give similar prediction to similar individuals [7]. Testing of indi-
vidual fairness aims to detect data that violate the concept (called, discrimina-
tory data), contained in the given ML classifier under test (CUT). The subject
has been studied extensively in previous years, which renders a variety of test-
ing techniques e.g., [1,8,16,23–25,27,28]. These testing techniques respectively
use their own search algorithms to generate a set of test cases (i.e., a test set),
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which can effectively detect discriminatory data, from the huge input space of
the given CUT.

Verification Based Testing (Vbt) [24,25], recently developed by Sharma and
Wehrheim, is a state-of-the-art black-box testing technique for individual fair-
ness. While Vbt detects the presence of discriminatory data in a given CUT, its
basic mechanism internally builds a decision tree (DT) classifier represented in
SMT (Satisfiability Modulo Theory) constraints as an approximation classifier
of CUT, and generates test cases applying SMT solving to the constraints. In
the mechanism, a key technical challenge lies on the test generation part, since a
technique is required to efficiently search a test set to effectively detect discrim-
inatory data, given the SMT represented DT classifier. Vbt proposes two test
search techniques, called data pruning and branch pruning. The more elaborated
one, i.e., branch pruning, tries to generate diverse test cases by traversing the
(SMT-represented) DT, using repetitive calls of SMT solver.

In this paper, we develop an individual fairness testing technique, named
Vbt-X, by applying the hash-based sampling [3–5,9] in the test generation part
of Vbt. The hash-based sampling techniques, given a logical formula φ, generate
diverse solutions of φ. Its advantage is the ability to sample diverse solutions at a
reasonable computational cost. The techniques have been studied actively, with
applications such as probabilistic inference [22], network reliability estimation [6],
and verification [18]. Our aim is to leverage its diverse sampling ability in the
test generation (i.e., test search) part of Vbt, to improve testing ability of Vbt.
We also devise several enhancement techniques to improve efficiency of Vbt-X.
Our evaluation confirms that Vbt-X achieves a higher testing ability than Vbt

by 2.92 times in average.
This paper is organized as follows: Sect. 2 reviews the concept of individ-

ual fairness, the algorithm of Vbt and the hash-based sampling. In Sect. 3, we
explain the basic approach of our proposed technique, as Basic Vbt-X, and
introduce several enhancements to Basic Vbt-X, proposing Vbt-X. Section 4 is
devoted to evaluation of Vbt-X by experiments. We discuss related studies in
Sect. 5, and mention validity threats of this study in Sect. 6. Section 7 concludes
this paper, discussing future work also.

2 Background

This section reviews individual fairness testing (referring to [16]), Vbt [27] and
hash-based sampling [3–5,9].

2.1 Individual Fairness Testing

Let P = {p1, p2, · · · , pn} be a set of attributes (or parameters), for n ∈ N. We
use pi to indicate the i-th attribute in P . Each attribute pi ∈ P is associated
with a set of values, called the domain of pi, denoted by Dom(pi), such that
(Dom(pi))i∈n is pairwise disjoint. The input space I of a set of attributes P is
the Cartesian product of the domains of p1, p2 · · · pn(∈ P ), i.e., I = Dom(p1) ×
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Algorithm 1: Vbt algorithm
Data: Classifier (f), Iteration limit (limit)
Result: Discriminatory data set (Ddisc)

1 Step-0: Make a training dataset Dtrain with randomly generated data;
2 repeat
3 Step-1: Make an approximation f ′ of CUT f by training a decision tree

classifier with Dtrain ;
4 Step-2: Construct SMT constraints φf ′ from approximation f ′ ;
5 Step-3: Generate test cases by SMT solver;
6 Step-4: Execute test cases against CUT f , to detect discriminatory data;
7 Step-5: Update the training dataset Dtrain with failing test cases;
8 until Iteration exceeds limit ;

Dom(p2)×· · ·×Dom(pn). An element I of I is called a data item or data instance.
We also introduce Pprot ⊆ P as the set of protected attributes (e.g., gender, race,
age). An ML classifier, whose input space is I, is a function f such that f(I) is
the output (i.e., decision) that the classifier f makes for input I.

Definition 1 (Individual discriminatory data and Fairness [27]). Let φ
be a classifier under test (CUT), γ be the pre-determined threshold (e.g. chosen
by the user), and I, I ′ ∈ I. Assume that there exists a non-empty set Q ⊆ Pprot

s.t. for all q ∈ Q, Iq �= I ′
q and for all p ∈ P\Q, Ip = I ′

p. If |f(I) − f(I ′)| > γ,
then I (also I ′) is called a discriminatory data item of the classifier f , as an
instance that manifests the violation of (individual) fairness in f .

Example 1. Consider an ML classifier f that, taking an individual as input,
predicts if the individual gets a loan. Individuals are schemed by three attributes
of ‘gender’, ‘income’, and ‘age’, and suppose ‘gender’ is the protected attribute.
Consider the following two individuals I1 and I2 that differ only in the protected
attribute:

I1 :(gender = male, income = 1000, age = 40) (1)
I2 :(gender = female, income = 1000, age = 40) (2)

Suppose the classifier f gives 1 (Yes) to individual I1, and 0 (No) to I2; i.e.,
f(I1) = 1 and f(I2) = 0. Since we have |f(I1) − f(I2)| > γ assuming γ = 0, I1
(and I2) is a discriminatory data item.

2.2 Verification Based Testing (Vbt)

We briefly review the algorithm of Vbt, shown in Algorithm 1. Vbt takes the
classifier under test (CUT) f , and outputs discriminatory data. Details of the
internal mechanism are given by steps as follows:
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Fig. 1. A decision tree for predicting who
gets a loan

Step-0: Make a training dataset
Dtrain with randomly generated data.
This step is executed once at the
beginning. The input data instances
in Dtrain are generated randomly, and
their output labels are obtained by
feeding them to CUT f .
Step-1: Make an approximation f ′ of
CUT f by training a decision tree (DT ) classifier with Dtrain. For the train-
ing in the first iteration, the data set Dtrain created in Step-0 is used. From
the second iteration, Dtrain updated in Step-5 is used, where training works as
re-training of the approximation f ′ for refinement. Figure 1 shows an example
trained DT (i.e., approximation f ′).
Step-2: Construct SMT constraints φf ′ from approximation f ′. The construction
of SMT constraints is designed to check the following: “Does a discriminatory
data instance exist in the given DT? ”

The construction first prepares two variable sequences x1
1 · · · xn

1 and x1
2 · · · xn

2 ,
where n is the number of attributes and denoted by x1 and x2. They express two
persons (person 1 and 2) as value assignments for the n variables. Using such
variables, the two constraint components ‘Unfair ’ and ‘DecTree’ are built.

The component ‘Unfair ’ is to check if two persons (x1, x2) that are identical
except for the protected attribute have different classifier outcomes as follows,
where classi represents the classifier output for individual i:

Unfair :=
∧

p∈P\Pprot

(xp
1 = xp

2) &

⎛

⎝
∨

p∈Pprot

(xp
1 �= xp

2)

⎞

⎠ & (class1 �= class2),

The component ‘DecTree’ specifies that the two persons (x1, x2) and classifier’s
outcomes should conform to the approximation f ′. The approximation f ′ is thus
encoded into SMT constrains as follows:

DecTreei(DT ) :=
∧

π: path

⎛

⎝
∧

1≤k<|π|
π.branch (k)

⎞

⎠ ⇒ π.leaf,

where π in the outer conjunction runs over all paths of DT ; each conjunct
is a predicate of implication form; for the k-th branch node of π, we denote
by π.branch(k) the (in)equality formula relating the value on an edge to the
attribute on the k-th branch node, and by π.leaf the (in)equality formula relat-
ing the value in the leaf node to the output label.

DT is encoded by conjoining each constraint of two individuals; i.e.
DecTree := DecTree1 & DecTree2. The constraint formula φf ′ is constructed
as φf ′ := DecTree ∧ Unfair . For example, the DecTree and Unfair constructed
from Fig. 1 are respectively expressed in line 1–14 and line 15–17 in Fig. 2.

We can obtain a discriminatory data instance by solving the constraints φf ′ ;
i.e., there exists a discriminatory data instance if the constraint is satisfiable,
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Fig. 2. SMT formula used for test case generation

and such an instance can be retrieved from the solution, which is given as a
value assignment for the variables in φf ′ . For example, the set of the constraints
in Fig. 2 is satisfiable. We can thus retrieve the value assignment for two persons
(x1, x2) and their outcome of classifier from the solution below. Observe that x1

(and x2) is a discriminatory data instance for approximation classifier f ′.

x1 : [gender1 = 0, income1 = 1000, age1 = 40, class1 = 1]

x2 : [gender2 = 1, income2 = 1000, age2 = 40, class2 = 0]

Step-3: Generate test cases by SMT solver. This step generates numerous
test cases using SMT constraints φf ′ constructed in Step-2. Vbt uses data
instances satisfying φf ′ (i.e., discriminatory data in the approximation f ′) as
test cases. This is based on the idea that discriminatory data in an approxi-
mation f ′ is likely to be one in CUT f , too.

A technical difficulty here arises on how to generate as many test cases as we
want using the SMT constraints φf ′ . Vbt realizes it by two kinds of technique,
called data pruning and branch pruning. The data pruning generates test cases
by repeatedly solving the constraints φf ′ , while adding blocking clauses in each
iteration to block regenerating the test cases that have been generated so far. The
branch pruning generates test cases by traversing paths of the DT. It generates
a maximum of 2k test cases for a DT with k hight (i.e., k attributes) (Algorithm
3 of [25]). Appropriate clauses are added to φf ′ to guide traversing the DT. Test
cases are generated by repeatedly solving such constraints.

Step-4: Execute test cases against CUT f to detect discriminatory data. Not
all test cases (i.e., discriminatory data in the approximation f ′) are necessarily
discriminatory data in CUT f1. Test cases are thus actually tested against f .

1 Test cases are thus also called candidates in [24].
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We distinguish success test cases, which are actually discriminatory data for
f , from failing ones, which are not.
Step-5: Update the training dataset by adding failing test cases. Failing test
cases represent points where the approximated classifier f ′ differs from CUT
f . Vbt accumulates such failing test cases in Dtrain for re-training the approx-
imation f ′ for refinement in Step-1 in the next iteration. By repeatedly refin-
ing f ′, Vbt more efficiently detects discriminatory data.

2.3 Hash-Based Sampling

Overview. The concept of hash-based sampling techniques of Boolean formula
F is to randomly divide the input space of F (denoted by, {0, 1}n, where n is
the number of variables in F ) into “small cells” of roughly equal size, and to pick
a solution from one such cell. The partition of the input space is virtually done
by determining a random hash function h : {0, 1}n → {0, 1, . . . ,m − 1}, where
let m be the number of cells, so that the inverse images h−1(0), . . . , h−1(m − 1)
correspond to the partitioned cells.

A common practice to realize this is to impose random XOR clauses on
F . Here, an XOR clause is a formula constructed from Boolean variables or
constants (0, 1) using XOR operators. XOR clauses have effect of restricting the
solution space (i.e., the set of all solutions of F ) to one randomly chosen cell.
Since imposing a single XOR clause on F means roughly halving the solution
space of F (and selecting one of them), imposing s XOR clauses means dividing
the solution space into 2s cells of roughly equal size (and selecting one of them).
A solution is sampled by applying an off-the-shelf solver to the resulted formula,
i.e., the conjunction of XOR clauses and F . We repeat this procedure but with
fresh XOR clauses in each repetition, to generate as many samples as we need.

Algorithm 2: XORSample

Parameter : q ∈ (0, 1), a positive integer s
Data: A satisfiable propositional formula F
Result: A solution of F

1 while True do
2 G ← s XOR clauses, each variable chosen

with probability q and the constant 1
with 1/2;

3 if F & G is satisfiable then
4 σ ← GetSolution(F & G);
5 if there is no other solution then

return σ ;

Hash-Based Sampling by
Gomes et al. Since the
invention of the hash-based
sampling by Sipser [26], a
variety of techniques for it
have been investigated [3–5,
9]. Among them, we review
the technique XORSample

by Gomes et al. [9], which
captures the essence of the
hash-based sampling and is
easy to apply and implement
in the Vbt approach.

Algorithm 2 shows the algorithm of XORSample [9]. The steps in each
iteration are: Generate XOR clauses (G) so that each clause selects each variable
in F with probability q and the constant 1 with probability 1/2; Find a solution
for the conjunction of F and G by applying a generic solver; If a solution σ is
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found, then find another solution2 except σ; If it is confirmed that there is no
other solution, return σ, and otherwise go to the next iteration. The former case
means that σ is a unique solution for F ∧ G, i.e., the cell is enough “small”. The
algorithm terminates only if this case happens.

3 Proposed Method

In this section, we develop Vbt-X, a method of integrating the hash-based sam-
pling with Vbt. Its basic idea is to apply the essence of the hash-based sampling
(explained in Sect. 2.3) to the test generation part (Step-3) of the Vbt algorithm
(Algorithm 1). The development is presented in two-steps. We first develop the
basic method as ‘Basic Vbt-X’ in Sect. 3.1, and next develop several enhance-
ment techniques, presenting ‘Vbt-X’ in Sect. 3.2.

3.1 Basic Method (Basic Vbt-X)

Introducing Auxiliary Variables. The first difficulty we encounter in apply-
ing the hash-based sampling to Vbt is that the variables in SMT constraints
are inherently non-binary, i.e., their domains are often integers and real values.
Take, for instance, the constraint at line 2 in Fig. 2:

(gender1 = 0) ∧ (income1 < 1000) ⇒ (class1 = 0). (3)

The variable income1 is real-valued, although gender1 and class1 happen to be
binary in the current case. In general, the input space of SMT constraints is the
Cartesian product of the domains of multi-valued variables. In order to adapt
the hash-based sampling to this setup, we need to somehow consider dividing
this space into small cells.

To resolve this issue, we introduce auxiliary Boolean variables, called sam-
pling variables (denoted by z1, z2, · · · ), for the node constraints in DecTree, and
sampling constraints that assign the node constraints to the sampling variables
using the logical equivalence relation. Based on the setting, we impose random
XOR clauses over those sampling variables on an SMT formula, simulating Algo-
rithm 2.

For example, for constraint (3), we introduce the two sampling variables, z1
and z3, and two sampling constraints z1 ⇔ (gender1 = 0) and z3 ⇔ (income1 <
1000). Suppose here a single XOR clause, say z1 ⊕ z3, happens to be imposed.
Because of the sampling constraints to z1 and z3, the effect is that one of
(gender1 = 0) and (income1 < 1000) is true, but not both of them, and the
input space is partitioned into two: one satisfying z1 ⊕ z3 and the other. It is
thus expected that random XOR clauses introduced as above bring similar effect
as in XORSample to our SMT setup.

2 One more run of the solver is sufficient to do this, but we omit the details due to
the space limitation.
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Automatically Deciding the Number of XOR Clauses (s). To fully auto-
mate the testing process of the proposed technique, we decide the number of
XOR clauses (s) in the following way: increment s from 0 to 20 until for s XOR
clauses (G) randomly generated as in line 1, the formula φ′

f & I & G becomes
unsatisfiable; let the final value for s be multiplied by 0.5.

Basic Test Case Generation Using XOR Sampling. Based on the prepara-
tion explained in Sect. 3.1, Algorithm 3 shows the basic test generation algorithm
of our proposed method. The steps are: Introduce sampling variables for all node
constraints in DecTree and generate the sampling constraints for them (line 1).
For instance, the sampling constraints for the SMT formula in Fig. 2 are listed
in Fig. 3. Next, estimate the parameter s as explained in Sect. 3.1. In the while
loop, generate XOR clauses (G) each time; find a solution for φ′

f & I & G, if
exists, by applying an SMT solver; accumulate it.

Algorithm 3: Test case generation by XOR con-
straints
Parameter : q ∈ (0, 1)
Data: A positive integer k, a satisfiable SMT formula

φf ′ = DecTree ∧ Unfair
Result: k (possibly duplicate) solutions of φf ′

1 I ← Sampling constraints;
2 s ← estimated the number of XOR clauses

// Section 3.1
3 Sol ← ∅ // multiset
4 while |Sol| < k do
5 G ← s XOR clauses, each sampling variable

chosen with probability q, constant 1 with 1/2;
6 if φf ′ & I & G is satisfiable then

Sol ← Sol ∪ GetSolution(φf ′ & I & G) ;

7 return Sol;

Remark. We remark
that (1) the heuristic
search (in Sect. 3.1)
is ad-hoc and (2)
checking of unique
solutions (in line 5
of Algorithm 2) is
skipped in Algorithm
3. These may affect
the degree of unifor-
mity, but there are
several reasons for the
design choices. First,
we find it technically
difficult to determine
optimal s as well as
make solutions unique. Second, the proposed method performs better than Vbt

even with the ad-hoc search and without the uniqueness checking, as will be
shown in Sect. 4, which accomplishes our purpose. Third, modern techniques
(e.g., [3–5]) in SAT solving use different techniques, such as independent sup-
ports and solution enumeration (BSAT), instead of considering uniqueness of
solutions, and they not only lead to large performance gain but also provide
a theoretical guarantee of almost-uniformity, which we are more interested in
employing but it seems to cause unacceptable overhead if those techniques are
simulated in our SMT setup in a straightforward way.
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3.2 Enhancement (Vbt-X)

z1 ⇔ (gender1 = 0) z9 ⇔ (gender2 = 0)

z2 ⇔ (gender1 = 1) z10 ⇔ (gender2 = 1)

z3 ⇔ (income1 < 1000) z11 ⇔ (income2 < 1000)

z4 ⇔ (income1 >= 1000) z12 ⇔ (income2 >= 1000)

z5 ⇔ (income1 < 5000) z13 ⇔ (income2 < 5000)

z6 ⇔ (income1 >= 5000) z14 ⇔ (income2 >= 5000)

z7 ⇔ (age1 < 40) z15 ⇔ (age2 < 40)

z8 ⇔ (age1 >= 40) z16 ⇔ (age2 >= 40)

Fig. 3. Sampling constraints of the basic version

Reducing Sampling Vari-
ables. Properly determin-
ing sampling variables to
be used affects the degree
of uniformity as well as
time required for sampling.
We present three ways
of reducing sampling vari-
ables. The first two lever-
age the notion of indepen-
dent supports, and we begin
with reviewing it.

Independent Support. Independent support of Boolean formula F [12] is a subset
of variables in F such that in every solution of F , the truth values of these
variables determine those of the other variables. In the hash-based sampling, it
is desirable to focus on as a small independent support as possible and perform
sampling by generating XOR clauses over independent support only. This is
because XOR clauses have to decouple the dependency between variables in the
independent support; if XOR clauses included many other variables, they would
bring bias in such a way that the truth values of some variables in drawn samples
were unfairly tied. What is worse, it is extremely hard to find a solution of F
constrained by long XOR clauses. We will thus consider variables that turn out,
from the Vbt setup, to have the dependency in their truth values.

Equivalence. Because of the unfairness constraint Unfair , some pairs of SMT
variables having common non-protected attributes, say age1 and age2, must
have the same value. Hence, from the following two sampling constraints, the
sampling variables z7 and z15 must be logically equivalent: z7 ⇔ (age1 < 40)
and z15 ⇔ (age2 < 40). Clearly, it is sufficient to consider only one of them, say
z7, to be included in XOR clauses, and introduce only the sampling constraint
for the variable considered: z7 ⇔ (age1 < 40).

Exclusive OR. Consider the following constraints: z7 ⇔ (age1 < 40) z8 ⇔
(age1 >= 40). Clearly, one of (age1 < 40) and (age1 >= 40), is true, but not
both of them; the same applies to their sampling variables z7 and z8. Hence, it
is sufficient to consider only one of z7 and z8 to be included in XOR clauses, and
introduce only the sampling constraint for it.

