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Abstract. Feature selection is the process of selecting important fea-
tures from a dataset. The feature subset formed by important features
represents the features of the entire dataset to reduce the complexity
of subsequent computations. In recent years, feature selection methods
based on rough set theory have been continuously developed, and the
approximate quality of kernelized fuzzy rough sets is a better method
for evaluating features. However, the heuristic greedy strategy adopted
by traditional methods is difficult to guarantee the quality of feature
subsets. Based on the idea of three-way decision, this paper proposes
fuzzy dependency-based three-way feature selection method. We expand
the three potential feature subsets through a differentiated approach and
reduce the redundancy among them. Ensemble learning is performed on
the three feature subsets to improve the classification performance. The
experimental results show that compared with the traditional greedy fea-
ture selection method, the proposed feature selection method produces
better classification performance, which demonstrates its effectiveness.

Keywords: Kernelized fuzzy rough sets · Three-way decision ·
Feature Selection

1 Introduction

With the continuous growing of the scale of datasets in recent years, a given
learning problem and classification task contains a large number of features,
and these features are often irrelevant or redundant. Such features will lead
to the problems of high computational complexity, weak generalization ability
and poor interpretability. Feature selection is an effective technique to alleviate
these problems. It reserves highly correlated features and removes redundant and
irrelevant features to find the optimal feature subset, and thus improving the
performance of models [1]. Therefore, it becomes one of important preprocesses
for machine learning, data mining, and pattern recognition etc. [2].

Rough set theories [3] provides an effective method for modeling vague,
uncertain, or imprecise data. It uses a pair of exact sets (upper approxima-
tion and lower approximation) to describe the uncertainty within the data set.
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The attribute reduction methods in this theory remove redundant features in the
dataset while maintaining the correlation between feature subsets and decision
classes, which coincides with the purpose of feature selection [4]. Based on the
rough set theory, the correlation information within data is found without the
need for supplementary information, and the number of attributes contained in
the data set is reduced, which realizes the feature selection based on rough sets.
Presently, there are many extensions in rough sets theory, such as probabilistic
rough sets [5], neighborhood rough sets [6], and fuzzy rough sets [7,8], etc.

To deal with the information loss caused by discretizing data, Dubois and
Prade defined fuzzy rough sets [7,8] by introducing fuzzy membership functions
and extending the membership of elements to [0,1], which provides a high degree
of flexibility when dealing with continuous data in fields such as medicine, indus-
try and finance, and can effectively model the ambiguity and uncertainty that
exist in the data. On the premise of reserving the advantages of rough sets-
based set feature selection for processing high dimensional data, fuzzy rough
sets-based feature selection is realized by the fuzzy division of each feature by
fuzzy set theory [9]. This method can effectively reduce discrete or continuous
noise data, without the cost of adding extra information.

Aiming at the linear inseparability of the data obtained in the real world, that
is, there is no dividing hyperplane that can correctly classify the training samples,
we use the kernel methods to map the samples from the original space to a higher-
dimensional feature space to solve the problem, which makes the samples linearly
separable in this feature space. And for a limited-dimensional sample space,
there must be a high-dimensional feature space that makes the mapped samples
linearly separable. Hu integrated kernel functions with fuzzy rough sets and
proposed the model of kernelized fuzzy rough sets, which forms a bridge between
kernel machines and rough set-based data analysis [10]. Some generalized feature
evaluation functions and attribute reduction algorithms based on the proposed
model are shown and the effectiveness of the proposed technique is validated.

The three-way decision [11] theory extends the traditional two-way deci-
sion theory and is a decision-making method that conforms to human thinking.
In two-way decision, the judgment of objects only stays in two results: accep-
tance and rejection. However, in practice, people often delay the judgment and
decide on objects that they are confident to accept or reject instead of making
decisions immediately for uncertain or incomplete information. The three-way
decision divides objects into three domains (positive domain, negative domain
and boundary domain) according to the decision-making state value by defin-
ing the decision function and the threshold of the domain, then constructs the
corresponding three-way decision rules [12].

