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CSK Cosmo Sky-Med
CTLR Circular Transmit Linear Receive
CVCNN Complex-Valued CNN
dB Decibel
DBN Deep Belief Network
DLR German Aerospace Center
DOP Degree of Polarization
DP Dual Polarimetric
ENVISAT ENVIronmental SATellite
ESA European Space Agency
FP Full Polarimetric
HH Horizontal transmit horizontal receive
HV Horizontal transmit vertical receive
ISRO Indian Space Research Organization
JAXA Japanese Aerospace eXploration Agency
NESZ Noise Equivalent Sigma Zero
NPH Normalized Pedestal Height
NRCS Normalized Radar Cross Section
PALSAR Phased Array L-band SAR
PD Polarization Difference
PolSAR Polarimetric SAR
PR Polarization Ratio
PSD Power Spectral Density
PTSM Polarimetric TSM
RCM Radarsat Constellation Mission
RVCNN Real-Valued CNN
SAE Sparse Auto-Encoder
SAOCOM Microwave Observing Argentinian Satellite
SAR Synthetic Aperture Radar
SGD Stochastic Gradient Descent
SIR Spaceborne Imaging Radar
SNR Signal-to-Noise Ratio
SPM Small Perturbation Method
SVM Support Vector Machine
TSM Two-Scale Model
UAVSAR Unmanned Aerial Vehicle SAR
VV Vertical transmit vertical receive

1 Radar Polarimetry

This section presents a general overview of the theoretical background needed to
model the sea surface polarimetric observables. We focus on the general formulation
of the polarimetric scattering process that describes the electromagnetic interaction
between the wave transmitted by a microwave sensor and a target to be observed on
the Earth’s surface.

In this section, we first introduce the mathematical formalism used to describe
polarimetric observables in Sect. 1.1. Then, in Sect. 1.2, an overview of the opera-
tional and planned polSAR systems and the main characteristics of the polarimetric
imaging modes is provided. As a reference, information about multi-polarization
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models to describe sea surface scattering is given in Sect. 1.3. Finally, in Sect. 1.4,
meaningful experimental showcases are presented to demonstrate some of the most
representative polarimetric properties of sea surface scattering.

1.1 Polarimetric Scattering Descriptors

In this subsection, a general overview of the polarimetric scattering descriptors
of the electromagnetic interaction between the transmitted wave and the observed
surface is presented.

Considering a monostatic radar sensor, a microwave pulse transmitted by a
radiation source interacts with the observed surface, and it is scattered back to be
received by the original transmitting antenna. The received electromagnetic pulse
brings information about the scene that can be accessed taking into account the
transmitted and received waves. According to the Jones formalism, in the far zone
of the scatter, the transformation of the incident wave into the scattered one is given
in Eq. (1), where the transformation is ruled by the scattering matrix S [34]:

Es = e−jkr

r
SEi , (1)

where the ratio e−jkr/r is the spherical wave factor with j being the imaginary unit,
k the electromagnetic wave number, and r the distance between the SAR antenna
and the center of the scene. Es and Ei are the complex Jones vectors describing,
respectively, the scattered and incident waves.

Considering the monostatic backscattering case, i.e., the transmitting and receiv-
ing antennas are in the same location, and under the backscatter alignment conven-
tion (BSA), the scattering matrix S is a 2 × 2 complex-valued matrix also known as
Sinclair matrix and, adopting the linear horizontal (h)–vertical (v) polarization basis
and considering the propagation through a reciprocal medium, can be given by

S =
(

Shh Shv

Shv Svv

)
=

(|Shh| ejϕhh |Shv| ejϕhv

|Shv| ejϕhv |Svv| ejϕvv

)
= ejϕhh

( |Shh| |Shv| ejϕx

|Shv| ejϕx |Svv| ejϕc

)
,

(2)
where Spq , with p, q ∈ {h, v}, is the complex scattering amplitude, while Svh = Shv

results from the reciprocity assumption. The diagonal and off-diagonal terms of the
scattering matrix S call for, respectively, the same (termed co-polar) and orthogonal
(cross-polar) polarization for both incident and scattered waves.

∣∣Spq

∣∣ are the
modulus of the scattering amplitude, and ϕc and ϕx are the relative phase between,
respectively, the co-polarized and the cross-polarized channels:

ϕc = ϕhh − ϕvv , ϕx = ϕhv − ϕhh. (3)
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The phase differences between co-polarized and cross-polarized channels are
often indicated as CPD and XPD, respectively. The Jones formalism shown in
Eq. (1) represents a first-order coherent scattering model (i.e., a completely polar-
ized and deterministic scattering) and does not allow describing the phenomena of
depolarization that may arise from the scattering of random and distributed scenes.
The second-order descriptors are used to deal with the polarimetric scattering from
the distributed and depolarizing scenes based on both an incoherent and coherent
approaches. The latter is based on the coherency T and covariance C matrix, while
the former on the Stokes formalism where the 4 × 4 Muller matrix M connects the
partially polarized scattered wave (gs) to the fully polarized incident wave (gi) [34]:

gs = (kr)−2 〈M〉 gi , (4)

where 〈·〉 denotes ensemble average, the matrix M is real and never symmetric,
its elements are ensemble averages of combinations of scattering amplitudes, and
more details can be found in [33, 34]. The Stokes vector g represents the polar-
ization properties of an electromagnetic plane wave based on non-coherent power
measurements. The Stokes vector, different from the Jones formalism, can describe
partially polarized waves. In Eq. (4), since the incidence wave is deterministic, no
ensemble average is made in gi . According to the Stokes formalism, the degree of
polarization (DOP) of a partially polarized target can be evaluated:

DOP =
√

g1
2 + g2

2 + g3
2

g0
2 . (5)

The DOP is a basis-invariant parameter ranging between 0 and 1 that measures
the amount of polarized scattering/component of the target/electromagnetic wave.

One of the most powerful tools that characterize polSAR is the polarization
synthesis, i.e., the synthesis of the power given the polarization properties of any
couple of transmitting/receiving antenna once a complete polarimetric measure has
been performed in an orthogonal basis. The normalized radar cross section (NRCS)
can be evaluated based on the Kennaugh matrix, K , for any possible combination
of transmitting/receiving antenna polarizations, assuming that the antennas match
in both load and polarization:

σ 0 = 4π

2k2

〈
gr

〉T 〈K〉 gt , (6)

where the superscript T is the transpose operator, and gt and gr are, respectively,
the transmitted and received polarizations described using the Stokes formalism.
Considering the BSA convention, K is given by Guissard [34]

K = diag(1, 1, 1,−1)M . (7)
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Once polarization synthesis is performed, by varying the transmitting/receiving
polarization couple, the NRCS can be plotted versus both the tilting � and the
ellipticity χ angles, i.e., for any polarization. Hence, the co-polarized (transmitting
and receiving polarizations call for the same Stokes vector) and cross-polarized
(transmitting and receiving polarizations call for the orthogonal Stokes vectors)
signatures of the target are obtained. Once the former is normalized with respect
to the total backscattered power, namely the SPAN, the normalized pedestal height
(NPH) can be derived, which is the lowest NRCS in the normalized co-polarized
signature, while varying the tilting and ellipticity angles (i.e., the polarization). The
NPH describes the amount of unpolarized energy with respect to the total received
power.

The Mueller matrix is in a one-to-one mapping with the coherency matrix T

[16, 48]. The latter completely describes the polarimetric scattering properties of
a generic distributed and depolarizing scene with the advantage of, unlike the
Mueller matrix, being Hermitian and semi-definite positive matrices. The latter
properties allow the decomposition of the T and C matrices in elementary scattering
mechanisms providing a physical interpretation of the scene scattering processes.
The coherency/covariance matrices are both ensemble averages of combinations
of scattering amplitudes. Considering the backscattering case and assuming reci-
procity, the coherency matrix T and the covariance matrix C can be expressed,
respectively, as [16]

T =
〈
kk†

〉

= 1

2

⎛
⎝

〈|Shh + Svv |2
〉 〈

(Shh + Svv) (Shh − Svv)
∗〉 2

〈
(Shh + Svv) S∗

hv

〉
〈
(Shh − Svv) (Shh + Svv)

∗〉 〈|Shh − Svv |2
〉

2
〈
(Shh − Svv) S∗

hv

〉
2

〈
Shv (Shh + Svv)

∗〉 2
〈
Shv (Shh − Svv)

∗〉 4
〈|Shv |2

〉
⎞
⎠ (8)

and

C =
〈
kk†

〉
=

⎛
⎝

〈|Shh|2
〉 √

2
〈
ShhS

∗
hv

〉 〈
ShhS

∗
vv

〉
√

2
〈
ShvS

∗
hh

〉
2
〈|Shv|2

〉 √
2

〈
ShvS

∗
vv

〉
〈
SvvS

∗
hh

〉 √
2

〈
SvvS

∗
hv

〉 〈|Svv|2
〉

⎞
⎠ , (9)

where k is the target scattering vector projected into the Pauli (lexicographic) basis
[16]. The T matrix can be uniquely diagonalized as follows:

T = UDU−1 =
3∑

i=1

λiui · u†
i = T 1 + T 2 + T 3. (10)

