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Preface

Synthetic Aperture Radar (SAR) Data Applications presents a diverse collection of
state-of-the-art applications of SAR data. Its aim is to create a channel of communi-
cation of ideas on ongoing and evolving uses and tools employing machine learning,
and especially deep learning, methods in a series of SAR data applications. This
book comprises a variety of innovative ideas, original works, research results, and
reviews from eminent researchers, spanning from target detection and navigation to
land classification and interference mitigation.

Synthetic aperture radar (SAR) is a microwave remote sensing technology which
was first conceived in the early 1950s. SAR technology has since seen rapid
progress. Today, SAR systems are operated from elevated places on land, from
manned and unmanned aircraft and spacecraft. SARs can provide images on a 24-h
basis and in all kinds of weather and have the ability to penetrate clouds, fog, and, in
some cases, leaves, snow, and sand. They generate maps and data describing features
of the surface or reflective object. The advent of machine learning in the SAR
community created new opportunities and facilitated tasks in SAR data analysis.
Machine learning tools offer an ingenuity to existing and new algorithms.

The editors of this book brought together diverse topics with the aim to spotlight
interdisciplinary cutting-edge lines of research that can be useful to a wider
audience. Synthetic Aperture Radar (SAR) Data Applications is addressed to expert
practitioners and general public in industry and academia interested in modern
practices and applications using SAR data. Individuals or organizations with intent
or ongoing efforts that involve machine learning with SAR data are expected to
significantly benefit.

Matthew P. Masarik, Chris Kreucher, Kirk Weeks, and Kyle Simpson in the
first chapter, “End-to-End ATR Leveraging Deep Learning,” discuss the need for
efficient and reliable automatic target recognition (ATR) algorithms that can ingest
a SAR image, find all the objects of interest in the image, classify these objects,
and output properties of the objects. Their chapter lays out the required steps in
any approach for performing these functions and describes a suite of deep learning
algorithms which perform this end-to-end SAR ATR.

v
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vi Preface

Luca Bergamasco and Francesca Bovolo in their chapter “Change Detection in
SAR Images Using Deep Learning Methods” focus on unsupervised deep learning
change detection methods that exploit unsupervised deep learning models to extract
feature maps. The feature maps retrieved from these models are used to detect
changed areas in multi-temporal images and handle the speckle noise. Change
detection methods address the regular monitoring of target areas by identifying
changes over an analyzed area using bi-temporal or multi-temporal SAR images.

Seonho Park, Maciej Rysz, Kathleen Dipple, and Panos Pardalos in their chap-
ter “Homography Augmented Momentum Contrastive Learning for SAR Image
Retrieval” propose a deep learning image retrieval approach using homography
transformation augmented contrastive learning to achieve scalable SAR image
search tasks. They introduce a training method for the deep neural networks induced
by contrastive learning that does not require data labeling, which, in turn, enables
tractability of large-scale datasets with relative ease. The effectiveness of their
method is demonstrated on polarimetric SAR image datasets.

Alexander Semenov, Maciej Rysz, and Garrett Demeyer in their chapter “Syn-
thetic Aperture Radar Image Based Navigation Using Siamese Neural Networks”
propose Siamese network models with contrastive and triplet loss that can be
used for navigational tasks. They use the SqueezeNet deep neural network as
their backbone architecture due to its compact size in comparison to other popular
architectures that are often used in SAR image processing tasks. Their experiments
demonstrate that their method can be used effectively and holds much promise for
future navigational tasks.

Jin Xing, Ru Luo, Lifu Chen, Jielan Wang, Xingmin Cai, Shuo Li, Phil Blythe,
Yanghanzi Zhang, and Simon Edwards in their chapter “A Comparison of Deep
Neural Network Architectures in Aircraft Detection from SAR Imagery” compare
the performance of six popular deep neural networks for aircraft detection from
SAR imagery, to verify their performance in tackling the scale heterogeneity, the
background interference, and the speckle noise challenges in SAR-based aircraft
detection. Their work confirms the value of deep learning in aircraft and serves as a
baseline for future deep learning comparison in remote sensing data analytics.

Yan Huang, Lei Zhang, Jie Li, Mingliang Tao, Zhanye Chen, and Wei Hong
in their chapter “Machine Learning Methods for SAR Interference Mitigation”
provide a comprehensive study of the interference mitigation techniques applicable
for an SAR system. They provide typical signal models for various interference
types, together with many illustrative examples from real SAR data. In addition,
they analyze advanced signal processing techniques, specifically machine learning
methods, for suppressing interferences in detail. They discuss advantages and
drawbacks of each approach in terms of their applicability and future trends from
the perspective of cognitive and deep learning frameworks.

Mete Ahishali, Serkan Kiranyaz, and Moncef Gabbouj in their chapter “Classifi-
cation of SAR Images Using Compact Convolutional Neural Networks” investigate
the performance of compact convolutional neural networks that aim for minimum
computational complexity and limited annotated data for the classification of SAR
images. Their analysis covers commonly used SAR benchmark datasets consisting
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of four fully polarimetric, one dual-, and one single-polarized SAR data including
both spaceborne and airborne sensors.

Siddharth Hariharan, Dipankar Mandal, Siddhesh Tirodkar, Vineet Kumar, and
Avik Bhattacharya in their chapter “Multi-frequency Polarimetric SAR Data Analy-
sis for Crop Type Classification Using Random Forest” employ multi-frequency (C-,
L-, and P-bands) single-date AIRSAR data using random forest–based polarimetric
parameter selection for crop separation and classification. In their study, in addition
to polarimetric backscattering coefficients, they also analyzed scattering decompo-
sition powers along with the backscattering ratio parameters and found them vital
for multi-frequency crop classification.

Emrullah Acar and Mehmet Sirac Ozerdem in their chapter “Automatic Determi-
nation of Different Soil Types via Several Machine Learning Algorithms Employing
Radarsat-2 SAR Image Polarization Coefficients” explore several machine learning
algorithms—K-Nearest Neighbor, Extreme Learning Machine, and Naive Bayes—
by utilizing Radarsat-2 SAR data in a pilot region in the city of Diyarbakir,
Turkey. They collect 156 soil samples for classification of two soil types (Clayey
and Clayey+Loamy), compute four different Radarsat-2 SAR image polarization
coefficients for each soil sample, and utilize these coefficients as inputs in the
classification stage.

Andrea Buono, Emanuele Ferrentino, Yu Li, and Carina Regina de Macedo in
their thorough chapter “Ocean and Coastal Area Information Retrieval Using SAR
Polarimetry” describe the role played by synthetic aperture radar polarimetry in
supporting the observation of oceans and coastal areas using meaningful showcases.
They discuss the capability of generating added-value products in the framework of
marine oil pollution by means of experiments of actual polSAR data. Furthermore,
they demonstrate the ability of polSAR information to assist in continuous monitor-
ing of coastal profiles for vulnerability analysis purposes.

We would like to acknowledge the support of the U.S. Air Force Research
Laboratory at Eglin Air Force Base (task order FA8651-21-F-1013 under contract
FA8651-19-D-0037) for the realization of this book. We would also like to express
our greatest thanks to all the authors of the chapters in this book as well as the
reviewers who provided thorough reports. We likewise express our most sincere
appreciation to Springer for their assistance during the preparation of this book and
especially to Elizabeth Loew for her encouragement.
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End-to-End ATR Leveraging Deep
Learning

Matthew P. Masarik, Chris Kreucher, Kirk Weeks, and Kyle Simpson

1 Overview

Synthetic aperture radar (SAR) systems are widely used for intelligence, surveil-
lance, and reconnaissance purposes. However, unlike electro-optical (EO) images,
SAR images are not easily interpreted and therefore have historically required a
trained analyst to extract useful information from images. At the same time, the
number of high-resolution SAR systems and the amount of data they generate are
rapidly increasing, which has resulted in a shortage of analysts available to interpret
this vast amount of SAR data. Therefore, there is a significant need for efficient
and reliable automatic target recognition (ATR) algorithms that can ingest a SAR
image, find all the objects of interest in the image, classify these objects, and output
properties of the objects (location, type, orientation, etc.). This chapter lays out the
required steps in any approach for performing these functions and describes a suite
of deep learning (DL) algorithms that perform this end-to-end SAR ATR. One novel
feature of our method is that we rely on only synthetically generated training data,
which avoids some of the main pitfalls of other DL approaches to this problem.
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2 M. P. Masarik et al.

Fig. 1 Comparison of EO images and SAR images of the 10-class MSTAR target set. The
significant differences between EO and SAR images make interpretation of SAR imagery non-
trivial and traditionally reliant on trained analysts

2 Introduction

Synthetic aperture radar (SAR) is a powerful remote sensing technique that
coherently processes a sequence of radar returns to form radar images [1, 2]. SAR
is an active imaging mode, transmitting the microwave radio frequency (RF) energy
it uses to make images; hence, a SAR sensor can operate day or night in all-weather
conditions.

However, SAR images contain a significant amount of speckle noise, and the
images have typically much lower resolution than electro-optical (EO) imagery.
Moreover, SAR images are sensitive to the direction of illumination because of both
shadowing and self-shadowing effects. These features mean that conventional image
classification methods applied to EO imagery are not directly applicable to SAR
imagery. Figure 1 shows some example EO images and SAR images of the publicly
available 10-class Moving and Stationary Target Acquisition and Recognition
(MSTAR) [3, 4] target set, providing one illustration of these differences.

Analogously, as shown in Fig. 2, full-scene SAR imagery includes a number
of features not present in EO imagery that makes the tasks of target detection,
orientation estimation, and classification more difficult. These include residual
defocus, non-uniform illumination, and distinct background statistics that stem from
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Fig. 2 A SAR image from Mission 78, Pass 1 collected by the Advanced Detection Technology
Sensor (ADTS), an airborne SAR/RAR millimeter-wave sensor operated by MIT Lincoln Labora-
tory. The ADTS operates at Ka band (32.6 to 37 GHz) and was used to collect clutter and armor
scenes using its stripmap mode

Fig. 3 A flow diagram describing an example ATR processing chain

the physical nature of the ground cover (e.g., tree cover, water, dirt, road). Because
of these factors, SAR imagery has been traditionally interpreted by human experts
rather than machine automation.

The number of high-resolution SAR systems and the amount of data they
generate are rapidly increasing, which has resulted in a shortage of analysts available
to interpret this vast amount of SAR data. There is a significant need, therefore, for
efficient and reliable algorithms that can ingest a SAR image, find all the objects
of interest in the image, classify these objects, and output properties of the objects
(type, size, orientation, etc.). We will refer to this suite of algorithms to as end-to-
end SAR ATR (Automated Target Recognition). We note that some authors use the
term ATR in reference to just the final step, that of classifying image chips that are
known to contain objects of interest. In this chapter, we treat the entire end-to-end
problem that contains all aspects starting from a full SAR scene and ending with a
collection of classified image chips. A block diagram showing the steps involved in
a representative end-to-end SAR ATR algorithm is shown in Fig. 3.

Note that while some ATR algorithms combine a constant false alarm rate
(CFAR) detector and target–clutter discriminator into a single algorithm, the
algorithm discussed in this chapter splits the detection task into these two stages.
Similarly, some classification algorithms do not rely on knowledge of the target
orientation, but the algorithm presented here exploits this estimate. Hence, different
algorithms will result in slight modifications to the flow diagram in Fig. 3, but
the basic structure of detect, characterize, classify, and output underpins all ATR
algorithms.

Algorithms for SAR ATR have been studied for many years [5], receiving
increased attention in the literature over the past 20 years in large part due to the
public release of the high-resolution MSTAR dataset described earlier [3, 4]. The
MSTAR dataset consists of SAR image chips of ten military vehicles collected with
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an airborne sensor using approximately 600 MHz of bandwidth at X-band with
images formed to approximately 1 foot pixel spacing. Because the classification
component of SAR ATR is widely regarded as challenging and the MSTAR dataset
includes image chips known to contain vehicles, much of the community’s focus has
been on the classification component of SAR ATR rather than the front-end steps of
detection and target characterization.

Many of the early SAR classification algorithms were template-matching
approaches, which estimate target class by choosing the class corresponding to the
template that best matches the data [6]. Some other early algorithmic approaches
include the attributed scattering center model approach [7], support vector machines
[8], and neural networks [9]. An excellent summary of the state of the art through
approximately 2016 is given in [10], and a updated survey was recently given
in [11]. Some of the most important recent efforts employ modern convolutional
neural network (CNN) approaches [12–15].

While the MSTAR dataset has provided an excellent testbed for SAR ATR
classification that is easily accessible, in recent years it has led to considerable
misunderstanding and inflated performance predictions. The issue is that the typical
MSTAR experiment presented in the literature uses a training set and a testing set
(nominally collected at 17◦ and 15◦ elevation, respectively), that are so similar that
nearly any reasonable technique should be capable of achieving very high (e.g.,
>99%) accuracy. The datasets are so similar for several reasons:

1. The targets in the training and testing sets were the exact same vehicle (i.e., the
exact same T-72).

2. The targets were on the exact same patch of ground across the training and testing
sets.

3. The training and testing data were collected on successive flight passes.
4. The sensors collecting the data and the image formation procedure were identical

across the training and testing sets.

This level of similarity between the training and testing sets is unreasonable
to expect in practice [11]; hence, the literature tends to exaggerate algorithm
performance. Even more damning, however, is that due to the targets being on
the same patch of ground across the training and testing sets, the authors have
demonstrated that classification accuracies of >70% are achievable using only the
background clutter of the chips.

Hence, even if an algorithm demonstrates excellent performance on the standard
MSTAR experiment, it is unclear if the algorithm is performing target discrimination
that will generalize to more realistic ATR scenarios or is just memorizing particulars
of the vehicles and terrain. It is also unclear if the learned algorithms will perform
well when applied to data collected by a different sensor.

To address these issues, as well as the relative dearth of data compared to
optical images, this chapter describes an end-to-end SAR ATR approach that utilizes
synthetically generated training data (e.g., asymptotic ray-tracing predictions based
on target CAD models). In addition, our approach is novel as it is a hybrid method
that combines the robustness of conventional algorithms (e.g., template matching
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and CFAR detectors) with the performance improvements possible using emerging
deep learning (DL) techniques.

This chapter proceeds as follows: Sect. 3 describes an approach to the elements of
the front-end ATR tasks (target detection and orientation estimation) that combines a
conventional CFAR algorithm as a prescreener and a DL algorithm as a final target–
clutter discriminator; next, Sect. 4 describes a hybrid conventional/DL approach to
target classification that casts a template-matching algorithm into the DL framework
and then allows learning to refine the templates (features) and also learns the
interclass relationships; and finally, Sect. 5 concludes.

3 Front-End Algorithms

This section discusses the front-end SAR processing chain that begins with a
collected SAR image and generates a series of target-centered image chips to be
classified, as well as an orientation estimate of the object in the chip. These steps
are highlighted in Fig. 4. In our approach, we perform this front-end function by first
executing a CFAR detector to separate target-like areas from the background, then
carrying out a DL-based target discrimination to separate true targets from target-
like clutter, and finally carrying out an orientation estimation to predict the target
angle relative to the image.

As is standard in the SAR community, we work with approximately 600 MHz
bandwidth data with images formed with approximately 1 ft pixel spacing. For the
MSTAR targets and graze angles, chips of size 128 × 128 are sufficient to capture
both the target and its shadow. This chip size is also standard in the literature. All
of our algorithms can be scaled appropriately if the chip sizes change either due to
resolution or target size.

3.1 Target Detection

A comprehensive review of detection algorithms for SAR ATR can be found in [10].
The target detection algorithm described here employs a two-stage approach. The
first stage is a prescreener that is implemented as a cell-averaged constant false
alarm rate (CFAR) detector that models the clutter as Rayleigh-distributed. The
second stage is a data-driven convolutional neural network (CNN) that predicts a
probability that the image contains a target. This algorithm is illustrated in Fig. 5.

Fig. 4 The end-to-end SAR ATR processing chain. This section describes algorithms for the
operations outlined in red
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Image CFAR 
Prescreener Potential ROIs

Target vs. 
Clutter 

Discriminator

Declared 
Target 
ROIs

Fig. 5 Flow diagram describing the target detection algorithm

Background Region, 

Target region should be
some fraction of size of
smallest targets under

consideration 

Background region should 
be free of targets, upper 
bound on size guided by 

computational req’s

Test Pixel 

Target Region, 

Fig. 6 Definition of target and background regions used in the CFAR

3.1.1 CFAR Prescreener

The prescreener is implemented as a CFAR detector. To derive the CFAR detector,
consider Fig. 6, which defines the background region �bg and the target region
�tgt for a test pixel. The regions are defined so that the inner diameter of �bg is
approximately as large as the largest target to be encountered, the thickness of �bg

is approximately the expected minimum spacing between targets (though the upper
bound on the size of this region is dictated by computational requirements), and the
diameter of �tgt is approximately the size of the smallest object to be encountered.

The statistics of the non-target (clutter) regions are well studied [16, 17]. Here we
have elected to model the clutter as Rayleigh-distributed. The maximum-likelihood
estimates (MLEs) of the Rayleigh shape parameter in the background and target
regions are given, respectively, in Eqs. (1) and (2):

σ̂ 2
bg = 1

2|�bg|
∑

�bg

|I |2 (1)

σ̂ 2
tgt = 1

2|�tgt |
∑

�tgt

|I |2. (2)

Detection of anomalies is thus reduced to the following hypothesis-testing
problem:

H0 : σ̂ 2
tgt ≤ σ̂ 2

bg

H1 : σ̂ 2
tgt > σ̂ 2

bg.
(3)

A reasonable test statistic for this problem is
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T = σ̂ 2
tgt

σ̂ 2
bg

=
1

2|�tgt |
∑

�tgt
|I |2

1
2|�bg |

∑
�bg

|I |2 =
|�bg|∑�tgt

|I |2
|�tgt |∑�bg

|I |2 . (4)

The hypothesis test to declare a detection is then

T
H1
≷
H0

γ, (5)

where γ is some threshold.
It remains then to determine how to set the threshold γ in terms of a desired

probability of false alarm (PFA), which requires a model on the distribution of T .
First, as commonly done [18], we model the SAR image pixels as 0-mean complex
Gaussian with variance σ 2 in I and Q. This gives Rayleigh statistics for the detected
pixels, and if the pixel values were independent, the sum over a region would be
Gamma-distributed, i.e.,

∑

�bg

|I |2 ∼ �

(
|�bg|, 1

2σ 2

)
. (6)

However, the SAR image formation process introduces a correlation between
the pixels. The exact distribution of the sum of correlated Rayleigh variates is
complicated [19, 20], but a useful approximation [21] is

∑

�bg

|I |2
σ 2/2

∼ �

( |�bg|
u

, 2u

)
, (7)

where u = 1 + 2ρ(|�bg| − 1), with ρ capturing the average correlation in the
region under sum. This is an empirical quantity which we estimate offline from a
background dataset. With this approximation, the test statistic T is seen to be a ratio
of independent Gamma-distributed variables, which is F -distributed as

T ∼ F

(
2|�tgt |

1 + 2ρ(|�tgt | − 1)
,

2|�bg|
1 + 2ρ(|�bg| − 1)

)
. (8)

Thus, in terms of a desired PFA, the threshold γ can be determined in terms of
the inverse F-distribution, and the final hypothesis test is

T
H1
≷
H0

F−1
(

1 − PFA,
2|�tgt |

1 + 2ρ(|�tgt | − 1)
,

2|�bg|
1 + 2ρ(|�bg| − 1)

)
. (9)

Note that this test is performed for every pixel in the image but is still
computationally efficient because the summation terms may be computed quickly
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Fig. 7 Flow diagram for the anomaly detector

Fig. 8 An example input SAR image from the publicly available Advanced Detection Technology
Sensor (ADTS) collection

via convolution. Additional gains in efficiency are possible by making the target
and background regions rectangular and using integral images to compute the
summations.

Since the background statistics are computed via averaging, they are susceptible
to contamination by targets or other objects. This suggests that a censoring
procedure should be employed wherein the prescreener is run once, and then it is run
again while ignoring detections. Figure 7 shows the flow diagram for the anomaly
detector.

Figure 8 shows an example SAR image containing an open field populated with
four target vehicles (the image is the HH polarization image of frame 22, pass
7, mission 78 from the publicly available ADTS sample set images available on
the AFRL Sensor Data Management System). In addition to the targets, the image
contains a group of trees on the right side of the image.

Figure 9 shows the (transformed) CFAR test statistic as computed via Eq. (9).
As expected, the bright areas correspond to the targets, but the regions around these
targets are unnaturally low due to the corruption of the background statistics by the
target.

Figure 10 shows the CFAR test statistic that has been recomputed by masking
out detections. This results in a significantly cleaner CFAR image.

Finally, Fig. 11 shows detected anomaly regions outlined with a yellow box. Note
that, apart from the five detected regions in the trees at the right part of the image, all
the other detections are desirable anomaly detections as they correspond to targets.
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Fig. 9 The test statistic computed on the input SAR image without masking detections

Fig. 10 The test statistic recomputed with initial detections masked

Fig. 11 Image with anomalous regions outlined with a yellow box

A method for dismissing the regions that do not contain targets will be discussed in
Sect. 3.1.2.

3.1.2 Target vs. Clutter Discriminator

As seen in Fig. 11, the CFAR will detect some objects that, while they are
statistically anomalous, are not targets and therefore should not be passed on for
discrimination (e.g., the detections in the trees). This motivates the use of a second
stage in the detection algorithm with the purpose of screening out detections that
are clearly uninteresting from an ATR perspective. There are many approaches to
designing such a screening algorithm (see [22] for a summary of previously applied
techniques), but with the recent advances in computer vision via deep learning, it
is natural to use deep learning techniques to build a target vs. clutter discrimination
algorithm.



10 M. P. Masarik et al.

Fig. 12 Comparison of a SAR image chip (left) and preprocessed chip (right)

The target vs. clutter discriminator described here is constructed using a novel
CNN architecture trained with synthetic SAR target data and historical measured
SAR clutter data to classify a given region of interest (ROI) as containing a target or
not. This discriminator is designed to be robust across sensors, terrain, and targets.
In addition to training the discriminator on large amounts of diverse target and
clutter data and applying data augmentation techniques, robustness is improved by
feeding the network thresholded and remapped input images, where only the top-
N magnitude pixels are kept and the values are remapped by linearly rescaling the
dB-domain image to the interval [0, 1]. This preprocessing technique is effective
because it maintains the shape of the anomaly detected by the CFAR (which allows
for target vs. clutter discrimination), it removes absolute amplitude data (which
improves discrimination robustness to sensor, target, and terrain variations), and
it maps to a more visually relevant space for the pixel values (which facilitates the
use of a CNN). An example target chip and its preprocessed counterpart are shown
in Fig. 12. In this example, N = 400 and 40 dB of dynamic range was mapped to
[0, 1].

The architecture of the target vs. clutter discriminator CNN is shown in Table 1.
The CNN is comprised of standard layers (2D convolutions, 2D max pooling,
batch normalization, dropout, and fully connected layers) and contains 3,548,745
trainable parameters.

The network is trained using synthetically generated target data and historical
clutter data. The network is trained using the binary cross-entropy loss, i.e., for a
predicted output yp and a truth label yt :

�(yp, yt ) = −yt log(yp) − (1 − yt ) log(1 − yp). (10)

To account for targets that are not centered in the chip, the discriminator is trained
using random translational augmentations for each training chip. The ADADELTA
optimizer is used to train the discriminator [23].
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Table 1 SAR target vs. clutter discriminator CNN architecture

Layer name Layer parameters Output size No. of parameters

Input layer 128×128 input size 128×128 N/A

2D convolution 40 kernels of size 20×20 109×109×40 16,040

Batch
normalization

N/A 109×109×40 160

Dropout Dropout fraction = 0.2 109×109×40 0

2D Max pooling Pool size = 2×2 54×54×40 0

2D convolution 80 kernels of size 15×15 40×40×80 720,080

Batch
normalization

N/A 40×40×80 320

Dropout Dropout fraction = 0.2 40×40×80 0

2D Max pooling Pool size = 2×2 20×20×80 0

2D convolution 160 kernels of size 10×10 11×11×160 1,280,160

Batch
normalization

N/A 11×11×160 640

Dropout Dropout fraction = 0.2 11×11×160 0

2D convolution 320 kernels of size 5×5 7×7×320 1,280,320

Batch
normalization

N/A 7×7×320 1280

Dropout Dropout fraction = 0.2 7×7×320 0

Flatten N/A 15,680×1 0

Fully connected 16 output nodes 16×1 250,896

Batch
normalization

N/A 16×1 64

Dropout Dropout fraction = 0.2 16×1 0

Fully connected 1 output node 1 17

Fig. 13 Example SAR image with CFAR anomaly detections

The final result of our two-stage detector (CFAR plus target–clutter discrimi-
nator) is shown in Fig. 13. Boxes in green have passed both stages, while boxes
in red have been flagged by the CFAR stage but rejected at the second stage. In
this example, we find that after the second stage, all of the true targets have been
detected, while no false targets are detected.
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3.2 Target Orientation Estimation

After detection, we next characterize the vehicle by performing target orientation
estimation. The goal of the target orientation estimation algorithm is to estimate the
aspect angle of the target within the SAR image (c.f., Fig. 14). Robust, accurate
estimation of this parameter is important because it can be used to improve target
classification performance. In template-matching methods, knowledge of the aspect
angle reduces the number of comparisons required to declare a target, which
improves efficiency but also reduces the number of potential false matches. In the
classification algorithm discussed here, the aspect angle is used to give preference
to those nodes of the CNN that correspond to angles close to the input chip’s aspect
angle.

There are several traditional image-processing-based algorithms for determining
this angle. One such example is based on the Radon transform that preprocesses the
image, computes the discrete Radon transform of the image [24], and then selects
the angle corresponding to the maximum of the Radon transform of the image.
While these algorithms perform well in some cases, their performance leaves much
to be desired, especially for target images without a prominent edge. To address
this deficiency, we have developed a CNN approach to aspect angle estimation. A
high-level description of the algorithm is shown in Fig. 15.

The appropriate loss function for the CNN is not obvious due to angle wrapping.
Moreover, the authors have found that achieving accurate angle estimation better
than modulo 180◦ is unrealistic due to vehicle symmetry and a lack of detail in SAR
images. Hence, the loss function that was used for the angle estimation algorithm is

�(θest , θtrue) = | sin(θest − θtrue)|. (11)

Fig. 14 The orientation
angle φ is useful for the
classification algorithm that is
the final stage of the
end-to-end algorithm
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Fig. 15 High-level description of the orientation angle estimation algorithm

Table 2 Architecture of the aspect angle estimation CNN

Layer name Layer parameters Output size No. of parameters

Input layer 128×128 input size 128×128 N/A

2D convolution 10 kernels of size 40×40 89×89×10 16,010

Batch
normalization

N/A 89×89×10 40

Dropout Dropout fraction = 0.2 89×89×10 0

2D convolution 20 kernels of size 40×40 70×70×20 80,020

2D Max pooling Pool size = 2×2 35×35×20 0

Batch
normalization

N/A 35×35×20 80

Dropout Dropout fraction = 0.2 35×35×20 0

2D convolution 30 kernels of size 10×10 26×26×30 60,030

Batch
normalization

N/A 26×26×30 120

Dropout Dropout fraction = 0.2 26×26×30 0

2D convolution 40 kernels of size 5×5 22×22×40 30,040

Batch
normalization

N/A 22×22×40 60

Dropout Dropout fraction = 0.2 22×22×40 0

Flatten N/A 19,360×1 0

Fully connected 32 output nodes 32×1 619,552

Batch
normalization

N/A 32×1 128

Dropout Dropout fraction = 0.2 32×1 0

Fully connected 1 output node 1 33

The loss is ambivalent to ±180◦ estimation errors and is maximized for ±90◦ errors.
Note the actual implementation is a softened version of this function to overcome
the discontinuity in the derivative at 0◦ and multiples of ±180◦.

The architecture of the orientation estimation CNN is given in Table 2. The CNN
consists of 805,949 trainable parameters and is trained using only synthetically
generated training data.
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Fig. 16 Left: Deep learning aspect angle estimation performance. Right: Radon transform aspect
angle estimation performance

Table 3 Aspect angle estimation algorithm performance summary on the MSTAR dataset

Deep learning % within Radon % within
Threshold threshold threshold

±10◦ 96.3% 84.4%

±20◦ 99.4% 92.1%

The deep learning algorithm and a Radon transform algorithm performance on
the MSTAR dataset are shown in Fig. 16. The performance of the algorithms is
summarized in Table 3. The figures and the table show that the deep learning
algorithm performs excellently and significantly outperforms the Radon transform
algorithm.

4 Classification Algorithm

This section describes the final stage of the end-to-end ATR algorithm, which is
the classification (i.e., declaration of object type and class) of a chip nominated
by the front-end processing. The classification algorithm presented here is a novel
hybrid of a classical template-matching algorithm and a deep learning CNN image
classification algorithm. The motivation for this approach is the desire for an
algorithm that would:

1. Maintain the robustness of template-matching algorithms to variations in sensor,
sensor geometry, clutter, and minor target variations.

2. Improve performance of the template-matching algorithm by using more com-
plex information from each input image as well as information about how an
input relates to each of the different target classes.

The new algorithm builds on standard template-matching algorithms [10], which
nominally consist of the following steps:
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Fig. 17 A high-level overview of the proposed algorithm. The first stage learns features, and the
second stage learns interclass relationships

1. Estimate the target orientation.
2. Preprocess the chip by keeping only the top N-valued pixels and then binning the

pixels into discrete bins between zero and one.
3. Compute the maximum 2D correlation between the preprocessed test chip and

each processed training set template chip near the estimated orientation.
4. Declare the predicted target class as the class of the training chip that achieves

the maximum correlation.

Our hybrid deep learning/template-matching algorithm first recasts template
matching as a CNN with large kernels (with size on the order of the target size
in pixels) and then allows network weights to evolve (i.e., the templates to deform)
to improve discrimination. The final step of the algorithm is a fully connected layer
that maps feature-match scores to a score indicating the likelihood of belonging to
each target class. Note that this is different from a classic template-matching step
where the declared target class is the class of the best template match. Instead, each
training class contributes to the classification call of the input test chip, allowing
both “positive” and “negative” information to play a part in the decision.

With this as background, the classification CNN can be viewed as splitting
classification into two interconnected stages: (1) robust feature generation and (2)
exploitation of complex interclass relationships. This is illustrated in Fig. 17.

Our CNN implementation incorporates the four steps in the conventional
template-matching algorithm described above. Step 1 (orientation estimation)
uses the front-end orientation estimate described earlier; Step 2 (preprocessing)
is implemented by preprocessing all chips; Step 3 (correlation estimation) is
implemented with a convolution layer followed by a max-pooling operation; and
Step 4 (maximization) is softened from a maximum operation to a weighted-sum
operation via a fully connected layer.
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Fig. 18 Detailed architecture of the proposed algorithm

In the absence of training (and with proper initialization on the dense layer),
this configuration literally performs conventional template matching. This gives
the “epoch 0” (untrained) network a unique advantage over other DL techniques
in that it performs fairly well without any training. This can also be viewed as
a good initial estimate in the optimization process carried out by training. When
the network is trained, both the templates and weights in the final dense layer
are updated, resulting in an improvement over template matching that stems from
both (i) improved features and (ii) exploitation of interclass relationships. Figure 18
shows a more detailed illustration of the algorithm.

The convolutional kernels in the first stage of the CNN are initialized before
training as preprocessed chips at 5◦ spacing. The estimated azimuth orientation
angle is included by applying a weighting function to the template-match scores,
which lowers the scores from azimuths far from the estimated azimuth and elevates
scores near the correct azimuth (modulo 180◦). In addition, to further improve
performance: (1) dropout layers have been included after the initial template-match
score generation stage as well as just before the final fully connected layer, and (2)
a convolution across template-match scores in azimuth with a nominally Gaussian
kernel is applied to induce robustness to spurious template matches and errors in the
orientation estimation algorithm.

4.1 Algorithm Training

To overcome issues arising from the similarity of the training and testing sets, as
well as to demonstrate ATR in the important scenario where collected training data
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is either scarce or unavailable, the algorithm is trained using only synthetic data.
Synthetic data was generated using asymptotic ray-tracing techniques from 3D CAD
models of the MSTAR targets. The data was simulated at X-band, with bandwidth
and aperture chosen to achieve 1 foot resolution. The image chips were then formed
by backprojection of the synthetic data at 1◦ increments for each of the 10 targets
using HH, HV, VH, and VV polarizations, yielding 1440 synthetic chips per target
class. Due to reciprocity, we elected to only use HV polarizations.

The algorithm is trained using the ADADELTA optimizer [23] for 50 epochs.
Each training chip undergoes a series of data augmentation transformations, includ-
ing:

1. A random translation of no more than 10% of image size in each dimension.
2. Addition of zero-mean Gaussian noise (σ = 5◦) to the chip orientation angle.
3. Addition of Rayleigh noise to achieve a target-to-clutter ratio of ∼ 10 dB. More

complicated clutter models can be used at the cost of computational efficiency.

4.2 Validation Experiment

The classification algorithm was validated using the synthetically generated target
chips described above for training, and the trained model was tested on the 10-class
MSTAR flight-collected dataset at 15◦ elevation. The algorithm achieved an overall
classification accuracy of ≈ 92% using fully synthetic training and collected testing
data. The detailed classification results of the experiment are summarized by the
confusion matrix shown in Fig. 19. It can be seen that the classification performance
is 80% or better for each of the ten targets. Moreover, six of the ten targets performed
above 90%. Performance on the lower-performing classes could likely be improved
by improvements to the CAD model and/or signature generation.

4.2.1 The Learned Network

Examples of the learned features (“templates”) of the network are shown in Fig. 20.
It is interesting to compare these learned templates with the example chips in
Fig. 21. Clearly, there is a strong correspondence between the field-collected
targets and the learned templates even though the network was trained on only
synthetic data. This shows that the feature extraction stage of the proposed algorithm
remains similar to a template-matching algorithm, which is a promising indicator for
robustness.

The off-diagonal weights of the fully connected layer mapping from the maxi-
mum template-match score for each class to the pre-softmax outputs are shown in
Fig. 22. This shows that the dense network has learned a weighted average that is
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Fig. 19 Confusion matrix for MSTAR targets with the algorithm trained on purely synthetic data

Fig. 20 Examples of the convolutional kernels of the trained network

dependent on the target class, which implies that the network has learned detailed
relationships between the target classes. The following observations can be made:

1. The T62 and T72 are strongly attracted to each other.
2. The T72 is attracted to tracked vehicles but is agnostic to or strongly repelled

from the wheeled vehicles (BRDM2, BTR60, BTR70, and ZIL131).
3. The 2S1 is strongly attracted to the other tank-like vehicles (BMP2, T62).
4. The BTR70 is strongly attracted to other wheeled vehicles (BRDM2, ZIL131).
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Fig. 21 Examples of the collected MSTAR data

Fig. 22 Off-diagonal weights of the final dense layer

4.2.2 Comparison to the Literature

As discussed previously, the typical MSTAR experiment in the literature [3, 8,
12, 25, 26] is to train on the data at 17◦ elevation and test on the data at 15◦
elevation. To baseline our algorithm against the algorithms in the literature, we
applied our approach to the standard MSTAR experiment. The algorithm achieved
an overall accuracy of 99.3% in 50 training epochs. The confusion matrix is shown
in Fig. 23. The results show that the algorithm achieves nearly perfect performance
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Fig. 23 Confusion matrix for our algorithm in the standard MSTAR classification setup

in this experiment; however, as discussed previously, this result is not indicative of
algorithm performance so much as the similarity between the training and testing
data.

4.2.3 Comparison to Template Matching

As the proposed algorithm is supposed to be an improvement over template
matching, it is important to compare the proposed algorithm performance to that
of a template-matching algorithm. To this end, the primary experiment (train on
synthetic data, test on the MSTAR publicly available data) was repeated using a
template-matching algorithm to perform the predictions. The template-matching
algorithm used is to:

1. Process a given test chip and all template chips (keeping top N pixels and then
binning the values into discrete bins).

2. Find the maximum correlation between the processed test chip and all processed
template chips.

3. Report the predicted class as the class of the template that produced the best
match.

Using the same training data as described above, the template-matching algo-
rithm achieved only ≈ 79% overall classification accuracy. The confusion matrix
is shown in Fig. 24. Hence, the proposed algorithm has enabled an overall
classification performance improvement of about 13%.
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Fig. 24 Confusion matrix for the synthetic MSTAR experiment using template matching

5 Conclusion

This chapter provided a framework for end-to-end SAR ATR and discussed a suite
of deep learning algorithms in that framework. We focus on approaches that use
synthetic data for training to sidestep some of the issues present in deep learning
approaches that use training and testing data that are very similar. In addition, our
deep learning algorithms are novel as they build on the success and approaches of
legacy algorithms, producing hybrid conventional/deep learning approaches. The
algorithms were applied to the publicly available MSTAR dataset and demonstrated
excellent performance, even when training only on the synthetically generated data.
This promising suite of algorithms is a significant step forward in the state of the art
for SAR ATR.
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Change Detection in SAR Images Using
Deep Learning Methods

Luca Bergamasco and Francesca Bovolo

1 Introduction

Synthetic aperture radar (SAR) images can be acquired in any weather and light
condition. This feature is useful when associated with change detection (CD)
methods for civil protection tasks, such as disaster monitoring [1] and flood
detection [2–4], or agricultural monitoring [5, 6]. In civil protection tasks, CD
using SAR images allows to promptly identify the damaged areas even in cloudy
conditions since SAR signal can penetrate clouds. However, SAR images are
peculiar data with unique problems, such as the speckle noise and side looking
acquisition distortions, that need to be addressed to detect changes accurately.

Some CD methods perform a multi-temporal classification to detect changes
between images (i.e., post-classification comparison [73]). However, these methods
require many labeled data challenging to gather for multi-temporal acquisitions
[7]. Thus most SAR CD methods exploit the fusion or comparison of bi-temporal
or multi-temporal images to retrieve change indexes and enhance the differences
between images. This approach type is the most common since it is unsupervised
and does not require labeled data [7]. The log ratio is a change index widely used for
the CD of SAR images [8–10]. Another family of change indexes is the similarity
measures that evaluate the similarity of bi-temporal images from various points of
view. Kullback–Leibler (KL) divergence is exploited as change index to measure the
similarity of bi-temporal SAR image probability densities [11, 12]. The normalized
compression distance (NCD) is a non-negative number representing the difference
between two images where a small value means unchanged areas and high values
changed ones [13]. Mutual information is used to evaluate the common information
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between couples of bi-temporal SAR images (e.g., polarimetric SAR images) [14,
15], whereas the variational information quantifies their difference [16]. These two
change indexes are merged in the mixed information through a linear combination
using the trade-off parameter α that balances the two contributions [17]. These
methods extract features that can well characterize the change between images.
However, they retrieve the change indexes of a single scale of the images. This limits
the CD performance, especially when SAR images requiring an extended analysis
of the spatial context information are examined.

Multi-scale features provide multiple representations of the analyzed images
that allow improving the modeling of geometrical details and homogeneous areas.
Multi-scale approaches improve the modeling of the spatial context information
with respect to single-scale methods in high-resolution images. Multi-scale versions
of the same scene can be retrieved using various strategies, such as pyramid [18],
wavelets [10, 19], morphological filters [20], and object-based methods [21, 22].
The multi-scale representations of the discrete wavelet transform (DWT) are used
in CD methods to preserve the geometrical details of the scene by considering the
reliable areas of the various scale levels [10] or to select the most informative
representations and include the spatial context information using the Markov
random fields (MRFs) [23]. Multi-scale features are also exploited in building
CD methods where they are used to detect the changed buildings at the proper
scale level to avoid superfluous details that can badly affect the performance [24].
This method identifies new and destroyed buildings by evaluating the increased–
decreased backscattering pattern of candidates retrieved from the change detection
of the optimal scale-level feature. Changed buildings are examined using four fuzzy
rules that evaluate spatial properties and alignments of the candidates. These rules
are created by considering the real backscattering patterns occurring in new and
destroyed building cases. The previously presented methods exploit handcrafted
features designed ad hoc for specific scenarios and need to be re-designed when
the latter ones change.

Deep learning (DL) methods alleviate this problem since they automatically learn
features from the input data during a training phase. Many DL CD methods are
based on convolutional neural networks (CNNs) [25–29] since they automatically
learn features that model the spatial context information on images. The spatial
context features extracted from convolutional-based models allow improving the
capability of CD methods to detect the changes accurately [26, 29, 30]. However,
most of the DL CD methods are supervised and require large multi-temporal labeled
datasets for the training [26, 28]. The gathering of many multi-temporal labeled
data is challenging. Domain adaptation (DA) methods address this problem by
fitting the characteristics of a DL model pre-trained with given labeled samples
(i.e., source domain) with the ones of the data to analyze that might be acquired
by another sensor or in another geographical area (i.e., target domain) [31]. Many
DA CD methods exploit generative adversarial networks (GANs) or adversarial
models to reduce the difference between source and target domains. This allows
developing CD methods using the information derived from multi-sensor data [32–
34]. CycleGANs are used to extract feature maps with a common domain between
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multi-spectral and SAR images that improve the CD in bi-temporal SAR images
[35]. Some DA CD methods change the domain of a DL model trained with a
given type of RS data to process data with heterogeneous characteristics [36, 37] or
transfer the knowledge of a pre-model to process unlabeled RS data [38]. However,
the DA of pre-trained DL models to perform applications or process RS data
different from the source ones is still a challenging open issue in the literature.

CD method can exploit transfer learning to process target RS data with a pre-
trained model. Unlike DA, transfer learning methods do not require fine-tuning
or re-training steps before the CD. These methods achieve accurate results in bi-
temporal CD tasks when they process images with similar characteristics with
respect to the ones used for the training [27, 29, 39, 40]. Performance of transfer
learning CD methods decreases when the difference between the characteristics of
target and source images increases [39].

Unsupervised DL methods can be used to avoid the dependence on labeled data
in DL CD methods. These methods achieve accurate results in the CD between
bi-temporal images [29, 30, 41]. Autoencoders (AEs) can be used to reduce the
differences between pre-change and post-change images due to factors uncorrelated
with the ground changes [42]. Unsupervised DL model can automatically learn
and extract features providing information about changes that can be used in
CD tasks [43, 44]. However, most of these methods do not capture the spatial
context information of images that is relevant to find changes and can improve the
CD outcome [45]. Convolutional autoencoders (CAEs) automatically learn spatial
features during an unsupervised training that allow managing the spatial context
information. CAEs merge the capabilities of AEs to automatically learn features
from the input data with the capacity of convolutional neural networks (CNNs) to
analyze and encode the spatial context information [46]. CAEs are often used to
pre-trained DL models in an unsupervised way that are then fine-tuned with labeled
data to perform a specific task or classify input data [47–49]. Thus the amount of
labeled data needed to train the model is reduced with respect to supervised DL
methods. CAEs can be used to transform pre-change images into post-change ones,
and vice versa, and compare the transformed image with the other one to detect the
changes [53]. CAEs extract more informative multi-scale feature maps than other
SoAs, such as DWT. DWT only retrieves the multi-scale representations of input
images, whereas CAEs also capture their semantic information [50–52]. CAEs can
produce bi-temporal multi-scale feature maps by processing bi-temporal images that
can be used by a multi-scale CD method to improve the detection of the changed
areas with respect to single-scale approaches [51, 52].

We focus this chapter on an unsupervised DL CD method on bi-temporal SAR
images using CAE to retrieve multi-scale feature maps. This method trains a
CAE in an unsupervised way using unlabeled data sampled from the pre-change
SAR image. The trained CAE processes the bi-temporal SAR images to extract
from a given number of CAE layers bi-temporal multi-scale feature maps that are
compared to enhance changes between images. Many of the comparisons provide
poor information about changes. Thus a standard-deviation-based feature selection
step is applied to keep only the most informative comparisons. The multi-scale
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selected comparisons are processed by a multi-scale detail-preserving CD method
that allows obtaining an accurate change map while handling the speckle noise [10].

The chapter has the following outline. Section 2 presents the state of the art of
DL CD methods used to examine SAR data. Section 3 describes the methodology,
and Sect. 4 presents the experimental settings and the results. Finally, we draw our
conclusion in Sect. 5.

2 State of the Art

In this section, we present the convolutional autoencoders (CAEs) that are the DL
models on which the method presented in Sect. 3 is based, the formulation of the
change detection (CD) problem, and the state-of-the-art (SoA) methods regarding
the detection of changes in bi-temporal and multi-temporal synthetic aperture radar
(SAR) images using statistical, machine learning (ML), and deep learning (DL)
approaches.

2.1 Convolutional Autoencoders

Convolutional autoencoders (CAEs) merge the capability of autoencoders (AEs)
and convolutional neural networks (CNNs) to automatically learn spatial context
features from the input data during unsupervised training [46]. CAEs:

• Have the capability of AEs to learn features from the input data during an
unsupervised training phase while reconstructing the input.

• Exploit the capability of convolutional layers to analyze and encode the spatial
context information of images.

CAEs can be divided into an encoder and a decoder (Fig. 1). The encoder com-
presses the spatial information of the input and increases the number of features.
The decoder upsamples the spatial information and increases the feature complexity
by aggregating the previous feature maps. The objective of the unsupervised training
is the minimization of a loss function that usually is a mean squared error (MSE):

J (W, b) = MSE = 1

N

I∑

n=1

(Xn − X′
n)

2. (1)

N represents the number of samples composing the training set, Xn is the nth input
image sample, whereas X′

n is its reconstruction. The MSE minimization reduces the
reconstruction error and retrieves an output image as similar as possible to the input
one. The CAE automatically learns spatial context features to reconstruct the input
image during the training.
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Fig. 1 The block scheme of a convolutional autoencoder

Fig. 2 Block scheme of the standard change detection approach

2.2 Change Detection

Change detection (CD) is a process that aims to identify changed objects by com-
paring two (bi-temporal case) or more images (multi-temporal case) I1, I2, . . . , Im

(where m is the total number of analyzed images) acquired over the same geograph-
ical area at different times (see Fig. 2). In this chapter, we focus the analysis on
the bi-temporal CD analysis. In the bi-temporal CD case, a pre-change I1 and a
post-change I2 image acquired over the same geographical area at different times
t1 and t2 are compared and analyzed. If the CD method is supervised, the image
comparison is exploited to discriminate between the class ωnc of unchanged pixels
and the different classes �c = {ωc1, ωc2 , . . . , ωcB

} of changed pixels, where B

is the total number of classes in the scene. In the unsupervised case, the image
comparison is used to distinguish between unchanged ωnc and changed �c pixels.
The landcover transitions can also be distinguished with unsupervised approaches,
so �c can be further detailed in B change types. However, no explicit from-to label
can be assigned to the transitions without labeled training samples.
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2.3 CD Methods Using SAR Images

One of the most simple yet effective operators to detect the changes in bi-temporal
SAR images I1 and I2 is the logarithm ratio:

LR = log

(
I2

I1

)
. (2)

The ratio between bi-temporal SAR images reduces the multiplicative error compo-
nents, while the logarithm transforms the multiplicative speckle noise into additive
noise and makes the distribution of the classes of interest more symmetrical [8–10].
Another operator family often used as change indexes for SAR images is composed
of theoretical similarity measures [54], such as the Kullback–Leibler (KL) [11, 12]
divergence and normalized information distance (NID) [13]. The KL divergence
measures the similarity between two probability distributions characterizing the
neighborhood of a pixel. Assuming that f1(x) and f2(x) are the probability density
functions of I1 and I2, the KL divergence from I2 to I1 is given by

KL(I2|I1) =
∫

log
f1(x)

f2(x)
f1(x)dx. (3)

It has a small value if the probability distributions in I1 and I2 are similar (no
changes); otherwise, the value is high. The KL divergence is an asymmetric
function, so the summation of two asymmetric divergences is needed to obtain a
symmetric version (KL(I2|I1) + KL(I1|I2)). The estimation of the KL divergence
requires knowing the statistical behavior of the multi-temporal SAR images.
The KL divergence assumes a closed form if the multi-temporal images have a
Gaussian distribution; otherwise, a non-parametric estimation is needed, which is
computationally demanding. NID evaluates the similarity between two objects, and
it is defined as the minimum amount of energy required to transform an image into
the other one. Since NID is based on a non-computable notion of Kolmogorov
complexity, a practical version of NID is exploited: the normalized compression
distance (NCD) [13]. The NCD values represent the difference between the two
images: small values mean no changes, and high values represent changes. NID and
NCD capture the non-linear dependencies between images. The fusion of features
derived by SAR images for CD purposes is performed using other statistical similar-
ity measures, such as the mutual information [55], variational information [16], and
mixed information [17]. The mutual information evaluates the common information
or the independence between bi-temporal SAR images, whereas the variational one
quantifies the different information between images. The mixed information merges
the mutual and variational information using a trade-off parameter α ∈ [0, 1]
resulting in better performance than these two similarity measures considered
independently. The mixed information effectively processes multi-temporal or
multi-sensor SAR data having heterogeneous radiometric characteristics.
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Multi-scale CD methods extract from the input images features with various
spatial resolutions used to reduce the noise of homogeneous areas and preserve
the geometrical details in the heterogeneous ones. [10] apply two-dimensional
stationary DWT on the log ratio LR of two bi-temporal images to retrieve
multi-scale feature maps. This method exploits the low-pass component of DWT
to obtain a set of feature maps LRMS with L′ resolution levels LRMS =
{LR0

LP , . . . , LRl′
LP , . . . , LRL′−1

LP } (l′ = 0, . . . , L′ − 1), where LRl′
LP is the DWT

low-pass component of the l′th scale level obtained by processing the log ratio LR,
and applies a multi-scale CD method. Each LRl′

LP is used to retrieve a reliability
map that indicates the reliable and unreliable areas and allows handling the speckle
noise of SAR images. The reliable areas are the homogeneous ones, whereas the
unreliable areas are the heterogeneous ones. The heterogeneity of a resolution level
l′ is calculated by comparing a local coefficient of variation (LCV) computed on
pixels included in a moving window centered in (i, j) (4) with the global coefficient
of variation (CV) of that resolution level (5). The LCV and CV formulas do not only
calculate the homogeneity of the area but detect the speckle noise.

LCV l′(i, j) = σ(LRl′
LP (i, j))

μ(LRl′
LP (i, j))

(4)

CV l′ = σ(LRl′
LP )

μ(LRl′
LP )

(5)

The pixel (i, j) of the feature map at resolution level l′ is homogeneous and there-
fore reliable with small speckle noise if LCV l′(i, j) < CV l′ . The method averages
all possible combinations of LRMS to merge the multi-resolution information of the
multi-scale feature maps:

LRl′
MS = 1

l′ + 1

l′∑

h=0

LRh
LP (6)

Change maps are retrieved for each resolution level l′ by applying to each LRl′
MS

a threshold T l′ that can be found using manual or automatic approaches. The pixel
(i, j) of the final change map M is assigned to the changed (ωc) or unchanged (ωnc)

class, according to the class detected in the pixel of position (i, j) of LR
Si,j

MS , where
Si,j ≤ L′ − 1 is the most reliable resolution level of pixel (i, j), i.e.,

M(i, j) ∈
⎧
⎨

⎩
ωnc, if LR

Si,j

MS(i, j) ≤ TSi,j

ωc, if LR
Si,j

MS(i, j) > TSi,j
.

(7)
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These multi-scale CD methods retrieve multi-scale features providing heteroge-
neous representations of scenarios allowing better examining the image context and
improving the CD in challenging areas (e.g., changed area borders). However, these
methods obtain multi-scale representations using handcrafted features that might not
capture further multi-scale and spectral information to optimally detect changes.

Multi-scale methods can perform the building CD in SAR images using
fuzzy rules [24]. The two-dimensional stationary wavelet transform is applied
to the log ratio LR of two SAR images to find the optimal scale to detect
destroyed buildings. A set L′ − 1 of multi-scale representations LRMS =
{LR0

LP , . . . , LRl′
LP , . . . , LRL′−1

LP }, where l′ = 0, . . . , L′ − 1 is the resolution level

and LRl′
LP is the DWT low-pass component of the l′th scale level, is computed from

LR. The method selects the optimal resolution level that reduces the geometrical
details and removes the small changes but preserves the changes of a given
dimension (i.e., destroyed buildings). Once the optimal scale level is selected, a
change map derived from LR

opt
LP , where LR

opt
LP is the representation of LR at

the optimal resolution level, is retrieved. The change map shows the unchanged
pixels ωnc and the changes with a decreasing (ε−) and an increasing (ε+) of
backscattering. From the change maps, a set of H changed building candidates
� = {γ1, γ2, . . . , γH } by taking the regions with near ε− and ε+ areas. The
destroyed buildings are detected by applying four fuzzy rules to the candidates �:

• Completeness: Evaluates the presence of both ε+ and ε− areas in the same region
belonging to a candidate.

• Proportionality of areas: Controls that the ε+ area does not prevail on the ε−
and vice versa. It finds the minimum between the comparison of increased (sI )
and decreased (sD) backscattering area extensions rs = min{sI /sD, sD/sI }. The
nearer is rs from 1, the more proportional the increased and decreased areas are.

• Equivalence of length: Checks that the length in the azimuth direction between
the ε+ and ε− areas is similar. The length of ε+ (lI ) and ε− (lD) are computed
by considering their extrema. The minimum between the ratio of lI and lD is
calculated (ri = min{lI / lD, lD/lI }) to estimate the similarity of the two area
lengths. The farther is ri from 1, the smaller is the probability to have a candidate
with an increased–decreased pattern.

• Alignment: Controls the alignment of the increased–decreased pattern in the
range direction. In particular, it checks that the centroids of ε+ and ε− areas
are on the same line, so the angle α included in the line connecting the centroids
and the range direction should be small.

