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Abstract. Periodic mixed boundary value problems are considered for linear sys-
tems of rigid flexible coatings cohesive with an elastic half-space. The half-space
boundary is rigidly fixed over a half-plane. The half-plane boundary is parallel to
the axis of the periodic system. Two problems are analyzed. In the first one, the
system of coatings is shifted in the perpendicular direction to the half-plane bound-
ary. In the second problem, it is shifted parallel to this line. In fact, both contact
problems have an extra line of changing boundary conditions which allows us to
derive correct equations. By using the method of Fourier and Kontorovich–Lebe-
dev integral transformations and taking the periodicity into account, the problems
are reduced to integral equations with respect to tangential contact stresses over
only one coating. For elliptic coatings, the regular asymptotic method is used to
construct analytical solutions of the integral equations. The contact characteristics
are calculated for different values of dimensionless geometric parameters.

Keywords: Periodic contact problems · Elastic half-space · Integral equations ·
Regular asymptotic method

1 Introduction

Investigating contact problems allow us to estimate distributions of contact stresses over
contact domains [1, 2]. One can see contact interactions in everyday life, e.g. contact of
a finger with a smartphone screen [3], mechanical palpation tomography [4].

Periodicity usually arises in contact for rough wavy surfaces. Most articles deal
with plane periodic contact problems [5, 6]. Evolution of the periodic two-dimensional
contact area was studied numerically [7]. Effect of adhesion in periodic contact was
analyzed by many authors [5, 8, 9]. Integral equations in periodic contact problems
are connected with those in periodic crack problems [10–12]. An elastic or viscoelastic
half-space is the simplest spatial model of deformable solid [13]. The normal periodic
contact under normal forces, including the three-dimensional contact for non-classical
elastic solids, was investigating in [14, 15]. The presented paper focuses on the three-
dimensional tangential periodic contact under tangential forces. Such contacts along
straight line on a half-space with free boundary outside the contact zone will not be
mathematically correct because the corresponding integral equations contain kernels
with divergent series. To regularize the problems, it is sufficient to fix a part of the
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half-space boundary over a half-plane whose boundary is parallel the axis of the contact
system. Then the series in the kernels of the integral equations converge. The tangential
forces can be directed perpendicular or parallel to the contact axis. Like in [14], the
problems include two dimensionless geometric parameters. One of them describes the
relative distance between the neighboring contact zones and the other corresponds to the
relative distance from the contact axis to the half-plane boundary. It is presupposed that
the two parameters are linearly connected. Then asymptotic solutions can be constructed
as power series in only one parameter.

2 Formulation of Problems

Let us consider a half-space in cylindrical coordinates, 0≤ r< ∞, 0≤ ϕ ≤ π,−∞ < z<

∞, with elasticity parameters G (shear modulus) and ν (Poisson’s ratio). For simplicity,
we will take the value ν = 0.5 (incompressible material). Suppose the half-plane ϕ =
π is fixed while the face ϕ = 0 contacts over domain � with a periodic system of rigid
flexible coatings (thin plates) situated along z-axis. The period of the system is equal to
2l. This is a tangential cohesive contact, the plates can be shifted along r-axis (problem
A) or along z-axis (problem B, Fig. 1).

ϕϕ

Fig. 1. Systems of plates on a half-space shifted along r-axis (problem A) or z-axis (problem B)

The displacement of the coatings is equal to δ under the action of tangential forces
Q. The plates are elongated perpendicular to the shift direction so that one can take only
one component of the tangential contact stresses into account.

The boundary conditions for the differential equations of elastic equilibrium have
the following form:

A) φ = 0 : ur = δ, (r, z ∈ �), τrφ = 0 (r, z /∈ �), σφ = τφz = 0 (1)

B) φ = 0 : uz = δ, (r, z ∈ �), τφz = 0 (r, z /∈ �), σφ = τrφ = 0 (2)

φ = π : ur = uφ = uz = 0 (3)

Let the plates have elliptic shape and the central ellipse be �0 = {(r − c)2/a2 +
z2/b2≤ 1}, c> a, where l> b≥ a in problemA and l> b, a≥ b in problem B. For given
values of G, δ, l, a, b and c, one should determine the contact stresses τrφ (problem A)
and τφz (problem B) as well as the force Q.
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3 Integral Equations

