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Preface

We’re living in an era of fast and unpredictable change. Billions of people are
connected to each other through their mobile devices. Data is being collected and
processed each day like never before. With 5G and IoT set to generate an estimated
1 billion terabytes of data by 2025, companies continue to search for new techniques
and tools that can help them practice data collection effectively in promoting their
business. A large portion of this data will come from smart devices, smart communi-
ties. The era of big data through reliability and statistical computing with almost all
applications in our daily life has experienced a dramatic shift in the past two decades
to a truly global industry. The forces that have driven this change are still at play and
will continue. Most of the products which affect our daily lives are becoming even
more complex than ever.

The book consists of 15 chapters that covers a selection of recent developments
and applications on various related topics in reliability and statistical computing.
The emphasis of this book is on the practical applications of reliability and statis-
tical methods and techniques in various disciplines using machine learning, risk
assessment, modeling and optimization, and other computational methods.

All chapters in the book are written by leading researchers and practitioners in their
respective fields with a hope to connect the gap between the theoretical and practical
computations in the application areas of reliability and statistical computing.

Iacknowledge Springer for this opportunity and professional support. Importantly,
I would like to thank all the chapter authors and reviewers for their availability for
this work.

Piscataway, NJ, USA Hoang Pham
September 2022
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Forecasting The Long-Term Growth )
of S&P 500 Index L

Stephen H.-T. Lihn
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1 Introduction

The U.S. stock market has exhibited amazing resilience in the long run. Its long-
term growth is a wonderful story of American capitalism. In the past 200 years, it
has produced a consistent real return of about 6.6% per year (Fig. 1 and Siegel [20]).
However, this wonderful return comes with many ups and downs every decade. In
some cases, the market went down more than 50%. In other cases, the market was
stagnant for more than a decade. The longest and largest drawdown in history was
from 1929 to 1948. More recently, the peak reached in 2000 had not been surpassed
until 2012. Making things more intricate, these two large bear markets were preceded
by two strongest ten-year bull markets in history. How do we make sense of them?
More importantly, are they forecastable?

Disclaimer: The views in this paper are solely the responsibility of the author. They don’t reflect
the views of the company, nor does this paper contain any propietory data from the company, v1.0,
Released on September 30, 2021.
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Fig. 1 Panel (1) The nominal total return index for the U.S. stock market X (¢) in the logarithmic
scale since 1802. Panel (2) shows the real total return index X ey (7). The slope Brep = 6.55% is the
long-term real equity premium over inflation. The linear regression has an impressive R = 0.994
with the standard error of 0.32. Panel (3) shows the mean-reverting behavior of the residuals € (¢)
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For most typical investors, It is believed that the S&P 500 index (SPX) is the
best single gauge of the U.S. stock market.! This index consists of 500 largest public
corporations in the U.S., weighted by their market capitalizations. Ina 2017 interview
with CNBC,2 Warren Buffett said, “Consistently buy an S&P 500 low-cost index
fund, I think it’s the thing that makes the most sense practically all of the time.” At
the 2021 Berkshire Hathaway annual meeting, he reiterated his conviction, “I just
think that the best thing to do is buy 90% in S&P 500 index fund.”® What is the
rationale behind these statements? How much faith should we have in it? What kind
of returns can be expected from SPX if we “surrender our freedom”, so to speak, of
selecting from thousands of stocks, mutual funds and ETFs. This research is intended
to answer some of these questions in an econometric setting.

Recent application of trend filtering technique has revealed linear characteristics
of market trends [16]. In the short term, the market process is highly lepkurtotic
(kurtosis >> 3) and influenced heavily by the underlying volatility process. In the
long term, however, the market process is not a random walk process. It is a mean-
reverting process with linear growth. More interestingly, when the time horizon is
extended to decades, the mean-reverting process is slightly platykurtic (kurtosis < 3),
which is strikingly different from the lepkurtotic random walk process observed in
the short term.

The mean-reverting process can be confirmed by the model-free wavelet analysis.
The Morlet wavelet [13, 14] provides the ability to decipher the market cycles in
a financial time series. By applying the wavelet analysis to both the 10-year and
20-year returns, we are able to show that the U.S. stock market exhibited a 36-year
cycle after World War IT (WWII).

Next, we review the algorithm developed in [10] that separates the mean-reversion
component from the linear growth component in the market process. The mean-
reversion component is associated with the “cyclically adjusted P/E ratio”, aka CAPE
[1], in a profound way. The nickname of our model is called “jubilee tectonic model”.
The “jubilee” name comes from its optimal trend-following window of 45 years and
the periodicity of 36 years from the wavelet analysis. The “tectonic” name comes
from the hypothesis that there are fault lines in the historical CAPE, which can be cal-
ibrated and corrected in this model through statistical learning. Such “model breaks”
have been categorically discussed in Chap. 19 of [7]. We apply a more restrictive
approach to capture these breaks, and attempt to give them economic interpretation
when appropriate.

The forecast of future equity return is an important topic for policy makers and
asset allocators. Research from Vanguard [6] found that “many commonly cited
signals have had very weak and erratic correlations with actual subsequent returns.”
CAPE remains one of the most powerful predictors. Even then, it has explained only

Uhttps://www.spglobal.com/spdji/en/indices/equity/sp-500/.
2 https://www.cnbe.com/2017/05/12/warren-buffett-says- index-funds-make- the- best-retirement-
sense-practically-all-the-time.html.

3 https://www.cnbc.com/2021/05/03/investing-lessons- from-warren-buffett- at-berkshire-
hathaway-meeting.html.
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about 34% of the time variation.* Recent forecasts using CAPE have been over-
pessimistic. The lofty CAPE issue continues to trouble the academic community,
as [24] wrote on Project Syndicate: “It is impossible to pin down the full cause of
the high price of the U.S. stock market.” In an attempt to address such issue, Siegel
[21] studied six variations: reported earnings, operating earnings, and NIPA profits,
in combination with price index portfolio and total return portfolio. The R? was
increased from 34 to 40% in the best case scenario.

In the jubilee tectonic model, the tectonically adjusted CAPE, plus mean reversion
and inflation, form the five-factor econometric model that forecasts long-term equity
returns with R? above 80%. This model produces different predictions for the future:
The original CAPE model predicts below average real returns for the next decade.
But the jubilee tectonic model predicts much higher returns and very positive outlook
for the next decade.

1.1 Objectives

The key points of this chapter are:

Setup, global linear regression, and equity risk premium
Wavelet analysis on periodicity

Channel deviation framework and CAPE

The 20-year forecast model.

1.2 Data Sources, Tools, and Abbreviations

This chapter uses the jubilee package [11] and the WaveletComp package [17] in R
to produce the analysis. The S&P 500 data in the jubilee package is assembled from
several original sources. The main data source is from Shiller’s online data website
[23]. The excel file “ie_data.xls” contains monthly averaged prices, dividends, and
earnings of SPX since 1871.% It also contains consumer price index (CPI) and 10-year
Treasury yield (GS10). It derives the real prices, real dividends, and real earnings,
and calculates the 10-year CAPE.

The second data source is from Schwert [19], from which we obtain the stock
market total return data since January of 1802. The third data source is the annual
CPI data since 1800 from Minneapolis FED [12]. The fourth data source is from
FRED [9] of St Louis FED, which provides daily and/or monthly online updates for
many financial and economic time series.

Frequently used abbreviations are listed below:

4 The 40% R? cited in [6] is a result of truncating the CAPE data prior to 1926. Such structural
break can be explained by this research.

5 The word “ie” stands for “Irrational Exuberance”. It is a March 2000 book written by Shiller:
https://en.wikipedia.org/wiki/Irrational_Exuberance_(book).
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List of Abbreviations

CAPE Cyclically adjusted P/E ratio
CPI Consumer price index

ETF Exchange trade fund

GS10  Ten-year Treasury yield
SPX The SP 500 index

TRI Total return index.

2 Total Return Index and Equity Risk Premium

We first define the methodology of calculating stock market’s logarithmic total return
index (TRI). For the long-term analysis, we work with monthly interval At = 1/12.
Assume the marketindex at time ¢ is p () and pays dividend d (¢) for the period from ¢
tot + At. The total log-return is r (t + At) = log (p (t + At) +d (¢)) — log p (2).
And let CPI (¢) be the consumer price index (CPI) at time ¢, we construct the nominal
and real TRI in logarithmic scale as

X@y= Y r(, nominal TRI;
n<t<t (D
Xreat (1) = X (t) — log CPI (1), real TRI.

where {7} represents all the months available to our analysis, and #; is the inception
date of the data, January of 1802.

The above notation of X () is the “continuous notation”. Empirically, ¢ is discrete.
The “discrete notation” states that, at time ¢;, the logarithmic index value is X;. We
use both notations depending on the context and the cleanliness of expression. We
follow Shiller’s convention that each month is identified by the time fraction of
ti=y @)+ (m )+ 1/2) At,wherei = 1,2,3, --- is an integer label, y (¢) is the
calendar year, and m () is the month of the year (m (#) = 0 for January). X; is the
average price in that month.

Panel (1) of Fig. I shows X (¢) of the S&P 500 index since January of 1802. The
linear trend is obvious, but slightly concave. There are ups and downs. A few of them
are quite large. For instance, one in 1860s, one in 1930s, then in 1960-1970s, and
more recently in 2000s.

2.1 Equity Risk Premium

The economists often prefer to examine economic quantities in “real” terms, that is,
subtracting the effect of inflation. Panel (2) of Fig. 1 shows the more common view
in the literatures: the real logarithmic total return index Xi., (#) (This reproduces
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Figs.5—4 in [20]). The most notable feature is that X ., (¢) can be linearly regressed
over the 200-year history, with an impressive R> = 0.994:

Xreal (1) ~ ﬁrept + tep T € (7). 2

The slope Byep is about 6.6% per year (between 1802 and 2021). This is called the
real equity risk premium. This constant is one of the most celebrated constants in
modern financial systems.

However, we must note that no other major equity index exhibits such beautiful
linearity over such long history. Geopolitical events, financial bubbles and crashes
often caused significant distortion or even disruption to many national indices. Some
people may even criticize that the linearity of X, (¢) for SPX carries with it a strong
survivorship bias. There is no certainty that it will continue to work, although it has
been working quite well for two centuries.

We also note that, on the back of such impressive R is the residuals € () where

e®) =X — (ﬂrept + arep) — log CPL(¢). 3)

The residuals € (r) is illustrated in Panel (3) of Fig.1. Its standard error is
o = Stdev (¢ (t)) = 0.32 between 1802 and 2021. Thus its 20 is +0.63, drawn
in two red dashed lines. Assume € () is mean-reverting, this implies that X ., (¢)
will swing around its linear progress Biep t + Qrep between £20 (in 95% confidence)
from decade to decade. This large amount of variation is disguised in the semi-log
plot of Panel (2).

This work is primarily the study of such “fine structure”. A 0.5 downward move in
the log scale translates to approximately 50% market drop in a large recession. This
can cause massive blowup for funds and companies that have too much leverage.
When the lack of growth is stretched over a decade, it puts a lot of pressure on
pensions, endowments, and retirement accounts that have significant cash outflow.

Note that the £20 swings in € (¢) typically span several decades. Each cycle is
composed of several recessions, which typically occurred every 4-10 years. Reces-
sion forecast is a “shorter-term” activity than what is studied here.

We created a more adaptive algorithm than a global linear regression in (2). It is
used to build a forecast framework for X (¢) a few years into the future.