Each of the fuzzy functions results in a value that represents the probability of
the candidate being a new/destroyed building. The four results are multiplied, so
if one of the four fuzzy operators provides small results, the overall one will be
small. The candidates with values higher than a defined threshold T are considered
new/destroyed buildings accordingly to the order of appearance of ε+ and ε−.
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2.4 Unsupervised DL CD Method Using SAR Images

Convolutional-based deep learning (DL) models automatically learn spatial context
features from the input data during a training phase. These features can be used to
detect changes in bi- and multi-temporal remote sensing (RS) data. However, most
of the DL models are trained in a supervised way and require many labeled data.
The gathering of labeled RS data is challenging in bi- and multi-temporal cases,
especially for SAR images. A solution to this problem is the use of pre-trained
models that can be used as feature extractors. Yet few DL models are pre-trained
with SAR images. In [1], the authors propose a CD method that exploits the transfer
learning to extract informative feature maps to detect the changes that occurred
in bi-temporal SAR images. The method adapts a convolutional neural network
(CNN) pre-trained using VHR airborne orthophotos [56] using adaptive batch
normalization (AdaBN) layers [57]. AdaBN states that the domain information of
models is in the parameters of batch normalization (BN) layers, whereas the class
information is in the weights and biases. Thus it aligns the statistical parameters of
BN layers between the source and target domains to adapt the pre-trained model to
the target data, i.e., SAR images. The authors exploit the adapted model to process
bi-temporal VHR SAR images and retrieved feature maps from L layers. The bi-
temporal multi-scale feature maps are upsampled using a bi-linear interpolation to
the input SAR image spatial resolution and combined into two hypervectors that are
compared to retrieve a difference hypervector δ enhancing the changes in the scene.
However, many of the compared feature maps of δl ∈ δ, where l = 1, . . . , L, do not
provide information about changes. Thus a variance-based feature selection step is
applied. Each feature comparison δl is divided into S splits δls , where s = 1, . . . , S,
and the variance is computed for each δls . The feature selection keeps only a
percentile of the feature maps of δls having high variance values. For each layer
l, the subsets of feature maps retrieved by each split δ′

ls are combined to obtain the
difference hypervector of the lth layer δ′

l :

δ′
l =

S⋃

s=1

δ′
ls . (8)

The difference vector δ′
l of each layer is concatenated to the deep change hypervec-

tor G = δ′
1, . . . , δ

′
l , . . . , δ

′
L. The magnitude (9) of G composed by D elements gd ,

where d = 1, . . . , D, is computed and used to detect the changes in the scene.

ρ =
√√√√

D∑

d=1

(gd)2. (9)

The magnitude ρ is thresholded using Otsu’s threshold [58] (other manual or
automatic thresholding methods can be used) to obtain a binary change map that



34 L. Bergamasco and F. Bovolo

shows changed (�c) and unchanged areas (ωnc). The K-mode algorithm clusters
the binary changes �c into two increased ε+ and decreased ε− backscattering.
The fuzzy method presented in Sect. 2.3 exploits the increased and decreased
backscattering areas to detect the new and destroyed building. This method achieves
good performance when the analyzed images have a similar spatial resolution with
respect to the ones used to pre-train the model. However, its performance decreases
when the spatial resolution of the input image differs or the area to analyze has
different characteristics with respect to the pre-trained images (i.e., the pre-trained
image represents forest areas and the target image urban areas).

Unsupervised DL methods are preferred in CD tasks since they do not require
labeled data but can use the huge amount of unlabeled multi-temporal images that
can be gathered easily. In [35], the authors propose a CD method that exploits the
features extracted by a cycle generative adversarial network (CycleGAN) that are
learned from the input data during an unsupervised training. This DL model aims
to transcode SAR images into optical images to learn semantic features that can
improve the CD between the bi-temporal SAR data. The CycleGAN is composed of
two generators and two discriminators. The generators (GYZ and GZY ) learn, during
the unsupervised training, to transcode optical images (Y ) into the SAR domain
(Z) and vice versa, while the discriminators (DZ and DY ) learn to distinguish the
generated images (Ỹ or Z̃) from the original ones (Y or Z). The adversarial loss
function between generators and discriminators allows the generators to transcode
images from one domain to another one.

minGYZ
maxDZ

E[log DZ(Z)] + E[1 − log(1 − DZ(Z̃))] (10)

minGZY
maxDY

E[log DY (Y )] + E[1 − log(1 − DY (Ỹ ))], (11)

where GYZ and GZY are the generators that transform the image from Y into Z

and vice versa, whereas DZ and DY are the discriminators of the Z and Y domains,
respectively. After the transcoding of an image into another domain through one
of the two generators (e.g., GYZ), it is processed from the other one (e.g., GZY ),
transformed back into the original one, and compared with the input image to check
the preservation of the semantic information.

GZY (GYZ)(Y ) ≈ Y (12)

GXZ(GZY )(Z) ≈ Z. (13)

The cycle consistently loss function makes the training of the model more robust.
After the training of the CycleGAN, the bi-temporal SAR images are processed
through one of the two generators GZY to extract bi-temporal features f 1 and f 2

from L intermediate layer of GZY . The features are extracted from the middle layers
since they are the most suitable for the transfer learning tasks [39, 59, 60]. For
each layer l = 1, . . . , L, the bi-temporal feature maps f 1

l and f 2
l are compared

to enhance the changes in the scene, and a variance-based feature selection method
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is applied to keep, for each layer l, only the most informative features. The selected
features of each layer are concatenated in a D-dimensional hypervector G that
captures multi-scale change information. For each component, gd of G, where
d = 1, . . . , D, the authors retrieve a change map using the Otsu’s threshold [58].
Thus D change maps are obtained, one for each gd . The final change map is obtained
using a majority vote strategy [20] that assigns a suitability score τ to each pixel
that agrees on the change of a given pixel. The pixels having a τ greater than a
given threshold are considered changed, while the others are unchanged. The change
map is exploited to retrieve increased ε+ and decreased ε− backscattering that are
used to detect new and destroyed buildings using the same fuzzy approach used in
[1]. CycleGANs provide good results but are complex to train because of the many
model parameters and the complex loss function.

In [51], the authors proposed a DL CD method that exploits the features extracted
from a convolutional autoencoder (see Sect. 2.1) to detect flood areas in bi-temporal
SAR images. CAEs automatically learn spatial context features from the input data
during unsupervised training. The CAE is composed of L layers and trained using
a training set X composed of unlabeled patches xn, where n = 1, . . . , N sampled
from the pre-change image I1. The aim of the CAE training is the minimization
of the reconstruction error achieved using a sum-squared error (SSE) loss function
defined as

SSE =
N∑

n=1

(Xn − X′
n)

2, (14)

where X′
n is the reconstruction of Xn. In this way, the CAE learns spatial context

features representing the input data. After the training, the authors separately
process the bi-temporal SAR images I1 and I2 and retrieve bi-temporal multi-scale
features from L′ < L layers. For each layer l′ ∈ L′, the bi-temporal features f 1

l′ and
f 2

l′ are compared to obtain L′ comparisons ck,l′ = (f 2
k,l′ − f 1

k,l′)
2, where k is the

kth feature of the layer l′, that enhance the change between bi-temporal features.
Assuming the comparisons with high variance values provide more information
about changes, a variance-based feature selection method is applied to select a fixed
number m of features with the highest variance values. The selected comparisons
are aggregated for each layer l′ to retrieve a difference image (DI).

DIl′ =
√√√√

m∑

k=1

ck,l′ . (15)

The L′ multi-scale DIs are used in a detail-preserving multi-scale change detection
method [10] (see Sect. 2.3) that exploits the multi-scale information to preserve
the geometrical details of the change map and improve the detection of the change
area borders. CAEs allow learning informative features using unlabeled data easily.
However, they do not preserve the geometrical details of hidden-layer features since
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the contribution of hidden layers is not considered in the loss function during the
training. The feature selection of a fixed number is suboptimal since informative
features might be excluded or non-informative ones kept.

3 Unsupervised Change Detection in SAR Images Using
Deep Learning Multi-scale Features

Change detection (CD) task is studied in many state-of-the-art (SoA) methods,
either deep learning (DL) approaches or not (see Sect. 2). Most of the DL
models are supervised and require many labeled data (especially DL methods)
that are challenging to gather in the multi-temporal case. Domain adaptation (DA)
methods alleviate this problem since they exploit the DL model trained with given
labeled samples (source domain) to process data acquired in another geographical
area (target domain). Some DA CD methods transfer the knowledge between
heterogeneous RS data [36, 37] or between existing labeled and unlabeled RS
images [38]. However, the DA of pre-trained models is still a challenging open
issue in the literature and still requires labeled data. For this reason, unsupervised
CD methods are preferred.

Unsupervised CD DL models can exploit transfer learning to process target RS
data with pre-trained models. However, their performance decreases using data
with heterogeneous acquisition characteristics since they have different behaviors
for similar objects [39]. The design of DL methods that provide information about
changes is challenging. Autoencoders learn features from the input data during the
unsupervised training, but they do not capture the spatial context information of
images [45], which is critical for CD tasks. Convolutional autoencoders (CAEs)
address this problem since they learn spatial context features from the input images
in an unsupervised way [50, 51] (see Sect. 2.1). DL models provide many features,
but not all of them are informative. Thus the selection of only the most informative
features is a critical aspect of the DL CD method. However, many methods exploit
all or a fixed number of features to detect the changes. The selection of a fixed
number of features may remove informative features or include non-informative
ones [51]. CD methods using all the features decrease their performance since
many features contain irrelevant information about changes. Finally, many DL CD
methods exploit only model output or single-scale features, so objects with various
dimensions are not well detected.

We present an unsupervised CD method to detect the changes of bi-temporal
SAR images that exploits multi-scale feature maps extracted from CAE layers that
dynamically select and use all the informative spatial features retrieved by the
hidden layers of a CAE. The CAE is trained in an unsupervised manner using
unlabeled data.

The method extracts bi-temporal multi-resolution feature maps from multiple
layers of the models that are compared to define multi-resolution difference feature
maps. Since most of the difference feature maps have no information about changes,
a standard-deviation-based feature selection [29, 68] is applied to dynamically
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choose only the ones providing relevant information about the changes. The
selected feature maps are aggregated to retrieve multi-resolution difference images
that emphasize the changes. The multi-resolution difference images are analyzed
through a detail-preserving multi-scale CD method, inspired by [10]. The method
provides two reliable area detection alternatives. The first one exploits [10] to
compute the coefficient of variation and retrieve the reliability maps, whereas the
second alternative exploits a gradient-based method to retrieve the reliability maps.

3.1 Unsupervised Change Detection Based on Convolutional
Autoencoder Feature Extraction

The presented method performs change detection (CD) of bi-temporal SAR images
I1 and I2 acquired at times t1 and t2, respectively. A set of N unlabeled samples
X = {Xn, n = 1, . . . , N} extracted from the pre-change I1 is available. The method
uses X to train from scratch a convolutional autoencoder (CAE) with L layers in
an unsupervised way. I1 and I2 are processed through the trained model to extract
bi-temporal deep feature maps of the images from L′ < L model layers. The
feature maps are compared and fused to detect changed (ωc) and unchanged (ωnc)
pixels, where ωc includes all the relevant changes occurred in the image, while ωnc

represents the no change (Fig. 3).

3.1.1 Unsupervised CAE Training

CAEs have the property to produce an output image that is as similar as possible
to the input one by unsupervised learning of spatial context features from a set of

Fig. 3 Block scheme of the unsupervised CD method based on CAE
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Fig. 4 Block scheme of the CAE model used in the presented method

unlabeled training samples (X). The CAE contains L convolutional layers divided
into an encoder and a decoder (Fig. 4). The CAE includes strided convolutional (in
the encoder) and deconvolutional layers (in the decoder), batch normalization (BN)
layers, and leaky rectified linear unit (ReLU) activation functions. BN [69] layers
normalize the values within a batch during its processing in the model and increase
the learning speed of the model. ReLU may lead to the saturation issue [70] that
badly affects the training performance since it imposes all negative values to 0.
Leaky ReLU [70] improves the ReLU by keeping the non-linearity of ReLU and
improving the handling of negative values. Leaky ReLU transforms the negative
values into values close to 0, according to the function y = αx. The feature maps
of a layer l, where l = 0, . . . , L, for an input sample Xn ∈ X, where n = 1, . . . , N ,
are defined by Hn,l = φ(Wl−1,l ∗ Hn,l−1 + bl), where Hn,0 = Xn, Wl−1,l is the
weight matrix of the layer l processing with a convolution operation ∗ the feature
maps of the layer l − 1, Hn,l−1. bl represents the biases of layer l, and φ(.) is the
leaky ReLU activation function. The training minimizes a sum-squared error (SSE)
(16) that aims to reduce the reconstruction error and retrieve an output as similar as
possible to the input. Thus the model learns spatial context and semantic features
from the training set X during the training. The training is performed through the
back-propagation strategy that trains the model using the error between the original
samples (X) and the predicted ones from CAE (X′) computed with the SSE:

SSE =
N∑

n=1

(Xn − X′
n)

2
. (16)

3.1.2 Feature Extraction

Since the patches included in X are sampled from the pre-change image I1,
it is reasonable to assume that the CAE generates spatial context feature maps
representing both bi-temporal images I1 and I2 since they were acquired over
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the same geographical area. The CAE separately processes I1 and I2 and extracts
from a priori chosen L′ = L/2 layers of the trained model the bi-temporal multi-
resolution feature maps. In the literature [29], it was observed that the initial encoder
layers extract simple features (i.e., edges), whereas the last decoder layers retrieve
features providing more semantic information about the change. Thus features
are not selected from the encoder layers but are retrieved from L′ layers of the
decoder. Thus L′ is also the number of scale levels used during the multi-scale
CD. The number of CAE layers L defines the number of scale levels L′. Hence,
L should be carefully chosen to determine the trade-off that allows obtaining the
best performance in terms of noise reduction, informative content of the learned
features, and loss of geometrical details. Through the processing of the bi-temporal
images, the method retrieves for each layer l′ = 1, . . . , L′ bi-temporal feature
maps representing the pre-change image I1, H 1

n,l′ , and the post-change image I2,

H 2
n,l′ . Since the feature maps are extracted by the same model, they are in the same

feature space and can be compared. The bi-temporal feature maps extracted from L′
layers produce multi-scale feature maps with various spatial sizes. Thus a bi-linear
interpolation method is applied to uniform the spatial dimensions of the multi-scale
feature maps retrieved by the L′ layers. For each layer l′, the bi-temporal feature
maps H 1

n,l′ and H 2
n,l′ are compared to enhance information about changes. The kth

feature maps (k = 1, . . . , Kl′ ) retrieved by the layer l′ = 1, . . . , L′ of the model are
compared as follows:

DFn,k,l′ = (H 2
n,l′,k − H 1

n,l′,k)
2

(17)

where

l′ = 1, . . . , L′

k = 1, . . . , Kl′ .

Comparing the bi-temporal feature maps, if no change occurs, the feature com-
parison results in small values close to 0 since the feature maps are similar. On
the contrary, where the change occurs, the feature maps representing I1 and I2 are
heterogeneous since their reconstructions differ. Hence, the feature map comparison
highlights the changes assuming values far from 0. It is worth noting that the
CAE can accurately reconstruct only objects or areas of images learned during the
training phase and existing in X. If I2 has a change with structures not in X, it
will be reconstructed unpredictably. However, unpredictable reconstructions do not
negatively affect the capability of CD since those structures of I2 will be differently
reconstructed with respect to I1 in any case.

The Kl′ resulting comparisons emphasize the change between feature maps
representing I1 and I2, respectively, where Kl′ can be in the order of hundreds. How-
ever, not all of the comparisons provide information about changes. In each layer l′,
only a limited amount of the difference feature maps DFn,k,l′ are informative. Thus
the method keeps only the most informative difference feature maps. For each layer
l′, the method applies a feature selection (FS) inspired by [29, 68] to remove the
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difference feature maps with a low probability of providing relevant information
about changes. Assuming that comparisons with high standard deviation values
carry more relevant information than the ones with low standard deviation, the Ml′
difference feature maps having a standard deviation higher than the other ones are
chosen. The difference feature maps are sorted into descending order according
to their standard deviation value and selected until the gap between the standard
deviation of two difference feature maps is larger than 10% of the maximum
standard deviation value range of layer l′:

|σ(DFn,k,l′) − σ(DFn,k+1,l′)| > 0.1|σmax(DFn,l′) − σmin(DFn,l′)|. (18)

Figure 5 shows an example of the standard deviation value behavior retrieved
by the difference feature maps of a single layer l′ sorted in descending order.
We expect a drop in the standard deviation when difference feature maps provide
less change information. In this example, the gap in the standard deviation values
between the first two difference feature maps and the third one is greater than 10%
of the maximum standard deviation value range. Thus we assume that the first
two feature maps provide the most relevant information about the change and are
preserved for the CD. This feature selection step can be conducted either manually
or automatically. The number of selected feature maps Ml′ can be different in each
layer l′. The feature selection can choose no difference feature maps when the layer
l′ does not have DFn,l′ providing a sufficiently high |σ(DFn,k,l′) − σ(DFn,k+1,l′)|.

Fig. 5 Behavior of the standard deviation values of the quadratic difference between the feature
maps of a layer l′ sorted in descending order. In this case, only the first two difference feature maps
are chosen
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The selected feature maps have the highest probability of containing changes
because of their high standard deviation values. Hence, they maximize the CD
probability. This feature selection process analyzes all the spectral bands of the input
multi-spectral RS images without using any a priori band selection step. The latter is
often required to keep only the spectral bands that optimize the detection of a given
change type and maximize the performance of SoA unsupervised methods with
respect to this kind of change. The feature selection extracts the crucial information
content from all the input spectral channels and makes the method independent of
the change type. The method aggregates the selected Ml′ difference feature maps of
a layer l′ to compute the difference image (DI) (19) of that layer.

DIl′ =
√√√√

Ml′∑

k=1

DFk,l′, (19)

where

l′ = 1, . . . , L′.

3.1.3 Change Detection

The presented method computes DIl′ for each layer l′ of the CAE with Ml′ > 0
to retrieve L′

sel multi-resolution difference images, where L′
sel is the number of

considered layers and difference images with Ml′ > 0. Thus, it processes the
L′

sel multi-resolution DIs with a detail-preserving multi-scale approach [10]. This
method applies a multi-scale analysis to the multi-resolution DIl′sel , where l′sel =
1, . . . , L′

sel , to handle the noise of the bi-temporal images and produce a change map
that preserves the geometrical details and homogeneous areas. The multi-scale CD
method associates to each pixel the label ωc, ωnc of the most reliable level (i.e., the
lowest resolution level in which the pixel has a homogeneous behavior). The reliable
levels can be identified by two strategies. The first strategy compares, for each layer
l′sel , the local coefficient of variation (LCV) LCV = σ(DIl′sel (i, j))/μ(DIl′sel (i, j)),
where σ is the standard deviation and μ is the mean, computed on pixels included in
a moving window centered in (i, j) of DIl′sel with the global coefficient of variation
(CV) CV = σ(DIl′sel )/μ(DIl′sel ) of the DI of that layer to find the most reliable
resolution level for the pixel (i, j):

σ(DIl′sel (i, j))

μ(DIl′sel (i, j))
<

σ(DIl′sel )

μ(DIl′sel )
. (20)

This approach assigns the pixels composing high-resolution change maps to the
most heterogeneous and unreliable areas along change borders (e.g., the object
contours) and the pixels of low-resolution change maps to homogeneous change
areas. This method tends to overestimate the unreliable areas, thus reducing the
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performance during the change detection. The second strategy for identifying the
most reliable scale level is based on a gradient-based approach, i.e., the Canny filter
[71]. The Canny filter detects the object edges better than other SoA edge detection
methods and is less affected by various noise conditions [72]. For each of the L′

sel

layers, the method applies a Canny filter to DIl′sel to retrieve a reliable map (RMl′sel )
(21).

RMl′sel = Canny(DIl′sel ). (21)

Each RMl′sel shows the areas with the highest gradient in DIl′sel that represent the
transitions between ωc and ωnc. These transition areas are the least reliable ones.
The transition areas are thinner than the other strategy to mask fewer changes in
borders. L′

sel possible combinations of the L′
sel DIs [10] are averaged:

DIl′sel = 1

l′sel + 1

l′sel∑

h=0

DIh, l′sel = 0, 1, . . . , L′
sel . (22)

An automatically retrieved threshold Tl′sel (for the experiments we used an Otsu’s

threshold [58]) is applied to each DIl′sel to obtain a change map for each resolution
level l′sel . Each pixel of the final change map CM is assigned to ωc or ωnc, according
to the class detected in position (i, j) in the change map at the resolution level l′rel ,
where l′rel = 0, . . . , L′

sel corresponds to the most reliable resolution level for the
position (i, j) [10]:

CM(i, j) ∈
{

ωnc, ifDIl′rel (i, j) ≤ Tl′rel
ωc, ifDIl′rel (i, j) > Tl′rel .

(23)

4 Experimental Design and Results

In this section, we present the datasets used for the tests and the experimental design.
We also show and discuss the results.

4.1 Description of Datasets

As observed in Table 1, we exploited two datasets composed of bi-temporal SAR
images to evaluate the flood area detection and building change detection applica-
tions. For the first application, we used a dataset composed of two bi-temporal SAR
images acquired by Sentinel-1 on January 17th, 2019 (Fig. 6a), and January 29th,
2019 (Fig. 6b), representing a flooded area due to a dam failure that occurred near
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Table 1 Summary of the change detection methods for SAR images and the applications suitable
to use them

Change detection methods References Applications
Image (Log-)rationing Bazi et al.[8] Urban area change detection

Grover et al.[9] Tropical forest cover change
Kullback–Leibler distance Inglada et al.[11] Volcanic eruption

Mercier et al.[12] Volcanic eruption

Mutual information Erten et al.[55] Agricultural monitoring

Mixed information Guengen et al.[17] Agricultural monitoring
Non-deep-learning multi-scale methods Bovolo et al.[10] Burned area detection

Marin et al.[24] Building change detection
Deep learning multi-scale methods Saha et al.[1] Building change detection

Saha et al.[35] Building change detection

Bergamasco et al.[51] Flood area detection

the city of Brumadinho in Brazil on January 25th, 2019. The bi-temporal Sentinel-
1 images have a size of 540 × 566 with a spatial resolution of 9 m/pixel. The
reference map (Fig. 6d) shows the flooded area that points out changed (28,417)
and unchanged pixels (277,223). The difference in the backscattering due to the
flooded area can be observed in the false-color composition images, where green and
magenta pixels represent the backscattering increasing and decreasing, respectively.
We randomly sampled the pre-change image I1 acquired on January 17th 2019 to
create an unlabeled dataset composed of 37,319 patches with a size of 64 × 64
pixels. The dataset was divided into a validation set composed of 3731 patches and
an unlabeled training set X composed of 33,588 patches.

For the second application, we used a dataset composed of bi-temporal SAR
images acquired by Cosmo-SkyMed on April 5th, 2009 (Fig. 7a) and September
12th, 2009 (Fig. 7b). The bi-temporal images represent the L’Aquila urban area in
Italy destroyed by an earthquake occurred on April 5th, 2009. They have a size
1024 × 1024 with a spatial resolution of 2.5 m/pixel. The false-color composition
image (Fig. 7c) shows the backscattering changes confirming the destroyed building
in the reference map (Fig. 7e) that indicates changed and unchanged pixels. The
dataset is composed of 19,930 unlabeled patches with a size of 64 × 64 that were
randomly sampled by the pre-change image I1 acquired on April 5th. The dataset
was divided into a validation set composed of 1993 unlabeled patches used for CAE
validation during the training and a training set with 17,937 unlabeled patches.

In both datasets, we applied a logarithm operator to transform the behavior of the
speckle noise from multiplicative to additive. We used a patch size of 64 since it was
the best trade-off between the number of possible samples to include in the dataset
and the spatial context information. Smaller patch sizes may lead to inadequate
spatial context information modeling, while larger patch sizes would lead to fewer
patches for the training. We overlapped the patches during the sampling to increase
N . Thus each patch shared a part of the spatial information with the neighboring
ones.
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Fig. 6 Sentinel-1 images acquired in an area near Brumadinho, Brazil on (a) January 17th, 2019,
(b) January 29th, 2019, (c) the false-color composition highlighting the changes between the bi-
temporal images (green represents the backscattering decrease, and magenta is the increase), and
(d) the reference map of the flooded area (The white pixels represent no changes and the black
pixels the changes)

4.2 Design of the Experiments

We trained the CAE in an unsupervised way with an epoch number E for each
dataset. The CAE training had the objective of optimizing the image reconstruction
(which differs from the method goal, i.e., CD), and the validation set assessed the
quality of the reconstructed image with the validation loss. When the validation loss
increases, while training loss decreases, the model overfits, and the CD performance
may be affected badly. However, only the multi-scale feature maps retrieved by the
CAE were used for CD and not the CAE output. The CAEs for the experiments
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Fig. 7 Cosmo-SkyMed images acquired in L’Aquila, Italy on: (a) April 5th, 2009, (b) September
12th, 2009 (Agenzia Spaziale Italiana, 2009. All Rights Reserved.), (c) the false-color composition
highlighting the changes between the bi-temporal images (green represents the backscattering
decrease, and magenta is the increase), (d) the cadastral map of the area, and (e) the reference
map showing the changes (the white pixels represent no changes and the black pixels the changes)

included batch normalization layers [69] and leaky ReLU activation function [70]
with α = 0.2. We trained the CAE model with learning rate lr = 10−4 and batch
size bs = 100. We performed several experiments on both the datasets with different
parameter setups:

• Experiment 1: The objective of this experiment was the analysis of the method
performance by varying the number of CAE layers. This hyperparameter is
relevant for the retrieving of informative feature maps since the increase of the
model depth leads to a better image de-noising and an increase of the model
receptive field. A model with a large receptive field can better analyze the
spatial context of images, which is critical in the CD of SAR images because
of the complex spatial context information. On the contrary, a DL model with
too many layers deteriorates the geometrical details of images. This experiment
allowed finding a good trade-off between image de-noising and the generation
of informative feature maps. We compared the CD performance to choose the
optimal number of layers and thus the number of multi-scale levels L′ using a
CAE with L = 2, 4, 6, 8 trained with E = 100 for the Brumadinho dataset
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and E = 300 for the L’Aquila dataset. The standard-deviation-based reliability
approach with a window size of 3 × 3 was used for both datasets. The number of
epochs and the reliability strategies were fixed according to the results achieved
by Experiment 3, whereas the window size of the standard deviation reliability
approach is used according to Experiment 2.

• Experiment 2: This experiment compared the CD performance by varying the
window size of the standard deviation reliability approach. We tested window
dimensions of 3 × 3, 5 × 5, and 7 × 7. We used the CAE model with L = 8
trained with E = 100 for the Brumadinho dataset and the model with L = 8
trained with E = 300 for the L’Aquila dataset. The number of model layers and
epochs was fixed according to the results of Experiments 1 and 3.

• Experiment 3: The experiment analyzed the CD performance by changing the
number of training epochs E. We varied the number of training epochs E =
50, 100, . . . , 300 using a CAE with L = 8 layers for both the datasets (see
Experiment 1). We tested the method using the standard-deviation- and Canny-
based reliability approaches to observe the strategy providing the most accurate
reliability maps. We used a moving window size of 3×3 in the standard deviation
reliability approach for both datasets (see Experiment 2).

• Experiment 4: The experiment verified that the multi-scale strategy and the
feature selection were effective. We compared the presented method against two
limit cases. The first one exploited single-scale feature maps retrieved by a single
CAE layer: the bottleneck. The second one used all feature maps obtained by
the L′ layers of the model without any feature selection step. We exploited in
both datasets the CAE with L = 8 layers (see Experiment 1) and the standard-
deviation-based reliability approach with a window size of 3 × 3 and used CAE
trained for E = 100 for the Brumadinho dataset and E = 300 for the L’Aquila
dataset. We fixed the epoch number and the window size of the standard deviation
reliability strategy according to the results provided by Experiments 3 and 2,
respectively.

SoA comparisons for the L’Aquila dataset were performed against: (i) a fuzzy-
based building CD method [24], (ii) a transfer learning method used to extract
features for building CD [1], and (iii) a building CD using a CycleGAN to transcode
SAR and optical images [35]. For Brumadinho dataset, we compared the presented
method using the optimal parameters retrieved from previous experiments (Table 2)
with an unsupervised change detection method using feature maps extracted from
a CAE [51]. To evaluate the performance of the tested methodologies for the
Brumadinho dataset, we considered the number of the truly detected changes (TPs),
the false-alarm rate (FAs), the missed-alarm rate (MAs), the overall errors (OE),

Table 2 The optimal parameters to use in the two datasets

Datasets L E Window size Learning rate Batch size

Brumadinho 8 100 3 × 3 10−4 100

L’Aquila 8 300 3 × 3 10−4 100
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the sensitivity (TP/(TP+FN)), and the specificity (TN/(TN+FP)). For the L’Aquila
dataset, we considered the number of correctly, missed, and falsely detected changed
buildings, as in [1, 24, 35]. To do so, we exploited the change map to cluster the
changed pixels, as in [35], into two classes: increment (ε+) and decrement (ε−) of
backscattering. The two classes are used to determine new and destroyed buildings
using a fuzzy-based strategy [24, 35].

4.3 Experiment 1: Analysis of the Performance Varying the
Number of Layers

Experiment 1 observed the CD performance of the presented method by varying the
depth of the CAE to find the optimal trade-off between the generation of informative
feature maps and the preservation of spatial information. In the Brumadinho dataset,
the method achieved the best performance using a CAE with L = 8 layers. The
use of CAE with L = 8 layers outperformed the other options with L = 2, 4, 6
from the point of view of the true detected changed areas and FAs (see Table 3).
These observations were confirmed by the qualitative results that showed a sharp
improvement in the CD performance from CAE with L = 2, 4, 6 to one with L = 8
(see Fig. 8). The latter detected most of the changed areas homogeneously and found
fewer FAs (see Fig. 8d). This improvement was due to the de-noising capability and
the large receptive field achieved with this model depth. The de-noising capacity
reduced the noise contribution on the feature maps, whereas the large receptive field
allowed the model to analyze a larger spatial context and produce more informative
feature maps.

As in the previous dataset, the method applied to the L’Aquila dataset achieved
its best performance using a CAE with L = 8. Also in this case, the CAE with
L = 8 allowed to improve the detection of true changed areas by reducing the
number of FAs (see Table 4). The number of model layers is strongly related to the
size of the changes with respect to the spatial resolution of the data. Considering
the same object acquired by sensors with heterogeneous spatial resolution, the one
acquired by the sensor with the higher spatial resolution has more details, and it
needs a larger receptive field to analyze the spatial context than the one acquired by a

Table 3 FAs, MAs, TPs, OE, sensitivity, and specificity of the presented method vs. the number
of layers L in the Brumadinho dataset trained for E = 100

L FA MA TP OE Sensitivity Specificity

2 2.32% 83.64% 4648 9.88% 16.36% 97.68%

4 2.25% 81.66% 5212 9.63% 18.34% 97.65%

6 2.06% 80.47% 5549 9.35% 19.53% 97.94%

8 1.96% 66.47% 9527 7.96% 33.53% 98.04%

The best experimental results are in bold
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Fig. 8 Change maps computed using (a) L′ = 1 of the CAE with L = 2, (b) L′ = 2 of the CAE
with L = 4, (c) L′ = 3 of the CAE with L = 6, and (d) L′ = 4 of the CAE with L = 8. All the
CAEs are trained for E = 100 using the Brumadinho dataset. Standard-deviation-based reliability
approach was used to find the most reliable areas (The white pixels represent no changes, and the
black pixels the changes)

sensor with lower spatial resolution. In both datasets, the changes are characterized
by many correlated neighboring pixels and cover large areas with respect to the
sensor resolution. Thus a wide receptive field achieved by models with many layers
was needed to properly catch the spatial context information of the changes. This
improvement can also be observed in the qualitative results where the CD method
using a CAE with L = 8 more changed areas with fewer FAs than using L = 2, 4, 6.
The model depth is more critical for the L’Aquila dataset than the Brumadinho one
since the L’Aquila dataset is composed of very high-resolution (VHR) images. With
VHR images, the processing of the spatial context information is more relevant
because of the many geometrical details and the strong spatial correlation between
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Table 4 FAs, MAs, TPs, OE, sensitivity, and specificity of the presented method vs. the number
of layers L in the L’Aquila dataset trained for E = 300

L FA MA TP OE Sensitivity Specificity

2 0.94% 88.84% 2894 3.11% 11.16% 99.06%

4 1.52% 88.5% 2984 3.67% 11.5% 98.48%

6 0.7% 89.0% 2853 2.88% 11.0% 99.3%

8 0.69% 71.72% 7336 2.45% 28.28% 99.31%

The best experimental results are in bold

neighboring pixels. In this case, a deep model (e.g., L = 8) is necessary to achieve
good results since the more a model is deep, the more its receptive field is large. Thus
it can better analyze the spatial context information and produce informative feature
maps that model the spatial context information. We exploited a CAE with L = 8 to
process the two datasets since the experimental results showed the model superiority
with this layer number in terms of detected changed areas and FAs (Fig. 9). Thus
the CAE used in the experiments is composed of four layers for both encoder and
decoder (see Table 5).

4.4 Experiment 2: Analysis of the Performance Varying the
Window Size of the Standard-Deviation-Based Reliability
Approach

Experiment 2 compared the CD performance of the presented method by varying the
moving window size of the standard deviation reliability approach. The window size
affects the method reliability in the detection of heterogeneous areas. The smaller
the window size, the less reliable the local coefficient of variation (LCV) is. The
bigger the window size, the lower the preservation of the geometrical details. Thus
we can find the optimal window size by preserving the geometrical details without
removing changed pixels. In the Brumadinho dataset, the 3×3 moving window size
allowed detecting more change areas than the other options by keeping the number
relatively low (see Table 6). The method using a 7×7 window size found the lowest
number of FAs, but it missed many changed areas. For our experiments, we used a
window size of 3 × 3 since it can detect more changed areas and occurred in the
least percentage of OE. In the L’Aquila dataset, we observed the same behavior
as the previous dataset. The method using a 3 × 3 moving window detected more
changed areas than the other options with slightly higher FAs and gave the least
percentage of OE (Table 7). The method using a 7 × 7 window size retrieved fewer
FAs than the 3 × 3 option, but it did not preserve geometrical details with the MAs
increasing. For these reasons, we exploited a 3 × 3 moving window size during the
experiments.
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Fig. 9 Change maps computed using (a) L′ = 1 of the CAE with L = 2, (b) L′ = 2 of the CAE
with L = 4, (c) L′ = 3 of the CAE with L = 6, and (d) L′ = 4 of the CAE with L = 8. All
the CAEs are trained for E = 300 using the L’Aquila dataset. Standard-deviation-based reliability
approach was used to find the most reliable areas (The white pixels represent no changes, and the
black pixels the changes)

4.5 Experiments 3 and 4: Brumadinho Dataset

Experiment 3 proved that the presented method is not significantly affected by the
variation of E from the point of view of the FAs. The variation of E influenced
the capability of the model to detect truly changed areas (see Table 8). The method
achieved the best performance between E = 100 and E = 150 by maximizing the
detection of the changed areas while keeping a small number of OEs. The Canny-
based strategy allowed retrieving fewer FAs, but it increased the MAs. For the
experiments, we used a CAE trained for E = 100 exploiting the standard deviation
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Table 5 Structure of the
convolutional autoencoder
used during tests for the
Granada and Elba datasets

Layer type Kernel size Output size

Input – 64 × 64 × 6

Strided Conv2D 5 × 5 × 32 32 × 32 × 32

Batch normalization – 32 × 32 × 32

Leaky ReLU – 32 × 32 × 32

Strided Conv2D 5 × 5 × 64 16 × 16 × 64

Batch normalization – 16 × 16 × 64

Leaky ReLU – 16 × 16 × 64

Strided Conv2D 5 × 5 × 128 8 × 8 × 128

Batch normalization – 8 × 8 × 128

Leaky ReLU – 8 × 8 × 128

Strided Conv2D 5 × 5 × 256 4 × 4 × 256

Batch normalization – 4 × 4 × 256

Leaky ReLU – 4 × 4 × 256

Deconv2D 5 × 5 × 128 8 × 8 × 128

Batch normalization – 8 × 8 × 128

Leaky ReLU – 8 × 8 × 128

Deconv2D 5 × 5 × 64 16 × 16 × 64

Batch normalization – 16 × 16 × 64

Leaky ReLU – 16 × 16 × 64

Deconv2D 5 × 5 × 32 32 × 32 × 32

Batch normalization – 32 × 32 × 32

Leaky ReLU – 32 × 32 × 32

Deconv2D 5 × 5 × 6 64 × 64 × 6

Table 6 FAs, MAs, TPs, OE, sensitivity, and specificity of the presented method by varying the
window size with the standard-deviation-based reliability approach in the Brumadinho dataset.
The results were retrieved by using L′ = 4 multi-scale feature maps extracted by a CAE trained
for E = 100

Window size FA MA TP OE Sensitivity Specificity

3 × 3 1.96% 66.47% 9527 7.96% 33.53% 98.04%

5 × 5 1.63% 71.56% 8082 8.13% 28.44% 98.37%

7 × 7 1.27% 77.65% 6350 8.37% 22.35% 98.73%

The best experimental results are in bold

reliability approach since it is the combination that detects more changed areas while
keeping a low OE percentage.

The presented method achieved comparable performance to the SoA CD method
using CAE feature maps [51]. The latter detected slightly more changed areas than
the presented one. However, the method had a lower OE percentage than the SoA
one and found fewer FAs (see Table 9). The strategy using the Canny filter retrieved
fewer FAs than the standard deviation one. However, it missed many changed areas
and obtained more OEs than the standard deviation strategy. Qualitative results (see
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Table 7 FAs, MAs, TPs, OE, sensitivity, and specificity of the presented method by varying the
window size with the standard-deviation-based reliability approach in the L’Aquila dataset. The
results were retrieved by using L′ = 4 multi-scale feature maps extracted by a CAE trained for
E = 300

Window size FA MA TP OE Sensitivity Specificity

3 × 3 0.69% 71.72% 7336 2.45% 28.28% 99.31%

5 × 5 0.45% 79.66% 5277 2.41% 20.34% 99.55%

7 × 7 0.34% 85.46% 3772 2.45% 14.54% 99.66%

The best experimental results are in bold

Table 8 FAs, MAs, TPs, OE, sensitivity, and specificity of the presented method vs. the number
of epochs on the CAE training and by using a standard-deviation-based and Canny-filter-based
approach to find the most reliable areas (Brumadinho dataset)

E Reliab. approach FA MA TP OE Sens. Spec.

50 Canny 1.21% 78.16% 6206 8.37% 21.84% 98.79%

Std. dev. 1.26% 77.19% 6482 8.32% 22.81 98.74%

100 Canny 1.68% 70.1% 8497 8.04% 29.9% 98.32%

Std. dev. 1.96% 66.74% 9527 7.96% 33.52% 98.04%

150 Canny 1.59% 71.07% 8221 8.05% 28.93% 98.41%

Std. dev. 1.81% 67.33% 9284 7.91% 32.67% 98.19%

200 Canny 1.17% 76.63% 6642 8.19% 23.37% 98.83%
Std. dev. 1.28% 74.42% 7269 8.08% 25.58% 98.72%

250 Canny 1.58% 72.9% 7700 8.21% 27.1% 98.42%

Std. dev. 1.57% 71.17% 8192 8.04% 28.83% 98.43%

300 Canny 1.21% 75.55% 6947 8.13% 22.45% 98.79%

Std. dev. 1.28% 74.04% 7365 8.05% 25.92% 98.72%

The best experimental results are in bold

Fig. 10) confirmed the quantitative ones. The SoA and presented methods retrieved
comparable results. The SoA one detected more changed areas (e.g., the bottom
part of Fig. 10b) than the presented method. However, the latter found fewer FAs
than the SoA method (e.g., the bottom part of Fig. 10e). We can notice that standard
deviation and Canny-based approaches retrieved similar results. However, the latter
obtained some artifacts due to the value of the standard deviation of the Gaussian
kernel used in the Canny filter (e.g., upper part of Fig. 10f).

Experiment 4 proved the effectiveness of the multi-scale strategy by comparing
the results achieved using a detail-preserving multi-scale CD [10] with the one using
single-scale feature maps. The use of the multi-scale strategy allowed the detection
of many changed areas and preserved many geometrical details (see Fig. 10e). The
single-scale strategy detected only the wider and most homogeneous areas and
lost many changed areas with small geometrical details (see Fig. 10c). The method
performance using the feature selection (see Fig. 10e) and the one without feature
selection (see Fig. 10d) provided similar results. However, the method using the
feature selection exploited only the most informative feature maps and reduced the
computational burden of the CD.
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Table 9 FAs, MAs, sensitivity, specificity, and OE (in the number of pixels and percentage)
obtained by the SoA methods and the presented one. We tested the presented method using the
two reliability approaches, a single-scale feature, and no feature selection (Brumadinho dataset)

OE

Method FA MA Sens. Spec. Pixels %

CAE CD [51] 2.89% 60.65% 39.35% 97.11% 25238 8.26

Presented CAE CD
w/ std. dev.

1.96% 66.47% 33.53% 98.04% 24323 7.96%

Presented CAE CD
w/ Canny

1.68% 70.1% 29.9% 98.32% 24583 8.04%

Presented CAE CD
w/ single-scale feat.

1.97% 71.41% 28.59% 98.03% 25764 8.43%

Presented CAE CD
no feat. sel.

2.01% 65.36% 34.64% 97.99% 24133 7.9%

The best experimental results are in bold

Fig. 10 Comparisons between (a) the reference map of the dataset of Brumadinho and the
maps achieved by applying (b) unsupervised SoA CD method using the CAE, the presented
method exploiting (c) a single-scale feature, (d) no feature selection, (e) standard-deviation-based
reliability maps, and (f) canny filter (The white pixels represent no changes, and the black pixels
the changes)
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4.6 Experiments 3 and 4: L’Aquila Dataset

Experiment 3 showed that the variation of E did not significantly affect the
performance of the presented method from the FA point of view. The E variation
affected the MA percentage. Thus the increase of E led to a changed area detection
increase. The method achieved the best CD performance using a CAE trained for
E = 300. The Canny-based strategy detected more changed areas than the standard
deviation one until E = 250 and achieved similar results from the MA point of view
with respect to the standard deviation reliability approach (see Table 10). However,
the latter produced fewer FAs than the Canny approach. During the experiments,
we exploited a CAE trained for E = 300 using the standard deviation reliability
approach since it improved the detection of changed areas and minimized the OEs.

The method using CAE feature maps retrieves similar results than the other
SoA methods (see Table 11). It detected all destroyed buildings with no false
alarms, as the other DL-based methods. The DL neural networks better modeled
the spatial context information of the scenario than no-DL approaches, such as
DWT used in [24]. The better modeling allowed to find less false alarms. We can
observe from the qualitative results (see Fig. 11) that DL-based method methods
detected less FAs (see Fig. 11d, f, h) than the DWT-based one (see Fig. 11b). In
this way, the DL-based method did not detect any false destroyed buildings (see
Fig. 11e, g, i). The feature maps extracted from a DL model trained with the data
(i.e., CycleGAN- and CAE-based methods; see Fig. 11f, h) to analyze provided a
more accurate spatial information than the ones extracted by an adapted DL model
(i.e., AdaBN-based model; see Fig. 11d). The CycleGAN- and CAE-based model

Table 10 FAs, MAs, TPs, OE, sensitivity, and specificity of the presented method vs. the number
of epochs on the CAE training and by using a standard-deviation-based and Canny-filter-based
approach to find the most reliable areas (L’Aquila dataset)

E Reliab. Approach FA MA TP OE Sens. Spec.

50 Canny 1.07% 76.29% 6151 2.93% 23.71% 98.23%

Std. dev. 0.87% 79.24% 5203 2.82% 20.06 99.13%

100 Canny 1.26% 78.62% 5545 3.17% 21.38% 98.74%

Std. dev. 0.84% 81.87% 4704 2.84% 18.13% 99.16%

150 Canny 0.87% 79.37% 5352 2.81% 20.63% 99.13%

Std. dev. 0.53% 80.08% 5167 2.5% 19.92% 99.46%
200 Canny 1.28% 75.86% 6611 2.84% 25.48% 98.98%

Std. dev. 0.75% 80.02% 5182 2.71% 19.98% 99.25%

250 Canny 1.02% 74.52% 6611 2.84% 25.48% 98.98%

Std. dev. 0.73% 73.83% 6788 2.54% 26.17% 99.27%

300 Canny 0.96% 71.75% 7329 2.72% 28.25% 99.04%

Std. dev. 0.69% 71.72% 7336 2.45% 28.28% 99.31%

The best experimental results are in bold



Change Detection in SAR Images Using Deep Learning Methods 55

Table 11 The number of correctly, missed, and falsely detected destroyed buildings in the
L’Aquila dataset (200 buildings in total)

Method
Correctly detected
destroyed buildings

Missed
destroyed
buildings

Falsely detected
destroyed
buildings

Fuzzy-based method [24] 6 0 1

AdaBN-based method [1] 6 0 0

CycleGAN-based method [35] 6 0 0

CAE-based method 6 0 0

Table 12 FAs, MAs, sensitivity, specificity, and OE (in the number of pixels and percentage)
obtained by testing the presented method, a single-scale feature, and no feature selection (L’Aquila
dataset)

OE

Method FA MA Sens. Spec. Pixels %

Presented CAE CD
w/std. dev.

0.69% 71.72% 28.28% 99.31% 25967 2.45%

Presented CAE CD
w/single-scale feat.

2.2% 89.34% 10.66% 97.8% 45716 4.36%

Presented CAE CD
no feat. sel.

1.01% 52.65% 47.35% 98.99% 23940 2.28%

The best experimental results are in bold

achieved similar performance. However, the latter had a lower computational burden
than the CycleGAN-based one since it exploited a simpler DL model.

Experiment 4 proved the effectiveness of the multi-scale strategy that can detect
more changed areas than the single-scale option (see Table 12). The latter lost many
geometrical details. This aspect and the complexity of the urban scenario and VHR
SAR data characterized by multiple reflections due to the buildings led to a poor
change detection (see Fig. 12b). The multi-scale approach allowed a deeper analysis
of the spatial information that improved the CD performance (see Fig. 12d). The
method using feature selection found fewer FAs than without feature selection. It
detected more changed areas without applying the feature selection (see Table 12),
but the increase of the FAs led to not distinguishing adjacent buildings (see the
bottom-left side of Fig. 12c). Thus the feature selection provided better performance
to identify single constructions and achieve better performance in the building
detection.

5 Conclusions

This chapter presented a series of change detection (CD) methods to analyze
synthetic aperture radar (SAR) data. We presented the main change indexes and the
single-scale and multi-scale approaches to handle the speckle noise and the spatial



Fig. 11 Comparisons between: (a) the cadastral map of the area and the maps of increased and
decreased areas (green is decreased, and magenta is decreased) and the detected buildings retrieved
using (b,c) the Fuzzy-based method, (d,e) AdaBN-based method, (f,g) CycleGAN-based method,
and (h,i) the presented method
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Fig. 12 Comparisons between (a) the reference map of the dataset of L’Aquila and the maps
achieved by applying the presented method exploiting (b) a single-scale feature, (c) no feature
selection, and (d) standard-deviation-based reliability maps (The white pixels represent no
changes, and the black pixels the changes)

information in SAR images and detect relevant changes. We observed how the deep
learning (DL) models automatically learn spatial context features that are used in the
CD without the need to design novel features for new tasks or different SAR data.
We presented a CD method using multi-scale feature maps extracted from a CAE
trained in an unsupervised way. We applied this method and other SoA CD methods
to two applications (i.e., flood area detection and building change detection) where
the spatial context analysis and the de-noising capability are critical. The SoA and
the presented methods proved the effectiveness of the features learned by DL models
and multi-scale strategies in the SAR image analysis.
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As it is possible to observe in this chapter, most of the CD methods process only
single-sensor images and limit the analysis of the scene to a single type of change
information. Image time series composed of multi-sensor multi-frequency SAR data
can improve the CD performance. However, the fusion of these heterogeneous data
is challenging. DL models can analyze multi-sensor data effectively. Thus one of
the future steps to improve the CD method is the analysis of bi-temporal and multi-
temporal heterogeneous SAR data to extract spatial and temporal information for
change detection purpose.
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Homography Augmented Momentum
Contrastive Learning for SAR Image
Retrieval

Seonho Park, Maciej Rysz, Kathleen M. Dipple, and Panos M. Pardalos

1 Introduction

Recent studies have applied deep learning for synthetic aperture radar (SAR) image
analysis tasks such as object detection [1], despeckling [2–4], optical data fusion [5],
and terrain surface classification [6]. One important application is the task of SAR
image retrieval [7–9], which aims to retrieve images from a large database that are
similar to a query image. This can be further utilized to assist navigation systems
when the global positioning system (GPS) is not available [10]. During the SAR
image retrieval tasks, a common basic step involves extracting a compressed feature
vector from a given SAR image while maintaining the semantic information. The
vector is then compared with feature vectors of the SAR images in the database.
This technique is sometimes called the global descriptor approach, where the
global descriptor is a simple vector with a prescribed dimension. Thus, during
testing, distances between vectors can be readily and scalably measured. Such
global descriptor vectors are often extracted from images using convolutional neural
networks (CNNs) [11–13]. However, the overall performance of this technique may
suffer from complications such as clutter, illumination, and occlusion, which all

S. Park (�) · P. M. Pardalos
Department of Industrial & Systems Engineering, University of Florida, Gainesville, FL, USA
e-mail: seonhopark@ufl.edu; pardalos@ise.ufl.edu

M. Rysz
Department of Information Systems & Analytics, Miami University, Oxford, OH, USA
e-mail: ryszmw@miamioh.edu

K. M. Dipple
Integrated Sensor and Navigation Services Team, Air Force Research Laboratory (AFRL/RWWI),
Eglin Air Force Base, FL, USA
e-mail: kathleen.dipple.1@us.af.mil

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2022
M. Rysz et al. (eds.), Synthetic Aperture Radar (SAR) Data Applications, Springer
Optimization and Its Applications 199, https://doi.org/10.1007/978-3-031-21225-3_3

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21225-3_3&domain=pdf
https://orcid.org/0000-0003-2824-101X

 885 46882 a 885 46882 a
 
mailto:seonhopark@ufl.edu

 9174 46882 a 9174 46882 a
 
mailto:pardalos@ise.ufl.edu

 885
50756 a 885 50756 a
 
mailto:ryszmw@miamioh.edu

 885
55738 a 885 55738 a
 
mailto:kathleen.dipple.1@us.af.mil

 12882 61494 a 12882 61494 a
 
https://doi.org/10.1007/978-3-031-21225-3_3


64 S. Park et al.

hinder the CNNs from generating accurate global descriptor vectors. To overcome
these obstacles, the CNN-based local feature approaches have also been suggested
[7–9, 14, 15]. These methods furnish the so-called keypoints and their corresponding
local descriptors. Namely, a keypoint represents the location of interest and the
local descriptor is a vector characterizing an associated keypoint. CNN-based
local feature approaches generally aim to replace the traditional local feature
approaches, such as SIFT [16, 17] or its variants [18]. Even though this enhances
the performance of retrieving images, comparing image pairs is not scalable, and,
therefore, cannot be efficiently applied over large-scale databases. To this effect,
recent efforts often focus on developing a CNN-based approach that combines both
global descriptor and local feature techniques by first retrieving images roughly
using global descriptor, then reranking them by utilizing the local feature approach
[7, 10].

We devote this chapter only to the CNN-based global descriptor method since it
generally represents a principal component of the deep learning-based SAR image
retrieval system. Emphasis is put on developing a contrastive learning method
[19] for generating the global descriptor of a SAR image. Contrastive learning
employs two neural networks and compares the global descriptors using a loss
function. To prevent the networks from generating trivial descriptors, homography
transformation is applied to augment the SAR images. We also demonstrate that
the homography transformation can generalize SAR image deformation, thus the
homography transformed SAR images are used as input data for training the
networks. Contrastive learning enables the network to learn the features in a self-
supervised way, which can potentially facilitate applications over large-scale dataset
without involving arduous labeling processes that are usually carried out by human
labor. To verify the performance of the proposed method, we conduct experiments
on multiple SAR datasets containing a multitude of geographic characteristics.

This chapter is organized as follows. Related studies to our approach are
discussed in Sect. 2. In Sect. 3, a method for generating global descriptor is
proposed, which includes contrastive learning and homography transformation.
Experimental results on public SAR dataset are reported in Sect. 4, and finally
Sect. 5 provides concluding remarks.

2 Related Works

Contrastive learning [19] is a self-supervised learning method that has been actively
investigated recently. It utilizes a comparison between feature representation pairs
of instances in a representative space to form a loss function. Contrastive learning
is founded on the idea that the feature vectors of an image and its augmented
image are close to one another, whereas the feature vectors of two distinguishable
images should be distant. Generally, contrastive learning allows machine learning
systems not to rely on labels, but rather enables learning with pseudo labels that
are automatically generated when comparing image feature vectors during training.
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Contrastive learning can be also utilized for pretraining in a self-supervised manner
in order to improve the performance before applying it for downstream tasks [20]. A
primitive approach, called a memory bank scheme, stores whole vectors obtained at
previous iterations and uses a subset of them at the current iteration [10, 21]. Since
the encoder is gradually updated via backpropagation and a stochastic gradient
descent algorithm, the output vectors stored in the memory bank are on occasion
incompatible with those produced at the current iteration, which, in turn, leads to
slow learning. Further, it may cause memory issues when involving a high number of
training data instances. To circumvent this, Momentum Contrast (MoCo) [22] uses
a Siamese encoder, that is, there are two distinguishable encoders with the same
architectures from which one, the primary encoder, is updated with the gradient;
whereas the other, the momentum encoder, is updated using a momentum rule.
Also, it stores the restricted amount of the key vectors outputted by the momentum
encoder into a queue matrix. These are then used when comparing with a query
vector outputted by the primary encoder.

