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Preface

This volume contains the papers selected for presentation at IJCRS 2022, the 2022
International Joint Conference on Rough Sets, held on November 11–14, 2022, Suzhou,
China.

Conferences in the IJCRS series are held annually and comprise four main tracks
relating the topic rough sets to other topical paradigms: rough sets and data analysis
covered by the RSCTC conference series from 1998, rough sets and granular computing
covered by the RSFDGrC conference series since 1999, rough sets and knowledge tech-
nology covered by the RSKT conference series since 2006, and rough sets and intelligent
systems covered by the RSEISP conference series since 2007.

Owing to the gradual emergence of hybrid paradigms involving rough sets, it was
deemed necessary to organize Joint Rough Set Symposiums, first in Toronto, Canada,
in 2007, followed by Symposiums in Chengdu, China in 2012, Halifax, Canada, 2013,
Granada and Madrid, Spain, 2014, Tianjin, China, 2015, where the acronym IJCRS
was proposed, continuing with the IJCRS 2016 conference in Santiago de Chile, IJCRS
2017 in Olsztyn, Poland, IJCRS 2018 in Quy Nhon, Vietnam, IJCRS 2019 in Debrecen,
Hungary, IJCRS 2020 in La Habana, Cuba (held online), and IJCRS 2021 in Bratislava,
Slovakia (hybrid).

Following the success of the previous conferences, IJCRS 2022 continued the
tradition of a very rigorous reviewing process. The 28 papers included in this proceed-
ings were selected from 42 submissions. Every submission, including invited keynote
papers, was reviewed by at least two PCmembers and domain experts. Additional expert
reviews were sought when necessary. On average, each submission received 3 reviews.
Some papers received five reviews. As a result, only top-quality papers were chosen for
presentation at the conference. Final camera-ready submissions were further reviewed
by PC and conference chairs. Some authors were requested to make additional revi-
sions. We would like to thank all the authors for contributing their papers. Without their
contribution, this conference would not have been possible.

The IJCRS 2022 program was further enriched by five Keynote Speeches presented
by former presidents of the International Rough Set Society. We are grateful to our
keynote speakers, Davide Ciucci, Andrzej Skowron, Dominik Slezak, Roman Slowinski,
Guoyin Wang, and Yiyu Yao for their visionary talks on rough sets, granular computing
and three-way decisions.

The IJCRS 2022 program also included two workshops: Conceptual Knowl-
edge Discovery and Machine Learning Based on Three-way Decisions and Granular
Computing, and Uncertainty in Three-way Decisions, Granular Computing, and Data
Science. We thank the workshop organizers Jinhai Li, Dun Liu, Georg Peters, Jianjun
Qi, Xianyong Zhang, Huilai Zhi, and Jie Zhou for their contribution.

IJCRS 2022 would not have been successful without the support of many people
and organizations. We wish to thank the members of the Steering Committee for their
invaluable suggestions and support throughout the organization process.We are indebted
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to the PC members and external reviewers for their effort and engagement in providing
a rich and rigorous scientific program.

We greatly appreciate the co-operation, support, and sponsorship of various
institutions, companies, and organizations, including Suzhou University, China, the
University of Regina, Canada, and the International Rough Set Society. We are also
grateful to Springer for the sponsorship of the Best Student Paper Awards.

We acknowledge the use of the EasyChair conference system for paper submission
and review. We are grateful to Springer for their support and co-operation publishing
the proceedings as a volume of LNCS/LNAI.

September 2022 JingTao Yao
Hamido Fujita
Xiaodong Yue
Duoqian Miao

Jerzy Grzymala-Busse
Fanzhang Li
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President Forum Talk Abstracts

We present abstracts of keynote talks in this section. This year, 2022, is the 40th
anniversary of rough set theory, we invited former presidents of the International Rough
Set Society (https://www.roughsets.org/) to deliver keynote talks to share with us their
views of rough set theory and insights of its future development. There were six past
presidents, Andrzej Skowron (Poland), Roman Słowiński (Poland), Dominik Ślęzak
(Poland), Guoyin Wang (China), Yiyu Yao (Canada), Davide Ciucci (Italy), deceived
wonderful talk at IJCRS 2022.

https://www.roughsets.org/


Rough Sets and Fuzzy Sets in Interactive Granular
Computing

Andrzej Skowron

Systems Research Institute, Polish Academy of Sciences, Newelska 6,
01-447 Warsaw and Multidisciplinary Research Center, UKSW,

Marii Konopnickiej 1, 05-092 Dziekanow Lesny

Abstract. This paper is an attempt to present the ground that a change
is needed in the way of viewing mathematical tools, such as fuzzy sets,
rough sets, in the context of classifying and approximating concepts per-
taining to the real physical complex phenomenon. The paper argues in
favour of developing models going beyond the pure mathematical man-
ifold. The main idea is not to develop a theory only based on gathered
data, rather to incorporate the methods of perception and real physical
interactions through which the data is obtained. In this regard, a primary
proposal has been put forward to model fuzzy sets and rough sets in the
framework of Interactive Granular Computing (IGrC).



Dominance-Based Rough Set Approach
as a Breakthrough in Reasoning About Ordinal Data

Roman Słowiński

Institute of Computing Science, Poznan University of Technology,
60-965 Poznan, and Systems Research Institute, Polish Academy

of Sciences, 01-447 Warsaw, Poland

Abstract. Shortly after the first publication of the Zdzisław Pawlak on
Rough Sets, attempts were made to adapt this concept to ordinal data
[1]. Ordinal data characterize decision situations where potential actions
(objects) are described by attributes with ordinal scales, and decision
classes are ordered from the best to the worst. The major difference
between nominal and ordinal data is the type of possible inconsistency: in
nominal data it means violation of indiscernibility (objects a and b being
indiscernible by nominal condition attributes have been assigned to differ-
ent decision classes), while in ordinal data inconsistency means violation
of dominance (object a having at least as good evaluations as object b on
all ordinal condition attributes has been assigned to a worse class than b).
The rough set concept has been adapted to ordinal data in the methodol-
ogy called Dominance-based Rough Set Approach (DRSA) [2]. It sub-
stitutes the approximation of sets by granules of indiscernible or similar
objects in the condition attribute space with the approximation of upward
and downward unions of ordered sets by dominance cones in the ordinal
condition attribute space. DRSA made a particular breakthrough in pref-
erence learning for decision aiding [3]. The preference model is induced
from dominance-based rough approximations of ordered decision classes
or gradual relations in terms of certain and possible “if . . . , then . . .” deci-
sion rules. This methodology was first adapted to multiple criteria ordinal
classification, choice, and ranking. Then, to decision under uncertainty
and time preference, case-based reasoning, and interactivemultiobjective
evolutionary optimization. It gained importance in preference modeling
for transparency and explainability of decision rules, as well as for their
capacity of handling interacting attributes. It appears, moreover, that the
assumption admitted by DRSA about the ordinal character of evaluations
on condition and decision attributes is not a limiting factor in knowledge
discovery from non-ordinal data, because the presence or the absence of a
property can be represented in ordinal terms. Precisely, if two properties
are related, the presence, rather than the absence of one property should
make more (or less) probable the presence of the other property. This is
even more apparent when the presence or the absence of a property is
graded or fuzzy. This observation led to a straightforward hybridization
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of DRSA with fuzzy sets [4]. Since the presence of properties, possibly
fuzzy, is the base of information granulation, DRSA can also be seen as
a general framework for granular computing [5].
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Rough Sets in Industry

Dominik Slezak

Institute of Informatics, University of Warsaw, Warsaw, Poland
and QED Software, Warsaw, Poland

Abstract. We discuss two real-world use cases of deployment of the
paradigms of rough sets in commercial software solutions. The rst use
case refers to rough set approximations and their utilization in the inter-
nals of an analytical database engine. The second use case refers to rough-
set-based decision reducts and their utilization in a software systemwhich
is aimed at monitoring and diagnosing the machine learning models. We
claim that in both of those cases, the next step toward a wider indus-
try applicability should correspond to the means for handling complex,
unstructured and multimodal data sources.



MGCC: Multi-Granularity Cognitive Computing

Guoyin Wang

Chongqing Key Laboratory of Computational Intelligence,
Chongqing University of Posts and Telecommunications,

Chongqing 400065, P. R. China

Abstract. Cognitive computing aims to develop a coherent, unified,
universal mechanism with inspiration of mind’s capabilities. Granular
human thinking is a kind of cognition mechanism for human problem
solving.Multi-Granularity cognitive computing (MGCC) is introduced to
integrate the information transformation mechanism of traditional intel-
ligent information processing systems and the multi-granularity cogni-
tive law of human brain in this paper. The data-driven granular cogni-
tive computing model (DGCC) developed in 2017 is a typical theoret-
ical model for implementing MGCC. MGCC is a valuable model for
developing highly intelligent systems consistent with human cognition.
The theoretical research issues and some applications about MGCC are
introduced.



Three-Way Decision, Three-World Conception,
and Explainable AI

Yiyu Yao

Department of Computer Science, University of Regina,
Regina, SK S4S 0A2, Canada

Abstract. Three-way decision is about thinking, problem-solving, and
computing in threes or through triads. By dividing a whole into three
parts, by focusing on only three things, or by considering three basic
ingredients, we may build a theory, a model, or a method that is simple-
to-understand, easy-to-remember, and practical-to-use. This philosophy
and practice of triadic thinking appear everywhere. In particular, there
are a number of three-world or tri-world models in different fields and
disciplines, where a complex system, a complicated issue, or an intricate
concept is explained and understood in terms of three interrelated worlds,
with eachworld enclosing a group of elements or representing a particular
view. The main objective of this paper is to review and reinterpret various
three-world conceptions through the lens of three-way decision. Three-
world conceptions offer more insights into three-way decision with new
viewpoints, methods, and modes. They can be used to construct easy-to-
understand explanations in explainable artificial intelligence (XAI).



Orthopartitions in Knowledge Representation
and Machine Learning

Davide Ciucci

Universita degli Studi di Milano-Bicocca, DISCo,
Viale Sarca 336, 20126, Milan, Italy

Abstract.Orthopartitions are partitions with uncertainty.We survey their
use in knowledge representation (KR) and machine learning (ML). In
particular, in KR their connection with possibility theory, intuitionistic
fuzzy sets and credal partitions is discussed. As far as ML is concerned,
their use in soft clustering evaluation and to define generalized decision
trees are recalled. The (open) problem of relating an orthopartition to a
partial equivalence relation is also.
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Abstract. Orthopartitions are partitions with uncertainty. We survey
their use in knowledge representation (KR) and machine learning (ML).
In particular, in KR their connection with possibility theory, intuition-
istic fuzzy sets and credal partitions is discussed. As far as ML is con-
cerned, their use in soft clustering evaluation and to define generalized
decision trees are recalled. The (open) problem of relating an orthopar-
tition to a partial equivalence relation is also sketched.
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1 Introduction

Let us suppose to have a set of objects that we want to group according to some
criteria. Due to intrinsic ambiguity or lack of knowledge, it may happen that
we are not able to precisely define the groups. Not precisely may be understood
in different ways: we are undecided if an object belongs to a certain group; an
object can belong to more than one group; an object can belong to one or more
groups with a degree of possibility or probability, etc. The problem to describe
this situation and how to manage the obtained groups is interesting per se from a
theoretical standpoint and it has been widely studied in the context of clustering
in machine learning.

In the last years, to cope with this issue, we introduced and studied the
notion of orthopartition, i.e., a partition with uncertainty, and subsequently its
fuzzy version. An orthopartition is a collection of orthopairs, that is pairs of
disjoint sets (A,B), such that A ∩ B = ∅, representing the equivalence classes
(with uncertainty) of a partition.

In the present work, we recall what is an orthopartition and survey the main
results obtained up to now. We also put forward a new problem and give the
first comments on it in Sect. 2.3. We will follow two directions: knowledge rep-
resentation in Sect. 2 and machine learning in Sect. 3.

At first, the basic definitions of orthopartition and its uncertainty measures
are reported. Then, in Sect. 2.1 the link with possibility theory is given. In
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Sect. 2.2 the fuzzy version of orthopartitions is provided, with some operations
and order relations on it. Then, the link between fuzzy orthopartitions and credal
partitions is studied. In Sect. 2.3, we sketch the problem of finding a partial
equivalence relation corresponding to an orthopartition and vice versa.

Then, we turn our attention to the role of orthopartitions in Machine Learn-
ing. In Sect. 3.1, we explain how they can be used in Soft Clustering, in particular
in rough and three-way clustering, to provide an external clustering evaluation.
In Sect. 3.2, orthopartitions are applied to the problem of learning from partial
labels (with Decision Trees) and to generalize Decision Trees with the ability to
abstain from a precise label. We finally conclude with some on-going works and
future perspectives.

2 Knowledge Representation

As said in the introduction, an orthopair O is a pair of disjoint sets (A,B) on
a universe U . It has been introduced firstly in [17] as an abstraction of a rough
sets and then studied in [1,12,18,19]. The two sets (A,B) represent a partially
known set X with A representing the elements that surely belong to X and B
those that surely do not belong to X. Of course, A,B tri-partition the universe
and by Bnd = U \ (A ∪ B) we mean the objects on which we are uncertain
(clearly, Bnd is taken from the boundary of a rough set). Often, an orthopair
is denoted as (P,N) where P stands for positive and N for negative. We also
notice that an orthopair is formally equivalent to an interval set, though their
interpretation may be different [18,27].

If (P,N) is interpreted as an equivalence class of a partition with uncertainty,
then a collection of orthopairs can be understood as a partition with uncertainty.

Definition 1. An orthopartition is a set O = {O1, ..., On} of orthopairs such
that the following axioms hold:

(Ax O1) ∀Oi, Oj ∈ O, Oi, Oj are disjoint, that is Pi∩Pj, Pi∩Bndj and Pj∩Bndi

are empty
(Ax O2)

⋃
i(Pi ∪ Bndi) = U ; (coverage requirement)

(Ax O3) ∀x ∈ U if (x ∈ Bndi) then ∃j �= i such that (x ∈ Bndj) (an object
cannot belong to only 1 boundary)

Example 1. Let U be the set of the first 10 integers, i.e. U = {1, 2, . . . , 10}. Then,
the collection {O1, O2, O3} where: O1 = ({1, 2}, {9, 10}), O2 = ({9}, {1, 2}),
O3 = (∅, {1, 2, 9}) is an orthopartition of U . On the other hand, the set {O1, O2}
is not an orthopartition since it does not satisfy axiom O3: 10 belongs to only
one boundary.

An orthopartition represents an underlying partition, which is not precisely
known. Hence, several standard partitions can be consistent with a given parti-
tion, i.e., the orthopartition could collapse in one of its consistent partitions if
full knowledge would be available.
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Definition 2. A set S is consistent with an orthopair O = (A,B) if for all
x ∈ A then x ∈ S and for all x ∈ B then x �∈ S.

A partition π is consistent (resp, weakly consistent) with an orthopartition
O iff ∀Oi ∈ O, ∃! (resp., ∃!∨ � ∃) Si ∈ π s.t. S is consistent with Oi.

Example 2. Let O = {O1, O2, O3} the orthopartition given in Example 1. Then,
two partitions consistent with O are: Π1 = {{1, 2, 3}, {7, 8, 9, 10}, {4, 5, 6}} and
Π2 = {{1, 2}, {9}, {3, 4, 5, 6, 7, 8, 10}}.

Let us denote with ΠO the collection of all partitions consistent with O. We
notice that the difference between consistency and weak consistency, lies in the
fact that the former requires that each orthopair represents an equivalence class,
whereas in the case of weak consistency there can be more orthopairs than
equivalence classes.

In order to measure the uncertainty intrinsic to an orthopartition the notions
of Ellerman and Shannon entropy can be generalized to the present setting.

Definition 3. Given an orthopartition O and let ΠO be the set of all the par-
titions consistent with O, we define the Ellerman (or logical) average entropy
as

HE(O) =
1

|ΠO|
∑

π∈ΠO

hE(π) (1)

and the Shannon average entropy as

HS(O) =
1

|ΠO|
∑

π∈ΠO

hS(π) (2)

with hE(π) and hS(π), respectively, the Ellerman and Shannon entropy of the
standard partition π.

An algorithm to compute HE with polynomial complexity can be found in
[14]. On the other hand no efficient algorithm for HS has been defined.

Moreover, let us notice that the average entropy can be bounded by the lower
and upper entropies as follows

Hi∗ = min{hi(π)|π ∈ ΠO} (3a)
H∗

i = max{hi(π)|π ∈ ΠO} (3b)

for i ∈ {E,S}. The definition of average, lower and upper entropy can then be
used as a basis to define the mutual information between orthopartitions, by
means of the following definition:

mi(O1,O2) = Ĥi(O1) + Ĥi(O2) − Ĥi(O1 ∧ O2) (4)

where Ĥi = Hi∗+H∗
i

2 and O1 ∧ O2 is the meet orthopartition, defined by O1 ∧
O2 = {(Ai1 ∩ Ai2, Bi1 ∪ Bi2)|Oi1 ∈ O1 and Oj2 ∈ O2}. Intuitively, in analogy
with the definition of mutual information in information theory, the mutual
information between orthopartitions represents a measure of similarity between
the informational content of two orthopartitions. As such, it has maximum value
when O1 = O2 and both are standard partitions.
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2.1 Possibility Theory

Orthopairs can have different interpretations and one is to look them as partial
models, that is, partial assignments of truth values [5]. More precisely, let V be a
set of propositional variables, an orthopair (A,B) on V corresponds to assigning
true to the variables of A and false to those of B, while the truth value of all
remaining variables is unknown.

Thus a correspondence between orthopairs and Boolean possibility distribu-
tions [20] can be put forward. Indeed, let Π be the collection of all Boolean
possibility distributions whose domain is made of all evaluation functions on V,
i.e. Π = {π | π : {0, 1}V → {0, 1}}. Then, each orthopair on V generates a
Boolean possibility distribution of Π, but not all Boolean possibility distribu-
tions of Π can be obtained starting from an orthopair. Then, each collection of
orthopairs on V generates a distribution of Π, and vice versa each distribution
of Π is associated to at least a set of orthopairs.

This link has been explored in [9], where it has been shown that orthoparti-
tions on V can be identified with a special class of Π. Furthermore, a necessary
and sufficient condition for a distribution of Π to be generated by an orthoparti-
tion on V has been given. We can consequently classify possibility distributions of
Π on the basis of their relations with orthopairs and orthopartitions as depicted
in Fig. 1.

Fig. 1. Possibility distributions classification determined by their correspondence with
orthopairs and orthopartitions.

Indeed, the possibility distributions of ΠV are those that can be represented
by an individual orthopair on V. Then, the possibility distributions in Π∗ ⊆ ΠV
have the additional feature that cannot be generated by sets made of two or more
orthopairs. On the other hand, all possibility distributions of Π corresponding
to orthopartitions form a set ΠOP ∪ {πV , π1}, with ΠOP ⊂ Π \ ΠV , πV is
the distribution generated by (V, ∅) , and π1 is the distribution generated by
(∅, ∅). We thus notice that there exist possibility distributions that cannot be
represented by an orthopartition.
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2.2 Fuzzy Orthopartitions

Fuzzy orthopartitions are introduced in [6,8] as collections of intuitionistic fuzzy
sets satisfying a list of axioms to model partitions including both uncertainty
and vagueness.

Let us recall that an intuitionistic fuzzy set (IFS) A of a universe U [2] is
a pair of functions μA : U → [0, 1] and νA : U → [0, 1] such that μA(u) +
νA(u) ≤ 1 for each u ∈ U . The two functions μA and νA are respectively called
the membership and non-membership functions of A. Moreover, the hesitation
margin of A hA : U → [0, 1] is given by hA(u) = 1 − (μA(u) + νA(u)) and it
expresses the uncertainty contained in A.

Definition 4. A fuzzy orthopartition is a set O = {(μ1, ν1), . . . , (μn, νn)} of
intuitionistic fuzzy sets of U such that the following axioms hold:

(Ax OR1)
∑n

i=1 μi(u) ≤ 1 for each u ∈ U ;
(Ax OR2) μi(u) + hj(u) ≤ 1 for each i �= j and u ∈ U ;
(Ax OR3)

∑n
i=1 μi(u) + hi(u) ≥ 1 for each u ∈ U ;

(Ax OR4) for each i ∈ {1, . . . , n} and u ∈ U with hi(u) > 0, there exists j ∈
{1, . . . , n} \ {i} such that hj(u) > 0.

The first two axioms capture the idea that intuitionistic fuzzy sets in O must
represent mutually disjoint blocks of U , and (Ax OR3) corresponds to a covering
condition. Lastly, axiom (Ax OR4) allows fuzzy orthopartitions to be extensions
of crisp orthopartitions given by Definition 1.

Indeed, fuzzy orthopartitions are generalizations of both orthopartitions
based on classical sets and Ruspini (fuzzy) partitions defined as follows.

Definition 5. [24] A Ruspini partition π of U is a collection of functions
π1, . . . , πn : U → [0, 1] such that π1(u) + . . . + πn(u) = 1 for each u ∈ U .

Theorem 1. [6] Let O = {(μ1, ν1), . . . , (μn, νn)} be a fuzzy orthopartition of U ,
then the following statements are true:

(a) if μ1, . . . , μn, ν1, . . . , νn are Boolean functions, then O is an orthopartition;
(b) if h1, . . . , hn are null functions, then O is a Ruspini partition.

Logical Entropy of Fuzzy Orthopartitions. The definition of lower and upper
entropy of fuzzy orthopartitions is based on the concepts of consistency and
logical entropy of Ruspini partitions.

Definition 6. Let O = {(μ1, ν1), . . . , (μn, νn)} be a fuzzy orthopartition and let
π = {π1, . . . , πn} be a Ruspini partition of U . Then, π is fuzzy consistent with
O if and only if μi(u) ≤ πi(u) ≤ μi(u)+hi(u) for each u ∈ U and i ∈ {1, . . . , n}.

Definition 6 arises by viewing fuzzy orthopartitions as Ruspini partitions with
uncertainty, that is a fuzzy orthopartition O must became a Ruspini partition
(consistent with O) once the uncertainty is solved. In the sequel, we simply say
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“consistent” instead of “fuzzy consistent” and we use the symbol ΠO to denote
the set of all Ruspini partitions consistent with O.

Let u, u′ ∈ U , we call dit π(u, u′) = max{|πi(u) − πi(u′)| such that i ∈
{1, . . . , n}} the degree of distinction of (u, u′). It is interpreted as the capac-
ity of π to distinguish u and u′ by means of its fuzzy sets π1, . . . , πn.

Definition 7. The logical entropy of a Ruspini partition π is defined as

H(π) =

∑
(u,u′)∈U×U dit π(u, u′)

|U × U | . (5)

It is easy to understand that H(π) measures how much π is able to distinguish
the elements of U by means of its fuzzy sets. We now use H to bound the value
of a fuzzy orthopartition entropy.

Definition 8. Let O be a fuzzy orthopartition of U , the lower and upper
entropy are respectively given by H∗(O) = min{H(π) | π ∈ ΠO} and H∗(O) =
max{H(π) | π ∈ ΠO}.

Since H∗(O) ≤ H∗(O), the interval IO = [H∗(O),H∗(O)] can be seen as
an entropy measure too. Moreover, it holds that IO ⊆ [0, 1 − |ΔU |

|U×U | ], where
ΔU = {(u, u) | u ∈ U}. By comparing the lower and upper entropy of fuzzy
orthopartitions with other entropy measures, the following results are obtained:

Theorem 2. [8] Let O be a fuzzy orthopartition of U , then the following state-
ments are true:

(a) if O is a Ruspini partition then H∗(O) = H∗(O) and they can be computed
by (5);

(b) if O is an orthopartition then [H∗(O),H∗(O)] ⊆ [H∗(O),H∗(O)], where
H∗(O) and H∗(O) are respectively the lower and upper entropies of O
already defined in equations (3);

(c) if O is a partition then H∗(O) = H∗(O) and they coincide with the logical
entropy defined by Ellerman in [22].

The upper and lower entropy of O can be computed by solving an optimization
problem: H∗(O) and H∗(O) correspond to the maximum and minimum points
of a non-linear function subject to a list of constraints. The latter can be con-
verted into a liner programming problem, which is solved by using one of the
standard techniques in linear programming as the Simplex method. Additionally,
the Ruspini partition πmed such that H(πmed) is the arithmetic mean of H∗(O)
and H∗(O), can be found by determining the solutions of a non-linear system.
More details about such procedures are found in [6,8].

Operations and Orderings on Fuzzy Orthopartitions. Operations and orderings
on fuzzy orthopartitions are based on the following operators and relations on
intuitionistic fuzzy sets.
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Definition 9. [3,10] Let (μi, νi) and (μj , νj) be intuitionistic fuzzy sets of U ,
then

(a) (μi, νi) ∩ (μj , νj) = (min{μi, μj},max{νi, νj});
(b) (μi, νi) ∗ (μj , νj) = (μi+μj

2 ,
νi+νj

2 );
(c) (μi, νi) � (μj , νj) if and only if μi(u) ≤ μj(u) and νi(u) ≥ νj(u) for each

u ∈ U ;
(d) (μi, νi) �∗ (μj , νj) if and only if μi(u) ≤ μj(u) and νi(u) ≤ νj(u) for each

u ∈ U .

In the sequel, given n ∈ N, we use the symbol OR to denote the collection of
all sequences of n IFSs forming an orthopartition of U . Furthermore, we consider
O1 = ((μ1

1, ν
1
1), . . . , (μ1

n, ν1
n)) and O2 = ((μ2

1, ν
2
1), . . . , (μ2

n, ν2
n)) in OR.

Definition 10. Let O1,O2 ∈ OR, we put

(a) O1 ∩OR O2 = ((μ1
1, ν

1
1) ∩ (μ2

1, ν
2
1), . . . , (μ1

n, ν1
n) ∩ (μ2

n, ν2
n));

(b) O1 ∗OR O2 = ((μ1
1, ν

1
1) ∗ (μ2

1, ν
2
1), . . . , (μ1

n, ν1
n) ∗ (μ2

n, ν2
n));

(c) O1 �OR O2 if and only if (μ1
i , ν

1
i ) � (μ2

i , ν
2
i ) for each i ∈ {1, . . . , n};

(d) O1 �∗
OR O2 if and only if (μ1

i , ν
1
i ) �∗ (μ2

i , ν
2
i ) for each i ∈ {1, . . . , n}.

It can be proved that

– OR∗
α is closed under ∩OR, where OR∗

α = {O ∈ OR | ν(u) < α and h(u) >
0 for each (μ, ν) ∈ O and u ∈ U};

– OR is closed under ∗OR.

Moreover, ∩OR and ∗OR are both commutative and idempotent, ∩OR is associa-
tive, and ∗OR is distributive w.r.t. ∩OR. If we confine to OR∗

α with α ≤ 1 − 1
n ,

then �OR is the ordering associated with ∩OR. Indeed, let O1,O2 ∈ OR,
O1 ∩OR O2 = O1 if and only if O1 � O2. Both �OR and �∗

OR are ordering
relations, namely they are reflexive, anti-symmetric, and transitive.

The next theorem connects the lower and upper entropy with the operations
and relations of the previous definition.

Theorem 3. [8] The following statements are true:

– If O1 �OR O2 then IO1∩ORO2 ⊆ IO1 ;
– If O1 �∗

OR O2 then IO1∗ORO2 ⊆ IO1 .

Let us point out that �∗
OR is an extension of the relation �∗ on OR, where

(μi, νi) �∗ (μj , νj) means that (μi, νi) is less fuzzy than (μj , νj), i.e. (μj , νj) is
closer than (μi, νi) to a fuzzy set because it contains less uncertainty. The same
meaning can be extended to �∗

OR: let O1,O2 ∈ OR, O1 �∗
OR O2 states that O2

is closer than O1 to a Ruspini partition.
If O1 �∗

OR O2, then we will say that O2 is a refinement of O1. Indeed,
in a dynamic situation, we can imagine O2 as an evolution of O1 once more
information is known about the elements of the universe U .
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Let IOR = {IO | O ∈ OR}, we consider an ordering relation on IOR:

IO1 ≤IOR
IO2 if and only if H∗(O1) ≤ H∗(O2) and H∗(O2) ≤ H∗(O1). (6)

In simple words, IO1 ≤IOR
IO2 means that IO2 is a closed subinterval of IO2 .

Therefore, it is easy to understand that the entropy associated with O2 is less
than the one associated to O1. The next theorem shows that the lower and
upper entropies (in the form of closed subintervals of [0,1] equipped by ≤IOR

)
are monotonic with respect to �∗

OR.

Theorem 4. [8] Let O1,O2 ∈ OR. If O1 �∗
OR O2 then IO1 ≤IOR

IO2 .

Let us focus on the meaning of Theorem 4. If O2 is a refinement of O1 (i.e.,
the uncertainty contained in O2 is less than that relative to O1), then O1 and
O2 could correspond to the same Ruspini partition π once the uncertainty is
eliminated from O1 and O2 (i.e., for each u ∈ U , the degrees of uncertainty
hi
1(u), . . . , hi

n(u) with i ∈ {1, 2} are distributed among the blocks of Oi in order
to obtain π). Then, we have more detailed information about the entropy of π
by taking into account IO2 instead of IO1 by considering that IO2 ⊆ IO1 .

Fuzzy Orthopartitions and Credal Partitions. Credal partitions are relevant
structures in evidential clustering used to represent partitions in cases of par-
tial knowledge concerning the membership of elements to classes [21]. Assuming
that C = {C1, . . . , Cn} is a standard partition of a universe U = {u1, . . . , ul}, a
credal partition is mathematically defined as a collection m = {m1, . . . , ml} of
basic belief assignments. By a basic belief assignment (bba), we mean a function
mi : 2C → [0, 1] verifying the condition

∑
A⊆C mi(A) = 1. We also assume here

that mi is normalized, namely mi(∅) = 0. Let A ⊆ C, the mass of belief mi(A)
quantifies the evidence supporting the claim “ui belongs to a block of A” [25,26].
Credal partitions subsume the concept of fuzzy probabilistic partitions, which
are composed of all Bayesian bbas, i.e., bbas assigning a non-zero degree only to
the singletons of 2U [4].

A correspondence between credal partitions and fuzzy orthopartitions is pro-
vided in [7], where to a fuzzy orthopartition we attach the following semantics.
Let (μi, νi) be an IFS on U , μi(u) and νi(u) are respectively the degrees of belief
that “u belongs to the class i” and “u does not belong to the class i”. Moreover,
according to this interpretation, pli(u) = 1 − νi(u) is the degree of plausibil-
ity that “u belongs to the class i”. Therefore, fuzzy orthopartitions like credal
partitions, are understood as extensions of fuzzy probabilistic partitions.

Let us focus on ORP and M being the sets of all fuzzy orthopartitions
and credal partitions related to a partition C = {C1, . . . , Cn} of a universe
U = {u1, . . . , ul}. In the next definition, a class of credal partitions is associated
to a given fuzzy orthopartition.

Definition 11. Let O ∈ ORP . Then, we put F(O) = {m ∈ M | mj({Ci}) =
μi(uj) and

∑
{A | Ci∈A} mj(A) = plj(ui), ∀i ∈ {1, . . . , n} and j ∈ {1, . . . , l}}.
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Vice versa, a fuzzy orthopartition is associated to each credal partition as
follows.

Definition 12. Let m ∈ M. Then, we consider Om = {(μ1, ν1), . . . , (μn, νn)}
such that for each i ∈ {1, . . . , l} and j ∈ {1, . . . , n},

μj(ui) = mi(Cj) and νj(ui) = 1 −
∑

{A | Cj∈A}
mi(A).

(Of course, we have, plj(ui) =
∑

{A | Cj∈A} mi(A)).

It can be proved that

(a) for each O ∈ ORP , F(O) can be made of 0, 1, or infinite credal partitions;
(b) for each m ∈ M, Om is a fuzzy orthopartition;
(c) for each O ∈ ORP and m ∈ F(O), Om = O.

According to the previous points, we finally conclude that fuzzy orthopartitions
can be considered more general than credal partitions that are made of normal-
ized bbas.

2.3 Partial Equivalence Relations

It is well-known that any partition is in bijection with an equivalence relation.
Thus, we can naturally ask if given an orthopartition, a corresponding relation
can be defined. The intuition is that to an orthopartition there corresponds
a partial equivalence relation, i.e., an equivalence relation of which we know
that some elements are equivalent, some are not equivalent and some other
connections are possible but unknown. This kind of partial equivalence relation
can be expressed by means of two relations: an equivalence RE and a similarity
RS one, which represent the necessary and the possible relationships occurring
among objects. In other words, we can model a partial equivalence relation with
an orthopair of relations (RE , RN ) on the cartesian product of the set of objects
X × X, such that:

– RE is an equivalence relation (symmetric, reflexive, transitive);
– BndR = RS is a similarity relation (symmetric, reflexive);
– there holds a kind of transitivity property: if (xi, xj) ∈ RS and (xj , xk) ∈ RE

then (xi, xk) ∈ RS .

Example 3. Let U = {1, 2, . . . , 10} and O = {O1, O2, O3} an orthopartition of
U where: O1 = ({1, 2}, {9, 10}), O2 = ({9}, {1, 2}) and O3 = (∅, {1, 2, 9}). Then,
the partial equivalence relation defined by O is

RE = {(xi, xi), (x1, x2), (x2, x1)}
RS = RE ∪ P ∪ PS

where
P = {(x1, x3), (x1, x4), . . . , (x1, x8), (x2, x3), (x2, x4), . . . , (x2, x8), (x9, x3),
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(x9, x4), . . . , (x9, x8), (x10, x3), (x10, x4), . . . , (x10, x8)} and PS is made of the
symmetric pairs in P . We notice that supposing that the uncertainty in RS

will be solved, not all pairs in RS could be part of the final equivalence rela-
tion. For instance, given that (x1, x2) ∈ RE we could not have both (x1, x3) and
(x3, x9), since (x1, x9) is not listed as a possible relationship in RS .

It can be proved that given an orthopartition, there exists a partial equivalence
relation representing it. The converse, i.e., whether given a pair of equivalence-
similarity relations there exists an orthopartition O such that the partitions
obtained from RE , RS are consistent (or weakly consistent) with O is still an
open problem. In any case, the obtained orthopartition would not be unique.

Example 4. Let us consider the following table: Assuming the standard indis-

a b c

x1 1 1 0
x2 1 * 0
x3 0 2 1

cernibility relation in rough set theory, from the table we get the pair RE =
{(xi, xi)}, RS = RE ∪ {(x1, x2), (x2, x1)}. Once the missing value in the table
will be known, one of the two partitions could be defined: Π1 = {{x1, x2}, {x3}}
and Π2 = {{x1}, {x2}, {x3}}.

In this case, there does not exist an orthopartition O such that Π1 and Π2 are
consistent with O and no other partition is consistent with O. On the other hand
both partitions are weakly consistent with O1 = {({x3}, {x1, x2}), ({x1}, {x3}),
(∅, {x1, x3})} and O2 = {({x3}, {x2, x1}), ({x2}, {x3}), (∅, {x2, x3})}.

3 Machine Learning

In this section, we explain how orthopartitions can be used in machine learning
in two directions: to define evaluation measures for soft clustering and to gener-
alize the standard decision-tree approach for partial label settings and with the
possibility to abstain from taking a decision.

3.1 Rough and Three-Way Clustering

As previously mentioned, an orthopartition represents a partition which is only
partially known, due to uncertainty or insufficient information. The problem of
how to represent uncertain assignments of objects to sets has also been studied
from an application-oriented perspective in the setting of soft clustering. This lat-
ter refers to clustering techniques (i.e., machine learning algorithms that aim to
group objects that can be considered similar, in some sense) in which the assign-
ment of objects to clusters is allowed to be uncertain or partial. Among such soft
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clustering methods, the uncertainty representation framework of orthopartitions
has relevant connections with rough and three-way clustering.

Considering rough clustering, as initially proposed in [23], a single cluster Ci

is defined as an interval set Ci = (Ci, Ci), where Ci is the cluster’s lower bound
and Ci is its upper bound. The set C = {(C1, C1), (C2, C2), . . . , (Cn, Cn)} is then
a rough clustering if and only if it satisfies the following properties:

(Ax RC1) |{Ci | x ∈ Ci}| ≤ 1,∀x ∈ U : an object x can be assigned to at most
a cluster’s lower bound,

(Ax RC2) x ∈ Ci =⇒ x ∈ Ci,∀x ∈ U : if an item x is in a cluster’s lower
bound, it is assigned to its upper bound as well,

(Ax RC3) {Ci | x ∈ Ci} = ∅ ⇐⇒ |{Ci | x ∈ Ci}| ≥ 2,∀x ∈ U : an object x
not assigned to any cluster’s lower bounds must be contained in at
least two clusters’ upper bound.

In the case of three-way clustering [28], by contrast, a different set of defining
axioms is adopted. Indeed, even though clusters are represented as interval sets,
a collection T = {T1, ..., Tn} is said to be a three-way clustering if it satisfies the
following properties:

(Ax TWC1) ∀Ti, Ti �= ∅, i.e., the lower bounds of the clusters are required to
contain at least an object;

(Ax TWC2)
⋃

i Ti = U (coverage requirement);
(Ax TWC3) ∀Ti, Tj it holds that Ti ∩ Tj = ∅.

It is easy to observe that the axioms for rough clustering and three-way clustering
are not equivalent: a cluster lower bound is allowed to be empty in a rough
clustering, while an object is allowed to belong to only one boundary in three-way
clustering. Nonetheless, both structures can be unified through orthopartions
[14]. Clearly, any rough clustering C = {(Ci, Ci}i can be equivalently represented
as an orthopartition O(C) = {(Ci, Ci

c
)}Ci∈C : it is not hard to see that Axs RC1-

3 corresponds to Axs O1-3. Similarly, three-way clustering T = {(Ti, Ti}i can be
represented as an orthopartition O(T ) = {(Ti, Ti

c
)}Ti∈T ∪ {Oη}, where Oη is a

noise cluster (P,N) defined as POη
= ∅, BndOη

= {x ∈ U : ∃!Ti ∈ T s.t. x /∈
Ti ∧x ∈ Ti} and NOη

= (POη
∪BndOη

)c. Intuitively, Oη contains in its boundary
all objects that can be considered as outliers for the clusters in T , i.e., all objects
which belong to only one upper bound.

More recently, the correspondence between rough and three-way clustering
proved by means of orthopartitions has been applied also to the study of more
general forms of soft clustering, including fuzzy clustering (where assignment
of objects to clusters is represented in terms of fuzzy partitions) and evidential
clustering (where assignment of objects to clusters is modeled by means of belief
functions). In particular, in [15] an algorithm to convert rough or three-way
clusterings into evidential clustering and vice-versa was proposed based on the
representation of the former two classes of structures in terms of orthopartitions,
while in [16] it was shown that any soft clustering can be represented in terms
of a probability distribution over orthopartitions.
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The correspondence between orthopartitions and different forms of soft clus-
tering, aside from its theoretical significance, has been applied to the evaluation
of clustering results: indeed, the entropy and mutual information metrics defined
in Sect. 2 have been applied to compare the results of a rough or three-way clus-
tering algorithm with a given ground truth cluster assignment [14]; while the
correspondence between soft clusterings and distributions of orthopartitions has
been applied to design generalized metrics to evaluate the results of soft cluster-
ing algorithms [16].

3.2 Decision Trees

The theory of orthopartitions has also been applied in the setting of Machine
Learning to the design of Decision Tree algorithms, focusing in particular either
on weakly-supervised or three-way Decision Trees [11,13].

In the case of a three-way Decision Tree, the aim is to construct a Machine
Learning model that is able to partially abstain on the more uncertain instances.
Let DT = 〈S,A, d〉 be a decision table with S = {x1, ..., x|S|} a set of objects;
A = {a1, ..., am} a set of attributes (features) and d a decision that assigns
a label to each object. Let the possible values for a given feature a be va

i and
Sa

i = {x ∈ S|va(x) = va
i } be the set of instances that have value va

i for feature a.
If a is a continuous attribute, then, given a threshold value va

i , one can consider:

va(xk) =

{
1 va(xk) ≥ va

i

0 otherwise
. (7)

The optimal classification Ca
i for Sa

i is the classification (i.e., the set of labels)
obtained by solving locally on the tree nodes an optimisation procedure that
assigns to each node the corresponding set of labels associated with the minimal
risk. That is, if Pr(y|Sa

i ) = |{xk∈Sa
i :d(xk)=y}|
|Sa

i | , then:

Ca
i = arg min

Z⊆Y
α(Z) ·

∑

y∈Z

Pr(y|Sa
i ) +

∑

y/∈Z

Pr(y|Sa
i ) ·

∑
y′∈Z εy′y

|Z| (8)

where α(Z) is the cost of abstention associated with set of labels Z, whereas
εy′y is the cost of predicting y′ when the true label is instead y. Note, that
whenever |Ca

i | > 1, then the three-way Decision Tree does not predict a single
label but rather a set, associated with an epistemic semantics: the correct class
is in Ca

i , but it is not known which it is. Since this classification determines an
orthopartition Oa, the mutual information of Oa w.r.t. S can be computed as
described previously in Sect. 2 and then we select the feature a∗ which results in
the maximum mutual information value, subsequently recurring on the subsets of
S determined by feature a∗ until a termination criterion is met. In [11] it is shown
that ensembles of such three-way Decision Trees can significantly out-perform
both standard supervised machine learning algorithm as well as other state-of-
the-art three-way classifiers, both in terms of accuracy as well as coverage (i.e.,
the number of points that are assigned to single classes rather than to sets).
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In the case of weakly-supervised learning, orthopartitions are used to design
Decision Tree algorithms that are able to learn from partially labelled data. In a
standard Decision Tree learning algorithm, one considers, at each internal node
Ni and for each attribute a, a possible split point pa (the technique to determine
the split point depends on the specific adopted learning algorithm) and evaluate
that split by computing its induced mutual information:

L(pa, Ni) = P (va ≥ pa|Ni) ·
∑

y∈Y

P (y|va ≥ pa, Ni) · log2P (y|va ≥ pa, Ni)

+ P (va < pa|Ni) ·
∑

y∈Y

P (y|va < pa, Ni) · log2P (y|va < pa, Ni)

= P (va ≥ pa|Ni) · H(S|va ≥ pa, Ni)
+ P (va < pa|Ni) · H(S|va < pa, Ni)

(9)

Then, an attribute a and the corresponding split point pa is selected, by identi-
fying the minimal value of L(pa, Ni). In a leaf node Nl, a decision label d(Nl) is
selected, according to the Bayes optimal decision rule:

d(Nl) = argmaxy∈Y P (y|Nl) (10)

These formulas are not directly applicable in the weakly supervised setting,
since the labeling of the instances does not form a partition but, more generally,
an orthopartition: indeed, instances whose class is only partially known can be
assigned to the boundaries of the corresponding orthopairs (then, each orthopair
corresponds to a class). This means, however, that the definitions of entropy
given for orthopartitions in Sect. 2 can be used for training the weakly supervised
Decision Tree. We can, thus, redefine the value of L(Pa, Ni) by using the mutual
information for orthopartitions, comparing attributes and split points in the
same way as for classical Decision Trees. In regard to inference, i.e., obtaining
predictions for new instances, it can be observed that each leaf Nl defines a basic
belief assignment (bba) m:

mNl
(Z ⊆ Y ) =

|{x ∈ S|t(x) = Z ∧ x ∈ Nl}|
|Nl|

(11)

from which a pignistic probability distribution can be computed:

pbet(y) =
∑

y∈Z

m(Z)
|Z| =

1
|Nl|

· (|Py| +
∑

x∈Bndy

1
Bnd(x)

) (12)

Thus, predictions can be made based on the obtained probability distribution
over the class labels, and the same probability distributions can also be com-
bined, e.g. when training an ensemble model such as a Random Forest. In par-
ticular, in [11], it was shown that such ensembles of weakly-supervised Deci-
sion Trees can have significantly better performance than other state-of-the-art
weakly supervised machine learning methods, with a reduced computational
cost: indeed, the cost to train such Decision Trees is asymptotically the same as
that of training standard Decision Trees.
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4 Conclusion

We reported the basic definitions and the results obtain in the study of parti-
tions with uncertainty. Of course, there are still some open issues. The on-going
works include, at first, the development of the relation-orthopartition link just
sketched in Sect. 2.3. Then, we are extending the correspondance between credal
partitions and fuzzy orthopartitions to the case of non-normalized bbas. In the
case of machine learning, we are completing a comparison of rough and three-way
clustering algorithms using the measures given in Sect. 3.1.

Possible future works include: a comparison of soft clustering algorithms by
means of their representations as probability distributions [15]; the investiga-
tion of the possibility to apply the fuzzy orthopartitions and their entropy to
soft clustering; the comparison and/or integration with other uncertainty repre-
sentation theories. Finally, it could be interesting to construct orthopartitions
as approximations of fuzzy partitions following the approach provided in [29],
where special partitions, made by rough sets and called three-way fuzzy parti-
tions, are generated from a fuzzy partition using the notion of shadowed sets.
In general, we believe that orthopartitions and their generalized versions could
represent a useful tool to deal with uncertainty and vagueness whenever the
available knowledge is expected to be organized as a partition.
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Abstract. This paper is an attempt to present some grounds that a
change is needed in the way of viewing mathematical tools, such as fuzzy
sets, rough sets, in the context of classifying and approximating concepts
pertaining to the real physical complex phenomenon. The paper argues
in favour of developing models going beyond the pure mathematical man-
ifold. The main idea is not to develop a theory only based on gathered
data, rather to incorporate the methods of perception and real physical
interactions through which the data is obtained. In this regard, a pri-
mary proposal has been put forward to model fuzzy sets and rough sets
in the framework of Interactive Granular Computing (IGrC).

Keywords: Interactions · (Interactive) Granular computing ·
Perception · Complex granule (c-granule) · Informational granule
(ic-granule) · Grounding problem · Control of c-granule · Information
system · Decision system · Rough sets · Fuzzy sets

1 Introduction

Existing approaches to soft computing, such as rough sets, fuzzy sets, and other
tools used in machine learning lack in considering the processes of perception and
interaction with the physical world while modeling a (vague) concept. There are
two prevalent traditions of mathematical modelling. One, which is purely math-
ematical, considers that the sets are given. For example, in rough set approach,
the starting point is the universe of objects and an indiscernibility or a similar-
ity relation; further developments for approximating concepts are done on this
basis. In the context of fuzzy sets, the universe of objects and some basic fuzzy
membership functions, relative to some concepts, are assumed a priori; based on
those fuzzy membership functions other complex concepts are induced.

In the second tradition of modelling, may be called constructive, it is assumed
that objects are partially perceived by means of some features or attributes, and
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only a partial information about these objects in the form of vectors of values
of attributes is available. On this basis the indiscernibility or similarity relations
are defined and further developments are carried out (assuming often that the
information about the sets of objects is also partial). This approach is often
followed in rough sets. In the context of fuzzy sets also often this approach is
used, i.e., the fuzzy membership functions are constructed based on a set of
attributes and then they are ascribed over the universe of objects.

Both of these traditional modelling do not take into account how the process
of perceiving the values of attributes is realised, where and how to access the
concerned objects in the physical space, and why those attributes are selected.
Hence, clearly the perception and action are out of the scope of such practices of
modelling. However, this is crucial for many tasks, especially, when the subject
of analysis is a complex phenomena in the real physical world. Consequently,
characterization of the state of the complex physical phenomena by a fixed set,
or a priori set of attributes becomes irrelevant. From a similar concern, the
researchers in [11] proposed to extend Turing test by embedding into it the chal-
lenges related to action and perception. So, for an intelligent agent it is important
that the model should incorporate the information such as, how a function rep-
resenting a particular vague concept is learned from the uses of the community,
which parameters are to be considered as crucial in (approximately) defining a
vague concept, how the values of these parameters are observed or measured etc;
otherwise a non-human system cannot derive the relevant information about the
so far unseen cases.

Hence, we need an extension of the existing approaches where apart from
the information about a physical object, a specification of how the information
label of a physical object is physically linked to the actual object also can be
incorporated.

Till now, in different works (see, e.g., [4,5,9,14,15]), we tried to introduce
what do we mean by Interactive Granular Computing (IGrC) and how it is differ-
ent from other existing theories from the perspective of modeling computations
in intelligent systems dealing with complex phenomena.

Research on IGrC aims at developing a foundation for modeling computations
in the intelligent systems dealing with complex phenomena. Reasoning performed
on such computations should guide the intelligent systems toward achieving their
goals. Many evidences in favour of the need of such foundations can be found in
different domains such as multi-agent systems, robotics, machine learning, cyber
physical systems, Internet of things and different branches of computational
intelligence. However, what we need is a common foundation for the computing
model. In particular, the issue of combining together different research directions
such as reasoning, action and perception is pointed out in discussion on the
necessity of the modification of the Turing [8,11]. In IGrC it is emphasized that
the relevant computing model should be based on combination of abstract and
physical objects, and this is the reason that for modeling such systems we should
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go beyond the purely mathematical objects1. The aim of the current paper is
to outline the consequences of developing perceptual approaches to rough sets
and fuzzy sets based on IGrC. The need for such approaches is motivated by the
practical applications. As an example one can consider the problem of estimating
the risk of traffic on a particular crossroads, in a given town; formulation of such
a problem depends on the perception of the current situation in the physical
world, rather than a fixed mathematical model of it.

This paper is organized as follows. In Sect. 2 we outline the role of the control
of a c-granule, which is the basic building block of IGrC model. In Sect. 3 we
discuss the approach to rough sets as well as to fuzzy sets in the framework
of perception based approximation of concepts. In Conclusion we point out the
necessity of developing new methods of reasoning in the further developments of
rough sets as well as fuzzy sets.

2 A Brief Description of the Basic Building Blocks
of IGrC

In Interactive Granular Computing (IGrC) (see papers on interactive computa-
tions on https://dblp.uni-trier.de/pers/hd/s/Skowron:Andrzej) the necessity of
introducing complex granules (c-granules, for short) is recognised.

The computations in the IGrC model are realized on the interactive complex
granules and the progress of the computation process is based on the conse-
quences of the interactions occurring in the physical world. Hence, the computa-
tional models in IGrC cannot be constructed solely in an abstract mathematical
space. The proposed model of computation based on complex granules seems
to be of fundamental importance for developing intelligent systems dealing with
complex phenomena, in particular in the areas such as Data Science, Internet
of Things, Wisdom Web of Things, Cyber Physical Systems, Complex Adaptive
Systems, Natural Computing, Software Engineering, and applications based on
Blockchain Technology, etc.

In the proposed approach, we assume that physical objects exist in the phys-
ical space and are embedded into its parts. The physical objects are interacting
in the physical space, and thus some collections of physical objects may cre-
ate dynamical systems in the physical space. So, it is important to explain how
properties of these objects and interactions among them can be perceived by the
c-granules. In our attempt, to design c-granules with the ability of perceiving
physical objects and their interactions, this is realised by the control mechanism
of a c-granule. The control of a c-granule works based on the informational com-
plex granules (ic-granules) lying within its scope and a special kind of reasoning
mechanism over them, may be called judgment.

Informational complex granules (ic-granules) are constructed over two basic
ingredients: abstract and physical; we may count these two ingredients respec-

1 For more details the readers are referred to papers on IGrC on https://dblp.org/
pid/s/AndrzejSkowron.html.

https://dblp.uni-trier.de/pers/hd/s/Skowron:Andrzej
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tively as informational and physical objects. The abstract ingredients of an ic-
granule contains families of formal specifications of spatio-temporal windows
labelled by the information specific for a given c-granule or a family of c-granules,
and this information is expressed in a formal or natural language. The informa-
tion layer of an ic-granule may contain formulas and their (expected or real)
degrees of satisfiability at a given moment of local time of the control of a
c-granule related to some collection of physical objects, as well as the formal
specifications of the spatio-temporal windows indicating the location and (per-
ception) time of those physical objects. It can be a Boolean atomic formula of
the form a =t v specifying that the value of the attribute a is v at a given
moment of local time t, or can be a more compound expression, encoded in an
information system containing results of measurements (over time) in the form
of vectors of values for attributes of the objects related to the given formal spec-
ifications of the spatio-temporal windows, present in the informational layer of
the ic-granule.

The physical layer of any ic-granule is basically a c-granule and is divided
into three parts, namely soft suit, link suit and hard suit. Each of these parts is
a collection of physical objects.

The behavior of the control of a given c-granule can be divided into cycles.
Each cycle of the control of a given c-granule starts from a current configuration
(i.e., a family) of the ic-granules lying within its scope. This configuration con-
tains a distinguished ic-granule with information representing the perception of
the current situation. Each cycle may execute several steps such as, modification,
deletion, suspension of ic-granules or generation of some new ic-granules from
the current configuration. It should be noted that a special kind of ic-granule,
called implementation ic-granule, is used for generation of new ic-granules from
their formal specifications. Once a new configuration of ic-granules is created
the control measures the features of the new physical objects in the scope of the
newly developed ic-granules and/or matches or aggregates the information with
that of the previous ic-granules using its judgment mechanism. The cycle ends
when the control gathers perception, to a satisfactory degree, about the current
configuration, and becomes able to take a relevant decision with respect to the
goal of the computation process.

Formal specification of many complex tasks or formal specification of the
needs of the c-granule may be thought of as a complex game consisting of a
family of complex vague concepts, labelled by the actions or plans (represented
by the relevant formal specifications in the information layers of the respective
ic-granules) that to be performed when the concepts are satisfied to a satisfac-
tory degree. These complex vague concepts may describe, e.g., invariants which
should be preserved to a satisfactory degree, conditions representing degrees of
risk of disaster in the environment perceived by the system, safety properties of
trajectory of granular computations, conditions representing the quality of the
current path from the point of view of carrying out computation toward the
target goals, or risk concerning a possibility that the current needs are no longer
achievable etc. It should be noted that these complex vague concepts (usually
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described in a fragment of a natural language) should be learned from the data
and domain knowledge with the use of physical laws [2]. During perception of
the current situation in the physical world the control uses its judgment tools
over information gathered from information layers of dynamically changing (by
control and the environment) configurations of the ic-granules. Moreover, the
concepts as well as their labels, involved in a complex game, evolve with time.
Hence, the control should have some adaptive strategies allowing relevant mod-
ification of the complex game.

We would like to emphasize the role of reasoning, called judgment, for the
control of a c-granule. The further development of judgment methods will play
the principal role in further development of intelligent systems [6]. These reason-
ing methods are far beyond the existing deductive methods, which are already
well developed in mathematical logic or even inductive reasoning that are widely
used in Machine Learning. The required reasoning mechanism should take into
account the experience as well as explanation of the behaviour of the (intelligent)
agent. In order to develop such a reasoning mechanism a new computing model,
which can make it possible to perform reasoning from sensory measurement to
perception (i.e., understand the perceived situation), is required. We propose to
base on such a model in the context of interactive complex granules (c-granules),
where the informational parts associated to them are grounded in the physical
world.

3 Rough Sets and Fuzzy Sets in IGrC

Modelling of rough sets [12] and fuzzy sets [16] in the IGrC framework requires
some substantial changes in the fuzzy and rough set approaches. For example,
a fuzzy set is defined by a membership function f from a given set X of objects
into the interval [0, 1] of reals. In this way, fuzzy sets are completely embed-
ded in the “mathematical manifold” [3]. As the fuzzy concepts are embedded in
the real world, in the IGrC framework, their semantics should be perceived by
the control of the c-granules2 . Thus, based on the perception of the real situa-
tions (objects), by the control of a c-granule, the estimation of the membership
functions (and their values) should be done. One should be aware that physi-
cal situations (objects) cannot be omitted in such perception based modeling of
fuzzy sets. Hence, instead of pure mathematical objects such as functions some
non-pure mathematical constructs should be also used while modeling fuzzy sets
from the perspective of c-granules. Partial information about the perceived sit-
uations is used by the control of a c-granule as input for the estimation of the
mathematical membership functions, and these functions can only be treated as
temporary models. These estimated functions might be adapted by the relevant
strategies based on the changes in the perceived data recorded by the c-granule
at further points of time. In the process of constructing an estimation for the
membership function the control of a c-granule strives to better understand the
2 The discussed approach is consistent with the idea of perception presented in the

book [10] by Alva Nöe.
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perceived situations, taking into account different constraints e.g., time or other
resources.

The control of a c-granule is also responsible for providing the specifications
for conducting the perception process in the environment in order to obtain the
relevant data for estimating the functions. On the basis of perceived data by the
c-granule estimations of the membership functions are constructed and adapted
according to the observed changes in the perceived data over the period of time.

Thus, one can notice that the perception process of the current situation
happens over a period of time in which the control of the c-granule collects the
necessary information in order to select a proper estimation of the membership
function. This includes (i) reasoning properly leading the control to focus on the
measurements and/or exploration of the relevant fragments of the physical space
(ii) generation of the relevant configurations of physical objects and initiating
interactions among them (iii) reasoning about the properties of the physical
objects which are not directly measurable with the use of the physical laws
and/or domain knowledge, (iv) providing the right dialogue strategies with users
and/or domain experts, etc.

Analogous comments can be made about rough sets. An attempt to link
rough sets and IGrC for developing the perceptual rough set approach, requires
introducing changes in definitions of the basic concepts of the existing rough set
approach. In particular, this concerns the definition of attributes in information
systems (decision systems) (see Fig. 1 and Fig. 2).

physical 
world

abstract 
space

informa�on (decision)
system

Fig. 1. In the existing approach to rough sets interactions with the physical world are
eliminated. Attributes are mathematical functions.

Figures 1 and 2 illustrate the differences in construction of information (deci-
sion) systems in the existing approach to rough sets and the approach to rough
sets in IGrC.

In the context of IGrC, the attributes are grounded in the physical world and
their values are perceived using constructs which are not purely mathematical
functions as it is in the case of existing rough set approach. These constructs are
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physical 
world

abstract 
space

informa�on (decision)
system

interac�ons 
realised by 
ic-granules

Fig. 2. Rough sets in IGrC: (i) perceiving values of attributes are based on interactions
with the physical world, (ii) attributes are not pure mathematical functions; they are
realised by ic-granules.

basically the ic-granules. They behave like physical pointers, linking the abstract
objects (i.e., information) and the physical objects from the real-physical world
(see also grounding problem [7]). The ic-granules make it possible to perceive the
relevant fragments of the current situation in the physical world. Pointing out the
relevant fragment is done using the formal specifications of the spatio-temporal
windows available in the information layers of those ic-granules.

In this regard, let us note a few important features of the architecture of
the control of the c-granule, which would help to learn a mathematical function
based on the perception of the concerned situation.

– The c-granule contains an implementation module which enables its control
to generate some relevant configurations of interacting physical objects based
on the specification available in the language of the actuators.

– The control has the ability to perceive the properties of the generated con-
figurations of the physical objects, their interactions, and reason about the
perceived properties.

– The generated configurations of physical objects should be robust (to a high-
est possible degree) with respect to unexpected interactions with the envi-
ronment.

The control of the c-granule makes decisions on the basis of acquired informa-
tion about the currently perceived situation, and different (combined) reasoning
methods. Some of them help to directly acquire new information about the cur-
rently perceived situation by activating sensors or actuators in the relevant parts
of the physical space; some other provide strategies for extracting the relevant
facts from the (domain) knowledge bases helping to better understand the sit-
uation. Some other methods can use physical laws making it possible to infer
properties of the physical objects which are not directly accessible or measur-
able. The control of the c-granule performs such reasoning about the perceived
situation aiming to select the most relevant decisions in the currently perceived
situation. These selections are done by triggering concepts responsible for acti-
vating these decisions. Hence, one can see that, in particular, the aim of such
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reasoning performed by the control of the c-granule is to decide to which of these
triggering concepts belongs, with certainty, to the currently perceived situation,
i.e., to which of the lower approximations of these triggering concepts belongs
to the currently perceived situation.

Hence, in the intelligent systems based on IGrC, reasoning about comput-
ing the membership to the lower approximation of a concept can be much more
compound than so far used approaches in rough sets. The issues related to devel-
oping the rough set approach in IGrC will be discussed in more detail in our
future paper concerning the rough set approach in IGrC.

4 Conclusions

We have discussed some aspects of perceptual rough sets and fuzzy sets appro-
aches in the framework of IGrC. From this discussion follow important conse-
quences related to (inducing) construction of models of approximations in the
rough set approach as well as construction of the fuzzy membership functions in
the fuzzy sets, especially when we deal with complex phenomena.

It is worthwhile to cite here the opinion of Frederick Brooks [1]:

Mathematics and the physical sciences made great strides for three cen-
turies by constructing simplified models of complex phenomena, deriving,
properties from the models, and verifying those properties experimentally.
This worked because the complexities ignored in the models were not the
essential properties of the phenomena. It does not work when the complex-
ities are the essence.

The above quotation applies to the decision support systems and intelligent sys-
tems dealing with complex phenomena. It states that the traditional modeling
used so far is not satisfactory. The existing modeling bases on the assumption
that humans can create fixed mathematical models for describing the phenom-
ena, that are perceived or observed by them. However, in the case of complex
phenomena such decision making tool does not fit well. In traditional modeling of
the fuzzy sets, the fuzzy membership functions are used, while in rough sets the
information (decision) systems are used as purely mathematical objects on which
the next considerations are carried out. In the proposed approach this is not
the case. The considered decision support systems or intelligent systems, dealing
with complex phenomena, are continuously linked to the physical space of objects
(including humans) and interact with them. The perception process [13], con-
trolled by the control of the c-granule, aims at perceiving the relevant data and
accordingly adaptating the currently used models. This requires to develop the
control mechanism on so called ic-granules creating links between the abstract
and the physical objects.

So, according to the proposed approach to rough sets and fuzzy sets it is
necessary to develop a new reasoning method from the perspective of inter-
active granular computation which can derive conclusions about the induced
models and adapt new features based on dynamically changing nature of the
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task environment. Information systems or decision systems or fixed membership
functions are considered in the context of the control of a c-granule and they are
dynamically changing in time. One can get analogy of the considered systems
to the laboratories in which continuously some new facts are perceived about
the current situation in the physical space, and thus the abstract space and the
physical space are continuously linked to make it possible to initiate, transmit
and perceive interactions between physical objects.

u1 u2receivernetworksender

Fig. 3. The illustrative process of information flow in a laboratory in the framework
of IGrC (u1, u2 – users)

Let us consider a simple illustrative example related to sending messages
between c-granules. Figure 3 presents a scheme representing functionality of a
medical laboratory and this is stored in the information layer of the c-granule
u1. This information is used by the control of u1 when the control decides to send
a message to the patient regarding performing test t1; the patient is represented
in the figure by c-granule u2. The localization of u2 is already known to the
control of u1 and is represented by the relevant spatio-temporal window. In our
example, this specification can be considered as the cellular phone number, say
no, of u2. Now, the first task of the control of u1 is to encode the abstract
description of message concerning the test t1 and the number no of the cellular
phone into the physical representation as the relevant physical state of a buffer
in the next c-granule ‘sender’ (see Fig. 3). This is realized by the control of u1

after it sends a message concerning t and no to the implementational module of
u1. This implementational module realizes this encoding by a special ic-granule
linking a part of informational layer consisting of t and no with the buffer in
‘sender’ creating the hard suit of this ic-granule. After this, control of u1 may
initiate process of sending t to the owner of the cellular phone with the number
no by sending again to its implementational module a message ‘send now’. This
message is encoded by implementational module in the physical state of the
c-granule sender what is recognized by c-granule ‘network’ as a command to
transmit signal with encoded information through its cellular network. Control
of the c-granule ‘network’ is responsible for selecting a proper root in the cellular
network through which the signal with the encoded message will be transferred.
Finally, this signal reaches to the c-granule ‘receiver’ linked to the c-granule u2.
In the buffer of c-granule ‘receiver’ the incoming signal changes the physical state
of a buffer to the state corresponding to the message t and c-granule u2 stores its
abstract representation in the relevant information system. It should be noted
that it is assumed that the control of the c-granule u1 has in its informational
layer all necessary information concerning c-granules presented in the figure. It
is also worthwhile mentioning that the expected results by the control of u1
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concerning transferring a message t to u2 may be disturbed due to unexpected
interactions of the considered c-granules with their physical environment.

One can easily see that the reasoning methods used so far, e.g., in rough
sets based on partial inclusions of sets leading to conclusions related to approx-
imations are only some simple examples in the very wide variety of reasoning
methods necessary to develop systems working with approximations of concepts
used by the decision support systems or intelligent systems dealing with complex
phenomena (see Fig. 4).

ROUGH SETS 
IN INTELIGENT SYSTEMS 

DEALING WITH COMPLEX PHENOMNA: 

DYNAMIC SPACE OF REASONING CONSTRUCTED OVER 
INTERACTIVE GRANULAR COMPUTATIONS 

(NOT PURELY MATHEMATICAL!)
AS 

THE BASIS FOR APPROXIMATE REASONING, 
IN PARTICULAR FOR CONCEPT (CLASSIFICATION) 

APPROXIMATION IN INTELLIGENT SYSTEMS

Fig. 4. Rough sets in decision support systems or intelligent systems dealing with
complex phenomena.
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Abstract. Cognitive computing aims to develop a coherent, unified, universal
mechanism with inspiration of mind’s capabilities. Granular human thinking is
a kind of cognition mechanism for human problem solving. Multi-Granularity
cognitive computing (MGCC) is introduced to integrate the information trans-
formation mechanism of traditional intelligent information processing systems
and the multi-granularity cognitive law of human brain in this paper. The data-
driven granular cognitive computingmodel (DGCC) developed in 2017 is a typical
theoretical model for implementingMGCC.MGCC is a valuable model for devel-
oping highly intelligent systems consistent with human cognition. The theoretical
research issues and some applications about MGCC are introduced.

Keywords: Granular computing · Cognitive computing · Data-driven granular
cognitive computing ·Multi-granularity cognitive computing

1 Introduction

We are already living in a big data and intelligence era now. Generally speaking, there
are two ways for dealing with big data. A human could analyze the data and get a result
himself/herself, and also use a computer to deal with the data using some computing
models and algorithms. Thus, there might be a big problem. Could we guarantee that the
result generated by the computer is the same as the result get by the human? Is there any
difference or contradiction between these two results? That is, is there any difference or
contradiction between the intelligent computing and brain cognition? There are a lot of
real life examples showing that they are different and contradict each other. Anti-face
recognition is a typical casewith such difference [1].Adeep neural network (DNN) could
not recognize a noised face which can be easily recognized by human beings. It shows
that the recognition mechanism of DNNs is inconsistent with that of human beings. It is
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also found that ImageNet trained CNNs are strongly biased towards recognizing textures
rather than shapes, which is in stark contrast to human behavioural evidence and reveals
fundamentally different classification strategies [2]. This contradiction problem should
be an important theoretical problem to be addressed in cognitive computing study.

Cognitive computing aims to develop a coherent, unified, universal mechanism with
inspiration of mind’s capabilities. It is mind inspired computing with the goal of devel-
oping more accurate models to simulate the human brain/mind senses, reasons, and
responds to stimulus [3]. Granular human thinking is a kind of cognition mechanism
for human problem solving [4]. Multi-granularity computing (MGrC) is a model for
studying and implementing the granular human thinking. It is regarded as an umbrella
term to cover theories, methodologies, techniques, and tools that make use of gran-
ules in complex problem solving [5–10]. In this paper, the MGCC model is introduced,
which integrates the information transformation mechanism of traditional intelligent
information processing systems and the multi-granularity cognitive law of human brain.

The DGCC model developed in 2017 [11] is a typical concrete theoretical model
for implementing MGCC. In recent years, a lot of theoretical researches and real life
applications based on DGCC are conducted [12]. These achievements show that MGCC
is a valuable model for developing highly intelligent systems consistent with human
cognition. In this paper, some related recent research achievements about MGCC are
introduced.

2 Multi-Granularity Cognitive Computing

2.1 Contradiction Between Intelligent Computing and Brain Cognition

The information transformation and processing in traditional intelligent systems are
always from finer granularity layers to coarser granularity layers. For example, in data
mining (machine learning, or knowledge discovery), the information transformation
is unidirectionally from data to knowledge. In image recognition processes, low level
features are extracted from pixels at first, while high level features are generated later.
However, it is found that there is a global precedence (GP) law in human cognition
process [13, 14]. People always recognize the large characters in the global level at first
and then the small characters in the local level as shown in Fig. 1 [11, 13–15].

Fig. 1. Global precedence [13–15]
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Thus, we can find there is contradiction between the information transformation
mechanism “from finer granularity to coarser granularity” of traditional intelligent sys-
tems and the “global precedence” cognitive law of human brain. They should be inte-
grated together in order to resolve this contradiction. In traditional intelligent systems,
such as machine learning systems, data mining systems, et al., data space and knowledge
space are expressed separately. This leads to the independence of data and knowledge.
The mapping and reasoning from data to knowledge could not be established. The sep-
arate expression of data space and knowledge space is a big problem for the integration
of the information transformation mechanism of traditional intelligent systems and the
cognitive law of human brain.

2.2 Data-Driven Granular Cognitive Computing

Wang proposed the DGCC model in 2017 [11]. In DGCC, data and knowledge are
expressed together in a multi-granularity knowledge expressing space, where, data is
the knowledge represented in the lowest granularity layer while knowledge is the data
represented in high granularity layers. The following nine theoretical issues to be studied
for implementing a DGCC model were discussed in detail in [11].

1) Multiple granularity representation of data, information and knowledge.
2) Integration of the human cognition of “from coarser to finer” and the information

processing of “from finer to coarser”.
3) Transformation of the uncertainty of big data in a multiple granularity space.
4) Multiple granularity joint computing model and problem solving mechanism.
5) Dynamical evolution mechanism in a multiple granularity knowledge space.
6) Effective progressive variable granularity computing method.
7) Intelligent computation forwarding.
8) Distributed multiple granularity machine learning method.
9) Multiple granularity mechanism of associative memory with forgetting.

Since data andknowledge are integrated and expressed together in amulti-granularity
knowledge expressing space, the information transformation mechanism of “from finer
granularity to coarser granularity” and the “global precedence” cognitive law could be
studied using its two transformations of “bottom-up” and “top-down”. This is the key
idea of DGCC.

2.3 The Formation Process of MGCC

The formation process of multi-granularity cognitive computing is shown in Fig. 2. It
originated from the set theory and the uncertainty theory. The set theory established by
Cantor in the 19th century is the basis of modern mathematics [16]. Frege proposed
the vague uncertainty problem of set boundary region in 1904 [17]. Zadeh used the
membership function to describe this uncertainty and proposed the fuzzy set theory in
1965 [18]. In 1982, Pawlak described this uncertainty with two certain sets of upper
approximation and lower approximation, proposed the rough set theory and established
the concept of knowledge granularity [19]. Li synthesized vague uncertainty and random
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uncertainty, proposed the cloud model in 1995 [20–22]. He established the qualitative
and quantitative transformation of an uncertain concept. Zhang studied the variable
granularity solving of complex problems and proposed the quotient space theory in
1990 [4]. Zadeh firstly proposed and discussed information granulation in 1979, which
is the origin of granular computing [23, 24]. Fuzzy set, rough set, cloud model and
quotient space constitute the theoretical basis of granular computing research. Chen
studied the basic expression problem of human perception and proposed the “global
precedence” topological perception theory in 1982 [13, 14]. Summarizing the researches
of granular computing for decades, based on the integration of the “global precedence”
cognitive law and multi-granularity computing mechanism, Wang proposed the DGCC
model [11], which is a concrete implementation case of MGCC, and explained its three
major scientific problems including nine scientific topics, that is, unified expression of
data and knowledge, collaborative problem solving, and integration of cognition and
computation.

Fig. 2. Formation process of MGCC

There are already some theoretical research achievements about MGCC in recent
years, such as knowledge distance measure [25, 26], multi-granularity knowledge space
description [27, 28], granularity optimization and selection [29, 30], multi-granularity
knowledge space generation [28, 31, 32], integration of cognition and computation [33],
multi-granularity explanation for deep neural network [34], et al. MGCC has also been
applied in many real life fields such as information security [35], production safety
[36], multimedia processing [37], industry control [38], health and hygiene [39], deci-
sion making and management [40], et al. Some brief introductions of recent research
achievements aboutMGCCare available in [12]. In this paper, several typical application
research examples of MGCC are introduced and analyzed.
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3 Multi-Granularity Social Network Alignment

Aligning users across networks is a basic task in many cyberspace security applications.
It aims to identify person identities across networks. It is important for link prediction,
user recommendation, information dissemination and users’ behavior analysis, et al. In
[35], a multi-granularity social network alignment model is developed. Pseudo anchors
are introduced to implement variable granularity problem solving.

Graph representation learning based models could preserve structural proximity as
well as content similarities. They have shown superior performance for this task. Unfor-
tunately, the objective of structural proximity preserving usually results in “overly-close”
embedding for the nodes in a dense neighborhood structure. This makes it hard to dif-
ferentiate them from each other in the embedding space, and thus hard to align users
across social networks. Generally speaking, from the perspective of coarse granularity,
users in the embedding space can be separated based on their communities. However,
this strategy still results in indistinguishable specific users in the same community. This
problem could be solved in a finer granularity layer. A global “evenly distributed” space
could be learned through implanting pseudo anchors to specific anchor users.

A framework of PSeudo anchor based Meta Learning (PSML) is proposed to solve
this problem in a finer granularity layer in [35]. It takes the following two strategies:

1) Implanting pseudo anchors.
2) Meta-learning for fine tuning.

Pseudo anchors are expected to have more impact to their local structure, but less
impact on the nodes topologically far away. Nodes in its close group are pulled away
from the other nodes during the learning process. Macro and micro layer observations
on real life datasets show that PSML can learn an evenly distributed embedding space.

PSML is also integrated into several the state of the art network alignmentmodels like
IONE,ABNE, SNNA,DALUAP,DEEPLINKandMGCN.Experiment results show that
it can successfully enhance the performance of these embedding based models. Detailed
experiment results are available in [35].

4 Multi-Granularity Sketch-Based Face Image Retrieval

SketcH-based face image retrieval is a difficult cross-modal image retrieval problem.
In traditional sketch-based face image retrieval systems, completed face sketches are
used for retrieval. However, it requires strong drawing skills and is much time cost for
drawing a complete face sketch. In some cases, it might be impossible for a sketch artist
to draw a complete high quality face sketch since he/she has only very limited memory
of the real face. In addition, there is no interaction between the drawing process and
retrieval process. The retrieval process is a black box for sketch artists. It is difficult for
a sketch artist to draw a complete high quality sketch for face image retrieval. It leads
to the low efficiency in traditional sketch-based face image retrieval practices.

As we know, a sketch artist draws a face sketch from coarser granularity to finer
granularity. A face sketch is always drawn stroke by stroke. It inspires us whether it
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is possible to perform the retrieval in the drawing process dynamically, from coarser
granularity to finer granularity?

The retrieval result of a partial face sketch could be feedback to a sketch artist in
real time. The feedback information of the retrieval system would be very helpful for
inspiring he/him to draw the face sketch continually. It would speed up the drawing
process, and improve the drawing quality. In this way, a sketch artist could interact with
the retrieval system. There could be interaction between the drawing process and retrieval
process as shown in Fig. 3. Thus, the target could be generated with a partial sketch only.
Sketch artist may not need to draw a complete high quality sketch for retrieval at all.

Fig. 3. Interaction between drawing process and retrieving process

Amulti-granularity dynamical sketch-based face image retrieval system is developed
in [37]. Amulti-granularity sketch dataset as shown in Fig. 4 is generated based on FS2K
[41] as a training dataset. It has 2006 face photos and each face photo has a drawing
episode of a sequence of 70 incomplete sketches (140420 sketches in total). In addition,
50 art-majored college students are invited to submit sketch drawing episodes for 100
face photos as shown in Fig. 5.

Fig. 4. Multi-granularity sketch dataset Fig. 5. Hand drawn sketch drawing episode

Some sketch-based face image retrieval results are shown in Fig. 6. In this figure,
the face pictures in each line are the retrieval result of the sketch in the most left column.
The faces in red box are the targets. The experiment results show that with the help of the
feedback and interaction of retrieval process, a target face could be generated quickly
using a sketch with a few strokes. It is proved that the interaction of the drawing process
and retrieving process is very important and helpful.Multi-granularity dynamical sketch-
based face image retrieval could be used to improve traditional sketch-based face image
retrieval.
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a) With feedback and interaction

b) Without feedback and interaction

Fig. 6. Sketch-based face image retrieval results

5 Conclusions

In this paper,MGCC is introduced to integrate the “fromfine to coarse”multi-granularity
information transformation mechanism of traditional intelligent information processing
systems and the “from coarse to fine” multi-granularity cognitive law of human brain.
It solved their contradiction problem. It is a success implementation of cognitive com-
puting. With the development of cognitive science, more concrete cognitive computing
models will be further proposed in the future. It would also push the development of
artificial intelligence study in a great degree.
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Abstract. Three-way decision is about thinking, problem-solving, and
computing in threes or through triads. By dividing a whole into three
parts, by focusing on only three things, or by considering three basic
ingredients, we may build a theory, a model, or a method that is simple-
to-understand, easy-to-remember, and practical-to-use. This philosophy
and practice of triadic thinking appears everywhere. In particular, there
are a number of three-world or tri-world models in different fields and
disciplines, where a complex system, a complicated issue, or an intri-
cate concept is explained and understood in terms of three interrelated
worlds, with each world enclosing a group of elements or representing
a particular view. The main objective of this paper is to review and
re-interpret various three-world conceptions through the lens of three-
way decision. Three-world conceptions offer more insights into three-way
decision with new viewpoints, methods, and modes. They can be used to
construct easy-to-understand explanations in explainable artificial intel-
ligence (XAI).

Keywords: Three-way decision · Three-world conception ·
Three-world model · Thinking in threes · Trilevel thinking · SMV
space · Explainable AI

1 Introduction

With the ever-increasing power, functionality, and applications of intelligent
machines and systems, the issue of the explainability takes center stage. The
recent research trend in explainable artificial intelligence (XAI) suggests that a
machine must effectively explain its internal processes and decisions, in order
to gain human understanding, trust, and acceptance [2,12]. As a prerequisite
for producing effective explanations, it is necessary to study human ways to
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perceive, think, and act. With an understanding of human ways to think, under-
stand, and act, a machine may explain its processes and decisions by building
a model aligned with human mental models. Driven by such motivation, this
paper explores particular mental models, namely, three-way decision as think-
ing in threes, three-world conception as thinking through three worlds, and the
relationships between the two, as well as their applications in XAI.

There are two related types of issues around the notion of an explanation.1
One type concerns the meaning, functionality, and properties of the explana-
tion, as well as various formal models of explanation. In the context of XAI, an
intelligent machine explains its working processes and results for the purpose of
facilitating human understanding and building human trust. In a wide context of
scientific enquiry and discovery, one of the goals and tasks of science is to explain
the world, i.e., to seek “mathematically formulated and experimentally validated
impersonal principles that explain a wide variety of phenomena” [36]. The other
type focuses on the communication of an explanation, involving the structures
and the construction process of the explanation. To some degree, an appropri-
ate structure plays a crucial role in constructing an easy-to-represent, easy-to-
communicate, and easy-to-understand explanation. The focus of this paper is
on the latter type of issues. By applying the principles of three-way decision, I
discuss ways to construct and communicate explanations with triadic structures.

The rest of the paper is organized around three objectives. Section 2 provides
an overview of a theory of three-way decision with the objective to establish a
basis for this study. The objective of Sect. 3 is to introduce, in light of three-
way decision, a framework for studying three-world conceptions, that is, thinking
through three worlds. In particular, I examine three -world models. The objective
of Sect. 4 is to outline a possible application of three-way decision and three-
world conception in constructing human-friendly explanations in data science,
human-machine co-intelligence, and explainable artificial intelligence (XAI).

2 An Overview of Three-Way Decision

In 2009, I introduced the concept of three-way decision (3WD) [39] to provide a
semantically sound interpretation of the three types of decision rule (i.e., accep-
tance, rejection, and undecided) derived through Pawlak rough sets [18,19] and
probabilistic rough sets [40]. Further studies have shown that three-way deci-
sion is a much richer concept, with wide-ranging applications. Since 2012, I have
been refining a new theory of three-way decision, consisting of thinking, problem-
solving, and computing in threes [41–43,45,46]. Three-way decision has fostered

1 The two types presented here are related to the distinction, suggested by Achin-
stein [1], of an “explaining act” and an explanation as a “product” of an explaining
act. Ruben [23] made a similar distinction through “process and product.” The first
type is more about an explanation itself. The second type relies on an understanding
of an “explaining act” that includes both the formulation and the communication of
an explanation.
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new research areas, such as three-way classification, three-way clustering, three-
way data analytics, three-way formal concept analysis, three-way approximations
of fuzzy sets, three-way conflict analysis, three-way recommendation systems,
three-way granular computing, and many others. The field has grown substan-
tially since its inception, with researchers from around the world contributing to
a significant number of papers, edited books, journal special issues, workshops,
and special sessions on three-way decision. For the current state of research and
development of the art, science, and practice of three-way decision, a reader may
consult the reports by Yang and Li [37], Wei et al. [35], and Yao [38] based on
networks analysis and bibliometrics analysis.

Thinking in threes (i.e., triads consisting of three things) or triadic thinking
is perhaps one of the most common mental models, metaphors, and structures,
such as a tripartite scheme, a three-part theory, a three-element structure, a
three-pillar framework, a three-word slogan, a three-character story, a three-
generation classification, a three-level architecture, a three-version design of a
product, a third grey option in addition to commonly used dichotomies (e.g.,
Yes and No, black and white, good and bad, positive and negative), a third
middle point through the balancing and synthesis of the two opposites, and
many more [3,4,15,22,33,43,46]. We humans and particularly scientists have an
intriguing preference for a ternary patterned theory, model, or explanation of
reality [20]. As an illustration, we may give three examples of thinking in threes.
The first example is building a model of explanation for explainable artificial
intelligence (XAI) based on the What-Why-How triad2: What are the results?
Why are the results meaningful? How are the results derived? The second exam-
ple is the MIT Sloan Management Review’s short podcast, Three Big Points3,
in which each episode presents a mold-breaking idea in ten minutes with three
useful takeaways. The third example is the effective use of threes in writing
a great paper4: the three C’s of paper structure consisting of the Context for
introduction, the Content for results, and the Conclusion for discussion; the ABC
(Accurate, Brief, and Clear) of straightforward writing; the DEF (Declarative,
Engaging, and Focused) for choosing a title. In particular, advice on straightfor-
ward writing is summarized in three sentences: “Never choose a long word when
a short one will do. Use simple language to communicate your results. Always

2 This example will be further examined in the later part of the paper. For an actual
application, we may point at the earlier expert system MYCIN that uses the What-
Why-How triad, in which an explanation subsystem focuses mainly on Why and How
questions to justify the decision of the system or to educate the user [32]. The triad
is equally useful for enhancing human intelligence and guiding human behavior [46].
For example, the Golden Circle leadership model, introduced by Sinek [29], is based
on the Why-How-What triad, which advises that every organization and everyone
of us should know the three most important things: why we do (i.e., purpose and
goals), how we do, and what we do. The same Why-How-What triad was used by
Clear [6] in his three-level model of behavior change, focusing on what we believes,
what we do, and what we get.

3 https://sloanreview.mit.edu/audio-series/three-big-points/, accessed May 20, 2022.
4 https://www.nature.com/articles/d41586-019-01362-9, accessed May 20, 2022.

https://sloanreview.mit.edu/audio-series/three-big-points/
https://www.nature.com/articles/d41586-019-01362-9


42 Y. Yao

aim to distill your message down into the simplest sentence possible.” We can
find many examples that explore the power triads for crafting great, powerful,
and memorable speeches [10].

These examples show that we do commonly build an argument, a model, or a
theory by thinking in threes. To provide further supporting evidence, it may be
more constructive by giving three good reasons why we humans think in threes.
The first explanation is the cognitive basis. It has long been recognized that we
humans can only hold up a few things in the short-term working memory [7,16].
While there does not exist a general agreement on the exact number, which may
range from two to nine, three seems to be a pivoting one. Another related result is
our subitizing ability to tell immediately, without counting, the number of items
presented to us when the number of items is small, typically fewer than six [14].
This may explain why the very first three Roman numbers are written as one,
two, and three vertical lines, respectively, the very first three Chinese numbers
are written as one, two, and three horizontal lines, respectively, and the pattern
breaks at and after the fourth number. The third result is our natural ability to
form patterns in order to make sense of the reality and our experiences. Three
seems to be the minimum number of things required to form a meaningful and
useful pattern. Drawing from these results of human cognition, thinking in threes
comes naturally and may be an innate capacity.

The second explanation is the evolutionary basis. From an evolutionary point
of view, we are better at older skills than at newer skills. Counting a few things
and thinking about a small number of things, as evidenced by the ‘one, two,
three, four, many’ and ‘one, two, many’ types of numerical systems [8], may be
older skills in the process of human evolution. We, in fact, learned counting and
thinking in small numbers at a younger age. Thus, we excel at skills of thinking
in small numbers. It may be argued that thinking in threes is one of the products
of evolution or early childhood learning.

The third explanation is the cultural basis. The number three plays an essen-
tial role across many cultures [9,25]. The number three typically represents com-
pleteness, harmony, and perfection, as expressed by the following quotations [25]:

– All good things come in threes. (Folk saying)
– A threefold cord is not quickly broken. (Bible)
– All was divided into three. (Homer)
– A whole is that which has a beginning, middle and end. (Aristotle)
– The Triad is the form of the completion of all things. (Nichomachus of Gerasa)
– Three is the formula of all creation. (Honoré de Balzac)
– The One engenders the Two, the Two engenders the Three and the Three

engenders all things. (Tao Te Ch′ing)

Using a triad of three things for perceiving, understanding, interpreting, and
representing the reality seems to be a universal practice across different cultures.
Triads are perhaps one of the most used structures when crafting a story, a
speech, a theory, or a worldview. For example, Schneider [25] stated, “Whenever
there are three, as the three knights, three musketeers, three wise men, or three
wishes, there is throughness, rebirth, transformation, and success.” To a large
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extent, our cultural immersion experience further re-enforces an inclination and
a preference towards thinking in threes.

Given the omnipresence of triadic thinking on the one hand and a lack of a
formal theory on the other, a theory of three-way decision has been proposed
and received much attention in recent years [41–43,46]. The theory is about
a systematic study of thinking, problem-solving, and computing in threes. By
attaching specific interpretations and meanings to various triads, we can obtain
different models and modes of three-way decision. In the rest of this paper, I
interpret a triad in terms of three worlds, which gives rise to thinking through
three worlds.

3 Thinking Through Three Worlds

This section examines three triadic structures, namely, a Venn diagram of three
sets, a triangle, and a concentric tricircle, for thinking through three worlds.

3.1 The Concept of Worlds

The concept of “the world” is perhaps one of the most commonly used notions or
metaphors for us to describe, view, and understand the reality and our relation-
ships to the reality. The word “world,” particularly, ‘the world,’ is used in various
contexts with multiple meanings [34]. According to Webel [34], “the world” is “a
linguistic and historical construction” and “an abstraction, a concept, or idea.”
It is how the “meaning-creating organisms frame the boundaries of their being-
in-this-world.” The view of “world as idea” [26,34] provides a starting point for
exploring how we use the concept of worlds to understand the reality and to
guide our conducts, namely, how to observe the world, how to make sense of the
world, and how to change the world.

We may categorize and characterize things into different worlds in many
ways, for example, from a temporal, spatial, functional, positional, or contextual
consideration. We typically divide various aspects of the reality, for example, a
group of geographical regions, a timeline of developments, a discourse of discus-
sion, a family of human activities, etc., into a number of different and interrelated
worlds. By restricting to a particular world, we limit our investigation within that
world in the context of other worlds. Conceptually, we can talk about the inside,
the outside, and the boundary of a world, which offers three interpretations and
understandings of the same world. By considering different worlds, we can make
comparisons, study their interconnections and influences, and shift our attention
by switching between different worlds. While a single world presents a local view,
multiple worlds give rise to a global view.

Our extensive living experiences on the planet earth as “the world,” our relent-
less search for a better world, and our constant cultivation of a superior inner
world all suggest the value of “world as idea.” Conceptualizing the reality in
terms of different worlds leads to both intuitive and in-depth understandings.
By combining the principles of three-way decision as thinking in threes and the
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view of “world as idea,” we immediately arrive at a paradigm of thinking through
three worlds. There are abundant examples of three-world thinking. In the con-
texts of information processing, knowledge management, problem solving, and
human experience, for example, we have:

• The three-world theory of the reality and knowledge by Popper [21], consisting
of World 1 of physical objects, World 2 of mental activities, and World 3 of
human-created things.

• The theory of three worlds of mathematics by Tall [31], consisting of concep-
tual embodiment, operational symbolism, and axiomatic formalism.

• The classification of three worlds of knowledge by Mouton [17], consisting
of the worlds of everyday life (lay knowledge), science (scientific knowledge),
and metascientific reflection (metascience).

• The theory of triadic game design by Harteveld [13] through balancing the
three worlds of reality, meaning, and play.

• The theory of collective human experience by Shaw [28] in terms of the three
worlds of commonsense, religion, and science.

Other examples of three-world thinking in more general contexts include various
triads, such as the material-intellectual-spiritual three worlds, the three worlds
above-below-upon the earth (i.e., heaven, hell, and earth), the three worlds of
yours-mine-theirs, etc.

It becomes evident that three-world thinking, with an understanding of
“world as idea,” offers a new direction for expanding the study of three-way
decision as triadic thinking. In the rest of this section, I examine three par-
ticular models by organizing and arranging the three worlds in three different
ways.

3.2 A Venn Diagram Model of Three Worlds

One methodology of the three-world view and analysis is to divide the discourse
of discussion into three possibly overlapping and relatively independent worlds.
There may exist multiple ways to construct three worlds. Any particular three-
world configuration is only one of the many possible simplifications or represen-
tations of the reality. In general, the division between the three worlds is not
a clear cut and some issues may appear in two or all three worlds. The Venn
diagram in Fig. 1(a) depicts such a set-theoretic view of three-world thinking.
Each world represents a particular view and focuses on some particular aspects.
While a set covers issues in a world, the complement of the set covers issues
not in the world. An intersection of two or three worlds represents their joint
issues. With three worlds, the eight disjoint and possibly non-empty regions are,
in terms of set intersection, A∩B∩C, A∩B∩C̄, A∩B̄∩C, A∩B̄∩C̄, Ā∩B∩C,
Ā∩B ∩ C̄, Ā∩ B̄ ∩C, Ā∩ B̄ ∩ C̄, where Ā denotes the set complement of A. In
so doing, we can systematically investigate issues in the eight regions.

Alternatively, we may consider only regions constructed by using set inter-
section, representing issues in the overlapping regions of different worlds. In this
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Fig. 1. Thinking through three worlds with a Venn diagram

way, a three-world method offers a trilevel seven-element analysis in Fig. 1(b),
where the comma corresponds to set intersection. The result is, in fact, a set-
theoretic model of three-way decision [47]. The bottom level of 1-world analysis
focuses on each world independently, the middle level of 2-world comparative
analysis shifts attention to issues brought by interactions of two worlds, and the
top level 3-world integrative analysis looks into more complicated interactions
of three worlds. To have a holistic view, it is necessary to have investigations at
the three levels, both individually and jointly.

Tall’s [31] three-world model of mathematical thinking may be interpreted
based on the Venn diagram of three worlds. While each individual world focuses
on a particular type of mathematical methods and skills, a join of two worlds
shifts the focus to the integration and combination of the respective methods and
skills. Mouton’s [17] classification of three worlds of knowledge and Shaw’s [28]
three-world theory of collective human experience may be similarly explained
based on the Venn diagram of three worlds.

3.3 A Triangle Model of Three Worlds

For studying relationships, influences, and transformations of different worlds,
a triangle of three worlds, given in Fig. 2(a), may be an appropriate config-
uration [46]. In the triangle, each world is linked with the other two worlds.
Links between two worlds may have many different interpretations, for example,
dependency, transformation, support, and others. In this way, a triangle may,
in fact, offer various models. Figure 2(b) describes a model of trilevel analysis
based on a triangle configuration of three worlds, where � denotes support or
transformation. We examine individual worlds at the bottom level, relationships
between two different worlds at the middle level, and relationships among three
worlds at the top level.

Popper’s [21] three-world model of human knowing and knowledge is typically
interpreted as a triangle. World 1 of physical objects exists first. Through World 2
of mental activities and processes, humans observe and make sense of World 1.
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Fig. 2. Thinking through three worlds with a triangle

The results are human-created things that exist in World 3 as abstract ideas
and/or in World 1 as physical objects. The things in World 3, created by World 2,
may be used to change World 1. Humans are constantly searching for a better
world by exploring the three worlds and their relationships [21].

Gu and Zhu [11] proposed a tripartite WSR (wuli-shili-renli) model as a basis
of a systems methodology of management. The W (wuli) is about regularities in
objective existence, the S (shili) is about ways of seeing and doing, and the R
(renli) is about patterns underlying human relations. It is possible to interpret
the WSR model based on a triangle of three worlds: W represents the natu-
ral world (domains of natural sciences), R represents the human world (human
and human society, domains of psychology, social sciences, humanities, etc.),
and S represents the applied world (pragmatic problem-solving, human conduct,
domains of management science, engineering, operational research, etc.). Theo-
ries and knowledge discovered in both W and R worlds are used to guide human
conduct in S world, which may change both W and R worlds. To be a better
problem-solver, one must integrate the three worlds.

Stern [30] suggested a triadic conception of the reality, in which the reality
is conceived and represented as “unified and wholistic as well as differentiated”
three worlds: physical world of matter/energy, theoretical world of meaning,
and phenomenological world of experience. Furthermore, Stern gave a simplified
diagram by enclosing the triangle of the three worlds in a circle representing the
unity and wholeness.

One can easily observe both similarities and differences of these three three-
world models. Although the contents of the three models are useful and impor-
tant by themselves, what most interests us is the common triadic structure. On
the one hand, the three models have their respective different divisions, under-
standings, and representations of the reality. On the other hand, they agree upon
a three-world triadic structure. It is their agreement on the use of a triangle of
three worlds that supports and applies the principles of three-way decision as
thinking in threes.
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3.4 A Concentric Tricircle Model of Three Worlds

In some situations, we may build three worlds sequentially such that one is on top
of another. There are at least two possible ways to depict such a structure [46].
The concentric tricircle of Fig. 3(a) gives us a sense of an inner-outer relationship,
or a core-shell relationship, among the three worlds. Typically, an inner world
determines an outer world, and the core is more important and serves as a
foundation for constructing the outer ones.

Fig. 3. Thinking through three worlds with a concentric tricircle or a trilevel

The inner-outer layered interpretation of a concentric tricircle makes it a
commonly used architecture for explanation. For example, in understanding a
computer system, the inner kernel represents machine hardware, the middle layer
represents system software, and outer layer represents application software. In
the Golden Circle leadership model by Sinek [29], the three circles are labeled,
respectively, by WHY, HOW, and WHAT. By moving inside-out, a successful
leader starts with WHY (i.e., purpose and goals) and moves towards WHAT.
Similarly, in the model of behavior change by Clear [6], the three circles corre-
spond to Identify, Processes, and Outcome. We build habits by moving inside-out
in the identity-directed way. More examples of three-world thinking based on a
concentric tricircle can be found in another paper [46].

Figure 3(b) of three levels gives us a sense of a top-down or a bottom-up rela-
tionship among the three worlds. Typically, a world at a higher level controls
its lower level and, at the same time, is supported by its lower level. The ear-
lier discussions have shown that three-level models arise naturally in the Venn
diagram model and the triangle model of three-world thinking. Trilevel thinking
is an important mode of three-way decision. Many examples of trilevel thinking
can be found in another paper [44].

4 Three-world Thinking for Building Explanations

The triadic structures of three worlds offer architecture and a scheme for us to
make sense of the reality and ourselves. Depending on different contexts and
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applications, we may have different interpretations of a triad of three worlds. In
this section, I discuss the notion of an SMV (Symbols-Meaning-Value) space [48,
49] as a concrete interpretation of the three-way conception for the purpose of
building and communicating explanations.

Weaver [27] insightfully divided communication problems into three cate-
gories, which is quoted here:

Relative to the broad subject of communication, there seem to be problems
at three levels. Thus it seems reasonable to ask, serially:
LEVEL A. How accurately can the symbols of communication be trans-

mitted? (The technical problem.)
LEVEL B. How precisely do the transmitted symbols convey the desired

meaning? (The semantic problem.)
LEVEL C. How effectively does the received meaning affect conduct in the

desired way? (The effectiveness problem.)

The three levels focus on different types of problems and answer different types of
questions, from easier ones to more difficult ones. In the case of human commu-
nication through speaking and writing, we may interpret the three levels by the
Words-Meaning-Impact triad. The SMV (Symbols-Meaning-Value) space gen-
eralizes Weaver’s ideas to a much broader context and provides a structure for
trilevel or triadic thinking in many other fields. Considering any theory or model,
the SMV space suggests that we need to explain the theory at three levels: the
content of the theory, the meaning of the theory, and the utility of the theory5.