2.2 Discussion—A Naive 10-Year Forecast

In Panel (3), we observe several empirical rules from which we can make a naive
10-year forecast. First, € (¢) oscillates between —2¢0 and +20. At the dot-com peak
of 2000, it touched +20 . And at the bottom of 2009 financial crisis, it touched —2o'.
Amid the pandemic of 2020, € (¢) was approximately at zero.

Assume € (¢) will reach 420 in 2030, the annual rate of change of € (¢) is o/5 in
10 years. The annual real return of X () will be 0//5 + Biep. If the annual inflation



Forecasting The Long-Term Growth of S&P 500 Index

(1) SPX 10-year forward returns

)

date (t)

Period

1950 2000

Period

date (t)

Fig. 2 Wavelet analysis on 10-year forward returns of S&P 500 index, r3{¢ (¢). The dominant
period is 36 years after WWII. The transition period 1905-1931 is marked by the red vertical dash
lines, before which the period is shorter, between 16 and 24 years. The 8-year period was very
strong for some intervals, e.g. during the Great Depression years, and between 1980 and 2020

is about 3% for the next 10 years, we arrive at the 10-year forward nominal return
o (1) of 16%.

This is a pretty naive estimate. Nevertheless, we will show in Panel (1) of Figs.2
and 3 that 16% is a reasonable average estimate for a long-term bull market. One
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(1) SPX 20-year forward returns

0.15

0.10

)

0.05

Period

1850 1900 1950 2000

40
1
@w
g
/

30
1
2

Period

20
I
=
=Y

|

date (t)

Fig. 3 Wavelet analysis on 20-year forward returns of S&P 500 index, r}‘i‘(‘)‘ (t). The dominant

period is 36 years after the transition year 1931, before which there was no clear dominant period

must remembe that X (¢) has the average annual volatility of about 12—-13% between
1950 and 2021. In a good year, the return can reach 30%, but in a bad year, the
volatility can be as high as 60%.
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3 Wavelet Analysis on the 36-Year Long Term Cycle

In this section, we use the Morlet wavelet [13, 14] to show the 36-year long-term
cycle in the U.S. stock market after WWIL. This pattern can be observed in both the
10-year and 20-year returns with very little model assumptions. Recognition of such
long-term cycle can greatly demystify the behavior of the stock market, e.g. the bull
markets in the 1950s, and 1980-90, and the bear markets during 1970s and 2000s.

The WaveletComp package in R is used to perform the wavelet analysis. The
advantage of this package is its simple user interfaces and beautiful graphical outputs.
We briefly explain the main features of the wavelet theory, according to [18].

3.1 Introduction to the Wavelet Transform

The “mother” Morlet wavelet is defined as
1// (t) = 7T_]/4€iu}t€_t2/2, (4)

where the “angular frequency” w is set to 6. This is the preferred value in the litera-
tures since it is approximately 277 . This wavelet can be thought of as the composite of
a Fourier component ¢/’ and a Gaussian component e~ */2_ The Fourier component
captures the phase of a wave.

The wavelet transform of a time series x; is defined as its convolution with a set

t J—
of “wavelet daughters” —T> The daughters are generated from the mother
N

wavelet by translation in time by 7 and scaling by s. Each convoluted wave is

I (t—
Wave(r,s)EXl:xtxw ( P > 5)

where * denotes the complex conjugate. Since x; in our case is monthly data, t is
shifted in the unit of dr =1/12 (year).

For scaling, the choice of the set of s determines the coverage in the frequency
domain, called “periods” {s j } It is a fractional power of 2, a “voice” in an “octave”
with 1/dj determining the number of voices per octave:

Sj=smin 2/, j=0...J, (6)

where sy, s set to 1 (year), and dj is set to 1/128. The maximum of s; is set to 64
(year), which determines J = 768. These settings allow us to analyze periods from
1 year to 64 years, that covers our target period of interest: 36 years.

The power spectrum is defined as [4]
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1 2
Power (7, s) = — |Wave (1, s)|. @)
s

The power ridges are the s locations of local maximums in Power (z, s) at a given
7 [3]. The WaveletComp package has a built-in utility to identify statistically sig-
nificant power ridges in the entire spectrum. For our purpose, the most interesting
power ridge is the ridge of global maximum: {smax (r) = argmax, Power (7, s)}.
The instantaneous or local wavelet phase characterizes the periodic phenomena:

Phase (7, s) = Arg (Wave (t, 5)), ®)

We can follow the phase of global maximum power ridge smax () over T(assume
it meets certain continuity condition) to understand the long-term periodicity of the
market:

Phasenax (1) = Arg (Wave (7, Smax (7)) , 9

By transforming the phase via the triangle wave function f(0) =1 — % arccos
(cos (0)), where 6 = Phasen,,x (), the periodicity of interest can be clearly illus-
trated.

The time series can be smoothed and reconstructed by summing over a set of

waves: Ja
__dj-vdt
)= 5776 v ) Z fRe (Wave (@.2). {10

The reconstruction factor 0.776 is adopted from [25] as an empirically suggested
constant for the full reconstruction.

Financial time series is known to have high noise-to-signal ratio. Proper shrink-
age during reconstruction (smoothing and/or denoising) can enhance the signal of
interest. The wavelet shrinkage is performed by either filtering out s smaller than a
certain threshold, or dropping weaker waves according to the strength of the power
spectrum.

3.2 Wavelet Regression of the 10-Year Returns

The 10-year forward returns r g’ (7) is analyzed in this section. We emphasize that
the input data is model-free. The only parametrization is the choice of the return
window: 10 years. The wavelet analysis is shown in Fig. 2. From the “Power Ridge”
chart in Panel (3), we observe that the dominant period was 36 years after WWIIL.

In both Figs. 2 and 3, the charting conventions are as follows:

Panel (1) shows the time series x; (rnom (t) and r“"m (1)) in the black line, and
the reconstructed (x,) in the red line. The trlangle phase f (0) of the strongest power
ridge is drawn in the solid blue line, and the secondary in the dashed blue line. Two
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vertical red dashed lines are drawn at 1905 and 1931—two fault line locations from
the 20-year forecast model in Sect. 6.2.

Both the 10-year and 20-year returns could not exceed 15-17% for too long. This
level marks the rampant bull market. On the other hand, the 10-year returns rarely
went below 0%. The 20-year returns also appear to have a floor at 5-7%.

Panel (2) shows the power spectrum Power (7, s). The y-axis is the period t. The
color spectrum illustrates the power level where red is high and blue is low. The
power ridges are drawn in black lines.

Panel (3) show the power ridges with the guided red dashed lines at the ladders
of 4, 8, 16, 24, 36 years. The strongest power ridge is drawn in the solid blue line,
and the secondary in the dashed blue line. The remaining ridges in the green lines.

There was a fundamental change in the periodicity before WWI and after WWIL.
We conjecture this might be related to the transition of the world power from Europe
to Washington. Prior to WWI, the period is about 16-24 years, much shorter than 36
years.

3.3 Wavelet Regression of the 20-Year Returns

As we see above, the 36-year period is the natural frequency of the long-term mean-
reversion cycles. The regression on the 20-year returns requires the least tectonic
adjustments. This gives us the strong incentive to explore the 20-year returns here,
even though most financial analysis stops at the 10-year returns.

The wavelet analysis on the 20-year forward returns, r5q' (7), is shown in Figure
3. We can clearly observe the 36-year period after the transition year 1931 from the
“Power Ridge” chart in Panel (3).

In Panel (1), before 1931, the 20-year returns were pretty flat, around 7%. Most of
the smaller fluctuations were smoothed out. In Panel (3), during the Great Depression
years, the 8-year period was very strong. But before 1905 and after 1931, there
was almost no power distributed in any of the secondary periods. This is consistent
with our observation that r}‘%‘ (1) removed most of the short-term fluctuations and
preserved the most important long-term signals.

The 36-year period began to emerge after the 1929 crash. It went through two
cycles after WWIIL. As of this writing, the market is at the bottom of this cycle, and
is about to revert from a bear market to a bull market.

4 Channel Deviation Framework

In this section, we lay out the channel deviation framework, in which X (¢) is decom-
posed into the smooth channel moving average « (T), the channel return R (7T'), and
the mean-reverting channel deviation Y (7). We show how the optimal look-back
duration AT, = 45 is chosen for the S&P 500 index.
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4.1 Mean-Reversion Decomposition

For a given time series that is predominantly in a linear trend, such as the total return
index X (¢) in (1), we assume it is composed of a linear process and a mean-reverting
process. The goal of this framework is to decompose X (¢) into these two processes
while maintaining causality.

Let AT, be the duration of the look-back channel. At time 7', we apply linear
regression

X(t)~a(T)+R(T)(t —T), wheret € [T — ATy, T, (11)

to obtain « (T'), which is called channel moving average (CMA), and R (T'), which
is called channel return. Then we derive the channel deviation at time T as
Y(T)=X(T)—a(T). One can view Y (T) and o (T) as the decomposition of
X (T), where « (T) is linear and non-stochastic, and Y (T') is mean-reverting. R (T')
is the instantaneous rate of change of « (7).

Y (T) is of paramount importance in this framework. We will show that log-CAPE
mean-reverts in similar pattern and scale to Y (7') in Sect. 5. Since @ (T'), R (T), and
thus Y (7') are causal, they can be used for forecasting after time 7', as shown in
Sect. 6.

4.2 Closed Form Solution

There are closed form solutions for @ (T'), R (T'), and Y (T) in the discrete notation.
(11) is the ordinary least squares (OLS) optimization. Let (#;, — T') be the mean of
t; — T fort; € [T — ATy, T], and N is the sample size of #;, we have (r; — T) =

N+1 ~ 1 _ 1 2 2 o 2
Y V3, ~ ATy, and var (1) = 5 (N*+ N) At S, ATy Then
X, td X; V12
R(T) = M =cor (X;, ;) w ~ ——cor (X;,t;)stdev (X;),

var (t;) stdev (¢;) Nooo AT,

N+1
a(T)=(X))—RM){# —T)=(X;)+,/3 ( N )COI‘ (X;, t;) stdev (X;)

(X} + %R(T)ATb.

2

N1

(12)

The main feature in R (T') and « (T') is the covariance between X; and #; in the

channel. Given the same Stdev (X;), R (T) is maximized by the best Cor (X;, t;),
which is 1 when X; is perfectly linear to ;.

a (T) is the result of the optimal linear predictor. The first term in « (T') is the

moving average (X;). The second term introduces the “correction” for the trend,
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which is non-zero as long as Cor (X;, t;) # 0. The sign of the “correction” is given
by the sign of Cor (X;, #;).
Equation (12) leads to the closed form of the channel deviation,

Y(T)=X(T)— (X;) — |3 (N + 1) cor (X, #;) stdev (X;) (13)

This equation is out-of-sample, thus is causal. Also note that this framework is scale
independent. The outputs don’t vary much with regard to different data sampling
frequency.

4.3 Optimal Choice of Look-back Channel at 45 Years

The look-back channel AT} is the only hyperparameter in this framework. It should
be chosen such that the outputs are least biased. The wavelet analysis shows that the
channel must be longer than 36 years. Based on our empirical experimentation, we
know it is between 30 and 50 years. We provide one version of optimization that we
use to determine AT, = 45.

For a given AT, < 60, we calculate Y (T) for all T’s between 01/1862 and
12/2017. We then calculate the skewness and kurtosis of Y (7") for such AT;,. We
seek the optimal AT, that produces the lowest kurtosis and zero skewness with a
tolerance of randomness. The kurtosis and skewness are shown in Fig.4.