Symmetry. Suppose we have a solution σ for the SMT constraints in Fig. 2, that
induces the following discriminatory data instance x1 (and x2):

x1 : [gender1 = 0, income1 = 1000, age1 = 40, class1 = 1]

x2 : [gender2 = 1, income2 = 1000, age2 = 40, class2 = 0]
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The following assignment σ′, obtained from σ by swapping x1 and x2, is also
satisfying the constraints.

x′
1 : [gender1 = 1, income1 = 1000, age1 = 40, class1 = 0]

x′
2 : [gender2 = 0, income2 = 1000, age2 = 40, class2 = 1]

This symmetry holds in general because of the construction of Unfair and
DecTree. That is, for any solution σ of φ′

f = DecTree & Unfair for x1 and x2,
the assignment, σ′, obtained from σ by swapping x1 and x2 is also satisfying. The
truth values of sampling variables differ only in those of the protected attribute,
i.e., gender in the above case. We do not want to distinguish σ and σ′. We
hence do not include all sampling variables of the protected attribute in XOR
clauses, and do not introduce the sampling constraints for them. For the running
example, the followings are ignored: z1 ⇔ (gender1 = 0), z2 ⇔ (gender1 = 1),
z9 ⇔ (gender2 = 0), and z10 ⇔ (gender2 = 1).

Figure 4 lists all sampling constraints for the version in which all variable
reductions are applied.

Shortening XOR Clause Length. As mentioned in Sect. 3.2, short XOR
clauses are preferable in practice. The variable reductions given so far are effec-
tive for shortening XOR clause length because the expected length is determined
by the number of sampling variables and the probability with which each variable
is chosen.

z3 ⇔ (income1 < 1000)
z5 ⇔ (income1 < 5000)
z7 ⇔ (age1 < 40)

Fig. 4. Sampling constraints of the
improved version

We here present another way, which is
expected to not sacrifice the degree of uni-
formity so much. In order to build an XOR
clause, for each attribute we randomly choose
one from the sampling variables having the
attribute in common and determine with
given probability q whether or not it is
included in the current XOR clause. For
instance, we have three sampling variables z3, z5, z7 in Fig. 4. Since z3 and z5
have the same attribute income, we choose one of z3 and z5 at random, and
then determine with probability q whether or not it is included. Clearly, the
expected length of an XOR clause is related to the number of non-protected
attributes.

4 Evaluation

This section reports our evaluation of the proposed technique by experiments.
For evaluation, we set the following two RQs.

RQ1: Can Vbt-X detect discriminatory data more efficiently than Vbt?
RQ2: Are the enhancement techniques of Vbt-X effective?
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RQ1 is the main RQ, since efficient detection of discriminatory data is the
main motivation of this work, like other algorithm development for individual
fairness testing [1,8,24]. In addition, recall that our work is motivated to improve
the Vbt framework, which is shown to perform better than other main black-box
testing approaches in [24]. RQ2 quantitatively evaluates performance improve-
ment brought by the enhancement techniques explained in Sect. 3.2.

4.1 Experimental Setup

For experiments to run Vbt, we use the Vbt implementation3 by the authors
of [24]. For all experiments, we use Vbt branch pruning for test generation
strategy, instead of data pruning, since it is shown in [24] that branch pruning is
more efficient. We have implemented the basic version and the improved version
of Vbt-X (which are respetively called ‘Basic Vbt-X’ and just ‘Vbt-X’), using
Python version 3.8.10 and Scikit-learn version 0.22.1, modifying the original
Vbt implementation. For a fair comparison, we use the same setup regarding
classifiers, datasets, and protected attributes as in [24], which render 16 (=
4 × 2 × 2) configurations, as follows:

– Classifier: Logistic Regression (LR), Random Forest (RF), Naive Bayes (NB),
Decision Tree (DT)

– Dataset: ‘Adult’ Census Income4, ‘German’ Credit Card5

– Protected attribute: Gender (Male, Female), Race (White, others), Age

For RQ1, we compare the numbers of detected discriminatory data by Vbt

and Vbt-X within a given execution time limit. We also investigate the cause of
the result. We specifically investigate two possibilities for it: the result is mainly
caused by difference in (1) the numbers of generated (and hence executed) test
cases, and/or (2) precision scores (i.e., hit ratios of discriminatory data over
generated test cases) of Vbt and Vbt-X.

For RQ2, instead of using the heuristic search to decide the number of clauses
s explained in Sect. 3.1, we compare Basic Vbt-X and Vbt-X by executing them
with s = 10. This is because Basic Vbt-X with automatic decision of s runs too
slow to detect any discriminatory data for most of the configurations, within
our execution time limit. We also investigate the cause of the result, similarly
to RQ1. We thus measure (1) numbers of generated test cases, and (2) precision
scores of Basic Vbt-X and Vbt-X.

For all experiments, we set ten minutes (600 s) for the execution time limit.
For each configuration, we execute 10 trials and take the average of them.
Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz Processor, 32 GB memory, run-
ning Ubuntu 20.04.4 LTS.

3 https://github.com/arnabsharma91/fairCheck.
4 https://archive.ics.uci.edu/ml/datasets/adult.
5 https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).

https://github.com/arnabsharma91/fairCheck
https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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Table 1. The results of experiments. The rows represent configurations, each combined
from datasets, classifiers, and Protected features. The columns for ‘Vbt’ and the two
versions of ‘Vbt-X’ respectively represent the results of three criteria of the numbers of
detected discriminatory data (‘#Disc’), the number of generated test cases (‘#Tests’),
and precision scores (‘Prec.’), while their improvement ratios are shown in the next
columns (for ‘Improvement ratio’). The columns for ‘Basic Vbt-X (s = 10)’ and ‘Imp.
Vbt-X (s = 10)’ represent those for Basic Vbt-X and Improved Vbt-X with s =
10, appended with their improvement ratios in the next columns. The bottom row
‘avg./total’ shows the total numbers (for ‘#Disc’ and ‘#Test’) or averages (for ‘Prec.’);
and the row ‘#wins’ shows the numbers of configurations that the technique in the
column outperforms the competitor in the respective three criteria.

No. Dataset Clf. Prot. feature VBT Imp. VBT-X (s: auto) Improvement ratio Basic VBT-X (s = 10) Imp. VBT-X (s = 10) Improvement ratio
#Disc #Tests Prec. #Disc #Tests Prec. #Disc #Tests Prec. #Disc #Tests Prec. #Disc #Tests Prec. #Disc #Tests Prec.

1 Adult LR Gender 15 269 0.06 28 735 0.04 1.87 2.73 0.67 28 750 0.04 86 2015 0.04 3.07 2.69 1.00
2 LR Race 69 1864 0.04 52 2145 0.03 0.75 1.15 0.75 72 2365 0.03 91 4015 0.02 1.26 1.70 0.67
3 RF Gender 728 2161 0.34 1545 2925 0.53 2.12 1.35 1.56 1236 1950 0.63 1878 3475 0.54 1.52 1.78 0.86
4 RF Race 10 1896 0.006 110 2845 0.04 11.00 1.50 6.67 38 1980 0.02 86 3300 0.03 2.26 1.67 1.50
5 NB Gender 1669 3329 0.5 4580 5865 0.78 2.74 1.76 1.56 2233 4165 0.54 5033 6645 0.76 2.25 1.60 1.41
6 NB Race 784 3822 0.21 3837 5635 0.68 4.89 1.47 3.24 1780 4120 0.43 3908 6170 0.63 2.20 1.50 1.47
7 DT Gender 1688 2127 0.79 5075 5685 0.89 3.01 2.67 1.13 2784 3580 0.78 5777 6600 0.88 2.08 1.84 1.13
8 DT Race 1748 2531 0.69 5225 5960 0.88 2.99 2.35 1.28 1844 3265 0.57 5040 6325 0.80 2.73 1.94 1.40
9 German LR Gender 214 1772 0.12 244 2205 0.11 1.14 1.24 0.92 230 2065 0.11 324 2875 0.11 1.41 1.39 1.00
10 LR Age 173 1879 0.09 289 2615 0.11 1.67 1.39 1.22 307 2200 0.14 328 2990 0.11 1.07 1.36 0.79
11 RF Gender 168 1269 0.13 92 1805 0.05 0.55 1.42 0.38 89 1545 0.06 111 2175 0.05 1.25 1.41 0.83
12 RF Age 66 1286 0.05 116 1870 0.06 1.76 1.45 1.20 125 1615 0.08 129 2180 0.06 1.03 1.35 0.75
13 NB Gender 77 1297 0.06 82 1850 0.04 1.06 1.43 0.67 70 1605 0.04 127 2535 0.05 1.81 1.58 1.25
14 NB Age 165 2674 0.06 518 3245 0.16 3.14 1.21 2.67 421 2820 0.15 523 3695 0.14 1.24 1.31 0.93
15 DT Gender 1343 2403 0.56 3942 4440 0.89 2.94 1.85 1.59 1770 3085 0.57 3519 5060 0.70 1.99 1.64 1.23
16 DT Age 1081 2471 0.44 3505 4380 0.80 3.24 1.77 1.82 1930 3185 0.60 3109 4955 0.63 1.61 1.56 1.05

avg./total 9998 33050 0.26 29249 54205 0.38 2.92 1.64 1.47 14957 40295 0.30 30069 65010 0.35 2.01 1.61 1.16
#wins 2 0 5 14 16 11 N/A N/A N/A 0 0 6 16 16 8 N/A N/A N/A

4.2 Results

Table 1 shows the results of experiments, based on which we answer the RQs.

RQ1: Can Vbt-X detect more discriminatory data than Vbt? From
the columns for #Disc of Vbt and Vbt-X in Table 1, we can observe that Vbt-
X detects more discriminatory data than Vbt, by around 2.92 times in average,
for 14 out of 16 configurations, and by upto 11 times for configuration No. 4.

From the columns for ‘#Tests’ and ‘Prec.’ of Vbt, Vbt-X and their ‘Improve-
ment ratio’, we can observe the following: (1) Vbt-X generates more test cases
than Vbt by 1.64 times in average and for all the 16 configurations, and (2) the
precision of Vbt-X is higher than that of Vbt by 1.47 times in average and for
11 out of 16 configurations. We thus may be able to ascribe the above conclusion
to both of the number of generated test cases and precision scores.

However, with a finer analysis, we can more likely ascribe the conclusion to
the number of generated test cases than the precision score. First, we can say
that the improvement in the number of generated test cases (1.64) of Vbt-X is
higher than that of precision score (1.47). Second, Vbt-X wins Vbt for all the 16
configurations in the number of test cases, but only for 11 configurations in the
precision score. Third, for several configurations (No. 1, 9, 13), although precision
score of Vbt-X is lower than that of Vbt, Vbt-X can find more discriminatory
data since it generates more test cases.
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Answer for RQ1: Yes. Vbt-X can detect more discriminatory data than Vbt

by 2.92 times in average and for more than 87 (= 14/16) % configurations.

RQ2: Are the enhancement techniques of Vbt-X effective? From the
columns for ‘#Disc’ of ‘Basic Vbt-X(s = 10)’ and ‘Imp. Vbt-X (s = 10)’, we
can observe that Vbt-X detects more discriminatory data than Basic Vbt-X by
2.01 times in average and for all the 16 configurations.

From the columns for ‘#Tests’ and ‘Prec.’ of Basic Vbt-X, Vbt-X, and their
‘Improvement ratio’, we can observe that (1) Vbt-X generates more test cases
than Basic Vbt-X by 1.61 times in average and for all the 16 configurations,
and (2) the precision score of Vbt-X is higher than that of Basic Vbt-X by
1.16 times in average and for 8 out of 16 configurations, while Basic Vbt-X wins
for 6 configurations. We may ascribe the above conclusion to that Vbt-X can
generate more test cases, since the improvement on precision score may not be
enough significant.

Answer for RQ2: Yes, enhancement techniques explained in Sect. 3.2 are
effective, as they improve discriminatory-detecting ability of Basic Vbt-X by
2.01 times in average.

5 Related Work

Testing of individual fairness is first tackled by Galhotra et al. in [8]. The main
contribution is establishing its concept, including the concepts of similarity of
individuals and discriminatory data, which are explained in Sect. 2.1. The con-
cept has become the basis of most existing studies of individual fairness testing,
including our study. They also develop a black-box testing algorithm for this
concept, named Themis, which detects discriminatory data, given a classifier as
input.

Udeshi et al. [27] proposed an efficient black-box testing algorithm for indi-
vidual fairness, improving the algorithm by Galhotra et al. [8], The algorithm
enhances efficiency, by structuring it into two steps of global and local search.
This two-step structure of the algorithm leverages robustness of ML classifiers.

Another well-known technique for individual fairness testing is SG [1], fea-
tured with its efficient testing ability. Its mechanism is similar to Vbt, as it
internally builds an approximation classifier of the CUT using a decision tree,
and apply symbolic execution using SMT solver to generates test cases. How-
ever, Vbt differs from Sg in many details. E.g., Sg approximates the CUT in a
partial decision tree using local model explainer (LIME [21]), while Vbt do so
in an entire decision tree using training. Our work applies hash-based sampling
technique to Vbt, because it is reported that Vbt has a higher testing ability
than Sg [24]; however, our proposed technique is basically applicable to Sg, too.

Sharma and Wehrheim developed Vbt originally for testing monotonicity of
ML classifiers [25], which is similar but different concept from individual fairness.
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After extend the work [25] to fairness testing as Vbt in [24], they further extend
Vbt in several respects, as a technique called MLCheck [23]. An extension is to
apply other properties than monotonicity and fairness, such as security. Another
direction is to use Relu-based Deep Neural Network, (instead of using decision
trees,) for making approximation classifier of classifier under test.

Several other recent studies on black-box individual fairness testing are as
follows: A technique developed by Morales et al. [16] (Cgft) improves efficacy
of Aequitas, by applying combinatorial t-way testing (CT) [14] to the global
search of Aequitas. Patel et al. [20] investigates efficacy of applying combination
of CT and a counterfactual explanation technique, called DiCE[17].

Although above-mentioned techniques all take the black-box (a. k. a.,, model-
agnostic) testing approach, the algorithm proposed by Zhang et al. [28] takes a
white-box approach, targeting Deep Neural Networks (DNNs). The algorithm,
named Adversarial Discrimination Finder (Adf), employs adversarial sample
generation techniques using gradient analysis [10,15]. Although Adf can be only
applicable for DNN-based classifiers, their experiments show Adf finds more
discriminatory data than Aequitas and Sg.

6 Validity Threats

Our experiments use two datasets (‘Adult’ and ‘German’), the four classifiers
(LR, RF, NB, DT), and two attributes (‘Gender’ and ‘Race’), which are exactly
the same as those used in [24]. There are other datasets available in algorithm
fairness literature (see e.g., the survey of [19]), countless kinds of classifiers,
and more kinds of protected attributes (such as age, nationality). However, it
is practically infeasible to experiments all combinations, due to combination
explosions. Experiments in most of other studies on fairness testing [8,16,24,27]
thus also use two or three datasets, classifiers, and attributes.

Vbt-X inherently contains random behaviours, as it samples different data
on different executions. This threat is mitigated by taking average over 10 trials
for all experiments. In experiments for RQ2, we use s = 10 for the number of
XOR clauses s for a conservative evaluation, since Basic Vbt-X best performs
with s = 10 by preliminary experiments with s = 5, 10, 15. Our experiments
use 10min (600 s) for the execution timeout limit. There is no standard criteria
for execution time limit in fairness testing literature, but more studies seem to
use several hundred seconds for it; e.g., [24] uses 930 s and [28] uses 500 s. Our
timeout setting follows this convention.

7 Conclusion and Future Work

In this paper, we developed a black box testing technique for individual fair-
ness Vbt-X, by applying hash-based sampling techniques [3–5,9] to the test
generation of Vbt, a state-of-the-art fairness testing technique by Sharma and
Wehrheim [24,25]. The novelty of this work is to show the mechanism to apply
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hash-based sampling, which substantially different approach from Vbt, actually
works, and performs better than Vbt.

There are several directions for future work. One direction is to refine our
ad-hoc heuristic search to decide the number of XOR clauses, and improve the
degree of uniformity of sampled data in Vbt-X, as mentioned in Sect. 7. Several
related techniques proposed in SAT solving settings [3–5] may be applicable for
the purpose, although we may encounter difficulty to adapt them to our SMT
setting. Another direction in the technical side is to apply our proposed technique
to MLCheck [23], which uses Deep Nueral Network (DNN) for approximation
classifiers in Vbt framework, instead of decision trees. We are also interested in
applying Vbt-X to other properties such as security (e.g., Trojan attack) than
fairness as in [23]. The fourth direction is to conduct more thorough experi-
ments to evaluate our proposed techniques using more datasets, classifiers, and
protected attributes to generalize obtained results, as explained in Sect. 6.
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Abstract. The increasing popularity of mobile apps implies a need for
automated test generation techniques for Android apps. Unlike other
domains where automated test generation has been applied successfully,
such as unit test generation, test execution for Android apps is compu-
tationally expensive: Tests are executed in an emulator, the app under
test needs to be restarted after every test execution, and even individ-
ual actions within a test may take in the range of seconds to execute.
This is inhibitive for approaches that rely on frequent execution of tests,
such as search-based testing, which requires test executions to calculate
fitness values. A common approach in evolutionary search is to use sur-
rogate models as a means to reduce the costs of fitness calculation. In
this paper, we introduce an approach to integrate surrogate models for
testing Android apps: The surrogate model is an abstraction of the state-
based behaviour of the graphical user interface, and can predict traces
for already explored behaviour, thus avoiding costly test executions. We
integrate this surrogate model in the search-based test generator MATE
and perform an empirical study on a set of 10 Android apps. Results
indicate that both the number of evaluated test cases and the resulting
coverage can be increased significantly.

Keywords: Android · Surrogate model · Automated test generation

1 Introduction

The popularity of mobile apps causes a high demand for automated testing
approaches. Most practical approaches for testing Android apps rely on running
many tests, generated randomly or using model-based as well as search-based
techniques [13]. In contrast to other common domains of automated test gen-
eration (e.g., unit test generation), the test execution process in Android is
computationally very costly, as a single action may take several seconds to com-
plete [12], and the necessary restarts of an app under test (AUT) between tests
takes substantial time [9]. In addition, by construction random or search-based
techniques will frequently produce very similar or redundant tests that exercise
the identical behaviour. This affects the effectiveness of test generation.
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In evolutionary computation, a common approach to overcome challenges
caused by the high computational costs of fitness evaluations is to create surro-
gate models that can predict the outcome or fitness of some of the individuals
of the search quicker than an actual evaluation would be [26]. However, this
approach has not yet seen wide-spread use in search-based test generation, and
is usually limited to cases where classical regression models can serve to predict
fitness values [18]. Integrating the concept of surrogate models into the process of
Android test generation requires models that can make state-based predictions.

State-based models (GUI models) are often used in Android testing to model
the visible states of an app and the reactive behaviour in terms of transitions trig-
gered by user events. In this paper, we extend these GUI models such that they
predict execution traces for individual actions or entire tests. After repeatedly
exploring similar behaviour, the surrogate model learns to predict most actions,
thus saving the search budget for additional exploration and hence discovering
yet uncovered behaviour and code.

We have implemented this approach as an extension of the MATE search-
based test generator for Android [10], which supports state-of-the-art many
objective test generation for Android driven by coverage-based fitness functions.
Using our prototype implementation, we empirically study the influence of the
chosen state abstraction, which determines the size and precision of the model.
In detail, the main contributions of this paper are as follows:

– We introduce the concept of surrogate models in the context of search-based
testing for Android.