In an attempt to build a conceptual model for explaining data science, I
explored a close connection between the SMV space and the widely used DKW
(Data-Knowledge-Wisdom) hierarchy [48]. In terms of the three-world thinking,
World S is about data (i.e., raw symbols), World M is about knowledge (i.e.,
meaning of data), and World V is about wisdom (i.e., value from wise use of
knowledge). The three-level structure reflects the dependency and transforma-
tion between data, knowledge, and wisdom. A conceptual model of data science
needs to consider the issues in the three worlds of the data, the knowledge hid-
den in the data, and the value of the knowledge, as well as the issues arisen
from the interactions of the three worlds. Broadly speaking, three goals of data
5 As an example, we may take a look at the many different interpretations and

explanations of a Chinese classic, “I Ching” (The Book of Changes). “I Ching” has
shaped every aspects of Chinese ways of seeing, knowing, and living (for example,
culture, art, politics, science, etc.) throughout the Chinese history. Many scholars
have interpreted and explained, and are continually searching for new interpretations
and explanations, this classic text from many different angles. The notion of SMV
space may shed a new light by organizing some of the existing interpretations and
explanations at the three levels: (1) images and numbers at the S (Symbols) level,
(2) meaning and principles at the M (Meaning) level, and (3) living and practice,
according to its meaning and principles, at the V (Value) level. Although this orga-
nization may not be hundred percent appropriate or accurate, it does provide a good
enough approximation in terms of the text itself, the meaning of the text, and the
value of the text.
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science are (a) to make data a kind of resources through data collection, storage,
retrieval, etc., (b) to make data meaningful through data analysis and knowl-
edge discovery, and (c) to make data valuable through practical application of
the knowledge in data for making wise decisions and taking the right actions.

In another attempt to build a conceptual model for explaining human-
machine co-intelligence, I viewed the SMV space as an architectural system or a
metaphorical structure used by an intelligent being to understand and organize
itself, its environments, and relationships with others [49]. Human-machine co-
intelligence emerges from human-machine symbiosis in the SMV space. There
are three fundamental principles of human-machine co-intelligence. The principle
of unified oneness: Human-machine co-intelligence is the third intelligence that
is based on human intelligence and machine intelligence on the one hand and is
above both on the other hand. Human-machine co-intelligence is not possessed by
either humans or machines, but through their seamless unification and integra-
tion. The principle of division of labor: Human-machine co-intelligence combines
the computational power of machines and the cognitive power of humans through
proper division of labor. Moving from the World S, to the World M, and to the
World V, humans are doing more work and the machines are doing less. The
principle of coevolution: Humans and machines mutually adapt to each other,
learn from each other, and work with each other as equal partners. Human-
machine co-intelligence exploits a mutualism symbiosis in which both humans
and machines benefit and, at the same time, avoids a parasitism symbiosis in
which one hurts the other. In this respect, in addition to their own SMV spaces,
humans and machines share a common SMV space6. The notion of SMV space
is a structure and a starting point for explaining human-machine co-intelligence.

I now turn my attention to the possibility of applying the SMV space to
explainable AI. I have the view that the concept of SMV space suggests a
plausible trilevel scheme for constructing an easy-to-understand explanation
in explainable artificial intelligence. The SMV triad leads to a trilevel results-
meaning-value (RMV) framework of explanation. Like data, the results from a
system may be considered as the raw materials that need, or can be used to
construct, an explanation. An intelligent system explains its results, outcome,
or output (e.g., recommendations, actions, behaviors, etc.), the meaning of the
results, and the value of the results at three separate levels. Moreover, at each
level, it is possible to apply the ideas of the Venn diagram or the triangle con-
figurations of three worlds to focus on three related questions characterized by
the What-Why-How triad. Table 1 summarizes the main features of this 3 × 3

6 A few important issues regarding AI and human-machine relations are relevant to
the discussion here, such as alignment and control. Christian [5] argued that artificial
intelligence systems, in particular machine learning, need to be aligned with human
values. Russell [24] pointed out that advances in AI may pose a potential risk to
the human race by out of control superhuman AI. Future AI research must ensure
that machines remain beneficial to humans and we humans must retain “absolute
power over machines that are more powerful than us.” By living together in the three
worlds of SMV, namely, symbols/data, meaning/knowledge, value/wisdom, humans
and machines may coexist in harmony.
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architecture of explanations. A ‘What’ question is about the existence, a ‘Why’
question is about the reasons/motivations, and a ‘How’ question is about the pro-
cesses/applications. By focusing on three fundamental questions of What, Why,
and How at each of the three levels, an explanation follows a clearly defined
logic, is easy-to-understand, and covers three important aspects.

Table 1. 3× 3 architecture of explanations

SMV Explanation level Questions

Value Value What is the value of the results?
Why are the results valuable?
How to use the results?

Meaning Meaning What is the meaning of the results?
Why are the results meaningful?
How to interpret the results?

Symbols Results What are the results?
Why are certain input/conditions required?
How does the system derive the results?

A trilevel explanation with three basic questions at each level reflects the
principles of triadic thinking. Generally speaking, at a given time, it is possible
to focus on the discussion at each level without much interference from the other
two levels. In other words, we may need to consider only three questions at a
particular level, instead of nine questions at all three levels simultaneously. The
labels of the three levels and the three questions at each level in Table 1 may be
interpreted more liberally. Depending on different applications, it is possible to
use other labels and to ask other types of questions. Nevertheless, the essential
components and the structure of the 3 × 3 architecture remain unchanged. The
3 × 3 architecture provides a very general framework. In some situations, it
may be only necessary to consider some of the nine issues when constructing
an explanation. This is particularly true if the results from a system are simple
and/or self-explanatory.

5 Conclusion

Three-way decision and three-world conception mutually support each other.
On the one hand, three-world models enrich the studies of three-way decision by
offering new views, models, and methods. On the other hand, the fundamental
philosophy and principles of three-way decision may find new applications in
three-world models. In this paper, I explored in brief the connections of three-way
decision and three-world conceptions. Thinking through three worlds offers the
necessary simplicity and flexibility for building a theory, a model, an argument,
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etc. In particular, I examined three models of three-world thinking based on,
respectively, a Venn diagram, a triangle, and a concentric tricircle (or a trilevel)
organization of three worlds.

I motivated this study by stating that three-way decision is a human-inspired
theory. Since humans frequently and naturally think in threes, theories, models,
or methods are easy to grasp and understand if they are constructed based on
a tripartite architecture. Therefore, explanations from any intelligent systems
may be built in a human-friendly way by following a tripartite scheme. It may
be fruitful to apply the principles and ideas of three-way decision and three-world
thinking to address the issues of the quality and effectiveness of explanations in
explainable artificial intelligence (XAI). In this paper, I only presented a proposal
for an important research direction, which may be called “three-way decision for
explainable AI.” Although I gave an outline of a trilevel framework for building
explanations based on the notion of an SMV (Symbols-Meaning-Value) space,
many fundamental questions remain unanswered. Based on the discussion in the
paper, we can explore the new territory of three-way decision and three-world
thinking for XAI.
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Abstract. In this article we introduce and describe scikit-weak, a
Python library inspired by scikit-learn and developed to provide an
easy-to-use framework for dealing with weakly supervised and imprecise
data learning problems, which, despite their importance in real-world
settings, cannot be easily managed by existing libraries. We provide a
rationale for the development of such a library, then we discuss its design
and the currently implemented methods and classes, which encompass
several state-of-the-art algorithms.
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1 Introduction

In the recent years, applications of machine learning (ML) have spread into
both research and industry. Arguably, one of the major driving forces behind
this growth has been the wide availability of a multitude of publicly available
ML libraries, chiefly among them the Python ML eco-system [1,9,21,22], centred
around the scikit-learn library1 [23]. While such libraries offer a wide array
of methods that can be applied to various ML tasks, including supervised, semi-
supervised and fully unsupervised learning. By providing high-level APIs not
requiring deeper knowledge, they drastically improved the accessibility.

However, not all ML tasks fit neatly into the above mentioned categories.
In particular, weakly supervised learning [29] refers to machine learning tasks
situated in the spectrum between supervised and unsupervised learning [24],
encompassing various tasks such as multiple-instance learning [30], learning from
aggregate data [8] and learning from imprecise data [15]. In this latter case, in

1 https://scikit-learn.org.
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particular, the data and annotations can be imprecise or partial: Some examples
include semi-supervised learning as mentioned above, but also more general tasks
such as soft labels learning [10,11,25], in which partial labels are represented
through belief functions; learning from fuzzy labels [12,15], in which partial labels
are represented through possibility distributions, and superset learning [4,16,20],
in which partial labels are represented by exclusive sets of alternatives.

Despite the importance and practical relevance of weakly supervised learn-
ing in a variety of settings, including learning from anonymized data [26], learn-
ing from multi-rater data [8] and self-regularized learning [19], out-of-the-box
libraries and frameworks to deal with such tasks are still missing and no libraries
currently exist to easily manage this type of data in Python. In this article we
introduce scikit-weak, the first, to the authors’ knowledge, Python library,
inspired by and compatible with scikit-learn, that provides easy-to-use meth-
ods and classes for dealing with weakly supervised learning problems. More in
particular, the current version of the library focuses on the implementation of
algorithms to deal with imprecise data learning problems. We provide a rationale
for the development of such a library, followed by a discussion of its design and
the currently implemented methods and classes, which encompass several state-
of-the-art algorithms. Furthermore we briefly show the use of scikit-weak,
highlighting its interoperability with scikit-learn, through a purposely simple
but illustrative code example.

2 Background and Design Philosophy

In this section, we provide a basic background on weakly supervised learning,
and specifically so to learning from imprecise data, describe the general design
philosophy of scikit-weak and illustrate an exemplary application of the library
through a simple code example.

2.1 Background

In the supervised learning setting, a problem instance is defined by an instance
space X and a target space Y , along with a probability distribution D over
X × Y . A finite sample of data S = {(x1, y1), . . . , (xn, yn)}, called training set,
is assumed to be sampled from D and to be available for learning. In rough set
terminology we can describe S by means of a decision table2, that is a triple
(U,Att, Y ), where U ⊆ X is a finite set of instances in the instance space X,
Att is a set of features with each feature f : X → Vf , and t is a target feature
with t : X → Y , where Y denotes the target space. We note that while the
definition of t may suggest that the association between instances and target
labels is deterministic (hence, a mapping), this is not necessarily the case as the

2 Compared to the usual definition of a training set considered in the ML literature
the definition of a decision table in rough set theory distinguishes instances in U
from their representation in terms of features.
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dependency between X and Y is probabilistic and described by the unknown
data generating distribution D.

By contrast, in weakly supervised learning, and more specifically in learning
from imprecise labels, the target feature is not assumed to be precisely known,
but is instead only given in an imprecise form. In general, instead of the true
target t, one can only observe the values of d, that is, a function d : X →
D(Y ), where D(Y ) is a set of structures over Y . As before, more in general,
we may assume that instances are sampled from a distribution D̃ defined over
X × D(Y ). As described in the introduction, weakly supervised learning aims
at modeling learning problems in which knowledge about the supervision in a
learning problem is not precisely or completely specified, but is only given in
terms of imprecise beliefs or knowledge. Then, different tasks are defined based
on the considered type of structures, for example:

– When D(Y ) = Y ∪ {⊥}, that is, each instance x is associated with either a
label y ∈ Y or no label at all (⊥), then the corresponding learning problem
is called semi-supervised learning ;

– When D(Y ) = 2Y , that is, each instance x is associated with a set of possible
labels ỹ ⊂ Y , then the corresponding learning problem is called superset
learning or partial-label learning ;

– When D(Y ) = [0, 1]Y , that is, each instance x is associated with a possibility
distribution πx : Y → [0, 1] over Y , then the corresponding learning problem
is called learning from fuzzy labels;

– When D(Y ) = 2P(Y ), that is, each instance x is associated with a set of
probability distributions Qx ⊆ P(Y ) over Y (that is, a credal set), then the
corresponding leaning problem is called credal learning.

Thus, a weakly supervised problem instance is defined by a weakly supervised
training set W = {(x1, d1), . . . , (xn, dn)} and the corresponding weakly super-
vised decision table W = (U,Att, d), where, as above, d : X → D(Y ). Given a
weakly supervised decision table W , an instantiation of W is a standard decision
table I = (U,Att, t̃), that is compatible with W (denoted I ∼ W ). For example:

– If D(Y ) = Y ∪ {⊥}, then I ∼ W iff ∀x ∈ U, d(x) 
= ⊥ =⇒ t̃(x) = d(x) and
d(x) 
= ⊥ =⇒ t̃(x) ∈ Y ;

– If D(Y ) = 2Y , then I ∼ W iff ∀x ∈ U, t̃(x) ∈ d(x);
– If D(Y ) = [0, 1]Y , then I ∼ W iff ∀x ∈ U, πx(t̃(x)) > 0.;
– If D(Y ) = 2P(Y ), then I ∼ W iff ∀x ∈ U, ∃p ∈ Qx s.t. p(t̃) > 0.

Notably, while we gave a binary definition of compatibility, a graded notion of
compatibility can be defined for the learning from fuzzy labels and credal learn-
ing settings. Focusing on the first case for simplicity, for example, given two
instantiations I1, I2 compatible with W , one could say that I1 has stronger com-
patibility than I2 when ∀x ∈ U, πx(t̃1(x)) ≥ πx(t̃2(x)). See also [6] for possible
alternative definitions of graded compatibility.
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2.2 Design Philosophy

scikit-weak is an open-source library, freely available via GitHub3 and PyPi4,
that has been designed with two main aims:

– To provide a variety of easy-to-use tools and functionalities to enable data
analysis grounding on weakly supervised data;

– To be inter-operable with scikit-learn main functionalities and API.

To address the first aim, scikit-weak is implemented through a mod-
ule hierarchy that offers a variety of classes and functions to meet the
main needs of a machine learning pipeline: data representation (through the
data representation module); pre-processing (through the utilities and
feature selection modules) and learning (through the classification mod-
ule). Section 3 gives a comprehensive overview over each module.

To address the second aim, scikit-weak conforms to the API of scikit-
learn. For example, classes in scikit-weak’s feature selection module
inherit from sklearn.base.TransformerMixin and thus exhibit the usual fit,
transform, fit transform interface. Thus, scikit-weak classes can be used
anywhere, and in the same way, a corresponding scikit-learn class would be
used, e.g., inside a Pipeline, enabling greater modularity and inter-operability.

Aside from scikit-learn compatibility, to further facilitate use, scikit-
weak documentation, generated using sphinx5, is freely available online6 and
the library ships with an integrated suite of unit tests to ensure its correct
functionality.

2.3 Code Example

To demonstrate the ease-of-use and the interoperability of scikit-weak with
scikit-learn, consider the following example. First, starting from a standard
supervised learning problem, weak supervision is generated (lines 11–18) by
applying DiscreteEstimatorSmoother: this employs an underlying base classi-
fier (in the example, a KNeighborsClassifier) to generate fuzzy labels. Then,
a weakly supervised kNN model is instantiated (line 21; cf. Section 3.4) and a 5-
fold cross validation is computed using the scikit-learn implementation (lines
24 – 30), in order to fit and evaluate the weakly supervised model: this step, in
particular, shows the interoperability between scikit-weak and scikit-learn
base functionalities.

1 from scikit_weak.data_representation import

DiscreteFuzzyLabel

2 from scikit_weak.classification import

WeaklySupervisedKNeighborsClassifier

3 https://github.com/AndreaCampagner/scikit-weak.
4 https://pypi.org/project/scikit-weak/.
5 https://sphinx-doc.org/.
6 https://scikit-weak.readthedocs.io.

https://github.com/AndreaCampagner/scikit-weak
https://pypi.org/project/scikit-weak/
https://sphinx-doc.org/
https://scikit-weak.readthedocs.io
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3

4 from sklearn.datasets import load_iris

5 from sklearn.neighbors import KNeighborsClassifier

6 from sklearn.model_selection import cross_val_score

7

8 import numpy as np

9

10 # Construct exemplary weak supervision

11 X, y = load_iris(return_X_y=True)

12 smooth = DiscreteEstimatorSmoother(KNeighborsClassifier(

n_neighbors =10), type="fuzzy")

13 y_fuzzy = smooth.fit_transform(X, y)

14

15 # Instantiate weakly -supervised KNN classifier

16 clf = WeaklySupervisedKNeighborsClassifier(k=5)

17

18 # Accuracy metric

19 def accuracy(estimator , X, y_soft):

20 y_pred = estimator.predict(X)

21 y_true = np.array ([np.argmax(y.to_probs ()) for y in

y_soft ])

22 return np.mean(y_true == y_pred)

23

24 # Perform 5-fold cross -validation

25 cv_scores = cross_val_score(clf , X, y_soft , cv=5, scoring=

accuracy)

3 Contents and Documentation

In this section, we describe the main sub-modules and classes implemented in
the scikit-weak library.

3.1 Data Representation

scikit-weak offers a flexible set of object classes representing weak target infor-
mation [13,15], which can be found in the corresponding data representation
module and is depicted in Fig. 1.

The basic representation is given by the abstract class GenericWeakLabel
that defines a standard interface that should be implemented by every concrete
class of weak targets, such as the ability to randomly sample an element through
the sample value method. scikit-weak primarily distinguishes between con-
tinuous and discrete weak labels, which are described in the following.

Continuous Weak Labels. Continuous weak labels are represented as instan-
ces of the abstract class ContinuousWeakLabel, whose main concrete sub-class
is IntervalLabel. An object of this kind represents an interval-valued target
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Fig. 1. The class hierarchy of data representation formats included in the module
data representation.

specified by its lower and upper bounds l and u, e.g., as often observed in weakly
supervised regression problems. Without any further specification, each element
within [l, u] is considered to be equally plausible. Moreover, this class features
to sample an element uniformly within this interval.

Discrete Weak Labels. Discrete weak labels can be represented as instances
of the abstract class DiscreteWeakLabel, whose main concrete sub-classes are
DiscreteFuzzyLabel and DiscreteSetLabel. As discrete target representation,
objects of the former class maintain possibilities πx(y) ∈ [0, 1] over elements Y ,
e.g., classes as typically considered in classification problems. These possibilities
represent upper probabilities of the true underlying probability distribution over
Y . DiscreteFuzzyLabel supports a sampling mechanism to draw labels accord-
ing to the possibilities. Moreover, discrete fuzzy labels can represent agnostic
label information, i.e., assigning full possibility πx = (1, . . . , 1) to any value
in Y without further distinction. Semi-supervised learning is a typical setting
where such data occurs, as parts of the data are completely unlabeled and tar-
get information is agnostic. To simplify the management of the type of data that
occur frequently in superset and partial-label learning, namely, that a set of ele-
ments in Y have full plausibility, while all other elements are totally implausible,
scikit-weak also implements the DiscreteSetLabel class.
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3.2 Utilities

The utilities module collects general utility functions that can be used for
pre-processing, optimization or data checking and analysis. In particular, the
module contains the smoothers sub-module, that encompasses several methods
to transform supervised datasets into weakly supervised datasets; as well as the
losses sub-module, that contains some commonly used loss functions for model
evaluation and optimization-based learning.

DiscreteEstimatorSmoother. DiscreteEstimatorSmoother is a class to
transform a supervised learning problem into a weakly supervised one, which
uses an underlying classifier for imprecisiation. The need for this class
stems from the fact that most existing benchmark datasets are precise, and
hence cannot be used to test weakly supervised learning algorithms. Thus,
DiscreteEstimatorSmoother allows to convert a standard supervised bench-
mark into a weakly supervised one. It supports transformation of standard
labels to either DiscreteSetLabel or DiscreteFuzzyLabel. In the case of
transformation to DiscreteFuzzyLabel objects, the underlying classifier given
as input is trained on the supervised data given as input, and the output
confidence scores are then normalized and used as values for the correspond-
ing DiscreteFuzzyLabel. In the case of transformation to DiscreteSetLabel
instances, only labels whose normalized confidence scores are greater than a
parameterized threshold ε are considered as output.

DiscreteRandomSmoother. Related to the previous method, instances of
the class DiscreteRandomSmoother realize the transformation from supervised
to weakly supervised problems based on random sampling. Therefore, the class
supports transformation of standard labels to either DiscreteSetLabel or
DiscreteFuzzyLabel. To this end, discrete random smoother offers two sam-
pling strategies: either according to the random set model, or according to the
random membership model. In the random set model, labels in the correspond-
ing DiscreteSetLabel are sampled at random, according either to probabil-
ity p incl (for the correct label) or p err (for the incorrect labels). Formally,
given instance (x, y) and the corresponding set-valued label S, it holds that
P (y ∈ S) = p incl and ∀y′ 
= y, P (y′ ∈ S) = p err. In the random membership
model, possibility degrees for the labels are sampled uniformly from the set of
possible possibility degrees given as input in parameter prob ranges.

3.3 Feature Selection

scikit-weak offers a selection of methods to control model complexity and data
dimensionality through the feature selection module, which comprises dif-
ferent classes to perform weakly supervised feature selection and dimensionality
reduction. In particular, the current version of the library implements two rough
set-based feature selection algorithms (namely, classes RoughSetSelector and
GeneticRoughSetSelector) and a dimensionality reduction algorithm (DELIN).
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RoughSetSelector. RoughSetSelector performs weakly supervised feature
selection using rough set-based reduct search [5,7]. The class supports datasets
whose weakly supervised labels are either instances of the class DiscreteSet
Label or DiscreteFuzzyLabel, and offers several choices in regard to the search
strategy (brute-force or greedy search), the class of reducts to search for (super-
set reducts, C-reducts, λ-reducts), and the rough set model to be used (k-
neighborhood or radius neighborhood rough sets). When the weakly supervised
labels are instances of DiscreteSetLabel, both brute-force and greedy search
aim to find minimal superset reducts. A superset reduct is a reduct for an instan-
tiation of the weakly supervised dataset given as input. The brute-force search
strategy examines all subsets of features R ⊆ Att exhaustively to check whether
they are superset reducts. The algorithm is guaranteed to return all the minimal-
size superset reducts, but, however, the computational complexity is exponential
(O(|X| · 2|Att|)). By contrast, the greedy search strategy starts with the full set
of features Att and iteratively removes one feature as long as the remaining
set of feature is a superset reduct. The algorithm is not guaranteed to return a
minimal-size superset reduct, but global search is supported via random restarts.
The complexity of greedy search is O(|X| · |Att|2). When the weakly supervised
labels are instances of DiscreteFuzzyLabel, brute-force and greedy search aim
to find either C- or λ-reducts. A C-reduct R ⊆ Att is a superset reduct for
an instantiation IR for which �R′ ⊆ Att superset reduct for an instantiation
IR′ such that both |R′| ≤ |R| and minx∈S πx(t̃IR

(x)) ≤ minx∈S πx(t̃IR′ (x)). A
λ-reduct R ⊆ Att is a superset reduct for an instantiation IR that minimizes
(1−λ)(minx∈S πx(t̃IR

(x)))−λ |R|
|Att| among all superset reducts. Both brute-force

and greedy search perform feature selection by searching for superset reducts on
the α-cuts of the fuzzy-labeled dataset given as input, and then selecting among
the retrieved reducts those that satisfy the constraints of being either a C-reduct
or a λ-reduct. Thus, the complexity of brute-force search is O(|X|2 ·2|Att|) while
the complexity of greedy search is O(|X|2 · |Att|2).

GeneticRoughSetSelector. The class GeneticRoughSetSelector offers fun-
ctionality to perform weakly supervised selection by reduct search using genetic
algorithms [6]. The class supports datasets whose weakly supervised labels
are instances of DiscreteFuzzyLabel. GeneticRoughSetSelector aims to find
either C-reducts, D-reducts or λ-reducts for the weakly supervised dataset given
as input, supporting every type of weakly supervised label. A D-reduct R ⊆ Att
is a superset reduct for an instantiation IR for which �R′ ⊆ Att superset reduct
for an instantiation IR′ s.t. both |R′| ≤ |R| and ∃x ∈ S, πx(t̃IR

(x)) < πx

(t̃IR′ (x)). The genetic algorithm-based search is guided by one of three possible
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fitness functions, corresponding to the above mentioned reduct classes:

FitnessC = 〈r, p〉, (1)

Fitnessλ = (1 − λ)p − λ
r

|Att| , (2)

FitnessD = 〈r, s〉, (3)

where p = minx∈S πx(t̃I(x)), r =

{
|A| F is a super-reduct
∞ otherwise

, and s ∈ [0, 1]|U | is

a vector s.t. sx = πx(t̃I(x)). Note, in particular, that only Fitnessλ is single-
valued, while the other two fitness functions are multi-valued. Consequently, for
these latter two fitness functions, the implementation employs a multi-objective
optimization algorithm. Irrespective of the fitness function adopted, the compu-
tational complexity of GeneticRoughSetSelector is O(|X| · |Att|). With regard
to selection and cross-over, GeneticRoughSetSelector employs non-dominated
tournament selection and single-point cross-over, respectively. For mutation, can-
didate reducts are mutated by random addition or deletion of features according
to a Bernoulli distribution. By contrast, instantiations are mutated according
to a two-step procedure. First, for each instance x, a binary value is randomly
sampled from a Bernoulli distribution, then, if the above mentioned value was
equal to 1, a new target label is sampled using the method sample value of the
corresponding GenericWeakLabel instance.

DELIN. DELIN is a weakly supervised dimensionality reduction algorithm,
based on the combination of linear discriminant analysis and weakly supervised
k-NN [2,27,28]. The class supports datasets whose weakly supervised labels are
instances either of the class DiscreteSetLabel or DiscreteFuzzyLabel. DELIN
requires one to determine a-priori the number of dimensions to be selected via the
parameter n. Intuitively, the algorithm works in iterations, each of which consists
of two steps: first, WeaklySupervisedKNeighborsClassifier is applied to the
data, then linear discriminant analysis is applied to the original data w.r.t. the
confidence scores given as output of the first step. Compared to the algorithm
originally proposed in [27,28], the DELIN class has two main modifications: first, it
supports not only DiscreteSetLabel but also DiscreteFuzzyLabel instances;
second, singular value decomposition is used in the computation of linear dis-
criminant analysis to avoid stability issues. The computational complexity of
DELIN is O(|X| · |Att|2).

3.4 Classification

Aside from the pre-processing and dimensionality reduction methods described
in the previous sections, scikit-weak also offers a wide selection of weakly
supervised classification algorithms contained in the classification module.
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WeaklySupervisedKNeighborsClassifier. As one of two neighborhood-
based methods, WeaklySupervisedKNeighborsClassifier is a simple gener-
alization of k-nearest neighbors classification to the setting of weakly supervised
data [3,17], and is compatible with every instance of DiscreteWeakLabel. The
number of neighbors can be controlled through parameter k, while the class
supports any metric callable (through the metric parameter, default is the
Euclidean metric). For efficiency reasons, scikit-learn’s NearestNeighbors
is used to speed-up neighbors search: the computational complexity is Ω(|X| ·
log|X|), with an additional complexity of Ω(log|X|), O(|X|) at inference time.

WeaklySupervisedRadiusClassifier. WeaklySupervisedRadiusClassifier
is yet another simple generalization of radius-based neighbors classification
to weakly supervised data [17], and is compatible with every instance of
DiscreteWeakLabel. The radius within which to search for neighbor instances
can be controlled through the radius parameter, while the class supports
any metric callable (through the metric parameter, default is the Euclidean
metric). Similarly as for class WeaklySupervisedKNeighborsClassifier,
NearestNeighbors is used to speed-up neighbors search: the computational com-
plexity is Ω(|X| · log|X|), with an additional complexity of Ω(log|X|), O(|X|) at
inference time.

GRMLinearClassifier. GRMLinearClassifier is an optimization-based clas-
sification method that attempts to directly minimize the generalized risk for
a linear model [15]. Currently, it supports instances of DiscreteFuzzyLabel
and implements two different linear classification algorithms, namely, logis-
tic regression (by setting loss parameter to “logistic′′) or linear SVM (by
setting loss parameter to “hinge′′). More in detail, given loss function l,
GRMLinearClassifier attempts to solve the following optimization problem:

argmin
W

1
|X|

∑
(x,π)∈S

lF (π,W · x)

where lF : [0, 1]Y × R
Y → R is the generalized risk [15], defined as

lF (π,W · x) =
∫ 1

0

min
y∈πα

l(y,W · x)dα . (4)

Optimization is implemented by means of gradient descent, relying on Tensor-
Flow7 for efficient computation. In particular, the class supports every Ten-
sorFlow optimizer (through the optimizer parameter, default is stochastic
gradient descent ”sgd”). In general, the optimization problem described above
is non-convex, thus convergence to a global optimum is not guaranteed and no
convergence checking is implemented. Training is performed for a fixed number
of iterations (set through parameter max epochs), therefore complexity is on
the order of O(|X| · |Att|). To avoid overfitting, GRMLinearClassifier supports
weight regularization, set through the regularizer parameter.
7 https://tensorflow.org.

https://tensorflow.org
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RRLClassifier. RRLClassifier is an efficient ensemble-based method for
weakly supervised classification based on a generalization of tree ensemble-based
learning [8]. RRLClassifier trains an ensemble of standard supervised classi-
fiers (by default, scikit-learn’s ExtraTreeClassifier [14], but the type of
classifier can be set through parameter estimator) by drawing random sam-
ples from the weakly supervised data given as input. For each instance label
Y in the training set, and each classifier hi to be ensembled, a sample label
is obtained by calling y.sample value(). Thus, RRLClassifier supports every
instance of GenericWeakLabel. Optionally, bootstrapping (as in random forests)
can be applied (through parameter resample, by default set to False) to ensure
increased diversity among the classifiers in the ensemble. The computational
complexity of RRLClassifier is O(k · |Att||X| · log|X|), where k is the number
of classifiers to be ensembled (set through parameter n estimators).

LabelRelaxationNNClassifier. As one example of a credal learning classifier,
LabelRelaxationNNClassifier provides an implementation of the label relax-
ation loss [19] to train probabilistic neural network classifiers H : X → P(Y )
with P(Y ) denoting the space of probability distributions over Y . Commonly,
training of such models H involves a gradient-descent based optimization of a
probabilistic loss l : P(Y ) × P(Y ) → R+, where degenerate probability distri-
butions py with py(y) = 1 and py(·) = 0 otherwise are considered as surrogate
targets for an observed class labels y ∈ Y , typically resulting into overconfident
models. To achieve better calibrated models by a more faithful target modeling,
label relaxation replaces the degenerate distribution py assigned to an instance x
by a credal set Qπx

in accordance with a possibility distribution πx that assigns a
fixed possibility πx(y′) = α ∈ [0, 1] to the labels y′ 
= y and πx(y) = 1. This credal
set Qπx

is then used as target within a generalized loss formulation adopting Eq.
(4) to train models, which is implemented in the class LabelRelaxationLoss.
LabelRelaxationNNClassifier allows one to specify the imprecisiation param-
eter α (parameter lr alpha), as well as hyperparameters related to stochastic
gradient descent (SGD) optimization. Moreover, the base network to be trained
can be specified by its hidden layer depth and widths. The computational com-
plexity depends on the parameterization of the SGD procedure, resulting in a
complexity similar to GRMLinearClassifier. As before, we use TensorFlow
as optimization framework.

CSSLClassifier. Another credal learning method is provided in the class CSSL-
Classifier, which implements so-called credal self-supervised learning (CSSL)
[18] to induce probabilistic classifiers in a semi-supervised learning scenario. To
this end, CSSL maintains credal sets Qπx

as used in LabelRelaxationLoss
expressing the model’s belief about the true target for previously unlabeled
instances, proceeding from agnostic credal sets of the form Qπx

= P(Y ) with
πx(y′) = 1∀y′ ∈ Y . These credal sets successively shrink with increased training
progress and thus higher model confidence by reducing the degree of imprecisi-
ation in πx. CSSLClassifier allows one to specify a base model (parameter
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estimator, e.g., an instance of LabelRelaxationNNClassifier), the number
of iterations (n iterations), a class prior distribution used within the credal
set construction (p data) and the buffer size of the model prediction history also
employed in the credal set construction (p hist buffer size). In each iteration,
the base model is retrained on the complete data and the credal sets are adjusted
according to the updated model.

4 Conclusion

In this article, we introduced scikit-weak, a Python library for weakly super-
vised learning and data analysis, currently focusing on the handling of learning
from imprecise data problems. To the authors knowledge, scikit-weak is the
first library providing such functionality in Python, and thus we believe it could
advance the applicability of the Python data science ecosystem to non-standard
and weakly supervised learning problems. We described the fundamental design
concepts underlying the library and documented the main implemented func-
tionalities and classes. We also illustrated the use of the library by means of a
simple example. The scikit-weak is an open source project and we hope that
additional contributors can help maintain the library as well as implement new
functionalities: indeed, being freely and openly available on GitHub, and being
implemented completely in Python, we believe developers could easily extend
and add new functionalities to the existing library. In particular, we envision the
following next steps for the development of the library:

– To extend the suite of implemented weakly supervised data representation, so
as to encompass additional and more general learning settings such as those
mentioned in the introduction;

– To provide more efficient and robust implementations of the currently imple-
mented classes, e.g., by off-loading time-sensitive routines to low-level or
device code, or by implementing more extensive type checking and tests;

– To enrich the library with sample weakly supervised datasets that can be
used for prototyping, testing as well as benchmarking purposes.
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Abstract. With the growth of digital crime and the pressing need for
strategies to counteract these forms of criminal activities, there is an
increased awareness of the importance of digital forensics. However, due
to the poor quality or the availability of incomplete information, the
evidence gathered from a crime scene may not always be optimal in
practical situations. Digital evidence can be present in different kinds
of devices and in many different forms, much of which is found in an
imprecise format making it very difficult to be analyzed. We propose the
use of Rough Set theory for the classification of digital evidence. Rough
Set theory is a computational model which is an effective tool for ana-
lyzing uncertainty and incomplete information. In this paper, we apply
a Rough Set model to two digital forensics datasets proving Rough Set
to be a valid tool that can be used for digital forensics investigations.
We applied two algorithms for feature selection namely, Recursive fea-
ture elimination and Fuzzy Rough feature selection. Additionally, various
algorithms such as Support Vector Machine (SVM), Näıve Bayes, Deci-
sion Tree (J48), Logistic Regression, and Rough Set theory were used
for classification. Rough Set when used for both feature extraction and
classification gives higher accuracy compared to other algorithms.

Keywords: Rough set · Computational forensics · Digital forensics

1 Introduction

According to NIST [24], “Digital forensics is the field of forensic science that is
concerned with retrieving, storing and analyzing electronic data that can be use-
ful in criminal investigations. This includes information from computers, hard
drives, mobile phones, and other data storage devices”. Digital forensics being
in its early stages as a discipline has increasingly received immense attention in
the past few years. It plays a significant role in society when it comes to justice,
security, and privacy [23]. Digital evidence can now be found on various kinds
of devices and has become even more valuable during investigations. With the
increased importance and relevance also comes new challenges presented by the
field of digital forensics. One of the major challenges includes the volume of digi-
tal evidence that may be collected during an investigation [6]. This evidence can
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sometimes be imperfect due to measurement error, or it can be partially missing
[13] making it difficult to analyze it and thus get hold of a suspect. It is part of
criminalistic sciences which deals with digital evidence recovery and exploitation
in the solution of criminal cases through the application of scientific principles.
As part of evidence analysis, imprecise evidence must be used to elicit hypothe-
ses concerning events, actions, and facts to obtain evidence to present in court.
It also involves examining fragmented incomplete knowledge and reconstructing
and aggregating complex scenarios involving time, uncertainty, causality, and
alternative possibilities [1]. Although in recent years, significant progress has
been made in computer forensics, limitations still exist which makes it difficult
to meet the objective requirements of forensic technology. Forensic tools need
to move in the direction of being intelligent and automated. This can be done
through the usage of new intelligent information processing techniques such as
Rough Set theory in the data analysis phase [29].

Soft computing is a combination of methods that complement each other
when dealing with ambiguous real-life decision systems. Rough Set theory (RST)
is one of the soft computing models that deals with incomplete knowledge and
thus provides a mechanism for concept approximation. In this paper, we use two
datasets, the SpamBase dataset which is an imprecise and incomplete forensics-
related dataset, and the Pen-Based dataset which comparatively does not have
a lot of errors. We then use Rough Set theory with other feature reduction and
classification algorithms to compare and identify which combination of algo-
rithms gives the best results.

The main contributions of this paper are summarized as follows:

– Use Rough Set theory for feature selection and classification of a digital foren-
sic evidence dataset, proving its usage in the field.

– Using different datasets with missing features to conduct experiments to illus-
trate the performance of Rough Set.

– Conducting experiments to compare the effectiveness of Rough Set over other
algorithms for classifying an imprecise dataset.

The rest of the paper is organized as follows. Section 2 reviews some of the
preliminary concepts. Section 3 gives a detailed overview of the existing work.
The experimental study and discussion of results are presented in Sect. 4. Lastly,
the conclusion and future work are presented in Sect. 5.

2 Preliminaries

In this section, we recall some basic notions related to some of the concepts used
in this paper.

2.1 Computational Models

Computational models are mathematical models that are simulated using com-
putation to study complex systems [10]. These models are widely being used in
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diverse fields such as computer science, chemistry, physics, etc. Computational
models are increasingly used to help us make decisions wisely by translating
observations into future events [10]. The outcome is used to understand, man-
age, and predict the mechanisms of complex processes and systems. As the need
to increase the understanding of real-world phenomena grows rapidly, computer-
based simulations and modeling tools are increasingly being accepted as viable
means to study such problems.

Soft Computing. Soft computing provides a blend of data processing mecha-
nisms that deal with vague or imprecise knowledge with the help of approximate
models and gives solutions to complex real-life problems. It is tolerant of impre-
cision, uncertainty, partial truth, and approximations. Soft computing is based
on techniques such as Rough Sets, fuzzy logic, genetic algorithms, artificial neu-
ral networks, machine learning, and expert systems [16]. Soft computing plays
a crucial role in learning complex data structures and patterns and classifying
them to make intelligent decisions [19]. Soft computing has been widely used in
various applications, such as machine vision, pattern detection, data segmenta-
tion, data mining, adaptive control, biometrics, and information assurance.

Rough Set. Proposed by Professor Pawlak in 1982, the Rough Set theory is
an important mathematical tool to deal with imprecise, inconsistent, incomplete
information and knowledge [31]. It handles data reduction and generates precise
decision rules that help in extracting correct patterns from the data [8]. Addi-
tionally, no additional information and parameters are required to analyze the
data and it is structured as a decision table [21]. Since its development, Rough
Set theory has been able to formulate computationally efficient and mathemat-
ically sound techniques for addressing issues such as pattern discovery, decision
rule formulation, data reduction, principal component analysis, and inference
interpretation based on available data [5].

Because of the development of computer science and technology, especially
the development of computer networks, a large amount of information is provided
for people every second of the day. With the growing amount of information, the
requirement for information analysis tools is also becoming higher and higher,
and people hope to automatically acquire the potential knowledge from the data.
Especially in the past years, knowledge discovery (rule extraction, data mining,
machine learning, etc.) has attracted much attention in the field of artificial
intelligence. Rough Set theory has had a significant impact in the data analysis
field and thus has attracted a lot of attention from researchers from around the
globe [5].

Rough Set theory uses two precise boundary lines to describe imprecise con-
cepts. Therefore, in a sense, the Rough Set theory is a certain mathematical
tool to solve uncertain problems. Because of its novel and unique method and
easy operation, Rough Set theory has become an important information pro-
cessing tool in the field of intelligent information processing [6] and it has been
widely used in machine learning, knowledge discovery, data mining, decision
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support, and analysis, etc. The primary benefit of Rough Set theory in data
analysis is that it does not require any preliminary or supplementary data infor-
mation, unlike probability distributions required in statistics, basic probability
assignments required in evidence theory, a membership grade, or the value of
possibility required in fuzzy set theory [27].

Rough Set for Feature Selection. Feature selection is used to select features that
are most predictive of a given outcome [12]. Rough Set was introduced for data
analysis in pattern recognition, data mining, and machine learning [21]. It is
integral and powerful for discovering relations between a class and its attributes
in a dataset. Rough Set provides a powerful mechanism for reducing attributes
without altering the basic properties of the system. This process is referred
to as attribute reduction or feature selection [25]. This process thus, retains
the minimal set of attributes that preserves the information of interest. The
main advantage of Rough Set attribute reduction (RSAR) is that no additional
parameters are required other than the supplied data. In Rough Set theory, an
information table is defined as a tuple T = (U, A) where U and A are two finite,
non-empty sets, U the universe of primitive objects, and A the set of attributes.
Each attribute or feature a ∈ A is associated with a set Va of its value called
the domain of A. We may partition the attribute set A into two subsets C and
D, called condition and decision attributes, respectively. Let P ⊂ A be a subset
of attributes. The indiscernibility relation, denoted by IND(P), is an equivalence
relation defined in [30]:

(P ) = (x, y) ∈ U × U : ∀ aε P, a(x) = a(y) (1)

where a(x) denotes the value of feature a of object x. If (x, y) ∈ IND(P ), x and
y are said to be indiscernible with respect to P. The family of all equivalence
classes of IND(P) (Partition of U determined by P) is denoted by U/IND(P).
Each element in U/IND(P) is a set of indiscernible objects with respect to P.
Equivalence classes U/IND(C) and U/IND(D) are called condition and deci-
sion classes. For any concept X ⊆ U and attribute subset R ⊆ A , X could be
approximated by the R-lower approximation and R- upper approximation using
the knowledge of R [30]. The lower approximation of X is the set of objects of
U that are surely in X, defined as [30]:

R∗ (X) = ∪ E ∈ U/IND (R) : E ⊆ X (2)

The upper approximation of X is the set of objects of U that are possibly in X,
defined as [30]:

R∗ (X) = ∪E ∈ U/IND(R)E ∩ X �= φ (3)

The boundary region is defined as: [30]

BNDR(X) = R∗(X) − R∗(X) (4)
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If the boundary region is empty, that is, R∗ (X) = R
∗ (X) concept X is said to

be R-definable. Otherwise, X is a Rough Set with respect to R. The positive
region of decision classes U/IND(D) with respect to condition attributes C is
denoted by: [30]

POSc (D) = ∪R∗ (X) (5)

It is a set of objects of U that can be classified with certainty to classes
U/IND(D) employing attributes of C. A subset R ⊆ C is said to be a D-reduct
of C if

POSR (D) = POSC (D) (6)

POSR (D) = POSC (D) condition is satisfied and there is no R′ ⊂ R such that
[30]

POS′
R(D) = POSC(D) (7)

Hence, a reduct is the minimal set of attributes preserving the positive region.
There may exist many reducts in an information table.

Rough Set theory has increasingly been used as a feature selection step to
reduce the number of features in a dataset for a more effective classification
process. The feature selection process is done by using the reduct attribute of
Rough Set. Reducts in Rough Sets are the minimal features in a dataset or
database that can sufficiently characterize the dataset or database.

Rough Set for feature selection is achieved by an accompanying search
method. Search methods are algorithms or techniques that are used to test dif-
ferent combinations of features or attributes in the dataset. The attribute reduct
(Rough Set) is then used to select the best combination. In this project, Par-
ticle Swarm Optimization is used in conjunction with Rough Set as the search
algorithm.

Particle Swarm Optimization. Particle swarm optimization (PSO) algorithm was
proposed by Eberhart and Kennedy in 1995 [28]. It is a stochastic optimization
technique based on swarm intelligence. PSO algorithm simulates animals’ social
behavior, including insects, herds, birds, and fishes [4]. PSO intends to find the
optimal solution in a high-dimensional solution space. It achieves this by max-
imizing or minimizing a function to find the optimum solution. A function can
have different local maximums and minimums with one global maximum or min-
imum. PSO is a heuristic algorithm as it can sacrifice accuracy and completeness
for speed.

Rough Set for Classification. Rough Set can be used on classification problems
and datasets. It looks at the structural interactions within imprecise and noisy
data. It can only work on discrete data. Rough Set theory works with the estab-
lishment of equivalence classes within the given training data [14]. All the data
tuples forming an equivalence class are indiscernible, that is, the samples are
identical with respect to the attributes describing the data.
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Computational Forensics. Computational Forensics is an emerging research
domain that is a hypothesis-driven investigation of specific scientific problems
using computers with the primary goal to get an in-depth understanding of the
forensic discipline [31]. It involves applying computer science, applied mathemat-
ics, and statistics techniques (modeling and computer simulation) to study and
solve forensics problems. A systematic methodology for computer forensics must
have a comprehensive research, development, and investigation process which
focuses on the needs of the forensic problem. The potential of computational
forensics can have a great impact on forensics. Some of the most promising
contributions made by computational forensics include:

– Increased efficiency and reporting on investigation results and deductions.
– Perform the often-time-consuming testing using systematic testing founda-

tions which can also be tested on a large scale of data.
– Help synthesize unequally distributed datasets and noisy data and simulate

meaningful influences.

3 Related Work

Computational forensics is an emerging research domain with various computa-
tional methods being used to solve various kinds of problems. Rough Set is one
of the computational methods that are excellent with incomplete and imprecise
data and it’s previously been used to solve various kinds of forensic problems.

Singh et al. [26] use Rough Set to process the physiological and facial char-
acteristics of a criminal thus, helping in their identification. The behavioral
attributes used are a person’s gait patterns and the way of speaking, his/her
physic can be represented in the form of age, gender, and height while facial
features used include face category, face tone, eyebrows type, eye shape, nose
shape, and lip size. This information provided by the eyewitness is usually vague
and imprecise and thus this information is processed by a Rough Set.

Another application of a Rough Set includes online signature detection [7].
The authors used global features extracted as time functions of various dynamic
properties of signatures to identify a signature. A database of 2160 signatures
from 108 subjects was built. Thirty-one features were identified and extracted
from each signature. The Rough Set approach was used to reduce the features to
a set of nine features that captured the essential characteristics required to accu-
rately identify a signature. Rough Set demonstrated a 100% correct classification
rate proving it to be sustainable and effective for online signature identification.

The field of steganography (an art of secret transmission by embedding data,
not multimedia) has also benefitted from Rough Set theory. Lang et al. [18]
talks about a novel steganalysis approach based on Rough Set theory. It considers
characteristics of both embedded messages and digital images and gives decisions
from huge data set of steganographic signatures. Through the experiments, the
method is proved to be effective and applicable. The steganalysis method based
on Rough Set theory can be used to mine the hidden rules in a huge data set
which is applicable for the implementation and scaling the experiment.
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Another study [20] used a decision Rough Set -positive region reduction for
steganalysis feature selection. A Rough Set model is used to reduce the dimension
and improve the efficiency of the steganalysis algorithm. Rich model steganalysis
features usually result in a large computation cost but using the proposed method
can significantly reduce the feature dimension and maintain detection accuracy.

Rough Sets have even found their roots in the application of identifying
insider threats. This paper [32] monitors users’ abnormal behavior which is
applied to insider threat identification to build a user’s behavior attribute infor-
mation database based on weights changeable feedback tree augmented Bayes
network. This data can however be massive, and this experiment uses dimension-
ality reduction based on Rough Sets to establish the process information model
of the user’s behavior attribute.

Additionally, Rough Sets have even been used for dimensionality minimiza-
tion to enable pattern classifiers to be effective. The main limitation of Rough
Set-based classification/selection is that all data should be discrete and thus
real-valued and noisy data cannot be used. This paper [17] investigates two
approaches based on Rough Set extensions, namely fuzzy-rough and tolerance
Rough Sets, that address these problems and retains dataset semantics. The
methods are compared experimentally and utilized for the task of forensic glass
fragment identification. Other studies that use Rough Sets for feature and dimen-
sionality minimization include [9]. This study uses the set of permissions required
by any android app during installation time as the feature set which are used in
permission-based detection of android malware. This feature set is then reduced
to minimize computational overhead by choosing an optimal and meaningful set
of features/attributes. A selection technique based on Rough Set and improvised
particle swarm optimization (PSO) algorithm is thus proposed for this study.

Lastly, Rough Sets have been used in social network analysis of law informa-
tion privacy protection [26]. The paper uses the hierarchical structure of data
as domain knowledge for the Rough Set theory. The Rough Set modeling for
complex hierarchical data is studied for hierarchical data of the decision table.
The theoretical research results are applied to hierarchical decision rule mining
and k-anonymous privacy protection data mining research, which enriches the
connotation of Rough Set theory and has important theoretical and practical
significance for further promoting the application of this theory.

To the best of our knowledge, very few studies have tackled the use of Rough
Sets to make predictions on imperfect data to solve forensic problems. Our study
tackles the use of soft computing using Rough Set theory to make predictions
on digital forensic problems in a prevalent situation of imprecise data.

4 Experimental Study

In this section, we compare the proposed Rough Set approach with other existing
machine learning models.
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4.1 Datasets Used

We used the Spambase [2] and the Pen-Based Recognition of Handwritten Dig-
its dataset from the UCI machine learning repository for our experiment. The
spam dataset classifies email either as spam or non-spam (two-class values 1
and 0). The spam emails in the dataset were collected from postmasters and
individuals who have filed for spam and the non-spam emails come from filed
work and personal emails. It is a moderately big database with 4601 instances
and 57 attributes. This dataset was used because emails are one of the most
important sources of evidence in digital forensic investigations. Additionally, the
database contains some errors that can be efficiently addressed by Rough Set
theory. Some of the issues with the database include missing values, duplicate
data, class imbalance, and outliers (extreme values outside the range of what
is expected). The second dataset, the Pen-Based Recognition of Handwritten
Digits was created by collecting 250 samples from 444 writers to with the aim
to identify a person through their handwriting. It contains 10992 instances with
16 attributes. However, no significant errors were found in the dataset.

These errors in the SpamBase dataset occur in many real-world applications
thus, we found it to be the most applicable dataset to use for the experiment
and test the efficiency of Rough Set theory on digital forensics-related datasets
which usually contain all of the above issues.

4.2 Methodology

Preprocessing. Data preprocessing is the process of preparing raw data to
make it suitable for a machine learning model to analyze. This is a vital step as
real-world data contains noise, missing values, and unusable data values. In this
experiment, however, no preprocessing was done on the datasets before feature
reduction. This is because Rough Set is a competent and an efficient algorithm
for classifying inconsistent and noisy data.

Feature Selection. Feature selection is the process of selecting the most sig-
nificant features from a given dataset [3]. It is an effective way to eliminate
redundant and irrelevant data. In this experiment, we used two techniques for
feature selection namely, Recursive Feature Elimination (RFE) and Fuzzy Rough
Feature Selection.

Recursive Feature elimination is a sci-kit-learn python machine learning
library that provides a feature selection method that fits a model and removes
the weakest feature(s) until the number of specified features has been reached
[11]. We specified the RFE algorithm to select fifteen features for both the Spam-
Base and PenBased datasets. Recursive feature elimination is a recursive process
as the name suggests. The estimator is first trained with the initial set of fea-
tures. During the feature selection process, the importance of each feature is
obtained, and to reduce the complexity of the model, significant features are
chosen, and the least important features are removed. This process continues
until the specified number of features is reached.
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Fuzzy Rough Feature Elimination is used to reduce noisy data without the
need for the user to supply information. It eliminates redundant and misleading
attributes in the dataset for faster and more accurate classifications [12]. The
number of features using the fuzzy rough feature selection was determined by
the library on its own. We remained with forty-five features on the SpamBase
dataset and sixteen features on the pen-based dataset after the Fuzzy Rough
feature selection process.

Classification. Classification is the process of using existing data (training data)
to identify the category of new data that is fed in. For this research, we use sev-
eral classification algorithms alongside a soft computing model (Rough Set the-
ory) to compare their effectiveness to an imprecise and inaccurate forensics dataset.
The following algorithms were used; Support Vector Machine (SVM), Näıve Bayes,
Decision Tree (J48), Logistic Regression, and Rough Set theory. Throughout the
experiment, we utilized WEKA (Waikato Environment for Knowledge Analysis)
which is a machine learning software suite that includes the functionality of data
processing, classification, clustering, association, regression and visualization.

4.3 Results Analysis

The results were analyzed using the following measures as shown in Figs. 1 and
2: Precision, Recall, and F-Measure. Precision and recall are indicators of the
accuracy of the machine learning model. Precision is used to measure the posi-
tive patterns that are correctly predicted from the total predicted patterns in a
positive class [15]. In essence, a classifier cannot label a negative sample as posi-
tive. Recall is used to measure the fraction of positive patterns that are correctly
classified. Thus, recall is the ability of the classifier to find all the positive sam-
ples. Lastly, F measure is a metric that represents the harmonic mean between
the recall and precision values.

The results produced from the experiment are depicted in Table 1 and 2.
Table 1 gives the results for the SpamBase dataset when both Fuzzy Rough
feature elimination and Recursive feature elimination are combined with different
classification algorithms. As depicted in Fig. 1a, Fuzzy Rough feature selection
gave a higher precision value for most of the classification algorithms except
SVM. Figures 2a and 2b present an overall picture of Precision, Recall, and F-
Measure values when each of the feature selection algorithms were used.

Table 2 gives the results for the Pen-Based dataset. It displays the results
when both the feature selection methods are utilized in combination with dif-
ferent classification algorithms. The results for the SVM classification algorithm
are blank since the SVM algorithm could not classify some of the classes in the
Pen-Based dataset hence, Weka outputs a question mark (?) for the average
evaluation metric when one of the classes cannot be classified by a certain classi-
fication algorithm. The precision values gotten for both the Fuzzy rough feature
selection and Recursive feature selection algorithms are very similar as depicted
by Fig. 1b. Additionally, Fig. 3 presents an overall picture of precision, recall and
f measure when each of the feature selection algorithms were utilized.
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As seen in Table 2, when Fuzzy Rough is used as feature selection, the best
performing algorithm is logistic regression instead of Rough Set as anticipated.
This may be due to the fact that the Pen-Based dataset does not have significant
errors in terms of inaccurate or missing values. On the contrary, when used with
Recursive feature elimination, Rough Set yields the highest accuracy. The results
from the experiment show that using Rough Set resulted in higher accuracy
values when compared to the other machine learning models. This is true for both
when using RFE or using Rough Set for feature selection as shown in Table 1 for
the SpamBase dataset since it contained inaccurate and missing values. However,
as shown in Table 2, Rough Set does not yield the highest percentage when used
in the PenBased dataset due to the lack of significant errors, Rough Set does a
better job at classifying.

Table 1. Results for the SpamBase dataset.

Fuzzy rough set for

feature selection

RFE for feature selection

Precision Recall F-Measure Precision Recall F-Measure

Rough set 0.931 0.930 0.929 0.866 0.866 0.866

SVM 0.826 0.825 0.825 0.861 0.858 0.859

Näıve Bayes 0.838 0.782 0.809 0.749 0.523 0.615

Decision tree 0.921 0.920 0.920 0.866 0.863 0.864

Logistic regression 0.924 0.924 0.924 0.867 0.862 0.864

Table 2. Results for the PenBased dataset.

Fuzzy rough set for

feature selection

RFE for feature selection

Precision Recall F-Measure Precision Recall F-Measure

Rough set 0.946 0.944 0.944 0.925 0.924 0.924

SVM - 0.113 – – 0.119 –

Näıve Bayes 0.868 0.862 0.864 0.860 0.859 0.859

Decision tree 0.737 0.731 0.733 0.750 0.739 0.744

Logistic regression 0.952 0.952 0.952 0.916 0.914 0.914

We faced a few challenges throughout the experiment. Some of those chal-
lenges include computational inefficiency. Despite Rough Set models being very
successful in data analysis, they still encounter challenges with large datasets
[22]. Rough Set method is computationally time-consuming; thus, it requires
scalable implementations on large datasets.
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Fig. 1. Comparison of the two feature selection algorithms on the (a) SpamBase dataset
(b) Pen-Based dataset

(a) (b)

Fig. 2. Metrics of the (a) RFE feature selection and (b) Fuzzy Rough feature selection
on the SpamBase dataset

(a) (b)

Fig. 3. Metrics of the (a) RFE feature selection and (b) Fuzzy Rough feature selection
on the Pen based dataset
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5 Conclusion and Future Work

In this paper, we propose using a soft computing model called Rough Set theory
in comparison to other machine learning models as a valid tool to be applied
for digital forensic investigations. As per our results, Rough Set outweighed
all the other models during the classification of an imprecise, inconsistent, and
incomplete dataset which are frequently found in the case of digital evidence
collected. Therefore, Rough Set theory can successfully be applied by a forensic
investigator.

In the future, we plan to expound on this research by fine-tuning some of
the parameters of the Rough Set model to see whether better results can be
produced despite some of the limitations mentioned in this research.
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Abstract. Graded rough sets (GRSs) act as a bidirectional quantitative model
of three-way decision, but their approximation operators cannot preserve union,
intersection and complement operations. Aiming at GRSs, this paper mines binary
boundaries and constructs the power set space, so the corresponding ECG (electro-
cardiogram)data analysis is eventually performed.Basedonunion and intersection
inequalities of approximation operators, four types of binary boundaries and their
operators are first proposed to generate fundamental union and intersection equa-
tions, and both their quantitative semantics regarding dual membership grades and
their degenerate properties on quantitative parameters are revealed. Then, union,
intersection and complement operations of approximation sets are redefined by
boundaries to acquire the set operation preservation of approximation operators,
so the power set space of GRSs is established to induce homomorphisms regarding
the classical power set space. Finally, the binary boundaries in power set space
are utilized for ECG dataset analysis, and experimental results demonstrate the
effectiveness of theoretical structures and in-depth properties. This study adopts
double viewpoints of operator theory and set theory to enrich GRSs, its quantita-
tive extension underlies uncertainty modeling and granular computing, while its
mathematical structures facilitate data mining in terms of parameter optimization.

Keywords: Graded rough set · approximation operator · set operation · binary
boundary · power set space · ECG data analysis

1 Introduction

Rough sets are a fundamental uncertaintymethodology of granular computing and three-
way decision, and their uncertainty and corresponding data analysis primarily come
from boundaries. Rough sets exhibit two interpretations regarding operator theory and
set theory [1]. The operator theory thinks that rough sets extend classical sets by adding
upper and lower approximation operators to classical set operators, while the set theory
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thinks that rough sets never introduce new operators but change set operations. Nowa-
days, rough sets have been widely researched and applied in the uncertainty modeling,
information measurement, classification learning, outlier detection, medical diagnosis,
etc.

The traditional rough sets can be called Pawlak-RSs [2], and their upper and lower
approximations rely on strict inclusion relationships; thus, they become a qualitative
model to lack fault tolerance. For quantitative improvement, the probability rough sets
[3–5] utilize the relative information of probability to become a relatively quantitative
model, and they actually include multiple models related to three-way decision, such as
the decision-theoretic rough sets (DTRSs) and variable precision rough sets (VPRSs).
In contrast, the graded rough sets (GRSs) rely on the absolute information of grade to
become an absolutely quantitative model. GRSs mainly focus on absolute cardinali-
ties of internal and external membership degrees, and they introduce natural numbers
for uncertainty modeling, so they exhibit quantitative bidirectionality and intuitiveness.
GRSs gain a series of important and meaningful results. For example, Yao and Lin [6]
initially propose GRSs when using modal logics to make the generalization of rough
sets; Liu et al. [7] construct two-universe GRSs and relevant properties; Huang et al.
[8] design intuitionistic fuzzy graded covering rough sets; Xue et al. [9] propose multi-
granulation graded rough intuitionistic fuzzy sets models based on dominance relation.
In particular, GRSs also make construction of information fusion by extensively com-
bining probability rough sets or probability measures. For example, Zhang et al. [10]
advocate the complete double-quantization to combine absolutely quantitative infor-
mation and relatively quantitative information by comparatively analyzing VPRSs and
GRSs. Fang and Hu [11] define probabilistic GRSs and double-quantitative DTRSs.

Clearly, GRSs have the theoretical significance and applied values by virtue of their
quantitative characteristic, and their studies on relative quantization is worth reinforc-
ing. For Pawlak-RSs, the approximation operators partly hold the set operations. In this
regard, Zhang [12] et al. propose two kinds of boundaries and operators, they further
redefine union, intersection and complement operations of approximate sets, so they
finally construct the power set space. These results can be extended from Pawlak-RSs to
GRSs, in view of the quantitative expansion. In other words, GRSs approximation oper-
ators do not maintain set operations at all, and thus the new definition of approximate
set operations and the follow-up construction of power set space are worth exploring.
For this case, this paper mainly mines binary boundaries and uses unitary boundaries,
and we establish the approximate set operations and power set space of GRSs, so we
deeply reveal the uncertainty semantics andoperationhomomorphism; at last, four binary
boundary operators and corresponding structure properties of power set space are applied
to ECG (electrocardiogram) data analysis, which serves as an important topic in intelli-
gent processing and medical applications [13, 14]. In summary, this paper deepens the
two interpretations of GRSs from both the operator theory and the set theory, and it
quantitatively advances the qualitative results of Pawlak-RSs in [12]. In terms of data
experiments, all results are effectively verified and they are helpful to intelligent detection
and medical diagnosis of ECG data analysis.
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2 Rough Set Approximation Operators

This section uses Refs. [2, 6, 12, 15] to review the approximate operators of Pawlak-RSs
andGRSs. The discourse domainU and the equivalence relationR compose approximate
space (U ,R), and the knowledge granule [x]R is the equivalence classes of sample x ∈ U .
Suppose two sets X ,Y ⊆ U and power set space 2U = {Z : Z ⊆ U }, and ∼ denotes
the complement operation of sets.

Definition 1([2]). In Pawlak-RSs, the upper and lower approximation sets of X are

RX = {x : [x]R ∩ X �= ∅}, RX = {x : [x]R ⊆ X },
and the corresponding upper and lower approximation operators are noted as R,R :
2U → 2U . The positive, negative, and boundary regions of X are

PosR(X ) = RX ,NegR(X ) =∼ RX ,BndR(X ) = RX − RX ,

and the corresponding three-way operators are supposed to be PosR,NegR,BndR :
2U → 2U .

Proposition 1([12]). We have the following equalities by adding boundary operations.
That is,

1) R(X ∩ Y ) ∪ ObndR(X ,Y ) = RX ∩ RY ,
2) R(X ∪ Y ) = RX ∪ RY ∪ IbndR(X ,Y ).

Here,

ObndR(X ,Y ) = { x: [x]R ∩ (X ∩ Y ) = ∅, [x]R ∩ (X − Y ), (Y − X ) �= ∅} ,

IbndR(X ,Y ) = { x: [x]R ⊆ X ∪ Y , [x]R ∩ (X − Y ), (Y − X ) �= ∅} ,

are called the outer boundary and inner boundary, and their corresponding outer and
inner boundary operators are labeled by ObndR, IbndR : 2U × 2U → 2U .

Definition 2([12, 15]). In GRSs, the quantification parameter k ∈ N is offered, and then
the internal and external membership degrees of [x]R to X are

ig([x]R,X ) = |[x]R ∩ X |, (1)

og([x]R,X ) = |[x]R| − |[x]R ∩ X |. (2)

The upper and lower approximation sets of X are

RkX = {x : ig([x]R,X ) > k},RkX = {x : og([x]R,X ) ≤ k}, (3)

and the corresponding upper and lower approximation operators areRk ,Rk : 2U → 2U .
The upper and lower boundary of X are

bnd
k
R(X ) = RkX − RkX , bndk

R(X ) = RkX − RkX , (4)
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and the corresponding upper and lower boundary operators are bnd
k
R, bnd

k
R : 2U → 2U .

Moreover, the positive, negative and boundary regions of X are

Posk
R
(X ) = RkX ∩ RkX ,

Negk
R
(X ) =∼ (RkX ∪ RkX ),

Bndk
R
(X )= ∼ (Posk

R
(X ) ∪ Negk

R
(X )),

and the corresponding operators are Posk
R
,Negk

R
,Bndk

R
: 2U → 2U .

Proposition 2([6]). Dual operators Rk and Rk have the following properties on union,
intersection and complement operations.

1) Rk(X ∪ Y ) ⊇ RkX ∪ RkY ;
2) Rk(X ∩ Y ) ⊆ RkX ∩ RkY ;
3) Rk(∼ X ) =∼ RkX ;
4) Rk(X ∪ Y ) ⊇ RkX ∪ RkY ;
5) Rk(X ∩ Y ) ⊆ RkX ∩ RkY ;
6) Rk(∼ X ) =∼ RkX .

Both the internal and external membership degrees are absolute measures, and they
underlie the bidirectionality and intuitiveness of GRSs. Thus, GRSs have intuitive quan-
tification semantics, and they also quantitatively expand the qualitativemodel of Pawlak-
RSs, which corresponds to a special parameter value k = 0. For parameter settings, the
threshold k can be determined according to the granular cardinality distribution and
actual needs, or merely by expert experience. As shown by Proposition 2, the approxi-
mation operators of GRSs do not maintain set operations at all, and thus this fact leads
to both the binary boundary mining and the power set space construction as follows.

3 Binary Boundaries of Graded Rough Sets

Aiming at the union and intersection inequations of GRSs approximation operators
(Proposition 2), this section mines four binary boundaries (and matching operators) to
construct union and intersection equations, thus acquiring improvements.

Lemma 1. Wehave the following calculation and determination for approximation sets,
i.e.,

Rk(X ∪ Y ) − RkX ∪ RkY = {x : ig([x]R,X ∪ Y ) > k, ig([x]R,X )≤ k, ig([x]R,Y )≤ k}.

RkX ∩ RkY − Rk(X ∩ Y )= {x : ig([x]R,X ∩ Y )≤ k, ig([x]R,X ) > k, ig([x]R,Y )> k}.

Rk(X ∪ Y )−RkX ∪ RkY = {x : og([x]R,X ∪ Y )≤ k, og([x]R,X )> k, og([x]R,Y )>k}.

RkX ∩ RkY −Rk(X ∩ Y )= {x : og([x]R,X ∩ Y )> k, og([x]R,X )≤ k, og([x]R,Y )≤ k}.
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Definition 3. The upper-inner boundary, upper-outer boundary, lower-inner boundary,
and lower-outer boundary of X and Y are respectively defined as

Ibnd
k
R(X ,Y ) = {x : ig([x]R,X ∪ Y ) > k, ig([x]R,X ) ≤ k, ig([x]R,Y ) ≤ k},

Obnd
k
R(X ,Y ) = {x : ig([x]R,X ∩ Y ) ≤ k, ig([x]R,X ) > k, ig([x]R,Y ) > k},

Ibndk
R(X ,Y ) = {x : og([x]R,X ∪ Y ) ≤ k, og([x]R,X ) > k, og([x]R,Y ) > k},

Obndk
R(X ,Y ) = {x : og([x]R,X ∩ Y ) > k, og([x]R,X ) ≤ k, og([x]R,Y ) ≤ k}.

Furthermore, the upper-inner boundary operators, upper-outer boundary operators,
lower-inner boundary operators, and lower-outer boundary operators on 2U ×2U → 2U

are respectively denoted by

Ibnd
k
R(X ,Y ),Obnd

k
R(X ,Y ), Ibndk

R(X ,Y ),Obndk
R(X ,Y )

Theorem 1. In GRSs, approximation sets and four boundaries can formulate operation
equalities, that is,

1) Rk(X ∪ Y ) = RkX ∪ RkY ∪ Ibnd
k
R(X ,Y );

2) Rk(X ∩ Y ) ∪ Obnd
k
R(X ,Y ) = RkX ∩ RkY ;

3) Rk(X ∪ Y )=RkX ∪ RkY ∪ Ibndk
R(X ,Y );

4) Rk(X ∩ Y ) ∪ Obndk
R(X ,Y )=RkX ∩ RkY .

For Proposition 2, Lemma 1makes the difference comparison, and thus it reveals the
difference factors that affect the equation. Thus, Definition 3 establishes four kinds of
boundaries (aswell as corresponding operators), while Theorem1modifies the union and
intersection inequalities of Proposition 2 to become ideal equalities. The four kinds of
boundaries (operators) act on two sets to present the duality. They aremainly related to the
system of upper and lower approximations with two underlying sets, so they are partially

related to the unitary boundary of a single set, such as bnd
k
R(X ), bndk

R(X ). Univariate
boundaries depict single-concept boundaries and related uncertainty; in contrast, binary
boundaries adhere to the double-concept boundaries and relevant uncertainty, as shown
by Fig. 1.

Figure 1 does not lose the generality. Thus, the sets X ,Y are intersected, and they
divide the universe U into four pieces:

X − Y ,Y − X , X ∩ Y , ∼ (X ∪ Y ).

The little rectangle identifies the GRSs binary boundary (or its constituent granules), and
this block usually has overlaps with the four-divided parts. However, the four boundaries
have different degrees of overlap, so they adopt four distinctive perspectives to describe
the binary-set system and its uncertainty. Definition 3 and Fig. 1 determine the general
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distribution of the four binary boundaries, so they can explain their quantitative seman-
tics regarding the dual membership degrees. For example, the upper-inner boundary

Ibnd
k
R(X ,Y ) is composed of the following equivalent class [x]R, whose inner member-

ship degree of X ∪Y (i.e., the number of intersecting elements) is greater than threshold
k, while whose inner membership degrees of X ,Y (i.e., the numbers of intersecting
elements) both are not greater than number k.

Fig. 1. Schematic diagram of binary boundary of GRSs

Lemma 2. Dual membership degrees have properties as follows:

1) ig([x]R,X ∪ Y ) = ig([x]R,X ) + ig([x]R,Y ) − ig([x]R,X ∩ Y ),
2) og([x]R,X ∪ Y ) = og([x]R,X ) + og([x]R,Y ) − og([x]R,X ∩ Y ).

The system of binary boundaries involves the characterization of dual membership
degrees for setsX ∪Y ,X ∩Y ,X , Y , and Lemma 2 provides the usual degree relationships
for the four sets.

Theorem 2. Binary boundaries (operations) have the following properties.

1) If X ∪ Y=U , then

Ibnd
k
R(X ,Y ) = {x : |[x]R| > k, ig([x]R,X ) ≤ k, ig([x]R,Y ) ≤ k},

Ibndk
R(X ,Y ) = {x : og([x]R,X ) > k, og([x]R,Y ) > k}.

2) If X ∩ Y=∅, then

Obnd
k
R(X ,Y ) = {x : ig([x]R,X ) > k, ig([x]R,Y ) > k},

Obndk
R(X ,Y ) = { x : |[x]R| > k, og([x]R,X ) ≤ k, og([x]R,Y ) ≤ k}.

3) In general cases,

Ibnd
k
R(X ,∼ X ) = {x : |[x]R| > k, ig([x]R,X ) ∈ [|[x]R| − k, k]},

Obnd
k
R(X ,∼ X ) = {x : ig([x]R,X ) ∈ (k, |[x]R| − k)},

Ibndk
R(X ,Y ) = {x : og([x]R,X ) ∈ (k, |[x]R| − k)},

Obndk
R(X ,Y ) = { x : |[x]R| > k, og([x]R,X ) ∈ [|[x]R| − k, k]}.

Proof. 1) If X ∪ Y=U , then ig([x]R,X ∪ Y ) = |[x]R|, og([x]R,X ∪ Y ) = 0. From

Definition 3, Ibnd
k
R(X ,Y ) and Ibndk

R(X ,Y ) naturally have the above simplifications.
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2) If X ∩Y=∅, then ig([x]R,X ∪Y ) = 0, og([x]R,X ∪Y ) = |[x]R|. FromDefinition

3, Obnd
k
R(X ,Y ) and Obndk

R(X ,Y ) similarly have their above simplifications.
3) Suppose X ∪ Y=U and X ∩ Y=∅, and then Y= ∼ X . Thus from Lemma 2 and

the above items 1) 2), we can get the following formulas:

ig([x]R,X ) + ig([x]R,∼ X ) = |[x]R|,
og([x]R,X ) + og([x]R,∼ X ) = |[x]R|.

Moreover,

ig([x]R,∼ X ) = |[x]R| − ig([x]R,X ) ≤ k ⇔ ig([x]R,X) ≥ |[x]R| − k,

so according to the above item 1), we have

Ibnd
k
R(X ,∼ X ) = {x : |[x]R| > k, ig([x]R,X .) ∈ [|[x]R| − k, k]}.

Similarly, the remaining results of three binary boundaries can be derived, so we prove
item 3). �

Based on Lemma 2, Theorem 2 gives the simplified results of binary boundaries,
when X ,Y are in three cases of overlap, exclusion, and partition respectively. The proof
process correspondingly simplifies the systematic relationships of dual memberships,
which are provided by Lemma 2. The overlap and exclusion cases are suitable for inner
and outer boundary simplifications, respectively, while the superimposed division is
suitable for the binary classification and its applications.

Theorem 3 Suppose k = 0, then we have

1) Ibnd
0
R(X ,Y ) = ∅;

2) Obnd
0
R(X ,Y ) = ObndR(X ,Y );

3) Ibnd0
R(X ,Y ) = IbndR(X ,Y );

4) Obnd0
R(X ,Y ) = ∅.

Based on Theorem 3, the four binary boundaries of GRSs quantitatively expand the
two qualitative binary boundaries of Pawlak-RSs, and the latter become a special case
when k = 0.

In summary, binary boundaries (operators) of GRSs have the union/intersection
operationmodifications, dualmembership degree semantics, and quantitative expansion.
With regard to the operator theory, four binary operators are introduced; with regard to
the set theory, four bounded sets are introduced.

At last, we offer the calculation algorithm on four binary boundaries, and Algorithm
1 is clear.
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4 Power Set Space of Graded Rough Sets

Within the framework of GRSs, this section uses the binary boundaries (operators) to
redefine the union and intersection operations of approximation sets, and it uses the
unary boundaries (operators) to determine the complement operations of approximation
sets, so it finally constructs the power set space.

Definition 4. Regarding GRSs, new union and intersection operations (noted as ∪∗ , ∩∗ )
of approximation sets are defined as follows:

RkX ∪∗ RkY=RkX ∪ RkY ∪ Ibnd
k
R(X ,Y ); (5)

RkX ∩∗ RkY=RkX ∩ RkY − Obnd
k
R(X ,Y ); (6)

RkX ∪∗ RkY=RkX ∪ RkY ∪ Ibndk
R(X ,Y ); (7)

RkX ∩∗ RkY=RkX ∩ RkY − Obndk
R(X ,Y ); (8)

Theorem 4. Regarding GRSs, the union and intersection operations are formally
preserved as follows:

1) RkX ∪∗ RkY=Rk(X ∪ Y );
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2) RkX ∩∗ RkY=Rk(X ∩ Y );

3) RkX ∪∗ RkY=Rk(X ∪ Y );

4) RkX ∩∗ RkY=Rk(X ∩ Y ).

By Theorem 1, Definition 4 uses four binary boundaries to adjust the classical ∪, ∩
operations, so it redefines the union and intersection operations ∪∗ , ∩∗ of GRSs approxi-

mation sets. Theorem 4, proved by Theorem 1 and Definition 4, naturally obtains good
properties of operation maintenance for GRSs approximate operators.

Definition 5. Regarding GRSs, the new complement operator ∼∗ for approximation is

determined as follows:

∼∗ RkX= ∼ RkX ,∼∗ RkX= ∼ RkX . (9)

Theorem 5. Regarding GRSs, the complement operation offers

∼∗ RkX=Rk(∼ X ),∼∗ RkX = Rk(∼ X ).

Corollary 1. We have two equations:

1) ∼∗ RkX= ( ∼ RkX ) ∪ bnd
k
R(X ) − bndk

R(X ),

2) ∼∗ RkX= ( ∼ RkX ) ∪ bndk
R(X ) − bnd

k
R(X ).

Definition 5 redefines the complement operator∼∗ ofGRSs approximations. Based on

Proposition 2, Theorem 5 naturally acquires the good result of complement operational
preservation. According to Corollary 1, the∼∗ operation mainly uses the upper and lower

boundaries (operators) to adjust the original ∼ operation.
Thus far, GRSs approximation sets are endowed with new union, intersection, com-

plement operations ∪∗ , ∩∗ and ∼∗ . These operations differ from classical set operations

∪, ∩ and ∼, but they have associated corrections and depend on set X or Y. From the
perspective of the set theory [1], the new operations ∪∗ , ∩∗ and ∼∗ change the classical

operations ∪, ∩ and ∼, and then the GRSs approximation operators maintain the set
union and intersection operations; thus, Proposition 2 is improved to Theorems 4 and
5. In this way, we can determine the power set space and relevant homomorphism for
GRSs. Here, (2U , ∪, ∩, ∼) means the classical power set space.

Definition 6. Regarding GRSs, the upper and lower power sets are.

Rk2
U = { RkX : X ⊆ U} ,Rk2

U = { RkX : X ⊆ U} , (10)

so they induce two corresponding structures of upper and lower approximate power set
spaces:

(R̄k2
U ,∪

*
, ∩

*
,∼
*
), (Rk2

U ,∪
*
, ∩

*
,∼
*
).
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Theorem 6 (2U , ∪, ∩, ∼) is homomorphic with

(Rk2
U ,∪∗ ,∩∗ ,∼∗ ), (Rk2

U ,∪∗ ,∩∗ ,∼∗ )

where Rk , Rk act as the homomorphic surjections.
Definition 6 uses the GRSs approximate power set and the ∪∗ , ∩∗ , ∼∗ operations to

establish the GRSs power set space, and the approximation operations have the closeness
and dependence. By Theorems 4 and 5, surjectionsRk and Rk maintain the set operations
of the two power set spaces, so the homomorphism of Theorem 6 reveals the in-depth
connection between the two algebraic structures. Moreover, Rk and Rk generally cannot
motivate the algebraic isomorphism between the two power set spaces.

The power set space of GRSs and its homomorphisms are primarily based on the
newlydefinedoperations∪∗ ,∩∗ and∼∗ , and the former space alsoquantitatively expands the

power set space of qualitative Pawlak-RSs in [12]. Furthermore, the difference operations
and inclusion relations of GRSs approximation sets can be corrected and perfected, and
thus the operation preservation can be similarly obtained. For example, if we define −∗
and ⊆

∗
as follows:

RkX −∗ RkY = RkX ∩∗ (∼∗ RkY ),

RkX ⊆
∗
RkY ⇔ RkX ∪∗ RkY = RkY or

RkX ⊆
∗
RkY ⇔ RkX ∩∗ RkY = RkX ,

then we can obtain

Rk(X − Y ) = RkX −∗ RkY ,X ⊆ Y ⇒ RkX ⊆
∗
RkY .

5 ECG (Electrocardiogram) Data Analysis Based on Four Binary
Boundaries in Power Set Space of Graded Rough Sets

ECG signals are an important tool for analyzing and judging the type of heart rate aber-
ration. At present, computer-based ECG analysis and diagnosis have entered a more
mature stage. Because ECG data are related to a more complex time series, the morpho-
logical characteristics of each wave are closely related to pathology; this case causes the
difficulty for computer ECG diagnostic analysis to reach the effect of expert diagnosis.
Therefore, “optimizing the old methods and exploring the new methods to improve the
accuracy of diagnosis” is still an important problem to be solved in ECG data analy-
sis. In this section, the above theoretical results regarding binary boundaries and power
set space of GRSs are experimentally verified by ECG data, and relevant studies are
expected to provide deep thinking and valuable auxiliaries for ECG data analysis and
relevant medical diagnosis.

Next, we mainly focus on calculation of four binary boundaries of ECG data. Con-
cretely, we select 10 groups of ECG data with good waveforms from 48 MIT-BIH



Binary Boundaries and Power Set Space of Graded Rough Sets 95

ECG databases (https://archive.physionet.org/cgi-bin/atm/ATM), whose numbers are
101, 103, 105, 121, 122, 123, 214, 217, 220, 234. The 6 extracted sets of amplitude
features implement the pretreatment by three-part division with equal lengths, and the
relevant data with matrix scale 10 × 6 are given in Table 1.

Table 1. ECG amplitude information table

ID PB-P P-Q Q-R S-R T-S T-TB

u1 1 3 1 1 1 1

u2 1 3 3 3 1 1

u3 3 3 2 2 1 1

u4 1 3 1 1 1 1

u5 1 2 3 1 1 1

u6 1 3 2 3 1 1

u7 1 3 3 2 1 1

u8 1 1 1 3 3 3

u9 1 3 3 3 1 1

u10 1 3 3 3 1 1

At first, set up X = { u1, u2, u5} ,Y = { u4, u5,u9} . (1) When k = 1, by Definitions
2 and 3, we can get

R1(X ) = R1(Y ) = { u1, u3, u4, u5, u6, u7, u8} ,R1(X ∪ Y ) = U ,

R1(X ∩ Y ) = { u3, u5, u6, u7, u8} , R̄1(X ) = R̄1(Y ) = R̄1(X ∩ Y ) = ∅,

Ibnd
1
R(X ,Y ) = { u1, u2,u4, u9, u10} ,Obnd

1
R(X ,Y ) = ∅,

Ibnd1
R(X ,Y ) = { u2, u9, u10} ,Obnd

1
R(X ,Y ) = { u1, u4} .

This result conforms to Theorem 1. (2) When k = 0, we similarly have

Ibnd
0
R(X ,Y )=Obnd0

R(X ,Y ) = ∅, Ibnd0
R(X ,Y ) = { u1, u4} = IbndR(X ,Y )

Obnd
0
R(X ,Y ) = { u1, u2,u4, u9, u10} = ObndR(X ,Y ).

This case verifies Theorem 3. (2) Now consider

X = { u2, u4, u6, u8, u10} , Y = ∼ X = { u1, u3, u5,u7, u9} , k = 1.

By Definition 3, the four boundaries become

Ibnd
1
R(X ,Y )=Obnd1

R(X ,Y ) = { u1, u4} , Ibnd
1
R(X ,Y )=Obnd

1
R(X ,Y )=∅

https://archive.physionet.org/cgi-bin/atm/ATM
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According to Definition 2, the cardinality of [ui]R and the internal and external
membership degrees of X , Y offer

|[ui]R| : (2, 3, 1, 2, 1, 1, 1, 1, 3, 3),

ig([ui]R,X ) : (1,2,0,1,0,1,0,1,2,2), og([ui]R,X ) : (1, 1, 1, 1, 1, 0, 1, 0, 1, 1),

og([ui]R,X ) : (1,1,1,1,1,0,1,0,1,1), ig([ui]R,Y ) : (1, 1, 1, 1, 1, 0, 1, 0, 1, 1).

By Definition 3, the four boundaries become

Ibnd
1
R(X ,Y )=Obnd1

R(X ,Y ) = { u1, u4} , Ibnd
1
R(X ,Y )=Obnd

1
R(X ,Y )=∅.

This result justifies Theorems 2 and 3.
Then, the ECGdata are analyzed by using binary boundaries based on change chains.

For this purpose, we suppose X = {u1, u3, u5, u7, u9}, and we concern subset and
threshold chains:

Y : Y1 = U ⊃ Y2 = U − {u9} ⊃ ... ⊃ Y10 = {u1},
k : k1 = 0 < k2 = 1 < ... < k11 = 10.

The following is a calculation of the four binary boundary sets on the ECG data table,
by using Algorithm 1, and a part of the results are shown in Table 2.

Through Table 2, Y = Y6 and k = 1 are used as examples for ECG data analysis. At
this time, the upper-inner boundary and lower-inner boundary are not empty:

Ibnd
1
R(X ,Y )=Ibnd1

R(X ,Y ) = { u2, u9, u10} .

Herein, the overlap numbers of u2, u9, u10 about X ∪ Y are all greater than k, while the
overlap values of u2, u9, u10 about X , Y are all less than or equal to k. So it is more
reasonable to use X ∪Y for diagnostic analysis of objects u2, u9, u10, and this treatment
is better than considering sets X and Y separately.

The obtained results are shown in Fig. 2. There, the xoy plane represents the dual-
chain net consisting of parameter k and set Y , and the z-axis represents the element
number in each boundary.

According to Table 2 and Fig. 2, the case of k = 1 and Y =
{Y3,Y4,Y5,Y6,Y7,Y8,Y9} produces the upper-inner boundary and lower-inner bound-
ary:

Ibnd
1
R(X ,Y )=Ibnd1

R(X ,Y ) = { u2, u9, u10} .

As a result, for the diagnostic analysis of u2, u9, u10, together taking X ∪ Y is
better than taking X and Y separately. Similarly, the case of k = 2 and Y =
{Y3,Y4,Y5,Y6,Y7,Y8,Y9} induce the lower-outer boundary:

Obnd1
R(X ,Y ) = { u2, u9, u10} .
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Table 2. Four boundaries based on subset and threshold chains of ECG data analysis

Y k Ibnd
k
R Obnd

k
R IbndkR ObndkR

Y1=U 0 ∅ ∅ ∅ ∅

1 ∅ ∅ ∅ ∅

… … … … …

9 ∅ ∅ ∅ ∅

10 ∅ ∅ ∅ ∅

Y2=U − {u9} 0 ∅ ∅ ∅ ∅

1 ∅ ∅ ∅ ∅

… … … … …

9 ∅ ∅ ∅ ∅

10 ∅ ∅ ∅ ∅

… … … … … …

Y6={u1, u2, u3, u4, u5} 0 ∅ { u2, u9, u10} ∅ ∅

1 { u2, u9, u10} ∅ { u2, u9, u10} ∅

… … … … …

9 ∅ ∅ ∅ ∅

10 ∅ ∅ ∅ ∅

… … … … … …

Y10={u1} 0 ∅ ∅ ∅ ∅

1 ∅ ∅ ∅ ∅

… … … … …

9 ∅ ∅ ∅ ∅

10 ∅ ∅ ∅ ∅

This result means the outer membership degrees between u2, u9, u10 and X ∩ Y are
greater than k; from Definition 2, the non-overlapping information between u2, u9, u10
and X ∩ Y is greater than k. Meanwhile,

Obnd
k
R(X ,Y ) = ∅,

so the overlapping information between u2, u9, u10 and X ∩ Y is less than k. Therefore,
it is not appropriate to take the set X ∩ Y for medical diagnosis analysis.

6 Conclusion

This paper targets at the non-preservation of set operations of GRSs approximation oper-
ators, and constructs four types of binary boundaries (and matching operators) to obtain
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a)
b)   

c)   d)   

Fig. 2. Three-dimensional figures of four boundaries on ECG data analysis

relevant uncertainty descriptions. Then combining the two kinds of unitary boundaries
(operators), new union, intersects and complement operations ∪∗ ,∩∗ ,∼∗ of GRSs approx-

imations are systematically constructed to obtain a perfect property that GRSs approx-
imation operators maintain set operations. Furthermore, the GRSs power set space is
constructed, and we obtain the homomorphic characteristics between the new space
and the classical power set space. Finally, ECG data analysis is made to validate four
binary boundaries and their properties in power set space, and the concrete data analysis
provides some beneficial guidances for ECG diagnosis.

This article deepens GRSs. With regard to the operator theory, four binary boundary
operators have been added to the existing operational system of GRSs:

(2U ,∪, ∩,∼, R̄k , Rk , bnd
k
R, bnd

k
R).

With regard to the set theory, the new operations ∪∗ , ∩∗ and ∼∗ expand the classical union,

intersection and complement operations, and they further induce the homomorphism
between power set spaces. The relevant results quantitatively expand the qualitative
results of Pawlak-RSs (i.e., this paper generalizes Ref. [12]), and they are worth further
generalizing to probability rough sets. Four binary boundary operators are used to divide
ECG data, and relevant uncertainty processing and intelligent decision should be deeply
explored, so as to better advance the ECG data mining and medical diagnosis.
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Abstract. Ensemble learning is a machine learning paradigm that inte-
grates the results of multiple base learners according to a certain rule to
obtain a better classification result. Ensemble learning has been widely
used in many fields, but the existing methods still have the problems
of difficult to guarantee the diversity of base learners and low prediction
accuracy. In order to overcome the above problems, we considered ensem-
ble learning from the perspective of attribute space division, defined the
concept of neighborhood approximate reduction through neighborhood
rough set theory, and further proposed an ensemble learning algorithm
based on neighborhood approximate reduction, called ELNAR. ELNAR
algorithm divides the attribute space of the data set into multiple sub-
spaces. The basic learners trained based on the data sets corresponding
to different subspaces have great differences, so as to ensure the strong
generalization performance of the ensemble learner. In order to verify
the effectiveness of ELNAR algorithm, we applied ELNAR algorithm
to software defect prediction. Experiments on 20 NASA MDP data sets
show that ELNAR algorithm can better improve the performance of
software defect prediction compared with the existing ensemble learning
algorithms.

Keywords: Neighborhood approximate reducts · Ensemble learning ·
Software defect prediction · Neighborhood rough set

1 Introduction

Ensemble learning is a learning method that uses a series of learners to learn,
and uses some rules to integrate each learning result, so as to obtain a better
learning effect than a single learner. The characteristics of ensemble learning
determine its good generalization ability. In recent years, ensemble learning has
been widely used in intrusion detection [1], text classification [2] and software
defect prediction [3] and software defect prediction [4].

In ensemble learning, there are two main strategies to generate base learners:
1) method based on training sample disturbance. 2) Method based on attribute
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Yao et al. (Eds.): IJCRS 2022, LNAI 13633, pp. 100–113, 2022.
https://doi.org/10.1007/978-3-031-21244-4_8
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space perturbation. For the former, the representative algorithms is Bagging [5]
algorithm. These algorithms generate the base learner by resampling the train-
ing samplesm, where Bagging algorithm resamples the examples and trains the
base learner in the way of equal probability. For the second method of gener-
ating basic learners, the representative algorithm is RSM [6] (random subspace
method), which randomly divides the attribute subspace of the training set into
different attribute subsets, and constructs different basic learners based on mul-
tiple attribute subsets.

Nowadays, many scholars have studied ensemble learning and put forward
many new ensemble learning methods [7–10]. For instance, in the research of
ensemble learning based on training sample disturbance, Liu et al. [7] proposed
a self-paced ensemble learning method based on “classification hardness”. This
method considers the “classification hardness” distribution on the data set and
undersamples according to the hardness distribution. Garćıa et al. [8] proposed
a new dynamic ensemble learning model. This model firstly preprocesses the
data and generates base learners, then associates the voting weights of samples
in the current data neighborhood, and adaptively adjusts them according to
the data distribution. Besides, Liu et al. [9] proposed a dual balanced ensemble
learning method, called DuBE, which focuses on inter-class and intra-class imbal-
ance. Besides, Jiang et al. [10] proposed an ensemble learning method based on
attribute reduction and self-help sampling. This method uses self-help sampling
to disturb the sample space, and uses approximate reduction based on relative
decision entropy to disturb the attribute space.

In recent years, the wide application of machine learning and data mining
technology in the field of software defect prediction has greatly improved the
accuracy of software defect prediction. As an important research direction of
machine learning, ensemble learning has also been widely used in the field of
software defect prediction. At present, many ensemble learning algorithms have
been applied to software defect prediction system [11–13]. For example, Chen
et al. [11] proposed a software defect prediction model based on classes over-
lapping reduction and ensemble unbalanced learning, which combined several
generated classifiers with AdaBoost mechanism to establish the software defect
prediction model. Abuqaddom et al. [12] proposed a software defect prediction
model based on improved hybrid SMOTE ensemble learning method. The model
uses cost sensitive learning (CSL) to improve the processing of unbalanced distri-
bution problems. The experimental results show that using cost sensitive learning
can improve the performance of software defect prediction. Balogun et al. [13]
proposed an ensemble learning method software defect prediction model com-
bining SMOTE with Bagging and Boosting. The model uses decision tree and
Bayesian network as the classifier to predict the software defect data set. The
experimental results confirm the effectiveness of the model.

Ensemble learning can effectively improve the generalization ability of learn-
ing system and keep smaller error. The introduction of ensemble learning method
in software defect prediction can still ensure good detection performance in the
case of insufficient prior knowledge. However, the existing ensemble learning
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methods still have some problems in predicting software defects. For example,
it is difficult to guarantee the diversity of base learners, and the feature redun-
dancy of software data is always high. Most of the current ensemble learning
methods use the method based on training sample disturbance to generate base
learners. When dealing with high-dimensional data, these algorithms will face
very large computational overhead. Meanwhile, in order to solve the problem
of feature redundancy, many scholars have proposed ensemble learning methods
based on attribute reduction and applied them to software defect prediction.
Most of the existing ensemble learning methods based on attribute reduction
use the traditional rough set theory. This kind of methods have to discretize the
attribute value before reduction. However, discretization operation may change
the data structure, resulting in low accuracy of software defect prediction. There-
fore, in order to quickly and accurately detect software defects from massive and
high-dimensional software defect data without changing the internal structure
of software data, it is necessary to improve the existing ensemble learning algo-
rithm.

Aiming at the problems of existing ensemble learning algorithms, we pro-
posed an ensemble learning algorithm ELNAR based on neighborhood approxi-
mate reduction, and use ELNAR to detect software defects. Firstly, we use the
attribute reduction technique of neighborhood rough set to reduce the dimen-
sion of high-dimensional attribute space, that is, generate multiple neighborhood
approximate reductions. Then, we build a base learner on the low-dimensional
subspace corresponding to each neighborhood approximate reduction. Finally, by
ensembling these base learners, we obtain ELNAR. Building base learner on low-
dimensional attribute subspace can effectively reduce the computational cost of
software defect prediction system and ensure the efficiency of the system. When
generating neighborhood approximate reduction, we firstly select an attribute to
the core by random selection, and then select the remaining attributes by heuris-
tic method. In this way, the diversity between different approximate reductions
can be guaranteed, so that there is also diversity among the corresponding base
learners. In addition, different from the traditional rough set for attribute reduc-
tion, the whole process of attribute reduction using neighborhood rough set does
not need to discretize the data attribute value, so as to ensure that the internal
structure of the data will not be changed.

In order to verify the effect of ELNAR in software defect prediction, we
adopt KNN [14] algorithm to train the base learners in this study, and carry
out experiments on 20 NASA MDP datasets and Promise datasets [15,16]. The
steps of using ELNAR to detect software defects on the data sets are described
as follows: 1) Using neighborhood approximate reduction algorithm to gener-
ate multiple neighborhood approximate reduction on the training sets. 2) Train
a base learner on the attribute subspace corresponding to each neighborhood
approximate reduction. 3) Obtain ensemble learner by ensembleing multiple base
learners together with majority voting. 4) Predict software defects on the data to
be detected by using ensemble learner and return the defect prediction results.
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Experimental results show that ELNAR has better performance than six existing
ensemble learning algorithms.

2 Preliminaries

In the neighborhood rough set, U is the given domain, A is the set of condition
attributes describing U , and D is the decision attributes; And Va is the set of
attribute a, f : U × {C ∪ D} → V is the mapping function; Δ → [0,∞] is the
distance function; δ is the neighborhood radius parameter and 0 ≤ δ ≤ 1, so
called NDS = 〈U,C,D, V, f,Δ, δ〉 neighborhood decision system, abbreviated
as NDS = 〈U,C,D, δ〉 [17].

Definition 1 (Neighborhood Relation). Given a neighborhood decision sys-
tem NDS = 〈U,C,D, δ〉, for any x, y ∈ U and attribute subset B ⊆ C, the
neighborhood relation N δ

B determined by attribute subset B on U is defined as
follows [17–19]:

N δ
B = {(x, y) ∈ U × U | ΔB(x, y) ≤ δ} (1)

Where ΔB (x, y) denotes the distance between object x and y on attribute
subset B. For numerical attribute, ΔB (x, y) is usually measured by Minkowski
distance [18]. For categorical attribute, ΔB (x, y) is usually measured by simple
matching distance.

Definition 2 (Neighborhood Class). Given a neighborhood decision system
NDS=〈U,C,D, δ〉, for any attribute subset B ⊆ C, assuming that the neighbor-
hood relationship determined by B on U is N δ

B , for any x ∈ U , the neighborhood
class δB of x under N δ

B is defined as follows [17–19]:

δB(x) =
{
y ∈ U : (x, y) ∈ N δ

B

}
(2)

Definition 3 (Lower and Upper Approximations). Given a neighborhood
decision system NDS = 〈U,C,D, δ〉, for any attribute subset B ⊆ C ∪ D and
sample subset X ⊆ U , the B-lower and B-upper approximations of set X are
respectively defned as follows [17–19]:

XB = {xi | δB (xi) ⊆ X,xi ∈ U} (3)

XB = {xi | δB (xi) ∩ X �= ∅, xi ∈ U} (4)

Definition 4 (Relative Positive Region). Given a neighborhood decision
system NDS = 〈U,C,D, δ〉, suppose U is divided by D into N equivalence
calsses: X1,X2, ...,XN , for any attribute subset B ⊆ C, the positive region
POSB (D) of decision attribute set D relative to condition attribute subset B
is defined as follows [17–19]:

POSB(D) =
N⋃

j=1

Xj
B

(5)
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Where Xj
B

denotes the B-lower approximation of the jth equivalent class
of U divided by D on attribute subset B.

Definition 5 (Indiscernibility Attribute). Given a neighborhood decision
system NDS = 〈U,C,D, δ〉, for any condition attribute c ∈ C, if |POSC(D)| =
|POSC−{c}(D)|, called c an indiscernibility attribute of C relative to D. Other-
wise, attribute c is a discernibility attribute of C relative to D.

Definition 6 (Core). Given a neighborhood decision system NDS =
〈U,C,D, δ〉, for any b ∈ C, if |POSC−{b}(D)| �= |POSC(D)|, called b a core
attribute of C relative to D [19].

Definition 7 (Attribute Significance). Given a neighborhood decision sys-
tem NDS = 〈U,C,D, δ〉, for any B ⊆ C and c ∈ C − B, The significance of
attribute C relative to B and D is defined as follows [17–19]:

SGF (c,B,D) =

∣
∣POSB∪{c}(D)

∣
∣ − |POSB(D)|

|U | (6)

3 Neighborhood Approximate Reduction and Ensemble
Learning Based on Neighborhood Approximate
Reduction

In the definition of neighborhood rough set reduction, given a neighborhood
decision system NDS = 〈U,C,D, δ〉, if R is a reduction of the initial attribute
set C, then R must have exactly the same classification ability as C, that is,
|POSR(D)| = |POSC(D)|, The above requirements on reduction are too strict,
resulting in a very small number of reduction on many data sets. In order to
ensure enough reduction in each data set, it is necessary to relax the above
requirements, that is, if R is a reduction of C, R and C have the same or
similar classification ability. Through the above modification, the concept of
neighborhood approximate reduction is obtained, which is defined as follows.