In this paper, we introduce a feature selection method based on kernelized
fuzzy rough sets and three-way decision. When constructing feature subsets, how
to maintain the maximum relevance for the decision class while minimizing the
redundancy between feature subsets is a key issue in feature selection. The three-
way strategy we employ is to construct three differentiated subsets of features
and to expand the features in the subset from different perspectives. The feature
subsets constructed by this strategy tend to be smaller than those constructed
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by traditional methods. Dependency is an important metric in rough set the-
ory to measure the relevance of features with respect to decision classes. Thus,
the dependency gained from new features is used as a reference for our feature
subset expansion strategy. Finally, we consider the idea of ensemble learning to
construct a multiple feature subsets-based co-classification model.

The rest of the paper is organized as follows. Section 2 presents the notions
and properties of the fuzzy rough set model and feature selection. Section 3 shows
the three-way attribute reduction algorithm. Experimental analysis is given in
Sect. 4. Conclusions come in Sect. 5.

2 Preliminaries

In this section, we will first give some basic definitions, and then review the
related work of rough sets, fuzzy rough sets, and kernelized fuzzy rough sets.

2.1 The Notations

Let I = (U,A) be an information system, where U = {x1, x2, ..., xn} is a
nonempty set of finite objects called the universe of discourse and A is a
nonempty finite set of attributes a : U → Va for every a ∈ A. For decision
systems, A = (C,D),where C is the set of input features and D is the set of out-
put features. Additionally a(x), a ∈ C, x ∈ U represents the value of the object
x under the attribute a.

2.2 Rough Sets

With any P ⊆ A there is an associated equivalence relation IND(P ):

IND(P ) =
{
(x, y) ∈ U

2 | ∀a ∈ P, a(x) = a(y)
}

(1)

An associated equivalence relation is reflexive, symmetric and transitive. The
family of all equivalence classes of IND(P ) are denoted by U/IND(P ) or U/P
for short, which is simply the set of equivalence classes generated by IND(P ):

U/IND(P ) = ⊗{U/IND({a}) | a ∈ P} (2)

where
A ⊗ B = {X ∩ Y | X ∈ A, Y ∈ B,X ∩ Y �= ∅} (3)

The equivalence classes of the indiscernibility relation with respect to P are
denoted [x]P , x ∈ U. Let X ⊆ U , X can be approximated using only the infor-
mation contained within P by constructing the P−lower and P−upper approx-
imations of the classical crisp set X:

PX = {x | [x]P ⊆ X} (4)

P̄X = {x | [x]P ∩ X �= ∅} (5)



Kernelized Fuzzy Rough Sets-Based Three-Way Feature Selection 379

Let P and Q be subsets of condition attributes and decision attributes, respec-
tively, then according to the upper approximation and the lower approximation,
then the positive, negative, and boundary regions are defined as:

POSP (Q) =
⋃

X∈U/Q

PX (6)

NEGP (Q) = U −
⋃

X∈U/Q

P̄X (7)

BNDP (Q) =
⋃

X∈U/Q

P̄X −
⋃

X∈U/Q

PX (8)

All objects in the positive region POSP (Q), must belong to the set X. All
objects in the negative region NEGP (Q), must not belong to the set X. And
the objects in the boundary region BNDP (Q), may belong to X. The model of
attribute reduction in rough set requires that the positive region of the decision
attribute remains unchanged.

If IND(P ) = IND(P − a), the attribute a ∈ P is dispensable in the feature
set, otherwise it is indispensable. To achieve attribute reduction, that is, to find
the smallest subset P of the conditional attribute set. The minimum subset P
needs to satisfy the following two conditions:

(1) POSP (Q) = POSC(Q)
(2) ∀a ∈ P, POSP−{a}(Q) = POSC(Q)

Then the subset P is a reduct of C.