– We provide a prototype implementation by extending the search-based test
generator MATE.

– We empirically evaluate which abstraction level (fidelity level) of the surrogate
model leads to the best trade off between achieved coverage and number of
evaluated tests.

– We empirically evaluate how many restart operations can be avoided by using
a surrogate model.

– We empirically evaluate the effects of the surrogate model on the coverage
achieved by a state-of-the-art many objective search.

The results indicate that predicting actions with a surrogate model can be ben-
eficial in terms of the number of evaluated tests, app restarts, and resulting
activity and basic block coverage.

2 Background

The approach described in this paper combines (1) Search-based testing of
Android apps, (2) surrogate models, and (3) Android GUI models.

2.1 Automated Android Testing

A basic approach to automatically test Android apps is to send random input
actions. This approach has been shown to be effective, and often serves as a basis
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for further testing strategies [13], and is also applied as a form of fuzzing with
the intent to find crashes, which may benefit from sending valid and invalid test
data [13]. Search-based testing (e.g., [3,10,16,17]) extends random approaches
by including (1) fitness functions that evaluate how close test executions are
to reaching a testing objective (e.g., code coverage), and (2) search algorithms
that make use of the fitness function to guide the generation and evolution
of tests towards reaching the objective. Since deriving classical coverage-based
fitness functions for Android apps is challenging, a recent trend lies in applying
reinforcement learning techniques such as Q-Learning [25], SARSA [22], or Deep
Learning [21], which aim to learn how to explore apps. Android test generators
are often complemented with finite state machine (FSM) models, where states
may describe activities or GUI states, and edges refer to actions that trigger the
respective transition from one state to another. In this paper, we use this type
of models to build surrogate models.

2.2 Surrogate Models

A surrogate model is used to mimic the response of some original model with
the benefit of being computationally cheaper. Common surrogate models such
as polynomial response surface (PRS), radial basis functions (RBF), kriging,
artificial neural networks (ANNs) and support vector machines (SVMs) [20,24]
use a specific level of fidelity, i.e., level of abstraction. Low fidelity models are
computationally cheaper, but less accurate. In contrast, high fidelity models
are preciser but also more expensive. Since the level of fidelity has an important
impact on the surrogate model, prior research has also investigated multi-fidelity
models that combine low and high fidelity models, hybrid models that combine
multiple different single-fidelity models and adaptive sampling strategies that
try to improve the accuracy by so-called infilling strategies [24].

In the domain of evolutionary algorithms surrogate models are used to lower
the cost of fitness function evaluations [26]. Typically the surrogate model learns
from a training set, which can be either constructed through sampling strategies
or candidate solutions obtained from running the evolutionary algorithm without
the surrogate model [26]. While surrogate models are common in many domains
of evolutionary computation, they have only rarely been used in the scope of
search-based testing so far. For example, Matinnejad et al. [18] used classical
regression models to predict fitness values when testing Simulink models. In
contrast, the application context of Android apps requires surrogate models to
make predictions about state-based behaviour.

2.3 Android GUI Models

An Android app is composed of four different types of components, whereas
activities enable the graphical interaction from the user perspective. Such an
activity consists of multiple widgets arranged in a hierarchical structure, where
most of those widgets enable some sort of interaction, e.g., clicking on a button.
This in turn triggers some action, e.g., opening another activity.
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One can form a GUI model for an Android app by considering those inter-
actions as edges in a finite state machine (FSM), while the states are typically
represented through abstractions of the physical screen state [6], e.g., the widget
hierarchy. A more abstract representation of a GUI model is an Activity Transi-
tion Graph (ATG) as outlined in [5], where the states refer to the activities and
the edges represent activity transitions.

Baek et al. [6] categorise different state equivalence definitions from a low
(fine-grained model) to high degree of abstraction (coarse-grained model):

Package Name Two GUI states are equal if they refer to the same AUT. This
essentially means that the AUT is represented by a single abstract state, but
further states may represent other apps or the home screen.

Activity Name Two GUI states are equal if they refer to the same activity.
Widget Composition Two GUI states are equal if the widgets in the UI hier-

archy are the same in terms of type, e.g., Button, and position.
Widget Composition + Event Handlers Two GUI states are considered

equal if the widgets in the UI hierarchy are the same in terms of type (e.g.,
button), and position as well as share the same event handlers.

Widget Content Two GUI states are equal if the widgets in the UI hierarchy
are the same in terms of type (e.g., button), and position as well as share the
same text and content description attributes.

Prior research suggests that stricter state equivalences may lead to worse
results than focusing on the structure of GUI elements [14]. An orthogonal app-
roach to achieve this lies in using distance metrics such as cosine similarity [15],
Jaccard similarity [12], or Hamming distance [12] on vectors derived from GUI
state information to determine the similarity of two states when deciding on
equivalence, rather than exact matches of state information.

3 Android Testing with Surrogate Models

In order to explore the use of surrogate models in Android testing, we extend
the search-based test generator MATE with a surrogate model that is a state-
machine based on equivalence of GUI states. The search algorithms themselves
do not require adaptation, but the point of integration is the test execution,
which is underlying the fitness calculation.

3.1 Search-Based Android Testing: MATE

In order to explore the concept of surrogate models, we use the open source
search-based test generator MATE, which was originally designed for automated
accessibility testing [10]. Later on it was enhanced with a rich set of evolutionary
search algorithms [23], making it an ideal vehicle for our experiments. An indi-
vidual or chromosome in the genetic algorithm is typically represented by a test
case in MATE and each such test case is composed of a list of actions. MATE
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supports both single- and multi-objective algorithms and the available fitness
functions range from coverage metrics to approach level and branch distance.

MATE consists of two components, MATE-Client and MATE-Server. The
client is composed of two APKs that run on the emulator alongside with the
AUT. In contrast, the server is run on a local machine and performs resource-
intensive tasks, e.g., computing the control flow graph (which may be of sub-
stantial size in the inter-procedural case). MATE supports both UI and system
events and can report activity, method, branch and basic block coverage. It
leverages the UiAutomator API [2] to locate widgets on the screen and makes
use of ADB [1] to obtain information about the device and AUT state. MATE
supports apps targeting an API level between 19 and 28.

3.2 Surrogate Model for Android GUIs

The surrogate model can be viewed as a directed graph G = (V,E) where a
state s ∈ V describes an abstraction of a physical screen state. Depending on
the chosen state equivalence level, a state might refer to an activity or to a precise
abstraction of the DOM tree. Out of the state equivalence levels described in
Sect. 2.3 we employ the following in our implementation:

Activity Name Two states are equal if they refer to the same activity.
Widget Composition Two states are equal if the UI hierarchy composed of

widgets is identical. This means that the widgets are of the same type, e.g.,
Button, and share the same coordinates.

Widget Content Two states are equal if not only the UI hierarchy matches in
terms of type and coordinates but also the widgets’ text and content descrip-
tion attributes are identical.

A too coarse-grained state equivalence level like the package name may limit a
thorough exploration, as the AUT model would often be represented by a single
state, which is why we excluded this state equivalence level. The chosen levels are
a trade-off between a too coarse and a too fine-grained model, establish a baseline
for future comparison, and we thus leave investigations of even finer-grained
levels such as Widget Composition + Event Handlers or the use of distance
metrics such as Cosine similarity for future work.

An edge e ∈ E is a tuple (si, ai, sj , ti, ck), which represents a transition from
a source state si ∈ V to a target state sj ∈ V with an action ai ∈ A, a set
of partial traces ti and a transition counter ck. An action ai is composed of an
action type, e.g., click, and additional parameters like the underlying widget or
the input for text fields, while the traces ti represent a set of covered targets,
e.g., basic blocks. By traversing the path described through the actions of the
test case, one can fully re-assemble the full trace of the entire test case. These
traces are relevant for the fitness evaluation where one needs to decide whether
a certain target, e.g., basic block, is covered or not. The last component of the
edge tuple maintains how often the given transition was taken so far. Every time
we execute an action the respective transition counter is increased.
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3.3 Test Execution with a Surrogate Model

The overall objective of a surrogate model is to allow calculating fitness values
without actual test executions, thus leading to a more effective use of the search
budget, as test executions and the restart operations they necessity are costly.
Our surrogate model supports this process by predicting the outcome of indi-
vidual actions in a test in terms of the resulting state as well as the resulting
traces. That is, the surrogate model attempts to construct an execution trace
without actual execution, which can then serve as input to the fitness function.
The initial model by construction cannot predict any actions, but after a certain
number of iterations, we expect the model to improve such that it can predict
the outcome, i.e., the target state and the traces, of more and more actions.
Depending on the chosen state equivalence level and hence the granularity of
the model this trend towards predicting more actions is reached earlier or later.

An overview of integrating the surrogate model into the test execution process
is illustrated in Fig. 1: A search algorithm provides test cases in the form of
sequences of actions T = 〈a1, . . . , an〉, ai ∈ A, and produces a resulting list of
states S = 〈s1, . . . sn〉 as well as an execution trace represented as a list of partial
traces E = 〈t1, . . . tn〉. Given a test case to be executed, we initialise S and E as
empty lists. A test case T is executed by iterating over the actions of T . For each
action ai the surrogate model is queried to determine whether the outcome of ai

can be predicted or not. The outcome of an action a can be predicted in state s
if there exists an outgoing transition from state s to some other state t labelled
with action a in the surrogate model. If such a transition exists, the resulting
state and partial trace are appended to S and E, respectively. In addition, the
surrogate model keeps track of all predicted actions in a list of cached actions C.
This list stores all actions that are not executed immediately but may need to
be executed if the model cannot predict the complete test case. The execution
on the surrogate model further keeps track of the new current state.

If the outcome of the selected action cannot be predicted in the current
state, the AUT needs to be set to the correct state by executing the list of
cached actions C; then the new action ai is executed. The surrogate model is
then updated with a new transition from s to the observed resulting state, with
a transition labelled with the selected action and the traces produced by the
action. In addition, the associated transition counter is increased and the list of
cached actions C is cleared, since the app is now in a known state.

This process continues until the last action an of T has been executed, or
we leave the AUT through a crash or regular transition. Once the test case is
completely predicted or executed, we perform some final tasks like re-assembling
the correct action sequence from the cached and executed actions as well as
aggregating the traces from the individual actions for fitness evaluation. Lastly,
the AUT has to be restarted to ensure that the next test case starts in a clean
state if any of the actions had to be executed on the actual app. If the surrogate
model was able to predict all actions successfully, no restart is necessary.
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Fig. 1. Overview of integrating the surrogate model in the test execution process. A
test case is iteratively filled with actions until the maximal number of actions is reached
or the AUT is left. During updating the test case with a new action, the surrogate
model is consulted whether the outcome of the action can be predicted or not.

During the test execution one may encounter the following issues:

Leaving the AUT: If the execution of a cached action leaves the AUT, e.g.,
causes a crash, we finish the test case at this point as we would do in the
regular case.

Non-applicable actions: If we need to execute a sequence of cached actions,
we may land in an unexpected state that does not match what the surro-
gate model expects such that the follow-up action might be not applicable
anymore. In this case we pick a random applicable action and proceed.

Non-deterministic actions: There might be multiple outgoing transitions
from the current state with a selected action. In such a case, we pick the
transition that was taken most often, based on the transition counter.

Thus overall, the precision of the surrogate model depends on (1) the chosen
state equivalence level and (2) the deterministic behaviour of the AUT.

4 Evaluation

We aim to answer the following research questions:

– RQ1: Does the state equivalence level influence the effectivness of the surro-
gate model in terms of number of test cases and coverage?

– RQ2: Can the surrogate model avoid costly restart operations?
– RQ3: Does the use of the surrogate model increase the number of test cases

and coverage?

4.1 Experimental Setup

For the empirical evaluation, we use the ten study subjects presented in Table 1,
which originate from a prior study [23]. The MATE testing framework has
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Table 1. Study subjects.

App name Package name Version Activities Blocks

RedReader org.quantumbadger.redreader 1.16 20 17817

Periodical de.arnowelzel.android.periodical 1.64 8 924

Markor net.gsantner.markor 2.5.0 6 5519

Activity Diary de.rampro.activitydiary 1.4.0 10 2307

Rental Calc protect.rentalcalc 0.5.1 12 858

MoneyWallet com.oriondev.moneywallet 4.0.5.9 38 18258

Easy xkcd de.tap.easy_xkcd 7.3.9 9 4638

TSCH_BYL de.drhoffmannsoftware 1.16–11 9 618

Shopping List com.woefe.shoppinglist 0.11.0 4 845

Bierverkostung de.retujo.bierverkostung 1.2.1 13 4333

been configured to explore each app with the MIO algorithm [4] for 3 h, where
we used F = 0.5, Pr = 0.5, n = 10 and m = 10 as outlined in the original
paper. The testing targets for each app represent the basic blocks and the fitness
function for each target evaluates whether the basic block was covered or not.
The maximal number of actions per test case have been set to 50. To compensate
for randomness, we repeated the runs twelve times per app and configuration.
This leads to a total execution time of roughly 360 h.

We conducted the experiments on a compute cluster, where each node fea-
tures two Intel Xeon E5-2620v4 CPUs (16 cores) with 2.10GHz and 256 GB of
RAM, and runs Debian GNU/Linux 11 with Java 11. We limit each execution of
MATE to ten cores and 32 GB of RAM, where 16 GB of RAM are reserved for
the emulator. The emulator (Nexus 5) employs a x86 image running API level
25 (Android 7.1.1).

The implementation is open source and available at https://github.com/
mate-android-testing (experiments in this paper were conducted using Git tag
SSBSE22).

4.2 Experiments

To address the research questions, we defined four configurations C1 to C4. C1
refers to the configuration where we did not use a surrogate model, while C2
to C4 represents the configurations with the different state equivalence levels
(Activity Name, Widget Composition, Widget Content).

In order to answer RQ1, we compare the configurations C2 to C4 in terms of
number of test cases evaluated (i.e., predicted or actually executed) and coverage
(activity and basic block coverage), where both objectives are assumed to be
maximised. We use tournament ranking to determine which configuration is the
best one: For each pairwise comparison of configurations and apps a configuration
gets a point if there is a statistic significance (α = 0.05) using the Mann-Whitney-
U-Test and if the Vargha-Delaney effect size reports a value greater than 0.5.

https://github.com/mate-android-testing
https://github.com/mate-android-testing
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Table 2. Comparing the different surrogate model configurations regarding the average
number of evaluated tests and coverage.

App C2 C3 C4

Tests AC BC Tests AC BC Tests AC BC

org.quantumbadger.redreader 2311.75 28.75 37.35 233.00 53.33 53.02 231.92 52.50 53.52

de.arnowelzel.android.periodical 3441.08 65.62 65.91 699.92 86.46 78.07 520.08 87.50 79.27

net.gsantner.markor 3236.42 30.95 20.64 1302.25 60.71 47.58 1231.42 60.71 46.99

de.rampro.activitydiary 1467.50 70.45 61.56 353.75 82.58 69.85 283.92 83.33 69.26

protect.rentalcalc 4725.33 43.06 32.19 1143.75 63.19 49.70 1143.75 65.97 52.67

com.oriondev.moneywallet 2685.92 12.28 7.76 1228.08 28.51 16.30 1013.50 27.85 15.83

de.tap.easy_xkcd 2014.58 28.79 27.95 372.08 57.58 49.04 574.33 59.09 48.70

de.drhoffmannsoftware 4062.67 96.30 26.36 708.42 100.00 33.78 895.83 100.00 32.78

com.woefe.shoppinglist 3164.08 37.50 47.61 1088.75 100.00 77.95 1226.92 100.00 76.03

de.retujo.bierverkostung 2117.42 51.92 28.94 525.58 73.08 38.21 634.92 76.28 39.04

Average 2922.68 46.56 35.63 765.56 70.54 51.35 775.66 71.32 51.41

To address RQ2, we track the number of avoided and total restarts for the
configurations C2 to C4. Regarding RQ3, we solely need to compare the best
configuration obtained from evaluating the first research question to configura-
tion C1. To make a statistical statement, we report in addition to the number
of evaluated tests and coverage the p-values.

4.3 RQ1: State Equivalence Levels

Table 2 shows the resulting number of test cases, activity (AC) and basic block
coverage (BC) for the three different surrogate model configurations C2 to C4.
The configuration C2 clearly outperforms the other two configurations in terms
of evaluated test cases, but apparently remains behind when considering both
coverage criteria. The configurations C3 and C4 behave quite similarly through-
out all three criteria.

The tournament ranking illustrated in Table 3 confirms this interpretation.
C2 outperforms the remaining configurations in terms of evaluated test cases:
it is significantly better in eight cases. However, the lower precision in state
matching comes at the price of lower coverage: The configuration C4 is slightly
better than C3 when looking at activity and basic block coverage. Both C3 and
C4 are never better than C2 respective to the number of evaluated test cases.

Summary (RQ1): Using a coarse-grained state equivalence level like the
activity name (C2 ) enables the generation of many test cases but at the cost
of significantly less coverage. Since we favour coverage over the number of
evaluated test cases, a trade-off is configuration C4 as it evaluates slightly
more test cases than C3 while achieving the best coverage results on average.

4.4 RQ2: Effects on App Restarts

Table 4 reports the number of actually executed restarts, number of evaluated
tests, and the percentage of restarts saved for the configurations C2 to C4. The
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Table 3. Tournament ranking of surrogate model configurations, counting statistically
significant differences on all pairwise comparisons of configurations.

Criteria C2 C3 C4

AC 0 8 9
BC 0 10 10
Tests 20 0 0

Table 4. Comparison of the average number of restarts, evaluated tests and the per-
centage of saved restarts for different surrogate model configurations.

App C2 C3 C4
Restarts Tests % saved Restarts Tests % saved Restarts Tests % saved

org.quantumbadger.redreader 37.50 2311.75 98.38 144.00 233.00 38.40 140.08 231.92 39.82
de.arnowelzel.android.periodical 43.33 3441.08 98.74 213.50 699.92 69.52 219.83 520.08 57.81
net.gsantner.markor 7.75 3236.42 99.76 160.00 1302.25 87.72 148.58 1231.42 87.94
de.rampro.activitydiary 146.67 1467.50 90.01 205.00 353.75 42.20 209.75 283.92 26.34
protect.rentalcalc 52.25 4725.33 98.89 240.33 1143.75 79.00 239.50 1143.75 79.08
com.oriondev.moneywallet 24.42 2685.92 99.09 196.83 1228.08 83.98 206.00 1013.50 79.69
de.tap.easy_xkcd 58.33 2014.58 97.10 225.08 372.08 39.66 194.75 574.33 66.13
de.drhoffmannsoftware 75.58 4062.67 98.14 266.17 708.42 62.47 243.58 895.83 72.83
com.woefe.shoppinglist 6.67 3164.08 99.79 247.25 1088.75 77.30 224.83 1226.92 81.68
de.retujo.bierverkostung 137.42 2117.42 93.51 240.42 525.58 54.31 230.25 634.92 63.77
Average 58.99 2922.68 97.98 213.86 765.56 72.09 205.72 775.66 73.50

less fine-grained the surrogate model, the more actions and finally tests can be
predicted, directly leading to a higher number of saved restarts. Recall that all
actions of a test case need to be predicted in order to save the restart operation.
Configuration C2 confirms this trend, but also the configurations C3 and C4
having a more moderate number of total restarts can benefit extremely from the
surrogate model. More than 70% of the restarts can be avoided in both cases.
The time saved by avoiding these restarts is available for the search algorithm
to explore more diverse test cases.

