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Abstract. Based on a diffusion tensor image (DTI) and a tentative
tractogram of a fiber bundle we propose a filtering method for opera-
tionally defining and removing outliers using tractometry. To this end
we assign to each track a set of K invariants, i.e. scalars invariant under
rigid transformations. The cluster of K-tuples of all tracks in a bundle
may be pruned using outlier detection methods in R

K , after which back-
projection of the remaining K-tuples produces a filtered tractogram with
enhanced coherence. This intrinsic pruning method is blind to the rela-
tive spatial organization of tracks in a bundle. We consider two types of
invariants, one capturing local diffusion properties and one representing
differential properties averaged along tracks. Our experiments indicate
that our tractometric filtering is complementary to extrinsic methods
based on the relative spatial configuration of tracks.

Keywords: Diffusion tensor imaging · Tractography · Tractometry ·
Tractography filtering · Riemannian geometry

1 Introduction

Tractography aims at reconstructing fiber bundles in the brain from diffusion
weighted imaging (DWI), a non-invasive technique for in-vivo imaging of the
brain’s fibrous structure. For our purpose tractography may refer to any method
providing a bundle of tentative tracks, the most prevalent being either stream-
line methods based on diffusion tensor imaging (DTI) [2,4,28,37], or geodesic
methods [11,15,16,20,25,28,30], whether deterministic or probabilistic.

Given two regions of interest (ROI) any of these methods may yield a col-
lection of putative tracts in-between. In streamline methods this is achieved
by designating one ROI as the seed region from which tracks are initialised to
define integral curves of some a priori preferred diffusion direction, e.g. the main
eigendirection of the diffusion tensor in the case of deterministic tractography
based on DTI. In this case the second ROI serves as an include-region which
ensures only tracks that pass through it are kept in the tractogram. In geodesic
tractography tracks are curves of (locally) shortest length in a Riemannian (or
more generally, Finslerian) space, i.e. geodesics [1,17,27,29,32]. The associated
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metric is constructed on the basis of the DTI (or DWI) data in such a way that
small distances in Riemannian (or Finslerian) sense are tantamount to large
mean free paths. In this case both ROIs are necessary for disambiguation due to
the second order nature of geodesic tractography. Geodesic completeness (aka
the Hopf-Rinow Theorem) ensures that at least one connection between any two
given endpoints exists.

In all cases we obtain as a starting point a single-bundle tractogram consist-
ing of, say, N tracks. This tractogram may contain ‘incoherent’ fibers, i.e. outliers
(not necessarily false positives) that significantly deviate from the main bundle
in one way or another. Our goal is to obtain a filtered tractogram of M ≤ N
selected tracks that, in some precise sense, exhibit more coherence. Instead of
utilizing solely spatial information, e.g. as in [13,14,19,22,26] or streamline den-
sities [33] or the diffusion signal [10], we aim to do this by means of tractometry ,
the assignment of characteristic scalars to each track. Tractometry has been
used for various purposes, such as dimensionality reduction [7], tract-analysis
[38] and anomaly detection [6]. Tractometric scalars can also be used to prune
a tractogram by eliminating N −M tracks (with M an automatic or manual
control parameter) that are deemed deviatory according to some coherence mea-
sure. Underlying this is the assumption that microstructural similarities within
a particular anatomical (sub)bundle are reflected in a (macroscopic) similarity
among the assigned scalars for that (sub)bundle, i.e. assuming no counteracting
pathological effects [6,35]. For this reason we stress that we do not consider the
method to work globally on a whole brain tractogram, but as a a single-bundle
method pruning its streamlines one by one.

2 Theory

In principle any ad hoc set of scalar functionals could be used in the proposed
tractometry framework. However, we will formulate a set of criteria, the first
of which pertains to invariance under rotations. If f is a scalar function of a
diffusion tensor D, it is invariant under rotations if f(D) = f(RTDR) for any
rotation matrix R. We will refer to such invariant scalar functions simply as
‘invariants’. An example of a non-invariant scalar would be any isolated compo-
nent of the diffusion tensor D, whereas the trace Tr(D) is an invariant. Global,
track-wise invariants may be constructed from point-wise invariants sampled
along a track by taking their average, median, minimum, maximum, or other
integral measures. In the rest of the paper we will use the mean for the sake of
definiteness.

Secondly, we require an admissible set of invariants to satisfy well-defined
non-redundancy and completeness conditions. These conditions capture the
notion of the set containing ‘precisely enough’ information.