This turns out to be a relatively simple optimization problem to solve. When AT,
is small, the kurtosis is very high and the skewness is negative. As AT, increases, the

kurtosis of Y (7)) skewness of Y (7))

0.2

skewness
-0.2

-0.6

kurtosis
2 3 4 5 6 7 8
|

A T A Ty

Fig. 4 Optimization of the look-back channel AT. The left panel shows the kurtosis of Y (T)
forms a plateau around 2.5 when A7), > 35. The right panel shows the skewness of Y (T) crosses
zero at AT), = 45, which we choose to be the optimal look-back period
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kurtosis decreases towards 3 and the skewness increases towards zero. When AT, >
21, the kurtosis decreases below 3, that is, the system transitions from lepkurtotic to
platykurtic. When AT, > 35, the kurtosis forms a plateau around 2.5. The kurtosis
reaches its minimum of 2.445 at AT, = 39, but the skewness doesn’t cross zero until
AT, = 45 at which point the kurtosis is at 2.498, slightly higher than the absolute
minimum. We determine that AT, = 45 is the optimal choice.

4.4 Discussion on the Outputs

Figure 5 shows the result of & (T'), Y (T'), and R (T) at AT, = 45. We first note that
Y (T) oscillates between £0.5 with a periodicity of approximately 40 years. The
periodicity is particular clear by observing the legs of Y (T'). The market swings
violently during two periods: From 1929 to 1933, the oscillation almost reaches
£1.0. From 2000 to 2009, the oscillation is as large as £0.75. We will elaborate
more on the periodicity and amplitude of Y (T) in Sect.5.1.

Secondly, we observe that R (T') has three plateaus in history. The first plateau
is at 5% before 1860. The second plateau is at 7.13% from 1880 to 1950. The third
plateauis at 10.52% from 1970 to now. The values of plateau are determined by zeroth
order genlasso: : trendfilter utility in R.® At 600 degrees of freedom, we
round the output of beta to 3 digits, and select the largest clusters of beta that have
repeated more than 50 months. The average of beta from each cluster is the mean of
the plateau. The 10.52% return of the third plateau is often quoted in the literatures
and media as the long-term expected return of SPX. Here we provide a proper context
in terms of R (T).

5 Relation Between Channel Deviation and CAPE

In this section, we show that Y (¢), R (), and CPI have large explanatory power on
CAPE, even though their data generating processes (See Chap. 1 of [7]) don’t seem
to be related at all. The log-CAPE can be decomposed by a four-factor model with
a high R2.

5.1 Regression of Log-CAPE

Let CAPEA7 () denote the AT-year CAPE where AT = 10, 20. In Panel (1) of
Fig. 6, it is shown that log (CAPE( (#)) and log (CAPE; (#)) are very similar (the

6 See also https://cran.1-project.org/web/packages/genlasso/vignettes/article.pdf.
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Fig. 5 Optimally decomposed « (T'), Y (T'), and R (T') at AT, = 45. The legs of Y (T") are drawn
in red circles in Panel (2) to illustrate the periodicity. The levels of plateau in R (T'), so = 0.05,
s1 = 0.0713, s, = 0.1052, are calculated from zeroth order genlasso: : trendfilter utility.
The 10.52% of s is often quoted as the long-term expected return of SPX

blue and cyan lines). Also note that Y (¢) is in the same scale of log (CAPEA7 (7).
Hence, we focus on the 20-year model.

And let CPI (¢) and CPIy () denote the 10 and 20-year log-returns of CPI. That
is,
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log CPI (1) — log CPI (t — AT)

AT (9

CPIar (1) =

In Panel (2), CPI;q (¢), CPIy (¢) and R (¢) are shown. CPI (¢) is more volatile than
CPly (#). R (¢) is the long-term moving average of nominal equity returns. Itis shifted
down by the equity risk premium B, (6.6%), and we observe it is approximately the
long-term (40 years) inflation rate. These three factors constitute the inflation inputs
for the regression model.

We perform the following linear regression for ¢ between 1/1881 and 12/2020:

log (CAPEy (1)) ~ Bo + B1Y (1) + B2R (t) + B3CPLyg (1) + B4CPly (1) + €,
15)
which results in a high R? of 0.82. The summary of linear model from R is shown
below:

1 | a < Im(log.cape20 ~ eqty.lm.y + eqty.Im.r + cpi.logr.10 +
2 | cpi.logr.20, data=df) summary(a)

1

2 |call:

3 |Im(formula = log.cape20 ~ eqgty.lm.y+eqgty.lm.r+cpi.logr.10+
4 cpi.logr.20, data = df)

5

6 |Residuals:

7 Min 10 Median 30 Max

8 [-0.34672 -0.16100 -0.02993 0.18624 0.45322

9

10 |Coefficients:

11 Estimate Std. Error t value Pr(>|t])

12 | (Intercept) 1.00789 0.02938 34.30 <2e-16 ***

13 |egty.lm.y 0.93990 0.01713 54.87 <2e-16 ***

14 |egty.lm.r 25.16626 0.36828 68.33 <2e-16 ***

15 |cpi.logr.10 -3.84196 0.28691 -13.39 <2e-16 ***

16 |cpi.logr.20 -11.73114 0.42353 -27.70 <2e-16 ***

17 |---

18 |Signif. codes: 0 ’'***/(Q0 001 '**'0.01 ’*’ 0.05 ‘.’ 0.1 " " 1
19

20 |Residual standard error: 0.1923 on 1555 degrees of freedom
21 (1067 observations deleted due to missingness)

22 |Multiple R?>:  0.82, Adjusted R?>: 0.8196

23 |F-statistic: 1771 on 4 and 1555 DF, p-value: < 2.2e-16

All four factors are highly significant. More than three quarters of information
in log-CAPE is contained in the linear combination of our mean reversion analytics
and past inflations.

The result is shown in Panel (3) of Fig. 6.
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Fig. 6 Linear regression of the 20-year log-CAPE by the four factors: Y (¢), R (), CPljo (¢) and
CPlyg (t). Panel (1): Comparison of centered log-CAPE and Y (¢), showing their similarity and in
the same scale. Panel (2): R (¢), CPIjo (¢) and CPIyg (¢) as the inflation inputs to supplement the
differences between log-CAPE and Y (7). Here R () is shifted down by the real equity premium.
Panel (3): The result of regression on log (CAPEx (7)) in the four-factor model
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5.2 Discussion

We illustrated the inner workings of the four-factor regression by Panel (1) and Panel
(2) of Fig.6. Panel (1) shows that log (CAPEyq (¢)) is almost in the same scale as
Y (¢), and this is confirmed by the coefficient §; = 0.94 in Eq. (15).

There are times that log-CAPE moves below Y (¢) (e.g. in 1920s, 1950s, and early
1980s) and other times that log-CAPE moves above Y (¢) (e.g. in 1900s and 2000s).
Their differences are made up by CPI (t) and CPIy (¢). This is confirmed by the
negative correlation (83 = —3.8 and B84 = —11) in the summary statistics above.
This is shown graphically in Panel (2). We observe that, whenever CPIq (¢) and
CPIy (¢) are above R (¢), Y () tends to be above log (CAPE; (¢)), and vis versa.

This anti-correlation between log-CAPE and inflation is one of the two main
reasons why CAPE is perceived at a lofty level since 2000. The high CAPE reading
is a reflection of ultra-low inflation in the past two decades.

The second reason is that log-CAPE is positively correlated to R () with 8, =~ 25.
Since R (t) is currently at the third plateau, it also contributes to the high level of
CAPE. From 1950 to 1970, the market was transitioning from the second plateau
to the third, the difference in R (¢) is 53 — 52 & 3.4%. Multiplying it by B, ~ 25, its
impact on log-CAPE is 0.85, which is translated to 130% higher CAPE. In 1970s
and 1980s, this effect was muted because of the high inflation. Going into 1990s, the
high tide of inflation receded and CAPE began to move much higher.

However, in order to justify such high level of equity returns and valuation, it
seems to imply that the future inflation will have to be much higher.

5.3 Tectonic CAPE

We introduce the concept of tectonic CAPE, in which we hypothesize wars and
national policy changes in the past might have resulted in significant dislocations in
the data generating processes of CAPE and CPI (Chap. 19 of [7]). We use nonlinear
optimization technique to uncover these dislocations. However, we do this only
sparingly so that we don’t overfit the data.

At a specific time t? dJ, the amount A;log CAPE,, should be added to
log (CAPE; (¢)). These adjustments are called the “fault lines”, and the adjusted
CAPE is called “tectonic CAPE”.

Formally, the tectonically adjusted log-CAPE is

~ 0 t <19
o (CAPEadJ ‘ ) — log (CAPEA7 (1)) + : P
g o (1) g ( At (1)) i:;N A log CAPE,y, 1> 11

(16)

Lihn [10] showed that the 20-year model requires smaller amount of “fault line

adjustments” than the 10-year model. The interpretation is that many economic
shocks tend to average out much better in 20 years than 10 years.
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This fits our understanding of the 36-year cycle from the wavelet analysis. In
Figs.2 and 3, the transition period 1905-1931 are marked from the two fault lines
required to adjust the 20-year model. It will be discussed in Sect. 6.2 in more detail.

6 The Tectonic Forecast Model

We first introduce the general form of the factor-based tectonic forecast model. Then
we specialize it to equity market forecast in the following sections.

Let f; be the factors under consideration: Y (¢), R (¢), CPlyo () , CPIy (2),
log (CAPEA7 (2)). And ry a7 () is the forward log-return of period AT that we
intend to forecast, in nominal term or real term. In this section, we study the nominal
forecast, and AT is set at 20 years.

The simplest mathematical form of the forecast regression is to assume the faults
{A;} are generic, such that

A {O’ N A7)
= adj
sty (A 126

Plugging A to a linear regression, we have

r'f,AT (t) ~ :30 + Z ,kak (t) +A+e, fort € [Tstarlv Tend] ’ (18)
k=1---5

where ¢ is the standard error of the forecast. For a given N, the objective is to minimize
the AIC of the regression by a nonlinear optimization in the parametrization space:

(B, Yk =0,1---5}U {(rf‘”, Ai) Vi=1 N}

However, the faults {A;} in this form is in the unit of the response 7 s o7 (). This
is saying that the response is dislocated and needs to be corrected. Our preference is
to attribute the dislocations to one of the major factors, for instance, to log-CAPE,
or Y (t).

In the case of log-CAPE, we prefer to rewrite the regression as

rrar @~ fo+ Y Fufi @+ pslog (CAPES, 0) +e. (1)
k=14

In this form, the faults {A; log CAPE o7} are in the unit of log-CAPE in (16). We think
that this provides better economic cause-and-effect interpretation. But we acknowl-
edge that the generic representation Eq. (17) is more elegant mathematically, and
may conveys an economic significance that is yet to be uncovered.
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6.1 The 5-Factor Tectonic Forecast Model for Equity Returns

Let ri°A7 (1) denote the nominal forward log-return for the look-forward period AT
We construct the 5-factor forecast model as follows:
rEar (0~ Bo+ BiY (1) + B2 R (1) + B3CPIyg (1) + P4CPIng (1) + Bs log (CAPETJT (t)) +er;
(20)
where t € [T, Tena] 1S the in-sample period. The objective is to minimize
the AIC of the regression by a nonlinear optimization on the fault lines

H(tiadj, A;log CAPEAT) ,Vi=1 N] We view our 5-factor model as a mean-

ingful extension of the one-factor CAPE model ([2, 21]).

Although the regression can be performed on both real and nominal returns, we
find this model works better for nominal return, because the inflation is accounted
for separately from the nominal return.

