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Abstract. Fitting of the multicompartment biophysical model of white
matter is an ill-posed optimization problem. One approach to make
it computationally tractable is through Orientation Distribution Func-
tion (ODF) Fingerprinting. However, the accuracy of this method relies
solely on ODF dictionary generation mechanisms which either sample
the microstructure parameters on a multidimensional grid or draw them
randomly with a uniform distribution. In this paper, we propose a step-
wise stochastic adaptation mechanism to generate ODF dictionaries tai-
lored specifically to the diffusion-weighted images in hand. The results we
obtained on a diffusion phantom and in vivo human brain images show
that our reconstructed diffusivities are less noisy and the separation of
a free water fraction is more pronounced than for the prior (uniform)
distribution of ODF dictionaries.

Keywords: Brain microstructure · White matter · ODF
Fingerprinting · Diffusion MRI · Stochastic optimization

1 Introduction

Brain White Matter (WM) microstructure features are reconstructed in vivo
from Diffusion Weighted Images (DWIs) by fitting biophysical models [4,9,17]
of acquired signal. In a typical scenario, this boils down to solving a non-convex
optimization problem with multiple local optima [10] which is computationally
challenging.
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One numerical approach to this problem uses Orientation Distribution Func-
tion Fingerprinting (ODF-FP) [2] to find near-optimal solutions in linear time
by matching ODFs of the acquired signal with the elements of a precomputed
ODF dictionary. However, the accuracy of this approach relies solely on the
ODF dictionary generation mechanism which either samples the microstructure
parameters on a multidimensional grid [2] or draws them randomly with a uni-
form distribution [6]. Both these techniques lack specificity due to the inherent
assumption that every element of an ODF dictionary is equally likely to be found
in the dataset.

In this paper, we propose a stepwise stochastic adaptation mechanism to
generate ODF dictionaries tailored specifically to the DWIs in hand. Our app-
roach implements an Estimation of Distribution Algorithm (EDA) [7,14] to sta-
tistically infer posterior distribution of ODF dictionary elements. By gradually
improving the prior uniform distribution of microstructure parameters, our algo-
rithm adapts the sampling mechanism of the ODF dictionary to the acquired
DWIs in an unsupervised, data-driven manner. Through this, we address the
lack of specificity in the original ODF dictionary design [6], which in practice
led to storing multiple ODF fingerprints that were unlikely to be selected.

We present the results obtained on a diffusion phantom and in vivo human
brain images showing that our approach improves microstructure parameters
estimation with ODF-FP. Our reconstructed diffusivities are less noisy and the
separation of a free water fraction is more pronounced. This leads to more accu-
rate approximation of clinically significant microstructure features attributed to
axonal loss [4], inflammation [20], or demyelination [11].

2 Methods

In this study, we reconstructed WM microstructure parameters using ODF-FP.
Note that our method did not impose any particular definition of ODF. For
brevity, though, we considered the so-called diffusion ODF variant [23]. From
now on, we will refer to it simply as ODF.

2.1 Biophysical Diffusion Model

We used the multicompartment diffusion model [8] defined as

S(b) = S(0) ·
[
pisoe

−bDiso +
N∑
i=1

p(i)κ(i)(b,g · n(i))

]
, (1)

where S(0) is the signal without diffusion encoding (b = 0), while the contribu-
tion of i-th fiber (i = 1, . . . , N) is

κ(i)(b,g · n(i)) = f (i)e
−bD

(i)
a,‖(g·n(i))2

+
(
1 − f (i)

)
e
−bD

(i)
e,‖(g·n(i))2−bD

(i)
e,⊥(1−(g·n(i))2),

(2)



Stepwise Stochastic Dictionary Adaptation Improves ODF-FP 91

where n(i) ∈ R
3 is the fiber orientation and g ∈ R

3 is the direction of the diffusion
encoding gradient. The compartment volumes of free water piso ∈ [0, 0.8] and
neurites p(i) ≥ 0.1 sum up to 1. The fraction sizes are f (i) ∈ [0, 0.8]. The ranges of
diffusivities are as follows: free water Diso ∈ [2, 3], intra-axonal D

(i)
a,‖ ∈ [1.5, 2.5],

and extra-axonal D
(i)
e,‖ ∈ [1.5, 2.5], D

(i)
e,⊥ ∈ [0.5, 1.5] · 10−9 m2/s, assuming that

D
(i)
a,‖ ≥ D

(i)
e,‖ as advocated in [9].