There also exist techniques to improve the performance of MoCo by adding
a two-layered multilayer perceptron head, blur augmentation, and cosine learning
rate schedule [23]. Recent advances of MoCo, namely MoCo v3 [20], proposed an
online method for generating keys in the same batch to reduce memory usage while
maintaining fast learning. It uses a form of the infoNCE [24] as a loss function
that allows representative differentiations between images of given sufficient batch
size (e.g., 4096). Additionally, to further improve the performance of MoCo, they
adopted a vision transformation (ViT) [25] as the backbone architecture. There are
various approaches to contrastive learning that differ depending on the usages of the
queue matrix and the forms of the loss function. They include SimCLR [26], SEER
[27], SwAV [28], SimSiam [29], and BYOL [30].

Deep neural networks (DNNs) have also been widely used for representative
learning. Traditional components of image retrieval systems, such as SIFT [16, 17],
RANSAC [31], have been partially replaced by DNN-based approaches. Noh et al.
[7] introduced a method for generating local features using a CNN-based model,
which can essentially replace traditional local descriptors such as SIFT. They also
proposed a landmark dataset on which the proposed model is finetuned with the
location-based image classification labels, which can be regarded as a “weakly”
supervised approach. The further enhancements were obtained by applying regional
aggregated selective match kernels [8], and generating both global descriptor and
local features simultaneously [15]. SuperPoint [9] outputs both the keypoints and
local descriptors simultaneously via a unified CNN-based backbone architecture.
Its training process involves pretraining on a synthetic labeled dataset and self-
supervised learning with the help of homography transformation.

Park et al. [10] proposed deep cosine similarity neural networks to generate a
l2 normalized feature vector of a SAR image with the primary purpose of scalably
comparing SAR image pairs. The proposed idea of normalizing the vector during
training is also used in the training process of the encoders that is used in this work as
well. Once similar images from a database are retrieved using the global descriptors,
the local features are used for reranking the retrieved images. This process is
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usually time-consuming since matching pairs through RANSAC [31] or Direct
Linear Transformation (DLT) [32] is not scalable. Thus, replacing these matching
techniques with scalable DNN-based methods is an active research area where many
approaches such as SuperGlue [33] and LoFTR [34] have been proposed. They also
utilize a state-of-the-art architecture, Transformer [35], as their backbone networks,
which can significantly enhance the performances of the DNN-based methods for
image retrieval tasks.

3 Methodology

In this section, we focus on training a deep neural network-based encoder to produce
a feature vector that is used in the SAR image retrieval task. We generate a (global)
feature vector, d, to compress and represent a SAR image for the purpose of image
retrieval. Namely, vector d contains semantic information of the SAR image.

3.1 Contrastive Learning

Contrastive learning has been presented in recent literature as a means for gener-
ating feature embedding in a self-supervised manner. Broadly, it uses a Siamese
encoder (twin encoders) that consists of two CNN-based encoders with the same
architectures and the same sets of parameters to that are learned separately. When
two inputs of both encoders are similar, it aims to produce output vectors that are
likewise similar; whereas when two inputs are different, they should produce output
vectors that are distinct. Contrastive learning allows the encoder to be trained in
a self-supervised way, i.e., the input data does not require labels during training.
Therefore, when available, one can aggregate more data for training the model
without expending arduous labor that is commonly required for labeling instances.

In this work, we use MoCo-like learning [22] where the first encoder is updated
via a stochastic gradient descent algorithm, and the second encoder is updated by
a momentum rule. Figure 1 depicts the contrastive learning framework that we
use for SAR image retrieval. As shown in the figure, two CNN-based encoders,
the “primary encoder” fθq

and the “momentum encoder” fθk
, are utilized, where

θq and θk are the parameter sets corresponding to the former and latter encoders,
respectively.

The primary encoder fθq
uses a SAR image as an input x to produce an output

dq . Similarly, the momentum encoder fθk
, which has the same architecture as the

primary encoder, uses a transformed SAR image x′ ∼ H(x) that is drawn from
homography transformation-based distribution H(x) to output a feature vector dk .
The homograph transformation used is presented in Sect. 3.2. The primary encoder
is updated using a stochastic gradient descent method where the gradients associated
with the parameters are computed through backpropagation. The loss function used
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Fig. 1 Diagram of the contrastive learning scheme

for training the primary encoder is described in Sect. 3.3. The parameters θk in the
momentum encoder are updated using the momentum rule θk ← mθk + (1 −m)θq ,
where m is a momentum parameter used to slowly and stably update parameters θk .
Also, in the momentum encoder, the queue matrix Q consists of columns of feature
vectors calculated during previous iterations:

Q = [
dk1 , . . . ,dkK

]
, (1)

where K is a prescribed parameter representing the number of feature vectors.
Matrix Q is continuously enqueued using the most recently generated vectors at
the current iteration while the oldest vectors are dequeued to maintain a consistent
size of the matrix.

3.2 Homography Transformation

The transformed input x′ used by the momentum encoder should maintain the
same semantic information as the original image and simultaneously generalize
the images in order to prevent trivial training cases. To achieve this, we exploit
homography transformation. It is well known that homography transformation can
explain the translational and rotational transformations between an image pair in the
same planar space. Thus, it is suitable for tasks such as one of the present interests
where SAR images are taken from aircraft or satellites that are positioned at various
altitudes and angles relative to a given surface area in planar space. Given a pixel
location [u, v] in an image, homography transformation is a linear transformation
represented by a non-singular 3 × 3 matrix as

⎡

⎣
u′
v′
1

⎤

⎦ =
⎡

⎣
H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤

⎦

⎡

⎣
u

v

1

⎤

⎦ , u′ = Hu, (2)
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Fig. 2 An example of 4-points based homography transformation for SAR images

where Hij , ∀i, j ∈ {1, 2, 3} represents the element of the homography transforma-
tion matrix H, and [u′, v′] is the transformed location. Note that the homography
transformation matrix is invariant with scaling, thus containing 8 degrees of
freedom. To augment the image data via homography transformation, a 4-point
based homography transformation is frequently utilized [36, 37]. We employ a
similar approach furnished in [36] to generate the homographic transformed SAR
image x′, which will serve as an input to the momentum encoder.

For example, observe in Fig. 2 that the four corners of the pixel points (uk, vk) for
k ∈ {1, 2, 3, 4} (represented as red dots) are drawn at random within the small blue
squares. Then, using the four corner points we construct a 4-point parameterization
H4p that consists of the x, y displacements, (�uk = u′

k−uk,�vk = v′
k−vk) for k ∈

{1, 2, 3, 4}. Note that the 4-point parameterization H4p is a 4×2 matrix containing 8
DOFS as the homography transformation matrix H, and H4p can easily be converted
to H by the DLT algorithm [32] or the function getPerspectiveTransform
in OpenCV. As shown in Fig. 2, after applying the homography transformation to
an image, the transformed image (right image) is cropped to the same size as the
original image. In what follows, with a slight abuse in notation, we denote the image
distribution of the homography transformation and cropping applied to the image x
as H(x).

3.3 Training

The transformed image x′ ∼ H(x) based on H4p is first sampled and serves as input
of the momentum encoder as

dq = fθq
(x), (3)

dk = fθk
(x’), (4)

while the original SAR image is passed as input to the primary encoder. After l2-
normalizing feature vectors dq and dk , a logit vector is constructed as follows:
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lq =
[
dT

q dk

τ
,
dT

q Q

τ

]T

, (5)

where a parameter τ > 0 is called a temperature parameter [38, 39]. For each SAR
image x in the training dataset, the loss function takes the form of the infoNCE [24],
i.e.,

L(x) = − log
elq1

∑K+1
i=1 elqi

, (6)

where lqi
represents the ith element of the logit vector lq . Finally, for the training

dataset {x(1), . . . , x(N)}, the overall loss function for training the primary encoder is
given by

min
θq

L = 1

N

N∑

i=1

L(x(i)). (7)

The procedure for training the primary encoder and its corresponding momentum
encoder is presented in Algorithm 1. As shown in line 9 in Algorithm 1, backpropa-
gation is conducted to calculate the gradients of the loss function with respect to the
parameters θq . Stochastic gradient descent or its variants [40, 41] can be applied to
Opt(θq, η,�θq) to update the parameters θq , where �θq represents the gradients
or their variants used for updating the parameters.

Algorithm 1 Contrastive learning of feature vector for SAR image retrieval
1: Input: learning rate η, minibatch size N , queue size K , momentum parameter m, temperature

parameter τ

2: Initialize queue matrix Q, parameters of the encoders as θq = θk

3: repeat
4: Draw x(1), . . . , x(N) samples at random from the training dataset
5: Generate homography transformed images x′(1), . . . , x′(N)

6: Calculate d(i)
q = fθq

(x(i)) for all i

7: Calculate d(i)
k = fθk

(x′(i)) for all i

8: Calculate loss function L (Eq. 7)
9: Update θq with Opt(θq , η,�θq)

10: Update θk as θk ← mθk + (1 − m)θq

11: dequeue old N columns from Q
12: enqueue new N columns to Q
13: until θq has converged
14: Output: learned parameters θq
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4 Numerical Experiments

4.1 SAR Image Data

As an experimental testbed for SAR image retrieval, we utilize the Uninhabited
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) images [42] from NASA. From
the UAVSAR database, we use L-band and the ground projected complex cross
(GRD) products of the polarimetric SAR (PolSAR). A central reason for using
GRD products is that it provides information on pixel-wise geographic coordinates
mapping that, in turn, leads to the precise evaluation of the performance of image
retrieval. Specifically, HHHH, HVHV, VVVV products are processed to grayscale
images through ASF MapReady 3.2 software, and grayscale images of HHHH,
HVHV, VVVV products correspond to red, green, blue channels of the resulting
PolSAR images, respectively.

Table 1 lists details of the SAR image maps used in our experiments that
contain various topological characteristics including building, mountain, river, and
vegetation. As shown, the SAR image maps are too big to serve as input for the
encoders. Thus, we extract patches of size 600 × 600 with a stride of 100 pixels
from the images. Since GRD formatting is arranged to locate the north to the upper
side of an image map with respect to the geographic coordinates, it may contain a
lot of “blank” areas (shown as the black region as in Fig. 3). Further, as the blank
area does not contain any meaningful information, we eliminate this by using the
local descriptor method, SAR-SIFT [18]. For each extracted patch, we generated
the keypoints using SAR-SIFT and patches with at least 200 keypoints were added
to the datasets in our experiments. It was deemed that a patch with less than 200
keypoints contains a significant amount of black area. The resulting patches were
then resized to 224 × 224 pixels. Homography transformation was applied “on the
fly” during training. On the resized SAR patches, i.e., 224 × 224 pixels, four points
were drawn at random, from the four corner squares of 32 × 32 pixels centered at
the corner points (shown as the dashed blue lines in Fig. 2) to estimate H4p.

For each experiment, three types of datasets consisting of the SAR patches were
prepared: the query dataset, training dataset, and key dataset as shown in Fig. 4.

Table 1 PolSAR image maps from UAVSAR database

Name Acquisition date Size (W×H) Region Characteristic

Haywrd1 10/09/2018 19,779×26,236 Hayward fault, CA Building, Mountain

Haywrd2 05/30/2019 19,758×26,206

ykdelB1 08/28/2018 23,007×3906 Yukon-Kuskokwim delta, AK River delta, Tundra

ykdelB2 09/17/2019 23,107×3904

atchaf 04/01/2021 6436×7973 Atchafalaya river delta, LA River delta, Vegetation

harvrd 08/17/2009 5981×9319 Harvard forest, MA Forest

SanAnd 02/21/2019 43,050×6604 LA basin, CA Building, Mountain

SRIVER 06/17/2017 16,631×21,099 Subarctic tundra area, AK Tundra
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Fig. 3 SAR image map of the ”atchaf” SAR data. RGB channels correspond to HHHH, HVHV,
VVVV GRD products

Fig. 4 Diagram of SAR
patch datasets usage

Query SAR
patch

Primary 
encoder

Key dataset 
(Encoded)

Training 
dataset

Each of the patches in the datasets has at least 1000 SAR-SIFT based keypoints.
The primary encoder and momentum encoder are trained on the training dataset,
whereas the SAR patches in the query dataset are used for testing. During testing,
we extract the patches with similar feature vectors to the query patch from the key
dataset, which is also representative of a database. We restrict the number of patches
in the query dataset to 100, which are selected at random.

To verify the performance of the proposed approach, we set up four experiments
that simulate multiple operational circumstances, as shown in Table 2. The query
sets are Haywrd2 or ykdelB2. These were more recently acquired than the key
datasets Haywrd1 and ykdelB1 (see Table 1). For experiments 1 and 3 (i.e.,
Exp.1 and Exp.3), we have used Haywrd1 and ykdelB1 as the training datasets,
respectively. For these experiments, the training datasets were the same as the key
datasets, hence the encoders already observed similar SAR image patches to the
query images during training. It is, therefore, anticipated that the encoders would be
able to generate more accurate feature vectors for these two experiments compared
to the experiments Exp.2 and Exp.4. For experiments Exp.2 and Exp.4, the encoders
had not observed the same patches during training; instead, it was trained on the
training dataset consisting of patches from atchaf, harvrd, SanAnd, and SRIVER
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Table 2 Details on experiment dataset. The number of SAR patches are shown in parenthesis

Exp. Num. Exp. Name Query set Key set Training set

Exp.1 Haywrd-Easy Haywrd2 (100) Haywrd1, ykdelB1 (20,388) Haywrd1 (12979)

Exp.2 Haywrd-Hard Haywrd2 (100) Haywrd1, ykdelB1 (20,388) atchaf, harvrd,
SanAnd, SRIVER
(21,555)

Exp.3 ykdelB-Easy ykdelB2 (100) Haywrd1, ykdelB1 (20,388) ykdelB1 (7409)

Exp.4 ykdelB-Hard ykdelB2 (100) Haywrd1, ykdelB1 (20,388) atchaf, harvrd,
SanAnd, SRIVER
(21,555)

SAR maps. Also, for all experiments, the Haywrd1 and ykdelB1 were used as the
key dataset.

4.2 Experiment Settings

All experiments used ResNet50 or ResNet101 [43] as a backbone CNN architecture.
The CNNs were pretrained on the ImageNet dataset [44]. From the output map
of the conv4 layer of ResNet, we adopted generalized mean (GeM) pooling [45]
that weighs the importance of the outputs to generate the feature vector. Denote the
output map of the conv4 layer as oh,w where h and w are indices of height and width
locations of the image, respectively. We further integrated GeM pooling followed
by a fully connected layer, parameterized by weights F and bias bF , similar to
the approach in [15, 46]. The feature vector d that summarizes the discriminative
outputs of the image is produced as an output of the GeM pooling layer as

d = F ×
⎛

⎝ 1

Hconv4Wconv4

∑

h,w

op
h,w

⎞

⎠
1/p

+ bF , (8)

where Hconv4, Wconv4 represent the height and width of the output map, and p is the
parameter of the GeM pooling. In our experiments, the parameter p is set to 3. The
feature vector d is then l2 normalized.

For training, we employed the Adam optimizer [40] with a learning rate of 5e−3
that gets decreased by 0.1 after 80 epochs. The maximum number of epochs was
set to 100 and the batch size N for training is 32. The temperature parameter
τ was set to 0.5 without performing any hyperparameter tunings. For contrastive
learning parameters, the queue size K = 1024 and the momentum parameter
m = 0.999. To prevent feature vector d from having an excessively high l2 norm,
prior to normalizing, we added the l2 regularization term derived in [10] into the loss
function. Specifically, this term is simply denoted as (||d||2 − 1)2. The coefficient
of the l2 regularization was set to 0.1.
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Note that when testing the image retrieval performance, since the focus is
put on measuring the performance of the feature vector, we do not consider any
approximate techniques for measuring distance such as query expansion [45, 47] or
asymmetric quantizer distance [48].

4.3 Experiments Results

Precision and recall were used to evaluate the performance of the proposed method.
The recall is the total number of the retrieved SAR patches from the database (key
dataset), and the precision is defined as the ratio between the number of accurately
retrieved SAR patches and the total number of retrieved SAR patches. Whenever
there exist duplicate regions calculated in terms of the geographic coordinates
between the query image and the retrieved image, we consider the retrieved image
as the accurately retrieved image. As a primary performance measure, we have
used mean average precision (mAP). The average precision is the mean value of
the precision values obtained at various recall values for each query image. In the
present setting, the mAP is the mean of the average precision values over 100
query images. Also, the mean precision at n (mP@n) is used as a performance
measure where n represents the recall value. We report three mean precisions;
mP@1, mP@10, mP@50. For instance, it is implied that when we retrieve ten SAR
patches from the database, mP@10 represents the fraction of the number of accurate
images we can expect to retrieve correctly.

The experiment results are shown in Table 3. The methods vary depending on
the dimension of the feature output d, which is 512 or 1024, and the two considered
architectures ResNet50 or ResNet101.

The “Haywrd” cases (Exp.1 and Exp.2) are from the Hayward fault in California,
USA, and predominantly consist of human-made structures. The “ykdelB” cases
(Exp.3 and Exp.4), on the other hand, mostly consist of natural formations. By
comparing the mAP values, we observed that the proposed method more effectively
retrieved similar images for the Haywrd experiment cases compared to the ykdelB
cases. For both datasets, it can be seen that mAP values of the “harder” cases (Exp
2 and Exp. 4) are lower than those of the “easy” cases (Exp 1 and Exp. 3).

Although the performances are relatively lower in the hard cases, it can be
observed that the proposed method works well regardless of the dimension of the
feature vector and the backbone architectures, as even mP@1 results in high values
(over 0.9) in all the experiments. This result strongly indicates that our method
can perform remarkably well without the use of any sophisticated yet non-scalable
methods such as local descriptors [7] and matching through RANSAC [31].

By way of visual results, Fig. 5 shows several retrieved SAR patches using
ResNet101-1024 that outputs 1024 dimensional feature vector and its backbone is
ResNet101. In most cases, the proposed method retrieves SAR images correctly
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Table 3 Performance results
on the UAVSAR dataset

Method mAP mP@1 mP@10 mP@50

Exp.1 Haywrd-Easy

ResNet50-512 0.5254 1.0000 0.9870 0.8044

ResNet50-1024 0.4908 1.0000 0.9810 0.7702

ResNet101-512 0.5366 0.9700 0.9650 0.8018

ResNet101-1024 0.5314 0.9800 0.9630 0.7952

Exp.2 Haywrd-Hard

ResNet50-512 0.4092 1.0000 0.9810 0.6874

ResNet50-1024 0.4287 1.0000 0.9730 0.7188

ResNet101-512 0.4223 1.0000 0.9690 0.7050

ResNet101-1024 0.4159 1.0000 0.9650 0.6976

Exp.3 ykdelB-Easy

ResNet50-512 0.4708 0.9700 0.9230 0.6128

ResNet50-1024 0.4439 0.9100 0.8640 0.5760

ResNet101-512 0.4296 0.9400 0.8690 0.5644

ResNet101-1024 0.4290 0.9500 0.8630 0.5574

Exp.4 ykdelB-Hard

ResNet50-512 0.4181 0.9400 0.8440 0.5750

ResNet50-1024 0.3916 0.9600 0.8340 0.5442

ResNet101-512 0.3681 0.9700 0.8680 0.5138

ResNet101-1024 0.3682 1.0000 0.8970 0.5280

from the database. In fact, only two retrieved images in Exp.4 ykdelB-Hard case
were incorrect; however, these images are quite similar to a query SAR image
visually.

5 Conclusions

In this chapter we have proposed a contrastive learning method for the SAR image
retrieval task. A homography transformation is used for augmenting the SAR image
patches and the output vector of a transformed image is compared against that of
an original image. This enables the two introduced encoders to be trained in a
self-supervised manner, thus no labeling process is necessary when constructing or
obtaining the dataset. Our method is, therefore, especially applicable for tasks where
the labeling process is time-consuming and costly. Experiments were conducted
and corresponding results demonstrate that even in cases where the encoders did
not encounter SAR images similar to a given query image during training, they
nevertheless successfully retrieved similar SAR images from the database. This
work can be utilized for applications such as image searching-based positioning
or navigation, which is one of our future extensions.
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Fig. 5 Examples of retrieved SAR images. The first column is the query SAR images and
the others are the retrieved ones (the second column contains the best-retrieved image and the
rightmost column contains the fifth-best). The green box represents an accurately retrieved SAR
image, whereas the red box presents an incorrectly retrieved one. Top: Exp.2 Haywrd-Hard
Bottom: Exp.4 ykdelB-Hard
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Synthetic Aperture Radar Image Based
Navigation Using Siamese Neural
Networks

Alexander Semenov, Maciej Rysz, and Garrett Demeyer

1 Introduction

A well-known advantage of synthetic aperture radar (SAR) and the images they
produce is their ability to precisely capture topological features without being
affected by obstructive weather conditions. Consequently, SAR images have been
used in a variety of applications including deep learning, target detection [4], terrain
classification [11], despeckling [5, 6, 14], optical data fusion [13], among others.
An important application that has been a topic of focus in the recent literature, and
the broader focus of this chapter, involves using SAR images to develop navigation
techniques suitable for global positioning system (GPS) denied environments. In
other words, the general aim is to utilize SAR images to determine the location
of a system that is navigating over a specified geographical area of interest. It is
assumed that the system itself is capable of generating SAR images (e.g., via an
onboard SAR) in real time during operations, and cannot rely on any other form of
sensory data to navigate over the area. The navigation process under such settings
usually requires retrieval of images, or image retrieval [7, 10, 15], where images
stored in a large database, e.g., a database onboard an unmanned aerial vehicle’s
(UAVs) system, are compared to a query image and one or more of the most similar
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images are retrieved. Since the query image represents the current location of the
system, a primary goal is to find a best image in the database whose geographical
location is closest to or exactly that of the query image. Once an image is selected,
it is then to possible to produce location coordinates.

To quantify “similarity” between SAR images in a database and a query
image, global descriptor feature vectors of all images are first generated and then
compared with the vector of the query image. In this regard, many studies have
employed convolutional neural networks (CNNs) to generate descriptor vectors of
SAR images [1, 8, 12]. There are, however, several issues that often degrade the
performance of the vectors when generated via a CNN including clutter, occlusion,
and illumination. One possible remedy is to generate keypoints to mark locations
of interest on an image and local descriptor vectors corresponding to the keypoints
[3, 7, 10, 15, 18]. In other words, the keypoint represents the location of interest and
the local descriptor is a vector characterizing an associated keypoint. Nevertheless,
one of the major drawbacks of the aforementioned and existing methods is their
computational performance over large-scale datasets, which becomes necessary for
tasks such autonomous UAV flight operations.

This work leverages on the concept of Siamese neural network, which is an
artificial neural network (ANN) proposed and utilized for tasks like signature
verification and face recognition [2]. In contrast to classification tasks, where
inputs are mapped to a fixed set of outputs, Siamese networks output similarity
between inputs. Namely, its “sister” networks use the same weights for two different
input vectors in order to compute the output. The output is sometimes computed
in advance to serve as a baseline for comparison and performance evaluation.
When used in facial recognition applications, rather than mapping each face to an
individual class (as normally done in classification), Siamese networks precompute
outputs for a known set of people and then retrieve the closest output. Another
application of Siamese ANNs is object tracking [19], where similarity is calculated
between the exemplar image (object that is tracked) and parts of a larger image
within which the object is being searched. Further, vision-based localization in
autonomous cars, where only visual information is available, was studied in [16].
The authors utilize deep neural networks and propose a novel loss function that
takes into account the geometric distance between sequential images taken by
car cameras. Similar problems of learning mapping functions that are assigning
geometrically close images to close regions in Euclidean space was studied in
[17]. Both articles utilized pretrained ANNs as backbones for image recognition.
Learning in Siamese ANNs can be performed using contrastive loss or triplet loss.

The sections of this chapter are organized as follows. In Sect. 2 we describe
the model details, including the contrastive and triplet loss functions. Section 3
furnishes a description of the data used, the model architecture details, and the com-
putation results with corresponding discussion. The conclusions are summarized in
Sect. 4
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2 Model Formulation

This section introduces a deep neural network architecture that produces a global
feature vector of a given SAR image that is used in the retrieval process. Let
e represent a global feature vector of a SAR image that captures its semantic
information. Feature vector e is constructed as an output of a function e = f (x, θ),
where x is an input SAR image, and θ is a vector of parameters, where e ∈ R

n,
x ∈ R

m, and n � m. In this case, we represent f (x, θ) as a neural network that
generates the global feature vector. The resulting vectors represent “latent” features
of the images, often referred to as embeddings in the literature. Then, the principal
aim of our approach is to construct a function f (x, θ) such that images xi and xj

from a geographically close region result in vectors ei and ej that are similar to one
another, whereas images that are from distant regions would results in vectors that
are dissimilar.

To this end, we utilize the aforementioned Siamese neural network method [2]
to find the parameters θ . As a backbone, the network architecture is built based
on SqueezeNet [9], which is a compact deep neural network with 10 layers and
with approximately 1.2 million parameters. A primary reason for employing this
architecture is to achieve computational scalability when, for example, using very
large SAR image datasets is required. This is clearly a necessary consideration
when performing real-time navigation tasks, one which many existing deep network
architectures fail to offer due to their size. Indeed, SqueezeNet contains significantly
fewer parameter than other popular ANNs such as VGG-16 (with about 138M
parameters) or AlexNet (about 62M parameters) that are often used for image
processing applications. SqueezeNet is a convolutional neural network and details
on its architecture can be found in [9].

2.1 Contrastive Loss and Triplet Loss

Learning in Siamese ANNs can be performed using contrastive loss or triplet
loss, where the former takes a lower or higher “distance” value if a sample is
encoded to something similar or dissimilar, respectively; whereas the latter loss
function maximized the distance from a reference input to a dissimilar input and
simultaneously minimizes the same distance to a similar input.

To train a neural network embedded with a contrastive loss function, we construct
two datasets: Dp containing positive pairs of images, and Dn containing negative
pairs. In other words, positive pairs contain geographically close images, whereas
negative pairs contain images that are distant. Then, the Siamese neural network
is constructed from two “sister” networks fa(xa, θ) and fb(xb, θ) with shared
parameters θ that are learned by minimizing the following contrastive loss function:
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L(ea, eb) =
{

d(ea, eb), if positive image pair

max(0,m − d(ea, eb)), if negative image pair,
(1)

where d(·) is the distance between two feature vectors.
Another commonly used loss function for learning Siamese ANNs is the triplet

loss, which is constructed using three “sister” networks fa(xa, θ), fb(xb, θ), and
fc(xc, θ) with shared parameters θ . Image xa is referred to as an anchor, image xb

is a positive image similar to xa , and xc is negative image dissimilar to xa . Then, the
triplet loss is defined as:

L (xa, xb, xc) = max
(
‖f (xa, θ) − f (xb, θ) ‖2 − ‖f (xa, θ) − f (xc, θ) ‖2 + α, 0

)
.

(2)
With respect to the feature vectors, minimizing loss function 2 results in increas-

ing distance between xa and xc and decreasing distance between xa and xb.
As previously, in this case, similar images contain geographically close regions
while dissimilar images contain distant regions. Figure 1 illustrates the high-level
architecture of the Siamese ANN with triplet loss. Note that the figure would contain
two networks, or “twin” networks, in the described case when contrastive loss is
used.

Fig. 1 Architecture of Siamese ANN with triplet loss
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2.2 Dataset Generation and Retrieval

SAR data is represented as images with three channels and the geolocation (latitude
and longitude) is known for each pixel. Thus, a dataset {D} can be represented as
a set of tuples {(I, l)}, where I is an image and l is a corresponding location. In
our work we use square images where l represents latitude-longitude coordinates of
the center of the image. While training a Siamese ANNs, we consider two images
Ii and Ij as “similar” if their intersection is non-empty. Otherwise, the images
are considered to be “different” if their intersection is empty. This is illustrated in
Fig. 1, where the images formed by the region in the dashed blue squares would
be considered similar, while the image formed by the red square image would be
considered different from any of the other images. To generate training data for
a given geographical region (e.g., the region captured by Fig. 2) we first select a
random location and then generate images that are similar to one another by shifting
the selected location in random directions (up, down, left, right) multiple times using
a predefined stride size while the intersections are non-empty. In order to generate
different pairs we simply select two non-intersecting images at random distance
from one another.

During the retrieval process, for given a query SAR image Iq with unknown
geolocation, the goal is to find its location by retrieving the geographically closest
images from D = {(I, l, e)} with known coordinates. When constructing the
database {D} we generate a grid of SAR images of the same size as the query
image, then utilize a trained Siamese ANN to generate a global feature vector e

for each of the images in {D}. Finally, during retrieval we calculate f (Iq, θ) and
find coordinates corresponding to the top predefined number of closest vectors.
To evaluate our method we retrieve coordinates of the closest vector in Euclidean
space and compute geographic distance between geolocation of retrieved vector and
ground truth geolocation of the query image using the Haversine formula.

Fig. 2 Example of regional SAR image: blue squares represent similar images, red square
represents a different image
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3 Numerical Experiments and Results

In this section we outline the data used in our experiments, specify the architecture
detail of the deployed Siamese ANN and present the corresponding computational
results.

3.1 Data and Architecture Details

The data was obtained from a public SAR image data repository at NASA Jet
Propulsion Laboratory.1 The dataset contains 20,002 products from 1821 flight
lines. Each product contains SAR data in multiple formats, including tiff, and
metadata with geolocation. For the current experiments we use three SAR images
contained within bounding box sizes 17,982 × 11,388, 3937 × 26,905, and
14,621 × 25,956, where, depending on the image, 10,000 pixels approximately
correspond to a 40–50 km distance. The images were from various regions in Florida
and California, USA, that contain both natural and man-made formations. The
experiments were conducted on a computer with NVidia GeForce RTX 3090 with
24 GB GDDR6X memory.

We utilize online training dataset generation, where training inputs for the
Siamese ANN (either tuples or triples) are randomly generated from the input
images during each training epoch. Image patches of size 200 × 200 with three
color channels and cut from original SAR images in tiff format are used. Two broad
sets of experiments are conducted: the first involves patch images generated with an
intersection by applying a stride length of 100 (Tables 1 and 2); the second involves
patch images that do not contain an intersection by applying a stride length on 200
(Tables 3 and 4). Depending of the experiment configuration, the output of the neural
network is an embedding vector with 128 or 256 dimensions, denoted by 128d and
256d in the tables. We implement the neural networks using Keras and utilize Adam
as the optimization algorithm. The ANNs were trained for 40 epochs during all the
experiments.

Table 1 Summary statistics (in km)

Top-1 Top-5

Architecture Mean Std Median Mean Std Median

Triplet loss, 128d 9.613 18.081 0.614 1.983 6.419 0.271

Triplet loss, 256d 9.223 17.801 0.554 2.129 5.774 0.265

Contrastive loss, 128d 6.595 15.590 0.452 0.786 2.377 0.246

1 https://uavsar.jpl.nasa.gov/.
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Table 2 Distance statistics for different cutoff values

Architecture

Triplet loss, 128d Triplet loss, 256d Contrastive loss, 128d

Cutoff k Mean Std Median k Mean Std Median k Mean Std Median

0.75 499 9.568 18.071 0.612 500 9.223 17.800 0.554 500 6.595 15.590 0.452

0.5 476 9.597 18.060 0.614 494 9.292 17.892 0.528 500 6.595 15.590 0.452

0.25 217 6.137 12.855 0.318 271 5.021 12.111 0.241 447 5.870 14.555 0.408

0.1 28 2.316 8.485 0.136 31 1.891 9.441 0.099 65 0.581 0.906 0.221

Table 3 Summary statistics (in km) for images with no intersection

Top-1 Top-5

Architecture Mean Std Median Mean Std Median

Triplet loss, 128d 15.747 22.963 4.886 3.185 6.510 0.718

Triplet loss, 256d 13.822 20.262 3.456 2.811 6.357 0.705

Contrastive loss, 128d 11.185 18.525 2.450 2.316 5.804 0.649

Table 4 Distance statistics for different cutoff values for images with no intersection

Architecture

Triplet loss, 128d Triplet loss, 256d Contrastive loss, 128d

Cutoff k Mean Std Median k Mean Std Median k Mean Std Median

0.75 481 15.685 22.928 5.009 491 13.329 19.438 3.330 500 11.185 18.525 2.450

0.5 369 14.458 21.422 4.368 439 12.575 18.499 3.113 495 11.003 18.239 2.443

0.25 104 8.929 14.935 0.815 116 5.812 12.280 0.468 315 9.477 16.609 1.713

0.1 12 0.485 0.959 0.081 6 0.305 0.419 0.126 21 0.896 0.989 0.257

For each experiment set, we compute summary statistics with respect to the
distances between query images and retrieved images. Specifically, for each loss
function configuration, for 500 query images we retrieve the K closest images and
their coordinates from the dataset. In Tables 1 and 3 “top-1” and “top-5” represent
K = 1 and 5 retrieved images for each query image introduced to the networks,
respectively. In the case of K = 5, we calculate geographic distance for each
of the five closest images, and return only the closest. In Tables 1, 2 and 3, an
embedding distance limit, i.e., “cutoff,” is imposed to each distance in embedding
space configuration. Images below the cutoff value are retrieved and the closest one
is considered. The number of retrieved images for each cutoff value is denoted by
k—observe that not all query images resulted in any retrieved images.

3.2 Computational Results and Discussion

The tables below provide the mean, standard deviation, and median computed
distances in the described experiments. In Tables 1 and 2 it is clear that the median
distances improved when the dimension of the Triplet loss was increased from 128
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to 256. The same trend can be observed for the improvements in means, whose
values are rather large between 1.9–9.6 km. It will be shown in the case study
presented in Sect. 3.3, the large discrepancies between the mean and median values
are due to a low number of outliers where the distances between query and retrieved
images were large. This is clearly reflected in the standard deviation values present
in the tables. When comparing the different loss function, other than the last two
instances in Table 2, the contrastive loss function with 128 dimensions resulted in
better median and mean values than Triplet loss, suggesting that it is more adept
when deploying the proposed model. The discrepancy between these functions
merits further examination and is something we reserve for future endeavors.
Finally, when comparing between the “top-1” and “top-5” column blocks in Table 1,
we can observe a significant improvement in performance, which suggests that there
often are other regions located very closely to the query images (reflected in top-5).

Similar trends to the ones described above can be observed in Tables 3 and 4.
However, when comparing the Triplet loss and contrastive loss function on a one-
to-one basis in Tables 1 and 2 with the ones in Tables 3 and 4, respectively, other
than for the last rows of Table 4, it is obvious that performance is degraded when
the dataset consists of images that do not intersect geographically.

3.3 Case Study

For better visual exposition, we consider the experiment instance in Table 1 with
“Triplet loss, 128d” corresponding to the “top-1” column block and plot several
results. First, the training and validation loss evolution is illustrated in Fig. 3. The
distances between embedding vectors and retrieved geographic distance are pre-
sented by the scatter plot in Fig. 4. Observe that a pronounced majority of instances
are identified very closely relative to their true coordinates. However, several outliers
extending approximately 80 km can be seen. Specifically, Table 1 above furnishes
summary statistics of differences, where for the first set of experiments, the mean
deviation is approximately 2 km, while the mean is approximately 13 km due to
outlier influences. The performance is further reinforced by the histogram in Fig. 5
showing differences between the 500 retrieved images and their real coordinates,
where it can be observed that over half the retrieved images were within 0–5 km
form the query images. By way of computational effort, generation of embeddings
for the 500 SAR images with 128d took 1.61 seconds using the specified GPU
configuration, clearly demonstrating the potential for scalability of the proposed
model.
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4 Conclusions

In this chapter we proposed a deep learning model based on Siamese networks for
navigation tasks. Comparative experiments were conducted for various learning
settings using contrastive and triplet loss functions. Our results suggest that the
developed model is effective and scalable. Experiments using contrastive loss and
SAR datasets whose images were generated with topological overlap generally
yielded superior results. Also, we observed that top-5 retrieved results contained
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much closer SAR regions than top-1. Potentially, it may be possible to first retrieve
top-K images and subsequently rerank them using a tailored method such that the
closest image out of K would be detected.

Our ongoing and future work will use a multitude of datasets representative
of larger and more diverse global regions along with experimentation with very
large-scale datasets. The described method is also being extended to consider zoom
and other transformations, and loss functions that directly admit distances. We also
seek extensions that do not rely on datasets formed by image patches generated at
predefined stride lengths, but rather be able to scan the region of interest contained
in the whole SAR image and thereafter find specific query locations and coordinates
directly.
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A Comparison of Deep Neural Network
Architectures in Aircraft Detection
from SAR Imagery

Jin Xing, Ru Luo, Lifu Chen, Jielan Wang, Xingmin Cai, Shuo Li, Phil Blythe,
Yanghanzi Zhang, and Simon Edwards

1 Introduction

Synthetic aperture radar (SAR) can offer continuous and stable Earth observation all
day and all night, which has been intensively studied in various research domains
[6]. With the fast development of SAR techniques, a large number of high-resolution
spaceborne and airborne image datasets have been acquired, which provide exciting
opportunities for SAR-based target detection. Nowadays, timely aircraft detection
plays a pivotal role in traffic management and military activities, which has resulted
in the design and development of a broad range of target detection algorithms [34].

The fast development of deep learning techniques in remote sensing has been
reviewed by numerous scientists (e.g. [20, 46]). Generally, convolutional neural
networks (CNNs) have been explored extensively due to their prominent feature
extraction performance with end-to-end structures, which makes them the most
widely used deep learning algorithms for man-made target detection in remote
sensing [21]. When it comes to the aircraft detection using deep learning, various
domain-specific solutions have been explored [4]. For example, Siyu et al. [29]
combined CNN with data augmentation techniques to address the insufficient
training sample challenge in automatics aircraft detection from SAR imagery, which
was reported with 96.36% overall accuracy. Diao et al. [7] employed constant false
alarm rate (CFAR) for aircraft pre-location to reduce the influence of background
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clutters, which was then integrated with faster region-based CNN (R-CNN) to
perform aircraft detection in high-resolution SAR images. Most of these algorithms
are composed of the region proposal and target detection stages, thus are named
two-stage detection approaches in deep learning [8, 9]. However, its slow detection
speed was considered a drawback, and new deep neural networks (DNNs) were
continuously being studied for aircraft detection.

When the target detection speed is concerned, You Only Look Once (YOLO)
family is frequently employed, as a typical one-stage target detection algorithm
[12]. In 2015, Redmon et al. [26] proposed the YOLO algorithm to predict targets
by directly performing classification regression on the input image. The average
accuracy of the YOLO algorithm on Pascal VOC 2007 testing dataset reached
63.4%, which was about 10% lower compared with Faster R-CNN, but the detection
speed was better than Faster R-CNN [27]. In 2017, YOLOv2 with Darknet-19 as the
backbone network was proposed [25], in which the anchor mechanism based on k-
means clustering calculation was used to improve the detection accuracy. Following
these works, YOLOv4 [2] was invented to further improve the speed of detection.
Recently, Scaled-YOLOv4 [36] and YOLOv5 [35] attracted increasing interests of
researchers due to its advantages of the fast speed and satisfactory accuracy. We
also note that current research is the initial stage of applying these one-stage target
detection DNNs for aircraft detection, and domain-specific challenges of aircraft
detection from SAR imagery are continuously being investigated [19].

Generally, there are three pivotal challenges in employing deep learning tech-
niques for aircraft detection from SAR imagery. First, the scale heterogeneity
of aircraft has made the feature extraction more challenging when using fixed
receptive fields of most CNNs [44]. Second, the complex background usually incurs
interference to the detection of aircraft, in which DNNs might be confused by
objects with similar features (e.g. shapes and sizes) to aircraft [33]. Third, speckle
noise, the multiplicative noise produced in radar echoes due to the SAR imaging
process, introduces additional barriers in the aircraft detection process due to its
‘salt and pepper’ effect [3]. These challenges have been separately accommodated
using different DNNs (e.g., [10]), but their effectiveness remains unclear due to
the lack of integrated assessment work. Therefore, it becomes necessary to conduct
comparison works of DNNs in aircraft detection to gain insights into how these
three domain-specific challenges are tackled.

This book chapter aims to assess six widely used and cutting-edge DNNs for
automatic aircraft detection from SAR imagery. To assure the consistence of this
assessment work, the same collection of SAR images from Gaofen-3 system with
1 m resolution is selected as the testing datasets. Based on the literature review, we
choose single-hot multi-box detector (SSD), Faster-RCNN, EfficientDet, YOLOv5,
efficient weighted feature fusion and attention network (EWFAN) [37] and the
efficient bidirectional path aggregation attention network (EBPA2N) [18]. Among
these six DNNs, SSD, Faster-RCNN, EfficientDet and YOLOv5 are considered
as general frameworks for object detection [43], while EWFAN and EBPA2N are
specifically designed for aircraft detection with the integration of geospatial domain
knowledge. This chapter provides a baseline for performance assessment in SAR-
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based aircraft detection, to facilitate the integration of domain knowledge in SAR
data analytics with deep learning techniques.

The rest of this book chapter is organized as follows. The testing dataset is
delineated in Sect. 2. The architecture and implementation of six DNNs for aircraft
detection are presented in Sect. 3. In Sect. 4, we assess their detection accuracy in
three experiments and discuss their detection speed in SAR-based aircraft detection,
with respect to their architecture, respectively. Finally, we conclude this book
chapter and discuss future research in Sect. 5.

2 Datasets

Currently, there is no ubiquitously agreed upon standard SAR datasets for aircraft
detection [23]; thus we choose our own SAR imagery datasets for better consistency
in the DNN performance assessment. To evaluate the aircraft detection performance
of widely used deep neural networks, 15 large-scale SAR images from Gaofen-
3 system with 1 m resolution including the airports and aircraft are utilized.
First, the aircraft samples are manually marked in SAR images and confirmed by
SAR interpretation experts. Three large-scale SAR images of different airports are
retained for independent testing to evaluate the performance of the network. Then,
the dataset is generated automatically by the decomposition operation [42]. Since
the number of manually annotated images is limited, we use 90-degree rotation,
translation, flipping and mirroring to perform data augmentation [15]. Finally,
4396 slices with the size of 512 × 512 are obtained, and the ratio of training
set and validation set is set to 4:1. A sample of these image tiles is shown in
Fig. 1. From these image we can observe the size heterogeneity of aircraft, the
complex background information, and also considerable speckle noise are present.
SAR imagery datasets are more difficult to interpret compared with optical remote
sensing images, thus present domain specific challenges for aircraft detection [4].

Fig. 1 Four 512 × 512 SAR image samples used in the performance comparison. We choose
these SAR images to include the speckle noise, the heterogeneity of aircraft (e.g. sizes, shapes and
positions) and the complex background to better evaluate the performance of aircraft detection
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3 Methods

The automatic detection of aircrafts from SAR images is widely applied in various
research fields, but there are three major challenges in aircraft detection: the speckle
noise from SAR systems, the size and shape heterogeneity of aircraft and the
interference of complex background [18]. For most existing target detection DNNs,
SAR domain knowledge is incurred to accommodate the handling of speckle noise
[14], but the other two challenges are less noticed. Therefore, we compare six
DNNs, namely, SSD, Faster-RCNN, EfficientDet, YOLOv5, EWFAN and EBPA2N,
to assess how they tackle these three challenges together in automatic detection
of aircraft from SAR imagery. Before conducting the experiments of performance
comparison, we first present these six DNNs.

3.1 SSD

SSD network is a popular convolutional neural network, which is best known for its
fast detection speed with good accuracy [17]. There are many researches working
in target detection favouring SSD network for object detection [8, 9, 39], since SSD
is able to conduct object localization and classification in a single forward pass
of the network. This DNN has also been applied to aircraft detection in remote
sensing images [24], and its noticeable accuracy makes it a good candidate in our
performance assessment experiments.

We illustrate the architecture of SSD in Fig. 2. SSD employs the 16-layer visual
geometry group (VGG16) network as the backbone to extract features hierarchically
from the given image. Six multiscale feature maps are generated by SSD for
aircraft detection, with the large-size feature maps targeting small target and the
small-size feature maps for large target detection. This feature extraction process
is implemented as follows. Assuming the size of the input SAR image is set to
300 × 300, the feature map with the dimension of 38 × 38 output from the Conv4_3
layer (the third convolutional layer of the four module) in VGG16 is used as the first

Fig. 2 SSD architecture in our experiments



A Comparison of Deep Neural Network Architectures in Aircraft Detection. . . 95

feature map in our six multiscale feature map. At the same time, the fully connected
layer and dropout layers in the original VGG16 are removed, and then five auxiliary
convolutional layers are added after them to produce multiscale feature maps with
dimensions of 19 × 19, 10 × 10, 5 × 5, 3 × 3 and 1 × 1, respectively. At this point,
all six feature maps of different sizes are generated for subsequent classification and
regression analytics. Finally, the classification of target objects and the regression
of the location bounding boxes are performed via two 3 × 3 convolutional layers,
respectively. And the detection results are output after non-maximum suppression
(NMS) screening [28], to select the optimal aircraft bounding boxes.

3.2 Faster R-CNN

A faster R-CNN is proposed by Ren et al. [27] and is one of the most widely utilized
DNN algorithms in the field of target detection. It relies on the region proposal
networks (RPNs), which effectively simplifies the selection of candidate regions
(i.e. target bounding boxes) in the process of detection. Faster R-CNN enables the
parameter sharing among RPNs and convolutional layers, which could accelerate
the speed of the algorithm training and target detection. We also note the efficiency
of Faster R-CNN largely depends on the RPN, which is usually considered as a
trade-off between the detection accuracy and the computation speed [11].

The architecture of Faster R-CNN includes three parts: the CNN, RPN and
classification and regression modules, as shown in Fig. 3. The CNN module is
designed to perform convolutional operations to the input image to extract salient
feature maps. The RPN is the module used to generate candidate regions, which
replaces the original selective search algorithm and can obtain a series of candidate
regions on the feature map output from the convolutional network (Ren et al., ibid.).
The steps of the RPN to generate candidate regions are delineated as follows. First,
the RPN employs a sliding window with each pixel in the feature map as the centre
to produce a series of anchors. Second, two 1 × 1 convolutional layers are incurred,
one for the binary classification to determine the probability that the anchors belong
to the foreground and background and one for regression to produce the coordinate
offsets of the anchors, which are named as region proposals. Third, the targets
are classified and regressed using the candidate region proposals, which are then
normalized by sizes and the previously obtained feature maps to generate the exact
positions of each targets. Finally, the detection results are offered as the combination
of classification and positions.

3.3 EfficientDet

In 2019, Tan et al. [32] proposed a powerful one-stage detection algorithm named
EfficientDet. It combines EfficientNet [31] and the weighted bidirectional feature
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Fig. 3 Illustration of the Faster-RCNN architecture

Fig. 4 Our implementation of the EfficientDet

pyramid network (BiFPN). EfficientDet has been employed for aircraft detection
by Wang et al. [38] using aerial remote sensing images. EfficientDet was highly
scalable according to various sizes of the input image to achieve remarkable
performance, but the computation costs also increased correspondingly [30]. The
balance between the detection accuracy and the computation costs has also been
explored recently [13], which will attract increasing research interests in the future
study of aircraft detection.

The overall architecture of EfficientDet is shown in Fig. 4. There are eight
different models in EfficientDet, which are named D0 ~ D7, and we mainly use
EfficientDet-D0 in this book chapter. The feature extraction backbone network is
EfficientNet, and we choose the five feature maps output from its third to seventh
convolutional layers for feature fusion in the BiFPN network, as a more efficient
feature fusion approach based on PANet [16]. First, to simplify the network, we
remove the neurons on the top-most and bottom-most branches that contribute less
to the overall performance. Second, the original feature maps of the middle three
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layers are separately added to the fused target feature map to enhance the perfor-
mance of feature fusion. Third, the top-down and bottom-up paths are employed as
another fusion module, to achieve higher-level feature fusion. Finally, when feature
maps with different resolutions are fused, a weight is assigned to each feature
map according to the contribution rate, allowing the network to automatically learn
the importance of each feature map to enhance feature representativeness. After
obtaining the five effective feature layers of the enhanced output after BiFPN, the
results are predicted using a classification regression network, and the final detection
results are generated using the non-maximum suppression (NMS) algorithm [22].

3.4 Efficient Weighted Feature Fusion and Attention Network
(EWFAN)

The efficient weighted Feature Fusion and Attention Network (EWFAN) is proposed
by Wang et al. [37], as a state-of-the-art DNN specifically designed for aircraft
detection form SAR imagery. It is based on the EfficientDet-D0 framework [32]
in which the adaptively spatial feature fusion (ASFF) and residual spatial attention
module (RSAM) are introduced in the feature fusion process to integrate and extract
high-level features. Moreover, based on complete intersection-over-union (CIoU)
loss and focal loss, the complete intersection focal (CIF) loss function is proposed
to measure aircraft detection accuracy in SAR image analytics.

The specific network structure of EWFAN is shown in Fig. 5. The EWFAN
algorithm uses EfficientNet as the backbone network. The images are input into
the backbone network and down-sampled, and then five feature maps of different
resolutions are generated. These feature maps are input into weighted feature fusion
and attention module (WFAM) module, which are further processed by the BiFPN
module to obtain five enhanced feature maps. Among these five enhanced feature
maps, three higher resolution feature maps are fed into the ASFF module, which
is designed to focus more on spatial information fusion, and effectively suppress
the interference of negative samples. For aircraft detection, there is less spatial
information within the low-resolution feature maps due to the small target size. For
the two lower-resolution feature maps accommodated by BiFPN, the introduction
of RSAM (i.e. a combination of spatial attention module (SAM) [40] and residual
connectivity) can effectively highlight the spatial information and improve the
effectiveness of small target detection. Then, in the classification and regression
steps, EWFAN generates nine prior frames with different sizes and aspect ratios
on each grid of each effective feature layer, based on which the classification and
regression operations are performed to obtain the prediction results. In the training
process, the advanced CIF loss combines CIoU loss with the focal loss to improve
the stability and accuracy of training, which also speeds up the training convergence
to some extent.
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Fig. 5 The overall architecture of the efficient weighted feature fusion and attention network
(EWFAN) in our implementation

3.5 YOLOv5

YOLOv5 is a lightweight DNN that presents excellent speed and precision in
automatic object detection [35]. It relies on a single deep convolutional neural
network (e.g. VGG16) that splits the input image into a grid of image tiles and
each tile directly predicts a bounding box and object classification. Similar to
EfficientNet, the YOLOv5 network also uses additional parameters of the depth and
width of the network, so as to scale the network. The specific network structure is
shown in Fig. 6. Firstly, the image is fed into a five-stage feature extraction backbone
network with convolution blocks and down-sampling modules to extract rich image
features and form high-level feature maps. Secondly, the CSP-PANet module, which
is an effective combination of CSPNet and PANet, is proposed as a fusion module
to integrate the semantic and detailed information of feature maps at different levels
of the backbone network to enhance the feature representation capability. Finally,
1 × 1 convolution is applied for classification and regression to obtain the category
and position of the detected target, and the detection results of the target are labelled
in the form of boundary boxes. YOLOv5 not only has the advantages of YOLO
including fast and low background error detection rate but also has the advantages
of high model flexibility and strong universality. It can select the appropriate model
for different detection tasks. Meanwhile, the positioning accuracy and recall rate of
YOLOv5 need to be further improved.
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Fig. 6 The YOLOv5 Implementation

3.6 Efficient Bidirectional Path Aggregation Attention
Network (EBPA2N)

Efficient bidirectional path aggregation attention network (EBPA2N) is based on
the decomposition-recomposition methodology [42], with the innovative invo-
lution enhanced path aggregation (IEPA) module and effective residual shuffle
attention (ERSA) module to efficiently capture the relationship among aircraft’s
backscattering features. Due to the combination of SAR analysis and attention
mechanism, EBPA2N could better accommodate multiscale geospatial information
in aircraft detection and meet the three challenges in aircraft target detection with a
good detection performance. However, in some scenes with weak target imaging
information and complex electromagnetic scattering characteristics, its detection
performance is degraded.

The specific network structure is shown in Fig. 7. The input image goes through
the YOLOv5 backbone network for feature extraction. The last three output feature
maps, namely, P3, P4 and P5, are selected and input into the IEPA module and
the parallel effective residual shuffle attention (PERSA) module for bidirectional
path aggregation to enrich the representativeness of multiscale features. The IEPA
module is used to fuse the three feature maps with different resolutions output
from the backbone network to learn multiscale geospatial information. Then, three
parallel ERSA modules are used to refine the multiscale features of the aircraft.
In addition, a classification and bounding box prediction network is employed to
generate preliminary predictions. Last but not the least, the duplicate predictions are
filtered by the NMS algorithm to achieve the final aircraft detection results.
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Fig. 7 The overall architecture of the efficient bidirectional path aggregation attention network
(EBPA2N)

4 Results and Discussion

In this section, we compare the performance of aircraft detection using the six
presented DNNs and discuss their advantages and disadvantages. Knowledge
discovery from this performance comparison will offer guidance for performance
improvement of existing DNNs and provide insights for future design and devel-
opment of advanced DNNs for aircraft detection. We also note this book chapter
provides a baseline for the performance assessment of DNNs in SAR-based aircraft
detection.