2.3 Fuzzy Rough Sets

The membership of an object x ∈ U, belonging to the fuzzy positive region can
be defined by

μRP X(x) = inf
y∈U

I (μRP
(x, y), μX(y)) (9)

Here I is a fuzzy implicator and T is a t-norm. RP is the fuzzy similarity relation
induced by the subset of features P :

μRP
(x, y) =

⋂

a∈P

{μRa
(x, y)} (10)

Many fuzzy similarity relations can be constructed to represent the similarity
between objects x and y for feature a, such as

μRa
(x, y) = 1 − |a(x) − a(y)|

|amax − amin| (11)

μRa
(x, y) = exp

(
− (a(x) − a(y))2

2σ2
a

)
(12)

where σ2
a is the variance of feature a. The fuzzy positive region can be defined

as
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Table 1. Selected t-Norms and their duals (S Conorms)

Operators T Operators S

1 TM (a, b) = min(a, b) SM (a, b) = max(a, b)

2 Tp(a, b) = a × b Sp(a, b) = a + b − ab

3 TL(a, b) = max(a + b − 1, 0) SL(a, b) = min(a + b, 1)

4 Tcos(a, b) = max(ab −
√

1 − a2
√

1 − b2, 0) Scos(a, b) = min(a + b − ab +
√

2a − a2
√

2b − b2, 1)

μPOSRP
(Q)(x) = sup

X∈U/Q

μRP
(x) (13)

Using the definition of the fuzzy positive region, the new dependency function
can be defined as follows:

γ′
P (Q) =

∑
x∈U

μPOSRP
(Q)(x)

|U| (14)

A fuzzy-rough reduct R can be defined as a subset of features that preserves the
dependency degree of the entire dataset, that is, γ′

R(D) = γ′
C
(D).

2.4 Kernelized Fuzzy Rough Set

Some widely encountered kernel functions satisfying reflexivity, symmetry, and
transitivity are:

1. Gaussian kernel: kG(x, y) = exp
(
−‖x−y‖2

δu

)

2. Exponential kernel: kE(x, y) = exp
(
−‖x−y‖

δ

)

3. Rational quadratic kernel: kR(x, y) = 1 − ‖x−y‖2

‖x−y‖2+δ

With the kernel function and the fuzzy operator in Table 1 and Table 2, we
can substitute fuzzy relations in fuzzy rough sets. The kernelized fuzzy lower
and upper approximation operators are defined as:

1. S-kernel fuzzy lower approximation operator: kSX(x) = infy∈U S(N(k(x, y)),
X(y));

2. θ-kernel fuzzy lower approximation operator: kθX(x) = infy∈U θ(k(x, y),
X(y));

3. T -kernel fuzzy upper approximation operator: kT X(x) = supy∈U T (k(x, y),
X(y))

4. σ-kernel fuzzy upper approximation operator: kσX(x) = supy∈U σ(N(k(x, y)),
X(y))

Let the classification be formulated as <U,A,D>, where U is thenonempty
and finite set of samples, A is the set of features characterizing the classification,
D is the class attribute which divides the samples into subset {d1, d2, ..., dK}.
For ∀x ∈ U ,

di(x) =
{

0, x /∈ di

1, x ∈ di
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We construct the algorithms for computing the fuzzy lower and upper approx-
imations for a given kernel function.

1. kSdi(x) = infy/∈di
(1 − k(x, y));

2. kθdi(x) = infy/∈di

(√
1 − k2(x, y)

)
;

3. kT di(x) = supy∈di
k(x, y);

4. kσdi(x) = supy∈di

(
1 − √

1 − k2(x, y)
)
.

The kernelized dependency function is defined as follows:

γS
B(D) =

∣
∣∪I

i=1kSdi

∣
∣

|U | or γθ
B(D) =

∣
∣∪I

i=1kθdi

∣
∣

|U | (15)

The coefficients of classification quality reflect the approximation ability
of the approximation space or the ability of the granulated space induced by
attribute subset B to characterize the decision.

3 Kernelized Fuzzy Rough Set-Based Three-Way
Decision Feature Selection

This section first expounds the problems existing in the heuristic kernelization
dependency feature selection strategy, and then describes the feature selection
method using the idea of three-way decision.