2.2 Orientation Distribution Function Fingerprinting

Throughout this study, we maintained the following two types of ODF dictio-
naries designed for our two datasets:

(a) phantom dataset—a simplified dictionary of 104 elements, each of them
limited to N ≤ 2 fibers per voxel and equal fiber fractions, i.e. Da,‖ = D

(i)
a,‖,

De,‖ = D
(i)
e,‖, De,⊥ = D

(i)
e,⊥, and f = f (i) for i = 1, 2.

(b) in vivo dataset—a dictionary of 106 elements, each of them limited to
N ≤ 3 fibers per voxel as suggested by Jeurissen et al. [12], without any
simplifications of the diffusion model.

In either case, the b-values and the diffusion sampling directions g matched
the data acquisition protocols defined later in Subsect. 2.4.

For matching of ODF fingerprints, we used a k-point tessellation of a unit
hemisphere (with k = 321) to discretize ODFs. Having this, we applied the
matching formula [2,6] defined as

x̃ = arg max
d∈D

(
log xTd − N · λ

)
, (3)

where x ∈ R
k is the fingerprint of a given ODF computed from the acquired

signal, x̃ is its best-fitting representative among the elements d of the ODF
dictionary D, and λ > 0 is the penalty factor to limit the number of ODF
peaks. Note that the formula in Eq. 3 is a modification of the Akaike information
criterion [1], where xTd approximates the likelihood function of the diffusion
model, while the N · λ component discourages overfitting. Here, we chose the
empirical values of λ = 2 · 10−4 in our phantom study and λ = 1 · 10−3 in vivo.

2.3 Stepwise Stochastic Adaptation of a Dictionary

Our approach implements the stepwise stochastic mechanism of gradual improve-
ments introduced in EDA. In this vein, we began by generating ODF dictionar-
ies with the microstructure parameters uniformly distributed in their respective
ranges of feasibility (defined in Subsect. 2.1) as suggested in [6]. We will refer to
this distribution as prior and to such dictionaries as prior ODF dictionaries.

For each dataset, we first ran ODF-FP with the respective prior ODF dictio-
nary and looked up the estimated microstructure parameters (Fig. 1a). This first
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Fig. 1. Schemes of ODF-FP and the proposed ODF dictionary adaptation mechanism.

run implemented the original ODF-FP procedure (as defined in [2,6]) which we
will use for reference.

Later on, we trained two types of Gaussian-based Kernel Density Estima-
tors (KDEs) [19] to represent the empirical distributions of the microstructure
parameters that we found with ODF-FP. We defined them as follows:

Type #1 estimator represented the random vector of compartment volumes
(p(1), . . . , p(N)), such that the free water fraction could be computed as piso =
1 − ∑N

i=1 p(i). In every experiment, there was only one such estimator.

Type #2 estimators represented the random vectors of diffusivities and intra-
axonal volume fractions (D(i)

a,‖,D
(i)
e,‖,D

(i)
e,⊥, f (i)). The number of such estimators

depended on the number of distinct sets of fiber parameters per voxel, i.e. one
in the phantom dataset and three in vivo.

Based on these, we generated the posterior ODF dictionary, such that its
elements were no longer uniformly distributed in the space of parameters, but
instead they reflected the empirical distribution that we have estimated.

Then, we trained our KDEs again and we used them to generate another
instance of the posterior ODF dictionary. We repeated the above procedure 10
times to observe the evolution of the posterior ODF dictionaries in the consec-
utive iterations of this stepwise adaptation loop (Fig. 1b).