Definition 8 (Neighborhood Approximate Reduction). Given a neighbor-
hood decision system NDS = 〈U,C,D, δ〉, for any NAR ⊂ C, if |POSC(D)| ≥
|POSNAR(D)| ≥ σ × |POSC(D)|, then NAR is called a neighborhood approx-
imate reduction of C relative to D, where σ ∈ (0, 1] is a given threshold, called
σ the degree of approximation.

According to Definition 8, although the classification ability of neighborhood
approximate reduction NAR may be lower than that of initial attribute set C,
their classification ability is approximately equal. The approximation degree of
the classification ability of NAR and C can be controlled by the threshold σ.
if σ is larger, the classification ability of NAR is closer to C. When σ = 1,
the classification ability of NAR is equal to C. At this time, NAR becomes a
traditional reduction.
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In order to obtain enough reduction to build the base learners, we appro-
priately slacken the strict requirements of traditional methods for reduction.
Although this slackness may lead to the lower classification ability of NAR than
C, which may affect the accuracy of the base learners built by NAR, this sacrifice
is worth it, because the gap between the classification ability of NAR and C can
be controlled by the threshold σ. By setting the δ value reasonably, it can not
only ensure the better performance of the base learners built by NAR, but also
obtain enough approximate reduction. In addition, ensemble learning not only
focuses on the performance of each base learners, but also the diversity of base
learners is a key factor for the success of ensemble learning.

The ELNAR algorithm mainly includes the following steps.

Algorithm 1. Calculate Relative Positive Region.
Input: Neighborhood decision system NDS = 〈U, C, D, δ〉;
Output: POSC(D) and set

{
a ∈ C | POSC−{a}(D)

}
.

1: for each object x ∈ U do
2: alculate the neighborhood classes δC(x) and δD(x) of x under the neighborhood

relation Nδ
C and Nδ

D by using ball − tree method [20];
3: end for
4: for each attribute a ∈ A do
5: for each object x ∈ U do
6: calculate the neighborhood classes δC−{a}(x) under the neighborhood relation

Nδ
C−{a} by using ball − tree method [20];

7: end for
8: Calculate relative positive region POSC−{a}(D) of D relative to condition

attribute subset C − {a}.
9: end for

10: return POSC(D) and set
{
a ∈ C | POSC−{a}(D)

}
.

In Algorithm 1, we adopt ball − tree method [20] to calculate the neighbor-
hood classes δC(x) and δD(x) of x under the neighborhood relation N δ

C and
N δ

D, respectively. The time complexity of steps 1–3 is O(|A| × log |U | × |U |). In
steps 4–9, we also use the ball− tree method to calculate the neighborhood class
δC−{a}(x) of x under the neighborhood relationship N δ

C−{a}. The time complex-
ity of steps 4–9 is O

(|A|2 × log |U | × |U |). In conclusion, the time complexity of
Algorithm 1 is O

(|A|2 × log |U | × |U |), and space complexity is O(|A| + |U |).
Based on Algorithm 2, we further propose an ensemble learning algorithm

ELNAR based on neighborhood approximate reduction. The detailed description
of ELNAR is shown in Algorithm 3.

4 Experimental Results and Analysis

4.1 Experimental Data

To evaluate the performance of ELNAR on software defect prediction, we
designed and carried out a series of experiments using 20 datasets collected
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Algorithm 2. Calculate Neighborhood Approximate Reduction.
Input: NDS = 〈U, C, D, δ〉, where U = {x1, ..., xn}, C = {a1, ..., am}, the number S

of approximate reduction, the approximate degree σ;
Output: S approximate reduction sets Set NAR.
1: Initialization: let Set NAR = ∅, and core CoreD(C) = ∅;
2: Obtain POSC(D) and set

{
a ∈ C | POSC−{a}(D)

}
via Algorithm 1;

3: for any a ∈ C do
4: if POSC−{a}(D) �= POSC(D) then
5: CoreD(C) = CoreD(C) ∪ {a}.
6: end if
7: end for
8: Let RASet = C−CoreD(C) denote the subset of remaining attributes after remov-

ing the core from C.
9: while —Set NAR| < S do

10: Let NAR = CoreD(C) denote the current neighborhood approximate reduction;
11: Randomly select an attribute r from RASet, and NAR = ∪ {r} and RASet =

RASet − {r}.
12: while |POSNAR(D)| < σ × |POSC(D)| do
13: for any c ∈ RASet do
14: calculate the significance SGF (c, NAR, D) of c relative to NAR and D;
15: end for
16: Select the attribute m with the greatest significance from RASet;
17: NAR = NAR ∪ {m} and RASet = RASet − {m}.
18: end while
19: if NAR /∈ Set NAR then
20: Set NAR = Set NAR ∪ {NAR}.
21: end if
22: end while
23: return S different neighborhood approximate reduction sets Set NAR.

Algorithm 3. ELNAR.
Input: Train set T , the number S of NAR, the approximate degree σ;
Output: Ensemble learner EL.
1: Initialization: set E = ∅;
2: Obtain the set Set NAR on train set T via Algorithm 2 according to S and σ.
3: for each NAR ∈ Set NAR do
4: Reduce the dimension of the attribute space of T by using NAR, and obtain the

reduction training set TNAR;
5: Train the reduction training set TNAR by using given classification algorithm,

and obtain a base learner blNAR;
6: E = E ∪ {blNAR}.
7: end for
8: Ensemble all base learners in set E by majority voting method, and obtain the

ensemble learner EL;
9: return ensemble learner EL.
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from real-world software projects. To verify the predictive effect of ELNAR on
software defects, we designed and performed a series of experiments using 20
datasets collected from real-world software projects. Where 10 datasets are from
NASA MDP repository [15], and the remaining 10 datasets are retrieved from
Promise repository [16].

The NASA MDP repository has been widely used in the field of software
defect prediction and currently contains 13 publicly available datasets. In exper-
iment, we selected 10 NASA MDP datasets. The description of the 10 NASA
MDP datasets is shown in Table 1.

Table 1. Detailed information of the 10 NASA MDP data sets.

Data set No. of attributes No. of data No. of defective data Ratio of defective data/%

CM1 38 505 48 9.50

KC1 22 2107 325 15.42

KC3 40 458 43 9.39

MC1 39 9466 68 0.72

MW1 38 403 31 7.69

PC1 38 1107 76 6.87

PC2 37 5589 23 0.41

PC3 38 1563 160 10.24

PC4 38 1458 178 12.21

PC5 39 17186 516 3.00

In addition to the 10 NASA MDP datasets, we also choose 10 publicly available
datasets from the Promise repository. The description of the 10 Promise datasets
is shown in Table 2.

Table 2. Detailed information of the 10 Promise data sets.

Data set Release No. of attributes No. of data No. of defective data Ratio of defective data/%

Ant 1.5 38 293 32 10.92

Camel 1.0 22 339 13 3.83

Ivy 1.4 40 241 16 6.64

Jedit 4.3 39 492 11 2.24

Log4j 1.0 38 135 34 25.19

Lucene 2.0 38 195 91 46.67

Poi 2.0 37 314 37 11.78

Synapse 1.0 38 157 16 10.19

Velocity 1.6 38 229 78 34.06

Xerces 1.3 39 453 69 15.23

4.2 Experimental Design

In order to verify the effectiveness of ELNAR algorithm in improving the per-
formance of software defect prediction, we compare ELNAR with the following
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six ensemble learning methods: (1)Bagging [5]; (2)RSM [6]; (3)Bag(RSM) [21];
(4)SPE [7]; (5)DuBE [9]; (6)DES-MI [8]. Where method (1) is the representa-
tive of resampling algorithm, method (2) is the representative of feature subspace
algorithm, and method (3) is a multimodal ensemble learning algorithm, which
is obtained by the combination of Bagging and RSM methods (3), (4) and (5)
are ensemble learning algorithms based on disturbed sample space, method (6)
is a dynamic ensemble learning algorithm for multi-class imbalanced datasets.

The parameter settings of different algorithms are as follows: firstly, for the
parameter settings of ELNAR algorithm, the neighborhood radius δ, approxi-
mation degree σ and the number S of neighborhood approximate reductions is
gradually adjusted through many experiments, and select the parameter value
that can obtain the optimal experimental results. Eventually, Finally, we set
the values of δ and σ to 0.08 and 0.9 respectively, and set the number S of
neighborhood approximate reductions to 10. Secondly, for the three comparison
algorithms of Bagging, RSM and Bag (RSM), we set the dimension of the ran-
dom subspace of RSM and Bag (RSM) to 1/2 of the total dimension, and set
the ensemble scale of the three algorithms to 10. For the other three comparison
algorithms, each parameter of them is set according to the parameter values
provided in the relevant literature.

The experimental steps are divided into the following three stages:

1) Data preprocessing. For Bagging, RSM, Bag(RSM) and ELNAR algorithms,
we use SMOTE algorithm to deal with the imbalance data sets, and the
sample ratio is set to 0.8. Since SPE, DuBE and DEM-MI algorithms are
ensemble learning methods based on imbalance processing, there is no need
to preprocess the data sets of these three algorithms.

2) Generate base learners. For the , we use KNN classification algorithm to build
base learners. After obtaining the prediction results of all base learners, the
results of ensemble learning are generated by majority voting rules. This paper
focuses on the performance of ensemble learner in software defect prediction,
rather than adjusting the parameters of KNN. Therefore, each parameter of
KNN is set as the default value.

3) Build ensemble learner and software defect prediction. Ensemble the previ-
ously generated base learners together to get an ensemble learner. Finally,
the ensemble learner is used to detect software defects on the test sets.

4.3 Experimental Metrics

In order to evaluate the results of software defect prediction by different ensemble
learning methods, we use three performance metrics: AUC (Area Under Curve),
F1-score and MCC (Matthews correlation coefficient). Where the AUC value is
the area value surrounded by ROC curve and coordinate axis, which can clearly
show the classification effect of the classifier. The closer the AUC value is to 1,
the better the classification performance is. When its value is less than or equal
to 0.5, the worse the classification ability is. F1-score is the harmonic average of
Precision and Recall. The value range of F1-score is from 0 to 1. 1 represents
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the best output of the model and 0 represents the worst output of the model.
MCC is a more balanced indicator used to measure the performance of binary
classification. The value range of MCC is from −1 to 1. The closer the value is
to 1, the better the prediction effect of the tested object is.

4.4 Experimental Results

Tables 3, 4 and 5 shows the software defect prediction results of different ensem-
ble learning methods when using KNN to build the base learner. Where Table 3
shows AUC values of different methods, Table 4 shows F1-score values of dif-
ferent methods, and Table 5 shows MCC values of different methods.

Table 3. The AUC values produced by various Ensemble learning methods (KNN).

Data sets Ensemble learning methods

Bagging RSM Bag(RSM) SPE DuBE DES-MI ELNAR

CM1 0.8636 0.8577 0.8659 0.8687 0.8722 0.8494 0.8897

KC1 0.8109 0.8133 0.8146 0.8237 0.8257 0.8143 0.8306

KC3 0.8906 0.8856 0.8820 0.8962 0.8908 0.8647 0.9009

MC1 0.9888 0.9889 0.9912 0.9883 0.9925 0.9826 0.9916

MW1 0.8860 0.8917 0.8826 0.9065 0.8964 0.8934 0.9197

PC1 0.8946 0.9053 0.9137 0.9115 0.9166 0.8928 0.9245

PC2 0.9829 0.9804 0.9862 0.9812 0.9835 0.9753 0.9864

PC3 0.8719 0.8755 0.8740 0.8753 0.8798 0.8606 0.8860

PC4 0.8771 0.8716 0.8858 0.8771 0.8841 0.8729 0.8892

PC5 0.9702 0.9685 0.9732 0.9717 0.9737 0.9610 0.9729

ant-1.5 0.8869 0.8826 0.8953 0.9012 0.9052 0.8768 0.9329

camel-1.0 0.9203 0.9398 0.9350 0.9468 0.9329 0.9332 0.9403

ivy-1.4 0.9109 0.9176 0.9115 0.9130 0.9153 0.9134 0.9308

jedit-4.3 0.9357 0.9365 0.9401 0.9488 0.9456 0.9415 0.9597

log4j-1.0 0.8360 0.8030 0.8300 0.8378 0.8369 0.8266 0.9098

lucene-2.0 0.6321 0.6584 0.6435 0.6655 0.6793 0.6817 0.7089

poi-2.0 0.8741 0.8714 0.8618 0.8722 0.8705 0.8782 0.8902

synapse-1.0 0.8617 0.8566 0.8403 0.8676 0.8636 0.8764 0.9236

velocity-1.6 0.7237 0.7317 0.7280 0.7672 0.7567 0.7530 0.8274

xerces-1.3 0.8328 0.8528 0.8460 0.8648 0.8617 0.8555 0.8939

In Table 3, the highest values on each dataset are bold. It can be seen from
table 3 that when using AUC to evaluate the prediction ability of different
ensemble learning methods to software defects, ELNAR is always better than
the other six ensemble learning methods. Except for MC1, PC5 and camel-1.0,
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ELNAR obtained the highest AUC value on the other 17 data sets. Specifically,
the performance of ELNAR is better than RSM and Bagging methods on all 20
data sets. RSM method adopts the random subspace method, which has random-
ness in the effect of attribute space disturbance, while ELNAR method based
on neighborhood approximate reduction can better disturb attribute space. In
addition, ELNAR is also better than Bag (RSM), SPE, DuBE and DES-MI.
For example, ELNAR is better than DuBE method on 18 data sets. The above
results show that ELNAR has good software defect prediction performance from
the perspective of AUC.

Table 4. The F1-score values produced by various Ensemble learning methods (KNN).

Data sets Ensemble learning methods

Bagging RSM Bag(RSM) SPE DuBE DES-MI ELNAR

CM1 0.8541 0.8460 0.8541 0.8497 0.8583 0.8417 0.8826

KC1 0.8064 0.8149 0.8148 0.8191 0.8217 0.8120 0.8265

KC3 0.8843 0.8753 0.8754 0.8775 0.8798 0.8573 0.8930

MC1 0.9877 0.9882 0.9906 0.9875 0.9918 0.9812 0.9908

MW1 0.8848 0.8855 0.8806 0.8954 0.8856 0.8805 0.9102

PC1 0.8866 0.8934 0.9084 0.9010 0.9084 0.8794 0.9150

PC2 0.9819 0.9787 0.9848 0.9801 0.9829 0.9739 0.9849

PC3 0.8600 0.8732 0.8699 0.8697 0.8693 0.8534 0.8757

PC4 0.8685 0.8597 0.8784 0.8682 0.8742 0.8668 0.8786

PC5 0.9684 0.9668 0.9721 0.9701 0.9717 0.9602 0.9716

ant-1.5 0.8862 0.8793 0.8856 0.9006 0.8933 0.8758 0.9214

camel-1.0 0.9141 0.9309 0.9317 0.9432 0.9258 0.9318 0.9374

ivy-1.4 0.9014 0.9071 0.9091 0.9015 0.9098 0.9093 0.9254

jedit-4.3 0.9308 0.9260 0.9384 0.9461 0.9382 0.9378 0.9534

log4j-1.0 0.8344 0.7812 0.8328 0.7782 0.8361 0.8428 0.9090

lucene-2.0 0.6029 0.6586 0.6449 0.6641 0.6793 0.6488 0.7033

poi-2.0 0.8731 0.8666 0.8577 0.8643 0.8667 0.8763 0.8867

synapse-1.0 0.8552 0.8411 0.8411 0.8676 0.8421 0.8532 0.9211

velocity-1.6 0.7237 0.7315 0.7237 0.7750 0.7560 0.7538 0.8276

xerces-1.3 0.8343 0.8452 0.8461 0.8648 0.8554 0.8549 0.8930

It can be seen from Table 4 that when F1-score is used to evaluate the
prediction ability of different ensemble learning methods to software defects,
ELNAR is always better than the other six ensemble learning methods. ELNAR
obtained the highest F1-score on 17 data sets. Specifically, the performance of
ELNAR is better than Bagging, RSM and DES-MI methods on all 20 data sets.
In addition, ELNAR is better than SPE method on 19 data sets. The above
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results show that ELNAR has better software defect prediction performance
from the perspective of F1-score.

Table 5. The MCC values produced by various Ensemble learning methods (KNN).

Data sets Ensemble learning methods

Bagging RSM Bag(RSM) SPE DuBE DES-MI ELNAR

CM1 0.7338 0.7110 0.7274 0.7268 0.7477 0.6935 0.7806

KC1 0.6183 0.6301 0.6296 0.6422 0.6473 0.6275 0.6592

KC3 0.7777 0.7645 0.7596 0.7711 0.7750 0.7234 0.7951

MC1 0.9757 0.9765 0.9813 0.9751 0.9837 0.9628 0.9817

MW1 0.7826 0.7810 0.7656 0.8069 0.7946 0.7824 0.8320

PC1 0.7828 0.7998 0.8258 0.8162 0.8310 0.7775 0.8392

PC2 0.9641 0.9577 0.9699 0.9604 0.9659 0.9482 0.9703

PC3 0.7315 0.7492 0.7429 0.7438 0.7558 0.7180 0.7657

PC4 0.7544 0.7388 0.7668 0.7483 0.7727 0.7413 0.7764

PC5 0.9375 0.9341 0.9444 0.9406 0.9439 0.9205 0.9436

ant-1.5 0.7782 0.7630 0.7802 0.8015 0.8020 0.7518 0.8543

camel-1.0 0.8332 0.8680 0.8673 0.8925 0.8590 0.8658 0.8778

ivy-1.4 0.8151 0.8252 0.8193 0.8207 0.8296 0.8218 0.8539

jedit-4.3 0.8705 0.8602 0.8786 0.8963 0.8835 0.8775 0.9109

log4j-1.0 0.6693 0.5963 0.6708 0.6367 0.6728 0.6930 0.8185

lucene-2.0 0.2504 0.3187 0.3112 0.3285 0.3587 0.4073 0.4105

poi-2.0 0.7468 0.7445 0.7174 0.7336 0.7411 0.7529 0.7797

synapse-1.0 0.7251 0.7013 0.6834 0.7352 0.7273 0.7313 0.8472

velocity-1.6 0.4473 0.4640 0.4806 0.5631 0.5128 0.5084 0.6643

xerces-1.3 0.6701 0.6983 0.6924 0.7295 0.7187 0.7100 0.7862

As can be seen from Table 5, when using MCC to evaluate the prediction
ability of different ensemble learning methods to software defects, the perfor-
mance of ELNAR is always better than the other six ensemble learning methods.
ELNAR obtained the highest MCC values on 17 data sets. Specifically, ELNAR
is better than Bagging, RSM, and DES-MI methods on all 20 data sets. In addi-
tion, the performance of ELNAR is better than both DuBE and SPE methods
on 17 data sets.

In order to test whether the performance difference between ELNAR and
existing methods is statistically significant, we performed paired t-test [22] on
the results listed in Tables 3, 4 and 5, that is, paired t-test was performed on the
clustering results generated by the existing initialization methods and ELNAR,
where the significance level is 0.05. The results of the paired t-test are shown in
Table 6.
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Table 6. Paired t-test results.

ELNAR and each existing method p-value under AUC p-value under F1-score p-value under MCC

ELNAR vs. Bagging 0.0001 0.0001 0.0001

ELNAR vs. RSM 0.0002 0.0003 0.0002

ELNAR vs. Bag(RSM) 0.0002 0.0005 0.0002

ELNAR vs. SPE 0.0003 0.0018 0.0004

ELNAR vs. DuBE 0.0004 0.0005 0.0008

ELNAR vs. DES-MI 0.0000 0.0000 0.0000

As can be seen from Table 6, under the three metrics AUC, F1-score and
MCC−, the p-value between ELNAR and each compared method is always less
than 0.05. Therefore, the above results demonstrate that the difference between
the proposed method and the existing methods is statistically significant.

5 Conclusions

This paper studies ensemble learning from the perspective of attribute space
disturbance, defines the concept of neighborhood approximate reduction based
on neighborhood rough set, proposes an ensemble learning algorithm ELNAR
based on neighborhood approximate reduction, and applies it to software defect
prediction, which solves the problems of high feature redundancy and low pre-
diction accuracy in software defect prediction. Instead of traditional rough set
attribute reduction integration method, ELNAR does not need to discretize the
numerical attributes, and can reduce the mixed data to ensure the stability of
the internal structure of the data. In addition, we use attribute reduction tech-
nology to divide the attribute space, and use greedy strategy when selecting the
remaining attributes. Therefore, ELNAR can not only ensure the diversity of
base learners, but also ensure that each base learner has better performance.
The next step is to apply different attribute reduction integrated learning meth-
ods to software defect prediction to further improve the performance of software
defect prediction.
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21. Marqués, A.I., Garćıa, V., Sánchez, J.S.: Two-level classifier ensembles for credit
risk assessment. Expert Syst. Appl. 39(12), 10916–10922 (2012)

22. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

http://arxiv.org/abs/2111.12791
https://doi.org/10.1007/978-3-030-00211-4_2
https://doi.org/10.1007/978-3-030-00211-4_2
https://doi.org/10.1007/978-3-030-58817-5_45
http://nasa-softwaredefectdatasets.wikispaces.com/
https://code.google.com/p/promisedata/
http://arxiv.org/abs/1511.00628


Granular Computing and Applications



USV Path Planning Based on Adaptive
Fuzzy Reward

Zhenhua Duan, Guoyin Wang(B), Qun Liu, and Yan Shi

Chongqing Key Laboratory of Computational Intelligence, Chongqing University
of Posts and Telecommunications, Chongqing 400065, People’s Republic of China
{s200201061,s210231158}@stu.cqupt.edu.cn, {wanggy,liuqun}@cqupt.edu.cn

Abstract. Unmanned surface vehicles (USVs) with autonomous capa-
bilities is the future trend. The capability of path planning is particularly
critical to ensure the safety of navigation at sea. The algorithms with
known environmental information are no longer suitable for the com-
plex and changeable marine environment. Deep reinforcement learning
(DRL) can be better applied to uncertain environments as it obtains
optimal policies through the interaction of agents. However, the sparse
reward problem of reinforcement learning is more prominent in the path
planning task. Agents can not get positive reward in a great number of
interactions. To study the path planning problem of USV in uncertain
environments, this paper proposes a deep Q-learning (DQN) model based
on adaptive fuzzy reward. To address the sparse reward problem in path
planning using reinforcement learning, we use fuzzy logic that conforms
to human cognition to dynamically adjust the reward for different states
so as to improve the performance of DQN algorithm. Through simulation
experiments, the validity of our method under different environments is
verified. The results show that our model can carry out path planning
safely and effectively.

Keywords: Fuzzy logic · USV · Deep reinforcement learning · Path
planning

1 Introduction

The exploration and utilization of marine resources is an important developing
direction in the future. Therefore, the development of sea surface unmanned
technology is an inevitable requirement. However, in terms of autonomous driv-
ing, most works focus on the researches of unmanned vehicles. In contrast, there
is fewer researches on the unmanned surface vehicle (USV) [13]. For the com-
plex and dangerous marine environment, USV technology can reduce casualties
when performing marine missions such as environmental monitoring, search and
rescue work, and maritime patrol [17]. Path planning is a core research topic
to perform tasks in a complex environment. It is very important to find a safe
and collision-free path from the current point to the specified target point. But
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the marine environment is complex and unpredictable, which requires to learn
independently and have the anti-interference ability for path planning algorithm.

Traditional path planning algorithms rely heavily on the surrounding envi-
ronment and can not be apt for complex environments. Meanwhile, with the
increasing complexity of application areas, algorithms that only consider the
distance and reachability of paths can no longer meet the application require-
ments. In addition, the unpredictability of ocean wind and waves produces new
challenges to the path planning capability of USV. In other words, we need to
study more efficient and safer path planning algorithms.

In recent years, with the development of artificial intelligence, reinforcement
learning technology has been rapidly applied to robotics, which provides new
ideas and directions for path planning of mobile robots in complex environ-
ments. Mnih et al. [9] combined convolutional neural network with Q-learning
algorithm and proposed a deep Q-network model (DQN) to solve the problem of
high-dimensional perception of raw pixels in control decisions. Due to the pow-
erful performance of DQN model, it has been well-applied in many control tasks,
including robot path planning. At present, many followed papers try to combine
the DQN model with different algorithms to improve the performance of path
planning. However, these combined algorithms are only able to improve perfor-
mance and fail to pay attentions on the sparse reward challenge faced by agents
in realistic path planning task scenarios, only few situations in the state space
return positive reward signals. To address the above problems, in this paper, we
combine deep reinforcement learning (DRL) with fuzzy logic to propose a new
path planning method for marine environments.

We summarize the contributions of our work as follows: First, with combined
reinforcement learning, we realized path planning without global environmental
information and prior knowledge. Secondly, the agent trained by our method
can autonomously plan route and avoid obstacles in the simulated ocean envi-
ronment. Third, by introducing fuzzy logic, we propose adaptive fuzzy reward
to solve the problem of sparse reward in reinforcement learning, which is more
consistent with human cognitive habits and makes the results more acceptable.

The rest of this paper is organized as follows. Section 2 presents some related
works in the area of path planning, deep reinforcement learning and spare reward.
In Sect. 3, we introduce the proposed method in detail. Section 4 demonstrates
the performance of our model in the simulated environment. At the end, Sect. 5
concludes the work and also discusses future research.

2 Related Work

Compared with the path planning of unmanned vehicles and robots on land,
there are few studies on path planning in marine environment. Moreover, by
reviewing the relevant literature on optimal path planning for ships, most of
them are still traditional algorithms. Singh et al. [14] proposed an A* algorithm
that uses the safe distance as a constraint on the generated path to solve the
path planning problem of USV in marine environment. Song et al. [15] proposed
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an improved ant colony algorithm based grid environment model for global path
planning method for USV. The method is used to solve the global path planning
problem of USV system in complex marine environment where there are a lot
of obstacles. Zhang et al. [20] proposed a method based on genetic algorithm
and simulated annealing algorithm to plan the optimal path of USV to solve
the problems of lack of searching ability and large amount of calculation of tra-
ditional genetic algorithm. Although the aforementioned traditional algorithms
have advantages in solving the path planning problem of USV, the traditional
algorithms rely too much on environmental models and global environmental
information, which have great limitations in application scenarios. The complex
and volatile ocean environment, which requires the USV to have the ability of
autonomous learning.

In recent years, some scholars have applied reinforcement learning to path
planning and obstacle avoidance tasks to improve the autonomous learning abil-
ity of the algorithm. Lin et al. [6] considered the special requirements of USV
navigation, a USV path planning model based on improved Q-learning algorithm
is proposed. It reduces the computational complexity of classical Q-learning algo-
rithm and speeds up the speed of path planning. Lei et al. [4] utilized Q-learning
algorithm to improve the ability of obstacle avoidance and local planning in
dynamic environment. Although the Q-learning algorithm has shown successful
performance in the field of path planning, the application scenario is limited
to the low dimensional fully observable state space. Zhang et al. [19] proposed
an end-to-end path planning model based on deep reinforcement learning, uti-
lized DQN model to solve the problem of high-dimensional observation space.
Li et al. [5] investigated the path planning problem of USV in uncertain envi-
ronments, and integrated deep reinforcement learning with artificial potential
field to propose a path planning strategy that complies with the International
Regulations for Preventing Collisions at Sea (COLREGs). In complex environ-
ments, due to the large environment state space, the sparse reward problem
is an inevitable problem for DRL model. In 2017, Pathak et al. [12] proposed
curiosity mechanism, which is regarded as an internal reward signal to encourage
agents to explore the unknown state space and give a certain degree of reward
when discovering new states. Recently, Jin et al. [3] proposed to divide rein-
forcement learning into exploration phase and planning phase by computing an
approximately optimal policy to deal with states that the agent rarely appears
in exploration. Similar researches on solving the sparse reward problem include
imitation learning [1], auxiliary tasks [11], and reward reshaping [2].

There have been applications of deep reinforcement learning for path plan-
ning in marine environments. However, these studies compress the state space
without considering the sparse reward problem. In this paper, we designed
simulation environments with randomly distributed obstacles with large state
spaces. We combine fuzzy logic and the classical DRL model and use adaptive
fuzzy reward to give corresponding reward according to different states to solve
the sparse reward problem. In conclusion, the proposed method not only effec-
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tively solves the sparse reward problem but also can quickly adapt to unknown
environments.

3 Fuzzy-DQN Model and Adaptive Fuzzy Reward

In this section, we describe the proposed method in detail. And we first briefly
introduce the concept of deep reinforcement learning and fuzzy logic. Then, the
overall framework of the DQN model and the design of the fuzzy reward function
will be illustrated.

3.1 Problem Formulation

Unlike supervised learning, reinforcement learning is a method that the agent
interacts with the environment and learns by trial and error. The goal is to learn
state-action mapping from the environment and maximize rewards to obtain
optimal policies. The notations involved in reinforcement learning are shown in
Table 1.

Table 1. The meaning of notations in reinforcement learning.

Symbol Meaning

s The environment state at current time
a Action performed by the agent
r The reward after the agent performs an action
π The policy taken by the agent
γ Discount factor

Markov decision process is the mathematical description of reinforcement
learning. The next state in the Markov process only depends on the current
state and action, not the historical state [10]. We use the value function to
evaluate the current state. The value is a scalar that represents the expected
return of performing an action in the current state for the future. Calculate the
value function by using the Bellman equation, the function is shown as follows:

Vπ(s) = Eπ [Rt+1 + γVπ (St+1) | St = s] (1)

Note that different actions can be performed in each state, we use the Q
function to represent the future return, which is defined as follows:

Qπ(s, a) = Eπ [Rt+1 + γQπ (St+1,At+1) | St = s,At = a] (2)

In the path planning problem, there are infinite states in the state space, and
it is impossible for traditional reinforcement learning to use a table to record all
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the values of Q(s, a). Therefore, combined with deep learning, DQN model is
proposed and the deep neural network is used to approximate fit Q(s, a). The Q
value is calculated according to the following formula:

Q (st, at) ← Q (st, at) + α [Rt + γQ (st+1, at+1) − Q (st, at)] (3)

where α is the learning rate, Q (st, at) is an approximation.
The sparse reward problem is widespread in reinforcement learning tasks,

especially in path planning missions. The agent can obtain the reward only
when it reaches the specified position within the specified time step, and in
other intermediate states, it is punished, that is, a negative reward. The sparse
reward is shown in Eq. 4. The sparse reward problem causes the agent to fall
into a local loop when exploring the environment, which affects the learning of
optimal policies.

R(x) =

⎧
⎨

⎩

−10, obstacle collision, boundary collision
+10, arrive goal position
−0.01, normal navigation

(4)

3.2 Fuzzy Logic

To overcome sparse reward problem, according to the features of the path plan-
ning task, we add additional intensive reward information to improve the learning
ability of the agent.

The concept of the fuzzy set [18] was first proposed by Lotfi A. Zadeh in 1965.
Fuzzy sets have demonstrated superior performance in the solution of network
embedding problems [7]. The fuzzy set uses the membership function to express
the degree to which the element belongs to the set. The value of membership
falls on the interval [0, 1]. In the ocean, due to the influence of wind and waves,
the distance and yaw angle between the current position and the target are not
fixed values. These values are uncertain. Fuzzy logic is used to imitate human
reasoning and cognition, which describes fuzzy concepts through membership
function. Therefore, in this work, we design dense reward based on distance and
yaw angle by using fuzzy logic.

Navigation at sea is not restricted by road traffic lines, but only requires
attention to obstacles and other vessels. Therefore, during navigation, we only
focus on the location of the target and the obstacles near USV. Inspired by
this characteristic, we use Euclidean distance and yaw angle as the benchmark
for navigation. This paper designs a fuzzy controller with dual input and single
output. We take the distance between USV and obstacle and the difference of
heading angle between USV and target position as input, the output is the
fuzzy coefficient to realize the dynamic adjustment of the reward value, then the
reasonable dense reward is obtained.

In order to describe the input of fuzzy rules, a coordinate system is estab-
lished, as shown in Fig. 1. In this figure, XOY indicates the water plane, dobs

represents the distance between the USV and the obstacle, α is the heading



122 Z. Duan et al.

Fig. 1. Positional relationship between USV, obstacle and target.

angle of USV, β indicates the direction angle of the target point, Δθ indicates
the difference of heading angle between USV and target position. We take Δθ,
dobs and Δθ, dgoal as the input of fuzzy controller respectively, and the output ρ
is the coefficient of the reward value. The reward value of each state of the agent
is adjusted by the coefficient ρ to make the reward value more reasonable.

In the fuzzy control system, the membership function is used to complete the
fuzzification of precise quantity. We adopt the triangular membership function,
the universe of discourse for the distance variable is set to [0, 20], and the fuzzy
linguistic variable is {VS, S, M, B, VB}. Another input is the angle variable,
the universe is set to [−π/2, π/2], and the fuzzy linguistic variable is {RB, RS,
Z, LS, LB}. The output variable is the coefficient of the universe in [0,1], and
the linguistic fuzzy sets{VS, S, M, B, VB}. The meaning of the alphabet is {V:
Very, S: Small, M: Middle, B: Big, R: Right, Z: Zero, L: Left}. The membership
functions of the input variables are shown in Fig. 2. The membership function
of coefficient variables is shown in Fig. 3.

According to the input of the fuzzy controller, we can obtain 25 fuzzy rules,
respectively. The fuzzy rules are established according to human navigation expe-
rience, and the general idea is as follows:

Fuzzy rules about obstacles: the larger the difference Δθ between the agent’s
heading angle and the direction angle, the smaller the distance dobs between the
agent and the obstacle, and the larger the coefficient ρ, that is, the greater the
penalty for the agent. On the contrary, the smaller the coefficient ρ. In addition,
fuzzy rules about goal are used when the target position is in the detection range
of the agent. The closer to the target point, the smaller the angle difference and
the larger the coefficient.

All fuzzy rules are shown in the Table 2 and Table 3.
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Fig. 2. Membership function of distance and angle.

Fig. 3. Membership function of coefficient.

Table 2. Fuzzy rules about obstacles.

Distance Angle

RB RS Z LS LB

VS VB VB B VB VB

S VB B B B VB

M B B M B B

B B M S M B

VB M S VS S M

Table 3. Fuzzy rules about goal.

Distance Angle

RB RS Z LS LB

VS B B VB B B

S B B VB B B

M M M B M M

B M S S S M

VB VS VS S VS VS

3.3 Overall Framework

In this part, we will introduce the overall framework of the model and the fuzzy
reward function.
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The Deep Q-learning model uses the perception ability of deep learning and
the decision-making ability of reinforcement learning, whose structure is shown
in Fig. 4. The DQN model consists of two deep neural networks which are used
to evaluate the Q-value and a memory buffer to store experience.

Fig. 4. Deep Q-learning network structure.

During the training process, the current network interacts with the environ-
ment to generate empirical data while putting them into the memory buffer, and
the target network learns policy from the empirical data. The current network
calculates the predicted Q-value and updates the network parameters through
gradient descent, the target network calculates the target Q-value, which is used
to calculate the loss function. The parameters of the target network are updated
through the current network. Ihe state-action values are iteratively updated
through the Bellman equation:

Qt+1(s, a) = Es′
[
r + γ max

a′
Qt (s′, a′)

]
(5)

The DQN approximates the state-action value function Q(s, a) to Q(s, a; θ),
where θ is the neural network parameter. The loss function is the mean square
error between the real value and the predicted value. It is utilized to iteratively
update the state-action value function as follows:

L(θ) = Eπ

[(
r + γ max

a′
Q (s′, a′, θ′) − Q(s, a; θ)

)2
]

(6)

To settle the sparse reward problem, a new reward function is designed
according to fuzzy rule. The reward function is divided into three parts:
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1) normal navigation reward function Rn; 2) collision avoidance reward function
Rc; 3) terminal reward Rend. The reward function can be written as follows:

R(x) =

⎧
⎨

⎩

Rn, normal navigation
Rc, collision avoidance
Rend, terminal state

(7)

The normal action reward function is calculated based on the distance
between the agent and the target point. The agent is in the safe area, that
is, there are no obstacles in the detection range. ρgoal represents the fuzzy coef-
ficient about the target. The distance between the initial point of the agent
and the target is denoted by dmax, the distance between the current position of
the agent and the target is represented by dgoal. The normal navigation reward
function can be written as follows:

Rn = ρgoal
dmax − dgoal

dmax
(8)

When the agent is within collision range, the reward is calculated by the
collision avoidance reward function. ρobs represents the fuzzy coefficient about
the obstacle. The distance between the current position of the agent and the
obstacle is represented by dobs. The collision range is a 135◦ semicircle with the
radius rsafe set in the experiment. In this case, reward function can be written
as follows:

Rc = ρobs
dobs − rsafe

rsafe
(9)

The Rend is a constant value, when the agent reaches the target position it
is positive, while it is negative while colliding with the boundary or an obstacle.

4 Experiments and Analysis

In this part, according to the method in Sect. 3, we verify the effectiveness of
the fuzzy reward function based on fuzzy logic through extensive experiments.
The tensorflow framework and Python are used to build the algorithm model,
and we build a two-dimensional simulation environment based on python and
tkinter. The simulation environment is introduced in Sect. 4.1. The experimental
results are presented in Sect. 4.2.

4.1 Environment Design

The simulation environment is designed as a 700×700 2D plane. The initializa-
tion environment is shown in Fig. 5. The range of motion of USV is limited to
2D plane space. If the USV moves beyond the range of motion, it is considered
a collision and the environment will be initialized. Obstacles are added to the
environment to imitate ships and islands on the sea.
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(a) (b)

Fig. 5. Different simulation maps.

In Fig. 5, overlapping or isolated blue circles are used to regard as obstacles,
The black circles and the red circles represent the source and target positions of
the USV, respectively. When the USV collides with an obstacle or moves beyond
the boundary, it is considered a failed episode, while reaching the target position
is a successful episode.

We assume that the initial heading angle of the agent is 45◦, and the action
space is designed with 5 different directions of movement as:

Naction = {−45◦,−22.5◦, 0◦, 22.5◦, 45◦} (10)

The USV uses radar to perceive surrounding environment information. To
simulate the function of radar, we assume that the agent can obtain 180◦ environ-
mental information within a certain distance, including obstacles and boundary.
Finally, the state space consists of environmental information, current position
and heading angle, and target distance.

4.2 Training and Result Analysis

The model training is performed on 400 randomly generated maps with different
obstacles.

The DQN is composed of two neural networks: the current net and target net
with three hidden layers. The structure of the deep neural network is displayed
in Fig. 6. The input data is the state of the agent at time t, which is composed of
environmental information within a certain distance scanned by the radar, the
distance between the USV and the obstacle and the distance and angle between
the destination and the location of USV. The data is flattened into one dimension
as the input of the fully connected neural network, and the output of the network
is the action taken by the agent at the moment t. The parameters of the model in
the training process are given in Table 4. The higher reward discount rate γ, the



USV Path Planning Based on Adaptive Fuzzy Reward 127

Fig. 6. Neural network structure of the current net and the target net.

more the agent pays attention on future rewards. The learning rate lr determines
whether the network can converge. At the beginning of training, the learning rate
is set to 1e-3, then, it is adaptively updated by Adam optimizer [21]. To make the
agent have a certain exploration ability, the parameter ε of the ε-greedy algorithm
is set to 0.1. The maximum capacity of the experience replay buffer is set to
10000, and the batch size of experience replay learning is set to 32. When the
current network is trained C steps, the target network updates the parameters
by replicating the parameters of the current network. The update interval is
set to 100. Additionally, the agent learns action policies by interacting with the
environment. Once the agent is trapped into a loop, the interaction cannot be
terminated and the model does not learn an effective strategy. Therefore, except
for the termination conditions such as collision, reaching the target position, and
crossing the boundary, the maximum step of action in an episode is 100.

Table 4. Hyper parameters of the DQN model.

Hyper parameter Symbol Value

Reward discount rate γ 0.99
Learning rate lr 1e−3
ε-greedy ε 0.1
Experience replay buffer size M 10000
Replay batch size B 32
Update interval C 100

Using the proposed fuzzy reward function, the average reward of episodes is
shown in the Fig. 7. To verify the effect of fuzzy reward function on the USV
path planning problem, sparse reward, consistent dense reward, and fuzzy dense
reward are used for path planning comparison experiments. The experimental
results will be visualized in the simulation environment. We tested the path
planning problem ability of these three reward functions under the same condi-
tions in different environments, and verified the impact of the reward function
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Fig. 7. Average reward for episodes

on the results. We classified the difficulty of tasks based on the complexity of
the environment: simple, moderate and complex.

In Fig. 8, the coordinates of the starting point and the target point in the
experiment are set in the lower left and upper right corners of the simulation
environment, respectively. The purpose of the experimental design is to simulate
the path planning task of USV in an unknown environment. The experimental
results are displayed in Fig. 8 which includes the route trajectory. We can see that
the reward functions from left to right are sparse reward, consistent reward, and
fuzzy reward. The complexity of the environment from top to bottom is simple,
moderate and complex. We performed path planning 10 rounds in 2000 different
scenarios using different reward functions, and exhibited the stable success rate
to display the results. The success rates for the three reward functions are shown
in the Table 5, and we can observe that the success rate of the dense reward is
higher.

Table 5. Success rate of different reward functions.

Reward function Failure Success Success rate

Sparse reward 1412 588 29.40%

Consistent dense reward 312 1688 84.40%

Fuzzy dense reward 239 1761 88.05%

The visualization results are presented in the Fig. 8, all three reward functions
are available, and the experimental results show that the fuzzy reward method
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uses the safest route to reach the destination. However, the route chosen by
the sparse reward is closer to obstacles and boundaries, it is obviously more
dangerous. Although the success rates of the two dense reward function methods
are close, it can be seen from the Fig. 8 that in a simple environment, the path
selected by the fuzzy reward function is farther from the obstacle, and the route
is safer under the same route length. In moderate and complex environments,
although the route length of the fuzzy dense reward is increased, route safety is
improved. In summary, compared with the spares reward and consistent reward,
adaptive fuzzy reward can guide agents to generate more effective and safe path
planning trajectories.

Fig. 8. Routes for different reward functions in different environments.

To illustrate the effectiveness of our proposed adaptive fuzzy reward function,
extensive experiments are performed on different deep reinforcement learning
algorithms, the experimental results are shown in Table 6. Comparing by using
different reward functions on different algorithms, the experimental results show
that the success rate of the algorithm combined with fuzzy reward remains rel-
atively stable and demonstrate the effectiveness and stability of the proposed
method.
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Table 6. Success rate of fuzzy reward on different algorithms.

Algorithm Success rate

DQN [9] 84.40%± 1.77%

DDQN [16] 87.10%± 1.25%

A3C [8] 87.50%± 1.65%

DQN [9]+Fuzzy reward 88.05%± 0.54%

DDQN [16]+Fuzzy reward 89.05%± 0.40%

A3C [8]+Fuzzy reward 89.87%± 0.42%

5 Conclusion

In this paper, we presented a USV path planning algorithm based on deep rein-
forcement learning, which uses the fuzzy rule to dynamically adjust the coef-
ficient of reward values to solve the sparse reward problem in the path plan-
ning task. In the simulation experiment, we demonstrate the effectiveness of
our method by comparing it with the deep reinforcement learning method with
sparse reward. Through trial-and-error learning, our model can avoid obstacles
and plan a safe path in an unknown environment.

To solve the sparse reward problem, most works on DRL rely on carefully
tuned shaping reward through domain knowledge that guides the agent to accom-
plish the task goal. However, many of these tasks can be fairly easily defined by
a terminal goal state, and it is difficult to get an appropriate reward function
for solving the problem. In this work, we adaptively tune the reward according
to fuzzy rules in line with human cognition.

Although we just apply the fuzzy rule to address the sparse reward problem
for USV path planning tasks, it is a useful way to be applied to improve the
performance of the agent in other domains. In the future, we intend to further
optimize fuzzy rule design and extend it to multi-USV path planning tasks. In
addition, at present, our experiment only runs in the simulation environment,
we would like to test our model in the real environment.
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Abstract. The naive Bayes is a classifier based on probability and
statistics theory, which is widely used in the field of text classification.
But the assumption of independence between features affects its classi-
fication accuracy. To solve this problem, this paper studies the theory
of granular computing and proposes a naive Bayes classifier based on
neighborhood granulation. The neighborhood discriminant function is
introduced to perform single-feature neighborhood granulation for all
samples to form neighborhood granules and multiple characteristic gran-
ules in a sample form a neighborhood granular vector. The operation
rules of granular vector, a prior probability, and the conditional prob-
ability of granular vector are defined, and then a naive Bayes classifier
based on neighborhood granulation is proposed. Experiments on some
UCI data sets, using different neighborhood parameters to compare with
the classic naive Bayes classifier, the results show that the method can
effectively improve the classification accuracy.

Keywords: Naive Bayes · Classification · Granular computing ·
Neighborhood granulation · Granular vector

1 Introduction

The naive Bayes (NB) is an important classification algorithm in machine learn-
ing [1]. The main idea is divided into two steps: firstly, the conditional probability
of the samples to be judged is calculated belongs to each type based on the known
prior probability, and then it is judged as the category with the maximum prob-
ability. The naive Bayes algorithm has been widely used in many fields, such
as text classification [2], multi-label learning [3], imbalanced data processing [4],
medical diagnosis [5], and traffic risk management [6]. The naive Bayes is a sim-
ple and effective classification algorithm, and many scholars have proposed a
variety of improved naive Bayes algorithms from different perspectives [7].
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Zadeh, an expert in automatic control theory, proposed the fuzzy set the-
ory [8] and put forward the concept of information granules. Pawlak, a scientist,
proposed the rough set theory [9] and expressed that knowledge is granular. Since
Professor Lin put forward the concept of granular computing, the research of
granular computing has developed rapidly, such as hierarchical classification [10],
granular regression [11], aggregation algorithm [12], shadowed sets [13], two-way
learning [14], and so on. The classical naive Bayes corresponds to different algo-
rithms when dealing with different data types. Multinomial naive Bayes algo-
rithm is used when dealing with text data, and Gaussian Naive Bayes algorithm
is used that deal with continuous data.

The naive Bayes classification algorithm has a good classification effect when
dealing with text data, but when dealing with data-type data, the assumption
of independence between features will lead to low classification accuracy [15].
To solve this problem, we define the operation and measurement of granules in
the single feature classification neighborhood system. We further define the prior
probability of the granular vector and the conditional probability of the granular
vector. We propose the concept of naive Bayes granular vector, to transform
the classification problem into the probability problem of naive Bayes granular
vector, and construct the naive Bayes granular classifier model. At the same
time, the naive Bayes granular classifier is designed and verified experimentally
on several UCI data sets. Theoretical analysis and experimental results show
that the naive Bayes classifier based on neighborhood granulation can improve
classification accuracy and achieve better classification results with appropriate
neighborhood granulation parameters.

2 Granular Representation and Neighborhood
Granulation

Elements in a set are not repeatable and have no order. However, granules are
ordered and repeatable finite collections and granular vectors are composed of
ordered granules. The neighborhood granulation method is to granulate the sam-
ple into neighborhood granules, whose values are discrete values of 0 or 1. The
neighborhood granular vector is composed of neighborhood granules. The neigh-
borhood granulation on a single feature forms neighborhood granules, and the
granules on multiple features are combined into neighborhood granular vectors.

Definition 1. Given a big data learning system U = (X ∪ P,C, d), for two
samples x, y ∈ X, a single feature a ∈ C, and a given neighborhood parameter δ,
the neighborhood discriminant function of the sample x, y is defined as:

ϕa(x, y) =
{

0, sa(x, y) > δ
1, sa(x, y) ≤ δ

(1)

where sa(x, y) = 1 − |v(x, a) − v(y, a)| is the neighborhood metric of x and y in
single feature a. When ϕa(x, y) = 1, x and y are neighbors; When ϕa(x, y) = 0,
x and y are not neighbors.
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Definition 2. Given a big data learning system U = (X ∪ P,C, d), for any
sample x ∈ X and reference sample set P = {p1, p2, ..., pk}, and any single
feature c ∈ C then x performs neighborhood granulation on the single feature
sample c, and the conditional granule formed is defined as:

g = gc(x) = {rj}k
j=1 = {r1, r2, ..., rk} (2)

where rj = ϕc(x, pj) is the neighborhood discriminant function of the sample
x, pj on the single feature c.

Definition 3. Let U = (X ∪ P,C, d) be a big data learning system, for any
sample x ∈ X, any feature subset A ⊆ C, suppose A = {a1, a2, ..., am}, then the
granular vector of x on the feature subset A is defined as:

G = GA(x) = (ga1(x), ga2(x), ..., gam
(x))T (3)

where gam
(x) is the granule of sample x on feature am. For convenience, the

feature set A = {a1, a2, ..., am} is marked with an integer, and the particle vector
can be expressed as:

G(x) = (g1(x), g2(x), ..., gm(x))T (4)

The granular vector is made up of granules, which in turn are made up of gran-
ular nuclei. Therefore, the granular vector can be in the form of a granular core
matrix, which is expressed as:

G(x) =

⎡
⎢⎢⎣

g1(x)1, g1(x)2, ..., g1(x)k

g2(x)1, g2(x)2, ..., g2(x)k

...
gm(x)1, gm(x)2, ..., gm(x)k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r11, r12, ..., r1k

r21, r22, ..., r2k

...
rm1, rm2, ..., rmk

⎤
⎥⎥⎦ (5)

The granular vector can also be expressed in another form as:

G(x) = (g(x)1, g(x)2, ..., g(x)k) (6)

where
g(x)j = (g1(x)j , g2(x)j , ..., gm(x)j)T (7)

3 Granular Operations and Measures

The addition, subtraction, multiplication, and division of real numbers are closed
on real numbers, and the defined granular operation operators should also be
closed on granules.

Definition 4. Let s = {sj}n
j=1 and t = {tj}n

j=1 be two granules, then the addi-
tion operation of two granules is defined as:

s + t = {sj + tj}n
j=1 = {s1 + t1, s2 + t2, ..., sn + tn} (8)
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Definition 5. Let s = {sj}n
j=1 and t = {tj}n

j=1 be two granules, then the mul-
tiplication operation of two granules is defined as:

s ∗ t = {sj ∗ tj}n
j=1 = {s1 ∗ t1, s2 ∗ t2, ..., sn ∗ tn} (9)

Definition 6. Let s = {sj}n
j=1 and t = {tj}n

j=1 be two granules, then the divi-
sion operation of two granules is defined as:

s/t = {sj/tj}n
j=1 = {s1/t1, s2/t2, ..., sn/tn} (10)

Definition 7. Let o = {oj}n
j=1 denote the output granule of the granular clas-

sifier and y = {yj}n
j=1 denote the decision granule, then the 0–1 loss function

metric of the two granules is defined as:

L(y, o) =
{{

1, yj �= oj

0, yj = oj

}n

j=1

(11)

The loss value is 0 if the elements of the granules are the same, and 1 if they
are different.

Definition 8. Let G = (g1, g2, ..., gl) be the input granular vector of the gran-
ular classifier, where gi = {rj}n

j=1 represents the input granule, then pi is the
probability granule represented as:

pi =
gi∑l
i=1 gi

(12)

4 A Naive Bayes Classifier Model Based on Neighborhood
Granulation

The naive Bayes classifier based on neighborhood granulation inputs the granular
feature vector, after granular computing, compares the probabilities of multiple
granules and outputs the maximum probability granule. Therefore, a naive Bayes
classifier based on neighborhood granulation can be used for multi-classification
problems.

Definition 9. Let the granule type be Y and y = {ck}n
k=1 denote the decision

granule, then the prior probability of the granular vector is expressed as:

P (Y = ck) =
∑Ng

i=1 Ig(yi = ck)
Ng

(13)

where Ig are the number of ck in the granules and Ng are the total number of
granules.
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Definition 10. Let G = (g1, g2, ..., gj) be the input granular vector of the gran-
ular classifier, where gi = {rl}n

j=1 represents the input granule and y = {ck}n
k=1

represents the decision granule, then the conditional probability of the granular
vector is expressed as:

P (G(j) = rjl | Y = ck) =
∑N

i=1 I(g(j)i = rjl, yi = ck)∑N
i=1 I(yi = ck)

(14)

In actual data training, there may be zero probability problems. The zero
probability problem is that when calculating the conditional probability of a
granular vector, the granules of a certain granular vector have never appeared
in the training set, which will cause the calculation result of the conditional
probability of the entire granular vector to be 0. To solve this problem, the
conditional probability formula of the granular vector is added by 1 through the
idea of Laplace smoothing. The value is converted to a value between [1, N +
1]. The smoothing formula for granules can be expressed as:

Pi = Pi × N + 1 (15)

Definition 11. Let G = (g1, g2, ..., gj) be the input granular vector of the gran-
ular classifier, where gi = {rl}n

j=1 represents the input granule and y = {ck}n
k=1

represents the decision granule, then the posterior probability of the granular
vector is expressed as:

P (Y = ck)
n∏

j=1

P (G(j) = gj | Y = ck) (16)

Definition 12. Let G = (g1, g2, ..., gj) be the input granular vector of the gran-
ular classifier, where gi = {rl}n

j=1 represents the input granule and y = {ck}n
k=1

represents the decision granule, then the maximum a posterior probability of the
granular vector is expressed as:

y = arg ma
ck

xP (Y = ck)
n∏

j=1

P (G(j) = gj | Y = ck) (17)

According to the previous theory and principle, the naive Bayes classifier
model based on neighborhood granulation is constructed. The granule is a struc-
tured representation. The components of granules are independently calculated,
and the granules can be separated and combined, which is the essence of the
naive Bayes classifier based on neighborhood granulation. The specific naive
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Bayes classifier algorithm based on neighborhood granulation is described as
shown in Algorithm 1.

Algorithm 1: The naive Bayes classifier algorithm based on neighborhood
granulation (NGNB)
Input: A training data set T = (U,F, L), the instance t, and the

neighborhood parameter δ
Output: Classification of the instance t

1 Normalizing the data;
2 Circularly executing the step 3 to 5 for each training data x ∈ U ;
3 The neighborhood granulation δ is performed on each single characteristic

ai ∈ F to be gai
(x)δ;

4 Form a neighborhood granular vector
GF (x)δ = {ga1(x)δ, ga2(x)δ, ..., gam

(x)δ} of x;
5 Obtain granular label Lx and construct granular vector rule

R(x) = 〈GF (x), Lx〉;
6 Compute the prior probability of the granular vector and the conditional

probability of the granular vector according to Definition 9 and
Definition 10, respectively;

7 The conditional probability of the granular vector is processed according
to Eq. 15;

8 Granulation is performed in the training data set for a given instance t,
forming an instance granular vector GF (t)δ;

9 The granular vector GF (t)δ is calculated according to Definition 11;
10 Determine the class of the instance granular vector t according to

Definition 12.

5 Experiments and Analysis

In this paper, four data sets in the UCI data set are used as data sources for
experimental tests, as shown in Table 1.

Table 1. The description of data sets.

Datasets Samples Features Categories

Iris 150 4 3

Wine 178 13 3

Lymphography 148 18 4

Clean1 476 166 2

Due to the different widths of sample values in the data sets in Table 1, the
data sets need to be preprocessed with maximum and minimum normalization.
The formula is:

Xnorm =
X − Xmin

Xmax − Xmin
(18)
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The data is neighborhood granulated on each single-sample feature to form
a neighborhood granular vector. To test the classification accuracy of the naive
Bayes classifier based on neighborhood granulation, each data set was randomly
divided into a 0.7 training set and a 0.3 testing set.

The neighborhood granulation parameter is a measure of the distance
between granules, and the construction of the neighborhood granular vector
requires neighborhood parameters, so different neighborhood parameters will
affect the accuracy of classification. The experiment adopts the control variable
method. The variable is the neighborhood parameter and compares the neigh-
borhood granulation naive Bayes algorithm (NGNB) with the classical naive
Bayes algorithm (NB). The experiment set the values of neighborhood param-
eters from 0.05 to 0.95 and set the interval to 0.05. The classification results of
the four UCI data sets are shown in Fig. 1, 2, 3 and Fig. 4.

Fig. 1. Classification accuracy of different neighborhood parameters on Iris data set.

From the analysis of Fig. 1 and Fig. 2, it can be seen that the accuracy curve
of the naive Bayes classifier based on neighborhood granulation is similar to the
curve of the logarithmic function. In the Iris data set, the NGNB and the NB have
8 times the same classification accuracy, but when the neighborhood parameter
is 0.35, the classification accuracy of NGNB reaches the maximum value of 1,
exceeding the classification accuracy of NB. In the Wine data set, starting from
the neighborhood parameter of 0.35, the classification accuracy of NGNB is not
lower than that of NB, and 8 of them are higher than the classification accuracy
of NB, and the classification accuracy reaches the maximum value of 1 when the
neighborhood parameter is 0.85.
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Fig. 2. Classification accuracy of different neighborhood parameters on Wine data set.

Fig. 3. Classification accuracy of different neighborhood parameters on Lymphography
data set.

From the analysis in Fig. 3, for the Lymphography data set, the NGNB algo-
rithm outperforms the NB algorithm in all neighborhood parameters. The clas-
sification accuracy of the NGNB algorithm reaches the maximum value of 0.7778
when the neighborhood parameters are 0.50 and 0.55. And it is not sensitive to
the neighborhood parameters, and the accuracy is relatively stable.
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Fig. 4. Classification accuracy of different neighborhood parameters on Lymphography
data set.

It can be seen from the analysis of Fig. 4 that for the Clean1 data set,
the neighborhood parameter 0.55 is a boundary. The classification accuracy of
NGNB is higher than that of NB from 0.05 to 0.5. The classification accuracy of
NGNB is the maximum value of 0.8042 when the neighborhood parameters are
0.1 and 0.15.

The value with the best classification accuracy in the neighborhood param-
eters experiment is compared with the standard naive Bayes. The specific clas-
sification results of the four UCI data sets are shown in Table 2.

According to Table 2, the classification effect of the NGNB is better than
that of the NB under the optimal parameters.

According to the analysis from Fig. 1, 2, 3 and Fig. 4, the classification accu-
racy of the naive Bayes classifier based on neighborhood granulation is affected
by neighborhood parameters, and the selection of appropriate neighborhood
parameters is the key to the accuracy of classification. In most cases, the clas-
sification accuracy of the NGNB algorithm is slightly better than that of the
NB algorithm. The naive Bayes classifier based on neighborhood granulation
is different from the classical naive Bayes classifier. NGNB uses neighborhood
granulation technology to improve the structure so that the data can better meet
the requirements of the algorithm and improve the accuracy of the algorithm on
different data sets.
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Table 2. The specific experiment results.

Datasets NGNB NB

Iris 1.0000 0.9778

Wine 1.0000 0.9444

Lymphography 0.7778 0.4667

Clean1 0.8042 0.6993

6 Conclusions

Starting from the study of granular computing, this paper proposes a naive Bayes
classifier based on neighborhood granulation. First, the concept of neighborhood
rough set is introduced for neighborhood granulation. Granular vectors are con-
structed in the classification system, the prior probability and conditional proba-
bility of the granular vectors are defined, and the naive Bayes classifier based on
neighborhood granulation is designed. Through experiments on some UCI data
sets and comparison experiments with the classical naive Bayes algorithm, the
effectiveness of the algorithm is verified, and better classification performance
can be achieved with appropriate granulation parameters. In future work, we will
further explore the use of more granulation methods in naive Bayes classifiers,
using rotational granulation, for the construction of naive Bayes classifiers based
on rotational granulation.
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Abstract. In this paper, the matrix representations and interdependency of a
pair of L-fuzzy covering-based approximation operators are investigated. The
aim of matrix representations of lower and upper approximation operators is to
make calculation more valid by means of operations on matrices. Furthermore, in
accordance with the concept of β-base, we give a necessary and sufficient condi-
tion under what two L-fuzzy β-coverings can generate the same lower and upper
approximation operations.

Keywords: Fuzzy covering rough set · L-fuzzy β-covering · L-fuzzy
β-neighborhood · Residuated lattice · Matrix representation · Interdependency

1 Introduction

The classical rough set theory was proposed by Pawlak [18], in which the relationship of
objects were built on equivalence relation. However, the equivalence relation imposes
restrictions on the actual application process, so many scholars have carried out gen-
eralized researches on rough sets from other aspects [1,2,5,19,20,22,26]. One of the
generalized researches is the covering-based rough set model by relaxing the partitions
(which constituted by the equivalence class based on equivalence relation) to coverings.
In the frame of covering-based rough set, Pomykala [19,20] proposed two pairs of dual
rough approximation operators. In 1998, Yao [30] studied a type of covering-based
rough set model in terms of the neighborhood operators. In addition, Zhu et al. [32]
discussed three kinds of covering-based rough set to deal with the vagueness and gran-
ularity in information systems. In accordance with neighborhood system, Yao and Yao
[31] introduced a framework to further explore the covering-based approximations. By
the concept of complementary neighborhood, Ma [12] in 2012 considered some types of
neighborhood-related covering-based rough set. Furthermore, Ma [13] defined the twin
approximation operators by the notions of neighborhood and complementary neighbor-
hood. Later, Han [7] generalized the (finite) covering approximation space to locally
finite covering approximation space.

However, the covering-based rough set faces stringent limitation when dealing with
real-valued data sets, which can only process the qualitative (discrete) data [8]. Fuzzy
covering-based rough set was constructed by fuzzy rough set [4,16,17,21] based on
fuzzy covering, which can be seen as a bridge linking covering rough set theory and
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fuzzy rough set theory. From the perspective of model structure, the fuzzy covering-
based rough set model can be seen as a model by using fuzzy neighborhood operator
based on fuzzy coverings instead of the general fuzzy binary relation in the fuzzy rough
set model. Further, Ma [14] in 2016 generalized the notion of fuzzy covering to fuzzy β-
covering and proposed the concept of fuzzy β-neighborhood. So the fuzzy β-covering-
based rough set can be viewed as an extension of the fuzzy covering approximation
space.

In the meantime, some lattice structures were discussed to replace the interval [0, 1]
as the truth table for membership degrees, among which residuated lattices [25] play a
significant role. In general, the residuated lattice-valued fuzzy approximation operators
are discussed from two directions: L-fuzzy relation-based rough approximation oper-
ators and L-fuzzy β-covering-based approximation operators. In 2007, Deng et al. [3]
explored a pair of L-fuzzy covering-based rough approximation operators. Later, Li et
al. [10] introduced another two pairs of L-fuzzy covering-based approximation opera-
tors when L = [0, 1]. In addition, Jin and Li [9] gave two L-fuzzy covering-based rough
approximation operators with the condition of completely distributive complete lattice.

Starting from the axiomatic approaches of fuzzy operators, Li et al. [11] recently
studied three pairs of L-fuzzy covering-based approximation operators, which are pre-
sented in [3,10], and further analysed the differences between the axiom sets of L-fuzzy
covering-based approximation operators and their crisp counterparts. In addition, Yang
and Hu [28] studied the matrix representations and interdependency of the three pairs
of L-fuzzy covering-based approximation operators. Based on the work of Ma [14],
Yang [27] introduced the notion of L-fuzzy β-covering and proposed a pair of L-fuzzy
β-covering-based approximation operators. Further, the basic properties and axiomatic
representation are studied. However, the matrix representations and interdependency of
this pair of L-fuzzy β-covering-based approximation operators are not considered.

In this paper, we give the matrix representations of a pair of L-fuzzy β-covering-
based approximation operators, which discussed in [27]. In addition, to solve the issue
that under what two L-fuzzy β-coverings can generate the same L-fuzzy β-covering-
based approximation operators, a necessary and sufficient condition is proposed by
redefining the β-independent element.

The organization of this paper is introduced as follows: In Sect. 2, we review some
basic concepts of residuated lattice, L-fuzzy β-covering and L-fuzzy β-neighborhood.
In Sect. 3, the matrix representations of L-fuzzy β-covering-based approximation oper-
ators are proposed. Section 4 explores the necessary and sufficient condition under what
two L-fuzzy β-coverings can generate the same L-fuzzy β-covering-based approxima-
tion operators. Section 5 concludes this paper.

2 Preliminaries

This section recapitulates some well-known concepts that shall be used in the sequel.
A complete residuated lattice [25] is a pair L = (L,⊗) subject to the following

conditions:

(1) L is a complete lattice with a top element 1 and a bottom element 0;
(2) (L,⊗, 1) is a commutative monoid;
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(3) a ⊗ ∨

j∈J

bj =
∨

j∈J

(a ⊗ bj) for all a ∈ L and {bj : j ∈ J} ⊆ L.

The binary operation ⊗ induces another binary operation → on L via the adjoint
property:

a ⊗ b ≤ c ⇐⇒ b ≤ a → c.

In this paper, if not otherwise specified, L = (L,
∧

,
∨

,⊗,→, 0, 1) is always a
complete residuated lattice. In addition, a function A : U −→ L is an L-fuzzy set in U .
LU is denoted as the set of all L-fuzzy sets in U and called the L-fuzzy power set on
U . The operators

∨
,
∧

,⊗,→ on L can be translated onto LU in a pointed wise, i.e.,

A ≤ B ⇐⇒A(x) ≤ B(x),

(
∧

t∈T

At)(x) =
∧

t∈T

At(x), (
∨

t∈T

At)(x) =
∨

t∈T

At(x),

(A ⊗ B)(x) = A(x) ⊗ B(x), (A → B)(x) = A(x) → B(x).

where A,B,At (t ∈ T ) ∈ LU and x ∈ U . For a crisp subset A ⊆ U , let 1A be the
characteristic function, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. Clearly, the
characteristic function 1A of a subset A ⊆ U can be regarded as an L-fuzzy set in U .
Thus, when L = {0, 1}, the set LU degenerates into the power set P(U) of U if we
make no difference between a subset of U and its characteristic function.

The following lemma shows some basic properties of residuated lattices.

Lemma 1. [6,15,23] Suppose that L = (L,
∧

,
∨

,⊗,→, 0, 1) is a residuated lattice.
For any x, y, z ∈ L, {xi}i∈I and {yi}i∈I ⊆ L, the following statements hold.

(1) x ⊗ (y → z) ≤ (x → y) → z.
(2)

∨

i∈I

(xi → y) ≤ ∧

i∈I

xi → y.

(3) If x1 ≤ x2, then x2 → y ≤ x1 → y and y → x1 ≤ y → x2.
(4) y ⊗ (

∧

i∈I

xi) ≤ ∧

i∈I

(y ⊗ xi).

(5) y ⊗ (
∨

i∈I

xi) =
∨

i∈I

(y ⊗ xi).

(6) x → (y → z) = (x ⊗ y) → z = y → (x → z).
(7)

∨

i∈I

xi → y =
∧

i∈I

(xi → y).

(8) y → ∧

i∈I

xi =
∧

i∈I

(y → xi).

(9)
∧

y∈L

((x → y) → y) = x.

(10) y → ∨

i∈I

xi ≥ ∨

i∈I

(y → xi).

(11) 0 ⊗ x = 0.
(12) (x ⊗ y) ≤ (x ∧ y).
(13) (x → (x ⊗ y)) ≥ y.
(14) (x ⊗ (x → y)) ≤ y.
(15) (1 → x) = x, (x → x) = 1, (0 → 1) = 1, (0 → 0) = 1.
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(16) (x → y) = 1 ⇐⇒ x ≤ y.
(17) ¬¬x ≥ x.
(18) (x → y) ≤ (¬y → ¬x).
(19) ((x → y) ⊗ (y → z)) ≤ (x → z).
(20) (x → ¬y) = ¬(x ⊗ y).
(21) ¬(∨

i∈I

xi) =
∧

i∈I

(¬xi).

(22) ¬(∧

i∈I

xi) ≥ ∨

i∈I

(¬xi).

(23) (
∧

i∈I

xi) → (
∨

i∈I

yi) ≥ ∨

i∈I

(xi → yi).

Next, some related concepts about L-fuzzy β-covering and L-fuzzy β-
neighborhood are given below.

Definition 1. [27] Let L = (L,
∧

,
∨

,⊗,→, 0, 1) be a residuated lattice and U be a
non-empty finite set. For any β > 0 and β ∈ L, we call C = {C1, C2, . . . , Cm} with

Ci ∈ LU (i = 1, 2, . . . ,m), L-fuzzy β-covering of U , if (
m⋃

i=1

Ci)(x) ≥ β for any

x ∈ U . Further, (U,C ) is called an L-fuzzy β-covering approximation space.

Note that L-fuzzy covering [3] is one of the special cases of L-fuzzy β-covering
when β = 1.

Definition 2. [29] Let (U,C ) be an L-fuzzy β-covering approximation space with C =
{C1, C2, . . . , Cm} being an L-fuzzy β-covering of U for β > 0 (β ∈ L). For each
x ∈ U ,

Nβ
C (x) = {Ci ∈ C : Ci(x) ≥ β}

is called the L-fuzzy β-neighborhood system of x.

Definition 3. Let (U,C ) be an L-fuzzy β-covering approximation space with C =
{C1, C2, . . . , Cm} being an L-fuzzy β-covering of U for β > 0 (β ∈ L). For each
x ∈ U ,

Nβ
x =

⋂
{Ci ∈ C : Ci(x) ≥ β} =

⋂
Nβ

C (x)

is called the L-fuzzy β-neighborhood of x.

Note that
(
Nβ

x

)′ (y) is called L-fuzzy β-neighborhood of x induced by L-fuzzy
β-covering C ′, i.e.,

(
Nβ

x

)′
(y) =

(⋂
{Ci ∈ C ′ : Ci(x) ≥ β}

)
(y) =

(⋂
Nβ

C ′(x)
)
(y).

Based on the concept of L-fuzzy β-neighborhood, Yang introduced a pair of L-
fuzzy covering-based approximation operators as follows in [27].

Definition 4. [27] Let (U,C ) be an L-fuzzy β-covering approximation space. For any
X ∈ LU , the L-fuzzy covering-based lower approximation operator C (X) and upper
approximation operator C (X) : LU −→ LU are defined as follows:

C (X)(x) =
∧

y∈U

[Nβ
x (y) → X(y)], (1)
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C (X)(x) =
∨

y∈U

[Nβ
x (y) ⊗ X(y)], (2)

where x ∈ U . If C (X) �= C (X), then X is denoted as an L-fuzzy covering-based
rough set.

3 The Matrix Representations of L-fuzzy β-covering-based
Approximation Operators

In this section, we present the matrix representations of L-fuzzy β-covering-based
approximation operators defined in Definition 4. Firstly, we propose some relevant
notions and notations.

Definition 5. Let C = {C1, C2, . . . , Cm} be an L-fuzzy β-covering of U =
{x1, x2, . . ., xn} and X ∈ LU . We denote the matrix representation of C by MC =
(Cj(xi))n×m, and X by MX = (X(xi))n×1.

Further, let M = (aij)s×t be a matrix, and its transpose is denoted as MT =
(aji)t×s in the following discussions.

Example 1. Let U = {x1, x2, x3, x4, x5, x6} and L = ([0, 1],⊗,→,
∨

,
∧

, 0, 1) be a
Gödel-residuated lattice, where

x ⊗ y = x
∧

y and x → y =
{
1, x ≤ y,
y, x > y.

(∀x, y ∈ L)

A family C = {C1, C2, C3, C4} of L-fuzzy subsets of U is listed below.

C1 =
0.7

x1
+

0.5

x2
+

0.4

x3
+

0.6

x4
+

0.3

x5
+

0.2

x6
, C2 =

0.5

x1
+

0.4

x2
+

0.6

x3
+

0.5

x4
+

0.7

x5
+

0.3

x6
,

C3 =
0.3

x1
+

0.7

x2
+

0.1

x3
+

0.5

x4
+

0.6

x5
+

0.3

x6
, C4 =

0.6

x1
+

0.6

x2
+

0.2

x3
+

0.3

x4
+

0.5

x5
+

0.7

x6
.

According to Definition 1, C is an L-fuzzy β-covering of U for any β ∈ (0, 0.6], then
the matrix representations of MC and MC3 can be expressed as follows.

MC =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.7 0.5 0.3 0.6
0.5 0.4 0.7 0.6
0.4 0.6 0.1 0.2
0.6 0.5 0.5 0.3
0.3 0.7 0.6 0.5
0.2 0.3 0.3 0.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and MC3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.3
0.7
0.1
0.5
0.6
0.3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Definition 6. Let A = (aik)n×m and B = (bkj)m×l be two lattice valued matrices.
Then, C = A ◦ B = (cij)n×l and D = A • B = (dij)n×l can be stipulated as follows,
respectively,

cij =
m∨

k=1

(aik ⊗ bkj), i = 1, 2, . . . , n, j = 1, 2, . . . , l,

dij =
m∧

k=1

(aik → bkj), i = 1, 2, . . . , n, j = 1, 2, . . . , l.
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Definition 7. Let U = {x1, x2, . . . , xn} be a finite universe and C =
{C1, C2, . . . , Cm} be an L-fuzzy β-covering of U . MC = (Cj (xi))n×m is denoted
as a matrix representation of C , and the Boolean matrix Mβ = (tij)n×m is denoted as
a β-matrix representation of C , where

tij =
{
1, Cj (xi) ≥ β,
0, Cj (xi) < β.

Example 2. Let (U,C ) be the L-fuzzy β-covering approximation space in Example 1.
For two orders {C1, C2, C3, C4} and {C1, C4, C3, C2} of C ,MC , NC are both matrix
representations of C , while M0.6, N0.6 are both 0.6-matrix representations of C , where

MC =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.7 0.5 0.3 0.6
0.5 0.4 0.7 0.6
0.4 0.6 0.1 0.2
0.6 0.5 0.5 0.3
0.3 0.7 0.6 0.5
0.2 0.3 0.3 0.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, NC =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.7 0.6 0.3 0.5
0.5 0.6 0.7 0.4
0.4 0.2 0.1 0.6
0.6 0.3 0.5 0.5
0.3 0.5 0.6 0.7
0.2 0.7 0.3 0.3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

M0.6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1
0 0 1 1
0 1 0 0
1 0 0 0
0 1 1 0
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, N0.6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0
0 1 1 0
0 0 0 1
1 0 0 0
0 0 1 1
0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As we can see from the above example that for a fixed order of all elements of U ,
different orders of C lead to different matrix representations, and the matrices can be
transformed into each other by list exchanges. Next, the relationship between matrix
representations under different order of C are given.

Proposition 1. Let U = {x1, x2, . . . , xn} be a finite universe of which the order of
elements is given, and C = {C1, C2, . . . , Cm} be an L-fuzzy β-covering of U . Based
on two different orders of C , MC , NC are two matrix representations of C and Mβ , Nβ

are two β-matrix representations of C , respectively. Furthermore,

Mβ • MT
C = Nβ • NT

C and Mβ • MT
β = Nβ • NT

β .

Proof. Since MC , NC are two matrix representations of C , MC and NC can be con-
verted to each other by list exchanges, so do Mβ and Nβ . Without loss of generality,
we suppose that they can be represented through block matrix columns as

MC = {α1, . . . , αp, . . . , αq, . . . , αm} , NC = {α1, . . . , αq, . . . , αp, . . . , αm} ,
Mβ = {t1, . . . , tp, . . . , tq, . . . , tm} , Nβ = {t1, . . . , tq, . . . , tp, . . . , tm} .
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Further, denote that Mβ • MT
C = (aij)n×n and Nβ • NT

C = (bij)n×n. Then

aij = (tj1, . . . , tjp, . . . , tjq, . . . , tjm) • (C1 (xi) , . . . , Cp (xi) , . . . , Cq (xi) , . . . , Cm (xi))
T

=
m∧

k=1

[tjk → Ck (xi)]

= (tj1, . . . , tjq, . . . , tjp, . . . , tjm) • (C1 (xi) , . . . , Cq (xi) , . . . , Cp (xi) , . . . , Cm (xi))
T

= bij ,

where i, j ∈ {1, 2, . . . ,m}. Thus, it holds that Mβ • MT
C = Nβ • NT

C . In addition,
Mβ • MT

β = Nβ • NT
β can be proven in a similar way.

Proposition 2. Let U = {x1, x2, . . . , xn} be a finite universe of which the order of
elements is given, and C = {C1, C2, . . . , Cm} be an L-fuzzy β-covering of U . If MC

is a matrix representation of C , and Mβ is a β-matrix representation of C , then

(
Nβ

xi
(xj)

)
n×n

= Mβ • MT
C .

Proof. Since C is an L-fuzzy β-covering of U , and Mβ = (tik)n×m is a β-matrix
representation of C , for each i (1 ≤ i ≤ n), there exists k (1 ≤ k ≤ m) such that
tik = 1. Further, assume that Mβ • MT

C = (cij)n×n, then

cij =
m∧

k=1

[tik → Ck(xj)]

=
∧

tik=1

Ck(xj)

=
∧

Ck(xi)≥β

Ck(xj)

=

⎛

⎝
⋂

Ck(xi)≥β

Ck

⎞

⎠ (xj) = Nβ
xi
(xj).

Hence,
(
Nβ

xi
(xj)

)
n×n

= Mβ • MT
C .

Example 3. We can calculate Mβ • MT
C and Nβ • NT

C in Example 1 as follows.

Mβ • MT
C = Nβ • NT

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6 0.5 0.2 0.3 0.3 0.2
0.3 0.6 0.1 0.3 0.5 0.3
0.5 0.4 0.6 0.5 0.7 0.3
0.7 0.5 0.4 0.6 0.3 0.2
0.3 0.4 0.1 0.5 0.6 0.3
0.6 0.6 0.2 0.3 0.5 0.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(
Nβ

xi
(xj)

)
n×n

.

Next, we represent the lower approximation operator C (X) and upper approxima-
tion operator C (X) of L-fuzzy set X by operations on matrices.
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Proposition 3. Let U = {x1, x2, . . . , xn} be a finite universe of which the order of
elements is given, and C = {C1, C2, . . . , Cm} be an L-fuzzy β-covering of U . Suppose
that MC is a matrix representation of C , and Mβ is a β-matrix representation of C ,
then for any X ∈ LU , we can obtain that

C (X) = (Mβ • MT
C ) • MX and C (X) = (Mβ • MT

C ) ◦ MX .

Proof. It follows Definition 4 that for any i (1 ≤ i ≤ n),

(Mβ • MT
C ) • MX(xi) =

m∧

k=1

[Nβ
xi
(xk) → X(xk)] = C (X)(xi)

and

(Mβ • MT
C ) ◦ MX(xi) =

m∨

k=1

[Nβ
xi
(xk) ⊗ X(xk)] = C (X)(xi).

Hence, C (X) = (Mβ •MT
C )•MX and C (X) = (Mβ •MT

C )◦MX can be obtained.

Example 4. The L-fuzzy β-covering-based lower and upper approximation operators
C (X) and C (X) in Example 1 can be calculated as follows. Then for

X =
0.6
x1

+
0.4
x2

+
0.3
x3

+
0.5
x4

+
0.5
x5

+
0.4
x6

,

it holds that

(Mβ • MT
C ) • MX =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6 0.5 0.2 0.3 0.3 0.2
0.3 0.6 0.1 0.3 0.5 0.3
0.5 0.4 0.6 0.5 0.7 0.3
0.7 0.5 0.4 0.6 0.3 0.2
0.3 0.4 0.1 0.5 0.6 0.3
0.6 0.6 0.2 0.3 0.5 0.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

•

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6
0.4
0.3
0.5
0.5
0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.4
0.4
0.3
0.3
0.5
0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= MC (X),

(Mβ • MT
C ) ◦ MX =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6 0.5 0.2 0.3 0.3 0.2
0.3 0.6 0.1 0.3 0.5 0.3
0.5 0.4 0.6 0.5 0.7 0.3
0.7 0.5 0.4 0.6 0.3 0.2
0.3 0.4 0.1 0.5 0.6 0.3
0.6 0.6 0.2 0.3 0.5 0.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

◦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6
0.4
0.3
0.5
0.5
0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6
0.5
0.5
0.6
0.5
0.6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= MC (X).

Hence, we obtain that

C (X) =
0.4
x1

+
0.4
x2

+
0.3
x3

+
0.3
x4

+
0.5
x5

+
0.4
x6

,

C (X) =
0.6
x1

+
0.5
x2

+
0.5
x3

+
0.6
x4

+
0.5
x5

+
0.6
x6

.
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4 Interdependency of L-fuzzy β-covering-based Approximation
Operators

Let C1, C2 be two L-fuzzy β-coverings on U and β > 0 (β ∈ L). When Nβ
C1
(x) =

Nβ
C2
(x) for any x ∈ U , C1 is not necessarily equal to C2. To illustrate this conclusion,

we show the following example.

Example 5. Let U = {x1, x2, x3, x4, x5, x6}, C = {C1, C2, C3, C4} and L =
([0, 1],⊗,→,

∨
,
∧

, 0, 1) be a Gödel-residuated lattice in Example 1. C ′ =
{C1, C2, C3, C4, C5} is a family of fuzzy sets of U , where

C5 =
0.4
x1

+
0.5
x2

+
0.2
x3

+
0.1
x4

+
0.3
x5

+
0.2
x6

.

It is easy to see that C and C ′ are two L-fuzzy β-coverings on U for any β ∈
(0, 0.6]. In general, we take β = 0.6, then N0.6

C (xi) and N0.6
C ′ (xi) (i = 1, 2, 3, 4, 5, 6)

can be listed in Table 1. We can easy to see that

(
N0.6

xi

)
(y) =

(⋂
N0.6

C (xi)
)
(y) =

(⋂
N0.6

C ′ (xi)
)
(y) =

(
N0.6

xi

)′
(y),

where y ∈ U and i ∈ {1, 2, 3, 4, 5, 6}. However, C �= C ′.

Table 1. N0.6
C (xi) and N0.6

C ′ (xi).

U x1 x2 x3 x4 x5 x6

N0.6
C (xi) {C1, C4} {C3, C4} {C2} {C1} {C2, C3} {C4}

N0.6
C ′ (xi) {C1, C4} {C3, C4} {C2} {C1} {C2, C3} {C4}

Next, we consider the condition under what two L-fuzzy β-coverings can generate
the same L-fuzzy β-neighborhood system of any elements on U . At first, we introduce
some basic concepts.

Definition 8. Let (U,C ) be an L-fuzzy β-covering approximation space and C ∈ C .
If one of the following statements holds:

(1) C(x) < β for all x ∈ U .
(2) For x ∈ U , C(x) ≥ β implies that there exists C ′ ∈ C − {C} such that C ′ ⊆ C

and C ′(x) ≥ β.

thenC is called a β-independent element ofC ; if not,C is called a β-dependent element
of C .
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Example 6. Let C ,C ′ be two L-fuzzy β-coverings in Example 5. On the one hand, for
any x ∈ U , C5(x) < 0.6, then C5 is a 0.6-independent element of C ′ and Ci (i =
1, 2, 3, 4) are 0.6-dependent elements of C ′.

On the other hand, let C ′′ = C
⋃

C6, where

C6 =
0.7
x1

+
0.5
x2

+
0.4
x3

+
0.8
x4

+
0.4
x5

+
0.3
x6

.

It is easy to seen that C ′′ is an L-fuzzy β-covering on U for any β ∈ (0, 0.6]. In general,
we take β = 0.6, then N0.6

C ′′(xi) (i = 1, 2, 3, 4, 5, 6) can be listed in Table 2.

Table 2. N0.6
C (xi) and N0.6

C ′′(xi).

U x1 x2 x3 x4 x5 x6

N0.6
C (xi) {C1, C4} {C3, C4} {C2} {C1} {C2, C3} {C4}

N0.6
C ′′(xi) {C1, C4, C6} {C3, C4} {C2} {C1, C6} {C2, C3} {C4}

Then, for xi ∈ U , C6(xi) ≥ β (i = 1, 4), there exists C1 ⊆ C6 and C1(xi) ≥
β (i = 1, 4), further, it can be easy to obtain that

(
N0.6

xi

)
(y) =

(⋂
N0.6

C (xi)
)
(y)

=
∧

Ci(xi)≥β, Ci∈C

Ci(y)

=

⎛

⎝
∧

Ci(xi)≥β, Ci∈C

Ci(y)

⎞

⎠
∧

⎛

⎝
∧

C6(xi)≥β, C6∈C ′′
C6(y)

⎞

⎠

=
∧

Ci(xi)≥β, Ci∈C ′′
Ci(y)

=
(⋂

N0.6
C ′′(xi)

)
(y)

=
(
N0.6

xi

)′′
(y),

where y ∈ U and i ∈ {1, 2, 3, 4, 5, 6}. Hence, C6 is a 0.6-independent element of C ′′,
and Ci (i = 1, 2, 3, 4) are a 0.6-dependent elements of C ′′. The L-fuzzy β-covering C
and C ′′ can generate the same L-fuzzy β-neighborhood of any xi ∈ U .

Proposition 4. Let (U,C ) be an L-fuzzy β-covering approximation space. If C is a
β-independent element of C , then C − {C} is still an L-fuzzy β-covering of U .

Proof. Suppose that C = {C,C1, C2, . . . , Cm}, where C,Ci ∈ LU (i = 1, 2, . . . ,m),
and C is a β-independent element.

Case(1). For any x ∈ U , C(x) < β, we can conclude that
(

m⋃

k=1

Ci

)

(x) =
m∨

k=1

Ci(x) =

(
m∨

k=1

Ci(x)

)
∨

C(x) ≥ β.
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Case(2). For x ∈ U , if C(x) > β, then there exists Cr ∈ {C1, C2, . . . , Cm} such

that Cr ⊆ C and Cr(x) ≥ β, i.e.,

(
m⋃

k=1

Ci

)

(x) ≥ Cr(x) ≥ β.

Thus, C − {C} is an L-fuzzy β-covering of U .

Proposition 5. Let (U,C ) be an L-fuzzy β-covering approximation space, C be a β-
independent element of C and C1 ∈ C − {C}. Then C1 is a β-independent element of
C if and only if it is a β-independent element of C − {C}.
Proof. ⇐=): It is obvious.

=⇒): Suppose C = {C,C1, C2, . . . , Cm}, where C,Ci ∈ LU (i = 1, 2, . . . ,m).
If C is a β-independent element, then we have the following four cases:

For any x ∈ U , C(x) < β:
Case(1). C1(x) < β for any x ∈ U . Since C1 ∈ C − {C}, C1 is a β-independent

element of C − {C}.
Case(2). For y ∈ U , since C1(y) ≥ β, there exists C ′ ∈ C such that C ′ ⊆ C1 and

C ′(y) ≥ β. If C ′ = C, it contradicts C(x) < β for any x ∈ U . If C ′ �= C, then C1 is a
β-independent element of C − {C}.

For x ∈ U , C(x) > β, then there exists Cr ∈ {C1, C2, . . . , Cm} such that Cr ⊆ C
and Cr(x) ≥ β.

Case(3). C1(x) < β for any x ∈ U . It is easy to see that C1 is a β-independent
element of C − {C}.

Case(4). For y ∈ U , since C1(y) ≥ β, there exists C ′ ∈ C − {C1} such that
C ′ ⊆ C1 and C ′(y) ≥ β. If C ′ = C, then there exists Cr ∈ {C1, C2, . . . , Cm} such
that Cr ⊆ C ′ ⊆ C1 and Cr(y) ≥ β, then C1 is a β-independent element of C − {C}.
If C ′ �= C, then it is easy to obtain that C1 is a β-independent element of C − {C}.

Proposition 4 ensures that after a β-independent element is removed from an L-
fuzzy β-covering, it remains an L-fuzzy β-covering. And Proposition 5 emphasizes
that deleting a β-independent element from an L-fuzzy β-covering will not affect the
existence of other β-independents, that is, it will not create any new β-independent
elements, and will not make the original β-independent elements into β-dependent ele-
ments. Therefore, the β-base of an L-fuzzy β-covering is calculated by directly deleting
all the β-independent elements simultaneously or one by one.

Definition 9. Let (U,C ) be an L-fuzzy β-covering approximation space and B be a
subset of C . If C − B is the set of all β-independent elements of C , then B is called
the β-base of C , which is denoted as Bβ(C ).

Definition 10. Let (U,C ) be an L-fuzzy β-covering approximation space. If each ele-
ment of U is a β-dependent element, i.e., Bβ(C ) = C , then C is β-dependent; if not,
C is β-independent.

Example 7. Let (U,C ′) and (U,C ) be two L-fuzzy β-covering approximation spaces
in Example 5. Then C ′ is β-independent because B0.6(C ′) = {C1, C2, C3, C4} �= C ′

and C is β-dependent due toB0.6(C ) = {C1, C2, C3, C4} = C .

The following proposition shows that deleting β-independent elements has no effect
on the β-neighborhood of any elements on U .
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Proposition 6. Let (U,C ) be an L-fuzzy β-covering approximation space. For any x ∈
U , the following statement holds.

⋂
Nβ

C (x) =
⋂

Nβ
Bβ(C )

(x).

Proof. Suppose that C = {C,C1, C2, . . . , Cm}, where C,Ci ∈ LU (i = 1, 2, . . . ,m)
and C is a β-independent element of C . For each x ∈ U , we denote that the L-fuzzy
β-neighborhood of x induced by L-fuzzy β-covering of C as

⋂
Nβ

C (x) and the L-fuzzy
β-neighborhood of x induced by L-fuzzy β-covering of C − {C} as

⋂
Nβ

C −{C}(x).
Then, there exists two cases:
Case(1). For any x ∈ U , C(x) < β, then

⋂
Nβ

C (x) =
⋂

{Ci ∈ C : Ci(x) ≥ β} =
⋂

{Ci ∈ C − {C} : Ci(x) ≥ β} =
⋂

Nβ
C −{C}(x).

Case(2). For y ∈ U , C(y) ≥ β, there exists C ′ ∈ {C1, C2, . . . , Cm} such that C ′ ⊆ C

and C ′(y) ≥ β. It is obvious that C /∈ ⋂
Nβ

C (x). Thus,
⋂

Nβ
C (x) =

⋂
Nβ

C −{C}(x)
holds.

Furthermore, if C − {C} is β-dependent, then we have that Bβ(C ) = C −
{C} = Bβ(C − {C}) and

⋂
Nβ

C (x) =
⋂

Nβ
C −{C}(x) =

⋂
Nβ

Bβ(C −{C})(x) =
⋂

Nβ
Bβ(C )

(x) for any x ∈ U . If C −{C} is β-independent, then there exists {Ci1 , Ci2 ,

. . . , Cis
} ∈ C − {C} (i1, i2, . . . , is ∈ {1, 2, . . . ,m}) such that Ci1 , Ci2 , . . . , Cis

are
all of β-independent elements of C − {C}, then C − {C,Ci1 , Ci2 , . . . , Cis

} is β-
dependent. Thus, Bβ(C − {C}) = C − {C,Ci1 , Ci2 , . . . , Cis

}. In summary, it holds
that
⋂

Nβ
C (x) =

⋂
Nβ

C −{C}(x) =
⋂

Nβ
C −{C,Ci1}(x) = . . .

=
⋂

Nβ
C −{C,Ci1 ,Ci2 ,...,Cis }(x) =

⋂
Nβ

Bβ(C −{C})(x) =
⋂

Nβ
Bβ(C )

(x).

Hence,
⋂

Nβ
C (x) =

⋂
Nβ

Bβ(C )
(x) holds for any x ∈ U .

Proposition 7. Let C1, C2 be two L-fuzzy β-coverings of U . For any x ∈ U ,⋂
Nβ

C1
(x) =

⋂
Nβ

C2
(x) if and only ifBβ(C1) = Bβ(C2).

Proof. ⇐=): It follows from Proposition 6.
=⇒): It can be obtained by Definition 3.

The above proposition states the necessary and sufficient condition under what two
L-fuzzy β-coverings can generate the same β-neighborhood of any elements on U is
that their β-bases are equal.

Corollary 1. LetC1,C2 be two β-dependentL-fuzzy β-coverings of U . For any x ∈ U ,⋂
Nβ

C1
(x) =

⋂
Nβ

C2
(x) if and only if C1 = C2.

Theorem 1. Let (U,C ) be an L-fuzzy β-covering approximation space. For any X ∈
LU , the following statements hold:

∧

y∈U

[(⋂
Nβ

C (x)
)
(y) → X(y)

]
=

∧

y∈U

[(⋂
Nβ

Bβ(C )
(x)

)
(y) → X(y)

]
,

∨

y∈U

[(⋂
Nβ

C (x)
)
(y) ⊗ X(y)

]
=

∨

y∈U

[(⋂
Nβ

Bβ(C )
(x)

)
(y) ⊗ X(y)

]
.
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Proof. It follows from Proposition 6.

According to Definition 4, Proposition 7 and Theorem 1, we can conclude the following
two propositions.

Proposition 8. Let C1, C2 be two L-fuzzy β-coverings of U . For any X ∈ LU , C1 and
C2 generate the same L-fuzzy β-covering-based lower approximation of X if and only
ifBβ(C1) = Bβ(C2).

Proposition 9. Let C1, C2 be two L-fuzzy β-coverings of U . For any X ∈ LU , C1 and
C2 generate the same L-fuzzy β-covering-based upper approximation of X if and only
ifBβ(C1) = Bβ(C2).

Propositions 8 and 9 show a necessary and sufficient condition under what two L-
fuzzy covering-based approximations of an L-subset is that their β-base are equal.

Corollary 2. Let C1, C2 be two L-fuzzy β-coverings of U . For any X ∈ LU , C1 and
C2 generate the same L-fuzzy β-covering-based lower approximation of X if and only
if C1 and C2 generate the same L-fuzzy β-covering-based upper approximation of X .

Example 8. Let C ′′ be an L-fuzzy β-coverings in Example 6 for any β ∈ (0, 0.6]. In
general, we take β = 0.6 and

X =
0.6
x1

+
0.4
x2

+
0.3
x3

+
0.5
x4

+
0.5
x5

+
0.4
x6

.

It follows Definition 9 that Bβ(C ′′) = {C1, C2, C3, C4} = C . Then, combining the
value of MC (X) and MC (X) in Example 4, it holds that

MC ′′(X) = (Mβ • MT
C ′′) • MX

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6 0.5 0.2 0.3 0.3 0.2
0.3 0.6 0.1 0.3 0.5 0.3
0.5 0.4 0.6 0.5 0.7 0.3
0.7 0.5 0.4 0.6 0.3 0.2
0.3 0.4 0.1 0.5 0.6 0.3
0.6 0.6 0.2 0.3 0.5 0.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

•

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6
0.4
0.3
0.5
0.5
0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.4
0.4
0.3
0.3
0.5
0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= MBβ(C ′′)(X) = MC (X),

MC ′′(X) = (Mβ • MT
C ′′) ◦ MX

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6 0.5 0.2 0.3 0.3 0.2
0.3 0.6 0.1 0.3 0.5 0.3
0.5 0.4 0.6 0.5 0.7 0.3
0.7 0.5 0.4 0.6 0.3 0.2
0.3 0.4 0.1 0.5 0.6 0.3
0.6 0.6 0.2 0.3 0.5 0.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

◦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6
0.4
0.3
0.5
0.5
0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6
0.5
0.5
0.6
0.5
0.6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= M
Bβ(C ′′)(X)

= MC (X).
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5 Conclusion

The main conclusions of this paper and continuous work to do are listed as follows.

(1) The matrix representations of the L-fuzzy β-covering-based lower and upper
approximations are proposed, which can make the calculations more valid through
operations on matrices.

(2) The interdependency of the L-fuzzy β-covering-based rough approximations is
discussed. Using the concept of β-independent element, we give a necessary and
sufficient condition under what the two L-fuzzy β-coverings can generate the same
approximation operations.

(3) The L-fuzzy covering-based rough sets should be further researched from the per-
spective of topological properties [15,24,24].
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Uncertainty-Aware Deep Open-Set Object
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Abstract. Open-set object detection better simulates the real world
compared with close-set object detection. Besides the classes of interest,
it also pays attention to unknown objects in the environment. We extend
the previous concept of open-set object detection, aiming to detect both
known and unknown objects. Because unknown objects have different
textural features from known classes and the background, we assume that
detecting unknown instances will generate high uncertainty. Therefore,
in this paper, we propose an uncertainty-aware open-set object detection
framework based on faster R-CNN. We introduce evidential deep learn-
ing to the field of object detection to estimate the uncertainty of the
predictions and perform more accurate classification in open-set condi-
tions. The obtained uncertainty will be utilized to pseudo-label unknown
instances in the training data. We also introduce a contrastive clustering
module to separate the feature representations of each class during the
training phase. We set an uncertainty-based unknown identifier at the
inference phase to enhance the generalization of the detector. We conduct
experiments on three different data splits, and our method outperforms
the recent SOTA method. We also demonstrate each component in our
method is effective and indispensable in our ablation studies.

Keywords: Uncertainty · Evidential deep learning · Open-set object
detection

1 Introduction

As one of the most important research fields in computer vision, object detec-
tion aims to recognize and localize objects of interest while ignoring the others.
Thanks to the development of deep learning, object detection has made sig-
nificant advances in the past few years and achieved remarkable performance
[8,10,25,39]. Most existing detectors are under a strong close-set assumption
that detectors only encounter objects that are from the classes available during
the training phase. This assumption simply classifies objects into known classes
and scene background, while actually, detectors will inevitably meet objects from
unknown classes.
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Open-set object detection [4,19,20,32] believes the detectors are essentially
deployed in open-set conditions. Objects not seen in the training phase can not
be simply regarded as background. We extend this concept, requiring detec-
tors capable of detecting known and unknown objects. Figure 1 illustrates the
detection results of our open-set detector. It can be seen that both known and
unknown objects in example images are detected.