The nominal return forecast is also advantageous in that it can be translated into
index level prediction without the complication of inflation forecast. The predicted
forward returns can be easily translated to the predictions of log-index Xpreq (f) and
future SPX level (dividend included) ppreq (£):

Xpred (t + AT) = X (1) + [r;}"ng (r)] AT £26AT, where t € [Ten — AT, Tenal:
’ pre
and ppred (1) = eXpred (1) ,F26AT
21

& = stdev (g,) represents the forecast error. The £2¢ AT term indicates the 2-
stdev error bounds. Assume ¢ ~ 0.01 for the 20-year forecast, then % ~ 1.49 and
e~ ~ (0.67. That is, the price forecast can have 33% to 49% of error. This is
consistent with our observation that this forecast model is good for long-term trend
line prediction, but not good for predicting short-term “bubbles and crashes” in the
3-5 year timeframe. The reader must be careful in interpreting the forecast in a
proper context. The shorter term forecast has to come from other types of models
and indicators, e.g. the recession forecasts.

6.2 20-Year Nominal Return Forecast

Since the market has shown the 36-year periodicity, it is natural to expect that the
20-year forecast, AT = 20, works better. Only two fault lines are used before WWII:

i| A; log CAPEy

1 1904.96 —0.984
2 1930.73 —1.499
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We are impressed that there is no adjustment after 1931. However, we are not able
to interpret what specific historical events are associated with the fault lines. The
1930 fault line is likely related to the turbulent 1930s. It seems that twenty years are
long enough to smooth out many impacts in history. Only the largest dislocations
remain.

The r5q (¢) regression achieves very high R? of 0.86. The summary statistics is
shown below:

1 | c20 < Im(eqty.logr.f20 ~ eqty.Im.y + eqty.Im.r + cpi.logr.10 +
2 | cpi.logr.20 + log.cape20.adj, data=df) summary(c20)

1

2 |Call:

3 |Im(formula = egty.logr.f20 ~ egty.lm.y + eqgty.lm.r +

4 |cpi.logr.10 +

5 cpi.logr.20 + log.cape20.adj, data = df)

6

7 |Residuals:

8 Min 10 Median 30 Max

9 |-0.041961 -0.007638 -0.000008 0.006443 0.046165

10

11 |Coefficients:

12 Estimate Std. Error t value Pr(>|t])

13 |(Intercept) 0.0944513 0.0020000 47.23 <2e-16 ***
14 |egty.lm.y -0.0241555 0.0010935 -22.09 <2e-16 ***
15 |egty.lm.r 0.4109853 0.0243705 16.86 <2e-16 ***
16 |cpi.logr.10 0.3739050 0.0166545 22.45 <2e-16 ***
17 |cpi.logr.20 -0.9270231 0.0268912 -34.47 <2e-16 ***
18 |log.cape20.adj -0.0246708 0.0003967 -62.19 <2e-16 ***
19 |---

20 |Signif. codes: 0 ’***' (0.001 '**’ 0.01 '*’ 0.05".'0.1 " " 1
21

22 |Residual standard error: 0.0111 on 1323 degrees of freedom
23 (315 observations deleted due to missingness)

24 |Multiple R?*: 0.8591, Adjusted R?: 0.8585

25 |F-statistic: 1613 on 5 and 1323 DF, p-value: < 2.2e-16

Heuristically, we can express the 20-year nominal return as follows:

N 1 /1 1 adj 2 1
r}%’ (t) = const — T <§Y )+ 3 log (CAPE20 (t)) + gR )+ gCPIlO (1) — CPIyg (1) .

(22)
Log-CAPE and Y (¢) contribute to the future returns almost equally. The higher
they are now, the less the returns in the future. CPIy (¢) is also anti-correlated with
a coefficient of nearly —1.0. On the other hand, R (¢) and CPl, () are like the
momentum factors for the future returns.
The 20-year result is shown in Fig.7. Panel (1) shows the 5-factor regression
without fault lines (red line). Note that R? of 0.51 is too low for prediction purpose.
Panel (2) shows the 5-factor regression with tectonic CAPE (red line), with R? of
0.86 and ¢ =~ 0.01. Both are high enough for a forecast model.
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Fig. 7 Forecasting 20-year nominal equity returns with the 5-factor tectonic CAPE model. Only
two fault lines before WWII are needed to correct the dislocations. Panel (1) shows the regression
without fault lines, which produces much inferior R? and ¢. Panel (2) shows the regression with
fault lines. The R? of 0.86 and & ~ 0.01 are satisfactory for a forecast model. Panel (3) shows the
result of Xpreq (¢). Panel (4) shows the result of ppreq (7)
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In Panels (3) and (4), the regressed r}%l (2) is converted t0 Xpreq (t) and ppreq (1)
via (21). It predicts a bright future for the next 10 years (red line). The current level
of X (¢) is near the forecast level. Two green dashed lines indicate the end of Biden’s
term at 2024 and the next presidential term at 2028. The index price ppreq (t) is
forecasted above 5000 at 2024 and above 8000 at 2028.

The positive outlook coincides with the 36-year wavelet cycle that the market is
on the verge of entering another great bull market after 2020. However, we note that
even a small error in the 20-year return forecast can cause a large difference in the
price level forecast.

The purple dashed lines show the +2¢ bounds. Both the dot-com peak and 2009
bottom reached the dashed lines. These are the market extremes of exuberance and
panic, that the long-term investors must be aware of.
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Smart Maintenance and Human Factor )
Modeling for Aircraft Safety L

Eric T. T. Wong and W. Y. Man

Abstract The global pandemic has significantly accelerated the need for remote
monitoring and diagnostics of airline operations and assets. As passenger and cargo
flights are impacted from all directions, maintenance can be the steady, reliable
part of the puzzle that helps get things back on track. This chapter explores the
aircraft safety challenges that can be addressed with better maintenance technology
and human factor modeling. Aircraft safety relies heavily on maintenance. During
the COVID-19 recovery phase, airline operators need to focus on the application
of a robust management of change process to implement better maintenance tech-
nology, identify new aircraft safety risks, determine effective mitigation measures,
and implement strategies for deploying changes accordingly. For years aircraft main-
tenance routines have been carried out in the same manner without change, now with
international travel restrictions, social distancing, reduced staff, and limited main-
tenance funding, the need for smarter ways of doing maintenance is obvious. In
this regard smart technology has an important role to play. For instance, IoT data
generates the capacity for predictive aircraft maintenance, Al introduces the capacity
for smart, deep-learning machines to make predictive maintenance more accurate,
actionable, and automatic. Al-enabled predictive maintenance leverages IoT data
to predict and prevent aircraft failures. While smart technology enhances aircraft
safety through better maintenance performance on the one hand, there are technical
and human factor problems induced by COVID-19 on the other. The Safe Aircraft
System (SAS) model, based on the Dirty Dozen and SHELL human factor models,
is an initiative proposed to minimize such COVID-19 problems. This work shows
through a case illustration that SAS modeling is a useful tool in identifying potential
hazards/consequences associated with any major or minor changes in flight oper-
ations. Hence the synergistic effect of smart maintenance and the SAS model in
enhancing aircraft system safety are demonstrated.
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Acronyms and Glossary

ACI
Al
Airworthy

AME

AMO

AR

Continuing airworthiness

CBM
COVID-19
DD
FAA
ICAO
IoT
MRO
NTSB
OEM
OSHA
RAMS
SAS
SHELL

SOP
Smart Maintenance

VR

1 Introduction

Airports Council International

Artificial Intelligence

The status of an aircraft, engine, propeller, or part when
it conforms to its approved design and is in a condition
for safe operation

Aircraft Maintenance Engineer

Approved Maintenance Organization

Augmented Reality

The set of processes by which an aircraft, engine,
propeller, or part complies with the applicable airwor-
thiness requirements and remains in a condition for safe
operation throughout its operating life
Condition-Based Maintenance

Coronavirus Disease of 2019

Dirty Dozen Human Factor Model

Federal Aviation Administration

International Civil Aviation Organization

Internet of things

Maintenance and Repair Organization

National Transportation Safety Board

Original Equipment Manufacturer

Occupational Safety and Health Administration
Recovery and Modifications Services of Boeing

Safe Aircraft System

Software, Hardware, Environment, Liveware & Live-
ware (a human factor model used to analyze the inter-
action of multiple system components)

Standard Operating Procedure

An intelligent maintenance system brings together tech-
nology, data, analyses, prognosis, and resources aiming
for the aircraft and systems to achieve highest possible
performance levels and near-zero breakdown

Virtual Reality

International Civil Aviation Organization [1] estimated that the COVID-19 impact
on scheduled international passenger traffic could reach reductions of up to 71% of
seat capacity and up to 1.5 billion passengers globally in 2020. Airlines and airports
face a potential loss of revenue of up to 314 billion USD and 100 billion USD,
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respectively. Under the COVID-19 pandemic, aircraft safety can be improved not
only by considering the reliability of an aircraft and its systems, but also the compli-
ance of additional mandatory maintenance requirements associated with long-term
grounding/storage of aircraft. Aircraft safety relies heavily on maintenance. When it
is not done correctly, it contributes to a significant proportion of aviation accidents
and incidents [2]. Some examples of maintenance errors are parts installed incor-
rectly, missing parts, and necessary checks not being performed. In comparison to
many other threats to aviation safety, the mistakes of an aircraft maintenance engi-
neer (AME) can be more difficult to detect. These mistakes are present but not visible
and have the potential to remain latent, affecting the safe operation of aircraft for
longer periods of time. AMEs are confronted with a set of human factors unique
within aviation. Very often, they are working in the evening or early morning hours,
in confined spaces, on platforms that are up high, and in a variety of adverse temper-
ature/humidity conditions. The work can be physically strenuous, yet it also requires
attention to detail. Because of the nature of the maintenance tasks, AMEs commonly
spend more time preparing for a task than carrying it out. Proper documentation of all
maintenance work is a mandatory requirement, and AMEs typically spend as much
time updating maintenance logbooks as they do their work. Human factors aware-
ness can lead to improved quality, an environment that ensures continuing worker
and aircraft safety, and a more involved and responsible work force [1].

Human error can be a consequence of design flaws, inadequate training, incorrect
procedures, use of outdated operation or maintenance manuals among other technical,
environmental, and organizational factors. The drawback of the increasing advance
in aircraft technology along with job responsibilities, irregular sleep and the stressful
shifts can consequently cause fatigue and work overload problems for both pilots and
maintenance personnel. On this basis, in recent decades, the accurate comprehension
of psychological and physiological characteristics associated with human errors have
become of significant interest. With the incidence of the COVID-19 pandemic and
the concomitant impact on airline operation due to international travel restrictions
and social distancing, workload conditions for AMEs have become very irregular
and this seriously affected aircraft system safety.

This work is aimed to advocate the application of smart technology in aircraft
maintenance and the use of human factor modeling for the enhancement of aircraft
system safety. First, the impact of COVID-19 pandemic on commercial aviation
operation is described. Despite various COVID-19 challenges, approved mainte-
nance organizations (AMOs) could make use of the unprecedented chance offered
to make a change to traditional aircraft maintenance practices with the aid of smart
technology. Recent aviation applications of smart technology and associated contri-
bution to aircraft safety through maintenance are identified. Important components
of the Safe Aircraft System (SAS) model for enhancing aircraft safety are described,
followed by a case study illustrating the model implementation in respect of a busi-
ness operation contemplated by more and more airlines: the transport of cargo in
passenger aircraft.
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2 Impact of COVID-19 Pandemic on Commercial Aviation

The airline industry has been hit hard, and has laid off thousands of pilots, AMEs,
flight attendants, and ground support staff. In the case of the world-renowned Cathay
Pacific Airways, there were 26,500 staff working for Cathay Pacific and Cathay
Dragon globally. To survive COVID-19 pandemic, Cathay Pacific decided to lay off
6000 workers and kill off Dragon affiliate. This action accounts for reducing 24%
of its headcount [3]. Many aircraft that are no longer in operation have been placed
by the airline or lessor into a manufacturer-approved storage regime to preserve
maintenance and asset value.