2.4 Data

Diffusion Phantom. We used an anisotropic diffusion phantom manufactured by
Psychology Software Tools (Pittsburgh, PA, USA). The phantom contained syn-
thetic fibers made of textile water-filled microtubes (TaxonTM technology [18])
with 0.8 μm diameter. In our experiments, we considered three regions of inter-
est (ROIs) containing pairs of fibers crossing at 90◦, 45◦, and 30◦, as illustrated
in Fig. 2.
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Fig. 2. A slice of the T1-weighted image of the diffusion phantom with 3 regions of
interest (in yellow) containing synthetic fibers crossing at 90◦, 45◦, and 30◦. (Color
figure online)

We scanned the phantom at 2 mm isotropic resolution, with TE/TR =
74/8000 ms, using a diffusion protocol with 60 exact same sampling directions
(forming radial lines [3]) at every b-shell for b = 1000, 2000, 3000 s/mm2, inter-
leaved with 20 images at b = 0. We then ran Radial Diffusion Spectrum Imaging
(RDSI) [3] to compute ODFs. The MATLAB code that we used for data pro-
cessing is available at: https://bitbucket.org/sbaete/rdsi recon

In Vivo Data. We considered one healthy subject from the HCP dataset [21]
acquired at 1.25 mm isotropic resolution with b = 1000, 2000, 3000 s/mm2, 90
directions each, interleaved with 18 images at b = 0. We computed ODFs for all
WM voxels using Generalized Q-sampling Imaging (GQI) [24] pipeline provided
in DSI Studio.

2.5 Evaluation

Due to the lack of ground truth values for the microstructure parameters of our
diffusion model, we quantified the results by comparing coefficients of variation of
the respective variables. To account for the stochastic character of our approach,
we repeated every experiment 10 times and computed mean values with standard
deviations. Finally, we compared the in vivo results with the values reported in
the literature [4,15,22].

3 Results

Our experiments—consisting of 10 iterations of the stepwise stochastic
adaptation—were sufficient to observe gradual changes in the estimated

https://bitbucket.org/sbaete/rdsi_recon
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microstructure parameters. In many cases, the compartment volumes and dif-
fusivities converged to stable states that were visibly less noisy than the ones
obtained with the prior ODF dictionaries.

Diffusion Phantom. Fig. 3 shows the evolution of the coefficients of variation of
the estimated parameters. Note that all the variables, except for fin, stabilized
after approximately 5 iterations. Among them, the compartment volume frac-
tions (i.e. piso, p(1), and p(2)) increased their dispersion, whereas the diffusivities
(i.e. Da,‖, De,‖, and De,⊥) decreased it.

The detailed maps of the estimated parameters (Fig. 4) give more insight
into these two classes of convergence. Indeed, as the adaptation mechanism was
progressing, the computed compartment volume fractions were evolving from
rather blurry images (in the prior case) towards more crisp ones. Particularly, the
posterior piso maps gradually revealed the free water fraction at the boundaries
of the fibers reflecting the partial volume effects, while the maps of p(2) correctly
highlighted the contribution of the second fiber fraction in the crossing areas.
Simultaneously, our maps of diffusivity parameters evolved from fairly scattered
images corrupted with noise (in prior ODF dictionary) towards nearly uniform

Fig. 3. Coefficients of variations (averaged over 10 runs ± standard deviations) com-
puted on the phantom data converged after approximately 5 iterations in all studied
variables except for fin. The plots illustrate the ODF dictionary adaptation process
from the prior ODF dictionary (in blue) throughout the 10 iterations of the posterior
ODF dictionaries (in red). (Color figure online)
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Fig. 4. Detailed maps of the estimated microstructure parameters (in rows) in the
diffusion phantom dataset. The images show the adaptation process from the 0th iter-
ation (prior ODF dictionary) throught the 1st, 5th, and 10th iterations of the posterior
ODF dictionaries. The regions of interest (in columns) present pairs of synthetic fibers
crossing at 30◦,45◦, and 90◦.

maps which better reflected the expected uniform microstructure of the synthetic
fibers.

In Vivo Data. We observed a little different convergence pattern on the human
brain WM than in the phantom. Here, the ODF dictionary adaptation required
more than 5 iterations during which the dispersion changes evolved towards
decreasing the coefficients of variation in almost all variables, even the compart-
ment fraction volumes (Fig. 5).

The maps of a sample axial slice (Fig. 6) again provide a more in-depth per-
spective of the stochastic adaptation process that took place. Note that param-
eters like piso and the diffusivities evolved in a similar way to the phantom case,
i.e. by emphasizing the partial volume effects (at the boundaries with gray mat-
ter or the ventricles) and by smoothing the intra- and extra-axonal diffusivity
values. On the other hand, the compartment fraction volumes, especially p(2)

and p(3), also tended to decrease their variability (Figs. 5 and 6). This was not
surprising due to differences in heterogeneity of the brain tissue (occurring at
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the microscale level) as compared to the diffusion phantom with clearly distin-
guishable macroscale components (i.e. single-fiber vs. crossing-fiber voxels).