Summary (RQ2): Using a more coarse-grained state equivalence level leads
to the prediction of more actions and entire test cases, but even the more fine-
grained models can avoid more than 70% of the restarts.

4.5 RQ3: Effects on Tests and Coverage

Table 5 shows that configuration C4 evaluates more than twice the number of
tests than the configuration without the surrogate model (775 vs. 342). We can
note a statistical difference in eight out of ten apps in favour of C4.

To understand whether this increase in the number of tests as well as the
reduction in necessary app restarts has an impact on coverage, Table 6 sum-
marizes the results in terms of activity coverage and basic block coverage
achieved with (C4) and without surrogate model (C1). For the de.arnowelzel.
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Table 5. Comparing C1 to C4 in terms of average number of evaluated tests.

App Tests
C1 C4 p Â12

org.quantumbadger.redreader 280.08 231.92 0.08 0.72
de.arnowelzel.android.periodical 314.67 520.08 <0.001 0.10
net.gsantner.markor 321.83 1231.42 <0.001 0.00
de.rampro.activitydiary 318.33 283.92 0.30 0.63
protect.rentalcalc 399.92 1143.75 <0.001 0.08
com.oriondev.moneywallet 430.08 1013.50 <0.001 0.01
de.tap.easy_xkcd 273.92 574.33 <0.001 0.14
de.drhoffmannsoftware 324.92 895.83 <0.001 0.08
com.woefe.shoppinglist 410.67 1226.92 <0.001 0.00
de.retujo.bierverkostung 345.75 634.92 0.02 0.22
Average 342.02 775.66 – –

android.periodical, net.gsantner.markor, and com.oriondev.moneywallet apps
the surrogate model leads to significantly higher activity coverage. For basic
block coverage the surrogate model leads to significantly better results
for de.arnowelzel.android.periodical, net.gsantner.markor, and de.retujo.bierver
kostung. For de.tap.easy_xkcd the activity coverage achieved with the surrogate
model is significantly lower, although there is no significant difference in basic
block coverage. For de.drhoffmannsoftware and com.woefe.shoppinglist both con-
figurations achieve 100% activity coverage.

Considering de.tap.easy_xkcd, the lower activity coverage can be explained
by the use of a progress bar widget in the app: The surrogate model treats
different values of the progress bar as different states. We conjecture that the
largest improvements in coverage are caused when there are fewer widgets in the
activities, such that the surrogate model can effectively predict the outcome and
help the surrogate model explore new widgets. In those cases where there is no
significant difference, it appears that the search was unable to make use of the
additional tests. This is likely influenced by the inadequate guidance provided by
the fitness functions: Since the fitness function only provides binary information
on whether a coverage goal was reached, the search may not have sufficient
incentive to drive the exploration towards more relevant parts of the search space.
We conjecture that the effects of the surrogate model will be larger if future work
succeeds in improving the fitness landscape for Android test generation.

Summary (RQ3): The configuration using the surrogate model clearly
evaluates more tests than the configuration without. The surrogate model
increases activity and basic block coverage on average.
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Table 6. Comparing C1 to C4 in terms of average activity and basic block coverage.

App AC BC
C1 C4 p Â12 C1 C4 p Â12

org.quantumbadger.redreader 54.17 52.50 0.49 0.58 53.02 53.52 0.37 0.39
de.arnowelzel.android.periodical 81.25 87.50 0.02 0.29 72.60 79.27 <0.001 0.01
net.gsantner.markor 54.76 60.71 0.03 0.31 37.83 46.99 <0.001 0.03
de.rampro.activitydiary 82.58 83.33 0.79 0.47 69.21 69.26 0.98 0.51
protect.rentalcalc 60.42 65.97 0.46 0.41 47.53 52.67 0.47 0.41
com.oriondev.moneywallet 25.22 27.85 0.04 0.26 14.88 15.83 0.16 0.33
de.tap.easy_xkcd 65.91 59.09 0.02 0.76 48.36 48.70 0.84 0.53
de.drhoffmannsoftware 100.00 100.00 – 0.50 29.90 32.78 0.09 0.30
com.woefe.shoppinglist 100.00 100.00 – 0.50 78.05 76.03 0.44 0.60
de.retujo.bierverkostung 75.00 76.28 0.51 0.43 36.90 39.04 0.05 0.26
Average 69.93 71.32 – – 48.83 51.41 – –

5 Related Work

In this section we review state equivalence levels found in the literature and
summarize where surrogate models have been used for automated testing.

5.1 State Equivalence

The effectiveness of a state-based surrogate model depends on the chosen level of
state abstraction. Baek et al. [6] proposed five different GUI comparison criteria
(GUICC) that range from considering only the package name to inspecting the
content of widgets. In comparison to our work, we utilize three very similar state
equivalence definitions. The activity name GUICC is a 1:1 match, while the
second and third state equivalence level proposed in Sect. 2.3 also compare one
time the structure and the other time the content of the widgets. We excluded
the package name GUICC because we believe it is too abstract (one state for the
entire AUT) and thus is likely to produce low coverage results. The configuration
C2 using the activity name essentially confirms these concerns. Prior work [6]
indicates that a lower level of abstraction (more fine-grained GUICC) leads to a
higher coverage. We can conclude the same findings as the Table 2 shows.

A3E [5] utilizes a static and dynamic activity transition graph to represent
the GUI model, where the states are represented through the activities of the
AUT. This would only allow a comparison based on the activity name, but we
are also interested in comparing the individual widgets on the screen. Thus, we
stick to a more fine-grained GUI model using screens as states.

The empirical study by Jiang et al. [12] evaluates which factors impact the
effectiveness and efficiency of Android test generators. Apart from considering
different state traversal techniques and waiting times between two inputs, five
different state equivalence metrics are examined. This includes, among others,
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Cosine and Jaccard similarity as well as Hamming distance. Also here, a more
fine-grained comparison is likely to achieve a higher coverage. We did not include
similarity or distance metrics, but focused on producing a baseline.

Lee et al. [14] discuss different state equivalence checks, including a content
hash over all widgets, a structure hash over the ui hierarchy and a heuristic that
considers the event handlers in case of similar lists. The first two metrics are
similar to the state equivalence levels we proposed, i.e. comparing the structure
and content of the widgets. The idea of looking at the event handlers in case of
list widgets is definitely a valid point for future research.

DECAF [15] extracts feature vectors for states consisting of a concatenation
of multiple widget attributes. If the Cosine similarity is above a pre-defined
threshold, two states are considered identical. We plan to extend our experiments
to include such similarity metrics in the future.

5.2 Surrogate Models in Automated Testing

Surrogate models have recently been integrated into test generation algorithms
for different types of search approaches. Matinnejad et al. [18] introduced sur-
rogate models in the context of Model-in-the-Loop testing for continous con-
trollers. The meta-heuristic search algorithm uses a combination of dimensional-
ity reduction and a surrogate model in order to scale the testing for large, multi-
dimensional input spaces. In particular, the surrogate model enables predicting
the outcome of a fitness function in a fast manner. Abdessalem et al. [8] evalu-
ate a testing approach for Advanced Driver Assistance Systems (ADAS) based
on a combination of multi-objective search and surrogate models. The neural
network based surrogate model enables a faster exploration of the input search
space within a limited time budget. Haq et al. [11] extended many-objective
search using a surrogate model in order to reduce the cost of simulations in
the context of Automated Driving Systems. Their experiments on various types
of classical surrogate models suggest that the surrogate model leads to a more
effective and efficient detection of safety violations, similar to how our surrogate
model improves testing. Similarly, Beglerovic et al. [7] use the classical app-
roach of Kriging surrogate model for testing autonomous vehicles. Menghi et
al. [19] apply numerical approximations of Cyber-Physical system (CPS) models
as surrogate model to improve testing. Initially, a surrogate model is trained by
sample input and outputs of the CPS under test. If the surrogate model produces
a failure-revealing test, the test is checked against the original model. If there is
a mismatch, the surrogate model is refined. Otherwise, the test represents a valid
failure. The main differences of our work in contrast to these approaches are that
we use a state-based model suitable for GUI exploration, and use this surrogate
model to predict the outcomes of actions and only indirectly for the evaluation
of the fitness function. Furthermore, the integration of our model requires no
adaptations of the search algorithms.
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6 Conclusions

Search-based testing involves the execution of many potentially very similar
action sequences. In the domain of Android testing, the costs for the test execu-
tion are high, as individual actions as well as restarts of the AUT inbetween test
executions take time. To overcome this problem, we proposed in this paper the
integration of a surrogate model in the test execution process. The model aims
to predict individual actions or, in the best case, entire tests. If a test case can be
predicted, fitness calculation can be performed on the predicted execution trace,
without actual execution. We integrated this approach into the test generator
MATE and evaluated the effectiveness of the surrogate model in terms of the
number of tests and coverage on a set of ten open source apps. In particular,
we considered three different state equivalence levels that directly influence the
granularity of the surrogate model. The results indicate that a coarse-grained
model can evaluate substantially more tests but may inhibit coverage. In con-
trast, selecting a more fine-grained model leads to a moderate increase in the
number of evaluated tests while achieving reasonable coverage values. Indepen-
dently from the chosen state equivalence level, the test execution can avoid a
large number of costly restart operations. Overall, search-based testing can ben-
efit from a surrogate model in terms of evaluated tests, number of necessary
restarts, and resulting coverage.

For future work we plan to evaluate the influence of using a different strategy
for non-deterministic actions. Instead of picking the transition with the highest
visit counter, we could introduce a threshold that must be exceeded such that we
can predict the outcome of the given action. Alternatively, we could choose the
transition that includes the largest number of traces. Another option for future
work is the evaluation of further state equivalence levels as well as distance
metrics. For instance, one could consider additional attributes like the visibility
of the widgets in the state comparison. Last but not least, we would like to
replicate the study on a larger set of subjects.
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Abstract. Search-based test case generation approaches make use of
static type information to determine which data types should be used
for the creation of new test cases. Dynamically typed languages like
JavaScript, however, do not have this type information. In this paper, we
propose an unsupervised probabilistic type inference approach to infer
data types within the test case generation process. We evaluated the
proposed approach on a benchmark of 98 units under test (i.e., exported
classes and functions) compared to random type sampling w.r.t. branch
coverage. Our results show that our type inference approach achieves a
statistically significant increase in 56% of the test files with up to 71%
of branch coverage compared to the baseline.

Keywords: Empirical software engineering · Search-based software
testing · Test case generation · Javascript · Type inference

1 Introduction

Over the last few decades, researchers have developed various techniques for
automating test case generation [31]. In particular, search-based approaches have
been shown to (1) achieve higher code coverage [25] and (2) have fewer smells [37]
compared to manually-written test cases, and (3) detect unknown bugs [1,2,21].
Furthermore, generated tests significantly reduce the time needed for testing and
debugging [42], and have been successfully used in industry (e.g., [3,11,30]).

These approaches make use of static type information to (1) generate prim-
itives and objects to pass to constructors and function calls, and (2) determine
which branch distance function to use. Without this type information, the test
case generation process has to randomly guess which types are compatible with
the parameter specification of the constructor or function call and would not have
guidance to solve the binary flag problem. This greatly increases the search space
and, therefore, makes the overall process less effective and efficient. Consequently,
most of the work in this research area has focused on statically-typed program-
ming languages like Java (e.g., EvoSuite [18]) and C (e.g., AUSTIN [26]).
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Dynamically-typed programming languages introduce new challenges for
unit-level test case generation. As reported by Lukasczyk et al. [28], state-of-
the-art approaches used for statically-typed languages do not perform well on
Python programs when type information is not available. According to the survey
from Stack Overflow1, Python and JavaScript are the two most commonly-used
programming languages. Both languages are dynamically-typed, strengthening
the importance of addressing these open challenges with the goal of increasing
the adoption of test case generation tools in general.

In this paper, we focus on test case generation for JavaScript as, to the
best of our knowledge, this is a research gap in the literature. In building our
research, we build on top of the reported experience by Lukasczyk et al. [29]
for Python programs. They addressed the input type challenge by incorporating
Type4Py [32]—a deep neural network (DNN)—into the search process.

We propose a novel approach that incorporates unsupervised probabilistic
type inference into the search-based test case generation process to infer the type
information needed. An unsupervised type inference approach has two benefits
compared to a DNN: (1) it does not require a labeled dataset with extensive
training time, and (2) the model is explainable (i.e., the decision can be traced
back to a rule set). We build a prototype tool which implements the state-of-the-
art many-objective search algorithm, DynaMOSA, and the probabilistic type
inference model for JavaScript. We investigate two different strategies for incor-
porating the probabilistic model into the main loop of DynaMOSA, namely
proportional sampling and ranking.

To evaluate the performance of the proposed approach, we performed an
empirical study that investigates the baseline performance of our prototype (i.e.,
using random type sampling) and the impact of the unsupervised probabilistic
type inference w.r.t. branch coverage. To this aim, we constructed a bench-
mark consisting of 98 Units under Test (i.e., exported classes and functions) of
five popular open-source JavaScript projects, namely Commander.js, Express,
Moment.js, Javascript Algorithms, and Lodash.

Our results show that integrating unsupervised probabilistic type inference
improves branch coverage compared to random type sampling. Both the rank-
ing and proportional sampling strategies significantly increase the number of
branches covered by our approach (+9.3% and +12.6%, respectively). Out of
the two strategies, proportional sampling outperforms ranking in 20 cases and
loses in 4. In summary, we make the following contributions:

1. An unsupervised probabilistic type inference approach for search-based unit-
level test case generation of JavaScript programs.

2. A prototype tool for automatically generating JavaScript unit-level test cases
that incorporates this approach.2

3. A Benchmark consisting of 98 units under test from five popular open-source
JavaScript projects.

4. A full replication package containing the results and the analysis scripts [43].
1 https://survey.stackoverflow.co/2022/#most-popular-technologies-language.
2 https://github.com/syntest-framework/syntest-javascript.

https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://github.com/syntest-framework/syntest-javascript
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2 Background and Related Work

This section explains the background concepts and discusses the related work.

Test Case Generation. Writing test cases is an expensive, tedious, yet nec-
essary activity for software quality assurance. Hence, researchers have proposed
various techniques to semi-automate this process since the 1970s [15]. These
techniques include symbolic execution [10], random testing [14], and meta-
heuristics [31] (e.g., genetic algorithms). The latter category is often referred
to as search-based software testing (SBST). SBST techniques have been success-
fully used in the literature to automate the creation of test cases for different
testing levels [31], such as unit [19], integration [17], and system-level testing [6].
At unit-level, SBST techniques aim to generate test cases that optimize vari-
ous test adequacy criteria, such as e.g., structural coverage and mutation score.
Many different meta-heuristic search algorithms have been proposed over the
years (e.g., whole suite [20], MIO [5], MOSA [38], or DynaMOSA [39]). Recent
studies have shown that DynaMOSA is more effective and efficient than other
genetic algorithms for unit test generation of Java [12] and Python [28] programs.

Type Inference. A recent study by Gao et al. [22] showed that the lack of static
types within JavaScript leads to bugs that could have been easily identified with
a static type system. To combat this problem, various approaches have been
proposed to infer/predict types for generating type annotations or assertions.
Anderson et al. [4] proposed a formal approach for inferring types using con-
straint solvers based on a custom JavaScript-like language. Chandra et al. [13]
proposed a formal type inference approach for static compilation of JavaScript
programs. These approaches, however, only support a subset of the JavaScript
syntax and, therefore, will not work on all programs. JSNice [41] and Deep-
Typer [24] are two other approaches that train a model based on training data
and use it to predict future type information. These approaches have the short-
coming that they can only predict basic JavaScript types. Meaning that they are
unable to predict/assert user-defined types. Additionally, these approaches can-
not consider the context of the literals and objects within a program or function.
Type4Py [32] is a similar approach that uses a Deep Neural Network (DNN) to
infer types for Python projects and suffers from similar limitations.

Testing for JavaScript. JavaScript started out as a client-side programming
language for the browser. Most work related to testing for JavaScript is, there-
fore, also focused on web applications within the browser (e.g., [9,27,34,44]).
Existing client-side testing approaches either focus on specific subsystems such as
the browser’s event handling system [9,27] or the interaction of JavaScript with
the Document Object Model of the browser [34]. Nowadays, JavaScript is also
a very commonly-used language for back-end development on Node.js. Tanida
et al. [44] proposed a symbolic execution approach that uses a constraint solver
for input data generation. Other approaches focused on mutation testing [33] or
contract-based testing [23]. However, to the best of our knowledge, there exists
no approach for automatic unit-level test case generation for JavaScript.
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Fig. 1. Extracting relations from code

3 Approach

This section details our test case generation approach for JavaScript programs
that relies on Unsupervised Type Inference. Our approach consists of three
phases, which are detailed in the next subsections.

3.1 Phase 1: Static Analysis

The first phase inspects the Subject Under Test (SUT) and its dependencies.
First, this phase builds the Abstract Syntax Trees (ASTs) and extracts all iden-
tifiers and literals from the code; these will be referred to as elements. Afterward,
the static analyzer extracts the relations between those elements and all user-
defined objects, i.e., classes, interfaces, or prototyped objects.

Elements. As mentioned before, the elements consist of identifiers and literals.
The former are the named references to variables, functions, and properties. The
latter are constant values assigned to variables; examples are strings, numbers,
and booleans. The types of the literal are straightforward and do not require
inference. However, the identifiers do not have explicit types in dynamically
typed languages like JavaScript. Hence, their types need to be inferred based on
the contextual information (or relations) of the extracted elements.

Relations. Relations correspond to operations performed on code elements and
describe how these elements are used and relate to other elements, providing
hints on their types. For example, let us consider the assignment relation L = R,
where R (right-hand element) is a boolean literal; we can logically derive (or
infer) that L (left-hand element) must also be a boolean variable.

These relations are extracted from the AST and are converted to a consistent
format that allows for easy identification of the relation type. Let us assume that
there is a lower than relation between variable a and literal 6, as shown in Fig. 1a
on line 2. This relation is converted and recorded as [L < R, a, 6], as shown in
Fig. 1b. In general, a relation is stored as a tuple containing (1) the type of
operation (L < R in our example) and (2) the list of operands (i.e., a and 6 in
our example). The full list of extracted relations for the code snippet in Fig. 1a
is reported in Fig. 1b.
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Fig. 2. Extracting relations from nested code

In total, we designed 75 possible relations based on the MDN web documen-
tation by Mozilla3. These operations/relations are classified into 15 categories,
namely (1) primary, (2) left-hand side, (3) increment/decrement, (4) unary, (5)
arithmetic, (6) relational, (7) equality, (8) bitwise shift, (9) binary bitwise, (10)
binary logical, (11) ternary, (12) optional chaining, (13) assignment, (14) comma,
and (15) function expressions. The complete list of relations is available in our
replication package.

Nested relations are special types of relations whose composing elements are
relations themselves. As an example, let us consider the code snippet in Fig. 2a.
The corresponding relation for the assignment is [L = R, x, y∗], where y* is an
artificial element that points to the whole right-hand side of the assignment.
This element corresponds to a ternary relation [C?L : R, z∗, 6, 10], which also
includes an artificial element, called z*, that points to the equality relation in
the conditional part of the ternary statement. So z* points to the final relation
[L == R, a, b]. Although the code in Fig. 2a seems rather simple, it corresponds
to three relations, two of which are nested, as shown in Fig. 2b.