Equation (10) describes the decomposition of the T matrix into the sum of
three elementary scattering mechanisms (i.e., surface scattering from a plane flat
structure, double-bounce scattering from a dihedral structure, and volume scattering
from a randomly oriented cloud of dipoles) described by the eigenvectors ui in
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which the power contribution for each mechanism is given by the eigenvalues λi

[16, 48]. Since T matrix satisfies Hermitian symmetry and is semi-definite positive,
it is characterized by real non-negative eigenvalues that satisfy the following
relationship:

λ1 ≥ λ2 ≥ λ3 ≥ 0. (11)

T and C matrices share the same eigenvalues, and their eigenvectors are linked
to each other by a con-similarity transformation [16, 48]:

C = F−1T F , F = 1√
2

⎛
⎝1 0 1

1 0 −1
0

√
2 0

⎞
⎠ . (12)

The eigen-decomposition of the coherency matrix results in meaningful basis-
invariant synthetic parameters that are strictly related to the scattering properties of
the observed target. The polarimetric entropy, H , is given by

H = −
3∑

i=1

pi log3 (pi) , pi = λi∑3
j=1 λj

, (13)

while the mean scattering angle ᾱ is defined by

ᾱ =
3∑

i=1

λi∑3
j=1 λj

cos−1(|ui (1)|). (14)

The entropy H is a basis-invariant measure, bounded between 0 and 1, of the
randomness of polarimetric scattering mechanisms that characterize the observed
target. H = 0 means deterministic scattering, while H = 1 means completely
unpolarized scattering. The mean scattering angle ᾱ, ranging between 0 and 90◦,
represents the average scattering mechanism of the target. ᾱ = 0◦, 45◦, and 90◦
stand for surface, volume, and double-bounce scattering, respectively.

The eigenvalues of the coherency/covariance matrices can also be used to express
the NPH:

NPH = λ3

λ1
. (15)
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1.2 PolSAR Imaging Modes

In this subsection, a brief overview of polarimetric SAR missions is presented.
In the last decades, SAR satellites were launched acquiring information from the

Earth surface at different microwave wavelengths and exploiting as well different
polarimetric and imaging modes. Since the polarimetric SAR provides reliable,
detailed, and valuable information on the physical properties and processes that rule
the observed scene, spaceborne polarimetric missions were launched recently or are
planned to be launched in the next years (e.g., the BIOMASS mission that consists
of a P-band SAR that will focus on the global distribution of forest biomass). An
overview of the main polSAR spaceborne missions is provided in Table 1.

According to the polarimetric information content, the SAR can be classified
as full polarimetric (FP), dual polarimetric (DP), and compact polarimetric (CP).
The FP SAR transmits and receives radiation on an orthogonal linear polarization
basis, providing the complete scattering matrix information on the observed scene.
Operational SAR missions are continuously acquiring information at different
frequencies, e.g., the C-band CSA (Canadian Space Agency), Radarsat-2, the L-
band JAXA (Japanese Aerospace Exploration Agency), Alos (Advanced Land
Observing Satellite), PalSAR-2 (Phased Array Type L-band SAR), and the X-
band ASI (Italian Space Agency), CSG (Constellation of Small Satellites for the
Mediterranean Basin Observation). The planned biomass mission will be equipped
with a FP SAR. An important limitation related to the FP SARs is related to its
limited area coverage (a swath smaller than 70 km) that impacts directly on its use
for operational monitoring services.

When compared to the FP SAR systems, the DP ones provide less polarimetric
information, i.e., they transmit a single linear polarization and receive usually both
amplitude and phase (coherently) in the corresponding orthogonal basis, providing
a single row/column of the scattering matrix, see Eq. (2). However, as advantage, the
DP SAR missions offer doubled area coverage when compared with the FP systems.
The operational DP SARs we can mention are the X-band ASI CSK, calling for
an incoherent DP imaging mode (i.e., alternating bursts are transmitted/received,
so no phase link is measured between the two polarimetric channels), the X-band
DLR (German Aerospace Center), TerraSAR-X, and C-band ESA (European Space
Agency), Sentinel-1.

A single circular or slant linear polarization is transmitted by the CP SAR
architectures and is then received according to the linear orthogonal basis. The CP
SAR system only measures the wave coherency matrix associated to the received
electromagnetic wave, limiting the amount of scattering information that can be
extracted when compared to FP missions. Even though the information received
by the CP system is biased and/or dependent on the considered CP mode, CP
SAR data have been successfully exploited for coastal areas observation [77]. CP
SAR missions are a trade-off solution between the area coverage and the amount
of polarimetric information. CP SAR satellites have been launched recently, for
example, the L-band CONAE (National Space Activities Commission) SAOCOM
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(Argentine Microwaves Observation Satellite), and the C-band CSA RCM (Radarsat
Constellation Mission). Another operational mission that has an CP SAR is the
C-band ISRO (Indian Space Research Organization), RISAT-1 (Radar Imaging
SATellite).

To acquire data from the Earth’s surface, different operational modes can be used
by the SAR systems. The most fundamental and simplest mode is the stripmap
where the radar antenna is fixed to one swath and draws a strip on the ground
during the time in which the platform moves. The illuminated area in the Earth’s
surface is limited in the range size and theoretically unlimited in the along-track
(azimuth) direction [22]. Taking the TerraSAR-X system as example, when working
on stripmap mode, its standard scene size is 30 × 50 km (range × azimuth) and its
spatial resolution is 1.2 × 3.3 m (slant range × azimuth) for single polarization and,
respectively, 15 × 50 km and 1.2 × 6.6 m for dual polarization.

In case a wider swath is needed, the antenna can be operated on scanSAR
mode where, to illuminate different range subswaths, the antenna beam elevation is
periodically switched. In this case, the azimuth resolution is degraded compared to
stripmap mode [22]. The standard scene size for the TerraSAR-X system operating
on scanSAR mode is 100 × 150 km, and the spatial resolution is 1.2 × 18.5 m. An
improvement on the azimuth resolution can be achieved using the spotlight mode
at the expense of azimuth coverage. The radar antenna beam operating on spotlight
mode is steered during the acquisition time from forward to backward, pointing
always in the same area on the ground [22]. The spotlight mode of the TerraSAR-X
system acquires a standard scene size of 10 × 10 km with a spatial resolution of 1.2
× 1.7 m for single polarization and 1.2 × 3.4 for dual polarization.

1.3 Sea Surface Polarimetric Scattering

This subsection deals with multi-polarization models to describe/predict the
backscattering from the sea surface at microwaves.

Over decades, the problem of scattering of electromagnetic waves from natural
rough surfaces has been investigated. The rough surface scattering problem plays
an important role for the radar remote sensing and its application on extracting
information on the observed scene, being of paramount importance for a broad range
of operational applications such as sea wind retrieval, soil moisture estimation, sea
ice, and oil slick observation [21, 36, 38]. To obtain closed-form solutions is not a
trivial task, and therefore, approximation approaches to deal with limiting scattering
cases were proposed, i.e., the high-frequency and low-frequency approaches. The
analytical high-frequency approach based on the Kirchhoff-tangent approximation
is valid for very rough slopes, and it has a good performance in modeling quasi-
specular scattering, while it lacks polarization sensitivity. Other very commonly
used general analytical approach is the small perturbation model (SPM) based on
the low-frequency approximation for small vertical variations. The SPM yields for
proper polarization sensitivity (considering the regime where the model is valid);
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however, it lacks in accounting specular scattering, multiple scattering effects,
and long-scale features in the surface spectrum [84]. Furthermore, the Kirchhoff-
tangent approximation and the SPM cannot well model natural rough surfaces
since these surfaces have different scales. In this context, in order to overcome the
problem of the natural sea surface being a very complicated composite surface,
the two-scale approximation assumes that the small roughness rides on top of
large fluctuations. The latter model has a good compromise between interpretation,
practical implementation, and accuracy issues [24, 35].

First to introduce the three scattering models will be presented in this subsection,
the Bragg scattering will be described as well as some general properties of the
ocean backscattering. Considering a range of angles of incidence between 20 and
60◦, under low-to-moderate wind conditions and the absence of long waves (validity
range of the Bragg scattering regime), the SAR sea surface backscattering is
primarily due to the Bragg scattering. The incident radiation is backscattered by the
wind-generated waves (i.e., capillary or short-wave length waves) of the sea surface,
following the relation: λB = λr/2 sin(θ), which says that sea surface roughness
scale, λB , is comparable with the radar wavelength λr . Considering all frequencies,
the ocean backscattering decreases with increasing incidence angle while increasing
when wind speed increases. The VV-polarized return is higher than the HH one,
while the cross-polarized (HV or VH polarization) NRCS is much lower than the
co-polarized ones, often being below the noise floor of the SAR sensor [37].

In [36], a scattering model was proposed, which is an extension of the con-
ventional Bragg scattering model, since it includes a roughness-induced rotation
symmetric disturbance. According to [36], the great advantages of the model are
the ability to describe processes that reduce the degree of polarization of the
electromagnetic wave (i.e., depolarization effects) and the capability to describe
cross-polarized backscattering. In this framework, it is the possible extension of
the Bragg scattering theory to a range of natural surfaces.