4.1 Aircraft Detection in Airport I

In the first experiment, the SAR image is acquired from a small airport. As shown
in Fig. 8, we could notice small buildings near the airport I, which may impact
the accuracy of aircraft detection if they have similar shapes [4]. The false alarms
outside the airport can be removed via geofencing, and we focus on the missed
detection and false alarms inside the airport in the detailed enlargement figure. The
airport is a military airport, and there are always 33 aircraft at the airport that are
small and dense, but the imaging features are obvious. The missed detection rate
of SSD is the highest in the experiment, with five missed detections and five false
alarms. YOLOv5 has three missed detections and two false alarms. Faster-RCNN
has no missed detections and only three false alarms. EfficientDet-D0, EWFAN
and EBPA2N all have only one missed instance. However, it is worth noting that
EfficientDet-D0 has a non-negligible false check problem. EWFAN and EBPA2N
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Fig. 8 The detection results of different DNNs for airport I. Red boxes and green boxes are
false alarms and the correctly detected aircraft, respectively, and the yellow boxes are the missed
detections
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have very few false alarm results, only two and one, respectively. To summarize, the
aircraft detection results clearly indicate the advantage of EWFAN and EBPA2N in
the airport I.

4.2 Aircraft Detection in Airport II

In the second experiment, airport II is a large civilian airport (i.e. Shanghai
Hongqiao Airport in China), as shown in Fig. 9. The image contains complex a
background, with a considerable number of vehicles in the parking lot, dense resi-
dential areas and several traffic roads. All the background information could incur
interference and false alarms. The aircraft in this airport presents multidirectional
characteristics with complicated discrete scattering features, which makes detection
even more difficult. From Fig. 9, the EfficientDet-D0 has some noticeable false
alarm regions; YOLOv5 and Faster R-CNN have inaccurate localization (i.e. yellow
missed boxes overlapped with red false alarm boxes) and more missed detections.
The detection performance of EWFAN is better compared to YOLOv5 and Faster
R-CNN. Furthermore, SSD and EBPA2N are the two DNNs with the best detection
results obtained in this experiment, which are very close to the ground-truth images.
But from the overview of this airport, SSD presents 21 false alarms, while EBPA2N
only has 7 false alarms. Therefore, EBPA2N achieves the best performance in the
aircraft detection at airport II.

4.3 Aircraft Detection in Airport III

Airport III is also a large civil airport (i.e. Beijing Capital International Airport in
China) with three long runways, heavy traffic and the most complex background
in our experiments. The metallic facilities in the airport (i.e. objects are shown as
strong scattering points in SAR images with similar characteristics to aircraft) are
very likely to perturb aircraft detection and cause false alarm. As shown in Fig. 10,
these six algorithms have different false alarms and missed detection problems.
From the zoomed-in view of the upper left corner of the airport, we can see that
EfficientDet-D0 is less accurate in detecting small targets. The overall detection
results indicate that EfficientDet-D0 has significant false alarm areas, many of
which are located on the airport runway, which requires further analytics [33].
Similar problems could be found with Faster-RCNN and EWFAN, as false alarm
highlighted using red boxes. While SSD has fewer missed detections, there are more
red bounding boxes in the figure, which implies false aircraft detections. EBPA2N
presents the best detection accuracy in this experiment, with a better balance of
missed and false alarms.
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Fig. 9 The detection results of different frameworks for airport II. Red boxes and green boxes are
false alarms and the correctly detected aircraft, respectively, and the yellow boxes are the missed
detection
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Fig. 10 The detection results of different frameworks for airport III. Red boxes and green boxes
are false alarms and the correctly detected aircraft, respectively, and the yellow boxes are the
missed detection



A Comparison of Deep Neural Network Architectures in Aircraft Detection. . . 105

4.4 Evaluation and Analysis of Detection Performance

Table 1 shows the aircraft detection performance metrics of the different DNNs
using SAR imagery acquired at the three airports described above. In Table 1,
correct detection number (CDN), ground truth number (GTN), false alarm number
(FAN) and the number of detected targets (DTN) denote the number of correctly
detected aircraft, the number of real aircraft at the airport, the number of false alarms
and the number of detected targets, respectively. We use t1 to denote the testing time
for each SAR image, and t2 is the training time to complete 100 epochs of the same
SAR dataset. From the training time and testing time of the network, we can find
that SSD and Faster R-CNN required the longest computation time, which means
they might not be suitable for real-time aircraft detection [19]. EfficientDet-D0 and
EWFAN are in the middle with respect to computational time, while YOLOv5 and
EBPA2N were the fastest. Focusing on the overall detection accuracy and false
alarm rates, it can be seen that EBPA2N is the performed best, with an overall
detection accuracy and overall false alarm rate of 91.90% and 4.90%, respectively.

Table 1 Detection performance of different networks

Network Airport DR (CDN/GTN) FAR(FAN/DTN) t1 (s) t2 (h)

EfficientDet-D0 I 96.97% (32/33) 23.81% (10/42) 5.98 5.10
II 77.50% (93/120) 34.51% (49/142) 18.05
III 83.22% (119/143) 46.64% (104/223) 28.03
Overall 82.43%(244/296) 40.04% (163/407) 17.35

SSD I 84.85% (28/33) 15.16% (5/33) 6.81 20.67
II 87.50% (105/120) 16.67% (21/126) 12.25
III 93.01% (133/143) 24.00% (42/175) 16.53
Overall 89.86% (266/296) 20.35% (68/334) 11.86

YOLOv5 I 90.91% (30/33) 6.25% (2/32) 4.80 0.69
II 80.83% (97/120) 8.49% (9/106) 8.24
III 90.21% (129/143) 5.15% (7/136) 12.11
Overall 86.49% (256/296) 6.57% (18/274) 8.38

Faster R-CNN I 100% (33/33) 8.33% (3/36) 36.72 26.67

II 72.50% (87/120) 8.42% (8/95) 68.90
III 89.51% (128/143) 12.33% (18/146) 92.40
Overall 83.78% (248/296) 10.83% (30/277) 66.01

EWFAN I 96.97% (32/33) 5.88 (2/34) 6.13 5.35
II 80.83% (97/120) 15.65 (18/115) 18.49
III 88.11% (126/143) 20.75 (33/159) 28.80
Overall 86.15% (255/296) 17.21% (53/308) 17.81

EBPA2N I 96.97 (32/33) 3.03 (1/33) 5.01 0.882
II 89.17 (107/120) 6.14 (7/114) 9.68
III 93.01 (133/143) 4.32 (6/139) 13.50
Overall 91.90% (272/296) 4.90% (14/286) 9.40
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By evaluating the six DNNs, we can see that the difficulty of aircraft detection
continues to lie in the background complexity of the SAR scene and the heterogene-
ity of aircraft features (e.g. shapes, sizes and positions), making it challenging for
DNNs to capture the essential features of the aircraft. From these three experiments,
we can see that Faster R-CNN benefits from the two-stage detection mechanism,
and the network achieves better performance in suppressing interference and false
alarms. However, the network is inferior in accommodating the discrete scattering
features of the aircraft. Especially in the experiment for airport II, when there are
plenty of complex background objects (i.e. objects that are not aircraft) in the
airport, the scattering information after imaging the aircraft with different positions
and directions of parking varies greatly. We also note the detection accuracy of
Faster R-CNN is poor, only 72.5%, which is the lowest among the six networks.
Moreover, the network training and testing time of Faster R-CNN is the longest,
which indicate the shortcoming of Faster R-CNN in tackling the scale heterogeneity
and complex background information when performing real-time aircraft detection.

In aircraft detection using SAR images, EfficientDet-D0 presents noticeable false
alarm problems, and the effective feature extraction of aircraft is the worst among
the six networks. EWFAN is based on EfficientDet-D0, which mitigates the false
alarm problem and improves the accuracy of aircraft detection to some extent, while
reserving the fast speed of aircraft detection. The detection accuracy of EWFAN is
close to that of SSD. Due to the use of six different resolution feature maps for
multiscale prediction, SSD can better capture the multiscale features of the target
and has a relatively better detection performance (i.e. the detection accuracy is
89.86%). However, the false alarm rate of SSD cannot be ignored, which is as high
as 20.35%. In addition, the scattering interference from the neighbourhood features
in the airport I–III scenes is gradually enhanced. As the background becomes
more and more complex, the false alarm problems of EfficientDet-D0, EWFAN
and SSD have increased correspondingly. This indicates that these three DNNs can
achieve more efficient detection of aircraft in scenes with less scattering interference
within the given neighbourhood and can obtain more satisfactory detection accuracy
in complex scenes by further combining with that of geofencing information of
airports [33]. Compared with EWFAN and EfficientDet-D0, SSD has the advantage
of good detection speed, but the training time is longer given the same dataset.

When model deployment and computational resources are of concern, EWFAN
and EfficientDet-D0 networks have a smaller number of parameters and compu-
tation intensity (i.e. the number of parameters of EfficientDet-D0 is only 3.9 M),
which makes them strong candidates for fast aircraft detection. Although EWFAN
adds a certain number of additional parameters based on EfficientDet-D0, it is
still more ‘lightweight’ compared to SSD and suitable for deployment in the edge
computing for SAR aircraft detection [45].

The network computation speed of YOLOv5 and EBPA2N have remarkable
advantages and are the best among all networks. Although the false alarm rate
of YOLOv5 is low, which is 6.57%, it is worth noting that its detection rate
is only 86.49%, which means that there are many missed detections. And the
detection performance of EBPA2N is satisfactory with less missed detections and
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false alarms, which turns out to be more suitable for fast SAR-based image aircraft
detection in some scenarios and tasks with requirements for real-time performance.
From the three performed experiments, we found that although various advanced
target detection networks have emerged in optical image processing, the results
of directly migrating these networks to SAR image target detection are not
satisfactory. EWFAN and EBPA2N integrate SAR domain knowledge to improve
the detection performance, which has been verified in out experiments. EBPA2N
network combines SAR analytical methods to accommodate the three challenges of
aircraft target detection, and proposes involution enhanced path aggregation (IEPA)
module to capture the relationship between aircraft discrete scattering features in a
large range, so as to achieve more effective extraction of salient features of aircraft
and reduce missed detection significantly. The effective residual shuffle attention
(ERSA) module is proposed specifically to enhance aircraft feature extraction
geospatially to deal with the interference of complex background information and
speckle noise. This provides an important reference for the development of SAR
special network by explicitly combining the scattering characteristics of targets in
the future SAR field. Therefore, these comparison experiments confirm the necessity
of integrating domain knowledge in SAR image analytics into the design and
development of DNNs for SAR-based aircraft detection.

5 Conclusion and Future Works

Based on the all-day, all-weather SAR imaging systems, aircraft detection could
be widely implemented in various fields (e.g. civil disaster monitoring, traffic
management and urban planning). On the other hand, the speckle noise and complex
background in SAR images make aircraft detection more challenging compared
to optical imagery [10]. The diverse sizes, shapes and positions of aircraft target
further undermines the direct application of deep learning techniques in SAR-based
aircraft detection. This chapter selects six frequently utilized DNNs to compare their
performance and highlights the requirement of domain knowledge integration for
SAR-based aircraft detection. Following this performance assessment study, there
are three important directions we plan to explore in the future research.

First, we plant to explore new methodologies of data fusion and the use of multi-
source data (e.g. SAR data and optical data) to further enhance the accuracy of
aircraft detection. There are very few publicly available SAR images for aircraft
detection, and it is even more difficult to guarantee the quality of such imaging
and ground-truth datasets. In contrast, there are relatively more optical aircraft
samples, although the visual saliency of aircraft targets in obliquely projected
SAR images is very different from that of centre-projected optical images, which
are closer to human visual perception. Fortunately, advanced SAR and optical
imagery data fusion methods have been explored using deep learning techniques
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[5]. For SAR images acquired from different systems (e.g. different bands and
different resolutions), the backscatter characteristics of the ground targets might be
very different, which indicates the necessity of incurring additional pre-processing
work [4].

Second, we will continue integrating SAR domain knowledge into the design
and development of new DNNs for aircraft detection. Most of the current aircraft
detection DNNs focus on combining existing deep learning techniques with imagery
data analysis, which have not been effectively and explicitly integrated with the
physical characteristics of SAR imaging, accommodating the electromagnetic scat-
tering characteristics of SAR image objects and designing spatial-specific DNNS
for SAR target detection. This is also a challenging but necessary topic in the future
to realize the wider application of SAR imaging techniques.

Third, the investigation of interpretable SAR detection DNNs will be another
focus of our future work [41]. The black box behaviour of DNNs makes their inter-
nal decision-making process difficult to understand, which significantly undermines
the trustworthiness of DNNs in the domain of remote sensing applications. At this
point, the combination of DNN explanation tools [1] is particularly important to help
scientists understand the decision-making basis of the DNN for model development
and model diagnosis. At the same time, the explanation output (e.g. heatmaps and
DNN layer contribution measurements) of these explainable artificial intelligence
algorithms could be utilized to measure the quality of the training and testing
datasets, which will contribute to the establishment of standard baseline testing
datasets for DNNs in SAR-based aircraft detection.

To summarize, this book chapter offers a baseline of performance comparison of
popular DNNs in SAR-based aircraft detection. We select SAR images acquired
at three different airports containing diverse aircraft and complex background
information to evaluate the performance of six DNNs including the SSD, Faster-
RCNN, EfficientDet, YOLOv5, EWFAN and EBPA2N. The overall performance
of EBPA2N is the best due to its SAR-specific attention mechanism, which could
adaptively assign higher weights to aircraft regions via the analytics of geospatial
neighbourhood information [18]. We also pay additional attention to the training
and testing time of these six DNNs, to measure their potential in fast or real-time
aircraft detection using SAR imaging systems. This book chapter highlights the
importance of integrating SAR domain knowledge into the design and development
of new DNNs, and this methodology could be extended to other target detection
research using SAR imagery datasets.
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Machine Learning Methods for SAR
Interference Mitigation
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1 Introduction

At the beginning, the background and motivation of this chapter would be briefly
introduced in this section. Specifically, the congested electromagnetic environment
and the adverse impacts of interferences to synthetic aperture radar (SAR) systems
would be the focus in the following.
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1.1 Congested Electromagnetic Environment

With the explosive emergence of multiple electromagnetic devices, a demand for
a larger bandwidth is growing, e.g., the next generation communication networks
require up to 1 GHz bandwidth of additional spectrum to transmit ultra-high
definition visual communications and immersive multimedia interactions. Radar
systems also require a larger bandwidth due to the requirement of a high range
resolution. The growing reliance on unmanned platforms ranging from underwater
sensors to satellites, which make the electromagnetic environment become more
congested and complicated, also acting as a push for contested access [1].

SAR is an active wideband radar system, and it can generate high-resolution
radar images day and night without influences of bad weathers. Nowadays, an
SAR system, which becomes one of the most popular radar systems, becomes an
important tool for a wide range of scientific, commercial, and defense applications
[2]. As a wideband radar system, SAR often conflicts with other systems, such
as radio systems, communication systems, or other active electromagnetic devices.
These devices may have strong power and dominate the same frequency bands that
SAR systems work at [3]. These electromagnetic signals are regarded as the suppres-
sive interference to radar systems. Basically, the suppressive interferences can be
categorized into two classes, the narrowband interference (NBI) and the wideband
interference (WBI), simply based on the frequency bandwidth of interferences.

1.2 Adverse Impacts of Interference to SAR Systems

The presence of suppressive interferences is detrimental to global and regional
scientific research activities of SAR systems. Depending on the application, SAR
extracts information based on the characteristics of the echo including amplitude,
frequency, time delay, polarization, Doppler shift, and phase [4]. The suppressive
interference is able to corrupt the desired radar measurements in a number of
ways, ranging from raw data collection, image formation, and the subsequent
interpretation process.

1.2.1 Data Collection Process

For the SAR raw echoes, the presence of interferences may severely reduce
the signal-to-interference-and-noise ratio (SINR), submerge the response of weak
scatterers, and distort the dynamic range of raw echoes. In addition, the receiver
is sensitive to saturation by high-power in-band emissions, especially when aimed
toward the interfering sources in the main lobe. Figure 1 compares particular range
spectra of the measured SAR data with and without radio frequency interferences
(RFIs). The data was recorded by an L-band airborne SAR system with bandwidth
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Fig. 1 Range frequency spectra of SAR echoes. (a) RFI-free frequency spectrum. (b) RFI-
polluted frequency spectrum

being 300 MHz. The SAR data is linear frequency modulated, which is shown in
Fig. 1a. As a special type of the NBI, the narrowband RFIs, which significantly
reduce the SINR and alter the spectrum shape, occupy several narrow frequency
bands in the middle of Fig. 1b.

1.2.2 Image Formation Process

An important feature of SAR systems is the capability to generate high-resolution
images. Airborne SAR platforms would introduce significant trajectory deviation
and motion errors due to air turbulence. Due to the absence of enough precise
inertial navigation system data, it is required to estimate several critical matched
filter parameters directly from the raw data, such as Doppler centroid and Doppler
modulation rate [5]. However, the interference may severely affect the estimated
accuracy of these parameters. In Fig. 2, the measured X-band SAR data is used to
show the estimated errors of the Doppler centroid versus different input SINRs. In
addition, the Doppler chirp rates are also estimated with large errors, and the SAR
image quality would be severely degraded. Figure 3 illustrates the impulse response
of a focused point target in real X-band SAR data with simulated interferences. As
can be seen, the red dotted line denotes the interference-polluted result, and the point
target is submerged by the strong interferences. The estimated Doppler centroid is
obviously wrong so that the final imaging results are affected.

1.2.3 Image Interpretation Process

The ultimate goal of SAR imaging is to provide a physical understanding of the
illuminated area. The existence of interferences may lead to the amplitude and phase
distortion of the imaging data. Intuitively, strong interferences would generate noise-
like covers on the interesting area, which leads to inaccurate spatial and radiometric
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Fig. 2 Estimated error curve of the Doppler centroid versus input SINRs
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Fig. 3 The impulse response of a focused point target with or without interferences. The “Origi-
nal” denotes the interference-free result. The “Interference” denotes the interference-polluted result

measurements [6]. As a result, the resulting phase distortion would de-correlate
the data, producing inaccurate post-products, such as polarimetric descriptor [7],
coherence [8], and retrieved biological or physical parameters [9]. Consequently,
the interference hinders the subsequent image interpretation process like target
detection and target recognition, and so on.

Figure 4 presents an example of National Aeronautics and Space Administration
(NASA) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAV-SAR) Hawaii
dataset. Obvious RFI stripes are observed, and the patterns of the artifacts are
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Fig. 4 Illustration of the amplitude and phase distortion affected by strong RFIs for measured
NASA UAV-SAR data

very unique, which are not a duplicate of nearby scatterers or areas with strong
reflectivity. The patterns are not comparable with the general radiometric artifacts
such as the ambiguities, saturation effects, or processing effects.

A category of land cover classification scheme is based on the physical scat-
tered characteristics. The presence of interference would result in estimation
error of decomposition parameters and subsequently lead to wrong classification
results when using these incorrect parameters. Figure 4b,c shows the entropy and
anisotropy parameters obtained by Cloud-Pottier polarimetric decomposition. The
regions in dashed lines highlight the anomalies introduced by interference artifacts.
Obvious difference can be viewed by naked eyes compared with the nearby regions.

1.3 Notations

Before introducing the main body of this chapter, we denote tensors by Euler
script letters, e.g., A; matrices are denoted by boldface capital letters, e.g., A;
vectors are denoted by boldface lowercase letters, e.g., a; and scalars are denoted
by the lowercase letters, e.g., a. For a 3-way tensor A ∈ C

N1×N2×N3 , we denote
its (n1, n2, n3)-th entry as An1n2n3 or an1n2n3 and use the Matlab notation A(j, :
, :), A(:, j, :), and A(:, :, j) to denote the j -th horizontal, lateral, and frontal
slices, respectively. More often, the frontal slice A(:, :, j) is denoted compactly
as A(j). For A ∈ C

n1×n2×n3 , and we denote Ā as the result of discrete Fourier
transformation of A along the third dimension by using the Matlab “fft” command.

1.4 Summary of the Remainder of the Chapter

The rest of the contents of this chapter are organized as follows: in Sect. 2,
the preliminary interference mitigation strategies are reviewed from two aspects,
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interference detection and interference suppression. In Sect. 3, the machine learning
methods for interference suppression are specifically analyzed with focusing on dif-
ferent kinds of interferences and multiple categories of machine learning methods.
Finally, future trend of interference mitigation is presented in Sect. 4 to analyze the
feasibility of deep learning and cognitive scheme.

2 Interference Mitigation Strategies for SAR System

2.1 Interference Detection

The interference detection problem can be modeled as a binary hypothesis test [4].
The hypothesis can be expressed as

H0 : y(t) = x(t) + n(t), 1 ≤ t ≤ T ; (1)

H1 : y(t) = x(t) + i(t) + n(t), 1 ≤ t ≤ T , (2)

where y, x, i, and n denote received signals, real echoes, interferences, and noises
in time domain, respectively. Furthermore, the variable t denotes sampled time
and T is the total time. Under the null hypothesis H0, the instantaneous spectrum
obeys Gaussian-like distribution, i.e., the amplitude obeys Rayleigh distribution, and
would have a negentropy value close to 0. Under the alternate hypothesis H1, the
instantaneous spectrum is a kind of non-Gaussian distributed with a large negen-
tropy value. The obvious distribution difference, as well as the negentropy value
difference, is the fundamental principle for correct detections. If the negentropy
threshold is too high, the interference may not be completely detected, thus causing
the missing alarm. On the other hand, a low negentropy threshold may lead to the
false detection of some naturally occurring peaks, which is referred to as the false
alarm. The detection threshold should be finely set to achieve a trade-off between
detection rate and false alarm. Herein, it is calculated based on the Neyman–Pearson
decision rule, which maximizes the probability of detection Pd under the constraint
of the probability of false alarm Pf [10], i.e.,

th∗ = arg max Pd, s.t. Pf ≤ α, (3)

where th∗ is the optimal threshold and α is the tolerable false alarm level. Typically,
α is higher than 10−3 and commonly is in the range of 10−6 and 10−8. Then, the
optimal threshold can be determined in terms of the false alarm level [10]

th∗ = μ0 + √
2σ0 erf−1(1 − 2α), (4)
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where μ0 and σ0 are the mean and the standard deviation of interference-free
instantaneous spectra, and erf−1 (·) is the inverse error function. Instead of a
constant threshold, the adaptive detection threshold is leveraged based on the
statistics of the interference-free instantaneous spectra.

2.2 Overall Introduction of Interference Suppression Methods

In this chapter, we mainly focus on the suppressive interference for SAR systems.
In the past decades, many researchers have focused on how to mitigate inter-
ferences, including NBIs and WBIs, on SAR systems effectively and efficiently.
These interference suppression methods can be classified into three categories:
nonparametric method, parametric method, and semi-parametric method. Actually,
the semi-parametric methods, which are the focus in this chapter, belong to the
group of machine learning methods.

2.2.1 Nonparametric Methods

In terms of the nonparametric methods, this kind of method inspires a basic idea for
suppressing strong interferences in SAR received signals. Nonparametric methods
were applied to either NBI suppression problem or WBI suppression problem via
designed filters and constructed subspace projector. Zhou et al. [11] proposed an
eigenvalue subspace projection (ESP) method to construct the NBI and signal
subspaces via singular value decomposition (SVD) and to project the received
signal onto the signal subspace for realizing NBI suppression. Lord [12] designed a
notched filter, which generates zero notches at the strong NBI frequency spectrum
bands. This kind of notched filter is feasible for the NBI case, while it usually suffers
from wide frequency notches when dealing with WBIs. Le et al. [13] designed
a least mean square (LMS) filter to adaptively mitigate NBIs for single-channel
SAR systems. Unlike the NBI version of ESP method, Tao et al. [14] proposed an
enhanced version of ESP method, which works well on WBI suppression problem.
It utilized the short-time Fourier transform (STFT) to transform one-pulse signal
into two-dimensional (2D) time-frequency domain, and the ESP method was used
on the time-frequency signal.

2.2.2 Parametric Methods

Different from nonparametric methods, parametric methods have been widely used
to estimate the interference parameters. Rather than WBI suppression problem,
parametric methods are feasible to mitigate NBIs because the NBI is easily modeled
as a sinusoidal signal. Commonly, the sinusoidal model has two parameters to esti-
mate, i.e., amplitude and frequency. Liu et al. [15] employed the iterative adaptive
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approach (IAA) to iteratively estimate the time-varying frequencies of NBIs. Huang
et al. [16] proposed a gradual RELAX algorithm to estimate the parameters for each
frequency peak with a reduced number of estimation iterations of the traditional
RELAX algorithm. However, these methods are computationally expensive due to
thousands of snapshots and hundreds of NBIs in one snapshot. In [17], a CLEAN
algorithm was employed to estimate the parameters without iterations, but it is still
computationally expensive when facing hundreds of interferences and thousands
of azimuth samples (snapshots/pulses). With regard to the WBI suppression, the
parametric method can only tackle with isolated WBI case, i.e., the WBI can be at
least widely separated in 2D time-frequency domain. As mentioned above, Yang et
al. [18] employed the IAA to estimate the frequencies of isolated WBIs. However,
the interference environment is commonly complicated so that parametric methods
may not be feasible for the practical application. Moreover, the NBIs and WBIs can
be represented by these parametric models, but the real echoes do not match these
models. Hence, it is not precise enough to employ these parametric models without
any protection for the real echoes.

2.2.3 Semi-parametric Methods

In recent years, the machine learning methods became popular for separating or
classifying different signals in a mixed environment. These methods can be classi-
fied into two mainstreams, supervised learning and unsupervised learning methods.
In this chapter, unsupervised learning methods are emphasized because we do
not have large amounts of interference data for supervised learning. Unsupervised
learning methods, such as principal component analysis (PCA) and independent
component analysis (ICA), aim to optimize an objection function under exact
constraints. These optimization problems usually have several hyperparameters,
which should be finely tuned for realizing good performance. Therefore, these
methods are regarded as semi-parametric methods.

For the interference suppression problem, we can extract interferences as much
as possible and simultaneously protect the real echo with a regularization term. Joy
et al. [19] employed the inexact augmented Lagrange method (IALM) to extract
low-rank NBI matrix by solving the traditional robust principal component analysis
(RPCA) problem. Su et al. [20] employed the IALM in the 2D time-frequency
domain for more precise extraction. Based on the above two works, in [21], the
row sparse constraint is leveraged to simultaneously restrict the special kind of
NBIs, i.e., radio frequency interference (RFI). Huang et al. also developed the
reweighted schemes and matrix factorization techniques to deal with the drawbacks
of nuclear norm minimization problem and precisely suppress the RFI [22, 23]. A
block sparse Bayesian learning algorithm was proposed to mitigate RFI effectively
[24]. In addition, the tensor structures are analyzed in detail to extend the 2D
interference mitigation methods to higher dimensional solution space [25, 26]. The
regularization term determines the performance of real echo protection, and hence, a
dictionary-based regularization was proposed to constrain the sparsity of real echoes
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in the image domain [27]. Furthermore, simultaneous NBI and WBI mitigation
problem was fully considered via a sparse recovery method in [28]. But in practical
applications, the electromagnetic environment is commonly complicated so that the
interferences are densely distributed in 2D time-frequency domain. Then, the low-
rank tensor recovery and tensor factorization methods were employed to deal with
complicated interferences [29, 30]. In summary, utilizing the regularization term is
the key advantage of semi-parametric methods, and it can protect the strong real
echoes in each iteration.

3 Machine Learning Methods for Interference Suppression

As an effective tool, machine learning methods have attracted worldwide attention
for the past decades on tremendous practical applications of different disciplines,
such as image recognition [31], speech recognition [32], and self-driving cars [33].
Most machine learning methods actually belong to the group of semi-parametric
methods except for the principal component analysis (PCA) method, so we would
analyze the specific characteristics of machine learning methods in this section.

3.1 General Signal Model of Typical Interferences for SAR
systems

For a classic wideband SAR system, the received echoes can be severely interfered
with other electromagnetic systems that are working at the same frequency bands.
Commonly, the received signal of SAR systems can be formulated as

y(t) = x(t) + i(t) + n(t)

= x(t) + nbi(t) + wbi(t) + n(t),
(5)

where nbi and wbi denote the narrowband and wideband interferences, respectively.
Since SAR systems aim to generate 2D high-resolution images, the 2D sampled
signal can be formulated as

Y(k, l) = X(k, l) + I(k, l) + N(k, l)

= X(k, l) + NBI(k, l) + WBI(k, l) + N(k, l),
(6)

where k denotes the k-th range time sample and l denotes the l-th azimuth time
sample. Herein, the capital letters are corresponding to the lowercase ones in (5).
Next, the NBI and WBI are specifically introduced in the following subsections.
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3.1.1 Narrowband Interference

The NBI often possesses relatively narrow bandwidth than that of an SAR system.
Commonly, the bandwidth ratio between the NBI and SAR signals is less than 1%
[34]. This kind of interfering signal model is well studied in early researches, and
typical NBI example is the narrowband RFI. In the mathematical representation, it
can be modeled as a sum of complex sinusoidal tones, that is,

NBI(k, l) =
N∑

n=1

An(l) exp (j2πfntk) , (7)

where j = √−1 denotes the imaginary symbol, An(l) denotes the complex
amplitude of the n-th NBI in the l-th pulse, fn denotes the frequency of the n-th
NBI, tk denotes the k-th range sampling time, and N is the number of NBI sources.

Figure 5 illustrates the range frequency spectrum of radar echoes contaminated
with NBIs. The data is recorded by an X-band airborne SAR system, transmitting
a linear frequency modulated pulse with a bandwidth of 200 MHz. The strong
interferences dominate a few frequency bands and appear as prominent “sin”’
peaks in the range frequency domain of one pulse (Fig. 5, left) and bright lines in
the range frequency azimuth-time representation (Fig. 5, right), respectively. This
feature makes it easier to be identified and detected.
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Fig. 5 Illustration of the range frequency spectrum of NBI sources
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3.2 Wideband Interference

Wideband interferences are pulsed in time with various pulse repetition time, and the
bandwidth is wider than the continuous narrowband. According to the modulation
type, the WBIs can be modeled by two classes, i.e., the chirp modulated (CM)
WBI and the sinusoidal modulated (SM) WBI. In a practical situation, the WBI
may not match these two special models perfectly. However, the CM WBI and SM
WBI can be considered as two special and examples of a larger family of WBI
signatures whose properties are a combination of them. Mathematically, the CM
WBI is modeled as

WBICM (k, l) =
N∑

n=1

Bn (l) exp
(
j2πfntk + jπγnt

2
k

)
, (8)

where Bn (l) denotes the amplitude of the n-th CM WBI in the l-th snapshot, and γn

and fn denote the chirp rate and frequency of the n-th CM WBI, respectively. Next,
the SM WBI can be modeled as

WBISM (k, l) =
N∑

n=1

Bn (l) exp {jβn (l) sin (2πfntk + ϕn)}, (9)

where Bn (l) and βn (l) denote the amplitude and modulation index of the n-th SM
WBI in the l-th snapshot, respectively, and fn and φn denote the frequency and the
initial phase of the n-th SM WBI, respectively. WBIs, which occupy a wide range of
frequency bands in the range frequency spectrum, cannot be recognized intuitively
in 2D time domain. Figure 6 shows a particular range frequency spectrum of radar
echoes with one CM WBI and one SM WBI. This data is acquired from another
X-band airborne SAR system and the sampling frequency is 60 MHz. It is shown
that the target echo is contaminated with WBIs. It is hard to recognize the useful
signal (i.e., the real echoes) from the corrupted signals.

With the help of time–frequency analysis tools, such as the short-time Fourier
transform (STFT) [35], the WBIs can be transformed into the time–frequency
domain, which can be formulated as

STFTy (t, f ) =
∫ ∞

−∞
y (t) h (t − τ) e−j2πf τ dτ , (10)

where (t, f ) indicates the coefficient in the time–frequency domain. Similarly, the
inverse STFT (ISTFT) is performed with the synthesis window w (t) as

y (t) =
∫ ∞

−∞

∫ ∞

−∞
STFTy

(
t ′, f ′)w

(
t − t ′

)
ej2πf ′t ′ dt ′df ′. (11)
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Fig. 6 Illustration of the
range frequency spectrum of
WBI sources
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Then, the time–frequency spectra of both kinds of WBIs are shown in Fig. 7. It is
easy to recognize the characteristic of the interferences along with the frequency
and time axis, which demonstrates that the WBI is highly nonstationary in time
or frequency domain. The time–frequency spectrum characterizes the nonstationary
property obviously, in which the power of WBIs is concentrated into a few time–
frequency bins in 2D time–frequency domain.

3.3 Interference Mitigation Schemes Based on Machine
Learning

In this section, the machine learning techniques for solving NBI and WBI mitigation
problem will be analyzed in detail. The first machine learning method emerged in
previous researches is the PCA method.

3.3.1 NBI Mitigation

Principal Component Analysis

Based on the signal model in Eq. (5), the NBI can be easily observed in a few
frequency bands of the frequency spectrum. The eigenvalue subspace projection
(ESP) method (i.e., the PCA method) was firstly employed in [11] for NBI miti-
gation problem. It used the eigenvalue decomposition (EVD) method to construct
the signal subspace and projected the received signal onto the signal subspace for
realizing NBI suppression. Actually, the ESP method is equivalent to the classic
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Fig. 7 Illustration of CM WBI and SM WBI in the 2D range-azimuth time domain, 1D range
frequency domain, and 2D range time–frequency domain. Top row: CM WBI. Bottom row: SM
WBI. Left column: raw data in 2D time domain. Middle column: range frequency spectrum. Right
column: 2D range time–frequency spectrum

PCA method. The PCA method is easy to implement, and its mathematical problem
can be formulated as

max
W

tr
(
WHXXHW

)

s.t. WHW = E,
(12)

where E is the identity matrix. The solution of the above PCA problem is the matrix
whose columns are eigenvectors corresponding to the d largest eigenvalues when
the W ∈ C

K×d . The PCA method can be classified into the nonparametric method
group. It has better performance than the notched filter, which is the most famous
nonparametric method. The range frequency spectra of PCA and notched filter
methods are compared in Fig. 8. As can be seen, the notched filter simply makes the
dominated frequency peak area be null which does not consider the useful signal in
these frequency bands. The PCA method would reduce the power of strong spectrum
peaks, but it would not remove them thoroughly.

Sparse Recovery

In recent years, due to the sparsely distributed NBI in the whole frequency spectrum,
the sparse recovery (SR) method, which is alternately called sparse coding in the
machine learning domain, was used to mitigate NBIs by solving the following
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Fig. 8 Comparison of PCA method (ESP method) and notched filter method

problem [36]:

{
α′

l , e’l
} = arg min

αl ,el

∥∥∥y (l) − DSARαl − DNBI el

∥∥∥
2
+ λ‖αl‖1 + τ‖el‖1, (13)

where y(l) denotes the received signal of the l-th pulse, x (l) = DSARαl denotes the
real echoes of the l-th pulse, DSAR denotes the sparse coding dictionary of real SAR
echoes, αl denotes the sparse coefficients, and similarly, i (l) = DNBI el denotes
the interference of the l-th pulse, DNBI denotes the sparse coding dictionary of the
interference, and el denotes the sparse coefficients. Herein, the range time is omitted
for simplicity. With the alternating direction method of multipliers (ADMM) [37],
the above problem could be effectively solved. However, the above method applies
the sparse coding method for each pulse of received signal, so the computational
burden is quite expensive when performing it on the large-scale SAR data. In
addition, the accuracy of the dictionary determines the final performance.

Low-Rank Recovery

Although the ESP method, i.e., the PCA method, can remove the NBI effectively,
the real echoes lack of protection during the mitigation. It is quite similar to the
image denoising problem when tackling with the noises. Regarding the image
denoising problem, the low-rank representation methods are popular to extract the
low-rank section from the corrupted images [38]. Since the interference matrix was
demonstrated to be low rank, the NBI mitigation problem can be formulated as the
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following problem:

min
I,X

rank (I) + λ‖X‖0

s.t. ‖Y − I − X‖2
F < δ,

(14)

where “rank” denotes the rank operation, ‖·‖0 is the �0 norm of matrix, and ‖·‖F

denotes the Frobenius norm. Herein, λ and δ are hyperparameters. Basically, the
above problem is NP-hard to solve. Commonly, a classic robust principal component
analysis (RPCA) method [39] was employed to relax the above problem to a convex
problem. The �1 regularization term was added to the original PCA problem to
protect the real echoes from removing. The relaxed problem can be formulated as

{
Î, X̂

}
= arg min

I,X
‖I‖∗ + λ‖X‖1

s.t. ‖Y − I − X‖2
F ≤ δ,

(15)

where ‖·‖∗ denotes the nuclear norm and ‖·‖1 denotes the �1 norm of matrix. Herein,
the nuclear norm and the �1 regularization term are convex relaxations of the rank
operation and the �0 norm, respectively. The singular value curve of a measured NBI
matrix is illustrated in Fig. 9. As can be seen, the NBI matrix can be approximately
considered as a low-rank matrix. The measured X-band SAR data with strong NBIs
is illustrated to test the performance of RPCA method, which is also named as the
augmented Lagrangian method (ALM) in this case, in Fig. 10. The input SINR is
−20 dB. As can be seen, the RPCA method can remove the interferences properly
by using the low-rank property of NBIs and sparse regularization term for the useful
signal protection.

Fig. 9 Singular value curve
of the measured NBI matrix
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Fig. 10 Interference mitigation result of RPCA method. SINR = −20 dB. (a) NBI-polluted results.
(b) Recovered result of RPCA method

Joint Sparsity and Low-Rank Recovery (JSLR)

In previous subsections, it is concluded that the NBI frequency spectrum has sparsity
along the frequency axis and the NBI matrix has low-rank property in general.
Figure 5 also illustrates the sparsity and low-rank property of NBIs. Then, with
a simple consideration, rather than using either sparsity or low-rank property of the
NBIs to recover the interference-free SAR echoes, a joint sparse and low-rank model
is considered for 2D NBI mitigation problem as follows:

min
I,X

rank (I) + λ1‖FI‖0 + α1‖X‖0

s.t. ‖Y − I − X‖2
F < δ,

(16)

where F denotes the Fourier transform matrix. Then, based on the signal model in
(5), the interference matrix can be further formulated as

I = DNBI I
′, (17)

where DNBI ∈ C
K×K ′

is the overcomplete dictionary of NBI, and the matrix I′ is
the sparse matrix with weighting coefficients of RFI based on the dictionary DNBI .
Then, the JSLR optimization problem can be recast as

min
I,X

rank
(
DNBI I

′) + λ1
∥∥FDNBI I

′∥∥
0 + α1‖X‖0

s.t.
∥∥Y − DNBI I

′ − X
∥∥2

F
< δ.

(18)

As the DNBI is the overcomplete dictionary, it is a full-rank matrix. Then, the
optimization problem can be reformulated as
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min
I,X

rank
(
I′
) + λ

∥∥I′
∥∥

0 + α‖X‖0

s.t.
∥∥Y − DNBI I

′ − X
∥∥2

F
< δ.

(19)

The above problem is the NP-hard problem, and similarly, we leverage the nuclear
norm and the �1 norm to relax the rank operation and �0 norm, respectively, that is,

min
I′

,X

∥∥I′
∥∥∗ + λ

∥∥I′
∥∥

1 + α‖X‖1

s.t.
∥∥Y − DNBI I

′ − X
∥∥2

F
< δ.

(20)

This problem can be solved by the ADMM scheme based on the augmented
Lagrangian function.

From another point of view, through a synthetic aperture period, the interferences
are commonly stationary, which can be considered as a basis of the low-rank
property. Recall that in the 2D range frequency and azimuth-time spectra of NBIs
shown in Fig. 5, the NBIs performed like several straight lines. Actually, the reason
why the NBI has both sparsity and the low-rank property is that it has relatively
stationary frequencies crossing different pulses. Hence, the row sparsity, which
matches the circumstance of NBIs, can be considered as a special case of joint
sparsity and low-rank property. In order to formulate the row sparse problem, the
optimization problem can be described as

min
I,X

‖FI‖0 + β1‖X‖0

s.t. ‖Y − I − X‖2
F < δ.

(21)

With the similar formulation based on the dictionary, the row sparse problem can be
recast as

min
I′

,X

∥∥FDNBI I
′∥∥

0 + β1‖X‖0

s.t.
∥∥Y − DNBI I

′ − X
∥∥2

F
< δ.

(22)

And the similar relaxation is applied to the above problem, that is,

min
I′

,X

∥∥I′
∥∥

0 + β‖X‖0

s.t.
∥∥Y − DNBI I

′ − X
∥∥2

F
< δ.

(23)

The row sparse problem does not involve the low-rank objective function so that the
singular value decomposition (SVD) is not required when solving the row sparse
problem. The computational burden can be further relieved. This problem can then
be solved by alternately optimizing the interference and the real echoes. The input
SINR is set as −20 dB, and then the interference mitigation results are given in
Fig. 11. The interference-polluted image is the same as that in Fig. 11a. As can be
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Fig. 11 Interference mitigation results of JSLR method and RS method. Input SINR is −20 dB.
(a) JSLR method. Output SINR = 7.81 dB. (b) RS method. Output SINR = 8.24 dB

seen, both methods can effectively mitigate strong interferences and recover the real
echoes in a high quality. Based on the workstation equipped with W-2133 CPU and
256 GB memory, the running times of RPCA method, JSLR method, and RS method
are 39.36 s, 30.41 s, and 10.12 s, respectively. The RS method is the most efficient
method among these methods since it avoids the SVD operation. The JSLR has
heavier computational burden than the RPCA method per iteration, but it requires
less iterations to realize convergence with shorter running time.

Matrix Factorization Techniques

The low-rank matrix recovery techniques, which are analyzed in previous sub-
sections, have been widely used to mitigate NBIs in recent years. The previous
signal model aims to use the nuclear norm to relax the non-convex rank operation.
The convex relaxation, i.e., the nuclear norm, provides feasible solution and fast
convergence. However, when solving the subproblem of nuclear norm minimization
problem by the singular value thresholding (SVT) algorithm, it restricts all the
singular values with a fixed threshold. This may excessively decrease the large
singular values. Basically, the large singular values dominate the whole power of
interferences, and the excessive decrease of large singular values may affect the
recovered power of low-rank interference matrix. As can be seen in Fig. 12, the
interference-free signal (marked by “Signal”) is much lower than the recovered
result by using the nuclear norm minimization (marked by “ALM”), and this
demonstrates that the SVT algorithm would over-reduce the large singular values
of the interference matrix as well as the interference power. When mitigating the
interferences from the received signal, the residual interference may be still too
strong to submerge the real echoes. In addition, the nuclear norm minimization
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(b)(a)

Fig. 12 Illustration of the interference mitigation results via nuclear norm minimization. (a)
Range frequency spectra of interference-free and interference-polluted signals. (b) Range fre-
quency spectra of interference-free and interference mitigation result after applying the nuclear
norm minimization scheme

problem on large-scale observed matrix is time-consuming, which is a shortcoming
for data processing.

Based on the non-convex low-rank recovery model in (14), a reweighted scheme
is applied as follows:

min
I,X

min{K,L}∑
i=1

wiσi (I) + λ‖X‖1

s.t. ‖Y − I − X‖2
F < δ,

(24)

where σi(I) is the i-th singular value with its corresponding weight wi , and the
singular values should be sorted in a non-ascending order. Unlike the convex nuclear
norm, the reweighted scheme is an approximation of the rank function. The above
problem can be solved alternately by optimizing two subproblems as follows:

min
I

min{K,L}∑

i=1

wiσi (I) + μ

2
‖Y − I − X‖2

F , (25)

min
X

λ‖X‖1 + μ

2
‖Y − I − X‖2

F . (26)

The subproblem in (25) is a weighted nuclear norm minimization problem, whose
closed-form solution can be formulated by the complex weighted singular value
thresholding (CWSVT) algorithm [23]. The CWSVT algorithm reduces the large
singular values with small thresholds while punishes the small singular values with
large thresholds. Hence, it is able to relieve the influence of the SVT algorithm
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when solving the nuclear norm minimization problem, but it still requires to perform
SVD on the large-scale observed signal with high computational burden. The matrix
factorization technique is applied to reduce the computational complexity. Suppose
that σi (I) = σi (U) σi (V), and then the large-scale interference matrix is equivalent
to the product of two small-scale matrices as follows:

I = UI
[
diag (σ (I))

]
VH
I

= [
URdiag (σ (U))

] [
diag (σ (V))VH

I

]
= UVH,

(27)

where U ∈ C
K×d , V ∈ C

L×d , r ≤ d � min {K,L}, r is the rank of matrix I, and
σ (U) and σ (V) are the singular value vectors of U and V, respectively. Then, given
that wi = w1iw2i , the reweighted term in (27) can be relaxed to

d∑

i=1

wiσi (R) =
d∑

i=1

w1iσi (U) w2iσi (V)

≤
(

d∑

i=1

wa
1iσ

a
i (U)

) 1
a
(

d∑

i=1

wb
2iσ

b
i (V)

) 1
b

≤ 1

a

(
d∑

i=1

wa
1iσ

a
i (U)

)
+ 1

b

(
d∑

i=1

wb
2iσ

b
i (V)

)

= 1

a

(
d∑

i=1

wuiσ
a
i (U)

)
+ 1

b

(
d∑

i=1

wviσ
b
i (V)

)
,

(28)

where the first and the second inequalities hold due to Holder’s inequality and the
Jensen’s inequality, respectively. Suppose that a = b = 2, and then the weighted
nuclear norm minimization problem in (25) can be recast as

min
U,V

1

2

(
d∑

i=1

wuiσ
2
i (U)

)
+ 1

2

(
d∑

i=1

wviσ
2
i (V)

)
+ μ

2

∥∥∥Y − UVH − X
∥∥∥

2

F
.

(29)
The ADMM framework is applied to solve the above weighted matrix factorization
problem. Note that the subproblems of optimizing U and V become the weighted
Frobenius norm minimization problems, which could be solved similarly as the
CWSVT algorithm [23]. This weighted matrix factorization model inherits the
advantage of the weighted nuclear norm minimization model. Furthermore, it is able
to relieve the aforementioned two shortcomings of the nuclear norm minimization
model, i.e., the excessive decrease of large singular values of interference matrix
and the high computational complexity.
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Table 1 Computational complexities of the IALM, RMF, and MFD algorithms

Algorithms IALM RMF MFD

Computational
complexity

O (
KL2 + 2KL

) O (
KLd + Kd2 + Ld2 + 2KL

) O (
KLd + Kd2 + 2KL

)

From another perspective, the upper bound of the NBI matrix rank can be directly
restrained in the constraint, and then a decomposition model can be formulated as

min
I,X

λ‖X‖1 + μ
2 ‖Y − I − X‖2

F

s.t. rank (I) ≤ r.
(30)

By employing the matrix factorization technique to represent the low-rank term, the
problem can be further recast as

min
U,V,X

λ‖X‖1 + μ
2

∥∥∥Y − UVH − X
∥∥∥

2

F

s.t. rank (U) = rank (V) ≤ r.

(31)

This problem can be similarly solved via alternate optimization of the NBI
matrix and the real echoes. When tackling with the matrix factorization low-rank
subproblem, the QR decomposition on small-scale matrix is introduced to accelerate
the algorithm.

Both the matrix factorization algorithms are more efficient than the classic
ALM algorithm. Without generality, suppose that K > L, and then the main
computational cost of the ALM algorithm is the SVD on a K × L matrix per
iteration, which takes at least O(KL2) flops. The reweighted matrix factorization
algorithm takes the SVD on two small-scale matrices with O(Kd2 + Ld2) flops,
and the main computational burden is the multiplication of two small matrices with
O(KLd) flops per iteration. The matrix factorization decomposition algorithm takes
one QR decomposition with O(Kd2) flops, in addition to the multiplication of two
small matrices with O(KLd) flops. All of the aforementioned algorithms use an
element-wise soft thresholding algorithm to update the real echoes with at least
O(2KL) flops per iteration. The computational complexities of the inexact ALM
(IALM) algorithm, reweighted matrix factorization (RMF) algorithm, and matrix
factorization decomposition (MFD) algorithm per iteration are listed in Table 1.
With the same data shown in Fig. 10, the performance of RMF method and MFD
method is illustrated in Fig. 13, where the details of yellow rectangles are shown
in the corner. Both methods are able to mitigate the strong interferences in good
performance, and both are quite fast to convergence due to matrix factorization
techniques.



134 Y. Huang et al.

Fig. 13 Illustration of the interference mitigation results via RMF method and MFD method. Input
SINR is −20 dB. (a) NBI-polluted results. (b) RMF method. Output SINR = 8.67 dB. (c) MFD
method. Output SINR = 8.85 dB

Low-Rank Recovery with Image-Domain Regularization

Based on the above analysis, strong NBIs are well represented by the low-rank
model and mitigated via the machine learning decomposition methods. For most
of the methods, the optimization problems include the sparse regularization term
to avoid real echoes being wrongly mitigated by the NBI suppression methods. In
fact, the useful signals are scene-reflected SAR signals, and they are not sparse
for most cases except for the water area. As one can recall, the regularization is
a proper tool to overcome overfitting problem in machine learning domain. The
sparse regularization term aims to keep the strong amplitudes of scatterers when
extracting the low-rank interference from the received signals. If there are no sparse
regularization terms in the objective function, then the low-rank signal, mixed with
the strong real scatterers, would be extracted. Actually, this model is similar with
the nonparametric model and parametric model, which are designed to extract the
interference as much as possible without any regularizations or protections of real
echoes. Therefore, to design a good regularization term is a critical problem for
interference mitigation.

Basically, after applying the SAR imaging algorithms [40], such as range-
Doppler (RD) algorithm and chirp-scaling (CS) algorithm, the strong scatterers in
2D image domain are sparser than those in unfocused raw data. Hence, it is better
to constrain the sparsity of real echoes in image domain rather than in the raw data.
Suppose that the classic SAR RD imaging operation is defined by

Z = F−1
a

(
Ha � Fa

(
F−1

r (Hr � FrX)
))

�= FX, (32)

where � denotes the Hadmard product, F, Fr , and Fa denote imaging operation,
range Fourier transform, and azimuth Fourier transform, respectively. In addition,
their inverse operations are denoted by the superscript −1. And Hr and Ha are range
and azimuth matched filters. Vice versa, the inverse transform from focused SAR
image to raw data is
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X = F−1
r

(
H∗

r � Fr

(
F−1

a

(
H∗

a � FaZ
))) �= F∗Z, (33)

where the superscript ∗ denotes the conjugate operation. Then, the low-rank
representation problem with a sparse regularization in SAR image domain can be
formulated as

min
I,Z

‖I‖∗ + λ‖Z‖1

s.t.
∥∥Y − I − F∗Z

∥∥2
F ≤ δ.

(34)

Comparing the above problem with the classic RPCA problem in (15), the sparse
regularization is added to the real echoes in image domain instead of those in the
raw data. To solve the above problem, it is similar to the solution of classic RPCA
problem by alternately optimizing two variables. The solution of the nuclear norm
minimization problem is the same, and the sparse recovery subproblem would be
solved in the image domain in lieu of the raw data domain. Herein, we use the
Radarsat-1 dataset [40] and simulate the strong NBIs to test the performance of
image-domain regularization in Fig. 14. The input SINR is set as -20 dB, and 50 NBI
artifacts are simulated to corrupt the SAR raw data. As can be seen in the enlarged
details of yellow rectangles, the low-rank representation method with an image-
domain regularization can better protect the strong scatterers with lower sidelobes
compared with the traditional RPCA method. Both methods can recover the scene
clearly with high accuracy.

Fig. 14 Illustration of the interference mitigation results via RPCA method and the low-rank
representation method with the image-domain regularization. Left column: interference-polluted
images. Middle column: RPCA method. Right column: low-rank representation method with
image-domain regularization
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3.3.2 WBI Mitigation

Regarding the WBI, the interference’s bandwidth occupies a large portion of the
SAR bandwidth. Then, in range frequency domain, the WBI is not sparse in fact.
Only a few researches focused on WBI mitigation problem for SAR systems [14, 28,
41]. With the help of STFT, most previous studies transform single-pulse received
signal into the time–frequency domain. Herein, one WBI, such as the CM WBI and
the SM WBI, can be clearly observed, as shown in Fig. 9. Then, the notched filter
in time–frequency domain can be applied to remove the time–frequency bands at
which strong WBIs locate. Different from the notched filter method, the machine
learning framework still works for decomposing the WBIs and the real echoes. In
[14], an eigen subspace filtering method, which is actually the PCA framework, was
proposed to project single-pulse received signal onto the interference space. The
interference space is constructed by the eigenvectors corresponding to the dominant
eigenvalues. Then, remove the projected signals, and one can obtain the residual
time–frequency spectrum of the useful signal. The recovered results of the ESP
method and the notched filter methods are shown in Fig. 15. As can be seen, the
1D and 2D notched filters are clearly shown in Fig. 15 with obvious nulls generated
at the strong WBIs’ spectra. The ESP method can remove the WBIs via the eigen
subspace filtering so that the WBIs’ spectra would be removed thoroughly.

The WBI mitigation problem is more complicated than the NBI mitigation
problem. Rather than the WBI mitigation problem, more machine learning studies
focused on how to mitigate NBI and WBI simultaneously in recent years.