Fig. 1. Examples of open-set object detection. Detectors will counter unknown
objects at inference because of lacking sufficient information. Our open-set object detec-
tion requires detectors to detect known and unknown objects correctly.

Open-set object detection problem is crucial, especially for safely applying
object detection to the ever-changing real world, such as autonomous driving
and autonomous robot. Open-set detector has the ability to judge whether the
condition is too complex. Therefore, we can obtain a more trustworthy detector
and avoid serious consequences.

For performance evaluation under the close-set assumption, test sets contain
lots of labeled objects from the classes of interest, and detectors are encouraged
to improve the performance of detecting these objects. However, when applied
to open-set situations, there are no annotations of unknown objects in existing
test sets. We follow the experimental setup in [12,21] to evaluate the open-set
detection performance.

Since Bendale et al. [30] formally put out the open-set recognition problem,
there has been a great amount of research on this problem, and it has made sig-
nificant progress [1,7,23,29]. However, these advances cannot be directly adapted
to open-set object detection because of the effect of the background. For close-set
object detection, it is natural to regard unlabeled things in images as the back-
ground. When it comes to open-set object detection, unlabeled unknown objects
in training images will harm unknown detection if they are not properly han-
dled. Joseph et al. [12] also noticed this problem and proposed a self-supervised
method to solve it. Their work effectively reduces the impact of unlabeled objects
in the training set.

The texture of the unknown objects is neither similar to known classes nor the
background. Thus, we propose a hypothesis that for well-trained object detec-
tors, the detection of unknown objects will generate higher uncertainty. Miller
et al. [19] proposed a similar assumption, they introduced dropout sampling [5]
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to estimate the uncertainty of predictions derived from SSD [16] attempting to
avoid identifying unknown objects as known.

Evidential deep learning [31] can efficiently estimate the uncertainty of the
predictions of neural networks. To the best of our knowledge, we are the first to
introduce it into the field of object detection. Correctly modeling the uncertainty
of predictions is extremely important because we believe uncertainty is the key
to open-set object detection. More details about this technique will be discussed
in Sect. 3.1.

There are some challenges in open-set object detection: (i) for model training,
there are no annotations of unknown objects in any existing training sets; (ii)
unlabeled unknown objects in the training data may confuse detecting unknown
objects; (iii) unknown class includes many different classes thus it is challeng-
ing to form similar feature representations for unknown objects. In this paper,
we propose an uncertainty-aware open-set object detection method, which can
effectively address the above issues. Our contributions are as follows:

• We introduce evidential deep learning to object detection to quantify the
uncertainty of predictions and obtain calibrated classification probability.

• An uncertainty-aware pseudo-labeling method is proposed to label instances
with high uncertainty as unknown objects during the training phase. These
annotations are utilized to learn an open-set object detector and to mitigate
the confusion caused by the background.

• We introduce the contrastive clustering module to optimize feature represen-
tation for every class. With this module, the detector can produce similar
feature representations for unknown objects and make sure these representa-
tions are different from known objects.

• To improve the generalizability, we construct an uncertainty-based identifier
that only works at the inference phase.

Section 2 explains related work. Every component of our method is elaborated
in detail in Sect. 3. Section 4 presents the experiment setup and comparison of
results, and Sect. 5 summarizes our work.

2 Related Work

2.1 Open-Set Object Detection

Closed-set object detection assumes all objects are from classes available dur-
ing training, i.e. Known classes or the Background. In the real world, however,
detectors only get limited information about Known classes during the training
phase while meeting various novel classes at inference. Open-set object detec-
tion better simulates the real world, which requires detecting both known and
unknown objects in the environment.

There have been some works on open-set object detection. Dhamija et al. [4]
formalized the problem of open-set object detection and evaluated the perfor-
mance of some popular object detectors with their proposed open-set object
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detection protocols. These detectors sometimes classify unknown objects as
known with high confidence. Besides, the use of the background cannot effectively
alleviate this problem. Miller et al. [19] adapted uncertainty estimation to object
detection using Monte Carlo Dropout sampling [5] in an SSD detector to esti-
mate the uncertainty of the detections and regard those with high uncertainty as
unknown objects. However, as the first exploration of open-set object detection,
this work only rejects unknown objects rather than recognizes them. Meanwhile,
it relies on sampling operations, which reduce the efficiency of the object detec-
tor. Joseph et al. [12] proposed a method based on faster R-CNN [27] and named
it ORE. ORE achieves state-of-the-art on the open-set object detection problem
although designed for the open-world task. The open-world task asks the model
to perform incremental learning when knowledge of unknown classes is provided.
ORE utilizes RPN to generate pseudo unknown labels for proposals that do not
overlap the ground-truth but have high ‘objectness’ scores. These proposals are
then regarded as the ground-truth of unknown objects to train the model. To
improve detection performance, ORE also models the unknown class and each
known class in the latent space to make the feature representations of different
classes separable. In addition, it uses an energy-based identifier to determine
whether an object belongs to known classes or the unknown class by calculating
its energy value. ORE suffers from relying on a validation set containing man-
ually labeled annotations of unknown objects to train the energy distribution.
Simultaneously, ORE relies on training data to train unknown detection, while
in open-set conditions, detectors face many more unknown classes that do not
exist in the training data, its auto-labeling will thus result in poor generalization.

2.2 Deep Learning with Uncertainty

The reliability of deep learning has been drawing more attention with its wide
application in the real world. Evaluating the uncertainty of neural networks is
critical for obtaining safe predictions and calibrated confidence. Research on
uncertainty estimation can be classified into four types [6]: single deterministic
methods [18,24,31], Bayesian methods [5,28,34], ensemble methods [14,33,36],
and test-time augmentation methods [22]. Evidential neural network (ENN) [31]
is one of the single deterministic methods. It is based on the Dempster-Shafer
Theory of Evidence (DST) [3] and the theory of Subjective Logic (SL) [13]. The
uncertainty estimate can be derived by one single forward pass with a determin-
istic network. There have been researches based on evidential neural network
[9,17,37,38]. We adapt uncertainty estimate to object detection to guide the
detector to identify unknown objects in the training data.

2.3 Contrastive Clustering

In computer vision, contrastive learning aims to learn an encoder network that
can generate similar feature representations for images from the same class and
force feature representations from diverse classes far from each other [11]. ORE
[12] contains contrastive clustering, a cluster-based contrastive learning module.
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By contrastive clustering, the detector can generate separate feature represen-
tations for objects from different classes, while the feature representations of
objects from the same class are close to each other.

To perform contrastive clustering, we maintain a class prototype set: P =
{p0 . . . pC} and a feature store Fstore = {q0 . . . qc} storing the class-specific fea-
tures. pi is the prototype vector for each class i ∈ C, while qi is a fixed-length
queue that stores the features of objects belonging to class i. At the training
phase, we compute the class-wise mean of Fstore as Pnew every IP iteration
and update P with a momentum parameter η : P = ηP + (1 − η)Pnew. The
contrastive loss is defined as:

LCC (f c) =
∑

i=0

� (f c, pi) , where,

� (f c, pi) =

{
D (f c, pi) i = c

max {0,Δ − D (f c, pi)} otherwise

(1)

where fc is the feature of an object from class c, D is the distance function
and δ is the minimum distance between the feature vector and the prototype
vectors of the other classes. As the prototype vectors continuously evolve during
training, the detector will model each class in latent space and finally generate
separatable feature representations for objects from different classes.

3 Method

We aim to propose an object detection approach that can detect novel instances
while having a comparable performance of known detection to other detectors
designed under the close-set assumption. We choose Faster R-CNN as the base
detector because it outperforms other common detectors [15,26] in open-set situ-
ations [4]. Figure 2 shows the overview architecture of our method. We introduce
ENN to the classification head, aiming to estimate the label uncertainty of the
predictions. According to our hypothesis, regions with high uncertainty will be
labeled as unknown objects. The obtained uncertainty is utilized to pseudo-label
regions generated by RPN. The unknown class contains many different classes,
such that the feature representations of unknown objects can be various. We
introduce a contrastive clustering module to optimize feature representations
generated by the Region of Interest (RoI) head. It models unknown and each
known class in the latent feature space by constructing a set of prototype vec-
tors. Details on contrastive clustering can be found in Sect. 2.2. An identifier
based on uncertainty is introduced as a supplement to improve the performance
of unknown detection.

3.1 Object Detection with Evidential DNN

Existing deep learning models usually use the softmax operator to obtain class
probabilities for classification tasks. Our method regards the label uncertainty
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Fig. 2. The overall architecture. Our method is based on the standard faster R-
CNN framework. We introduce the evidential classification head to conduct the uncer-
tainty estimate. In the training phase, pseudo-labeling module is introduced to detect
unknown instances in training data and utilize them to train the detector. We also
introduce the contrastive clustering module to optimize feature representations for
each class. The above two modules are only available during training. At the inference
phase, we introduce an uncertainty-based identifier to determine whether an object is
unknown or not.

of predictions as the key to open-set object detection. However, label uncer-
tainty cannot be derived from such models. The softmax-based detectors can be
interpreted as Multinomial distributions parameterized by the neural network’s
output. For a the K-class classification problem, the likelihood function for a
sample x and its label y is

P (y|x, θ) = Mult(y|σ(f1(x, θ)), . . . , σ(fk(x, θ))) (2)

where Mult() is a multinomial mass function, f() is a neural network
parametrized by θ, fi(x, θ) is the output of channel i, and σ() is the softmax
function. Minimizing the negative log-likelihood −logP (y|x, θ) is equivalent to
the cross-entropy loss function. Therefore, softmax essentially conducts a point
estimation to the predictive distribution, which cannot obtain the variance of
the predictive distribution. Meanwhile, the softmax-based classifiers could pro-
duce over-confident predictions for unknown objects [2,31,35]. Evidential deep
learning (EDL) [31] is proposed to overcome these drawbacks. For K-class clas-
sification problem, EDL provides a belief mass bi for each class i, 1 ≤ i ≤ K,
and an overall uncertainty mass u. These mass values are non-negative and sum
up to one: u +

∑K
i=1 bi = 1. EDL regards ei ≥ 0 as the evidence derived from

the network, supporting classifying sample x into class i, and the total evidence
S is computed as: S =

∑K
i=1(ei + 1). Then the belief mass bi can be computed

as: bi = ek/S, and the overall uncertainty is u = K/S. SL assumes that the
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probability density of the probability mass function p of the class probability
follows a Dirichlet distribution, the conjugate prior distribution of the multino-
mial distribution. For a K-class classification task, and the Dirichlet distribution
is characterized by K parameters α = [α1, . . . , αk] and given by

Dir(p|α) =
1

B(α)

K∑

i=1

pαi−1
i (3)

where B() is a K-dimensional multinomial beta function, αi = ei+1. EDL treat
α as the output of neural network: α = f(g(x))+1, where g() is the network and
f() is the evidence activation function which can ensure αi ≥ 1, 1 ≤ i ≤ K. The
probability that sample x belongs to class i is: pi = αi/S. Then we can train the
network by minimizing negative log-marginal likelihood, let y be a one-hot vector
encoding the ground-truth of the input sample x, the eventual loss function is
given by

LEDL = − log(
∫ K∏

j=1

pyi

j

1
B(αi)

K∏

j=1

p
αj−1
j dP )

=
K∏

j=1

yi(log(S) − log(αj)

(4)

We introduce EDL to our classification head, and the uncertainty can be obtained
with one single forward pass. Uncertainty estimate is utilized to label unknown
objects in the training phase and identity unknown objects in the inference phase.
EDL can alleviate over-confident predictions and regarding unknown objects as
known.

3.2 Model Training of Evidential DNN for Uncertain Object
Detection

Existing datasets only contain the annotations of objects from classes of interest,
while there are numerous unlabeled unknown objects in the training images. To
avoid being confused by these unknown objects without labels, closed-set object
detection introduces the background and forces these objects to be classified as
background. Although this method has a degree of limitations, as the texture
characteristics of unknown objects are different from the background, it has been
proven effective in closed-set object detection.

In open-set object detection, with the demand of detecting unknown objects,
ignoring the unlabeled unknown objects in the training data can cause unimagin-
able harm to the performance of the unknown detection because, in this way, the
detector may recognize objects with similar features as the background. It is nat-
ural to solve this problem by adding the annotations of these unknown instances
into the training set such that the detector can learn to detect unknown objects
in open-set conditions. However, the cost of labeling these objects is unaccept-
able, especially in large-scale datasets.
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To address this issue, we propose an uncertainty-based self-supervised app-
roach. The Region Proposal Network (RPN) in the faster R-CNN framework can
propose a set of regions that might contain objects. With the introduced eviden-
tial DNN, the detector can obtain the label uncertainty of these regions. After
sorting these regions by uncertainty, the top K regions are selected, which are
highly uncertain predictions. According to the hypothesis in Sect. 1, we believe
that these regions are more likely to contain unknown objects. As a result,
instances with high uncertainty in the training images are pseudo-labeled as
unknown objects. This way, we can provide training data for open-set object
detection. Meanwhile, the harm caused by regarding the unknown instances
without a label in the training set as the background is effectively alleviated.
Figure 3 illustrates the process of pseudo-labeling unknown objects.

Fig. 3. The process of pseudo-labeling unknown objects. Each row represents
the prediction result for a region. The grey grids represent the probability of an object
belonging to a class, and the blue grids represent the prediction uncertainty of the
object. Darker colors indicate higher values. We sort regions by uncertainty and label
the top k regions. (Color figure online)

Though we obtain the feature representations of unknown instances, we have
to deal with the problem that the feature representations of the unknown class
can be various. Any class that does not exist in the annotations of the training
set can be regarded as an unknown class, so the obtained features of the unknown
class may be various from each other. To generate similar feature representations
for the unknown class, we introduce the contrastive clustering module. The above
pseudo-labeled instances will be employed in the contrastive clustering task to
construct the prototype vector for the unknown class. More details on contrastive
clustering can be found in Sect. 2.2. After comparative clustering, we can provide
a prototype vector for each class, and the features of objects from different classes
are separable.

In the end, with the original regression loss function in faster R-CNN
unchanged, our training loss is:

L = LEDL + LREG + LCC (5)
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3.3 Identify Unknown Objects with Uncertainty

Our pseudo-labeling effectively avoids being confused by unlabeled unknown
objects in the training data. But we have to notice that the detector will
encounter lots of objects which do not exist in training images at inference. The
unknown objects in the training set can be regarded as a small subset of the
whole unknown objects. The detector will lack generalizability when deployed
in the real world. Based on our hypothesis, it is natural to identify unknown
objects by their uncertainty during inference. We can set a certain uncertainty
threshold, and the class of an object is unknown if its uncertainty is higher than
the threshold.

Then we need to deal with the threshold setting problem. Manually setting a
fixed threshold lacks mathematical interpretability. For the tricky hyperparam-
eter setting problem, inspired by [2], we use a validation set that only contains
annotations of known instances and compute their logarithmic total evidence
(logS). We set a group of class-wise thresholds according to these logS to avoid
manually setting a threshold.

Specifically, let the threshold vector of unknown δ ∈ RK . For Class i, 1 ≤
i ≤ K, record the logS when an instance is classified to class i, such that we
have Ωi = {logS : y = i}. The calculation of S is explained in Sect. 3.1. For
each class, we fit a Gaussian distribution by its recorded logS and obtain the
class-specific mean μ and standard deviation σ. According to the “three-sigma”
rule, for class i, we set δi = μi −2∗αi, which is because the logS of only 2.3% of
objects is less than δi, when classified as class i. These objects can be considered
as having insufficient evidence, so they are more likely to be unknown objects.
We formalize the above operation as:

y =

{
i, logS ≥ δi, i = argmax1≤c≤K αc

unknown, logS < δi, i = argmax1≤c≤K αc

(6)

4 Experiments

4.1 Experimental Settings

Data Treatment. We choose Pascal VOC and MS-COCO to conduct our
experiments. We set three tasks to evaluate the performance of the detectors
in simple and complex open-set situations. In task 1, we regard the first 15
classes in Pascal VOC as known and the left five classes as unknown. We use
the original test set, val set and training set of Pascal VOC 2007. In task 2, we
regard the 20 classes in Pascal VOC as known classes and the other 60 classes
in MS-COCO as unknown. To achieve this, we group the Pascal VOC training
set and the training images in MS-COCO that contain objects of VOC classes
as the training set. In task 3, we add 20 more classes in MS-COCO as known
classes and the remaining 40 classes as unknown. As for evaluation, we group the
test set of Pascal VOC and the val set of MS-COCO to test the performance of
detecting known and unknown objects, respectively. We use the val set of Pascal



170 Q. Hang et al.

VOC to fit the category-wise Gaussian distribution to determine the uncertainty
threshold. Note that the unknown annotations are removed in the training and
validation phase.

Evaluation Protocols. We use the universal mean average precision (mAP) to
evaluate the detecting ability for known classes. We only have limited unknown
annotations in the test set, so we choose recall as the detection metric for
unknown objects. Recall shows how many annotated unknown objects can be
detected.

Implementation Details. Our method extends the standard faster R-CNN
with a ResNet-50 backbone. We set the batch size as 16 and the initial learning
rate as 0.01. We choose the exp function as the activation function. We set the
clustering momentum as 0.99, the length of queues in Fstore as 20, and the
clustering distance Δ as 10.

4.2 Comparative Studies

Although specially designed for open-world object detection, ORE outperforms
the prior work [19] on open-set object detection. As ORE relies on a validation
set containing labeled unknown instances to learn the energy-based unknown
identifier (EBUI), for a fair comparison, we choose ORE-EBUI as the baseline
to compare the performance with our method. Note that we change the original
classification head of ORE to adapt to the open-set setting. We train a faster
R-CNN to examine whether the unknown detection could cause a severe drop in
detection performance for known classes. Table 1 shows the results comparison
of our method with baseline and standard faster R-CNN on three tasks. Known
mAP indicates the ability to detect known objects. Unknown Recall quantifies
the ability to retrieve unknown objects, i.e., how many labeled unknown objects
have been detected. The results of task 1 show that even with a slight perfor-
mance drop on known detection, our method can achieve much better capability
on unknown detection. The results of task 2 and task 3 show that our method
performs better when applied in complex situations, thanks to our uncertainty-
aware design.

Table 1. The detection results on our data splits. Known mAP indicates the
ability to detect known and Unknown Recall measures how well the detector could
detect labeled unknown objects in the test set. As shown in Table 1, our uncertainty-
aware method outperforms the baseline on known and unknown detecting. It results
in a comparable performance of detecting known classes to a closed-set detector.

Task ID → Task 1 Task 2 Task 3
Method ↓ Known mAP (↑) Unknown recall (↑) Known mAP (↑) Unknown recall (↑) Known mAP (↑) Unknown recall (↑)

faster R-CNN 70.69 – 57.79 – 51.40 –
ORE-EBUI 69.54 19.66 56.44 6.08 51.25 3.11
Ours 67.21 27.21 56.67 9.90 52.16 3.90
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Figure 4 shows the comparison of our method, faster R-CNN and ORE on
example images. It can be seen that our method achieves satisfactory perfor-
mance in detecting known objects. Our method can mitigate the impact of the
presence of unknown objects on known object detection (shown in Fig. 4b, 4g).
The false negative (shown in Fig. 4i–4j) and the false positive detections (shown
in Fig. 4j–4k) indicate the limitation of our method.

Fig. 4. Detection comparisons on example images. We compare some detection
results of faster R-CNN, ORE and our method in the above three tasks. In each of
above images, our method performs better in detecting unknown objects than ORE.
As for known instances, the detection performance of our method is comparable to
faster R-CNN and ORE.

We also perform ablation experiments on task 2 to study the effect of each
component of our method, including Contrastive Clustering (CC) and Iden-
tify Unknown with Uncertainty (IUU). Table 2 shows the ablation results. The
absence of CC or IUU will cause a performance drop. Each component of our
architecture contributes to open-set object detection and plays an irreplaceable
role (Fig. 5).
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Table 2. Results of ablation study of our method. It can be seen that each com-
ponent in our architecture has an irreplaceable effect on open-set detection. CC refers
to “Contrastive Clustering”, and IUU refers to “Identify Unknown with Uncertainty”.

Method Known mAP Unknown recall

ORE-EBUI 56.44 6.08
Ours-CC 53.46 6.58
Ours-IUU 56.74 6.38
Ours 56.67 9.90

Fig. 5. Results of ablation experiments on example images. The results show
that removing components in our framework can lead to false detections or missed
detections of unknown objects, proving that each component of our method plays an
important role.

5 Conclusion

In this paper, we propose a novel uncertainty-aware open-set object detection
framework. We hypothesize that object detectors will generate higher uncer-
tainty for unknown objects and design the model architecture based on this
assumption. We aim to detect known and unknown objects in the open-set con-
ditions, which better simulates the real world than the close-set setting that
regards unknown objects as background. The key of our framework is to obtain
training data for detecting unknown objects through uncertainty estimation.
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Experiments are conducted on three data splits based on Pascal VOC and MS-
COCO. The results show that our uncertainty-aware method outperforms the
baseline on the open-set object detection task. This paper focuses on label uncer-
tainty. In future work we will explore the effect of spatial uncertainty in open-set
object detection.
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Abstract. As a major direction of data mining, rule acquisition has
been applied and researched widely. However, there are few studies on
association rules determined by ordered attributes. In this paper, we
propose methods of mining decision rules based on situations where only
condition attributes are ordered (generalized one-sided formal decision
context) and both the condition and decision attributes are ordered (gen-
eralized one-sided ordered formal decision context), to discuss the influ-
ence of ordered attributes on decision rules. Moreover, the discussion
is carried out to explain relations between decision rules based on gen-
eralized one-sided formal decision contexts and decision rules based on
generalized one-sided ordered formal decision contexts. Furthermore, the
rules based on ordered decision attributes pay more attention to global
information while the rules constructed by disordered decision attributes
pay more attention to local information through the experimental results
and theoretical derivation.
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1 Introduction

Data mining [1] aims to extract interesting knowledge from a big data set. As
a means of data processing, granular computing was proposed by Lin [2]. The
main idea of granular computing is to simplify a complex problem into several
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This class is regarded as an information granule or particle. One of the advanced
researches field in granular computing is the rough set [5].

As a method of knowledge representation and data mining, formal concept
analysis [6] was first proposed by Wille. Formal concepts [7–9] are basic research
objects for formal concept analysis and reflect the interdependence between
attributes and objects. Since its inception, formal concept analysis has become
a rapidly developing field in applied information science and theoretical infor-
mation science [10–12].

Multi-valued ordered attributes commonly exist in practical applications.
And generalized one-sided concept lattices [13] analyze object-attribute models
with different structures for truth values of attributes. On this basis, Shao et
al. [14] gave a method for attribute reduction in the generalized one-sided for-
mal context to reduce information while keeping the original lattice unchanged.
Besides, Liang et al. [15] extended the generalized one-sided formal context to
an intuitionistic fuzzy information system to make the attribute reduction. Fur-
thermore, Shao et al. [16] combined generalized one-sided concept lattices and
multi-granularity concept lattices to explore a transformation algorithm of lat-
tice structures between different granularities.

In this paper, we present algorithms to extract quantitative association rules
in multi-valued ordered formal decision contexts directly. Compared with exist-
ing algorithms, the algorithms in this paper needn’t transform the original multi-
valued context into a binary context. Moreover, the influence of multi-valued
ordered attributes on mining decision rules is explored in the contexts where only
condition attributes are ordered and both the condition and decision attributes
are ordered respectively. Furthermore, the relation between decision rules in the
decision context and decision rules in the order context is studied.

2 Preliminaries

In this section, we briefly recall some previous results about generalized one-sided
formal contexts [13] and traditional association rules [1].

2.1 Generalized One-Sided Formal Context

Generally, a formal context can be expressed as an ordered 3-tuple (U,A,R),
where U = {x1, x2, ..., xn} is a set constructed by objects and A =
{a1, a2, ..., am} is a set constructed by attributes. R ⊆ U×A is a relation between
U and A. Generally, attribute values in (U,A,R) aren’t considered as ordered,
which is contrary to human cognition. Thus, Butka et al. [13] proposed general-
ized one-sided formal contexts to deal with the situation.

Definition 1 [13]. Let a 4-tuple (U,A,£, R) be a generalized one-sided formal
context, if the following conditions are satisfied:

(1) U is a non-empty set constructed by objects, and A is a non-empty set con-
structed by attributes.
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(2) £ : A → CL is a mapping between an attribute set and a class of complete
lattices. Here CL is a class of complete lattices about the attribute value of
each attribute. Then £(a) is seen as the structure of truth values for any
attribute a ∈ A.

(3) R is a generalized incidence relation, i.e., for any x ∈ U and a ∈ A,R(x, a) ∈
£(a) represents the degree, from the structure £(a), that the object x ∈ U
possesses the attribute a.

Normally, the structure of truth values £(ai) is considered to be the order
of attribute values for each ai.

Example 1. The generalized one-sided formal context (U,A,£, R) is shown as
Table 1, where the set of objects is U = {x1, x2, x3, x4}, the set of attributes
is A = {a1, a2, a3, a4}. £(a1),£(a2),£(a3),£(a4) represent the corresponding
structure of truth values for a1, a2, a3, a4 which are shown in Fig. 1. Table 1 also
illustrates the generalized incidence relation R.

Table 1. The generalized one-
sided formal context.

a1 a2 a3 a4

x1 2 1 1 1

x2 3 2 2 3

x3 1 2 1 2

x4 3 3 2 3
Fig. 1. Structure of truth values.

Let (U,A,£, R) be a generalized one-sided formal context. The power set of
U is P (U).

∏
a∈A £(a) is the direct product for the structure of truth values. The

mappings ↑: P (U) → ∏
a∈A £(a) and ↓:

∏
a∈A £(a) → P (U) are given below:

↑ (X)(a) =
∧

x∈X

R(x, a), ↓ (g) = {x ∈ U | ∀a ∈ A, g(a) ≤ R(x, a)},

where X ⊆ U, a ∈ A, g ∈ ∏
a∈A £(a).

Let ϕ : P → Q and ψ : Q → P be the mappings between the partially ordered
set (P,≤) and the partially ordered set (Q,≤). If the pair (ψ′, ϕ′) satisfies the
conditions: (1) p1 ≤ p2 ⇒ ϕ′p2 ≤ ϕ′p1, (2) q1 ≤ q2 ⇒ ψ′q2 ≤ ψ′q1, (3) p ≤
ψ′ϕ′p, q ≤ ψ′ϕ′q, (ψ′, ϕ′) forms a Galois connection between P and Q. And then
the pair of mappings (↑, ↓) constitutes a Galois connection in the generalized
one-sided formal context (U,A,£, R). c↑↓ :

∏
ai∈A £(ai) → ∏

ai∈A £(ai) is a
compound operation in the generalized one-sided formal context (U,A,£, R),
which can be calculated by c↑↓(g) =↑ (↓ (g)) for g ∈ ∏

ai∈A £(ai). And the



Rule Acquisition in Generalized One-Sided Decision Systems 179

equation ‖↓ (g) ‖=‖↓ (c↑↓(g)) ‖ can be derived from the properties of Galois
connections.

Let (U,A,£, R) be a generalized one-sided formal context. For X ⊆ U, g ∈∏
a∈A £(a), the pair (X, g) is described as a generalized one-sided formal concept,

if the following conditions are satisfied:

↑ (X) = g, ↓ (g) = X.

X and g are the extent and intent of the generalized one-sided formal concept,
respectively. B(U,A,£, R) is a set containing all generalized one-sided formal
concepts of (U,A,£, R).

(X1, g1) and (X2, g2) are generalized one-sided formal concepts in
B(U,A,£, R). If X1 ⊆ X2 or g2 ≤ g1, then (X1, g1) ≤ (X2, g2). ≤ is a par-
tial order on B(U,A,£, R). All concepts in B(U,A,£, R) structured by partial
order ≤ constitutes a complete lattice called a generalized one-sided concept
lattice, denoting as B(U,A,£, R).

Example 2. A generalized one-sided concept lattice based on the generalized
one-sided formal context (see Table 1) is shown in Fig. 2.

Fig. 2. The generalized one-sided concept lattice.

2.2 Traditional Association Rules

The background of rule acquisition is made by A∗, T and U∗. A∗ = {a∗
1, a

∗
2, ..., a

∗
m}

is a set including m items. ∀X ⊆ A∗ is called an itemset. tj is a transaction
consisting of items, tj ⊆ A∗. T = {t1, t2, ..., tn} is a transaction data set. Each
tj has a particular identifier xj , and all identifiers make a set U∗. Taking the
classic shopping problem as an example, A∗ = {milk, sugar, bread, egg}, T =
{{milk, sugar, bread}, {milk, egg}, {milk, bread, egg}, {sugar, bread}}, U∗ =
{x1, x2, x3, x4}. Table 2 shows a background of rule acquisition.
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Table 2. The background of rule acqui-
sition.

U∗ T

x1 Milk, sugar, bread

x2 Milk, egg

x3 Milk, bread, egg

x4 Sugar, bread

Table 3. The shopping formal context.

Milk Sugar Bread Egg

x1 1 1 1 0

x2 1 0 0 1

x3 1 1 0 1

x4 0 1 1 0

Definition 2 [1]. Let A∗ = {a∗
1, a

∗
2, ..., a

∗
m} be a set of items. T = {t1, t2, ..., tn}

is a transaction data set. For B ⊆ A∗, the support of B is calculated by σ(B) =‖
{tj |B ⊆ tj , tj ∈ T} ‖. If σ(B) is not less than the preset threshold p which is
called the support threshold of the itemset, then B is a frequent itemset in the
background.

Here the operation ‖ · ‖ is known as the cardinality operation.

Definition 3 [1]. Let the transaction data set T , the set of items A∗ and the
set of identifiers U∗ be preset sets in the background of rule acquisition. An
association rule in the background is expressed as an implicit formula

M ⇒ N,

where M
⋂

N �= φ. M ⊆ A∗ and N ⊆ A∗ are called the antecedent and conse-
quent of the rule, respectively. The support of the rule is calculated by

s =
σ(M

⋃
N)

‖ T ‖ .

The confidence of the rule is calculated by

c =
σ(M

⋃
N)

σ(M)
.

Let h be the support threshold of the rule and w be the confidence threshold of
the rule. If s ≥ h, c ≥ w, the rule is an (h,w) rule.

If the confidence of a rule is 1, then the rule is called a certain rule, oth-
erwise called a possible rule. Generally, a background of rule acquisition can
be transformed into a formal context. The set of items A∗ is represented by the
attribute set A. The object set U becomes a set of identifiers U∗. And the relation
R between U and A turns to a transaction data set T . If the item a∗

q is possessed
by the transaction tj , then (tj , a∗

q) = 1, otherwise (tj , a∗
q) = 0. For example, the

shopping background (Table 2) becomes the formal context (Table 3).
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3 Generalized One-Sided Decision Rule

Let (U+, A+,£+, R+,D+, I+) be a generalized one-sided formal decision con-
text (GOFDC), where (U+, A+,£+, R+) makes a generalized one-sided formal
context, D+ is a non-empty finite set of decision attributes, A+

⋂
D+ = φ, and

I+ is a decision incidence relation between U+ and D+.

Example 3. Table 4 shows a GOFDC (U+, A+,£+, R+,D+, I+), where U+ =
{x1, x2, x3, x4, x5, x6} is a set of objects, A+ = {a1, a2} is a set of condition
attributes. The set of decision attributes is D+ = {d}. ‖ £+(a1) ‖= 3, ‖
£+(a2) ‖= 4. The decision incidence relation in GOFDC is represented in
Table 5.

Table 4. GOFDC

a1 a2 d

x1 1 1 1

x2 1 1 1

x3 3 4 2

x4 2 3 2

x5 2 2 2

x6 2 2 2

Table 5. The decision incidence rela-
tion.

x1 x2 x3 x4 x5 x6

d 1 1 2 2 2 2

Definition 4. Let (U+, A+,£+, R+,D+, I+) be a GOFDC. U+

I+ = {P1, P2,
..., Pt} is a partition of U+, where Pi = [x]D+ = {y|I+(x) = I+(y), x, y ∈ U+}
is a decision equivalence class, Pi

⋂
Pj = φ, i, j ∈ {1, 2, ..., t}. If the cardinality

of Pi is greater than the support threshold p of the itemset, then I+(Pi) as the
value of Pi is a decision frequent itemset.

Definition 5. Let (U+, A+,£+, R+,D+, I+) be a GOFDC. The association
rule in the context is known as an implication

g ⇒ I+(Pi),

where g ∈ ∏
a∈A+ £+(a) is the antecedent of the rule and I+(Pi) is the conse-

quent of the rule, Pi ∈ U+

I+ . The decision association rules under the GOFDC
are named generalized one-sided decision rules.

s =
‖↓ (g)

⋂
Pi ‖

‖ U ‖ ,

is the support of the rule.

c =
‖↓ (g)

⋂
Pi ‖

‖↓ (g) ‖ ,
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is the confidence of the rule. Let h be the support threshold of the rule and w
be the confidence threshold of the rule. If s ≥ h, c ≥ w, the decision rule is an
(h,w) generalized one-sided decision rule.

The generalized one-sided decision rule is an implication between a combi-
nation of values for condition attributes and corresponding values of a decision
class.

Proposition 1. Let (U+, A+,£+, R+,D+, I+) be a GOFDC. For g ∈ ∏
a∈A+

£+(a) and Pi ∈ U+

I+ , g ⇒ I+(Pi) and c↑↓(g) ⇒ I+(Pi) have the same support and
confidence.

Proof. It follows directly by applying the equation ‖↓ (g) ‖=‖↓ (c↑↓(g)) ‖.

From Proposition 1, the support and confidence of the rule are fixed whether
an itemset is functioned by closure operation or not. Therefore, mining general-
ized one-sided decision rules can be converted to discuss relationships between
generalized one-sided formal concept lattices and decision partitions.

Proposition 2. Let (U+, A+,£+, R+,D+, I+) be a GOFDC, g1, g2 ∈∏
a∈A+ £+(a), g1 ≤ g2. Pi is a decision class in this context, Pi ⊆↓ (g2). If

g1 ⇒ I+(Pi) is an (h,w) generalized one-sided decision rule, then g2 ⇒ I+(Pi)
is an (h,w) generalized one-sided decision rule.

Proof. Due to g1 ≤ g2, the formula ↓ (g2) ⊆↓ (g1) can be obtained. And then
Pi ⊆↓ (g1). Therefore, the result can be derived from Definition 5.

The antecedents of generalized one-sided decision rules are monotonous.

Proposition 3. Let (U+, A+,£+, R+,D+, I+) be a GOFDC, g1, g2 ∈ ∏
a∈A+

£+(a), g1 ≤ g2. Pi is a decision class in this context, Pi ⊆↓ (g2). If g1 ⇒ I+(Pi)
is an (h,w) generalized one-sided decision rule, then c↑↓(g2) ⇒ I+(Pi) is an
(h,w) generalized one-sided decision rule.

Proof. Follows directly by applying Proposition 2 and ↓ (g2) =↓ (c↑↓(g2)).

Example 4. In the generalized one-sided formal decision context (Table 4), the
rules constructed by the generalized one-sided condition concept lattice and the
decision partition are shown in Table 6.

Table 6. GOFDC.

Rule s c Rule s c

11 ⇒ I(P1) 1/3 1/3 11 ⇒ I(P2) 2/3 2/3

22 ⇒ I(P1) 0 0 22 ⇒ I(P2) 2/3 1

23 ⇒ I(P1) 0 0 23 ⇒ I(P2) 1/3 1

34 ⇒ I(P1) 0 0 34 ⇒ I(P2) 1/6 1
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Theorem 1. Let (U+, A+,£+, R+,D+, I+) be a GOFDC. {P1, P2, ..., Pt} is a
partition in the context. g ∈ ∏

a∈A+ £+(a) is an itemset represented by condition
attributes. ci is the confidence of g ⇒ I+(Pi), i = 1, 2..., t. There is an equation∑t

i=1 ci = 1.

Proof. Since {P1, P2, ..., Pt} is a partition, U+ =
⋃t

i=1 Pi, Pi

⋂
Pj = φ. Then

‖ Pi

⋃
Pj ‖=‖ Pi ‖ + ‖ Pj ‖. From the definition about the confidence of the

rule, equation
∑t

i=1 ci =
∑t

i=1
‖↓(g)⋂

Pi‖
‖↓(g)‖ can be found. Therefore,

∑t
i=1 ci =

‖↓(g)⋂
U+‖

‖↓(g)‖ = ‖↓(g)‖
‖↓(g)‖ = 1.

Nextly, the generalized one-sided decision rule mining algorithm is stud-
ied. Before studying the decision association rule mining algorithm, finding
the method of mining multi-valued frequent itemsets is necessary. The novel
frequent itemset mining algorithm directly extracts multi-valued itemsets in a
multi-valued context while traditional algorithms normally convert the original
multi-valued context into a Boolean context.

Let (U+, A+,£+, R+,D+, I+) be a GOFDC. The frequent itemsets existing
in the condition part of the formal decision context can be generated by the set
JI = {l11, ..., l1j(a1) , ..., li1, ..., lij(ai)}, where l =

∏
ai∈A min£(ai), oij(ai) ∈ £(ai),

lij(ai) = l
∨

oij(ai) . i represents the index of the attribute, and j(ai) illustrates the
index of the value for attribute ai. Specifically, the j(ai) th value of the attribute
ai is oij(ai) . For the common understanding in data mining, an itemset may be
frequent only if the itemset used to generate it is frequent. On this basis, the
mining algorithm of multi-valued frequent itemsets is shown as Algorithm 1.

Algorithm 1. Mining Frequent Itemsets
Input: generalized one-sided formal context: K

support threshold of itemset: minSup
Output: frequent itemset: FrIs

1: produce the generating base JI
2: for all l ∈ JI do
3: if σ(l) ≥ minSup then
4: B′ = [l, B′]

5: FrIs = B′

6: for i = 1 : size(K, 2) do
7: for all a ∈ FrIs do
8: for all c ∈ B′ do
9: d = a

∨
c

10: if σ(d) ≥ minSup then
11: FrIs = [b, FrIs]
12: FrIs = unique(FrIs,′ rows′)

13: return FrIs

Finally, the generalized one-sided decision rule mining algorithm is given as
Algorithm 2.
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Algorithm 2. Mining Generalized One-sided Decision Rule
Input: generalized one-sided formal decision context: K = (U+, A+,£+, R+, D+, I+)

support threshold: minSup
confidence threshold: minCon
Output: decision rule: (h,w) rule

1: Fr = φ, DF = φ, Rule = φ;
2: Fr = {all condition frequent itemsets in K}
3: DF = {all decision classes in K}
4: l = size(Fr, 1); o = size(DF, 1);
5: for t=1 to l do
6: Ac = Fr(t, ; );
7: for e=1 to o do
8: Co = DF (e, ; );

9: if ‖↓(Ac)
⋃

Co‖
‖U‖ ≥ minSup then

10: if ‖↓(Ac)
⋃

Co‖
‖↓(Ac)‖ ≥ minCon then

11: Rule = Rule
⋃{Ac ⇒ I+(Co)};

12: return Rule

4 Generalized One-Sided Ordered Decision Rule

For practical applications, decision attributes are also considered to be ordered
in many cases, such as judging the grade of wine by known conditions. The
decision attribute “grade” is ordered.

Let the context (U ′, A′,£′, R′,D′,£′
D, I ′) be a generalized one-sided ordered

formal decision context, where A′ is a non-empty finite set of condition
attributes, D′ is a non-empty finite set of decision attributes and A′ ⋂ D′ = φ.
(U ′, A′,£′, R′) and (U ′,D′,£′

D, I ′) are generalized one-sided formal contexts
induced by the condition part and decision part of the context respectively.
(↑′

C , ↓′
C) is a Galois connection in (U ′, A′,£′, R′).

↑′
C (X)(a) =

∧

x∈X

R′(x, a), ↓′
C (g) = {x ∈ U ′ | ∀a ∈ A′, g(a) ≤ R′(x, a)},

where X ∈ P (U ′), g ∈ ∏
a∈A′ £′(a). (↑′

D, ↓′
D) is a Galois connection in

(U ′,D′,£′
D, I ′).

↑′
D (Y )(d) =

∧

y∈Y

I ′(y, d), ↓′
D (e) = {y ∈ U ′|∀d ∈ D′, e(d) ≤ I ′(y, d)},

where Y ∈ P (U ′), e ∈ ∏
d∈D′ £′

D(d).

Definition 6. Let (U ′, A′,£′, R′,D′,£′
D, I ′) be a generalized one-sided ordered

formal decision context. For g ∈ ∏
a∈A′ £′(a) induced by the condition part of

the context, the support of the itemset is expressed by

σ′
C(g) =‖↓′

C (g) ‖ .
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If σ′
C(g) is larger than the support threshold p of the itemset, then g is a frequent

condition itemset. For e ∈ ∏
d∈D′ £′

D(d) induced by the decision part of the
context, the support of the itemset is expressed by

σ′
D(e) =‖↓′

D (e) ‖ .

If σ′
D(e) is larger than the preset threshold p′, then e is a frequent decision

itemset.

Definition 7. Let (U ′, A′,£′, R′,D′,£′
D, I ′) be the generalized one-sided

ordered formal decision context. The decision association rule is expressed as

g ⇒ e,

where g ∈ ∏
a∈A′ £(a) is the antecedent of the rule and e ∈ ∏

d∈D′ £′
D(d) is the

consequent of the rule. A decision association rule in the ordered formal decision
context is made a generalized one-sided ordered decision rule.

s =
‖↓′

C (g)
⋂ ↓′

D (e) ‖
‖ U ′ ‖ ,

is the support of the rule.

c =
‖↓′

C (g)
⋂ ↓′

D (e) ‖
‖↓′

C (g) ‖ ,

is the confidence of the rule. For a preset pair (h,w), if h ≤ s, w ≤ c and
h,w ∈ [0, 1], then the rule is known as an (h,w) generalized one-sided ordered
rule.

Proposition 4. Let (U ′, A′,£′, R′,D′,£′
D, I ′) be a generalized one-sided

ordered formal decision context, g ∈ ∏
a∈A′ £(a), e ∈ ∏

d∈D′ £′
D(d).

c↑′
C↓′

C
(g) =↑′

C (↓′
C (g)), c↑′

D↓′
D

(e) =↑′
D (↓′

D (e)).

(1) The support and confidence of g ⇒ e and c↑′
C↓′

C
(g) ⇒ e are equal respectively.

(2) The support and confidence of g ⇒ e and g ⇒ c↑′
D↓′

D
(e) are equal respec-

tively.
(3) The support and confidence of g ⇒ e and c↑′

C↓′
C
(g) ⇒ c↑′

D↓′
D

(e) are equal
respectively.

Proof. It can be easily proven according to the formula ‖↓ (g) ‖=‖↓ (c↑↓(g)) ‖,
so it is omitted.

The concept lattices CLA′ and CLD′ are constructed under the condition
part and decision part of the generalized one-sided ordered formal decision con-
text (U ′, A′,£′, R′,D′,£′

D, I ′) respectively. The generalized one-sided ordered
decision rules in the context reflect the relationship between CLA′ and CLD′ .
The antecedent of the rule corresponds to the node (↓′

C (g), c↑′
C↓′

C
(g)) ∈ CLA′ ,

and the consequent of the rule corresponds to the node (↓′
D (e), c↑′

D↓′
D

(e)) ∈
CLD′ , where g ∈ ∏

a∈A′ £′(a), e ∈ ∏
d∈D′ £′

D(d).
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Proposition 5. Let (U ′, A′,£′, R′,D′,£′
D, I ′) be a generalized one-sided orde-

red formal decision context. g1, g2 ∈ ∏
a∈A′ £′(a) are itemsets represented by

condition attributes, g1 ≤ g2. e ∈ ∏
d∈D′ £′

D(d) is an itemset represented by
decision attributes, ↓′

D (e) ⊆↓′
C (g2). If g1 ⇒ e is an (h,w) generalized one-sided

ordered decision rule, then g2 ⇒ e is an (h,w) generalized one-sided ordered
decision rule.

Proof. Since g1 ≤ g2, there is ↓′
C (g2) ⊆↓′

C (g1). And for ↓′
D (e) ⊆↓′

C (g2),
↓′
D (e) ⊆↓′

C (g1) can be obtained. From the (h,w) generalized one-sided ordered
decision rule g1 ⇒ e,

s1 =
‖↓′

C (g1)
⋂ ↓′

D (e) ‖
‖ U ′ ‖ ≥ h, c1 =

‖↓′
C (g1)

⋂ ↓′
D (e) ‖

‖↓′
C (g1) ‖ ≥ w.

Due to ↓′
C (g2) ⊆↓′

C (g1), there is ‖↓′
C (g2) ‖≤‖↓′

C (g1) ‖. So s2 = s1 ≥ h, c2 ≥
c1 ≥ w. Therefore, g2 ⇒ e is an (h,w) generalized one-sided ordered decision
rule.

The antecedents of generalized one-sided ordered decision rules are also
monotonous.

Proposition 6. Let (U ′, A′,£′, R′,D′,£′
D, I ′) be a generalized one-sided orde-

red formal decision context. e1, e2 ∈ ∏
d∈D′ £′

D(d) are itemsets represented by
decision attributes, e1 ≤ e2. g ∈ ∏

a∈A′ £(a) is an itemset represented by con-
dition attributes. If g ⇒ e2 is an (h,w) generalized one-sided ordered decision
rule, then g ⇒ e1 is an (h,w) generalized one-sided ordered decision rule.

Proof. Since e1 ≤ e2, ↓′
D (e2) ⊆↓′

D (e1). The proposition can be easily proved
by the formula and the original definition.

Proposition 7. Let (U ′, A′,£′, R′,D′,£′
D, I ′) be a generalized one-sided orde-

red formal decision context. g1, g2 ∈ ∏
a∈A′ £(a) are itemsets about condition

attributes, g1 ≤ g2. e1, e2 ∈ ∏
d∈D′ £′

D(d) are itemsets about decision attributes,
e1 ≤ e2. Under the premise of ↓′

D (e1) ⊆↓′
C (g2), if g1 ⇒ e2 is an (h,w) gener-

alized one-sided ordered decision rule, then g2 ⇒ e1 is also an (h,w) generalized
one-sided ordered decision rule.

Proof. The proof is similar to that of Proposition 3, so it is omitted.

In order to reduce the generating rules, the effect of extending these proper-
ties to generalized one-sided concept lattices is discussed.

Proposition 8. Let (U ′, A′,£′, R′,D′,£′
D, I ′) be a generalized one-sided orde-

red formal decision context. g1, g2 ∈ ∏
a∈A′ £′(a) are condition attribute itemsets

in the context, g1 ≤ g2. e ∈ ∏
d∈D′ £′

D(d) is a decision attribute itemset, ↓′
D

(e) ⊆↓′
C (g2). If g1 ⇒ e is an (h,w) generalized one-sided ordered decision rule,

then c↑′
C↓′

C
(g2) ⇒ e is an (h,w) generalized one-sided ordered decision rule.

Proof. Easy to prove by ‖↓′
C (g) ‖=‖↓′

C (c↑′
C↓′

C
(g)) ‖.
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Proposition 9. Let (U ′, A′,£′, R′,D′,£′
D, I ′) be a generalized one-sided

ordered formal decision context. e1, e2 ∈ ∏
d∈D′ £′

D(d) are decision attribute
itemsets in the context, e1 ≤ e2. g ∈ ∏

a∈A′ £(a) is a condition attribute item-
set. If g ⇒ e2 is an (h,w) generalized one-sided ordered decision rule, then
c↑′

C↓′
C
(g) ⇒ c↑′

D↓′
D

(e1) is an (h,w) generalized one-sided ordered decision rule.

Proof. Easy to prove by ‖↓′
C (g) ‖=‖↓′

C (c↑′
C↓′

C
(g)) ‖, ‖↓′

D (e) ‖=‖↓′
D

(c↑′
D↓′

D
(e)) ‖.

Example 5. Table 4 shows a generalized one-sided ordered formal decision con-
text. The generalized one-sided ordered decision rules constructed by the gener-
alized one-sided concept lattices based on the condition part and decision part
of the formal decision context are shown in Table 7.

Table 7. Generalized one-sided ordered decision rules.

Rule s c Rule s c

11 ⇒ 1 1 1 11 ⇒ 2 2/3 2/3

22 ⇒ 1 2/3 1 22 ⇒ 2 2/3 1

23 ⇒ 1 1/3 1 23 ⇒ 2 1/3 1

34 ⇒ 1 1/6 1 34 ⇒ 2 1/6 1

Nextly, the generalized one-sided ordered decision rule mining algorithm
(Algorithm 3) is designed. Decision attribute frequent itemsets and condition
attribute frequent itemsets in the related context can also be mined by applying
Algorithm 1.

5 Decision Rule V.S. Ordered Decision Rule

Theorem 2. Let (U,A,£, R,D, I) be a generalized one-sided formal decision
context. g ⇒ I(Pi) is a generalized one-sided decision rule in the context, where
g ∈ ∏

a∈A £(a), I(Pi) is the value of Pi. s1 and c1 are the support and confidence
of the rule, respectively. g ⇒↑ (Pi) is a generalized one-sided ordered decision
rule in the context. s2 and c2 are the support and confidence of the ordered rule,
respectively. There are the formulas s1 ≤ s2 and c1 ≤ c2.

Proof. The theorem can be proved by the formula Pi ⊆↓ (↑ (Pi)).

The validity of Theorem 2 can be verified by Example 4 and Example 5. The
generalized one-sided ordered decision rule has larger support and confidence
than the generalized one-sided decision rule. The reason is that generalized one-
sided ordered decision rules pay more attention to the global information, and
generalized one-sided decision rules pay more attention to the local information.
In terms of algorithm complexity, the generalized one-sided decision rule has low
complexity.
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Algorithm 3. Mining Generalized One-sided Ordered Decision Rule
Input: generalized one-sided ordered formal decision context: K =

(U ′, A′,£′, R′, D′,£′
D, I ′)

support threshold: minSup
confidence threshold: minCon
Output: decision rule: (h,w) rule

1: Fr = φ, DF = φ, Rule = φ;
2: Fr = {all condition frequent itemsets in K}
3: DF = {all decision frequent itemsets in K}
4: l = size(Fr, 1); o = size(DF, 1);
5: for t=1 to l do
6: Ac = Fr(t, ; );
7: for e=1 to o do
8: Co = DF (e, ; );

9: if
‖↓′

C(Ac)
⋃↓′

D(Co)‖
‖U‖ ≥ minSup then

10: if
‖↓′

C(Ac)
⋃↓′

D(Co)‖
‖↓′

C
(Ac)‖ ≥ minCon then

11: Rule = Rule
⋃{Ac ⇒ Co};

12: return Rule

6 Numerical Experiment

In this section, we conduct some numerical experiments to explain the effect of
the proposed methods. The experiments are run in Matlab 2018a configured on
a PC with Windows 2010 64-bit operating system, CPU is Intel(R) Core(TM)
i7-9750H CPU @2.60 GHz, 16.00 GB memory. Six data sets are chosen from
UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets.php)
for target domains. The relevant information about the data sets is described as
Table 8.

Table 8. The datasets for experiments.

Data U C D

Balance scale 625 4 3

Harberman 306 3 2

Exasen 399 3 4

Soybean 47 35 4

Zoo 101 16 7

Car 1728 6 4

In the beginning, the method for mining generalized one-sided decision rules
shown as Algorithm 2 is operated on the chosen data sets. Table 9 shows the
related results in detail, where h and w are the support and confidence thresholds

http://archive.ics.uci.edu/ml/datasets.php
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used in the experiment respectively. The number of extraction rules and the time
consumption are also exhibited in the table.

Table 9. Generalized one-sided decision rules.

Data h w Number T ime (s)

Balance scale 25/625 0.4 600 217.22

Harberman 40/306 0.4 756 9.84

Exasen 150/399 0.4 5 0.99

Soybean 17/47 0.4 384 2.81

Zoo 30/101 0.4 184 3.91

Car 45/1728 0.4 1383 209.27

In addition, the method for mining generalized one-sided ordered decision
rules shown as Algorithm 3 is also operated on the chosen data sets. The cor-
responding results are depicted in Table 10. We use the same parameters as
Algorithm 2.

Table 10. Generalized one-sided ordered decision rules.

Data h w Number T ime (s)

Balance scale 25/625 0.4 1150 69.22

Harberman 40/306 0.4 1482 95.78

Exasen 150/399 0.4 113 1.36

Soybean 17/47 0.4 2796 2590.15

Zoo 30/101 0.4 250 11.84

Car 45/1728 0.4 1799 209.46

Comparing Table 9 and Table 10, Algorithm 3 can extract more rules than
Algorithm 2 with the same conditions. Moreover, Algorithm 2 requires less run-
ning time in most cases.

7 Conclusion

This paper studies rule acquisition methods in generalized one-sided formal con-
texts with decision attributes to investigate the effect of ordered attributes on
rule acquisition. Different from classical formal contexts, each attribute in the
generalized one-sided formal context has an ordered structure. To this end, this
paper defines two formal decision contexts: generalized one-sided formal decision
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context and generalized one-sided ordered formal decision context. Moreover,
we explore corresponding decision rule acquisition algorithms in these contexts
to mine related decision rules. Related theoretical derivations are also carried
out to explain the relations between decision rules. Compared with generalized
one-sided formal decision contexts, rules in generalized one-sided ordered formal
decision contexts have larger support and confidence. That is, for the same level
of support and confidence thresholds, more decision rules are extracted from the
generalized one-sided ordered formal decision context.
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Abstract. Density peak clustering (DPC) defines cluster centers to be
the objects with the highest density in their neighborhoods and far away
from the objects that are with higher densities, where density of each
object is determined by a pre-specified parameter. This definition may
find the number of clusters and detect clusters with arbitrary shapes.
However, as a drawback, it may also lead to multiple centers for one clus-
ter and hence degrade the clustering quality. Some work in the literature
try to remedy it, but this drawback can be regarded as the advantage
in split-and-merge strategy-based clustering. In this paper, we make use
of a modified DPC to partition a dataset into a large number of small
clusters by defining a refined K nearest neighbors, and design a merge
criterion to combine the small clusters. The experimental results on 6
synthetic and 6 real datasets demonstrate the proposed algorithm out-
performs some traditional clustering algorithms.

Keywords: Density peak clustering · Split-and-merge · K nearest
neighbors

1 Introduction

Clustering aims to partition a dataset into a number of subsets in terms of a
similarity measure of data points, and points in the same subset are similar while
those in different subsets are dissimilar. Although there exist a large number of
clustering algorithms in the literature [2,5,8,11,14,15,18], most of them such
as K-means, Single-linkage can only deal with datasets of specific cluster struc-
tures. For example, K-means favors sphere like clusters and Single-linkage can
only detect clusters consisting of points of high connectivity. We regard them as
algorithms of less universality. Since users usually have not any priori knowledge
about their datasets, it is difficult for them to select a suitable clustering algo-
rithm. This implicates that for a clustering algorithm the higher universality the
better usability.

Density-based algorithms are capable of disclosing clusters with arbitrary
shapes and sizes, and are with relatively high universality. One of the well known
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Fig. 1. Inappropriate cluster centers of a two clusters dataset determined by DPC. The
three large circles in the left are the cluster centers corresponding to the three points
in the dashed rectangle from the right decision graph (The cutoff distance dc here is
set by 2.5% of nearest distances).

paradigms is DBSCAN [4]. However, it suffers from two drawbacks: the density
threshold is fixed and two parameters to estimate the density are required to be
specified by users (Fig. 1).

Apart from density-based algorithms, multiobjective clustering [1,9], cluster-
ing ensemble [6,7] and split-and-merge strategy based clustering [10,12,16] are
also of high universality.

Multiobjective clustering optimizes multiple objective functions simultane-
ously so that datasets with complex cluster structure can be processed. As in
most cases heuristic search is used to figure out the optimal solution, the process
is complicated. Clustering ensemble is a robust method which can produce clus-
tering with high quality. It contains two steps, generating base partitions and
combining them into a single partition. Although the majority of the studies
on clustering ensemble focus on the combination process, the base partitions is
certainly the primary factor for the clustering result. If base partitions are of
high homogeneity, which means a pair of points in a base cluster belong to the
same true cluster, the ensemble result is of high quality, or vice versa. Split-and-
merge strategy based clustering partitions the dataset into a large number of
small clusters, and then merges them into the requested number of final clus-
ters. Comparing with clustering ensemble, the homogeneity of the small clusters
is more crucial, as one pair of heterogeneous points may dramatically degrade
the clustering result.

In this paper, we propose a split-and-merge based clustering algorithm, in
which density peak based clustering [13] is used in split stage to produce small
clusters of high homogeneity. In the merge stage, a simple yet effective merge
criterion is designed and accordingly the small clusters are combined into the
final clustering.

2 The Proposed Method

2.1 Refinement of KNN

In pattern recognition community, KNN is widely used for classification, den-
sity estimation etc. The number of nearest neighbors K is crucial to the final
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Fig. 2. Dissimilarity and partition in [17]. In a, point 1 has 7 neighbors. In b, M is
center of 8 points, and point 7 is the furthest point from M. In c, the right, the 8 points
are partitioned into two groups. In d, an isolated point is achieved.

application results. However, it is always a tough problem for users to select the
suitable K. We employ the dissimilarity defined by furthest reference point [17]
to refine the K nearest neighbors.

For a data point, its neighbors must be nearer to itself than those non-
neighbors. Normally, when K is specified by users, some non-neighbors may be
included. Our intuition here is to exclude those non-neighbors.

In Fig. 2, we suppose K is 7. Point 1 has 7 neighbors {2, 3, 4, 5, 6, 7, 8}, and
point M is the center of point 1 and its 7 neighbors. The furthest point 7 from
the center M is selected as the reference point. The reason behind this is that
the furthest point has better ability to discriminate neighbors than other points.
The distances from each point to point 7 are computed as d7,1, d7,2, · · · , d7,8, and
sorted as 〈d7,7, d7,8, d7,6, d7,5, · · · , d7,2〉. In the sorted list, as the neighbor pair
〈d7,6, d7,5〉 has the biggest difference, d7,5–d7,6, the list is partitioned into two
sublists from the middle of this pair: 〈d7,7, d7,8, d7,6〉 and 〈d7,5, d7,3, · · · , d7,2〉.
Accordingly, the 8 points are partitioned into two groups: {1, 2, 3, 4, 5} and
{6, 7, 8}.

Although K is 7, we can say that point {2, 3, 4, 5} are more eligible to be
neighbors of point 1 than {6, 7, 8}, and thus the number of neighbors of point 1
prefers to 4. We denote the number of neighbors of x by Kp(x) from the view of
the furthest reference point.

Suppose NNK(x,X) is x’s K nearest neighbors from X, and r is the furthest
point from the center of NNK(x,X)∪{x}. Let L(x) be the sorted list of distances
from r to NNK(x,X) ∪ {x}:

L(x) = 〈dr,i1 , dr,i2 , · · · , dr,iK+1〉 (1)

where dr,ij < dr,ij+1 , 1 ≤ j ≤ K. Suppose ik is the cut point:

dr,ik+1 − dr,ik ≥ dr,ij+1 − dr,ij (2)

Then, Kp(x) = k − 1.
However, the above furthest reference point based partition may lead to an

isolated point, for example in Fig. 2(d), the rightmost point has not any neighbor.
As in this paper we use KNN to estimate the point density, we consider the
average of distances from x to its neighborhood as the remedy.
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Let Ka(x) be the potential number of neighbors of x from the view of the
average:

Ka(x) = |{y|y ∈ NNK(x,X) ∧ dx,y < avg dist(x)}| (3)

where avg dist(x) denotes the average of distances from x to NNK(x,X).
Combining the above two situations, the refined number of neighbors of x is

defined as:
Kc(x) = max(Kp(x),Ka(x)) (4)

For a dataset X, the refined number of neighbors KX is defined as:

KX = ceil(
1

|X|
∑

x∈X

Kc(x)) (5)

where ceil(f) rounds the decimal f to the nearest integer greater than or equal
to f .

2.2 Partition the Dataset into Small and Homogeneous Clusters

In DPC, the density of a data point is defined as:

ρi =
∑

j

ϕ(dxi,xj
− dc) (6)

where ϕ(a) is 1 if a < 0 and 0 otherwise, dxi,xj
denotes the distance between

data point xi and xj , and dc is a cutoff distance, which is determined by:

dc = dist(round(|X| ∗ percent)) (7)

where dist(i) is the ith element in the sequence of all pairs of distances of data
points arranged in ascending order, round(a) returns the the nearest integer of
number a, and percent is a percentage.

In this paper, we simply define the density of a data point as the reciprocal
of the average neighbor distance:

ρi
′ =

1
1

KX

∑
xj∈NNKX

(xi,X) dxi,xj

(8)

With the above density definition, the procedure to produce the initial clus-
tering is as follows.

Repeatedly taking the data point with the most density, say xi, from X, if
there exists point xj which has been assigned a label and xj ∈ NNKX

(xi,X) ∧
ρi

′ < ρj
′, then it has the same label, otherwise it is assigned a new label.

In Fig. 3, the five data points are assigned the same label. The label assign-
ment process is described as follows. If the number of neighbors is 2, point a,
b and c are neighbors and with the highest density, then they are assigned the
same label. While c is one of neighbors of d, d is assigned the same label with c.
Similarly, e is assigned the same label with d.
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Fig. 3. Label assignment.

The split procedure is described in Algorithm 1. From line 2 to line 9, the
number of neighbors of each point is computed. In line 4, mean(S) is to com-
pute the mean point of dataset S. In line 5, array(S) denotes S is stored in an
array and sort(‖r − array(S)‖) sorts in ascending order the distances between
r and the elements of the array and return the indices of the array. In line 6,
array(S, j) means the jth element of the array. In line 13, sortdescent(array)
sorts in descending order the elements in array and return the indices of the
array.

2.3 Combine the Initial Clustering

After the dataset is partitioned into a number of small homogeneous clus-
ters, split-and-merge clustering scheme then combines those clusters into user-
required number of clusters. To iteratively combine the small clusters generated
in the previous step, the pairwise similarities are needed. When designing the
similarity measure, two kinds of information are crucial to definition of a cluster:
density and distance.

Fig. 4. Cluster similarity. The two solid ellipses enclose the KX nearest neighbors of
x1 and x2, respectively. The broken ellipses denote the refined nearest neighborhood.
The two hollow circles are the centers of the refined nearest neighbors.

For example, DBSCAN [4] detects a cluster with a concept of density reach-
able, which means that the data points within the same cluster are density-
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Algorithm 1: Split procedure
Input: X - Data set, K - Initial number of nearest neighbors
Output: label - The labels of a partition of X

1 label(1..|X|) ← null
2 for each point x ∈ X do
3 S ← NNK(x, X) ∪ {x}
4 r ← argmaxy∈S dmean(S),y

5 idx ← sort(‖r − array(S)‖)
6 k ← argmaxi(dr,array(S,idx(i+1)) − dr,array(S,idx(i)))
7 Kp(x) ← k − 1
8 Ka(x) ← |{y|y ∈ NNK(x, X) ∧ dx,y < avg dist(x)}|
9 Kc(x) ← max(Kp(x), Ka(x))

10 KX ← ceil( 1
|X|

∑
x∈X Kc(x))

11 for xi ∈ X do
12 ρ′(i) ← 1

1
KX

∑
xj∈NNKX

(xi,X) dij

13 idx ← sortdescent(ρ′)
14 lab ← 1
15 for i ← idx(1 : |X|) do
16 if ∃j(ρ′(j) ≥ ρ′(i) ∧ xj ∈ NNK(xi, X) ∧ (label(j) 	= null)) then
17 label(i) ← label(j)

18 else
19 label(i) ← lab
20 lab ← lab + 1

reachable. This concept simultaneously considers density and distance informa-
tion. In [3], the robustness property comes from incorporation of density informa-
tion into distance information. In the decision graph of [13], the two dimensions
are density and distance information of a data point, respectively.

With the above understanding in the mind, we define a cluster dissimilarity
as follows and the main components are illustrated in Fig. 4.

For a given pair of clusters to be merged, say C1 and C2, suppose data
point x1 and x2 are the nearest pair from the two clusters respectively, namely,
x1 ∈ C1, x2 ∈ C2 and the following holds:

∀(y1 ∈ C1, y2 ∈ C2), dy1,y2 ≥ dx1,x2 (9)

Compute the average distance of x1. Since at this stage the dataset has been
partitioned into a number of clusters, we consider the neighbors that have the
same cluster label with x1. The reciprocal of the density is defined as:

den(x1) =
1

|NNKX
(x1, C1)|

∑

y∈NNKX
(x1,C1)

dx1,y (10)

where NNKX
(x1, C1) denotes the KX nearest neighbors of x1 from C1.
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Algorithm 2: Merge procedure
Input: label - Initial clustering, k - The required number of clusters, X
Output: label - Final clustering

1 n ← getnum(label)
2 Dis(1..n, 1..n) ← INF
3 C1, C2, · · · , Cn ← getcluster(X, label)
4 for each cluster pair 〈Ci, Cj〉,if i > j do
5 Dis(i, j) ← disfinal(Ci, Cj)

6 while |{Ci|Ci 	= ∅, 1 ≤ i ≤ n}| > k do
7 i, j ← argmini,j∈{1..n} Dis(i, j)

8 Cj ← Ci ∪ Cj

9 label(index(Ci)) ← lab(Cj)
10 Ci ← ∅

11 Dis(i, 1..i − 1) ← INF
12 Dis(i + 1..n, i) ← INF
13 if Dis(j, 1..j − 1) is not INF then
14 Dis(j, 1..j − 1) ← disfinal(Cj , C1..j−1)

15 if Dis(j + 1..n, j) is not INF then
16 Dis(j + 1..n, j) ← disfinal(Cj+1..n, Cj)

The above distance implies the density of x1 in C1. Similarly, the average
distance of x2, den(x2) is defined.

Refine the neighborhood of x1. From the Eq. 10, although the neighbors of
x1 are from C1, some neighbors may be far away from x1 as the number of
neighbors is fixed to KX . The neighborhood is refined as:

NN(x1) =

⎧
⎨

⎩

T = {y|dx1,y < den(x1)}, if |T | ≥ KX

2

NNKX
2

(x1, C1), otherwise
(11)

where y ∈ NNKX
(x1, C1) and NNKX

2
(x1, C1) denotes the KX

2 nearest neighbors
of x1 from C1.

Similarly, the refined neighborhood of x2 from C2, NN(x2), can be defined.
The average distance of NN(x1) is defined:

denAvg(x1) =
1

|NN(x1)|KX

∑

y∈|NN(x1)|

∑

z∈NNKX
(y,C1)

dy,z (12)

This average distance expresses the average density of data points in NN(x1).
Similarly, the average distance of NN(x2), denAvg(x2) is defined.

Let m1 and m2 be the centers of NN(x1) and NN(x2), respectively.
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The cluster dissimilarity is defined as:

dis(C1, C2) = abs(den(x1) − dm1,m2)
+ abs(den(x2) − dm1,m2)
+ abs(den(x1) − den(x2))
+ abs(denAvg(x1) − denAvg(x2)) (13)

where abs(x) returns the absolute of x.
The first two items in Eq. 13 indicates that the larger the differences between

dm1,m2 and den(x1), den(x2), the bigger the dissimilarity. The third item is
the difference between the densities of x1 and x2, while the forth item is the
difference between the average densities of the refined neighborhood of x1 and
x2. These two differences are positively correlated to the dissimilarity.

The defined dissimilarity measure has one drawback: Its effectiveness is
mainly decided by the x1 and x2. At the same time, the dissimilarity mea-
sure does not consider the size of clusters. Intuitively, under the same condition
a small cluster has the priority to be merged. Therefore, we improve the dissim-
ilarity measure as follows.

We define a variant of the measure, in which we remove x1 and x2, and then
re-compute the measure denoted as dis′(C1, C2).

dis′(C1, C2) =

⎧
⎨

⎩

dis(C ′
1, C

′
2), if min(|C1|, |C2|) > αN

k

dis(C ′
1, C

′
2) ∗ min(|C1|,|C2|)

N/k , otherwise
(14)

where C ′
1 = C1\{x1}, C ′

2 = C2\{x2}, k is the user-specified number of clusters
and 0 < α ≤ 1.

The final dissimilarity measure, disfinal, is defined as:

disfinal(C1, C2) = dis(C1, C2) + dis′(C1, C2) (15)

The merge procedure is described in Algorithm 2. In line 1, getnum(label)
returns the number of clusters from label. Dis(i, j) denotes the dissimilarity of
cluster Ci and Cj in line 2. Function getcluster(X, label) in line 3 returns the
n clusters. In line 9, function index(Ci) denotes the indices of points in Ci and
lab(Cj) denotes the cluster label of Cj .

3 Experimental Results and Discussion

3.1 Datasets and Parameter Setting

To demonstrate the performance of the proposed method, we test it with 16
datasets, of which 8 datasets are synthetic and the others are real. The 8 syn-
thetic datasets, DS1-DS8, are available at http://cs.uef.fi/sipu/datasets. DS1-
DS5 are of complex cluster structures, while DS6-DS8 are composed of clusters

http://cs.uef.fi/sipu/datasets
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which are in Gaussian distribution. The 8 real datasets, Iris, Ionosphere, Wine,
Diabetes, Segmentation, Glass, WDBC, WPBC are available at http://www.ics.
uci.edu/∼mlearn/MLRepository.html (Fig. 5).

Fig. 5. Eight synthetic datasets.

The proposed method has two parameters which are to be set by users: the
number of initial nearest neighbors K and the coefficient α in Eq. 14. In all of
the experiments, we set K to 10 and α to 0.33, and we will discuss the two
parameters in the next sub-section.

3.2 Split-and-Merge Methods to Be Compared

We compare the proposed method with two split-and-merge based methods:
CSM [12] and Chameleon [10].

In CSM, K-means is employed to partition the dataset into a number of small
clusters, which are then merged into required number of clusters by a merge cri-
terion. This criterion is defined according of the minimum conditional probability
of a point belongs to a pair of clusters. When the probabilities are estimated,
each cluster is supposed to be under Gaussian distribution. The number of initial
clusters is set to

√
N . As the initial clustering of CSM is produced by K-means

and hence not unique, we use the best one of 10 runs for comparison.
In Chameleon, a KNN graph is constructed and partitioned into the initial

clustering such that the edge cut is minimized. In the merge stage, a relative
interconnectivity and a relative closeness are defined to form a merge criterion.
The two parameters, the number of the nearest neighbors and the importance
coefficient α, are set to 10 and 0.3, respectively.

3.3 Experimental Results

The clustering on the 8 synthetic datasets are illustrated in Fig. 6. From the
figure, one can see the proposed method can find the true clusters of the 8
datasets. Although CSM also find the true clusters, they are the best results
selected from 10 runs on each dataset. While for Chameleon, it can not detect
the true cluster structure of DS1 and DS3.

http://www.ics.uci.edu/~mlearn/ MLRepository.html
http://www.ics.uci.edu/~mlearn/ MLRepository.html
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Fig. 6. The clustering results of the proposed method, CSM and Chameleon on the
eight synthetic datasets.
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For the 8 real datasets, CA and ARI are employed to measure the clustering
qualities. The results are in Table 1. It is clear that the proposed method has
the best performance on 5 datasets, while CSM has the best performance on 4
datasets and Chameleon on 3 datasets. Taking into account the clustering results
of all of the 16 datasets, the proposed method outperforms CSM and Chameleon
(Table 2).

Table 1. The comparison of clustering qualities measured by CA and ARI on 8 real
datasets.

Dataset Proposed method CSM Chameleon

CA ARI CA ARI CA ARI

Iris 0.9667 0.9038 0.9000 0.7455 0.7267 0.5506

Wine 0.8933 0.6989 0.5843 0.1249 0.6854 0.3663

Segmentation 0.5667 0.3238 0.5762 0.3843 0.4714 0.1634

WDBC 0.9315 0.7423 0.7170 0.1508 0.9104 0.6684

WPBC 0.7629 0.0507 0.7629 0.0507 0.7629 0.0507

Ionosphere 0.6410 0.0242 0.7464 0.2103 0.8519 0.2513

Diabetes 0.6510 0.0102 0.6510 0.0102 0.6510 0.0102

Glass 0.5140 0.1094 0.6121 0.2193 0.5654 0.2639

Table 2. The average clustering qualities measured by CA and corresponding standard
deviations on the 16 datasets.

Dataset Averaged-CA STD

Ks refined Ks not refined Ks refined Ks not refined

DS1 0.8627 0.7566 0.1231 0.1251

DS2 1.0000 1.0000 0.0000 0.0000

DS3 0.9769 0.9739 0.0039 0.0042

DS4 0.9870 0.9556 0.0177 0.0359

DS5 0.9967 0.9967 0.0000 0.0000

DS6 0.9948 0.9948 0.0090 0.0090

DS7 0.9950 0.9949 0.0004 0.0005

DS8 0.9497 0.9344 0.0154 0.0234

Iris 0.9230 0.9085 0.0418 0.0374

Wine 0.8933 0.8933 0.0000 0.0000

Segmentation 0.6095 0.6416 0.0475 0.0510

WDBC 0.8747 0.8636 0.0471 0.0873

WPBC 0.7629 0.7629 0.0000 0.0000

Ionosphere 0.6410 0.6410 0.0000 0.0000

Diabetes 0.6510 0.6510 0.0000 0.0000

Glass 0.5391 0.5493 0.0071 0.0443
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4 Conclusion

In this paper, a DPC-based split-and-merge clustering method is proposed. It
takes advantage of the characteristics of DPC, which can split a cluster into some
small local groups, and defines a merge criterion to combine the small groups.
When a KNN is used in split and merge steps, K nearest neighbor are refined,
and this may lead to good clustering result and good stability with respect to
different initial Ks.
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Abstract. Feature extraction deals with information redundancy in
data with a large number of features. Existing feature extraction
approaches to multi-label data usually consider label correlations, while
rarely consider sample correlations. In this paper, we propose a multi-
label feature extraction with the distance-based graph attention network
(DBGAT) algorithm. First, to easily extract the neighbors of the sam-
ple later, we construct an adjacency matrix according to the distance
between samples and the number of neighbors specified by the user.
Second, to obtain the importance of neighbor features to instances, we
get the weight coefficients of each instance and its neighbors through
the attention network. Third, a new representation for each instance is
obtained by weighted summation of neighboring instances. The differ-
ence in the weight coefficient reflects the degree of influence of different
neighbors on the new feature. We tested the new algorithm and eight
other popular algorithms on twelve datasets. Experiments show that this
method improves the accuracy of multi-label classification.

Keywords: Attention mechanism · Feature extraction · Multi-label
learning · Neural networks · Weight coefficient

1 Introduction

High-dimensional data makes the sample distribution sparse, which increases
the computational complexity and reduces the performance of the classification
model. Therefore, many dimension reduction [1,5] methods have been proposed.
To reduce the computational complexity, feature extraction [6,11] algorithms
project original data into a low-dimensional feature space, reducing the number
of features. Principal component analysis (PCA) [18] maps high-dimensional
features to low-dimensional features. It is a new orthogonal feature reconstructed
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on the basis of the original feature. Feature extraction can achieve information
gain to improve the classification accuracy. Singular value decomposition (SVD)
[2] directly decomposes the original matrix into three matrices. It takes values
in order on the diagonal matrix, multiplying three matrices to get one matrix.
This new matrix will contain most of the information of the original matrix, thus
eliminating redundant information. Therefore, feature extraction is an essential
step in the data processing.

Feature extraction can be applied to multi-label learning [23] problems. Popu-
lar feature extraction algorithms include unsupervised principal component anal-
ysis (PCA) and supervised dependence maximization. Unsupervised algorithms
treat all data equally in terms of dimension reduction. For supervised feature
extraction algorithms, they can be roughly divided into two categories: problem
transformation (PT) and algorithm adaptation (AA). PT methods transform
the multi-label learning problem into a series of single-label learning problems.
Such algorithms are applied to multi-label data. AA methods can be applied to
multi-label feature extraction (MLFE) [15,19,20] algorithms by modifying the
existing single-label feature extraction algorithm.

There are many common AA methods applied to MLFE. Multi-Label
Informed Latent Semantic Indexing (MLSI) [21] maps input features to a new
feature space. This captures the output dimensional dependencies while pre-
serving the information of the original input. This process is an optimization
problem of linear projection. Multi-label Linear Discriminant Analysis (MLDA)
[17] uses label correlations to build class-wise between-class scatter matrix. It
avoids ambiguity about how much data points with multiple labels contribute to
the scatter matrix. It can also incorporate label correlations at the same time.
It can also contain tag dependencies at the same time. These algorithms enrich
MLFE methods.

In this paper, we propose a multi-label feature extraction algorithm with
distance-based graph attention network. Figure 1 shows the framework of the
algorithm. First, to easily extract the neighbors of the sample later, we construct
an adjacency matrix based on the distance between samples and the number of
neighbors specified by the user. The adjacency matrix can help us get the graph
structure. Second, to obtain the importance of neighbor features to instances,
we get the weight coefficients of each instance’s neighbors through the attention
network. The network needs information about neighbors, so we need to use
the adjacency matrix information obtained in the first step. Using an adjacency
matrix, we can find neighbors quickly and easily. Third, a new representation
for each instance is obtained by weighted summation of neighboring instances.
We compute the weight of each neighbor then sum it weighted. This result will
serve as the new representation of the node.

There are two main contributions of this paper. On the one hand, we
construct an adjacency matrix with the idea of k-nearest neighbors based on
Euclidean distance. Different datasets have different adjacency matrices. On the
other hand, we introduce the constructed adjacency matrix as a graph structure
into the attention mechanism. In order to obtain the importance of adjacent fea-
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Fig. 1. The framework of DBGAT. Step 1 computes the adjacency matrix from the
original data. Step 2 computes the attention coefficient using the generalized GAT.
Step 3 obtains a new representation of the final node by the weighted summation of
its neighbors.

tures to the instance, we calculate the attention coefficient. Each neighbor has
its own attention coefficient. It indicates that different neighbors have different
importance to the new representation of the node.

The rest of this paper is organized as follows. Section 2 presents the data
model of MLFE, and reviews popular approaches to MLFE. The details of the
proposed DBGAT algorithm is presented in Sect. 3. Section 4 reports the exper-
imental results and analysis. Finally, Sect. 5 draws out conclusion.

2 Related Work

This section first introduces the data model of MLFE, then discusses popular
MLFE methods. The comparison algorithm used in the analysis will be focused
on.

2.1 Data Model

Table 1 lists some important notations used throughout the paper. The data
is represented as follows. Let X = [x1,x2, . . . ,xN ]T ∈ R

N×M denotes the M -
dimensional feature space of instances, and Y = [y1,y2, . . . ,yN ]T ∈ {0, 1}N×L

denote the label space with L labels, where [·]T denotes matrix transpose. Here,
we have yi = [yi1, yi2, . . . , yiL]T, yij = 1 indicates xi has the label, while yij = 0
indicates no.
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Table 1. Notations.

Notation Meaning

X = [xij ]N×M Data matrix

xi = [xi1, . . . , xiM ] The i-th instance

Y = [yik]N×L Label matrix

yi = [yi1, . . . , yiL] Labels of xi

N Number of instances

M Number of features

L Number of labels

D ∈ R
N×N Distance matrix

A ∈ {0, 1}N×N Adjacency matrix

Ai Neighbors of node i

F Number of features after dimension reduction

k Number of neighbors

W ∈ R
F×M A weight matrix

c ∈ R
2F A weight vector

c A single-layer feedforward neural network

αij Attention mechanism coefficients

2.2 Multi-label Feature Extraction methods

There are many methods for multi-label feature extraction, some of which are
mainly introduced here. The first is some unsupervised methods. It works by
minimizing the loss of information. The classic PCA algorithm is unsupervised.
Non-negative matrix factorization (NMF) [23] is a matrix factorization method
under the constraint that all elements in the matrix are non-negative. It extends
two-matrix factorization to three-matrix factorization. Independent component
analysis (ICA) [8] is to find a linear representation of non-Gaussian data such
that the components are statistically independent, or as independent as possible.
Compared with singular value decomposition (SVD) and principal component
analysis (PCA), ICA is an analysis method based on higher-order statistical
properties. In many applications, the analysis of higher-order statistical proper-
ties is more practical.

The second is some supervised methods. It works by maximizing the dif-
ference between classes. Multi-Label Dimensionality Reduction via Dependence
Maximization (MDDM) [24] attempts to project the original data into a low-
dimensional feature space based on the Hilbert-Schmidt independence criterion.
It maximizing the dependencies between the original feature description and the
relevant class labels. The basic idea of linear discriminant analysis (LDA) [9]
model implementation is the same as that of PCA. LDA considers the factors of
categories on the basis of dimension reduction. Hoping that the variance within
the projected projection is the smallest, and the variance between classes is the
largest. MLSI [21] is a multi-label extension of Latent Semantic Indexing (LSI)
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[3] that extends multi-label learning by treating each concept combination as a
class. General Graph Embedding (GGE) unifies dimension reduction methods in
a common framework. It overcomes the limitations of traditional linear discrimi-
nant analysis algorithms in terms of data distribution assumptions and available
projection directions. Canonical Correlation Analysis (CCA) [14] projects two
sets of variables into the low-dimensional space where they are most correlated.
CCA in the multi-label case can be formulated as a least squares problem.

3 DBGAT Method

In this section, to obtain the graph structure, we construct an adjacency matrix
based on the distances between samples and the number of neighbors specified
by the user. Then, we obtain the weight coefficients of each instance relative
to its neighbors. Finally, a new representation for each instance is obtained by
weighted summation of neighboring instances.

3.1 Method Description

Graph Attention Network (GAT) [16] is one of the mainstream algorithms in
Graph Neural Networks (GNN) [12]. GAT is a continuation of Graph Convolu-
tional Network (GCN) [10] with the introduction of the attention mechanism.
GCN assigns the same weights to all adjacent nodes during the convolution
process, which limits its power. To address this issue, GAT adds masked self-
attention layers to learn different weights for neighbor nodes.

First, in order to build a graph structure to facilitate the extraction of neigh-
bors of samples later, we need to process the data to construct an adjacency
matrix. We calculate the distance of each example feature by Euclidean dis-
tance. Therefore, we construct a distance matrix D = [dij ]N×N ∈ R

N×N . N is
the number of instances, M is the number of features, and xij represents the
j-th feature of the i-th instance. Where

dij =

(
M∑
l=1

(xil − xjl)
2

)1/2

. (1)

We construct an adjacency matrix A = [aij ]N×N ∈ {0, 1}N×N according to
the distance between samples and the number of neighbors specified by the user.
Let k be the number of neighbors.

aij =

{
1, if |{l|dil < dij}| < k;
0, otherwise.

(2)

The smallest top k value in each row is selected from the distance matrix D. In
other words, there are exactly k 1s in each row of A if the distance between any
instance pair is different.

Second, to obtain the importance of neighbor features to instances, we inject
the adjacency matrix into the mechanism by performing masked attention. The
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data matrix X is input to the attention layer. X = {x1, . . . ,xN}, xi ∈ R
M , where

N is the number of nodes, and M is the number of features in each node. In
order to obtain more expressive features, we need to do a linear transformation.
To share a linear transformation, we parameterize and apply a weight matrix
W ∈ R

F×M to each node. Here F is the number of features after dimension
reduction. Then we use the shared attention mechanism c : RF × R

F → R to
perform self-attention on the node to calculate the attention coefficient,

eij = c (Wxi,Wxj) (3)

that indicate the importance of the features of node j to node i. We compute
eij for nodes j ∈ Ai, where Ai is some neighborhood of node i in the adjacency
matrix. To make coefficients convenient to compare across nodes, we normalize
all j options using the softmax function,

αij = softmaxj (eij) =
exp (eij)∑

k∈Ai
exp (eik)

. (4)

The attention mechanism c is a feedforward neural network, parameterized
by a weight vector c ∈ R

2F , and applying the LeakyReLU nonlinearity. When
fully expanded, it can be expressed as:

αij =
exp

(
LeakyReLU

(
cT [Wxi‖Wxj ]

))∑
k∈Ai

exp (LeakyReLU (cT [Wxi‖Wxk]))
, (5)

where ·T represents transposition, ‖ is the concatenation operation.
Third, the output feature of each node is calculated by the normalized atten-

tion coefficient to calculate the linear combination of the corresponding features.
This gets a new representation for each instance.

x′
i = σ

⎛
⎝ ∑

j∈Ai

αijWxj

⎞
⎠ , (6)

where σ(·) is the nonlinear activation function.

3.2 Algorithm Description

Algorithm 1 illustrates our algorithm. Line 1 initializes the network. Line 2
through 3 are the process of building the adjacency matrix. Line 2 uses Euclidean
distance to calculate the distance between each instance according to Eq. (1).
Line 3 obtains the adjacency matrix A according to Eq. (2). Line 4 performs
self-attention on the node and calculates the attention coefficient eij according to
Eq. (3). Line 5 normalizes the adjacent node coefficients. Line 6 to obtain a fully
expanded, the attention mechanism a is parameterizes by a weights vector −→c .
Line 7 obtains a new representation of a node by weighted summation according
to the attention coefficients between the node and its neighbors.

In summary, DBGAT constructs the adjacency matrix in the initial stage,
and learns new features through the attention mechanism in the main learning
process.
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Algorithm 1 . Multi-label feature extraction with the distance-based graph
attention network.
Input: data matrix X : N × M , label matrix Y : N × L, number of neighbors: k;
Output: X′ : New representation of the instance;
1: Initialize the network;

// Stage 1. Construct adjacency matrix.
2: Calculate the distance between i instances and other instances in data matrix X

according to Eq. (1);
3: To get adjacency matrix A, it is calculated by Eq. (2);

// Stage 2. Main learning process.
4: Computes attention coefficients eij according to Eq. (3);
5: Get attention coefficients αij according to Eq. (4);
6: Fully expanded attention coefficient according to Eq. (5);
7: Get a new representation of instance i, x′

i according to Eq. (6) ;
8: Get new representation of the instance X′;

4 Experiments

In this section we conduct experiments to analyze the effectiveness of the
DBGAT algorithm. The experiment includes comparison and analysis with other
6 methods from the aspects of evaluation metrics and parameter setting.

Experiments are performed on 12 benchmark datasets to evaluate the effec-
tiveness of the DBGAT algorithm. The number of samples ranges from 194 to
16105, and the features of samples range from 14 to 34, 096. We compared other
8 feature processing methods. DBGAT is compared with 8 algorithm on the
multi-label dimension reduction (MLDR) task. The source code of DBGAT is
available online1.

4.1 Datasets

Table 2 presents the characteristics of each experimental dataset. It includes the
number of samples N , the number of features M , the number of class labels L,
and the label cardinality. They can be downloaded for free from Mulan2.

4.2 Evaluation Metrics

In general classification tasks, the classification effect is judged according to the
evaluation metrics. Single-label classification usually uses accuracy, precision,
recall, F1 and other metrics to evaluate the effect of the model. However, multi-
label classification is different from single-label classification. The evaluation
metrics of multi-label classification is relatively more complicated. Table 3 shows
the evaluation metrics used in our paper.

1 https://gitee.com/pengyyuu/dbgat.
2 http://mulan.sourceforge.net/datasets-mlc.html .

https://gitee.com/pengyyuu/dbgat
http://mulan.sourceforge.net/datasets-mlc.html
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Table 2. Datasets.

Dataset N M L Cardinality Density

Arts 7,484 23,146 26 1.654 0.064

Bibtex 7,395 1,836 159 2.402 0.015

Business 11,214 21,924 30 1.599 0.053

CAL500 502 68 174 26.044 0.150

Computers 12,444 34,096 33 1.507 0.046

Corel5k 5,000 499 374 3.522 0.009

Emotions 593 72 6 1.869 0.311

Enron 1,702 1,001 53 3.378 0.064

Flags 194 14 12 3.392 0.485

Recreation 12,828 30,324 22 1.429 0.065

Medical 978 1,449 45 1.245 0.028

Yeast 2,417 103 14 4.237 0.303

Table 3. Definitions of six multi-label Evaluation metrics. ‘↓’ means the lower the
better, ‘↑’ means the higher the better.

Evaluation metrics Fomulation

hamming loss ↓ 1
NL

∑N
i=1

∑L
j=1 I [hij �= yij ]

one-error ↓ 1
N

∑N
i=1 I

[
arg max f (xi) /∈ Y +

i

]

coverage ↓ 1
NL

∑N
i=1 I

[
max

j∈Y +
i

rankf (xi, j) − 1
]

ranking loss ↓ 1
N

∑N
i=1

|Si
rank|

|Y +
i ‖Y −

i. |
average precision ↑ 1

N

∑N
i=1

1

|Y +
i |

∑
j∈Y +

i

|Sij
precision |

rankf (xi,j)

macro-AUC ↑ 1
L

∑L
j=1

|Sj
macro|

|Y +
·j ||Y −

·j |

4.3 Comparison with Dimension Reduction algorithms

To demonstrate the effectiveness of our proposed DBGAT algorithm, we train
it using public datasets.

After dimension reduction of the dataset, we employ linear layers for multi-
label classification. We use 6 evaluation metrics to evaluate the classification
results. Table 4, 5, 6, 7, 8 and 9 list the comparison of 8 dimension reduction
algorithms. To be fair, all dimension reduction methods reduce to the same
dimension. The brief characterization and parameter settings of these algorithms
are as follows.

PCA [18] is a popular and typical feature extraction method.
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Table 4. Hamming loss (↓) comparison with MLDR algorithms.

Approach DBGAT PCA MDDM MLSI MCLS MDFS Original KPCA GAT

Arts 0.063 0.064 0.062• 0.309 0.063 0.063 0.546 0.064 0.121

Bibtex 0.015 0.013• 0.045 0.031 0.015 0.015 0.334 0.013• 0.015

Bussiness 0.028• 0.030 0.030 0.428 0.030 0.030 0.517 0.030 0.044

CAL500 0.136 0.138 0.629 0.139 0.132• 0.132• 0.191 0.138 0.219

Computers 0.037• 0.042 0.038 0.043 0.043 0.042 0.485 0.042 /

Corel5k 0.009• 0.100 0.009• 0.011 0.009• 0.009• 0.437 0.010 0.009•
Emotions 0.202• 0.232 0.476 0.236 0.349 0.270 0.236 0.232 0.323

Enron 0.050• 0.071 0.069 0.198 0.064 0.063 0.653 0.072 0.093

Flags 0.165• 0.232 0.414 0.235 0.178 0.274 0.224 0.219 0.276

Medical 0.023 0.020• 0.030 0.026 0.027 0.029 0.467 0.020• 0.028

Recreation 0.062• 0.063 0.068 0.064 0.064 0.065 0.519 0.063 /

Yeast 0.187• 0.213 0.319 0.214 0.229 0.228 0.214 0.213 0.229

Mean rank 1.583 3.333 5.75 5.917 3.667 3.833 7.417 3.083 5.167

Table 5. One error (↓) comparison with MLDR algorithms.

Approach DBGAT PCA MDDM MLSI MCLS MDFS Original KPCA GAT

Arts 0.755 0.713 0.601• 0.904 0.739 0.744 0.768 0.713 0.910

Bibtex 0.601 0.602 0.667 0.748 0.833 0.844 0.613 0.598• 0.861

Bussiness 0.142 0.143 0.140• 0.582 0.140• 0.142 0.434 0.143 0.142

CAL500 0.090 0.130 0.460 0.130 0.080• 0.110 0.410 0.130 0.660

Computers 0.472 0.463• 0.488 0.473 0.471 0.472 0.521 0.463• /

Corel5k 0.742 0.741 0.640• 0.825 0.754 0.755 0.875 0.749 0.743

Emotions 0.288• 0.356 0.508 0.364 0.542 0.407 0.356 0.364 0.703

Enron 0.476 0.488 0.409• 0.915 0.597 0.591 0.815 0.506 0.679

Flags 0.105• 0.158 0.474 0.158 0.184 0.132 0.158 0.158 0.158

Medical 0.492 0.385• 0.764 0.472 0.646 0.656 0.615 0.385• 0.672

Recreation 0.788 0.720 0.726 0.804 0.801 0.789 0.713• 0.718 /

Yeast 0.220• 0.238 0.586 0.236 0.255 0.255 0.269 0.238 0.251

Mean rank 2.833 2.75 5.167 5.833 5.25 5.25 5.667 2.917 5.583

Table 6. Coverage (↓) comparison with MLDR algorithms.

Approach DBGAT PCA MDDM MLSI MCLS MDFS Original KPCA GAT

Arts 0.239 0.238 0.199• 0.575 0.237 0.234 0.426 0.238 0.517

Bibtex 0.462 0.198 0.288 0.374 0.450 0.436 0.320 0.197• 0.510

Bussiness 0.089 0.085• 0.097 0.528 0.092 0.092 0.550 0.085• 0.241

CAL500 0.735• 0.764 0.962 0.764 0.739 0.754 0.873 0.762 0.905

Computers 0.140 0.138• 0.158 0.139 0.141 0.142 0.434 0.138• /

Corel5k 0.427 0.498 0.359 • 0.605 0.434 0.437 0.751 0.493 0.492

Emotions 0.322• 0.338 0.565 0.338 0.469 0.383 0.360 0.338 0.500

Enron 0.221• 0.346 0.385 0.524 0.338 0.337 0.719 0.349 0.422

Flags 0.491 0.511 0.650 0.534 0.489• 0.553 0.531 0.518 0.500

Medical 0.120 0.070 0.262 0.141 0.151 0.161 0.297 0.069• 0.292

Recreation 0.231 0.239• 0.235 0.258 0.253 0.252 0.414 0.239 /

Yeast 0.454• 0.465 0.615 0.467 0.483 0.483 0.477 0.466 0.484

Mean rank 2.75 3 5.75 5.75 4.333 4.833 7.083 3 5.917
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Table 7. Ranking loss (↓) comparison with MLDR algorithms.

Approach DBGAT PCA MDDM MLSI MCLS MDFS Original KPCA GAT

Arts 0.182 0.179 0.141• 0.580 0.179 0.176 0.588 0.179 0.874

Bibtex 0.330 0.127• 0.193 0.247 0.306 0.301 0.217 0.127• 0.352

Bussiness 0.050 0.047• 0.058 0.492 0.050 0.052 0.551 0.047• 0.223

CAL500 0.180• 0.197 0.576 0.197 0.185 0.184 0.276 0.197 0.281

Computers 0.100• 0.100• 0.113 0.101 0.102 0.103 0.526 0.100• /

Corel5k 0.197 0.237 0.163• 0.315 0.202 0.198 0.443 0.238 0.222

Emotions 0.191• 0.199 0.449 0.202 0.367 0.252 0.220 0.200 0.463

Enron 0.134• 0.146 0.166 0.31 0.147 0.144 0.609 0.149 0.201

Flags 0.143 0.167 0.408 0.169 0.129• 0.197 0.179 0.170 0.161

Medical 0.092 0.055 0.226 0.120 0.123 0.134 0.453 0.053• 0.262

Recreation 0.214 0.201 0.192• 0.220 0.217 0.216 0.558 0.200 /

Yeast 0.171• 0.180 0.328 0.181 0.202 0.204 0.189 0.180 0.216

Mean rank 2.667 2.75 5.583 5.583 4.583 4.75 7.25 3 6

Table 8. Average precision (↑) comparison with MLDR algorithms.

Approach DBGAT PCA MDDM MLSI MCLS MDFS Original KPCA GAT

Arts 0.426 0.446 0.535• 0.257 0.436 0.440 0.336 0.447 0.202

Bibtex 0.191 0.371 0.310 0.238 0.162 0.159 0.396• 0.374 0.140

Bussiness 0.854 0.857• 0.851 0.201 0.856 0.854 0.436 0.857 0.946

CAL500 0.504• 0.484 0.169 0.484 0.493 0.498 0.368 0.484 0.350

Computers 0.606 0.614 0.572 0.606 0.609 0.608 0.400 0.615• /

Corel5k 0.209 0.203 0.290• 0.161 0.208 0.208 0.12 0.202 0.203

Emotions 0.767• 0.756 0.591 0.753 0.633 0.717 0.749 0.755 0.547

Enron 0.495 0.505 0.553• 0.223 0.471 0.478 0.269 0.498 0.373

Flags 0.829• 0.790 0.648 0.790 0.824 0.817 0.78 0.794 0.812

Medical 0.605 0.706• 0.362 0.596 0.454 0.458 0.445 0.705 0.403

Recreation 0.395 0.442 0.454• 0.379 0.383 0.390 0.392 0.443 /

Yeast 0.791• 0.742 0.584 0.742 0.715 0.709 0.735 0.744 0.694

Mean rank 3.25 3.333 5.5 6.083 5.083 4.583 6.5 2.917 6.8

Table 9. AUC (↑) comparison with MLDR algorithms.