It was estimated that globally there were over 18000 aircraft sent to storage in
July 2020 (see Figure 1) [4].

Gradually, as travel restrictions are being lifted and as operators are preparing to
resume passenger flights and demand increases, operators will need the aircraft that
have been parked/stored and return them back to service. Due to the huge number
of aircraft involved and the limited supporting resources available to perform the
maintenance work due to the COVID-19 crisis, airlines are expected to experience
difficulties and increased risks. Airline management needs to identify the poten-
tial hazards arising from recovery and new business operations, developing control
measures to mitigate the associated risks, and thus ensuring aircraft system safety.

Aircraft repairs and maintenance during the pandemic offer a chance of innova-
tion, and everyone concerned can be asked to adopt divergent thinking and develop
new ways of performing maintenance activities. Hitherto maintenance routines have
been done “the same old way” without a second thought, now with social distancing,
fewer staff, and less maintenance resources, the need for smarter ways of doing

Scores of airplanes in and out of storagein
July 2020

. 9816

= Pre-COVID fleet size = Aircraft sent to storage = Aircraft put back into service

Fig. 1 Scores of airplanes in and out of storage [4]
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maintenance is imminent. Getting the job done with the added COVID-19 chal-
lenges, maintenance staff have had to examine what really needs to be done, to be
more specific on what to inspect, and how to inspect it to ensure the compliance
of mandatory airworthiness requirements. To achieve these aims, more and more
airlines are employing smart technology in aircraft maintenance.

3 Smart Technology in Aviation

Smart technology is central to the future of the air transport industry. Smart tech-
nology has been playing a major role to support airports and airlines preparing to
recover from the crisis, which is likely to accelerate the adoption of automation and
artificial intelligence in the aviation sector. Automation in the aviation industry is
gaining momentum due to rapid advancements in the fields of robotics. Technolo-
gies like machine learning and natural language processing are all part of the Al
landscape. Each one is evolving along its own path and when applied in combination
with data analytics and automation can help airlines achieve their goals of ensuring
aircraft safety. With the implementation of smart technology, airports can offer much
better passenger services and AMOs can predict potential maintenance failures on
aircraft before any mishaps occur. The following section provides an account of
smart technology applications and their contributions to aircraft safety.

A.  Smart technology applications in aviation
1. Airport terminal robotics, automated vehicles, and drone delivery:

e Self-driving guide robots
Robots in airport terminals are becoming a more common sight and
among some of the recent examples are Fraport’s new self-driving
guide robot, called YAPE,' for luggage transportation; “Airstar” robot
at Incheon Airport; Munich Airport’s Josie Pepper; and British Airway
has plans to test Al-powered autonomous robots at Heathrow Terminal
TS5 to further enhance punctuality for passengers. The robots are capable
of interacting in different languages with the help of translation tech-
nology. They can provide answers to a variety of different questions,
including real-time flight information.

e Automated vehicles on the airfield and baggage-related robots
A prominent example is Vanderlande’s end-to-end baggage logistics
solution FLEET,” deployed at Rotterdam Hague Airport, and tested at
Hong Kong International Airport to further improve the efficiency of the
baggage handling process, enhance ergonomic working conditions for
ground staff and future-proof the airports’ baggage handling operations.

e Drone delivery
Edmonton International Airport (EIA) entered a new strategic part-
nership with Drone Delivery Canada (DDC) that will see the airport
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become a hub for drone cargo deliveries in Western and Northern
Canada. This is expected to be the world’s first regularly scheduled
drone delivery service from an airport.

Airport Al and Machine Learning

During the past couple of years, the air transport industry has been showing
a great commitment to realizing the full potential of artificial intelligence
(AI) with a plethora of use cases. On one side, we have seen airlines and
airports adopting chatbots to communicate with passengers, and on the
other to improve operations. In terms of chatbot applications, last year
AirAsia developed and launched its AirAsia Virtual Allstar (AVA),> a
continuously learning Al-powered chat platform.

DeltaAir Lines claimed that it is applying Al-driven machine learning on
a scale that’s never been done before by an airline. The proprietary Al-
driven platform analyses millions of operational data points—from aircraft
positions to flight crew restrictions to airport conditions—to create hypo-
thetical outcomes that help Delta’s staff make critical decisions before,
during and after large-scale disruptions.

KLM Royal Dutch Airlines has developed a suite of advanced optimization
tools for the Operations Control Centre to help set up robust schedules
by implementing smart tail assignment,* manage and solve disruptions,
and help with decision-making. The benefits for passengers are clear—
minimizing the impact of disruptions through real-time updates, reducing
baggage delays and personalizing information that has been provided to
the customer through digital channels.

Rapid development of 5G technology

e Recent developments in 5G technology are fuelling the new decade of
innovation that will change business as we know it today. The tech-
nology lowers data latency offers more stability and connects a huge
number of devices at the same time. In the aviation industry, the tech-
nology will be instrumental to satisfy the need for fast connectivity
inflight and at airports; demand for predictive maintenance through data
shared by the connected aircraft; and growing demand for a comfortable
inflight experience.

Airports Council International (ACI) World’s director of security, facil-
itation and IT Nina Brooks sees two main benefits of 5G in airports:
enhancing existing applications (such as passenger processing, baggage
management and airport operations), and enabling new technologies
(such as edge computing, internet of things, digital twin creation and
artificial intelligence).

“The speed and flow of data, and the sheer potential to use historic,
predictive and real-time data, offers solutions that seemed light years
away, only a few years ago,” says Brooks. “These advances will
enable much stronger collaboration between airports, airlines, ground
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handlers, air traffic managers, suppliers and retailers, and make their
interactions seamless and faster.”

As the global aviation and tourism industry starts up again following
the Covid-19 crisis, 5G’s arrival is well-timed and will facilitate appli-
cations—including contactless solutions—that will help airports and
airlines manage Covid-era regulations.

4 Virtual reality (VR) and augmented reality (AR)

e Airline VR
In a saturated market such as the airline sector, virtual reality (VR) and
immersive experiences can be a true differentiator. As one of the leading
virtual reality suppliers, Inflight VR’s Virtual Reality Entertainment
attracted a number of airlines to its portfolio, including Evelop Airlines,
SunExpress, and Jin Air, etc.
Renacen is a company that specializes in the use of virtual reality with
its 3D SeatMap VR software, which offers a virtual 360° view of the
cabin and can be used for seat upselling, crew training, marketing and
VR experiences. The technology has been implemented by a number of
airlines, including Emirates, Evelop, Austrian, Aigle Azur and Etihad.

e Augmented Reality (AR) in maintenance: Lockheed Martin and
NGRAIN®
With the latest advancements, augmented reality on smart glasses is
changing the perspective of aircraft maintenance. Now the AR glasses
enable mechanics to see hands-free and with interactive 3D wiring
diagrams, rather than viewing things on 2D, 20-ft.-long drawings. It
also helps users retain the information more efficiently while doing
repair work [5].
AR now enables the support of on-site technicians through detailed
information and guidance from highly specialized experts. This makes
it possible for even hidden risks to be detected by experts through
the “see-what-I-see” principle made possible by live video streaming
and providing the full view of the technician’s environment. Moreover,
technicians are more flexible in performing tasks due to the use of smart
glasses that create the ability to perform various processes hands-free
without distractions.
As part of effective maintenance for any aircraft, accurately assessing
airframe damage resulting from combat or environmental hazards is
crucial. Seemingly small factors—such as the depth of a scratch or the
distance of a hole from supporting structures—can impact airworthi-
ness, aircraft stealth capability and pilot safety. In an era of reduced
spending and personnel, aircraft maintenance efficiency is essential.
Recognizing these challenges, Lockheed Martin sought to streamline
its damage and assessment process for the F-35 [7].
Traditionally, maintenance technicians would manually assess and
track damaged areas by placing a transparent film over these areas
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and tracing reference points (such as fasteners and seams) with a
marker. They would then cross-reference this information with repair
data history captured in a spreadsheet. However, cross-referencing line
drawings did not provide the optimal platform to visualize repair infor-
mation, it was also quite cumbersome and time consuming—Ieaving
more room for maintenance errors.

Lockheed Martin selected NGRAIN to transform its damage assess-
ment and repair system. Working closely with Lockheed engineers,
NGRAIN developed the industry’s first interactive 3D Virtual Damage
Repair and Tracking™ solution. Traditional methods, involving line
drawings and cumbersome spreadsheets, have been replaced with
streamlined processes integrated with back-end software systems.
With these virtual damage assessment solutions, aircraft maintenance
technicians can:

e Increase operational availability of equipment: When an aircraft
lands, maintenance staff can connect to the database and imme-
diately determine whether the aircraft is airworthy.

e Work more efficiently with fewer personnel: Using a streamlined
process, maintenance staff can reduce the time required to document,
assess, and repair damage. In the case of the USAF, because the F-
35 and F-22 solutions have similar workflow, aircraft maintenance
teams can easily transit between the two platforms.

e Capture data more accurately: Providing maintenance personnel
with the ability to visualize and accurately represent aircraft damage
on a 3D model reduces the probability of human errors, which
translates into aircraft system safety.

Worldwide connection of experts: Boeing and Microsoft Hololens®
Besides hangar maintenance, the use of AR as a remote guidance solution
means on-site staff can be connected to licensed technical experts from
anywhere in the world. This real-time, cost-effective solution, provides
expertise from any remote location, bridging the shortage of available
AME:s allowing for multinational line maintenance teams.

For instance, in September 2020, the Australian Department of Defence
announced that the No 36 Squadron aircraft technicians were using
HoloLens mixed-reality devices with software developed by Boeing for
C-17A Globemaster III aircraft maintenance [8]. Traditionally, specialist
technicians of Boeing support repair and replacement tasks by travelling
to Australia. The technicians are known as the recovery and modifications
services team (RAMS). However, technicians were not able to visit this
time due to the Covid-19 pandemic and the travel restrictions in place.
This situation led to technicians exploring virtual reality with Microsoft
HoloLens. Maintenance team supervisor Thomas Lane said:
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“Through a secure ‘Cloud’ connection, my team and the technicians in the US
can work seamlessly together by sharing screens and see exactly what they are
seeing inside the aircraft through iris tracking. The first project was to replace
the floatation equipment deployment systems panels inside C-17s, which consist
of explosive components that deploy life rafts in an emergency.”

6. Effective staff training
In addition to improving distance collaboration, this technology also
finds application in training inexperienced technicians and enabling an
employee onboarding process as effectively as possible. Trainees can
be adopted in a more engaging and interactive environment by using
Augmented Reality.