3.3.3 Simultaneous Mitigation of Complicated NBI and WBI

Most previous studies analyzed the simple WBI scenario, where the interferences
are isolated in time–frequency domain. But in practice, the measured interferences
are more complicated with different types of interferences, such as NBIs and WBIs.
And the mixed interferences dominate the whole time–frequency spectra. For this
case, parametric methods failed to suppress the interferences because it is hard to

Fig. 15 Illustration of the interference mitigation results via notched filter methods and ESP
method (i.e., PCA). (a) 1D notched filter. (b) 2D time–frequency notched filter. (c) ESP method
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model this kind of mixed interferences. Some studies, such as [28, 41], focus on the
simple interference cases that the interferences are isolated in the time–frequency
domain. Machine learning methods were demonstrated to be good tools to mitigate
the mixed interferences simultaneously. In practical applications, the characteristics
of complicated interferences, such as the frequency, are relatively stationary across
a short period of time. Basically, the STFT is a linear transform, and then the STFT
coefficient vector in the l-th pulse can be formulated as

zl = �il , (35)

where � denotes the full-rank STFT matrix [21], and zl and il denote the
tim–frequency interference vector and the interference vector in the l-th pulse,
respectively. Combine multiple pulses of signals in one synthetic aperture period,
and the tim–frequency spectra of interferences are

Z = �I. (36)

During the synthetic aperture time, the interference is relatively stationary so that
the tim–frequency spectra would have a special low-rank property under the STFT
matrix. Through the ISTFT, we have

I = �−1Z, (37)

where �−1 denotes the ISTFT matrix, which is also full-rank. If Z is low-
rank, the original matrix I is low-rank according to the fact that rank (I) ≤
min

{
rank

(
�−1

)
, rank (Z)

}
and rank (Z) ≤ min {rank (�) , rank (I)}. Based on this

special low-rank property, the complicated interferences can be mitigated via the
classic low-rank recovery methods, such as the basic RPCA model shown in (15).
Furthermore, based on the extended consideration, a higher dimensional model, like
a tensor structure, would provide more degrees of freedom (DOFs) and achieve
better performance of interference mitigation. In the next subsections, two typical
machine learning frameworks based on low-rank tensor recovery are analyzed in
detail.

Multi-look Low-Rank Tensor Recovery

As analyzed above, the complicated interferences are approximately stable along a
short period of time, while the real echoes are commonly not stable, especially for
the heterogeneous area and the different line-of-flight views from the radar platform
to targets. As can be well known that a higher dimension is able to provide more
DOFs and useful information than the lower dimension. Some intrinsic properties of
the interferences may not be well represented by the 1D frequency model or 2D tim–
frequency model. Hence, if we cut the whole synthetic aperture time into several
parts, i.e., a large, received signal matrix is divided into several small matrices, as
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shown in Fig. 16. The signal model is defined as

Y = [
Y1 Y2 · · · YM

]
(38)

and

Ym = Xm + Im + Nm, (39)

where Ym, Xm, Im, and Nm are the received signal, real echo, interference, and
background noise components of the m-th small matrices, respectively. Among
these small matrices, the interferences are quite similar, while useful signal matrices
would be different in a comparison. If these small matrices are stacked into a three-
mode tensor with the size being K × L/M × M , the received signal is equivalently
represented in a 3D range-azimuth-space (multi-look) domain.

This 3D model can better represent the potential low-rank property of the
interferences and also increase the gap between interferences and real echoes so that
the interferences are expected to be more easily removed. This new tensor model is

Y = X + I + N
= X + NBI + WBI + N,

(40)

where Y ∈ C
K×L/M×M , I ∈ C

K×L/M×M , and X ∈ C
K×L/M×M are the received

signal tensor, the RFI tensor, and the useful signal tensor, respectively, as shown in
Fig. 16. Rather than constrain the low-rank property in tim–frequency spectra, the
low-rank property of the interference tensor can be fully leveraged in the range-
azimuth-space domain. Then, the optimization problem is formulated as

min
I,X

trank (I) + λ‖X‖TR

s.t. ‖Y − I − X‖2
TF < δ,

(41)

where “trank” denotes the rank of a tensor, ‖ · ‖TF is the Frobenius norm of tensor,

i.e., ‖A‖TF =
√∑

n1n2n3

∣∣An1n2n3

∣∣2, and ‖ · ‖TR denotes the tensor regularization.

Fig. 16 Illustration of multi-look tensor model
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To solve the above problem, the definition of the rank should be first confirmed.
Herein, the tensor-SVD (t-SVD) algorithm is employed to relax this problem.
Basically, for a tensor A ∈ C

N1×N2×N3 , the t-SVD is defined as

A = U ∗ S ∗ V∗, (42)

where U ∈ C
N1×N1×N3 and V ∈ C

N2×N2×N3 are orthogonal, and S ∈ C
N1×N2×N3

is an f-diagonal tensor, i.e., each frontal slice of S is a diagonal matrix. Regards to
more specific definitions and properties about t-SVD, please refer to [42] in detail.
Based on the t-SVD, the optimization problem can be relaxed as

min
I,X

‖I‖T∗ + λ‖X‖T1

s.t. ‖Y − I − X‖2
TF < δ,

(43)

where ‖·‖T∗ is the nuclear norm of tensor, and ‖·‖T1 is the �1 norm of tensor. This
problem is defined as the complex tensor RPCA (CT-RPCA) problem. The tensor
nuclear norm is used here, and it is defined as

‖I‖T∗ = 1

M

M∑

j=1

∥∥∥Ī(j)
∥∥∥∗ . (44)

Basically, the block circulant matrix can be mapped to a block diagonal matrix,
which can be formulated as

(FN3 ⊗ EN1) · bcirc(A) · (F−1
N3

⊗ EN2) = bdiag(Ā). (45)

Then, the tensor nuclear norm is calculated as

‖I‖T∗ = 1
M

M∑
m=1

min{K,L/M}∑
n=1

σn

(Ī)

= 1
M

min{KM,L}∑
j=1

σj

(
bdiag

(Ī)).
(46)

And further, we have

‖I‖T* = 1
M

min{KM,L}∑
j=1

σj

(
bdiag(Ī)

)

= 1
M

min{KM,L}∑
j=1

σj

(
(FM ⊗ EK) · bcirc (I) ·

(
F−1

M ⊗ EL/M

))

= 1
M

min{KM,L}∑
j=1

σj (bcirc (I)).

(47)
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As a result, the nuclear norm of interference tensor is equivalent to the nuclear
norm of the block circulant matrix. It indicates that the tensor nuclear norm is able to
constrain the rank of interference tensor in the range-azimuth-space domain. Then,
the problem can be alternately optimized via two subproblems as follows:

min
I

‖I‖T* + μ

2
‖Y − I − X‖2

TF , (48)

min
X

λ‖X‖T1 + μ

2
‖Y − I − X‖2

TF . (49)

The tensor nuclear norm minimization problem in (48) can be effectively solved
via the independent frontal slice minimization analyzed in [30]. After solving
the optimization problem, the X tensor should be re-stacked to the size of the
original matrix. Herein, the X-band airborne SAR data is provided to evaluate the
performance of this multi-look tensor recovery method. Complicated NBIs and
WBIs are simulated, where the input SINR is -20 dB, and they are continuously
distributed in time–frequency domain. The mitigation results are shown in Fig. 17.
As can be seen, the complicated interferences are well removed, and the recovered
root mean square error (RMSE) shows its excellent performance. The sparse
recovery method fails to be applied to this case since it is only feasible for the
isolated interferences, such as the cases in Fig. 6.

Smoothing Tensor Factorization Algorithm

The analysis in the above subsection demonstrates the effectiveness of the tensor
structure for complicated interference mitigation. When breaking the original large-
scale matrix of received signals into several small-scale matrices, it creates extra
spatial (multi-view) DOFs to explore the gap between interferences and real echoes
in 3D domain, while this multi-look model loses a large amount of azimuth DOFs.
This may lead to performance degradation of the interference suppression. In order

Fig. 17 Illustration of the complicated interference mitigation result via multi-look tensor recov-
ery method. (a) Time–frequency spectrum of complicated interferences. (b) Interference-polluted
image. (c) Interference mitigation result. RMSE = 0.2342
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to simultaneously create a spatial dimension and try to keep as many azimuth DOFs
as possible, a new tensor structure was proposed by using the azimuth smoothing
technique to construct each frontal slice of the tensor, which is illustrated in Fig. 18.

As can be seen, the smoothing multi-view (SMV) model is a little bit more
complicated than the multi-view model. Suppose that there are L pulses of signals
in a synthetic aperture period, and L − N + 1 smoothing matrices are constructed
based on the original signal matrix. The s-th (1 <= s <= L − N + 1) smoothing
matrix can be constructed as

Ys = [
ys ys+1 · · · ys+N−1

]
. (50)

Benefiting from this smoothing architecture, N pulses of signals are kept in one
frontal slice and the number N can be tuned from 1 to L − 1. Hence, based on this
new SMV structure, the received signal can be formulated by a smoothing tensor
in 3D range-azimuth-space domain, as shown in Fig. 18. The received signal tensor
is the sum of the interference tensor, the real echo tensor, and the noise tensor. For
the new SMV structure, the interference tensor is still low rank due to its relatively
stationary performance during the synthetic aperture period. And the frontal slices
of the real echo tensor are different because the real echoes are variant for different
views or azimuth periods. Therefore, the CT-RPCA optimization problem still
works for this new model.

The multi-view model divides the large-scale matrix of received signals into
several small-scale matrices so that the computational burden for CT-RPCA opti-
mization problem is acceptable. However, the SMV model aims to protect both
spatial and azimuthal DOFs, and the large-scale tensor structure would involve high
computational burden. In fact, the low-rank tensor recovery optimization dominates
the total computational complexity, so we omit the subproblem relating to the real
echo tensor. Then, in order to relieve the total computational complexity, a tensor
factorization scheme is employed to break the large-scale tensor into a t-product of
two small-scale tensors, that is,

I = U ∗ V, (51)

Fig. 18 Illustration of the smoothing tensor model
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where U ∈ C
K×r̂×(L−N+1) and V ∈ C

r̂×N×(L−N+1). Moreover, r̂ is the estimated
upper bound of the rank of tensor and r̂ � K,N . According to the property of
t-product operation, one can note that

Ī(i) = Ū(i)V̄(i)
, (52)

where i = 1, 2, · · · , L−N+1. Based on the definition of the block diagonal matrix,
we also have

bdiag
(Ī) = bdiag

(Ū)
bdiag

(V̄)
. (53)

In addition, the tensor nuclear norm is a convex relaxation of the original rank
operation. The tensor nuclear norm minimization has the similar drawback as
the matrix nuclear norm minimization, which may excessively decrease the large
singular values of the interference matrix. As a consequence, a reweighted tensor
nuclear norm is defined to approximate the true tensor rank as follows:

‖I‖RTNN = 1
Q

Q∑
i=1

min{K,N}∑
j=1

wjσj

(
Ī(i)

)

= 1
Q

Q∑
i=1

∥∥∥Ī(i)
∥∥∥

RNN
,

(54)

where the subscript RNN denotes the reweighted nuclear norm for the matrix, i.e.,
‖A‖RNN = ∑

j wjσj (A). And the reweighted tensor nuclear norm can also be
further derived as a constraint of the block circulant matrix:

‖I‖RTNN = 1
Q

min{KQ,NQ}∑
j=1

wjσj

(
bdiag(Ī)

)

= 1
Q

min{KQ,NQ}∑
j=1

wjσj (bcirc (I)).

(55)

Then, based on the reweighted tensor nuclear norm and the tensor factorization
technique, it can be further formulated as

‖I‖RTNN = 1

Q

min{KQ,NQ}∑

j=1

wjσj

(
bdiag

(Ū)
bdiag

(V̄))
. (56)

With the relaxation introduced in (27) and (28), the reweighted tensor nuclear norm
minimization problem can be relaxed as

min
U,V

1
2

(
‖U‖2

RTFN + ‖V‖2
RTFN

)

s.t. ‖Y − U ∗ V − X‖2
TF < δ,

(57)
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where the reweighted tensor Frobenius norm (RTFN) is defined as

‖U‖2
RTFN = 1

Q

Q∑
i=1

r̂∑
j=1

wjσ
2
j

(
Ū(i)

)

= 1
Q

Q∑
i=1

∥∥∥Ū(i)
∥∥∥

2

RFN
,

(58a)

‖V‖2
RTFN = 1

Q

Q∑
i=1

r̂∑
j=1

wjσ
2
j

(
V̄(i)

)

= 1
Q

Q∑
i=1

∥∥∥V̄(i)
∥∥∥

2

RFN
.

(58b)

Then, the large-scale low-rank reweighted tensor optimization problem is relaxed
to the small-scale RFN optimization problem. And the whole optimization problem
can be break into several independent minimization problems for all the frontal
slices

min
U,V

1
2Q

(
Q∑

i=1

∥∥∥Ū(i)
∥∥∥

2

RFN
+

Q∑
i=1

∥∥∥V̄(i)
∥∥∥

2

RFN

)

s.t. ‖Y − U ∗ V − X‖2
TF < δ.

(59)

This problem can be efficiently solved compared with the original problem.
In the whole process, we omit the analysis of the real echo tensor optimization
subproblem since it can be solved via the same solution introduced in CT-RPCA.
Complicated NBIs and WBIs are simulated and added on the X-band SAR data,
which is similar to the previous subsection. Herein, the tensor factorization method
based on SMV model is evaluated to mitigate the complicated interferences, and
the results are shown in Fig. 19. Almost all the azimuth DOFs and extra spatial
DOFs are fully considered, and the mitigation performance is better than the tensor
recovery method with the multi-view model.

Fig. 19 Illustration of the mitigation performance of the tensor factorization method based on
SMV model. (a) Mitigation result. RMSE = 0.2251. SSIM = 0.9859. (b) Enlarged area of yellow
rectangle. (c) Enlarged area of green rectangle
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4 Future Trend of Interference Mitigation via Deep Learning
and Cognitive Scheme

In recent years, the cognitive radar system gradually becomes an intelligent means
to adaptively and actively sense the complex electromagnetic environment and
take careful considerations on the waveform design or system re-design work
immediately. One can conclude that not all the encountered interferences can be
effectively mitigated via post signal processing. The interference mitigation technol-
ogy, including the aforementioned machine learning methods, cannot be regarded
as a standalone restoration for the external interference problems experienced by
present SAR systems. It is better that the interference environment can be greatly
understood before sensor deployment, flight, or launch, and thus the corresponding
mitigation methods could be developed in advance.

In addition, the deep learning tools, especially for the supervised learning
algorithms, have excellent performance for nearly all the tasks in computer vision
and natural language processing areas. However, one critical problem of this
effective tool is the collection of as much data as possible for training and realizing
excellent performance. Therefore, some pioneers attempt to produce plenty of data
for training the deep neural networks before mitigating interferences, resulting
in another feasible understanding for cognitive systems. In [43], an interference
detection and mitigation algorithm based on deep neural networks was developed on
the time–frequency spectra of SAR echoes. Both NBI and WBI can be effectively
mitigated via the well-trained deep learning methods. By learning from plenty
of interference-polluted data, more variety of refined signal models would be
established, which is beneficial for performance improvement.
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Classification of SAR Images Using
Compact Convolutional Neural Networks

Mete Ahishali, Serkan Kiranyaz, and Moncef Gabbouj

1 Introduction

The number of orbiting satellites or air-borne measurement devices may be the
greatest in our time; and hence, there is a growing interest in remote sensing
applications. In general, the applications have been developed for both remote
sensing domains: active or passive remote sensing. In the acquisition process of
the active remote sensing, an electromagnetic (EM) wave is transmitted, then
any difference or perturbation that can be identified between the transmitted and
received (the backscattered) EM waveforms the observation of the scene. In passive
remote sensing acquisition, the sensor only receives the measured wave where the
source of the EM wave is natural, e.g., the sunlight in optical satellite imagery.

Synthetic Aperture Radar (SAR) imaging is an active remote sensing technique
and it is extensively used in many fields with different applications including
agriculture, forestry, geology, and oceanography. Since it is an active remote
sensing technique, it can operate during day or night time; and depending on the
sensor of choice (more specifically, the frequency of the transmitted EM wave), it
can also operate under various weather circumstances where the optical satellite
imagery may fail. SAR systems can be space-borne or air-bone the acquisition
system is mounted on an orbiting satellite or a plane having a specified trajectory,
respectively. For example, various applications using different SAR systems can be

M. Ahishali (�) · M. Gabbouj
Faculty of Information Technology and Communication Sciences, Tampere University, Tampere,
Finland
e-mail: mete.ahishali@tuni.fi; moncef.gabbouj@tuni.fi

S. Kiranyaz
Electrical Engineering Department, College of Engineering, Qatar University, Doha, Qatar
e-mail: mkiranyaz@qu.edu.qa

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2022
M. Rysz et al. (eds.), Synthetic Aperture Radar (SAR) Data Applications, Springer
Optimization and Its Applications 199, https://doi.org/10.1007/978-3-031-21225-3_7

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21225-3_7&domain=pdf

 885 51863 a 885 51863
a
 
mailto:mete.ahishali@tuni.fi

 9462 51863 a 9462 51863
a
 
mailto:moncef.gabbouj@tuni.fi

 885 55738 a 885 55738
a
 
mailto:mkiranyaz@qu.edu.qa

 12882 61494 a 12882
61494 a
 
https://doi.org/10.1007/978-3-031-21225-3_7


148 M. Ahishali et al.

listed as follows: oil spill detection with ENVISAT, RADARSAT-1 [1], tsunami-
related building damage investigation using TerraSAR-X [2], vegetation monitoring
using Sentinel-1 [3], land use/land cover (LU/LC) classification with AIRSAR
[4–6], and RADARSAT-2 [7]. A more extensive list of applications is presented
in [8] using different SAR sensors. In this book chapter, more focus is drawn
on the LU/LC applications. The classification of LU/LC is an interesting task
and it is well motivated due to its significance especially for socioeconomic and
ecological applications. For instance, the connection between vegetation intensity
and socioeconomic status is studied in [9] and it is stated that socioeconomic
advantage is associated with the greater vegetation intensity. Next, the studies in
[10, 11] investigate the effect of different vegetation on the temperature by relating
urban climate with the vegetation type. The study in [12] has performed forest
biomass analysis in the Mediterranean region to provide vegetation ecosystem
analysis.

Nevertheless, the LU/LC classification is a challenging problem because of
the following reasons: (i) the SAR data contain speckle noise that causes the
performance degradation for the traditional classification methods, (ii) the need for
a significant number of features to achieve a decent classification performance,
and (iii) the scale of the SAR data that is ultimately linked with (ii). The
existing studies consist of unsupervised and supervised techniques. In the first
group, there are proposed studies [13, 14] based on different clustering methods,
but it is observed that they have certain limitations for the high-resolution SAR
images having heterogeneous regions. Similarly, various superpixel segmentation
approaches [15, 16] are proposed aiming to group similar pixels together utilizing
some low-level characteristics such as color. An analysis is presented by Stutz et
al. [17] regarding superpixel segmentation-based unsupervised approaches. Finally,
the method proposed in [18] aims to reduce the effect of speckle noise on the
performance using an extended version of the mean shift algorithm.

Although unsupervised SAR classification methods may be valuable in the
cases where it is unfeasible to provide any labeling, it is shown that many
supervised approaches [6, 19–23] provide superior classification performance over
the unsupervised approaches. The traditional supervised methods proposed for the
SAR classification task consist of two steps: feature extraction and classification.
Considering the classification of single or dual-polarimetric SAR data, it is par-
ticularly important to extract descriptive features and propose an efficient way to
ensemble them, e.g., as followed by Uhlmann and Kiranyaz [21]. In this way, it is
aimed to reduce the performance degradation that can possibly occur due to the lack
of full polarization in the data.

In the previous study, an acceptable performance level is achieved by Uhlmann
and Kiranyaz [21] for single- and dual-polarized SAR data. Accordingly, feature
vectors are collected with high dimensions (for example, greater than 200-D) and
they have followed using an ensemble of classifiers over the extracted features.
Since the method proposed in [21] is a traditional approach, it was a need to
compute a huge number of features consisting of various EM (primary information)
and image processing (secondary information) features as the traditional classifier
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cannot provide reasonable classification accuracy over the direct inference on the
SAR intensity data. One major drawback with these traditional classifiers is that
the extraction procedure of a huge amount of these features highly increases the
computational time.

In Polarimetric SAR (PolSAR) classification, more information about the target
can be obtained utilizing multiple orthogonal polarizations. This brings a huge
advantage as various target decomposition theorems can be used in the classifica-
tion, whereas, for instance, there is only one intensity channel in the single-polarized
SAR data. Overall, the usage of fully polarimetric data enriches the EM (primary)
features in a traditional classification framework. Ultimately, such an increase in
the amount of EM features causes a similar issue with the conventional methods
as in [4, 22, 23]: the computational burden due to the usage of high-dimensional
features. Nevertheless, elegant classification performance is achieved by Uhlmann
and Kiranyaz [22] by integrating the high-level EM features with image processing
features similar to [21].

It can be said that the aforementioned conventional approaches for both partially
and fully polarimetric SAR classification have some common limitations and draw-
backs. First, the classification performance highly depends on the manually selected
features as they involve feature engineering. Although this limitation has been tried
to be addressed, e.g., in [23–25] by collecting a massive amount features together, it
is certain that first, the extraction procedure increases the computational complexity,
and then the following classification task has been becoming complicated because of
the curse of dimensionality. Eventually, the classification accuracy for some terrain
types suffers from suboptimal classification performance levels using the traditional
methods.

Besides the traditional classification approaches with their aforementioned lim-
itations, methods using Convolutional Neural Networks (CNNs) [26–28] have
started to become a complete state-of-the-art approach in many applications such
as object tracking, image recognition, and segmentation. CNNs combine the feature
learning and classification parts in a single learning framework and they are jointly
optimized during the training procedure. It is observed in the literature that such
learning-based methods tend to follow deep structures with millions of trainable
parameters. The Deep Learning (DL) based methods appear in the following appli-
cations of remote sensing as investigated in [29]: interpretation of high-resolution
satellite and SAR images, multimodal data fusion, hyperspectral image analysis, and
3-D large-scale city reconstruction. However, the DL approaches, in general, require
a massive amount of training data, for example, in a “Big Data” scale to train their
enormous number of trainable model parameters. For example, this requirement is
also observed in many recent studies [30, 31] in SAR image classification. These
DL-based approaches have used a great portion of the annotated data such as 75%
or larger to obtain promising classification accuracies. For instance, the proposed
classification approach in [30] has used nearly 80% of SAR data during the training
corresponding to 28,404 and 10,817 numbers of samples from San Francisco Bay
and Flevoland L-band PolSAR images, respectively. Therefore, only 8000 and
2781 samples were selected in [30] for the actual performance evaluation over San
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Francisco and Flevoland areas, respectively. Comparably, the approach in [31] has
employed 75% of the annotated data in the training to accurately classify Flevoland
SAR image at L-band (111,520 training samples of a total of 148,520 annotated
samples). The list of approaches using large proportions as the training data can be
extended: 75% and 88–92% of the annotated SAR data are used in [32, 33].

On the whole, the availability of large amounts of the annotated data is unfeasible
in remote sensing because of the labeling cost and inconvenience that occurred
during the ground-truth formation. One can be said that after the ground-truth
collection, the need for an automatic classification framework may disappear as
already a large proportion of the data is labeled. Moreover, since the scales of both
the data and model are large in DL-based methods, there is a requirement of a
special hardware setup during the training and for the inference as well to deal
with the increased computational complexity. Altogether, their low-cost operations
and real-time applications are very limited considering the discussed limitations and
drawbacks.

The studies in [19, 20] have proposed superior classification frameworks for SAR
and PolSAR classifications based on compact and adaptive CNNs. In this way, they
aim to address the aforementioned weaknesses of the traditional approaches and
the limitations of the DL-based methods. First, in [19], the proposed approach is
evaluated over space-born X-band SAR images including COSMO-SkyMed single-
polarized and TerraSAR-X dual-polarized intensity data. The performance compar-
ison has been performed against the previous state-of-the-art approach in [21] and
two recent deep CNNs including Xception and Inception-Resnet-v2 [34, 35] that are
initially proposed for ImageNet—Large-Scale Visual Recognition Challenge [36].
Accordingly, the novel and major contributions of [19] are expressed as follows:
the proposed approach can operate directly using SAR intensity data without any
additional pre-processing procedure, e.g., it does not require any image processing
features on contrary to the compared method in [21]. Secondly, it is shown in [19]
that the proposed approach with compact CNNs outperforms the compared deep
CNNs and it can achieve state-of-the-art performance levels using only a small
number of training samples that can be considered as negligible amount since
it corresponds to less than 0.1% of the complete SAR data. Next, thanks to the
proposed compact configuration in [19], the proposed approach can achieve greater
computational complexity efficiency in both training and inference; and hence it
is appropriate to use the proposed classification in real-time inference. Finally, it is
shown that operating with small window sizes is possible with the proposed compact
models since the input size can be configured as (2n + 1) × (2n + 1) with n as
small as n = 3. The advantage of using such small sliding window sizes is that the
produced LU/LC mask would have finer details if the window size is appropriately
set to a small value in the sliding window classification technique. In the later study
[20], the proposed approach with the compact CNNs has been evaluated in PolSAR
classification using AIRSAR L-band and RADARSAT-2 C-band PolSAR data.
Correspondingly, the PolSAR classification version of the approach in [20] inherits
the same previously mentioned abilities as in [19] thanks to the CNNs that combine
the feature learning and classification topologies and optimize them simultaneously
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during the training. Furthermore, thanks to the PolSAR data, there is a large set of
additional EM features that can be computed using different Target Decompositions.
These features are utilized by the compared methods in [20]. In such a challenging
comparison where the competing methods including [22, 23] enjoy the enriched
descriptive information, it is observed that the proposed method still produces state-
of-the-art classification accuracies while it operates over only the second-order
descriptors of PolSAR data. Therefore, it is shown in [19, 20] that the proposed
approach with compact and adaptive CNN achieves enhanced performance levels
in both partially and fully polarimetric SAR classification tasks using low-level EM
information and only an insignificant number of training samples.

The rest of the chapter is organized as follows: SAR information extraction is
detailed in Sect. 2. Then, the proposed methodology will be detailed in Sect. 3. The
experimental results will be presented in Sect. 4 along with a brief explanation
regarding the evaluated SAR and PolSAR study areas and the computational
complexity analysis. Finally, Sect. 5 concludes the chapter with concluding remarks
and potential research directions in the future.

2 Background and Related Work

In this section, the background knowledge will be provided regarding the SAR data
processing and PolSAR information extraction for the classification. Next, prior
work in this domain will be briefly reviewed including traditional and deep CNN-
based classification approaches.

2.1 SAR Data Processing

The observed target is defined by the complex backscattering matrix S in a
SAR acquisition system. In the case of having horizontally and vertically linear
polarizations, the backscattering matrix would be S ∈ C

2×2 with the corresponding
elements as,

[
Er

h

Er
v

]
= S

[
Et

h

Et
v

]
, where S =

[
Shh Shv

Svh Svv

]
, (1)

where Et
h, Et

v are the transmitted and Er
h, Er

v are the received electric fields.
Hence, assuming a monostatic system configuration where it holds that Shv = Svh

(using reciprocity theorem), the target in PolSAR data is represented by five distinct
parameters: (i) three absolutes consisting of co-polarized intensities including |Shh|,
|Svv| and one of the cross-polarized intensities as |Shv| or |Svh| and (ii) two relative
phases with φhv−hh and φvv−hh. Correspondingly, it follows
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[
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v
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=

[|Shh| ejφhh |Shv| ejφhv
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] [
Et

h

Et
v

]
. (2)

Additionally, the total scattering power is used as another target descriptor in the
classification algorithms. The total scattering power, the so-called Span, can be
computed by Span(S) = Tr(SS∗T

) = |Shh|2 + |Svh|2 + |Shv|2 + |Svv|2. Note the
fact that the matrix S has the complete information of the observed target; however,
in practice, the availability of these backscattering parameters is determined by the
actual polarization of the utilized acquisition system.

2.2 PolSAR Information Extraction

The scattering mechanisms of various terrain types can be better characterized using
the PolSAR data. For example, this better characterization advantage is studied by
Lee et al. [37] and the scattering mechanisms for different target categories can
be summarized as follows: human-made objects including vehicles and buildings
tend to have specular and double bounce scatterings, open-areas (e.g., consisting of
lands without structures) have surface scattering, and bushes and trees demonstrate
volume scattering.

One can utilize the second-order representations of the backscattering S matrix
to exploit the scattering information. Because of the random scattering and speckle
noise, the PolSAR data are obtained through multilooking; and accordingly, the
second-order target descriptors consisting of average coherency T and covariance C
matrices are computed by averaging over n number of looks as follows,

T = 1

n

n∑

i=1

kik∗T

i and C = 1

n

n∑

i=1

�i�
∗T

i , (3)

where ki and �i are the Pauli-based scattering and lexicographic basis for the ith
look, respectively:

ki = [Shh + Svv, Shh − Svv, 2Shv]T /
√

2

�i =
[
Shh,

√
2Shv, Svv

]T

. (4)

One intuitively can say that both the coherency and covariance matrices have
the equivalent information regarding the polarimetric description since their linear
transformation from one to the other is possible and they are both Hermitian positive
definite 3 × 3 matrices.

In general, the collected features in PolSAR classification can be grouped in
two categories: (i) the obvious features from the backscattering matrix elements
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and the second-order descriptors including the coherency T and covariance C
matrices. Apparently, the first group contains the aforementioned low-level EM
features from (2) and (3). On the other hand, the second group (ii) contains
the computed features using different TD theorems including the coherent and
incoherent decompositions.

2.2.1 Coherent Target Decompositions

In the coherent TDs, the matrix S is tried to be represented as the sum of coherent
scattering responses such that

S =
k∑

i=1

αiSi . (5)

Basically, even though the S matrix has the complete information regarding the
observation, in PolSAR classification, more discriminative features can be obtained
with the computed αi coefficients using alternative representations. The following
TDs can be included in this group: Pauli decomposition, Krogager decomposition
[38], and Cameron decomposition [39].

For example, in Pauli decomposition, S is represented by the Pauli basis matrices
as follows:

S =
[
Shh Shv

Svh Svv

]
= α1S1 + α2S2 + α3S3, (6)

where S1 = 1√
2

[
1 0
0 1

]
, S2 = 1√

2

[
1 0
0 −1

]
, and S3 = 1√

2

[
0 1
1 0

]
with the correspond-

ing representations coefficients as α1 = (Shh + Svv) /
√

2, α2 = (Shh − Svv) /
√

2,
and α3 = √

2Shv . One can note that the concatenation of these coefficients form
the Pauli-based scattering vector in (4). Then, Pauli-based features are obtained by
the squared-amplitudes: |α1|2, |α2|2, and |α3|2. These polarimetric components are
also used to illustrate a PolSAR image, an pseudo-colored image can be obtained by
assigning these polarimetric components to RGB components. As another example
to coherent TDs, the Krogager decomposition tries to represent distinct scattering
mechanisms independent from the incident angle as follows,

S = ejφ
(
ejφs ksSs + kDSD(θ) + kHSH(θ)

)
, (7)

where for an incident θ angle, three PolSAR coherent components are obtained as
kS , kD , and kH by decomposing S using sphere, diplane, and helix bases.
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2.2.2 Incoherent Target Decompositions

The incoherent TDs try to exploit the distributed scatters by decomposing the
second-order target descriptors including T and C matrices; some of the incoherent
TDs are H/α/A or eigenvector-eigenvalue (Cloude-Pottier) decomposition [40],
Freeman decomposition [41], and Huynen decomposition [42].

For example, in Cloude-Pottier decomposition, the eigenanalysis is performed
over the coherency matrix T as follows:

T = U3

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3,

⎤

⎦U∗T

3 (8)

with the following orthonormal eigenvectors:

U3 =
⎡

⎣
cos α1 cos α2 cos α3

sin α1 cos β1e
iδ1 sin α2 cos β2e

iδ2 sin α3 cos β3e
iδ3

sin α1 sin β1e
iγ1 sin α2 sin β2e

iγ2 sin α3 sin β3e
iγ3

⎤

⎦ . (9)

Cloude-Pottier’s decomposition provides several polarimetric parameters including
the following average set of four angles: f = [

ᾱ β̄ δ̄ γ̄
]
, the anisotropy A, and the

entropy H . They are defined as follows for real eigenvalues λ1 > λ2 > λ3:

ᾱ =
3∑

i=1

piαi, β̄ =
3∑

i=1

piβi, δ̄ =
3∑

i=1

piδi, γ̄ =
3∑

i=1

piγi,

A = p2 − p3

p2 + p3
, H = −

3∑

i=1

pi log3 pi, (10)

where pi = λi∑3
i=1 λi

. Here, the randomness is defined by the entropy H parameter.

Accordingly, for a randomly observed target, it is H = 1 with equal eigenvalues. On
the other hand, as stated in [43], for the cases where the entropy is small enough,
the first eigenvector is sufficient to describe the observed target. In practice, one
is likely to describe the partial target whose scattering is between isotropic and
random (i.e., H = 0 and H = 1, respectively). It is investigated in [44] that
such partial scatterings can be described by the averaged ᾱ angle in (10) as single-
bounce, dipole, and double bounce scatterings correspond to ᾱ ≈ 0, π/4, and π/2,
respectively.
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2.3 Prior Work

In the following, existing studies on SAR and PolSAR classification will be
discussed.

2.3.1 Classification of Partially Polarized SAR Data

In a classification framework, one can directly use the backscattering elements
in (2). However, SAR data may not have such full polarization and one can have
single or dual-polarized SAR data; in this case, the information is limited regarding
the observed target. Such degradation decreases the classification performance as
it is observed in many studies [45–48]. Therefore, the classification approaches
for partially polarized data tend to improve the performance using an excessive
number of features. Among the traditional ML-based approaches, the study in [21]
proposes to integrate different EM features with the texture and color features.
One can say that the previous approaches have used only pixel-wise information
in the classification and neglected the correlation within small neighborhoods,
whereas the same method in [21] has also utilized region-based feature extraction
procedure and they have obtained an elegant classification accuracy using only
less than 0.1% of the whole SAR data in the training. The collected features
in [21] include the elements of S and the following additional image processing
features: (i) texture features: the Edge Histogram Descriptor (EHD) [49], Local
Binary Pattern (LBP) [50], Gray-Level Co-occurrence Matrix (GLCM) [51], and
Gabor wavelets [52] and (ii) color features: MPEG-7 Color Structure Descriptor
(CSD) [53], MPEG-7 Dominant Color Descriptor (DCD) [49], and hue-saturation-
value color histogram [53]. Accordingly, to compute the abovementioned image
processing features over the single- and dual-polarized SAR data, several different
methodologies are followed to obtain pseudo-colored RGB and gray-level images in
[21]. Correspondingly, color features for dual-polarized SAR data are extracted over
two RGB images produced using the available magnitudes of two backscattering
elements of S such that assigning |Svh|, |Svh| − |Svv|, |Svv| and |Svv|, |Svv| − |Svh|,
|Svh| to R,G, and B channels, respectively. However, there is only one intensity
SAR data available for the single-polarized case. In this case, the pseudo-colored
image is produced by assigning intensity values to corresponding pre-determined
Hue, Saturation, and Intensity (HSI) values as followed in [54]. Next, the texture
features are obtained over the gray-level images produced by calculating the
total scattering power Span(S) for the dual-polarized data and directly using the
available backscattering element for the single-polarized data. Then, an ensemble
of traditional classifiers is built to perform classification over the extracted features
and they are trained together to maximize the classification performance.
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2.3.2 PolSAR Data Classification

There are various traditional approaches for PolSAR classification such as [22,
25, 55, 56] that are based on, for example, Support Vector Machines (SVMs)
and Random Forest (RF). In general, utilized PolSAR features in these methods
can be grouped into two categories; in the first category, features collected from
the backscattering S matrix and the second-order descriptors including T and C
matrices, whereas in the second category, the extracted features are based on the
different TDs. Hence, contrary to the previously discussed approaches proposed for
the partially polarized SAR data, the PolSAR classification approaches additionally
utilize different combinations of the high-level EM features that are extracted using
various TDs.

The DL methods for PolSAR classification constitute the new trend using
deep CNNs. For example, in [30], it is proposed to collect the real-valued diag-
onal elements and the magnitudes of the complex non-diagonal elements of the
matrix T in order to form a 6-dimensional real-valued input for a deep CNN
classifier. The study in [32] has used a considerably deep model consisting of
11 layers. On the other hand, the proposed deep CNN in [32] takes only the
3-dimensional input that is formed by the Pauli decomposition [α1, α2, α3] =
[Shh + Svv, Shh − Svv, 2Shv]T /

√
2. Finally, another study in [31] has proposed

using a deep CNN consisting of two separate branches. The two branches are trained
jointly over separate inputs: the first branch’s input is similar to 6-dimensional
input in [30] and the second branch is trained using 3-channel pseudo-colored
RGB images. In the end, they form a single-stage classification framework for the
inference.

Nevertheless, in order to achieve adequate classification accuracies, the afore-
mentioned DL-based methods demand a great amount of training data which
undermines the main purpose of using such automatic classification frameworks.
Furthermore, considering the remaining limited amount of test data implies that the
deep CNN-based methods have not been evaluated over a significant proportion of
the PolSAR data; and hence, one can say that the reliability issues may occur on
the achieved classification accuracies by deep CNNs. To this end, the method in
[22] has achieved satisfactory classification accuracies using only a small number
of training samples (e.g., less than 0.1% of the PolSAR data) and with the reduced
computational time complexity compared to DL-based approaches. Accordingly,
the method in [22] uses similar color and texture feature extraction techniques as
followed in [21]. In addition, the EM features are enriched thanks to the coherent
and incoherent TDs. Finally, an ensemble of traditional classifiers, which is also
similar to [21], is trained in [22] over the extracted features.
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3 Methodology

The classification methodologies proposed in [19, 20] are illustrated in Fig. 1.
For the illustration purposes in the figure, the pseudo-colored image for partially
polarized SAR data is created by the previously explained HSI color-space trans-
formation using the available intensity at X-band over Po Delta in Italy; and the
PolSAR image of San Francisco at C-band (SFBay_C) is created by assigning the
diagonal elements of the T matrix: T33, T22, and T11 to R, G, and B channels,
respectively. In the proposed classification framework, pixel-wise classification is
performed using an N × N sliding window over the EM channels. Accordingly, the
replaced N × N window at the center of the ith pixel is fed to the adaptive and
compact 2D-CNN and its corresponding class prediction determines the predicted
label of the ith pixel. This procedure is performed for each pixel in the image and
the final produced LU/LC mask is obtained as illustrated in Fig. 1. Obviously, the
number of weight kernels connecting the input layer to the first hidden convolutional
layer is equal to the number of input EM channels. In the study of [19], it has varied
between one to four for partially polarized SAR data, whereas it has varied between
three to six for fully polarimetric SAR data. Next, another hyper-parameter in the
proposed approach [19, 20] is the size of the sliding window operator. In general,
if the classifier is based on deep CNNs, the size (N ) is needed to be kept high. On
the other hand, in the proposed approach using small window sizes is possible, e.g.,
5 × 5 or 7 × 7. The advantage of using such small sizes will be discussed in Sect. 4.
In the following, the adaptive CNN implementation will be detailed.

Fig. 1 The proposed SAR classification framework in [19, 20] using compact CNNs based on
sliding window pixel-wise classification
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3.1 Adaptive CNN Implementation

Adaptive CNNs have several novel modifications in order to obtain an adaptive
structure in the network and simplify the neuron representation. To begin with, the
network architecture consists of only two different layer types besides the input
and output layers: (i) CNN layers encapsulating the conventional convolutional and
sub-sampling layers and (ii). Multi-Layer Perceptron (MLP) or fully connected
layers. In this way, every neuron of the CNN layers can perform convolution and
down-sampling operations. Accordingly, the intermediate output of a CNN neuron
is sub-sampled to get the final output of that neuron. Then, all of the final computed
output maps of the corresponding layer are convolved with their weight kernels and
they are further summed to form the inputs for the neurons in the next layer. In the
modified CNN layers, the CNN parameters are independent of the image dimension
of the input layer. The intermediate output of the kth neuron at layer l, yl

k , is sub-
sampled to produce the final output slk of that particular neuron. The final output
maps for each neuron are convolved with their corresponding weight kernels and
the results are summed to produce the input map of the next layer neuron as follows:

xl
k =

Nl−1∑

i=1

conv2D
(
wl−1

i,k , sl−1
i , ‘NoZeroPad’

) + bl
k. (11)

Thanks to the adaptivity, there are introduced two properties with the proposed
approach [19, 20]. First, the user can select different sliding window sizes N

and there is no need to perform further modification in the network structure.
This is especially important for the SAR classification since the window size is
generally dependent on the SAR data (e.g., resolution of the data) and the designed
experimental setup. Second, the number of CNN layers can be set to any number
independent of the size of the input (N ). This is possible in the implementation
since the sub-sampling pooling size is adjusted automatically based on the output
feature map size of the last CNN layer, i.e., just before the first fully connected
layer. In this way, the feature maps are sub-sampled accordingly to produce scalar
output values for the input of the first fully connected layer. For instance, let the
last hidden convolutional layer has the feature map dimension of 8 × 8. Then, the
feature maps are sub-sampled with a pooling size of 8. Also note the fact that
besides the sub-sampling, the feature map dimensions are reduced because of the
convolution operation without zero-padding in the proposed CNN configuration.
Therefore, after convolution with the kernel sizes of (Kx,Ky), the feature map size
would be decreased by (Kx −1,Ky −1) where the width and height are Kx and Ky

for the convolution kernels.
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Fig. 2 The training technique for the proposed adaptive 2D CNNs including the data processing,
patch extraction, and the BP iteration to update the network parameters

3.2 Back-Propagation for Adaptive CNNs

The Back-Propagation (BP) procedure is illustrated in Fig. 2 for the proposed
adaptive CNNs. Given a classification problem with NL classes, first, using 1-of-NL

encoding procedure, the labels are converted to the target class vectors. Next, for
each training pixel, patches are cropped by placing the N ×N window at the center.
Let the corresponding true/target and predicted class vectors be [t1, t2, . . . , tNL

] and
[y1, y2, . . . , yNL

], respectively. The BP is initiated by computing the derivative of
the classification error at the output layer with respect to its training parameters
including the weights and biases. Accordingly, the mean-squared error is computed
for the classification error:

L = L(
yL

1 , yL
2 , . . . , yL

NL

) =
NL∑

i=1

(
yL
i − ti

)2
. (12)

The BP formulation for the MLP layers is already well-studied. For the CNN
(convolutional) layers, the BP formulation consists of four different parts including
inter-BP among CNN layers, intra-BP within a CNN neuron (that includes con-
volution and sub-sampling operations), BP from the first MLP layer to the last
convolutional layer, and finally the computations of the kernel (weights) and bias
sensitivities. The readers are referred to [21] for the complete formulation of these
four steps of one BP iteration.

4 Experimental Results

In this section, the experimental setup is first presented together with the utilized
benchmark SAR data in the studies of [19] and [20], respectively. Then, the
classification performance of the proposed approach of [19, 20] using the adaptive
and compact CNNs will be compared against the methods in [21, 22], and several
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other recent methods. The quantitative analysis to evaluate the classification perfor-
mance will be performed by comparing the class-specific and overall classification
accuracies. In SAR classification, one can say that the visual evaluation has also
significance along with the quantitative analysis. Hence, the visual evaluation
will be carried out by inspecting the final produced segmentation masks (i.e.,
qualitative analysis) by the methods for each study site. Next, the sensitivity of
the methods will be investigated against the two hyper-parameters: the number of
input channels and the sliding window size N . There are also overall classification
accuracy comparisons between the proposed approach and two recently proposed
deep CNNs: Xception [34] and Inception-ResNet-v2 [35]. Finally, this section will
be concluded by another sensitivity analysis regarding the number of layers and
neurons to show that the compact CNN architectures improve the classification
performance compared to their deep counterparts.

4.1 Benchmark SAR Data

The experimental evaluations are performed using four different study sites and
six SAR images. The details for each benchmark data are presented in Table 1;
correspondingly, there are two partially polarized and four fully polarized SAR
images. The single-polarized PDelta_X image covers the Po Delta region located
in the Northeast of Italy. The Dresden_X image has dual-polarization and mainly
covers the Dresden area in the Southeast of Germany. From the four PolSAR
images, two of them are acquired by an air-borne system, whereas the rest of
the images are all space-borne. The first set of the PolSAR images cover the San
Francisco Bay area in California, USA. The second set consists of the Flevoland area
of the Netherlands. In general, these images have been widely used as benchmark
data in PolSAR classification approaches. The image dimensions, the number of
training samples, and the ground-truth data (GTD) size are presented in Table 2.

Table 1 The benchmark SAR images that are utilized in the experiments consisting of partially
polarized and fully polarized SAR data

Study site System and band Abbreviation Date Incident angle Mode

Po delta COSMO-SkyMed, X-band PDelta_X Sep 2007 30◦ Single

Dresden TerraSAR-X, X-band Dresden_X Feb 2008 41–42◦ Dual

SF Bay AIRSAR, L-band SFBay_L 1988 10–60◦ Quad

SF Bay RADARSAT-2, C-band SFBay_C Apr 2008 30◦ Quad

Flevoland AIRSAR, L-band Flevo_L Aug 1989 40–50◦ Quad

Flevoland RADARSAT-2, C-band Flevo_C Apr 2008 30◦ Quad
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Table 2 Dimension, the number of training samples per class, the total number of samples in the
ground-truth data (GTD), and the number of classes are presented for each SAR data

Data Dimension Train samples per class Total GTD # classes

Po Delta 4642 × 3156 2000 612,000 6

Dresden 2209 × 3577 1000 606,000 6

SF Bay 900 × 1024 ∼292 123,459 5

SF Bay 1426 × 1876 500 252,500 5

Flevoland 750 × 1024 120–480 209,979 15

Flevoland 1639 × 2393 500 202,000 4

4.1.1 Po Delta, COSMO-SkyMed, X-band (PDelta_X)

The benchmark PDelta_X single-polarized SAR data have mainly the natural terrain
types and also several different types of water classes. The image has only one
polarization: HH in Strip Map HImage mode. Originally, it has 16716 × 18308
image dimension with a 3-m resolution, but because of the computational burden,
the PDelta_X is downscaled by 3.6 × 5.8 in the approach of [21]. Thus, in the
proposed approach of [19], the same downscaling factor is used to downscale the
PDelta_X image to make a fair comparison possible using the same GTD with the
previous studies. The GTD is collected by visually inspecting the optical image
data and utilizing [57]. Accordingly, the data includes soil-vegetation classes and
several different water-based terrains as the natural target, and the human-made
targets with different structures are grouped into a single category. The selected six
classes are urban fabric, arable land, forest, inland waters, maritime wetlands, and
marine waters. The used GTD are the same as the one in [21]. By assigning each
class label to a particular RGB value, the constructed terrain map is presented in
Fig. 3 along with the produced pseudo-colored PDelta_X image. The same sample
points are selected as in [21] to make an appropriate comparison with the competing
method. The selected training samples correspond to 1–2% of the total GTD size
(2000 sample pixels for each class) and 0.08% of the whole data.

4.1.2 Dresden, TerraSAR-X, X-band (Dresden_X)

The Dresden_X has 4419 × 7154 pixels with an approximate 4 × 4 square meters
pixel resolution. Due to the aforementioned reason for the PDelta_X, the Dresden_X
SAR image is also downscaled by 2 × 2. It is dual-polarized SAR data with VH/VV
and it is acquired in Strip Map mode and radiometrically enhanced (RE) Multi-
look ground range detected (MGD) having the effective number of looks as 6.6.
Accordingly, the coordinates are projected to the ground range in the MGD mode
and each pixel is represented by the magnitudes (Svh and Svv elements in (2)) where
the phase information is lost. Expectedly, the RE and MGD modes provide speckle
noise reduction. Similarly, the same GTD of Dresden_X in [21] are also used in this
study. The GTD are manually collected as previously discussed by utilizing [57].
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Fig. 3 The pseudo-colored image is produced for the single-polarized PDelta_X SAR data and its
corresponding GTD are shown with the terrain class labels in (a). In (b), the GTD are shown for
the dual-polarized Dresden_X SAR data and its pseudo-colored image is produced by assigning
|Svv |, |Svv | − |Svh|, and |Svv | to R, G, B, channels, respectively

Accordingly, there are labeled six classes including human-made terrains: urban
fabric and industrial and natural terrains: arable land, pastures, forest, and inland
waters. The GTD are presented in Fig. 3 together with the pseudo-colored image.
For the Dresden_X, the chosen train/test ratio is 0.01 which corresponds to 1000
sample pixels for the training and 100 000 pixels for the testing per class as in [21].
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4.1.3 San Francisco Bay, AIRSAR, L-band (SFBay_L)

The benchmark SFBay_L PolSAR data have mostly urban terrain types and several
natural classes. The data are fully polarized and have a 900×1024 dimension with a
10×10 pixel resolution in meters. The GTD for SFBay_L are collected by selecting
regions and sample points by investigating the pseudo-colored image and aerial
photographs from the TerraServer Web site [58]. The collected GTD are identical
to the ones that are used in various previous studies such as [4, 23, 59]. The chosen
five classes are water, urban, forest, bare soil, and natural vegetation including, e.g.,
woodland and scrub. Similar class types are followed by the studies in [60–63]. The
selected training and testing regions are illustrated in Fig. 4. Correspondingly, only
1–2% of the GTD (∼0.1% of the overall data) are used in the training as followed
in [22].

4.1.4 San Francisco Bay, RADARSAT-2, C-band (SFBay_C)

The SFBay_C PolSAR data have similar terrain types with SFBay_L, but the latter
is air-borne whereas the SFBay_C data are space-borne with a 10 × 5 square-meter
resolution. In the experiments, the same sub-region with a size of ∼1400 × 1800
and the GTD are used by many other approaches such as [22, 60, 64–66]. Similarly,
1:100 proportion is used to create the train:test splits corresponding to 500:50 000
number of samples from each class.

In the SFBay_C, there are three major terrain types: human-made, water, and
vegetation. In fact, the SFBay_C PolSAR data are important in the performance
evaluation especially for the human-made objects since the human-made terrain
traces are further grouped within three distinct categories based on their inclusion
with the natural terrain including high-density urban, low-density urban, and devel-
oped class types. One can say that the class overlap between these three categories
is expected, but it is observed in Fig. 4 that there are visible differences between
them. For example, the high-density urban and low-density urban classes mainly
include the samples from the urban areas, where the areas are better congested in
the high-density urban class with better concentrated human-made structures, e.g.,
compared to the low-density urban terrain type. On the other hand, the samples from
the developed class belong to the relatively sparse human-made objects combined
with the vegetation compared to other urban class categories. Thus, these three
classes are considered distinct classes and they should be separable by the classifier.
Considering that the provided GTD have some hierarchical structure within the
urban class types, the classification of SFBay_C may be considered as a hierarchical
classification problem. Nevertheless, as specified by Uhlmann and Kiranyaz [22],
the GTD accuracy is not a hundred percent guaranteed as other human-made classes
can also have some sample pixels belonging to trees and different plant types, for
example, from the gardens of houses.
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Fig. 4 The pseudo-colored images are produced for the PolSAR SFBay_L and SFBay_C images
with their corresponding GTD in (a) and (b), respectively

4.1.5 Flevoland, AIRSAR, L-band (Flevo_L)

The Flevo_L PolSAR data were acquired in the mid-August of 1989 within the
MAESTRO-1 Campaign. The data have 12 × 6 square-meter resolution with the
dimension of 750×1024. The Flevoland scene, in general, is used in many land and
crop classification applications since it consists of a large vegetation field, different
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soil types, and a small area of water and human-made structures. In particular,
the Flevo_L fully polarimetric data have been widely used and the scene has a
well-established corresponding GTD including 15 classes obtained by Yu et al.
[67]: water, peas, rapeseed, lucerne, barley, beet, potatoes, building, forest, grass,
stem beans, bare soil, and three different types of wheat. The GTD information is
provided in Fig. 5. As the number of classes is larger compared to other benchmark
study sites used in this study, the number of training samples for Flevo_L is
varied between 120 and 480 per class to evaluate the training size effect on the
classification performance.

4.1.6 Flevoland, RADARSAT-2, C-band (Flevo_C)

The Flevo_C PolSAR data that were acquired in April 2008, have 10 × 5 square
meters resolution. Even though this study site has a very similar terrain cover
with the Flevo_L, the number of classes is significantly smaller and it has a
larger emphasis on the human-made terrain types. The selected sub-region has
the dimension of ∼1600 × 2400 pixels and it is illustrated in Fig. 5 along with
the corresponding GTD. The presented GTD are identical in the study of [22]
and proposed by Yang et al. [68] including four classes water, urban, forest, and
cropland. In the experiments with Flevo_C, the 1:100 ratio is chosen according to
[22] for the train:test splits.

4.2 Experimental Setup

Among the partially polarized SAR images, only a single-polarized PDelta_X image
is speckle filtered to reduce the speckle noise since the Dresden_X data are already
acquired in the RE MGD mode. However, all four PolSAR images have been filtered
using the polarimetric speckle filtering approach in [69] with a 5 × 5 window size
even though they have been multi-look averaged over a four look data. Such filtering
procedure for the study sides provides an appropriate classification performance
comparison with the existing methods in [21–23].

The hyper-parameters are selected based on the validation split collected by
using 50% of the training samples for the competing methods including traditional
classifiers with SVM and CNBC approaches and the proposed approach [19, 20]
based on the adaptive and compact CNNs. The search-space for the SVM hyper-
parameters are presented for each feature combination as follows: (i) the kernel
function among linear, third order polynomial, radial basis function (RBF), and
sigmoid, (ii) the gamma parameter (except for the linear kernel function), γ = 1/2n

where n = {1, 2, 3, 4}, and iii. the regularization parameter, C = 1/2n with
n = {0, 1, 2, 3}.

The implementation of the proposed adaptive CNNs is performed using C++
over MS Visual Studio 2015 in 64 bit. The multithreading is achieved using Intel®
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Fig. 5 The pseudo-colored images are produced for the PolSAR Flevo_L and Flevo_C images
with their corresponding GTD in (a) and (b), respectively

OpenMP API. On the other hand, the implementation of the compact CNNs is
based on a non-GPU implementation. The SVM and CNBC classifiers are also
implemented using C++ but with MS Visual Studio 2013 in 32 bit. The experimental



Classification of SAR Images Using Compact Convolutional Neural Networks 167

evaluations of the proposed approach and the traditional classifiers have been carried
out on a computer having i7-4790 CPU with 3.6 GHz and 16 Gb system memory.
The implementation of the deep CNNs: Xception and Inception-ResNet-v2 are
performed with TensorFlow [70] and Keras [71] on Python using a Nvidia® TITAN-
X GPU card.