Approach DBGAT PCA MDDM MLSI MCLS MDFS Original KPCA GAT

Arts 0.913 0.541 0.590 0.538 0.593 0.609 0.690 0.542 0.923•
Bibtex 0.967 0.838 0.796 0.721 0.601 0.830 0.676 0.839 0.997•
Bussiness 0.632 0.586 0.495 0.606 0.748 0.817• 0.694 0.584 0.933•
CAL500 0.505 0.492 0.499 0.491 0.459 0.497 0.488 0.492 0.799•
Computers 0.939 0.556 0.593 0.939 0.870 0.752 0.753 0.555 /

Corel5k 0.727 0.506 0.515 0.405 0.728• 0.718 0.482 0.507 0.785•
Emotions 0.805 0.796 0.751 0.794 0.566 0.749 0.785 0.796 0.863•
Enron 0.491 0.593 0.563 0.571 0.597 0.621• 0.607 0.595 0.607•
Flags 0.737 0.721 0.478 0.720 0.783• 0.558 0.716 0.734 1

Medical 0.742 0.614 0.361 0.545 0.708 0.495 0.625 0.613 0.744•
Recreation 0.984 0.584 0.639 0.100 0.803 0.751 0.776 0.586 /

Yeast 0.668 0.645 0.632 0.645 0.584 0.577 0.650 0.645 0.982•
Mean rank 2.833 5.583 6.75 6.083 4.75 5.083 5.333 5.333 2.333
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MDDM3 [24] attempts to project the original data into a low-dimensional
feature space maximizing the dependence between the original feature descrip-
tion and the associated class labels.

MLSI [21], the parameter β is set to 0.5 as recommended in paper.
MCLS [7] is a feature selection method named manifold-based constraint

Laplacian score. The settings are as follows: knear = 5.
MDFS [22] is an embedded multi-label feature selection method with man-

ifold regularization. It seeks discriminative features across multiple class labels.
The settings are as follows: mu = 0.5, dim para = 10.

DBGAT is our new algorithm. We use the following settings: the number
of neighbors we set k = 0.05N . In the network we use the sigmoid activation
function.

Original indicates that no feature extraction is applied.
KPCA [13] (Kernel Principal Component Analysis) can achieve nonlinear

dimension reduction of data for processing linearly inseparable datasets.
GAT is a degenerate version of DBGAT. The GAT algorithm is designed in

the way of steps 2 and 3 of Fig. 1 in this paper.
For each datasets, the best measurement is shown with black dots. The last

row lists the average ranking of each method on the 12 datasets.
From the results we observe that:

1) DBGAT can be compared with popular MLDR methods. Note that we have
not fine-tuned the number of neighbors yet.

2) DBGAT runs on different types of datasets. At the same time it performs
well on both large and small datasets, proving its adaptability.

Figure 2 shows the results of the Bonferroni-Dunn test for further analysis
of pairwise comparisons [4]. The performance of two methods is significantly
different if the corresponding average ranks differ by at least the critical difference
(CD = 3.05) for α = 0.05. If there is no significant difference between the two
algorithms, the solid line is connected, and vice versa. This test is illustrated in
Fig. 2, where groups of methods that are not significantly different are connected.
That shows DBGAT performs well.

3 http://www.lamda.nju.edu.cn/code MDDM.ashx.

http://www.lamda.nju.edu.cn/code_MDDM.ashx
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Fig. 2. Performance comparison of DBGAT algorithm against the others with the
Bonferroni-Dunn test.

4.4 Ablation Learning

1) In this paper, we set different k values as the number of neighbors. N is
the number of instances. Table 10 shows our classification performance after
fine-tuning the number of neighbors.

Table 10. Set different k values, the results on emotions.

k Hamming
loss

One error Coverage Ranking
loss

Average
precision

AUC

0.05N 0.208 0.305 0.302 0.164 0.8 0.835

0.1N 0.209 0.322 0.314 0.175 0.785 0.826

0.15N 0.218 0.331 0.299 0.167 0.794 0.819

0.2N 0.23 0.356 0.331 0.194 0.757 0.806

2) There are many methods for calculating the distance between instances, such
as Cosmic similarity, Euclidean distance, Pearson correlation, etc. In this
experiment, we calculated several distance methods. The final results were
similar. Therefore, in our paper, we use a relatively common Euclidean dis-
tance calculation method.
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5 Conclusions

In our paper, the multi-label learning of graph feature representation is studied.
Considering the correlation between instances, a neighbor representation update
method is adopted to learn new node representations. Experiments show that
this method has new research significance for multi-label classification.
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Abstract. Existing works about link prediction rely mainly on pooling
operations which cause loss of edge information or similarity assump-
tions, so that they are limited in specific networks, and mainly super-
vised learning methods. We propose a Multi-scale Subgraph Contrastive
Learning (MSCL) method. To adapt to networks of different sizes and
make direct use of edge information, MSCL converts a sampled sub-
graph centered on the target link into a line graph as a node-scale to
represent links, and mines deep representations by combining two scales
information, subgraph-scale and line graph node-scale. After learning
the information of the two subgraphs separately by encoders, we use
contrastive learning to balance the information of two scales to alleviate
the over-reliance of the model on labels and enhance the model’s robust-
ness. MSCL outperforms a set of state-of-the-art graph representation
learning solutions on link prediction task in a variety of graphs including
biology networks and social networks.

Keywords: Multi-scale · Contrastive learning · Subgraph · Link
prediction

1 Introduction

Link prediction methods combined with specific applications can be considered
to predict the presence of interactions between pairs of nodes or the type of
interactions. And link prediction methods have many specific applications in the
real world, such as drug interaction prediction, community discovery, etc.

Traditional methods for link prediction score links by calculating nodes simi-
larity. Based on the assumption that similar nodes are more inclined to connect,
these heuristic methods use known node information in the network to score
nodes. Some methods consider local information about the network, such as
Common Neighbors (CN). Other methods take a global perspective, for exam-
ple, Katz [5] and Pagerank [1] directly aggregate over all the paths between
node pairs to score links. Although such methods improve performance, they
lack universal applicability to various networks, for example, similar proteins do
not tend to interact [7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Yao et al. (Eds.): IJCRS 2022, LNAI 13633, pp. 217–223, 2022.
https://doi.org/10.1007/978-3-031-21244-4_16
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To design a universal model, based on the fact that subgraphs already contain
enough information and are suitable for networks of different sizes, Weisfeiler-
Lehman Neural Machine(WLNM) [9] extracts local subgraphs around the links,
and learns the subgraphs corresponding to link existence through the fully con-
nected layer to achieve better performance. To enhance the graph feature learn-
ing capability and incorporate latent features, SEAL [10] uses a graph neural
network to replace the fully connected neural network in WLNM. However, the
information loss of pooling operations with subgraphs is not negligible. LGLP [2]
converts subgraphs into line graphs to obtain a unique node to represent every
link directly for more edge information. Although it works well, only a single
scale of information is considered in LGLP and it is based on a supervised learn-
ing approach. So the performance improvement is limited by the noise from the
growing edges of the line graph and over-reliance on labels.

In this paper, we propose a Multi-scale Subgraph Contrastive Learning
(MSCL) method for the link prediction task. Firstly, the subgraphs are extracted
centered on the links, and then the subgraphs are converted into line graph sub-
graphs so that each link has its corresponding node representation. Thus, a new
view is obtained. Secondly, the original subgraph and the line graph subgraph
are learned by different encoders to obtain link representation, and finally, multi-
scale information is balanced using contrastive learning. Our work is summarized
as follows:

– We propose a multi-scale subgraph contrastive learning framework, which
converts subgraphs into line graphs to improve the efficiency of aggregating
information and reduce the information loss of subgraph pooling.

– We adopt a contrastive learning component to achieve multi-scale learning
and balance information of two views. So the robustness of the model is
enhanced and the dependence of models on labels is decreased.

– The multi-scale information is learned using different encoders, and the model
achieves state-of-the-art results on two public available datasets.

2 Proposed Method

2.1 Problem Formulation

Through multi-scale contrastive learning, the model integrates line graph and
subgraph information. The line graph node transformed from the subgraph of the
target link is the positive sample g+, and the node of the line graph corresponding
to the other link is negative sample g−, and the anchor g is the subgraph of target
link. The model then trains the mapping function using contrastive learning to
enhance model performance. Our contrastive learning component is shown in
Eq. (1). score(·) is a function to calculate the similarity of two representations
for a target link. And f(·) denotes graph encoder.

score(f(g), f(g+)) >> score(f(g), f(g−)) (1)
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2.2 Overview

Figure 1 illustrates the overall framework of MSCL. The line graph transforma-
tion component samples the original graph for subgraphs and transforms them to
line graphs. Next, the encoder encodes the subgraph and line graph respectively.
Finally, the contrastive learning component balances multi-scale information.

Fig. 1. Overview of the MSCL framework

2.3 Line Graph Transformation

MSCL mainly uses the different scale information of subgraph G(V ,E ,X ,A)
for link prediction, and its core point is to balance the scale information of line
graph nodes by contrastive learning.

Line Graph Transformation: To transform a subgraph into a line graph,
we transform the subgraph’s edges to the line graph’s set of nodes, as illustrated
in Eq. (2). If any two nodes of a line graph correspond to two edges of a subgraph
that share a common node, then these two nodes form an edge [2]. ˜V is the line
graph node identity matrix, and ˜A is the set of edges of the line graph, which is
identical to the representation of the adjacency matrix. Equation (2) is used to
generate the line graph representation ˜G(˜V, ˜E, ˜X, ˜A).

˜V = {e},∀e ∈ E

˜X = {concate(xi, xj)|∀e(vi,vj) ∈ ˜V}
˜E = {l(ei,ej)|ei ∩ ej �= ∅},∀ei, ej ∈ ˜V (2)

Num(˜E) =
1
2

∑m=Num(V )

i=1
Deg(vi)

2 − Num(E),∀v ∈ V (3)

As shown in Eq. (3), the number of edges in the line graph increases expo-
nentially compared to the number of edges in the original graph. Deg(·) is a
function to calculate the degree of nodes.
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2.4 Graph Encoder

The graph encoder f(·) is separated into two parts: a subgraph encoder fS(·),
a line graph encoder fL(·). And the graph encoder handles the feature and
adjacency matrices of the two views. The representation of subgraphs and line
graphs is conducted independently as Z , ˜Z.

The graph encoder extracts substructure features by stacking multiple graph
convolution layers as Z

1:h
:= [Z 1 . . .Z h], and h represents the number of layer.

Finally, the obtained graph is pooled through the SortPooling layer [11] to obtain
a graph-scale representation, thereby obtaining a cross entropy loss L.

The design of the line graph encoder convolution layer mainly follows
GCN [6]. Finally, the pooling layer selects nodes to represent target links, and
the supervised loss ˜L of the line graph can be obtained.

2.5 Contrastive Learning

To combine multi-scale information which is line graph node information and
subgraph information, we mainly follow the contrastive model in GraphCL [8].

Take z(n), z̃(n) in Z , ˜Z respectively, to denote the two views of the nth graph
in the small batch. Negative samples are generated from the other n − 1 line
graphs. sim(·) is cosine similarity function, and contrastive loss LCON is defined
as:

LCON =
1

|T |
∑|T |

n=1
− log

exp(sim(z(n), z̃(n))/τ)
∑N

n′=1,n′ �=n exp(sim(z(n), z̃(n′))/τ)
(4)

|T | denotes the number of links in the training set and τ is a hyperparameter.
Finally, the total loss function Ltotal is obtained by combining the self-

supervised task loss with the supervised loss of both views.

Ltotal = αL + β ˜L + λLCON (5)

α, β, λ are the hyperparameters used to balance the different losses.

3 Experiment

During the training process of the model, we use the Adam optimizer with a
learning rate of 0.05. To evaluate the effectiveness of link prediction, we use
Area Under the Curve(AUC) and Average Precision(AP) as evaluation metrics.

3.1 Datasets and Baseline Models

We conduct experiments on two datasets in different areas, HPD, ADV [2] to
verify MSCL’s effectiveness. In this work, we compare three network similarity
methods, including Katz [5], PageRank (PR) [1] and SimRank (SR) [4]. Also,
the network embedding methods Node2vec(N2V) [3] and graph representation
learning methods SEAL [10] and LGLP [2] (Table 1).



Multi-scale Subgraph Contrastive Learning for Link Prediction 221

Table 1. Summary of datasets used in our experiments.

Datasets Nodes Links Degree Area

HPD 8756 32331 7.38 Biology

ADV 5155 39285 15.24 Social network

3.2 Comparison With Baselines

Figure 2 shows that the performance of MSCL method has been improved com-
pared with the other three types of methods on 80% training percentage of links.
The graph representation learning method can learn deeper feature information
and topological information than other methods, so the performance is signifi-
cantly improved. MSCL combines multi-scale information and therefore has the
best performance among all methods.

3.3 Model Robustness Analysis

To explore the robustness of the model to network sparsity, experiments are
conducted on edge datasets of different sizes from 30% to 80%. Figure 3 shows the
robustness of MSCL to network sparsity. MSCL outperforms at all assignments
with various levels of network sparsity. The performance of Katz and PageRank,
which are based on network similarity, is poor compared to other methods due
to their assumptions, and the gap becomes larger as the density increases. MSCL
alleviates the model’s over-reliance on labels and the line graph noise problem.

Fig. 2. Performances of MSCL and baselines
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Fig. 3. Robustness analysis on HPD and ADV with different training percentage

4 Conclusions

In this paper, we propose a method for balancing line graph node scale and
subgraph scale information by contrastive learning. Final experiments show that
MSCL performs well. Future work will continue to explore the information yield
of graphs at different scales for diverse tasks.
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Abstract. Video object detection, a basic task in the computer vision,
is rapidly evolving and widely used in various real-world applications.
Recently, with the success of deep learning, deep video object detec-
tion has become an important research direction. Although existing deep
video object detection methods have achieved excellent results compared
with those of traditional methods, they ignore the motion laws of objects
and are hard to improve the detection performance of the fast moving
objects suffering from deteriorated problems such as the motion blur,
video defocus, object occlusion and rare poses. To address this limita-
tion, we add the object trajectory information into the process of the
video object detection and devise a novel deep video object detection
method which utilizes the MeanShift algorithm to guide the deep neural
networks to enhance the video object detection performance. The exper-
iments on ImageNet VID dataset validate that the proposed method can
improve the recognition performance of fast moving objects with taking
into account the motion laws of objects.

Keywords: Video object detection · Deep neural networks ·
MeanShift

1 Introduction

Object detection, which tries to locate the object of interest according to the
input image and give the category information, is one of the key methodologies in
computer vision research [38]. With the explosion of video data close to our daily
life such as video surveillance, face recognition, autonomous driving, and robot
vision, the research on video target detection has greater practical research sig-
nificance and application value. Although there have been a significant progress
in object detection in still images, directly applying these detection methods to
videos faces great challenges, such as the unaffordable computational cost and
low recognition performance [35], which promotes the development of the video
object detection.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Yao et al. (Eds.): IJCRS 2022, LNAI 13633, pp. 224–237, 2022.
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Fig. 1. The fast moving objects suffering from different deteriorated problems in video.

Earlier methods in video object detection relied on handcrafted features,
e.g., [16,23], which produce lower accuracies in video object detection. Recently,
joining the success of deep learning, deep video object detection, which aims to
locate and recognize the object in video with deep neural networks (DNNs) [13,
25,33,34], has become an important research direction. The common attempts in
deep video object detection involved performing deep object detection methods
on each image frame to promote the recognition accuracy in video.

However, although existing deep video object detection methods have
achieved excellent results compared with those of traditional methods, they
ignore the motion laws of objects and cannot take into consideration both spa-
tial and temporal correlations between image frames, which are hard to improve
the detection performance of the video fast moving objects suffering from dete-
riorated problems such as the motion blur, video defocus, object occlusion and
rare poses (shown in Fig. 1). To address this limitation, inspired by the work of
[17,32], we introduce the trajectory information into the detection process and
devise a novel deep video object detection method from the perspective of object
tracking, which utilizes the MeanShift algorithm to guide the deep neural networks
for video object detection. The MeanShift tracking algorithm, a non-parametric
mode-seeking method for density functions, is a popular algorithm for object
tracking since it is fast, robust and easy to implement. The MeanShift algorithm
tracks by minimizing a distance between two probability density functions rep-
resented by a reference and candidate histograms. Since the histogram distance
(or, equivalently, similarity) does not depend on spatial structure of the search
window, the method is suitable for deformable objects caused by fast moving
[30]. As to the characteristics of MeanShift for tracking of fast moving objects
suffering from deteriorated problems in video, we apply it to deep video object
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detection for adding the object trajectory information into the process of the
video object detection and thereby enhancing the video detection performance.

The rest of this paper is organized as follows. Section 2 introduces the related
works of object detection, video object detection and MeanShift methods, respec-
tively. Section 3 describes the proposed method in detail, which consists of the
workflow of deep video object detection and constructed Object Motion Law Pre-
diction (OMLP) module. Section 4 describes our specific experimental settings
and results. Finally, the work conclusion is given in Sect. 5.

2 Related Work

2.1 Object Detection in Still Images

In general, object detection methodologies can be grouped into two major cate-
gories: (1) one-stage object detection algorithms and (2) Two-stage object detec-
tion algorithms. One-stage object detection algorithms which are trained by
optimizing classification-loss and localization-loss simultaneously are often more
computationally efficient than two-stage detection methods which first generate
a limited number of object box proposals and then classify those proposals to
achieve the detection task. However, two-stage object detection methods can
produce higher accuracies compared to one-stage object detection algorithms.
Specifically, in one-stage detectors, OveFeat [27] is one of the first CNN-based
one-stage detect detection method. Thereafter, different designs of one-stage
detectors are proposed, including SSD [20], YOLO [24], DSSD [9] and DSOD
[28]. In two-stage detectors, Faster-RCNN [13,25] utilizes two fully connected
layers as the RoI heads. CascadeRCNN [1] consists of a sequence of detectors
trained with higher IoU thresholds to get a high quality object detector. TSD
[29] decouples the classification and localization branches for each RoI.

2.2 Video Object Detection

Although the object detection methods for images have achieved significant
progress, it is hard to directly apply these detectors to videos. Initially,
video object detection approaches have relied on handcrafted features, e.g.,
[16,18,21,23]. Joining the success of deep learning, A number of deep-learning
based video object detection approaches were proposed after the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC2015). DFF [37] runs the expensive
convolutional sub-network only on sparse key video frames and propagates their
deep feature maps to other frames via a flow field to boost the recognition accu-
racy. FGFA [36] proposes a flow-guided feature aggregation framework to lever-
age the pre-frame features by aggregation of nearby features along the motion
paths for improving the video object detection accuracy. RDN [8] proposes a new
architecture that novelly aggregates and propagates object relation to augment
object features for detection. MEGA [2] Introduces a memory enhanced global-
local aggregation network to take full consideration of both global and local



Video Object Detection with MeanShift Tracking 227

Fig. 2. The framework of video object detection with MeanShift.

information. HVR-Net [12] designs a Hierarchical Video Relation Network by
integrating intra-video and inter-video proposal relations in a hierarchical fash-
ion. The work of [11] proposes a novel Temporal RoI Align operator to extract
features from other frames feature maps for current frame proposals by utilizing
feature similarity. SLTnet FPN-X101 [5] presents a new network architecture
to take advantage of spatio-temporal information available in videos to boost
object detection precision. Although these methods achieve excellent results on
video object detection, they ignore the object trajectory information in detec-
tion and are hard to recognize the fast moving objects. In contrast, our method
adds the motion laws of objects into the learning process, which can promote
the video object detection performance of the fast moving objectives suffering
from deteriorated problems.

2.3 MeanShift Tracking

The MeanShift algorithm proposed by Fukunaga and Hostetler [10] is a non-
parametric mode-seeking method for density functions. It was firstly introduced
to computer vision by Comaniciu et al. [4] and became a popular object track-
ing algorithm since it is fast, robust, easy to implement and performs well in a
range of conditions. The MeanShift algorithm tracks by minimizing a distance
between two probability density functions represented by a reference and candi-
date histograms. Since the histogram distance (or, equivalently, similarity) does
not depend on spatial structure of the search window, the method is suitable for
deformable objects [3,22,30,31]. In this paper, we use the MeanShift algorithm
to extract the object trajectory information and guide the deep neural network
to improve the recognition performance of fast moving objectives in videos.
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3 Method

In this section, we will elaborate how we devise our model that enables the whole
architecture to fully use the object trajectory information to guide the detection
neural networks for improving the performance of fast moving objects suffering
from the deteriorated problems. In specific, compared with the traditional single
frame image detection model, we construct an Object Motion Law Prediction
(OMLP) module that extracts the object trajectory information and integrate
it into the workflow of video object detection. The overall architecture is shown
in Fig. 2.

3.1 Workflow for Video Object Detection

Here we will first introduce the workflow of video object detection in our work.
Given a video dataset that contains a set of T frames {It}Tt=1, our goal is to give
detection results for each frame It of video for video object detection task. Typi-
cally, the video object detection process contains three main steps: (1) A deep con-
volutional subnetwork Nfeat is applied to each frame It to produce feature maps
ft = Nfeat (It); (2) A shallow region-specific sub-network, Nregion (i.e., Region
Proposal Networks (RPN) [25]) is applied on the feature maps ft to generate the
candidate proposals (RoIs), bt = Nregion (ft), and (3) then extracts the RoI feature
xt of each candidate proposal bt and outputs the detection loss Losstdet that con-
sists of the cross-entropy loss Losstcls for per-region classification score and bound-
ing box regression loss Losstreg in terms of the detection-specific sub-network, Ndet

(i.e., Region-based Fully Convolutional Network (R-FCN) [6]).

3.2 Integrate OMLP Module into Video Object Detection

In the Sect. 3.1, we have introduced a common workflow for video object detec-
tion, although this workflow can recognize the object in video with deep neural
networks, it is hard to improve the detection performance of fast moving objects
suffering from deteriorated problems in video. Therefore, we integrate the object
trajectory information to guide the training direction of deep object detection
neural network.

In specific, our main goal is to optimize the overall loss Losst that consists
of the object detection loss Losstdet and trajectory loss Lossttra as follows

Losst = Losstdet + λLossttra. (1)

where Losstdet = Losstcls+Losstreg, similar to the work of [25], and λ is a balance
factor.

To achieve this goal, we construct our OMLP module to extract the object
trajectory information to improve the performance of video object detection.
Our OMLP module acts on the RoI feature xt and each candidate proposal bt
produced by detection-specific sub-network Ndet. We use the MeanShift algo-
rithm to calculate the trajectory center point of an object detected in the tth



Video Object Detection with MeanShift Tracking 229

frame, and compare with the center point of the candidate proposal predicted by
the Ndet. If the distance between the two points exceeds the threshold ε, which
means we need to add the object trajectory information into the detection net-
works to guide the training direction. In detail, the proposed OMLP module
based on the color histogram can be divided into three steps [19].

First, on the base of color histogram and kernel density estimation, we use
the initial center candidate y1 of the candidate proposal b1 and its corresponding
RoI feature x1 =

{
xi
1

}N

i=1
, N represents the size of the feature, to calculate the

target kernel function histogram q̂u and the candidate kernel function histogram
p̂u.
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where k (·) is a kernel function (i.e., Epanechnikov), b (·) is the bin number
(1, . . . , m) associated with xi

1, h is the size of kernel, C is the normalization
factor.

Then, we should maximize the similarity between these two histograms q̂u
and p̂u. Similar to the Bhattacharyya coefficient, the similarity metric is defined
as:
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and using Taylor expansion, Eq. 4 can be reduced to
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and y indicates the arbitrary location and ŷ0 indicates the estimated target
location in the previous frame.

Finally, the estimated target location ŷt in the tth frame can be calculated
by an iterative MeanShift procedure below
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After getting the estimated target location ŷm
t inferred by MeanShift and

the predicted coordinate ŷd
t inferred by detection-specific sub-network Ndet, we

compute the trajectory loss of the current frame t as follows

Lossttra =
∥
∥ŷm

t − ŷd
t

∥
∥
2
. (8)

According to the Eq. 1, we can add the object trajectory information into
the process of the video object detection and thereby devise a novel deep video
object detection method which utilizes the MeanShift algorithm to guide the
deep neural networks to enhance the video object detection performance.

4 Experiments

In this section, we extensively evaluate the proposed method on real-world
video dataset and compare it with existing deep video object detection meth-
ods. Experimental results show that our algorithm achieves the state-of-the-art
results for the video object detection.

4.1 Experimental Settings

Dataset

In experiments, we test our video object detection algorithm on the ImageNet
VID dataset [26], which is the most commonly used dataset in video object
detection. This dataset is divided into training set and validation set, including
3862 video clips and 555 video clips, respectively. Video streaming in each frame
rate is 25 or 30 frames per second (fps). In addition, the ImageNet VID dataset
contains 30 object categories, which are a subset of categories in the ImageNet
DET dataset [7], the detailed categories information of ImageNet VID dataset
are shown in Table 1.

Table 1. Categories of ImageNet VID dataset

airplane antelope bear bicycle bird bus

car cattle dog domestic cat elephant fox

giant panda hamster horse lion lizard monkey

motorcycle rabbit red panda sheep snake squirrel

tiger train turtle watercraft whale zebra

Compared Methods

We compare our method with existing state-of-the-art video object detection
methods, which are listed as follows:
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– Baseline: Faster-RCNN [13,25] utilizes two fully connected layers as the RoI
heads to conduct object detection.

– DFF: Deep Feature Flow [37] runs the expensive convolutional sub-network
only on sparse key video frames and propagates their deep feature maps to
other frames via a flow field to boost the recognition accuracy.

– FGFA: Flow-Guided Feature Aggregation [36] proposes a flow-guided feature
aggregation framework to leverage the pre-frame features by aggregation of
nearby features along the motion paths for improving the video object detec-
tion accuracy.

– RDN-base: Relation Distillation Networks with relation only in basic stage
[8] proposes a new architecture that novelly aggregates and propagates object
relation to augment object features for detection.

– RDN: Relation Distillation Networks with advanced stage [8] models object
relation across frames to boost video object detection performance.

– MEGA: Memory Enhanced Global-local Aggregation network [2] takes full
consideration of both global and local information to improve the performance
of video object detection.

Evaluation Metric

Following protocols widely adopted in [2,36,37], we evaluate our method on the
validation set and use mean average precision (mAP) as the evaluation metric
which is usually used in conventional object detection and provides a method
performance evaluation in terms of regression and classification accuracies. More-
over, similar to the [36], we also divide the ground truth objects into three cate-
gories according to their motion speed, including slow, medium and fast motion,
respectively. An object’s speed is measured by its averaged intersection-over-
union (IoU) scores with its corresponding instances in the nearby frames (±10
frames). The lower the motion IoU is, the faster the object moves. In general,
the speed consists of slow (IoU score > 0.9), medium (IoU score ∈ [0.7, 0.9]), fast
(IoU score <0.7). Then we report the mAP scores over the slow, medium, and
fast groups, respectively, denoted as mAP (slow), mAP (medium), mAP (fast),
which provides a more detailed analysis and in-depth understanding.

Network Architecture

Feature Extractor. We adopt the state-of-the-art ResNet-101 and ResNet-
50 [15] as the feature extractors. As common practice in [2], we enlarge the
resolution of the feature maps by changing the stride of the first convolution block
in last stage of convolution from 2 to 1. Further, the dilation of convolutional
layers is set as 2 to retain the receptive field size.

Detection Network. We adopt the Faster-RCNN [25] as our detection network.
The RPN head is added on the top of conv4 stage. RPN relies on a sliding
window on the shared feature map to generate 9 target boxes (anchors) for each
location. The area of these 9 anchors are 128 × 128, 256 × 256, 512 × 512,
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and the aspect ratios are 1:1, 1:2, 2:1. About 300 candidate boxes are generated
per frame during training and inference, and we set the threshold for NMS to
0.7. After getting candidate boxes, we use RoI-Align [14] module and a FC layer
after conv5 layer to obtain RoI feature for each candidate boxes. Moreover, we
also use the MEGA module at training and inference stages, the detailed setting
is the same as the work of [2].

Implementation Details

We resize the input image as a shorter side of 600 pixels. We set the number
of training iterations for our model to be 120K. The learning rate is set as
10−3 and 10−4 in the first 80K and in the last 40K iterations, respectively.
During inference, we adopt NMS with a threshold of 0.5 IoU in order to suppress
duplicate detection boxes. Experiments are conducted on 2 NVIDIA TITAN Xp
with GPU of 12 GB memory. Each GPU holds one mini-batch and each mini-
batch contains one set of images or frames.

4.2 Experimental Results

In this section, we report the main experimental results of our model on the
ImageNet VID dataset to verify the effectiveness of our method, including the
comparison results with existing state-of-the-art video object detection methods
based on ResNet-101 and ResNet-50, respectively and a detailed ablation study
that consists of average detection accuracy for each category and intuitive display
for detection results of the fast moving example,

Table 2. Comparison results on ResNet-101

Model Backbone mAP (%) mAP (%) (fast) mAP (%) (med) mAP (%) (slow)

Baseline ResNet-101 76.7 52.3 74.1 84.9

DFF ResNet-101 75.0 48.3 73.5 84.5

FGFA ResNet-101 78.0 55.3 76.9 85.6

RDN-base ResNet-101 81.1 60.2 79.4 87.7

RDN ResNet-101 81.7 59.5 80.0 89.0

MEGA ResNet-101 81.06 61.86 80.59 86.61

Ours ResNet-101 81.45 62.0 80.6 87.2

Comparative Results with Video Object Detection Methods

In this section, we overall compare our model with existing state-of-the-art video
object detection methods shown in Sect. 4.1 to verify the improved performance
of our method. Table 2 and Table 3 show the mAP results of different video object
detection methods based on the ResNet-101 and ResNet-50, respectively. In the
Table 2 and Table 3, it is obvious that the overall mAP evaluation of our method
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is just slightly worse than the RDN method, but we have the highest mAP on the
objects of fast and medium motion speed compared with other methods. Taking
the results on fast moving objects as examples, our method improves the mAP
by about 0.2% compared to the second-best model and improves the mAP by
about 10% compared to the baseline on Resnet-101, which overall evaluates the
effectiveness of our method and verifies that adding the object trajectory infor-
mation extracted by constructed OMLP module into object detection process
can improve the performance of the fast moving object to address the different
deteriorated problems in video.

Fig. 3. The average detection precision for each category on the ImageNet VID dataset.

Ablation Study

In this part, we conduct a detailed ablation study to clearly demonstrate the
effectiveness of our major technical component, OMLP module. We first com-
pare our method with the applied base detection network MEGA for each cat-
egory on the ImageNet VID dataset to provide more detailed analysis. Table 1
gives a used categories information of ImageNet VID dataset in our experiment.
Figure 3 shows the average detection accuracy for each category on the ImageNet

Table 3. Comparison results on ResNet-50

Model Backbone mAP (%) mAP (%) (fast) mAP (%) (med) mAP (%) (slow)

Baseline ResNet-50 71.8 47.2 69.2 80.6

DFF ResNet-50 70.4 43.6 68.9 80.8

FGFA ResNet-50 74.3 50.6 72.3 84.0

RDN-base ResNet-50 76.7 53.8 74.8 85.4

Ours ResNet-50 76.0 55.2 74.8 83.3
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Fig. 4. Comparison with the video object detection neural network (MEGA).

VID dataset with ResNet-101, the “Base” indicates the MEGA object detection
network. From the Fig. 3, we can find, although our method does not achieve
higher detection performance on each category, integrating the OMLP module
into MEGA can improve the average precision on many categories, especially the
fast moving objects. Taking the results of fast moving object (dog) as example,
we give an intuitive display compared with the MEGA, termed as “Base” shown
in Fig. 4. From Fig. 4, it is obvious that the MEGA produces wrong detection
result on the fast moving object for each frame, which recognizes the dog as
the cat. Moreover, due to the fast moving object is suffering from the problems
of motion blur and video defocus, MEGA can not even detect any object on
the second frame. In contrast, our method has more accurate detection result
on the fast moving object for each frame, even if the object exists the motion
blur, video defocus (shown in the second frame) and object occlusion (shown in
the third and fourth frames) problems, which further verifies that adding the
motion laws of objects is effective for the improvement of video object detection
performance.

5 Conclusion

In this work, we propose a novel video object detection framework, which uti-
lizes the object trajectory information extracted by constructed OMLP module
to improve the performance of video object detection neural network. Through
adding the motion laws of objects in the process of detection, our method effec-
tively mitigates the problems of motion blur, video defocus, object occlusion and
rare locations that exist on the fast moving objects in video frames to achieve
a better result for detection. Experiments conducted on ImageNet VID dataset
validate the effectiveness of our method.
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Abstract. K-Means is one of the most popular clustering algorithm. It
aims to minimize the sum of pair-wise distance within a cluster. It has
been widely used in data analysis, image recognition and many other
fields. However, traditional K-Means cannot handle missing values, which
greatly limits its application scenarios. Missing values are ubiquitous in
the real world due to sensor failure, high cost, and privacy protection. The
appearance of missing values leads to useful information lost in the infor-
mation system, and makes it difficult to perform data mining. Currently,
improvements of K-Means for missing values generally based on data com-
pletion and partial distance strategy. Above methods achieve satisfied per-
formance with random missing values, but they will fail when data is miss-
ing not at random (MNAR). Considering the effect of missing mecha-
nism, this paper proposes an improved method of traditional K-Means
for data of missing not at random, which integrating missing pattern in
the distance measurement to assist clustering process. The experiment
results on public datasets show that the proposed method outperforms
data completion-based K-Means and partial distance-based K-Means.

Keywords: K-Means · Missing not at random · Missing mechanism ·
Missing pattern

1 Introduction

Cluster analysis or clustering is an important data mining approach. The goal of
clustering is to unsupervisedly divide data into different clusters, to make data
within the same cluster are as similar as possible and data in different clusters are
as dissimilar as possible. As one of the most popular and widely used clustering
method, K-Means [8] has been applied in data analysis, image recognition, social
network and other fields. One of the disadvantages of traditional K-Means is
the incapability in handling missing values. Missing values is ubiquitous in the
real world: data can be lost due to network fault or sensor failure, sensitive
user information will be omitted for privacy protection, etc. The appearance of
missing values poses challenges to studies of clustering.
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Furthermore, according to Rubin’s research [11], the type of missing values
can be divided into missing at completely random (MCAR), missing at random
(MAR) and missing not at random (MNAR). Existing improved versions of K-
Means for missing values include: complete the data and then perform traditional
K-Means, adopt partial distance strategy [9] to calculate pair-wise distance, and
put data completion and clustering into a unified framework [15]. The above
methods can achieve fair results when the data is missing completely at random.
When the data is missing not at random, these methods will obtain biased
distances between samples, which leads to the decline in clustering performance.

Assuming that data is missing not at random, an improved version of K-
Means (MP-KMeans) is proposed in this paper, which incorporates missing pat-
tern in the traditional K-means algorithm, thus making full use of the infor-
mation provided by incomplete dataset to assist the clustering process. The
experimental results on public dataset verify the effectiveness of the proposed
method.

The rest of this paper is organized as follows: related works are reviewed
in Sect. 2; the proposed method is formulated in Sect. 3; comparative experi-
ment and experimental results are provided in Sect. 4; this paper is concluded
in Sect. 5.

2 Related Work

2.1 Notations

In this paper, a missing value is denoted by NaN (not a number). Mathe-
matical scalar, vector and matrix are denoted as lowercase letter, bold lower-
case letter and bold uppercase letter, respectively. Given an incomplete dataset
X = {Xobs,Xmiss} ∈ IRn×d with n samples and d dimensions, where Xobs is the
set of observed data and Xmiss is the set of missing data. Given a matrix A, its
i-th row and j-th column are written as Ai: and A:j , and the (i, j)-th element
of A is denoted as Aij (Table 1).

Table 1. Notations.

Notation Definition

NaN Not a number (a missing value)

x,x and X Scalar, vector and matrix

Xmiss The set of observed data

Xobs The set of missing data

Ai: and A:j The i-th row and j-th column of A

Aij The (i, j)-th element of A
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2.2 K-Means Clustering Method

K-Means is one of the most widely applied clustering method in machine learn-
ing, which seeks a partition of data with the minimized sum of pair-wise distance
within a cluster. The objective function of K-Means is written as follows:

min
H

n∑

i=1

k∑

c=1

Hic ‖xi − µc‖2 , s.t.

k∑

c=1

Hic = 1,H ∈ {0, 1}n×k. (1)

where xi and µc represent i-th sample and c-th cluster center, respectively. H
is the class indicator matrix, Hic = 1 when i-th sample belongs to c-th cluster.
The constraint term ensures that a sample point belongs to only one cluster,
hence K-Means is a typical hard clustering method.

Optimization problem in Eq. (1) is a NP-hard problem since minimizing
squared distance in a cluster [3]. So far, the most popular solution of K-Means
is randomly initializing k cluster centers and then finding the local optimal
minimum. The detail approximate solution of K-Means is presented in Algorithm
1. Therefore, K-Means is sensitive to the initialization of cluster centers. In order
to avoid occasionality, K-Means algorithm usually needs to be run multiple times
and get the mean value.

Algorithm 1. K-Means
Input: Dataset X, number of clusters k and max iteration number maxIter.
Initialize: H = 0, k cluster centers: µ1,µ2, ...,µk.

1: for iter = 1 to maxIter do
2: for i = 1 to n do
3: c = minc ‖xi − µc‖2 for c = 1, .., k;
4: Assign xi to c-th cluster, i.e., Hic = 1;
5: end for
6: if H is no longer change then
7: break;
8: end if
9: Update cluster centers;

10: end for

Output: Class indicator matrix H.

Moreover, K-Means can not effectively deal with missing values, which lim-
its its application scenarios. At present, various improvements of K-Means for
missing values usually complete the dataset first or use local distance strategy.
Data completion methods include simple deletion, mean filling, k-nearest neigh-
bor (KNN) filling, etc. The partial distance strategy directly ignores variables
with missing values when calculating the pair-wise distance. When the missing
rate is low and the data is missing completely at random, these methods can
perform well. When the data is missing not at random, methods based on data
completion or partial distance will get biased pair-wise distance, which brings
significant deviation to the clustering results.
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2.3 Missing Mechanism

Definition 1. In dataset X, variables that do not contain missing values are
complete variables, and variables that contain missing values are incomplete vari-
ables.

Rubin D. B. [11] proposed missing mechanism in 1976 to illustrate the causal-
ity of the missingness. According to Rubin’s taxonomy, the missing mechanism is
classified as missing at completely random (MCAR), missing at random (MAR)
and missing not at random (MNAR).

Given an incomplete dataset X = {Xobs,Xmiss} ∈ IRn×d with n samples and
d dimensions. And the missing indicator matrix corresponding to X is denoted
as M ∈ IRn×d. Mij = 1 when Xij = NaN and Mij = 0 when Xij �= NaN.
M can be regarded as the direct embodiment of missing pattern, and it can be
considered that the missing indicator matrix and the missing pattern refer as
the same in the rest of this article. Figure 1 shows the missing indicator matrix
M of an example dataset X.

Definition 2. Missing at completely random (MCAR): The probability of miss-
ing data has nothing to do with observed data and missing data.

P (M = 1 | X, ξ) = P (M = 1 | ξ), (2)

where ξ represents additional parameter, for example, missing ratio.

Definition 3. Missing at random (MAR): The probability of missing data is
related to observed data.

P (M = 1 | X, ξ) = P (M = 1 | Xobs, ξ) . (3)

Definition 4. Missing not at random (MNAR): The probability of missing data
is related to missing data themselves.

P (M = 1 | X, ξ) = P (M = 1 | Xmiss, ξ) , (4)

P (M = 1 | X, ξ) = P (M = 1 | Xobs,Xmiss, ξ) . (5)

Here is a running example to help readers better understand missing mech-
anism: adolescent tobacco use study [12]. This case includes two variables, i.e.,
“age” and “number of cigarettes”. The “age” is a complete variable, and the
“number of cigarettes” is an incomplete variable. In MCAR, the missingness
of “number of cigarettes” only depends on parameter ξ. In the case of MAR,
younger participants may less likely to disclose the specific smoked cigarettes
number because they know underage smoking is a misbehavior. Namely, the
missingness of “number of cigarettes” depends on the complete variable “age”.
At last, in MNAR, some teenagers may not willing to report their daily used
cigarette number because they are heavy smokers. In other words, the missing-
ness of “number of cigarettes” depends on the incomplete variable “number of
cigarettes”.

According to the above definition of missing mechanisms and missing indi-
cator matrix, it is apparent that:
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Fig. 1. Missing indicator matrix (missing pattern) M of original data X.

1. In MCAR, missing patterns cannot provide any useful information about the
data.

2. In MAR, the similarity of missing patterns indicates the similarity of the
values of complete variables.

3. In MNAR, the similarity of missing patterns indicates the similarity of the
values of incomplete variables.

In fact, MCAR is difficult to be met, most of them are caused by accident;
MAR and MNAR are more common in practical research and engineering, there-
fore research on MAR and MNAR data is more relevant.

2.4 Clustering Method for Incomplete Data

In the past decades, many clustering methods for incomplete data have been
proposed, and quite a lot of works are based on Fuzzy C-Means (FCM), three-
way decision and subspace learning.

FCM [2] is a classic soft clustering method. In comparison to hard clustering,
soft clustering does not require that a sample must belong to only one cluster.
Hathaway et al. [9] proposed four strategies to enable FCM to handle incomplete
data: whole data strategy (WDS), partial distance strategy (PDS), optimal com-
pletion strategy (OCS) and nearest prototype strategy (NPS). Zhang et al. [18]
treat missing values adhering to a certain Gaussian distribution as probabilis-
tic information granules based on the nearest neighbors of incomplete data, and
incorporate probabilistic information granules into FCM by maximum likelihood
criterion. Li et al. [10] developed a robust fuzzy c-means clustering algorithm for
incomplete data, which represents missing feature values by intervals and adopts
a min-max optimization model to reduce noises.

Derived from rough set theory and Bayesian decision theory, three-way deci-
sion [16] is an ideal approach to cope with uncertain and incomplete data. Three-
way decision introduces a third decision state when information is insufficient,
i.e., delay decision. Yu et al. [17] proposed a three-way decisions clustering algo-
rithm for incomplete data, which jointly considers attribute significance and
missing rate. Afridi et al. [1] introduced game-theory rough set (GTRS) to auto-
matically determine the thresholds that are used in three-way clustering, and
proposed a method based on GTRS for data with missing entries.
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There are also a couple of subspace-based clustering methods for incomplete
data. Gunnemann et al. [7] develop a general fault tolerance definition that are
allowed a certain number of missing values in the subspace clustering model to
obtain high quality results. Elhamifar et al. [4] mentioned one can fill missing
values with random values when the missing rate is relatively low, and then solve
sparse subspace clustering (SSC) problem to obtain the subspace representation
coefficients. Besides, Fan et al. [5] proposed a framework by integrating high-
rank matrix completion and subspace clustering, which achieves satisfied result
on random missing data.

However, above methods have the common limitation, that is they overlooked
the function of missing mechanisms, which causes poor clustering results when
the data is missing not at random.

3 Proposed Method

3.1 The Relationship Between Missing Mechanism and Clustering

As discussed in Sect. 2.3, in order to enhance the performance of clustering on
data of missing not at random, missing mechanism should be concerned in the
clustering process.

Unfortunately, it is difficult to determine the missing mechanism of dataset
without any prior knowledge. In this case, it is unrealistic to fuse missing mech-
anism into clustering process. But the missing pattern is off-the-shelf, which
describes the location of missing data in the dataset. More importantly, missing
pattern can reflect the intrinsic missing mechanism.

According to the definition of missing mechanism, we can get the relationship
between missing mechanism and clustering:

– When the missing mechanism is MCAR, the missing data has nothing to
do with its real value, so the missing pattern can not provide any useful
information about the data.

– When the missing mechanism is MAR, the value of incomplete variables is
related to the value of complete variables. The similarity of missing pattern
indicates the similarity of the value of complete variables. Thus, the informa-
tion reflected by the missing pattern is consistent with that reflected by the
partial distance.

– When the missing mechanism is MNAR, the value of incomplete variables
is related to incomplete variables themselves. The similarity of the missing
pattern indicates the similarity of the incomplete variables. The partial dis-
tance is not able to express this type of similarity, so the similarity of missing
patterns is the supplement to the partial distance.
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3.2 MP-KMeans

Figure 2 demonstrates the missing indicator matrix and true label of Soybean
dataset, the first 35 columns represent the missing indicator matrix, the dark
green indicates corresponding entry is observed, and the light green indicates
the corresponding entry is missing; the last column is the true label, and each
color represent a class. It is obvious that Soybean dataset has MNAR missing
values.

In addition, Fig. 2 also shows that data with the same missing patterns are
more likely belong to the same groups, and data with different missing patterns
are more likely to come from different groups, which is consistent with Wang’s
view point [14]. As a result, integrating missing patterns as auxiliary information
in cluster analysis can improve the clustering accuracy of MNAR missing data.
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Fig. 2. Visualization of missing indicator matrix and true label of Soybean dataset.

Traditional K-Means directly calculates the Euclidean distance between data
samples and cluster centers. Given that data is missing not at random, according
to the analysis in Sect. 3.1, the Euclidean distance can be replaced by the joint
representation of partial distance and pattern distance when the data is missing
not at random. Therefore, the objective function of MP-KMeans is given as
follows:

min
H

n∑

i=1

k∑

c=1

HicDist(xi,µc), s.t.
k∑

c=1

Hic = 1,H ∈ {0, 1}n×k. (6)

Dist is the proposed distance measurement: given two samples xi and xj ,
the distance between xi and xj is redefined in Eq. (11):

Distij = ParDistij + PatDistij . (7)
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ParDist and PatDist represent partial distance and pattern distance, respec-
tively, and their definitions are given in Eq. (8) and Eq. (9).

ParDistij =
d

min(Ii, Ij)

d∑

l=1

(xil − xjl)
2 MilMjl; (8)

where 1 ≤ l ≤ d and 1 ≤ i ≤ k and Ii =
∑d

l=1 Mil. Since missing pattern of a
sample is a binary vector, so we utilize Hamming distance to calculate PatDistij
of two samples as follows.

PatDistij = HammingDistance(Mi:,Mj:). (9)

In order to determine the importance of partial distance and pattern dis-
tance to the total distance, a weight parameter ω is introduced in the objective
function. When the missing degree of the sample xi is high, pattern distance will
play a major role in distance measurement, namely, the ω is large. The ω can
be calculated as follows:

ω = max(
∑d

l=1 Mil

d
,

∑d
l=1 Mjl

d
). (10)

Accordingly, the formulation of Distij can be updated as:

Distij = (1 − ω)ParDistij + ωPatDistij ; (11)

In the case that cluster boundaries are not explicit, the traditional K-means
algorithm will assign all samples into the same cluster. Therefore, we refer to
literature [13] and introduce a penalty term in the objective function, thereby
making any two cluster centers as far as possible. The objective function of
MP-KMeans is rewritten as Eq. (12).

min
H

n∑

i=1

k∑

c=1

HicDist(xi − µc) +
k∑

i=1

k∑

j=1,j �=i

1
Dist (µi,µj)

,

s.t.
k∑

c=1

Hic = 1,H ∈ {0, 1}n×k.

(12)

Finally, we can get the following rule of updating cluster center µc:

µc =

∑n
i=1 Iixi − ∑k

j=1,j �=i Dist (µc,µj)µj
∑n

i=1 Ii − ∑k
j=1,j �=i Dist (µc,µj)

. (13)

The pseudo code of MP-KMeans is summarized in Algorithm 2. The major
difference of Algorithm 1 and Algorithm 2 are missing pattern integration and
pair-wise distance measurement. The goal of MP-KMeans is to address the defect
that K-Means cannot handle missing values.
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Algorithm 2. MP-KMeans
Input: Incomplete dataset X, number of clusters k and max iteration number maxIter.
Initialize: H = 0, k cluster centers: µ1,µ2, ...,µk.

1: Construct missing indicator matrix M ;
2: for iter = 1 to maxIter do
3: for i = 1 to n do
4: c = mincDist(xi − µc), c = 1, .., k
5: Assign xi to c-th cluster, i.e., Hic = 1;
6: end for
7: if H is no longer change then
8: break;
9: end if

10: Update cluster centers using Eq. (13).
11: end for

Output: Class indicator matrix H.

4 Experiment

4.1 Dataset

Soybean1 is used for soybean disease diagnosis, which has 19 classes and 35
features, it contains non-random missing values.
Iris2 is the most popular dataset in UCI repository, which contains 3 classes and
each class has 50 instances.
Glass3 is used for classification of glass types, which includes 7 glass types and
219 glass samples.

The original Iris and Glass dataset are complete, so we refer to the litera-
ture [12] to generate MNAR missing values artificially. Detailed information of
datasets is summarized in Table 2. The missing mechanism of Iris and Glass are
specified in Table 3 and Table 4, respectively.

Table 2. Characteristic of datasets.

Name # Instances # Dimensions # Missing values # Clusters

Soybean 683 35 2337 19

Iris 150 4 194 3

Glass 214 9 288 7

1 http://archive.ics.uci.edu/ml/datasets/Soybean+%28Large%29.
2 https://archive.ics.uci.edu/ml/datasets/Iris.
3 https://archive.ics.uci.edu/ml/datasets/Glass+Identification.

http://archive.ics.uci.edu/ml/datasets/Soybean+%28Large%29
https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Glass+Identification
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Table 3. Missing mechanism of Iris dataset.

No. Missing mechanism

1 P (pedal width = NaN | pedal width > 6) = 0.95

2 P (sepal width = NaN | sepal width > 3.2) = 0.95

3 P (pedal length = NaN | pedal length > 5) = 1

4 P (petal width = NaN | petal width < 1) = 1

Table 4. Missing mechanism of Glass dataset.

No. Missing mechanism

1 P (Na = NaN | Na > 14) = 0.95

2 P (Mg = NaN | Mg < 2) = 0.9

3 P (Al = NaN | Al > 2) = 0.9

4 P (Si = NaN | Si < 72) = 0.95

5 P (K = NaN | K < 1) = 0.9

6 P (Ca = NaN | Ca < 1) = 0.95

4.2 Compared Methods

In the experiment, we adopt traditional K-Means as the baseline. K-Means can-
not directly handle missing values, so there are four strategies utilized in the
experiment:

– K-Meanszero: This method fills missing values with zeros.
– K-Meansmean: This algorithm imputes missing values with mean values of

observed values of corresponding dimension.
– K-Meansknn [6]: This method fills missing values with mean values of K-

nearest neighbor.
– K-Meanspd: Partial distance [9] is implemented in traditional K-Means so

that incomplete variables are ignored in the similarity calculation.

4.3 Experimental Results

The dataset used in experiment contains true label, so we utilize three external
clustering evaluation metrics to verify clustering performance: accuracy (ACC),
normalized mutual information (NMI) and adjusted rand index (ARI). For all
metrics, higher value indicates better performance. For each method, we repeat
30 times and report the mean value and standard error. The experiment results
are presented in Table 5, and the best values are highlighted in bold.

From Table 5, when the data is missing not at random, the proposed MP-
KMeans has advantages over data completion based K-Means. Integrating miss-
ing pattern to distance measurement could effectively mitigate the impact of
data deviation brought by partial distance strategy and enhance clustering per-
formance.
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Table 5. Clustering results of different methods.

Dataset Method ACC NMI ARI

Soybean K-Meanszero 0.562 ± 0.030 0.686 ± 0.017 0.425 ± 0.029

K-Meansmean 0.568 ± 0.045 0.685 ± 0.027 0.413 ± 0.048

K-Meansknn 0.577 ± 0.044 0.709 ± 0.022 0.436 ± 0.040

K-Meanspd 0.570 ± 0.039 0.693 ± 0.020 0.428 ± 0.034

Proposed 0.632±0.029 0.719±0.017 0.452±0.030

Iris K-Meanszero 0.783 ± 0.151 0.586 ± 0.144 0.568 ± 0.194

K-Meansmean 0.716 ± 0.187 0.606 ± 0.167 0.544 ± 0.231

K-Meansknn 0.742 ± 0.113 0.525 ± 0.122 0.457 ± 0.136

K-Meanspd 0.800 ± 0.139 0.600 ± 0.129 0.587 ± 0.178

Proposed 0.827±0.146 0.625±0.138 0.619±0.194

Glass K-Meanszero 0.383 ± 0.023 0.250 ± 0.030 0.117 ± 0.026

K-Meansmean 0.377 ± 0.022 0.234 ± 0.029 0.098 ± 0.018

K-Meansknn 0.394 ± 0.024 0.241 ± 0.025 0.102 ± 0.019

K-Meanspd 0.387 ± 0.021 0.258 ± 0.026 0.124 ± 0.023

Proposed 0.410±0.024 0.268±0.030 0.132±0.025

5 Conclusion

Most of the existing clustering methods for incomplete data do not consider
the function of missing mechanism on clustering. By analyzing the relation-
ship between missing mechanism and clustering, as a manifestation of the miss-
ing mechanism, missing patterns can assist clustering of incomplete data. With
regard to data of missing not at random, this paper proposes an improved K-
Means clustering method with missing patterns. Experiments show that the clus-
tering performance of the proposed method on data of missing not at random
is superior to compared methods. In the future work, we will further explore
the relationship between missing mechanism and clustering, and research on
clustering method for multi-view data with MNAR missing values.
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Abstract. Sarcasm detection is mainly to distinguish whether the tar-
get comment is sarcasm that can help identify the actual sentiment. The
previous sarcasm detection mainly focused on text features using vocabu-
lary, grammar, and semantics. But users’ expression propensity is ignored
which is helpful to distinguish some comments with uncertain sarcasm
polarity in sarcasm detection. However, how to use the user’s expres-
sion propensity for sarcasm detection effectively is a challenge. Based
on the ideas of granular computing and three-way decisions, we propose
a sarcasm detection model based on the sequential three-way decision
(S3WD) to integrate text features and users’ expression propensity. The
S3WD divides the comments into the sarcasm (SAR) region, non-sarcasm
(NSAR) region, and boundary region (BND), and then gradually divides
the uncertain BND region into a clear SAR region and NSAR region.
We firstly construct a sequential structure through analysis sentiment of
comments’ chunks. Second, text features and users’ expression propen-
sity are fed into different sequential layers for fusion that can guide the
comment classification more effectively. Finally, contextual information
is further applied to consider sentiment context during sarcasm detec-
tion. The experimental results on a large Reddit corpus show that our
model improves sarcasm classification performance effectively.

Keywords: Sarcasm detection · Sequential three-way decision · User’s
expression propensity

1 Introduction

Sarcasm detection in social networks has drawn much attention in recent years.
Many people often use sarcasm to implicitly express their stronger emotions,
especially on controversial topics, which increases the difficulty of sentiment anal-
ysis. Consider the following example: Tom: ‘How to spot a Linux user?’, Bob:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Yao et al. (Eds.): IJCRS 2022, LNAI 13633, pp. 253–264, 2022.
https://doi.org/10.1007/978-3-031-21244-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21244-4_19&domain=pdf
https://doi.org/10.1007/978-3-031-21244-4_19


254 J. Chen et al.

‘Actually, if they used Linux they wouldn’t have gotten their network connection
working yet, so they wouldn’t be able to post on the web’.

Existing sarcasm detection methods identify the sarcasm as it mainly focused
on text features. One important basis of text feature is lexical(such as specific
words and punctuation) found in target comment (Kreuz et al. [1]) to judge the
sarcasm polarity. Another is the semantic-level analysis of the text. Rohanian et
al. [2] and Tay et al. [3] identify sarcasm according to the contrastive semantics in
the target comments. When such text features are present in comments, sarcasm
detection can achieve high precision. As a sarcastic example from Reddit, “I say
go for it.” sarcasm is sometimes expressed implicitly, which means without the
presence of such text features, sarcasm detection can not be completed. Thus,
Hazarika et al. [4] and Kolchinski et al. [5] utilize another way that encode
stylometric and personality features of users’ to solve such problems. But they
both have the problem of established users personalities that cannot be changed.
However, The users’ personality is not always constant, and even for the user with
a tendency to be sarcastic, it may still make non-sarcastic comments. So, users’
expression propensity needs to be judged along with the text of the comment
itself. Thus, how to fusion text features and users’ expression propensity is still
a challenge.

The three-way decision theory was first proposed by professor Yao [7] to pro-
cess uncertain data. By introducing granular computing, Yao et al. [8] continues
to present a sequential three-way decision (S3WD) model for achieving multi-
division of the boundary regions. When the current information does not support
the decision, the object can be divided into boundary domains, and the object
can be divided after obtaining more sufficient information in finer sequential
layers. Due to its effectiveness, the S3WD model is suitable for making decisions
after the fusion of multiple information.

In this paper, we use users’ expression propensity for sarcasm detection based
on the S3WD model (UEP-S3WD). First, it constructs a sequential structure
through analysis sentiment of comments’ chunks. Second, text features and users’
expression propensity are fed into different sequential layers for fusion that can
guide the comment classification more effectively. Finally, contextual information
is further applied to consider sentiment context during sarcasm detection. Our
contributions are as follows:

1) We construct the UEP-S3WD model which analysis the sarcasm comments
and fuses different attributes by multi-level sequential structure to guide clas-
sification.

2) Users’ expression propensity obtained by comparing and analyzing users’ his-
torical sarcastic and non-sarcastic comments are used to enhance the detec-
tion of sarcasm.

3) The experimental results demonstrate that our model achieves a good classi-
fication performance on a large Reddit corpus.

The remainder of this work is summarized as follows: Sect. 2 lists related
works; Sect. 3 explains the detailed design of the proposed sarcasm detection
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model; Sect. 4 presents experimentation details of the model and result in anal-
ysis; Sect. 5 draws conclusions.

2 Related Work

2.1 Sarcasm Detection

With the development of sentiment analysis technology, sarcasm detection has
also drawn much attention from the natural language processing area. By review-
ing existing studies on sarcasm detection, previous works can be classified into
two main categories: textual feature-based and contextual feature-based sarcasm
detection models.

Textual Feature-Based Models. Naturally, many networks model the prob-
lem of sarcasm detection task as a standard text classification problem and try
to find lexical and semantics to identify sarcasm. Kreuz et al. [1] studied the
text features used to detect sarcasm and found that words such as parenthesis
and punctuation were useful. Carvalho et al. [9] use linguistic features to identify
sarcasm, like positive predicates, interjections, emoticons, quotation marks, etc.
Felbo, B et al. [10] also study the use of emoticons.

At a semantic level, Riloff et al. [11] propagate the contrast theme forward,
presenting an algorithm strongly based on the intuition that sarcasm arises from
a juxtaposition of positive and negative situations. The algorithm expands the
list of positive verbs and negative phrases by iterating over the dataset. Joshi
et al. [12] use multiple features comprising lexical, pragmatics, implicit and
explicit context incongruity. Tay et al. [3] utilized a multi-dimensional intra-
attention component to overcome the limitations of sequential models and cap-
ture words’ incongruities by leveraging intra-sentence relationships. Although
the text feature-based method for detecting sarcasm is useful, it does not work
well when there is no specific satire marked in the sentence.

Contextual Feature-Based Models. Contextual models utilize both contex-
tual and user information. Texts found in the discussion are plagued by gram-
matical inaccuracies and contain information that is contextual, thus mining lin-
guistic information becomes relatively inefficient. Wallace et al. [13] claim that
when human graders attempted to mark comments as sarcastic or not sarcastic,
they needed additional context thus capturing previous and following comments
on Reddit increases classification performance. Ghosh et al. [14] detected sar-
casm by adding the conversation context to the LSTM model while adding an
attention mechanism to show which part of the context triggered the sarcasm
reply.

Every user has different attitudes towards different news, and some people
are used to using sarcasm to express their opinions. Khattri et al. [15] try to
discover users’ sentiments towards entities in their histories to find contrasting
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evidence. Amir’s et al. [16] merges all historical tweets of a user into one his-
torical document and models a representation of that document. Kolchinski et
al. [5] use a Bayesian method that captures only an author’s raw propensity for
sarcasm. Hazarika et al. [4] proposed CASCADE, by adopting a hybrid approach
of both contents and context-driven modeling for sarcasm detection where they
model stylometric and personality details of users along with discourse features
of discussion forums to learn informative contextual representations. Du Y et al.
[6] propose a dual-channel convolutional neural network that analyzes not only
the semantics of the target text but also its sentimental context. The attention
mechanism is then applied to take the user’s expression habits into account.
There is a growing emphasis on textual and contextual information, but how to
fuse the two well is still a challenge. Our research is mostly related to this line
of work. In particular, we fuse the two kinds of information to process sarcasm
detection through the sequential three-way decision.

2.2 Sequential Three-Way Decision

As a useful tool to solve the human problem and process information, Yao [17]
thought the basic notion of three-way decisions can be interpreted as a two-step
approach. The first step with trisecting is to divide the objects into three pair-
wise disjoint regions, denoted as positive (POS) region, negative (NEG) region,
and boundary region (BND), respectively. The second step is to divide objects
among three regions by appropriate strategies. Jia et al. [18] propose a three-
way decisions-based feature fusion method for Chinese irony detection in the
microblog. It starts only from the text to find multiple features for three-way
decision fusion. However, it does not consider both contextual and user informa-
tion, so it cannot fuse more important features using a multilevel framework for
sequential three-way decision. Yao [23] proposed Tri-level thinking, which gives
further elaboration on a three-way decision. Tri-level thinking is to divide the
whole task into three levels and ask different questions at different levels accord-
ing to the natural order of the three levels. It can integrate the three relatively
simple levels into the complex whole and improve the overall understanding of
the whole. Similarly, we improve the understanding of the sarcastic text by inte-
grating multiple features into a complex whole through a multi-level framework
of the sequential three-way decision model.

Yao et al. [8,21] thought that granular computing is a network of interacting
granules that can be used to establish multiple levels of describing the universe.
Thus, by introducing granular computing, three-way decision models with the
sequential strategy were presented for achieving multi-division of the boundary
regions. Due to the significant advantages of sequential three-way decision, more
and more researchers are conducting in-depth studies. Savchenkoa [24] reduces
the computation of neural networks using sequential three-way decision to speed
up inference in convolutional neural networks. XU Y et al. [25] propose that
decisions can be made from multiple views and multiple levels simultaneously
based on two different search methods to enhance the effectiveness of the sequen-
tial three-way decision. Zhang et al. [22] proposed a cost-sensitive combination
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technique using sequential three-way decisions, which is designed for strong base
classifiers in sentiment classification tasks. But, it only uses the results of differ-
ent classifiers and misses textual and contextual information.

Previous research used text feature-based or context-based models for detect-
ing complex sarcasm. To tackle the irrationality of the simple combination of all
features, our work effectively improves the performance of sarcasm detection by
using sequential three-way decisions to fuse text features and users’ expression
propensity.

3 Proposed Method

This section presents a detailed description of the proposed method. Figure 1
shows the overall flow of this model. In Sect. 3.1, we use the sequential three-
way decision (S3WD) to fuse the users’ expression propensity and text emotional
features of comments. In Sect. 3.2, we integrate multiple information and the
S3WD feature. And in Sect. 3.3, the multi-features are embedded, where Bi-
GRU is used to train for sarcasm detection.

Fig. 1. The overall flow of UEP-S3WD boundary processing for sarcasm detection.

3.1 Phase 1: Fusing Feature by S3WD

The Structure of S3WD. We construct a three-layer sequential structure
of S3WD based on the sentiment polarity score and set different thresholds αi

to classify the sequential layers. By initial comparing the sentiment polarity of
the chunks in the first sequential layer, the determined results will be sent to
the determined SAC regions and NSAR regions, while uncertain results will be
sent to the BND region for further processing. In the second sequential layer,
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comparing the sentiment of the chunks and comment is used to process the
BND region, and continuously divides the region. In the third sequential layer,
the users’ expression propensity is used to process the BND region and complete
the final processing of the BND region.

Comment Sentiment Analysis. Sarcasm commonly manifests with a con-
trastive theme between positive-negative sentiments. In sarcasm comments, neg-
ative sentiments are more likely to coexist with neutral or positive ones. In order
to capture these spatial patterns, we propose the sentiments of decomposing a
comment into separate chunks and analyzing each one separately.

Suppose the comment sequence is T = T1, T2 · · · Tn, and the comment is sep-
arated two chunks c = c11, c12 · · · cn1, cn2. The natural language toolkit (NLTK)
is used to separately predict the polarity of sentiment for T and c. Each com-
ment and chunk is predicted with a sentiment score of positive and negative
that are used to contrast polarity. T pos

i , cposij represents the positive sentiment of
comment and chunk, and Tneg

i , cnegij represents the negative sentiment of com-
ment and chunk. In the first sequential layer, we compare the sentiment polarity
score of the chunks for dividing the regions. Then, we compare the chunks and
the comment in the second sequential layer, the results of contrasting sentiment
scores are used as the sarcasm tags.

Users’ Expression Propensity. In the third sequential layer, the users’
expression propensity serves as a prior feature which is obtained from the sar-
castic and non-sarcastic comment counts for users in the training data.

U(si, nsi) =

{
1 Σsi − Σnsi > 2
2 Σsi − Σnsi ≤ 2

(1)

where the sarcastic and non-sarcastic comment is si and nsi separately. And
U(si, nsi) means the users’ expression propensity.

For previously unseen authors and comments, it is counted as 0. Difference
from the Bayesian prior model, more complex factors are considered by the
users’ expression propensity. For example, even users who tend to be sarcastic
sometimes make non-sarcastic comments. Thus, it is necessary to analyze the
U(si, nsi) in sarcasm detection.

3.2 Phase 2: Integrating Multi-features

The comments get the label Yi for training after the treatment of the three-
sequential layers. The inputs to the Bi-GRU model are users’ comments, which
are split into words and punctuation marks and converted to word vectors
w = w1, w2 · · · wn, where t is a predefined maximum sequence length. For
model learning better, the multi-features are embedded into the word vector
and then send as input to Bi-GRU for training. First, considering sentiment
context during sarcasm detection, contextual information is further applied.
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Each comment T = T1, T2 · · · Tn has a certain number of contextual comments
C = C1, C2 · · · Cn, they are predicted the combined sentiment score for Ci and
Ti by NLTK. The sarcasm context polarity P is obtained as:

C =
k∑

i=1

Ci (2)

Pi =

{
1 C > T

0 C ≤ Ti

(3)

Here, C means averaging all contextual sentiment score Ci, where Ci and Ti

means the combined sentiment score of each comment. Then, we embed all the
features together and denoted by F .

F = Yi ⊕ U(si, nsi) ⊕ Pi ⊕ w (4)

3.3 Phase 3: Sarcasm Classification

The features F obtained in phase2 are fed into Bi-GRU as input for training
after the embedding of multi-features is performed. Since the advantage of the
S3WD, the text features, users’ information, and contextual context have been
fully considered.

4 Experiments

4.1 Datasets

Reddit1 is a popular social forum and community. We perform our experiments
on a large-scale self-annotated corpus for sarcasm, SARC (Khodak et al. [20]).
It includes an unprecedented 533M comments. And the corpus is self-annotated
in the sense that a comment is considered sarcastic if its author marked it with
the “/s” tag. It is vastly larger than past sarcasm datasets, which enables the
training of more sophisticated models. Table 1 provides basic statistics on the
entire corpus as well as the subreddits that we consider three variants of the
SARC2 dataset in our experiments.

4.2 Baseline Methods

In this subsection, we introduce the comparing algorithms.

• Bag-of-words: This model uses an SVM classifier whose input features com-
prise a comment’s word counts. The size of the vector is the vocabulary size
of the training dataset.

1 http://reddit.com/reddits.
2 http://nlp.cs.princeton.edu/SARC.

http://reddit.com/reddits
http://nlp.cs.princeton.edu/SARC
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Table 1. Basic statistics for SARC.

Data Comments Sarcastic Unsarcastic

SARC/main 257082 128541 128541
SARC/politics 13668 6834 6834
SARC/AskReddit 11660 5830 5830

• Bi-GRU: It is a variant of the Long Short-Term Memory Network. Com-
bining the forget gate and the input gate into a single update gate, which is
simpler than the standard LSTM model.

• Kolchinski et al. [5]: They use a Bayesian method that captures a users’ raw
propensity for sarcasm, and the propensity is used jointly to learn a Bi-GRU
model.

• CASCADE [4]: It adopts a hybrid approach of both content-based and
context-driven modeling for sarcasm detection. The authors used user pro-
filing along with discourse modeling from comments in discussion threads.
Then, the information is used jointly to learn a CNN-based model.

• Du Y et al. [6]: They propose a dual-channel convolutional neural network
that analyzes not only the semantics of the target text but also its sentimental
context. In addition, SenticNet is used to add common sense to the LSTM
model. The attention mechanism is then applied to take the user’s expression
habits into account.

• BERT [26]: BERT is the Encoder of Bidirectional Transformer. The main
innovation of the model is in the pre-train method. Masked LM and Next
Sentence Prediction are used to capture the word and sentence level repre-
sentations respectively.

• RoBERTa [27]: RoBERTa is mainly based on BERT with several adjust-
ments: larger batch size and more training data, removal of next predicted loss,
longer training sequence, and dynamic adjustment of the Masking mechanism.

• RCNN-RoBERTa [19]: This model uses the pre-trained RoBERTa model
and a recurrent convolutional neural network(RCNN) to tackle figurative lan-
guage in sarcasm detection in social media.

4.3 Comparison of Experimental Results

Table 2 shows the means of 5 runs to control for variation deriving from ran-
domness in the optimization process. Our model is highly competitive. It slightly
under-performs on the main dataset (only 0.6 worse than CASCADE) but comes
out ahead on politics. This is striking because our model does not involve large-
scale data pre-processing nor complex analysis and embedding of user character-
istics and forum information as CASCADE does. Compared with the simple con-
catenating of various features, the features obtained by S3WD can fuse multiple
information at the sequential level and fully consider various factors. From the
results, the advantages of sequential three-branch decision making are also proved.
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Table 2. Mean macro-averaged F1 scores based on five runs.

Models SARC/main SARC/politics SARC/AskReddit

Bag-of-words 64.0 60.0 –
Bi-GRU 74.8 74.3 64.3
Kolchinski 75.3 77.6 69.1
CASCADE 77.0 75.0 –
Du – 72.0 –
BERT – 76.0 –
RoBERTa – 77.0 –
RCNN-RoBERTa – 78.0 –
UEP-S3WD 76.4 79.3 69.1

4.4 Ablation Experiments of Each Part

We experiment on different sequential layers of the S3WD as well as concate-
nating multiple features so as to analyze the importance of the various features
present in its architecture. Table 3 and Table 4 provide the results of all the
combinations separately.

In Table 3, we test performance for the polarity contrast of chunks only in
the first layer (row 1). Next, we include the sentiment of comparing chunks and
comments to the second layer (row 2). A major boost in performance is observed
when users’ expression propensity is introduced in the third layer (row 3). The
division of sequential layers is performed by the threshold (α1,α2) , and set
(α1,α2) to (0.8, 0.6). Overall, S3WD consisting of multiple sequential layers with
text features and users’ expression propensity provides the best performance in
all three datasets.

Table 3. Multiple sequential layers ablation analysis.

Sequential layers SARC/main SARC/politics SARC/AskReddit

First layer 74.1 74.2 66.1
Second layer 74.8 74.8 66.1
Third layer 76.1 78.9 67.2

In Table 4, we perform an ablation analysis of the multiple features embed-
ded into Bi-GRU. It can be seen that user sarcasm propensity is an important
basis for judgment, and the sequential three-branch feature combining multiple
information performs better on the pol and ask datasets and slightly less well
on the main dataset.
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Table 4. Multiple features ablation analysis.

Multiple features SARC/main SARC/politics SARC/AskReddit
Contextual User’ S3WD

� – – 74.0 74.7 65.8
– � – 76.2 78.1 66.7
– – � 76.1 78.9 67.2
� � – 75.9 78.5 67.9
� – � 76.0 78.8 67.1
– � � 75.7 78.9 67.7
� � � 76.4 79.3 68.0

4.5 Users’ Expression Propensity Analysis

We investigate the users’ expression propensity in more detail. The counts of user
sarcastic comments and non-sarcastic comments are used to make judgments
about users’ expression propensity. To avoid arbitrary judgments, we analyze the
effect of (Σsi − Σnsi) on U(si, nsi) on the final result. As Table 5 shows, it can
be seen that the main and political datasets perform best at (Σsi − Σnsi > 2),
while AskReddit gives the best performance at (Σsi − Σnsi > 1). This also
proves that the best results cannot be obtained by making direct judgments on
S, because even users who tend to be sarcastic sometimes make non-sarcastic
comments.

Table 5. Users’ expression propensity analysis.

(Σsi − Σnsi) SARC/main SARC/politics SARC/AskReddit

>0 74.4 77.1 67.7
>1 75.8 77.1 69.1
>2 76.4 79.3 68.0
>3 75.3 77.7 67.3
>4 75.4 77.3 67.7

5 Conclusion

In this paper, we introduced S3WD, which leverages multiple sequential lay-
ers for fusing the text feature and users’ expression propensity, and contextual
information is further applied to consider sentiment context. We obtain state-
of-the-art performance on a large-scale Reddit corpus. Our experiments show
that users’ expression propensity along with the S3WD feature plays a crucial
role in the performance of sarcasm detection. Our work expands the application
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of the S3WD model in the field of sarcasm detection. However, considering the
wide application of pre-trained models, we will combine the S3WD model with
pre-training for multiple information fusion in the future.

Acknowledgments. This work was supported by the Major Program of the National
Social Science Foundation of China (GrantNo. 18ZDA032), the National Natural Sci-
ence Foundation of China (Grant No. 61876001), China Scholarship Council, and the
Natural Science Foundation for the Higher Education Institutions of Anhui Province
of China (KJ2021A0039).

References

1. Kreuz, R, Caucci, G.: Lexical influences on the perception of sarcasm. In: Proceed-
ings of the Workshop on Computational Approaches to Figurative Language, pp.
1–4 (2007)

2. Rohanian, O., Taslimipoor, S., Evans, R., et al.: WLV at SemEval-2018 task 3:
dissecting tweets in search of irony. In: Proceedings of The 12th International
Workshop on Semantic Evaluation, pp. 553–559 (2018)

3. Tay, Y., Tuan, L.A., Hui, S.C., et al.: Reasoning with sarcasm by reading in-
between. arXiv preprint arXiv:1805.02856 (2018)

4. Hazarika, D., Poria, S., Gorantla, S., et al.: Cascade: contextual sarcasm detection
in online discussion forums. arXiv preprint arXiv:1805.06413 (2018)

5. Kolchinski, Y.A., Potts, C.: Representing social media users for sarcasm detection.
arXiv preprint arXiv:1808.08470 (2018)

6. Du, Y., Li, T., Pathan, M.S., et al.: An effective sarcasm detection approach based
on sentimental context and individual expression habits. Cogn. Comput. 14, 1–13
(2021). https://doi.org/10.1007/s12559-021-09832-x

7. Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In:
Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009.
LNCS (LNAI), vol. 5589, pp. 642–649. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02962-2_81

8. Yao, Y.Y., Pedrycz, W., Skowron, A., et al.: A unified framework of granular
computing. Wiley, Chichester (2008)

9. Carvalho, P., Sarmento, L., Silva, M.J., et al.: Clues for detecting irony in user-
generated contents: oh...!! it’s “so easy”;-. In: Proceedings of the 1st International
CIKM Workshop on Topic-sentiment Analysis for Mass Opinion, pp. 53–56 (2009)

10. Felbo, B., Mislove, A., Søgaard, A., et al.: Using millions of emoji occurrences to
learn any-domain representations for detecting sentiment, emotion and sarcasm.
arXiv preprint arXiv:1708.00524 (2017)

11. Riloff, E., Qadir, A., Surve, P., et al.: Sarcasm as contrast between a positive senti-
ment and negative situation. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pp. 704–714 (2013)

12. Joshi, A., Sharma, V., Bhattacharyya, P.: Harnessing context incongruity for sar-
casm detection. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pp. 757–762 (2015)

13. Wallace, B.C., Kertz, L., Charniak, E.: Humans require context to infer ironic
intent (so computers probably do, too). In: Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
512–516 (2014)

http://arxiv.org/abs/1805.02856
http://arxiv.org/abs/1805.06413
http://arxiv.org/abs/1808.08470
https://doi.org/10.1007/s12559-021-09832-x
https://doi.org/10.1007/978-3-642-02962-2_81
https://doi.org/10.1007/978-3-642-02962-2_81
http://arxiv.org/abs/1708.00524


264 J. Chen et al.

14. Ghosh, D., Fabbri, A.R, Muresan, S.: The role of conversation context for sarcasm
detection in online interactions. arXiv preprint arXiv:1707.06226 (2017)

15. Khattri, A., Joshi, A., Bhattacharyya, P., et al.: Your sentiment precedes you:
using an author’s historical tweets to predict sarcasm. In: Proceedings of The 6th
Workshop on Computational Approaches to Subjectivity, Sentiment and Social
Media Analysis, pp. 25–30 (2015)

16. Amir, S., Wallace, B.C., Lyu, H., et al.: Modelling context with user embeddings
for sarcasm detection in social media. arXiv preprint arXiv:1607.00976 (2016)

17. Yao, Y.: Three-way decisions and cognitive computing. Cogn. Comput. 8(4), 543–
554 (2016). https://doi.org/10.1007/s12559-016-9397-5

18. Jia, X., Deng, Z., Min, F., et al.: Three-way decisions based feature fusion for
Chinese irony detection. Int. J. Approx. Reason. 113, 324–335 (2019)

19. Potamias, R.A., Siolas, G., Stafylopatis, A.G.: A transformer-based approach to
irony and sarcasm detection. Neural Comput. Appl. 32(23), 17309–17320 (2020).
https://doi.org/10.1007/s00521-020-05102-3

20. Khodak, M., Saunshi, N., Vodrahalli, K.A.: Large self-annotated corpus for sar-
casm. arXiv preprint arXiv:1704.05579 (2017)

21. Yao, Y.: Three-way granular computing, rough sets, and formal concept analysis.
Int. J. Approx. Reason. 116, 106–125 (2020)

22. Zhang, Y., Miao, D., Wang, J., et al.: A cost-sensitive three-way combination
technique for ensemble learning in sentiment classification. Int. J. Approx. Reason.
105, 85–97 (2019)

23. Yao, Y.: Tri-level thinking: models of three-way decision. Int. J. Mach. Learn.
Cybern. 11(5), 947–959 (2019). https://doi.org/10.1007/s13042-019-01040-2

24. Savchenko, A.V.: Fast inference in convolutional neural networks based on sequen-
tial three-way decisions. Inf. Sci. 560, 370–385 (2021)

25. Xu, Y., Li, B.: Multiview sequential three-way decisions based on partition order
product space. Inf. Sci. 600, 401–430 (2022)

26. Devlin, J., Chang, M.W., Lee, K., et al.: BERT: pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

27. Liu, Y., Ott, M., Goyal, N., et al.: RoBERTa: a robustly optimized BERT pre-
training approach. arXiv preprint arXiv:1907.11692 (2019)

http://arxiv.org/abs/1707.06226
http://arxiv.org/abs/1607.00976
https://doi.org/10.1007/s12559-016-9397-5
https://doi.org/10.1007/s00521-020-05102-3
http://arxiv.org/abs/1704.05579
https://doi.org/10.1007/s13042-019-01040-2
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1907.11692


Concept Reduction of Object-induced
Three-way Concept Lattices

Xiuwei Gao , Yehai Xie , and Guilong Liu(B)

School of Information Science, Beijing Language and Culture University,
Beijing 100083, China

liuguilong@blcu.edu.cn

Abstract. Three-way concept lattices are a combination of three-way
decision theory and classic concept lattices. Attribute reduction is one
of the critical topics in formal concept analysis and has been extensively
studied. This paper discusses the concept reduction of object-induced
three-way concept lattices. We propose a new type of reduction for cov-
erings and derive its reduction algorithm to identify all reducts. We study
concept reduction of object-induced three-way concept lattices and show
that such a reduction can be converted into union reduction for coverings.

Keywords: Covering · Formal context · Object-induced three-way
concept · Object-induced three-way concept lattice · Union reduction

1 Introduction

Classical rough set theory, proposed by Pawlak [1,2] in 1982, is a useful tool
for analyzing vague and uncertain data. The theory has attracted wide atten-
tion in both the theory and its applications. However, it has a restricted range of
applications since it is based on an equivalence relation. There are many different
generalizations for such a theory. For example, by using coverings instead of par-
titions, Bonikowski [3] proposes the covering rough set model as an expansion of
the classical rough set model. Attribute reduction comes from machine learning,
and it has received much research in rough set theory as a useful preprocess-
ing method. Pawlak [1] initiated the study of attribute reduction in information
systems. Skowron and Rauszer [4] proposed a discernibility matrix-based reduc-
tion method. Although this method has high algorithm complexity, it is still an
essential attribute reduction method. Zhu and Wang [5] introduced the concept
of reduction in coverings. Chen [6] advanced a method to reduce the attributes
of covering decision systems by defining the intersection of coverings.

Formal concept analysis, proposed by Wille [7,8], is a useful model for the
mathematization of concept and conceptual hierarchy. A formal concept illus-
trates the relationship between objects and attributes as a model for philosoph-
ical conceptions. The family of formal concepts may be interpreted as a concept
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lattice. Attribute reduction is one of the most important issues in formal con-
cept analysis, Zhang [9] researched the attribute reduction in concept lattice
based on the discernibility matrix to simplify knowledge representation in the
formal context. Li et al. [10] proposed an approach to attribute reduction in
formal contexts via a covering rough set theory, and they obtained judgment
theorems for determining all attribute reducts in the formal context. After that,
Chen et al. [11] studied the relation between the reduction of a covering and
the attribute reduction of a concept lattice, and they proved that every reduct
of a given formal context could be seen as the reduct of an induced covering.
Wu, Leung and Mi [12] considered the attribute reduction problem in decision
contexts. As an application, Liu [13] use covering reduction method to identify
reducts for object-oriented concept lattices.

The idea of three-way decisions is a common strategy in life, widely used in
various decision-making processes. Three-way decisions aim to divide a whole
into three parts and adopt different treatments for different parts. Yao [14,15]
proposed a unified framework description of the three-way decision theory.
Three-way concept analysis (3WCA) is proposed by Qi, Wei and Yao [16,17]
based on the three-way decision theory. Qi, Qian and Wei [18]set up the model
of three-way concept lattices. An object-induced three-way concept lattice (OE-
lattice) combines 3WD and classic concept lattices, which can supply more
information. Ren and Wei [19] studied different types of attribute reductions
for three-way concept lattices, gave four attribute-induced three-way attribute
reductions, and discussed their relationships.

Recently, Wei et al. [20] considered concept reduction for classic concept
lattices. With the inspiration of the above research, this paper focuses on the
concept reduction of OE-lattices, which can help us understand the similarities
and differences between rough set theory and formal concept analysis. Firstly,
we present a novel type of reduction for coverings defined as union reduction
and propose an algorithm to identify all reducts of a covering. Then we apply
this new covering reduction method to the concept reduction of OE-lattices to
remove excessive concepts.

The remainder of the paper is organized as follows. In Sect. 2, we briefly
review some basic concepts and properties of formal concept analysis and the
three-way formal concept analysis. In Sect. 3, we propose a new type of reduction
for coverings, and a reduction algorithm to identify all reducts is obtained. In
Sect. 4, we study the concept reduction of OE-lattices and provide a reduction
algorithm. Section 5 concludes the paper.

2 Preliminaries

This section recalls some essential concepts and properties of formal concept
analysis and the three-way concept analysis.

Definition 1 [8]. Let U be the set of objects and A be the set of attributes. A
triple (U,A, I) is called a formal context (for short, context) if I is a relation
from U to A.
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In this paper, we assume that U = {x1, x2, · · · , xn} and A = {a1, a2, · · · , am}
be nonempty finite sets, I is a binary relation from U to A, i.e., I ⊆ U × A.
(xi, aj) ∈ I expresses that an object xi has attribute aj . Given a context (U,A, I),
for any X ⊆ U and B ⊆ A, a pair of operators can be defined as follows [8]:

X∗ = {a ∈ A|∀x ∈ X, (x, a) ∈ I}, B∗ = {x ∈ U |∀a ∈ B, (x, a) ∈ I} (1)

Definition 2 [8]. Let (U,A, I) be a context, suppose that X ⊆ U and B ⊆ A.
If X∗ = B, B∗ = X, (X,B) is called a formal concept (for short, concept), X
is called the extent and B is the intent of the concept (X,B).

Let L(U,A, I) denote the set of all the concepts of the context (U,A, I).
(L(U,A, I),≤) is a partially ordered set with the following partial order ≤.

For any (X1, B1), (X2, B2) ∈ L(U,A, I),

(X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2(⇔ B2 ⊆ B1) (2)

(L(U,A, I),∧,∨) [8] is a lattice and its meet and join operations are as follows.
For (X1, B1), (X2, B2) ∈ L(U,A, I).

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, (B1 ∪ B2)∗∗) (3)

(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)∗∗, B1 ∩ B2) (4)

Definition 3 [16]. Let (U,A, I) be a context, I is the complementary relation
of I, i.e., I = U × A − I. For X ⊆ U and B ⊆ A, two negative operators are
given as follows.

X ∗̄ = {a|a ∈ A|∀x ∈ X(xIa)} and B∗̄ = {x ∈ U |∀a ∈ B(xIa)}
Combining the operators ∗ and ∗̄, we define

X# = (X∗,X ∗̄), for X ⊆ U (5)

(B,C)# = B∗ ∩ C ∗̄ for B,C ⊆ A (6)

Definition 4 [16]. Let (U,A, I)be a context, X ⊆ U and B,C ⊆ A, a triple
(X, (B,C)) is called an object-induced three-way concept(for short, OE-concept)
of context (U,A, I), if X# = (B,C) and (B,C)# = X. X is called the extent
and (B,C) is called the intent of the OE-concept (X, (B,C)).

The set of all OE-concepts of (U,A, I) is denoted by #(U,A, I). If (X1, (B1, C1))
and (X2, (B2, C2)) are two OE-concepts, the partial order is defined as follow:

(X1, (B1, C1)) ≤ (X2, (B2, C2)) ⇔ X1 ⊆ X2 ⇔ (B2, C2) ⊆ (B1, C1) (7)

#(U,A, I) is a lattice and is called an object-induced three-way concept lattice
(for short, OE-lattice). For any (X1, (B1, C1)), (X2, (B2, C2)) ∈ #(U,A, I), the
infimum and supremum are given by

(X1, (B1, C1)) ∧ (X2, (B2, C2)) = (X1 ∩ X2, ((B1, C1) ∪ (B2, C2))##) (8)
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(X1, (B1, C1)) ∨ (X2, (B2, C2)) = ((X1 ∪ X2)##, (B1, C1) ∩ (B2, C2)) (9)

Similarly, attribute-induced three-way concept lattices [16] can be defined.
In this paper, we only study the OE-concept lattices, However, our method is
also effective for attribute-induced three-way concept lattices. The following is
an example of the computation of OE-concepts for a given context.

Example 1. Suppose that the context (U,A, I) is given in Table 1, where U =
{1, 2, 3, 4} and A = {a, b, c, d}. All OE-concepts of context (U,A, I) can easily
be calculated as Table 2.

Table 1. Context (U, A, I) of Example 1

a b c d

1 0 0 1 0

2 1 1 0 1

3 0 0 0 1

4 1 0 1 0

Table 2. OE-concepts of Example 1

11 OE-concepts

α0 (∅, (A, A) α1 (1, (c, abd))

α2 (2, (abd, c)) α3 (3, (d, abc))

α4 (4, (ac, bd)) α5 (24, (a, ∅))

α6 (23, (d, c)) α7 (14, (c, bd))

α8 (13, (∅, ab)) α9 (134, (∅, b))

α10 (U, (∅, ∅))

3 Union Reduction of Coverings

This section studies a new type of reduction for coverings and gives its corre-
sponding reduction algorithm to identify all reducts. We show that the type
of reduction is different from the covering reduction defined in [5]. In the next
section, we will use the algorithm to identify all concept reducts for OE-lattices
in a context.

Definition 5. [3] Let U be a nonempty finite set, C is a finite family of
nonempty subsets of U such that ∪K∈CK = U , then C is called a covering of
U .
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Clearly, a partition of U is a special covering of U .

Definition 6. Let C be a covering of U , C′ ⊆ C. C′ is called a union reduct of C
if C′ satisfies the following conditions:

(1) C′ is a covering.
(2) If C′′ ⊂ C′, ∪K∈C′′K = U .

Note that the union reduction is different from the usual covering reduction
defined in [5]. Now we derive the reduction algorithm.

Lemma 1. Let C be a covering of U with U = {x1, x2, · · · , xn} and C = {K1,K2,
· · · ,Kr}, mi = {K|K ∈ C, xi ∈ K}, i = 1, 2, · · · , n, then mi = ∅.
Proof. For each xi ∈ U = ∪r

i=1Ki, thus there exists xi ∈ Kj for some Kj ∈ C
and Kj ∈ mi, so mi = ∅. �
Theorem 1. Let C be a covering of U , if C′ ⊆ C, then

∪K∈C′ K = U ⇐⇒ mi ∩ C′ = ∅ (10)

Proof. If ∪K∈C′ = U,∀i, xi ∈ U ⇒ xi ∈ K ∈ C′ ⇒ K ∈ mi ∩ C′ ⇒ mi ∩ C′ = ∅.
Conversely, it is obvious that ∪K∈C′ ⊆ U . Suppose that xi ∈ U and K ∈
mi ∩ C′ ⇒ xi ∈ K ∈ C′ ⇒ xi ∈ ∪K∈C′K. Hence, U ⊆ ∪K∈C′K. �
Corollary 1. Let C be a covering of U and C′ ⊆ C, then C′ is a union reduct of
C if and only if C′ is a minimal subset satisfying mi ∩ C′ = ∅.
By Corollary 1, we can induce a union reduction algorithm for a covering. Let
U = {x1, x2, · · · , xn} and C = {K1,K2, · · · ,Kr}.

Algorithm 1. A union reduction algorithm for coverings.
Require: A set U and a covering C of U ;
Ensure: All union reducts;
1: Calculate mi for i = 1, 2, · · · , n;
2: Transform the discernibility function from its conjunctive normal form (CNF) f =∏

mi �=∅(
∑

a∈mi
a) into the disjunctive normal form (DNF). f =

∑t
i=1(

∏
a∈Di

a);
3: return Red = {D1, D2, · · · , Dt};

Next, we use an example to illustrate our algorithm.

Example 2. Let U = {1, 2, 3, 4}, K1 = {1, 2}, K2 = {1}, K3 = {2}, K4 = {3, 4},
K5 = {1, 3, 4}, C = {K1,K2,K3,K4,K5} is a covering of U . It is easy to see that
m1 = {K1,K2,K5}, m2 = {K1,K3}, m3 = {K4,K5}, m4 = {K4,K5}. Now we
calculate the reducts.

f = (K1 + K2 + K5)(K1 + K3)(K4 + K5)(K4 + K5)
= K1K4 + K1K5 + K3K5 + K2K3K4.

All union reducts of C are {K1,K4}, {K1,K5}, {K3,K5}, and {K2,K3,K4}.
However, {K2,K3,K4} is a unique covering reduct [5] of C. Thus, the union
reduction is different from the covering reduction defined in [5].
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4 Concept Reduction of Object-Induced Three-Way
Concept Lattices

This section discusses the concept reduction of object-induced three-way concept
lattices and uses previous method to identify all concept reducts. This section
can be considered as an application of previous section. For a context (U,A, I),
we will show that

{X × (B ∪ C)|(X, (B,C)) ∈ #(U,A, I)}

is a covering of U×A, thus, there may be some superfluous concepts in #(U,A, I).
Naturally, we try to remove these superfluous concepts in #(U,A, I). There-
fore, we define the concept reduction of OE-lattice and use a concept reduction
method to realize the purpose.

Theorem 2. Let #(U,A, I) be an OE-lattice, then
(1) (lI(a), (lI(a)∗, lI(a)∗)) ∈ #(U,A, I) for each a ∈ A.
(2) (lI(a), (lI(a)∗, lI(a)∗)) ∈ #(U,A, I) for each a ∈ A.
(3)

⋃
(X,(B,C))∈#(U,A,I) X × (B ∪ C) = U × A.

Proof. (1) (lI(a))# = (lI(a)∗, lI(a)∗) is clear. Moreover, lI(a)∗∗∩lI(a)∗∗ = a∗∗∗∩
lI(a)∗∗ = a∗ ∩ lI(a)∗∗ = lI(a) ∩ lI(a)∗∗ = lI(a) for a ∈ A.

The proof of part (2) is similar to that of part (1) and we omit it.
(3) According to Definition 2.4, It is obvious that

⋃

(X,(B,C))∈#(U,A,I)

X × (B ∪ C) ⊆ U × A (11)

Conversely, for (x, a) ∈ U × A, we have (x, a) ∈ I or (x, a) /∈ I. If (x, a) ∈ I,
(x, a) ∈ lI(a) × (lI(a)∗ ∪ lI(a)∗); If (x, a) /∈ I, (x, a) ∈ lI(a) × (lI(a)∗ ∪ lI(a)∗).
Using parts (1) and (2), we have

U × A ⊆
⋃

(X,(B,C))∈#(U,A,I)

X × (B ∪ C) (12)

By (11) and (12),
⋃

(X,(B,C))∈#(U,A,I) X × (B ∪ C) = U ×A. This completes the
proof. �

Definition 7. Let #(U,A, I) be an OE-lattice, R ⊆ #(U,A, I), R is called a
concept reduct of #(U,A, I) if R satisfies the following conditions:

(1)
⋃

(X,(B,C))∈R X × (B ∪ C) = U × A,
(2) If R′ ⊂ R,

⋃
(X,(B,C))∈R′ X × (B ∪ C) = U × A.

Theorem 2 (3) tells us that {X × (B ∪C)|(X, (B,C)) ∈ #(U,A, I)} is a covering
of U×A. The concept reduction of #(U,A, I) is equivalent to the union reduction
of covering {X × (B ∪ C)|(X, (B,C)) ∈ #(U,A, I)} of U × A. Thus, we can use
the union reduction algorithm for coverings to concept reduction of #(U,A, I).
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To obtain a concept reduction algorithm, we suppose that U = {x1, x2, · · · , xn}
and #(U,A, I) = {α1, α2, · · · , αr}, where αk = (Xk, (Bk, Ck)). We define the
discernibility matrix M = (cij)m×n as follow:

cij = {αk|(xi, aj) ∈ Xk × (Bk, Ck)} (13)

We derive concept reduction algorithm for OE-lattices as follows.

Algorithm 2. Concept reduction algorithm for OE-lattices.
Require: A context (U, A, I);
Ensure: All concept reducts of #(U, A, I);
1: Calculate #(U, A, I), Δ = #(U, A, I) − (U, (∅, ∅)) − (∅, (A, A)) = {α1, α2, · · · , αr};
2: Calculate discernibility matrix M = (cij)n×m;
3: Transform f from its CNF f =

∏
cij

(
∑

α∈cij
α) into DNF f =

∑s
i=1(

∏
α∈Bi

α) ;

4: return Red = {B1, B2, · · · , Bs};

Since (U, (∅, ∅)) and (∅, (A,A)) correspond to an empty set, we delete them in
our calculation process. We use the following example to illustrate our reduction
algorithm.

Example 3. (Continued with Example 1) There are 11 OE-concepts in Example
2.1, we delete (U, (∅, ∅)) and (∅, (A,A)), thus we have Δ = {α1, α2, · · · , α9}.
Then we compute the 4 × 4 discernibility matrix M = (cij)4×4 as follow:

M = (cij)4×4 =

⎛

⎜
⎜
⎝

{α1, α8} {α1, α7, α8, α9} {α1, α7} {α1, α7}
{α2, α5} {α2} {α2, α5} {α2, α6}
{α3, α8} {α3, α8, α9} {α3, α6} {α3, α6}
{α4, α5} {α4, α7, α9} {α4, α7} {α4, α7}

⎞

⎟
⎟
⎠

The minimal subset is
{{α1, α8}, {α1, α7}, {α2}, {α3, α8}, {α3, α6}, {α4, α5}, {α4, α7}}, then we calcu-
late the discernibility function.

f =(α1 + α8)(α1 + α7)α2(α3 + α8)(α3 + α6)(α4 + α5)(α4 + α7)
=α1α2α3α4 + α1α2α4α6α8 + α2α3α4α7α8 + α2α4α6α7α8

+ α1α2α3α5α7 + α2α3α5α7α8 + α2α5α6α7α8

All concept reducts of Example 4.1 are {α1, α2, α3, α4}, {α1, α2, α4, α6, α8},
{α2, α3, α4, α7, α8}, {α2, α4, α6, α7, α8}, {α1, α2, α3, α5, α7}, {α2, α3, α5, α7, α8},
and {α2, α5, α6, α7, α8}. Each reduct can induce a covering of U × A.

5 Conclusions

Three-way concept analysis is an extension of formal concept analysis. In this
paper, we have presented a novel type of reduction for coverings and proposed
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a corresponding reduction algorithm. Additionally, we have studied the concept
reduction of OE-lattices. We have shown that each OE-lattice of a given context
induces a covering so that concept reduction can be transformed into union
reduction of the covering. We have given a concept reduction algorithm based on
the discernibility matrix. Furthermore, this concept reduction method is equally
effective in attribute-induced three-way concept lattices. Our future work will
focus on practical applications of the proposed algorithms.
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S�lowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS
(LNAI), vol. 7413, pp. 1–17. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32115-3 1

15. Zhang, X., Yao, Y.: Tri-level attribute reduction in rough set theory. Expert Syst.
Appl. 190, 116187 (2022)

16. Qi, J., Wei, L., Yao, Y.: Three-way formal concept analysis. In: Miao, D., Pedrycz,
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Abstract. Recently, vision transformers have achieved impressive suc-
cess in computer vision tasks. Nevertheless, these models suffer from
heavy computational cost for the quadratic complexity of the self-
attention mechanism, especially when dealing with high-resolution
images. Previous literature has illustrated the sparsity of attention, which
suggests that uninformative tokens could be discarded to accelerate the
model with limited influence to precision. As a natural indicator of token
importance, attention scores can be intuitively used to extract the dis-
criminative regions in images. Inspired by these facts, we propose an
attention-based token pruning framework to address the issue of inef-
ficiency for vision transformers. We divide the transformer blocks in
the model into pruning stages, where the integrated weights in multi-
attention heads are fused to estimate the importance of token. The com-
putational cost of the model is reduced by dropping redundant patches
progressively after each pruning stage. Experiments conducted on Ima-
geNet1k verify the effectiveness of our method, where the models pruned
by our module outperform other state-of-the-art models with similar
FLOPs. For fine-grained image recognition, our framework also improves
both accuracy and efficiency of ViT on CUB200-2011. More significantly,
the proposed attention-based pruning module could be simply plugged
in to any vision transformer that contains the class token by fine-tuning
only 10 epochs or a single epoch, making a reasonable trade-off between
accuracy and cost.