Under intermediate incidence angles and low-to-moderate sea-state conditions,
the X-Bragg coherency matrix T X can be predicted introducing a roughness
disturbance by rotating the Bragg coherency matrix about an angle β in the plane
perpendicular to the scattering plane [36]:

TX =
⎛
⎝ C1 C2sinc (2β1) 0

C∗
2 sinc (2β1) C3 (1 + sinc (4β1)) 0

0 0 C3 (1 − sinc (4β1))

⎞
⎠ . (16)

The angle β is an uniformly distributed random variable in the range 0–90◦, and
its distribution width, β1, corresponds to the amount of roughness of the sea surface
[36].

p(β) =

⎧⎪⎨
⎪⎩

1
2β1

|β| ≤ β1

0 elsewhere

. (17)
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C1, C2, and C3 are combinations of the complex Bragg scattering coefficients:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C1 = |Rh + Rv|2

C2 = (Rh + Rv)
(
R∗

h − R∗
v

)

C3 = 1
2 |Rh − Rv|2

. (18)

Rh and Rv are, respectively, the Bragg scattering coefficients perpendicular (V)
and parallel (H) to the incidence plane and depend on the local incidence angle, θ ,
and the relative electric permittivity, ε. More details can be found in [36].

Please note that the X-Bragg scattering model does not implement a high depo-
larizing condition. Thus, this model is not valid for dealing with high depolarizing
targets [10].

The electromagnetic scattering model named polarimetric two-scale model
(PTSM) [21, 38], as the original TSM, accounts for depolarization effects. However,
the former different from the latter one has the advantage to provide closed-form
expressions of the elements of the covariance matrix holding large-scale surface
slopes. Compared with the X-Bragg model, the PTSM brings improvement when it
removes the assumption of a uniform incidence plane rotation β and no variation in
the incidence angle. The PTSM was first developed to retrieval soil moisture, and it
was expanded to deal with the sea surface scattering purposes in [73, 74].

Considering the PTSM, the ocean can be modeled as being composed of large-
scale roughness with slightly roughened, tilted facets whose slope is the same as a
smoothed surface at the center of the roughened facet. The small-scale roughness
δ (x, y) is considered as a zero-mean stochastic process with height standard
deviation small when compared to the electromagnetic wavelength. Considering
δ (x, y) as a band-limited process, the power spectral density is [32, 38]

W (k) = S0

k(2+2Ht )
= s2 S0n

k(2+2Ht )
= s2Wn (k) , (19)

where k =
√

k2
x + k2

y , and kx , ky are the Fourier mates of x (azimuth) and y

(range), respectively. Via the dimensional facet-size-dependent constant S0n, S0 is
proportional to the roughness variance s2 [32]. Wn is the normalized power spectral
density, and 0 < Ht < 1 is the Hurst coefficient related to the fractal dimension D

by D = 3 − Ht . More details about values of D and Ht for the sea surface can be
found in [49, 82].

If we consider a sensor illuminating an area at a global incidence angle θ and
a field scattered by a single tilted rough facet, the full expression of NRCS can be
obtained as [38]
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 0
hh = 4

π
k4cos4θis

2Wn (2k sinθi)

× ∣∣Fh (θi) cos2βs + Fv (θi) sin2βs

∣∣2

σ 0
vv = 4

π
k4cos4θis

2Wn (2k sinθi)

× ∣∣Fv (θi) cos2βs + Fh (θi) sin2βs

∣∣2

σ 0
vh = σ 0

hv = 4
π
k4cos4θis

2Wn (2k sinθi)

× |[Fv (θi) − Fh (θi)] sinβs cosβs |2

, (20)

where Fh and Fv are the Bragg scattering coefficients for horizontal and vertical
polarizations, respectively [38]. θi is the local incidence angle, and the angle βs is
the rotation of the local incidence plane around the look direction k̂ related to the
facet slopes. Equation (20) does not hold at near-grazing angles (i.e., θi

∼= π/2) and
k values smaller than about 2π/L (i.e., θi < λ/2L, where L is the facet linear size).

Considering that the large-scale roughness height variations are larger than the
incident radiation wavelength and the facet size is larger than the small-scale
roughness correlation length, the returns from different facets are uncorrelated.
Within this context, the NRCS from the entire surface can be expressed by averaging
that of a single facet over βs and θi . Via a Taylor series expansion, the NRCS
expressions of an entire resolution cell are given as follows [38]:
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where C
pq
k,n=k are series expansion coefficients of the function (k cos (θi))

4 WFpF ∗
q

[38]:
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Even though the good compromise between interpretation, practical implemen-
tation, and accuracy issues [35] associated to the composite model combining the
Bragg scattering mechanisms (contribution associated to capillary and short-gravity
waves) and local-tilting effects associated to long waves, it is still difficult to obtain a
consistent description of the sea surface NRCS over different polarization states and
wind and wave conditions as well as over a large range of frequencies and incidence
angles [41, 72]. Discrepancies between model and measurement are more significant
when considering the sea surface under the influence of surface current straining. In
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the literature, the authors have been suggested that that the contribution of surface
breaking waves can be considered summing up with the polarized Bragg scattering
mechanisms to describe the co-polarized sea surface backscattering, reducing the
discrepancies [41, 42].

Other studies analyzed sea surface polarimetric scattering under more complex
environmental conditions, i.e., high sea states, the presence of breaking waves and
ice caps, internal waves, etc. When dealing with breaking waves, some studies
propose that, at intermediate incidence angles, the scattering mechanisms associated
to near-breaking events and intermediate-scale breaking waves are characterized as
non-polarized, and, therefore, contributing the same for both co-polarized channels
[43, 44]. Within this context, according to Kudryavtsev et al. [44], the contribution of
breaking wave can be estimated from co-polarized SAR measurements. The model
assumes that the sea surface can be described as the sum of a polarized two-scale
Bragg sea surface scattering contribution, σ 0

qq,b, and a NP scattering from breaking

waves, σ 0
wb [43]:

σ 0
qq = σ 0

qq,b + σ 0
wb, (23)

where q stands for horizontal or vertical polarization. The term σ 0
wb can be solved

taking into account the co-polarization difference (PD) and the two-scale Bragg
scattering polarization ratio (PR) [43]:

σ 0
wb = σ 0

vv − σ 0
vv − σ 0

hh

1 − σ 0
hh,b/σ

0
vv,b

= σ 0
vv − PD

1 − PR
, (24)

where PR is mainly ruled by the local geometry and tilting effects [41, 43]. More
details about PR can be found in Kudryavtsev et al. [43, 44].

1.4 Experimental Showcases

In this subsection, some key polarimetric characteristics of the sea surface scattering
are shown by means of an experimental showcase.

The polarimetric SAR scene consists of a FP L-band Alos PalSAR-1 image
collected over the Tosashimizu coast (Pacific Ocean, Japan) on April 21, 2011. The
spatial resolution is 30 × 10 m (range × azimuth), while the incidence angle at
mid-range is about 24◦. An excerpt of the SAR scene is shown as an RGB image
in Fig. 1a, where red, green, and blue colors refer to the modulus of HH-, VV-,
and HV-polarized scattering amplitudes, respectively. The dominant yellowish color
witnesses that most of the backscattered signal is from the co-polarized channels.
To quantitatively show this property, an along-range transect is selected covering a
distance of almost 7 km. The behavior of the HH-, VV-, and HV-polarized NRCSs
along the transect is shown—in gray, black, and purple lines—in Fig. 1b, where a
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Fig. 1 (a) False color RGB (R = |Shh|, G = |Svv |, B = |Shv |) image of a L-band Alos PalSAR-1
SAR scene excerpt collected over sea surface; (b) NRCS values (in dB scale) evaluated along a
range transect where black, gray, and blue plots refer to vv, hh, and hv polarizations. A smoothing
factor of 9 is used to improve visualization

dB scale is used and a 9-pixel-long smoothing window is applied for visualization
purposes. It is clear how, over sea surface, co-polarized backscattering dominates
over the cross-polarized one, i.e., about 15-dB difference, on average. In addition,
it can be noted that the intensity of the VV-polarized backscattering is slightly
larger (within 2 dB) than the HH-polarized one. Those properties all come from the
peculiar characteristics of the Bragg/tilted-Bragg scattering ruling over sea surface
under low-to-moderate wind conditions and in the incidence angle range from about
20 to 60◦.

The correlation properties that characterize sea surface polarimetric backscat-
tering can be analyzed using a second-order descriptor, i.e., the 3 × 3 covariance
matrix. To analyze the correlation between the co-polarized channels, the complex-
valued element C13 must be considered since its phase represents the phase
difference between co-polarized channels, i.e., the so-called CPD ϕc. The corre-
sponding probability density function (pdf) is shown in Fig. 2a, where it can be noted
that it follows a Gaussian distribution whose width is quite narrow, i.e., less than
10◦, witnessing that a large degree of correlation is in place between the HH- and
VV-polarized backscattering channels. When dealing the correlation between co-
and cross-polarized channels, sea surface satisfies the reflection symmetry property
with respect to the line of sight that results in those backscattering channels being
uncorrelated. The amplitude of the complex-valued element C12, which is related
to the correlation between the HH- and HV-polarized backscattering channels, is
shown—in dB scale—as a false color image in Fig. 2b. By visually inspecting
Fig. 2b, it can be observed that over sea surface reflection symmetry applies
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Fig. 2 Behavior of the covariance matrix estimated over sea surface relevant to the Alos PalSAR-
1 SAR scene shown in Fig. 1: (a) Probability density function relevant to the phase (evaluated in
degrees) of C13; (b) false color image of the amplitude (in dB scale) of C12

everywhere, i.e., the correlation between HH- and HV-polarized backscattering
channels calls for extremely low values (on average, about −34 dB).