7. loT-enabled predictive maintenance: Flight health checks, predictive
maintenance, and innovative product designs
The Internet of Things (IoT) is a collection of interrelated computing
devices, mechanical or virtual machines, objects, and individuals that
have unique identifiers and the ability to generate, exchange and consume
data over a network without needing human-to-human or computer-to-
computer communication. IoT has developed from the convergence of
wireless technologies, micro-electromechanical systems, microservices,
and the internet. IoT enables companies to automate processes and mini-
mize labor costs. Aircraftis a classic example of the industrial [oT: engines
have hundreds of sensors that transmit gigabytes of data for each flight,
which adds up to terabytes of data to analyze across an airline’s fleet.
While [oT data generates the capacity for predictive maintenance, Arti-
ficial Intelligence (AI) introduces the capacity for smart, deep-learning
machines to make predictive maintenance more accurate, actionable, and
automatic.
Al predictive maintenance leverages [oT data to predict and prevent aircraft
system failures. Al machine learning can access historical data stored
on the cloud and process real-time data gathered through IoT sensors at
the edge. Referencing a knowledge bank powered by these sources of
data, Al can generate informed analytics to automate commands in real
time. In the context of predictive maintenance, Al analytics and commands
serve the specific function of optimizing maintenance cycles for aircraft
systems. Outfitting an aircraft system with Al predictive maintenance can
extend equipment life, improve efficiency among aircraft technicians, and
significantly decrease expensive aircraft downtime, minimize flight delays
and hazardous work conditions.

e Flight Health Checks—Rolls-Royce and Microsoft Azure IoT Solu-
tions’
At a personal level, flight delays are disruptive and costly, but for the
airlines the impact is exponentially larger. Minimizing the cost and
disruption of maintenance activities is a key focus for these businesses.
Rolls-Royce has over 13,000 engines for commercial aircraft in service
around the world, and for the past 20 years, it has offered customers
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comprehensive engine maintenance services that help keep aircraft
available and efficient. The engine maker’s TotalCare program allows
airlines to pay for the hours they were able to fly rather than for repairs,
which means Rolls-Royce has an interest in collecting data that helps
airlines improve operations.

As the rapidly increasing volume of data coming from many different
types of aircraft equipment overtakes the airlines’ ability to analyze
and take insight from it, Rolls-Royce has partnered with Azure IoT
Solutions to find and develop the power of Al and IoT to accumulate
data and find the best maintenance solution. Also, IoT devices with
sensors are being used in aircraft engines to check the health of the
engines and monitor all the components in real-time. In other words,
Rolls-Royce is using Microsoft Azure IoT Suite and Cortana Intelli-
gence Suite® to support current and future generations of its intelli-
gent aircraft engines. Microsoft said that with better understanding of
flight operations, fuel usage and maintenance planning, airlines could
potentially save millions of dollars per year.

Predictive maintenance—Airbus and Skywise’

Predictive analytics by Al work through maintenance data. Al can
interpret and organize data from sensors and send the data in a report
which can easily be comprehended. Such algorithm also identifies and
reports on potential failures in real-time and arranges proper timelines
for repairs.

Companies like the Airbus is taking proactive steps to improve perfor-
mance and reliability in aircraft maintenance. It is doing this by
migrating historical maintenance information from aircraft and fleets
to a cloud-based data repository known as Skywise.’ Airbus is also
installing sensor systems on each aircraft in an airline’s fleet to collate
and record thousands of data parameters in real-time. After each
flight, this data is uploaded to Skywise to be analyzed and to enable
maintenance predictions for the future.

Innovative Product Designs—Aircraft component manufacturers

Al is providing new ways to design and develop lighter, more efficient
parts for the aerospace and aircraft maintenance industry. Efficient and
lighter components are one of the most sought-after things in aviation.
Design algorithms based on Al enable engineers to encompass a set of
tools and techniques for creating intricate aircraft product designs from
the data. It allows engineers to view multiple design options and features
in less time to find the best designs. This approach helps develop new
products with more functionality, making aircraft more sustainable and
lighter in weight.
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B.

Smart aircraft maintenance

For airlines and AMOs, there are software provides maintenance planning,
assignment, tracking, inventory management, and flight operation functional-
ities to give a fully integrated flight operations and maintenance management
option.

The following maintenance situation illustrates how an aircraft maintenance
organization can make use of bespoke mobile apps to achieve contactless job
assignment and notification with improved productivity while also satisfying
regulatory compliance. A summary of smart technology contribution to aircraft
safety will follow.

First, maintenance supervisors can use assignment page in the Assignment
app to review all the unassigned jobs based on input from the Maintenance
Planning Department. Supervisors can also look at the current availability of
all mechanics, and their respective shifts so they can determine which mechanic
to pick for the job based on proximity.

If the supervisor wants to assign the job to a certain mechanic he can select from
the list of available mechanics and look at his information, which will come up
on screen with his availability and skills: if a mechanic does not have the right
aircraft maintenance license and skill for the job, the system will not allow the
supervisor to allocate that job to that person. In fact, the assignment process
could be completely automated using the software scheduling and assignment
capability. But, if the supervisor prefers to assign the job to a selected mechanic,
that can be managed from the screen by clicking the icon. The system will
allocate the job to him and send him a notification to his mobile app or smart
watch. This is similar to an instant messaging app, avoids any paper handover
and provides a complete contactless experience.

After the job has been assigned the mechanic will be granted electronic access
to the job card within the mobile app. A desirable digital task card feature
allows scanned PDF or OEM (Original Equipment Manufacturer) task cards to
be rendered electronically within the mobile app itself.

Once the mechanic is assigned access to the electronic job card, he or she can
review the steps and procedures within the job card and then sign-off after
job completion by just selecting the check box on the job card. On selecting
and checking these boxes and providing the sign-off information, the system
will provide a dual authentication pop-up as per regulatory requirements for
keeping electronic documents. After sign-off, the system will send an elec-
tronic footprint of the signature as a digital footprint for any future compliance
references.

From the same mobile app, the mechanic can also gain virtual access to any
reference documents or even launch an appropriate training video. This will
allow the mechanic instant access to reference information without having to
visit an engineering or a maintenance room to access training documents or
maintenance manuals.

For defects reporting the machine learning tool in the mobile app could help
mechanics expedite the resolution process by automating the form filling,
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suggesting the next step, perhaps corrective action, and requesting the required
parts. In the defects screen, when the mechanic starts typing the content, say,
‘dent on the rotor blade’, as the word ‘dent’ is entered, the Al will automatically
list probable discrepancies based on the historical data of this aircraft.

The system will not only help fill in the data about the defect but will also
suggest corrective action and, again, help in ordering the parts to rectify the
defect. This will help to improve mechanics’ productivity where they would
otherwise have spent a lot of time filling out the rectification procedure and
requesting the parts.

The mobile app may be integrated with other functions such as supply chain
where it allows mechanics to request a part and, upon request, it automatically
notifies the inventory control department and allocates the part from the request.
That helps avoid the manual process of communication between mechanics and
the inventory control department and reduces the time on getting the right parts.
In the mobile app, the mechanic can type the required part details either by
part number or just a description as the system provides a smart look-up. Also,
mechanics should be able to track part availability in the inventory from the
screen: not only parts in the warehouse, but it can also be parts currently on
parked or stored aircraft. This will help the mechanic choose whether to use
a spare part from the warehouse or an existing aircraft to help conserve cash.
When the request is placed, the system will automatically generate a material
request and notify the inventory control department. The system will automat-
ically allocate the part for this request and notify the mechanic once the part is
available to pick-up from the warehouse.

One of the key challenges that will remain is to determine how effectively
mechanics can manage their work with minimal face-to-face interaction and
manual process, while maintaining regulatory compliance. To this end, it is
desirable that a Virtual Support feature along with co-browsing capabilities
would allow mechanics to interact and share their work in a live mode with
their supervisors and colleagues.

These capabilities can also be used to perform virtual inspections and sign-off
by inspectors. This is a trend that readers will have noticed recently in the
industry where even regulatory authorities are performing virtual inspections
and audits of maintenance facilities due to the pandemic situation where they
cannot do an on-site visit.

If a mechanic wants to review a damage notice while performing a job; he can
instantly capture a picture from a page in the app and share that information
with his supervisor as well as making markings or annotations on the image.
The supervisor can base a recommendation on this information and will receive
an instant notification where they can respond within the chat window or, for
further investigation, the mechanic can share their page or screen with the
supervisor and show live details of the work that the mechanic is currently
performing, allowing the supervisor to review and even perform a virtual sign-
off using the co-browsing capability. Mechanics can also hold a video call with
their supervisor and live relay the hangar floor through that video call so that
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the supervisor can look at the information and then provide a recommendation
which will make the communication more effective.
This will help to minimize person to person interaction and help mechanics
manage their work efficiently while helping to increase productivity even with
the current limited workforce availability. This virtual support platform feature
can be extended to another role in the airline organization.
In short, with the aid of smart technology aircraft maintenance activities will
look different because better ways with less resources have been found to
perform them. Following are the anticipated benefits of smart maintenance
and associated challenges:

C. Aunticipated benefits of smart maintenance:

e Better and efficient inventory control
Through mobile apps, mechanics should be able to track parts availability
in the inventory from the screen: not only parts in the warehouse, but it can
also be parts currently on parked or stored aircraft.

e Repair visualization and remote guidance
Due to the highly infectious virus and its variants, many airlines and AMOs
implement social distancing policies such as reducing the number of staff
working at the same time, splitting different teams among staff and work-
from-home schemes. Such contingent measures reduce the effectiveness
of staff daily work. Aircraft safety highly depends on maintenance. Mainte-
nance activities require good planning, information sharing among the teams
and teamwork. Fortunately, smart technology such as AR and IoT helps to
regain the effectiveness of maintenance work during the crisis. Even though
staff did not work together at the same time, information can be shared and
accessed effectively. With the help of AR technology, remote staff/specialists
can see what the on-site staff see, which makes communication clearer and
more effective. AR technology can eliminate ambiguities when describing
technical issues. There is nothing better than seeing what exactly is going on.
All this helps to reduce errors due to procedure violations, misinterpretation
of data and information, or insufficient training [6].

® Less occurrence of human errors
Owing to repair visualization and remote guidance, AMEs will be less
distracted. Inadvertent violations of airworthiness regulations and common
maintenance errors would be avoided.

e Real-time monitoring and maintenance
‘What to maintain, when to maintain and how to maintain are the key elements
of ensuring airworthiness. After being hit by several waves of the Covid-19
outbreak, airlines are forced to reduce number of flights and number of staff.
However, keeping aircraft airworthy requires a lot of manpower. Reducing
staff may degrade the maintenance standard, especially when airlines are
preparing to recover from the crisis. Al predictive maintenance can help
airlines to recover from the crisis with minimal staff and not compromising
aircraft safety. Through Al predictive maintenance aircraft operating data,
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system status and fleet utilization could be analyzed to determine what to
maintain and when to maintain. For example, one can monitor engine utiliza-
tion and real-time operating parameters such as engine operating cycles, fuel
consumption, oil pressure, exhaust gas temperature and vibration parame-
ters, etc. By analyzing different aircraft operating data, the predictive system
can predict which part of the aircraft engine/system is not working properly
or working in degraded mode and maintenance plans can then be optimized.
Very often troubleshooting is the most time-consuming process among
maintenance tasks. To figure out what is going wrong on the aircraft can
take up several days. Once the root cause is known, the time to get it
fixed can be few hours or less. By using a smart prediction system, defec-
tive/degraded systems or components can be pinpointed. It not only mini-
mizes the manpower for troubleshooting and aircraft ground time but also
reduces the unnecessary parts removal.