Keywords: Efficient transformer · Token pruning · Self-attention
mechanism · Computer vision · Fine-grained visual classification

1 Introduction

Transformer, which has been a dominant architecture for natural language
processing, brings phenomenal progress in computer vision [4,18]. Despite its
impressive performance in various fields, the heavy computational and mem-
ory cost brought by the quadratic complexity of the self-attention module has
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 1. Illustration of our attention-based token pruning process for Vision
Transformer. The pruning modules locate and discard less important patches based
on the attention weights from blocks in the same stage, reducing the number of token
input to the following transformer layers.

always been a key challenge for ViT. As a consequence, acceleration for trans-
former is essential to its application on tasks with high-resolution images or long
sequences.

Network pruning is an efficient approach to accelerate CNN-type architec-
ture, which is based on the sparsity of channels [13,19]. Similarly, not all tokens
are pivotal to the final prediction in vision transformer, which is illustrated
by previous literatures about its interpretability [2]. It means abundant com-
putational cost could be saved once those redundant tokens, mainly consisting
of background or uninformative patches, are discarded. Apparently, the pruning
strategy that determines which tokens to drop is decisive in this framework. Some
research propose to use learnable sampler [24] or reinforcement learning [21] to
determine discarded tokens. Although a number of these works achieve compet-
itive results, the proposed modules rely on warm up tricks sensitive to hyper
parameters and require 30–90 epochs training, which brings considerable exces-
sive cost for tuning.

Raw attention itself shows impressive performance on extracting the infor-
mative patches of images. Fine-grained Visual Classification is a challenging task
where the in-class difference is huge, raising a higher requirement for extract-
ing discriminative regions. Since ViT is proposed, some researchers use its pre-
trained model and take advantage of the self-attention mechanism to find vital
tokens [11,29]. These transformer-based methods outperform previous CNN-
based models on the CUB200-2011 dataset, which indicates the strength of self-
attention as a natural indicator of token importance.

Considering that attention weights achieve impressive results on finding infor-
mative parts of image, it’s reasonable to assume that it has similar ability in
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locating redundant patches. Based on that assumption, we propose an attention-
based token pruning module (ATP), which fuses the information in different
attention heads to infer uninformative tokens and drop them. By adding the pro-
posed module between transformer blocks, we divide layers into several stages
and execute pruning operations progressively. We apply our module to main-
stream vision transformers including ViT, DeiT and LVViT. Experiments are
conducted on ImageNet1k and CUB200-2011. Our attention-based token pruning
method reduces computational cost of LVViT by 26.0%∼31.5% with 0.2%∼0.4%
loss on accuracy for ImageNet1k. Uninformative patches pruned, the method
forces the model to focus more on the remaining important image patches, which
brings improvement in both accuracy and efficiency for fine grained visual clas-
sification. With our framework, ViT achieves 0.3% higher top-1 accuracy on
CUB200-2011 compared to the baseline, cost saved by 37.1%.

In order to verify the effectiveness of our attention-based module, we carry
out experiments for different pruning strategies including random and struc-
tured sampling (pooling), the result of which shows superiority of the progressive
attention-based selector for locating informative areas. In addition, we explore
how the length of pruning stages influences the performance of different mod-
els. It’s noticed that when we use pre-trained weights on ImageNet to fine-tune
ViT and DeiT, longer pruning stage leads to solid performance. On the con-
trary, experiments conducted on LVViT suggest that the model performs better
with shorter stages. Considering the differences between these models, we think
the main reason is that LVViT uses token-labeling, which applies distillation to
all tokens and forces raw attention weights to be better at reflecting the token
importance. When it comes to ViT and DeiT, where tokens are not trained with
soft labels, longer pruning stages yield integrated attention flow in more layers,
which improves the decision quality for pruning. Another point is that both ViT
and DeiT contain 12 layers while there are 16 blocks in LVViT-S and 20 blocks
in LVViT-M. With the same final pruning rate, more layers in LVViT allow
each module to discard a smaller ratio of tokens, which makes the pruning pro-
cess smoother and lowers the demand for decision quality. Besides, we compare
model accuracy under different resolutions, which suggests that the attention-
based method loses less accuracy with high resolution input, the pruning ratio
for token unchanged. We suppose it’s owing to that higher resolution reduces
the probability that target objects and uninformative backgrounds are in the
same patch. It means some patches including the target, which might have been
pruned inevitably under low resolution, could be reserved because areas are split
more finely.

2 Related Work

In this section, we present a brief review of efficient transformers and
Transformer-based methods for fine-grained image recognition.
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2.1 Efficient Transformers

Considering that complexity of self-attention module is the main reason for inef-
ficiency of transformers, there are two ways to improve its efficiency without
changing the original framework: designing a new self-attention mechanism with
lower complexity and reducing the number of tokens input to the module by
pruning strategy.

Improvement of Self-Attention Mechanism. Assume that the input
sequence length is T and hidden dimension of transformer block is D. The com-
plexity of the self-attention module is O(T 2 · D) [27]. Researchers improve its
efficiency in two ways, applying sparsity and linearization. The inner logic of
Sparse Attention is that not every token needs to attend to all other tokens. For
instance, Star Transformer [10] uses a combination of local attention and global
attention, where only one token is attended to all other tokens. Longformer [1]
improves it by applying global attention to more internal nodes. Additional
stochastic attention is used in BigBrid [33] to approximate full attention. Theo-
retically, sparse attention could reduce computational cost by limiting the num-
ber of query-key pairs and attain comparable results to baseline. Nevertheless,
most of these works are intended for natural language processing while few focus
on computer vision [22]. Tt’s also challenging to optimize the computation pro-
cess of sparse matrices on GPU, which makes acceleration less than anticipated
in real application. As for linearized attention [15], it usually leads to a larger
gap with baseline in performance.

Pruning Strategy for Vision Transformers. Inspired by network slimming
methods [13,19] for CNN, VTP [35] applies channel pruning to vision transformer
in a simple way that focuses more on feed forward networks rather than self-
attention mechanism. There are also some researchers who notice the sparsity
of attention, trying to accelerate the model by dropping uninformative patches.
DynamicViT [24] train a MLP token sampler via gambel-softmax trick. Pan et al.
propose to train a multi-head interpreter by reinforcement learning and empha-
size the interpretability of their module [21]. Considering that attention weights
are highly correlated in continuous transformer layers, PSViT [32] improves the
efficiency of ViT in a different way by reusing the attention calculation.

2.2 Vision Transformer for Fine-Grained Visual Classification

Fine grained visual classification is challenging for the subtle inter-class differ-
ence. Previous research, mainly based on CNN backbone, solves the problem
by locating discriminative regions [17,31] or feature-encoding method [7,34].
Since vision transformers have achieved impressive performance on image recog-
nition, some works try to replace the CNN backbone with ViT. For example,
TransFG [11] integrates raw attention weights of transformer layers to select
the most informative image patches. Similar works [29] use different methods to
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fuse the attention weights but most of them take advantage of the self-attention
mechanism, which shows its strength in extracting informative tokens in image.

3 Method

In this section, we first illustrate the architecture of our method and then intro-
duce the attention-based pruning module and the distillation loss for LVViT.

3.1 Overall Framework

Figure 1 illustrates the overall framework of our attention-based token pruning
process. Layers in a transformer are split into K pruning stages, each of which
contains N1 transformer blocks and a attention-based token pruning module.
Attention weights from the layers in a stage are input to the attention-based
token pruning module to determine redundant patches to be discarded. After
these pruning stages, there are N2 transformer blocks conducting inference with
low computational cost and memory use. This framework could be plugged into
any vision transformer that contains a class token, such as ViT, DeiT and LVViT,
simply by fine-tuning for a few epochs.

3.2 Attention-Based Token Pruning Module

The self-attention module in Vision Transformer itself offers a perfect way to
evaluate the importance of tokens. With the potential of attention weights fully
exploited, it could help discriminate the informative regions in an image, which is
vital in the pruning process for Vision Transformer. Precise location of redundant
tokens input to the next layer means less loss of accuracy while reducing the cost.
Suppose there are N tokens input to the first layer in a pruning stage and H self-
attention heads in the model. Tokens input to the last layer of a pruning stage
are denoted as follows:

xS−1 =
[
xcls

S−1, x
1
S−1, ..., x

N
S−1

] ∈ R
N×Dk (1)

where S is the number of blocks in a stage and Dk is the dimension of keys. The
attention weights of previous blocks in this stage can be written as:

al =
[
a0

l , a
1
l , ..., a

H−1
l

] ∈ R
H×N×N (l ∈ 0, 1, ..., S − 1) (2)

where ai
l refers to attention weights in head i. Given matrix representations of

queries Qi and keys Ki, it could be denoted as:

ai
l = Softmax(

QiK
T
i√

Dk

) ∈ R
N×N (i ∈ 0, 1, ...,H − 1) (3)

Previous works suggested that the raw attention weights do not necessarily
correspond to the relative importance of input tokens especially for higher layers
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of a model, due to lack of token identifiability of the embeddings. TransFG [11]
uses an integrated attention weight of all layers except for the last one, which
captures how information propagates from the input layer to the embeddings.

afinal =
L−1∏

l=0

al ∈ R
H×N×N (4)

However, it only chooses the tokens having maximum value in different attention
heads as the input of the last layer. Apparently, it couldn’t be used as our pruning
strategy where tokens should be dropped earlier to reduce computational cost.
There are only H tokens input to the next stage, which is not appropriate for
losing too much information about target in the early stage. Instead of it, we
use the mean attention score of cls token after integrating weights of layers in a
stage to evaluate the current importance of tokens:

ai
stage =

S−1∏

l=0

ai
l ∈ R

N×N (i ∈ 0, 1, ...,H − 1) (5)

ostage =
1
H

H∑

i=1

aicls
stage ∈ R

N×N (6)

We select a percentage of p tokens that have the highest importance to be input
to the next stage, which is to maximize the cumulative importance of tokens to
be chosen:

max
δ

N∑

j=1

δjo
j
stage

s.t.

N∑

j=1

δj = Np

(7)

where δj =
{

1 xj
S−1 is input to the next stage

0 xj
S−1 is not input to the next stage

. It can be realized simply

by sorting ostage and choosing ps percent tokens, concatenated along with the
classification token to be input of the next stage. By pruning the tokens with
less importance, which are mainly backgrounds or common features, we not only
shrink the computational cost and memory use but also force the model to focus
on more discriminative regions. Figure 1 illustrates an overall Framework of our
attention-based pruning method. Each pruning stage consists of N1 transformer
blocks and one attention-based pruning module. We fix the percentage of each
layer to be the same. Consequently, if we suppose the overall sparsity ratio to
be P and there are S stages, we have:

p1 = p2 = ... = pS = P
1
S (8)
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3.3 Distillation Loss for LVViT

Declining number of token input to transformer would inevitably influences the
results model outputs, whether the difference with original output is large or
small. To narrow the gap of prediction brought by the pruning process, we apply
distillation loss to the LVViT model [14] in our experiments. The model uses soft
labels generated from large scale CNN network in the original paper to boost its
performance, which provides a perfect channel for knowledge distillation. Since
our purpose is to minimize the degradation of accuracy rather than to boost
it to another level, we simply use the original model as its teacher model. The
training loss for a standard Vision Transformer and other baseline models is:

L = CrossEntropy(Softmax(Xcls), ycls) (9)

where ycls is the ground truth and Xcls is the prediction of the model, which
is only based on cls token. LVViT [14] utilizes the other tokens by adding an
aux-head and generating soft labels for each token using the pretrained model
in advance:

L =CrossEntropy(Softmax(Xcls), ycls)

+β
1
m

m∑

i=1

CrossEntropy(Softmax(Xi), yi
soft)

(10)

It should be noticed that with our pruning module, a part of the tokens are
discarded in the pruning process, in which case m denotes the number of
remaining tokens and is equal to NP . For experiments on ImageNet1k, we sim-
ply use original LVViT-S and LVViT-M model as Teacher model to generate
yi

soft(i ∈ 1, ...,m) and apply knowledge distillation:

L =CrossEntropy(Softmax(Xcls), ycls)

+β
1
m

m∑

i=1

CrossEntropy(Softmax(Xi), Softmax(Xi
teacher))

(11)

As for experiments on CUB200-2011, we use ViT as baseline, which has
achieved success on fine-grained image recognition by fine-tuning, to apply our
pruning module. Since it is a transfer learning task where it’s uncertain that
original model is superior to model with pruning process, we don’t add the dis-
tillation loss but use the standard cross entropy. Another reason is that ViT does
not have a channel for distillation as good as that in LVViT. After experiments,
it turns out that the model with our pruning module outperforms the original
model, fine-tuned with the same hyper-parameters.

4 Experiments

4.1 Experiments on ImageNet1k

Experiments are mainly conducted on the ImageNet-1k [3]. We first apply
our token pruning module on LVViT, a state of the art model that adopts
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Fig. 2. Model computational cost (FLOPs) and top-1 accuracy on ImageNet1k. We
compare our model, which is on the top of LVViT, with state-of-the-art CNN and
transformer-like models. With our module, the scaled model achieves higher accuracy
than those with similar FLOPs.

the architecture of ViT but becomes more efficient because of modifying and
training methods.

Implementation Details. After testing different lengths of stage (result is
shown in 4.3), we decide to apply a attention-based pruning module after each
transformer block for LVViT. We load weights from the pretrained LVViT model
and optimize the architecture for 10 epochs. We also find it work with only one-
epoch training, in which case it does not drop too much accuracy(-0.1%). We
train the models with 4 GPUs using a batch-size of 512 for ATP-LV-S and
384 for ATP-LV-M. Models are optimized by Adam [16] optimizer with cosine
strategy [20], learning rate initialized to batchsize

1024 × 0.00001. The distillation
parameter β is set to 0.5. We use K = 15, N1 = 1, N2 = 1 for ATP-LV-S and
K = 19, N1 = 1, N2 = 1 for ATP-LV-M.

Comparison with State-of-the-Art Methods. In Table 1, we compare the
performance of our attention-based pruning method on the top of LVViT with
other state of the art models. The last number in the model refers to the percent-
age of patches pruned after entire pruning process. With 50% tokens discarded,
ATP-LV-M-0.5 achieves 83.8% accuracy with 9.4 GFLOPs, which outperforms
main stream CNN and Transformers including EfficientNet-B5 and Swin-B on
accuracy with less FLOPs. To compare with lighter models, ATP-LV-S-0.5
reaches 82.9% accuracy with 5.0 GFLOPs, outperforming Swin-T and PS-ViT-
B [32], which is another work to accelerate Vision Transformer by reusing atten-
tion calculation. Figure 2 shows model GFLOPs and accuracy on ImageNet1k,
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which illustrates the advantage of model scaled by our method more clearly. We
also apply our approach to DeiT [26], a solid vision transformer baseline, by
fine-tuning it for only one epoch and using K = 3, N1 = 3, N2 = 3. The results
are shown in Table 2.

Table 1. Computational cost (FLOPs) and accuracy of our method and existing state
of the art models on ImageNet1k.

Models Params(M) GFLOPs Top-1 acc. (%)

DeiT-S [26] 22.1 4.6 79.8

Swin-T [18] 29.0 4.5 81.3

PS-ViT-B/14 [32] 21.3 5.4 81.7

LVViT-S [14] 26.2 6.6 83.3

ATP-LV-S-0.7 26.2 5.5 83.1

ATP-LV-S-0.5 26.2 5.0 82.9

ATP-LV-S-0.4 26.2 4.3 82.2

DeiT-B [26] 86.6 17.6 81.8

PS-ViT-B/18 [32] 21.3 8.8 82.3

RegNetY-16G [23] 84.0 16.0 82.9

Swin-S [18] 50.0 8.7 83.0

EfficientNet-B5 [25] 30.0 9.9 83.6

LVViT-M [14] 55.8 12.7 84.0

ATP-LV-M-0.5 55.8 9.4 83.8

ATP-LV-M-0.4 55.8 8.7 83.6

Table 2. Computational cost (FLOPs) and accuracy of DeiT using our framework on
ImageNet1k.

Models GFLOPs Top1 acc. (%) Top5 acc.

DeiT-B [26] 17.6 81.8 95.6

ATP-De-B-0.6 13.8 81.2 95.2

ATP-De-B-0.5 12.7 80.8 95.0

4.2 Experiments on CUB200-2011

We notice that experiments in fine grained image recognition usually use a high
resolution like 448×448, which is a heavy burden for transformer because more
tokens are generated, yielding tens of times more complexity for self-attention
module than that of a 224×224 image. The results on CUB200-2011 [28] demon-
strates that our token pruning method could even improve the accuracy while
saving more computational cost because higher resolution leads to more patches
where uninformative tokens could be separated more meticulously.
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Table 3. Comparison of Our method on the top of ViT with previous state of the art
models on CUB-200-2011.

Models Backbone Top-1 acc. (%) GFLOPs

ResNet-50 [12] ResNet-50 84.5

GP-256 [30] VGG-16 85.8

MaxEnt [6] DenseNet-161 86.6

FDL [17] DenseNet-161 89.1

PMG [5] ResNet-50 89.6

API-Net [36] DenseNet-161 90.0

StackedLSTM [8] GoogleNet 90.4

ViT-B-16 [4] ViT-B-16 90.6 79.3

ATP-ViT-B-0.4 ViT-B-16 90.9 49.9 (–37.1%)

ATP-ViT-B-0.3 ViT-B-16 90.8 44.2 (–44.3%)

Implementation Details. In experiments on CUB200-2011, We initialize the
model weights by the ViT-B-16 model pre-trained on ImageNet21k. we optimize
the model using SGD optimizer [9] with an initial learning rate of 0.03 and a
momentum of 0.9. We also use cosine strategy [20] to adjust the learning rate
with batch size 16. We use K = 3, N1 = 3, N2 = 3. The model is fine-tuned for
10,000 steps, where the first 500 steps are warm-up. The input images are resized
to 600×600, which is transformed to 448×448 by random crop for training and
centering crop for testing.

Comparison with State-of-the-Art Methods. The classification accuracies
of CUB-200-2011 are summarized in Table 3. Almost all previous FGIR methods
test their performance on this dataset. As is shown in Table 3, ViT itself achieves
good performance with pre-trained weights. When we apply our pruning method
to ViT, not only does it reduce the computational cost, it also slightly improves
model accuracy. With our attention-based token pruning method, ViT achieves
similar results in accuracy (+0.2%), reducing the GFLOPs by 25.8% compared
to the baseline.

4.3 Ablation Studies and Discussions

Ablation Study for Pruning Strategies. To validate the effectiveness of
our attention-based token pruning method, we conduct ablation experiments of
different token selecting strategies. To guarantee fairness of comparison, we fix
the cost of each strategy to 5.0 GFLOPs. We could learn from Table 4 that our
attention-based method does have the advantage of locating informative regions.

Experiments for Length of Pruning Stages. We also discuss how the length
of the pruning stage influences the performance of different vision transformers.
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Table 4. Comparison of different token sampling strategies on ImageNet1k for
LVViT-S.

Sampling strategy GFLOPs Top-1 acc. (%) Top-5 acc. (%)

Original 6.6 83.3 96.4

Random 5.0 81.7 95.6

Structural (pooling) 5.0 82.2 95.8

ATP 5.0 82.9 96.1

As is mentioned in 3.1, the number of pruning stages is denoted as K. N1 refers
to the number of layers in a pruning stage and N2 is the number of blocks after
these pruning stages. N2 should be at least 1 for two reasons. First, applying a
pruning module after the last transformer block could not save computational
cost because it won’t be the input of any other transformer layer. Second, a
typical vision transformer like ViT only uses the class token output by the last
transformer block for classification, in which case pruning the other tokens would
be meaningless. To avoid extra parameter tuning and focus on the method itself,
we just simply keep N1 = N2 for the experiments. For LVViT-S which contains 16
transformer layers, We use K = 3, N1 = 4, N2 = 4 and K = 15, N1 = 1, N2 = 1
respectively to compare models having different lengths of pruning stages. The
results indicate that applying the pruning module after each transformer layer
except for the last one (N2 >= 1) is better for LVViT. As for DeiT, we conduct
experiments using K = 3, N1 = 3, N2 = 3 and K = 11, N1 = 1, N2 = 1 because
it only has 12 blocks. The situation in experiments for DeiT is quite different,
which suggests it benefits from longer pruning stages. In these experiments, the
FLOPs of pruned models are fixed to be close for fair comparison. We suppose it’s
because LVViT has more layers leading to lower pruning ratio in early stages and
an aux-head for tokens to apply distillation, which makes raw attention better
on reflecting the importance of tokens (Table 5).

Table 5. Comparison of different pruning stages on ImageNet1k for LVViT-S.

Model K N1 N2 GFLOPs Top-1 acc. (%)

LVViT-S – – – 6.6 83.3

ATP-LV-S-0.5 3 4 4 5.1 82.7

ATP-LV-S-0.5 15 1 1 5.0 82.9

DeiT-B – – – 17.6 81.8

ATP-De-B-0.5 3 3 3 12.7 80.8

ATP-De-B-0.5 11 1 1 12.6 80.4
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Experiments Under Different Resolutions. During the experiments, We
notice that higher resolution could enhance the performance of ATP to another
level. Table 6 shows that the results of ViT and our model on CUB-200-2011
using different image resolutions. As can be seen in Table 6, our model reaches
similar results than that of ViT when trained with resolutions of 224×224 and
336×336 as well. We also notice that accuracy drops very little (0.2%) when
resolution declines from 448× 448 to 336× 336. However, it yields only 26.7
GFLOPs when it takes 79.3 GFLOPs for the baseline to get a similar result
(90.6%).

Table 6. Comparison of our method on the top of ViT with the baseline on CUB200-
2011 using different resolutions.

Resolutions 224×224 336×336 448×448

Models Acc.(%) GFLOPs Acc.(%) GFLOPs Acc.(%) GFLOPs

ViT-B-16 88.7 17.6 90.0 41.7 90.6 79.3

ATP-ViT-B-0.4 88.6 11.4 90.7 26.7 90.9 49.9

The situation is similar in experiments on ImageNet. We compare ATP-De-B
with the baseline under different resolutions. The gap between pretrained and
pruned models is narrowed to a great extent (Table 7).

Table 7. Comparison of our method on the top of DeiT with the baseline on Ima-
geNet1k using different resolutions.

Resolutions 224×224 384×384

Models Top-1 acc. (%) GFLOPs Top-1 acc. (%) GFLOPs

DeiT-B 81.8 17.6 82.8 55.9

ATP-De-B-0.5 80.8 12.7 82.4 39.8

4.4 Visualization

The attention-based pruning method also has a bonus for its natural inter-
pretability. We visualize our pruning process by recording the decisions ATP
makes while testing. Figure 3 demonstrates the process tokens are progressively
pruned by modules after transformer blocks, ATP-LV-S-0.5 as an example.
Although in deeper layers, information in different tokens has been fused exten-
sively, the visualization still gives a clear sketch of the process redundant patches
are gradually discarded.
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Fig. 3. Visualization of pruned tokens in each stage of our ATP-LV-S. We
show original images and visualize the process that less discriminative tokens are pro-
gressively pruned by attention-based token pruning module.

5 Conclusion

In this paper we propose an efficient attention-based token pruning (ATP) frame-
work for Vision Transformer. By integrating attention weights in transformer
blocks and fusing the information in different attention heads, our ATP mod-
ule locates the uninformative patches, which are dropped in each pruning stage.
Redundant tokens gradually eliminated, our method reduces the computational
cost in the deeper transformer layers while sacrificing negligible accuracy, yield-
ing much less extra cost for tuning compared with methods using learnable
predictors. It also performs better under higher resolution where the uninfor-
mative patches are separated more finely. It could also improve the accuracy of
ViT on fine-grained recognition datasets like CUB200-2011, while significantly
shrinking the computational cost and memory use.
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Abstract. Attribute reduction is one of the major topics in rough set
theory. The purpose of attribute reduction is to reduce the dimension-
ality of data. In multi-criteria decision analysis, criteria are treated as
multiple and possibly conflicting points of views on decision alterna-
tives. To reduce the complexity of multi-criteria decision analysis, we
raise the problem of criterion reduction. In this paper, we propose the
formal definition of criterion reduction and develop a heuristic method
to deal with it. At first, we review the definitions of attribute reduction
in rough set theory, generalized attribute reduction, and approximate
attribute reduction. Then, we discuss the problem of criterion reduction
in multi-criteria decision analysis. More specifically, we introduce three-
way decision theory and define three-way approximate criterion reducts
via a pair of thresholds. Finally, we adopt the point-wise loss function
and propose heuristic algorithms to generate three-way approximate cri-
terion reducts. A real-world data set of city rankings is used to validate
the proposed method.

Keywords: Rough sets · Attribute reduction · Multi-criteria decision
analysis · Criterion reduction · Three-way decision

1 Introduction

In the field of human decision-making problems, a great number of the problems
are discussed under an environment of multiple criteria. This significant subset
of decision-making problems is called multi-criteria decision-making (MCDM),
or multi-criteria decision analysis (MCDA). The investigations of MCDA deal
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with ranking or sorting a set of decision alternatives by giving a set of possibly
conflicting criteria that are mainly related to the descriptions and evaluations
of alternatives. The final ranking is generated according to their performances
under all criteria [4]. In real-life MCDM problems, we observe that not all criteria
contribute equally to the final ranking. Selecting a subset of criteria may produce
a different ranking which might be highly close to the original results. In other
words, removing certain criteria from the given set may have a marginal effect on
the consequence. Furthermore, fewer criteria involved in ranking can significantly
reduce decision complexity and cost.

Attribute reduction, as a typical subject in rough set theory and three-way
decision theory [3,5,6,8,9,12–14,20,21], is an outstanding technique for feature
selection. The objective of attribute reduction in rough sets is to reduce the
number of attributes or eliminate certain attributes while the partition over the
universe is preserved. One may also view the essential task of attribute reduction
as finding out a minimal subset of attributes that is sufficient to have the same
classification ability. In a general scenario, an attribute reduct is defined as a
subset of attributes that is able to preserve a particular property and must
satisfy the sufficiency condition and minimization condition [5,14,23]. With a
view to the tolerance of a certain quantity of errors, Ślȩzak [10,11] extended
rough set theory with information entropy and introduced the Approximate
Entropy Reduction Principle (AERP). Fang and Min [2] proposed a framework
based on three-way decision to resolve the cost-sensitive approximate attribute
reduction problem. Gao et al. [3] presented a method of attribute reduction
based on information-theoretic measure by following the core ideas in three-way
decision [16,17].

By considering the advances in attribute reduction, we investigate the reduc-
tion problem of criteria in MCDA. Greco et al. [4] brought us an insightful obser-
vation on the nature of human decision-making, that is, “decision is strongly
related to the comparison of different points of view”. Their observation reveals
another important point: the way, in which humans make a decision, is amalga-
mating the multidimensional aspects into a single scale of measure. The funda-
mental thoughts of MCDM have been applied by Zhang and Yao [22] on three-
way classifications with game-theoretic rough sets. Most MCDM techniques deal
with the decision problems in a closely related way by defining an objective func-
tion as a comprehensive view. Then a set of alternatives will be ranked according
to the specific function. The motivation of our work is to have a new look at the
way to eliminate certain views from multiple points of view or to reduce the set
of multiple criteria. It is intuitive and natural for decision-makers and MCDA
researchers to take into account fewer points of view, in MCDA, fewer criteria.
Despite that, a reduct of criteria will cost fewer computations in deriving the
comprehensive function and lead the MCDM models more efficient.

In fact, it might be highly difficult to find a perfect reduct that produces
an exactly same ranking as the one produced by full criteria, especially in a
large dimensional data set. Three-way decision theory [16–19] gives us a hint
to construct three-way approximate criterion reducts that come with two differ-
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ent levels of preservation of ranking. The contributions of this paper consist of
three parts. Firstly, we review the concepts and definitions of attribute reduc-
tion in rough set theory including the generalized attribute reduction [5,23] and
approximate attribute reduction [2,3]. Consequently, we investigate the prop-
erty of ranking problems and present some formal formulations and definitions
of three-way approximate criterion reduction. Lastly, we develop heuristic algo-
rithms to generate three-way approximate criterion reducts.

This paper is organized as follows. In Sect. 2, we review the basic concepts
of attribute reduction. In Sect. 3, we discuss the ranking property of MCDM
problems and propose the definition of three-way approximate criterion reduct.
We also briefly explain the related issues through some relatively small examples.
In Sect. 4, we design heuristic algorithms and present the experiment results
and comparative analysis. In Sect. 5, we summarize the key points of three-way
approximate criterion reduction and point out the future research interests.

2 A Review of Attribute Reduction in Rough Set Theory

In this section, we examine some basic notions of a decision table and concepts
of attribute reduction in rough sets. In addition, we discuss the generalized
attribute reduction and evaluation-based approximate attribute reduction.

At first, we take a number of concepts from Pawlak’s rough sets [8]. Suppose
T is an information table, T is made up of a finite nonempty set of objects, a finite
nonempty set of attributes, and descriptions of the objects by attributes. The
descriptions are obtained by perceiving, observing, and measuring the objects
according to the finite set of attributes [23]. The mathematical form of an infor-
mation table is:

T = {U,AT, {Va | a ∈ AT}, {Ia | a ∈ AT}}. (1)

With respect to a subset of attributes A ⊆ AT , an indiscernibility relation on
the universe U is defined by

IND(A) = {(x, y) ∈ U × U | ∀a ∈ A, Ia(x) = Ia(y)}. (2)

The attribute reducts in an information table are defined as follows.

Definition 1 [15]. Suppose T = {U,AT, V, I} is a given information table, a
subset of attributes R ⊆ AT is called a reduct, if and only if, the two conditions
below are satisfied:

1. (Sufficiency): IND(R) = IND(AT );
2. (Minimization): ∀R′ � R, IND(R′) �= IND(AT ).

In order to explore a generalized reduct, Zhao et al. [24] interpreted attribute
reduction in terms of the properties of a decision table. According to Yao [15], the
definition of attribute reduct in rough sets is elucidated in two aspects, namely,
a conceptual aspect and a computational aspect. Jia et al. [5] proposed a formal
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definition of a generalized reduct. In light of their findings, we generally denote
the result produced by a set of attributes as Res(AT ). For any subset R ⊆ AT ,
Res(R) returns the result which is produced by R. By comparing the results, we
can define a general attribute reduct as follows.

Definition 2. Suppose AT is a given set of attributes, a subset R ⊆ AT is
called a reduct, if and only if, R satisfies the following conditions:

1. (Sufficiency): Res(R) � Res(AT ),
2. (Minimization): ∀R′ � R, ¬(Res(R′) � Res(AT )),

where � means that the two involved results are equivalent to each other.

The sufficiency condition in Definition 2 requires that the two results are
quantitatively or qualitatively equivalent. It simply argues that a reduct R must
produce the same result as the one produced by using the whole set AT . The
second condition ensures that R is the minimum subset satisfying the sufficiency
condition. In a general decision-making process, some errors might be allowed.
The users may accept a decision result with some tolerance. An approximate
reduct is defined by measuring the similarity between Res(R) and Res(AT ). In
this way, one may view a highly similar result as an acceptable result.

Definition 3. Suppose AT is a given set of attributes, a subset R ⊆ AT is called
an α-approximate reduct, if and only if, R satisfies the following conditions:

1. (Sufficiency): Sim(Res(R),Res(AT )) � α,
2. (Minimization): ∀R′ � R, Sim(Res(R′),Res(AT )) < α,

where Sim is a mapping {Res(R) × Res(AT ) | R ⊆ AT} −→ R.

We introduce a threshold α in Definition 3 to determine whether a result is
acceptable or not. Basically, the Sim function measures the similarity between
Res(R) and Res(AT ) and is usually given. A higher value of Sim indicates a
higher similarity, that is, Res(R) is closer to Res(AT ) and more acceptable from
the users’ viewpoint.

3 Approximate Criterion Reduction from Three-Way
Decision Perspectives

After recalling the concepts of attribute reduction, we now discuss the crite-
rion reduction problem in this section. For more details, we discuss two main
difficulties in criterion reduction. Then we propose the definitions of criterion
reduction and three-way approximate criterion reduction through a number of
assumptions.
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3.1 Problem Statement of Criterion Reduction

The analysis of MCDM is established on the basis of a specific table called a
multi-criteria decision-making table.

Definition 4. A multi-criteria decision-making table (MCDMT) is a triplet
〈A,C, p〉, where A = {a1, . . . , an} is a finite and non-empty set of n alternatives,
C = {c1, . . . , cm} is a finite and non-empty set of m criteria, and p : A×C −→ V
is function that maps a decision alternative ai and a criterion cj into a value
p(ai, cj) = pj(ai) ∈ V .

Assumptions:

1. The domain of a criterion cj ∈ C is completely pre-ordered.
2. All of the criteria are presented in numerical scales and the ascending or

descending orderings are given.

Example 1. Table 1 is part of Movehub City Rankings1. It consists of fifteen
decision alternatives A = {a1, a2, . . . , a15} that represent fifteen different cities.
To avoid personal preferences, we implicitly present the cities by symbols ai

instead of their real names. The set of criteria contains six criteria, denoted by

Table 1. An MCDMT

Alternatives Criteria

c1 c2 c3 c4 c5 c6

a1 70.46 19.07 51.01 86.16 31.87 76.45

a2 81.89 49.70 82.86 34.31 76.77 24.22

a3 82.43 54.30 75.00 85.59 60.28 21.35

a4 65.18 11.25 44.44 83.45 8.61 85.70

a5 78.12 32.91 67.49 78.07 43.89 33.22

a6 71.91 22.91 59.55 30.55 40.51 44.53

a7 80.74 51.24 84.85 18.40 83.76 16.67

a8 84.52 80.72 36.66 82.08 77.13 30.21

a9 86.00 63.28 88.43 43.08 90.08 15.34

a10 76.16 33.69 61.67 68.21 57.01 18.18

a11 90.45 50.13 41.12 30.54 65.27 48.31

a12 78.84 44.03 72.69 29.86 52.08 46.59

a13 81.44 52.91 79.63 68.93 80.87 42.45

a14 79.63 49.51 75.28 6.78 78.52 32.08

a15 83.31 68.77 54.17 38.64 65.53 68.58

1
BLITZER posted the data set on Kaggle in 2017 (Version 1: https://www.kaggle.com/
datasets/blitzr/movehub-city-rankings), as published by MoveHub (https://www.movehub.com/
city-rankings).

https://www.kaggle.com/datasets/blitzr/movehub-city-rankings
https://www.kaggle.com/datasets/blitzr/movehub-city-rankings
https://www.movehub.com/city-rankings
https://www.movehub.com/city-rankings
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C = {c1, c2, c3, c4, c5, c6}. They are, respectively, “Movehub Rating”, “Purchase
Power”, “Health Care”, “Pollution”, “Quality of Life”, and “Crime Rating”. All
of the six criteria are in numerical scales and are in the value domain [0, 100].
Among them, orderings under c1, c2, c3, and c5 are ascending, that is, a higher
value is better. For example, city a9 with 90.08 points under c5 has the best
quality of life. While, orderings under c4 and c6 are descending, that is, a lower
value is better. City a9 with 15.34 points under c6 has the best crime rating.

An MCDM method helps us comprehensively rank the alternatives with
respect to their performances under the selected criteria. Our purpose of cri-
terion reduction is to preserve the ranking by using as few criteria as possible.
In such an MCDMT, we have the following two observations, and they are the
difficulties that we have to deal with when constructing criterion reducts.

Difficulty 1. The definition of the property in MCDA is not clear. To describe
the ranking property in an MCDMT, we recall the classical attribute reduction
in rough sets. An indiscernibility relation forms a partition over the universe
and the result is described by the partition. In an MCDMT, our task is to
preserve the ability to rank alternatives. The desired result can be represented
by the final ranking produced by all criteria. The preservation of the result can
be correspondingly explained as producing the same ranking with a subset of
criteria.

Example 2. We take alternatives a1, a2, a3 and the method of Weighted Sum
Model as an example. For simplicity, we consider that all of the six criteria are
equally weighted. Given with the MCDMT, c1, c2, c3, and c5 are ascending, c4
and c6 are descending. The scores for the three alternatives are computed by:

Score(a1) = p1(a1) + p2(a1) + p3(a1) − p4(a1) + p5(a1) − p6(a1) = 9.80,

Score(a2) = p1(a2) + p2(a2) + p3(a2) − p4(a2) + p5(a2) − p6(a2) = 232.60,

Score(a3) = p1(a3) + p2(a3) + p3(a3) − p4(a3) + p5(a3) − p6(a3) = 165.07.

The ranking is a2 	 a3 	 a1. If we only consider c1, c2, and c3, the new scores
are computed by:

Score(a1) = p1(a1) + p2(a1) + p3(a1) = 140.54,

Score(a2) = p1(a2) + p2(a2) + p3(a2) = 214.45,

Score(a3) = p1(a3) + p2(a3) + p3(a3) = 211.73.

The new ranking is a2 	 a3 	 a1 that is exactly the same as the previous result.
When we rank these three alternatives, we can say that the subset {c1, c2, c3}
produces the same result.

Difficulty 2. The ranking property may not be monotonic. It is difficult to
determine whether a single criterion is dispensable or indispensable. We discuss
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one possible situation to show the non-monotonicity. Suppose function F(C)
returns the ranking produced by using the entire set of criteria C, a possible
situation is that F(C − {c1}) �= F(C) or F(C − {c2}) �= F(C), but F(C −
{c1, c2}) = F(C). If we only remove a single criterion either c1 or c2, we cannot
derive the same ranking. However, we may obtain the same ranking by removing
c1 and c2 simultaneously. This situation disables us to say c1 is dispensable or c2
is dispensable, individually. This difficulty makes it insufficient to reduce a set
R ⊆ C by only exploring ∀c ∈ R,R − {c}. Therefore, it is necessary to explore
all of the possible subsets of R if the target is to figure out the optimal/minimal
reduct.

Example 3. From Table 1, we select a12, a13, and a14 and we still use Weighted
Sum Model to rank them. The results are shown as follows.

Score(a12) = p1(a12) + p2(a12) + p3(a12) − p4(a12) + p5(a12) − p6(a12) = 171.19,

Score(a13) = p1(a13) + p2(a13) + p3(a13) − p4(a13) + p5(a13) − p6(a13) = 183.47,

Score(a14) = p1(a14) + p2(a14) + p3(a14) − p4(a14) + p5(a14) − p6(a14) = 244.08.

The final ranking is F(C) = a14 	 a13 	 a12. Then, we test the following three
cases:

1. Remove criterion c4, the ranking is

F(C − {c4}) = a13 	 a14 	 a12.

2. Remove criterion c5, the ranking is

F(C − {c5}) = a14 	 a12 	 a13.

3. Remove criteria c4 and c5, the ranking is

F(C − {c4, c5}) = a14 	 a13 	 a12.

Removing either c4 or c5 individually doesn’t produce the same ranking with
F(C), however, removing them together will provide us with a same ranking
F(C − {c4, c5}) = F(C). The non-monotonicity implies that we cannot simply
examine the individual necessity of each criterion. We have to explore all possible
subsets of criteria to find out an optimal reduct.

3.2 Definitions of Criterion Reduct and Three-Way Approximate
Criterion Reducts

The criterion reduction can be defined by rewriting Definition 3 in terms of
multiple-criteria decision-making. The rankings F(R) and F(C) can be viewed
as the results Res(R) and Res(C) correspondingly.

Definition 5. Given an MCDMT, a subset R ⊆ C is called an α-approximate
criterion reduct, if and only if, the following conditions are satisfied:
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1. (Sufficiency): Sim(F(R),F(C)) � α;
2. (Minimization): ∀R′ � R,Sim(F(R′),F(C)) < α.

There have been a lot of well-developed measurements in MCDA. They can be
adopted as alternatives for the similarity function in Definition 5. One of the feasi-
ble ways is the normalized distance-based performance measure (NDPM) which is
widely used in information retrieval. Some other metrics in MCDA include Spear-
man’s rank correlation coefficient, Kendall’s τ coefficient, Pearson’s correlation
coefficient, Mean Average Precision (MAP), and Normalized Discounted Cumu-
lative Gain (NDCG). In learning to rank, point-wise, pair-wise, and list-wise loss
functions are involved in comparing two rankings. More specifically in criterion
reduction, we concentrate on measuring the similarity between F(R) and F(C).
For example, the NDPM measures the distance between F(R) and F(C), the cor-
relation coefficients can reflect how close F(R) is to F(C), the loss functions can
be adopted to quantify the essential loss of F(R) compared to F(C).

By considering the difficulties mentioned before, Sim(F(R),F(C)) doesn’t
necessarily satisfy the monotonicity. The similarity Sim(F(R),F(C)) may
decrease when we add one criterion or some criteria to R, on the other hand,
the value of Sim(F(R),F(C)) may increase when we remove a criterion or some
criteria from R.

Example 4. We take Table 1 as an example to illustrate the idea of criterion
reduction. Initially, we generate the ranking by using TOPSIS with respect to
the whole set of criteria C. For simplicity, we suppose that all of the six criteria
are equally weighted. The ranking F(C) is shown as follows:

a9 � a7 � a2 � a14 � a13 � a12 � a3 � a11 � a15 � a8 � a10 � a5 � a6 � a1 � a4.

We simply use Spearman’s ranking correlation coefficient as a similarity measure-
ment. The result of Spearman’s correlation coefficient is a real number belonging
to [−1,+1]. The value +1 means that the two rankings are exactly the same,
while the value −1 means that the two rankings are exactly opposite. In this
small example, we set the threshold α = 0.95 and explore all possible subsets of
C. Finally, we obtain three α-approximate reducts:

R1 = {c1, c2, c3}, Sim(F(R1),F(C)) = 0.9571,

R2 = {c1, c3, c5}, Sim(F(R2),F(C)) = 0.9857,

R3 = {c2, c3, c5}, Sim(F(R3),F(C)) = 0.9536.

The rankings produced by the whole set C and the three approximate reducts are
listed in Table 2. The results, plotted in Fig. 1, demonstrate that the criterion

Table 2. The rankings produced by using C, R1, R2, and R3

Rankings

F(C) a9 � a7 � a2 � a14 � a13 � a12 � a3 � a11 � a15 � a8 � a10 � a5 � a6 � a1 � a4

F({c1, c2, c3}) a9 � a7 � a2 � a13 � a3 � a14 � a15 � a12 � a8 � a11 � a5 � a10 � a6 � a1 � a4

F({c1, c3, c5}) a9 � a7 � a2 � a13 � a14 � a3 � a12 � a15 � a11 � a8 � a5 � a10 � a6 � a1 � a4

F({c2, c3, c5}) a9 � a7 � a13 � a2 � a14 � a3 � a15 � a12 � a8 � a10 � a11 � a5 � a6 � a1 � a4
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Fig. 1. The ranking results plotting

reduction successfully reduces the number of criteria. Either one of the three
reducts uses only half of the criteria and achieves a highly similar ranking.

Three-way decision offers us a novel view to look at the approximate criterion
reduction. Instead of using a single threshold α, a pair of thresholds is introduced
and results in a pair of approximate criterion reducts. Definition 6 provides a
formal description of the three-way approximate criterion reduction.

Definition 6. Given an MCDMT and a pair of thresholds (αl, αh) with αl <
αh. A pair of subsets (Rl, Rh) is called three-way approximate criterion reducts,
if Rl ⊆ Rh, where Rl is an αl-approximate criterion reduct and Rh is an αh-
approximate criterion reduct.

As specified in Definition 6, the pair of reducts satisfies Rl ⊆ Rh, where
Rl is viewed as a low-level reduct and Rh is a high-level reduct. The low-level
reduct Rl is determined by a smaller threshold αl and Rh is determined by a
greater threshold αh. Recalling the sufficiency condition, the result produced
by Rh is better than that one produced by Rl. However, Rl contains fewer
criteria resulting in less decision cost, Rh contains more criteria that cost more
computations. Three-way approximate criterion reducts naturally form a tri-
partition over the set C, denoted by 〈CORE,ENHC,SUPF〉:
1. Core criteria: CORE = Rl,
2. Enhanced criteria: ENHC = Rh − Rl,
3. Superfluous criteria: SUPF = Rc

h.

The three subsets of criteria are pair-wise disjoint and their union is the whole
set C. In terms of the tri-partition, we have the following strategies: (i) the
set CORE is necessary to be used in an MCDM method that meets decision-
maker’s minimum requirements; (ii) the ranking or the model performance will
be improved if CORE and ENHC are simultaneously selected into ranking; and
(iii) the criteria in the set SUPF are not necessary to be considered.

Example 5. In the previous example, we successfully obtain three α-approximate
criterion reducts with α = 0.95. We set the pair of thresholds as (αl = 0.95, αh =
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0.98) and examine the subset R1 as an example. Considering Rl = R1 =
{c1, c2, c3} with Sim(F(Rl),F(C)) = 0.9571, a possible higher level approxi-
mate reduct is Rh = {c1, c2, c3, c4, c6}, of which, Sim(F(Rh),F(C)) = 0.9964.
The tri-partition over C is:

CORE = Rl = {c1, c2, c3},

ENHC = Rh − Rl = {c4, c6},

SUPF = Rc
h = {c5}. (3)

That is, if the user focuses on decision cost, the set CORE = {c1, c2, c3} should
be considered to rank the alternatives. If the user aims to improve the result,
the ENHC set should be additionally involved in ranking. The selected criteria
are CORE ∪ ENHC = {c1, c2, c3, c4, c6} and the decision cost correspondingly
increases.

4 Algorithms and Experimental Results

In this section, we introduce a loss function from learning to rank approaches
and construct heuristic algorithms based on it. Then, we implement the proposed
algorithms on a data set to generate criterion reducts.

4.1 Heuristic Algorithms Based on Loss Function

Although the property of ranking is non-monotonic, we are still able to design
a heuristic algorithm to obtain admissible results. According to Chen et al. [1]
and Liu [7], “the minimization of loss functions will lead to the maximization of
the ranking measures”. To illustrate criterion reduct, we adopt the point-wise
loss function to construct heuristic algorithms.

Definition 7. Suppose that rankings F(R) and F(C) are given, f is a function
that indicates an alternative’s position in a ranking. A point-wise loss function
is defined by:

Lpoint(F(R),F(C)) =
n∑

i=1

(f(F(R), ai) − f(F(C), ai))2. (4)

By using an addition strategy, we develop a heuristic algorithm to gener-
ate criterion reducts as shown in Algorithm 1. The function APPROXREDUCT

requires two parameters, B and α. The parameter B is the initial set which is
usually an empty set and α is the threshold given by users. The function repeats
adding a single criterion with minimum loss into the set B until the result F(B)
satisfies the sufficiency condition. In most rough set attribute reduction algo-
rithms, a second stage is required to delete redundant attributes by examining
each of the following proper sets ∀c ∈ B,B−{c}. Due to the non-monotonicity in
criterion reduction, the final outcome of B may not satisfy the minimization
condition. To minimize B, it is necessary to test every possible proper set of B,
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Algorithm 1. A heuristic algorithm to compute criterion reduct
Input: A multi-criteria decision-making table MCDMT = {A, C, p};

A ranking F(C);
A threshold α.

Output: An admissible approximate reduct Reduct.
1: function ApproxReduct(B, α)
2: while True do
3: for c in C − B do
4: Compute the loss L∗({B ∪ {c}}) (L∗ can be either one of the loss func-

tions);
5: Select a criterion copt that comes with minimum loss;
6: let B = B ∪ {copt};
7: end for
8: if Sim(F(B), F(C)) � α then
9: break;

10: end if
11: end while
12: return B;
13: end function
14: let Reduct = APPROXREDUCT(∅, α);
15: return an admissible approximate reduct Reduct.

Algorithm 2. An addition strategy algorithm to compute three-way approxi-
mate criterion reducts
Input: A multi-criteria decision-making table MCDMT;

A ranking F(C);
A pair of thresholds (αl, αh).

Output: Three-way approximate criterion reducts (Rl, Rh).
1: Define function APPROXREDUCT;
2: let Rl = APPROXREDUCT(∅, αl);
3: let Rh = APPROXREDUCT(Rl, αh);
4: return three-way approximate criterion reducts (Rl, Rh).

which is a non-deterministic polynomial problem. In Algorithm 1, we only show
the addition strategy to construct a subset satisfying the sufficiency condition.
Even though, the set B produced in by APPROXREDUCT is an admissible result
that can sufficiently rank the alternatives and effectively reduce the decision cost
and complexity.

To generate three-way approximate criterion reducts, we can simply reuse the
function APPROXREDUCT from Algorithm 1 and implement it twice with two
different settings of parameters. The first call takes an empty set as the initial
state and αl as the threshold and returns a low-level approximate criterion reduct
Rl. The second call takes Rl as the initial state and αh as the threshold and
returns a high-level approximate criterion reduct Rh. The two calls of function
APPROXREDUCT guarantee that the pair of reducts satisfies Rl ⊆ Rh.
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4.2 Experimental Results and Analysis

Table 3 is the statistic summary of the entire data set. There are two hundred
and sixteen cities and six criteria. The summary contains a number of statistic
indices for each criterion including mean, std, and so forth.

Table 3. The statistic summary of city ranking data set

Criteria

Movehub rating Purchase power Health care Pollution Quality of life Crime rating

Count 216.0000 216.0000 216.0000 216.0000 216.0000 216.0000

Mean 79.6767 46.4772 66.4428 45.2404 59.9945 41.3386

Std 6.5010 20.6145 14.4164 25.3697 22.0194 16.4164

Min 59.8800 6.3800 20.8300 0.0000 5.2900 9.1100

25% 75.0700 28.8150 59.4200 24.4100 42.7525 29.3750

50% 81.0600 49.2200 67.6850 37.2100 65.1500 41.1400

75% 84.0200 61.6075 77.2075 67.6750 78.6175 51.3275

Max 100.0000 91.8500 95.9600 92.4200 97.9100 85.7000

In this case study, we focus on testing Algorithm 2 to generate three-way
approximate criterion reducts because we could simply treat the results Rl and
Rh as an αl-approximate reduct and an αh-approximate reduct. At first, we
apply the settings in the previous examples:

1. Use the whole set of criteria to generate a ranking F(C), the ranking is shown
in Fig. 2, the top three rated cities are Zurich, Dresden, and Dusseldorf.

2. Adopt Spearman’s ranking correlation coefficient as the similarity measure-
ment.

The inputs are:

1. An MCDMT;
2. A ranking F(C);
3. A pair of thresholds (αl = 0.9, αh = 0.98).

The outputs are:

Rl1 = {c2, c4, c5}, Sim(F(Rl1),F(C)) = 0.9401,

Rh1 = {c2, c3, c4, c5, c6}, Sim(F(Rh1),F(C)) = 0.9926.

Based on the outputs, we have the following tri-partition over C:

CORE = {c2, c4, c5},

ENHC = {c3, c6},

SUPF = {c1}.

The rankings F(R1l) and F(R1h) are displayed in Fig. 3.



Three-Way Approximate Criterion Reduction in MCDA 301

Fig. 2. The ranking F(C) generated by the whole set C

Fig. 3. The rankings produced by reducts Rl1 and Rh1

Fig. 4. The rankings produced by reducts Rl2 and Rh2

To generate more reducts, we manually set Rl = ApproxReduct
({c1}, 0.9) instead of using ∅ as the initial set. Then, we use the same inputs
and obtain another pair of three-way approximate criterion reducts:

Rl2 = {c1, c4, c5}, Sim(F(Rl2),F(C)) = 0.9373
Rh2 = {c1, c2, c4, c5, c6}, Sim(F(Rh2),F(C)) = 0.9811.
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The tri-partition over C is:

CORE = {c1, c4, c5},

ENHC = {c2, c6},

SUPF = {c3}.

And their rankings F(Rl2) and F(Rh2) are depicted in Fig. 4.

5 Conclusion

Attribute reduction in rough set theory provides a powerful technique for fea-
ture selection in MCDA problems. We have checked the desired property in an
MCDMT and looked into the difficulties in preserving the property. Based on the
concepts of general approximate reduction, we have proposed criterion reduction
in a similar way. Moreover, the philosophy of three-way decision theory suggests
us to think in threes. By combing the principle of thinking in threes and cri-
terion reduction, we have taken into account users’ different decision objectives
or requirements and we have further defined three-way approximate criterion
reduction. A pair of thresholds represents two different users’ needs and leads to
two levels of approximate criterion reducts. The three-way approximate criterion
reducts are then used to trisect the set of criteria and form a tri-partition.

The proposed definition of three-way approximate criterion reduction enables
that a low-level reduct contains fewer criteria and produces a less similar rank-
ing and a high-level one has more criteria and produces a more similar result.
In this paper, we have presented the conceptualization and designed heuristic
algorithms to demonstrate the validity. We have generated two pairs of three-
way approximate criterion reducts. The experimental results have indicated the
feasibility of using fewer criteria to produce highly similar rankings. Based on
the contributions in this paper, we may explore other potential extensions of
attribute reduction in various fields. The underlying idea of thinking in threes
may shed new light on three-way approximate reduction.
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Abstract. Discovering close contacts and the key structures in social networks
plays a vital role in network analysis. The existing methods for identifying key
network structures often suffer from high computational complexity, and lack a
clear and reasonable semantic explanation. To tackle this issue, we propose a
method for close contact detection by using the technic of formal concept anal-
ysis. Specifically, we establish the relationship between social networks and for-
mal contexts, and adopt possible attribute analysis to discover close contacts and
identify prime cliques. After that, we discuss the dynamic updating mechanism
of close contacts and prime cliques under the evolution of a social network. In
addition, we conduct some experiments to show the relationships between the
number of prime cliques and the size of social networks, and the feasibility and
effectiveness of the proposed updating methods.

Keywords: Close contact detection · Social network · Formal concept
analysis · Possible attribute analysis

1 Introduction

Social networks proliferate dramatically in this big data era [2]. Discovering meaningful
patterns, unclosing the internal features of sub-structures, and identifying key structures
are important tasks in various practical social networks, such as recommendation sys-
tem modeling [23], information diffusion mechanism detection [34] and private data
protection [6], to name just a few.

Generally speaking, the key structures come into being due to close contacts
between individuals. In the existing studies, the key structures, such as maximal clique,
isolated maximal clique and community, bridge and structure hole spanner have been
explored in different applications. Roughly speaking, a maximal clique is a crowd in
which no more node can be added to this structure while keeping its structure unchanged

Supported by the Natural Science Foundation of Henan Province under Grant 222300420445,
and the Fundamental Research Funds for the Universities of Henan Province under Grant
NSFRF210318.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Yao et al. (Eds.): IJCRS 2022, LNAI 13633, pp. 304–316, 2022.
https://doi.org/10.1007/978-3-031-21244-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21244-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-21244-4_23


Close Contact Detection in Social Networks via Possible Attribute Analysis 305

[22]; an isolated clique is a crowd in which each node inside this clique has no connec-
tions with the nodes out of this clique [18,24]; a bridge is a specific structure which
enables the individuals of isolated communities to interact with each other [5]; bridging
nodes are known as structural hole spanners, which can facilitate necessary communi-
cations between different communities [1].

It has been proved that discovering key structures from complex graphs is a time-
consuming problem, which have attracted the attentions of many researchers. For
instance, Hao et al. [13] mined the diversified top-k maximal clique from social internet
of things by using formal concepts. Lu et al. [22] explored the complex graph randomly
and iteratively to mine maximum cliques.

Community detection is another difficult problem. Jabbour et al. [14] devised an
agglomeration method to detect highly overlapping community structure by expanding
maximal cliques. Fu et al. [8] used a division strategy to detect communities based on
node density and similarity. Yang et al. [29] designed a graph-based label propagation
algorithm for community detection. Li et al. [21] described a novel mining strategy
to mine useful community structures by integrating center locating and membership
optimization.

The technique of deep learning has a powerful ability of managing internal infor-
mation and logical structures, and has greatly facilitated the study of social network
analysis [12]. Cao et al. [3] combined network structures and node contents to real-
ize community detection by deep learning. Tu et al. [26] designed a unified framework
for community detection and network representation learning. Cavallari et al. [4] pre-
sented a method to discover both finite and infinite communities on graphs. Jin et al.
[16] incorporated graph convolutional networks with markov random fields to carry out
semi-supervised community detection in attribute networks. Lately, Jin et al. [17] sys-
tematically surveyed the existing community detection approaches, including statistical
approaches and deep learning based methods.

Nowadays, social life is greatly influenced by the widespread of COVID-19. Early
detection and treatment is an effective way to curb the spread of the disease, and close
contact detection is frequently used to identify the suspected infected persons. However,
there is little studies on this issue. Considering the existing methods, such as statistical
approaches and deep learning based methods, which are of high computational com-
plexity and lack of sufficient semantic explanations, we propose a method to detect
close contact in social networks based on formal concept analysis [9].

Formal concept analysis is a mathematical theory, which can model a domain
and facilitate knowledge discovery by integrating objects with their attributes to build
a set of cognitive units, i.e., the so-called formal concepts, and establishing hierar-
chial structures between them. At present, this theory has been applied in many fields
[10,15,19,27], such as open data categorization, logical data analysis, knowledge dis-
covery and decision rule acquisition. Lately, Yan and Li [28] have resort to this theory,
and proposed a method for knowledge discovery and updating under the evolution of
network formal contexts based on three-way decision. In a word, the existing studies
have shown that that formal concept analysis can meet our requirements, and achieving
the task of social network analysis.
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Fig. 1. Graphical representation of a toy social network.

The rest of this paper is structured as follows. Section 2 reviews some basic notions
of social networks and formal concept analysis. Section 3 proposes a method for close
contacts detection based on necessary attribute analysis. In Sect. 4, a dynamic updating
method of close contact detection is presented under the evolution of a social network.
A summary of findings and future work come in Sect. 5.

2 Related Theoretical Foundations

In this section, we briefly review some basic notions on social networks and possible
attribute analysis.

2.1 The Basic Notions of Social Networks

In this study, a social network is represented by an undirected graph G = (N,E),
where N is the set of nodes, and E contains the linkages of each pair of nodes in N .
Concretely, if there is a linkage between xi ∈ N and xj ∈ N , we denote this case as
e(xi, xj) = 1; otherwise, it is denoted as e(xi, xj) = 0. Moreover, we also stipulate
that for any x ∈ N , e(x, x) = 1.

Example 1. Fig. 1 is an undirected graph, which characterizes a small social network
with 5 nodes and 6 edges.

In what follows, close contacts are defined for a single node.

Definition 1. Let G = (N,E) be the undirected graph of a social network, and x ∈ N .
If e(x, xi) = 1, then we call xi a close contact of x, and denote the set of all close
contacts of x by c(x), i.e., c(x) = {xi | e(x, xi) = 1, xi ∈ N}.

It is worth noting that for any x ∈ N , we have x ∈ c(x) by the stipulation raised at
the first paragraph of this subsection.

In the rest of the paper, the discussed cliques are always non-empty, i.e., we stipulate
that ∅ �= X ⊆ N .

Definition 2. Let G = (N,E) be the undirected graph of a social network, and X ⊆
N . We call c(X) =

⋃

x∈X

c(x) the close contacts of the clique X .
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It should be pointed that although we have reused the function c(·), it makes no
confusions, as Definition 2 actually embodies Definition 1.

Definition 3. Let G = (N,E) be the undirected graph of a social network, and X ⊆
N . If c(X) = A, and there is no X ′ ⊃ X such that c(X ′) = A, we call X a prime
clique of G.

Definition 4. Let G = (N,E) be the undirected graph of a social network, and X ⊆
N . For any Y ⊆ X , if c(Y ) = c(X), and there is no Z ⊃ Y such that c(Z) = c(Y ), we
call Y a skeleton of X . Moreover, if X is also the skeleton of X , we call X a vulnerable
clique.

Definition 5. Let G = (N,E) be the undirected graph of a social network, and X ⊆
N . We call δ(X) the stability measurement of X , which is defined as

δ(X) =
|Y | c(Y ) = c(X), Y ⊆ X|

2|X| .

Continued with Example 1. It is easy to obtain the close contacts of each node, and
the result is listed in Table 1.

Table 1. Close contacts of each node in Example 1.

Node n Close contact c(n)

1 {1,2}

2 {1,2,4,5}

3 {3,4,5}

4 {2,3,4}

5 {2,3,5}

Moreover, by Definition 3, whether a clique is prime can be determined. For
instance, {3, 4} is not a prime clique, due to the fact that c({3, 4, 5}) = c({3, 4}) =
{2, 3, 4, 5}. In fact, {3, 4, 5} is a prime clique, as adding either node 1 or 2 can make
the close contacts change to be {1, 2, 3, 4, 5}.

What is more, by Definition 4, {3, 4, 5} has two skeletons, i.e., {4, 5} and {3}, and
thus {3, 4, 5} is not a vulnerable clique.

In addition, by Definition 5, we can obtain δ({3, 4, 5}) = 5
8 , as c({3, 4, 5}) =

c({4, 5}) = c({3, 5}) = c({3, 4}) = c({3}).

2.2 The Basic Notions of Possible Attribute Analysis

The basic setting of formal concept analysis is a formal context K = (U, V, I), which
describes a set of objects U by a set of attributes V , and I expresses the relations
between U and V . Specifically, I(x, a) = 1 shows that the object x possesses an
attribute a, while I(x, a) = 0 expresses the opposite.

By generalizing the classical model with a possibility theoretic view, many new
types of concepts have been proposed. Property oriented concept is one of the most
successful generalizations, which has a explicit semantic explanation [32,33].
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Definition 6. ( [7,30]) Let K = (U, V,R) be a formal context. For X ∈ 2U and
A ∈ 2V , possibility and necessary operators ♦ : 2U → 2V and � : 2V → 2U are
respectively defined as:

X♦ = {a ∈ V | X ∩ R(a) �= ∅} and A� = {x ∈ U | R(x) ⊆ A},
where R(a) is the set of objects that possess the attribute a, and R(x) is the set of
attributes possessed by the object x.

The pair (X,A) is called a property oriented concept if X♦ = A and A� = X .
Furthermore, all the property oriented concepts make up a lattice structure, which is
called property oriented concept lattice, and is denoted by PL(K).

From a granule description view point, property oriented concepts explicitly exhibit
the possible attributes of the extents. Therefore, this analysis method is called possible
attribute analysis.

By using possible attribute analysis, the stability measurement of a clique can be
computed as follows.

Theorem 1. Let K = (U, V,R) be a formal context of a social network G, and ∅ �=
X ⊆ U . If the clique X has a set of skeletons {Yi}i∈n, then the stability measurement
of X is δ(X) where

σ(X) =

n∑

i=1

2|X−Yi| − ∑

1≤i<j≤n

2|X|−|Yi

⋃
Yj | + · · · + (−1)n2|X−Y1

⋃
Y2

⋃··· ⋃
Yn|

2|X♦�| .

Proof. Since {Yi}i∈n is the set of the skeletons of X , we have |{Ci|Yi ⊆ Ci ⊆ A}| =
2|X−Yi|.

According to inclusion-exclusion principle, we can show that

|
n⋃

i=1

Ci| =
n∑

i=1

2|X−Yi| −
∑

1≤i<j≤n

2|X|−|Yi

⋃
Yj | + · · · + (−1)n2|X−Y1

⋃
Y2

⋃··· ⋃
Yn|,

By Definition 5, it follows that

σ(X) =

n∑

i=1

2|X−Yi| − ∑

1≤i<j≤n

2|X|−|Yi

⋃
Yj | + · · · + (−1)n2|X−Y1

⋃
Y2

⋃··· ⋃
Yn|

2|X♦�| .

3 Close Contact Detection in Social Networks via Possible
Attribute Analysis

The following proposition states that the close contact of a specific clique can be
obtained via its possible attributes.

Proposition 1. Let K = (U, V,R) be a formal context of a social network G, and
∅ �= X ⊆ U . Then, C(X) = X♦.
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Theorem 2. Let K = (U, V,R) be a formal context of a social network G, and ∅ �=
X ⊆ U . X is an extent of a property oriented concept of PL(K) if and only if X is a
prime clique of G.

Proof. ⇒: Suppose X is an extent of a property oriented concept (X,A). Then, it is
followed that X is the biggest set of objects such that X♦ = A. As C(X) = X♦, we
can conclude that X is a prime clique of G.

⇐: Suppose X is a prime clique of G, and c(X) = A. As X is the biggest set of
objects that makes c(X) = X♦ = A, and A is the set of attributes that are possibly
possessed by X , then by the definition of a property oriented concept, we can conclude
that (X,A) is a property oriented concept of PL(K).

Theorem 2 actually manifests that by using possible attribute analysis, we can deter-
mine the prime cliques of a social network. What is more, if a clique X is prime, we
can derive its close contact via a property oriented concept (X,X♦).

Continued with Example 1, the corresponding formal context K of the social net-
work G is shown in Table 2.

Table 2. The formal context K of the social network in Example 1.

1 2 3 4 5

1 * *

2 * * * * *

3 * * * *

4 * * *

5 * * *

The property oriented concept lattice of K is shown in Fig. 2. In this figure, for
convenience we omit the brackets and commas in the representations of the sets.

It can be checked that all the extents of PL(K) are prime cliques except ∅. Con-
cretely, there are 7 prime cliques of G, which are collectively listed with their close
contact in Table 3.

4 Close Contact Detection in Dynamic Social Networks

An evolutionary process may occurs from time to time in almost all real social networks,
and the relationship between individuals will continuously change as time goes on [25].
In this section, we discuss close contact detection in dynamic social networks.
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Fig. 2. The property oriented concept lattice PL(K).

Table 3. Prime cliques and their close contacts

Prime clique Close contact

{1, 2, 3, 4, 5} {1,2,3,4,5}

{1, 4} {1,2,3,4}

{1, 5} {1,2,3,5}

{3, 4, 5} {2,3,4,5}

{1} {1,2}

{4} {2,3,4}

{5} {2,3,5}

4.1 The Dynamic Updating of Close Contacts in Social Networks

Under the settings of possible attribute analysis, the task of dynamic updating of close
contacts in social networks is equivalent to dynamic updating of property oriented con-
cept lattice when the formal context changes under the evolution of a social network.

When adding a new objet to a social network, one row and one column will be added
to the corresponding formal context. In fact, adding one row is to add one object to the
original formal context, and adding one column is to add one attribute to the original
formal context. Then, the task of the updating of a property oriented concept lattice can
be divided into two steps:

– adding an object to the formal context and updating the lattice;
– adding an attribute to the formal context and updating the lattice.

Inspired by the traditional methods for updating formal concept lattices [11,20,31,
35], we can get the ones for updating property oriented concept lattices. Algorithm 1
updates a property oriented concept lattice when adding a new object, and Algorithm 2
updates a property oriented concept lattice when adding a new attribute.
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Algorithm 1. The updating of a property oriented concept lattice when adding a new
object
Input: A property oriented concept lattice PL(K), and a new object x.
Output: The updated property oriented concept lattice PL(K′).
1: Visit the lattice structure of PL(K) from the maximal concept in a descending order.
2: For each visited concept (X,A) of PL(K)
3: If A ∪ {x}∗ = A
4: Then perform updating (X,A) → (X ∪ {x}, A).
5: Else
6: If there is no concept with an intent A ∪ {x}∗

7: Then
8: (X,A) keeps unchanged.
9: Create a new concept (X ∪ {x}, A ∪ {x}∗).
10: Insert (X ∪ {x}, A ∪ {x}∗) into the current hierarchical structure.
11: End If
12: End If
13: End For
14: Return the obtained hierarchical structure PL(K′).

Fig. 3. The updated toy social network when adding a new object 6.

Example 2. Continued with Example 1.We add a new object 6, and correlate it to object
1, 2, and 5. Then, the updated social network can be seen in Fig. 3, and its corresponding
formal context is shown in Table 4 .

After updating the property oriented concept lattice, we obtain the result shown in
Fig. 4.

By Fig. 4, it can be observed that there are 9 prime cliques of G, including
{1, 2, 3, 4, 5, 6}, {2, 3, 5}, {1, 4}, {1, 5, 6}, {3, 4}, {1, 6}, {1}, {4}, and {5}. Beside,
it can be seen that there are 5 prime cliques keeping unchanged, i.e., {1, 4}, {2, 3, 5},
{1}, {4}, and {5}, which accounts for 5

7 of the prime cliques of the original network. In
other words, only a few prime cliques will change after updating the original network.
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Algorithm 2. The updating of a property oriented concept lattice when adding a new
attribute
Input: A property oriented concept lattice PL(K), and a new object x.
Output: The updated property oriented concept lattice PL(K′).
1: Visit the lattice structure of PL(K) from the minimal concept in an ascending order.
2: For each visited concept (X,A) of PL(K)
3: IfX ∩ {a}∗ = ∅
4: Then (X,A) keeps unchanged..
5: Else
6: Perform updating (X,A) → (X,A ∪ {a}).
7: If there is no concept with an extent X − {a}∗

8: Then
9: Create a new concept (X − {a}∗, A).
10: Insert (X − {a}∗, A) into the current hierarchical structure.
11: End If
12: End If
13: End For
14: Return the obtained hierarchical structure PL(K′).

Table 4. The updated formal context K of the social network in Example 2.

1 2 3 4 5 6

1 * * *

2 * * * * * *

3 * * * *

4 * * *

5 * * * *

6 * * * *

Table 5. Experimental results on social networks with varying sizes.

N 10 20 30 40 50

Lattice size 38 510 3438 15790 54974

Run-time(ms) 1 59 1636 38227 107401

4.2 Experimental Analysis

The sizes of social networks (denoted as N ), as well as the probability that any two
nodes in social networks are related (denoted as P ), will greatly affect the running time
and the scale of concept lattices. In this subsection, experimental analysis is adopted to
show the performance of the proposed method.

In the experiment, we control P and N , and generate the social networks by using
random numbers to determine whether any tow nodes are connected.

First, we stipulate p = 50%, and generate social networks with different sizes. The
experimental results are shown in Table 5.
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Fig. 4. The updated property oriented concept lattice of Example 2.

And then, we stipulate N = 30, and generate social networks with varying proba-
bilities between nodes. The experimental results are shown in Table 6.

Table 6. Experimental results on social networks with varying probabilities between nodes.

P 30% 40% 50% 60% 70%

Lattice size 16520 9717 3283 1058 520

Run-time(ms) 37226 11862 1580 265 76

From the experimental results, it can be observed that a lot of property oriented
concepts are extracted with a considerable time consuming even for social networks of
relatively small sizes. However, in most cases, it is unnecessary to mine all the patterns
in applications, and we only care about a small proportion of them. For example, In
epidemiological investigations, we only focus on those who carry pathogens, and those
who have close contact with them.

Continued with Example 1, suppose 4 and 5 have been affected. Then, epidemiolog-
ical investigations can be carried out with these two patients. Concretely, we have that
c({4}) = {2, 3, 4}, c({5}) = {2, 3, 5}, and c({4, 5}) = {2, 3, 4, 5}. In other words,
individuals 2 and 3 are close contacts.

In fact, with the aids of a property oriented lattice, the same results can also be
obtained. However, it is worth noting that with the help of a property oriented lattice,
we can derive more different interesting information.

For instance, by a property oriented concept ({3, 4, 5}, {2, 3, 4, 5}), it can be
observed that c({3, 4, 5}) = c({4, 5}) = {2, 3, 4, 5}, which implies that when adding
individual 3 into the clique {4, 5}, the close contacts keeps unchanged. In other words,
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the arrival of individual 3 can not change the range of close contacts. But if we add other
individuals into the clique {4, 5}, the range of close contacts will change, For instance,
if we add individual 2 into the clique {4, 5}, we have c({2, 4, 5}) = {1, 2, 3, 4, 5}.

5 Conclusion

Early detection and treatment is an effective way to curb the spread of COVID-19. This
paper has proposed a method to detect close contacts by using possible concept anal-
ysis. Specifically, we have realized close contact detection based on property oriented
concepts. Moreover, we have discussed the dynamic updating of close contacts when
the social network changes. Finally, we have pointed out the advantages of exploring a
social network by using formal concept analysis.

In the future, the following issues need our further explorations: (1) directed and
weighed complex networks are more in line with the needs of practical applications,
and further research is strongly needed; (2) incomplete information permeates in almost
all application scenarios, how to mine useful information in incomplete environment
deserves our efforts; (3) what is more, using parallel computing technic to accelerate
knowledge discovery is another important issue.

Acknowledgements. We would like to thank the organization committee of the 2022 Interna-
tional Joint Conference on Rough Sets, which provides us an opportunity to share recent devel-
opments in conceptual knowledge discovery and machine learning based on three-way decisions
and granular computing.
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Abstract. Conflict analysis is commonly based on a conflict situation
involving agents and their ratings or attitudes toward a set of issues.
Analyzing the relationships between agents is one of the essential topics
in conflict analysis. Alliance, conflict, and neutrality are three typical
relations. The majority of existing research adopts an auxiliary function
that uses +1, −1, and 0 to denote these three relations concerning a single
issue. An auxiliary function is aggregated for a group of issues, which is
primarily limited to taking the average in the existing works. Moreover,
computing the values of an auxiliary function is also associated with
potential semantics issues. This paper proposes a probabilistic approach
to analyzing agent relations, which is very different from the current
approaches. Bayesian confirmation is adopted to explore how a rating
confirms or disconfirms the alliance/conflict relation between two agents.
Accordingly, we construct three regions of confirmatory, disconfirmatory,
and neutral ratings. Three types of confirmation rules are induced from
these regions and used to devise appropriate strategies in maintaining
and developing relations with agents.

Keywords: Three-way conflict analysis · Bayesian confirmation ·
Agent relation · Three-way decision

1 Introduction

Conflict analysis studies the conflict situations between agents or organizations
that arise from their attitudes towards a set of issues. To formulate a conflict sit-
uation, Pawlak proposed a situation table that takes a set of agents as rows, a set
of issues as columns, and the ratings or attitudes as the table cells [17]. There are
commonly three types of ratings, namely, positive, negative, and neutral, which
are represented by +1, −1, and 0, respectively. The majority of existing research
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follows such a three-valued situation table [1,2,13–16,18,19,24–26], although an
extension to multi-valued situation tables has been presented in [21].

One of the essential topics in conflict analysis is the relationships between
agents. There are typically three kinds of agent relationships: alliance, conflict,
and neutrality. The use of threes, such as three ratings and three agent relations,
links conflict analysis to the theory of three-way decision [20,22] that exploits
a philosophy of thinking in threes, a methodology of working in threes, and a
mechanism of processing in threes. In a more concrete and narrow sense, the
Trisecting-Acting-Outcome (TAO) model is presented to model the general pro-
cess of three-way decision [20]. It includes a Trisecting step of dividing a whole
into three parts, an Acting step of devising and applying appropriate strategies
to process the three parts, and an Outcome step of evaluating and optimizing
the overall results. The connections between conflict analysis and three-way deci-
sion lead to the topic of three-way conflict analysis, which attracts increasing
attention from researchers [4,12,14–16,18,21,24–26].

A common way to analyze agent relations is by means of an auxiliary func-
tion. Typically, an auxiliary function uses +1, −1, 0 to qualitatively denote the
alliance, conflict, and neutrality relations. Regarding a single issue, it is com-
monly agreed that two agents are allied if they hold the same non-neutral (i.e.,
+1 or −1) rating, and they are in conflict if one holds a positive and the other
holds a negative rating. Different opinions have been argued about the cases
when at least one neutral rating of 0 is involved [16,17,21]. With respect to a set
of issues, an aggregation is often applied to the auxiliary function. A mainly used
aggregation is to simply take the average over individual issues, which results in
values from the interval [−1,+1]. After that, a pair of thresholds, typically one
positive and one negative, can be applied to cut off the values into three regions,
corresponding to the alliance, conflict, and neutrality relations. Luo et al. [16]
point out a semantics issue associated with such an aggregation of an auxiliary
function and present a pair of alliance and conflict functions instead to analyze
the agent relations. The alliance and conflict functions are aggregated separately
by taking the average and are considered together to decide the relation between
agents.

While the existing works are confined mainly with the use of auxiliary,
alliance, conflict functions and their aggregations, we present a probabilistic per-
spective of analyzing agent relations based on Bayesian confirmation. Take the
alliance relation as an example. For a given agent a, we could formulate a hypoth-
esis that an agent is allied with a. The ratings on a set of issues together form a
description or a piece of evidence of an agent. Bayesian confirmation measures
are adopted to quantify the degree to which a rating confirms or disconfirms
the hypothesis that the corresponding agent is allied with a. Accordingly, we
apply two thresholds to construct three regions of ratings that confirm, discon-
firm, and are neutral to the hypothesis. Three types of confirmation rules can
be correspondingly induced to predict the agent relations based on ratings. This
presented approach eliminates the need for any auxiliary function to represent
the relations and the associated semantics issues of interpreting the aggregation
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of a function. Furthermore, the presented probabilistic view is novel and unique
in three-way conflict analysis. The ratings over a set of issues are considered
together to form a description or a piece of evidence of an agent, rather than
aggregating the ratings or an auxiliary function to produce a single value.

The rest of this paper is arranged as follows. Section 2 briefly reviews the
basic concepts in Bayesian confirmation and conflict analysis. The presented
approach is then discussed in Sect. 3 and illustrated with an example in Sect. 4.
Section 5 summarizes the work and discusses possible directions of future work.

2 Overviews of Bayesian Confirmation and Conflict
Analysis

This section reviews the basic concepts of Bayesian confirmation and analyzing
agent relationships in conflict analysis.

2.1 Bayesian Confirmation

Confirmation theory studies how a piece of evidence e confirms a hypothesis h.
In general, the concept of confirmation can be defined through standard logic
or probability theory. The logic branch is built on Hempel’s work that describes
instantial confirmation as a relation between instances and propositions [8]. In
a nutshell, an instance confirms a proposition if it satisfies both the condition
and the conclusion in the proposition; it disconfirms the proposition if it satis-
fies the condition but not the conclusion; otherwise, it is neutral/irrelevant to
the proposition. For the probability branch, Carnap [3,5] presents that a pre-
cise probabilistic explication of confirmation should include the following three
aspects:

– Qualitative confirmation: e inductively supports h;
– Comparative confirmation: e supports h more strongly than e′ supports h′;
– Quantitative confirmation: e inductively supports h to a degree.

In particular, Bayesian confirmation considers the posterior probability Pr(h|e)
and the prior probability Pr(h) to interpret the above three aspects. There
are two ways to interpret the qualitative confirmation, that is, the absolute
and incremental confirmation [6]. The absolute confirmation simply compares
the posterior probability with a given threshold. Accordingly, e confirms h if
Pr(h|e) is greater than the threshold. The incremental confirmation compares
the posterior probability to the prior probability and interprets the qualitative
confirmation as follows:

⎧
⎨

⎩

e confirms h, iff Pr(h|e) > Pr(h);
e is (confirmationally) irrelevant/neutral to h, iff Pr(h|e) = Pr(h);
e disconfirms h, iff Pr(h|e) < Pr(h).

For quantitative confirmation, Bayesian confirmation applies various quantita-
tive confirmation measures that involve the posterior probability Pr(h|e) and
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the prior probability Pr(h). A few equivalent interpretations of the qualitative
conditions inspire a series of commonly used quantitative measures. For exam-
ple, the condition Pr(h|e) > Pr(h) could be equivalently expressed as follows
by applying Baye’s theorem [6,9,10,23]:

Pr(h|e) > Pr(h) ⇐⇒ Pr(h|e)
Pr(h)

> 1 ⇐⇒ Pr(e|h)
Pr(e)

> 1 ⇐⇒ Pr(e|h)
Pr(e|¬h)

> 1, (1)

where ¬h represents the negation of h and all denominators are assumed to be
non-zero. These equivalent formulations give rise to the following quantitative
confirmation measures [5]:

cd(h, e) = Pr(h|e) − Pr(h),

cr(h, e) =
Pr(h|e)
Pr(h)

=
Pr(e|h)
Pr(e)

,

c+r (h, e) =
Pr(e|h)

Pr(e|¬h)
. (2)

There is a special number that represents neutrality in a quantitative measure.
For example, this number is 0 in cd(h, e) and 1 in all the other measures in
Eq. (2). To be consistent with the qualitative confirmation, the following set of
qualitative constraints is usually required in a quantitative measure:

c(h, e)

⎧
⎨

⎩

> 0, iff e confirms h,
= 0, iff e is neutral to h,
< 0, iff e disconfirms h.

(3)

A quantitative measure is called a relevance measure if it satisfies the above
qualitative constraints. Apparently, cd(h, e) is a relevance measure. The other
measures in Eq. (2) could be normalized into the following relevance measures [5–
7]:

cnr(h, e) = cr(h, e) − 1,

c+nr(h, e) = c+r (h, e) − 1,

clr(h, e) = log cr(h, e),
c+lr(h, e) = log c+r (h, e). (4)

The comparative confirmation could be easily interpreted through quantitative
confirmation measures by comparing c(h, e) and c(h′, e′).

2.2 Analyzing Agent Relationships in Conflict Analysis

Conflict analysis can be formulated based on a situation table that describes the
attitudes of agents toward issues. Formally, a situation table can be represented
by the following triplet [17,21]:

S = (A, I, r), (5)
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where A is a finite nonempty set of agents, I is a finite nonempty set of issues,
and r : A × I → {+1, 0,−1} is a rating function with the ratings interpreted as:
for a ∈ A, i ∈ I,

⎧
⎨

⎩

r(a, i) = +1, iff a is positive on i;
r(a, i) = 0, iff a is neutral on i;
r(a, i) = −1, iff a is negative on i.

Yao [21] discusses an extension of the above three-valued situation table into a
many-valued situation table where a rating could take any value between the
interval [−1, 1]. In this work, we limit our discussion to three-valued situation
tables.

One of the essential topics in conflict analysis is to study the relationships
between agents. Typically, there are three relationships between two agents,
namely, alliance, conflict, and neutrality relations. With respect to a single issue,
the followings are generally agreed:

– an agent is self-allied;
– two positive ratings or two negative ratings lead to an alliance relation;
– a positive rating and a negative rating lead to a conflict relation;
– a neutral rating and a non-neutral rating leads to a neutrality relation.

Different opinions have been presented when two neutral ratings are involved.
In this case, Pawlak [17] considers a neutrality relation if the two agents are
different persons/organizations and an alliance relation if they are actually the
same (i.e., an agent is self-allied). Instead, Yao [21] argues that two neutral
ratings also express a kind of alliance between agents and, therefore, considers
an alliance relation no matter whether the two neutral ratings are from the same
agent or different agents. Luo et al. [16] summarize all meaningful possibilities
into a general framework, which could cover both Pawlak’s and Yao’s opinions.

The formal definitions of the relationships between agents are commonly for-
mulated through an auxiliary function. An auxiliary function is usually defined
in terms of ratings and uses the three values of +1, −1, and 0 to denote the
alliance, conflict, and neutrality relations, respectively. For two agents x, y ∈ A
and an issue i ∈ I, the above Pawlak’s opinion leads to the following auxiliary
function [17]:

ΦP
i (x, y) =

⎧
⎨

⎩

+1, r(x, i) · r(y, i) = +1 or x = y,
−1, r(x, i) · r(y, i) = −1,
0, r(x, i) · r(y, i) = 0 and x �= y.

(6)

In contrast, Yao’s auxiliary function is defined as [21]:

ΦY
i (x, y) =

⎧
⎨

⎩

+1, r(x, i) = r(y, i),
−1, r(x, i) · r(y, i) = −1,
0, r(x, i) · r(y, i) = 0 and r(x, i) �= r(y, i).

(7)
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Using an auxiliary function Φi, the three relations with respect to a single issue
i ∈ I can be defined as a trisection of agent pairs in A × A [21]:

R=
i = {(x, y) ∈ A × A | Φi(x, y) = +1},

R�
i = {(x, y) ∈ A × A | Φi(x, y) = −1},

R≈
i = {(x, y) ∈ A × A | Φi(x, y) = 0}, (8)

where R=
i , R�

i , and R≈
i denote the alliance, conflict, and neutrality relations,

respectively.
When it comes to a set of issues J ⊆ I, the relations between two agents are

commonly defined by aggregating their relations on every single issue from J .
For example, one may define an aggregated auxiliary function by taking average
as [16]:

ΦJ(x, y) =

∑

i∈J

Φi(x, y)

|J | , (9)

where | · | denotes the cardinality. Then the three relations can be defined by
applying two thresholds on the aggregated auxiliary function. Formally, for a
pair of thresholds (α, β) with −1 ≤ β < 0 < α ≤ +1, we have:

R=
J = {(x, y) ∈ A × A | ΦJ (x, y) ≥ α},

R�
J = {(x, y) ∈ A × A | ΦJ (x, y) ≤ β},

R≈
J = {(x, y) ∈ A × A | β < ΦJ(x, y) < α}. (10)

Then the relations regarding a single issue defined in Equation (8) become special
cases of those in Eq. (10) with J = {i}, α = +1, and β = −1. Luo et al. [16]
further consider the aggregations of an auxiliary function with respect to a set
of issues, a set of agents as the first parameter, a set of agents as the second
parameter, and any combination of the three.

Instead of aggregating an auxiliary function, the relations can also be defined
through aggregating the rating function r or a distance function. Pawlak [17]
defines a distance function on a single issue through his auxiliary function ΦP

i .
Accordingly, an aggregated distance function over J is defined by taking the
average and is used to formulate the alliance, conflict, and neutrality relations.
Yao [21] defines a conflict function ci : A × A → [0, 1] that represents the
degree of conflict between two agents regarding a single issue i. The conflict
function is aggregated over J by taking the average and is used to define three
levels of conflict between agents. Lang [12] and Lang and Yao [14] consider a
pair of alliance and conflict evaluation functions on J that take values from
the intervals [0, 1] and [−1, 0], respectively. Luo et al. [16] present a pair of
alliance and conflict functions on i that take values from the set {0, 1}. The
two functions are aggregated separately and considered together in defining the
alliance, conflict, and neutrality relations between agents. Zhi et al. [26] explore
the relations through consistency and inconsistency measures inspired by formal
concept analysis. Sun et al. [18] apply the decision-making approach used in
probabilistic rough sets over two universes to determine the attitude of an agent
towards a set of issues, which can be further used to formulate the agent relations.
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3 Analyzing Agent Relationships Based on Bayesian
Confirmation

For a set of issues J ⊆ I of interest, the ratings of an agent toward these issues
form a piece of evidence about the agent. We consider a set representation to
formulate such a rating, which collects all the pairs of an issue from J and
the corresponding rating from {+1, 0,−1}. For example, for J = {i1, i2} ⊆ I,
{〈i1,+1〉, 〈i2, 0〉} is a rating on J , which represents a positive rating on the issue
i1 and a neutral rating on i2. Furthermore, we treat the empty rating, represented
by ∅, as valid, and it is the only rating that could be formulated in a special case
of J = ∅. We define the following concept of rating spaces by considering all the
possibilities of a rating on J .

Definition 1. For a given set of issues J = {i1, i2, · · · , i|J|} ⊆ I, the rating
space RATJ on J is defined as follows:

RATJ =

⎧
⎨

⎩

{∅}, J = ∅,
{ {〈i1, v1〉, 〈i2, v2〉, · · · , 〈i|J|, v|J|〉} | v1, v2, v|J| ∈ {−1, 0,+1} }

, J 
= ∅,
(11)

where | · | represents the cardinality of a set.

A rating in RATJ contains exactly one pair for each issue in J . For simplicity,
we will use RATi to denote a rating space on a singleton set {i}. Apparently,
the cardinality of the rating space on J is:

|RATJ | = 3|J|. (12)

Consider a simple example of J = {i1, i2}. The corresponding rating space is:

RAT{i1,i2} =
{
{〈i1,+1〉, 〈i2,+1〉}, {〈i1,+1〉, 〈i2, 0〉}, {〈i1,+1〉, 〈i2,−1〉},
{〈i1, 0〉, 〈i2,+1〉}, {〈i1, 0〉, 〈i2, 0〉}, {〈i1, 0〉, 〈i2,−1〉},
{〈i1,−1〉, 〈i2,+1〉}, {〈i1,−1〉, 〈i2, 0〉}, {〈i1,−1〉, 〈i2,−1〉}

}
.(13)

We represent the family of ratings on any subset of I as:

RAT =
⋃

J⊆I

RATJ . (14)

Based on the above concept of rating spaces, we can generalize the rating
function r regarding a single agent and a single issue into a rating function r′

that takes a single agent and a set of issues as:

r′ : A × 2I → RAT , (15)

where 2I represents the power set of I. For a given set of issues J ⊆ I, the rating
r′(a, J) ∈ RATJ is a piece of evidence about an agent a ∈ A. For simplicity,
we will omit the superscript ′ and use r to represent both rating functions in
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our following discussion, where they can be easily distinguished without any
confusion.

There are three relations between agents, namely, alliance, conflict, and neu-
trality. We focus on analyzing the alliance relation in this work. The other two
relations can be similarly studied. From the view of confirmation, for a given set
of issues J ⊆ I, we formulate two complementary hypotheses regarding a given
agent a ∈ A: (1) an agent is an ally of a, represented by R=

(a,J); (2) an agent is
not an ally of a, represented by ¬R=

(a,J). We follow a few recent works [12,16,21]
that use the superscripts =, , and ≈ to represent alliance, conflict, and neutral-
ity relations, respectively. It should be noted that an agent does not necessarily
have a conflict relation with a in the case of the hypothesis ¬R=

(a,J). They may
also have a neutrality relation.

There is a subtle issue that needs to be solved before we could investigate
the confirmation relationships between ratings and the above hypotheses. For a
rating rat ∈ RATJ , the posterior probability Pr(R=

(a,J)|rat) is necessary in cal-
culating a Bayesian confirmation measure c(R=

(a,J), rat). However, the posterior
probability is not available for a rating that does not appear in a given situation
table. Therefore, we focus on the set of ratings with respect to J that appear in
a given situation table S, denoted as RATS

J , and construct the following three
confirmation regions regarding the allies of an agent.

Definition 2. Given a set of issues J ⊆ I and an agent a ∈ A in a situation
table S, we construct the following confirmatory CON, disconfirmatory DIS, and
neutral NEU regions regarding the allies of a:

CON=(a, J) = {rat ∈ RATS
J | c(R=

(a,J), rat) ≥ s},

DIS=(a, J) = {rat ∈ RATS
J | c(R=

(a,J), rat) ≤ t},

NEU=(a, J) = {rat ∈ RATS
J | t < c(R=

(a,J), rat) < s}, (16)

where c is a Bayesian confirmation measure and s, t are two thresholds satisfying
t < s.

Extra conditions may be introduced to make the ranges of the two thresholds
s and t meaningful. Generally, the value that represents neutrality in a Bayesian
confirmation measure should be in between s and t. For example, we would
require t < 0 < s if a relevance measure is used and 0 < t < 1 < s if cr in Eq. (2)
is used.

We could formulate three types of confirmation rules from the three confir-
mation regions. Specifically, we have the confirmatory C=, disconfirmatory D=,
and neutral N= rules as follows:

(C=) ∀ rat ∈ CON=(a, J), rat →C R=
(a,J),

(D=) ∀ rat ∈ DIS=(a, J), rat →D R=
(a,J), or equivalently, rat →C ¬R=

(a,J),

(N=) ∀ rat ∈ NEU=(a, J), rat →N R=
(a,J), (17)
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where →C , →D, and →N represent confirmation, disconfirmation, and neutral-
ity, respectively. For an arbitrary agent b, if r(b, J) ∈ CON=(a, J), or equiva-
lently, we have a confirmatory rule r(b, J) →C R=

(a,J), then b is confirmed to be
in an alliance relation with a, that is, the rating r(b, J) increases our belief that
b is an ally of a. Similarly, if r(b, J) ∈ DIS=(a, J), or equivalently, we have a dis-
confirmatory rule r(b, J) →D R=

(a,J), then b is disconfirmed to be in an alliance
relation with a, that is, the rating r(b, J) decreases our belief that b is an ally of
a. Otherwise, b is neither confirmed nor disconfirmed to be an ally of a. In other
words, its rating r(b, J) does not affect our belief on b being an ally of a.

Our formulation is different from the existing studies on agent relationships
in a few aspects. Firstly, we present a rating-oriented approach that trisects
the ratings instead of agents or agent pairs. A common idea in existing studies
is to trisect all pairs of agents into three regions of the alliance, conflict, and
neutrality relations, as introduced in Sect. 2.2. Such an agent-oriented approach
may introduce difficulties in analyzing agent relationships. Although the rela-
tions between agents are specified, the rules or reasons behind them are not
clearly expressed, making it challenging to understand and interpret the rela-
tions. In contrast, our approach trisects the ratings and accordingly, the rules
can be easily formulated. The whole process is not related to any specific agent,
making the rules general and easily applicable to any agent, especially when new
agents join the situation. Moreover, the ratings can be considered as represen-
tations of agents. Agents with the same rating are reasonably analyzed in the
same way, making ratings meaningful and intuitive. Secondly, we adopt a prob-
abilistic view by applying Bayesian confirmation instead of aggregating ratings
in existing studies. Furthermore, rather than solely the posterior probability,
we compare the posterior and prior probabilities, which reflects the impact of
ratings on changing our belief of the relation.

The three types of confirmation rules may help an agent take appropri-
ate strategies in building relationships with others, especially with new agents
joining the situation. If an agent b has a rating in the confirmatory region
CON=(a, J), the rating of b significantly increases the probability of b being an
ally of a. Therefore, it is promising for a to invest efforts in building an alliance
relation with b. In contrast, if b holds a rating from the disconfirmatory region
DIS=(a, J), the rating of b significantly decreases the probability of b being an
ally of a. In this case, a may expect b to be a potential enemy regarding the set
of issues J . Otherwise, if b holds a rating from the neutral region NEU=(a, J),
the rating of b does not affect the probability of b being an ally of a. Thus, a
may look for factors other than ratings in order to pursue an alliance relation
with b.

The above idea of taking different strategies to build relationships based on
a trisecting relates our framework with the Trisecting-Acting-Outcome (TAO)
model of three-way decision proposed by Yao [20]. As the name suggests, the
TAO model involves three steps that are shown in Fig. 1: (1) a trisecting step
that divides a whole into three parts; (2) an acting step that devises and applies
appropriate strategies to deal with the three parts; (3) an outcome-evaluation
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step that evaluates the overall results from the previous two steps. In contrast
to the trisecting step that has been widely studied, the acting and outcome-
evaluation steps are only explored in a few recent works [11,22].

Fig. 1. The TAO model of three-way decision [22]

Following the TAO model in Fig. 1, we summarize our framework of analyzing
alliance relation based on Bayesian confirmation as given in Fig. 2. We omit the
third step of outcome evaluation as it is not explored in the proposed framework.
Furthermore, the evaluation of the analysis of agent relationships is not well
studied in the literature. It could be an interesting direction for the future work
of our framework.

Fig. 2. Analyzing alliance relation based on Bayesian confirmation
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4 An Example

We illustrate the presented model with the situation table S given in Table 1,
which describes the opinions of fourteen agents on four issues. Specifically, we
have A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14} and I = {i1, i2, i3,
i4}, denoting the set of agents and the set of issues, respectively.