To show that the ocean calls for a dominant scattering, i.e., the Bragg/tilted Bragg
surface scattering mechanism, the three real and non-negative eigenvalues of the
covariance matrix are evaluated, see Fig. 3, where they are normalized with respect
to the total backscattered power (namely, the SPAN). As expected, sea surface is
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Fig. 3 False color images of the normalized eigenvalues of the coherency matrix evaluated over
sea surface relevant to the Alos PalSAR-1 SAR scene shown in Fig. 1: (a) λ1; (b) λ2 and (c) λ3

characterized by λ1 values larger than 0.9, while λ2 and λ3 values lower than 0.1,
witnessing that a single scattering mechanism dominates. On average, λ1 = 0.96,
while the secondary eigenvalues λ2 and λ3 are equal to 0.03 and 0.01, respectively.

2 SAR Polarimetry for Sea Oil Spill Observation

In this section, the capability of polSAR satellite measurements to observe oil spills
at sea is presented.

Oil pollution has become one of the most frequent and catastrophic marine
accidents. There are many sources of marine oil spill pollution, including the
natural leakage of hydrocarbons from seabed oil and gas reservoirs, the discharge
of industrial wastewater and domestic sewage, the exploitation of offshore oil
resources, the blowout accidents of drilling platforms, the rupture of oil pipelines,
the leakage and illegal sewage discharge oil tankers, etc. Oil spill mostly occurs
in offshore waters, and it will cause huge damage to the marine environment and
ecological resources. Crude oil contains a large number of toxic compounds and
heavy metals. Once enters the marine ecological cycle, they will first affect the
health and safety of low-grade marine plants, then fish, higher mammals, and human
beings through the food chain. Oil spill pollution will not only affect the marine
traffic, but also cause huge losses to the marine salt industry, offshore water power
generation, seawater desalination, and marine aquaculture. To summarize, it will
seriously threaten the people’s health and economic development of the coastal
region.

Remote sensing plays a key role in the early warning, response, and damage
assessment of marine oil spill [12]. Compared with optical sensors, SAR has
stronger capability of all-day and all-weather observation, which has demonstrated
its advantage in operational oil spill observation, especially during adverse weather
conditions when oil spill accidents frequently happen. SAR platforms for marine
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oil spill observation can be mainly divided into spaceborne and airborne platforms.
Spaceborne platforms have the advantage of large coverage and are relatively cost-
effective, while airborne platforms have a higher signal-to-noise ratio and are more
flexible in repeat observations during emergency responses and can better acquire
the drifting and emulsification process of the oil spill.

In ancient Greece, the inhibitory effect of oil film on sea surface fluctuation
was recorded in the literature [4]. In ancient navigation, experienced sailors spilled
oil to the sea with wind and waves and use the attenuation characteristics of oil
film to sea waves to prevent ships from overturning. Italian scientist Maragoni [13]
explained this phenomenon theoretically for the first time: substances with different
viscosity coefficients on the liquid surface will produce elastic resistance, so as to
attenuate the amplitude of surface fluctuation. Therefore, the attenuation of sea oil
film is called Marangoni attenuation (damping). Synthetic aperture radar observes
backscattering caused by sea surface fluctuations of the sea surface. The oil film
on the sea surface will diffuse and form a film with different viscosity coefficients,
which attenuate the short-gravity wave and capillary wave, reduce the roughness of
the sea surface, weaken the SAR backscattering, and form a dark area in graytones
intensity SAR images, as shown in Fig. 4. Therefore, the detectability of sea oil film
is closely related to the surface wind field of the sea. If the wind speed is too low,
the sea surface will not fluctuate, resulting in extreme low backscattering; and if the
wind speed is too high, the oil spill on the sea surface will be dispersed and drifted
quickly, making it difficult to be detected. Therefore, the ideal wind speed for SAR
sea surface oil spill detection is usually required to be 3–14 m/s [13].

This section is organized as follows: in Sect. 2.1, an overview on the use of
polSAR imagery to observe sea oil slicks is presented; in Sect. 2.2, the most
relevant polSAR approaches to monitor oil spills at sea are critically reviewed; in
Sect. 2.3, an experimental showcase of marine oil spill observation methods using
conventional classifiers and convolutional neural networks is demonstrated.

2.1 Overview

Marine oil spills are observed as dark spots on the sea surface. However, many other
natural phenomena, such as low wind area, biogenic oil film, rain cell, upwelling,
internal wave, atmospheric wave, etc., can also form similar strip or patch-like
dark areas, may result in a false alarm. These phenomena are referred as “look-
alikes.” Therefore, distinguishing oil film between look-alikes has become the key
problem of SAR marine oil spill observation. Early SAR oil spill observation mainly
relied on single-polarization SAR images. The oil film and look-alikes are classified
based on the gray level, texture, and shape information. Therefore, these methods
are usually composed of three steps: dark spot detection, feature extraction, and
classification [13]. However, oil spill identification with single-polarization SAR
data usually requires prior knowledge of the oil film and auxiliary information such
as sea surface wind speed. The state of oil spill on the sea surface is influenced by the
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Fig. 4 An excerpt of the VV-polarized NRCS graytone image, shown in dB scale, collected by
the C-band Sentinel-1 SAR on October 8, 2018, over a coastal region in the Mediterranean Sea
affected by a certified ship-borne oil spill (see the low backscattering slick in the northwestern
area). Note that the oil slick is about 30 km long. Several low backscattering regions of different
origins (sheltered regions, low wind areas) can also be observed

sea state, which is sometimes very complex. The shape of oil film on the sea surface
is related to the oil type and movement of oil source during leakage. Therefore, oil
spill observation based on single-polarization SAR data is difficult to implement,
and the accuracy cannot be guaranteed. In recent years, oil spill detection based on
polSAR data has become a hot research topic. As introduced before, polSAR can
obtain detailed backscattering properties of the target and provide more sufficient
information for oil spill identification. Study demonstrated that the sea surface
covered by mineral oil has distinct scattering mechanisms from the sea surface
covered by biological oil film or open water: the Bragg scattering of the sea surface
covered by mineral oil is weakened, while the non-Bragg scattering mechanism
is enhanced, resulting in obvious depolarization effect. On the other side, the sea
surface covered by biological oil film or open water is still dominated by Bragg
scattering, with a backscattering of high degree of polarization [6, 56].

Polarization decomposition parameters were considered first for marine oil spill
observation. By eigenvalue decomposition of the polarization coherency matrix,
polarimetric entropy H and average polarization angle ᾱ and anisotropy A can be
extracted. These parameters are widely used in polSAR-based image analysis. The
sea surface covered by biogenic film or open water is dominated by Bragg scattering,
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resulting in a small H and ᾱ, while the Bragg scattering mechanism of the mineral
oil-covered area is suppressed, making the polarization scattering mechanism more
complex, and therefore, H and ᾱ increase. In [59], the effectiveness of these
polarization decomposition features in sea surface oil film detection was confirmed
based on SIR-C/X SAR data, while a polarization constant false alarm rate (CFAR)
filter for sea surface oil film detection based on these features [57]. In [58], it
was first reported that the pedestal height can reflect the degree of depolarization
of ground objects. The pedestal height of open water is lower than that of the
oil-covered region, which can be used to effectively distinguish mineral oil and
its look-alikes. The phase information in polSAR data is closely related to the
polarization characteristics of ground objects. In [67], it was first proposed that
the co-polarized phase difference (CPD) can be used to effectively distinguish
oil spill and biogenic film. The analysis shows that the phase correlation of co-
polarized backscattering signals on the sea surface of open water or covered by
biogenic slick is high, leading to a phase difference close to 0, while the existence
of mineral oil reduces the phase correlation of co-polarized channels and expands
the distribution of phase difference. Therefore, the variance of CPD can be used
as a powerful feature for oil film classification. In [79], C-band Radarsat-2 and
X-band TerraSAR-X data in the North Sea oil spill experiment were analyzed,
and the features including H and ᾱ, CPD standard deviation, amplitudes of co-
polarized channels, correlation coefficient, and other features were compared on
their capability in distinguishing between mineral oil and biogenic oil films.