Scopes. A critical aspect of the elements we have not yet discussed is scoping.
The scope of an identifier determines its accessibility. To better understand the
importance of the scope, let us consider the example in Fig. 3. First, the con-
stant x is assigned the value 5. The constant x is defined in the so-called global
scope. Next, a function is defined, creating a new scope. This scope has access
to references of the global scope. Still, it can also have its own references, which
are only available within its sub-scopes. In our example, another constant x is
defined within the function scope. Note that from line 4, every reference to x in
the scope of the function refers to the newly defined constant, not the x constant
of the global scope. This type of operation is called variable shadowing. In a nut-
shell, variable shadowing is when the code contains an identifier for which there
are multiple declarations in separate scopes. In these situations, the narrower
scope shadows the other identifier declarations.

This shadowing principle is fundamental during the first phase of our app-
roach because variables in the global scope are not the same variables as those
in the function scope (e.g., x in Fig. 3). In fact, variables with the same identifier
names but within different scopes can also have different types. In the example of
Fig. 3, x from the global scope is numerical, while the x from the function scope
is a string. In conclusion, the relations include the involved elements together
with their scope.

3 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators
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Fig. 3. Scopes

Complex Objects. In JavaScript, objects are the building blocks of the lan-
guage and are stored as key-value pairs. Apart from primitive types like booleans
and numbers, almost everything is represented as an object. An array, for exam-
ple, is a special object where the keys are numbers. In recent JavaScript versions,
developers can define classes and interfaces through a prototype-based object
model, inducing a more object-oriented approach to JavaScript. Since these
objects play such a prominent role in JavaScript, it is important that object
types can be inferred as well. Hence, our approach extracts all object descrip-
tions available in the program under test, including class, interface definitions,
and standard objects (e.g., functions).

3.2 Phase 2: Unsupervised Static Type Inference

The second phase builds a probabilistic type model for the elements extracted
from the first phase. For literal elements, the type inference is straightforward as
the type can be directly inferred from the literal type. However, for non-literal
elements, our probabilistic model considers all type hints that can be inferred
from the relations extracted in the previous phase.

For example, the assignment x = 5 corresponds to the relation [L = R, x, 5].
From such a relation, we can derive that, at this particular point in the code, x
must be numerical since it is assigned the literal value 5. However, for statements
like x = y + z, there are various possibilities for the type of x depending the on
types of y and z. To illustrate, the + operator can be applied to both numbers
(arithmetic sum) and strings (string concatenation). Besides, in JavaScript, it is
also possible to concatenate numbers with strings. For example, 1 + "1" returns
the number 11. Therefore, multiple types can be assigned to elements that have
relations/operations compatible with multiple data types.

To account for this, our model assigns scores to each type depending on the
number of hints that can be derived for that type by its relations in the code. In
general, given the element e and the set of relations R = {r1, . . . rn} associated
to e as extracted from a program P , our model assigns each type t a score equal
to the number of relations that can be applied to t (i.e., the number of hints):

score(e, t) = |hints(e, t)| where hints(e, t) = {ri ∈ R : ri applies to t} (1)
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Finally, the element e has a probability of being assigned the type t propor-
tional to the number of hints received for t:

p(e, t) =
score(e, t)∑

ti

score(e, ti)
(2)

The higher the score of a particular type, the larger the probability that the
element is of that type. The probabilities are later used to sample argument
types in the search phase.

For example, let us consider the statement x = y + z, which can be applied
to both strings and numbers. In this case, our probabilistic model would assign
+1 hint for numbers and +1 hint for strings. Hence, both types will have an
equal probability of 50%.

Nested Types. The probability model takes into account both simple and
nested relations. For example, let us consider the JavaScript statement: c = a
> b. Such a statement corresponds to two relations (one of which is nested):
[L = R, c, d∗] and d∗ = [L > R, a, b]. The outcome for d∗ = [L > R, a, b] is
boolean no matter the types of a and b. Therefore, we can infer the variable
(or element) c should be as well. Hence, the hints and scores are obtained by
considering all relations, including the nested ones.

Resolving Complex Objects. Complex objects are characterized by property
accessor relations, i.e., operations that aim to access properties of certain objects
(e.g., using the dot notation object.property). If an element is involved in one
or more property accessor relations, the accessed properties are compared to
the available object descriptions. If there is an overlap between the element’s
properties and the properties of an object description, the object description
receives +1 hint. In addition to matching object descriptions, an anonymous
object type is created and assigned as a possible type. This anonymous object
type exactly matches the properties of the element. This object is used when no
other object matches are found.

3.3 Phase 3: Test Case Generation

The third phase generates test cases using meta-heuristics with the goal of
maximizing branch coverage. As explained in Sect. 2, we use the Dynamic
Many-Objective Sorting Algorithm (DynaMOSA) [39] as suggested in the lit-
erature [12,29,40]. Previous studies have shown that DynaMOSA outperforms
other meta-heuristics in unit test case generation for Java [12,40], python [29],
and solidity [36] programs. Assessing other meta-heuristics in the context of
unit test generations for JavaScript programs is part of our future agenda.

Our implementation applies the probabilistic model described in Sect. 3.2 to
determine what is the potential type of each input parameter. We have imple-
mented two different strategies to incorporate the type inference model into the
main DynaMOSA loop, namely proportional type sampling and ranking.
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Table 1. Benchmark statistics

Benchmark #Units CC SLOC Avg. n. branches

Commander.js 4 23 208 29

Express 15 20 222 25

Moment.js 54 7 33 8

Javascript Algorithms 30 5 68 8

Lodash 10 11 63 16

Proportional Sampling. This strategy can assign various types to each input
parameter. As explained in Sect. 3.2, our model assigns scores to multiple types
(see Eq. (1)) based on the number of positive hints received by analyzing the
associated relations. When creating a new test case (either in the initial popula-
tion or during mutation), each input parameter is assigned one of the types. Each
candidate type has a probability of being selected equal to the value obtained by
applying Eq. (2). Notice that each data type is sampled for each newly generated
test case. Therefore, the same input parameter (for the same function) may be
assigned different types every time a new test case is created.

Ranking. This strategy assigns only one type to the input parameter. In partic-
ular, this strategy sorts all types with positive hints in descending order of their
score values. Then, this method selects the type with the largest probability (or
the largest number of hints).

Test Execution. Once generated, each generated test case will contain a
sequence of function calls with their input data. These tests are then executed
against the program under test, and the coverage information is stored. The
“fitness” of a test is measured according to its distance to cover all unreached
branches in the code, as typically done in DynaMOSA. The distance to each
uncovered branch is computed using two well-known coverage heuristics [31]: (1)
the approach level and (2) the normalized branch distance.

4 Empirical Study

To assess the impact of the unsupervised probabilistic type inference on the
performance of search-based unit test generation for JavaScript, we perform an
empirical evaluation to answer the following research questions:

RQ1 How does unsupervised static type inference impact structural coverage of
DynaMOSA for JavaScript?

RQ2 What is the best strategy to incorporate type inference in DynaMOSA?

Benchmark. To the best of our knowledge, there is no existing JavaScript
benchmark for unit-level test case generation. Hence, for our empirical study,
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we build a benchmark comprising of five JavaScript projects: Express4, Com-
mander.js5, Moment.js6, JavaScript Algorithms7, Lodash8. These projects were
selected based on their popularity in the JavaScript community (measured
through the number of stars on GitHub) and represent a diverse collection of
JavaScript syntax and code styles. From these projects, we selected a subset of
units (i.e., classes or functions) based on two criteria: (1) the unit has to be
testable (i.e., the unit has to be exported), and (2) the unit needs to be non-
trivial (i.e., have a Cyclomatic Complexity of CC ≥ 2 as calculated by Plato9).
The latter criterion is in line with existing guidelines for assessing test case gen-
eration tools [40]. Table 1 provides the main characteristics of our benchmark at
the project-level, including the average Cyclomatic Complexity per project (CC
column), the average Source Lines Of Code (SLOC column), and the average
number of branches. It is worth noting that some of the files in the selected
projects had to be excluded or modified. For example, in the Commander.js
project there are two files that contain statements that terminate the running
process. This has the effect of also terminating the test case generation process.
Therefore, we have excluded this file from the benchmark and modified it, so
that any other files depending on it will not be affected.

Prototype. To evaluate the proposed approach, we have developed a prototype
for unit-level test case generation that implements our unsupervised dynamic
type inference, written in Typescript. The prototype also implements the state-
of-the-art search algorithm for test case generation, namely DynaMOSA [39],
as well as the guiding heuristics [31], i.e., the approach level and branch distance.

Parameter Settings. For this study, we have chosen to mainly adopt the
default search algorithm parameter values as described in literature [39]. Pre-
vious studies have shown that although parameter tuning impacts the search
algorithm’s performance, the default parameter values provide reasonable and
acceptable results [8]. Hence, the search algorithm uses a single point crossover
with a crossover probability of 0.75, mutation with a probability of 1/n (n =
number of statements in the test case), and tournament selection. For the pop-
ulation size, however, we decided to deviate from the default (50). We went for
a size of 30 as our preliminary experiment showed this worked best for a bench-
mark this size. The search budget per unit under test is 60 s. This is a common
value used in related work [35].

Experimental Protocol. To answer RQ1, we compare the two variants of
our approach with DynaMOSA without type inference. In particular, for this
baseline, the type for the input data is randomly sampled among all types that
can be extracted using the relations described in Sect. 3.1. To answer RQ2, we

4 https://expressjs.com/.
5 https://tj.github.io/commander.js/.
6 https://momentjs.com/.
7 https://github.com/trekhleb/javascript-algorithms.
8 https://lodash.com/.
9 https://github.com/es-analysis/plato.

https://expressjs.com/
https://tj.github.io/commander.js/
https://momentjs.com/
https://github.com/trekhleb/javascript-algorithms
https://lodash.com/
https://github.com/es-analysis/plato
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compare the two variants of our approach: (1) proportional type sampling, and
(2) ranking.

To account for the stochastic nature of the approach, each unit under test
was run 20 times. We performed 20 repetitions of 3 configurations (i.e., random
type sampling, ranking, and proportional sampling) on 98 units under test, for
a total of 5880 runs. This required (5880 runs × 60 s)/(60 s × 60 min × 24 h) ≈
4.1 d computation time. At the end of each run, we stored the maximum branch
coverage achieved by the approach for the active configuration (RQ1 and RQ2).
The experiment was performed on a system with an AMD Ryzen 9 3900X (12
cores 3.8 GHz) with 32 GB of RAM. Each experiment was given a maximum of
8 GB of RAM. To determine if one approach performs better than the others,
we applied the unpaired Wilcoxon signed-rank test [16] with a threshold of 0.05.
This non-parametric statistical test determines if two data distributions are sig-
nificantly different. In addition, we apply the Vargha-Delaney Â12 statistic [45]
to determine the effect size of the result, which determines the magnitude of the
difference between the two data distributions.

5 Results

This section discusses the results of our empirical study with the aim of answer-
ing the research questions formulated in Sect. 4. All differences in results are
presented in absolute differences (percentage points).

Result for RQ1: Structural Coverage. Table 2 summarizes the results
achieved by our approach on the benchmark with the winning configuration
highlighted in gray color. It shows the median branch coverage and the Inter-
Quartile-Range (IQR) for the two possible strategies to incorporate the type
inference model (Ranking, Proportional) and a baseline that uses random type
sampling (Random). The Units column indicates the number of units (i.e.,
exported classes and functions) that are tested in the file of the benchmark
project.

On average for all 57 files in the benchmark, random achieves 33.4% branch
coverage, ranking 42.7%, and proportional type sampling 46.0%. The baseline
still performs quite well, as random type sampling can be effective in triggering
assertion branches and can over time guess the correct types for primitives. For
the ranking strategy, the average improvement in branch coverage is 9.3%. The
file with the least improvement is suggestSimilar.js from the Commander.js
project with an average decrease of 13%. The file with the most improvement
is add-subtract.js from the Moment.js project with an average increase of
71%, which corresponds to 10 additionally covered branches. For the proportional
strategy, the average improvement in branch coverage is 12.6%. There are 24 files
for which the proportional strategy performs equally to the baseline. The file with
the most improvement is again add-subtract.js from the Moment.js project
with an average increase of 71%.

Table 3 shows the results of the statistical comparison between the two strate-
gies and the baseline, based on a p-value ≤ 0.05. #Win indicates the number of
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Table 2. Median branch coverage and the inter-quartile-range. The largest values are
highlighted in gray color.

Benchmark File Name #Units
Random Ranking Proportional

Median IQRMedian IQRMedian IQR

Commander.js help.js 1 0.20 0.0190.41 0.0760.53 0.023

option.js 2 0.33 0.0560.33 0.0560.39 0.000

suggestSimilar.js 1 0.69 0.0620.56 0.1560.75 0.062

Express application.js 1 0.63 0.0190.63 0.0190.65 0.019

query.js 1 0.67 0.0000.67 0.0000.67 0.000

request.js 1 0.25 0.0000.27 0.0230.25 0.023

response.js 1 0.14 0.0070.13 0.0130.14 0.013

utils.js 7 0.56 0.0070.62 0.0000.59 0.029

view.js 1 0.06 0.0000.06 0.0000.06 0.000

JS Algorithms Graph articulationPoints.js 1 0.00 0.0000.00 0.0000.08 0.000

bellmanFord.js 1 0.00 0.0000.17 0.0000.33 0.000

bfTravellingSalesman.js 1 0.00 0.0000.08 0.0000.08 0.000

breadthFirstSearch.js 1 0.12 0.1250.38 0.0310.31 0.125

depthFirstSearch.js 1 0.00 0.1670.00 0.1670.00 0.167

detectDirectedCycle.js 1 0.00 0.0000.12 0.0000.38 0.000

dijkstra.js 1 0.00 0.0000.10 0.0000.20 0.100

eulerianPath.js 1 0.00 0.0000.00 0.0000.21 0.000

floydWarshall.js 1 0.00 0.0000.67 0.0000.67 0.000

hamiltonianCycle.js 1 0.00 0.0000.00 0.0000.00 0.050

kruskal.js 1 0.10 0.1000.30 0.0000.30 0.000

prim.js 1 0.08 0.0000.08 0.0830.17 0.000

stronglyConnectedComponents.js 1 0.00 0.0000.00 0.0000.25 0.000

JS Algorithms KnapsackKnapsack.js 1 0.57 0.0000.50 0.0000.57 0.000

KnapsackItem.js 1 0.50 0.0000.50 0.0000.50 0.000

JS Algorithms Matrix Matrix.js 12 0.79 0.0530.74 0.0260.80 0.158

JS Algorithms Sort CountingSort.js 1 0.92 0.0830.92 0.0210.92 0.000

JS Algorithms Tree RedBlackTree.js 1 0.21 0.0000.26 0.0000.29 0.037

Lodash equalArrays.js 1 0.08 0.0000.67 0.0420.75 0.052

hasPath.js 1 0.75 0.1560.75 0.0000.88 0.250

random.js 1 1.00 0.0001.00 0.0001.00 0.000

result.js 1 0.90 0.1000.80 0.0000.90 0.100

slice.js 1 1.00 0.0001.00 0.0001.00 0.000

split.js 1 0.88 0.0000.88 0.0000.88 0.000

toNumber.js 1 0.60 0.0000.65 0.0000.65 0.050

transform.js 1 0.83 0.0000.83 0.0000.83 0.083

truncate.js 1 0.38 0.0000.59 0.0290.59 0.000

unzip.js 1 1.00 0.0001.00 0.0001.00 0.000

Moment.js add-subtract.js 1 0.00 0.0000.71 0.0180.71 0.000

calendar.js 2 0.05 0.0000.45 0.0910.43 0.091

check-overflow.js 1 0.05 0.0000.60 0.0000.60 0.000

compare.js 6 0.14 0.0000.14 0.0000.14 0.000

constructor.js 3 0.38 0.0000.53 0.0080.41 0.156

date-from-array.js 2 0.88 0.0000.88 0.0000.88 0.000

format.js 4 0.08 0.0000.08 0.0000.08 0.000

from-anything.js 2 0.68 0.0590.71 0.0000.69 0.037

from-array.js 1 0.02 0.0000.04 0.0000.04 0.000

from-object.js 1 0.50 0.0000.50 0.0000.50 0.000

from-string-and-array.js 1 0.00 0.0000.31 0.0000.31 0.000

from-string-and-format.js 1 0.06 0.0000.56 0.0390.55 0.133

from-string.js 3 0.06 0.0000.16 0.0000.16 0.000

get-set.js 5 0.14 0.0000.23 0.0450.36 0.068

locale.js 2 0.17 0.1670.17 0.0000.17 0.000

min-max.js 2 0.12 0.0000.12 0.0000.12 0.000

now.js 1 0.50 0.0000.50 0.0000.50 0.000

parsing-flags.js 1 0.50 0.0000.50 0.1250.50 0.000

start-end-of.js 2 0.10 0.0000.10 0.0000.10 0.000

valid.js 2 0.38 0.0000.38 0.0000.38 0.000
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Table 3. Statistical results w.r.t. branch coverage

Comparison
#Win #No diff. #Lose

Negl. Small Medium Large Negl. Negl. Small Medium Large

Ranking vs. Random - 3 1 23 26 - 1 - 3

Prop. sampling vs. Random - 1 4 27 25 - - - -

Prop. sampling vs. Ranking - 4 - 16 33 - 3 1 -

times that the left configuration has a statistically significant improvement over
the right one. #No diff. indicates the number of times that there is no evidence
that the two competing configurations are different; #Lose indicates the number
of times that the left configuration has statistically worse results than the right
one. The #Win and #Lose columns also include the Â12 effect size, classified
into Small, Medium, Large, and Negligible.

We can see that the ranking and the proportional strategy have a statis-
tically significant non-negligible improvement over the baseline in 27 and 32
files for branch coverage, respectively. Ranking improves with a large magni-
tude for 23 classes, medium for 1 class, and small for 3 classes and proportional
with 27 (large), 4 (medium), and 1 (small). The Ranking strategy loses in four
cases when compared to the baseline: response.js, response.js, Knapsack.js,
Matrix.js, and results.js.

Result for RQ2: Strategy. When we compare the two different strategies
with each other, we can observe that the proportional type inference on aver-
age improves by 3.3% over the ranked strategy based on branch coverage.
The file with the least improvement is constructor.js from the Moment.js
project with an average decrease of 12%. While the file with the most improve-
ment is detectDirectedCycle.js from the JS Algorithms project with an
average increase of 36%. From Table 3, we can see that the proportional
strategy has a statistically significant non-negligible improvement over rank-
ing in 20 cases (16 large and 4 small). While ranking improves over propor-
tional in only 4 cases (1 medium and 3 small): slice.js, constructor.js,
from-string-and-format.js, and parsing-flags.js.

6 Threats to Validity

This section discusses the potential threats to the validity of our study.

External Validity: An important threat regards the generalizability of our
study. We selected five open-source projects based on their popularity in the
JavaScript community. The projects are diverse in terms of size, application
domain, purpose, syntax, and code style. Further experiments on a larger set of
projects would increase the confidence in the generalizability of our study and,
therefore, is part of our future work.

Conclusion Validity: Threats to conclusion validity are related to the ran-
domized nature of DynaMOSA. To minimize this risk, we have executed each
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configuration 20 times with different random seeds. We have followed the best
practices for running experiments with randomized algorithms as laid out in well-
established guidelines [7]. Additionally, we used the unpaired Wilcoxon signed-
rank test and the Vargha-Delaney Â12 effect size to assess the significance and
magnitude of our results. To ensure a controlled environment that provides a
fair evaluation, all experiments have been conducted on the same system and
interfering processes were kept to a minimum.