Minimization of excessive or inadequate maintenance

Al predictive maintenance overcome issues with traditional planned mainte-
nance cycles that are based on pre-calculated time schedules where contex-
tual factors may be overlooked. They solve the issue of over maintenance,
where costs are wasted on the work time spent changing or repairing parts
more frequently than necessary, as well as the unused portions of parts that
go unaccounted for. Similarly, Al predictive maintenance overcome issues
of poorly designed planned maintenance cycles that may result in under
maintenance, where the lifespans of parts are overestimated and system is,
therefore, at risk of failure due to overuse. Predictive maintenance with Al
also is more effective than reactive maintenance where the repair is made
after catastrophic aircraft system failures resulting in profit-inhibiting down-
time. Condition-based maintenance activities will reduce time needed to
complete work orders, thus reducing work order backlogs.

e Significant cost reduction in overseas travel as AR technology has
replaced the need for face-to-face meetings.

e Staff training will be more effective as trainees are more engaging in an
interactive environment and team collaboration will be enhanced.

e Better insights into the root cause of system and component failures. Al
predictive maintenance system recognizes failure patterns and predict
when malfunctions may arise based on the conditions under which they
arose in the past. For instance, an Al-equipped aircraft that uses histor-
ical data to determine patterns in engine overheating events. Historically,
each time the overheating occurred, temperature and speed sensors recog-
nized that the engine was operating at above 475 knots during periods
when the outdoor temperature was above 80°F. Through machine learning
informed by data-collecting sensors, the Al-equipped aircraft built an
understanding of the conditions that surround the overheating events. The
next time the aircraft travels in above 80° temperatures, the Al-equipped
aircraft can respond to speeds encroaching 475 knots by predictively
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executing a command to notify pilots of the potential maintenance issue,
and cap speeds at 470 knots to ensure safe functionality in the engine.
In view of the above contribution of smart technology to aircraft safety,
airlines and AMOs should take this opportunity to implement smart
maintenance to help themselves to recover from this crisis steadily.

Challenges to the application of smart technology

While the benefits of smart technology are manifold and the industry seems to
be rapidly moving towards a smart technology-oriented environment, there are
some factors to be considered while applying smart technology.

Firstly, security remains a predominant threat of the use of smart technology.
This is because by forging connection between multiple devices within a cloud
network, control over system authentication gets diluted. Anyone can access
any information from a wide network of connected devices now.

Secondly, related to security, the privacy of data is another major challenge.
Within the network, a substantial amount of user data gets released and the
users often lose control over their own data.

Moreover, while the overall usage of smart technology is resource efficient,
the deployment process entails layers of complexities and can be potentially
expensive.

4 COVID-19-Induced Problem

Meanwhile there are two important COVID-19 problems to be resolved, viz. technical
and human factors.

Technically, there are risks related to prolonged parking/storage and these aircraft

system problems implies a serious impact on airworthiness:

Sticking/high friction of valves in engine bleed air system leading to pneumatic
system issues during flight (e.g., bleed air loss, in one particular case this led to
an in-flight shut down).

Erroneous air data information including contaminated / blocked pitot-static
systems and Angle of Attack vanes failure.

Fuel system contamination caused by non-adapted water drainage intervals or
lack of available biocide.

Emergency batteries, post parking or storage procedures, not at the expected state
of charge.

Depletion of aircraft parking brake accumulator pressure leading to damaged
aircraft in ground incident.

Wildlife nesting in the aircraft/engines while parked/stored, including insects,
birds, and rodents.

The second issue is related to staff readiness for work:
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Decreased wellbeing of maintenance professionals during shutdown—The
pandemic is a significant source of anxiety, stress, and uncertainty for almost
everyone. Worries about unemployment for aviation staff and their relatives may
be exacerbated. During the shutdown, with people working from home and there-
fore isolated from normal support, the personal wellbeing of professionals is likely
to have suffered. For those working, this may lead to task distraction/interruption,
workload/task saturation, instructions or requirements not followed.
Maintenance personnel fatigue—With redundancy and furlough reducing the
available number of personnel, those left working may have to work additional
hours. The preparation for and eventual return to new normal operations will
require significant additional effort in comparison with actual normal operations.
These may both contribute to rising levels of fatigue.

Personnel no longer working collaboratively—Significant gaps in working, or
working from home, may have reduced people’s ability to work collaboratively.
This may exacerbate problems with teamwork and shift turnover while wearing
personal protective equipment.

Reduced adherence to procedures in the new working environment—Reduced
operations and underload may create a belief that the level of risk within the
operating environment has substantially reduced, causing staff to become less
sensitive to risk with the possibility that they are less alert, and procedures are not
completely followed.

Skills and knowledge degradation due to lack of recent practice—The 90% reduc-
tion in traffic means that most aviation professionals are not performing their
normal tasks, sometimes they are doing a substantially different job, and some-
times not working at all or at a substantially reduced frequency. Workshop and
classroom-based training is also not taking place. Together, this creates a reduc-
tion in the practical skills and knowledge of aircraft maintenance professionals,
and with it associated safety risks.

To augment the safety of aircraft systems, one needs to solve these aircraft system
and work readiness issues. To this end the Safe Aircraft System (SAS) model,
based on the human factor model DD-SHELL of accident causation is proposed
[9].

Briefly the characteristics of the Dirty Dozen and the SHELL models are:

Dirty Dozen is a concept developed by Gordon Dupont, in 1993, whilst he was
working for Transport Canada. It has since become a cornerstone of Human
Factors in Maintenance training courses worldwide. The Dirty Dozen model
is particularly useful to ensure maintenance staff fitness for work during the
pandemic. The Dirty Dozen refers to twelve of the most common human error
preconditions, or conditions that can act as precursors, to accidents or incidents.
These twelve elements influence people to make mistakes and they are: Lack of
communication, Complacency, Lack of knowledge, Distraction, Lack of team-
work, Fatigue, Lack of resources, Pressure, Lack of assertiveness, Stress, Lack of
awareness, and Norms [10].

The SHELL Model was developed by Edwards (1972) and later modified by
Hawkins (1987). The basic premise of the SHELL Model is that a person (one of
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the Liveware components) does not act alone, but must interact with other Live-
ware (team members, etc.), Hardware, and Software, in a particular Environment.
The interaction of these “components” may have a positive or negative affect on
error reduction [11].

SHELL MODEL examples include:

Software: Procedures, policies/rules, manuals, placards

Hardware: Tools, equipment, aircraft, work space

Environment: Physical environment (social distancing, light, noise, weather);
Organizational (structure, teams); Political/Regulatory (FAA, OSHA, NTSB);
Economic factors (competition, market factors)

e Liveware (Individual): Individual issues of physical health (compulsory COVID
tests and rapid antigen test before going to work), knowledge, attitude, stress, and
perception of culture

e Liveware (Others): Teamwork, leadership, workplace norms, communication.

5 Safe Aircraft System (SAS) Model

To understand how the SAS modeling process can be used to improve aircraft system
safety, it is necessary to define what a system is. Aircraft systems could be flight
operations, operational control (dispatch/en-route flight monitoring), maintenance
and inspection, cabin safety, ground handling and servicing, cargo handling, and
training. Within these systems there are subsystems. Some examples of subsystems
include crew scheduling systems, training curricula, maintenance control, deicing,
fueling, aircraft fleet, and ground handling.

According to the Federal Aviation Administration (FAA), human error is not
avoidable, but it is manageable. The SAS model (Fig. 2) comprises the management
function and 4 SHELL model interfaces:

Frontline staff-Software interface
Frontline staff-Hardware interface
Frontline staff-Environment interface
Frontline staff-Liveware interface.

Frontline staff and Liveware are the human elements or people in the aircraft
system. Examples include maintenance technicians, supervisors, pilots, and ground
crew, etc. To attain system safety, the four system components (Software, Hard-
ware, Environment, and Liveware) should be carefully adapted and matched with
the frontline staff component [12]. Maintenance operations during the pandemic era
are affected by various organizational and human factors. The role of the management
and the interface between frontline staff and four system components are described
below.
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World Health Organization defines health as “a state of complete physical,
mental and social well-being and not merely the absence of disease. Besides
enforcement of public health control measures, carrier management should
minimize workers’ exposure to job-related physical and psychosocial risks and
promote healthy behaviors among workers, both job- and lifestyle-relate, e.g.,
through healthy corporate culture and staff wellness program.

Airline management should note that financial pressure during the pandemic
may lead management to seize business opportunities (e.g., charter flights)
without a proper risk assessment, or to tolerate violations such as dispatch
of flights with unserviceable equipment beyond the acceptable limits. The
perceived pressure may also lead crews and maintenance personnel to accept
“cutting corners” to avoid costly delays and flight cancellations. Management
attention should therefore be given to following risks:

e Flight crew may avoid requesting extra fuel or refrain from performing a
go-around when the situation dictates;

e Maintenance staff may overlook required actions, while striving to avoid a
delayed departure;

e Frontline staff may believe that deviations from the Standard Operating
Procedures (SOP) are justified in the context of the crisis;

e Therisks induced by fatigue may also be increased, as operations may stretch
flight duty periods to the limits, possibly in combination with reduced rest
times (longer sanitary procedures, less expensive hotels far away from the
airport, unavailability of local crew transportation, etc.).
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2.

Frontline staff task readiness

According to the FAA, human factors directly cause or contribute to many avia-
tion accidents. If they are not detected, they can cause events, worker injuries,
wasted time, and even accidents. As the core component of the SAS model, the
staff concerned must be fit for the project/task assigned and to watch out for any
of the following undesirable Dirty Dozen human behavior:

e Poor or lack of communication skills
During the COVID-19 period, there may be instances of inade-
quate/ineffective communication of new rules, Standard Operating Proce-
dures from regulator, airline management or the MRO management.

e Complacency
Complacency can be described as a feeling of self-satisfaction accompanied
by a loss of awareness of potential dangers. Such a feeling often arises when
conducting routine activities that have become habitual and which may be
“considered”, by an individual, as easy, and safe. A general relaxation of
vigilance results and important signals will be missed, with the individual
only seeing what he, or she, expects to see. Lockdown had changed the
way we lived since its implementation. Time management and priorities had
shifted and a refocus could take time. As a result, over confidence or under
confidence may occur.

e Lack of knowledge or skills
The regulatory requirements for training and qualification can be compre-
hensive, and organizations are forced to strictly enforce these requirements.
However, lack of on-the-job experience and specific knowledge can lead
workers into misjudging situations and making unsafe decisions. Aircraft
systems are so complex and integrated that it is nearly impossible to perform
many tasks without substantial technical training, current relevant experi-
ence, and adequate reference documents. A lot has changed with COVID-
19 still around. Ramp procedures, staff screening, first aid and Cardiopul-
monary Resuscitation guidelines, aircraft disinfection, etc.—there is a lot of
unlearning and new learning. It takes a while to become habituated to the
new information and procedures. Systems and aircraft operating procedures
can change substantially due to the COVID-19 pandemic procedures and
employees’ knowledge and skills can quickly become out-of-date.

e Distraction
Distraction could be anything that draws a person’s attention away from the
task on which they are employed. Some distractions in the workplace are
unavoidable, such as loud noises, requests for assistance or advice, and day-
to-day safety problems that require immediate solving. Other distractions
can be avoided, or delayed until more appropriate times, such as messages
from home, management decisions concerning non-immediate work (e.g.,
shift patterns, leave entitlement, meeting dates, administrative tasks, etc.),
and social conversations. Psychologists say that distraction is the number
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one cause of forgetting things: hence the need to avoid becoming distracted
and to avoid distracting others.

Change of living patterns during this COVID-19 pandemic period, a sick or
unattended family member, increased procedures, new protocols and return
to work after a gap are all distractors. Since new systems take time to be
seamlessly established; and the dynamics of the problems may call for further
changes, one needs to be mindful, agile, and focused.