The NRCS of different polarization channels can be used to classify marine oil
films. In the range of medium incidence angles (approximately 20–60◦), the radar
backscattering of sea surface can be modeled by Bragg scattering. Theoretically,
the Bragg scattering on the sea surface is related to the electromagnetic wave
number, radar incidence angle, Fresnel coefficient, and sea surface two-dimensional
spectrum. The ratio of different polarization backscattering cross sections is only
a function of local incidence angle, sea surface slope, and equivalent dielectric
coefficient. In [53], it studied the L-, C- and X-band images obtained in the SIR-
C/X oil film field experiment, which confirmed this fact. In [63], the tilted Bragg
scattering model was used to describe the backscattering of sea surface and oil–
water mixture, and Unmanned Aerial Vehicle SAR (UAVSAR) images obtained
during the oil spill accident in the Gulf of Mexico were used to retrieve the oil–
water mixing ratio. They estimated that the oil–water mixing ratio of the region
near the accident site was between 65 and 90%. In [66], the boundary perturbation
method was considered to analyze the characteristics of different NRCS of oil-free
and biogenic film covered sea surface. The experiments using actual SAR data show
that the TSM and Marangoni damping model can better describe the sea surface
backscattering cross section under the tilted modulation of large-scale waves.
When the range of incidence angles is small, the NRCS of different polarization
channels is dominated by the specular scattering component. With the increase of
incidence angle, the specular scattering component decreases rapidly, and the radar
backscattering cross section is gradually dominated by the contribution of Bragg
scattering component. In this case, the small perturbation method (SPM) can be
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used for modeling. In [89], an improved backscatter model was proposed based on
polarimetric scattering mechanism for marine oil spill observation, which is more
in line with the characteristics of oil film covered sea surface, and improved the
accuracy of the retrieval of equivalent dielectric constant and other parameters. The
NRCS-based analysis methods only rely on the amplitude information of polSAR
image; therefore, they can be used in polSAR sensors with incoherent polarimetric
imaging modes such as ENVISAT ASAR and CSK. In the dual-polarization mode
of these platforms, the signals of different polarization modes are transmitted and
received alternately. However, the application of sea surface SPM is greatly limited
by the incident angle. At small incidence angles, the specular scattering is too strong,
while at large incidence angles the backscattering is too weak. Moreover, the Fresnel
coefficient will saturate with the change of sea surface equivalent dielectric constant
[36], which affects the accurate retrieval of oil–water mixing ratio. In addition, only
when the oil film thickness reaches the order of the skin depth of electromagnetic
wave (approximately 1 and 4 mm at C-band and L-band, respectively), its change
will have an observable effect on the radar NRCS [85]. However, usually the
thickness of oil film is far from the above conditions. In addition, methods based
on the NRCS ratio do not make full use of the depolarization effect of sea oil film,
which greatly limits its ability to distinguish between mineral oil and its look-alikes.

2.2 PolSAR for Marine Oil Spill Observation

2.2.1 Feature Extraction to Monitor Sea Oil Spills

In this paragraph, some of the most widely used features derived from polSAR
imagery to observe marine oil pollution and their expected behavior are summa-
rized. Most of them have been already introduced in Sect. 1.1 and will be interpreted
in terms of slick-free and oil slick-covered sea surface, while other features will be
first introduced that are specifically proposed for sea oil slick observation purposes.
They are as follows:

• Polarimetric entropy
• Degree of polarization
• Ellipticity angle
• Normalized pedestal height
• CPD standard deviation
• Conformity coefficient
• Correlation coefficient
• Coherence coefficient

The intensity of co-polarized channels is frequently used in single-polarization
SAR-based oil spill detection algorithms, and therefore, it can be taken as a
reference. The VV-polarized NRCS is usually considered due to its higher signal-
to-noise ratio (SNR) if compared to the HH-polarized one [54, 55].
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The polarimetric entropy, H, assumes values close to 0 over clean sea surface,
since the almost completely polarized Bragg scattering dominates, while over oil
slick-covered areas, the more random scattering mechanism due to depolarization
effects results in larger entropy values, i.e., close to 1. However, for weak-damping
slicks as biogenic films, although the backscattering power is still lower than the sea
background due to their damping properties, the main scattering mechanism is still
Bragg-like [10], i.e., entropy values similar to that of clean sea surface apply.

The degree of polarization, DOP, can be derived from the Stokes vectors of any
coherent SAR imaging mode including DP, CP, and FP architectures [77]. When
dealing with clean sea surface and weak-damping slicks, the significantly polarized
Bragg scattering mechanism results in large DOP values, i.e., close to 1. When
sea surface is covered by mineral oil, the latter induces remarkable depolarization
effects, and therefore, lower DOP values (approaching 0) are observed.

The ellipticity angle, χ , describes the polarization status of a monochromatic
plane electromagnetic wave [17, 77]:

sin(2χ) = − g3

mg0
, (25)

where g0 and g3 represent the first (i.e., the total backscattered power) and the
fourth (i.e., the one related to circular polarization) elements of the Stokes vector
g, while m is the degree of polarization of the wave. For slick-free sea surface,
where Bragg scattering rules, χ is negative, while for oil-covered sea surface, since
a more random scattering mechanism is in place, χ is positive [62]. Therefore, χ

can be used as a straightforward binary descriptor to distinguish slick-free from
oil-covered sea surface [62, 67].

The normalized pedestal height, namely NPH, represents the amount of unpo-
larized backscattering energy. Hence, for clean sea surface, the almost completely
polarized Bragg scattering mechanism results in NPH values close to 0, while for the
oil-covered sea surface, much larger NPH values (approaching 1) are expected due
to the non-Bragg scattering that reflects the depolarization induced by the mineral
oil.

The standard deviation of the CPD, evaluated from ϕc using a sliding window,
is an unbiased estimator of the correlation between co-polarized backscattering
channels. Over slick-free sea surface, the correlation between co-polarized channels
is high, and therefore, a narrow CPD distribution, i.e., a low CPD standard
deviation value, is expected [60]. This also applies over weak-damping surfactants.
When dealing with mineral oil slicks, the depolarization they induce in scattering
mechanism results in a remarkable reduction of the correlation between HH and
VV backscattering channels. Accordingly, the pdf of the CPD broadens resulting in
a larger standard deviation of ϕc [11, 70].

The conformity coefficient, μ, was first used for soil moisture estimation from
CP SAR imagery purposes. When a FP SAR measurement is available, its proxy is
defined as [93]:
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μ ∼= 2
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ShhS

∗
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. (26)

The conformity coefficient μ evaluates whether surface scattering is dominant
among all the elementary scattering mechanisms. Over a slick-free sea surface,
Bragg scattering results in a very small cross-polarized backscattering power while
calling for high correlation between co-polarized channels, i.e., Re

(
ShhS

∗
vv

)
>

|Shv|2; hence, μ is positive. Over oil-covered sea surface, as non-Bragg surface
scattering is in place, the co-polarized correlation is lower, while the cross-polarized
backscattering component keeps almost the same, i.e., it is very likely to have
Re

(
ShhS

∗
vv

)
< |Shv|2, thus resulting in negative μ values. Considering weak-

damping slicks, since Bragg scattering is still dominant, positive μ values are
expected. Under this rationale, conformity coefficients can be used to effectively
distinguish crude oil from biogenic slicks without any need of external thresholding
methods.

The correlation and coherency coefficients can be derived from the coherence
matrix as follows [78]:
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They both range between 0 and 1. Over a slick-free sea surface, the co-polarized
channels are highly correlated, so they are expected to be very close to 1, while over
oil-covered sea surface, a much lower co-polarized correlation is expected; thus they
are both approaching 0.

The general behavior of the above introduced set of polarimetric over slick-free
and slick-covered sea surface is summarized in Table 2.

Table 2 Main polSAR features used for sea oil spill monitoring. Note that the VV-polarized NRCS
is also listed as a reference

PolSAR feature Sea surface Mineral oil—strong damping Biogenic slick—weak damping

H Lowest High Low

DOP High Low High

χ Negative Positive Negative

NPH Lowest High Low

σϕc Lowest High Low

μ Positive Negative Positive

ρc Highest Low High

Cc Highest Low High

σ 0
vv High Lowest High
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2.2.2 CP SAR Architectures

The FP spaceborne SAR system alternately transmits horizontal and vertical polar-
ization signals. Therefore, the pulse repetition rate of linear frequency modulation
signal is twice that of single-polarization SAR systems, resulting in halved swath
width, which lead to range ambiguity effect and increased system power require-
ments [14]. In addition, the large system complexity and data volume also increase
the cost of FP SAR systems. In order to overcome such issues, the CP architectures
were proposed. The CP SAR systems can obtain part of the polarization characteris-
tics of the observed targets without reducing the width of the swath [75]. At present,
it has achieved promising results in land use classification, biomass estimation, soil
moisture retrieval, and several marine applications [1, 47]. For the application of
maritime monitoring, the revisit time is a very important technical index, so CP SAR
has become a hot research field for marine oil spill observation [61]. The commonly
used CP SAR imaging modes in oil spill detection mainly include π /2, also known
as circular polarization transmitting, linear polarization receiving (CTLR), or hybrid
polarization mode, and π /4 or slant linear modes. These two modes transmit circular
polarized or 45◦ linear polarized signals, respectively, and receive horizontal and
vertical polarization signals simultaneously. The target scattering vectors k of those
CP SAR sensors are

k π
2

= 1√
2

(
Shh − jSvv

Svh − jSvv

)
, k π

4
= 1√

2

(
Shh + Shv

Svh + Svv

)
. (28)

One way for processing CP SAR data is to reconstruct the pseudo-quad-
polarization covariance matrix from the compact polarization scattering vector by
using iterative algorithms [65, 81] and then use feature extraction methods for FP
SAR data. In [86], a CP SAR image reconstruction algorithm based on polarization
decomposition was proposed and applied to ship detection. In [18], an empirical
model was exploited to estimate the constant parameter N in the range of incidence
angles to improve the reconstruction accuracy. The advantage of feature extraction
methods based on pseudo-quad-polarization reconstruction is that the analysis
methods for fully polarized modes can be directly used. However, for these methods,
assumptions of backscattering characteristics are required, which do not always
hold for the sea surface. Therefore, sometimes there is a large deviation between
the reconstructed pseudo-quad-polarization covariance matrix and the real data. In
[52], the backscattering characteristics of the sea surface were analyzed through the
statistical analysis of FP UAVSAR data and put forward an improved hypothetical
equation, which obtained a better reconstruction performance.