Let V be the space of all possible invariants and W ⊂ V a subset. A set
X ={x1, ..., xn}⊂V is said to be redundant if there exists an analytic function
f such that xn=f(x1, ..., xn−1). Equivalently, X is non-redundant if

f(x1, ..., xn) = 0 =⇒ f ≡ 0 . (1)
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The set X is complete in W if it generates W with analytic functions, i.e. W is
the image of X under analytic functions

{x ∈ V | x = f(x1, ..., xn) for some analytic f} = W . (2)

Consider the set

{tk
.=Tr(Dk), tk+1

.=Tr(Dk+1), tk+2
.=Tr(Dk+2)} (3)

of Euclidean traces of powers of the diffusion tensor D. For any k∈N this set is a
complete and non-redundant set of invariants by virtue of the Cayley-Hamilton
theorem. The example simultaneously illustrates the non-uniqueness property of
a tractometric framework. We may arbitrarily choose traces of any three consec-
utive powers of D to construct a non-redundant complete invariant set. Alter-
natively we may replace such trace-triples by eigenvalue-triples {λ1, λ2, λ3} of
D, or by their combinations {FA,MD,RD}, known as the fractional anisotropy,
mean diffusivity and radial diffusivity [3]. These invariants will be refered to as
diffusion invariants, since they explicitly relate to apparent diffusion properties.

Besides diffusion invariants we wish to include differential properties, taking
into account local information in the neighbourhood of a track, i.e. geometry. We
will make use of the so-called curvature invariants, constructed from the Rie-
mann curvature tensor. This tensor determines geodesic deviation [1,31,32,34],
and in the context of geodesic tractography it expresses the tendency of nearby
tracks to cohere or repel due to local inhomogeneities in the diffusion tensor
field. In our Riemannian approach the diffusion tensor D, with components Dij

(i, j = 1, 2, 3) relative to a Cartesian coordinate basis, is stipulated to be propor-
tional to the dual Riemannian metric g−1, with components1 gij , i.e. Dij ∝ gij ,
so as to ‘geometrize away’ local diffusivity patterns in the data [11,16,20,25].
Anisotropic water diffusion is then incorporated as intrinsic geometry represent-
ing isotropic diffusion in a curved, Riemannian space.

The Riemann curvature tensor Ri
jkl is constructed from second order deriva-

tives of the metric tensor, as follows :

Ri
jkl = ∂kΓi

jl − ∂lΓi
jk + Γi

kmΓm
jl − Γi

lmΓm
jk , (4)

where
Γi
jk =

1
2
gim (∂jgkm + ∂kgmj − ∂mgjk) , (5)

and in which ∂k stands for ∂/∂xk. Contraction of the Riemann tensor results in
the covariant Ricci curvature tensor as well as its mixed and contravariant forms
by raising indices with the help of the inverse metric tensor:

Rij = Rk
ikj Ri

j = gikRkj and Rij = gikgjlRkl . (6)

1 Super-/subscripts denote contra-/covariant indices, to which Einstein summation
convention applies, i.e. each pair of identical sub- and superscript implies a summa-
tion over the corresponding ‘dummy’ index.
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In turn, the Ricci tensor induces a set of curvature invariants given by

{r1
.=Ri

i, r2
.=Ri

jR
j
i , r3

.=Ri
jR

j
kR

k
i } , (7)

in which r1 is known as the Ricci scalar [8,9]. Thus the set {r1, r2, r3} is composed
of traces of powers of the matrix with entries Ri

j . By similar arguments as for the
diffusion invariants we may instead consider the set {μ1, μ2, μ3} of eigenvalues
of this matrix.

In either case we prefer the use of eigenvalues {λ1, λ2, λ3} and {μ1, μ2, μ3}
over traces {t1, t2, t3}, respectively {r1, r2, r3}, because the former are commen-
surable and of the same order of magnitude, unlike the latter. Diffusion and
curvature invariants provide two complete, non-redundant sets of three invari-
ants each, which we can use separately or jointly as our tractometric invariants
of choice.

Given a tractogram of a putative bundle between two anatomical ROIs, we
wish to prune it based on the above sets of diffusion and/or curvature invariants
by removing ‘incoherent’ tracks one-by-one in some hierarchical fashion. Con-
sider a bundle of N tracks, each with K associated (averaged) invariants. We
thus obtain a correspondence between tracks and points in R

K , yielding a point
cloud for the bundle of interest. This point cloud is subsequently pruned with
the help of an outlier detection method [5,18,21]. We found that the particular
choice of outlier detection method had little effect on the outcome, and chose
to use the isolation forest algorithm [21]. This algorithm assigns to each cloud
point an ‘incoherence’ score between 0 and 1, indicating its likeliness to be an
anomaly within the considered set. A score of 0.5 is then a natural threshold for
a particular sample to be labelled as either outlier (score > 0.5) or not (score
≤ 0.5). This threshold could subserve a baseline configuration from which to
initialise further pruning by more informed means, possibly involving human
interaction. The incoherence score imposes a ranking onto tracks, allowing them
to be hierarchically removed one-by-one, cf. Fig. 1.