Finally, let us point out that the histograms of the estimated parameters (in
the whole WM) converged from relatively broad and flat distributions towards
more clustered ones with distinguishable dominants (Fig. 7).

4 Discussion

The main limitation of ODF-FP is its dependence on the ODF dictionary [6].
Similarly to other lookup techniques, a uniform distribution of dictionary ele-
ments is used there by default to ensure optimal sampling of the parameter
space. However, this reasoning can only hold under the assumption that every
combination of microstructure parameters is equally probable. In the case of
DWIs, though, this assumption seems inadequate.

In this study, we proposed an approach that allows for adaptation of ODF
dictionaries in an unsupervised, data-driven manner. Moreover, we intentionally

Fig. 5. Coefficients of variations (averaged over 10 runs ± standard deviations) com-
puted on in vivo human data (with the white matter mask applied) were converging
towards lower dispersion in all studied variables except for fin. The plots illustrate the
ODF dictionary adaptation process from the prior ODF dictionary (in blue) through-
out the 10 iterations of the posterior ODF dictionaries (in red). (Color figure online)
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Fig. 6. Detailed maps of the estimated microstructure parameters in the in vivo human
dataset. The images show the comparison between the 0th iteration (prior ODF dic-
tionary) and the 10th iteration of the posterior ODF dictionary.

did not impose any extra assumptions on the microstructure parameters (other
than the feasibility ranges defined in Subsect. 2.1 and the Da ≥ De inequality
that were already assumed in ODF-FP [6]) to avoid unwanted bias, e.g. favoring
a healthy tissue over pathology. Instead, we simply aimed at replacing a fraction
of ODF fingerprints that were highly unlikely to be chosen with the ones that
better represented a given dataset. We also required that the algorithm estimates
such a distribution automatically.

Our results showed that the values of microstructure parameters that we
found with the posterior ODF dictionaries conformed with the values reported in
literature [4,15,22]. In WM, most of our reconstructed intra-axonal diffusivities
Da,‖ ranged between 2.2 and 2.5 · 10−9 m2/s, while the parallel extra-axonal
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Fig. 7. Histograms of the estimated microstructure parameters in the in vivo human
dataset. The gray plots show the 0th iteration (prior ODF dictionary), while the color
plots show the 10th iteration of the posterior ODF dictionary. (Color figure online)

diffusivities De,‖ typically lied within 1.9–2.4 · 10−9 m2/s. The perpendicular
extra-axonal diffusivities De,⊥ were less than a half of De,‖, conforming to the
extra-axonal space tortuosity levels reported in other studies [5,8,10,16]. Also,
the clusters of high intra-axonal fraction volumes fin > 0.6 located in the corpus
callosum and along superior longitudinal tracts agreed with earlier reports [13].
In the other areas, the posterior fin remained at or below 0.33 in agreement with
histological findings [8].

Nonetheless, we must point out that our minimal set of assumptions on the
microstructure parameters carries a risk of homogenization of the estimated val-
ues. The observed tendencies of our approach to smooth diffusivities and volume
fractions, especially in the human dataset, or to shift the extra-axonal diffu-
sivities (De,‖ upward and De,⊥ downward) might require a counter-balancing
mechanism. Future work should address these issues, for instance, by applying
targeted anatomical constraints or DWI noise compensation mechanism.

Moreover, our in vivo study presented in this paper mainly targeted intra-
subject reproducibility. In order to draw more general conclusions, a dataset
composed of multiple subjects with and without pathologies must be processed
next.
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5 Conclusions

In this study, we used ODF-FP to estimate the fraction volumes and diffusivi-
ties of the multicompartment diffusion model at the linear time complexity. To
improve the accuracy of this technique, we proposed a stepwise stochastic adap-
tation mechanism for generating posterior ODF dictionaries that better reflects
the variability of DWIs in hand. As a result, we obtained less noisy estimates of
the microstructure parameters and the more pronounced separation of the free
water fraction of the diffusion signal.
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