Another way is to analyze the scattering vector of CP SAR data and extract the
features directly. The Stokes vector of the radar signal can be obtained from the
CP scattering vector, so as to further calculate the degree of polarization m and
relative phase δ, wave polarization entropy Hw, ellipticity angle χ , and average
polarization angle ᾱw. In [50], it was found that the sign of δ can distinguish
different sea surface scattering mechanisms: for sea surface region δ is close to
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90◦, and for oil film covered area δ is negative, making it a binary classification
index. Through the image analysis of mineral oil naturally leaked from Radarsat-
2 sea surface, in [51], it was also found that compared with the clean sea surface,
the m value of the oil film covered area is significantly reduced, indicating that the
depolarization effect is obvious and the ellipticity angle is high, and the opposite
sign of χ indicates that the scattering mechanism is no longer Bragg scattering.
Conformity coefficient μ was first used for soil moisture estimation based on
CP SAR. It can effectively distinguish single surface scattering, double-bounce
scattering, and volume scattering [93]. The μ extracted from FP and π /4 CP SAR
images have been proven to have a very good ability to distinguish between mineral
oil film and biogenic look-alikes. It is positive on the open water and negative
on the mineral oil film, so can be used as a logic classifier for sea surface oil
spill detection. Based on the extended Bragg scattering model, in [88], a new
method was proposed to extract features from the Stokes matrix of CP SAR, and
its performance in distinguishing sea oil spill from biogenic slicks and low-wind-
speed area was confirmed through experiments. In [91], various features extracted
from π /2 CP SAR mode were analyzed by using the quad-pol reconstruction and
direct feature extraction, respectively. It was found that the two kinds of feature
extraction methods have their own advantages over each other, and the marine
oil spill classification performance of CP SAR is close to the FP SAR mode. In
[90], performance of features extracted from DP, CP, and FP SAR imaging modes
was investigated. It was found that the classification accuracy will not always
increase with the number of features, indicating that there is a large amount of
complementary information between polarimetric features, which highlights the
importance of feature selection and optimization. In [45], actual π /2 CP mode
RISAT-1 SAR data were used for the first time during an oil spill experiment carried
out on Norwegian waters.

Comparative studies have been made on CP SAR modes. The π /2 CP SAR
mode has the advantages of convenient polarization calibration, polarization channel
power balance, not dependent on the direction of ground objects and not easily
affected by the Faraday rotation effect of the ionosphere [81]. However, it is difficult
to transmit an ideal circular polarized signal in engineering practice. The π /4 CP
SAR mode is relatively easier to implement, but there is a 3 dB loss of received
power due to the mismatch between the transmitting and receiving polarimetric
channels. In [8, 9], the variability of CP SAR features under different incident
angles was investigated through experiments on Alos-1, Alos-2, and Radarsat-2
spaceborne SAR images. The ability of CP SAR modes in distinguishing oil film and
weak-damping look-alikes was verified, and the differences between polarimetric
characteristics obtained under various CP and FP SAR systems were discussed.

2.2.3 Challenges and Research Trend

Controversy still exists on the polarimetric scattering mechanism of marine oil
spill. There are beliefs that the increase of non-Bragg scattering component the
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SAR image of an oil spill area is probably not mainly caused by the sea surface
physical process, but thermal noise of the radar system [40]. In [26], the effects
of both additive and multiplicative noise were also analyzed on L-, C- and X-
band SAR data. The depolarization effect observed over oil spills in spaceborne
SAR imagery was mainly attributed to the additive noise of the SAR sensor. It
was also claimed that the non-Bragg scattering occurring over slick-covered sea
areas is likely due to a misinterpretation of SAR images collected a too low SNR
[19, 26]. However, it has to be noted that the polarimetric backscattering mechanism
of oil film is related to many factors including wind speed and the amount of oil
leakage. In [10], a sensitivity analysis on the standard deviation of the CPD for
marine oil spill observation was undertaken and confirmed that noise plays a role
in broadening the distribution of CPD, especially at large incidence angles. The
authors claimed that the depolarization is both induced by the noise and oil film. At
lower incidence angle, the scene induced depolarization is dominant, while at larger
incidence angle, the noise floor plays a more important role. In other words, together
with the depolarization inherently introduced by oil, an additional depolarization
contribution is due to noisy oil samples. Nonetheless, from the aspect of oil spill
detection, this is a good point since the heavier the oil depolarization, the larger
the separability with the polarized sea scattering is. On the other side, it makes the
classification/characterization/oil parameter retrieval made on “noisy” oil samples
unreliable.

The retrieval of the detailed properties of oil slicks and their evolving/drifting
under marine environment has been a hot research topic, which received growing
attention in recent years. In [74], the use of PTSM is proposed to retrieve the
dielectric parameters of oil slick from the polSAR imagery. In [25], FP and CTLR
SAR features were analyzed to observe evolving oil spills. They also developed
and explored new quantitative and semi-automated methods for analyzing oil slick
evolution using a time series of L-band polSAR images with short repeat time [27].
In [39], an analysis on newly formed sea ice distinction near the oil platform in the
Pechora Sea was performed using Radarsat-2 polSAR observations. These studies
demonstrated the valuable role played by polarimetric information.

With the increase of available polSAR data, deep-learning-based methods have
shown great potential in improving the accuracy of marine oil spill classification.
As data-driven pattern recognition methods, deep-learning-based algorithms can
better exploit the semantic and contextual information within high-resolution SAR
images without the need of prior knowledge. Chen et al. [15] used stacked auto-
encoder (SAE) and deep believe neural network (DBN) to extract and optimize
polSAR features. An oil spill detection method exploiting convolutional neural
network and image stretching based on superpixel was proposed in [27], where the
effectiveness of the approach was successfully demonstrated on Sentinel-1 DP SAR
data. In [46], different parameters were exploited with sensitivity to the dielectric
constant and ocean wave damping properties and used CNNs for learning nonlinear
features, shapes, and textural and statistical patterns, in order to obtain significant
classification accuracy. In [80], a novel oil spill identification method based on
multi-layer deep feature extraction by CNN was proposed. These studies show that
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compared with traditional supervised learning methods, the deep-learning-based
methods with unsupervised pre-training can improve the accuracy of sea surface
oil film detection, especially when the training samples are limited.

2.3 Experimental Showcase

2.3.1 SAR Polarimetry for Sea Oil Spill Observation: Conventional
Classifiers

This showcase is addressed by means of a C-band FP SAR scene collected at
C-band from the Radarsat-2 mission. The image was obtained in the North Sea
area near Norway, which was obtained from an oil-on-water field experiment [79].
We selected a sub-region with 2000 × 2000 pixels from the original SAR image
that contains clean sea surface and three types of oil films, including mineral oil
film, emulsified oil film, and biogenic film. Since the emulsified oil represents
an intermediate behavior between crude oil film and clean sea surface, whose
polarimetric features are not typical, the classification of emulsified oil film is
not considered in this chapter. Figure 5 shows the Pauli RGB image and artificial
sampling labels.

In this section, support vector machine (SVM) is used as a representative of
classic supervised classifier for its high performance in remote sensing applications.
SVM relies on the maximization of the classification margin based on the principle
of structural risk minimization. Its good generalization ability is obtained by

Fig. 5 Experimental showcase: (a) false color Pauli RGB image and (b) VV-polarized NRCS
graytone image with sampling labels (blue: seawater; red: mineral oil; green: biogenic film)
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Fig. 6 Classification result relevant to: (a) the first and (b) the second feature sets

Table 3 Confusion matrix derived from the first feature set. OA = 91.94%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 12,862 846 24

Biogenic slick 1106 13,324 1039

Sea 20 4945 64,867

Table 4 Confusion matrix derived from the second feature set. OA = 95.60%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,564 728 17

Biogenic film 413 16,182 983

Sea 11 2205 64,930

constructing a lower Vapnik–Chervonenkis dimension function set in a high-
dimensional space.

Pixel-level samples of mineral oil, biogenic film, and clean seawater were
selected in the region of interest. Two feature sets are generated in the experiment.
The first feature set consists of the 9 independent real-valued elements of the
coherency matrix, while the second feature set consists—in addition to the first
feature set—of the 10 polarimetric features listed in Table 2. The multi-layer per-
ceptron kernel function is used as the kernel function of the SVM. The classification
maps are shown in Fig. 6, while the corresponding confusion matrices are listed in
Tables 3 and 4, respectively.

By analyzing the results listed in Tables 3 and 4, it can be seen that the classi-
fication accuracy is improved by 3.7% when adding the pre-defined polarimetric
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Fig. 7 Network structure of CVCNN[83]

features. The significant improvement in accuracy is mainly due to the reduced
mis-classification rate between biogenic film and mineral oil, manifesting that
the artificially defined polSAR features based on scattering mechanism carry key
information for distinguishing mineral oil spill and its biogenic look-alikes.