3 Experiments

In the following experiments we illustrate the tractometric filtering frame-
work on a DWI dataset from the Human Connectome Data Project (dataset
“WU-Minn HCP Data-1200 Subjects”: subject 100307; TE/TR/echo spacing
89.5/5520.0/0.78 ms; b = 2000 s/mm2), as well as on a clinical dataset acquired
with a Philips Achieva 3T MRI scanner (b = 1500 s/mm2, 50 diffusion-weighting
directions, six b = 0 s/mm2 images, 2 mm isotropic voxel size, TE/TR/echo spac-
ing 87/8000/0.2 ms). DTI tensors are computed using weighted least squares via
the Dipy library in Python [12]. Throughout our experiments the defining Gram
matrix for the Riemannian metric is the adjugate of the diffusion tensor D, i.e.
gij = det(D)Dinv

ij , cf. Fuster et al. [11].
We consider two experiments, the corticospinal tract (CST) on the HCP

dataset and the arcuate fasciculus (AF) on the clinical dataset, to illustrate that
the proposed method has a qualitatively different behaviour on a per bundle
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Fig. 1. An example of the filtering method for the corticospinal tract (CST) using the
diffusion invariants. Top left: Scatterplot of the three invariants {λ1, λ2, λ3} for each
of the 7500 tracks in the tractogram, color-coded according to the isolation score as
determined by the isolation forest algorithm. Each invariant {λ1, λ2, λ3} is projected
onto the coordinate planes in black. Top right: Scatterplot of the invariants after
removing all points with isolation score larger than 0.5. Bottom: Tractograms cor-
responding to the scatterplots above, with the unfiltered tractogram on the left and
the filtered one on the right. The arrow ‘Effective Filtering’ is defined by virtue of the
other three, ‘Tractometry’, ‘Isolation Forest’ and ‘Backprojection’.

basis. Furthermore, these two bundles are of clinical interest to a collaborat-
ing neurosurgeon, clarifying the use of a clinical dataset in the AF-experiment.
Both experiments are set up according to the following structure. We depart
from a probabilistic streamline tractogram computed using the iFOD2 algo-
rithm included in tckgen in MRtrix3 [36] following the data processing pipeline
described in [23]. We then apply four different filterings, three of which are
based on our tractometric invariants, viz. the set of three diffusion invariants,
the set of three curvature invariants, respectively and their union (containing all
six invariants). All track-wise invariants are computed by sampling the voxel-
wise invariants along the curve using trilinear interpolation. The fourth filtering,
introduced as comparison reference, relies on a scalar measure based on the
relative spatial arrangement of tracks in a bundle, the Fiber-to-Bundle Coher-
ence (FBC) [22]. This provides us with a comparison between our tractometric



142 R. Sengers et al.

filtering based on intrinsic invariant features of each track regardless of spatial
coherence, and one based on relative spatial relations between tracks, but blind
to their intrinsic features. Figure 2 shows the baseline tractogram with the cor-
responding diffusion and curvature invariants for the experiments on the CST
and the AF.

Figure 3 illustrates the filtering procedures applied to the CST tractogram
using the HCP dataset. Since the FBC score and the isolation score are incom-
mensurable we opt to retain a fixed number of tracks in every step, instead
of thresholding on the scores themselves. We start with 7500 tracks and retain
50% in the first step and 10% in the last one. The used colormaps are such that
bright-colored tracks correspond to outliers in the scatterplots, and vice versa for
dark-colored tracks. All tracks in the 90% filtered tractograms are also present
in the 50% filtered one, but are mostly obscured by other tracks. The three trac-
tometric filterings in the first three rows result in very similar filtered bundles,
each one differing only slightly from the others. Interestingly, the spatial pruning
method (fourth row) displays a qualitatively different behaviour with respect to
track elimination. Most prominent is the fact that the fanning of the bundle is
gradually destroyed (which is to be expected by the fourth method’s operational
construction enforcing coherence in the spatial domain), whereas this is retained
by using tractometric filtering (which cannot be expected a priori).