Lack of teamwork skills

In aviation many tasks and operations are team affairs; no single person
(or team) can be responsible for the safe outcomes of all tasks. However,
if someone is not contributing to the team effort, this can lead to unsafe
outcomes. This means that workers must rely on colleagues and other outside
agencies, as well as give others their support. Teamwork consists of many
skills that each team member will need to prove their competence. Some of
the key teamwork skills include leadership, followership, effective commu-
nication, trust building, motivation of self and others, and praise giving. The
dynamics of the pandemic situation are such that everyone is still learning
and coping.

Fatigue

Fatigue is a natural physiological reaction to prolonged physical and/or
mental stress. We can become fatigued following long periods of hard work.
As we become more fatigued our ability to concentrate, remember and make
decisions reduces. Therefore, we are more easily distracted, and we lose
situational awareness. Readjusting to COVID-19 working schedules after a
break could be difficult initially. Obesity, lack of exercise, and relearning of
tasks can also lead to easy physical and mental fatigue.

Lack of resources

The financial trough may leave fewer people to do more work. Social
distancing may allow fewer personal interactions. Constant screening,
protection and disinfection measures may burden existing resources thus
leading to some gaps in the system. Regardless of the task, resources also
include personnel, time, data, tools, skill, experience, and knowledge etc. A
lack of any of these resources can interfere with one’s ability to complete a
task. It may also be the case that the resources available, including support,
are of a low quality or inadequate for the task.

When the proper resources are available, and to hand, there is a greater
chance that we will complete a task more effectively, correctly, and efficiently.
Therefore, forward planning to acquire, store and locate resources is essential.
It will also be necessary to properly maintain the resources that are available;
this includes the humans in the organization as well.

Pressure

Pressure is to be expected when working in a dynamic environment. However,
when the pressure to meet a deadline interferes with our ability to complete
tasks correctly, then it has become too much. Fear of contracting the virus,
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restricted movements during layovers, tight schedules due to reduced number
of maintenance workers, are all additional pressures while working.

e Lack of assertiveness
Assertiveness is a communication and behavioral style that allows us to
express feelings, opinions, concerns, beliefs and needs in a positive and
productive manner. Being both unable to express our concerns and not
allowing other to express their concerns creates ineffective communications
and damages teamwork. Unassertive team members can be forced to go with
a majority decision, even when they believe it is wrong and dangerous to do
SO.

e Stress
There are many types of stress. Typically, in the aviation environment there
are two distinct types—acute and chronic. Acute stress arises from real-
time demands placed on our senses, mental processing, and physical body
such as dealing with an emergency or working under time pressure with
inadequate resources. Chronic stress is accumulated and results from long-
term demands placed on the physiology by life’s demands, such as family
relations, finances, illness, bereavement, divorce, or even winning the lottery.
When we suffer stress from these persistent and long-term life events, it can
mean our threshold of reaction to demands and pressure at work can be
lowered. Thus at work, we may overreact inappropriately, too often and too
easily. Financial losses, anger, lack of control, frustration, resentment, lack
of confidence, uncertainty of the future and return to new ‘normal’, the need
to earn, new ways of living at home, at work and in society, inconvenience
caused by wearing PPE suits while at work, required Covid tests, etc. all
these would add to stress.

e Lack of awareness
Working in isolation and only considering one’s own responsibilities can
lead to tunnel vision; a partial view, and a lack of awareness of the effect
our actions can have on others and the wider task. Such lack of aware-
ness may also result from other human factors, such as stress, fatigue, pres-
sure, and distraction. During the COVID-19 period, operation guidelines are
changing often, employer may have to change protocols as per national and
international requirements and lessons learnt after resuming operations. It is
imperative to be aware of the risks and what is the latest expectation of the
organization.

e Norms
Workplace practices develop over time, through experience, and often under
the influence of a specific workplace culture. These practices can be both,
good and bad, safe, and unsafe; they are referred to as “the way we do
things round here” and become Norms. Unfortunately, such practices follow
unwritten rules or behaviors, which deviate from the required rules, proce-
dures, and instructions. These Norms can then be enforced through peer
pressure and force of habit. It is important to understand that most Norms
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have not been designed to meet all circumstances, and therefore are not
adequately tested against potential threats.

Frontline staff/Software Interface

Software are non-physical, intangible aspects of the aviation system that govern
how the aircraft system operates and how information within the system is
organized. Software may be likened to the software that controls the opera-
tions of computer hardware. It includes rules, instructions, regulations, policies,
laws, orders, safety procedures, standard operating procedures, customs, prac-
tices, conventions, habits, supervisor commands and computer programs. This
interface encompasses the connection between humans and the non-physical
aspects of the system such as procedures, manual and checklist layout, computer
programs and mobile apps.

Frontline staff/Hardware Interface

Hardware refers to physical elements of the aviation system such as aircraft
systems (including controls, surfaces, displays, functional systems and seating),
operator equipment, tools, materials, maintenance platforms, ground power
units, etc.

This interface is the most considered when speaking of human-machine systems:
the selection and use of correct tools; of smart glass to match the sensory
and information-processing characteristics of the user; of ground vehicles with
proper powering unit, etc.

Frontline staff/Environment Interface

This interface shows the circumstances in which aircraft and system resources
(software, equipment, colleagues) operate, made up of physical, organizational,
economic, regulatory, political, and social variables that may impact on the
frontline staff. Internal aircraft environment relates to immediate work area
and includes physical factors such as government health control measures,
social distancing, ambient temperature, air pressure, humidity, noise, vibra-
tion, and ambient light level. External air transport environment includes the
physical environment outside the immediate work area such as weather (visi-
bility/turbulence), terrain, congested airspace and physical facilities and infras-
tructure including airports as well as broad organizational, economic, regulatory,
political and social factors [13]. These aspects of the environment will interact
with the frontline staff via this interface.

Frontline staff/Liveware Interface

This interface refers to frontline staff interaction with other people in the system.
For example, AME with team members, maintenance supervisors, inspectors,
maintenance planner, shift managers, station managers, inventory controllers,
ground support, other management and administration personnel, etc. This
between-people interface considers human performance, capabilities, and limi-
tations [13]. Frontline staff/Management relationships are also within the scope
of this interface, as corporate climate and company operating pressures can
significantly affect human performance.
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6 SAS Modeling Procedure

The SAS modeling process is triggered whenever new operation or changes to
systems are being considered. For example, changes to carrier operation could include
the reorganization of routes, closing of line maintenance stations abroad, adding or
changing contractual arrangements for services, long-term parking and storage of
existing fleet or major modifications of existing fleet, or any one of many different
types of operations. In fact, the SAS modeling process may also be triggered by any
revision of an existing system or a change of operational environment due to the
incidence of COVID-19 pandemic.

There are five steps in implementing the SAS model and their outputs need to be
documented for regulatory compliance:

System description and analysis.
Potential consequences identification.
System safety risk analysis.

System safety risk assessment.
System risk controls.

Nk W=

1. System description and analysis

The system description and analysis process should include representatives from
management, safety staff, subject matter experts, employees, and representation
groups (e.g., unions) formed into workgroups such as safety committees, safety
roundtables, safety action groups, or similar titles. Since many, if not most, system
changes involve allocation of resources, the accountable executive or other managers
with the authority to commit resources should be included in the process.

In conducting a system analysis, the following information must be considered:

Function and purpose of the system.

The system’s operating environment.

An outline of the system’s processes and procedures.

The personnel, equipment, and facilities necessary for operation of the system.

Systems analysis is the primary means of proactively identifying and addressing
potential problems before the new or revised systems or procedures are put into place.
The system analysis should explain the management involvement and interactions
between the frontline staff and hardware, software, people, and environment that
make up the system in sufficient detail to identify potential hazards and perform risk
analyses.

An example of system description and analysis maybe the introduction of a trans-
formed passenger fleet to meet the cargo demand. Several of the carrier’s organi-
zational “systems” would be affected, viz. flight operations, maintenance, station,
ground and cargo handling, etc. As part of an analysis of the flight operations system,
one would need to consider changes to pilot and cabin crew training, scheduling, crew
rest, cabin facilities, and other areas.
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System analysis should identify and consider activities and resources necessary
for the system to function. For example, in transforming passenger aircraft to carry
out cargo operations, one would identify for the pilot training system, as one of the
affected systems, the activities and resources necessary for pilot training to pilot the
transformed passenger aircraft. These may include new simulator exercises, training
curriculum, training aids, and instructors.

The above example of transforming passenger aircraft to carry cargo in passenger
cabin would entail consideration of several systems and a variety of procedures due
to the number of processes that would be affected. However, in a simpler case, such
as the introduction of aircraft disinfection procedure due to COVID-19, only those
elements of the systems that would be affected by the change would need to be consid-
ered. Staff assigned for using cleaning, sanitizing, and disinfecting products would
ensure the procedures and products are approved by the public health authority and
aircraft manufacturer. The carrier would not be expected to perform a comprehensive
analysis of the entire cabin system.

2. Potential hazard/consequences identification

Audits and evaluations bring decision makers important information. However, these
tools can be limited by the scope and content of their design. The workforce is an
important information source that should be included in the data-gathering process.
Frontline employees may observe aspects of the operation or environment that were
not expected and were not included in audit or evaluation protocols. In this respect, the
employee reporting system can fill in important gaps in the company’s data collection
process. To be effective, the organization needs to establish and maintain an environ-
ment in which employees feel comfortable to report hazards, errors, violations, and
concerns, as well as occurrences, incidents, etc., and propose safety solutions and
improvements. The accountable executive and management team need to encourage
employees to report safety issues and not fear reprisals from management. Policies
that assure employees of fair treatment and clear standards of behavior are an essen-
tial part of the reporting process. A key aspect of the confidential reporting system
is that it is confidential. Therefore, management must define methods for employee
reporting and de-identification of sources without losing essential information.

In other words, a carrier would use its own experience (and/or those of others in
the industry where available), airworthiness requirements, manufacturers’ technical
data, and knowledge of department operations to identify potential consequences
resulted from its operation. These could include the effectiveness of new proce-
dure training, employees failing to read or misinterpret newly published procedures,
supervisors failing to follow the new fatigue risk management procedures, etc. While
identification of every conceivable consequence is unlikely, every staff is expected
to exercise due diligence in identifying consequences that could foreseeably lead to
an aircraft accident.
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3. System safety risk analysis

For each identified consequence, the potential for injury and damage that may result
from an accident related to operating while exposed to the event is to be defined.
To determine potential for injury and damage, one needs to define the likelihood
of occurrence of an accident and severity of the injury or damage that may result
from the system hazard. It is important to note that the likelihood and severity do not
refer to the consequence itself but of a potential occurrence (accident or incident)
related to the consequence. Review of accident statistics, failure data, error data
(e.g., ramp accident reports), information from the National Aeronautics and Space
Administration’s Aviation Safety Reporting System or equipment reliability data
would help in determining likelihood.

The risk analysis also needs to consider the basis for the estimates of severity. For
instance, if the potential consequence could result in controlled flight into terrain,
the severity of this outcome is normally major, if not catastrophic. Conversely, tire
failures, while potentially leading to a fatal accident, often lead only to aircraft
damage.

4. System safety risk assessment.

Once the risk is analyzed, the management must assess whether the risk is accept-
able. A common tool used in risk assessment decisions is a risk matrix. A risk
matrix provides one with a way to integrate the effect of severity of the outcome and
the probability of occurrence, which enables him to assess risks, compare potential
effectiveness of proposed risk controls, and prioritize risks where multiple risks are
present.

If a risk matrix is used, the carrier should develop criteria for severity and likeli-
hood that are appropriate for their type of operations and their operational s