3.1 Heuristic Feature Selection

Since finding the minimum subset is an NP-hard problem, a heuristic search algo-
rithm is generally used to obtain feature subsets. The maximal dependency(MD)
strategy is designed in [13], and its heuristic feature evaluation function is

max
f∈C−S

Ψ(f, S,D) (16)

where Ψ(f, S,D) = γ
S∪{f}
B (D) − γS

B(D), C is the initial feature set, S is the
selected feature subset, D is the decision feature, and F is a candidate feature.

The purpose of feature selection is to obtain the feature subset with the
fewest features under the condition of maintaining the descriptive ability of the
feature subset. MD adopts a greedy strategy, that is, adding a candidate feature
that maximizes Ψ in each step, so that the dependency of the selected feature
subset increases as quickly as possible, and its search can only guarantee a local
optimum. The selected feature subset may be too large and redundant, and the
quality of the feature subset is difficult to guarantee.
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3.2 Feature Selection Based on Three-Way Decision

In order to avoid the problems caused by the greedy strategy and make the
feature subset more concise and informative, this paper proposes a three-way
decision-based feature selection strategy. In the three-way search, generally each
layer maintains three feature subsets, which are used to generate the top three
new feature subsets respectively, totaling 9 candidate feature subsets. Then, the
top three are selected from the 9 feature subsets, and they are constrained from
not originating from the same branch as the 3 feature subsets of the next layer.
Three-way feature selection will eventually generate 3 better feature subsets.
The method of feature selection and generation of successor is as follows:

w⋃

i=1

max
fi∈C−Si

Ψ (fi, Si,D) , (17)

Ψ (fi, Si,D) = γ
Si∪{fi}
B (D) − γSi

B (D), (18)

C is the conditional feature set, i represents the sequence number of the branch,
Si represents the feature selected by the ith branch, and fi represents the can-
didate feature of the ith branch.

Fig. 1. Three-way feature selection

The idea of three feature selection is shown in Fig. 1. The solid and dashed
circle nodes in the figure represent a subset of features. The solid circle indicates
that the feature subset will continue to expand, and the dashed circle indicates
that the feature subset will not expand. Node G indicates that the feature subset
has reached the stopping condition.

The specific descriptions of the three feature selection algorithms are as Algo-
rithm1.
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Algorithm 1. Kernelized fuzzy rough set-based three-way decision feature selec-
tion
Input: A kernelized fuzzy rough set-based three-way decision system KFDS =<

U, A, D >, Cutoff threshold θ
Output: Three reduced feature subsets R
1: subset = {{∅}}, R = {∅}
2: k = 3
3: while flag do
4: flag = FALSE
5: for all i in subset do
6: if i.dependency > θ then
7: R.add(i)
8: subset.remove(i)
9: k = k − 1

10: continue
11: end if
12: bestAttrs = getMaxDependencyGainAttrs(A − i)
13: for all j in bestAttrs do
14: subset.add(i ∪ j)
15: flag = TRUE
16: end for
17: end for
18: subset = subset.getTopK(k)
19: end while

The algorithm first starts with an empty set, and selects the top three fea-
tures of dependency to form a feature subset of size 1. Next, test whether the
current feature subset reaches the threshold. If it reaches the threshold, termi-
nate the expansion of the subset and add it to the output subset set. Otherwise,
continue to select the top three features of dependency to expand the subset until
the subset There are three feature subsets in the set. In order to maintain the
difference of feature subsets, the algorithm constrains that all subsets selected
in each round cannot come from the same branch, and existing subsets cannot
be selected.