To reduce problemsA andB to integral equations with respect to the contact stresses, one
should solve auxiliary boundary value problems A* and B* on concentrated tangential
forces T acted on the half-space boundary ϕ = 0 with the fixed face ϕ = π. Namely,

A*) φ = 0 : τrφ = Tδ (r − x, z − y), σφ = τφz = 0 (4)

B*) φ = 0 : τφz = Tδ(r − x, z − y), σφ = τrφ = 0, (5)

where δ(x) is Dirac δ-function and the boundary conditions for ϕ = π have the form (3).
The fundamental solutions of problems (3)–(5) can be determined by using the

method of Fourier and Kontorovich– Lebedev integral transformations [14]. Then, inte-
grating these solutions over �, satisfying boundary conditions (1), (2) with δ and taking
the periodicity into account, we derive the governing integral equations (n = 1, 2)

¨

�0

τn(x, y)Kn(x, y, r, z)dxdy = 4πGδ, (r, z) ∈ �0 (6)
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Rk =
√

(r − x)2 + z2k , zk = z − y + 2kl

Here, n = 1, τ1(r, z) = τrφ(r, z) for problem A and n = 2, τ2(r, z) = τφz(r, z) for
problem B.

The kernels (7) and (8) can also be rewritten in the equivalent differential form
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Note that for the case of stress-free face ϕ = π, the corresponding integral equations
would have the divergent kernels

K1(x, y, r, z) =
∞∑

k=−∞
(
1

Rk
+ (r − x)2

R3
k

),K2(x, y, r, z) =
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(
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R3
k

)

It means that fixation of the face ϕ = π allows us to regularize the periodic contact
problems because the series in formulas (7)–(10) converge.
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4 Asymptotic Solutions

To derive analytical solutions of the integral Eqs. (6)–(10), we apply the regular
asymptotic method [14]. We introduce the dimensionless notation

A) r′ = r − c

b
, z′ = z

b
, δ′ = δ

b
, ε = a

b
, λ = c

b
, μ = l

b
, τ ′

1 = τ1

2G
,

Q′ = Q

2Gb2
, �0 → �′

0 (11)

B) r′ = r − c

a
, z′ = z

a
, δ′ = δ

b
, ε = b

a
, λ = c

a
, μ = l

a
, τ ′

2 = τ2

2G
,

Q′ = Q

2Ga2
, �0 → �′

0 (12)

(for x and y similarly) and omit the primes in what follows.
The notation (11), (12) includes two principal geometric parameters, λ and μ. The

first one takes care about the relative distance between the periodic system axis and
the interface (z-axis) while the second one serves as the relative distance between the
neighboring coatings. Let us suppose that the two parameters are linearly related as

μ = γ λ, γ = const (13)

to simplify the applicability of the regular asymptotic method.
Equations (6), (9) and (10) in notation (11)–(13) take the form (R = R0)

¨
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The principal parts are separated out in the kernels of Eqs. (14) and (15). The smooth
kernels parts (16) and (17) can be expanded in power series of λ with the help of the
well-known expansions

arctan z = z − z3

3
+ z5

5
− z7

7
+ ... (|z| ≤ 1) (18)



304 D. Pozharskii and N. Zolotov

arctan z = π

2
− 1

z
+ 1

3z3
− 1

5z5
+ ... (|z| > 1) (19)

(1 + z)α = 1 + αz + α(α − 1)
z2

2! + ... (|z| < 1)

Formulas (18) and (19) are respectively needed for k = 0 and k 	= 0 in (16) and (17).
As a result, we get the power expansions

F1(x + λ, y, r + λ, z) = a1
λ
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1
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), λ → ∞ (20)
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The power series (20) converges uniformly in (x, y), (r, z) ∈ �0 as

λ > max(1,
√
2ε), γ > max(1 + 1 + ε

λ
,
1 + √

2 + ε2

λ
) (24)

while the series (22) converges as

λ > max(1 + ε,
√
2 + ε2), γ > 1 + 1 + ε

λ
(25)

Inequalities (24) and (25) restrict the frames of applicability of the regular asymptotic
method in problems A and B, respectively.