7 Conclusion and Future Work

In this paper, we presented an automated unit test generation approach for
JavaScript, the most popular dynamically-typed language. It generates unit-
level test cases by using the state-of-the-art meta-heuristic search algorithm
DynaMOSA and a novel unsupervised probabilistic type inference model. Our
results show that (1) the proposed approach can successfully generate test cases
for well-established libraries in JavaScript, and (2) the type inference model
plays a significant role in achieving larger code coverage (through proportional
sampling). As part of our future work, we plan (1) to extend our benchmark, (2)
to investigate more meta-heuristics, (3) assess different strategies to incorporate
the type inference model within the search process, and (4) compare our type
inference model to state-of-the-art deep learning approaches.
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Abstract. State-of-the-art deep neural networks in image classification,
recognition, and detection tasks are increasingly being used in a range of
real-world applications. Applications include those that are safety crit-
ical, where the failure of the system may cause serious harm, injuries,
or even deaths. Adversarial examples are expected inputs that are mali-
ciously modified such that the machine learning models fail to classify
them correctly. While a number of evolutionary search-based approaches
have been developed to generate adversarial examples against image
classification problems, evolutionary search-based attacks against object
detection algorithms remain unexplored. This paper explores how evolu-
tionary search-based techniques can be used as a black-box, model- and
data- agnostic approach to attack state-of-the-art object detection algo-
rithms (e.g., RetinaNet and Faster R-CNN). A proof-of-concept imple-
mentation is provided to demonstrate how evolutionary search can gen-
erate adversarial examples that existing models fail to correctly process.
We applied our approach to benchmark datasets, Microsoft COCO and
Waymo Open Dataset, applying minor perturbations to generate adver-
sarial examples that prevented correct model detections and classifica-
tions on areas of interest.

Keywords: Evolutionary search · Adversarial examples · Machine
learning

1 Introduction

Many popular machine learning techniques, such as Deep Neural Networks
(DNNs), are susceptible to carefully crafted malicious inputs [3,17]. These mali-
cious inputs are known as adversarial examples [17]. DNNs are artificial neural
networks with multiple layers of activation neurons that can be used for fea-
ture learning. DNNs have numerous real-world applications, such as malicious
file detection [19,21], fraud detection [11,24], and autonomous vehicles [6,26].
In safety-critical systems [5], commercially-deployed DNNs may have significant
consequences should they fail, leading to potential injury, serious harm, death,
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and/or financial loss. To prevent serious harm or injuries, DNNs deployed in
safety-critical systems must be robust against adversarial attacks. Therefore,
a challenge is how machine learning model robustness can be assessed and
improved to correctly process inputs in the face of adversarial attacks. This
paper introduces EvoAttack, a black-box evolutionary search-based technique,
to assess the robustness of object detection algorithms against a diverse collec-
tion of adversarial examples.

Over the past decade, several research efforts have addressed adversarial
examples for image classification techniques [3,13,17,18]. Adversarial examples
are expected input data (often part of the original dataset) with a small amount
of human-imperceptible perturbations introduced to cause model failure (e.g.,
misclassification of class labels) [3,17]. Adversarial example research has largely
focused on techniques that challenge the robustness of image classification tech-
niques (i.e., given an image of an object, correctly label the object). However,
object detection techniques (i.e., given an image with up to n number of objects,
correctly identify the object(s) by drawing a bounding box around them and label
them accordingly) have had limited research [25,28,29]. Compared to image
classification, attacking object detection techniques is significantly more dif-
ficult as the images are larger in size, contain more dimensions, and contain
multiple numbers of potential objects. Existing techniques for generating adver-
sarial examples against object detection algorithms [25,28] assume a white-box
model, where sensitive or critical model parameters are known to the adversary.
While existing approaches can be used as weak black-box attacks (i.e., transfer
from a white-box attack to a black-box model with similar architectures), such
approaches often involve additional training overhead to produce a surrogate
model to attack. As such, a true black-box, model- and data- agnostic approach
(i.e., does not depend on model or data specific information) for object detection
algorithms is still needed. Furthermore, while black-box approaches have been
applied to image classification [12,23], they typically introduce a large amount
of visible perturbation when applied to images with large dimensions.

As a means to assess model robustness against adversarial attacks, this paper
introduces a black-box evolutionary search-based testing technique, EvoAt-
tack, to generate adversarial examples to compromise object detection algo-
rithms by adversely impacting the detection of objects. The evolutionary search-
based adversarial attack used in this work does not require access or estimates
of hidden model parameters or model architecture, does not require additional
training of surrogate models, and is model and data agnostic. This work con-
tributes two key insights. First, we leverage the output of the object detection
model in the previous generation to guide the mutation process and the structure
of the fitness function. Second, we propose an adaptive mutation scheme that
dynamically scales the mutation rate to reduce perturbation while promoting
convergence.

Two key strategies are used to enable our approach to generate adversar-
ial examples while minimizing human-perceptible perturbations. To generate
adversarial examples, we use a generational Genetic Algorithm (GA), where
individuals in a population evolve towards a global optimum (i.e., a perturbed
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image that adversely impacts model detection). Compared to image classification
problems, object detection images contain multiple classification sub-problems.
As such, we developed a fitness function that simultaneously accounts for all
objects detected by the model during the inference stage. Specifically, the out-
put of the model in the previous generation enables our approach to localize the
perturbation region by ignoring pixels that do not directly affect the output of
the model. Additionally, our fitness function dynamically adapts based on the
number of bounding boxes and confidence scores from the previous generation’s
detections. During mutation, we apply a fine-grained approach for generating
perturbation by focusing on pixels in areas of interest. We introduce an adaptive
mutation scheme, where we promote minor perturbations for each object in the
image, while encouraging misdetection from the model. In the proposed adap-
tive mutation scheme, we mutate a small number of pixels when the generation
count is low. In order to promote convergence, the number of modified pixels is
dynamically scaled up as the number of generations increases.

In our experiments, we verify thatEvoAttack can produce adversarial exam-
ples that prevent object detection. We implemented the proposed approach and
generated adversarial examples against existing object detection models, such
as RetinaNet [10] and Faster R-CNN [20]. To illustrate the potential impact of
adversarial examples against object detection models, we apply our technique to
attack a set of images obtained from the Microsoft COCO dataset [14] and the
Waymo Open Dataset [16] to show how adversarial examples can be generated
against two different benchmark datasets. Preliminary results show that our algo-
rithm can cause the model to deviate from the expected output, while maintain-
ing a low degree of visible perturbations (i.e., L0 and L2 norms). This work shows
that black-box evolutionary search-based adversarial examples can be generated
against object detection tasks, a domain not yet explored to the best of our knowl-
edge. The remainder of this paper is organized as follows. Section 2 overviews back-
ground material and reviews related work. Next, Sect. 3 describes the details of
the proposed approach. Section 4 describes the validation work of our approach.
Finally, Sect. 5 concludes the paper and discusses future directions.

2 Background

This section provides background information for the paper. First, we describe
adversarial examples. Next, we compare the image classification problem with
the object detection problem. Finally, we overview related work.

2.1 Adversarial Examples

Adversarial examples describe machine learning model inputs that are mali-
ciously perturbed to cause a failure in the model. Figure 1 shows an example
of an adversarial example. The original input image (i.e., an image with the
corresponding identified objects) is shown on the left. When the malicious per-
turbation noise (scaled by a factor of 10 for readability purposes) is added to the
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input image, the resulting image prevents the detection of the objects. Adver-
sarial examples closely resemble original images, and thus are not human distin-
guishable.

Different adversaries may have different types of access and understanding of
the underlying model’s architecture and parameters. White-box attacks assume
that the adversary has access to sensitive information of the model [29]. For
example, the adversary may have information about the type of model, weights,
gradient information, and/or the architecture of the model. Traditional attack
methods such as L-BFGS [17], Fast Gradient Sign Method (FGSM) [3], and
Dense Adversary Generation (DAG) [28] exploit gradient information of the
model to be attacked and modify the image by inducing noise based on the
gradient information. In contrast, black-box attacks assume that the adversary
has no prior knowledge of the model to be attacked [29]. The adversary has
access to a compiled model and may query the model with any input to obtain
the model’s output, but does not have access to the underlying weights and
architecture of the model. Thus, a black-box attack closely resembles a real-world
attack scenario where the development of the DNN model may be proprietary,
and only the compiled model is publicly available.

Clean Image
(Model Detection)

+ =

Adversarial Example
(Failed Detection)Perturbation (x0.1)

Fig. 1. Example of an adversarial example, where the original clean input with mali-
cious perturbations prevents model detection.

2.2 Adversarial Examples for Object Detection Algorithms

Compared to the image classification problem, object detection is an inherently
more difficult problem for both model inference and attacks [28]. In image clas-
sification, an input image consists of exactly one object. The model returns a
prediction label with a confidence score, denoting the probability that the object
is of the corresponding label. Since the input consists of one object, every pixel
in the image may contribute to the output of the model. In object detection
algorithms, input images are often large in dimensions with multiple objects of
interest. The objective of the model is to correctly identify objects in the image,
draw bounding boxes, and provide the object types. Thus, most regions of the
input image may not contribute to the output of the model. If we allow all pix-
els of the image to be mutated, then the objective of minimal perturbations of
adversarial examples may not be satisfied. As such, alternative approaches for
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selecting the perturbation space must be developed for attacking object detec-
tion algorithms.

2.3 Related Work

This section overviews related work in the area of adversarial examples, black-
box approaches, and current research for adversarial examples applied to object
detection. While other works have explored evolutionary search-based adversar-
ial examples for classification problems, this paper examines how evolutionary
search-based approaches can be used to attack object detection algorithms.

Szegedy et al. [17] introduced the first adversarial examples, revealing the
existence of malicious images that machine learning models fail to predict cor-
rectly. Carlini and Wagner [1] introduced the C&W attack similar to that of
Szegedy et al.’s attack [17]. Goodfellow et al. [3] proposed the FGSM algorithm
to perturb the image based on the signed gradient. However, most of the adver-
sarial example generation techniques explore white-box attacks, where the gradi-
ent and other sensitive information of the underlying model are not hidden from
the adversary. Our approach assumes a black-box model where the adversary
does not have access to model weights and architecture.

Several researchers have explored the use of black-box evolutionary
approaches to generate adversarial examples for image classification algorithms,
but to the best of our knowledge, these techniques have not targeted object
detection algorithms. Su et al. [22] proposed a one-pixel attack using Differen-
tial Evolution (DE). Alzantot et al. [12] proposed GenAttack, which applies a
variation of GA to discover adversarial examples. Vidnerová et al. [23], Chen et
al. [2], Wu et al. [27], and Han et al. [4] proposed similar GA approaches. These
approaches use different evolutionary search techniques (e.g., evolutionary algo-
rithms, GAs, multi-objective GAs, etc.) and target different applications and
datasets.

Finally, a number of research efforts have explored generating adversarial
examples against object detection models. Xie et al. [28] proposed the DAG algo-
rithm that calculates the gradients with respect to all correctly-labeled objects
and accumulates perturbations that reduce the model’s output confidence. The
authors applied their technique to previous state-of-the-art networks, such as
the FCN framework and Faster R-CNN [20] on the PascalVOC dataset. In con-
trast, Wei et al. [25] proposed a transfer-based attack based on a Generative
Adversarial Network (GAN). However, their approach requires the training of
a surrogate model, thus resulting in additional training overhead. Furthermore,
transferability attacks do not guarantee success. As such, current existing state-
of-the-art techniques do not provide a true black-box, model- and data-agnostic
approach for object detection algorithms.

3 Methodology

This section introduces our proposed evolutionary search-based approach to
attack object detection algorithms. We first describe the image datasets used
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in our experiments. Next, we overview how we use evolutionary search to gener-
ate adversarial examples with the objective of minimizing perturbations. Finally,
we introduce an adaptive mutation scheme that reduces the number of changed
pixels and the degree of perturbations in adversarial examples.

3.1 Object Detection Benchmark Datasets

This work uses two benchmark datasets to validate the proposed technique
to illustrate that evolutionary search-based attacks are not model or dataset-
dependent. First, the Common Object in Context (COCO) [14] dataset is a
large-scale dataset created by Microsoft to promote machine learning progress
in object detection, segmentation, and captioning. We also use the Waymo Open
Dataset [16] for autonomous driving in our studies. The Waymo dataset contains
high-quality images taken from a camera mounted atop a vehicle to obtain real-
world driving scenarios for object detection.

3.2 Evolutionary Search-Based Approach

This section describes how we harness evolutionary search to generate adversarial
examples against object detection algorithms. Figure 2 shows a Data Flow Dia-
gram (DFD) for EvoAttack, where parallel lines represent external data stores,
green circles denote process bubbles, and arrows indicate data flow between pro-
cesses. The inputs for the algorithm are a (black-box) object detection model and
an input image (i.e., the original, non-perturbed image). The algorithm searches
for perturbations that adversely impact the model’s ability to detect objects. In
order to apply evolutionary search, potential solutions are mapped to a genome
representation in Step 1. In our work, individuals (i.e., images) are represented
as 3D matrices of the following form: [RGB channel, i, j], where each element
of the matrix denotes the value of an RGB channel (ranging from [0, 255]) for
the i, j-th pixel, respectively.

Fig. 2. DFD for the evolutionary process used to generate adversarial examples against
object detection models.

We largely follow a standard generational GA process to identify adversarial
examples. A point crossover operator is used in Step 3 to create children to main-
tain regions of perturbation that cause failures in the model’s detection. Several
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key innovations enable EvoAttack to optimize the evolutionary search pro-
cess and reduce the perturbations in adversarial examples. First, EvoAttack
uses an adaptive mutation scheme that enables the trade-off of minimizing visi-
ble perturbation with computational time to find adversarial examples (Sect. 3.3
describes the adaptive mutation scheme in detail). Second, we introduce an opti-
mization strategy in Step 5, where the previous generation’s model results are
used to configure the structure of the fitness function and identify regions of
interest to perturb. The fitness scores are calculated using the following expres-
sion:

FitnessScore =
len(detection)∑

i=0

detection[i][‘confidence’]

The fitness score represents the model’s “degree of correctness” as the sum of the
confidence scores for objects identified by the model. As an object is no longer
detected by the model when its confidence score is reduced below the detection
threshold, the fitness score promotes the evolutionary search to introduce per-
turbations that iteratively lowers detection confidences until the objects are no
longer detected by the model.

Finally, the population is sorted by the fitness score in Step 6. If an adversarial
example is found that prevents model detection, then the algorithm terminates
and returns the adversarial example. Otherwise, the new population returns
to Step 3 for the algorithm to iteratively add perturbations. If the maximum
number of generations is reached without convergence, then the algorithm fails
and is terminated.

3.3 Adaptive Mutation Scheme

The mutation operation in Step 4 introduces perturbations to an image with the
objective of finding “ideal” perturbations (i.e., fewest number of changed pixels
and smallest degree of changes) that hamper model detection. The traditional
approach to the mutation scheme [12,23] in evolutionary search-based attacks is
to modify each pixel with a small mutation rate, Pmut, during the mutation step
of each generation. This approach can quickly generate adversarial examples that
cause a failure in the model’s detection ability, where the emphasis is on optimiz-
ing computational time. However, when applied to images of large dimensions,
perturbations would be introduced to many pixels even with a small mutation
rate (e.g., Pmut = 0.01), thus making the attack more likely to be human per-
ceptible. For example, an object in a bounding box of dimension 160 × 200 (i.e.,
10% of a 640 × 500 image) would mutate 320 pixels on average every generation
using a small Pmut of 0.01. After 100 generations, every pixel is expected to be
mutated at least once. As such, we found that this approach would introduce
perturbations to the image that are too easily perceived by humans.

In order to address the high perturbation problem, we propose an adap-
tive mutation scheme for EvoAttack that begins by adding minimal perturba-
tions and scales the added perturbations as the number of generations increases.
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During the mutation step of each generation (i.e., Step 4), we introduce minor
perturbations to pixels in bounding boxes identified by the model by adding per-
turbations sampled over (δmin, δmax) to n pixels for each object detected. The
values (δmin, δmax) determine the degree of perturbation introduced. Higher δ
values introduce perturbations that are more likely to cause misdetections, but
are more likely to be human perceptible. The number of changed pixels n is
determined by the following formula, where α, β, and Pmut are hyperparame-
ters:

n =

{
max(generation/α, 1) if generation ≤ β

num of pixels ∗ Pmut ∗ (generation/β) if generation > β

Specifically, n is increased incrementally every α number of generations. The
value α determines the rate of growth for the number of pixels perturbed. The
value β defines the number of generations EvoAttack explores before the algo-
rithm adopts a more aggressive search strategy to promote convergence. After β
number of generations, n is instead based on the number of pixels in the bound-
ing box multiplied by a mutation rate (i.e., Pmut) that increases dynamically
based on the generation count. For example, consider the object in an image
discussed above with dimension 160 × 200 and α = 15, β = 750, Pmut = 0.01.
EvoAttack introduces perturbations to each detected object that incremen-
tally increase by 1 every 15 generations (i.e., 1 pixel is changed from generations
1–15, 2 pixels are changed from generations 15–30, etc.) until the 750th gener-
ation. By the 750th generation, 320 pixels in the bounding box of each object
are mutated. The algorithm then modifies a number of pixels based on a scaling
mutation rate, Pmut. Using an adaptive mutation scheme, images that do not
require large perturbations to cause a misdetection will not have unnecessary
perturbations, while images that are difficult to perturb will still be promoted
to converge as the number of generations increases.

4 Empirical Studies

We evaluate the efficacy of EvoAttack against state-of-the-art object detec-
tion algorithms. First, we demonstrate that the adaptive mutation scheme can
generate more adverse test data (less perturbations) than the traditional muta-
tion scheme (i.e., all pixels in bounding boxes are eligible for mutation with a
fixed chance). Second, we show that our approach is model agnostic by attacking
models of different architectures. Finally, we demonstrate the potential negative
impacts of such attacks by attacking the Waymo Open Dataset [16], while also
demonstrating that it is data agnostic.

4.1 Experimental Setup for Evolutionary Search-Based Approaches

For the validation work, we use object detection DNNs implemented using the
Pytorch [15] deep learning research platform. To show that our attack is model



EvoAttack: An Evolutionary Search-Based Adversarial Attack 91

agnostic, we use various model architectures with weights pretrained by Pytorch,
such as a Faster R-CNN MobileNetV3 [20] and RetinaNet [10] trained using
a ResNet-50-FPN backbone. For Waymo images, we train an object detector
using a RetinaNet with a ResNet-50-FPN backbone [8]. The trained model has
a mean recall of 95%. During model inference, we set the detection confidence
threshold to be 0.7 to provide a proof-of-concept demonstration of EvoAttack.
However, EvoAttack can generate adversarial examples using any threshold
score for model testing. For evolutionary parameters, we started with values
used in state-of-the-art image classification attacks [12,23]. We experimentally
fine-tuned these parameters for object detection. The maximum number of gen-
erations is set to 2000, with 16 individuals in each population. Finally, Pcrossover

and Pmut are set to 0.6 and 0.01, respectively. In order to provide a baseline com-
parison for EvoAttack, we have implemented a random search algorithm that
iteratively adds perturbations to a random number of pixels each generation.
The random search is not population based and does not use any evolutionary
operators other than random mutation. Finally, since EvoAttack is intended
to be used as a testing technique before the model is deployed, we use the objec-
tive of minimizing perturbations as the primary metric to gauge attack efficiency
in order to obtain higher quality adversarial examples (i.e., less perturbation)
over quantity (i.e., time). Additionally, the number of generations cannot be
used to adequately compare adversarial examples, as each algorithm adds a dif-
ferent amount of perturbation to the image per generation. All experiments are
performed on a NVIDIA GeForce GTX 1080 GPU with an Intel Core i7-7700K
CPU.