The followed network configurations in the proposed approaches of [19, 20]
are as follows: there is only a single convolutional layer having 20 weight kernels
(neurons) with Kx = Ky = 3 kernel dimensions and the sub-sampling factor is
adjusted automatically based on the input size as discussed before. Finally, there is
only one hidden MLP layer having 10 neurons connecting the pooled features to the
output layer. The activation functions of the layers are set to the hyperbolic tangent
function.

The neurons of the input layer have been fed by the patch (cropped by the sliding
window) of the particular EM channel as illustrated in Fig. 1. Hence, the number
of input neurons (weight kernels) is determined by the number of channels. As
previously discussed, for the partially polarized data, the number of channels is
changed between 1 and 4 depending on the data. In a one-channel CNN setup,
the available SAR intensity is directly used to classify single-polarized data. In the
second setup, the HSI channels are included and a four-channel setup is designed. It
is observed in Sect. 4 that the addition of HSI channels increases the classification
accuracy achieved by the one-channel setup. Next, a two-channel setup is used to
classify dual-polarized SAR data by using two available intensities as the input
of the CNN layer. Next, to classify PolSAR data, there are three different setups
followed by Ahishali et al. [20] using the proposed approach: (i) the CNN takes
only the diagonal elements of the T matrix as the input, (ii) Span(S) is included in
the input layer with a four-channel setup, and (iii) a six-channel input is obtained by
using the diagonal elements of the T and C matrices.

Overall, thanks to the followed compact architecture of the proposed CNN
configuration, the over-fitting does not occur even though the training data size
is limited. Thus, as the only early stopping procedure during the training, the
maximum numbers of epochs (training iterations) are presented in Table 3 selected
for each study site. It is observed that especially for SFBay_L data, the compact
CNNs converge faster within only 40 epochs and achieve greater than 99%
classification accuracy which will be shown in Sect. 4.3. In the training, dynamic
learning rate adaptation is followed for the adaptive CNNs: the learning rate ε is
initially set to 0.05, then it is changed after each epoch based on the computed MSE
over the training samples. Accordingly, it is decreased by 30% in the next iteration
if the train MSE is larger than the previous iteration; otherwise, it is increased by
5%.

In the training procedures of the Xception and Inception-ResNet-v2, the net-
works are first trained from the randomly initialized weights using the stochastic
gradient descent and the following training parameters: momentum, batch size, and
the initial learning rate ε are set to 0.9, 32, and 0.045, respectively. Then, ε for
the next iterations is set to 0.94 times the previous iteration’s ε in every second
epoch. Using this experimental setup, the Xception has converged after 400 epochs,
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Table 3 The maximum
number (#) of iterations is
presented for the early
stopping procedure for the
training phase of each SAR
data

Data # of iterations

PDelta_X 200

Dresden_X 200

SFBay_L 40

SFBay_C 400

Flevo_L 600

Flevo_C 400

whereas Inception-ResNet-v2 has required 160 epochs. Additionally, the pre-trained
versions of the models that are trained over the ImageNet dataset are investigated for
the SAR classification. Accordingly, in the proposed transfer-learning procedure, all
layers except the MLP and the first convolutional layers of the Xception and Image-
Resnet-v2 are kept frozen and the unfrozen layers are trained only for 25 epochs
using the same training parameters. Next, all layers are fine-tuned for another 75
epochs using a smaller ε as 0.001 and the same decaying factor as 0.94 in every
second epoch.

4.3 Results

The classification performance evaluations are carried out for the proposed
approaches in [19, 20] over each study site including both partially polarized
and fully polarized SAR data.

4.3.1 Results on PDelta_X

The sliding window size, N , is varied from 5 × 5 to 27 × 27 in order to explore
the effect of N on the classification performance and on the quality of the final
produced segmentation mask that is produced after classifying each single-pixel of
the PDelta_X. Accordingly, the overall classification accuracies are presented in
Table 4 obtained by the varied N and the number of input channels. It is observed
that using only the backscattering |Shh| coefficient, the accuracy achieved by the
proposed adaptive 2D CNN approach is superior to the previous state-of-the-art
approach in [21] by a significant accuracy gap (>10%) even though the compared
approach utilizes large dimensional feature vector (greater than 200-D) including
color and texture features in addition to |Shh|. A fairer comparison can be made by
comparing both approaches using the same information as the input data, i.e., only
|Shh| coefficient. In this case, the accuracy gap surpasses 40% between the proposed
approach [19] and the competing one.

Further performance improvement is possible by increasing the number of
channels in the proposed approach. For example, in a four-channel setup using
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Table 4 Overall classification accuracies are presented obtained by the proposed approach [19]
over the PDelta_X using one and four-channel inputs and varied window sizes. The best accuracies
are highlighted in bold

PDelta_X One-channel Four-channel

Window size |Shh| |Shh| + HSI channels

5 × 5 0.7098 0.7080

7 × 7 0.7482 0.7501

9 × 9 0.7698 0.7668

11 × 11 0.7890 0.7838

13 × 13 0.8075 0.8037

15 × 15 0.8147 0.8167

17 × 17 0.8276 0.8300

19 × 19 0.8387 0.8442

21 × 21 0.8404 0.8537

23 × 23 0.8480 0.8539

25 × 25 0.8487 0.8632
27 × 27 0.8533 0.8615

Table 5 The confusion matrix is presented over PDelta_X obtained by the proposed approach
[19] using the best setup that provides the highest overall accuracy: four-channel (|Shh|, Hue, Sat.,
and Int.) and N = 25. The correctly classified numbers of samples are highlighted in bold per
class

Predicted

Urban fab. In. waters Forest Mart. wet. Mar. waters Ar. land Total

True Urban fab. 92,264 607 1322 54 0 5753 100,000

In. waters 931 85,308 3824 6781 1210 1946 100,000

Forest 934 2581 90,507 909 186 4883 100,000

Mart. wet. 166 6153 1157 80,683 11,744 97 100,000

Mar. waters 48 2196 166 17,502 80,067 21 100,000

Ar. land 4680 1055 4875 253 52 89,085 100,000

Total 99,023 97,900 101,851 106,182 93,259 101,785 600,000

the additional HSI components, the overall accuracy achieved by N = 25 is
increased by about 1%. It is also observed that 25 × 25 window size provides the
best classification accuracy and the classification performance does not improve
by further increasing the window size after N = 25 for the four-channel setup.
Nevertheless, a decent classification accuracy is always achievable with >75% by
the adaptive CNNs using small N values such as N ≥ 9. Additionally, the confusion
matrix is provided obtained by the proposed approach in Table 5. Accordingly,
the most confused classes are marine waters and maritime wetlands. In fact, these
two classes are poorly distinguishable even by the human eye since they have
comparable characteristics.

The classification accuracies of classes are shown in Fig. 6 to provide a more
detailed comparison. Correspondingly, the classification performances of the classes
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Fig. 6 The class-specific accuracies are presented by the proposed adaptive CNNs and the
competing method [22] over the PDelta_X. The proposed approach in [19] uses a one-channel
setup (|Shh|) with N = 11 and 25 and a four-channel setup (|Shh| and HSI components) with
N = 25, whereas the competing method uses |Shh| as features (EM) and in the second setup, color
and texture features included (EM + CT) in the 208-D feature vector

are all improved with the proposed approach in [19]. Especially, substantial
performance gaps occur for some class types such as inland waters, maritime
wetland, marine waters, and arable land; considering the accuracy improvement of
over 20% for the wetland class. Hence, it is shown that as discussed in the previous
argument, manually extracted features provide poor discrimination power for some
classes, whereas the adaptive proposed CNN is able to “learn-to-extract” features
and always provide >80% accuracy for each terrain class type. Overall, one can
say that the competing method in [21] has the reliability issue considering the poor
classification performance for some classes.

The computed final segmentation masks and the overlaid regions over the
corresponding GTD are shown in Fig. 7 for PDelta_X. In the quantitative analysis
based on Table 4, it is shown that the larger N values provide better classification
performance in terms of the overall accuracy. On the other hand, it is also revealed in
Fig. 7 that the trade-off is valid between the quantitatively better results and the finer
segmentation mask with a small N . For instance, even though the optimal window
size is determined as 25×25 for the four-channel setup, the blocking artifacts occur
in the computed masks. Nonetheless, a detailed segmentation mask can be obtained
using N = 11 window size. The overlaid regions shown in Fig. 7 for the proposed
approach can be compared with Fig. 8 having the overlaid regions that are obtained
by the competing method. It is observed in Fig. 8 that the forest class samples are
mostly misclassified as the urban fabric and the arable land samples as the urban
fabric and forest classes in the competing method. In general, it is demonstrated that
the classification performance of the classes is improved using the adaptive CNNs.
This is further confirmed in the zoomed locations of Fig. 9, e.g., especially for the
urban fabric, arable land, and forest class types and it is seen that the segmentation
error (noise) has been greatly reduced.



Classification of SAR Images Using Compact Convolutional Neural Networks 171

Fig. 7 The final segmentation masks are shown (first row) obtained by the proposed approach
[19] over PDelta_X using one and four-channel input setups and different sliding window sizes
(N ). Their corresponding overlaid regions on the GTD are shown in the second row

Fig. 8 The overlaid regions of the segmentation masks are shown obtained by the competing
method in [21] over PDelta_X. There are three different feature setups: (i) color features (C), (ii)
color and texture features (CT), and (iii) EM and CT features

4.3.2 Results on Dresden_X

Similarly, there are six classes in the Dresden_X data. However, it has more human-
made objects than the PDelta_X. In Table 6, overall classification accuracies are
provided with varied N from 5 to 27. Accordingly, the best accuracy is achieved as
81.33% using 21 × 21 window size and utilizing only |Svh| and |Svv| components
with the two-channel setup. The advantage of using small N is valid for the
Dresden_X in quantitative analysis as well: the accuracy tends to decrease for
N > 21. The competing method by Uhlmann and Kiranyaz [21] can achieve
comparable accuracy only if the classifier uses color and texture features in addition
to the backscattering components by a 209-D composite feature vector. In the
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Fig. 9 The zoomed regions are for the PDelta_X: the GTD (a), overlaid regions obtained by the
competing method (b) in [21], and the proposed method (c)

Table 6 Overall
classification accuracies are
presented obtained by the
proposed approach [19] over
the Dresden_X using one and
four-channel inputs and
varied window sizes. The best
accuracies are highlighted in
bold

Dresden_X Two-channel

Window size |Svh| and |Svv |
5 × 5 0.7059

7 × 7 0.7509

9 × 9 0.7654

11 × 11 0.7797

13 × 13 0.7898

15 × 15 0.7980

17 × 17 0.8007

19 × 19 0.8105

21 × 21 0.8133
23 × 23 0.8029

25 × 25 0.8092

27 × 27 0.8062

case of when both approaches use identical information including only |Svh| and
|Svv| components, there is a substantial accuracy gap larger than 30% between the
proposed and competing approaches.

For the class-specific performance analysis, the confusion matrix is presented in
Table 7. It shows that the pastures class is confused by the arable land and the urban
fabric class is mostly confused by the industrial class. The latter was expected since
the multi-label classification can be considered for the Dresden_X data as previously
discussed. Similarly, the classification performance of each class is bar plotted in
Fig. 10. The accuracy obtained by the proposed two-channel input is compared with
the best accuracy levels achieved by the competing method [21] in which a 209-D
feature vector is used for the classification. Based on Fig. 10, the proposed approach
[19] produces better or similar accuracy except for the inland water class, but the



Classification of SAR Images Using Compact Convolutional Neural Networks 173

Table 7 The confusion matrix is presented over the Dresden_X obtained by the proposed
approach of [19] using the best setup that provides the highest overall accuracy: two-channel (|Svh|
and |Svv |) and N = 21. The correctly classified numbers of samples are highlighted in bold per
class

Predicted

Urban Fab. Industrial In. waters Forest Pastures Ar. land Total

True Urban Fab. 73,409 18,980 169 3323 1775 2344 100,000

Industrial 16,492 78,870 172 1003 415 3048 100,000

In. waters 1474 1192 93,012 1955 2182 185 100,000

Forest 3081 1189 855 90,712 2193 1970 100,000

Pastures 3961 1199 977 3863 73,175 16,825 100,000

Ar. land 2895 1035 113 1337 15,802 78,818 100,000

Total 101,312 102,465 95,298 102,193 95,542 103,190 600,000

Fig. 10 The class-specific accuracies are presented by the proposed adaptive CNNs and the
competing method [22] over the Dresden_X. The proposed approach in [19] uses two-channel
setup (|Svh| and |Svv |) with N = 11, 15, and 21, whereas the competing method uses |Svh| and
|Svv | as features (EM) and in the second setup, color and texture features included (EM + CT) in
the 209-D feature vector

accuracy difference is considerable (larger than 50% for the industrial and urban
classes) when they use only |Svh| and |Svv| components.

The final computed segmentation masks by the adaptive CNNs are shown in
Fig. 11 together with the overlaid regions on the GTD. These overlaid masks can
be compared with the ones produced by the competing method in Fig. 12 and
the zoomed regions in Fig. 13. There is an existing classification noise in the
competing method’s segmentation masks. In the proposed approach, the noise level
is especially reduced for the arable land, forest, and forest classes.
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Fig. 11 The final segmentation masks are shown (first row) obtained by the proposed approach
[19] over the Dresden_X using the two-channel input setup and different sliding window sizes (N ).
Their corresponding overlaid regions on the GTD are shown in the second row

4.3.3 Results on SFBay_L

The comparisons over the SFBay_L are performed between the proposed approach
in [20] and the following competing methods: SVM and CNBC. Accordingly, the
overall accuracy and individual class accuracy improvements are reported. The used
features are presented in Table 8 for the competing methods. For the competing
methods, the feature vectors are gradually concatenated and the final composite
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Fig. 12 The overlaid regions of the segmentation masks are shown obtained by the competing
method in [21] over the Dresden_X. There are three different feature setups: (i) color features (C),
(ii) color and texture features (CT), and (iii) EM and CT features

Fig. 13 The zoomed regions are shown for the Dresden_X: the GTD (a), overlaid regions obtained
by the competing method (b) in [21], and the proposed method (c)

vector is used for the CNBC and SVM methods. In the CNBC classifier, each binary
classifier has a 4-layer MLP classifier that has an In-16-8-Out neuron configuration.

The classification accuracies are presented over the SFBay_L in Table 9 for
the competing methods using different combinations of features and in Table 10
using the proposed adaptive CNNs. Comparing the overall accuracies, the proposed
approach with [20] outperforms both the competing methods even though it uses
only the three-channel input setup using diagonal elements of T. Note the fact that
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Table 8 Different features are presented with their dimensions for the competing methods. The
collected features include the second-order descriptors and polarimetric elements computed by
different Target Decompositions (TDs) theorems

Abbreviation Features Dimension

FV1 T and C Matrices 12

FV2 Span, H/A/α [40] 7

FV3 Eigenanalysis—Eigenvalues 3

FV4 Correlation Coefficients 6

FV5 Touzi [72] 4

FV6 Krogager [38] 3

FV7 Freeman [41] 3

FV8 Huynen [42] 3

FV9 VanZyl [73] 3

FV10 Yamaguchi [74] 4

Table 9 Overall classification accuracies are presented obtained by the competing methods over
the SFBay_L with the increasing number of features

Features Dimension CNBC SVM

FV1 12 0.9583 0.9563

FV2 + (FV1) 19 0.9723 0.9734

FV3 + (FV1 + FV2) 22 0.9763 0.9746

FV4 + (FV1 + FV2 + FV3) 28 0.9786 0.9791

FV5 + (FV1 + . . . + FV3 + FV4) 32 0.9790 0.9798

FV6 + (FV1 + . . . + FV4 + FV5) 35 0.9759 0.9802

FV7 + (FV1 + . . . + FV5 + FV6) 38 0.9806 0.9800

FV8 + (FV1 + . . . + FV6 + FV7) 41 0.9796 0.9801

FV9 + (FV1 + . . . + FV7 + FV8) 44 0.9803 0.9798

FV10 + (FV1 + . . . + FV8 + FV9) 48 0.9807 0.9792

the competing methods utilize 4–12 times more features including various TDs and
other low-level EM features. In general, the proposed approach has obtained 1.32%
higher accuracy than the CNBC and 1.37% higher than the SVM classifier. The
best accuracy levels are achieved by the CNBC and SVM using 48-D and 35-D
features, respectively, whereas the proposed approach utilizes a six-channel input at
most. One can similarly compare the accuracy levels obtained by using only 12-D
FV1. Accordingly, the accuracy improvement is approximately 3% by the proposed
approach using a three-times less number of features.

The optimal window size N for SFBay_L seems to be between 19 and 23 based
on the number of input channels. On the other hand, any N ≥ 9 results with >98.2%
accuracy if the number of input channels is selected appropriately. Therefore, the
proposed approach in general yields better accuracy for the SFBay_L. For the visual
evaluation, the final computed segmentation mask and the samples used for the
training are shown in Fig. 14 for the SFBay_L. Even though the best accuracy is
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Table 10 Overall classification accuracies are presented obtained by the proposed approach [20]
over the SFBay_L using three, four, and six-channel inputs and varied window sizes. The best
accuracies are highlighted in bold

SFBay_L Three-channel Four-channel Six-channel

Window size T11, T22, T33 T11, T22, T33, Span T11, T22, T33, C11, C22, C33

7 × 7 0.9748 0.9726 0.9751

9 × 9 0.9846 0.9825 0.9764

11 × 11 0.9888 0.9812 0.9843

13 × 13 0.9807 0.9864 0.9900

15 × 15 0.9847 0.9865 0.9918

17 × 17 0.9888 0.9889 0.9893

19 × 19 0.9884 0.9915 0.9936
21 × 21 0.9807 0.9939 0.9934

23 × 23 0.9911 0.9908 0.9901

25 × 25 0.9817 0.9777 0.9855

31 × 31 0.9700 0.9630 0.9515

Table 11 The confusion matrix is presented for the SFBay_L obtained by the proposed approach
[20] using the best setup that provides the highest overall accuracy: four-channel (T11, T22, T33,
and Span(S)) and N = 21. The correctly classified number of samples is highlighted in bold per
class

Predicted

Water Urban Forest Bare soil Nat. vegetation Total

True Water 78,621 0 0 0 27 78,648

Urban 0 17,940 38 4 0 17 982

Forest 0 313 4202 0 20 4535

Bare soil 78 71 68 6956 0 7173

Nat. vegetation 0 0 128 0 13,531 13,659

Total 78,699 18,324 4436 6960 13,578 121,997

achieved by using a 21 × 21 window size and four-channel input setup, the coarse
visual resolution in the computed segmentation mask suffers from illustrating the
high details. In this case, a 7 × 7 window size can be chosen to achieve a more
detailed segmentation mask.

The confusion matrix of the proposed method is presented in Table 11 over the
SFBay_L and the class-specific classification accuracies are provided in Fig. 15. It
is observed that for some classes such as water and urban, the accuracy levels are
comparable, but for example, the significant accuracy gaps appear for some terrain
types (for the forest, it is larger than 20%). Hence, as previously discussed, the
competing methods fail to provide satisfactory performance valid for each terrain
type. Basically, they are unable to provide a decent discrimination capability for
some classes due to the manually extracted features.
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Fig. 14 The final segmentation masks are shown obtained by the proposed approach [20] over the
SFBay_L using three and four-channel input setups and different sliding window sizes (N )

4.3.4 Results on SFBay_C

In this study site, the sliding window size N is varied between N = 5 and N = 19.
The results are presented in Table 12 using 3–6 input channels. It is observed that
the proposed approach [20] with the three-channel setup obtains considerably better
overall classification accuracy (larger than 10%) than the competing method [22]
using EM features with the 46-D feature vector. When the competing method uses
187-D features including EM, color, and texture features, the accuracy gap is still
greater than 3% between the proposed approach and the competing method even
though the proposed approach utilizes only a 4-D feature vector. Hence, this is an
important achievement considering the time complexity burden due to computing
such high-dimensional feature vectors.
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Fig. 15 The class-specific accuracies are presented by the proposed adaptive CNNs and the
competing methods with CNBC and SVM over the SFBay_L. The proposed approach in [20] uses
three (T11, T22, and T33), four (T11, T22, T33 and Span(S)), and six-channel (T11, T22, T33, C11, C22,
and C33) setups with N = 21, whereas the competing methods use all EM features in Table 8

Table 12 Overall classification accuracies are presented obtained by the proposed approach [20]
over the SFBay_C using three, four, and six-channel inputs and varied window sizes. The best
accuracies are highlighted in bold

SFBay_C Three-channel Four-channel Six-channel

Window size T11, T22, T33 T11, T22, T33, Span T11, T22, T33, C11, C22, C33

5 × 5 0.8417 0.8415 0.8324

7 × 7 0.883 0.8794 0.8687

9 × 9 0.9119 0.9136 0.9017

11 × 11 0.9310 0.9292 0.9220

13 × 13 0.9380 0.9389 0.9312

15 × 15 0.9440 0.9439 0.9395

17 × 17 0.9496 0.9466 0.9417

19 × 19 0.9496 0.9532 0.9452

To investigate the class-specific classification performance, the confusion matrix
is presented in Table 13 for the proposed approach [20] and the obtained accuracies
per class is shown in Fig. 16 over the SFBay_C. As observed previously for the
other study sites, there are improvements for some classes such as high urban and
low urban classes. However, considering the water class, the accuracy is not further
improved by the proposed approach for both SFBay_L and SFBay_C datasets. This
is indeed expected as the water classification accuracy already approaches one in
the competing methods. Thus, there is limited room for improvement as provided
in the confusion matrices. One important observation is that the method in [22] can
achieve larger than 80% classification accuracy if they use all the computed features.
Naturally, the feature extraction procedure increases the computational complexity
and the use of ensemble classifier renders the real-time application of the method.

For qualitative analysis, the final segmentation masks are shown in Fig. 17 for the
SFBay_C. Accordingly, although the optimal window size is N = 19, the coarse
resolution appears on the masks with large window sizes as previously observed.



180 M. Ahishali et al.

Table 13 The confusion matrix is presented for the SFBay_C obtained by the proposed approach
in [20] with the best setup that provides the highest accuracy: four-channel (T11, T22, T33, and
Span(S)) and N = 19. The correctly classified number of samples is highlighted in bold per class

Predicted

Water Developed High. Urban Low. Urban Vegetation Total

True Water 49,545 1 108 5459 287 50,000

Developed 0 47,873 100 523 1504 50,000

High. Urban 0 412 46,901 2228 459 50,000

Low. Urban 219 124 1578 47,131 948 50,000

Vegetation 183 941 437 1579 46,860 50,000

Total 49,947 49,351 49,351 49,124 50,058 250,000

Fig. 16 The class-specific accuracies are presented by the proposed adaptive CNNs and the
competing method [22] over the SFBay_C. The proposed approach [20] uses three (T11, T22, and
T33), four (T11, T22, T33, and Span(S)), and six-channel (T11, T22, T33, C11, C22, and C33) setups
with N = 19, whereas the competing methods use EM features from Table 8 and in the second
setup, color and texture features included (EM + CT) in the 187-D feature vector

4.3.5 Results on Flevo_L

The Flevo_L PolSAR data have 15 classes and naturally, the classification task is
more challenging than the previous benchmark datasets used in this study. Thus, to
evaluate the performance of the proposed approach in [20], the number of training
samples is varied for the Flevo_L and its effect is explored. In this manner, the
number of selected samples is changed between 120 and 480, and additionally, an
adaptive (Adp.) mode is followed by randomly choosing 2% of samples for each
class in the GTD for the training. The obtained overall accuracies are presented
in Table 14. It is observed that the best accuracy is achieved as 92.49% using the
six-channel setup and N = 9 with 480 training samples. Note that the largest used
number of training samples per class (480) is still approximately 3.4% of the total
GTD. One can also use ∼2% of the GTD for the training in the Adp. mode and can
achieve 92.33% classification accuracy yielding an insignificant performance drop.
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Fig. 17 The final segmentation masks are shown obtained by the proposed approach in [20] over
the SFBay_C using three and four-channel input setups and different sliding window sizes (N )

In the competing method [22], achieved the best accuracy using FV1 is <83% with
a similar training size in the proposed approach. When the EM, color, and texture
features (46-D, 60-D, 81-D, respectively) are utilized in [22], the best accuracy is
achieved as 91.5% by a large ensemble of RF classifiers. Therefore, it is shown that
the proposed approach exceeds this performance level utilizing only 6-D features
and with a compact CNN.

The qualitative analysis by visually inspecting the final segmentation masks fur-
ther reveals the classification performance enhancements by the proposed approach.
For instance, considering the overlaid regions of the segmentation masks on the
GTD in Figs. 18 and 19, although the competing method in [22] uses a 187-D feature
vector, the segmentation masks produced by the proposed approach have nor or less
noise, e.g., for water, barley, and rapeseed classes. The classification performance
of individual classes can be further analyzed by the confusion matrix presented in
Table 15 obtained with the proposed approach for the Flevo_L.

In the previous discussion about the effect of different N values, it was mentioned
that high overall classification accuracies are achieved by large N values and as a
trade-off, the finer details are removed in the segmentation masks. On the other
hand, for the Flevo_L, it is observed that the best accuracy is obtained by using
small N values. This is observed in the Flevo_L specifically because the study area
consists of mostly heterogeneous regions with a high number of terrain classes.
Consequently, the optimal sliding window size N is generally determined by the
SAR data.
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Table 14 Overall classification accuracies are obtained by the proposed approach [20] over the
Flevo_L using three, four, and six-channel inputs and varied window sizes. The best accuracies
are highlighted in bold

Flevo_L Three-channel Four-channel Six-channel

Window size T11, T22, T33 T11, T22, T33, Span T11, T22, T33,
C11, C22, C33

Samples

5 × 5 0.8633 0.8594 0.9014 120

7 × 7 0.8806 0.8910 0.910 120

7 × 7 0.8946 0.8955 0.9191 240

7 × 7 0.8994 0.9006 0.9186 360

7 × 7 0.9022 0.9036 0.9227 480

7 × 7 0.9040 0.9018 0.9233 Adp.

9 × 9 0.8968 0.8837 0.9073 120

9 × 9 0.8968 0.8842 0.9133 240

9 × 9 0.8971 0.9014 0.9235 360

9 × 9 0.90 0.9043 0.9249 480

9 × 9 0.9033 0.9030 0.9203 Adp.

11 × 11 0.8765 0.870 0.8896 120

11 × 11 0.8915 0.8923 0.9105 Adp.

21 × 21 0.7964 0.7992 0.8133 120

21 × 21 0.8350 0.8368 0.8496 Adp.

31 × 31 0.7640 0.7245 0.7795 120

31 × 31 0.8465 0.8167 0.8524 Adp.

4.3.6 Results on Flevo_C

The overall classification accuracies are presented in Table 16 for the proposed
approach in [20] over the Flevo_C PolSAR data. The best accuracy is achieved
by the three-channel input setup and N = 15 as 96.35% which is higher than
the accuracies obtained in [22] using 46-D EM features and 187-D EM, color, and
texture features as 91.19% and 95.68%, respectively.

The previous statements are valid for this study site as well such as improved
classification performance with the minimum computational complexity. The confu-
sion matrix obtained by the proposed approach is provided in Table 17. Additionally,
the overlaid regions on the GTD are shown in Figs. 20 and 21 for the proposed
approach and the competing method in [22]. Accordingly, the segmentation mask
obtained by the competing method using EM features is poorly segmented for
some classes, e.g., cropland is mostly misclassified as urban and forest. Overall,
the segmentation mask of the proposed approach is better discriminative than the
competing method even though they use 187-D features.
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Fig. 18 The final segmentation masks are shown (first row) obtained by the proposed approach
[20] over the Flevo_L using three, four, and six-channel input setups with N = 7. Their
corresponding overlaid regions on the GTD are shown in the second row

Fig. 19 The overlaid regions of the segmentation masks are shown obtained by the competing
method in [22] over the Flevo_L. There are three different feature setups: (i) EM, (ii) EM and
color (C) features, and (iii) EM and all image processing features including color and texture (CT)

4.3.7 Deep Versus Compact CNNs

Two deep CNNs: Xception and Inception-ResNet-v2 are evaluated against the
proposed approach in [19]. In the previous discussion, it was stated that such deep
CNN models are not well-designed to operate using small sliding window sizes
for the pixel-wise classification. The Xception model requires at least 71 × 71 and
the Inception-ResNet-v2 requires 75 × 75 input dimensions due to their significant
number of convolutional layers. In this manner, the cropped input patch for each
window is up-sampled using bilinear interpolation to feed the networks.
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Table 16 Overall classification accuracies are obtained by the proposed approach in [20] over the
Flevo_C using three, four, and six-channel inputs and varied window sizes. The best accuracies
are highlighted in bold

Flevo_C Three-channel Four-channel Six-channel

Window size T11, T22, T33 T11, T22, T33, Span T11, T22, T33, C11, C22, C33

5 × 5 0.9078 0.9034 0.9115

7 × 7 0.9357 0.9353 0.9367

9 × 9 0.9543 0.9539 0.9552

11 × 11 0.9575 0.9571 0.9537

13 × 13 0.9630 0.9596 0.9561

15 × 15 0.9635 0.9631 0.9614

Table 17 The confusion matrix is presented over the Flevo_C obtained by the proposed approach
[20] with the best setup that provides the highest accuracy: three-channel (T11, T22, and T33) and
N = 15. The correctly classified numbers of samples are highlighted in bold per class

Predicted

Water Urban Forest Cropland Total

True Water 49,616 287 27 70 50,000

Urban 13 48,489 701 797 50,000

Forest 44 1539 46,664 1753 50,000

Cropland 89 632 1346 47,933 50,000

Total 49,762 50,947 48,738 50,553 200,000

It is a fact that the deep CNNs are better designed for the high-resolution SAR
images since the correlation within the neighborhood starts to decrease with a large
N on small-resolution data. Hence, given the image dimensions in Table 2, the deep
CNNs are evaluated over the PDelta_X and Dresden_X SAR data. The obtained
overall classification accuracies are presented in Tables 18 and 19 for the PDelta_X
and Dresden_X, respectively. Expectedly, due to the limited size of the training data,
the deep CNNs lack the classification performance that is achieved by the proposed
method. Moreover, it is observed that if a detailed segmentation mask is desired with
the deep CNNs, 5 × 5 window size results with a poor classification accuracy as
seen in Table 19: there is >20% accuracy gap between the proposed and deep CNN
approaches over the Dresden_X data. Nevertheless, the Inception-ResNet-v2 model
produces a slightly improved accuracy than the proposed approach for N = 27 over
the Dresden_X. However, as discussed, the practical usage of such large N values is
limited considering the problem with obtaining a high-detailed segmentation mask.

4.3.8 Sensitivity Analysis on Hyper-Parameters

There are several hyper-parameters of the proposed adaptive CNNs. The effect of
the hyper-parameter N is already discussed in the results. The remaining parameters
include the number of hidden layers and neurons per layer. In the experiments,
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Fig. 20 The final segmentation masks are shown (first row) obtained by the proposed approach
[20] over the Flevo_C using three, four, and six-channel input setups and with N = 15. Their
corresponding overlaid regions on the GTD are shown in the second row

Fig. 21 The overlaid regions of the segmentation masks are shown obtained by the competing
method in [22] over the Flevo_C. There are three different feature setups: (i) EM, (ii) EM and
color (C) features, and (iii) EM and all image processing features including color and texture (CT)

a compact CNN was used with a single hidden CNN layer having 20 neurons
(kernel filters) and with a hidden MLP layer having only 10 neurons. Recall the
fact that the number of neurons in the input is determined by the number of EM
channels, whereas the number of neurons in the output layer is equal to the number
of classes. Hence, to analyze the sensitivity of the proposed approaches in [19, 20]
on the network parameters, the number of hidden layers and neurons are varied
considerably. To this end, the multipliers m and n are defined to control the number
of hidden CNN layers and the number of neurons in hidden layers, respectively.
The default setup is defined with m = n = 1, for instance, if m = 2 and n = 4,
then the network would have the following [In-80-80-40-Out] configuration: two
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Table 18 Overall classification accuracies are presented obtained by the proposed approach [19]
and deep CNNs including Xception and Inception-ResNet-v2 over the PDelta_x using four-
channel input and varied window sizes. Xception* and Inception-ResNet-v2* indicate that the
training started with the ImageNet weights (except for the first convolutional and MLP layers).
The best accuracies are highlighted in bold

Window size Xception Xception* Inception ResNet-v2 Inception ResNet-v2* Proposed

5 × 5 0.6688 0.6963 0.6862 0.6928 0.7080
11 × 11 0.7563 0.7736 0.7608 0.7656 0.7838
17 × 17 0.7896 0.7943 0.8032 0.8121 0.830
25 × 25 0.8445 0.8435 0.8555 0.8447 0.8632

Table 19 Overall classification accuracies are presented obtained by the proposed approach [19]
and deep CNNs including Xception and Inception-ResNet-v2 over the Dresden_x using two-
channel input and varied window sizes. Xception* and Inception-ResNet-v2* indicate that the
training started with the ImageNet weights (except for the first convolutional and MLP layers).
The best accuracies are highlighted in bold

Window size Xception Xception* Inception ResNet-v2 Inception ResNet-v2* Proposed

5 × 5 0.4637 0.5004 0.4657 0.4754 0.7059
11 × 11 0.6481 0.6836 0.6556 0.6488 0.7797
17 × 17 0.7342 0.7596 0.7441 0.7459 0.8007
21 × 21 0.7706 0.7783 0.7767 0.7796 0.8133
27 × 27 0.7960 0.8068 0.8116 0.8064 0.8062

hidden CNN layers having 4 × 20 = 80 neurons and one hidden MLP layer with
4×10 = 40 neurons. On the other hand, the N values and number of input channels
are set to the optimal values according to the achieved highest overall classification
accuracy for each SAR data.

For different network configurations, the classification accuracies are presented
in Table 20. The overall accuracy slightly varies in a margin of around ±3%.
Therefore, it is shown that the proposed approach is robust to hyper-parameter
values in general. Furthermore, it is observed that the classification performance
degrades when the number of hidden layers increased; and the best accuracy is
obtained by using single hidden CNN and MLP layers. This outcome was expected
because of the over-fitting phenomenon which reduces the generalization capability
of the network. For instance, using m = 1, n = 8 and m = 2, n = 8 network
configurations, there has been no convergence at all for some study sites within
1000 epochs and 5 different BP runs.

5 Conclusions and Future Work

The novel approaches proposed in [19, 20] based on adaptive and compact CNNs
provide an accurate and fast classification of SAR images including the partially
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Table 20 Overall classification accuracies are presented for the proposed approach in [19, 20]
using different network configurations. The multiplier m and n control the number of hidden CNN
layers and the number of hidden neurons, respectively, where m = n = 1 represents the initial
network architecture. The number of input channels and sliding window size N are set to the best
values for each study site. Convergence has not occurred for the entries with “–” for five different
BP runs with 1000 epochs. The best accuracies are highlighted in bold

(a) Partially polarized data

PDelta_X Dresden_X

m = 1, n = 1 0.8487 0.8133

m = 1, n = 2 0.8493 0.8176

m = 1, n = 4 0.8683 0.8371
m = 2, n = 1 0.8015 0.7772

m = 2, n = 2 0.7945 0.7747

m = 2, n = 4 0.7908 0.7766

(b) PolSAR data

SFBay_L SFBay_C Flevo_L Flevo_C

m = 1, n = 1 0.9939 0.9532 0.9233 0.9635

m = 1, n = 2 0.9931 0.9560 0.9305 0.9641
m = 1, n = 4 0.9862 0.9498 0.8944 0.9687

m = 1, n = 8 0.7366 0.4214 – –

m = 2, n = 1 0.9753 0.9371 0.8967 0.9503

m = 2, n = 2 0.9615 0.9318 0.8611 0.9482

m = 2, n = 4 0.8245 0.9360 0.7898 0.9463

m = 2, n = 8 0.6019 – – –

polarized and fully polarized SAR data. Thanks to the compact network configura-
tion, the introduced capabilities can be summarized as follows, first, it is possible
to operate and generalize well on the data when the training/annotated samples
are limited such as in the case of only 0.1% of the whole scene are annotated. In
this way, the labeling cost caused by the human intervention is greatly reduced
compared to the existing deep CNN methods that require a significant amount of
training data. Moreover, the reduced computational time complexity allows real-
time implementation of the proposed approaches in [19, 20]. Next, contrary to the
deep CNNs, it is possible to use a small sliding window size N for the pixel-wise
classification. This brings the following advantages: (i) the overall classification
accuracy tends to decrease when N increased above a certain value since the
correlation within the patch reduces and (ii) the details in the final computed LU/LC
segmentation mask are inversely proportional to N .

There are few existing previous methods such as [21, 22] providing fine-detailed
masks and operating with small training data sizes. Accordingly, they extract image
processing features consisting of color and texture and an ensemble of classifiers
is utilized to classify the SAR data. It is also shown that using one compact
classifier and small dimensional input channels, superior classification accuracy can
be obtained by the proposed approach. Hence, the conventional feature extraction
procedure can totally be eliminated in this approach. Overall, the experimental
evaluations prove that the proposed approach improves the reliability of the inter-
class classification and removes the segmentation noise in the computed masks.

In future work, it is planned to have more performance comparisons using
different datasets. For example, the SAR data used in this work have X, L, and
C frequency bands. It would be an interesting task to benchmark the proposed
approach over new bands and also explore different fusion techniques for multi-
frequency classification. In [6], a dual-band 1D-CNN is proposed to combine L
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and C bands for the classification. Although, it seems feasible, the computational
complexity will be much higher if the same topology is followed for the 2D-CNNs.
Recently, tensorization frameworks have been used for the data fusion as proposed
in [75]. These include the future work directions considering the multifrequency
PolSAR classification using the proposed approach. One can also investigate the
combination of some of the color features with EM features as the alternative set
of input channels to the CNN classifier. Finally, in the experiments, only the real-
valued EM channels are used in the classification. On the other hand, it is a fact that
the observed target is represented with complex values in the acquired SAR data.
Such issues these issues and further investigations will be addressed in the future.
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1 Introduction

Classification of crops is an efficient way for managing agricultural areas and
monitoring yield. One of the successful ways of doing this is the use of Synthetic
Aperture Radar (SAR) data as recognized widely in the last two decades. The
potential of SAR for crop classification is significant since radar backscattering is
sensitive to the dielectric properties of the vegetation and the soil, plant geometry,
and surface roughness. Additionally SAR systems can operate efficiently under all
weather conditions making them ideal for crop classification. Crop classification
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using SAR data has produced admissible accuracies in literature [4, 13, 15, 25, 29–
31, 43, 48, 56].

Multi-frequency polarimetric SAR analysis of crops is even more useful since the
different depths of penetration of the EM wave at various frequencies give unique
information about the crop structure, vegetation water content, and biomass [44].
Multi-frequency data, available by airborne SAR systems like the AIRSAR, indicate
interesting crop classification results [19, 24, 34] due to differences in multi-
frequency polarimetric parameters associated with different plant geometries. Rao
et al. [50] indicated monotonic decrease in co-pol phase difference (φHH−V V ) over
corn fields at multi-frequency (P-, L-, C-band) polarimetric AIRSAR data. At higher
frequencies, radar backscatter return is more correlated with heads and fruiting
part, while they are better correlated with wet biomass and foliar area at lower
frequencies [27].

With the availability of multi-frequency SAR data from space borne platforms
(multi-sensor), crop classification studies have received much attention from remote
sensing community [47, 48]. These studies indicated that high biomass crops (e.g.,
corn) were well classified using the low frequency data, while higher frequency data
were needed to accurately classify low biomass crops. New generation SAR system
promises better availability of multi-frequency data from Copernicus Sentinel-1
program (C-band), RADARSAT Constellation Mission (C-band), SAOCOM-1A/B
(L-band), TerraSAR-X (X-band), and upcoming ROSE-L, Biomass, and NASA-
ISRO SAR (NISAR L- and S-band) missions. Nevertheless, diversity in frequency
is still only attainable by integrating data from multiple platforms and enabling
enhanced crop characterization capabilities by the synergy among these cross
platforms [6, 17, 44, 52].

The major features used in crop classification experiments are confined to
backscatter intensities at different polarization channels (HH, VV, and HV or
VH) [14, 41, 46, 53]. Additional information about the physical nature of the crops
can be obtained by generating the target decomposition polarimetric parameters
from fully polarimetric SAR data. Moreover, the ratios of individual backscatter
coefficients convey additional target scattering information [28, 45]. In addition
to the individual backscattering coefficients, polarimetric target decomposition
parameters obtained from both model based and eigenvalue-eigenvector based
polarimetric parameters [9, 60, 65] can better characterize different crops.

Identifying relevant and important polarimetric parameters is an integral part
of machine learning studies. Many machine learning techniques employ parameter
selection to form subsets resulting in dimensionality reduction. Some of the machine
learning techniques used for crop classification using SAR data are neural network
classifier [8], maximum likelihood classifier [33], Wishart classification [33, 55],
Support Vector Machines (SVM) [39], decision-tree classifier [47].

Among different classifiers, the Random Forest (RF) is gaining much attention
for land cover classification over agricultural areas [10, 11, 13, 22, 36, 38, 42, 58, 64].
RF also provides a parameter subset as a part of its classification technique. RF
additionally handles the diverse dynamic ranges of the polarimetric parameters and
it does not require parameter scaling or normalization. This provides an added
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advantage over other techniques since the polarimetric parameters used in crop
classification have varied ranges. In this work, we use polarimetric target decompo-
sition parameters obtained from both model based and eigenvalue-eigenvector based
polarimetric parameters in addition to the individual backscattering coefficient
parameters in a RF classifier.

The rest of this chapter is organized in the following order: Sect. 2 briefly
describes the study area and datasets used. Section 3 explains in detail the
methodology of multi-frequency crop classification used in this study. Section 4
discusses the results and their subsequent observations and interpretations in depth;
and finally, this chapter is succinctly summarized and concluded in Sect. 5.

2 Study Area and Dataset

We conducted the study over the international agricultural super-site at Flevoland
area in The Netherlands (Fig. 1). The test site is bounded between 52.266605◦N,
5.648201◦E (upper left coordinate) and 52.326725◦N, 5.441733◦E (lower right).
The terrain is flat and lies ±3 m below the mean sea level. This region is dominated
by agricultural crops and nominal field sizes are ≈80 ha. The major crops grown in
area includes wheat, barley, potato, sugarbeet, and maize. Secondary crops include
rapeseed, pea, onion, steam bean, and grass.

Fig. 1 The Flevoland test site location overlaid on Landsat-5 optical image. The extent of
AIRSAR acquisition is presented in cyan rectangular box, and test site in red dashed line. A
reference crop map indicates different agricultural crop parcels managed during the JPL-SAR
experiment 1991
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Fig. 2 Plant morphological structures for short-stem broad-leaf (sugarbeet and potato), and long-
stem (rapeseed and barley) crops

For the analysis, we group these crops in two types: short-stem broad-leaf
(SSBL), and long-stem (LS) (Fig. 2). In the long-stem category, barley and rapeseed
were analyzed, while in the SSBL category, sugarbeet and potatoes were included.
During the JPL-SAR experiment 1991, the Flevoland test site had 406, 317, 101,
and 13 fields of potato, sugar beet, barley, and rapeseed, respectively [20, 54, 62].

We utilized the AIRSAR datasets [3] acquired during the campaign as part of the
JPL-SAR experiment 1991. The acquisition of AIRSAR data (Process ID: cm3253,
Flight-line: flevoland116-1.91109) coincided with the agricultural growing season
in June. The acquisition of AIRSAR data was in multi-frequency (C-band: 5.7 cm,
L-band: 25 cm, and P-band: 68 cm) and full-polarimetric mode. The nominal pixel
spacing in range and azimuth was 6.66 m ×12.15 m. The AIRSAR data is provided
in compressed Stokes product format.1 We generate 3×3 covariance matrices for
individual frequencies, i.e., C-, L-, and P-band from these products of AIRSAR data
using PolSARPro toolbox. Other polarimetric features are subsequently generated
from the elements of 3×3 covariance matrices. An overview of Pauli RGB images
of these multi-frequency datasets over the Flevoland area is shown in Fig. 3.

1 https://airsar.asf.alaska.edu/data/cm/cm3253/.
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Fig. 3 Multi-frequency Pauli RGB images of the study area (Red=|SHH − SVV|, Green=2|SHV|,
and Blue=|SHH + SVV|). These three colors are the magnitudes of the scattering matrix elements
when they are expressed in the Pauli basis. (a) C-band. (b) L-band. (c) P-band

PolSAR Data Preprocessing Guidelines

SAR data processing guidelines in PolSARPro: https://github.com/dipankar05/
springer-multifrequencySAR-crop/blob/main/PolSARpro_features_guide.pdf

In the H-V basis, we generated co-polarized phase (φHH−V V ), co-polar coher-
ence amplitude (ρHHV V ), co- and cross-pol ratios (σ 0

HH /σ 0
V V , σ 0

HV /σ 0
HH , and

σ 0
HV /σ 0

V V ), and diagonal elements of the 3×3 covariance matrix. Subsequently, the
covariance matrix in H-V basis is transformed to the circular R-L basis to obtain
the σ 0

RR/σ 0
LL. Apart from these non-decomposition (ND) parameters, we derive

14 features from the target decomposition parameters [9, 60, 65], as presented in
Table 1.

The training datasets for crop classification are generated using the reference map
(Fig. 1) provided during the campaign and aptly used in literature [20, 62]. From
these reference map, we generated training samples by drawing region of interest,
which we kept at ≈15% sampling rate in this research. This selection of sampling
rate is taken considering the stability in classification accuracies above 15%.

3 Methodology

3.1 Random Forest

Random Forests (RFs) are an ensemble learning technique for classification and
regression which is constructed by several decision trees that are trained and their
results are combined through a voting process by the majority of the individual
decision trees [7]. The multiple decision trees of the RF are trained on a boot-
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Table 1 SAR polarimetric decomposition (14) and non-decomposition (9) parameters used in this
study

Decomposition parameters Description

Touzi [60] Touzi symmetric scattering type magnitude
(αs1 , αs2 )

Touzi symmetric scattering type phase (φs1 , φs2 )

Kennaugh-Huynen target helicity (τm1 , τm2 )

Yamaguchi 4-component [65] Odd-bounce scattering power (Ps), Double-
bounce scattering power (Pd)

Volume scattering power (Pv), Helix scattering
power (Pc)

Cloude-Pottier [9] Entropy (H ), Anisotropy (A), Average target scat-
tering mechanism (α); Span = ∑3

i=1 λi

Non-decomposition parameters Description

Co-polarized phase φHH−V V

Co-polar coherence amplitude |ρHHV V |
Co-polarized and Cross-polarized Ratio Co-polarized: σ 0

HH /σ 0
V V ; Cross-

polarized: σ 0
HV /σ 0

HH and σ 0
HV /σ 0

V V

and σ 0
RR/σ 0

RL

Diagonal elements of the 3×3 covariance matrix C11, C22 and C33

strapped sample of the original training data. At each node of every decision tree,
one among a randomly selected subset of input parameters is chosen as the best
split and subsequently used for node splitting [37]. Each tree uses only a portion of
the input samples (typically two-third) for the training while the remaining roughly
one-third (referred to as Out-Of-Bag (OOB)) of the samples are used to validate the
accuracy of the prediction. In general, RF increases the diversity among the decision
trees by randomly resampling the data with replacement and by randomly changing
the parameter subsets for node splitting at each node of every decision tree.

3.2 Parameter Importance Evaluation

Parameter importance evaluation helps in identifying the most relevant parameters
out of the total set for classification by ranking them in descending order of their
importance. In RF, for every decision tree the misclassification rate is calculated
from the OOB observations. The parameter whose importance is to be evaluated,
is randomly permuted for the OOB observations, and then the modified OOB
values are passed down the tree to get new predictions. This difference in the
misclassification rate between the modified and the original OOB observations
averaged over all trees, is the parameter importance measure which is used in
this study [59]. This difference in classification accuracy before and after random
permutation of the parameter whose importance is to be determined is the Mean
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Decrease Accuracy (MDA) [49] measure used in this study. RF based parameter
selection using this technique was studied in [2, 12, 21]. It is necessary to note that
in this study the original MDA scores were normalized (the highest MDA score was
set to 100 and the others were scaled accordingly) for the sake of comparison.

3.3 Partial Probability Plot

The RF is capable of identifying important parameters and generating partial
dependence plots [18, 23] which may be used to establish relationships between
the parameters and the predicted classes. The partial dependence plots provide an
unique way to visualize the marginal effect of a parameter on the classification using
RF. The partial dependence function is given as in (1) [18],

f̃ (x) = 1

n

n∑

i=1

f (x, xic) (1)

where x is the parameter for which partial dependence is sought, and xic is the other
parameters in the data.

f (x) = log pk(x) −
∑

j

log pj (X)/K (2)

The logits (i.e., log of fraction of votes) is the predicted classification function as
given in (2). Here K is the number of classes and pj is the proportion of votes for
class j .

The partial dependency plots produced with probability distribution based on
scaled margin distances are the partial probability plot used in this study. The partial
probability plot provides a visual representation of the probability of occurrence of
a class for each parameter over its entire dynamic range [5, 49]. By partialling out
the average effect of all other parameters, we can analyze the influence of a given
parameter on the probability of occurrence of the predicted class.

In this study, the partial probability plot of polarimetric parameters was useful
for crop characterization and separation. For polarimetric parameters with diverse
ranges, the partial probability plot helped to identify an optimal dynamic range [22]
in which the probability of occurrence of “crop” class was ≥0.8. Identification
of this range can be useful for crop characterization and separation. Mainly, the
partial probability plots help to study the underlying physical scattering mechanisms
associated with crops through their diverse optimal dynamic ranges.
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3.4 Processing Steps for Parameter Selection and
Classification Using RF

The schematic overview of the workflow used in this study is shown in Fig. 4.
The processing steps for multi-frequency crop classification in this study are as

follows:

• Polarimetric target decomposition and non-decomposition parameters were gen-
erated from the coherency matrix and covariance matrix 〈[T]〉 and 〈[C]〉, which
resulted in total 23 parameters.

• RF was created using 1000 decision trees and 23 parameters. It was decided
to use 1000 decision trees since Breiman [7] suggested that as many trees as
possible can be used in the RF ensemble since they do not overfit.

• Parameter selection and classification performed for each band (C-, L- & P-band)
individually.

• The top 10 parameters with the highest MDA scores were chosen as the
parameter subset in this study for multi-frequency crop classification.

• RF parameter ranking in co-ordination with partial probability plots were used to
analyze separability and mixing among crop classes.

Fig. 4 Schematic workflow for multi-frequency crop classification and crop separability analysis
using RF. D: Decomposition parameters, ND: Non-decomposition parameters, PS: Parameter
Selection, Cl: Classification, SSBL: Short-stem broad-leaf crop, LS: Long-stem crop, B: Barley,
R: Rapeseed, S: Sugarbeet, P: Potato
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• In addition, we analyze separability of crop classes by measuring dissimilarity
between partial probability plot curves using the Frèchet distance [1, 16]. The
Frèchet distance closer to 0 indicates similarity between curves while closer to
1.0 indicates distinct curves.

RF Classification Code

RF Classification code along with partial probability plotting and Frèchet distance
for R: https://github.com/dipankar05/springer-multifrequencySAR-crop/tree/main/
Codes

4 Results and Discussion

Classification over the Flevoland area with the help of 23 polarimetric parameters
was conducted. Out of this, only the top 10 were selected and subsequently used for
classification with RF. These 10 parameters were used since it was observed that the
Overall Accuracy (OA) does not change significantly beyond these parameters as
shown in Fig. 5.

The number of training samples for each crop is given in Table 2. For ease of
analysis, number of training and testing points of only 4 selected crops (2 in SSBL
and 2 in LS categories) have been included out of the total 12 crop classes in the
Flevoland study area.
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Table 2 Flevoland: Number
of training and test samples.

Crop #Train #Test1 #Test2

Barley 1100 600 592

Rapeseed 1115 563 571

Sugarbeet 2808 1342 1303

Potato 2357 1108 1119

Winter Wheat 1029 615 720

Lucerne 1516 636 688

Flax 1340 789 902

Beans 706 464 393

Fruit trees 1451 725 743

Grass 2281 1026 1251

Peas 855 439 409

Unclass 3009 1504 1314

Fig. 6 RF classified images for C-, L-, and P-band over the Flevoland area. (a) C-band. (b) L-
band. (c) P-band

The multi-frequency RF classified images are shown in Fig. 6. The overall
classification accuracy for the multi-frequency crops are given in Table 3. In the
following subsections we analyze the LS (barley and rapeseed) and SSBL (sugarbeet
and potato) crops.