In the second experiment, on the clinical dataset, we consider the AF bun-
dle, cf. Fig. 4. At first glance there appears to be a number of shortcuts in
the tractograms. This behaviour is reflected in the scatterplots, revealing two
point clusters. In all cases, tractometric filtering removes first the smaller clus-
ter, thereby eliminating the shortcuts from the tractogram, in correspondence
with spatial FBC-based pruning. In this case, spatial coherence of tracks appar-
ently correlates strongly with intrinsic tractometric features.

4 Discussion

We have proposed a method for filtering diffusion MRI tractograms. Based on the
assumption that anatomical (sub)bundles are internally structurally coherent,
we have constructed characteristic trackwise scalar invariants, combined into
complete and non-redundant sets so as to capture all degrees of freedom of a
given differential order. For each track, the associated set of invariants defines
coordinates of a point in a feature space. The tractogram of the bundle of interest
is then effectively filtered by removing outliers from the corresponding point
cloud in this space.

Experiments indicate that this method may be used in conjunction to existing
methods, such as filters based on spatial coherence of the tracks. It depends on
the anatomical bundle of interest which method is most appropriate. Whereas
spatial filters will tend to eliminate spatial outliers by construction, tractometric
filters are blind to spatial configurations and driven by intrinsic characteristics
of individual tracks. For instance, sub-bundles or branches of a fanning bundle
may or may not have distinct intrinsic characteristics. Future research should
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Fig. 2. The baseline tractograms for experiments on the CST (left) and AF (right).
The former experiment is performed on the HCP dataset and the latter on the clinical
dataset. The scatterplots depict the diffusion invariants (red-yellow) and the curvature
invariants (light-dark blue). The tractograms are color-coded according to the isolation
score ranking corresponding to the diffusion invariants. While we could have chosen to
use the curvature invariants or the union of both sets, this is merely a practical choice
to illustrate the behaviour of scalar features in the tractogram. (Color figure online)

help to identify the ‘elementary’ anatomical (sub-)bundles for which a particular
method is appropriate. A clustering method applied prior to pruning in the case
of multi-modal point clouds might be instrumental. Experiments with multiple
(sub-)bundles in the same subject as well as studying the inter-subject variability
of this method are interesting avenues for further research.

Interestingly, by employing distinct sets of independent invariants, viz. dif-
fusion and curvature invariants, one may a priori expect a difference in the
outcome. However, the experiments show that, at least qualitatively, using each
in isolation or combining both, hardly affects the result. This is an indication
that the premise of microstructural coherence of an anatomically plausible bun-
dle might be correct, since that would reflect itself in macroscopic coherence of
invariants regardless of their precise nature.

Our framework can be extended in multiple ways. One may add new sets of
invariants and consider various combinations. Considering higher order deriva-
tives of the metric tensor field can systematically add complexity to the sets of
invariants. Moreover, extrinsic spatial (such as FBC) and intrinsic tractomet-
ric features may be combined in a hybrid method. Other integral or projective
operators to construct invariant functionals, besides the simple case of the mean
operator used in this paper, may be considered. In particular one may define
point-wise invariant functionals for each tract, leading to more complex, high-
dimensional descriptors of a tractogram. Our framework may find applicability
beyond DTI, e.g. using RISH features for the spherical harmonic representation
of fiber orientation density functions [24].
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Fig. 3. The effect of filtering the CST tractograms, see Fig. 2, with different sets of
invariants as well as using a spatial filter. Each row represents a different filter and
each column a threshold by which to prune the tractogram (expressed in percentage
of the total number of tracks). Columns: Filtered tractograms with 50%, resp. 10% of
the tracks remaining. Rows 1–4: Diffusion invariants and corresponding scatterplot;
Curvature invariants and corresponding scatterplot; Combined diffusion and curvature
invariants; Fiber-to-Bundle Coherence.

Secondly, even though tractometry is only applied to streamline tractograms
in our experiments, the curvature invariants would have a more transparent inter-
pretation in a Riemannian geodesic framework, for which they were designed in
the first place in the context of uncertainty quantification given data perturba-
tions (noise and end-point conditions). Interpretability of features in terms of
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Fig. 4. The effect of filtering the AF tractograms with different sets of invariants as
well as using a spatial filter. Each row represents a different filter and each column
a threshold by which to prune the tractogram (expressed in percentage of the total
number of tracks). Filtered tractograms with 50%, resp. 10% of the tracks remaining.
Rows 1–4: Diffusion invariants and corresponding scatterplot; Curvature invariants
and corresponding scatterplot; Combined diffusion and curvature invariants; Fiber-to-
Bundle Coherence.
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the specific details of a tractography method is, however, subordinate to com-
pleteness. Complete sets of tractometric invariants can therefore be applied to
prune any tractogram, regardless of its operational definition.
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