The coefficients (21) and (23) are presented in Table 1 for some values of γ.
We will seek the solutions of Eqs. (14) and (15) as asymptotic expansions (n = 1, 2)

τn(x, y) = τn0(x, y) + τn1(x, y)

λ
+ τn2(x, y)

λ2
+ O(

1

λ3
), λ → ∞ (26)

Substituting the expressions (20), (22) and (26) into Eqs. (14) and (15) and equating
terms of equal powers of λ, we come to sequences of the integral equations with respect
to τnk(x, y) (k = 1,2,…)

¨

�0

τ1k(x, y)[ 1
R

+ (r − x)2

R3 ]dxdy = 2πP1k(r, z), (r, z) ∈ �0 (27)
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Table 1. The coefficients (21) and (23).

γ 1.5 2 2.5 3 3.5 4 ∞
− a1 0.577 0.614 0.627 0.632 0.634 0.635 0.637

a2 0.387 0.347 0.332 0.325 0.322 0.321 0.318

b1 0.904 0.405 0.157 0.0167 −0.0697 −0.127 –0.318

b2 0.641 0.470 0.373 0.315 0.277 0.251 0.159

¨

�0

τ2k(x, y)[ 1
R

+ (z − y)2

R3 ]dxdy = 2πP2k(r, z), (r, z) ∈ �0 (28)

with determined polynomial right-hand sides.
Since Eqs. (27) and (28) have exact solutions, we finally arrive at the asymptotics

τ1(r, z) = δ

εB
(1 + T11

λ
+ T12 + T13 r

λ2
+ O(

1

λ3
))[1 − r2

ε2
− z2]−1/2, λ → ∞ (29)

τ2(r, z) = δ

εB
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λ
+ T22 + T23 r

λ2
+ O(

1

λ3
))[1 − r2 − z2

ε2
]−1/2, λ → ∞ (30)

T11 = −a1
B

, T12 = a21
B2 , T13 = − a2

ε2(2ε2S02 − S11)
, B = S00 + ε2S01 (31)

T21 = −b1
B

, T22 = b21
B2 , T23 = − b2

S10 + 3ε2S11
(32)

Skm =
π/2∫

0

cos2k t sin2m t

(1 − e2 sin2 t)k+m+1/2
dt, e2 = 1 − ε2

S00 = K, S01 = E − (1 − e2)K

e2(1 − e2)
, S10 = K − E

e2

S11 = (2 − e2)E − 2(1 − e2)K

3e4(1 − e2)
, S02 = −2(1 − 2e2)E + (1 − e2)(2 − 3e2)K

3e4(1 − e2)2
,

where K = K(e) and E = E(e) are the complete elliptic integrals.
On the basis of formulas (29)–(32), we can derive the integral characteristic

Q =
¨

�0

τn(x, y)dxdy = 2πδ

B
Q•, Q• = 1 + Tn1

λ
+ Tn2

λ2
+ O(

1

λ3
), λ → ∞ (33)
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Table 2. The integral characteristics (33).

ε 0.2 0.4 0.6 0.8 1

Problem A

γ = 1.5 1.030 1.036 1.042 1.047 1.051

γ = 2 1.032 1.039 1.045 1.050 1.055

γ = ∞ 1.033 1.040 1.046 1.051 1.057

Problem B

γ = 1.5 0.957 0.948 0.941 0.935 0.929

γ = 2 0.980 0.976 0.973 0.970 0.967

γ = ∞ 1.016 1.020 1.023 1.025 1.028

5 Analysis and Conclusion

The values of the integral characteristics Q• are presented in Table 2 calculated for λ =
5 for both problems.

Note that the value γ = ∞ corresponds to one coating on the half-space with the
fixed half-plane while the value λ = ∞ is related to the case of one coating on a free
half-space outside the contact zone. We have Q• = 1 for λ = ∞, see formula (33).
As γ decreases (the period 2l diminishes), the tangential force Q decreases too. For the
circular coatings (ε = 1), the parameters λ and μ do not depend on the type of problem.
As one can see in Table 2, the periodic system of circular plates can be more easily
shifted along the system axis. In problem A, the integral characteristics for elongated
coatings are smaller than that for the circular coatings. It is vice versa in problem B,
where the force Q for elongated coatings is bigger than that for the circular ones. The
interaction between coatings in the periodic system is apparently greater in problem B
than that in problem A.

The asymptotics obtained above can be recommended for comparative analysis with
direct numerical solutions.
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