Let the size of the original feature set A in the dataset be N . In the kth round,
a feature subset has selected k features, and the time complexity of calculating
the dependency gain of the remaining (N − k) features is O(N − k). Then in
the worst case, that is, when all features are selected, the total complexity of
one feature subset is O

(∑N
k=1(N − k)

)
= O

(
N2

)
, and the total complexity of

three feature subsets is approximately O(N2).
After obtaining 3 feature subsets, the 3 feature subsets are respectively con-

structed as homogeneous learners to form three collaborative decision-making
models to obtain better learning performance.
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3.3 Computational Complexity

The main computational cost of three-branch decision feature selection is from
the computation of kernelized dependency with different feature subsets and
the selection of features with different branches. Compared with the traditional
fuzzy rough set, the usage of kernel functions greatly reduces the storage space
and computational cost. With M features, the time complexity of computing the
Euclidean distance between a pair of samples is O(M). With N samples, it first
spends O(N) to calculate the kernelized lower approximation of each sample,
and then merges the lower approximation of all samples by O(N) to obtain
the kernelized dependency to measure the quality of feature subsets. In the
feature selection process of the three-branch decision, each branch evaluates M
features at most and the size of the branch is at most M −2 features. Therefore,
the time complexity of computing the kernelized dependency and the feature
selection process at different branches are O(N2M) and O(M2), respectively.
However, the actual computation cost will be much smaller than the theoretical
computation cost due to the branch size and the cutoff threshold.

4 Experiment

This part mainly includes the experiment steps and presents an analysis of the
model with classification accuracy. We compare the three-way decision model
based on kernelized fuzzy rough sets with the traditional greedy algorithm. At
the same time, we also make the comparison between soft voting and hard voting
for the model in this paper. For each sample, we obtained its three feature
subsets obtained, and the closest distance from each feature subset to each class
in the data set is calculated and voted, then the closest distance is selected as
the feature subset described. Finally, the class to which the majority of feature
subsets belong is taken as the class of the sample, this method is called hard
voting, while soft voting corresponds to it, the sum of the three feature subsets to
the nearest samples of a certain class is taken as the total distance, then the class
to which the minimum value belongs can be taken as the class to which it belongs
by comparing all distances. In order to facilitate the following representation of
the experiment, ‘KFRS-FS(S)’ is used for soft voting, and ’KFRS-FS(H)’ is used
for hard voting.

4.1 Datasets and Settings

In this experiment, the specific information of the datasets is shown in Table 3.
We summarize the basic information of each dataset as dataset name, number of
features and number of samples. At the same time, for the experiment results of
each dataset, the average performance of the ten-fold cross-validation method is
used as the final performance of our model on the dataset, in order to eliminate
the adverse effects of accidental errors in the experiments.

Tests on small-scale datasets show that the kernel-based fuzzy rough set
method can extract better feature subsets when the dependency value belongs



Kernelized Fuzzy Rough Sets-Based Three-Way Feature Selection 385

to [0.5, 1.0]. The performance of the algorithm in this paper is compared with
that of the greedy algorithm with dependency in [0.5, 1.0]. At the same time, for
each dataset, the performance difference between soft voting and hard voting is
compared. The specific experimental data are shown in Table 5 and Table VI.

Table 2. Residual Implication Induced by the t-Norms and Their Duals

Residual implication θ Operator σ

1 θM (a, b) =

{
1, a ≤ b

b, a > b
σM (a, b) =

{
0, a ≥ b

b, a < b

2 θp(a, b) =

{
1, a = 0

min(1, b/a), otherwise
σp(a, b) =

⎧
⎪⎨

⎪⎩

1, a = 0

max(0,
b − a

1 − a
), otherwise

.

3 θL(a, b) = min(b − a + 1, 1) σL(a, b) = min(0, b − a)

4 θcos(a, b) =

{
1, a ≤ b

ab +
√

1 − a2
√

1 − b2, a > b
σcos(a, b) =

{
0, a > b

a + b − ab −
√

2a − a2
√

2b − b2, a ≤ b

4.2 Algorithm Performance Comparison

The performance comparison results of the two algorithms on the selected
dataset are shown in Table 4. In Table 4, the second column represents the perfor-
mance of the model in this paper, which is represented by KFRS-FS here, and the
third column represents the performance of the classic greedy algorithm, which
is represented by GA. It can be seen that the performance of the algorithm in
this paper is generally higher than that of the greedy algorithm. Among them,
there are more than 5% points of performance improvement in australian, bupa,
dnatest, mammographic, spect-train or other datasets, and the improvement is
more significant. From overall view, the KFRS-FS algorithm proposed in this