4.2 E1: Demonstration of the Adaptive Mutation Operator

In our first experiment, we demonstrate how adversarial examples can be
generated against object detection algorithms using EvoAttack. Specifically,
we illustrate the notable impact of EvoAttack’s adaptive mutation scheme
by including a comparison for adversarial examples generated with random
search, EvoAttack using the traditional mutation scheme (denoted as EvoAt-
tack.Trad), and EvoAttack using the adaptive mutation scheme (denoted
as EvoAttack). During each mutation operation after crossover, we introduce
minor perturbations to pixels in the bounding boxes identified by the object
detection model in the previous generation. If a pixel is chosen for mutation,
then perturbations sampled over a uniform distribution between (δmin, δmax)
are introduced to each RGB channel of the pixel. For experiment E1, we used
δmin = 0.025 and δmax = 0.05. Values for α and β are selected empirically based
on from multiple runs of the experiment on the COCO dataset.

Figure 3 shows two adversarial examples generated over a randomly sam-
pled set of input images obtained from the COCO testset against the RetinaNet
model. The first image shows the model’s output on the clean input image.
Bounding boxes are drawn and labeled over objects identified with a confidence
score of ≥ 0.7. Next, the noise filters show the differences between the origi-
nal input and the adversarial examples, amplified by a factor of 10 for read-
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ability. The adversarial examples in the rightmost column of images prevent
model detection, where the model failed to draw bounding boxes around the
objects of interest. The adversarial examples shown on top and bottom are gener-
ated using EvoAttack.Trad and EvoAttack, respectively. The perturbation
information shows the number of generations required for convergence, number
of changed pixels (L0 norm), and degree of perturbations (L2 norm or Euclidean
distance) of the adversarial examples. The numbers in parenthesis denote the
percentage of pixels in the original bounding boxes that have been modified in
the adversarial example. Figure 3a shows a scene at a skateboarding event. The
model identified multiple objects of interest in the image and drew bounding
boxes around them. Both mutation schemes generated an adversarial example
that caused the model to fail to detect the objects. Compared to the adversarial
example generated by EvoAttack.Trad, the adversarial example generated
by EvoAttack contains significantly fewer perturbations. Since EvoAttack
converged on an adversarial example before the β number of generations, the
adversarial example is considered to be “easy to perturb”. In contrast, Fig. 3b
shows an input image of a skier. The adversarial examples generated also caused
a failure in the model’s detection. However, compared to Fig. 3a, this input image
required more than β number of generations to converge, thus EvoAttack only
slightly outperforms EvoAttack.Trad in minimizing perturbations.

Noise Filter (x0.1) Adversarial
Example

Original Input
Pixels in box(es):

44517
Traditional Mutation

Generations: 92
L0 Norm: 15684 (35.2%)
L2 Norm: 9.35

Adaptive Mutation
Generations: 286
L0 Norm: 2818 (6.3%)
L2 Norm: 3.48

(a) Example of an easy to perturb image

Original Input

Noise Filter (x0.1) Adversarial
Example

Pixels in box(es):
88857 Traditional Mutation

Generations: 910
L0 Norm: 68564 (77.2%)
L2 Norm: 25.03

Generations: 218
L0 Norm: 74021 (83.3%)
L2 Norm: 26.71

Adaptive Mutation

(b) Example of a difficult to perturb image

Fig. 3. Comparisons of adversarial examples generated using EvoAttack and EvoAt-
tack.Trad. The original predicted inputs, noise filters, adversarial examples, and per-
turbation information are shown for each image.

Table 1 shows the average number of changed pixels and degree of perturba-
tions for adversarial examples generated against thirty randomly sampled input
images. Using traditional mutation and adaptive mutation, EvoAttack per-
forms better than random search. In Table 1, the percentage of pixels in bound-
ing boxes changed metric for random search exceeds 100%, since the algorithm
perturbs a random number of pixels in the entire image (i.e., modifies pixels
beyond the bounding boxes and does not localize the perturbation). With the



EvoAttack: An Evolutionary Search-Based Adversarial Attack 93

adaptive mutation scheme, EvoAttack has fewer perturbations when compared
to EvoAttack.Trad that uses traditional mutation. Specifically, 26 adversar-
ial examples generated with EvoAttack have fewer number of changed pix-
els and 19 adversarial examples generated have less degree of perturbations
when compared to EvoAttack.Trad. The average number of changed pix-
els is reduced by 31.41% and the average degree of perturbations is reduced
by 21.49% using EvoAttack. The columns labeled “Easy to perturb inputs”
show the measured metrics for adversarial examples that are perturbed before β
number of generations in EvoAttack. The metrics for the same set of images
for EvoAttack.Trad are also provided for comparison. The results indicate
that EvoAttack is able to find adversarial examples with significantly less per-
turbations for objects that are easy to perturb, with 81.96% reduced number
of changed pixels and 64.67% reduced degree of perturbations on average. The
results of this experiment show that EvoAttack is able to generate adversarial
examples with low degree of perturbations and few number of pixel changes.

Table 1. Comparison of perturbations measured for adversarial examples generated
over thirty input images against a RetinaNet model. The easy to perturb inputs consist
of images that converged before β number of generations in EvoAttack. The metrics
for the same set of images from an evolutionary search using the traditional mutation
scheme are provided for comparison.

Avg. Statistic All Inputs Easy to Perturb Inputs

Num of objects in input 2.73 2.55

Num of pixels in bnd. boxes 114,670 92,332

Total number of images 30 20

Avg. Values (per image) Random
EvoAttack

(Trad.)

EvoAttack

(Adapt.)

EvoAttack

(Trad.)

EvoAttack

(Adapt.)

Num of generations 71.37 231.07 625.50 130.50 376.90

Num of changed pixels 277,955.94 59,430.57 40,762.67 33,916.95 6,119.35

% of pixels in bnd. boxes changed 242.37% 51.83% 35.55% 36.73% 6.63%

Degree of perturbations 337.33 22.33 17.53 14.04 4.96

Computational time (sec) 813.11 677.91 1,496.31 329.19 768.47

4.3 E2: Demonstration that EvoAttack is Model Agnostic

In this experiment, we demonstrate that EvoAttack is model agnostic by
attacking a model of different architecture. Specifically, we apply EvoAttack
to a Faster R-CNN MobileNetV3 [20] model and show that we can produce com-
parable results as an attack against the RetinaNet [10]. Against the same set of
thirty input images, our approach is able to reduce all detected objects below
the detection threshold. Table 2 shows the average perturbations of adversarial
examples generated against the Faster R-CNN model.

Compared to the RetinaNet model, the Faster R-CNN model is more robust
on average against EvoAttack, as it requires more perturbations to prevent
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model detection. In our studies, we found that the Faster R-CNN model requires
almost twice the number of changed pixels and degree of perturbations when
compared to the RetinaNet model. Furthermore, the number of adversarial
examples that were generated before the β number of generations reduced sig-
nificantly from 20 to 6 for the Faster R-CNN using EvoAttack, implying that
there are fewer images that require low perturbations to cause a misdetection.
Thus, this experiment shows that EvoAttack is model agnostic and demon-
strates EvoAttack as a testing technique to determine that the Faster R-CNN
model is more robust than the RetinaNet model.

Table 2. Comparison of perturbations measured for adversarial examples generated
over thirty input images against a Faster R-CNN model.

Avg. Statistic All Inputs Easy to Perturb Inputs

Num of objects in input 2.93 1.67

Num of pixels in bnd. boxes 146,338 58,428

Total number of images 30 6

Avg. Values (per image) Random
EvoAttack

(Trad.)

EvoAttack

(Adapt.)

EvoAttack

(Trad.)

EvoAttack

(Adapt.)

Num of generations 89.77 509.33 988.73 80.00 435.67

Num of changed pixels 280,679.41 110,466.38 101,815.88 27,136.17 6,410.50

% of pixels in bnd. box changed 191.8% 75.49% 69.58% 46.44% 10.97%

Degree of perturbations 414.45 41.06 39.91 12.36 5.29

Computational time (sec) 862.85 1,008.77 1,145.01 90.96 181.13

4.4 E3: Demonstration that EvoAttack is Data Agnostic

The purpose of this experiment is to demonstrate that EvoAttack is data
agnostic and illustrate the potential impact of such attacks on real-world sce-
narios (e.g., contexts relevant to autonomous vehicles). We apply EvoAttack
to a RetinaNet [8] trained over the Waymo Open Dataset [16]. The trained
model predicts vehicles, pedestrians, and cyclists for a camera mounted atop a
vehicle. Thus, if an adversary successfully prevents correct model detection, the
resulting behavior of the system may lead to significant consequences such as
serious injuries or even deaths. We apply EvoAttack to thirty randomly chosen
images sampled over the Waymo Open Dataset. Figure 4 shows several adver-
sarial examples. This result shows that our approach successfully introduced
perturbations such that the model fails to draw correct bounding boxes around
vehicles, pedestrians, and cyclists in the images. We also show the potential
impact of black-box adversarial attacks on real-world safety-critical systems. If
an object detection model used in an autonomous vehicle is compromised using
such attacks, then the behavior of the vehicle may result in a collision with
surrounding vehicles or people.
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Original Input Perturbation Layer (x0.1) Adversarial Example

Fig. 4. Adversarial examples generated against the Waymo Open Dataset [16].

4.5 Threats to Validity

The results in this paper are limited to adversarial examples generated using
evolutionary search on DNNs for object detection algorithms. The results of the
experiments may vary with each run, as evolutionary search-based algorithms
rely on non-determinism to evolve solutions. To ensure the feasibility of the app-
roach, a wide variety of randomly sampled images were chosen. Additionally,
the measured Coefficient of Variation (CV) for a wide variety of inputs and
models over multiple repetitions of the experiments of EvoAttack are all less
than 0.15, indicating that multiple runs of EvoAttack on the same image pro-
duce adversarial examples with similar and comparable degree of perturbations
and number of generations. For random search, a high variance is measured in
repeated experiments due to the broad variation in the number of pixels changed.
However, the perturbations (i.e., L0 and L2 norms) of the best performing adver-
sarial examples of the repeated random searches are still significantly worse than
EvoAttack’s adversarial examples. The images selected as examples for display
are also chosen randomly. There is no post-selection process applied.

5 Conclusion

This paper introduced EvoAttack, an evolutionary search-based attack to gen-
erate adversarial examples against object detection algorithms. We showed that
our approach can attack object detection algorithms without having access to
model parameters, architecture, or estimates of the gradient. The search-based
process uses the results of previous iterations of the evolutionary process to
configure the structure of the fitness function and guide the mutation process.
Furthermore, we introduced an adaptive mutation scheme that reduces both the
number of perturbations and the degree of change for object detection adver-
sarial examples. We conducted a series of experiments to show how adversarial
examples can be generated against images from various datasets and models of
various architectures.
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Future research will explore potential improvements to our evolutionary
search-based attack and explore detection and mitigation strategies. They
include potential improvements using multi-objective GAs (e.g., NSGA-II) and
parallel GAs. Various hyperparameter tuning approaches may be explored
to identify optimal hyperparameters for EvoAttack. We will also perform
more empirical studies to compare the effectiveness of EvoAttack with exist-
ing white-box attacks. Additionally, research to improve the robustness of
object detection models through adversarial training with EvoAttack will be
explored. Furthermore, novelty search [7,9] may be leveraged to discover a collec-
tion of adversarial examples that causes diverse behaviors in the model. Finally,
Enlil [8] (i.e., behavior oracles) may be used to predict the uncertain behavior
of the object detection model when exposed to adversarial examples.
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Abstract. Fairness testing, given a machine learning classifier, detects
discriminatory data contained in it via executing test cases. In this paper,
we propose a new approach to fairness testing named Vbt-Ct, which
applies combinatorial t-way testing (CT) to Verification Based Testing
(Vbt). Vbt is a state-of-the-art fairness testing method, which repre-
sents a given classifier under test in logical constraints and searches for
test cases by solving such constraints. CT is a coverage-based sampling
technique, with an ability to sample diverse test data from a search
space specified by logical constraints. We implement a proof-of-concept
of Vbt-Ct, and see its feasibility by experiments. We also discuss its
advantages, current limitations, and further research directions.

Keywords: Fairness testing · Combinatorial interaction testing ·
Testing machine learning

1 Introduction

Algorithm fairness refers to a property of machine learning (ML) algorithms
that such ML algorithms (a. k. a., classifiers) make discriminatory decisions with
respect to sensitive attributes, e.g., gender, race, age, etc. According to wider
adoption of ML-based decision making algorithms in our daily life, the concern
on algorithm fairness is growing. For example, Compas algorithm, which predicts
future criminals of defendants, used to determine criminal sentencing, is known
to be biased against black defendants [4].

Individual fairness (IF) [2] is a central concept of ML algorithm fairness,
which refers to that an ML classifier should give similar decisions to similar indi-
viduals but differ in sensitive attributes. For example, consider an ML classifier
Loan, which assesses the creditworthiness of loan applicants (i.e., individuals).
Individuals are here schemed by the three attributes of ‘gender’, ‘income’, and
‘age’, exemplified by the following two data instances:

x1 :(gender = male, income = 1000, age = 40) (1)
x2 :(gender = female, income = 1000, age = 40), (2)
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and we set ‘gender’ as the sensitive attribute. Note that the two individuals are
similar, as they are identical except for the sensitive attribute. Suppose now that
the classifier Loan gives different decision to the two similar individuals, e.g.,
‘1 (Yes)’ to x1 and ‘0 (No)’ to x2. We say x1 (and x2) violates IF, and call such
data instances discriminatory data.

Testing is an approach to the IF concern, first addressed by Galhotra et al. [3].
Its main functionality is, given a classifier under test (CUT), to detect discrim-
inatory data contained the given CUT. A number of testing techniques for IF
have been proposed so far, e.g., [3,8–12,14]. While such IF testing techniques
differ in technical details, their common characteristic as testing techniques is
to detect discriminatory data by generating test cases and running them against
the CUT. The key challenge of IF testing is thus on a search problem of how to
efficiently generate (or, search) a limited number of effective test cases, from the
huge input space of the CUT.

In this paper, we propose an idea on a new approach to IF testing, named
Vbt-Ct, which applies combinatorial t-way testing (CT) [6] to Verification
Based Testing (Vbt) [11]. Vbt is a state-of-the-art black-box IF testing tech-
nique. It represents a given CUT in logical constraints and searches for test cases
by solving such constraints. Combinatorial t-way testing (CT) is a coverage-
based data sampling technique, which can sample diverse data sets, equipped
with the ability to flexibly specify the sampling space by logical constraints. Our
idea is that by applying CT in the test search part of Vbt, Vbt-Ct can enhance
the ability of detecting discriminatory data of Vbt. We implement a proof-of-
concept of Vbt-Ct, and see its feasibility by experiments. We also discuss its
advantages, current limitations, and further research directions.

2 Preliminary

≥ 5000< 5000≥ 1000< 1000

gender

income age

income income
yesno

yesno yesno

< 1000
< 40

femalemale

≥ 1000
≥ 40

Fig. 1. A decision tree for predicting who gets
a loan

This section briefly reviews Veri-
fication Based Testing (Vbt) [11]
and Combinatorial t-way testing
(CT) [6].

2.1 Verification Based Testing

Figure 2 shows the overview of Vbt. Vbt takes a classifier under test (CUT)
as input, and outputs individual discriminatory data instances contained in the
CUT. The mechanism of Vbt iterates over the following steps: At the first
step, Vbt constructs approximation classifier of the given CUT, by training a
decision tree (DT) with the a training data set made using the CUT. Second,
Vbt encodes the DT into SMT constraints. The third step is test generation,
where Vbt searches for test cases using SMT solving (using Z3) to the constraints
amalgamating the constraints for (1) the SMT-represented decision tree, (2)
individual fairness, and (3) sampling strategies. The generated test cases are
executed against the CUT, to check if a test case is actually a discriminatory data
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Fig. 2. Verification based testing

instance in the CUT. Passing test cases are collected as detected discriminatory
data, and failing ones are used for training data for re-training the approximation
classifier for the next iteration.

A key challenge in Vbt is on test generation part for how to efficiently search
for effective test cases. Sampling strategies here play an important role. Two
strategies are proposed for the sampling constraints, (a. k. a., search strategies):
data pruning and brunch pruning. The brunch pruning, which it is reported
performs better [11], searches for test cases by traversing the decision trees,
aiming to diversify generated test cases.

2.2 Combinatorial t-Way Testing (CT)

Combinatorial t-way testing (CT) is a data sampling technique [6] from sampling
spaces specified by logical constraints. CT presumes a system under test (SUT)
model, to specify input space of SUT, consisting of two description components:
(1) parameter-values, the list of parameters and their values of the SUT and (2)
logical constraints, which specify the shape of input space by logical relation over
parameter-values. The t-way coverage criterion of CT, given the strength t ∈ N,
stipulates to cover all valid value combinations of size t (a. k. a., t-way tuples)
of the SUT model, where we say that a value combination is valid if it complies
with the constraints. A test set that satisfies the t-way coverage criterion is called
a t-way test set. A number of CT generation algorithm have been proposed, and
some implemented tools are publicly available e.g., Acts [5], Pict [7].

3 Proposed Approach: VBT-CT

Vbt-Ct uses CT test generation in the test generation part of Vbt. Our imple-
mentation to this is to make an SUT model for CT from the given decision tree,
and apply a CT algorithm to it. For the parameter-value list part of the SUT
model, we prepare a pair of parameters for each attribute (such as, ‘gender’,
‘race’, ‘income’) and parameters for classifier’s decisions, to represent two indi-
viduals. For the constraint part, two constraint blocks are specified to represent
fairness and decision trees, respectively noted Unfair and DecTree.
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Listing 1.1 shows example code snippets of an SUT model for the exam-
ple in Sect. 1 and decision tree in Fig. 1, in a similar format as ACTS [5]. Line
1–4 declare parameter-values of the SUT, specifying eight parameters used to
represent two individuals, i.e., six parameters to represent attributes and two
parameters (‘cls0’ and ‘cls1’) for classifier’s decisions, where ‘gender’, ‘income’,
and ‘class’ are respectively abbreviated by ‘gen’, ‘age’, and ‘cls’. Line 6–9 specify
Unfair , describing that different decisions are made to two ‘similar’ individuals,
which represented as two identical individuals except for the protected attribute,
i.e., ‘gender’. Line 11–21 specify DecTree, describing the decision tree in Table 2.
Table 1 shows a 3-way test set of the SUT model in Listing 1.1. Each row repre-
sents a test case, i.e., the test set contains six test cases.
1 [ Parameter ]
2 gen0 (enum) : m, f ; age0 ( i n t ) : 10 ,20 ,30 ,40 ,50 ,60 ; inc0 ( i n t ) :50 ,1000 ,3000 ,5000
3 gen1 (enum) : m, f ; age1 ( i n t ) : 10 ,20 ,30 ,40 ,50 ,60 ; inc1 ( i n t ) :50 ,1000 ,3000 ,5000
4 c l s 0 ( i n t ) : 0 , 1 ; c l s 1 ( i n t ) : 0 ,1
5 [ Constra int ]
6 −− Unfa ir
7 ( gen0=m && gen1=f ) | | ( gen0=f && gen1=m)
8 ( age0=1 && age1=1) | | ( age0=2 && age1=2) | | . . . | | ( age0=6 && age1=6)
9 ( inc0=50 && inc1=50) | | ( inc0=1000 && inc1=1000) | | . . . ( inc0=5000 && inc1

=5000)
10 ( c l s 0=0 && c l s 1 =1)
11 −− Dec i s ion Tree
12 ( gen0=m && inc0 <1000) => c l s 0 =0; ( gen0=m && inc0 >=1000) => c l s 1=0
13 ( gen0=f && age0<40 && inc0 <1000) => c l s 0=0
14 ( gen0=f && age0 <40) && inc0>= 1000) => c l s 0=0
15 ( gen0=f && age0>=40) && inc0< 5000) => c l s 0=0
16 ( gen0=f && age0>=40) && inc0>= 5000) => c l s 0=0
17 ( gen1=m && inc1 <1000) => c l s 1 =0; ( gen1=m && inc1 >=1000) => c l s 1=1
18 ( gen1=f && age1 <40) && inc1< 1000) => c l s 1=0
19 ( gen1=f && age1 <40) && inc1>= 1000) => c l s 1=1
20 ( gen1=f && age1>=40) && inc1< 5000) => c l s 1=0
21 ( gen1=f && age1>=40) && inc1 >=5000) => c l s 1=1

Listing 1.1. Code snippets of an SUT model in a similar format to ACTS [5]

4 Experiments Table 1. A 3-way test set of SUT model of Listing
1.1

No. gen0 gen1 age0 age1 inc0 inc1 cls0 cls1
1 f m 40 40 1000 1000 0 1
2 f m 40 40 3000 3000 0 1
3 f m 50 50 1000 1000 0 1
4 f m 50 50 3000 3000 0 1
5 f m 60 60 1000 1000 0 1
6 f m 60 60 3000 3000 0 1

We conduct small experi-
ments to confirm the feasi-
bility of Vbt-CT. We imple-
mented a proof-of-concept of
the proposed idea (i.e., Vbt-
Ct), by modifying the code of
Vbt by [11]. For experiments, we use Census Income dataset1, and four clas-
sifiers, which are Logistic Regression (LR), Random Forest (RF), Naive Bayes
(NB), Decision Tree (DT), and set ‘gender’ and ‘race’ as the protected attribute.
We run Vbt-Ct until 200 test cases are generated, in comparison with Vbt. For
each configuration, we execute 3 trials and take the average of them. Intel(R)
Xeon(R) Silver 4210 CPU @ 2.20 GHz Processor, 32 GB memory, running
Ubuntu 20.04.4 LTS.