The number of test samples for each crop for the two sets is given in Table 2. The
independence between two sets of randomly selected test samples was measured
using the Wilcoxon signed-rank test [26, 63] using the sample median. The
Wilcoxon signed-rank test evaluated the independence between these two sets of
test samples to be >90% for all three bands (90.84%, 95.41%, and 96.36% for C-,
L-, and P-band, respectively).
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Table 3 RF Overall
Accuracy using top 10
parameters

Class C L P

Barley 66.81 91.73 86.18

Beans 78.45 86.85 80.39

Flax 92.65 99.75 90.75

Grass 67.84 43.18 63.06

Lucerne 47.64 99.69 83.49

Peas 71.99 97.77 80.52

Potatoes 84.32 95.42 94.57

Rapeseed 91.45 81.54 73.42

Winter wheat 77.03 73.13 44.27

Fruit trees 57.33 62.29 84.57

Sugarbeets 46.49 86.22 66.89

Unclass 22.39 63.27 98.53

Overall user accuracy (%) 71.95 80.77 75.85

Kappa 0.68 0.78 0.73

Table 4 RF classification
accuracy for the two
independent test samples

Band Test1 (%) Test2 (%)

C 71.31 68.08

L 83.33 83.30

P 78.41 77.14

•! Attention

The Wilcoxon signed-rank test [26, 63] was used in this study since it can be
performed without assuming underlying distribution of the samples [40]; and we
know that the polarimetric parameters in general for SAR data seldom follow normal
distribution. The parameter median was calculated instead of mean since the mean
of the parameter can be misleading when outliers are present in the data [35] which
is possible for these kind of parameters.

The multi-frequency RF classification accuracy for the two test samples is
given in Table 4. In addition, we provided the normalized MDA scores of top 10
parameters at C-, L-, and P-band for individual crops in Table 5, 6, 7, and 8.

4.1 Separation Among Long-Stem (LS) Crops

Stems of barley are long in length with thin diameter, and canopy consists of narrow
leaves, while rapeseed plants have ramified stems with secondary and tertiary stems
and pods. The RF parameter selection helped us to identify the important parameters
for barley and rapeseed classification at different frequencies. The optimal dynamic
range of these parameters were analyzed and the parameters which were used
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Table 5 Normalized MDA scores of the top 10 parameters for barley classification

C-band MDA scores L-band MDA scores P-band MDA scores

Pv 100 σ 0
HV /σ 0

HH 100 σ 0
HH /σ 0

V V 100

Ps 65.00 Pv 98.44 Pv 97.07

Pd 47.76 H 89.32 Pd 81.91

H 39.77 σ 0
HH /σ 0

V V 87.99 A 75.65

|ρHHV V | 38.45 Pd 83.26 σ 0
HV /σ 0

V V 71.40

σ 0
HH /σ 0

V V 34.33 αs1 72.97 Ps 65.33

Pc 32.52 �s2 69.29 �s1 62.44

α 29.71 Ps 68.78 σ 0
RR/σ 0

RL 60.91

�s2 27.92 |ρHHV V | 64.97 σ 0
HV /σ 0

HH 60.24

σ 0
HV /σ 0

HH 27.67 αs2 64.81 SPAN 56.81

Table 6 Normalized MDA scores of the top 10 parameters for rapeseed classification

C-band MDA scores L-band MDA scores P-band MDA scores

Pv 100 Pc 100 Pv 100

σ 0
HV /σ 0

HH 53.07 σ 0
HV /σ 0

V V 74.41 Pc 83.93

SPAN 41.30 Pv 64.36 σ 0
HH /σ 0

V V 73.31

H 33.64 Pd 53.59 A 53.17

Pc 31.94 σ 0
HV /σ 0

HH 53.22 Pd 48.88

σ 0
HH /σ 0

V V 31.78 τm1 48.50 �s2 46.70

σ 0
RR/σ 0

RL 31.49 �s2 47.58 �s1 45.71

α 30.94 �s1 44.35 |ρHHV V | 43.95

σ 0
HV /σ 0

V V 30.84 Ps 43.10 σ 0
HV /σ 0

HH 42.04

C22 30.26 σ 0
HH /σ 0

V V 40.86 σ 0
HV /σ 0

V V 40.68

Table 7 Normalized MDA scores of the top 10 parameters for sugarbeet classification

C-band MDA scores L-band MDA scores P-band MDA scores

Pv 100 σ 0
HV /σ 0

HH 100 τm2 100

Pd 60.12 Pd 85.83 σ 0
HV /σ 0

HH 83.60

A 53.91 σ 0
HH /σ 0

V V 84.46 Pv 81.26

�s2 52.75 Pv 84.46 τm1 72.49

τm1 52.13 H 70.99 σ 0
HH /σ 0

V V 72.31

Pc 50.83 Ps 61.95 σ 0
HV /σ 0

V V 71.26

Ps 49.95 |ρHHV V | 58.80 Pd 67.16

σ 0
HH /σ 0

V V 47.94 �s2 58.75 A 67.09

σ 0
HV /σ 0

HH 46.84 σ 0
HV /σ 0

V V 57.42 αs2 63.76

σ 0
HV /σ 0

V V 38.88 α 56.23 Ps 61.14

to discriminate barley from rapeseed were identified to be Pv and Pc at C-band.
The partial probability plots of Pv for barley and rapeseed given in Fig. 7a and b,
respectively, show separation between them.
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Table 8 Normalized MDA scores of the top 10 parameters for potato classification

C-band MDA scores L-band MDA scores P-band MDA scores

|ρHHV V | 100 Pv 100 Pv 100

Pd 98.30 σ 0
HV /σ 0

V V 68.62 Pd 87.10

Pv 97.06 Pd 64.48 �s2 85.08

�s2 91.74 σ 0
HV /σ 0

HH 58.99 �s1 82.84

A 73.55 σ 0
HH /σ 0

V V 55.63 A 73.82

σ 0
HH /σ 0

V V 68.39 �s1 54.30 σ 0
HV /σ 0

V V 73.66

τm1 57.96 �s2 53.57 σ 0
HH /σ 0

V V 73.54

Pc 55.55 Ps 52.91 σ 0
HV /σ 0

HH 71.59

σ 0
HV /σ 0

HH 52.90 τm1 48.79 Ps 66.75

Ps 49.34 α 46.14 τm2 63.48
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Fig. 7 Separation between barley and rapeseed using partial probability plots. (a) Barley C-band.
(b) Rapeseed C-band. (c) Barley C-band. (d) Rapeseed C-band

The presence of secondary stems in rapeseed also gives rise to complex multiple or
helical scattering thereby contributing to high Pc as compared to barley. The partial
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Fig. 8 separation between sugarbeet and potato using partial probability plots. (a) Sugarbeet L-
band. (b) Potato L-band. (c) Sugarbeet L-band. (d) Potato L-band

probability plots of Pc for barley and rapeseed given in Fig. 7c and d, respectively,
show separation between them.

Further, the Frèchet distance between the partial probability plots of Pv at C-
band between barley and rapeseed was found to be 1.0, indicating high dissimilarity
between the curves. Furthermore, the Frèchet distance between the partial probabil-
ity plots of Pc at C-band between barley and rapeseed was found to be 0.99.

4.2 Separation Among Short-Stem Broad-Leaf (SSBL) Crops

The RF parameter selection and the optimal dynamic range evaluation using the
partial probability plot was useful to discriminate sugarbeet from potatoes both
being short-stem broad-leaf category. It was observed that sugarbeet and potatoes
can be discriminated using A, and σ 0

HH /σ 0
V V for L-band as shown in Fig. 8.
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From the partial probability plots, the σ 0
HH /σ 0

V V peak was observed to be
more for sugarbeet as compared to potatoes at L-band as shown in Fig. 8c and
d, respectively. Similar observation was reported by Skriver et al. [57]. This may
be due to the relatively smooth surface scattering from sugarbeet compared to the
rough surface scattering from potato. The anisotropy A for sugarbeet was reported
to be higher than potatoes in L-band [51] which was also observed in our study as
shown in Fig. 8a and b, respectively. Anisotropy can be effectively characterized for
random scatterers for which H ≥ 0.7 [32]. In our study for L-band, sugarbeet and
potatoes were both observed to have H ≥ 0.7. However, there was a difference
in their anisotropy. Anisotropy is high when there is a big difference between the
second and third scattering mechanisms. A ≈ 0 implies that the second and the
third dominant scattering mechanisms are almost the same. So in case of potato
it seems that the second and third scattering mechanisms were equally dominant
while for sugarbeet the third scattering mechanism (mostly noise) was non-existent
as compared to the second dominant scattering mechanism.

The Frèchet distance between the partial probability plots of A at L-band for
sugarbeet and potato was found to be 0.9. Additionally the Frèchet distance between
the partial probability plots of σ 0

HH /σ 0
V V at L-band for sugarbeet and potato was

found to be 1.

4.3 Separation Between SSBL and LS Crops

Short-stem broad-leaf (SSBL) crops can be realized as canopy consisting of disc like
scatterers. Unlike SSBL, the long-stem (LS) crops have predominantly cylindrical
scatterers [20, 61]. It is important to identify polarimetric parameters which separate
these two crop types. In this study we have determined a pair of polarimetric
parameters based on the highest difference of MDA scores from the parameters
selected by RF which best separate SSBL from LS crops. We first calculated the
normalized MDA score difference between the same pair of parameters for two
different crop types. The pair having the highest normalized MDA score difference
between the two crops was selected for separation among the crop types. A few pairs
of polarimetric parameters were thus identified which successfully separate SSBL
from LS crops.

From Fig. 9a, it can be seen that for L-band, rapeseed (LS crop) and sugarbeet
(SSBL crop) can be separated using σ 0

HH /σ 0
V V and Pv and thus misclassification

is avoided between them. The separation is about 4.0 dB for σ 0
HH /σ 0

V V and about
10 dB for Pv . From Fig. 9b, it can be seen that for L-band, barley (LS crop) and
potato (SSBL crop) can be separated successfully using the polarimetric parameter
pair of σ 0

HV /σ 0
HH and Pv . The separation is about 4.0 dB for σ 0

HV /σ 0
HH and about

10.1 dB for Pv . As can be seen from Tables 5 and 7, the parameters σ 0
HH /σ 0

V V ,
and Pv are part of the top 10 parameters required for L-band classification of
rapeseed and sugarbeet, respectively, thus validating the RF parameter ranking and
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Fig. 9 Separation between small stem and broad-leaf crops at L-band. (a) Rapeseed-Sugarbeet.
(b) Barley-Potato

its contribution in crop classification. Also σ 0
HV /σ 0

HH and Pv are part of the top 10
parameters required for L-band classification of barley and sugarbeet, respectively,
as seen from Tables 6 and 8.

From Fig. 10a, it can be seen that for P-band, rapeseed (LS crop) and sugarbeet
(SSBL crop) crop can be separated using σ 0

HV /σ 0
HH and Pd . The separation is about

2.5 dB for σ 0
HV /σ 0

HH and about 6.0 dB for Pd . From Fig. 10b, it can be seen that for
C-band, rapeseed (LS crop) and potato (BBSL crop) can be separated successfully
using the polarimetric parameter pair of σ 0

HV /σ 0
HH and Pc. The separation is about

2.5 dB for σ 0
HV /σ 0

HH and about 4.0 dB for Pc. As can be seen from Tables 5 and
7, the parameters σ 0

HV /σ 0
V V , and Pd are part of the top 10 parameters required for

P-band classification of rapeseed and sugarbeet, respectively, thus validating the
RF parameter ranking and its contribution in crop classification. In fact they are
amongst the top 5 ranked parameters for both crops. Also σ 0

HV /σ 0
HH and Pc are

part of the top 10 parameters required for C-band classification of rapeseed and
potato, respectively, as seen from Tables 5 and 8.

4.4 Analyzing the Mixing Among Crop Classes

The RF classification accuracies were used to correlate the parameter ranking with
the underlying physical scattering mechanism related to crop targets. RF based
partial probability plots were used to study mixing among crop classes, since
these plots give the marginal effect of the parameter on the classification accuracy.
Analyzing partial probability plots to study mixing among crop classes helps us
validate the RF parameter ranking. This is because the amount of mixing among
crop classes is related to the more dominant parameters having similar partial
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Fig. 10 Separation between small stem and broad-leaf crops at (a) P- and (b) C-band

Table 9 Confusion matrix
for the four crop classes at
C-band (%)

C Barley Rapeseed Potato Sugarbeet

Barley 84.54 0 0 1.27

Rapeseed 0 91.99 0 0

Potato 0 0 78.84 0

Sugarbeet 2.88 0.1 6.28 67.71

Table 10 Confusion matrix
for the four crop classes at
P-band (%)

P Barley Rapeseed Potato Sugar_beet

Barley 100 0 0 0

Rapeseed 0 76.91 0 0.28

Potato 0 18.34 99.63 0

Sugar_beet 0 0 0 59.21

probability plots. Distinct partial probability plots imply low to no mixing among
crop classes.

In the confusion matrix (Table 9), it was observed that 6.28% of potato was
misclassified as sugarbeet at C-band. The odd-bounce scattering power Ps (ranked
7 and 10 for sugarbeet and potato, respectively) had similar partial probability plots
(Frèchet distance = 0.18) shown in Fig. 11a and b, respectively. This may be due
to the fact that both potato and sugarbeet, being short-stem broad-leaf crops exhibit
single bounce scattering from the wide leaf of the crop. Again from Table 10, in
P-band, high mixing of 18.34% was observed among rapeseed and potato classes.
The volume scattering power Pv is dominant for crops with ramified stems and was
observed to be Rank 1 for both rapeseed and potato, respectively. Pv was observed
to have relatively similar partial probability plots (Frèchet distance = 0.32) as shown
in Fig. 12a and b, respectively.

In contrast to C and P-band, significant mixing was not observed among the four
crops in L-band. This means the relevant parameters chosen by RF all have distinct
partial probability plots at L-band. It was observed that barley and rapeseed crop
classes did not have any intermixing among each other at all frequencies. Hence,
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Fig. 11 Mixing among sugarbeet and potato classes at C-band. (a) Sugarbeet. (b) Potato
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Fig. 12 Mixing among rapeseed and potato classes at P-band. (a) Rapeseed. (b) Potato

it is interesting to note that the top parameters selected by RF have distinct partial
probability plots for barley and rapeseed at all frequencies. The partial probability
plots of σ 0

HV /σ 0
HH (ranked 1 and 5 for barley and rapeseed, respectively) at L-band

is shown in Fig. 13a and b. The Frèchet distance between them was observed to be
0.97 indicating distinct plots. It is to be noted that the confusion matrix given in
Tables 9 and 10 do not sum up to 100%, since only classification accuracies of 4
selected crops have been included out of the total 12 crop classes in the Flevoland
study area.

Some notable insights from the above study:

• When top ranked parameters of different crops have similar partial probability
plots, the crop classes can be easily mixed.

• Mixing among crop classes reduces as the rankings get lowered for parameters
with similar partial probability plots. For instance, 18.34% mixing was observed
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Fig. 13 Distinct partial probability plots of selected parameters for barley and rapeseed (L-band).
(a) Barley. (b) Rapeseed

among crops classes for top ranked parameters (rank 1–3) while only 6.28%
mixing for bottom ranked parameters (rank 7–10).

• Crop classes which do not mix, their top ranked parameters mostly have distinct
partial probability plots.

5 Summary

In this study we utilized polarimetric target decomposition and non-decomposition
parameters for crop analysis. It was observed that the model-based decomposition
powers along with the ratio of the backscattering coefficients were important
for crop classification. Moreover the Eigenvalue/Eigenvector based decomposition
parameters were useful for critical analysis of crops in some cases. It was observed
that similar crop types have different scattering properties which was evident from
the partial probability plots of the important polarimetric parameters. The parameter
selection by RF and the evaluated normalized MDA scores for multi-frequency
data was thus useful for crop analysis. Separation between Long-stem and short-
stem broad-leaf crops at different frequencies was made possible using a pair
of polarimetric parameters having the highest normalized MDA score difference
between the crop types. It was seen that the crops which were separated physically
by the polarimetric parameter ranges were also the ones having the highest
difference between their normalized MDA scores. This was helpful in validating
the RF parameter ranking at multiple frequencies.

This study can be extended by incorporating parameters from multiple sources,
for example: Leaf Area Index (LAI), Normalized Difference Vegetation Index
(NDVI), soil moisture, temperature, etc., in addition to polarimetric parameters.
The ranking of these parameters from multiple sources can be useful for diverse
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crop analysis studies. The partial probability plots which evaluate optimal dynamic
ranges can be useful for further analysis like crop yield, annual crop growth
monitoring, etc. Multi-temporal analysis in addition to multi-frequency can be of
an added advantage for crop studies. Evaluation of optimal dynamic ranges for crop
parameters over the entire growth stage for multi-temporal datasets will be very
useful for agriculture studies like crop planning and harvest.
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Automatic Determination of Different
Soil Types via Several Machine Learning
Algorithms Employing Radarsat-2 SAR
Image Polarization Coefficients

Emrullah Acar and Mehmet Sirac Ozerdem

1 Introduction

It is striking at first glance that the soils in the various pits to be opened on any piece
of land have different appearances from each other: color, depth, ease of processing;
the change of many features such as loose or tight fit causes this difference. As
a result, the plant-growing functions of these soils are diverse. If it is taken into
account that the fertility of the soil is also impressed by external factors, then it can
be smoothly understood how difficult it would be to study and comprehend the soils
whose properties vary according to all these factors individually. For this reason,
as in the branches of science just like botany, zoology, etc., the systematization and
classification of the soils emerges as a necessity. Thus, lands that are similar to
each other in terms of their characteristics in terms of providing ease of study and
understanding can be gathered under certain groups and classified. It is difficult to
find a measure or a feature that can be taken as a basis in the classification of soils
and can be applied in a general way because the soil was formed under the influence
of various factors over thousands of years and gained a character according to these
factors. However, the practitioner is more concerned with the general characteristics
that affect fertility of the soil and whether the soil can be cultivated easily [1].

The determination of the soil types over the large agricultural lands by conven-
tional methods (including laboratory analyses and soil sampling) is troublesome and
expensive [2, 3]. However, the up-to-date information acquired from remote sensing
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(RS) technologies can perform that in a shorter time with less cost than conventional
methods. Moreover, the easy update of this technology ensures a major advantage
even in difficult geographical regions [4, 5].

RS data has gone out in the last decades as hopeful data resources in order
to determine digital soil types and mapping in all scales. This data contains soil
information such as spectral reflectance, and it has large spatial coverage. Thus,
it allows mapping of inaccessible areas as well as it generates comprehensive
and consistent data in both space and time. RS data proposes possibilities of
supplementing or reducing conventional soil sampling in soil surveys [6]. On the
basis of these advantages, many studies have been implemented by employing RS
data in digital mapping of soil [7].

The microwave zone of the electromagnetic spectrum is employed for determin-
ing soil parameters since this zone is precision to changes in soil content. Among the
all types of microwave sensors, Synthetic Aperture Radar (SAR) systems (Radarsat-
1, Sentinel-1, Radarsat-2, Envisat-ASAR, ERS-1/2 etc.) have a major potential in
determining soil parameters such as soil types [8]. Therefore, many studies, which
are related with SAR data, have been researched to determine soil parameters.
A SAR system includes single-polarized, dual-polarized, and quadrature-polarized
(hh, hv, vh, and vv) levels. Here, the quadrature-polarized (polarimetric) SAR can
produce data that is more detailed by multiple polarizations and penetrate the soil
surfaces [9]. Therefore, polarimetric SAR can generate appropriate high-resolution
images for soil monitoring, and it can be employed for agricultural monitoring,
determining soil types, and digital soil mapping when used together with machine
learning techniques.

A number of studies have been conducted in the literature employing RS data
and machine learning models, and some of these studies are summarized in order.
Forkuor et al. [10] have proposed digital mapping of soil properties utilizing RS data
as well as multiple linear regression and machine learning models. Zeraatpisheh et
al. [11] have recommended a research in order to predict soil properties (calcium
carbonate equivalent, soil organic carbon, and clay content by using digital soil
mapping and machine learning approaches in Borujen region, Iran). Hoa et al.
[12] have proposed a work for mapping soil salinity intrusion in Vietnam by
employing the Sentinel-1 SAR data and many machine learning models (Support
Vector Regression, Multilayer Perceptron Neural Networks, Radial Basis Function
Neural Networks, Gaussian Processes, and Random Forests). Moreover, different
researches have been successfully implemented by employing multispectral optical
data and hyper-spectral data, which are based on the correlation between several
indices information derived from soil reflectance spectra and spectrum bands for
mapping soil salinity [13–17]. Saadat et al. [18] have presented a numerical
approach in order to classify landform based on Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) images and a 10-m resolution
digital elevation model (DEM). Ehsani et al. [19] have proposed an approach
for characterization of landscape elements through the combination of remotely
sensed spectral data and morphometric parameters via Self-Organizing Map (SOM)
and Artificial Neural Networks (ANNs). Vibhute et al. [20] have recommended
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a research for classification of five various soil types by employing Hyperion
hyperspectral satellite data and Support Vector Machine approach. Scull et al. [21]
have proposed an approach in order to predict soil type in a desert landscape with
the aid of classification tree analysis. Zhai et al. [22] have suggested a study to
determine an accurate and efficient classification of soil texture with the aid of ANN
and remote sensing data.

The main objective of this chapter is to determine two soil types (Clayey and
Clayey+Loamy) automatically over the agricultural fields by employing various
machine learning algorithms (K-NN, ELM, and NB) and four different Radarsat-
2 SAR polarization coefficients (vv, vh, hv, and hh). The major contributions of the
proposed study can be listed as follows:

1. Different machine-learning-based pipeline is proposed for automatic determina-
tion of soil types over the bare and vegetated fields.

2. In the proposed system, four different Radarsat-2 SAR polarization coefficients
are employed as feature vectors, which have not been used before for determining
soil types.

3. With this proposed system, the determination of the areas of plant and tree
species growing in different soil types will become automatic. Thus, optimum
use of water resources will be ensured by providing controlled irrigation even in
drought.

The rest of this chapter is organized as follows. In the material and method
section, the pilot area, employed dataset, and different machine learning techniques
are explained. In the results and discussion section, the classification results
obtained from machine learning approaches are given and the obtained results are
evaluated. Finally, in the conclusion section, the recommended study is summed up.

2 Materials

2.1 Pilot Area

The pilot area contains two separate agricultural fields, which cover approximately
4 and 16 km2 of frame in the Dicle University, Turkey (40◦ 04’- 40◦ 26’E, 37◦ 46’-
38◦ 04’ N). The mean slope and height of the study area are 3.05% and 650 m;
yearly maximum mean temperature is 8.2 and 34.5 ◦C in the winter and summer,
respectively. Furthermore, yearly mean temperature and rainfall are 23.8 ◦C and
496 mm, respectively. The position of the pilot area is shown in Fig. 1. Here, the
locations of local soil measurements are indicated by red dots [4].
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Fig. 1 The position of the pilot area. Here, the locations of local soil type samples are indicated
in the red square

2.2 Measurement of Local Soil Type Samples

Local soil measurements were carried out over pilot area at the same time with
the transition of Radarsat-2 in March 3, 2016. The pilot areas were divided into
0.1 × 0.1-km grids, and local soil samples were received from each grid with
3–5 cm depth. Approximately, 156 local soil samples (32 clayey, 20 Loamy, 104
Clayey+Loamy) were gathered as given in Table 1, and the locations of soil samples
were enrolled with the aid of GPS instrument. Each soil sample was then analyzed
at the Agricultural Test and Analysis Laboratory of Dicle University (DUPTAM) in
order to determine soil types.
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Table 1 Number of local soil samples for each soil type

Soil type Number of soil samples

Clayey 30

Clayey+Loamy 126

Table 2 The main features of the attained Radarsat-2 SAR image

Beam mode Date Transition Time

Q13 03 March 2016 Descending 03:25:47

2.3 Acquisition of Radarsat-2 SAR Image Data

In this stage, a full polarimetric Radarsat-2 SAR image data, which belongs to 3
March 2016, was acquired. The obtained SAR data is in the single-look complex
data format, and it keeps phase, resolution, and amplitude information. Moreover, it
has 5.83 m spatial resolution and 30 × 30 km area. The main features of the obtained
Radarsat-2 SAR data are given in Table 2.

2.4 Radarsat-2 SAR Image Preprocessing

This phase was implemented in the following steps, respectively. First of all,
Sentinel-1 Toolbox (S1TBX) was run for reading of Radarsat-2 SAR data, which
was calibrated in order to rectify this data radiometrically. After that, Refined Lee
Filter was employed to reduce the quantity of the speckle noise and blurring on the
Radarsat-2 SAR data. Geometric distortions were fixed by utilizing SRTM-3 digital
elevation model, and the filtered SAR data was geocoded for terrain correction.
Subsequently, Universal Transverse Mercator with WGS84 was selected as the
default map projection, and the positions of the local soil samples were recorded by
GPS instrument. These coordinates were then turned into SHP file format with the
aid of QGIS software and imported to the preprocessed Radarsat-2 SAR image [23].
Finally, the preprocessed Radrsat-2 SAR image was converted into RGB format as
shown in Fig. 2.

3 Methods

3.1 Feature Extraction

In this stage, each soil type sample was represented by 3 × 3 pixel groups on
the Radarsat-2 image in order to form the feature vectors. The SAR polarization
coefficients for each soil type were then calculated by taking the average of the
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Fig. 2 The preprocessed
RGB Radarsat-2 SAR image

pixel groups. This process was repeated for four different polarizations, which
are vertical–vertical (vv), vertical–horizontal (vh), horizontal–vertical (hv), and
horizontal–horizontal (hh) of the Radarsat-2 SAR data. As a result, feature vectors
with four polarimetric SAR coefficients (vv, vh, hv, and hh) obtained from four
different polarizations were created for each soil type sample.

3.2 K-Nearest Neighbor (K-NN) Algorithm

K-NN is the one of the most effective algorithms in classification. It is a supervised
machine learning method that is based on the distance calculation [24]. The K-
Nearest Neighbor algorithm offers a simple result; however, it is used for convenient
outcome in many classification conditions [25]. In this method, the following steps
are applied, respectively:

• First, the parameter k, which is the number of nearest neighbors to a given
point, is assigned. For instance, allow k to be equal to two and thus situated;
classification will be revealed with respect to the two closest neighbors.

• The distance of the new data, which will be added to the sample dataset, with
respect to the existing data, is computed one by one.

• The K-Nearest Neighbor of the related distances is taken into account. It is
appointed to the class of k neighbors with respect to the feature values.

• The chosen class is then taken into account as the class of the observation values,
which is hoped to be predicted. Namely, the new data is labeled [24].

In this algorithm, there are ten distance calculation methods that are Cheby-
shev, Cosine, City Block, Hamming, Euclidean, Correlation, Mahalanobis, Jaccard
Minkowski, and Seuclidean [26]. In addition, the most commonly preferred distance
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measure for calculating is the Euclidean Distance, and this parameter is given in
Eq. 1 [27, 28].

d(x, y) =

√√√√√
N∑

j=1

(
xj − yj

)2
. (1)

Here, x and y symbolize data points to be classified and the learning points,
respectively.

3.3 Extreme Learning Machine (ELM) Algorithm

ELM is one of the most vigorous machine learning techniques for feed-forward
neural networks that contain a single hidden layer. It can be employed for regression
and classification objectives. In ELM approach, setting of bias parameters and input
weights is not essential in contrast to the other usual neural network applications.
For this reason, these parameters can be chosen randomly, and the output weights
can be determined analytically. This state authorizes ELM to become fast and easy
in the data processing [29] and makes a great generalization performance for a single
feed-forward neural network [30]. In contrast to gradient-based learning algorithms,
ELM has much superiority, such as the potential of attaining the minimal training
error, using single hidden layer and actuating by non-differentiable activation
functions. Moreover, the observation numbers are more than neuron numbers in
the ELM hidden layer [31]. The ELM output (y) can be figured out thanks to Eq. 2
[30].

yt =
∑

j=1

αj,tA

(
k∑

i=1

wi,j xi + bj

)
. (2)

In this place, α {j, t}, bj , m, n, xi ,wi,j , and A(.) state the output weights, the
biases of the neurons, the neuron numbers of the hidden layer, the neuron numbers
of input layer, the input, the input weights, and the activation function, respectively
[30].

3.4 Naive Bayes (NB) Algorithm

NB algorithm is one of the simplest machine learning algorithms. It is based on
Bayes theorem, and it can be easily applied in many areas for classification [32].

P(h/X) = P(X/h) × P(h)/P (X). (3)
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In Eq. 3, X and h represent the feature vector and the probability that a feature
vector belongs to a class such as T , respectively. In addition, P(h/X) expresses the
subsequent probability.

f (x) =
{

if − x, x < 0

if + x, x ≥ 0
. (4)

The algorithm of the Naive Bayes classifier is applied with the following steps:

• By employing Eq. 4, it is assumed that the class label of each x in the dataset
is certain. X is a vector consisting of m features and is expressed as X =
(x1, x2, . . . , xm).

• Next, suppose that you have n classes denoted by C1, C2, . . . , Cn. Naive Bayes
algorithm tries to find the value with maximum P(Ci/X) consecutive probability
among all classes in order to find out whether a vector X belongs to class Ci . This
is demonstrated using Bayes theorem and Eq. 5.

P(Ci/X) = (P (X/Ci) × P(Ci))/P (X). (5)

• Since the P(X) value is the same for all types, only the expression P(X/Ci) ∗
P(Ci) should be the highest.

• The term P(Ci) is defined as the ratio of the number of elements in the class Ci

to the total number of elements.
• The term P(X/Ci) is expressed by Eq. 6 when it is assumed that X is a feature

vector consisting of n values.

P(H/Ci) =
n∏

k=1

P(Xk/Ci). (6)

• As a result, the Naive Bayes classifier assigns the class Ci with the maximum
value of P(X/Ci) ∗ P(Ci) as the class of vector X [33].

3.5 Performance Metrics

In this phase, some statistical metrics (sensitivity, specificity, precision, recall, F1-
score, and accuracy) were employed in order to determine the overall performance
of the proposed system. The mathematical expression of each metric is presented in
Eqs. 7, 8, 9, 10 and 11, respectively.

Sensitivity = T P/(T P + FN) (7)
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Specif icity = T N/(FP + T N) (8)

Precision = T P/(T P + FP) (9)

F1 − Score = T P/(T P + 1/2 ∗ (FP + FN)) (10)

Accuracy = (T P + T N)/(T P + T N + FP + FN). (11)

Here, T P , T N , FP , and FN denote the number of true positives, true negatives,
false positives, and false negatives, respectively [34].

4 Results and Discussion

In this section, the following operations were carried out respectively. First, the
positions of the local soil type samples were imported to the preprocessed Radarsat-
2 SAR image with the help of QGIS software. Four different Radarsat-2 SAR
polarization coefficients (vv, vh, hv, hh) were then computed in order to form
feature vectors for each sample. Finally, different machine learning algorithms
(K-NN, ELM, and NB) were utilized to determine two soil types (Clayey and
Clayey+Loamy) automatically on the agricultural fields.

4.1 Determination of Soil Types via Polarimetric SAR
Coefficients and K-NN

At this stage, leave-one-out cross-validation approach together with different K-
Nearest Neighbor numbers (k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) was performed for
defining optimal parameters of the k. In the leave-one-out cross-validation approach,
n-1 of the n-dimensional dataset is chosen as the training set and the remaining
one as the test set. This process is repeated n times to ensure that each data in the
dataset is employed as a test set without being included in the training set. Then,
the performance of the whole system is calculated by taking the average of the
test performance values obtained n times. After that, the testing accuracy for all k

numbers is presented in Fig. 3, and the performance metrics of the K-NN classifier
are given in Table 3. Considering Fig. 3 and Table 3, it can be said that the maximum
performance of the proposed system was computed as 98.4% sensitivity, 60.0%
specificity, 91.2% precision, 94.6% F1-Score, and 91.1% accuracy, in the k = 8
scenario. Additionally, a receiver operating characteristic (ROC) curve, which is a
graphical plot that exemplifies the diagnostic capability of a binary classifier system,
is presented in Fig. 4.
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Fig. 3 Testing accuracy for all k numbers

Table 3 Performance metrics of K-NN classifier

Statistical metrics Value(%)

Sensitivity 98.4

Specificity 60.0

Precision 91.2

F1-score 94.6

Accuracy 91.1

4.2 Determination of Soil Types via Polarimetric SAR
Coefficients and ELM

In this part, leave-one-out cross-validation approach with 5 activation functions (1-
sigmoid, 2- sinusoidal, 3- radial basis, 4- hard limit, and 5- triangular basis) and 5
different hidden neuron numbers (1,2,3,4,5) was implemented in order to determine
ideal parameters of the proposed system. The accuracy for all activation functions
(AF) and hidden neuron numbers (HNN) scenarios are illustrated in Fig. 5, and the
performance metrics of the ELM classifier are presented in Table 4, respectively.

Evaluating Fig. 5 and Table 4, the maximum testing performance of the whole
system was calculated as 100% sensitivity, 3.3% specificity, 81.3% precision, 89.7%
F1-Score, and 82.0% accuracy in the HNN = 3 and AF = Sinusoidal structure.
Moreover, the ROC curve of the proposed ELM classifier is presented in Fig. 6.
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Fig. 4 The ROC curve of the
proposed KNN system

Fig. 5 Testing accuracy for all AF and NHN scenarios

Table 4 Performance metrics of ELM classifier

Statistical metrics Value(%)

Sensitivity 100

Specificity 3.3

Precision 81.3

F1-score 89.7

Accuracy 82.0
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Fig. 6 The ROC curve of the
proposed ELM classifier

Table 5 Optimal parameters for NB classifier

Model parameters Definition

Distribution name Normal (Gaussian) distribution

Kernel smoothing density support Unbounded

Prior probabilities [0.81, 0.19]

Cost [0 1, 1 0]

Score transform None

Table 6 Performance metrics of NB classifier

Statistical metrics Value (%)

Sensitivity 95.2

Specificity 43.3

Precision 87.6

F1-score 91.2

Accuracy 85.2

4.3 Determination of Soil Types via Polarimetric SAR
Coefficients and NB

In this phase, leave-one-out cross-validation was implemented in order to compute
the overall performance of the proposed system with the optimal model parameters
as tabulated in Table 5. Moreover, the performance metrics of the NB classifier
together with ROC curve are presented in Table 6 and Fig. 7, respectively.

When Fig. 7 and Table 6 are analyzed, the maximum testing performance of
the proposed system was computed as 95.2% sensitivity, 43.3% specificity, 87.6%
precision, 91.2% F1-Score, and 85.2% accuracy.
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Fig. 7 The ROC curve of the
proposed NB classifier

5 Conclusion

The controlled use of water resources, which are decreasing due to drought and
may be depleted in the future, is extremely important for the future of humanity
and continuation of production. One of the important areas where water resources
are used is agricultural land. Automatic determination of soil types over agricultural
lands plays a key role in predicting which plant can grow on these lands and how
often water can be used there. In this context, the recommended methodology offers
a solution for the determination of soil types.

In the proposed work, the following steps were enforced, respectively. In the
first step, the geographic locations of the soil type samples were transferred to the
preprocessed SAR image by employing QGIS software. In the second step, four
Radarsat-2 SAR image polarization coefficients (vv, vh, hv, and hh) were then
calculated to constitute feature vectors for each sample. In the last step, several
machine learning algorithms (K-NN, ELM, and NB) were utilized in order to
determine different soil types (Clayey and Clayey+Loamy) automatically over the
agricultural fields.

During the classification stage, various statistical metrics were employed to
calculate the performance of the proposed system. In addition, the ROC curve of
each classification model was drawn to get information about the performance value
of the system visually. As a result, while the highest accuracy value was reached in
the KNN classifier among the proposed systems, the lowest precision value with the
highest sensitivity value was also reached in the ELM classifier.

In the continuation of this study, automatic detection of soil types is planned by
utilizing different active and passive remote sensing image indices and deep learning
techniques. Thanks to this system to be developed, optimum use of water resources
in agricultural lands will be achieved.
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RVCNN Real-Valued CNN
SAE Sparse Auto-Encoder
SAOCOM Microwave Observing Argentinian Satellite
SAR Synthetic Aperture Radar
SGD Stochastic Gradient Descent
SIR Spaceborne Imaging Radar
SNR Signal-to-Noise Ratio
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1 Radar Polarimetry

This section presents a general overview of the theoretical background needed to
model the sea surface polarimetric observables. We focus on the general formulation
of the polarimetric scattering process that describes the electromagnetic interaction
between the wave transmitted by a microwave sensor and a target to be observed on
the Earth’s surface.

In this section, we first introduce the mathematical formalism used to describe
polarimetric observables in Sect. 1.1. Then, in Sect. 1.2, an overview of the opera-
tional and planned polSAR systems and the main characteristics of the polarimetric
imaging modes is provided. As a reference, information about multi-polarization
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models to describe sea surface scattering is given in Sect. 1.3. Finally, in Sect. 1.4,
meaningful experimental showcases are presented to demonstrate some of the most
representative polarimetric properties of sea surface scattering.

1.1 Polarimetric Scattering Descriptors

In this subsection, a general overview of the polarimetric scattering descriptors
of the electromagnetic interaction between the transmitted wave and the observed
surface is presented.

Considering a monostatic radar sensor, a microwave pulse transmitted by a
radiation source interacts with the observed surface, and it is scattered back to be
received by the original transmitting antenna. The received electromagnetic pulse
brings information about the scene that can be accessed taking into account the
transmitted and received waves. According to the Jones formalism, in the far zone
of the scatter, the transformation of the incident wave into the scattered one is given
in Eq. (1), where the transformation is ruled by the scattering matrix S [34]:

Es = e−jkr

r
SEi , (1)

where the ratio e−jkr/r is the spherical wave factor with j being the imaginary unit,
k the electromagnetic wave number, and r the distance between the SAR antenna
and the center of the scene. Es and Ei are the complex Jones vectors describing,
respectively, the scattered and incident waves.

Considering the monostatic backscattering case, i.e., the transmitting and receiv-
ing antennas are in the same location, and under the backscatter alignment conven-
tion (BSA), the scattering matrix S is a 2 × 2 complex-valued matrix also known as
Sinclair matrix and, adopting the linear horizontal (h)–vertical (v) polarization basis
and considering the propagation through a reciprocal medium, can be given by

S =
(

Shh Shv

Shv Svv

)
=

(|Shh| ejϕhh |Shv| ejϕhv

|Shv| ejϕhv |Svv| ejϕvv

)
= ejϕhh

( |Shh| |Shv| ejϕx

|Shv| ejϕx |Svv| ejϕc

)
,

(2)
where Spq , with p, q ∈ {h, v}, is the complex scattering amplitude, while Svh = Shv

results from the reciprocity assumption. The diagonal and off-diagonal terms of the
scattering matrix S call for, respectively, the same (termed co-polar) and orthogonal
(cross-polar) polarization for both incident and scattered waves.

∣∣Spq

∣∣ are the
modulus of the scattering amplitude, and ϕc and ϕx are the relative phase between,
respectively, the co-polarized and the cross-polarized channels:

ϕc = ϕhh − ϕvv , ϕx = ϕhv − ϕhh. (3)
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The phase differences between co-polarized and cross-polarized channels are
often indicated as CPD and XPD, respectively. The Jones formalism shown in
Eq. (1) represents a first-order coherent scattering model (i.e., a completely polar-
ized and deterministic scattering) and does not allow describing the phenomena of
depolarization that may arise from the scattering of random and distributed scenes.
The second-order descriptors are used to deal with the polarimetric scattering from
the distributed and depolarizing scenes based on both an incoherent and coherent
approaches. The latter is based on the coherency T and covariance C matrix, while
the former on the Stokes formalism where the 4 × 4 Muller matrix M connects the
partially polarized scattered wave (gs) to the fully polarized incident wave (gi) [34]:

gs = (kr)−2 〈M〉 gi , (4)

where 〈·〉 denotes ensemble average, the matrix M is real and never symmetric,
its elements are ensemble averages of combinations of scattering amplitudes, and
more details can be found in [33, 34]. The Stokes vector g represents the polar-
ization properties of an electromagnetic plane wave based on non-coherent power
measurements. The Stokes vector, different from the Jones formalism, can describe
partially polarized waves. In Eq. (4), since the incidence wave is deterministic, no
ensemble average is made in gi . According to the Stokes formalism, the degree of
polarization (DOP) of a partially polarized target can be evaluated:

DOP =
√

g1
2 + g2

2 + g3
2

g0
2 . (5)

The DOP is a basis-invariant parameter ranging between 0 and 1 that measures
the amount of polarized scattering/component of the target/electromagnetic wave.

One of the most powerful tools that characterize polSAR is the polarization
synthesis, i.e., the synthesis of the power given the polarization properties of any
couple of transmitting/receiving antenna once a complete polarimetric measure has
been performed in an orthogonal basis. The normalized radar cross section (NRCS)
can be evaluated based on the Kennaugh matrix, K , for any possible combination
of transmitting/receiving antenna polarizations, assuming that the antennas match
in both load and polarization:

σ 0 = 4π

2k2

〈
gr
〉T 〈K〉 gt , (6)

where the superscript T is the transpose operator, and gt and gr are, respectively,
the transmitted and received polarizations described using the Stokes formalism.
Considering the BSA convention, K is given by Guissard [34]

K = diag(1, 1, 1,−1)M . (7)
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Once polarization synthesis is performed, by varying the transmitting/receiving
polarization couple, the NRCS can be plotted versus both the tilting � and the
ellipticity χ angles, i.e., for any polarization. Hence, the co-polarized (transmitting
and receiving polarizations call for the same Stokes vector) and cross-polarized
(transmitting and receiving polarizations call for the orthogonal Stokes vectors)
signatures of the target are obtained. Once the former is normalized with respect
to the total backscattered power, namely the SPAN, the normalized pedestal height
(NPH) can be derived, which is the lowest NRCS in the normalized co-polarized
signature, while varying the tilting and ellipticity angles (i.e., the polarization). The
NPH describes the amount of unpolarized energy with respect to the total received
power.

The Mueller matrix is in a one-to-one mapping with the coherency matrix T

[16, 48]. The latter completely describes the polarimetric scattering properties of
a generic distributed and depolarizing scene with the advantage of, unlike the
Mueller matrix, being Hermitian and semi-definite positive matrices. The latter
properties allow the decomposition of the T and C matrices in elementary scattering
mechanisms providing a physical interpretation of the scene scattering processes.
The coherency/covariance matrices are both ensemble averages of combinations
of scattering amplitudes. Considering the backscattering case and assuming reci-
procity, the coherency matrix T and the covariance matrix C can be expressed,
respectively, as [16]

T =
〈
kk†

〉

= 1

2

⎛

⎝

〈|Shh + Svv |2
〉 〈

(Shh + Svv) (Shh − Svv)
∗〉 2

〈
(Shh + Svv) S∗

hv

〉
〈
(Shh − Svv) (Shh + Svv)

∗〉 〈|Shh − Svv |2
〉

2
〈
(Shh − Svv) S∗

hv

〉

2
〈
Shv (Shh + Svv)

∗〉 2
〈
Shv (Shh − Svv)

∗〉 4
〈|Shv |2

〉

⎞

⎠
(8)

and

C =
〈
kk†

〉
=

⎛

⎝

〈|Shh|2
〉 √

2
〈
ShhS

∗
hv

〉 〈
ShhS

∗
vv

〉
√

2
〈
ShvS

∗
hh

〉
2
〈|Shv|2

〉 √
2
〈
ShvS

∗
vv

〉
〈
SvvS

∗
hh

〉 √
2
〈
SvvS

∗
hv

〉 〈|Svv|2
〉

⎞

⎠ , (9)

where k is the target scattering vector projected into the Pauli (lexicographic) basis
[16]. The T matrix can be uniquely diagonalized as follows:

T = UDU−1 =
3∑

i=1

λiui · u†
i = T 1 + T 2 + T 3. (10)

Equation (10) describes the decomposition of the T matrix into the sum of
three elementary scattering mechanisms (i.e., surface scattering from a plane flat
structure, double-bounce scattering from a dihedral structure, and volume scattering
from a randomly oriented cloud of dipoles) described by the eigenvectors ui in
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which the power contribution for each mechanism is given by the eigenvalues λi

[16, 48]. Since T matrix satisfies Hermitian symmetry and is semi-definite positive,
it is characterized by real non-negative eigenvalues that satisfy the following
relationship:

λ1 ≥ λ2 ≥ λ3 ≥ 0. (11)

T and C matrices share the same eigenvalues, and their eigenvectors are linked
to each other by a con-similarity transformation [16, 48]:

C = F−1T F , F = 1√
2

⎛

⎝
1 0 1
1 0 −1
0

√
2 0

⎞

⎠ . (12)

The eigen-decomposition of the coherency matrix results in meaningful basis-
invariant synthetic parameters that are strictly related to the scattering properties of
the observed target. The polarimetric entropy, H , is given by

H = −
3∑

i=1

pi log3 (pi) , pi = λi∑3
j=1 λj

, (13)

while the mean scattering angle ᾱ is defined by

ᾱ =
3∑

i=1

λi∑3
j=1 λj

cos−1(|ui (1)|). (14)

The entropy H is a basis-invariant measure, bounded between 0 and 1, of the
randomness of polarimetric scattering mechanisms that characterize the observed
target. H = 0 means deterministic scattering, while H = 1 means completely
unpolarized scattering. The mean scattering angle ᾱ, ranging between 0 and 90◦,
represents the average scattering mechanism of the target. ᾱ = 0◦, 45◦, and 90◦
stand for surface, volume, and double-bounce scattering, respectively.

The eigenvalues of the coherency/covariance matrices can also be used to express
the NPH:

NPH = λ3

λ1
. (15)
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1.2 PolSAR Imaging Modes

In this subsection, a brief overview of polarimetric SAR missions is presented.
In the last decades, SAR satellites were launched acquiring information from the

Earth surface at different microwave wavelengths and exploiting as well different
polarimetric and imaging modes. Since the polarimetric SAR provides reliable,
detailed, and valuable information on the physical properties and processes that rule
the observed scene, spaceborne polarimetric missions were launched recently or are
planned to be launched in the next years (e.g., the BIOMASS mission that consists
of a P-band SAR that will focus on the global distribution of forest biomass). An
overview of the main polSAR spaceborne missions is provided in Table 1.

According to the polarimetric information content, the SAR can be classified
as full polarimetric (FP), dual polarimetric (DP), and compact polarimetric (CP).
The FP SAR transmits and receives radiation on an orthogonal linear polarization
basis, providing the complete scattering matrix information on the observed scene.
Operational SAR missions are continuously acquiring information at different
frequencies, e.g., the C-band CSA (Canadian Space Agency), Radarsat-2, the L-
band JAXA (Japanese Aerospace Exploration Agency), Alos (Advanced Land
Observing Satellite), PalSAR-2 (Phased Array Type L-band SAR), and the X-
band ASI (Italian Space Agency), CSG (Constellation of Small Satellites for the
Mediterranean Basin Observation). The planned biomass mission will be equipped
with a FP SAR. An important limitation related to the FP SARs is related to its
limited area coverage (a swath smaller than 70 km) that impacts directly on its use
for operational monitoring services.

When compared to the FP SAR systems, the DP ones provide less polarimetric
information, i.e., they transmit a single linear polarization and receive usually both
amplitude and phase (coherently) in the corresponding orthogonal basis, providing
a single row/column of the scattering matrix, see Eq. (2). However, as advantage, the
DP SAR missions offer doubled area coverage when compared with the FP systems.
The operational DP SARs we can mention are the X-band ASI CSK, calling for
an incoherent DP imaging mode (i.e., alternating bursts are transmitted/received,
so no phase link is measured between the two polarimetric channels), the X-band
DLR (German Aerospace Center), TerraSAR-X, and C-band ESA (European Space
Agency), Sentinel-1.

A single circular or slant linear polarization is transmitted by the CP SAR
architectures and is then received according to the linear orthogonal basis. The CP
SAR system only measures the wave coherency matrix associated to the received
electromagnetic wave, limiting the amount of scattering information that can be
extracted when compared to FP missions. Even though the information received
by the CP system is biased and/or dependent on the considered CP mode, CP
SAR data have been successfully exploited for coastal areas observation [77]. CP
SAR missions are a trade-off solution between the area coverage and the amount
of polarimetric information. CP SAR satellites have been launched recently, for
example, the L-band CONAE (National Space Activities Commission) SAOCOM
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(Argentine Microwaves Observation Satellite), and the C-band CSA RCM (Radarsat
Constellation Mission). Another operational mission that has an CP SAR is the
C-band ISRO (Indian Space Research Organization), RISAT-1 (Radar Imaging
SATellite).

To acquire data from the Earth’s surface, different operational modes can be used
by the SAR systems. The most fundamental and simplest mode is the stripmap
where the radar antenna is fixed to one swath and draws a strip on the ground
during the time in which the platform moves. The illuminated area in the Earth’s
surface is limited in the range size and theoretically unlimited in the along-track
(azimuth) direction [22]. Taking the TerraSAR-X system as example, when working
on stripmap mode, its standard scene size is 30 × 50 km (range × azimuth) and its
spatial resolution is 1.2 × 3.3 m (slant range × azimuth) for single polarization and,
respectively, 15 × 50 km and 1.2 × 6.6 m for dual polarization.

In case a wider swath is needed, the antenna can be operated on scanSAR
mode where, to illuminate different range subswaths, the antenna beam elevation is
periodically switched. In this case, the azimuth resolution is degraded compared to
stripmap mode [22]. The standard scene size for the TerraSAR-X system operating
on scanSAR mode is 100 × 150 km, and the spatial resolution is 1.2 × 18.5 m. An
improvement on the azimuth resolution can be achieved using the spotlight mode
at the expense of azimuth coverage. The radar antenna beam operating on spotlight
mode is steered during the acquisition time from forward to backward, pointing
always in the same area on the ground [22]. The spotlight mode of the TerraSAR-X
system acquires a standard scene size of 10 × 10 km with a spatial resolution of 1.2
× 1.7 m for single polarization and 1.2 × 3.4 for dual polarization.

1.3 Sea Surface Polarimetric Scattering

This subsection deals with multi-polarization models to describe/predict the
backscattering from the sea surface at microwaves.

Over decades, the problem of scattering of electromagnetic waves from natural
rough surfaces has been investigated. The rough surface scattering problem plays
an important role for the radar remote sensing and its application on extracting
information on the observed scene, being of paramount importance for a broad range
of operational applications such as sea wind retrieval, soil moisture estimation, sea
ice, and oil slick observation [21, 36, 38]. To obtain closed-form solutions is not a
trivial task, and therefore, approximation approaches to deal with limiting scattering
cases were proposed, i.e., the high-frequency and low-frequency approaches. The
analytical high-frequency approach based on the Kirchhoff-tangent approximation
is valid for very rough slopes, and it has a good performance in modeling quasi-
specular scattering, while it lacks polarization sensitivity. Other very commonly
used general analytical approach is the small perturbation model (SPM) based on
the low-frequency approximation for small vertical variations. The SPM yields for
proper polarization sensitivity (considering the regime where the model is valid);
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however, it lacks in accounting specular scattering, multiple scattering effects,
and long-scale features in the surface spectrum [84]. Furthermore, the Kirchhoff-
tangent approximation and the SPM cannot well model natural rough surfaces
since these surfaces have different scales. In this context, in order to overcome the
problem of the natural sea surface being a very complicated composite surface,
the two-scale approximation assumes that the small roughness rides on top of
large fluctuations. The latter model has a good compromise between interpretation,
practical implementation, and accuracy issues [24, 35].

First to introduce the three scattering models will be presented in this subsection,
the Bragg scattering will be described as well as some general properties of the
ocean backscattering. Considering a range of angles of incidence between 20 and
60◦, under low-to-moderate wind conditions and the absence of long waves (validity
range of the Bragg scattering regime), the SAR sea surface backscattering is
primarily due to the Bragg scattering. The incident radiation is backscattered by the
wind-generated waves (i.e., capillary or short-wave length waves) of the sea surface,
following the relation: λB = λr/2 sin(θ), which says that sea surface roughness
scale, λB , is comparable with the radar wavelength λr . Considering all frequencies,
the ocean backscattering decreases with increasing incidence angle while increasing
when wind speed increases. The VV-polarized return is higher than the HH one,
while the cross-polarized (HV or VH polarization) NRCS is much lower than the
co-polarized ones, often being below the noise floor of the SAR sensor [37].

In [36], a scattering model was proposed, which is an extension of the con-
ventional Bragg scattering model, since it includes a roughness-induced rotation
symmetric disturbance. According to [36], the great advantages of the model are
the ability to describe processes that reduce the degree of polarization of the
electromagnetic wave (i.e., depolarization effects) and the capability to describe
cross-polarized backscattering. In this framework, it is the possible extension of
the Bragg scattering theory to a range of natural surfaces.

Under intermediate incidence angles and low-to-moderate sea-state conditions,
the X-Bragg coherency matrix T X can be predicted introducing a roughness
disturbance by rotating the Bragg coherency matrix about an angle β in the plane
perpendicular to the scattering plane [36]:

TX =
⎛

⎝
C1 C2sinc (2β1) 0

C∗
2 sinc (2β1) C3 (1 + sinc (4β1)) 0

0 0 C3 (1 − sinc (4β1))

⎞

⎠ . (16)

The angle β is an uniformly distributed random variable in the range 0–90◦, and
its distribution width, β1, corresponds to the amount of roughness of the sea surface
[36].

p(β) =

⎧
⎪⎨

⎪⎩

1
2β1

|β| ≤ β1

0 elsewhere

. (17)
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C1, C2, and C3 are combinations of the complex Bragg scattering coefficients:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C1 = |Rh + Rv|2

C2 = (Rh + Rv)
(
R∗

h − R∗
v

)

C3 = 1
2 |Rh − Rv|2

. (18)

Rh and Rv are, respectively, the Bragg scattering coefficients perpendicular (V)
and parallel (H) to the incidence plane and depend on the local incidence angle, θ ,
and the relative electric permittivity, ε. More details can be found in [36].

Please note that the X-Bragg scattering model does not implement a high depo-
larizing condition. Thus, this model is not valid for dealing with high depolarizing
targets [10].

The electromagnetic scattering model named polarimetric two-scale model
(PTSM) [21, 38], as the original TSM, accounts for depolarization effects. However,
the former different from the latter one has the advantage to provide closed-form
expressions of the elements of the covariance matrix holding large-scale surface
slopes. Compared with the X-Bragg model, the PTSM brings improvement when it
removes the assumption of a uniform incidence plane rotation β and no variation in
the incidence angle. The PTSM was first developed to retrieval soil moisture, and it
was expanded to deal with the sea surface scattering purposes in [73, 74].