Table 1. A situation table

i1 i2 i3 i4

a1 +1 −1 0 0

a2 −1 0 −1 +1

a3 0 0 −1 0

a4 −1 −1 −1 −1

a5 0 +1 0 +1

a6 −1 0 −1 0

a7 −1 +1 −1 −1

a8 0 +1 0 0

a9 +1 +1 0 +1

a10 −1 −1 −1 0

a11 0 +1 0 −1

a12 −1 0 −1 0

a13 +1 +1 0 +1

a14 −1 0 −1 −1

Let us consider the allies of the agent a1 with respect to the set of issues
J = {i1, i2, i3} ⊆ I. Suppose the prior probability that an agent is allied with a1

towards J is Pr(R=
(a1,J)

) = 0.3. For simplicity, we assume this prior probability
is given in this simple illustration. In real applications, this prior probability
may be estimated based on the relations between agents in previous conflict
situations or factors outside the current conflict situation. Suppose the set of
allies of a1 regarding J turns out to be R=

J (a1) = {a1, a5, a9, a11, a12, a13}.
Table 2 shows the calculation of the posterior probabilities regarding the rat-
ings in RATS

J = {rat1, rat2, rat3, rat4, rat5, rat6, rat7}. For example, for rat1 =
{〈i1,+1〉, 〈i2,−1〉, 〈i3, 0〉}, we have:

Pr(R=
(a1,J)

|rat1) =
|R=

J (a1) ∩ {a1}|
|{a1}| = 1. (18)

Suppose we adopt the confirmation measure cd(h, e) = Pr(h|e) − Pr(h)
in Eq. (2). The values of the confirmation measure cd regarding the ratings in
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Table 2. Calculating the posterior probabilities

Rating Corresponding agents Posterior probability

rat1 = {〈i1,+1〉, 〈i2,−1〉, 〈i3, 0〉} {a1} Pr(R=
(a1,J)|rat1) = 1

1
= 1

rat2 = {〈i1,−1〉, 〈i2, 0〉, 〈i3,−1〉} {a2, a6, a12, a14} Pr(R=
(a1,J)|rat2) = 1

4
= 0.25

rat3 = {〈i1, 0〉, 〈i2, 0〉, 〈i3,−1〉} {a3} Pr(R=
(a1,J)|rat3) = 0

1
= 0

rat4 = {〈i1,−1〉, 〈i2,−1〉, 〈i3,−1〉} {a4, a10} Pr(R=
(a1,J)|rat4) = 0

2
= 0

rat5 = {〈i1, 0〉, 〈i2,+1〉, 〈i3, 0〉} {a5, a8, a11} Pr(R=
(a1,J)|rat5) = 2

3
≈ 0.67

rat6 = {〈i1,−1〉, 〈i2,+1〉, 〈i3,−1〉} {a7} Pr(R=
(a1,J)|rat6) = 0

1
= 0

rat7 = {〈i1,+1〉, 〈i2,+1〉, 〈i3, 0〉} {a9, a13} Pr(R=
(a1,J)|rat7) = 2

2
= 1

Table 1 are computed as:

cd(R=
(a1,J)

, rat1) = Pr(R=
(a1,J)

|rat1) − Pr(R=
(a1,J)

) = 1 − 0.3 = 0.7,

cd(R=
(a1,J)

, rat2) = Pr(R=
(a1,J)

|rat2) − Pr(R=
(a1,J)

) = 0.25 − 0.3 = −0.05,

cd(R=
(a1,J)

, rat3) = Pr(R=
(a1,J)

|rat3) − Pr(R=
(a1,J)

) = 0 − 0.3 = −0.3,

cd(R=
(a1,J)

, rat4) = Pr(R=
(a1,J)

|rat4) − Pr(R=
(a1,J)

) = 0 − 0.3 = −0.3,

cd(R=
(a1,J)

, rat5) = Pr(R=
(a1,J)

|rat5) − Pr(R=
(a1,J)

) = 0.67 − 0.3 = 0.37,

cd(R=
(a1,J)

, rat6) = Pr(R=
(a1,J)

|rat6) − Pr(R=
(a1,J)

) = 0 − 0.3 = −0.3,

cd(R=
(a1,J)

, rat7) = Pr(R=
(a1,J)

|rat7) − Pr(R=
(a1,J)

) = 1 − 0.3 = 0.7. (19)

By Definition 2, with a pair of thresholds s = 0.2 and t = −0.2, we construct
the three regions as:

CON=(a1, J) = {rat ∈ RATS
J | c(R=

(a1,J)
, rat) ≥ 0.2}

= {rat1, rat5, rat7};
DIS=(a1, J) = {rat ∈ RATS

J | c(R=
(a1,J)

, rat) ≤ −0.2}
= {rat3, rat4, rat6};

NEU=(a1, J) = {rat ∈ RATS
J | −0.2 < c(R=

(a1,J)
, rat) < 0.2}

= {rat2}. (20)

We divide the set RATS
J into three disjoint parts CON=(a1, J), DIS=(a1, J),

and NEU=(a1, J) with respect to the agent a1. Accordingly, we formulate the
confirmation rules as:

(C=) rat1 = {〈i1,+1〉, 〈i2,−1〉, 〈i3, 0〉} →C R=
(a1,J)

,

rat5 = {〈i1, 0〉, 〈i2,+1〉, 〈i3, 0〉} →C R=
(a1,J)

,

rat7 = {〈i1,+1〉, 〈i2,+1〉, 〈i3, 0〉} →C R=
(a1,J)

;

(D=) rat3 = {〈i1, 0〉, 〈i2, 0〉, 〈i3,−1〉} →D R=
(a1,J)

,

rat4 = {〈i1,−1〉, 〈i2,−1〉, 〈i3,−1〉} →D R=
(a1,J)

,

rat6 = {〈i1,−1〉, 〈i2,+1〉, 〈i3,−1〉} →D R=
(a1,J)

;

(N=) rat2 = {〈i1,−1〉, 〈i2, 0〉, 〈i3,−1〉} →N R=
(a1,J)

. (21)



A Probabilistic Approach to Analyzing Agent Relations 331

Using the rating from an agent on J as a piece of evidence, one can classify the
agents in A into three disjoint parts according to the three types of confirmation
rules. If an agent a ∈ A has a rating from {rat1, rat5, rat7} on J , it increases the
probability of a being allied with a1; if a has a rating from {rat3, rat4, rat6}, it
decreases the probability of a being allied with a1; if a has a rating from {rat2},
it does not affect the probability of a being allied with a1. In other words, the
agents with the ratings rat1, rat5, and rat7 are more likely to be allied with a1;
the agents with the rating rat2 are on-average likely to be allied with a1; the
agents with the ratings rat3, rat4, and rat6 are less likely to be allied with a1.
If the agent a1 intends to win more allies, it must pay more attention to agents
with ratings rat1, rat2, rat5, and rat7.

5 Conclusion and Future Work

This paper applies Bayesian confirmation theory to analyzing agent relation-
ships in three-way conflict analysis. To formulate the approach, we present a
formal representation of a rating over a set of issues as a set of issue-rating
pairs. From the view of Bayesian confirmation, such a rating is considered as a
piece of evidence regarding a corresponding agent. Quantitative Bayesian confir-
mation measures are adopted to evaluate the degree to which a rating confirms
or disconfirms the hypothesis that a corresponding agent is allied with a given
agent. By applying a pair of thresholds, we construct three confirmation regions
of confirmatory, disconfirmatory, and neutral ratings and induce the correspond-
ing confirmation rules. These rules may help us understand and predict the allies
and enemies of a given agent and accordingly, devise appropriate strategies to
maintain or develop desired relationships with agents.

The presented approach introduces a probabilistic view of studying agent
relations in conflict analysis, which is very different from the existing com-
mon idea of aggregating auxiliary functions. There are a few directions for
further exploring this probabilistic approach, such as the estimation of prior
probability and the computation of the two thresholds. Furthermore, one can
analyze the conflict relation in a similar way and synthesize the results with
the analysis regarding the alliance relation to arrive at a final decision. This
requires a combination of alliance/non-alliance and conflict/non-conflict into
alliance/conflict/neutrality, which is a very interesting topic.
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Abstract. In granular computing, a single conditional attribute is usu-
ally used as a view to describe the target concept, and each view can
choose a specific level of granularity to describe the object in the hierar-
chical rough set model. However, the existing three-way decision model
cannot combine multi-level and multi-view to make decisions, and these
models are extremely complicated and difficult to apply. Within the
multi-level data, how to obtain a certain decision from different levels
and views is the most important issue. To this end, we propose a hier-
archical multi-granulation sequential three-way decision model by com-
bining multi-granularity and sequential three-way decisions. Specifically,
we construct concept hierarchy tree of conditional attribute, then con-
struct granular view under different levels of granularity, and update the
information by multi-step three-way decision-making method. Finally,
the experimental results demonstrate that the proposed model can mine
the rules of hierarchical decision table. The model will improve the the-
oretical framework of hierarchical rough set model.

Keywords: Hierarchical rough set · Multi-granulation · Three-way
decisions

1 Introduction

Sequential three-way decisions (S3WD) [1] is the closest approach to the way
human brain think. The key to sequential three-way decisions is to transform
delayed decisions into definite (accept and reject) decisions by adding additional
information. Qian et al. [2] combined multi-granularity and three-way decision
to implement five multi-granulation sequential three-way decisions models with
typical aggregation strategies. Qian et al. [3] combined the hierarchical rough set
and three-way decision to propose a hierarchical sequential three-way decisions
model.

On the other hand, Granular computing(GrC) is a method to simulate human
thinking and solve problems, the cognitive limitation of human beings and often
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Yao et al. (Eds.): IJCRS 2022, LNAI 13633, pp. 334–345, 2022.
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divide data into “granule” to observe, analyze and solve problems under different
levels of granularity. Thus, how to describe the granule is an important issue [4].
Qian et al. [5] proposed multi-granulation rough set to extend the classical
single-granulation rough set, and defined the approximation of the set by using
the multiple equivalence relations in the universe. Feng and Miao [6] proposed
a hierarchical rough set model to transform one-dimensional data into multi-
dimensional data by constructing a concept hierarchy tree. Wu and Leung [7,8]
proposed the multi-scale information table using multi-scale granular labeled
partition to describe the information granules of the scale. Hao et al. [9] intro-
duced sequential three-way decisions into the multi-scale decision table to study
the optimal scale selection problem of dynamic sequential update information.

A view is usually chosen to process data in the classical rough set models, and
a specific level is usually selected to describe the target concept for each view in
the hierarchical rough set models. Indeed, the existing three-way decision model
obtain information that cannot reflect multi-level and multi-view decisions. In
other words, the existing hierarchical rough set model cannot solve this type of
problem well. It is necessary to consider constructing different levels of granular
views in the hierarchical rough set models. The work of this paper provides an
in-depth study of this issue.

Three main contributions of this paper. Firstly, concept hierarchy tree of con-
ditional attribute is constructed and hierarchical decision table is defined. Sec-
ondly, we construct granular view under different levels of granularity based on
indistinguishable relations. Finally, we propose a hierarchical multi-granulation
sequential three-way decision model by combining multi-granularity and sequen-
tial three-way decisions.

The rest of the paper is organized as follows. Section 2 briefly reviews the
Pawlak rough set model, hierarchical decision table, multi-granulation rough set
and sequential three-way decisions. In Sect. 3, we construct the hierarchical deci-
sion table via granular view. Section 4 proposes a hierarchical multi-granulation
sequential three-way decision model by combining multi-granularity and sequen-
tial three-way decisions, then designs the corresponding algorithms and explore
some properties of the proposed model. Section 5 gives the relevant experiments
and conclusions. Finally, the paper ends with conclusions and further work in
Sect. 6.

2 Preliminaries

In this section, we will review some basic concepts of Pawlak rough set model,
multi-granulation rough set, hierarchical decision table and sequential three-way
decisions. For a detailed description, please refer to paper [5,6,10–12].

2.1 Pawlak Rough Set

In general, we use a four-tuple S = (U,AT = C ∪ D, {Va|a ∈ AT}, {fa|a ∈ A})
to represent the information system.
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Definition 1. Consider a partition πAi
induced by a set of conditional attribute

Ai, the upper and lower approximations of X with respect to the division Ai are
defined as follows:

apr
πAi

(X) = {x ∈ U |[x]Ai
⊆ X},

aprπAi
(X) = {x ∈ U |[x]Ai

∩ X �= φ}.
(1)

where |·| is the cardinal number of elements in the set.

2.2 Hierarchical Decision Table

Feng and Miao [6] proposed hierarchical rough set model by combining concept
hierarchy tree and rough set to describe multi-dimensional data.

Definition 2. Let HT = (U,AT = {al
i|i = 1, 2, . . . , s; l = 1, 2, . . . ,m} ∪ {d},

V, f) be a hierarchical decision table. The index set L = (l1, l2, . . . , ls) is called a
level combination of conditional attributes, which denotes the combination of the
conditional attribute ai at li-th levels, i = 1, 2, . . . , s. Each level combination L =
(l1, l2, . . . , ls) can form a single-level information table CL = {al1

1 , al2
2 , . . . , als

s }.
Definition 3. Given the L1 = (l11, l

1
2, . . . , l

1
s)-th decision table and L2 =

(l21, l
2
2, . . . , l

2
s)-th decision table. If l1i ≤ l2i (i = 1, 2, . . . , s), then L1 is said to

be coarser L2 or L2 is the finer L1, and is denoted as L1 � L2. Furthermore, if
there exists i = 1, 2, . . . , s such that l1i < l2i , then L1 is said to be strictly coarser
L2 or L2 is the strictly finer L1, and is denoted as L1 � L2.

2.3 QIAN’s MGRS

In what follows, the optimistic and pessimistic multi-granulation rough set are
briefly reviewed below.

Definition 4. Given a granular structure GS = {A1, A2, · · · , Aq} and ∀X ⊆ U ,

the optimistic multi-granulation lower and upper approximations
q∑

i=1

Ai

O

(X) and

q∑

i=1

Ai

O

(X) are defined as follows:

l∑

i=1

Ai

O

(X) = {x ∈ U : ∨
i=1,2,...q

[x]Ai
⊆ X}, (2)

q∑

i=1

Ai

O

(X) = ∼
q∑

i=1

Ai

O

( ∼ X). (3)

where ∼ X is the complement of set X.
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Definition 5. Given a granular structure GS = {A1, A2, · · · , Aq} and ∀X ⊆ U ,

the pessimistic multi-granulation lower and upper approximations
q∑

i=1

Ai

P

(X)

and
q∑

i=1

Ai

P

(X) are defined as follows:

l∑

i=1

Ai

P

(X) = {x ∈ U : ∧
i=1,2,...q

[x]Ai
⊆ X}, (4)

q∑

i=1

Ai

P

(X) = ∼
q∑

i=1

Ai

P

( ∼ X). (5)

where ∼ X is the complement of set X.

2.4 Sequential Three-Way Decisions

The sequential three-way decision model is the evolution of the multi-step clas-
sical three-way decision [12,13]. In what follows, we briefly review the sequential
three-way decisions.

Definition 6. Given a l-th level of the granular structure GSl =
{
Al

1, A
l
2, · · · ,

Al
q

}
, and a decision class Dj. The lower approximation apr

π
Al

i

(Dj) and the

upper approximation aprπ
Al

i

(Dj) are defined by

apr
ππ

Al
i

(Dj) = {x ∈ U l|[x]π
Al

i

⊆ Dj},

aprπ
Al

i

(Dj) = {x ∈ U l|[x]π
Al

i

∩ Dj �= ∅}.
(6)

where U1 = U , U l+1 = BNDπ
Al

i

(Dj) = aprπ
Al

i

(Dj)−apr
π

Al
i

(Dj), [x]π
Al

i

denotes

the equivalence class containing x in the partition U l/Al
i.

3 Hierarchical Decision Table via Granular View

The conditional attributes ai is formed along the l(ai) + 1 hierarchy levels:
0, 1, · · · , l(ai). Level 0 is the special value of Any (*). The hierarchy is con-
structed differently due to gaps in a priori knowledge.

We take a conditional attribute as a view, and all conditional attributes are
combined as a granular view. However, constructing an ideal granular view is a
complex and interesting issue. In Fig. 1, we use aggregation and decomposition
operations to construct granular views based on indistinguishable relationships.
All hierarchical granular views are represented as a lattice, red arrows indicate
finer paths and blue arrows indicate coarser paths. For convenience, gvl,t

i denotes
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granular view, where l denotes level of granular view and t denotes the number
of attributes ascending in the granular view. A multi-level granular structure
GSl,t with respect to a sequence of granular view {gvl,t

1 , gvl,t
2 , . . . , gvl,t

q }.

In Fig. 1, the top node gv1,0
1 = {a0

1, a
0
2, a

0
3} represents the most generalized

granular view, while the bottom node gv2,3
1 = {a1

1, a
1
2, a

1
3} denotes the detailed

granular view. Note that the node gv1,3
1 = {a1

1, a
1
2, a

1
3} is the largest granular

view in the level 1, and node gv2,0
1 = {a1

1, a
1
2, a

1
3} is the smallest granule in the

level 2, the two granular views are the same granular view under different levels
of granularity.

Fig. 1. Granular view under different levels of granularity

4 Hierarchical Multi-granulation Sequential Three-Way
Decisions

We combine sequential three-way decisions and multi-granularity to discuss the
influence of granular view on decision rule at different levels, then propose a hier-
archical multi-granulation sequential three-way decision(HMS3WD) and design
algorithms to explore the properties and theorems.

Definition 7. Given a hierarchical decision table HT , a given decision class
Dj, a multilevel granular structure GSl,t = {gvl,t

1 , gvl,t
2 , . . . , gvl,t

q }, gvl,t
i ∈ GSl,t
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be a parallel set of granular view, the lower approximation apr
π

gv
l,t
i

(Dj) and the

upper approximation aprπ
gv

l,t
i

(Dj) are defined by

apr
π

gv
l,t
i

(Dj) = {x ∈ U l,t|[x]gvl,t
i

⊆ Dj},

aprπ
gv

l,t
i

(Dj) = {x ∈ U l,t|[x]gvl,t
i

∩ Dj �= ∅}.
(7)

where U1,t = U,U l+1,t = aprπ
gv

l,t
i

(Dj) − apr
π

gv
l,t
i

(Dj) is the gradually reduced

universe.

Proposition 1. Given a hierarchical decision table HT , then the three-way
decision regions update of the granular view gv with respect to Dj is as fol-
lows:
(1) Positive region

POSgvl,t
i

(Dj) = apr
π

gv
l,t
i

(Dj)

= {x ∈ U l,t|[x]gvl,t
i

⊆ Dj};
(8)

(2) Boundary region

BNDgvl,t
i

(Dj) = aprπ
gv

l,t
i

(Dj) − apr
π

gv
l,t
i

(Dj)

= {x ∈ U l,t|[x]gvl,t
i

∩ Dj �= ∅};
(9)

(3) Negative region

NEGgvl,t
i

(Dj) = U l,t − aprπ
gv

l,t
i

(Dj)

= U l,t − POSgvl,t
i

(Dj) ∪ BNDgvl,t
i

(Dj).
(10)

Proof. The equivalence class [x]gvl,t
i

of the l-th level will be further divided into
the equivalence class [x]gvl+1,t

i
of the (l + 1)-th level. We easily get to know that

[x]gvl,t
i

⊆ [x]gvl−1,t
i

.
(1) For any x ∈ POSgvl−1,t

i
(Dj), we get [x]gvl−1,t

i
⊆ Dj . Then, [x]gvl,t

i
⊆ Dj

is true when [x]gvl,t
i

⊆ [x]gvl−1,t
i

. So, we obtain the result that x ∈ POSgvl,t
i

(Dj).
(2) For any x ∈ BNDgvl,t

i
(Dj), it is easy to obtain [x]gvl,t

i
∩ Dj �= ∅ and

[x]gvl,t
i

�⊆ Dj , which implies x /∈ NEGgvl,t
i

(Dj) and x /∈ POSgvl,t
i

(Dj) due to
[x]gvl,t

i
⊆ [x]gvl−1,t

i
. As a result, x ∈ BNDgvl−1,t

i
(Dj) is true.

(3) For any x ∈ NEGgvl−1,t
i

(Dj), we have [x]gvl,t
i

⊆ Dj , it is easy to know
that [x]gvl+1,t

i
⊆ Dj is true when [x]gvl,t

i
⊆ [x]gvl−1,t

i
. So, x ∈ NEGgvl,t

i
(Dj). �

In what follows, we construct an algorithm to compute the regions of sequen-
tial three-way decisions under a granular structure as shown in Algorithm 1. The
main idea of Algorithm 1 is to first deletes the objects belonging to the positive
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region and negative region under the first level of granularity, and then obtain
the update region U2,t = BNDgv1,t

i
(Dj). For the update region U2,t, delete the

objects belonging to the positive region and negative region in the next level of
granularity, and repeat these steps until the updated universe becomes an empty
set or no level of granularity can be computed. It is easy to observe that the time
complexity of Algorithm 1 is O(m|Dj ||U |2).

Algorithm 1: Computing the regions of sequential three-way decisions
under a granular structure.
input : An universal set of object, U ; the number of attributes ascending, t; a

granular view, gvl,ti , l ∈ {1, 2, ...,m}
output: Three regions, POSgvi(Dj), BNDgvi(Dj) and NEGgvi(Dj)

1 POSgvi(Dj) = ∅, BNDgvi(Dj) = U and NEGgvi(Dj) = ∅;
2 l = 1, U1,t = U ;
3 for l ← 1 to m do

4 if U l,t = ∅ or l > m turn to 9;
5 Compute POS

gv
l,t
i

(Dj) and NEG
gv

l,t
i

(Dj) according to Definition 7;

6 POSgvi(Dj) = POSgvi(Dj) ∪ POS
gv

l,t
i

(Dj) ;

NEGgvi(Dj) = NEGgvi(Dj) ∪ NEG
gv

l,t
i

(Dj) ;

7 U l+1,t = BNDgvi(Dj) − POS
gv

l,t
i

(Dj) − NEG
gv

l,t
i

(Dj) ;

8 BNDgvi(Dj) = U l+1,t;

9 end
10 Output POSgvi(Dj), BNDgvi(Dj) and NEGgvi(Dj);

Definition 8. Given a hierarchical decision table HT , a multilevel granular
structure GSl,t = {gvl,t

1 , gvl,t
2 , . . . , gvl,t

q }, gvl,t
i ∈ GSl,t be a parallel set of

granular view. The lower and upper approximations of optimistic hierarchical
multi-granulation sequential three-way decision with respect to Dj are defined as

l∑

i=1

gvl,t
i

O

(Dj) = {x ∈ U : ∨
i=1,2,...q

[x]gvl,t
i

⊆ Dj}, (11)

q∑

i=1

gvl,t
i

O

(Dj) = ∼
q∑

i=1

gvl,t
i

O

( ∼ Dj). (12)

where U1,t = U,U l+1,t =
m∑

i=1

gvl,t
i

O

(Dj) −
m∑

i=1

gvl,t
i

O

(Dj) is the gradually reduced

universe.

Definition 9. Given a hierarchical decision tableHT , amultilevel granular struc-
ture GSl,t = {gvl,t

1 , gvl,t
2 , . . . , gvl,t

q }, gvl,t
i ∈ GSl,t be a parallel set of granular view.
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The lower and upper approximations of pessimistic multi-granulation generalized
hierarchical decision with respect to Dj are defined as

l∑

i=1

gvl,t
i

P

(Dj) = {x ∈ U : ∧
i=1,2,...l

[x]gvl,t
i

⊆ Dj}, (13)

q∑

i=1

gvl,t
i

P

(Dj) = ∼
q∑

i=1

gvl,t
i

P

( ∼ Dj). (14)

where U1 = U,U l+1 =
q∑

i=1

gvl,t
i

P

(Dj) −
q∑

i=1

gvl,t
i

P

(Dj) is the gradually reduced

universe.

Definition 10. Given a multilevel granular structure GSl,t =
{
gvl,t

1 , gvl,t
2 , . . . ,

gvl,t
q

}
, gvl,t

i ∈ GSl,t be a parallel set of granular view and the decision class partition
πD = {D1,D2, . . . , Dk}, the positive, boundary and negative regions of πD are
defined as follows:

POSΔ
GSl,t(πD) = ∪

1≤j≤k

q∑

i=1

gvl,t
i

Δ

(Dj); (15)

BNDΔ
GSl,t(πD) = ∪

1≤j≤k
(

q∑

i=1

gvl,t
i

Δ

(Dj) −
q∑

i=1

gvl,t
i

Δ

(Dj)); (16)

NEGΔ
GSl,t(πD) = U l,t − POSΔ

GSl,t(πD) ∪ BNDΔ
GSl,t(πD). (17)

where Δ denotes a generalized aggregation strategy.

It should be pointed out that NEG�
GS(πD) is empty set. Thus, the negative

regions of πD are not considered in the following.

5 Experiments and Analysis

5.1 Data Sets

In order to evaluate our algorithm, we perform some experiments on a personal
computer with windows 10, 1.8 GHz CPU and 8 GB memory. The software
is IntelliJ idea 2017.3. The results of the following experiments objective are
to compare the size of regions under different levels of granularity. For conve-
nience, we abbreviate the optimistic hierarchical multi-granulation sequential
three-way decisions and the pessimistic hierarchical sequential three-way deci-
sions as OHMS3WD, PHMS3WD. The characteristics of the six datasets are
described in Table 1.
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Table 1. Description of the datasets

No Dataset |U | |C| |Vd|
1 Abalone 4177 8 28

2 Deal winequality red 1599 11 6

3 Fars 100968 14 8

4 Glass 214 9 6

5 Marketing 6876 6 9

6 Obesity 2111 16 7

It is worth mentioning that we need to reprocess the dataset. We delete the
third attribute ‘fnlwgt’ in Adult because it has noting relevant to the individ-
ual wage level judgments, and remove the 1st, 18th to 24th and 26th to 28th
attributes in Fars because these are not relevant to the fatal accident results
and remove attributes 1st, 2nd, 5th, 11th and 12th of the Marketing since these
are not related to income. Then, we use Rosetta software (http://www.lcb.uu.
se/tools/rosetta/) to convert the continuous data to discrete values. Finally, we
construct the concept hierarchy tree and stratify the experimental data by gen-
eral social cognition. (some information from Baidu Encyclopedia).

5.2 Comparison of the Positive Regions Under Different Levels
of Granularity

In what follows, we compute the number of positive regions and analyze the
uncertainty of the boundary regions of the hierarchical multi-granulation sequen-
tial three-way decisions. For convenience, we use OGV l and PGV l (l = 1, 2, 3)
to denote the optimistic and pessimistic strategies to select the granular view
at the level l. Figure 2 show the change of the number of positive regions under
different levels of granular view.

• The positive regions enlarges as the levels of granular view increases, indicat-
ing that detailed granular view are conducive to information judgment.

• The positive regions increases monotonically with ascending number of
attributes.

5.3 Comparisons of Uncertainty of the Boundary Regions Under
Different Levels of Granularity

We employ deferment rates to evaluate the boundary region quality of sequential
three-way decisions as follows:

DRl,t =
|BNDΔ

GSl,t(πD)|
|U | . (18)

The experiment results of deferment rate change on six data sets under dif-
ferent levels of granular view are shown in Fig. 3.

http://www.lcb.uu.se/tools/rosetta/
http://www.lcb.uu.se/tools/rosetta/
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Fig. 2. Positive regions under different granular views
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Fig. 3. Uncertainty of the boundary regions under different granular views

• The boundary region reduces monotonically with increasing level of granular
views.

• The boundary region reduces monotonically with the ascending number of
attribute.

5.4 Comparisons of the Size of the Two Regions Under Different
Levels of Granular View

In this subsection, we mainly compare the number of two regions under different
strategies and level of granular view.
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Fig. 4. Optimistic and pessimistic strategies under different levels of granular views on
Glass

Figure 4 illustrate the detailed change trends of the two regions under dif-
ferent hierarchical multi-granulation sequential three-way decisions with the
increasing level (the ascending number of attributes) of granular view. It is obvi-
ous that the higher the level (the ascending number of attributes) of granular
view, the larger the positive regions.

6 Conclusions

A hierarchical multi-granulation sequential three-way decision model is pro-
posed, which combines the hierarchical decision table, multi-granulation rough
set and sequential three-way decisions. It provides a multi-level and multi-view
method for the existing models. The properties of this model are analyzed.

In the future work, we will focus on the extension of hierarchical multi-
granulation sequential three-way decision model.
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KNN Ensemble Learning Integration Algorithm
Based on Three-Way Decision
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Abstract. The KNN algorithm is affected by overlapping classification, unbal-
anced data, and K-value selection. It is difficult to apply to some environments
with uncertain phenomena. At the same time, the three-way decision is a decision
theory that conforms to the human cognitive model with subjective characteris-
tics, so the idea of a three-way decision is introduced into the KNN ensemble
learning algorithm and the KNN ensemble learning algorithm based on the three-
way decision is proposed. Based on the KNN ensemble learning algorithm, the
conditional Probability of each class is calculated and combined with the cost
function, which is used to determine the positive domain, negative domain, and
boundary domain in the three-way decision theory. This paper performs the three-
way decision KNN ensemble learning classification on seven real UCI datasets.
The experimental results show that it can effectively improve the classification
accuracy and F1-score of the data.

Keywords: KNN · Three-way decision · Ensemble learning algorithm

1 Introduction

In many decision problems, considering the high cost of accepting and rejecting, we
often neither accept nor reject, but choose not to commit, which gives us a third decision
option. The three-way decision [1–3], by abstracting various decision problems from
different disciplines, introduces a third option of non-commitment or delayed decision
making, thus avoiding the risks associated with direct acceptance or rejection. The three-
way decision can be regarded as an essential intermediate step in -sequential decision-
making. The non-commitment option can be studied again, and the two-way decision
can be finally obtained through further data collection and analysis.

KNN classification is an effective classification method. However, it may have high
misclassification cases in the actual decision-making process. This paper will combine
KNN classification, integration algorithm, and three-way decision-making to propose
a new multi-classification method. On the one hand, based on the Bayesian decision
process, the three-way decision can systematically calculate the threshold value of the
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judgment criterion inKNNensemble learning classification. On the other hand, theKNN
ensemble learning can calculate conditional Probability in the classification.

Many researchers have recently proposed improvedmethods based on the traditional
KNN classification algorithm. Guo [4] et al. proposed a BPSO-Adaboost-KNNmethod,
which has much higher accuracy than the traditional KNN algorithm on unbalanced
data sets than than the traditional KNN algorithm. Yu Ying [5] et al. introduced variable
precision rough sets into the KNN algorithm, which maintains high classification accu-
racy while effectively improving the classification efficiency. The KNN model and the
multi-representative k-nearest neighbor classification algorithm were proposed by Guo
[6] et al. The three-way decision proposed by Professor Yao Yiyu can be regarded as
a special decision strategy, which provides a reasonable semantic interpretation of the
three domains of the Probability rough set and the decision rough set. For example, Li
Meijing et al. combined the three-way decision with the concept lattice, which greatly
improved the efficiency of attribute simplification. Zhang Chunying et al. combined the
set-to-granule space and the three-way decision idea, which achieved good results in
the field of evaluation decision of venture capital. In this paper, we use the idea of the
three-way decision combined with the KNN ensemble learning classification model,
which can effectively solve the classification problem of uncertain data.

In this paper, we introduce the idea of a three-way decision into the KNN ensemble
learning algorithm and propose the KNN ensemble learning algorithm based on the
three-way decision, which can avoid the defects of the traditional KNN classification
against the high error discrimination and the poor interpretability of the results. Based on
adjusting the threshold andKNNparameters, the accuracy of data prediction is improved.

Section 2 describes the KNN classification model and the KNN ensemble learning
model. Section 3 introduces the basic model of three-way decision making, especially
the calculation of the threshold learning algorithm based on the three-way decision.
Section 4 introduces the KNN ensemble learning algorithm based on the three-way
decision. The experimental analysis of the algorithm is carried out in Sect. 5.

2 Structural Design of KNN Integration Algorithm

2.1 Introduction of the KNN Classification Model

Algorithms in the field of machine learning initially proposed by Fix and Hodges in the
1950s as a statistical learning method based on sample instances [7]. The K-Nearest
Neighbor method was developed and refined by Cover and Hart in subsequent studies
and was proposed in 1968 as a theoretically mature machine learning algorithm.

The basic idea of KNN ensemble learning is “one who stays near vermilion gets
stained red, and one who stays near ink gets stained black”, a sample in the feature space
through the distance formula to calculate the nearest K samples, which most of these K
samples belong to which category the sample belongs to. As shown in Fig. 1. When K
= 4, the nearest 5 samples are 2 squares and 3 triangles, the type of unknown samples
is the triangle, when K = 11, the nearest 15 samples are 9 squares and 6 triangles, the
type of unknown samples is square. K-nearest neighbor algorithm generally chooses to
adjust the model’s parameters by the K-fold Cross-validation method.
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Fig. 1. Interpretation of the O-centered K-nearest neighbor method

The spatial distance formula applied in the KNN algorithm has various formulas
for measuring point-to-point distances in space in the mathematical context, such as
the Euclidean distance formula and the Manhattan distance formula. Euclidean distance
is the most common distance measure, which measures the absolute distance between
points in a multidimensional space, and the formula is as follows.

d(x, y) =
√∑n

i=1
(xi − yi)2 (1)

The Manhattan distance is derived from the city block distance and is the result of
summing the distances in multiple dimensions with the following equation.

d(x, y) =
∑n

i=1
|xi − yi| (2)

KNN algorithms generally have the advantages of simple implementation, easy pro-
cessing of analysis, high adaptability to information, and easy parallelism, but inevitably
suffer from the defects of computationally intensive operation, not very good efficiency,
and insensitivity to unbalanced data. The three-way decision proposed in this paper can
improve the classification effect to a certain extent by dividing the sample data into three
domains, and it also improves the imbalanced data problem.

2.2 Mathematical Model of KNN Algorithm

In this section, the KNN algorithm is introduced in detail. By constructing the mathe-
matical model of the KNN algorithm, the principle of KNN classification is represented
through mathematical formulas [8], which are elaborated as follows.

T = {(x1, y1), (x2, y2), · · · , (xN , yN )}
where xi ∈ X ⊆ Rn is the feature vector of the instance, yi ∈ Y = {c1, c2, · · · , ck} is
the class of the instance, i = 1, 2, · · · ,N ; the instance feature vector x.

Output: The class y to which the instance x belongs.
1. Find the k points in the training set T that is closest to x according to the given

distance metric, and the neighborhood of x covering these k points is denoted asN (x, k).
2. Decide the category y of x in N (x, k) based on the classification decision rule.

yt = arg
max

cε{c1, c2, · · · , ck}
∑

xt∈N(xT,k)
E(yi, c) (3)
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And

E(a, b) =
{
1 if(a = b)
0 else

(4)

Also because

p
(
cj

)
(x,k) =

∑
xt∈N (xt ,k)

E
(
yi, cj

)
k

(5)

where p
(
cj

)
(x,k) is the probability that the unknown sample belongs to class Cj.

The equation can be reduced to.

yt = argmax
{
p(c1)(xt ,k), p(c2)(xt ,k), · · · , p(cm)(xt ,k)

}
(6)

2.3 Introduction to KNN Ensemble Learning

Toaddress the problemof unstable classifierswith lowaccuracy, scholars propose ensem-
ble learning algorithms, which can obtain a better and more comprehensive, strongly
supervised model. Ensemble learning classifiers tend to work better than individual clas-
sifiers, even if each classifier is a weak learner. If there are enough weak learners and
they are diverse enough, then the final integrated voting classifier can still be a strong
learner. The ensemble works best when the predictors are as independent of each other as
possible. This paper takes KNN ensemble learning with optimal K values and different
effects.

Themost intuitive of all ensemble learningmethods ismajority voting, i.e., “majority
rule,” which assumes that each base learner is a voter and each category is a competitor.
The competitor with the most votes wins, as described below.

Table 1. Predicted classification probability

Classifier A B

Classifier 1 60% 40%

Classifier 2 57% 43%

Classifier 3 75% 25%

Classifier 4 45% 55%

Classifier 5 47% 53%

Hard voting - the category with the most votes wins, Classifier 1~ Classifier 3 votes
A, Classifier 4 and Classifier 5 votes B, minority obeys majority, and the final predicted
result of the voting classifier is A.

Soft voting - the category with high Probability mean wins, let the ratio of the
weights of Classifier 1~ Classifier 5 be a:b:c:d:e, then the predicted Probability of A, B
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is calculated as follows.

A = 0.6 × a + 0.57 × b + 0.75 × c + 0.45 × d + 0.47 × e

a + b + c + d + e
,

B = 0.4 × a + 0.43 × b + 0.25 × c + 0.55 × d + 0.53 × e

a + b + c + d + e
.

(7)

A voting classifier finally predicts the results for the category with a high probability
of A, or B. This paper adopts a simple average soft votingmethod for Ensemble learning.

3 The Basic Model for Three-Way Decision

This section briefly introduces the three-way decision model [9], particularly the deriva-
tion of the three-way decision threshold. According to the Bayesian decision process,
the three-way decision model comprises two-state sets and three action sets. Assume
that state sets denote that an object belongs to X and does not belong to X. The action
sets denote the three actions taken to classify x, namely, immediate execution, delayed
execution, and rejected execution. Considering the losses (or risks) incurred by taking
different actions in different states, a 3 × 2 loss matrix is thus constructed, as shown in
Table 2.

Table 2. Loss matrix for three-way decision

X (P) ¬X (N )

aP λPP λPN

aB λBP λBN

aN λNP λNN

In Table 2, λPP , λBP , and λNP denote the losses when x belongs to X, when action is
taken to execute, when the decision is delayed, and when it is not executed, respectively;
λPN , λBN , and λNN denote the losses when x belongs to ¬X , when action is taken
to execute, when the decision is delayed, and when it is not executed, respectively.
Pr(X |[x]) denotes the conditional probability that the object x belongs to X. Then the
expected loss associated with taking a particular individual action can be obtained from
the loss function and the conditional probability.

⎧⎨
⎩

R(aP|[x]) = λPPPr(X|[x]) + λPNPr(X|[x])
R(aB|[x]) = λBPPr(X|[x]) + λBNPr(X|[x])
R(aN|[x]) = λNPPr(X|[x]) + λNNPr(X|[x])

(8)

According to the Bayesian decision principle, the set of actions with the least
expected loss is selected as the best action plan. As a result, the following decision
rule is obtained.
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P. If R(aP|[x] ≤ R(aB|[x])) and R(aP|[x] ≤ R(aN |[x])) hold simultaneously, then
x ∈ POS(X ),

B. If R(aB|[x] ≤ R(aP|[x])) and R(aB|[x] ≤ R(aN |[x])) hold simultaneously, then
x ∈ BND(X ),

N. If R(aN |[x] ≤ R(aP|[x])) and R(aN |[x] ≤ R(aB|[x])) hold simultaneously, then
x ∈ NEG(X ).

Since Pr(X |[x]) + Pr(¬X |[x]) = 1, the rule can be simplified based on the condi-
tional probability Pr(X |[x]) and the loss function. Consider a reasonable case of the loss
function.

λPP ≤ λBP < λNP, λNN ≤ λBN < λPN

Accordingly, the decision rules P, B, and N can be simplified as.
P. If Pr(X |[x]) ≥ α and Pr(X |[x]) ≥ γ hold simultaneously, then x ∈ POS(X ),
B. If Pr(X |[x]) < α and Pr(X |[x]) < β hold simultaneously, then x ∈ BND(X ),
N. If Pr(X |[x]) < γ and Pr(X |[x]) ≤ β hold simultaneously, then x ∈ NEG(X ).
where the expressions for the thresholds α, β, and γ are:⎧⎪⎨

⎪⎩
α = λPN−λBN

(λPN−λBN)+(λBP−λPP)

β = λBN−λNN
(λBN−λNN)+(λNP−λBP)

γ = λPN−λNN
(λPN−λNN)+(λNP−λPP)

(9)

In addition, for the boundary region, the condition in the decision rule B indicates
that, α > β, so

λBP − λPP

λPN − λBN
<

λNP − λBP

λBN − λNN

This also implies that 0 ≤ β < γ < α ≤ 1. In this case, the rule is further simplified.
P1. If Pr(X |[x]) ≥ α holds, then x ∈ POS(X ),
B1. If β < Pr(X |[x]) < α holds, then x ∈ BND(X ),
P1. If Pr(X |[x]) ≤ β holds, then x ∈ NEG(X ).

4 KNN Emseble Learning Based on Three-Way Decision

4.1 KNN Emseble Learning Classification Model Based on Three-Way Decision

4.1.1 Model Principle

Unbalanced samples, while screening uncertain samples for delayed decisions [10].
Firstly, the best K value is selected for KNN ensemble training, the conditional proba-
bility of classification is calculated by the KNN ensemble learning classification model,
secondly, the threshold value for each class is calculated according to the threshold cal-
culation formula, and finally, the sample data is divided into three domains according
to the calculated conditional probability and threshold value, and the sample data in the
edge domain is continuously divided to provide multiple choices for the classification of
samples. The three-way decision model especially improves the classification accuracy
of uncertain samples, and finally, the samples that cannot be divided in the edge domain
are processed for delayed decisions.
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4.1.2 Model Design

This section introduces the KNN ensemble learning model based on the three-way
decision, which is shown in Fig. 2. The classification rules of the model are as follows.

Fig. 2. KNN ensemble learning model based on the three-way decision.

Define the set consisting of the objects we want to study as U . For U containing m
classes, the m classes can be expressed as Class = {C1,C2, · · · ,Cm}, where Ci denotes
the objects of i classes, soCi∩Cj �= ∅(i �= j),

⋃m
i=1 Ci = U while∼ Ci = ⋃m

j=1,j �=i Cj,
so x ∈ U will have m states, i.e., the set of states is� = {C1,C2, · · · ,Cm}. Let the set of
thresholds corresponding to the category Ci be (αci , βci , γ ci ) and the set of thresholds
corresponding to the category Cj be (αcj , βcj , γ cj ) with the following rules.

If ∃P(Ci|x) ≥ αCi and ∀P(
Cj|x

) ≤ βCj , then x ∈ POS(X ).
If P(Ci|x) ≤ βCi and P

(
Cj|x

) ≤ βCj , then x ∈ POS(X ).
In the rest of cases, then x ∈ BND(X ).

4.2 Design of KNN Ensemble Learning Algorithm Based on the Three-way
Decision

In the traditional KNN algorithm, a clear judgment must be made on the samples’ cate-
gory to be classified for various reasons. Therefore, introducing the idea of the three-way
decision and ensemble learning into the KNN classification algorithm will significantly
reduce the cost of classification and greatly improve the correctness of classification in
massive data classification. Some of the pseudocodes of the KNN ensemble learning
algorithm based on the three-way decision are shown in Algorithm 4.1.
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Step 1 Sample training is carried out to find out the best K value
for k in k_range:
knn = KNeighbors Classifier(n_neighbors=k)
scores = cross_val_score(~)

k_error.append(1 - scores.mean())
Step 2 Different optimal K values are integrated
clf1 = neighbors. KNeighbors Classifier(~)

clf4 = neighbors.KNeighborsClassifier(~)
vote_clf=VotingClassifier(estimators=[(clf1),(clf2),(clf3),(clf4)],voting='soft') 
for clf in (clf1, ,clf4,vote_clf):   #Iterative classifier
clf.fit()

predict = clf.predict()
print(acuracy,precision,recall,F1-score) 

Step 3 Calculate the conditional probability of each class of the test set samples and the 
threshold value of each class 
Step 4 Perform 3 domain divisions
for i in range(number of test set samples):
if Probability of a certain classification and All other classification probabilities

: 
POS.append(number of test set samples)

If all classification probabilities : 
NEG.append(number of test set samples)

else:
BND.append(number of test set samples)

Step 5 Output sample prediction category in negative domain and positive domain.

Input: Pre-processed raw data set k_range = range(1, 
31)
Output: The first classification completes the sample prediction categories of positive and 
negative domains

Algorithm 4.1. Pseudocode for the three-way decision KNN ensemble learning algorithm

5 The Process of Classifying Data

This paper focuses on improving the traditional KNN algorithm, thus proposing a KNN
ensemble learning algorithm based on the three-way decision, whose classification
process is shown in Fig. 3.

Classification process of KNN ensemble learning algorithm based on the three-way
decision.
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Fig. 3. Flow chart of KNN ensemble learning classification based on the three-way decision

Algorithm 4.2. Classification process of KNN ensemble learning algorithm based on the three-
way decision

Input: Sample C to be classified
Output: The class of the sample C to be classified
Step 1 Enter the original sample data and perform data processing (fill in missing data, etc.).
Step 2 Perform sample training to select the best 4 to 5 K values.
Step 3 The distance between the unknown samples and the training set data is calculated by 

Manhattan distance, and the distance values are sorted in ascending order, and the 
category with the highest frequency of occurrence among the K distance values is 
taken.

Step 4 Repeat Step 3 for each K value in Step 2 and perform ensemble learning to derive the 
classification categories.

Step 5 Calculate the conditional probability of each test sample classification
Step 6 According to Equation (9), we calculate each type of threshold and divide the 

probability set in Step 5 into 3 domains, and record the sample data in the boundary 
domain as the next discriminator.

Step 7 Repeat Step 2~Step 6 until the data in the boundary domain cannot be divided into the 
positive and negative domains.

Step 8 Output sample prediction categories for positive and negative domains.
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The specific classification process is shown in Algorithm 4.2.

5.1 Experimental analysis of KNN Ensemble Learning Algorithm Based
on the Three-way Decision

This section verifies the effectiveness and feasibility of the algorithm in this paper by
conducting an experimental analysis of the KNN ensemble learning algorithm based on
the three-way decision for the UCI dataset.

Evaluation Indicators
For a binary classification problem, the sample is divided into positive and negative

classes, which will generate the following four cases in the real problem.
TP (true positive): The number of samples in the positive class that predict the correct

sample.
FN (false negative): The number of samples in the positive class predicting thewrong

sample.
FP (false positive): The number of samples in the negative class that predicted the

wrong sample.
TN (true negative): The number of samples in the negative class that predict the

correct sample. The commonly used classification evaluation metrics are accuracy,
precision, recall and F1-score. Details are shown in Table 3

Table 3. Classification evaluation indicators

Evaluation indicators Definition Equation

Accuracy Ratio of the number of correctly
classified samples to the total number of
samples

accuracy = TP+TN
TP+TN+FP+FN

Precision Ratio of the number of samples correctly
classified as positive class samples to the
number predicted to be positive class

precision = TP
TP+FP

Recall Ratio of the number of correctly
classified positive class samples to the
number of positive class samples

recall = TP
TP+FN

F1-score The ratio of 2 times the product of
precision rate and recall rate to the sum
of precision rate and recall rate

F1 = precision∗recall∗2
precision+recall

5.2 Case Classification Experiment

5.2.1 The Three-way Decision KNN Ensemble Learning-Trial_risk

Take Trial_risk data as an example, after importing the data, 5 missing values are deleted
and the remaining missing values are filled with the values of similar data. There are
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772 samples in the experiment, 540 samples in the training set account for 70%, and 232
samples in the test set account for 30%. Class 0 means the company is not a fraudulent
company, class 1 means the company is fraudulent. The comparison of the four models
of UCI trial_risk is carried out. KNNModel 1: KNNclassificationmodel. KNNModel 2:
KNN ensemble learning classification model. KNNModel 3: KNN classification model
with each adjustment of threshold and K value. KNN Model 4: KNN ensemble learn-
ing classification model with each adjustment of threshold and K value. The accuracy,
precision, recall,and F1-score of the four models are shown in Fig. 4. From the results,
it can be seen that the three-way decision idea can improve the classification effect of
the model.
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Fig. 4. Trial_risk model evaluation index chart

Table 4. Trial_risk model results evaluation table (%)

Model Accuracy Precision Recall F1-score

KNN 86.21 86.52 86.21 86.30

KNN ensemble learning 86.21 86.39 86.21 86.27

The three-way decision KNN 95.09 95.07 95.09 95.00

The three-way decision KNN ensemble learning 95.51 95.47 95.51 95.44

The accuracy, precision, recall, and F1-score of the four models can be seen in
Table 4. Among them, the three-way decision KNN ensemble learning model is the best
in terms of accuracy, precision, recall, and F1-score. Overall, the three-way decision
KNN ensemble learning model outperforms the three-way decision KNN model. The
introduction of the three-way decision and ensemble learning ideas can improve the
classification effect of the model.
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Combined with Table 4 and Fig. 4, it can be seen that both the K value of KNN and
the threshold of the three-way decision have an impact on the experimental results, and
the most important of the three-way decision is the selection of the threshold, so this
paper further investigates the selection of the K value and the threshold of the three-way
decision, and the specific process of dividing the threshold and K value of the three-
way decision KNN ensemble learning model of Trial_risk is shown in Table 4, and the
threshold 3 decimal places are retained.

From Table 5, it can be seen that the threshold and K values will affect the classifica-
tion effect of the experiment. If α is larger, the radius of the positive domain is smaller,
and the classification of samples within the radius of the positive domain will be more
accurate; β is smaller, the number of samples in the boundary domain will be larger, and
there will be more nearest neighbors for samples in the boundary domain to determine
which category this sample belongs to, and the classification of samples in the boundary
domain will be more accurate, but the efficiency of classification will be reduced. By
adjusting the size of the threshold (α, β), a balance between accuracy and classification
efficiency can be found[9].

Table 5. The three-way decision KNN ensemble learning classification process

(α1, β1, α2, β2, (k)) POS BND NEG

(0.889,0.714,0.700,
0.357,(11,15,21,25,2))

126/131 65/93 8/8

(0.943,0.714,0.760,
0.263,(6,12,14,21))

15/16 52/77 0

(0.962,0.714,0.800,0.211,(6,12,14,15,17)) 0/1 51/76 0

(0.962,0.714,0.800,0.211,(6,12,14,15,17)) 0 0 0

5.3 UCI Dataset Classification Experiments

To verify the effectiveness of the KNN ensemble learning algorithm based on the three-
way decision, this paper conducts the three-way decision KNN ensemble learning classi-
fication experiment on the real UCI dataset. Six UCI datasets are selected: Balance, Car,
Win, Indian Liver Patient Dataset (ILPD), Ionosphere, Transfusion, and the experimental
platform is window7.0, python3.7 in Jupyter-notebook.

The dataset details are shown in Table 6, where the missing value data are processed
using the average value of the attribute for padding. KNN, KNN ensemble learning, and
the three-way decision KNN are denoted as Algorithm 1, Algorithm 2, and Algorithm
3, respectively. The three algorithms and the algorithm in this paper will be compared
in terms of accuracy and F1-score on the six UCI datasets.

The accuracy of the four classification algorithms on the six UCI datasets is shown
in Table 7. The observation results show that the algorithm in this paper has the best
overall improvement in accuracy on the six UCI datasets.
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Table 6. UCI dataset description

Dataset Sample size Training set Test set Number of decision categories

Balance 625 468 157 3

Car 1663 1247 416 3

Win 178 133 45 3

Indian patient 579 405 174 2

Ionosphere 351 245 106 2

Transfusion 748 523 225 2

Table 7. AUC results of 4 classification algorithms (%)

Dataset Algorithm 1 Algorithm 2 Algorithm 3 Algorithm of this paper

Balance 91.72 91.72 98.55 99.30

Car 84.62 85.58 91.59 92.57

Win 73.33 75.56 86.21 92.31

Indian patient 63.79 65.52 72.97 79.17

Ionosphere 86.79 86.79 90.32 92.22

Transfusion 74.22 74.67 82.25 81.29

The F1-scores of the four classification algorithms on the six UCI datasets are shown
in Table 8. The observation results show that the algorithms in this paper have the best
overall F1-score improvement on the six UCI datasets.

Table 8. F1-score results of 4 classification algorithms (%)

Dataset Algorithm 1 Algorithm 2 Algorithm 3 Algorithm of this paper

Balance 88.70 88.70 98.91 98.95

Car 84.67 85.69 91.22 92.33

Win 72.88 75.32 83.70 90.73

Indian patient 63.18 62.37 69.59 72.57

Ionosphere 86.44 86.44 89.66 91.79

Transfusion 72.16 72.50 78.08 76.70

Combining Table 7 and Table 8, it can be seen that Balance, Car, Win, Indian
Patient, Ionosphere dataset this paper algorithm improves the best effect, and Trans-
fusion dataset algorithm 3 improves the best effect. Overall, the three-way decision
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KNN ensemble learning algorithm can improve the model’s classification accuracy and
synthetically improve the accuracy and recall of the model.

To further verify the effectiveness of the KNN ensemble learning algorithm based
on the three-way decision. Logistic Regression algorithm, SVM algorithm, Decision
Tree algorithm and this paper’s algorithm are compared in terms of accuracy on six UCI
datasets.

Table 9. AUC results of 4 classification algorithms (%)

Dataset Logistic regression SVM Decision tree Algorithm of this paper

Balance 90.45 91.72 81.53 99.30

Car 70.67 82.45 84.14 92.57

Win 68.89 68.89 66.67 92.31

Indian patient 71.26 72.41 60.35 79.17

Ionosphere 83.02 83.02 82.08 92.22

Transfusion 79.11 79.11 74.67 81.29

The accuracy of the four classification algorithms on the six UCI datasets is shown
in Table 9. The observation results show that the algorithm in this paper has the best
overall improvement in accuracy on the six UCI datasets.

6 Conclusions

In order to improve the classification accuracy of the model especially for imbalanced
data, this paper proposes the KNN ensemble learning algorithm based on the three-
way decision, combining the ideas of ensemble learning and the three-way decision, by
constructing a loss function matrix to calculate the threshold α and threshold β, using
two exact sets (lower and upper approximation sets) to approximate a probability set,
and the upper and lower approximation sets divide the data set into three parts: positive
domain, boundary domain and negative domain. It can avoid the defects of the traditional
KNN classification against the high error discrimination and the poor interpretability of
the results. The experimental results are analyzed by four evaluation metrics: accuracy,
precision, recall, and F1-score.

TheKNN ensemble learning classifier is used to calculate the conditional Probability
of each type of data set. Then the threshold value calculated by the three-way decision
idea is used to divide the three domains. The data in the boundary domain is continuously
divided until the boundary domain cannot be divided.Observing the experimental results,
it can be seen that theKNN ensemble learning algorithm based on the three-way decision
generally improves the classification accuracy, F1-score effect, and solves the problem
of poor data classification.

Here, the conditional probabilities are calculated by the KNN ensemble learning
classifier, which belongs to machine learning. The thresholds generated by the three-
way decision rely on the loss function, reflecting human involvement. Therefore, the
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KNN ensemble learning algorithm based on the three-way decision proposed in this
paper provides a human-computer interaction perspective for solving practical prob-
lems. Although the three-way decision theory is widely applied and has very strong
universality, the most important aspect of the three-way decision is the threshold value
calculation, which often needs to be calculated by experts in the industry to be optimal.
The effect of the three-way decision often requires continuous adjustment of parameters
for optimization, and there is the problem of long data prediction time. The next step can
be to use incremental learning, multi-class neighborhood, and other methods for model
optimization to further improve data prediction accuracy and shorten the decision based
on the KNN ensemble learning algorithm.
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Abstract. knowledge reduction in fuzzy environments is a key and diffi-
cult issue in data mining and knowledge discovery, the crisp-crisp variable
threshold concept lattice is one kind of the knowledge structures in for-
mal fuzzy contexts. The focus of this paper is on the attribute reduction
of the crisp-crisp variable threshold concept lattices, the attribute reduc-
tion is related to a method of three-way decision based on the crisp-crisp
concepts. Firstly, by an illustrating example, we show the extraction of
three-way decision rules. A lot of the decision rules are redundant, in
order to simplify the nonredundant decision rules and keep their perfor-
mance invariant, we present a notion of the attribute reduction of formal
fuzzy contexts, then we investigate the properties of the attribute redec-
tion. Subsequently, with reference to the rough sets, the discernibility
matrix and discernibility function of formal fuzzy contexts are presented,
so that all the reducts of a formal fuzzy context can be calculated.

Keywords: Crisp-crisp variable threshold concept lattices · Formal
fuzzy contexts · Attribute reduction · Three-way decisions

1 Introduction

Formal Concept Analysis (FCA), firstly proposed by German professor Wille [1]
in 1982, is a powerful tool for data analysis and knowledge discovery. Now, it is
becoming an important research domain in artificial intelligence, and is widely
used in many fields, for example, machine learning, data mining, and information
retrieval, and so on [2–7].

Concept lattice is a basic mathematics structure in FCA, it is established by
a data set called formal context. A formal context is a binary relation between
two nonempty and finite sets, one is called the object set and another is called
the attribute set. A formal concept is a pair of an object subset and an attribute
subset satisfying two conditions, and all the formal concepts of a formal context
form a complete lattice, which is called concept lattice.

As a main research issue in FCA, the attribute reduction of formal contexts
has been paid much attention, it is very important for the theoretical research and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Yao et al. (Eds.): IJCRS 2022, LNAI 13633, pp. 361–375, 2022.
https://doi.org/10.1007/978-3-031-21244-4_27
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practical application of concept lattices. Ganter and Wille [8] firstly introduced
the idea of reduction, that is (i.e.), deleting some objects or attributes so that the
intents or the extents of the formal concepts unchanged, respectively. Zhang et al.
[9] presented an approach of deleting some attributes of a formal context, so as
to keep the structure of the concept lattice unchanged. Wu et al. [10] examined a
type of attribute reduction from the perspective of granular computing. Chen et al.
[11] proposed a reduction method in combination with graph theory. Based on the
meet-irreducible and join-irreducible elements of a concept lattice, Li et al. [12]
presented two kinds of attribute reductions, and investigated the relation between
them and other two kinds of attribute reductions.

Formal fuzzy contexts are the extension of classic formal contexts. In other
words, when the binary relation of a classic formal context is replaced with a
binary fuzzy relation, then a formal fuzzy context is established. Various fuzzy
concept lattices were built on formal fuzzy contexts, and some related knowledge
reductions have been explored. Burusco and Fuentes-Gonzales [13] firstly intro-
duced fuzzy sets into FCA, so formal fuzzy concepts were defined. Then many
researchers put forward various fuzzy concept lattice models [14–16]. Among
them, there are four kinds of variable threshold concept lattices firstly proposed
by Zhang et al. [17], and Shao et al. [18] studied the knowledge reduction of the
variable threshold concept lattices, in which the deletion of objects and attributes
are all involved. By means of information entropy, Singh et al. [19] investigated
one kind of the attribute reductions of formal fuzzy contexts.

The three-way decision proposed by Yao et al. [20] in 2009 is one kind of
approaches of decision making. The main idea is to divide all definable knowledge
hidden in the data into three classes, by which two types of decision rules can be
extracted, i.e., the certainty decision rules and the possibility decision rules. A lot
of attention has been paid on the combination of three-way decision and formal
concept analysis. Qi et al. [21,22] firstly proposed three-way concept lattices, and
discussed the relationship between themand the classic concept lattices;Qian et al.
[23] explored the construction of the three-way concept lattices. Zhi et al. [24] pro-
posed the three-way dual concept lattice by the dual operations in a formal context.
Li et al. [25] reviewed the research of concept lattices and three-way decision, and
put forward prospect for their combination. Li et al. [26] analyzed and compared
concept lattices from the perspective of three-way decisions.

Of course, the three-way concept lattices can be used to make decisions, but
the negative attributes will be used inevitably. As we know, there is no studies
on the three-way decision based on the classic concept lattices or their fuzzy
extensions only using the positive attributes. In real life, people are used to
making decisions using positive information. Therefore, this paper explores a
method of three-way decisions based on the crisp-crisp variable threshold con-
cept lattices, in which the negative attributes are not used, and studies the
corresponding attribute reduction. The rest of the paper is organized as follows.
In the next section, we briefly review some basic related notions and knowledge.
Section 3 presents an approach of three-way decision based on the crisp-crisp
variable threshold concept lattices, and investigates the corresponding attribute
reduction. Section 4 concludes the paper with a summary.
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2 Preliminaries

For the sake of presentation, let’s briefly review some relevant knowledge of the
crisp-crisp variable threshold concept lattices.

Let U be a nonempty and finite set, and called the universe of discourse. The
set of all crisp subsets of U is denoted by P(X), and the set of all fuzzy sets on
U is denoted by F(U). Here, a fuzzy set ˜X on U means a mapping from U to
[0,1], i.e., ˜X : U → [0, 1], which be also called the membership function of ˜X.
For V ⊆ U and ˜X ∈ F(U), the restriction of ˜X on V , denoted as ˜XV , is a fuzzy
sets on V , which satisfies ˜XV (x) = ˜X(x) for all x ∈ V .

Formal contexts are basic data sets in FCA. A formal context is a triplet
(U,A, I), where U is a universe, also called the object set, A a set of features
or attributes, also called the attribute set, and I a binary relation between U
and A, that is (i.e.), it is a subset of Cartesian product U × A, where (x, a) ∈ I
indicates the object x has the attribute a.

Let (U,A, I) be a formal context, and X ⊆ U and B ⊆ A. the pair (X,B) is
referred to as a formal concept in (U,A, I) if X∗I = B and B∗I = X, where

X∗I = {a ∈ A|∀x ∈ X, (x, a) ∈ I},

B∗I = {x ∈ U |∀a ∈ B, (x, a) ∈ I}.

Then X and B are called the extent and the intent of (X,B), respectively.
The set of all the formal concepts of (U,A, I) is denoted as L(U,A, I) or

simplified as L(I). A specialization-generalization relation on L(U,A, I) can be
defined as follows:

(X1, B1) � (X2, B2) ⇐⇒ X1 ⊆ X2.

Note that X1 ⊆ X2 is equivalent to B2 ⊆ B1.
The relation “�” is a partial order on L(U,A, I), and (L(I),�) is a complete

lattice, i.e., the so-called concept lattice. Where the infimum and the supremum
are given by

(X1, B1) ∧ (X2, B2) = (X1 ∩ X2, (B1 ∪ B2)∗∗),
(X1, B1) ∨ (X2, B2) = ((X1 ∪ X2)∗∗, B1 ∩ B2).

It is not difficult to verify that

L(U,A, I) = {(X∗I∗I ,X∗I )|X ⊆ U}
= {(B∗I , B∗I∗I )|B ⊆ A}.

Formal fuzzy contexts are extensions of formal contexts in fuzzy environ-
ments. A formal fuzzy context is denoted by a triplet (U,A, Ĩ), and the only
difference from a classical formal context is that the binary relation Ĩ is a fuzzy
relation from the object set U to the attribute set A.
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Example 2.1. In order to demonstrate some results obtained in the paper, let
us consider an illustrating formal fuzzy context (U,A, Ĩ) depicted in Table 1,
where, U = {1, 2, 3, 4, 5, 6}, A = {a, b, c, d, e}, and the fuzzy relation Ĩ can be
read off in Table 1.

Table 1. A formal fuzzy context (U,A, Ĩ).

U a b c d e

1 0.3 0.2 0.5 0.8 1.0
2 0.2 0.3 0.6 1.0 0.9
3 0.5 0.1 0.6 0.2 0.6
4 1.0 0.7 0.3 0.4 0.2
5 0.8 1.0 0.4 0.3 0.1
6 0.2 0.7 0.6 1.0 0.3

Definition 1. [17] Let (U,A, Ĩ) be a formal fuzzy context. For 0 < δ � 1,
X ⊆ U and B ⊆ A, the operators ∗

Ĩδ : P(U) −→ P(A) and ∗
Ĩδ : P(A) −→ P(U)

are defined as follows:

X∗
Ĩδ = {a ∈ A|∀x ∈ X, Ĩ(x, a) � δ}, B∗

Ĩδ = {x ∈ U |∀a ∈ B, Ĩ(x, a) � δ}.

Let (U,A, Ĩ) be a formal fuzzy context and 0 < δ � 1. Denote

Iδ = {(x, a) ∈ U × A|Ĩ(x, a) � δ}.

Then (U,A, Iδ) is a classic formal context, and for X ⊆ U and B ⊆ A, we have
that X∗

Ĩδ = X∗
Iδ , B∗

Ĩδ = B∗
Iδ . Furthermore, it can be found that

X∗
Iδ = {a ∈ A|X ⊆ Iδa} =

⋂{xIδ|x ∈ X},

B∗
Iδ = {x ∈ U |B ⊆ xIδ} =

⋂{Iδa|a ∈ B}.

where, xIδ = {a ∈ A|Ĩ(x, a) � δ}, x ∈ U ; Iδa = {x ∈ U |Ĩ(x, a) � δ}, a ∈ A.
Let (U,A, Ĩ) be a formal fuzzy context and 0 < δ � 1. A formal concept

(X,B) ∈ L(U,A, Iδ) is also called a crisp-crisp concept of (U,A, Ĩ) with the
threshold level δ, and sometimes denoted as (X,B)δ. So, crisp-crisp concepts
with different thresholds are just formal concepts of classical formal contexts,
which are derived from a formal fuzzy context at different thresholds.

Proposition 1. [8] Let (U,A, Ĩ) be a formal fuzzy context and 0 < δ � 1. Then
for X,X1,X2 ⊆ U , B,B1, B2 ⊆ A, we have

(1) X1 ⊆ X2 =⇒ X
∗

Ĩδ

2 ⊆ X
∗

Ĩδ

1 , B1 ⊆ B2 =⇒ B
∗

Ĩδ

2 ⊆ B
∗

Ĩδ

1 ;
(2) (X1 ∪ X2)∗Ĩδ = X

∗
Ĩδ

1 ∩ X
∗

Ĩδ

2 , (B1 ∪ B2)∗Ĩδ = B
∗

Ĩδ

1 ∩ B
∗

Ĩδ

2 ;
(3) X ⊆ X∗

Ĩδ ∗
Ĩδ B ⊆ B∗

Ĩδ ∗
Ĩδ ;

(4) X∗
Ĩδ = X∗

Ĩδ ∗
Ĩδ ∗

Ĩδ , B∗
Ĩδ = B∗

Ĩδ ∗
Ĩδ ∗

Ĩδ .
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For convenience, the concept lattice L(U,A, Iδ) or L(Iδ) is also denoted by
Lδ(U,A, Ĩ) or Lδ(Ĩ), and called a crisp-crisp variable threshold concept lattice
[17]. The set of the extents of all crisp-crisp concepts with the threshold δ is
denoted by Extδ(U,A, Ĩ) or Extδ(Ĩ).

Table 2. The formal context (U,A, I0.3).

U a b c d e

1 1 0 1 1 1
2 0 1 1 1 1
3 1 0 1 0 1
4 1 1 1 1 0
5 1 1 1 1 0
6 0 1 1 1 1

Fig. 1. The crsip-crisp variable threshold concept lattice L0.3(Ĩ).

Example 2.2. Continuing from Example 2.1, for δ1 = 0.3 and δ2 = 0.7, the
induced formal contexts (U,A, I0.3) and (U,A, I0.7) are shown in Tables 2 and 3,
and Figs. 1 and 2 are the Hasse diagram of the crisp-crisp variable threshold
concept lattices L0.3(Ĩ) and L0.7(Ĩ), respectively.

3 Three-Way Decision and Attribute Reduction

In this section, by use of the crisp-crisp variable threshold concept lattices, we
present an approach of three-way decision, and illustrate the extraction of deci-
sion rules by an example, and according to the obtained decision rules, we study
one kind of the attribute reduction of formal fuzzy contexts.
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Table 3. The formal context (U,A, I0.7).

U a b c d e

1 0 0 0 1 1
2 0 0 0 1 1
3 0 0 0 0 0
4 1 1 0 0 0
5 1 1 0 0 0
6 0 1 0 1 0

Fig. 2. The crsip-crisp variable threshold concept lattice L0.7(Ĩ).

3.1 Three-Way Decision Rules Based on Crisp-Crisp Concepts

Let (U,A, Ĩ) be a formal fuzzy context, and 0 < δ � 1 and D ⊂ U . Denote

L0
δ(Ĩ) = Lδ(Ĩ) − {(∅, ∅∗

Ĩδ ), (U,U∗
Ĩδ )},

CS(D, Ĩ(δ)) = {(X,B) ∈ L0
δ(Ĩ)|X ⊆ D}.

Definition 2. Let (U,A, Ĩ) be a formal fuzzy context. Selecting S =
{δ1, δ2 . . . δk}, where 0 < δi � 1 (1 � i � k), S is called a sequence of thresholds.
Denote

PS(D, Ĩ, S) =
⋃

δ∈S CS(D, Ĩ(δ)), NS(D, Ĩ, S) =
⋃

δ∈S CS(∼ D, Ĩ(δ)),
BS(D, Ĩ, S) =

⋃

δ∈S{(X,B) ∈ L0
δ(Ĩ)|X ∩ D �= ∅,X ∩ (∼ D) �= ∅},

then PS(D, Ĩ, S), NS(D, Ĩ, S), and BS(D, Ĩ, S) are called the positive concept
class, the negative concept class, and the boundary concept class of D under the
threshold sequence S, respectively. Where, ∼ D denotes the complement of D,
i.e., ∼ D = {x ∈ U |x /∈ D}.

It is evident that the set consisting of PS(D, Ĩ, S), NS(D, Ĩ, S), and
BS(D, Ĩ, S) is a partition of

⋃

δ∈S L0
δ(Ĩ).
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Example 3.1. Continuing from Example 2.2, let S = {0.3, 0.7} and D =
{1, 2, 3} ⊆ U , then from Figs. 1 and 2, it is clear that

PS(D, Ĩ, S) = {(13, ace)0.3, (1, acde)0.3, (12, de)0.7},

NS(D, Ĩ, S) = {(45, abcd)0.3, (456, b)0.7, (45, ab)0.7, (6, bd)0.7},

BS(D, Ĩ, S) = {(1236, ce)0.3, (1345, ac)0.3, (12456, cd)0.3, (126, cde)0.3,

(2456, bcd)0.3, (145, acd)0.3, (26, bcde)0.3, (126, d)0.7},

and it can be seen that the three classes above form a partition of L0
0.3(Ĩ) ∪

L0
0.7(Ĩ).

By the positive concepts and the negative concepts of D, some certainty
decision rules can be derived, and by the boundary concepts of D, a lot of
possibility decision rules can be induced.

Example 3.2. Continuing from Example 3.1, from each of the positive concepts
or the negative concepts, a certainty decision rule can be made, and some pos-
sibility decision rules are derived from the boundary concepts. So, three groups
of decision rules are obtained, which are list as follows:

The first group (induced from PS(D, Ĩ, {0.3, 0.7})):
(r11) (a, 0.3) ∧ (c, 0.3) ∧ (e, 0.3) =⇒ D,

(r12) (a, 0.3) ∧ (c, 0.3) ∧ (d, 0.3) ∧ (e, 0.3) =⇒ D;
(r13) (d, 0.7) ∧ (e, 0.7) =⇒ D;

The second group (induced from NS(D, Ĩ, {0.3, 0.7})):
(r21) (a, 0.3) ∧ (b, 0.3) ∧ (c, 0.3) ∧ (d, 0.3) =⇒∼ D,

(r22) (b, 0.7) =⇒∼ D,

(r23) (a, 0.7)) ∧ (b, 0.7) =⇒∼ D,

(r24) (b, 0.7) ∧ (d, 0.7) =⇒∼ D;

The third group (induced from BS(D, Ĩ, {0.3, 0.7})):
(r31) (c, 0.3) ∧ (e, 0.3) −→ D,

(r32) (a, 0.3) ∧ (c, 0.3) −→ D,

(r33) (c, 0.3) ∧ (d, 0.3) −→ D,

(r34) (c, 0.3) ∧ (d, 0.3) ∧ (e, 0.3) −→ D,

(r35) (b, 0.3) ∧ (c, 0.3) ∧ (d, 0.3) −→ D,

(r36) (a, 0.3) ∧ (c, 0.3) ∧ (d, 0.3) −→ D,

(r37) (b, 0.3) ∧ (c, 0.3) ∧ (d, 0.3) ∧ (e, 0.3) −→ D,

(r38) (d, 0.7) −→ D.

About the meanings of these rules, for example, the certainty decision rule
(r11) indicates that if the degrees to which an object x have the attributes, a,
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c, and e, are all not less than 0.3, then x must belong to the object set D; and
from the possibility decision rule (r31) we know that if the degrees to which an
object x have the attributes c and e are all not less than 0.3, then x may belong
to the object set D.

It should be point out that some rules may be redundant with respect to
the other rules in its group. In the first group, the rule (r12) is redundant with
respect to the rule (r11). In the second group, the rules (r23) and (r24) are
redundant with respect to the rule (r22). In the third group, the rules (r31)-(r35)
are redundant with respect to the rules (r36) and (r37).

The unredundant rule are important for theory and application. Moreover,
we can see that the concepts with respect to the nonredundant certainty decision
rules are maximal in its group, and the concepts with respect to the nonredun-
dant possibility decision rules are minimal.

3.2 Judgement of Attribute Reduction

Definition 3. Let (U,A, Ĩ) be a formal fuzzy context and C ⊆ A. Denote the
restraction of Ĩ on U × C as ĨC , then the formal fuzzy context (U,C, ĨC) is said
to be a sub-context of (U,A, Ĩ).

Let (U,A, Ĩ) be a formal fuzzy context, and 0 < δ � 1 and C ⊆ A. The two
derived operators ∗Ĩδ

C
in (U,C, ĨC) are rewritten as follows:

X
∗

Ĩδ
C = {a ∈ C|∀x ∈ X, Ĩ(x, a) � δ},X ⊆ U ;

B
∗

Ĩδ
C = {x ∈ U |∀a ∈ B, Ĩ(x, a) � δ}, B ⊆ C.

Of course, X
∗

Ĩδ
A and B

∗
Ĩδ
A are identical with X∗

Ĩδ and B∗
Ĩδ , respectively.

In the following, for a ∈ A, we denote X
∗

Ĩδ
{a} and B

∗
Ĩδ
{a} as X

∗
Ĩδ
a and B

∗
Ĩδ
a ,

respectively.
It can be seen that X

∗
Ĩδ
C = X∗

Ĩδ ∩ C for all X ⊆ U , and (Iδ)a = (Iδ
C)a for

any a ∈ C, where, Iδ
C is the induced classical relation from (U,C, ĨC). Thus, for

any B ⊆ C, we have that B
∗

Ĩδ
C = ∩{(Iδ

C)a|a ∈ B} = ∩{Iδa|a ∈ B} = B∗
Ĩδ .

Thus, the next proposition can be presented immediately.

Proposition 2. Let (U,A, Ĩ) be a formal fuzzy context and 0 < δ � 1. Then for
any C ⊆ A, we have that Extδ(ĨC) ⊆ Extδ(Ĩ).

Let (U,A, Ĩ) be a formal fuzzy context, 0 < δ � 1, C ⊆ A, and D ⊂ U .
Denote the set of all the maximal elements of PS(D, ĨC , {δ}) as PM(D, Ĩδ

C),
the set of all the maximal elements of NS(D, ĨC , {δ})) as NM(D, Ĩδ

C), and the
set of all the minimal elements of BS(D, ĨC , {δ}) as BM(D, Ĩδ

C).

Example 3.3. Continuing from Example 3.1, for δ ∈ S, we can pick out
the elements of PM(D, Ĩδ), NM(D, Ĩδ) and BM(D, Ĩδ) from PS(D, Ĩδ, S),
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NS(D, Ĩδ, S) and BS(D, Ĩδ, S), respectively, and list them as follows:

PM(D, Ĩ0.3) = {(13, ace)}, PM(D, Ĩ0.7) = {(12, de)};
NM(D, Ĩ0.3) = {(45, abcd)}, NM(D, Ĩ0.7) = {(456, b)};
BM(D, Ĩ0.3) = {(145, acd), (26, bcde)}, BM(D, Ĩ0.7) = {(126, d)}.

Let (U,A, Ĩ) be a formal fuzzy context, 0 < δ � 1, C ⊆ A, and D ⊂ U .
Denote

PE(D, Ĩδ
C) = {X ⊆ U |(X,X

∗
Ĩδ
C ) ∈ PM(D, Ĩδ

C)},

NE(D, Ĩδ
C) = {X ⊆ U |(X,X

∗
Ĩδ
C ) ∈ NM(D, Ĩδ

C)},

BE(D, Ĩδ
C) = {X ⊆ U |(X,X

∗
Ĩδ
C ) ∈ BM(D, Ĩδ

C)},

PNBE(D, Ĩδ
C) = PE(D, Ĩδ

C) ∪ NE(D, Ĩδ
C) ∪ BE(D, Ĩδ

C).

Definition 4. Let (U,A, Ĩ) be a formal fuzzy context, and S a sequence of
thresholds and D ⊂ U . Then C ⊆ A is referred to as a consistent set for D
and S, if for any δ ∈ S,

PE(D, Ĩδ
C) = PE(D, Ĩδ), NE(D, Ĩδ

C) = NE(D, Ĩδ), BE(D, Ĩδ
C) = BE(D, Ĩδ).

And further, if for any a ∈ C, C −{a} is not a consistent set for D and S, then
C is referred to as a reduct for D and S.

From Example 3.1 we can see that when we construct the nonredundant
three-way decision rules in (U,A, Ĩ) with D and δ, only the concepts of
PM(D, Ĩδ), NM(D, Ĩδ), and BM(D, Ĩδ) are used. Let C be a reduct of (U,A, Ĩ)
with D and δ, it can be found that the concepts of PM(D, Ĩδ

C) and PM(D, Ĩδ)
correspond one to one and the corresponding concepts have the same extents,
and so do NM(D, Ĩδ

C) and NM(D, Ĩδ), and BM(D, Ĩδ
C) and BM(D, Ĩδ). Thus

there is also a one-to-one mapping between the nonredundant three-way decision
rules in (U,A, ĨC) and (U,A, Ĩ), and it is not difficult to see that the correspond-
ing decision rules have the same support set.

Therefore we can conclude that a reduct C for a target set D and a threshold
sequence S is a minimum attributes subset to keep the extents of the maximal
positive concepts, the maximal negative concepts, and the minimal boundary
concepts unchanged with respect to the original formal fuzzy context and the
corresponding decision rules have the same performance.

Theorem 1. Let (U,A, Ĩ) be a formal fuzzy context, and S a threshold sequence
and D ⊂ U . Then C ⊆ A is a consistent set for D and S, if and only if for any
δ ∈ S and X ∈ PNBE(D, Ĩδ), we have that (X,X

∗
Ĩδ
C ) ∈ Lδ(ĨC).

Proof. (=⇒) Assume that C be a consistent set for D and S. For any X ∈
PE(D, Ĩδ), by PE(D, Ĩδ

C) = PE(D, Ĩδ), we have that X ∈ PE(D, Ĩδ
C). Thus,

(X,X
∗

Ĩδ
C ) ∈ Lδ(ĨC).
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By a similar way, we can prove that if X ∈ NE(D, Ĩδ) ∪ BE(D, Ĩδ), then
(X,X

∗
Ĩδ
C ) ∈ Lδ(ĨC).

(⇐=) Suppose that (X,X
∗

Ĩδ
C ) ∈ Lδ(ĨC) for all X ∈ PNBE(D, Ĩδ) and

δ ∈ S. For δ ∈ S and X ∈ PE(D, Ĩδ), by the supposition we have that
(X,X

∗
Ĩδ
C ) ∈ Lδ(ĨC). If there is a (Y,E) ∈ Lδ(ĨC) such that X ⊂ Y ⊆ D,

then by Proposition 2 we have Y ∈ Extδ(Ĩ). So, (Y, Y ∗
Ĩδ ) ∈ Lδ(Ĩ), we can

see that (X,X∗
Ĩδ ) /∈ PM(D, Ĩδ). A contradiction occurs! We then conclude

that (X,X
∗

Ĩδ
C ) ∈ PM(D, Ĩδ

C), clearly, X ∈ PE(D, Ĩδ
C). Thus, it is proved

that PE(D, Ĩδ) ⊆ PE(D, Ĩδ
C). Conversely, for any X ∈ PE(D, Ĩδ

C), of course,
X ∈ Extδ(ĨC), by Proposition 2 we have that X ∈ Extδ(Ĩ). If there is a
(Y, Y ∗

Ĩδ ) ∈ PM(D, Ĩδ) such that X ⊂ Y ⊆ D, by the supposition we have
(Y, Y

∗
Ĩδ
C ) ∈ Lδ(ĨC), which contradicts X ∈ PE(D, Ĩδ

C). Thus we have that
X ∈ PM(D, Ĩδ). Hence, PM(D, Ĩδ

C) ⊆ PM(D, Ĩδ). Summaring the two contain
relations we conclude that PE(D, Ĩδ

C) = PE(D, Ĩδ).
By the same way, we can prove that for any δ ∈ S, NE(D, Ĩδ

C) = NE(D, Ĩδ),
BE(D, Ĩδ

C) = BE(D, Ĩδ). Therefore, by Definition 4 we know that C is a consis-
tent set for D and S.

From Theorem1 the below conclusion follows immediately.

Corollary 1. Let (U,A, Ĩ) be a formal fuzzy context, and S a threshold sequence
and D ⊂ U . Then C ⊆ A is a consistent set for D and S, if and only if for any
δ ∈ S, we have that PNBE(D, Ĩδ) ⊆ Extδ(ĨC).

Proposition 3. Let (U,A, Ĩ) be a formal fuzzy context, 0 < δ � 1, and B,C ⊆
A. Then for any X ⊆ U, we have that X

∗
Ĩδ
B∪C

∗
Ĩδ
B∪C = X

∗
Ĩδ
B

∗
Ĩδ
B ∩ X

∗
Ĩδ
C

∗
Ĩδ
C .

Proof. For any X ⊆ U and x ∈ U , we have

x ∈ X
∗

Ĩδ
B∪C

∗
Ĩδ
B∪C ⇐⇒ X

∗
Ĩδ
B∪C ⊆ xIδ

B∪C ⇐⇒ X
∗

Ĩδ
B ⊆ xIδ

B ,X
∗

Ĩδ
C ⊆ xIδ

C

⇐⇒ x ∈ X
∗

Ĩδ
B

∗
Ĩδ
B , x ∈ X

∗
Ĩδ
C

∗
Ĩδ
C ⇐⇒ x ∈ X

∗
Ĩδ
B

∗
Ĩδ
B ∩ X

∗
Ĩδ
C

∗
Ĩδ
C .

The proof is completed.

By Proposition 3 we have the following corollary.

Corollary 2. Let (U,A, Ĩ) be a formal fuzzy context, 0 < δ � 1, and B,C ⊆ A.
If B ⊆ C, then for any X ⊆ U , we have that X

∗
Ĩδ
C

∗
Ĩδ
C ⊆ X

∗
Ĩδ
B

∗
Ĩδ
B .

Theorem 2. Let (U,A, Ĩ) be a formal fuzzy context, and S a threshold sequence
and D ⊂ U . Then C ⊆ A is a consistent set for D and S, if and only if for any
δ ∈ S, and a ∈ A−C and X ∈ PNBE(D, Ĩδ), we have that X

∗
Ĩδ
C

∗
Ĩδ
C ⊆ X

∗
Ĩδ
a

∗
Ĩδ
a .

Proof. (=⇒) Assume that C is a consistent set for D and S. For δ ∈ S, a ∈ A−C,
and X ∈ PNBE(D, Ĩδ), by Theorem 1 we have that X ∈ Lδ(ĨC), which implies
that X

∗
Ĩδ
C

∗
Ĩδ
C = X. From X ∈ PNBE(D, Ĩδ), it follows that X∗

Ĩδ ∗
Ĩδ = X.

Thus, X∗
Ĩδ ∗

Ĩδ = X
∗

Ĩδ
C

∗
Ĩδ
C . By Proposition 3 we have that X∗

Ĩδ ∗
Ĩδ = X

∗
Ĩδ
C

∗
Ĩδ
C ∩
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X
∗

Ĩδ
A−C

∗
Ĩδ
A−c . Thus, we conclude that X

∗
Ĩδ
C

∗
Ĩδ
C ⊆ X

∗
Ĩδ
A−C

∗
Ĩδ
A−c . For a ∈ A − C,

by Corollary 2 we know that X∗δ
A−C∗δ

A−C ⊆ X
∗

Ĩδ
a

∗
Ĩδ
a . We then conclude that

X
∗

Ĩδ
C

∗
Ĩδ
C ⊆ X

∗
Ĩδ
a

∗
Ĩδ
a for all δ ∈ S, a ∈ A − C,X ∈ PNBE(D, Ĩδ).

(⇐=) Suppose that for any δ ∈ S, a ∈ A − C, and X ∈ PNBE(D, Ĩδ), we
have that X

∗
Ĩδ
C

∗
Ĩδ
C ⊆ X

∗
Ĩδ
a

∗
Ĩδ
a . By Proposition 3 we know that

X∗δ
A−C∗δ

A−C =
⋂

a∈A−C

X
∗

Ĩδ
a

∗
Ĩδ
a ,

then it holds that X
∗

Ĩδ
C

∗
Ĩδ
C ⊆ X

∗
Ĩδ
A−C

∗
Ĩδ
A−c . Again according to Proposition 3,

we have that X∗
Ĩδ ∗

Ĩδ = X
∗

Ĩδ
C

∗
Ĩδ
C ∩ X

∗
Ĩδ
A−C

∗
Ĩδ
A−c = X

∗
Ĩδ
C

∗
Ĩδ
C . From X ∈

PNBE(D, Ĩδ), it follows that X∗
Ĩδ ∗

Ĩδ = X. Hence, we have that X
∗

Ĩδ
C

∗
Ĩδ
C = X,

which means X ∈ Lδ(ĨC). In terms of Theorem 1, we conclude that C is a
consistent set for D and S.

From Theorem2 the following corollary can be obtained.

Corollary 3. Let (U,A, Ĩ) be a formal fuzzy context, and S a threshold sequence
and D ⊂ U . Then C ⊆ A is a consistent set for D and S, if and only if for any
δ ∈ S and X ∈ PNBE(D, Ĩδ), we have that X

∗
Ĩδ
C

∗
Ĩδ
C ⊆ X

∗
Ĩδ
A−C

∗
Ĩδ
A−C .

3.3 An Approach of Attribute Reduction

Referring to rough set theory, by introducing the notion of discernibility attribute
set into the crisp-crisp variable threshold concept lattices, we give a method for
computing the reducts of a formal fuzzy context in the following.

Let (U,A, Ĩ) be a formal fuzzy context and 0 < δ � 1. For
(X1, B1), (X2, B2) ∈ Lδ(Ĩ), (X1, B1) ≺ (X2, B2) means that (X1, B1) is a
lower neighbor of (X2, B2), or (X2, B2) is a upper neighbor of (X1, B1), i.e.,
(X1, B1) � (X2, B2), and there is no (X,B) ∈ Lδ(Ĩ) such that X1 ⊂ X ⊂ X2.

Definition 5. Let (U,A, Ĩ) be a formal fuzzy context, 0 < δ � 1 and D ⊂ U . For
(Xi, Bi), (Xj , Bj) ∈ Lδ(Ĩ), if Xi ∈ PNBE(D, Ĩδ), and (Xi, Bi) ≺ (Xj , Bj), then
let DS((Xi, Bi), (Xj , Bj)) = Bi − Bj , otherwise, let DS((Xi, Bi), (Xj , Bj)) = ∅.
Then DS((Xi, Bi), (Xj , Bj)) is referred to as the discernibility attribute set of
(Xi, Bi) and (Xj , Bj) for D and δ.

For 0 < δ � 1, denote

DM(D, Ĩδ) = {DS((Xi, Bi), (Xj , Bj))|(Xi, Bi), (Xj , Bj) ∈ Lδ(Ĩ)},

then DM(D, Ĩδ) is called the discernibility matrix of (U,A, Ĩ) for D and δ.

Example 3.4. Continuing from Example 3.3, we only list the non-empty ele-
ments of the discernibility matrace DM(D, I0.3) and DM(D, I0.7) in Tables 4
and 5, respectively. In each table, the first column on the left consists of the
concepts with the extents of PNBE(D, Ĩδ), and each concept on the first row
above is a upper neighbor of some concepts of the first column on the left.
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Table 4. The discernibility matrix DM(U, Ĩ0.3).

(1236, ce) (1345, ac) (145, acd) (2456, bcd) (12456, cd) (126, cde)

(13, ace) a e

(45, abcd) b a

(145, acd) d a

(26, bcde) e b

Table 5. The discernibility matrix DM(U, Ĩ0.7).

(126, d) (U, ∅)
(12, de) e

(456, b) b

(126, d) d

Theorem 3. Let (U,A, Ĩ) be a formal fuzzy context, and S a threshold sequence
and D ⊂ U . Then C ⊆ A is a consistent attribute set for D and S, if and
only if for any δ ∈ S and DS((Xi, Bi)δ, (Xj , Bj)δ) �= ∅, we have that C ∩
DS((Xi, Bi), (Xj , Bj)) �= ∅.

Proof. (=⇒) Assume that C is a consistent set for D and S. For δ ∈ S and
(Xi, Bi), (Xj , Bj) ∈ Lδ(Ĩ), if DS((Xi, Bi), (Xj , Bj)) �= ∅, then we know that
(Xi, Bi) ≺ (Xj , Bj), obviously, Xi ∈ PNBE(D, Ĩδ). Because C is a consis-

tent set, by Theorem 1 we have (Xi,X
∗

Ĩδ
C

i ) ∈ Lδ(ĨC), from which it follows

that X
∗

Ĩδ
C

∗
Ĩδ
C

i = Xi, and since X
∗

Ĩδ
C

i = Bi ∩ C, then (Xi,X
∗

Ĩδ
C

i ) can be rewrit-

ten as (Xi, Bi ∩ C). Because (X
∗

Ĩδ
C

∗
Ĩδ
C

j ,X
∗

Ĩδ
C

j ) ∈ Lδ(ĨC) and X
∗

Ĩδ
C

j = Bj ∩ C,

we have (X
∗

Ĩδ
C

∗
Ĩδ
C

j , Bj ∩ C) ∈ Lδ(ĨC). Noticing (Xi, Bi) ≺ (Xj , Bj) and by

Proposition 1, it is clear that Xi ⊂ Xj ⊆ X
∗

Ĩδ
C

∗
Ĩδ
C

j . So, Xi ⊂ X
∗

Ĩδ
C

∗
Ĩδ
C

j , equiv-
alently, Bj ∩ C ⊂ Bi ∩ C, from which it follows that C ∩ (Bi − Bj) �= ∅, i.e.,
C ∩ DS((Xi, Bi), (Xj , Bj)) �= ∅.

(⇐=) Select δ ∈ S and suppose that C ∩ DS((Xi, Bi), (Xj , Bj)) �= ∅ for
all DS((Xi, Bi)δ, (Xj , Bj)δ) �= ∅. For any X ∈ PNBE(D, Ĩδ), by Proposition 1
we have that X ⊆ X

∗
Ĩδ
C

∗
Ĩδ
C . If X �= X

∗
Ĩδ
C

∗
Ĩδ
C , by X

∗
Ĩδ
C

∗
Ĩδ
C ∈ Extδ(ĨC) and

Proposition 2, we have that X
∗

Ĩδ
C

∗
Ĩδ
C ∈ Extδ(Ĩ). Thus there is a (Y,E) ∈ Lδ(Ĩ)

such that (X,X∗
Ĩδ ) ≺ (Y,E) � (X

∗
Ĩδ
C

∗
Ĩδ
C ,X

∗
Ĩδ
C

∗
Ĩδ
C

∗
Ĩδ ). Furthermore, by X∗

Ĩδ ∩
C = X

∗
Ĩδ
C ⊆ X

∗
Ĩδ
C

∗
Ĩδ ∗

Ĩδ = X
∗

Ĩδ
C

∗
Ĩδ
C

∗
Ĩδ , we have X∗

Ĩδ ⊃ E ⊇ X∗
Ĩδ ∩ C. So,

X∗
Ĩδ −E ⊆ X∗

Ĩδ −C. By the supposition we have C ∩ (X∗
Ĩδ −E) �= ∅, which is

in conflict with X∗
Ĩδ − E ⊆ X∗

Ĩδ − C. Thus, X = X
∗

Ĩδ
C

∗
Ĩδ
C . We then conclude

that PNBE(D, Iδ) ⊆ Extδ(ĨC). In terms of Corollary 1 we know that C is a
consistent set for D and S.

By the discernibility matrix of a formal fuzzy context, the discernibility func-
tion can be defined as follows:
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Definition 6. Let (U,A, Ĩ) be a formal fuzzy context, and S a threshold sequence
and D ⊂ U . For δ ∈ S, denote

DFδ(D, Ĩ) =
∧

{∨E|E ∈ DM(D, Iδ), E �= ∅},
and

DF (D, Ĩ, S) =
∧

δ∈S

DFδ(D, Ĩ),

then DF (D, Ĩ, S) is referred to as the discernibility function of (U,A, Ĩ) for D
and S. The symbols ∧ and ∨ represent the logical conjunction and disjunction
operations, respectively. Here, we set a logical variable for each attribute in A,
and for simplicity, each logical variable and the corresponding attribute are repre-
sented by the same symbol. For example, ∨{a, b, c} indicates the logical expression
a ∨ b ∨ c. Here, the symbols, a, b, and c, represent three logical variables, and it
is clear that the corresponding attribute set is {a, b, c}.

By Theorem3, it is not difficult to prove the below theorem.

Theorem 4. Let (U,A, Ĩ) be a formal fuzzy context, and S a threshold sequence
and D ⊂ U . If the minimal disjunction normal form of the discernibility function
DF (D, Ĩ, S) is (∧C1) ∨ · · · ∨ (∧Ck), then the attribute subsets, C1, . . . , Ck, are
all reducts of (U,A, Ĩ) for D and S.

Theorem 4 shows that by means of the discernibility function of a formal
fuzzy context, all its attribute reducts can be figured out.

Example 3.5. Continuing from Example 3.4, according to Tables 4 and 5, and
by Definition 6, we can gain the discernibility function, and then calculate it by
logical operation laws as follows:

DF0.3(D, Ĩ) = a ∧ e ∧ b ∧ a ∧ d ∧ a ∧ e ∧ b = a ∧ b ∧ d ∧ e,

DF0.7(D, Ĩ) = e ∧ b ∧ d,

So,
DF (D, Ĩ, S) = DF0.3(D, Ĩ) ∧ DF0.7(D, Ĩ)

= (a ∧ b ∧ d ∧ e) ∧ (e ∧ b ∧ d) = a ∧ b ∧ d ∧ e.

According to Theorem 4, we know that there’s only one reduct of (U,A, Ĩ) for D
and S, i.e., {a, b, d, e}.

By the reduct C = {a, b, d, e}, the nonredundant decision rules in Example 3.2
can be accordingly rewritten as follows:

The first group (induced from PS(D, ĨC , {0.3, 0.7})):

(r′11) (a, 0.3) ∧ (e, 0.3) =⇒ D, (r′13) (d, 0.7) ∧ (e, 0.7) =⇒ D;

The second group (induced from NS(D, ĨC , {0.3, 0.7})):
(r′21) (a, 0.3) ∧ (b, 0.3) ∧ (d, 0.3) =⇒∼ D, (r′22) (b, 0.7) =⇒∼ D;
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The third group (induced from BS(D, ĨC , {0.3, 0.7})):
(r′36) (a, 0.3) ∧ (d, 0.3) −→ D, (r′37) (b, 0.3) ∧ (d, 0.3) ∧ (e, 0.3) −→ D,

(r′38) (d, 0.7) −→ D.

It can be seen that these rules not only have simpler expressions, but we can
also verify that they have the same performance as the original ones.

4 Summaries

In this paper, based on the crisp-crsip variable threshold concept lattices, a
method for extracting three-way decision rules was developed. For a given
object subset and a sequence of thresholds, according to the three-way deci-
sion theory, all the crisp-crisp concepts of a formal fuzzy context were divided
into three parts, by which, some certainty and possibility decision rules were
made. A notion of attribute reduction of formal fuzzy contexts was presented
to simplify the form of the nonredundant decision rules and keep their perfor-
mance unchanged, and then some judgement therems of the consistent sets were
obtained. Subsequently, an approach for computing attribute reducts was pro-
posed by the discarnibility attribute sets and discarnibility function defined in
the paper, by which all the reducts of a formal fuzzy context can be figured out.
Some notions and conclusions of the paper were illustrated by a lot of examples.

The work of this paper is helpful for expanding the application of three-way
decision. In the future, we will introduce the three-way decision into the other
fuzzy concept lattices, so as to further combine the three-way decision and the
formal concept analysis.

Acknowledgements. This work was supported by grants from the National Natural
Science Foundation of China (Nos. 61773349, 61976194).
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Abstract. Feature selection is the process of selecting important fea-
tures from a dataset. The feature subset formed by important features
represents the features of the entire dataset to reduce the complexity
of subsequent computations. In recent years, feature selection methods
based on rough set theory have been continuously developed, and the
approximate quality of kernelized fuzzy rough sets is a better method
for evaluating features. However, the heuristic greedy strategy adopted
by traditional methods is difficult to guarantee the quality of feature
subsets. Based on the idea of three-way decision, this paper proposes
fuzzy dependency-based three-way feature selection method. We expand
the three potential feature subsets through a differentiated approach and
reduce the redundancy among them. Ensemble learning is performed on
the three feature subsets to improve the classification performance. The
experimental results show that compared with the traditional greedy fea-
ture selection method, the proposed feature selection method produces
better classification performance, which demonstrates its effectiveness.

Keywords: Kernelized fuzzy rough sets · Three-way decision ·
Feature Selection

1 Introduction

With the continuous growing of the scale of datasets in recent years, a given
learning problem and classification task contains a large number of features,
and these features are often irrelevant or redundant. Such features will lead
to the problems of high computational complexity, weak generalization ability
and poor interpretability. Feature selection is an effective technique to alleviate
these problems. It reserves highly correlated features and removes redundant and
irrelevant features to find the optimal feature subset, and thus improving the
performance of models [1]. Therefore, it becomes one of important preprocesses
for machine learning, data mining, and pattern recognition etc. [2].

Rough set theories [3] provides an effective method for modeling vague,
uncertain, or imprecise data. It uses a pair of exact sets (upper approxima-
tion and lower approximation) to describe the uncertainty within the data set.
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The attribute reduction methods in this theory remove redundant features in the
dataset while maintaining the correlation between feature subsets and decision
classes, which coincides with the purpose of feature selection [4]. Based on the
rough set theory, the correlation information within data is found without the
need for supplementary information, and the number of attributes contained in
the data set is reduced, which realizes the feature selection based on rough sets.
Presently, there are many extensions in rough sets theory, such as probabilistic
rough sets [5], neighborhood rough sets [6], and fuzzy rough sets [7,8], etc.

To deal with the information loss caused by discretizing data, Dubois and
Prade defined fuzzy rough sets [7,8] by introducing fuzzy membership functions
and extending the membership of elements to [0,1], which provides a high degree
of flexibility when dealing with continuous data in fields such as medicine, indus-
try and finance, and can effectively model the ambiguity and uncertainty that
exist in the data. On the premise of reserving the advantages of rough sets-
based set feature selection for processing high dimensional data, fuzzy rough
sets-based feature selection is realized by the fuzzy division of each feature by
fuzzy set theory [9]. This method can effectively reduce discrete or continuous
noise data, without the cost of adding extra information.