Table 3. Experiment datasets

Dataset Features Objects

appendicitis 8 106

australian 15 690

bupa 7 345

dnatest 181 1186

fetal-state 21 2126

german 7 345

haberman 4 306

mammographic 5 748

spectf-train 22 267

vehicle 18 946

wdbc 31 569

weather 5 22



386 X. Liu et al.

Table 4. Classification accuracy by KFRS-FS and GA

Datasets KFRS-FS-W1 KFRS-FS-W2 KFRS-FS-W3 KFRS-FS GA

appendicitis 84.91 86.82 85.73 90.00 87.27

australian 85.22 84.93 85.22 84.78 80.86

bupa 61.71 64.30 66.06 63.42 57.71

dnatest 39.14 38.87 36.76 46.38 38.31

fetal-state 92.05 91.53 91.91 91.97 91.39

german 71.50 71.80 74.00 72.80 71.30

haberman 64.63 71.85 69.57 67.10 64.19

mammographic 73.52 75.00 75.27 75.60 70.66

spectf-train 78.75 78.75 77.75 82.50 76.50

vehicle 70.58 70.58 70.81 73.17 69.27

wdbc 97.19 97.19 97.37 97.54 96.49

weather 85.00 91.67 86.33 90.00 86.66

paper has different degrees of increase in algorithm performance compared with
the classical greedy algorithm according to different datasets.

4.3 Analysis of KFRS-FS

This part is mainly aimed at the comparison between soft voting and hard voting
inside the KFRS-FS algorithm introduced in this paper, as shown in Table 5
and Table 6, where the second column represents the feature subset distribution
obtained by soft voting and hard voting, and the third column represents the
performance of soft voting and hard voting. It can be seen that for datasets
with fewer features, the performance of soft voting is higher than that of hard
voting. On the contrary, the performance of datasets with more features is better
than hard voting. It proves that hard voting, which first finds the class to which
each feature subset belongs, will have more advantages in the comparison of
model performance in the sample space with high dimension while soft voting
will ignore the performance of individual feature subsets and try to find an
overall performance, this gives soft voting a poor effects in higher dimensions.
However, in low-dimensional space, the overall performance will have a better
model performance.

In addition, experiments show that the most appropriate cutoff threshold
varies in different datasets. When the cutoff threshold is too low, the model can
not fully exploit the information in the feature space. When the cutoff threshold
is too high, the feature subset may have high redundancy. Both of these will lead
to degradation in the performance of the model.
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Table 5. Classification accuracy by soft voting

Datasets Feature subsets by KFRS-FS(S) Performance of KFRS-FS(S)

appendicitis [[2, 3], [6, 3], [4, 6]] 85.45

australian

[[6, 2, 4, 7, 1, 5, 8, 10, 3, 0],

[13, 6, 2, 4, 7, 1, 5, 8, 10, 3], 81.15

[9, 6, 1, 4, 7, 2, 5, 8, 10, 3]]

bupa [[5, 3, 1, 0, 4], [2, 5, 1, 0, 3], [3, 2, 5, 1, 4]] 63.42

dnatest [[0, 1], [1, 2], [2, 0]] 39.66

fetal-state

[[6, 1, 7, 0, 12, 3, 9, 13, 14, 20, 4, 16, 10, 11],

[1, 12, 7, 0, 3, 13, 9, 20, 6, 4, 16, 10, 11, 17, 8, 15, 2], 91.97

[16, 1, 12, 7, 3, 14, 13, 9, 6, 20, 0, 10, 17, 4, 8]]

german

[[9, 5, 4, 0, 8, 7, 6, 2],

[1, 3, 9, 4, 5, 0, 8, 7, 6], 72.29

[3, 9, 4, 2, 5, 0, 8, 7, 6]]