Considering the PTSM, the ocean can be modeled as being composed of large-
scale roughness with slightly roughened, tilted facets whose slope is the same as a
smoothed surface at the center of the roughened facet. The small-scale roughness
δ (x, y) is considered as a zero-mean stochastic process with height standard
deviation small when compared to the electromagnetic wavelength. Considering
δ (x, y) as a band-limited process, the power spectral density is [32, 38]

W (k) = S0

k(2+2Ht )
= s2 S0n

k(2+2Ht )
= s2Wn (k) , (19)

where k =
√

k2
x + k2

y , and kx , ky are the Fourier mates of x (azimuth) and y

(range), respectively. Via the dimensional facet-size-dependent constant S0n, S0 is
proportional to the roughness variance s2 [32]. Wn is the normalized power spectral
density, and 0 < Ht < 1 is the Hurst coefficient related to the fractal dimension D

by D = 3 − Ht . More details about values of D and Ht for the sea surface can be
found in [49, 82].

If we consider a sensor illuminating an area at a global incidence angle θ and
a field scattered by a single tilted rough facet, the full expression of NRCS can be
obtained as [38]
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 0
hh = 4

π
k4cos4θis

2Wn (2k sinθi)

× ∣∣Fh (θi) cos2βs + Fv (θi) sin2βs

∣∣2

σ 0
vv = 4

π
k4cos4θis

2Wn (2k sinθi)

× ∣∣Fv (θi) cos2βs + Fh (θi) sin2βs

∣∣2

σ 0
vh = σ 0

hv = 4
π
k4cos4θis

2Wn (2k sinθi)

× |[Fv (θi) − Fh (θi)] sinβs cosβs |2

, (20)

where Fh and Fv are the Bragg scattering coefficients for horizontal and vertical
polarizations, respectively [38]. θi is the local incidence angle, and the angle βs is
the rotation of the local incidence plane around the look direction k̂ related to the
facet slopes. Equation (20) does not hold at near-grazing angles (i.e., θi

∼= π/2) and
k values smaller than about 2π/L (i.e., θi < λ/2L, where L is the facet linear size).

Considering that the large-scale roughness height variations are larger than the
incident radiation wavelength and the facet size is larger than the small-scale
roughness correlation length, the returns from different facets are uncorrelated.
Within this context, the NRCS from the entire surface can be expressed by averaging
that of a single facet over βs and θi . Via a Taylor series expansion, the NRCS
expressions of an entire resolution cell are given as follows [38]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

〈
σ 0

hh

〉
|a,b

= 4
π

[
Chh

0,0 +
(

Chh
2,0 + 2

R
(
Chv

0,0

)
−Chh

0,0

sin2
θ

+ Chh
0,2

)
σ 2

]

〈
σ 0

vv

〉
|a,b

= 4
π

[
Cvv

0,0 +
(

Cvv
2,0 + 2

R
(
Chv

0,0

)
−Cvv

0,0

sin2
θ

+ Cvv
0,2

)
σ 2

]

〈
σ 0

hv

〉
|a,b

= 4
π

(
Chh

0,0 + Cvv
0,0 − 2R

(
Chv

0,0

))
σ 2

sin2
θ

, (21)

where C
pq
k,n=k are series expansion coefficients of the function (k cos (θi))

4 WFpF ∗
q

[38]:

C
pq

k,n−k = 1

n!
(

n

k

) ∂n
(
Wk4cos4θiFpF ∗

q

)

∂ak∂bn−k

∣∣∣∣∣∣
a=b=0

. (22)

Even though the good compromise between interpretation, practical implemen-
tation, and accuracy issues [35] associated to the composite model combining the
Bragg scattering mechanisms (contribution associated to capillary and short-gravity
waves) and local-tilting effects associated to long waves, it is still difficult to obtain a
consistent description of the sea surface NRCS over different polarization states and
wind and wave conditions as well as over a large range of frequencies and incidence
angles [41, 72]. Discrepancies between model and measurement are more significant
when considering the sea surface under the influence of surface current straining. In
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the literature, the authors have been suggested that that the contribution of surface
breaking waves can be considered summing up with the polarized Bragg scattering
mechanisms to describe the co-polarized sea surface backscattering, reducing the
discrepancies [41, 42].

Other studies analyzed sea surface polarimetric scattering under more complex
environmental conditions, i.e., high sea states, the presence of breaking waves and
ice caps, internal waves, etc. When dealing with breaking waves, some studies
propose that, at intermediate incidence angles, the scattering mechanisms associated
to near-breaking events and intermediate-scale breaking waves are characterized as
non-polarized, and, therefore, contributing the same for both co-polarized channels
[43, 44]. Within this context, according to Kudryavtsev et al. [44], the contribution of
breaking wave can be estimated from co-polarized SAR measurements. The model
assumes that the sea surface can be described as the sum of a polarized two-scale
Bragg sea surface scattering contribution, σ 0

qq,b, and a NP scattering from breaking

waves, σ 0
wb [43]:

σ 0
qq = σ 0

qq,b + σ 0
wb, (23)

where q stands for horizontal or vertical polarization. The term σ 0
wb can be solved

taking into account the co-polarization difference (PD) and the two-scale Bragg
scattering polarization ratio (PR) [43]:

σ 0
wb = σ 0

vv − σ 0
vv − σ 0

hh

1 − σ 0
hh,b/σ

0
vv,b

= σ 0
vv − PD

1 − PR
, (24)

where PR is mainly ruled by the local geometry and tilting effects [41, 43]. More
details about PR can be found in Kudryavtsev et al. [43, 44].

1.4 Experimental Showcases

In this subsection, some key polarimetric characteristics of the sea surface scattering
are shown by means of an experimental showcase.

The polarimetric SAR scene consists of a FP L-band Alos PalSAR-1 image
collected over the Tosashimizu coast (Pacific Ocean, Japan) on April 21, 2011. The
spatial resolution is 30 × 10 m (range × azimuth), while the incidence angle at
mid-range is about 24◦. An excerpt of the SAR scene is shown as an RGB image
in Fig. 1a, where red, green, and blue colors refer to the modulus of HH-, VV-,
and HV-polarized scattering amplitudes, respectively. The dominant yellowish color
witnesses that most of the backscattered signal is from the co-polarized channels.
To quantitatively show this property, an along-range transect is selected covering a
distance of almost 7 km. The behavior of the HH-, VV-, and HV-polarized NRCSs
along the transect is shown—in gray, black, and purple lines—in Fig. 1b, where a
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Fig. 1 (a) False color RGB (R = |Shh|, G = |Svv |, B = |Shv |) image of a L-band Alos PalSAR-1
SAR scene excerpt collected over sea surface; (b) NRCS values (in dB scale) evaluated along a
range transect where black, gray, and blue plots refer to vv, hh, and hv polarizations. A smoothing
factor of 9 is used to improve visualization

dB scale is used and a 9-pixel-long smoothing window is applied for visualization
purposes. It is clear how, over sea surface, co-polarized backscattering dominates
over the cross-polarized one, i.e., about 15-dB difference, on average. In addition,
it can be noted that the intensity of the VV-polarized backscattering is slightly
larger (within 2 dB) than the HH-polarized one. Those properties all come from the
peculiar characteristics of the Bragg/tilted-Bragg scattering ruling over sea surface
under low-to-moderate wind conditions and in the incidence angle range from about
20 to 60◦.

The correlation properties that characterize sea surface polarimetric backscat-
tering can be analyzed using a second-order descriptor, i.e., the 3 × 3 covariance
matrix. To analyze the correlation between the co-polarized channels, the complex-
valued element C13 must be considered since its phase represents the phase
difference between co-polarized channels, i.e., the so-called CPD ϕc. The corre-
sponding probability density function (pdf) is shown in Fig. 2a, where it can be noted
that it follows a Gaussian distribution whose width is quite narrow, i.e., less than
10◦, witnessing that a large degree of correlation is in place between the HH- and
VV-polarized backscattering channels. When dealing the correlation between co-
and cross-polarized channels, sea surface satisfies the reflection symmetry property
with respect to the line of sight that results in those backscattering channels being
uncorrelated. The amplitude of the complex-valued element C12, which is related
to the correlation between the HH- and HV-polarized backscattering channels, is
shown—in dB scale—as a false color image in Fig. 2b. By visually inspecting
Fig. 2b, it can be observed that over sea surface reflection symmetry applies
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Fig. 2 Behavior of the covariance matrix estimated over sea surface relevant to the Alos PalSAR-
1 SAR scene shown in Fig. 1: (a) Probability density function relevant to the phase (evaluated in
degrees) of C13; (b) false color image of the amplitude (in dB scale) of C12

everywhere, i.e., the correlation between HH- and HV-polarized backscattering
channels calls for extremely low values (on average, about −34 dB).

To show that the ocean calls for a dominant scattering, i.e., the Bragg/tilted Bragg
surface scattering mechanism, the three real and non-negative eigenvalues of the
covariance matrix are evaluated, see Fig. 3, where they are normalized with respect
to the total backscattered power (namely, the SPAN). As expected, sea surface is
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Fig. 3 False color images of the normalized eigenvalues of the coherency matrix evaluated over
sea surface relevant to the Alos PalSAR-1 SAR scene shown in Fig. 1: (a) λ1; (b) λ2 and (c) λ3

characterized by λ1 values larger than 0.9, while λ2 and λ3 values lower than 0.1,
witnessing that a single scattering mechanism dominates. On average, λ1 = 0.96,
while the secondary eigenvalues λ2 and λ3 are equal to 0.03 and 0.01, respectively.

2 SAR Polarimetry for Sea Oil Spill Observation

In this section, the capability of polSAR satellite measurements to observe oil spills
at sea is presented.

Oil pollution has become one of the most frequent and catastrophic marine
accidents. There are many sources of marine oil spill pollution, including the
natural leakage of hydrocarbons from seabed oil and gas reservoirs, the discharge
of industrial wastewater and domestic sewage, the exploitation of offshore oil
resources, the blowout accidents of drilling platforms, the rupture of oil pipelines,
the leakage and illegal sewage discharge oil tankers, etc. Oil spill mostly occurs
in offshore waters, and it will cause huge damage to the marine environment and
ecological resources. Crude oil contains a large number of toxic compounds and
heavy metals. Once enters the marine ecological cycle, they will first affect the
health and safety of low-grade marine plants, then fish, higher mammals, and human
beings through the food chain. Oil spill pollution will not only affect the marine
traffic, but also cause huge losses to the marine salt industry, offshore water power
generation, seawater desalination, and marine aquaculture. To summarize, it will
seriously threaten the people’s health and economic development of the coastal
region.

Remote sensing plays a key role in the early warning, response, and damage
assessment of marine oil spill [12]. Compared with optical sensors, SAR has
stronger capability of all-day and all-weather observation, which has demonstrated
its advantage in operational oil spill observation, especially during adverse weather
conditions when oil spill accidents frequently happen. SAR platforms for marine
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oil spill observation can be mainly divided into spaceborne and airborne platforms.
Spaceborne platforms have the advantage of large coverage and are relatively cost-
effective, while airborne platforms have a higher signal-to-noise ratio and are more
flexible in repeat observations during emergency responses and can better acquire
the drifting and emulsification process of the oil spill.

In ancient Greece, the inhibitory effect of oil film on sea surface fluctuation
was recorded in the literature [4]. In ancient navigation, experienced sailors spilled
oil to the sea with wind and waves and use the attenuation characteristics of oil
film to sea waves to prevent ships from overturning. Italian scientist Maragoni [13]
explained this phenomenon theoretically for the first time: substances with different
viscosity coefficients on the liquid surface will produce elastic resistance, so as to
attenuate the amplitude of surface fluctuation. Therefore, the attenuation of sea oil
film is called Marangoni attenuation (damping). Synthetic aperture radar observes
backscattering caused by sea surface fluctuations of the sea surface. The oil film
on the sea surface will diffuse and form a film with different viscosity coefficients,
which attenuate the short-gravity wave and capillary wave, reduce the roughness of
the sea surface, weaken the SAR backscattering, and form a dark area in graytones
intensity SAR images, as shown in Fig. 4. Therefore, the detectability of sea oil film
is closely related to the surface wind field of the sea. If the wind speed is too low,
the sea surface will not fluctuate, resulting in extreme low backscattering; and if the
wind speed is too high, the oil spill on the sea surface will be dispersed and drifted
quickly, making it difficult to be detected. Therefore, the ideal wind speed for SAR
sea surface oil spill detection is usually required to be 3–14 m/s [13].

This section is organized as follows: in Sect. 2.1, an overview on the use of
polSAR imagery to observe sea oil slicks is presented; in Sect. 2.2, the most
relevant polSAR approaches to monitor oil spills at sea are critically reviewed; in
Sect. 2.3, an experimental showcase of marine oil spill observation methods using
conventional classifiers and convolutional neural networks is demonstrated.

2.1 Overview

Marine oil spills are observed as dark spots on the sea surface. However, many other
natural phenomena, such as low wind area, biogenic oil film, rain cell, upwelling,
internal wave, atmospheric wave, etc., can also form similar strip or patch-like
dark areas, may result in a false alarm. These phenomena are referred as “look-
alikes.” Therefore, distinguishing oil film between look-alikes has become the key
problem of SAR marine oil spill observation. Early SAR oil spill observation mainly
relied on single-polarization SAR images. The oil film and look-alikes are classified
based on the gray level, texture, and shape information. Therefore, these methods
are usually composed of three steps: dark spot detection, feature extraction, and
classification [13]. However, oil spill identification with single-polarization SAR
data usually requires prior knowledge of the oil film and auxiliary information such
as sea surface wind speed. The state of oil spill on the sea surface is influenced by the
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Fig. 4 An excerpt of the VV-polarized NRCS graytone image, shown in dB scale, collected by
the C-band Sentinel-1 SAR on October 8, 2018, over a coastal region in the Mediterranean Sea
affected by a certified ship-borne oil spill (see the low backscattering slick in the northwestern
area). Note that the oil slick is about 30 km long. Several low backscattering regions of different
origins (sheltered regions, low wind areas) can also be observed

sea state, which is sometimes very complex. The shape of oil film on the sea surface
is related to the oil type and movement of oil source during leakage. Therefore, oil
spill observation based on single-polarization SAR data is difficult to implement,
and the accuracy cannot be guaranteed. In recent years, oil spill detection based on
polSAR data has become a hot research topic. As introduced before, polSAR can
obtain detailed backscattering properties of the target and provide more sufficient
information for oil spill identification. Study demonstrated that the sea surface
covered by mineral oil has distinct scattering mechanisms from the sea surface
covered by biological oil film or open water: the Bragg scattering of the sea surface
covered by mineral oil is weakened, while the non-Bragg scattering mechanism
is enhanced, resulting in obvious depolarization effect. On the other side, the sea
surface covered by biological oil film or open water is still dominated by Bragg
scattering, with a backscattering of high degree of polarization [6, 56].

Polarization decomposition parameters were considered first for marine oil spill
observation. By eigenvalue decomposition of the polarization coherency matrix,
polarimetric entropy H and average polarization angle ᾱ and anisotropy A can be
extracted. These parameters are widely used in polSAR-based image analysis. The
sea surface covered by biogenic film or open water is dominated by Bragg scattering,
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resulting in a small H and ᾱ, while the Bragg scattering mechanism of the mineral
oil-covered area is suppressed, making the polarization scattering mechanism more
complex, and therefore, H and ᾱ increase. In [59], the effectiveness of these
polarization decomposition features in sea surface oil film detection was confirmed
based on SIR-C/X SAR data, while a polarization constant false alarm rate (CFAR)
filter for sea surface oil film detection based on these features [57]. In [58], it
was first reported that the pedestal height can reflect the degree of depolarization
of ground objects. The pedestal height of open water is lower than that of the
oil-covered region, which can be used to effectively distinguish mineral oil and
its look-alikes. The phase information in polSAR data is closely related to the
polarization characteristics of ground objects. In [67], it was first proposed that
the co-polarized phase difference (CPD) can be used to effectively distinguish
oil spill and biogenic film. The analysis shows that the phase correlation of co-
polarized backscattering signals on the sea surface of open water or covered by
biogenic slick is high, leading to a phase difference close to 0, while the existence
of mineral oil reduces the phase correlation of co-polarized channels and expands
the distribution of phase difference. Therefore, the variance of CPD can be used
as a powerful feature for oil film classification. In [79], C-band Radarsat-2 and
X-band TerraSAR-X data in the North Sea oil spill experiment were analyzed,
and the features including H and ᾱ, CPD standard deviation, amplitudes of co-
polarized channels, correlation coefficient, and other features were compared on
their capability in distinguishing between mineral oil and biogenic oil films.

The NRCS of different polarization channels can be used to classify marine oil
films. In the range of medium incidence angles (approximately 20–60◦), the radar
backscattering of sea surface can be modeled by Bragg scattering. Theoretically,
the Bragg scattering on the sea surface is related to the electromagnetic wave
number, radar incidence angle, Fresnel coefficient, and sea surface two-dimensional
spectrum. The ratio of different polarization backscattering cross sections is only
a function of local incidence angle, sea surface slope, and equivalent dielectric
coefficient. In [53], it studied the L-, C- and X-band images obtained in the SIR-
C/X oil film field experiment, which confirmed this fact. In [63], the tilted Bragg
scattering model was used to describe the backscattering of sea surface and oil–
water mixture, and Unmanned Aerial Vehicle SAR (UAVSAR) images obtained
during the oil spill accident in the Gulf of Mexico were used to retrieve the oil–
water mixing ratio. They estimated that the oil–water mixing ratio of the region
near the accident site was between 65 and 90%. In [66], the boundary perturbation
method was considered to analyze the characteristics of different NRCS of oil-free
and biogenic film covered sea surface. The experiments using actual SAR data show
that the TSM and Marangoni damping model can better describe the sea surface
backscattering cross section under the tilted modulation of large-scale waves.
When the range of incidence angles is small, the NRCS of different polarization
channels is dominated by the specular scattering component. With the increase of
incidence angle, the specular scattering component decreases rapidly, and the radar
backscattering cross section is gradually dominated by the contribution of Bragg
scattering component. In this case, the small perturbation method (SPM) can be
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used for modeling. In [89], an improved backscatter model was proposed based on
polarimetric scattering mechanism for marine oil spill observation, which is more
in line with the characteristics of oil film covered sea surface, and improved the
accuracy of the retrieval of equivalent dielectric constant and other parameters. The
NRCS-based analysis methods only rely on the amplitude information of polSAR
image; therefore, they can be used in polSAR sensors with incoherent polarimetric
imaging modes such as ENVISAT ASAR and CSK. In the dual-polarization mode
of these platforms, the signals of different polarization modes are transmitted and
received alternately. However, the application of sea surface SPM is greatly limited
by the incident angle. At small incidence angles, the specular scattering is too strong,
while at large incidence angles the backscattering is too weak. Moreover, the Fresnel
coefficient will saturate with the change of sea surface equivalent dielectric constant
[36], which affects the accurate retrieval of oil–water mixing ratio. In addition, only
when the oil film thickness reaches the order of the skin depth of electromagnetic
wave (approximately 1 and 4 mm at C-band and L-band, respectively), its change
will have an observable effect on the radar NRCS [85]. However, usually the
thickness of oil film is far from the above conditions. In addition, methods based
on the NRCS ratio do not make full use of the depolarization effect of sea oil film,
which greatly limits its ability to distinguish between mineral oil and its look-alikes.

2.2 PolSAR for Marine Oil Spill Observation

2.2.1 Feature Extraction to Monitor Sea Oil Spills

In this paragraph, some of the most widely used features derived from polSAR
imagery to observe marine oil pollution and their expected behavior are summa-
rized. Most of them have been already introduced in Sect. 1.1 and will be interpreted
in terms of slick-free and oil slick-covered sea surface, while other features will be
first introduced that are specifically proposed for sea oil slick observation purposes.
They are as follows:

• Polarimetric entropy
• Degree of polarization
• Ellipticity angle
• Normalized pedestal height
• CPD standard deviation
• Conformity coefficient
• Correlation coefficient
• Coherence coefficient

The intensity of co-polarized channels is frequently used in single-polarization
SAR-based oil spill detection algorithms, and therefore, it can be taken as a
reference. The VV-polarized NRCS is usually considered due to its higher signal-
to-noise ratio (SNR) if compared to the HH-polarized one [54, 55].
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The polarimetric entropy, H, assumes values close to 0 over clean sea surface,
since the almost completely polarized Bragg scattering dominates, while over oil
slick-covered areas, the more random scattering mechanism due to depolarization
effects results in larger entropy values, i.e., close to 1. However, for weak-damping
slicks as biogenic films, although the backscattering power is still lower than the sea
background due to their damping properties, the main scattering mechanism is still
Bragg-like [10], i.e., entropy values similar to that of clean sea surface apply.

The degree of polarization, DOP, can be derived from the Stokes vectors of any
coherent SAR imaging mode including DP, CP, and FP architectures [77]. When
dealing with clean sea surface and weak-damping slicks, the significantly polarized
Bragg scattering mechanism results in large DOP values, i.e., close to 1. When
sea surface is covered by mineral oil, the latter induces remarkable depolarization
effects, and therefore, lower DOP values (approaching 0) are observed.

The ellipticity angle, χ , describes the polarization status of a monochromatic
plane electromagnetic wave [17, 77]:

sin(2χ) = − g3

mg0
, (25)

where g0 and g3 represent the first (i.e., the total backscattered power) and the
fourth (i.e., the one related to circular polarization) elements of the Stokes vector
g, while m is the degree of polarization of the wave. For slick-free sea surface,
where Bragg scattering rules, χ is negative, while for oil-covered sea surface, since
a more random scattering mechanism is in place, χ is positive [62]. Therefore, χ

can be used as a straightforward binary descriptor to distinguish slick-free from
oil-covered sea surface [62, 67].

The normalized pedestal height, namely NPH, represents the amount of unpo-
larized backscattering energy. Hence, for clean sea surface, the almost completely
polarized Bragg scattering mechanism results in NPH values close to 0, while for the
oil-covered sea surface, much larger NPH values (approaching 1) are expected due
to the non-Bragg scattering that reflects the depolarization induced by the mineral
oil.

The standard deviation of the CPD, evaluated from ϕc using a sliding window,
is an unbiased estimator of the correlation between co-polarized backscattering
channels. Over slick-free sea surface, the correlation between co-polarized channels
is high, and therefore, a narrow CPD distribution, i.e., a low CPD standard
deviation value, is expected [60]. This also applies over weak-damping surfactants.
When dealing with mineral oil slicks, the depolarization they induce in scattering
mechanism results in a remarkable reduction of the correlation between HH and
VV backscattering channels. Accordingly, the pdf of the CPD broadens resulting in
a larger standard deviation of ϕc [11, 70].

The conformity coefficient, μ, was first used for soil moisture estimation from
CP SAR imagery purposes. When a FP SAR measurement is available, its proxy is
defined as [93]:
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μ ∼= 2
(
Re

(
ShhS

∗
vv

) − |Shv|2
)

|Shh|2 + 2 |Shv|2 + |Svv|2
. (26)

The conformity coefficient μ evaluates whether surface scattering is dominant
among all the elementary scattering mechanisms. Over a slick-free sea surface,
Bragg scattering results in a very small cross-polarized backscattering power while
calling for high correlation between co-polarized channels, i.e., Re

(
ShhS

∗
vv

)
>

|Shv|2; hence, μ is positive. Over oil-covered sea surface, as non-Bragg surface
scattering is in place, the co-polarized correlation is lower, while the cross-polarized
backscattering component keeps almost the same, i.e., it is very likely to have
Re

(
ShhS

∗
vv

)
< |Shv|2, thus resulting in negative μ values. Considering weak-

damping slicks, since Bragg scattering is still dominant, positive μ values are
expected. Under this rationale, conformity coefficients can be used to effectively
distinguish crude oil from biogenic slicks without any need of external thresholding
methods.

The correlation and coherency coefficients can be derived from the coherence
matrix as follows [78]:

ρc =
∣∣∣∣∣

〈
ShhS

∗
vv

〉
〈
S2

hh

〉 〈
S2

vv

〉
∣∣∣∣∣ , Cc = |〈T12〉|√〈T11〉〈T22〉 . (27)

They both range between 0 and 1. Over a slick-free sea surface, the co-polarized
channels are highly correlated, so they are expected to be very close to 1, while over
oil-covered sea surface, a much lower co-polarized correlation is expected; thus they
are both approaching 0.

The general behavior of the above introduced set of polarimetric over slick-free
and slick-covered sea surface is summarized in Table 2.

Table 2 Main polSAR features used for sea oil spill monitoring. Note that the VV-polarized NRCS
is also listed as a reference

PolSAR feature Sea surface Mineral oil—strong damping Biogenic slick—weak damping

H Lowest High Low

DOP High Low High

χ Negative Positive Negative

NPH Lowest High Low

σϕc Lowest High Low

μ Positive Negative Positive

ρc Highest Low High

Cc Highest Low High

σ 0
vv High Lowest High
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2.2.2 CP SAR Architectures

The FP spaceborne SAR system alternately transmits horizontal and vertical polar-
ization signals. Therefore, the pulse repetition rate of linear frequency modulation
signal is twice that of single-polarization SAR systems, resulting in halved swath
width, which lead to range ambiguity effect and increased system power require-
ments [14]. In addition, the large system complexity and data volume also increase
the cost of FP SAR systems. In order to overcome such issues, the CP architectures
were proposed. The CP SAR systems can obtain part of the polarization characteris-
tics of the observed targets without reducing the width of the swath [75]. At present,
it has achieved promising results in land use classification, biomass estimation, soil
moisture retrieval, and several marine applications [1, 47]. For the application of
maritime monitoring, the revisit time is a very important technical index, so CP SAR
has become a hot research field for marine oil spill observation [61]. The commonly
used CP SAR imaging modes in oil spill detection mainly include π /2, also known
as circular polarization transmitting, linear polarization receiving (CTLR), or hybrid
polarization mode, and π /4 or slant linear modes. These two modes transmit circular
polarized or 45◦ linear polarized signals, respectively, and receive horizontal and
vertical polarization signals simultaneously. The target scattering vectors k of those
CP SAR sensors are

k π
2

= 1√
2

(
Shh − jSvv

Svh − jSvv

)
, k π

4
= 1√

2

(
Shh + Shv

Svh + Svv

)
. (28)

One way for processing CP SAR data is to reconstruct the pseudo-quad-
polarization covariance matrix from the compact polarization scattering vector by
using iterative algorithms [65, 81] and then use feature extraction methods for FP
SAR data. In [86], a CP SAR image reconstruction algorithm based on polarization
decomposition was proposed and applied to ship detection. In [18], an empirical
model was exploited to estimate the constant parameter N in the range of incidence
angles to improve the reconstruction accuracy. The advantage of feature extraction
methods based on pseudo-quad-polarization reconstruction is that the analysis
methods for fully polarized modes can be directly used. However, for these methods,
assumptions of backscattering characteristics are required, which do not always
hold for the sea surface. Therefore, sometimes there is a large deviation between
the reconstructed pseudo-quad-polarization covariance matrix and the real data. In
[52], the backscattering characteristics of the sea surface were analyzed through the
statistical analysis of FP UAVSAR data and put forward an improved hypothetical
equation, which obtained a better reconstruction performance.

Another way is to analyze the scattering vector of CP SAR data and extract the
features directly. The Stokes vector of the radar signal can be obtained from the
CP scattering vector, so as to further calculate the degree of polarization m and
relative phase δ, wave polarization entropy Hw, ellipticity angle χ , and average
polarization angle ᾱw. In [50], it was found that the sign of δ can distinguish
different sea surface scattering mechanisms: for sea surface region δ is close to
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90◦, and for oil film covered area δ is negative, making it a binary classification
index. Through the image analysis of mineral oil naturally leaked from Radarsat-
2 sea surface, in [51], it was also found that compared with the clean sea surface,
the m value of the oil film covered area is significantly reduced, indicating that the
depolarization effect is obvious and the ellipticity angle is high, and the opposite
sign of χ indicates that the scattering mechanism is no longer Bragg scattering.
Conformity coefficient μ was first used for soil moisture estimation based on
CP SAR. It can effectively distinguish single surface scattering, double-bounce
scattering, and volume scattering [93]. The μ extracted from FP and π /4 CP SAR
images have been proven to have a very good ability to distinguish between mineral
oil film and biogenic look-alikes. It is positive on the open water and negative
on the mineral oil film, so can be used as a logic classifier for sea surface oil
spill detection. Based on the extended Bragg scattering model, in [88], a new
method was proposed to extract features from the Stokes matrix of CP SAR, and
its performance in distinguishing sea oil spill from biogenic slicks and low-wind-
speed area was confirmed through experiments. In [91], various features extracted
from π /2 CP SAR mode were analyzed by using the quad-pol reconstruction and
direct feature extraction, respectively. It was found that the two kinds of feature
extraction methods have their own advantages over each other, and the marine
oil spill classification performance of CP SAR is close to the FP SAR mode. In
[90], performance of features extracted from DP, CP, and FP SAR imaging modes
was investigated. It was found that the classification accuracy will not always
increase with the number of features, indicating that there is a large amount of
complementary information between polarimetric features, which highlights the
importance of feature selection and optimization. In [45], actual π /2 CP mode
RISAT-1 SAR data were used for the first time during an oil spill experiment carried
out on Norwegian waters.

Comparative studies have been made on CP SAR modes. The π /2 CP SAR
mode has the advantages of convenient polarization calibration, polarization channel
power balance, not dependent on the direction of ground objects and not easily
affected by the Faraday rotation effect of the ionosphere [81]. However, it is difficult
to transmit an ideal circular polarized signal in engineering practice. The π /4 CP
SAR mode is relatively easier to implement, but there is a 3 dB loss of received
power due to the mismatch between the transmitting and receiving polarimetric
channels. In [8, 9], the variability of CP SAR features under different incident
angles was investigated through experiments on Alos-1, Alos-2, and Radarsat-2
spaceborne SAR images. The ability of CP SAR modes in distinguishing oil film and
weak-damping look-alikes was verified, and the differences between polarimetric
characteristics obtained under various CP and FP SAR systems were discussed.

2.2.3 Challenges and Research Trend

Controversy still exists on the polarimetric scattering mechanism of marine oil
spill. There are beliefs that the increase of non-Bragg scattering component the
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SAR image of an oil spill area is probably not mainly caused by the sea surface
physical process, but thermal noise of the radar system [40]. In [26], the effects
of both additive and multiplicative noise were also analyzed on L-, C- and X-
band SAR data. The depolarization effect observed over oil spills in spaceborne
SAR imagery was mainly attributed to the additive noise of the SAR sensor. It
was also claimed that the non-Bragg scattering occurring over slick-covered sea
areas is likely due to a misinterpretation of SAR images collected a too low SNR
[19, 26]. However, it has to be noted that the polarimetric backscattering mechanism
of oil film is related to many factors including wind speed and the amount of oil
leakage. In [10], a sensitivity analysis on the standard deviation of the CPD for
marine oil spill observation was undertaken and confirmed that noise plays a role
in broadening the distribution of CPD, especially at large incidence angles. The
authors claimed that the depolarization is both induced by the noise and oil film. At
lower incidence angle, the scene induced depolarization is dominant, while at larger
incidence angle, the noise floor plays a more important role. In other words, together
with the depolarization inherently introduced by oil, an additional depolarization
contribution is due to noisy oil samples. Nonetheless, from the aspect of oil spill
detection, this is a good point since the heavier the oil depolarization, the larger
the separability with the polarized sea scattering is. On the other side, it makes the
classification/characterization/oil parameter retrieval made on “noisy” oil samples
unreliable.

The retrieval of the detailed properties of oil slicks and their evolving/drifting
under marine environment has been a hot research topic, which received growing
attention in recent years. In [74], the use of PTSM is proposed to retrieve the
dielectric parameters of oil slick from the polSAR imagery. In [25], FP and CTLR
SAR features were analyzed to observe evolving oil spills. They also developed
and explored new quantitative and semi-automated methods for analyzing oil slick
evolution using a time series of L-band polSAR images with short repeat time [27].
In [39], an analysis on newly formed sea ice distinction near the oil platform in the
Pechora Sea was performed using Radarsat-2 polSAR observations. These studies
demonstrated the valuable role played by polarimetric information.

With the increase of available polSAR data, deep-learning-based methods have
shown great potential in improving the accuracy of marine oil spill classification.
As data-driven pattern recognition methods, deep-learning-based algorithms can
better exploit the semantic and contextual information within high-resolution SAR
images without the need of prior knowledge. Chen et al. [15] used stacked auto-
encoder (SAE) and deep believe neural network (DBN) to extract and optimize
polSAR features. An oil spill detection method exploiting convolutional neural
network and image stretching based on superpixel was proposed in [27], where the
effectiveness of the approach was successfully demonstrated on Sentinel-1 DP SAR
data. In [46], different parameters were exploited with sensitivity to the dielectric
constant and ocean wave damping properties and used CNNs for learning nonlinear
features, shapes, and textural and statistical patterns, in order to obtain significant
classification accuracy. In [80], a novel oil spill identification method based on
multi-layer deep feature extraction by CNN was proposed. These studies show that
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compared with traditional supervised learning methods, the deep-learning-based
methods with unsupervised pre-training can improve the accuracy of sea surface
oil film detection, especially when the training samples are limited.

2.3 Experimental Showcase

2.3.1 SAR Polarimetry for Sea Oil Spill Observation: Conventional
Classifiers

This showcase is addressed by means of a C-band FP SAR scene collected at
C-band from the Radarsat-2 mission. The image was obtained in the North Sea
area near Norway, which was obtained from an oil-on-water field experiment [79].
We selected a sub-region with 2000 × 2000 pixels from the original SAR image
that contains clean sea surface and three types of oil films, including mineral oil
film, emulsified oil film, and biogenic film. Since the emulsified oil represents
an intermediate behavior between crude oil film and clean sea surface, whose
polarimetric features are not typical, the classification of emulsified oil film is
not considered in this chapter. Figure 5 shows the Pauli RGB image and artificial
sampling labels.

In this section, support vector machine (SVM) is used as a representative of
classic supervised classifier for its high performance in remote sensing applications.
SVM relies on the maximization of the classification margin based on the principle
of structural risk minimization. Its good generalization ability is obtained by

Fig. 5 Experimental showcase: (a) false color Pauli RGB image and (b) VV-polarized NRCS
graytone image with sampling labels (blue: seawater; red: mineral oil; green: biogenic film)
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Fig. 6 Classification result relevant to: (a) the first and (b) the second feature sets

Table 3 Confusion matrix derived from the first feature set. OA = 91.94%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 12,862 846 24

Biogenic slick 1106 13,324 1039

Sea 20 4945 64,867

Table 4 Confusion matrix derived from the second feature set. OA = 95.60%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,564 728 17

Biogenic film 413 16,182 983

Sea 11 2205 64,930

constructing a lower Vapnik–Chervonenkis dimension function set in a high-
dimensional space.

Pixel-level samples of mineral oil, biogenic film, and clean seawater were
selected in the region of interest. Two feature sets are generated in the experiment.
The first feature set consists of the 9 independent real-valued elements of the
coherency matrix, while the second feature set consists—in addition to the first
feature set—of the 10 polarimetric features listed in Table 2. The multi-layer per-
ceptron kernel function is used as the kernel function of the SVM. The classification
maps are shown in Fig. 6, while the corresponding confusion matrices are listed in
Tables 3 and 4, respectively.

By analyzing the results listed in Tables 3 and 4, it can be seen that the classi-
fication accuracy is improved by 3.7% when adding the pre-defined polarimetric



262 A. Buono et al.

Fig. 7 Network structure of CVCNN[83]

features. The significant improvement in accuracy is mainly due to the reduced
mis-classification rate between biogenic film and mineral oil, manifesting that
the artificially defined polSAR features based on scattering mechanism carry key
information for distinguishing mineral oil spill and its biogenic look-alikes.

2.3.2 SAR Polarimetry for Sea Oil Spill Observation: Convolutional
Neural Network Classifiers

In the fields of image classification and target detection, deep learning models
represented by the convolutional neural network have shown superior performance.
Several studies were proposed to classify polSAR images using CNN, but since
these methods take real-valued data as the input, the phase information in polSAR
images could not be fully utilized. Therefore, [83] presented a complex-valued
convolutional neural network (CVCNN) with complex-valued data as its input,
which is of great significance for processing images containing complex-valued
information. Trabelsi et al. [83] applied CVCNN to the classification of ground
objects in polSAR images and achieved good results. In this chapter, the CVCNN
is adjusted for marine oil spill detection tasks, and its performance is compared
with real-valued convolutional neural network (RVCNN) based on different feature
sets as the input. The network structure of CVCNN [83] used in this chapter is
shown in Fig. 7, including input layer, convolutional layers, pooling layers, fully
connected layer, and output layer. Different to the general CNNs, the weight and
bias of CVCNN, including the input and output of all layers, are fully defined in the
complex domain.

In CVCNN, the model input is a complex number, then its real part A and
imaginary part B are expressed as logically different real numbers, and complex
operation is simulated internally using real number algorithms. In the convolutional
layer, complex convolution operation can be expressed as

W × h = (
A × x − B∗y

) + j
(
B∗x + A × y

)
(29)

[
Re(W × h)

Im(W × h)

]
=

[
A −B

B A

]
, (30)
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Fig. 8 Complex convolutional operation process

where h is the input of complex-valued vector network, i.e., h = x + jy; W is the
weight complex matrix, i.e., W = A+jB. Re(·) and Im(·) mean real and imaginary
parts, respectively. For a more intuitive representation, the complex convolutional
operation process is shown in Fig. 8.

Accordingly, the ComplexReLU (CReLU) function is used as the complex
activation function of CVCNN, whose operation process is as follows:

The weight and bias are initialized by means of random initialization. The
complex backpropagation algorithm adopts stochastic gradient descent (SGD) to
optimize the real part and imaginary part.

Figure 9 shows the structure of the proposed CVCNN and RVCNN for compar-
ison. It should be noted that all the off-diagonal elements of the coherency matrix
are complex-valued data, which contain important phase information. Therefore,
T11, T12, T13, T22, T23, and T33 are input into the classification network as six
channels. While for RVCNN, the input is real-valued T11, T22, T33, and the real
part and imaginary part of T12, T13, and T23, so nine channels are taken as the
input. To avoid the interference by the network layer structure, the network layer
parameters of the two networks are kept consistent. Finally, the network outputs the
classification result of three types of targets, namely mineral oil slick, biogenic oil
film, and seawater.

The same two feature sets are also applied in the oil spill classification exper-
iments based on real-valued and complex-valued convolutional neural networks,
respectively. For CNN, each pixel in the image is represented by a local patch
defined by a neighborhood window. In this chapter, a 12 × 12 sliding window
was used to obtain the data input of the CNN. Therefore, the classification model
captures not only the polarimetric characteristics but also the spatial and texture
patterns surrounding the center pixel that to be classified.

For the first feature set, T11, T12, T13, T22, T23, and T33 are directly input
into the CVCNN as 6 channels, while the real-valued T11, T22, T33, and the real
part and imaginary part of T12, T13, and T23 are input into the RVCNN as 9
channels, respectively. Then for the second feature set, the previously introduced
polarimetric features are also input into RVCNN and CVCNN as supplementary
feature dimensions.
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Fig. 9 Flowchart of: (a) CVCNN and (b) RVCNN

It can be observed from Fig. 10 and Tables 5 and 6 that, based on the elements
only on T matrix, CVCNN has better classification performance than RVCNN by
0.3494%. The main reason is that the proposed RVCNN can better take advantage
of the phase information contained in the polSAR data, which greatly helps to
distinguish mineral oil and biogenic films. As shown in Fig. 11 and Tables 7 and 8,
when the pre-defined polSAR features are introduced, the oil spill classification
accuracy derived by RVCNN- and CVCNN-based methods improved by 0.9032%
and 0.6736%, respectively, resulting in the classification accuracy derived by
CVCNN still slightly higher than RVCNN. The results demonstrated that these
polarimetric SAR features have relatively larger help to RVCNN-based model,
by providing key polarimetric information hidden in the phase information of the
complex backscattering coefficients. The experimental results demonstrated that the
introduced SAR features provide key polarimetric information for improving the
performance of oil spill classification. It is preliminarily shown that the CVCNN has
the overall best performance for its ability of extracting both special and polarimetric
information from polSAR data. Theoretically, deep-learning-based methods have
higher potential given a larger number of training samples. Its advantage on
dealing with complex function fitting problems may provide greater help in oil spill
observation tasks under more complex environments and various oil type conditions.
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Fig. 10 Classification results obtained from the first feature set using (a) RVCNN and (b) CVCNN

Table 5 Confusion matrix derived from the first feature set by RVCNN. OA = 95.97%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,602 426 9

Biogenic film 373 16,940 1422

Sea 13 1749 64,499

Table 6 Confusion matrix derived from the first feature set by CVCNN. OA = 96.32%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,774 264 11

Biogenic film 197 17,219 1525

Sea 17 1632 64,394

3 SAR Polarimetry for Shoreline Monitoring

In this section, the capability of polSAR satellite measurements to monitor shore-
lines and to support coastal area management is provided.

Coastal areas are, worldwide, economic and natural resources of extraordinary
value that, being often fragile and dynamic environments mostly largely urbanized,
are particularly vulnerable to natural and anthropogenic hazards. Although in 2011 it
was estimated that the world coastline length is around 1 million kilometers [5], this
value tends to rapidly change over time due to natural phenomena, e.g., sea-level
rise, erosion and sedimentation, and human-induced processes, e.g., urbanization
and deforestation. In addition to the coastal area vulnerability issue, the fast growth
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Fig. 11 Classification results obtained from the second feature set using (a) RVCNN and (b)
CVCNN

Table 7 Confusion matrix derived from the second feature set by RVCNN. OA = 96.87%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,729 198 32

Biogenic film 238 17,153 845

Sea 21 1764 65,053

Table 8 Confusion matrix derived from the second feature set by CVCNN. OA = 96.99%

Ground truth (pixels)

Mineral oil Biogenic film Sea

Mineral oil 13,811 197 18

Biogenic film 161 17,241 910

Sea 16 1677 65,002

of the coastal population density and the increase in economic assets and critical
infrastructures in coastal areas pose a serious threat to human society. Hence,
accurate and systematic observation of the coasts over time and, therefore, methods
to predict the coastal evolution play a fundamental role in coastal zone management.
Indeed, effective operational service for coastal areas monitoring is a key topic for
local authorities that face the aforementioned threats for the stability of land and the
safety of people they are responsible for. Within this context, microwave remote
sensing plays a fundamental role in coastal area monitoring. In particular, SAR
sensors, due to all-day and almost all-weather acquisitions, together with a wide area
coverage and a fine spatial resolution, can be very useful for coastal area monitoring
purposes [71].
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This section is organized as follows: in Sect. 3.1, the most up-to-date advance-
ments in coastline extraction from polSAR imagery is presented; the methodology
to process polSAR imagery to extract the coastline is detailed in Sect. 3.2, while
experimental results are showcased and discussed in Sect. 3.3.

3.1 State-of-the-Art

In this section, an overview of the studies that deal with shoreline monitoring
using polSAR measurement is presented. In [87], the enhancement of the land/sea
contrast is undertaken using polarimetric methods. Experimental results, undertaken
on C-band Convair airborne polSAR data, show that the polarimetric combination
outperforms single-polarization ones. The radar frequency dependence is discussed
in [64], where results showed that higher frequency (C- or X-band) provides the best
coastline localization. In [3], an analysis of the polarimetric channels with respect
to the angle of incidence is undertaken. Experimental results show that, at low AOI
(<30◦), the cross-polarized channel performs better than the co-polarized ones,
while at higher AOI, no polarization dependence is exhibited. Co-polarized DP CSK
SAR data, collected using the incoherent PingPong Stripmap mode, are successfully
exploited to extract coastlines by Nunziata et al. [68]. Coastline extraction in an
intertidal flat area is addressed in [23], where experimental results, obtained using
CSK DP SAR scenes, pointed out that the extraction accuracy decrease in the case
of water within the intertidal flat. In [7], a multi-polarization analysis of coastline
extraction is undertaken using X-band single-polarization CSK SAR data. Results
show that the performance of cross-polarized channels depends on the incidence
angle while showing a small sensitivity to sea-state conditions. Conversely, co-
polarized channels show a remarkable sensitivity to sea-state conditions. In addition,
it is also pointed out that sandy coasts are badly detected due to very limited
sand/sea contrast. In [69], the DP metric, based on the correlation between co-
and cross-polarized channels, is exploited to enhance the contrast between sea
and land. Results, obtained processing DP C—and X-band SAR data, demonstrate
the soundness of the proposed approach for coastline extraction purposes. The
FP information is exploited in [29]. In this chapter, the surface and the volume
component obtained from the Freeman–Durden decomposition are used to enhance
the discrimination between the sea and a challenging scenario that includes sandy
beaches. Experimental results show that the surface component provides the best
performance in terms of accuracy in detecting the sandy beach. In [20], shoreline
rotation has been analyzed to provide a better understanding of the morphodynamic
processes of natural embayed beaches. In [30], a two-year time series of multi-
polarization Sentinel-1 SAR imagery is exploited to analyze the changes in the
water-covered area of the Monte Cotugno (Italy) reservoir. Experimental results,
verified using independent in situ measurements, demonstrate, first, that Sentinel-
1 time series can be successfully used to support the smart water management of
reservoirs, and second, multi-polarization feature outperforms SP ones in terms of
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accuracy of the extracted waterline profile. In [31], the joint use of non-local speckle
filtering and multi-polarization features is applied on a very challenging scenario
that includes different habitats such as wetland, salt marshes, sand dunes, sand
banks, mudflats, and intertidal flats. Experimental results, undertaken on C-band
FP Radarsat-2 SAR imagery, show that the joint combination of non-local speckle
filters and dual-polarimetric information provides the best accuracy.

3.2 Methodology

In this section, the methodology developed to address coastline extraction, depicted
in the block diagram of Fig. 12, is discussed. Coastline extraction is basically based
on two steps. The first step relies on the enhancement of the separation between sea
and land, and it is addressed by exploiting the polarimetric information. Following
the block diagram of Fig. 12, first, a pre-processing of the polSAR imagery is
undertaken that includes calibration, spatial multilooking to reduce the speckle noise
using a window size N × N , spatial geocoding, and subset generation that includes
the region of interest. Then, a multi-polarization feature is introduced that was found
to improve the degree of scattering separability between land and sea [69]. This
parameter, labeled as r , consists of average product between co- and cross-polarized
backscattering amplitudes:

r = 〈|Sxx ||Sxy |〉. (31)

Accordingly, low r values are expected over sea surface due to negligible
cross-polarized backscattering, while larger r values are expected over land—
depending on coastal morphology, e.g., sand, rocks, vegetation, urban, ice—due
to the significant contribution of both co- and cross-polarized backscattering.

To generate a binary image where land and sea are clearly distinguished, a CFAR
algorithm is used to obtain a global threshold. CFAR is an adaptive algorithm used
in radar systems to detect target returns against a background of clutter [76].

When dealing with r , since it describes the scattering from a first-order Bragg
scattering surface, it is expected to be Rayleigh distributed over the sea surface.
Hence, according to [69], the relationship between the detection threshold th and
the probability of false alarm Pf a is given by

Pf a =
∫ ∞

th

r

σ 2 e
−r2

2σ2 dr th = σ

√
−2ln(Pf a), (32)

where σ is the standard deviation of the Rayleigh distribution. According to
Eq. (32), for a given Pf a , a global threshold th can be obtained. In this test case,
a Pf a equal to 10−6 is used.
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Fig. 12 Block diagram of shoreline extraction

The second step relies on the extraction of continuous coastlines [29], see the
edge detection block in Fig. 12. First, the global threshold th obtained from the
CFAR approach is used to generate a binary image that separates land from the sea
according to the decision rule r ≥ th.

Then, to refine the binary image by removing artifacts and filling holes, morpho-
logical filtering is addressed. The artifacts are removed using an image processing
operation called area opening that removes all connected pixels that have fewer than
C pixels, while the holes are filled using an image filtering that replicates the pixels
inside a hole of C × C pixels. Finally, to extract the one-pixel continuous coastline
from the binary output, the conventional Sobel edge detector is used [2], which is
an image processing technique for finding the boundaries of objects within images
detecting discontinuities in brightness. Once edges are extracted from the binary
output, the one-pixel continuous coastline is obtained.
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3.3 Experimental Showcase

In this section, a showcase is discussed to show the benefits of polarimetric methods
in monitoring coastal areas. The SAR data set consists of two C-band DP (VV+VH)
Interferometric Wide (IW) ESA Sentinel-1 collected over the Calabria coast, in
Italy. The area includes the towns of Cetraro Marina and Marina di Belmonte,
two municipalities of Cosenza, an Italian town of the region Calabria, on July
11, 2016 and July 3, 2021 in descending mode with an AOI around 46◦. Wind
conditions, estimated from the cross-polarized channel according to [92], call for
low-to-moderate wind (5.1 m/s and 4.7 m/s, respectively). A square pixel whose
spacing is 14 m is considered. The false color SAR data collected on July 11, 2016
is ground-projected and shown as an image in Fig. 13a, where red, green, and blue
channels stand for VV, VH, and VV/VH power ratios. To reduce the speckle noise
in the SAR image, a boxcar filter with a window size 9 × 9 is applied. The RGB
speckle filtered image is shown in Fig. 13b. The metric r (31) is evaluated using N =
9, and the output is shown in false color in Fig. 13c. The r image clearly shows that
land and sea are well separated, with sea surface exhibiting a very homogeneous
behavior in terms of r values. To clearly separate land from the sea, a binary
image is generated where the global threshold is obtained using the CFAR approach
described in Sect. 3.2 with a probability of false alarm, Pf a = 10−6. To refine the
image, i.e., to fill in the hole and to filter out the isolated pixels, morphological
filtering is applied, with F = 100 and C = 9. The resulting binary image is shown
in Fig. 13d, where sea and land are clearly separated. To extract the coastline in a
simple and effective way, an edge detection approach based on the Sobel operator
is applied on the binary image of Fig. 13d. The extracted coastline, superimposed
on the SAR image, is shown in red in Fig. 13e. It can be noted that the coastline
extracted well fits the SAR image coastal profile. The same processing flowchart is
applied on the SAR scene relevant to July 3, 2021.

To analyze the changes that occurred on the coast from 2016 to 2021, two areas
are considered (see the yellow and green boxes of Fig. 13e). Results are shown
in Fig. 14, where the waterlines extracted are superimposed to the VV-polarized
NRCS SAR image. The yellow and blue lines refer to the coast in 2016 and
2021, respectively, while the white line refers to an area where the overlapping
occurs. The first area, enclosed in the yellow box of Fig. 13e, refers to the coast
of Cetraro Marina, an area strongly affected by coastal erosion as reported in the
European Atlas of the Seas [28]. By visually inspecting Fig. 14a, it can be noted
that the extracted coastline rarely calls for white color, witnessing a non-overlapping
between coastlines extracted in 2016 and 2021. A comparison between the yellow
and blue lines shows a remarkable loss of coastal area, indicating significant coastal
erosion occurred in this time frame (2016–2021). The changes in terms of the
coastal area between 2016 and 2021 are estimated from the related binary imagery
considering the actual pixel spacing. A net erosion of 11.2 × 104 m2 is estimated,
i.e., five years resulted in a degradation loss of an area that is about 21 times larger
than a regular American football pitch.
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Fig. 13 Excerpt of Sentinel-1 SAR imagery collected over the coast of Calabria, Italy, on 11 July
2016. (a) RGB color composite (R: VV, G: VH, B: VV/VH power ratio) SAR imagery; (b) boxcar
filtered RGB image using a window size 9 × 9; (c) r image in false color; (d) refined binary
image obtained after the CFAR and the morphological filtering; (e) coastline extracted (in red)
superimposed on RGB SAR image
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Fig. 14 Coastline extracted related to the SAR scene of: (a) Cetraro Marina (see yellow box of
Fig. 13e); and (b) Marina di Belmonte (see green box of Fig. 13e). The coastlines, superimposed
on the corresponding VV-polarized NRCS SAR image, are coded as yellow, blue, and white lines
for 2016, 2021, and 2016–2021 overlapping, respectively
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The second area, enclosed in the green box of Fig. 13e, refers to the coast of
Marina di Belmonte, which is less affected by coastal erosion according to [28].
By visually inspecting Fig. 14b, it can be noted that the 2016 and 2021 coastlines
are very close to each other, indicating that no significant changes occurred. A net
erosion of 4.6 × 104 m2 is estimated, i.e., about 40% less than the first test area.

4 Conclusions

In this chapter, the added value provided by polSAR satellite measurements in the
framework of the monitoring of oceans and coastal areas is presented.

Section 1 deals with basic and advanced concepts of radar polarimetry that
lie at the basis of the exploitation of polSAR data. Introduction to modeling
of polarimetric sea surface scattering is also theoretically provided along with a
meaningful experimental showcase.

Section 2 offers an overview of polarimetric approaches to observe sea oil spills
from polSAR imagery. Benefits and drawbacks are critically pointed out. A though
experimental showcase is also presented, which is based on the classification of
ocean slicks using DL methods.

Section 3 provides the most up-to-date information on the use of polSAR
measurements to extract coastal profiles and to monitor their changes over time.
An experimental showcase is also discussed to highlight the potential of polSAR
imagery to observe coastal areas affected by significant erosion processes.

The key message this chapter would convey to the reader is that a large set of
polSAR measurements is nowadays available that can be successfully exploited
to produce reliable and effective added-valued products and to develop advanced
geophysical parameter estimation algorithms when proper electromagnetic models
are considered.
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