2.3.2 SAR Polarimetry for Sea Oil Spill Observation: Convolutional
Neural Network Classifiers

In the fields of image classification and target detection, deep learning models
represented by the convolutional neural network have shown superior performance.
Several studies were proposed to classify polSAR images using CNN, but since
these methods take real-valued data as the input, the phase information in polSAR
images could not be fully utilized. Therefore, [83] presented a complex-valued
convolutional neural network (CVCNN) with complex-valued data as its input,
which is of great significance for processing images containing complex-valued
information. Trabelsi et al. [83] applied CVCNN to the classification of ground
objects in polSAR images and achieved good results. In this chapter, the CVCNN
is adjusted for marine oil spill detection tasks, and its performance is compared
with real-valued convolutional neural network (RVCNN) based on different feature
sets as the input. The network structure of CVCNN [83] used in this chapter is
shown in Fig. 7, including input layer, convolutional layers, pooling layers, fully
connected layer, and output layer. Different to the general CNNs, the weight and
bias of CVCNN, including the input and output of all layers, are fully defined in the
complex domain.

In CVCNN, the model input is a complex number, then its real part A and
imaginary part B are expressed as logically different real numbers, and complex
operation is simulated internally using real number algorithms. In the convolutional
layer, complex convolution operation can be expressed as

W × h = (
A × x − B∗y

) + j
(
B∗x + A × y

)
(29)

[
Re(W × h)

Im(W × h)

]
=

[
A −B

B A

]
, (30)
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Fig. 8 Complex convolutional operation process

where h is the input of complex-valued vector network, i.e., h = x + jy; W is the
weight complex matrix, i.e., W = A+jB. Re(·) and Im(·) mean real and imaginary
parts, respectively. For a more intuitive representation, the complex convolutional
operation process is shown in Fig. 8.

Accordingly, the ComplexReLU (CReLU) function is used as the complex
activation function of CVCNN, whose operation process is as follows:

The weight and bias are initialized by means of random initialization. The
complex backpropagation algorithm adopts stochastic gradient descent (SGD) to
optimize the real part and imaginary part.

Figure 9 shows the structure of the proposed CVCNN and RVCNN for compar-
ison. It should be noted that all the off-diagonal elements of the coherency matrix
are complex-valued data, which contain important phase information. Therefore,
T11, T12, T13, T22, T23, and T33 are input into the classification network as six
channels. While for RVCNN, the input is real-valued T11, T22, T33, and the real
part and imaginary part of T12, T13, and T23, so nine channels are taken as the
input. To avoid the interference by the network layer structure, the network layer
parameters of the two networks are kept consistent. Finally, the network outputs the
classification result of three types of targets, namely mineral oil slick, biogenic oil
film, and seawater.

The same two feature sets are also applied in the oil spill classification exper-
iments based on real-valued and complex-valued convolutional neural networks,
respectively. For CNN, each pixel in the image is represented by a local patch
defined by a neighborhood window. In this chapter, a 12 × 12 sliding window
was used to obtain the data input of the CNN. Therefore, the classification model
captures not only the polarimetric characteristics but also the spatial and texture
patterns surrounding the center pixel that to be classified.

For the first feature set, T11, T12, T13, T22, T23, and T33 are directly input
into the CVCNN as 6 channels, while the real-valued T11, T22, T33, and the real
part and imaginary part of T12, T13, and T23 are input into the RVCNN as 9
channels, respectively. Then for the second feature set, the previously introduced
polarimetric features are also input into RVCNN and CVCNN as supplementary
feature dimensions.
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Fig. 9 Flowchart of: (a) CVCNN and (b) RVCNN

It can be observed from Fig. 10 and Tables 5 and 6 that, based on the elements
only on T matrix, CVCNN has better classification performance than RVCNN by
0.3494%. The main reason is that the proposed RVCNN can better take advantage
of the phase information contained in the polSAR data, which greatly helps to
distinguish mineral oil and biogenic films. As shown in Fig. 11 and Tables 7 and 8,
when the pre-defined polSAR features are introduced, the oil spill classification
accuracy derived by RVCNN- and CVCNN-based methods improved by 0.9032%
and 0.6736%, respectively, resulting in the classification accuracy derived by
CVCNN still slightly higher than RVCNN. The results demonstrated that these
polarimetric SAR features have relatively larger help to RVCNN-based model,
by providing key polarimetric information hidden in the phase information of the
complex backscattering coefficients. The experimental results demonstrated that the
introduced SAR features provide key polarimetric information for improving the
performance of oil spill classification. It is preliminarily shown that the CVCNN has
the overall best performance for its ability of extracting both special and polarimetric
information from polSAR data. Theoretically, deep-learning-based methods have
higher potential given a larger number of training samples. Its advantage on
dealing with complex function fitting problems may provide greater help in oil spill
observation tasks under more complex environments and various oil type conditions.
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Fig. 10 Classification results obtained from the first feature set using (a) RVCNN and (b) CVCNN

Table 5 Confusion matrix derived from the first feature set by RVCNN. OA = 95.97%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,602 426 9

Biogenic film 373 16,940 1422

Sea 13 1749 64,499

Table 6 Confusion matrix derived from the first feature set by CVCNN. OA = 96.32%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,774 264 11

Biogenic film 197 17,219 1525

Sea 17 1632 64,394

3 SAR Polarimetry for Shoreline Monitoring

In this section, the capability of polSAR satellite measurements to monitor shore-
lines and to support coastal area management is provided.

Coastal areas are, worldwide, economic and natural resources of extraordinary
value that, being often fragile and dynamic environments mostly largely urbanized,
are particularly vulnerable to natural and anthropogenic hazards. Although in 2011 it
was estimated that the world coastline length is around 1 million kilometers [5], this
value tends to rapidly change over time due to natural phenomena, e.g., sea-level
rise, erosion and sedimentation, and human-induced processes, e.g., urbanization
and deforestation. In addition to the coastal area vulnerability issue, the fast growth
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Fig. 11 Classification results obtained from the second feature set using (a) RVCNN and (b)
CVCNN

Table 7 Confusion matrix derived from the second feature set by RVCNN. OA = 96.87%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,729 198 32

Biogenic film 238 17,153 845

Sea 21 1764 65,053

Table 8 Confusion matrix derived from the second feature set by CVCNN. OA = 96.99%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,811 197 18

Biogenic film 161 17,241 910

Sea 16 1677 65,002

of the coastal population density and the increase in economic assets and critical
infrastructures in coastal areas pose a serious threat to human society. Hence,
accurate and systematic observation of the coasts over time and, therefore, methods
to predict the coastal evolution play a fundamental role in coastal zone management.
Indeed, effective operational service for coastal areas monitoring is a key topic for
local authorities that face the aforementioned threats for the stability of land and the
safety of people they are responsible for. Within this context, microwave remote
sensing plays a fundamental role in coastal area monitoring. In particular, SAR
sensors, due to all-day and almost all-weather acquisitions, together with a wide area
coverage and a fine spatial resolution, can be very useful for coastal area monitoring
purposes [71].
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This section is organized as follows: in Sect. 3.1, the most up-to-date advance-
ments in coastline extraction from polSAR imagery is presented; the methodology
to process polSAR imagery to extract the coastline is detailed in Sect. 3.2, while
experimental results are showcased and discussed in Sect. 3.3.

3.1 State-of-the-Art

In this section, an overview of the studies that deal with shoreline monitoring
using polSAR measurement is presented. In [87], the enhancement of the land/sea
contrast is undertaken using polarimetric methods. Experimental results, undertaken
on C-band Convair airborne polSAR data, show that the polarimetric combination
outperforms single-polarization ones. The radar frequency dependence is discussed
in [64], where results showed that higher frequency (C- or X-band) provides the best
coastline localization. In [3], an analysis of the polarimetric channels with respect
to the angle of incidence is undertaken. Experimental results show that, at low AOI
(<30◦), the cross-polarized channel performs better than the co-polarized ones,
while at higher AOI, no polarization dependence is exhibited. Co-polarized DP CSK
SAR data, collected using the incoherent PingPong Stripmap mode, are successfully
exploited to extract coastlines by Nunziata et al. [68]. Coastline extraction in an
intertidal flat area is addressed in [23], where experimental results, obtained using
CSK DP SAR scenes, pointed out that the extraction accuracy decrease in the case
of water within the intertidal flat. In [7], a multi-polarization analysis of coastline
extraction is undertaken using X-band single-polarization CSK SAR data. Results
show that the performance of cross-polarized channels depends on the incidence
angle while showing a small sensitivity to sea-state conditions. Conversely, co-
polarized channels show a remarkable sensitivity to sea-state conditions. In addition,
it is also pointed out that sandy coasts are badly detected due to very limited
sand/sea contrast. In [69], the DP metric, based on the correlation between co-
and cross-polarized channels, is exploited to enhance the contrast between sea
and land. Results, obtained processing DP C—and X-band SAR data, demonstrate
the soundness of the proposed approach for coastline extraction purposes. The
FP information is exploited in [29]. In this chapter, the surface and the volume
component obtained from the Freeman–Durden decomposition are used to enhance
the discrimination between the sea and a challenging scenario that includes sandy
beaches. Experimental results show that the surface component provides the best
performance in terms of accuracy in detecting the sandy beach. In [20], shoreline
rotation has been analyzed to provide a better understanding of the morphodynamic
processes of natural embayed beaches. In [30], a two-year time series of multi-
polarization Sentinel-1 SAR imagery is exploited to analyze the changes in the
water-covered area of the Monte Cotugno (Italy) reservoir. Experimental results,
verified using independent in situ measurements, demonstrate, first, that Sentinel-
1 time series can be successfully used to support the smart water management of
reservoirs, and second, multi-polarization feature outperforms SP ones in terms of
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accuracy of the extracted waterline profile. In [31], the joint use of non-local speckle
filtering and multi-polarization features is applied on a very challenging scenario
that includes different habitats such as wetland, salt marshes, sand dunes, sand
banks, mudflats, and intertidal flats. Experimental results, undertaken on C-band
FP Radarsat-2 SAR imagery, show that the joint combination of non-local speckle
filters and dual-polarimetric information provides the best accuracy.