Aiming at the linear inseparability of the data obtained in the real world, that
is, there is no dividing hyperplane that can correctly classify the training samples,
we use the kernel methods to map the samples from the original space to a higher-
dimensional feature space to solve the problem, which makes the samples linearly
separable in this feature space. And for a limited-dimensional sample space,
there must be a high-dimensional feature space that makes the mapped samples
linearly separable. Hu integrated kernel functions with fuzzy rough sets and
proposed the model of kernelized fuzzy rough sets, which forms a bridge between
kernel machines and rough set-based data analysis [10]. Some generalized feature
evaluation functions and attribute reduction algorithms based on the proposed
model are shown and the effectiveness of the proposed technique is validated.

The three-way decision [11] theory extends the traditional two-way deci-
sion theory and is a decision-making method that conforms to human thinking.
In two-way decision, the judgment of objects only stays in two results: accep-
tance and rejection. However, in practice, people often delay the judgment and
decide on objects that they are confident to accept or reject instead of making
decisions immediately for uncertain or incomplete information. The three-way
decision divides objects into three domains (positive domain, negative domain
and boundary domain) according to the decision-making state value by defin-
ing the decision function and the threshold of the domain, then constructs the
corresponding three-way decision rules [12].

In this paper, we introduce a feature selection method based on kernelized
fuzzy rough sets and three-way decision. When constructing feature subsets, how
to maintain the maximum relevance for the decision class while minimizing the
redundancy between feature subsets is a key issue in feature selection. The three-
way strategy we employ is to construct three differentiated subsets of features
and to expand the features in the subset from different perspectives. The feature
subsets constructed by this strategy tend to be smaller than those constructed



378 X. Liu et al.

by traditional methods. Dependency is an important metric in rough set the-
ory to measure the relevance of features with respect to decision classes. Thus,
the dependency gained from new features is used as a reference for our feature
subset expansion strategy. Finally, we consider the idea of ensemble learning to
construct a multiple feature subsets-based co-classification model.

The rest of the paper is organized as follows. Section 2 presents the notions
and properties of the fuzzy rough set model and feature selection. Section 3 shows
the three-way attribute reduction algorithm. Experimental analysis is given in
Sect. 4. Conclusions come in Sect. 5.

2 Preliminaries

In this section, we will first give some basic definitions, and then review the
related work of rough sets, fuzzy rough sets, and kernelized fuzzy rough sets.

2.1 The Notations

Let I = (U,A) be an information system, where U = {x1, x2, ..., xn} is a
nonempty set of finite objects called the universe of discourse and A is a
nonempty finite set of attributes a : U → Va for every a ∈ A. For decision
systems, A = (C,D),where C is the set of input features and D is the set of out-
put features. Additionally a(x), a ∈ C, x ∈ U represents the value of the object
x under the attribute a.

2.2 Rough Sets

With any P ⊆ A there is an associated equivalence relation IND(P ):

IND(P ) =
{
(x, y) ∈ U

2 | ∀a ∈ P, a(x) = a(y)
}

(1)

An associated equivalence relation is reflexive, symmetric and transitive. The
family of all equivalence classes of IND(P ) are denoted by U/IND(P ) or U/P
for short, which is simply the set of equivalence classes generated by IND(P ):

U/IND(P ) = ⊗{U/IND({a}) | a ∈ P} (2)

where
A ⊗ B = {X ∩ Y | X ∈ A, Y ∈ B,X ∩ Y �= ∅} (3)

The equivalence classes of the indiscernibility relation with respect to P are
denoted [x]P , x ∈ U. Let X ⊆ U , X can be approximated using only the infor-
mation contained within P by constructing the P−lower and P−upper approx-
imations of the classical crisp set X:

PX = {x | [x]P ⊆ X} (4)

P̄X = {x | [x]P ∩ X �= ∅} (5)
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Let P and Q be subsets of condition attributes and decision attributes, respec-
tively, then according to the upper approximation and the lower approximation,
then the positive, negative, and boundary regions are defined as:

POSP (Q) =
⋃

X∈U/Q

PX (6)

NEGP (Q) = U −
⋃

X∈U/Q

P̄X (7)

BNDP (Q) =
⋃

X∈U/Q

P̄X −
⋃

X∈U/Q

PX (8)

All objects in the positive region POSP (Q), must belong to the set X. All
objects in the negative region NEGP (Q), must not belong to the set X. And
the objects in the boundary region BNDP (Q), may belong to X. The model of
attribute reduction in rough set requires that the positive region of the decision
attribute remains unchanged.

If IND(P ) = IND(P − a), the attribute a ∈ P is dispensable in the feature
set, otherwise it is indispensable. To achieve attribute reduction, that is, to find
the smallest subset P of the conditional attribute set. The minimum subset P
needs to satisfy the following two conditions:

(1) POSP (Q) = POSC(Q)
(2) ∀a ∈ P, POSP−{a}(Q) = POSC(Q)

Then the subset P is a reduct of C.

2.3 Fuzzy Rough Sets

The membership of an object x ∈ U, belonging to the fuzzy positive region can
be defined by

μRP X(x) = inf
y∈U

I (μRP
(x, y), μX(y)) (9)

Here I is a fuzzy implicator and T is a t-norm. RP is the fuzzy similarity relation
induced by the subset of features P :

μRP
(x, y) =

⋂

a∈P

{μRa
(x, y)} (10)

Many fuzzy similarity relations can be constructed to represent the similarity
between objects x and y for feature a, such as

μRa
(x, y) = 1 − |a(x) − a(y)|

|amax − amin| (11)

μRa
(x, y) = exp

(
− (a(x) − a(y))2

2σ2
a

)
(12)

where σ2
a is the variance of feature a. The fuzzy positive region can be defined

as
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Table 1. Selected t-Norms and their duals (S Conorms)

Operators T Operators S

1 TM (a, b) = min(a, b) SM (a, b) = max(a, b)

2 Tp(a, b) = a × b Sp(a, b) = a + b − ab

3 TL(a, b) = max(a + b − 1, 0) SL(a, b) = min(a + b, 1)

4 Tcos(a, b) = max(ab −
√

1 − a2
√

1 − b2, 0) Scos(a, b) = min(a + b − ab +
√

2a − a2
√

2b − b2, 1)

μPOSRP
(Q)(x) = sup

X∈U/Q

μRP
(x) (13)

Using the definition of the fuzzy positive region, the new dependency function
can be defined as follows:

γ′
P (Q) =

∑
x∈U

μPOSRP
(Q)(x)

|U| (14)

A fuzzy-rough reduct R can be defined as a subset of features that preserves the
dependency degree of the entire dataset, that is, γ′

R(D) = γ′
C
(D).

2.4 Kernelized Fuzzy Rough Set

Some widely encountered kernel functions satisfying reflexivity, symmetry, and
transitivity are:

1. Gaussian kernel: kG(x, y) = exp
(
−‖x−y‖2

δu

)

2. Exponential kernel: kE(x, y) = exp
(
−‖x−y‖

δ

)

3. Rational quadratic kernel: kR(x, y) = 1 − ‖x−y‖2

‖x−y‖2+δ

With the kernel function and the fuzzy operator in Table 1 and Table 2, we
can substitute fuzzy relations in fuzzy rough sets. The kernelized fuzzy lower
and upper approximation operators are defined as:

1. S-kernel fuzzy lower approximation operator: kSX(x) = infy∈U S(N(k(x, y)),
X(y));

2. θ-kernel fuzzy lower approximation operator: kθX(x) = infy∈U θ(k(x, y),
X(y));

3. T -kernel fuzzy upper approximation operator: kT X(x) = supy∈U T (k(x, y),
X(y))

4. σ-kernel fuzzy upper approximation operator: kσX(x) = supy∈U σ(N(k(x, y)),
X(y))

Let the classification be formulated as <U,A,D>, where U is thenonempty
and finite set of samples, A is the set of features characterizing the classification,
D is the class attribute which divides the samples into subset {d1, d2, ..., dK}.
For ∀x ∈ U ,

di(x) =
{

0, x /∈ di

1, x ∈ di
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We construct the algorithms for computing the fuzzy lower and upper approx-
imations for a given kernel function.

1. kSdi(x) = infy/∈di
(1 − k(x, y));

2. kθdi(x) = infy/∈di

(√
1 − k2(x, y)

)
;

3. kT di(x) = supy∈di
k(x, y);

4. kσdi(x) = supy∈di

(
1 − √

1 − k2(x, y)
)
.

The kernelized dependency function is defined as follows:

γS
B(D) =

∣
∣∪I

i=1kSdi

∣
∣

|U | or γθ
B(D) =

∣
∣∪I

i=1kθdi

∣
∣

|U | (15)

The coefficients of classification quality reflect the approximation ability
of the approximation space or the ability of the granulated space induced by
attribute subset B to characterize the decision.

3 Kernelized Fuzzy Rough Set-Based Three-Way
Decision Feature Selection

This section first expounds the problems existing in the heuristic kernelization
dependency feature selection strategy, and then describes the feature selection
method using the idea of three-way decision.

3.1 Heuristic Feature Selection

Since finding the minimum subset is an NP-hard problem, a heuristic search algo-
rithm is generally used to obtain feature subsets. The maximal dependency(MD)
strategy is designed in [13], and its heuristic feature evaluation function is

max
f∈C−S

Ψ(f, S,D) (16)

where Ψ(f, S,D) = γ
S∪{f}
B (D) − γS

B(D), C is the initial feature set, S is the
selected feature subset, D is the decision feature, and F is a candidate feature.

The purpose of feature selection is to obtain the feature subset with the
fewest features under the condition of maintaining the descriptive ability of the
feature subset. MD adopts a greedy strategy, that is, adding a candidate feature
that maximizes Ψ in each step, so that the dependency of the selected feature
subset increases as quickly as possible, and its search can only guarantee a local
optimum. The selected feature subset may be too large and redundant, and the
quality of the feature subset is difficult to guarantee.
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3.2 Feature Selection Based on Three-Way Decision

In order to avoid the problems caused by the greedy strategy and make the
feature subset more concise and informative, this paper proposes a three-way
decision-based feature selection strategy. In the three-way search, generally each
layer maintains three feature subsets, which are used to generate the top three
new feature subsets respectively, totaling 9 candidate feature subsets. Then, the
top three are selected from the 9 feature subsets, and they are constrained from
not originating from the same branch as the 3 feature subsets of the next layer.
Three-way feature selection will eventually generate 3 better feature subsets.
The method of feature selection and generation of successor is as follows:

w⋃

i=1

max
fi∈C−Si

Ψ (fi, Si,D) , (17)

Ψ (fi, Si,D) = γ
Si∪{fi}
B (D) − γSi

B (D), (18)

C is the conditional feature set, i represents the sequence number of the branch,
Si represents the feature selected by the ith branch, and fi represents the can-
didate feature of the ith branch.

Fig. 1. Three-way feature selection

The idea of three feature selection is shown in Fig. 1. The solid and dashed
circle nodes in the figure represent a subset of features. The solid circle indicates
that the feature subset will continue to expand, and the dashed circle indicates
that the feature subset will not expand. Node G indicates that the feature subset
has reached the stopping condition.

The specific descriptions of the three feature selection algorithms are as Algo-
rithm1.
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Algorithm 1. Kernelized fuzzy rough set-based three-way decision feature selec-
tion
Input: A kernelized fuzzy rough set-based three-way decision system KFDS =<

U, A, D >, Cutoff threshold θ
Output: Three reduced feature subsets R
1: subset = {{∅}}, R = {∅}
2: k = 3
3: while flag do
4: flag = FALSE
5: for all i in subset do
6: if i.dependency > θ then
7: R.add(i)
8: subset.remove(i)
9: k = k − 1

10: continue
11: end if
12: bestAttrs = getMaxDependencyGainAttrs(A − i)
13: for all j in bestAttrs do
14: subset.add(i ∪ j)
15: flag = TRUE
16: end for
17: end for
18: subset = subset.getTopK(k)
19: end while

The algorithm first starts with an empty set, and selects the top three fea-
tures of dependency to form a feature subset of size 1. Next, test whether the
current feature subset reaches the threshold. If it reaches the threshold, termi-
nate the expansion of the subset and add it to the output subset set. Otherwise,
continue to select the top three features of dependency to expand the subset until
the subset There are three feature subsets in the set. In order to maintain the
difference of feature subsets, the algorithm constrains that all subsets selected
in each round cannot come from the same branch, and existing subsets cannot
be selected.

Let the size of the original feature set A in the dataset be N . In the kth round,
a feature subset has selected k features, and the time complexity of calculating
the dependency gain of the remaining (N − k) features is O(N − k). Then in
the worst case, that is, when all features are selected, the total complexity of
one feature subset is O

(∑N
k=1(N − k)

)
= O

(
N2

)
, and the total complexity of

three feature subsets is approximately O(N2).
After obtaining 3 feature subsets, the 3 feature subsets are respectively con-

structed as homogeneous learners to form three collaborative decision-making
models to obtain better learning performance.
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3.3 Computational Complexity

The main computational cost of three-branch decision feature selection is from
the computation of kernelized dependency with different feature subsets and
the selection of features with different branches. Compared with the traditional
fuzzy rough set, the usage of kernel functions greatly reduces the storage space
and computational cost. With M features, the time complexity of computing the
Euclidean distance between a pair of samples is O(M). With N samples, it first
spends O(N) to calculate the kernelized lower approximation of each sample,
and then merges the lower approximation of all samples by O(N) to obtain
the kernelized dependency to measure the quality of feature subsets. In the
feature selection process of the three-branch decision, each branch evaluates M
features at most and the size of the branch is at most M −2 features. Therefore,
the time complexity of computing the kernelized dependency and the feature
selection process at different branches are O(N2M) and O(M2), respectively.
However, the actual computation cost will be much smaller than the theoretical
computation cost due to the branch size and the cutoff threshold.

4 Experiment

This part mainly includes the experiment steps and presents an analysis of the
model with classification accuracy. We compare the three-way decision model
based on kernelized fuzzy rough sets with the traditional greedy algorithm. At
the same time, we also make the comparison between soft voting and hard voting
for the model in this paper. For each sample, we obtained its three feature
subsets obtained, and the closest distance from each feature subset to each class
in the data set is calculated and voted, then the closest distance is selected as
the feature subset described. Finally, the class to which the majority of feature
subsets belong is taken as the class of the sample, this method is called hard
voting, while soft voting corresponds to it, the sum of the three feature subsets to
the nearest samples of a certain class is taken as the total distance, then the class
to which the minimum value belongs can be taken as the class to which it belongs
by comparing all distances. In order to facilitate the following representation of
the experiment, ‘KFRS-FS(S)’ is used for soft voting, and ’KFRS-FS(H)’ is used
for hard voting.

4.1 Datasets and Settings

In this experiment, the specific information of the datasets is shown in Table 3.
We summarize the basic information of each dataset as dataset name, number of
features and number of samples. At the same time, for the experiment results of
each dataset, the average performance of the ten-fold cross-validation method is
used as the final performance of our model on the dataset, in order to eliminate
the adverse effects of accidental errors in the experiments.

Tests on small-scale datasets show that the kernel-based fuzzy rough set
method can extract better feature subsets when the dependency value belongs
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to [0.5, 1.0]. The performance of the algorithm in this paper is compared with
that of the greedy algorithm with dependency in [0.5, 1.0]. At the same time, for
each dataset, the performance difference between soft voting and hard voting is
compared. The specific experimental data are shown in Table 5 and Table VI.

Table 2. Residual Implication Induced by the t-Norms and Their Duals

Residual implication θ Operator σ

1 θM (a, b) =

{
1, a ≤ b

b, a > b
σM (a, b) =

{
0, a ≥ b

b, a < b

2 θp(a, b) =

{
1, a = 0

min(1, b/a), otherwise
σp(a, b) =

⎧
⎪⎨

⎪⎩

1, a = 0

max(0,
b − a

1 − a
), otherwise

.

3 θL(a, b) = min(b − a + 1, 1) σL(a, b) = min(0, b − a)

4 θcos(a, b) =

{
1, a ≤ b

ab +
√

1 − a2
√

1 − b2, a > b
σcos(a, b) =

{
0, a > b

a + b − ab −
√

2a − a2
√

2b − b2, a ≤ b

4.2 Algorithm Performance Comparison

The performance comparison results of the two algorithms on the selected
dataset are shown in Table 4. In Table 4, the second column represents the perfor-
mance of the model in this paper, which is represented by KFRS-FS here, and the
third column represents the performance of the classic greedy algorithm, which
is represented by GA. It can be seen that the performance of the algorithm in
this paper is generally higher than that of the greedy algorithm. Among them,
there are more than 5% points of performance improvement in australian, bupa,
dnatest, mammographic, spect-train or other datasets, and the improvement is
more significant. From overall view, the KFRS-FS algorithm proposed in this

Table 3. Experiment datasets

Dataset Features Objects

appendicitis 8 106

australian 15 690

bupa 7 345

dnatest 181 1186

fetal-state 21 2126

german 7 345

haberman 4 306

mammographic 5 748

spectf-train 22 267

vehicle 18 946

wdbc 31 569

weather 5 22
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Table 4. Classification accuracy by KFRS-FS and GA

Datasets KFRS-FS-W1 KFRS-FS-W2 KFRS-FS-W3 KFRS-FS GA

appendicitis 84.91 86.82 85.73 90.00 87.27

australian 85.22 84.93 85.22 84.78 80.86

bupa 61.71 64.30 66.06 63.42 57.71

dnatest 39.14 38.87 36.76 46.38 38.31

fetal-state 92.05 91.53 91.91 91.97 91.39

german 71.50 71.80 74.00 72.80 71.30

haberman 64.63 71.85 69.57 67.10 64.19

mammographic 73.52 75.00 75.27 75.60 70.66

spectf-train 78.75 78.75 77.75 82.50 76.50

vehicle 70.58 70.58 70.81 73.17 69.27

wdbc 97.19 97.19 97.37 97.54 96.49

weather 85.00 91.67 86.33 90.00 86.66

paper has different degrees of increase in algorithm performance compared with
the classical greedy algorithm according to different datasets.

4.3 Analysis of KFRS-FS

This part is mainly aimed at the comparison between soft voting and hard voting
inside the KFRS-FS algorithm introduced in this paper, as shown in Table 5
and Table 6, where the second column represents the feature subset distribution
obtained by soft voting and hard voting, and the third column represents the
performance of soft voting and hard voting. It can be seen that for datasets
with fewer features, the performance of soft voting is higher than that of hard
voting. On the contrary, the performance of datasets with more features is better
than hard voting. It proves that hard voting, which first finds the class to which
each feature subset belongs, will have more advantages in the comparison of
model performance in the sample space with high dimension while soft voting
will ignore the performance of individual feature subsets and try to find an
overall performance, this gives soft voting a poor effects in higher dimensions.
However, in low-dimensional space, the overall performance will have a better
model performance.

In addition, experiments show that the most appropriate cutoff threshold
varies in different datasets. When the cutoff threshold is too low, the model can
not fully exploit the information in the feature space. When the cutoff threshold
is too high, the feature subset may have high redundancy. Both of these will lead
to degradation in the performance of the model.
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Table 5. Classification accuracy by soft voting

Datasets Feature subsets by KFRS-FS(S) Performance of KFRS-FS(S)

appendicitis [[2, 3], [6, 3], [4, 6]] 85.45

australian

[[6, 2, 4, 7, 1, 5, 8, 10, 3, 0],

[13, 6, 2, 4, 7, 1, 5, 8, 10, 3], 81.15

[9, 6, 1, 4, 7, 2, 5, 8, 10, 3]]

bupa [[5, 3, 1, 0, 4], [2, 5, 1, 0, 3], [3, 2, 5, 1, 4]] 63.42

dnatest [[0, 1], [1, 2], [2, 0]] 39.66

fetal-state

[[6, 1, 7, 0, 12, 3, 9, 13, 14, 20, 4, 16, 10, 11],

[1, 12, 7, 0, 3, 13, 9, 20, 6, 4, 16, 10, 11, 17, 8, 15, 2], 91.97

[16, 1, 12, 7, 3, 14, 13, 9, 6, 20, 0, 10, 17, 4, 8]]

german

[[9, 5, 4, 0, 8, 7, 6, 2],

[1, 3, 9, 4, 5, 0, 8, 7, 6], 72.29

[3, 9, 4, 2, 5, 0, 8, 7, 6]]

haberman [[0, 1], [2, 0], [1, 2]] 67.09

mammographic [[0, 3, 2], [1, 0, 3], [2, 0, 1]] 68.53

spectf-train

[[40, 26, 1, 5, 4, 2, 7, 21, 33, 24, 3, 22],

[42, 40, 3, 8, 1, 33, 21, 4, 7, 28, 2, 14], 82.50

[41, 40, 28, 1, 4, 21, 8, 3, 7, 33, 2, 24]]

vehicle

[[8, 17, 14, 15, 9, 0, 12, 2, 16, 7, 3],

[11, 17, 14, 15, 9, 0, 2, 12, 16, 3, 7, 1], 70.23

wdbc

[6, 17, 14, 15, 9, 0, 2, 12, 16, 3, 7, 1]]

[[22, 27, 21, 11, 24, 20, 8, 7, 18],

[27, 0, 21, 11, 24, 20, 8, 6, 18], 97.01

[20, 27, 21, 11, 24, 18, 22, 8, 9]]

weather [[1, 0], [0], [2, 1, 3]] 90.00

Table 6. Classification accuracy by hard voting

Datasets Feature subsets by KFRS-FS(H) Performance of KFRS-FS(H)

appendicitis [[2, 3], [6, 3], [4, 6]] 90.00

australian

[[6, 2, 4, 7, 1, 5, 8],

[13, 6, 2, 4, 7, 1, 5], 84.78

[9, 6, 1, 4, 7, 2, 5]]

bupa [[5, 3, 1, 0], [2, 5, 1, 0], [3, 2, 5, 1]] 62.85

dnatest [[0, 1], [1, 2], [2, 0]] 46.38

fetal-state

[[6, 1, 7, 0, 12, 3, 9, 13, 14, 20, 4, 16, 10, 11, 17, 8],

[1, 12, 7, 0, 3, 13, 9, 20, 6, 4, 16, 10, 11, 17, 8, 15, 2], 91.78

[16, 1, 12, 7, 3, 14, 13, 9, 6, 20, 0, 10, 17, 4, 8, 15]]

german

[[9, 5, 4, 0, 8, 7, 6, 2, 13, 23, 10, 1],

[1, 3, 9, 4, 5, 0, 8, 7, 6, 2, 10, 23], 72.80

[3, 9, 4, 2, 5, 0, 8, 7, 6, 10, 23, 13]]

haberman [[0, 1], [2, 0], [1, 2]] 59.03

mammographic [[0, 3, 2], [1, 0, 3], [2, 0, 1]] 75.60

spectf-train [[40, 26, 1, 5, 4], [42, 40, 3, 8, 1], [41, 40, 28, 1, 4]] 73.75

vehicle

[[8, 17, 14, 15, 9, 0, 12, 2, 16, 7, 3, 1, 4],

[11, 17, 14, 15, 9, 0, 2, 12, 16, 3, 7, 1, 4], 73.17

[6, 17, 14, 15, 9, 0, 2, 12, 16, 3, 7, 1, 4]]

wdbc [[22, 27, 21, 11, 24], [27, 0, 21, 11], [20, 27, 21, 11]] 97.54

weather [[1], [0], [2, 1, 3]] 46.66
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5 Conclusions

In this paper, the idea of three-way decision is introduced into feature selection
based on kernelized fuzzy dependency. From the perspective of multi-branch,
multiple feature subsets containing sufficient information and complementar-
ity are obtained, and the classification performance of this method is further
improved through ensemble learning. The algorithm proposed in this paper has
been performed on benchmark datasets and compared with traditional meth-
ods. The experimental results show that the scale of the three feature subsets
calculated by the new method is much smaller than the original number of fea-
tures, which reduces the computational complexity of classification. Moreover,
the ensemble learning based on three feature subsets has better classification
accuracy on multiple datasets than the traditional kernelized fuzzy rough set
feature selection method, indicating that the new method has better classifi-
cation accuracy. Further research topics include how to extend the three-way
decision to the semi-supervised domain, so that the method can be used in more
practical situations.

Acknowledgements. The work was supported by the National Natural Science Foun-
dation of China (Nos. 61806127).
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Abstract. The focus of traditional k-means and its related improved
algorithms are to find the initial cluster centers and the appropriate
number of clusters, and allocate the samples to the clusters with clear
boundaries. These algorithms cannot solve the problems of clusters with
imprecise boundaries and inaccurate decisions due to inaccurate infor-
mation or insufficient data. Three-way clustering can solve this problem
to a certain extent. However, most of the existing three-way clustering
algorithms divide all clusters into three regions with the same threshold,
or divide three regions subjectively. These algorithms are not suitable for
clusters with different sizes and densities. To solve the above problems,
an adaptive k-means algorithm based on three-way decision is proposed
in this paper. First, the traditional clustering results are taken as tar-
get set and core region. The distance between each sample in the target
set is used as the candidate neighborhood radius threshold. At the same
time, neighborhood relationship is introduced to calculate the accuracy
of approximation, upper and lower approximation of the target set under
the current neighborhood relationship. Second, a boundary control coef-
ficient is defined according to the accuracy of approximation, and as
many abnormal data as possible are classified into boundary regions to
transform traditional clustering into three-way clustering adapted to dif-
ferent sizes and densities. Finally, five indexes are compared on UCI
data set and artificial data set, and the experimental results indicate the
effectiveness of the proposed algorithm.

Keywords: Three-way clustering · Three-way decision ·
Neighborhood · K-means · Accuracy of approximation

1 Introduction

Clustering attempts to classify samples into different clusters according to their
similarity. Different clusters should be as far away as possible, and the same
cluster should be as close as possible. For decades, many clustering algorithms
are proposed. Such as, clustering algorithms based on division: k-means [1] and
k-modes [2], hierarchical clustering algorithms: CURE [3] and BIRCH [4], clus-
tering algorithms based on density: DBSCAN [5] and DPC [6].
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Three-way clustering [10,11] is an application field of three-way decision.
Compared with traditional clustering, three-way clustering divides the clusters
into core region, boundary region and negative region. The samples in the core
region clearly belong to a cluster, the samples in the boundary region belong to
a cluster with a certain probability, and the samples in the negative region do
not belong to a cluster.

Yu et al. [15,17,18,21] introduced the idea of three-way decision into cluster-
ing, proposed a three-way clustering method, and also proposed some algorithms
to deal with incomplete data and uncertain relation. Wang et al. [13] proposed
an algorithm to divide three regions with the stability of each sample. Yao et al.
[14] proposed an algorithm with the interval set to represent a cluster. Chen
et al. [16,20] proposed a three-way density peak clustering method based on
evidence theory to overcome the problem of label propagation errors and an
improved DBSCAN based on three-way clustering. Afridi et al. [19] proposed
a three-way clustering method based on game theory rough set to solve the
uncertainty caused by incomplete and missing data. Wang et al. [22] proposed
an effective three-way clustering method, called TWKM, based on disturbance
analysis to separate the core region and the boundary region. However, all clus-
ters are divided into three regions with the same threshold in TWKM.

In most of the existing three-way clustering algorithms, all clusters are
divided into three regions with the same or subjective threshold, and it is not
suitable for clusters with different sizes and densities. Clusters with different
sizes and densities should be divided into three regions with different thresholds.

To solve the above problems, in this paper, the idea of three-way decision
[23] is introduced and the related concepts of neighborhood [24] are reviewed
in brief. An improved adaptive k-means algorithm based on three-way decision
is proposed. First, the result of traditional clustering is considered as the core
region in this paper. The uncertain data is classified from the core region to the
boundary region, and the determined data is still retained in the core region. Sec-
ond, neighborhood relationship, upper approximation, lower approximation [25]
and accuracy of approximation [26,27] are introduced to transform traditional
clustering into adaptive three-way clustering. In addition, to identify the appro-
priate amount of uncertain data, uncertain data can be classified into boundary
region, and the determined data can be classified into core region. A boundary
control coefficient is defined to find a appropriate radius threshold. Therefore,
a three-way k-means algorithm for different cluster sizes and densities is pro-
posed. Finally, the effectiveness of the algorithm is indicated by comparative
experiments.

This paper is organized as follows. In Sect. 2, the related concepts and related
work are introduced. In Sect. 3, an adaptive k-means algorithm based on three-
way decision is proposed. In Sect. 4, the experimental results are analyzed.
Finally, the conclusions are drawn in Sect. 5.
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2 Related Work

2.1 Neighborhood Rough Set

In neighborhood rough set, for decision information system IS = (U,A, V, f),
U = {x1, x2, · · · , xn} represents a non-empty finite set, called the universe. A
represents the attribute set. And V is the range. f : U ×A → V is an information
function, representing the corresponding mapping relationship between samples
and attributes.

Definition 1. Neighborhood Information Granules [24]. Given a decision infor-
mation system IS = (U,A, V, f), U = {x1, x2, · · · , xn} and ∀xi ∈ U , the neigh-
borhood of the sample xi can be defined as:

N(xi) = {xj |xj ∈ U,Δ(xi, xj) ≤ r}, (1)

where r is the radius threshold of the sample xi and �(•) is the distance function.
And for ∀x1, x2, x3 ∈ U , �(•) satisfies the following rules:

1) �(x1, x2) ≥ 0 ,
2) �(x1, x2) = 0, only if x1 = x2 ,
3) �(x1, x2) = �(x2, x1),
4) �(x1, x3) ≤ �(x1, x2) + �(x2, x3).

Minkowski distance is a commonly used distance function and defined as
follows.

Definition 2. Minkowski Distance [24]. Given a decision information system
IS = (U,A, V, f), the Minkowski distance for ∀x1,x2 ∈ U under the attribute set
A can be defined as:

ΔP (x1, x2) = (
m∑

i=1

|f(x1, ai) − f(x2, ai)|P )1/P , (2)

where f(x, ai) represents attribute value of sample x under attribute ai. When
P = 1, it is called Manhattan distance. When P = 2, it is called Euclidean
distance. When P = ∞, it is called Chebyshev distance. In this paper, we set
P = 2.

Definition 3. Neighborhood Approximation Space [28]. Given a universe U and
a neighborhood relation N on U , a tuple NAS = <U,N> is called a neighborhood
approximation space.

Definition 4. Upper and Lower Approximations of Neighborhood Approxima-
tion Space [28]. Given a neighborhood approximation space NAS =< U,N >
and set X, where X ⊆ U and U represents a universe, the lower approxima-
tion and upper approximation of X in the neighborhood approximation space are
respectively defined as:

NX = {xi|N(xi) ⊆ X,xi ∈ U}, (3)

NX = {xi|N(xi) ∩ X �= ∅, xi ∈ U}. (4)
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2.2 Three-Way Decision

Yao proposed the concept of three-way decision [29]. It is an extension of the
traditional binary-decision model by adding a third region on the basis of the
binary-decision model to explain the three regions of the rough set, namely the
positive region, negative region and boundary region.

Definition 5. The Upper and Lower Approximation of Pawlak Rough Set [29].
Suppose U is a universe, and E is an equivalence relation defined on U . Let
apr = (U,E) be the approximation space. The division of U under the equiva-
lence relation E is denoted as: U/E = {[x]E |x ∈ U }, where [x] is an equivalence
class containing x. Suppose ∀X ⊆ U , its lower approximation and upper approx-
imation are respectively defined as:

apr(X) = {x ∈ U | [x] ⊆ X}, (5)

apr(X) = {x ∈ U | [x] ∩ X �= ∅}. (6)

The upper and lower approximation divide the universe into three parts,
denoted as positive region POS (X), boundary region BND (X) and negative
region NEG (X) respectively. It is defined as:

POS(X) = apr(X) = {x ∈ U | [x] ⊆ X}, (7)

BND(X) = apr(X) − apr(X), (8)

NEG(X) = U − apr(X). (9)

To describe the accuracy of the set, Pawlak et al. [26] proposed the concept
of accuracy of approximation. When the accuracy of approximation is equal to
1, the accuracy of the set is the greatest.

Definition 6. Accuracy of Approximation [27]. Given a universe U and a set
X, X ⊆ U , the accuracy of approximation of X is defined as:

δ(X) =

∣∣apr(X)
∣∣

|apr(X)| , (10)

where apr(X) and apr(X) denote the lower approximation and upper approxi-
mation of set X, respectively.

2.3 Three-Way Clustering

The idea of three-way clustering [9,10,23] is to use three disjoint sets to represent
a cluster, called the core region, boundary region and trivial region, respectively.
Given a universe U , C = {C1, C2, · · · , Ck} is a family clusters of U , where k
denotes the number of clusters. The samples in the core region belong to a
cluster, the samples in the boundary region belong to a cluster with a certain
probability, and the samples in the trivial region certainly do not belong to a
cluster. Therefore, a cluster can be represented by core region POS(Ci) and
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boundary region BND(Ci), where POS(Ci) �= ∅, Ci represents a cluster i, Ci ∈
C, and i = 1, 2, · · · , k. POS(Ci) and BND(Ci) satisfy the following condition:

k⋃

i=1

(POS(Ci) ∪ BND(Ci)) = U. (11)

The result of three-way clustering is as follows:

TC = {TC1, TC2, · · · , TCk}, (12)

where TCi = (POS(Ci), BND(Ci)), i = 1, 2, · · · , k. When BND(Ci) = ∅,
three-way clustering becomes the traditional clustering.

3 Adaptive K-Means Algorithm Based on Three-Way
Decision

Suppose U is a universe with n samples. A cluster is represented by a core
region and a boundary region in three-way clustering. The samples in the core
region clearly belong to a cluster, the samples in the boundary region belong
to a cluster with a certain probability. The result of three-way clustering is
represented as TC = {TC1, TC2, · · · , TCk}, where k denotes the number of
clusters, TCi = (POS(Ci), BND(Ci)), i = 1, 2, · · · , k and Ci represents a
cluster i.

In traditional clustering, k-means is a classical algorithm. Related improved
algorithms of k-means are to find the initial centers and the appropriate number
of clusters. These algorithms simply consider the relationship between samples
and clusters. It cannot deal with the problem of clusters with imprecise boundary
and inaccurate decision. This problem can be solved by the idea of three-way
decision. However, there are several new problems in three-way clustering. It
is not appropriate to divide the core and boundary region for all clusters with
subjective or same value. Therefore, the main problem is to automatically select
the most appropriate threshold for different clusters instead of dividing all clus-
ters into regions with a same threshold. As mentioned before, the samples in
boundary region are classified into the core region or the samples in core region
are classified into the boundary region. To solve the above problems, an adap-
tive k-means algorithm based on three-way decision is proposed in this paper. It
mainly includes the following two steps. First, the first clustering result is based
on traditional clustering method. In this paper, the algorithm of literature [30]
is used as the first clustering algorithm, named DCKM. Second, clustering result
of the first step is regarded as the target set. There are two cases of the result in
the first step. For case 1, all of the clusters are correct samples. For case 2, some
clusters include abnormal samples. To divide the boundary region of each clus-
ter, neighborhood and accuracy of approximation are introduced in this paper.
The neighborhood radius is selected according to the distance between each
cluster sample. The neighborhood of each sample under different neighborhood



Adaptive K-means Algorithm Based on Three-Way Decision 395

radius is calculated to obtain the upper approximation, lower approximation
and accuracy of approximation. If the accuracy of approximation under each
neighborhood radius is all equal to 1, it is determined as case 1. For case 1,
the distance between each sample of this cluster will not affect the accuracy of
approximation when all these clusters are correct samples. If the accuracy of
approximation under some radii is not equal to 1, it is determined as case 2. For
case 2, if there are some abnormal samples in this cluster, the distance between
some samples of this cluster will affect the accuracy of approximation. For case
1, the core region is the current cluster sample, and the boundary region is an
empty set.

For case 2, to make more abnormal samples can be found in this cluster under
the condition of high accuracy of approximation. A boundary control coefficient
λµ(Ci) is defined as follows.

Definition 7. Boundary Control Coefficient. Given a universe U , the number
of clusters k and cluster Ci, C = {C1, C2, · · · , Ck} is a family clusters of universe
U , where Ci represents a cluster i, Ci ∈ C and 1 ≤ i ≤ k. The boundary control
coefficient is defined as follows.

λµ(Ci) = δµ(Ci) × |BND(Ci)|
|U | , (13)

where μ denotes the neighborhood radius and δµ(Ci) denotes the accuracy of
approximation in cluster Ci under the current neighborhood radius μ. |BND(Ci)|
denotes the number of current cluster samples divided into the boundary region,
|U | denotes the total number of samples, and |BND(Ci)|

|U | represents the proportion
of the number of samples in the boundary region of the current cluster to the total
number of samples.

In each cluster, boundary control coefficient can be calculated with different
neighborhood radii. To ensure a large accuracy of approximation and find abnor-
mal samples, when λµ(Ci) is the largest, the radius is the most appropriate. The
number of abnormal samples in the core region is not known in practice. It is
necessary to classify the abnormal samples into the boundary regions. Fewer
abnormal samples can be divided into boundary region with a larger accuracy
of approximation. To find more abnormal samples, the ratio of the number of
boundary regions to the total number of samples with different radii can be used
as the second variable in Eq. (13). Therefore, the boundary control coefficient
λµ(Ci) is defined as above.

Some of the data from the R15 dataset [31] are shown in Table 1, where a1

and a2 denote attributes. The specific process is as follows.
Neighborhood radius is selected from the distance between each sample in the

same cluster, as Table 2. In fact, it is impossible to know case 1 or case 2. There-
fore, a judgment is necessary. If the first clustering cluster is C1 = {A,B,C,D},
C2 = {E,F,G,H}. In cluster C1, the selection range of radius is the distance
between four samples A, B, C and D, such as 0.23, 0.32, 0.33, 0.37, 0.63 and 0.65
from Table 2. For example, when μ = 0.23, N0.23(A) = {A,D}, N0.23(B) = {B},
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Table 1. Partial data for R15.

Sample Attribute
a1 a2 Cluster

A 9.800 10.132 1
B 10.350 9.768 1
C 10.098 9.988 1
D 9.730 9.910 1
E 12.040 10.028 2
F 12.082 10.044 2
G 12.400 10.156 2
H 11.988 9.926 2

Table 2. The distance between samples.

Sample Attribute
A B C D E F G H

A 0.00 0.65 0.32 0.23 2.24 2.28 2.59 2.19
B 0.00 0.33 0.63 1.7 1.75 2.08 1.64
C 0.00 0.37 1.94 1.98 2.3 1.89
D 0.00 2.31 2.35 2.68 2.25
E 0.00 0.04 0.38 0.11
F 0.00 0.33 0.15
G 0.00 0.47
H 0.00

Table 3. Description of data sets.

ID Data set Number of samples Dimension

1 Iris 150 4
2 Ionosphere 351 34
3 Seeds 210 7
4 Soybean-small 47 35
5 Wine 178 13
6 Pima 768 8
7 Segmentation 210 19
8 Ecoli 336 6
9 Aggregation 788 2
10 Flame 240 2
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Table 4. ACC on ten data sets.

ID k-means k-means++ Canopy DCKM TWKM M-RKM TWD-AKM

1 0.3035 0.3514 0.8533 0.9266 0.7400 0.8907 0.9266
2 0.1810 0.1906 0.7094 0.7311 0.7122 0.6353 0.7351
3 0.1914 0.1419 0.6523 0.8238 0.7476 0.4142 0.8333
4 0.3382 0.4170 0.5744 0.7446 0.6382 0.7208 0.7446
5 0.1835 0.3628 0.6500 0.6516 0.6292 0.4764 0.6574
6 0.4986 0.5832 0.6601 0.6966 0.6966 0.6510 0.6993
7 0.3266 0.3057 0.3666 0.5142 0.4381 0.2529 0.5142
8 0.4017 0.4248 0.6250 0.7232 0.5625 0.6529 0.7352
9 0.3740 0.3881 0.5051 0.8159 0.7766 0.7941 0.8249
10 0.1906 0.2516 0.8333 0.9458 0.8250 0.8000 0.9542

N0.23(C) = {C}, N0.23(D) = {A,D}, N0.23(E) = {E,F,H}, N0.23(F ) =
{E,F,H}, N0.23(G) = {G}, N0.23(H) = {E,F,H}, apr0.23(C1) = {A,B,C,D},
apr0.23(C1) = {A,B,C,D}, POS0.23(C1) = {A,B,C,D}, BND&0.23(C1) = ∅,
δ0.23(C1) = 1.

After calculation, the accuracy of approximation is always equal to 1 with
all radii. Therefore, the value of radius μ has no effect on the final accu-
racy of approximation. Then, the samples of the cluster are all correct sam-
ples. The final core and boundary region of the cluster can be represented as
POS(C1) = {A,B,C,D}, BND(C1) = ∅. Similarly, POS(C2) = {E,F,G,H},
BND(C2) = ∅. For case 2, the boundary control coefficient is considered to
divide different regions in different clusters. If the first clustering is C1 =
{A,B,C,D,E, F}, C2 = {G,H}, the processing is as follows. First, C1 is
taken as an example. According to Table 2, the radius is selected from the
distances between the six samples A, B, C, D, E and F. When μ = 0.04,
N0.04(A) = {A}, N0.04(B) = {B}, N0.04(C) = {C}, N0.04(D) = {D},
N0.04(E) = {E,F}, N0.04(F ) = {E,F}, N0.04(G) = {G}, N0.04(H) =
{H}, apr0.04(C1) = {A,B,C,D,E, F}, apr0.04(C1) = {A,B,C,D,E, F},
POS0.04(C1) = {A,B,C,D ,E, F}, BND&0.04 (C1) = ∅, δ0.04(C1) = 1.

Similarly, when μ takes 0.23 and 0.32, δµ(C1) = 4
7 , λµ(Ci) = 3

14 . When μ
takes 0.33, 0.37, 0.63 and 0.65, δµ(C1) = 1

2 , λµ(Ci) = 1
4 . When μ takes 1.94

and 1.98, δµ(C1) = 2
8 , λµ(C1) = 3

16 . When μ takes 1.75 and 1.7, δµ(C1) = 3
8 ,

λµ(C1) = 15
64 . When μ takes 2.24, δµ(C1) = 1

8 , λµ(C1) = 7
64 . When μ takes

2.28, 2.31 and 2.35, δµ(C1) = 0, λµ(C1) = 0. If the corresponding accuracy of
approximation is not equal to 1 under some neighborhood radii, it can be deter-
mined as case 2. It is necessary to classify the abnormal samples into boundary
region. When the boundary control coefficient is the largest, the corresponding
radius is the best choice. If there are abnormal samples in a cluster, the accuracy
of approximation is not equal to 1 in the actual situation. However, the accu-
racy of approximation is equal to 1 under some neighborhood radii. Therefore,
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Algorithm 1: Adaptive k-means algorithm based on three-way decision
Input: universe U
Output: Clustering results of data sets

1 The first clustering result of data sets U :
2 cls1 = DCKM(U) = {C1, C2, · · · , Ck};
3 for i=1 to k do
4 Ccurrent = Ci, flag = 1;
5 calculate the distance between each sample of the current cluster and
6 put it into the distance matrix Disti;
7 for j in Ccurrent do
8 for m in Disti do
9 μcurrent = m ;

10 calculate Nμcurrent of each sample;
11 calculate aprμcurrent(Ccurrent), aprμcurrent(Ccurrent),

δμcurrent(Ccurrent) ;
12 if each δμcurrent(Ccurrent) = 1 then
13 flag = 1;
14 POSμcurrent(Ccurrent) = {aprμcurrent(Ccurrent)} ;
15 BNDμcurrent(Ccurrent) = ∅ ;
16 remove Ccurrent from D ;
17 else
18 flag = -1;
19 maxδ ← max(δμcurrent(Ccurrent)) ;
20 μ ← μcurrent;
21 POSμcurrent(Ccurrent) ← {aprμcurrent(Ccurrent)};
22 BNDμcurrent(Ccurrent) ←

{aprμcurrent(Ccurrent) − aprμcurrent(Ccurrent)} ;
23 end
24 end
25 end
26 end
27 return TC = {(POS(C1), BND(C1)), · · · , (POS(Ck), BND(Ck))}

the radius is not appropriate. To classify the abnormal samples into the bound-
ary region, in the case of large approximation accuracy, the boundary control
coefficient is introduced. The calculation process of other clusters is the same as
above. Thus, as the above process, each cluster is divided into core and boundary
regions adapted to respective densities and sizes.

4 Experiments

To evaluate the effectiveness of the proposed algorithm, eight UCI datasets [31]
and two artificial datasets [32] are chosen in this section to compare with the
traditional methods and improved methods.
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Table 5. ARI on ten data sets.

ID k-means k-means++ Canopy DCKM TWKM M-RKM TWD-AKM

1 0.4302 0.4692 0.6615 0.7686 0.3711 0.7420 0.8016
2 0.1679 0.1679 0.1727 0.1791 0.1286 0.1662 0.1853
3 0.4805 0.1575 0.4647 0.5511 0.3964 0.2953 0.5626
4 0.2965 0.5006 0.2966 0.5742 0.4089 0.5123 0.5742
5 0.3054 0.3711 0.3694 0.3498 0.2453 0.3605 0.3584
6 0.1152 0.1743 0.1743 0.2140 0.1491 0.1875 0.2164
7 0.1729 0.2712 0.1749 0.3039 0.1804 0.1368 0.3061
8 0.3224 0.4273 0.3839 0.5340 0.1862 0.4368 0.5340
9 0.3740 0.3714 0.3451 0.7054 0.5333 0.6543 0.6837
10 0.4544 0.4296 0.4422 0.7937 0.4200 0.4007 0.8088

Table 6. Jaccard on ten data sets.

ID k-means k-means++ Canopy DCKM TWKM M-RKM TWD-AKM

1 0.1214 0.1500 0.7287 0.8633 0.4371 0.7599 0.8633
2 0.1016 0.1074 0.1280 0.5775 0.1687 0.5519 0.5811
3 0.1107 0.1801 0.5309 0.7073 0.4534 0.3967 0.7143
4 0.1773 0.1654 0.5344 0.5932 0.5033 0.5279 0.5932
5 0.1065 0.2338 0.4220 0.4833 0.3459 0.3537 0.4896
6 0.3505 0.4235 0.2284 0.5344 0.2899 0.4925 0.5376
7 0.1699 0.1582 0.3124 0.3461 0.2902 0.2514 0.3461
8 0.1548 0.1702 0.4481 0.5664 0.3691 0.5514 0.5812
9 0.1940 0.4760 0.4913 0.6891 0.6195 0.6925 0.7019
10 0.1136 0.1586 0.4101 0.8972 0.4676 0.2867 0.9048

Table 7. AMI on ten data sets.

ID k-means k-means++ Canopy DCKM TWKM M-RKM TWD-AKM

1 0.5887 0.5869 0.7441 0.7717 0.5873 0.6261 0.7874
2 0.1231 0.1231 0.5496 0.1463 0.5530 0.4655 0.1516
3 0.5511 0.2989 0.4840 0.5401 0.5669 0.2612 0.5758
4 0.5344 0.6579 0.4029 0.6988 0.4687 0.6116 0.6988
5 0.3973 0.4226 0.4895 0.4350 0.4590 0.4318 0.4525
6 0.0631 0.0284 0.4927 0.1279 0.5344 0.4826 0.1299
7 0.3089 0.4687 0.2244 0.4801 0.2804 0.1448 0.4738
8 0.5862 0.5939 0.4545 0.5286 0.3913 0.5448 0.5286
9 0.7381 0.7388 0.3378 0.7407 0.6348 0.7075 0.7532
10 0.3989 0.5372 0.7142 0.7176 0.7021 0.6667 0.7319
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Table 8. RI on ten data sets.

ID k-means k-means++ Canopy DCKM TWKM M-RKM TWD-AKM

1 0.7762 0.7728 0.8464 0.9114 0.7093 0.8307 0.9124
2 0.5841 0.5841 0.5865 0.6067 0.5889 0.5368 0.6904
3 0.7343 0.6494 0.7258 0.8004 0.7177 0.6745 0.8057
4 0.5929 0.7502 0.5929 0.8094 0.7354 0.7607 0.8094
5 0.6177 0.7100 0.6072 0.6561 0.6457 0.6693 0.6596
6 0.5610 0.5507 0.5507 0.5767 0.5767 0.5450 0.5789
7 0.6636 0.6942 0.6622 0.7530 0.7053 0.4616 0.7669
8 0.7856 0.8066 0.6724 0.7903 0.6788 0.4816 0.7903
9 0.8439 0.8435 0.6531 0.8972 0.8479 0.8939 0.8749
10 0.7278 0.7051 0.7210 0.8971 0.7100 0.7018 0.9047

4.1 The Evaluation Index

1) Accuracy (ACC)

ACC =
k∑

c=1

nj
c

n
, (14)

where nj
c is the number of common objects in the cluster c and n represents

the number of samples. After one-to-one matching is obtained, its matching
category is j. A higher value indicates the better clustering.

2) Rand Index (RI)

RI =
a + b

C
nsamples

2

, (15)

where a + b denotes the number of samples belonging to the same cluster. a
is the number of samples in the same class of real data and predicted data.
b is the number of samples in the different classes of real data and predicted
data. C

nsamples

2 denotes the number of any two samples combined into one
class.

3) Adjusted Rand Index (ARI)

ARI =
RI − E{RI}

max(RI) − E{RI} , (16)

similar to RI, a larger value means a better match with the real situation.
E{RI} represents the expectation of RI and max(RI) represents the maximum
value of RI.

4) Jaccard

Jaccard(A,B) =
A ∩ B

A ∪ B
, (17)

where A and B denote two sets for comparing the similarity between two
samples. The higher values indicate the higher similarity between the two
samples.
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5) Adjusted Mutual Information (AMI)

AMI(U, V ) =
MI(U, V ) − E{MI(U, V )}

F (H(U),H(V )) − E{MI(U, V )} , (18)

where E{MI(U, V )} is the expectation of the mutual information MI(U, V ),
F (H(U),H(V )) = H(U)+H(V )

2 . H(U) and H(V ) represent the information
entropy of U and V , respectively. U and V represent real label and predicted
label, respectively.

4.2 Experimental Illustration

To indicate the effectiveness of the proposed algorithm in this paper, the exper-
imental results of k-means, k-means++, Canopy, DCKM [30], M-RKM [35] and
TWKM [22] are analyzed with the algorithm in this paper on five evaluation
metrics. The proposed algorithm in this paper is called TWD-AKM. The rele-
vant descriptions of the data sets are shown as Table 3. In this experiment, all
core and boundary regions are regarded as a clustering result. The experimental
results of k-means, k-means++, Canopy, DCKM, TWKM, M-RKM and TWD-
AKM are based on 10 datasets, as shown in Tables 4, 5, 6, 7 and 8, with the
optimal results of the experiments in bold. The initial cluster centers of k-means,
k-means++, Canopy and TWKM are selected randomly, and the randomness of
the results is large. Therefore, in this experiment, when calculating the relevant
index, 200 times are randomly selected and then the average value is taken as
the final result.

The problem of neighborhood radius selection is to be involved in the pro-
posed algorithm in this paper. Meanwhile, the selection range is the distance
between each sample in the cluster of the first clustering. From Tables 4, 5, 6, 7
and 8, the proposed algorithm in this paper is superior to other algorithms in
most data sets in terms of ACC, ARI, Jaccard, AMI and RI. Each cluster has
a clear boundary, the cluster is marked as the core region and boundary region,
and the abnormal samples are classified into boundary region. At the same time,
the core region and boundary region of all clusters are not divided by a same
threshold. According to the experimental results, the proposed algorithm in this
paper has better performance on most of data sets. The experimental results of
ACC and Jaccard have better performance on most data sets, because only the
samples of the core region are considered in the calculation. The proposed algo-
rithm in this paper performs poorly on the data sets, such as Wine, Aggregation
and Ecoli. Although initial centers are randomly selected with many times, the
number of selected clusters does not match the actual number of clusters and
the number of selected clusters is less than the actual number of clusters. The
value of ACC is small when the algorithm in this paper selects the real clusters.
In Eq. (14), a represents the number of samples of real data and prediction data
in the same class. b represents the number of real data and predicted data in
the different classes. However, the real data is not in the same class and the
predicted data is in the same class. It causes the value of a + b to be small.
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Therefore, when the number of selected clusters is closer to the real situation,
the values of ARI and RI are small. In conclusion, the proposed algorithm has
better performance.

5 Conclusions

As an extension of traditional clustering, three-way clustering has better perfor-
mance in dealing with data with imprecise boundaries. However, in three-way
clustering, it is inappropriate for most algorithms to divide the core region and
the boundary region for each cluster with the same threshold, because the same
threshold will cause the samples in the core region to be divided into the bound-
ary region or the samples in the boundary region to be divided into the core
region. To divide different clusters into appropriate core regions and boundary
regions, in this paper, the concept of neighborhood relationship is introduced
and the boundary control coefficient is defined to classify abnormal samples into
boundary region. And an appropriate threshold can be obtained by this coef-
ficient. Thus, traditional clustering is transformed into a three-way clustering
adapted to different sizes and densities. Compared with most of the three-way
clustering algorithms, the proposed algorithm in this paper divides the core and
boundary regions with different thresholds. To a certain extent, the problem of
sample misclassification is avoided. Therefore, the proposed algorithm is more
suitable for clusters with different sizes and densities. Finally, the effectiveness
of the algorithm is indicated by experiments.
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Abstract. Sentiment analysis is an important research direction of natu-
ral language processing. The data imbalance is a critical issue in text sen-
timent classification task. That arises the problem of high misclassifica-
tion cost. This paper proposes a three-way sampling sentiment classifica-
tion model for imbalanced text data to reduce the misclassification cost.
Specifically, the model extracts boundary points through three-way sam-
pling and collaborates with cost-sensitive learning for action on sampled
results. Firstly, in order to reduce sampling time, the text data is converted
into a one-dimensional vector by bag mapping. Secondly, three-way sam-
pling is used to obtain boundary points that can characterize the major-
ity class. Finally, a sequential three-way sentiment classification algorithm
is used to predict sentiment polarity. The experimental results show that
the proposed model outperforms state-of-the-art sentiment classification
methods in the scenario of extremely imbalanced test data.
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ment analysis is an important approach for businesses and industry. It helps to
attract customers and improve the quality of products or services. At present, it
has been applied to many fields such as recommendation system [1] and public
opinion analysis [2,7].

Based on deep learning, sentiment classification has been a research hot spot
in recent years. Deep learning methods such as convolutional networks [3] and
recurrent neural networks [16] have achieved in text modeling. However, when
the sample is imbalanced, the training model parameters would be shifted, and
the classification quality for majority sample is unsatisfied. Fan et al. [8] provide a
cost-sensitive text sentiment analysis method based on sequential three-way deci-
sion, which introduces dynamic characteristics of the decision-making process.
Kübler [13] investigates feature selection methods in imbalanced data sentiment
analysis. Sayyed [18] proposes an application of sampling methods for sentiment
analysis on two extreme imbalanced datasets. Ghosh [10] finds that minority
over-sampling on live tweets of Twitter can overcome imbalanced classification
problem.

Classification methods for imbalanced data can generally be divided into
two categories: training data and model parameter oriented ways [5]. The train-
ing data oriented method includes random over-sampling (RAMO) and random
under-sampling (RAMU).

In this paper, we propose a three-way under-sampling method on imbalanced
text data for sentiment classification, namely, 3WS-ITSC. The motivations are:
1) to solve the problems of information loss and 2) to improve the efficiency of
sampling.

To conquer the shortcomings of information loss due to the sampling, firstly,
three-way sampling method trisects the entire data area into: positive region,
negative region, and boundary region. Then, the data points drop into the bound-
ary region are sampled since they can precisely describe the distribution of data.

The process of sampling text data can be represented by word vectors directly.
However, it brings inefficiency and high computational cost. In recent years,
multi-instance learning (MIL) has already been widely applied in many domains,
such as sentiment classification [14,17], image retrieval [4,6], and image clas-
sification [15,21]. Inspired by MIL, we design an efficient sampling model by
converting the text data into a multi-instance bag structure and mapping each
sampled data into a new vector. That can dramatically reduce computational
cost.

The experiments are undertaken on 5 review datasets to verify the perfor-
mance of 3WS-ITSC. In general, the results show that the 3WS-ITSC model is
superior to imbalance text data for sentiment classification problem by compar-
ing with the state-of-the-art methods. It has higher stability and feasibility for
extremely imbalanced text data.

The remainder of this paper is organized as follows. Section 2 introduces the
preliminaries of our model, including three-way sampling (3WS), bag mapping
method and the sequential three-way sentiment classification model applied in
this paper. Section 3 presents our model framework and algorithm. Section 4
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describes the experimental process, the datasets used, the experimental results,
and discussions. Section 5 concludes and points out the future studies.

2 Preliminaries

2.1 Three-Way Sampling (3WS)

The idea of TAO (trisecting-acting-outcome) model of three-way decision (3WD)
[24,26] is to divide the result into three decision regions and adopts the strategy
of ‘divide and conquer’. By introducing a pair of thresholds (α, β), β < α, on
the evaluation function v, the constructed three regions are as follows:

POS(α,β)(v) = {x ∈ U | v(x) ≥ α},

NEG(α,β)(v) = {x ∈ U | v(x) ≤ β},

BND(α,β)(v) = {x ∈ U | β < v(x) < α},

(1)

where POS, NEG, BNG represents positive region, negative region, boundary
region respectively. The value v(x) is called the decision status value of x and
may be interpreted as the probability or possibility.

Fig. 1. TAO model of three-way decision [26]

The frame of TAO model is shown in Fig. 1. First, TAO divides a universe into
three parts, then takes different actions for different parts, and finally optimizes
trisecting and acting for a desirable outcome. Trisecting involves a division of a
whole into three parts, acting applies a set of strategies to process the three parts,
and outcome evaluation measures the effectiveness of three-way decision [26].

3WS [9] is a sampling method which is proposed according to the character-
istics of the boundary regions. The main problem is to determine how to create
representative boundary regions which accurately describe the distribution of
the data. Support vector data description (SVDD) is a way to describe the dis-
tribution of data [19]. A hypersphere is constructed in a high-dimensional space
by a Gaussian function. All support vectors on the boundary of the hypersphere
are the same distance from the center.
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Fig. 2. Schematic of three-way sampling

The idea of 3WS is inspired by SVDD. Less than the radius of the hyper-
sphere is the positive region, larger than the radius of the hyper-sphere is the
negative region, and the sample equal to the radius of the hyper-sphere is the
support vector, that is, the boundary region. The sampling by 3WS is the support
vector selected by SVDD. As shown in Fig. 2, the five-pointed star represents the
support vector and the sampled point. To speed up the sampling calculation,
3WS adopts a fast incremental SVDD learning algorithm (FISVDD) [11], which
is more efficient than existing SVDD algorithms. The definition of the three-way
sampling is [11]:

POS (U) =
{

x ∈ U | ‖x − θ‖2 < R2
}

,

NEG(U) =
{

x ∈ U | ‖x − θ‖2 > R2
}

,

BND(U) =
{

x ∈ U | ‖x − θ‖2 = R2
}

,

(2)

where R, θ represents the hyper-sphere radius, hyper-sphere center respectively.

2.2 Bag Mapping

By considering the time and effect of the algorithm, the vector of locally aggre-
gated descriptors representation (miVLAD) algorithm [20,22] could map the
original MIL bags to the new vector representations efficiently. Therefore, each
of text data can be regarded as a MIL bag, and each word in the text can be
regarded as an instance. The purpose of applying the multi-instance bag map-
ping method is to reduce the computational time caused by 3WS.

The size of the dimension after data mapping is determined by the number of
clusters in miVLAD. If the number of clusters selected is nc, then the dimension
of the vector after mapping is nc∗50. Let Xi represent the i-th bag, xij represent
the j-th instance in the bag, and ck represent the i-th cluster center For each
bag Xi, to calculate the difference vik between the instances xij and ck in the
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bag, the attribute value of vik is calculated as follows:

vecikl =
∑

xij∈Ω

(xijl − ckl), (3)

where Ω represents all instances in the same cluster as the cluster center ck. If
there are nc cluster centers, there are nc vectors, which are then combined to
form a new vector. The rules of combination are as follows: First, expand vi into
a vector of 50 ∗ nc, and then process the vector as in Eq. 4.

veci·l = sign (veci·l)
√

|veci·l|,
veci =

veci

‖veci‖2
.

(4)

2.3 Three-Way Sentiment Classification (Three-Way SC)

In sentiment analysis, the concept of a three-way decision has been applied in
[8,27]. For imbalanced data, the cost-sensitive learning approach is a model
parameter-oriented strategy. The essential of cost-sensitive learning is to assign
less weight to positive class samples and more weight to negative class sam-
ples. Three-way SC can be categorized as a cost-sensitive method. This strategy
increases the cost of the minority class and enables the model pay more attention
to the minority class.

Definition 1. Let Gr = {Gr1, Gr2 . . . Grs} be the s levels of granular structure,
where Grj = {Uj , Gj , αj , βj , vj(x)}, j = 1, 2 . . . s. At j-th level, the Uj denotes
the processing objects, the Gj denotes the size of granules, the (αj , βj) is the pair
of thresholds, vj(x) is the evaluation function.

Since v(x) denotes the likelihood or possibility of x, and according to Defi-
nition 1, the three-way sentiment classification (three-way SC) rules are defined
as follows:

POSj
(αj)

(v) = {x ∈ Uj | v(x) > αj},

BNDj
(αj ,βj)

(v) = {x ∈ Uj | αj ≥ v(x) ≥ βj},

NEGj
(βj)

(v) = {x ∈ Uj | v(x) < βj}.

(5)

Table 1 shows the six cost types for the j-th granularity level of the cost-
sensitive sentiment classification task: the true acceptance λj

PP (correctly classify
a positive sample), the true rejection λj

NN (correctly classify a negative sample),
the boundary acceptance λj

BP (classifying a positive sample after delay), the
boundary rejection λj

BN (classifying a negative sample after delay), the false
rejection λj

NP (positive samples are misclassified as negative samples), the false
acceptance λj

PN (negative samples are misclassified as positive samples).
The decision cost is regarded as inequality. Evaluating negative samples

(minority class) as positive samples in imbalanced text data classification is
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Table 1. Three-way sentiment classification cost matrix

Decision Real sentimental polarity
Positive (P ) Negative (N)

Positive decision (DP ) λj
PP λj

PN

Delayed decision (DB) λj
BP λj

BN

Negative decision (DN ) λj
NP λj

NN

more expensive than evaluating positive samples (majority class) as negative
samples. The cost of making a bad decision is higher than the cost of delaying a
decision, and the cost of delaying a decision is higher than the cost of making a
correct decision, which is expressed as [23]:

0 ≤ λj
PP ≤ λj

BP < λj
NP ,

0 ≤ λj
NN ≤ λj

BN < λj
PN ,

λj
NP < λj

PN .

(6)

Definition 2. Let nj
PN represents the number of negative samples misclassified

as positive samples, nj
NP represents the number of positive samples misclassified

as negative samples, nj
PP represents the number of correctly classified positive

samples, nj
NN represents the number of correctly classified negative samples at

the j level. The following formulas can be used to compute the total cost (TC)
and the average cost (AC):

TC =
S∑

j=1

(
λj

PNnj
PN + λj

NP nj
NP

)
,

AC =
TC

∑S
j=1

(
nj

PP + nj
NP + nj

PN + nj
NN

) .

(7)

2.4 Sequential Three-Way Sentiment Classification (S3WSC)

Existing sentiment classification models only make static decisions, ignoring the
dynamic features of the decision-making process. Sequential three-way decision
is a dynamic decision-making model based on 3WD [25]. It is used to simplify
complex problems from the perspective of granular computing, granulate a com-
plex problem, process each refined problem one by one, create a multi-layered
sequential procedure, and finally achieve the goal from basic to complex. The cre-
ated s granular layers are represented by Grj(j = 1, 2, 3, ..., s). Each particular
layer has two (αj , βj) and satisfies the following criteria [23]:

0 ≤ β1 ≤ β2 ≤ · · · ≤ βs ≤ αs ≤ αs−1 ≤ · · · ≤ α1 ≤ 1. (8)
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According to Definition 1, S3WSC is divided into a granular structure with
s layers. Except for the last one, which is a two-way decision (2WD) layer, the
rest are 3WD layers. In the 3WD layer the samples in the boundary region must
be further examined. The samples in the positive and negative regions will be
used as the classification result. The positive and negative regions eventually
approach the boundary region with finer granularity (Fig. 3).

Fig. 3. S3WSC framework

3 Three-Way Sampling on Imbalanced Text Data
for Sentiment Classification

3.1 Three-Way Sampling on Imbalanced Text Data

Before adapting 3WS on imbalanced text data, a series of text processing tasks,
such as word segmentation, stop word removes, data format conversion, and data
are converting into MIL bag structure, are required.

A complex matrix can be used to represent each sample data when a 50
dimensional Glove word vector is used to represent each word. However, the
three-way sampling computational time will be excessively long as a result of
this. This study introduces a fast bag mapping algorithm that maps data to new
vector representations, accelerates 3WS on the bulk of the training set’s classes.

The modification of text data is depicted in Fig. 4. After the text data is
converted into a matrix, the matrix is mapped to a simple vector by the bag
mapping algorithm. The number of clusters nc is fixed to 1 in this paper, and
text data is transformed into a 50-dimensional vector according to Eqs. 3 and 4.
This paper maps all text data to a simple vector.

3.2 Sentiment Classification Through Three-Way Sampling

The three-way sampling model is adapted to sentiment classification in this
subsection. Based on the cost matrix in Subsect. 2.3, the threshold pair for the
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Fig. 4. The flow chart of text data mapping

granular layer can be calculated as follows [23]:

αj =
λj

PN − λj
BN(

λj
PN − λj

BN

)
+

(
λj

BP − λj
PP

) ,

βj =
λj

BN − λj
NN(

λj
BN − λj

NN

)
+

(
λj

NP − λj
BP

) .

(9)

The three-way SC is defined in Definition 2.3 except for the last granular
layer. In the last granular layer, the pair of (αs, βs) meets αs = βs = 0.5. The
two-way sentiment classification (two-way SC) is defined as follows:

POSs
(αs)(v) = {x ∈ Us | v(x) ≥ αs},

NEGs
(αs)(v) = {x ∈ Us | v(x) < αs}.

(10)

Algorithm 1 demonstrates the 3WS-ITSC construction process, and the
Table 2 shows the complexity of Algorithm 1. Because the proposed model
introduces deep neural network models, the time complexity of 3WS-ITSC is
O(s ∗ (m ∗ n+m ∗ v2 + l + train)), s stands for the number of stages, m for the
number of training set samples at each step, and n for the number of bags, v for
the number of support vectors computed by FISVDD, and l for the number of
testing set samples at each stage. There are five key steps in 3WS-ITSC:

Step 1: Initialization. After receiving the first training set and all test sets, the
model creates three empty sets (positive, negative, and boundary regions).
Step 2: Bag mapping. Bag mapping method converts matrix data to new vector
Step 3: Sampling. 3WS on the majority class, and use the sampled data to update
the model.
Step 4: Three-Way sentiment classification. The model decides on the test set
and divides it into positive, boundary, and negative regions. The data in the
boundary region are the test set for the next epoch.
Step 5: Two-Way sentiment classification. Repeat Step 1 to 4 until the object
data in the boundary region is binary classified at the end.
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Algorithm 1. The algorithm of 3WS-ITSC.
Require:

Training samples A = A1

⋃ · · · ⋃ Ai

⋃ · · · ⋃ As(1 � i � s);
Testing samples T ;
Threshold pair(αi, βi) at i-th level;

Ensure: Classification results POS and NEG;
1: // Step 1. Initialize parameters.
2: D = T , B = ∅, V = ∅, POS = ∅, NEG = ∅, BND = ∅, initialize model M ;
3: for (i ∈ [1..s]) do
4: // Step 2. Bag mapping.
5: for (j ∈ [1..m]) do
6: Map the Aij ∈ Ai to the new vector Vij according to Equation (3) and Equa-

tion (4);
7: end for
8: // Step 3. Three-Way Sampling for majority class.
9: 3WS on Vi to obtain B;

10: Update model M with B;
11: Calculate vi(x) by model M ;
12: if i �= s then
13: // Step 4. Three-Way sentiment classification.
14: POSi = {x ∈ D | vi(x) ≥ αi};
15: BNDi = {x ∈ D | βi < vi(x) < αi};
16: NEGi = {x ∈ D | vi(x) ≤ βi};
17: C = BNDi;
18: else
19: // Step 5. Two-Way sentiment classification.
20: POSi = {x ∈ D | vi(x) ≥ 0.5};
21: NEGi = {x ∈ D | vi(x) < 0.5};
22: end if
23: POS = POS

⋃
POSi;

24: NEG = NEG
⋃

NEGi;
25: end for
26: return POS and NEG.

Table 2. Computational complexity of Algorithm 1

Lines Complexity Description

Lines 5–7 O(m ∗ n) Bag mapping
Line 9 O(m ∗ v2) Three-Way Sampling for majority class
Line 10 O(train) Update model
Lines 12–22 O(l) Decision-making process
Total O(s ∗ (m ∗ n + m ∗ v2 + l + train))
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4 Experiments

In this section, we test the 3WS-ITSC model on IMDB, Yelp, and Amazon review
datasets, using three common sentiment classification methods as baseline (fast-
Text [12], TextCNN [3], TextRNN [16]). To verify the effectiveness of our pro-
posed model, we compare it with RAMU-ITSC and the unsampled imbalanced
text sentiment classification model (UNS-ITSC). All algorithms are preformed
with the same software and hardware configuration (CPU:AMD EPYC 7543
32-Core Processor; RAM:30GB; GPU:RTX A5000; Memory:24GB; Linux 5.4.0-
91-generic; python3.8). All the code for the experiments are available at https://
github.com/Z-C-Lee/3WS-ITSC.

4.1 Datasets and Parameters Settings

Table 3 shows the dataset briefings of IMDB, Yelp, and Amazon, where N repre-
sents the total number of samples, L represents the average length of the sample
text, dist(+,−) represents the positive and negative class distributions, pos rep-
resents the number of samples in the few-sample category, neg represents the
number of samples in the majority class, test represents the number of our test
set. It also lists the dataset’s imbalance ratio.

Table 3. The description of datasets

Name N dist(+, −) Imbalanced ratio L pos neg test

IMDB 37, 500 (0.66, 0.34) 2 : 1 242 25, 000 12, 500 12, 500

Yelp 486, 998 (0.74, 0.26) 2.8 : 1 130 358, 672 128, 326 81, 166

Amazon/Arts 25, 761 (0.80, 0.20) 5 : 1 73 21, 496 4, 265 8, 587

Amazon/Ele 1, 051, 775 (0.84, 0.16) 5.5 : 1 79 887, 698 164, 077 175, 296

Amazon/Jew 53, 574 (0.86, 0.14) 6 : 1 87 46, 060 7, 514 17, 858

IMDB1: It is a dataset of movie reviews for binary sentiment classification.
The dataset contains 50, 000 samples, with 25, 000 positive and 25, 000 negative
samples. 12, 500 negative samples are removed in order to achieve an imbalanced
state.

Yelp Review Polarity2: The restaurant review on Yelp. The sample data with
a score of 5 is used as positive sample, and the sample with a score of 1 is used
as our negative sample. A total of 486, 998 samples were collected, with 358, 672
being positive and 128, 326 being negative.

Amazon Review Polarity3: We select 3 datasets from the Amazon Reviews
dataset: 1) Customer feedback on Amazon electronics product. The dataset con-
tains 1, 051, 775 samples, with 887, 698 positive and 164, 077 negative samples.
1 http://ai.stanford.edu/~amaas/data/sentiment/.
2 https://www.yelp.com/dataset.
3 http://snap.stanford.edu/data/web-Amazon-links.html.

https://github.com/Z-C-Lee/3WS-ITSC
https://github.com/Z-C-Lee/3WS-ITSC
http://ai.stanford.edu/~amaas/data/sentiment/
https://www.yelp.com/dataset
http://snap.stanford.edu/data/web-Amazon-links.html
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2) Arts product reviews contain 25, 761 samples, with 21, 496 positive and 4, 265
negative samples. 3) Jewelry reviews contain 53, 574 samples, with 46, 060 posi-
tive and 7, 514 negative samples.

In our model, several parameters must be set: the Gaussian kernel bandwidth
σ, the number of granular layers s, and the number of clusters C in the bag
mapping. The value of σ is more smaller, and the more samples are sampled.
The dimension of the mapped samples increases as the number of clusters C
increases. The parameter values for each dataset in this model are shown in
Table 4. The table also indicates how many samples will be sampled at each
granularity level (nsample).

Table 4. The parameter values set for each dataset

Name σ s C nsample

IMDB 0.28 4 1 3, 000

Yelp 0.27 20 1 9, 000

Amazon/Arts 0.3 4 1 2, 000

Amazon/Ele 0.31 20 1 13, 000

Amazon/Jew 0.3 4 1 5, 000

Table 5. The cost values for each dataset

Name λPP λPN λBP λBN λNP λNN

IMDB 0 300 40 40 150 0

Yelp 0 420 40 40 150 0

Amazon/Arts 0 750 40 40 150 0

Amazon/Ele 0 825 40 40 150 0

Amazon/Jew 0 900 40 40 150 0

Refer to the settings of cost value in [8], these settings are for a balanced
dataset. Set the weight of the cost based on the proportion of positive and
negative samples in the training set, as shown in Table 5.

4.2 Results and Analysis

The F1-score and AC are evaluation metrics in this paper. The lower the AC,
the lower the misclassification cost of the representative model. So a lower AC
value is recommended. The addition of the AC value makes our research more
practical.
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Table 6. Comparison of 3WS, RAMU and unsampled F1

Classifier Dataset 3WS-ITSC RAMU-ITSC UNS-ITSC

TextRNN IMDB 0.8543±0.0023• 0.8523±0.0067 0.8513±0.0170

Yelp 0.9442±0.0011• 0.9402±0.0038 0.9359±0.0067

Amazon/Arts 0.9087±0.0007• 0.9078±0.0016 0.9085±0.0003

Amazon/Ele 0.9497±0.0007• 0.9475±0.0017 0.9473±0.0020

Amazon/Jew 0.9247±0.0009 0.9249±0.0006 0.9253±0.0001•
TextCNN IMDB 0.8929±0.0016• 0.8923±0.0034 0.8925±0.0024

Yelp 0.9615±0.0007• 0.9612±0.0009 0.9529±0.0006

Amazon/Arts 0.8932±0.0034• 0.8785±0.0132 0.8922±0.0048

Amazon/Ele 0.9553±0.0001• 0.9552±0.0002 0.9507±0.0005

Amazon/Jew 0.9122±0.0040 0.9186±0.0046 0.9233±0.0005•
FastText IMDB 0.9106±0.0007• 0.9064±0.0032 0.9106±0.0014

Yelp 0.9680±0.0007• 0.9679±0.0008 0.9663±0.0011

Amazon/Arts 0.9054±0.0015 0.9038±0.0022 0.9088±0.0006•
Amazon/Ele 0.9511±0.0004 0.9526±0.0017• 0.9484±0.0026

Amazon/Jew 0.9234±0.0008 0.9240±0.0007• 0.9233±0.0003

Table 7. Comparison of 3WS, RAMU and unsampled AC

Classifier Dataset 3WS-ITSC RAMU-ITSC UNS-ITSC

TextRNN IMDB 52.4304±1.9415• 54.5304±2.1962 57.3600±2.7171

Yelp 35.6266±2.1883• 39.3009±3.0079 43.2820±5.6914

Amazon/Arts 73.7615±0.1784• 73.9187±0.1565 74.1598±0.3590

Amazon/Ele 57.2253±0.6456• 64.2841±5.0772 66.2499±3.2894

Amazon/Jew 124.5055±0.2821• 124.7558±0.1460 124.9104±0.0349

TextCNN IMDB 33.8808±0.7831• 34.8720±1.2424 38.1408±1.1145

Yelp 22.2724±0.4777• 22.5235±0.9008 28.6482±0.6937

Amazon/Arts 72.2697±0.7930• 73.4191±0.3732 72.5737±0.5572

Amazon/Ele 43.6877±0.7285• 45.1405±0.3887 58.8385±1.1550

Amazon/Jew 122.5925±0.6101• 123.2932±0.6855 123.7553±0.3431

FastText IMDB 29.5800±0.2540• 30.6648±2.5412 29.8704±1.3362

Yelp 15.7599±0.4187• 16.0076±0.9766 19.4546±1.1543

Amazon/Arts 72.0950±0.5140• 72.4199±0.6604 73.5204±0.2225

Amazon/Ele 38.4875±0.2373• 40.2155±1.5779 62.0771±4.6134

Amazon/Jew 123.7631±0.0739• 123.7815±0.3635 124.2619±0.3251

Table 6 illustrates the F1 value of FastText, TextRNN and TextCNN on
the dataset in Subsect. 4.1. Except for the FastText performance on the Ama-
zon dataset, the results show that 3WS-ITSC outperforms RAMU-ITSC and
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UNS-ITSC. When compared with RAMU-ITSC, 3WS-ITSC has no discernible
improvement in F1, but it is accompanied by a high degree of stability.

The AC of FastText, TextRNN, and TextCNN on the dataset are shown in
Table 7. The results show that the average cost of 3WS-ITSC on all datasets
is lower and more stable than RAMU-ITSC and UNS-ITSC on all classifiers.
As the imbalanced ratio of data increases, the improvement of the value of F1

is less obvious or even not improved, but the AC value is always better than
RAMU-ITSC and UNS-ITSC. That means 3WS-ITSC model is more practical
than RAMU-ITSC model.

The effectiveness of our model can be observed in Fig. 5, the smaller the plane
area, the more efficient the model. Among all the classifiers, the effectiveness
of 3WS-ITSC improves more significantly as the data imbalance is increasing.
According to Fig. 5(a), the performance of 3WS-ITSC on TextRNN is signifi-
cantly better than RAMU-ITSC and UNS-ITSC. 3WS-ITSC has slight improve-
ment over RAMU-ITSC on TextCNN and FastText, as shown in Fig. 5(b) and
Fig. 5(c), evidently a significant improvement over UNS-ITSC.

Fig. 5. The comparison chart for average cost (AC)

In the Amazon dataset, more negative samples are predicted as positive sam-
ples due to the extreme imbalance ratio. Thus, while this type of data will have
a higher F1 value, it will also have a higher AC value. On extremely imbalanced
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data, our method obtains AC value as small as possible while keeping F1 stable.
However, the AC value of our method is not obvious on extremely unbalanced
and small sample data.

5 Conclusion and Further Work

In this paper, we propose a 3WS-ITSC model. It provides a solution to the sen-
timent classification problem with regard to imbalance text data. This paper
collaborates the MIL bag mapping method, convert text data to a simpler vec-
tor representation. The three-way sampling method divides the data into three
regions, of which the boundary region serves as sampling points. 3WS extracts
boundary points effectively and describes the spatial structure of the data accu-
rately. The obtained boundary points of the majority class are used to train the
classifier.

Although the bag mapping operation, to a large extend, can reduce the sam-
pling computational cost, there is still a significant time-consuming problem
when the amount of samples is large. Since the text data are granulated using
a random assignment method, the sample points generated may not adequately
explain the spatial distribution of the entire dataset. In future work, we will
investigate how to improve the sampling efficiency of massive text data and the
spatial structure of the data.
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Abstract. In the rough set-based clustering models, prototypes are iteratively
updated by weighting the importance of core and boundary regions. The weighted
valuewl is often pre-defined andfixed for all prototype calculations. In thisway, the
characteristics of data structures are not considered when assigning the weighted
values. Some uncertainties may arise in the clustering processes, especially when
the densities and sizes of different clusters are discrepant. In this study, an auto-
matic mechanism for adaptively adjusting the weighted value wl is introduced
which adheres to the distributions of approximation region partitions, and the
uncertainties caused by the user-definedweighted values can be reduced. Based on
the generated approximation region partitions of each cluster, an absolute bound-
ary region is formed in which the samples are classified guided by the notion
of three-way decisions. The validity of the proposed method is demonstrated by
some benchmark data sets from UCI repository.

Keywords: Rough-fuzzy clustering · Approximation regions · Adaptive
weighted values · Three-way decisions

1 Introduction

Rough set theory [1] often divides a universe into three approximation regions related to a
given concept based on a predefined relationship among attributes (features). Since upper
and lower approximate operators are used to describe uncertain concepts, an uncertain
concept can be depictedwith two crisp sets. Based on the idea of rough set approximation
regions, Lingras and West proposed a rough C-means (RCM) clustering method [2], in
which the contributions of lower approximation region (core region) and boundary region
of each cluster are weighted to calculate prototypes in iteration processes. However,
this method does not well describe the memberships of samples belonging to different
clusters, and the structural characteristics of the sample space, especially the case of
overlapping, are not detected. On this basis, Mitra extended RCM to a rough-fuzzy C-
means (RFCM) clusteringmethod [3]. In this method, the approximation regions of each
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cluster are partitioned and measured by fuzzy membership functions. Maji [4] further
considered that the core region of each cluster should have the same contribution in the
iterative calculation process of prototypes, and then a variation of RFCM is presented.

The clustering methods based on rough sets involve two key parameters: the approx-
imation region partition threshold � and the weighted coefficient wl (wb = 1 − wl).
Different values of threshold � will result in different approximation regions of each
class, thus the accuracy and efficiency of iteration processes may be affected. The stud-
ies in [5, 6] introduced the idea of approximate region partition based on shadowed sets
[7, 8], which transforms the selection of partition thresholds in the RFCM clustering
process into an uncertainty balance optimization problem. Li et al. [9] introduced a
rough C-means method based on decision rough set models [10], in which the expected
loss function from samples to clusters is formed as the approximation region partition
principle by fully considering the neighborhood information of each sample. Sarkar
et al. [11] used the middle value between the largest and second largest fuzzy member-
ship degrees of all sample points as the approximation region partition threshold, and
achieved competitive experimental results.

Although some researches have focused on the determination of approximation
region separation threshold �, there are few literatures concentrated on the weighted
coefficient wl that measures the contribution of core regions. Intuitively, the core region
of each cluster has the most important role for updating the prototype of this cluster.
Therefore, the value wl is generally expected to be larger, such as wl = 0.95. However,
different values of � will result in different core and boundary regions, especially for
the data sets with different density distributions. If the prototype calculations overem-
phasize the contribution of core regions, the contribution of the boundary regions may
be weakened excessively, thus the obtained prototypes may be deviated.

According to the distribution characteristics of approximation regions of each class
in the clustering process, this paper introduces an adaptive mechanism for determining
the weights of each approximate region when updating the prototypes. In this way, the
weights thatmeasure the contribution of different approximation regions are dynamically
adjusted rather than user predefined. Furthermore, different clusters will correspond
to different weighted values, which is different from the traditional rough set -based
clustering methods that have a fixed value for all clusters over all iteration steps.

Moreover, based on the approximation region partition of each cluster, an absolute
boundary region over all clusters is formed in which the samples are classified by using
three-way decisions as the post process rather than being grouped based on the obtained
memberships directly. The theory of three-way decisions [12–14], introduced by Prof.
Yao, aims at a unified, discipline-independent framework to study fundamental notions,
concepts, and applications of decision-making with three options. Three-way decisions
have been successfully exploited in extensive research areas [15–17]. The three decision
options, i.e., accepting, rejecting and noncommitment, can be used here to guide the
classification of samples in the formed absolute boundary region.

The rest of this paper is organized as follows: Sect. 2 briefly reviews the rough-
fuzzy clustering algorithms. Section 3 presents a dynamic adjustment mechanism for
determining weights based on the approximation region distribution of each cluster, and
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an absolute boundary region is formed in which the samples are classified by using three-
way decisions as the post process. Section 4 exhibits experimental results. Section 5 gives
the conclusions.

2 Preliminaries

Given a data set x1, x2, · · · , xN , xj ∈ RM (j = 1, 2, · · · ,N ) is divided into C (1 < C <

N ) groupsG1,G2, · · · ,GC , the prototype of each class is represented as v1, v2, · · · , vC ,
and the degree of data point xj belonging to the class Gi is represented as uij.

The roughC-means (RCM) clusteringmethod uses the following principles to update
the calculation of prototypes [2]:

vi =
⎧
⎨

⎩

wlA1 + wbB1 ifRGi �= ∅ ∧ RbGi �= ∅

B1 ifRGi = ∅ ∧ RbGi �= ∅

A1 ifRGi �= ∅ ∧ RbGi = ∅

, (1)

where A1 =
∑

xj∈RGi xj
card(RGi)

, B1 =
∑

xj∈RbGi xj
card(RbGi)

. card(X ) Represents the cardinality of X .

RGi And R̄Gi represent the lower approximation region (core region) and the upper
approximation region of clusterGi with respect to the feature set R, respectively. RbGi =
R̄Gi − RGi Represents the boundary region of cluster Gi with respect to R. wl (0.5 <

wl ≤ 1) and wb = 1 − wl respectively measure the contribution of the core region and
the boundary region in the iterative calculation of prototypes. In order to determine the
core and boundary regions of each cluster, RCM adopts the following principles:

Denote the minimum distance and the second minimum distance of sample xj over
all prototypes as ‖xj − vp‖ and ‖xj − vq‖, respectively. If ‖xj − vq‖ − ‖xj − vp‖ ≤ �,
then xj ∈ RGp and xj ∈ RGq, otherwise xj ∈ RGp. � is a predefined threshold.

Mitra [3] further extended RCM to rough-fuzzy C-means (RFCM), and the
prototypes are updated as follows:

vi =
⎧
⎨

⎩

wlA2 + wbB2 ifRGi �= ∅ ∧ RbGi �= ∅

B2 ifRGi = ∅ ∧ RbGi �= ∅

A2 ifRGi �= ∅ ∧ RbGi = ∅

, (2)

where A2 =
∑

xj∈RGi u
m
ij xj

∑
xj∈RGi u

m
ij
, B2 =

∑
xj∈RbGi u

m
ij xj

∑
xj∈RbGi u

m
ij
,
∑C

i=1uij = 1, 0 <
∑N

j=1uij < N . The

computation of uij is the same as in the classical fuzzy C-means (FCM) [18]. In order to
determine the core and boundary regions of each cluster, RFCM involves the following
principles:

Denote the maximum membership degree and the second maximum membership
degree of point xj to all prototypes as upj and uqj, respectively. If upj − uqj ≤ �, then
xj ∈ RGp and xj ∈ RGq, otherwise xj ∈ RGp. In RCM and RFCM, different values of
� will result in different approximation region partitions, and then affect the prototype
calculations. Therefore, it is necessary to select a reasonable partition threshold� based
on the characteristics of the data set itself.
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A dynamic adjustment mechanism for determining � based on shadowed sets was
provided in [5], which alleviated the uncertainty caused by the predefined value �. The
partition threshold � of each cluster Gi is optimized as follows:

αi = min
α

(Fi) = min
α

∣
∣
∣
∣
∣

∑

j:uij≤α
uij +

∑

j:uij≥max
j

(uij)−α

(
1 − uij

)

−card

{

xj|α < uij < max
j

(uij) − α

}∣
∣
∣
∣. (3)

Then the approximation regions of each cluster are formed as:

RGi =
{

xj|uij ≥ max
j

(uij) − αi

}

,

RbGi =
{

xj|αi < uij < max
j

(uij) − αi

}

. (4)

According to formula (3), the partition threshold determination is transformed to an
uncertainty balance optimization problem, and each cluster can independently optimize
the partition threshold that adheres to its own structures. Formula (3) adopts Pedrycz’s
uncertainty balance criterion [7]. Essentially, shadowed sets are a special form of the
three-way approximations of fuzzy sets [8, 19]. The three-way approximation of fuzzy
sets can also be constructed based on other criteria, such asminimum distance, minimum
cost, entropy balance, etc., the detailed description can refer to [20, 21]. It is worth
stressing here that the determination of partition thresholds based on shadowed sets can
be integrated into Maji’s and Mitra’s RFCM directly [5], which are denoted as SRFCM1
and SRFCM2, respectively.

3 Adaptive Weighted Value and Absolute Boundary Region

The existing rough set-based clustering methods have not focused on the impacts caused
by the weighted value wl . Generally, the weighted value wl is fixed to a larger value in
the interval (0.5, 1], then the density and the size of each cluster are not considered. To
this end, this section presents an adaptive mechanism to adjust the weighted value wl in
the iteration processes which adheres to the properties of approximation regions of each
cluster.

Let the ratio of the number of samples in the core region to the upper approximate
region of the class Gi in the clustering process be ηi, which is formulated as follows:

ηi = card
(
RGi

)

card
(
RGi

) + card(RbGi)
. (5)

card
(
RGi

)
measures the number of samples that belong to Gi definitely, card

(
RGi

) +
card(RbGi)measures the number of samples that belong to classGi possibly. IfRGi = ∅,
then ηi = 0; if RbGi = ∅, then ηi = 1. The smaller the value of card(RbGi), the fewer
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samples that represent the overlapping area between clusters. Based on the Gaussian
function, an adaptive adjustment function of wli of the cluster Gi is defined as follows:

wli = e− (1−ηi)
2

δ . (6)

δ is the adjustment bandwidth. When ηi = 1, then wli = 1. In this case, all contributions
come from the core region of Gi, which is consistent with RCM and RFCM methods.
When ηi → 0, the core region of Gi becomes ∅. Since wli satisfies wli > 0.5, so it has

e− 1
δ > 0.5. Therefore, it can be deduced that δ > 1.4427.
The relationship between wl and η when varying the value of δ is shown in Fig. 1.

When the value of η is fixed, the lager the value δ is, the larger the value of wl will be.
In the extreme case, when δ → ∞, no matter what the value of η is, there is wl → 1.
Thus, the information in the boundary region will be completely neglected. The smaller
the value δ, the smaller the value of wl will be. In this case, the contribution of the
boundary region will be enhanced. Consequently, it is necessary to reasonably consider
the contribution of different approximation regions, and δ = 2 can be regarded as a
trade-off choice, that is, enhancing the contribution of the boundary region while fully
preserving the contribution coming from the core region.

Fig. 1. Relationship between wl and η

Based on the dynamic adjustment mechanism of wl , a rough-fuzzy clustering
algorithm based on adaptive weights can be constructed, which is described as follows:

Algorithm 1 Rough-fuzzy clustering algorithm based on adaptive weights
Step1: Initialize cluster center points
Step2: While not converge 

2.1: Calculate items
2.2: Based on the shadowed sets, calculate the partition threshold for 

each cluster
2.3: Based on , obtain the core and boundary regions of each cluster
2.4: Calculate the weights of each cluster based on (6); 
2.5: Using formula (2), update prototypes
End While

Step3: Return and 
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Steps 2.2 and 2.3 establish an optimal method for determining approximation region
partition thresholds � based on the shadowed sets. Step 2.4 involve an adaptive adjust-
ment mechanism for determining the weights wl according to the approximation region
distributions. By introducing the dynamical adjustment of the thresholds � and weights
wl , the obtained prototypes in the clustering process approach to their intrinsic positions.

The samples in the core region of each cluster belong to this cluster definitely, but
not necessarily for the samples in the boundary region. For a given data set, there may
be some samples that not belong to the core regions of any clusters. The partition of
these samples only based on the obtained prototypes or membership degrees may be
unreasonable. The set composed of these samples is called as absolute boundary region,
which is formulated as follows:

Definition 1: For a given data set X , its absolute boundary region is defined as:

RabX = {
x|if ∀Gi(i = 1, 2, · · · ,C), x /∈ RGi

}
.

After performing Algorithm 1, the samples that not belong to the absolute boundary
region can be partitioned according to their memberships directly. However, the samples
belonging to the absolute boundary region can not be classified immediately. In other
words, according to the three-way decision theory, the belongness of these samples is
not recommended since we have not enough information at this time. Fortunately, the
clustering results of the samples that not belong to the absolute boundary region provide
new evidences for grouping absolute boundary samples. This post process is described
in Algorithm 2:

In Step 2.2, the cluster labels of samples in the absolute boundary region are obtained
according to their nearest neighbor that is not in the absolute boundary region. In this
way, the labels of samples that are not in the absolute boundary region provide addi-
tional information for classifying the absolute boundary samples, which detects the data
distributions and reduces the uncertainty caused by the absolute boundary samples.

4 Experiment Analysis

The proposed algorithm is verified by a synthetic data set and some data sets from
UCI repository. The synthetic data set involves two-dimensional Gaussian distribution
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data points within three clusters, the mean values areμ1 = [−5,−5], μ2 = [20, 20],
μ3 = [20,−10], respectively, and the standard deviation values are 8, 7, and 3, respec-
tively. Three groups contain 200, 400, and 200 data points, respectively. The data set is
visualized in Fig. 2. The proposed Algorithm 1 is denoted as ASRFCM. Furthermore,
when Algorithm 2 is involved, the method is denoted as ASRFCM +. The fuzzy coef-
ficient m = 2 and it is fixed for all methods and data sets. The validity indices ACC and
NMI are exploited to evaluate the clustering methods. The larger the ACC and NMI [20,
22], the better the clustering results.

Fig. 2. Synthetic data set Fig. 3. The approximation regions of each
cluster obtained by ASRFCM

After performing ASRFCM, the generated approximation regions of each cluster
are shown in Fig. 3. It can be found that the core regions can capture the important
parts of each cluster. The samples in the boundary regions of Cluster1 and Cluster2 have
contribution for calculating the prototypes to some extent. It is interesting that some
samples coming from Cluster1 and Cluster 2 belong to the absolute boundary region.
According to the adaptive mechanism for adjusting weighted values, the values of wl of
Cluster1, Cluster2, andCluster 3 are 0.9796, 0.9909, and 0.9728, respectively. The values
of wl are determined according to the approximation region distribution rather than the
predefined values. In this way, the contribution of different approximation regions can
be measured precisely.

The ACC obtained by ASRFCM for the synthetic data set is 0.964. However, after
performing the post process under the three-way decisions, the ACC value obtained
by ASRFCM+ archives 0.983. It indicates that the validity of the post process, i.e., the
classification results of samples in the core region of each cluster provide useful evidence
guiding the classification of samples in the absolute boundary region.

To further verify the proposed notions, the data sets Iris, Wine, Banknote, Thy-
roid and Flowmeters in the UCI repository are selected for experiments. The fuzzy C-
means(FCM) [18], rough-fuzzy C-means(RFCM)[3], shadowed C-means(SCM) [23],
and two types of shadowed set-based rough-fuzzy C-means (SRFCM) [5] are involved
for comparison. The validity values obtained by different methods are shown in Tables 1
and 2.

The average validity values of each method over all selected data sets are listed
in the last row of Tables 1 and 2. It can be found that ASRFCM + achieves the best
performance over all methods. Although the performance of ASRFCM is not always
better than the compared methods, such as the results obtained by ASRFCM is not better
than the one obtained by RFCM on Iris data set, the ASRFCM achieves better average
validity values. It means that the optimal selection of the partition thresholds � and
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the adaptive adjustment of the weights wl are beneficial for calculating the prototypes
precisely, and data structures can be detected well in the iteration processes.

Table 1. ACC values obtained by different methods

Data Sets FCM RFCM SCM SRFCM1 SRFCM2 ASRFCM ASRFCM +
Iris 0.8933 0.8933 0.8933 0.8933 0.8933 0.8867 0.9067

Wine 0.6850 0.7020 0.7020 0.7020 0.7020 0.7020 0.7070

Banknote 0.6093 0.6042 0.6086 0.5918 0.6028 0.6108 0.6130

Thyroid 0.7953 0.8326 0.8233 0.8279 0.8233 0.8744 0.8744

Flowmeters-C 0.3923 0.4917 0.3591 0.5193 0.4530 0.5028 0.5414

Avg 0.6751 0.7048 0.6773 0.7069 0.6949 0.7153 0.7285

Table 2. NMI values obtained by different methods

Data Sets FCM RFCM SCM SRFCM1 SRFCM2 ASRFCM ASRFCM +
Iris 0.7496 0.7582 0.7582 0.7582 0.7582 0.7507 0.8057

Wine 0.4160 0.4280 0.4230 0.4230 0.4230 0.4230 0.4310

Banknote 0.0292 0.0252 0.0281 0.0180 0.0243 0.0294 0.0308

Thyroid 0.3491 0.3759 0.3658 0.3730 0.3653 0.5121 0.5590

Flowmeters-C 0.1706 0.2724 0.1329 0.2903 0.2315 0.2512 0.3106

Avg 0.3429 0.3719 0.3416 0.3725 0.3605 0.3933 0.4274

After exploiting the post process under the three-way decisions, ASRFCM+ outper-
forms other methods over all data sets, which indicates that the classification of samples
in the absolute boundary region plays an important role for improving the final clustering
accuracy. The uncertainty caused by these samples is difficult to overcome if no addi-
tional information is involved. In this case, if we partition the samples in the absolute
boundary region directly based on the obtained prototypes, the misclassification rate
may increase. Fortunately, the samples in the core region of each cluster provide deter-
minated label information which guide the further grouping operation for the samples
in the absolute boundary region.

5 Conclusion

This study presents an adaptive mechanism for adjusting the weighted values wl in
the rough set-based clustering methods. The proposed dynamic mechanism adheres to
the approximation region distributions in the iteration processes. Furthermore, guided
by the notion of three-way decisions, the samples in the absolute boundary region are
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partitioned based on the clustering results of samples in the core region of each cluster
rather than based on the obtained prototypes or memberships directly. In this way, the
clustering results of samples in the core regions provide useful evidence to reduce the
uncertainty caused by the samples in the absolute boundary region. The experimental
results with a synthetic data set and some data sets from UCI repository demonstrate the
effectiveness of the proposed notions. How to extend the proposed methods to deal with
high-dimensional scenarios is our next works.
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