haberman [[0, 1], [2, 0], [1, 2]] 67.09

mammographic [[0, 3, 2], [1, 0, 3], [2, 0, 1]] 68.53

spectf-train

[[40, 26, 1, 5, 4, 2, 7, 21, 33, 24, 3, 22],

[42, 40, 3, 8, 1, 33, 21, 4, 7, 28, 2, 14], 82.50

[41, 40, 28, 1, 4, 21, 8, 3, 7, 33, 2, 24]]

vehicle

[[8, 17, 14, 15, 9, 0, 12, 2, 16, 7, 3],

[11, 17, 14, 15, 9, 0, 2, 12, 16, 3, 7, 1], 70.23

wdbc

[6, 17, 14, 15, 9, 0, 2, 12, 16, 3, 7, 1]]

[[22, 27, 21, 11, 24, 20, 8, 7, 18],

[27, 0, 21, 11, 24, 20, 8, 6, 18], 97.01

[20, 27, 21, 11, 24, 18, 22, 8, 9]]

weather [[1, 0], [0], [2, 1, 3]] 90.00

Table 6. Classification accuracy by hard voting

Datasets Feature subsets by KFRS-FS(H) Performance of KFRS-FS(H)

appendicitis [[2, 3], [6, 3], [4, 6]] 90.00

australian

[[6, 2, 4, 7, 1, 5, 8],

[13, 6, 2, 4, 7, 1, 5], 84.78

[9, 6, 1, 4, 7, 2, 5]]

bupa [[5, 3, 1, 0], [2, 5, 1, 0], [3, 2, 5, 1]] 62.85

dnatest [[0, 1], [1, 2], [2, 0]] 46.38

fetal-state

[[6, 1, 7, 0, 12, 3, 9, 13, 14, 20, 4, 16, 10, 11, 17, 8],

[1, 12, 7, 0, 3, 13, 9, 20, 6, 4, 16, 10, 11, 17, 8, 15, 2], 91.78

[16, 1, 12, 7, 3, 14, 13, 9, 6, 20, 0, 10, 17, 4, 8, 15]]

german

[[9, 5, 4, 0, 8, 7, 6, 2, 13, 23, 10, 1],

[1, 3, 9, 4, 5, 0, 8, 7, 6, 2, 10, 23], 72.80

[3, 9, 4, 2, 5, 0, 8, 7, 6, 10, 23, 13]]

haberman [[0, 1], [2, 0], [1, 2]] 59.03

mammographic [[0, 3, 2], [1, 0, 3], [2, 0, 1]] 75.60

spectf-train [[40, 26, 1, 5, 4], [42, 40, 3, 8, 1], [41, 40, 28, 1, 4]] 73.75

vehicle

[[8, 17, 14, 15, 9, 0, 12, 2, 16, 7, 3, 1, 4],

[11, 17, 14, 15, 9, 0, 2, 12, 16, 3, 7, 1, 4], 73.17

[6, 17, 14, 15, 9, 0, 2, 12, 16, 3, 7, 1, 4]]

wdbc [[22, 27, 21, 11, 24], [27, 0, 21, 11], [20, 27, 21, 11]] 97.54

weather [[1], [0], [2, 1, 3]] 46.66
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5 Conclusions

In this paper, the idea of three-way decision is introduced into feature selection
based on kernelized fuzzy dependency. From the perspective of multi-branch,
multiple feature subsets containing sufficient information and complementar-
ity are obtained, and the classification performance of this method is further
improved through ensemble learning. The algorithm proposed in this paper has
been performed on benchmark datasets and compared with traditional meth-
ods. The experimental results show that the scale of the three feature subsets
calculated by the new method is much smaller than the original number of fea-
tures, which reduces the computational complexity of classification. Moreover,
the ensemble learning based on three feature subsets has better classification
accuracy on multiple datasets than the traditional kernelized fuzzy rough set
feature selection method, indicating that the new method has better classifi-
cation accuracy. Further research topics include how to extend the three-way
decision to the semi-supervised domain, so that the method can be used in more
practical situations.
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