3.2 Methodology

In this section, the methodology developed to address coastline extraction, depicted
in the block diagram of Fig. 12, is discussed. Coastline extraction is basically based
on two steps. The first step relies on the enhancement of the separation between sea
and land, and it is addressed by exploiting the polarimetric information. Following
the block diagram of Fig. 12, first, a pre-processing of the polSAR imagery is
undertaken that includes calibration, spatial multilooking to reduce the speckle noise
using a window size N × N , spatial geocoding, and subset generation that includes
the region of interest. Then, a multi-polarization feature is introduced that was found
to improve the degree of scattering separability between land and sea [69]. This
parameter, labeled as r , consists of average product between co- and cross-polarized
backscattering amplitudes:

r = 〈|Sxx ||Sxy |〉. (31)

Accordingly, low r values are expected over sea surface due to negligible
cross-polarized backscattering, while larger r values are expected over land—
depending on coastal morphology, e.g., sand, rocks, vegetation, urban, ice—due
to the significant contribution of both co- and cross-polarized backscattering.

To generate a binary image where land and sea are clearly distinguished, a CFAR
algorithm is used to obtain a global threshold. CFAR is an adaptive algorithm used
in radar systems to detect target returns against a background of clutter [76].

When dealing with r , since it describes the scattering from a first-order Bragg
scattering surface, it is expected to be Rayleigh distributed over the sea surface.
Hence, according to [69], the relationship between the detection threshold th and
the probability of false alarm Pf a is given by

Pf a =
∫ ∞

th

r

σ 2 e
−r2

2σ2 dr th = σ

√
−2ln(Pf a), (32)

where σ is the standard deviation of the Rayleigh distribution. According to
Eq. (32), for a given Pf a , a global threshold th can be obtained. In this test case,
a Pf a equal to 10−6 is used.



Ocean and Coastal Area Information Retrieval Using SAR Polarimetry 269

Fig. 12 Block diagram of shoreline extraction

The second step relies on the extraction of continuous coastlines [29], see the
edge detection block in Fig. 12. First, the global threshold th obtained from the
CFAR approach is used to generate a binary image that separates land from the sea
according to the decision rule r ≥ th.

Then, to refine the binary image by removing artifacts and filling holes, morpho-
logical filtering is addressed. The artifacts are removed using an image processing
operation called area opening that removes all connected pixels that have fewer than
C pixels, while the holes are filled using an image filtering that replicates the pixels
inside a hole of C × C pixels. Finally, to extract the one-pixel continuous coastline
from the binary output, the conventional Sobel edge detector is used [2], which is
an image processing technique for finding the boundaries of objects within images
detecting discontinuities in brightness. Once edges are extracted from the binary
output, the one-pixel continuous coastline is obtained.
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3.3 Experimental Showcase

In this section, a showcase is discussed to show the benefits of polarimetric methods
in monitoring coastal areas. The SAR data set consists of two C-band DP (VV+VH)
Interferometric Wide (IW) ESA Sentinel-1 collected over the Calabria coast, in
Italy. The area includes the towns of Cetraro Marina and Marina di Belmonte,
two municipalities of Cosenza, an Italian town of the region Calabria, on July
11, 2016 and July 3, 2021 in descending mode with an AOI around 46◦. Wind
conditions, estimated from the cross-polarized channel according to [92], call for
low-to-moderate wind (5.1 m/s and 4.7 m/s, respectively). A square pixel whose
spacing is 14 m is considered. The false color SAR data collected on July 11, 2016
is ground-projected and shown as an image in Fig. 13a, where red, green, and blue
channels stand for VV, VH, and VV/VH power ratios. To reduce the speckle noise
in the SAR image, a boxcar filter with a window size 9 × 9 is applied. The RGB
speckle filtered image is shown in Fig. 13b. The metric r (31) is evaluated using N =
9, and the output is shown in false color in Fig. 13c. The r image clearly shows that
land and sea are well separated, with sea surface exhibiting a very homogeneous
behavior in terms of r values. To clearly separate land from the sea, a binary
image is generated where the global threshold is obtained using the CFAR approach
described in Sect. 3.2 with a probability of false alarm, Pf a = 10−6. To refine the
image, i.e., to fill in the hole and to filter out the isolated pixels, morphological
filtering is applied, with F = 100 and C = 9. The resulting binary image is shown
in Fig. 13d, where sea and land are clearly separated. To extract the coastline in a
simple and effective way, an edge detection approach based on the Sobel operator
is applied on the binary image of Fig. 13d. The extracted coastline, superimposed
on the SAR image, is shown in red in Fig. 13e. It can be noted that the coastline
extracted well fits the SAR image coastal profile. The same processing flowchart is
applied on the SAR scene relevant to July 3, 2021.

To analyze the changes that occurred on the coast from 2016 to 2021, two areas
are considered (see the yellow and green boxes of Fig. 13e). Results are shown
in Fig. 14, where the waterlines extracted are superimposed to the VV-polarized
NRCS SAR image. The yellow and blue lines refer to the coast in 2016 and
2021, respectively, while the white line refers to an area where the overlapping
occurs. The first area, enclosed in the yellow box of Fig. 13e, refers to the coast
of Cetraro Marina, an area strongly affected by coastal erosion as reported in the
European Atlas of the Seas [28]. By visually inspecting Fig. 14a, it can be noted
that the extracted coastline rarely calls for white color, witnessing a non-overlapping
between coastlines extracted in 2016 and 2021. A comparison between the yellow
and blue lines shows a remarkable loss of coastal area, indicating significant coastal
erosion occurred in this time frame (2016–2021). The changes in terms of the
coastal area between 2016 and 2021 are estimated from the related binary imagery
considering the actual pixel spacing. A net erosion of 11.2 × 104 m2 is estimated,
i.e., five years resulted in a degradation loss of an area that is about 21 times larger
than a regular American football pitch.
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Fig. 13 Excerpt of Sentinel-1 SAR imagery collected over the coast of Calabria, Italy, on 11 July
2016. (a) RGB color composite (R: VV, G: VH, B: VV/VH power ratio) SAR imagery; (b) boxcar
filtered RGB image using a window size 9 × 9; (c) r image in false color; (d) refined binary
image obtained after the CFAR and the morphological filtering; (e) coastline extracted (in red)
superimposed on RGB SAR image
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Fig. 14 Coastline extracted related to the SAR scene of: (a) Cetraro Marina (see yellow box of
Fig. 13e); and (b) Marina di Belmonte (see green box of Fig. 13e). The coastlines, superimposed
on the corresponding VV-polarized NRCS SAR image, are coded as yellow, blue, and white lines
for 2016, 2021, and 2016–2021 overlapping, respectively
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The second area, enclosed in the green box of Fig. 13e, refers to the coast of
Marina di Belmonte, which is less affected by coastal erosion according to [28].
By visually inspecting Fig. 14b, it can be noted that the 2016 and 2021 coastlines
are very close to each other, indicating that no significant changes occurred. A net
erosion of 4.6 × 104 m2 is estimated, i.e., about 40% less than the first test area.

4 Conclusions

In this chapter, the added value provided by polSAR satellite measurements in the
framework of the monitoring of oceans and coastal areas is presented.

Section 1 deals with basic and advanced concepts of radar polarimetry that
lie at the basis of the exploitation of polSAR data. Introduction to modeling
of polarimetric sea surface scattering is also theoretically provided along with a
meaningful experimental showcase.

Section 2 offers an overview of polarimetric approaches to observe sea oil spills
from polSAR imagery. Benefits and drawbacks are critically pointed out. A though
experimental showcase is also presented, which is based on the classification of
ocean slicks using DL methods.

Section 3 provides the most up-to-date information on the use of polSAR
measurements to extract coastal profiles and to monitor their changes over time.
An experimental showcase is also discussed to highlight the potential of polSAR
imagery to observe coastal areas affected by significant erosion processes.

The key message this chapter would convey to the reader is that a large set of
polSAR measurements is nowadays available that can be successfully exploited
to produce reliable and effective added-valued products and to develop advanced
geophysical parameter estimation algorithms when proper electromagnetic models
are considered.
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