1 https://archive.ics.uci.edu/ml/datasets/adult.

https://archive.ics.uci.edu/ml/datasets/adult
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Table 2. Summary of experiments. Columns for ‘#Disc’, ‘Prec.’ and Time (s)’ respec-
tively show the numbers of detected discriminatory data, precision (i.e., hit ratio of #
of discriminatory data over # of generated test cases), and execution times (in seconds)
of Vbt and Vbt-Ct, for configurations given in rows. � means dis-improvement ratio.

No. Clf. Prot. attribute VBT VBT-CT Improvement ratio
#Disc Prec. Time(s) #Disc Prec. Time(s) #Disc Prec. Time

1 LR Gender 5.0 0.063 18.8 8.3 0.060 44388.2 1.67 0.95 �2361.1
2 LR Race 5.3 0.027 32.0 8.0 0.040 14213.0 1.50 1.50 �444.2
3 RF Gender 52.7 0.263 47.0 58.7 0.293 250312.1 1.11 1.11 �5325.8
4 RF Race 3.3 0.017 51.3 time out N/A N/A N/A
5 NB Gender 53.7 0.268 26.3 129.0 0.645 488.8 2.40 2.40 �18.6
6 NB Race 9.3 0.047 25.3 75.3 0.377 3323.3 8.07 8.07 �125.4
7 DT Gender 100.7 0.503 32.1 144.0 0.720 143204.2 1.43 1.43 �4461.2
8 DT Race 147.3 0.737 32.8 134.7 0.673 99241.8 0.91 0.91 �3025.7

avg./total 377.3 0.24 267.5 558.0 0.35 555171.5 1.47 1.46 �2251.7
#wins 2 3 8 6 5 0

Table 2 shows the results of experiments. The results suggest that Vbt-Ct
more effectively detects discriminatory data than Vbt, since it detects more
discriminatory data six out of eight configurations and 1.47 times in average.
We can also observe superiority of Vbt-CT on precision. On the other hand,
Vbt-CT runs slower than Vbt by 2251.7 times in average. This is an obvious
limitation that Vbt-Ct needs to overcome. Recall, however, that the current
implementation of Vbt-Ct is given in the most naive way, as this paper focuses
on reporting feasibility aspect of Vbt-Ct at this research phase.

5 Related Work

Testing IF is an active research subject, and various techniques have been pro-
posed such as Themis [3], Aequitas [12], Sg [1], Adf [14], Cgft [8,9], in
addition to Vbt [10]. Among such study, Cgft [8] and the technique by Patel
et al. [9] have attempted to apply CT to IF testing.

Cgft [8] applies CT to Aequitas [12], another IF testing technique, to
improve its testing ability. As the search algorithm of Aequitas is structured with
several phases, Cgft applies CT to the search phase called global search, replac-
ing a random search. The global search of Aequitas (and thus Cgft) searches
for test cases from the input space of CUT (similarly to Vbt-Ct), however, Cgft
does not make any use of constraints of CT in doing so. As a possible limitation,
this approach may surfer from low precision that generated test cases detect dis-
criminatory data, since it cannot employ any guides in searching the input space
for test cases, while Vbt-CT can do so using approximation classifiers.

The technique by Patel et al. [9] combines CT and a Explainable Artificial
Intelligence (XAI) technique, where CT is used in the phase to search for test
cases from the input space of CUT. It makes use of constraints in doing so, where
it applies an association rule mining to training datasets to retrieve constraints.
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We plan comparison of the constraint retrieval techniques between Vbt-CT and
the technique by Patel et al. is a direction of further work of Vbt-CT.

6 Discussion and Future Work

We propose a new approach to IF testing, named Vbt-Ct, which applies CT to
Vbt [11], an IF testing technique by Sharma and Wehrheim. We implemented a
proof-concept of Vbt-CT, and demonstrate its feasibility by preliminary exper-
iments. We also discuss its advantages and current limitations.

There are many directions for further work, including the following: The first
direction is to tackle the limitation on efficiency of the current implementation
of Vbt-Ct. A possible solution is to use a CT algorithm that are designed to
efficiently handle complex logical constraints (such as, [13]2), in place of ACTS
used in Vbt-Ct. A more promising approach would be to develop a CT algo-
rithm dedicated for the test generation used in Vbt-Ct, by leveraging the fact
that the logical constraints of SUT models handled in Vbt-CT are specific to
Unfair and DecTree. Third, we are also interested in applying the proposed app-
roach to MLCheck[10], which extends Vbt with the use of deep neural network
(DNN) for the approximation classifier, instead of decision tree.

Acknowledgements. This paper is partly based on results obtained from a project,
JPNP20006, commissioned by the New Energy and Industrial Technology Development
Organization (NEDO).
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Abstract. Automated multi-objective software optimisation offers an attractive
solution to software developers wanting to balance often conflicting objectives,
such as memory consumption and execution time. Work on using multi-objective
search-based approaches to optimise for such non-functional software behaviour
has so far been scarce, with tooling unavailable for use. To fill this gapwe extended
an existing generalist, open source, genetic improvement tool, Gin, with a multi-
objective search strategy, NSGA-II. We ran our implementation on a mature, large
software to show its use. In particular,we choseEvoSuite—a tool for automatic test
case generation for Java. We use our multi-objective extension of Gin to improve
both the execution time and memory usage of EvoSuite. We find improvements to
execution time of up to 77.8% and improvements to memory of up to 9.2% on our
test set. We also release our code, providing the first open source multi-objective
genetic improvement tooling for improvement of memory and runtime for Java.

Keywords: Genetic improvement ·Multi-objective optimisation · Search-based
software engineering

1 Introduction

Performance is one of the key properties of software. Programs that are laggy, consume
a lot of resources, are not only a source of user complaints, but can render such software
unsustainable and unusable. Even though there have been extensive studies on software
performance issues, e.g., [9], and tools have beenproposed to automatically improve soft-
ware’s performance, whether through compiler optimisation, parameter tuning, genetic
improvement, or other, few consider the interplay between the different non-functional
properties [8]. Such automated tooling is needed, given that changes that improve one
non-functional property might negatively influence another.

Improving the speed of a program may have unintended consequences. A popular
strategy would be caching of intermediate computation results, e.g., in array structures.
This, however, leads to increased memory use. Furthermore, if arrays are large enough,
the time cost of array operations might outweigh the computational time savings. It is
thus important that we consider memory usage when optimising the execution time of an
application. In fact finding more memory efficient versions of software can be beneficial
to it’s speed by saving expensive garbage collection and page swapping operations.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Papadakis and S. R. Vergilio (Eds.): SSBSE 2022, LNCS 13711, pp. 111–117, 2022.
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Although multi-objective search algorithms seem best fit for this problem domain, to
the best of our knowledge, there is no tool available that provides this facility, despite
such work being proposed in the past [13].

With this in mind, we extended an existing Genetic Improvement (GI) [11] frame-
work, Gin [4], with a multi-objective search strategy1, namely NSGA-II [6]. We chose
GI as it is an approach which can be applied to any source code without the need for tun-
ing or domain expertise. GI utilises search algorithms to find patches which can improve
the program with respect to a given objective. GI has already been successfully used to
fix bugs, optimise program’s runtime, memory, energy consumption, and other [11]. GI
has the advantage of being ambivalent to the particular search algorithm used to explore
the landscape of patches, thus we can very easily plug in multi-objective algorithms to
improve both memory and execution simultaneously or find good trade-offs between
them.

To show usefulness of our implementation we target a large, popular, mature piece
of software—EvoSuite [7], a tool which utilises Genetic Programming in an attempt
to automatically generate test suites for Java programs. EvoSuite then generates and
minimises a set of assertions for each test. This allows the tests to detect regressions in
future versions of software. EvoSuite is often run with a time limit for test generation
for each target class. Once time limit is reached, EvoSuite stops, regardless of whether
a particular coverage objective was achieved. It is thus important that EvoSuite can
efficiently explore the search landscape, and evaluate generated tests. By improving the
speed of EvoSuite we can increase the amount of test cases it can generate and evaluate
in the given time limit. At the same time we don’t want such improvements to happen
at the cost of unnecessary memory use.

Our results are encouraging. We report improvements of up to 78% in runtime and
9% in memory use for 10 methods in EvoSuite software. The best patches removed
redundant yet expensive checks, and change the scope of try catch statements. We hope
that researchers and practitioners alike find these results encouraging, to apply multi-
objective GI to other software, and continue research in this direction. There is more
to be explored: which multi-objective algorithms are best fit for search-based software
improvement? which other properties couldwe target? and other.We release our code [1]
to facilitate future work.

2 Background

Genetic Improvement uses automated search to improve existing software [11]. GI takes
a section of source code and the tests which cover it and searches through a landscape of
potential patches in order to find thosewhich improve a given software property. Standard
GI operators delete, replace, or copy code fragments, such as statements or lines. Testing
is also used as standard as a proxy for capturing software’s functional correctness, and
to measure the software improvement property of interest. For instance, for runtime
improvement, fitness measure of a given program variant will be the time taken by the
given test suite.

1 A pull request can be found at https://github.com/gintool/gin/pull/89.

https://github.com/gintool/gin/pull/89
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The most popular search algorithm for GI has been genetic programming, however,
local searchhas been recently shown tobe as effective [3].AlthoughWhite et al. [12]were
the first to propose multi-objective (MO) search to improve software’s non-functional
behaviour, they evolved full programs rather then patches making their approach only
applicable to toy software. Basios et al. [2]’s work is closest to what we want to achieve.
They used MO to improve memory consumption and runtime of Java applications.
However, they used specialised mutations, targeting data structures only. Furthermore,
theyhavenotmade their code available. This leaves the questionof howeffective standard
GI operators are at MO optimisation unanswered.

3 Approach

We pose that multi-objective (MO) Genetic Improvement (GI) provides a useful
generalist approach for automated software optimisation.

In order to prove this statementwe incorporatemulti-objective search into an existing
GI framework.We target improvement of non-functional software behaviour, as it’s been
shown that changes that improve such properties are often non-obvious and their impact
on other software properties is hard to predict [5].We also aim to improve a large, mature
piece of code, that comes with an extensive (99% line coverage) test suite. Given the
effort put into development of such a piece of software, we expect it will be challenging to
find improvements. Thus, if any are found, it will provide strong evidence for usefulness
of multi-objective GI.

4 Methodology

In our empirical study we use an existing GI tool, and extend it with a multi-objective
algorithm, namely, NSGA-II [6], as it’s one of the most popular MO algorithms and
proved successful in previous related work [2]. Otherwise, we use the most common GI
settings. In particular, we mutate statements, and use 4 standard GI mutation operators,
as the building blocks for our generated patches. Each can either delete a statement, copy
one statement from one location to another, replace a statement with another, or swap
locations of two statements.Moreover, we set each run of GI to consists of 40 individuals
and 10 generations, for a total of 400 evaluations as shown to be effective in previous GI
work [10]. We repeat each GI run 10 times, to account for the non-deterministic nature
of NSGA-II. We also separately evaluate each patch found 20 times, to account for noise
in fitness measure, as it’s often encountered when measuring non-functional properties
of software.

GI Tool. Recent survey of GI tooling, revealed that [13] few GI tools can be easily
applied to unseen software. After closer investigation we chose Gin [4], as it is the only
one to implement fitness functions for at least two non-functional software properties,
namely runtime and memory consumption. Moreover, it provides profilers for both
properties, thus helps automatically identify the most time and memory consuming
parts of code. Runtime fitness measure takes the elapsed time on a set of tests. Memory
fitness measure simply calculates memory use before and after a test is run.
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Target Software. As our target software we chose EvoSuite—a tool for automatic
test generation. It has 1.1 million lines of code, it’s been developed for 11 years, and
comes with an extensive test suite. We ran Gin’s memory and runtime profilers on the
evosuite-client module, which contains the code for actual test generation. The profilers’
output provides uswith a list ofmethodswith the largest impact onmemory and execution
time, along with the tests that cover those methods. Unfortunately, at this point we
discovered a bug in Gin’s test runners. EvoSuite uses an example project in a different
package for many of it’s tests and these tests are not compatible with Gin, we chose to
discard themethods covered by these tests and focus on those which had all passing tests.
This resulted in 27 methods from the execution time profiler and one method from the
memory profiler. We further filtered out methods with less than 5 lines of code as they
would be too small for improvements to be found. From here we selected the method
found by the memory profiler and the top 9 slowest methods with more than 5 lines of
code, giving us 10 methods to attempt to improve. The line coverage of the tests on each
method can be found in Table 1.

5 Results and Discussion

In this section we present the improvements which we found to EvoSuite using our
multi-objective genetic improvement approach.

Table 1. Table showing execution time improvements found by GI. Numbers in brackets indicate
the effect the patch had on the other property, i.e., memory use.

Method Execution time imp. Line coverage

Median Max

MersenneTwister.nextGaussian 55.84% 67.12% (−1.1%) 100%

TestFactory.addConstructor 34.9% 37.98% (−2.13%) 73%

RegexDistanceUtils.cacheRegex 12.83% 30.29% (−0.53%) 100%

DistanceCalculator.visit 27.88% 60.62% (−0.81%) 84%

FileIOUtils.recursiveCopy 0.39% 0.42% (−2.33%) 100%

TestCodeVisitor.visitPrimitiveStatement 42.42% 44.44% (−1.02%) 80%

DistanceEstimator.getDistance 48.62% 49.86% (−6.28%) 87%

TestCodeVisitor.getClassName 67.54% 78.77% (−7.05%) 85%

DistanceCalculator.getStringDistance 22.46% 25.63% (−0.67%) 70%

StringHelper.StringRegionMatches 51.91% 58.28% (−2.9%) 80%

Over our 10 runs we find improvements for every single method which we tried to
improve, with improvements to runtime of up to 78.8% and improvements to memory
of up to 9.2% (see Table 1, and our repository for all Pareto Fronts [1]). Interestingly, the
method highlighted by Gin’s memory profiler was the only method in which we could
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Table 2. Table showing memory improvements found by GI. Numbers in brackets indicate the
effect the patch had on the other property, i.e., runtime.

Method Memory imp.

Median Max

DistanceEstimator.getDistance 2.72% 5.81% (20.49%)

DistanceCalculator.visit 2.73% 4.43% (9.96%)

TestFactory.addConstructor 2.51% 4.12% (18.83%)

StringHelper.StringRegionMatches 2.04% 3.64% (17.49%)

MersenneTwister.nextGaussian 1.64% 4.58% (−4.89%)

TestCodeVisitor.getClassName 3.37% 9.2% (1.89%)

RegexDistanceUtils.cacheRegex 2.49% 8.46% (−7.44%)

FileIOUtils.recursiveCopy 0.00% 0.00% (−0.23%)

DistanceCalculator.getStringDistance 6.52% 6.76% (−12.85%)

TestCodeVisitor.visitPrimitiveStatement 4.3% 5.76% (11.37%)

not find any improvements to memory. The method in question copies files from one
place to another, in doing so it loads the contents of the files being copied into memory
2048 bytes at a time. Perhaps reducing the size of this buffer would reduce the memory
usage, at the cost of execution time, but our mutation operators are not able to make this
kind of change. Using mutation operators which modify constants could lead to further
improvements.

We find that, in all cases, the best improvements to execution time lead to memory
usage increasing, mostly by small amounts. However, in one case, it increased by almost
6%. Improvements to memory lead to improvements to execution time in 6 cases. This
could be due to fewer GC calls. In 4 cases, the best memory improvements also lead
to an increase in execution time. These patches offer developers a choice over which
property is more important to them, and could also allow multiple versions of EvoSuite
to be made available to systems with different hardware resources.

A patch to the TestCodeVisitor.getClassNamemethod was one which improved exe-
cution time the most, finding an improvement of almost 80%, on the example EvoSuite
class called Tutorial_Stack. This patch leads to a 4.8% improvement on the number of
generations evaluated. It is made up of 3 edits, 1 delete, 1 copy, and 1 replace statement
edits. The main execution time improvement from the patch comes from removing a
conditional which checks whether or not the current ClassLoader for the system under
test has the class and then gets the class’s Canonical. The area of code which is removed
iswrapped in a try catchwhich ignores exceptions and is able to fail without consequence
on the rest of the method. The code is also accompanied by a comment which states that
the code is irrelevant in normal use of EvoSuite and only triggered during testing.

We also find a patch to the TestCodeVisitor.getClassName method that provides the
greatest memory consumption reduction. This patch changes the scope of try statement
which changes the way in which Java releases resources, thus decreasing memory usage
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by a small amount. Many memory improvements, however, offer marginally improved
speed for slightly improved memory. This may be preferable to the much faster but more
memory intensive patches also produced.

All patches (see Table 1 and 2 ) were subsequently run on the whole EvoSuite test
suite, showing no regression errors.

Cost of Genetic Improvement. Each run improving all 10 methods took a median
time of 48 min, with the slowest run taking 75 min and the quickest taking only 23 min.
The difference between runs is due to the number of compiling patches generated.Runs in
which a large number of patches fail to compile will need to run significantly fewer tests
and thus complete quicker.We believe this is a relatively small cost for the improvements
we found.

6 Conclusion

We extended an existing GI tool to provide the first open source multi-objective genetic
improvement tool for Java [1], that can improve software’s runtime and memory con-
sumption out-of-the-box. We applied it to the EvoSuite test generation tool. We found
improvements to both execution time for all methods improved and memory to all but
one of the methods which we improved. We found that the NSGA-II algorithm was able
to effectively explore the search landscape of patches, finding good trade-offs between
memory and execution. Our approach was relatively fast and fully automatic, requiring
no domain expertise.

Acknowlegements. This work was funded by the EPSRC grant EP/P023991/1.
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