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Preface

It is our privilege to introduce the proceedings of this year’s International Workshop on
Computational Diffusion MRI (CDMRI 2022). Since its conception over ten years ago,
CDMRI has been organized each year as a satellite event of the Medical Image Com-
puting and Computer Assisted Intervention (MICCAI) conference, bringing together
researchers from across the globe to discuss the latest advances in the acquisition,
analysis, and application of diffusion MRI (dMRI).

DiffusionMRI has transformed our ability to non-invasively probe tissuemicrostruc-
ture and function over the last four decades, with applications ranging from the mapping
of neural pathways to assisting with tumor classification to aiding neurosurgical plan-
ning and beyond. However, to continue progression in this field and access even more
complex microstructural features, richer and more sophisticated acquisition protocols
are required that may not be feasible in clinical settings. In recent years, machine learn-
ing techniques have begun to offer the possibility of achieving equivalent information
from smaller, more clinically feasible datasets, and as such are becoming increasingly
prevalent in the dMRI literature. The submissions to CDMRI 2022 are reflective of
this trend: over 80% of the proffered papers proposed machine learning strategies to
improve either dMRI image processing or data storage. These numbers also highlight
the synergy with the machine-learning-oriented MICCAI community. Readers of these
proceedings can expect to find contributions on topics such as susceptibility distor-
tion correction using semi-supervised deep learning, microstructural model fitting using
self-supervised learning, and data compression using neural networks.

However, post-hoc data augmentation techniques are not infallible. This year, the
CDMRI workshop hosted the MICCAI challenge entitled ‘Quality Augmentation in
Diffusion MRI for Clinical Studies: Validation in Migraine’ (QuaD22), which asked
the pertinent question ‘Are we losing relevant quantitative clinical information when
generating high-quality images with artificial intelligence techniques?’ The QuaD22
organizers tasked participants with generating DTI-related parameters from a dMRI
migraine dataset acquired with 21 diffusion gradient directions that were of a similar
high-quality to parameters obtained from a dataset with 61 gradient directions, with
the aim of evaluating whether it was possible to detect the same significant differences
between episodic migraine and chronic migraine patients in the reduced acquisition
scenario as in the fully-sampled situation.

This workshop would not have been possible without the dedication of the Program
Committee (listed below), who, through a double-blind peer review process, ensured
the highest standard was achieved. Of the 13 submissions received, four were accepted
without revision, eight were accepted after revision, and one was rejected; each submis-
sion was reviewed by at least two members of the Program Committee. We extend our
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gratitude to everyone involved in the Program Committee. Finally, we wish to thank our
keynote speakers (listed below), who delivered a series of truly enlightening lectures.

September 2022 Suheyla Cetin-Karayumak
Daan Christiaens

Matteo Figini
Pamela Guevara
Tomasz Pieciak
Elizabeth Powell
Francois Rheault
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Slice Estimation in Diffusion MRI
of Neonatal and Fetal Brains in Image

and Spherical Harmonics Domains Using
Autoencoders

Hamza Kebiri1,2(B), Gabriel Girard1,2,3, Yasser Alemán-Gómez1,
Thomas Yu3,4, András Jakab5,6, Erick Jorge Canales-Rodŕıguez3,

and Meritxell Bach Cuadra1,2

1 Department of Radiology, Lausanne University Hospital and University
of Lausanne, Lausanne, Switzerland

2 CIBM Center for Biomedical Imaging, Lausanne, Switzerland
hamza.kebiri@unil.ch

3 Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland

4 Advanced Clinical Imaging Technology, Siemens Healthineers International AG,
Lausanne, Switzerland

5 Center for MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
6 Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland

Abstract. Diffusion MRI (dMRI) of the developing brain can provide
valuable insights into the white matter development. However, slice
thickness in fetal dMRI is typically high (i.e., 3–5 mm) to freeze the
in-plane motion, which reduces the sensitivity of the dMRI signal to the
underlying anatomy. In this study, we aim at overcoming this problem
by using autoencoders to learn unsupervised efficient representations of
brain slices in a latent space, using raw dMRI signals and their spherical
harmonics (SH) representation. We first learn and quantitatively vali-
date the autoencoders on the developing Human Connectome Project
pre-term newborn data, and further test the method on fetal data. Our
results show that the autoencoder in the signal domain better synthe-
sized the raw signal. Interestingly, the fractional anisotropy and, to a
lesser extent, the mean diffusivity, are best recovered in missing slices
by using the autoencoder trained with SH coefficients. A comparison
was performed with the same maps reconstructed using an autoencoder
trained with raw signals, as well as conventional interpolation methods
of raw signals and SH coefficients. From these results, we conclude that
the recovery of missing/corrupted slices should be performed in the sig-
nal domain if the raw signal is aimed to be recovered, and in the SH
domain if diffusion tensor properties (i.e., fractional anisotropy) are tar-
geted. Notably, the trained autoencoders were able to generalize to fetal
dMRI data acquired using a much smaller number of diffusion gradients
and a lower b-value, where we qualitatively show the consistency of the
estimated diffusion tensor maps.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Cetin-Karayumak et al. (Eds.): CDMRI 2022, LNCS 13722, pp. 3–13, 2022.
https://doi.org/10.1007/978-3-031-21206-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21206-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-21206-2_1
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Keywords: Super-resolution · Autoencoders · Spherical harmonics ·
Diffusion tensor imaging · Pre-term · Fetal · Brain · MRI

1 Introduction

Neonatal and fetal brain development involves complex cerebral growth and mat-
uration both for gray and white matter [4,10]. Diffusion MRI (dMRI) has been
widely employed to study this developmental process in vivo, including neonates
and fetuses [16,18,28]. As the diffusion weighted signal is sensitive to the displace-
ment of water molecules, several models have been proposed for estimating the
underlying anatomy such as diffusion tensor imaging (DTI) or spherical deconvo-
lution methods [2,6,32]. The accuracy of these models is dependant on the angular
and spatial resolution of the acquisitions that is typically limited for the neonate
and fetal subjects [19,22]. Stochastic motion and low signal-to-noise ratio (SNR)
due to the small size of the developing brain often translate to degraded images
with low spatial resolution. Additionally, slice thickness in fetal dMRI is typically
high, varying between 3–5 mm, to freeze the in-plane motion, and hence reduces
the sensitivity of the dMRI signal to the underlying anatomy. This highlights the
need for methods to interpolate or synthesize new slices that were either (1) cor-
rupted because of motion or (2) acquired using anisotropic voxel sizes. Interpola-
tion is often performed either at scanner level or in post-processing [19], and has
been demonstrated to be relevant for raw signal recovery and for subsequent anal-
ysis such as tractography [11]. Similarly, super-resolution (SR) methods that aim
at increasing dMRI resolution can be applied at the acquisition-reconstruction
level [27,29] or at post-processing [5,7,12]. The latter used supervised learning
methods, which require high resolution training data that is often unavailable for
the developing brain. Additionally, these methods focus on enhancing the reso-
lution homogeneously over all dimensions and were not assessed for anisotropic
voxels, commonly acquired for fetuses and neonates [19,22]. Additionally to the
raw dMRI signal interpolation, other representations such as Spherical Harmonics
(SH) could be of interest. SH are a combination of smooth orthogonal basis func-
tions defined on the surface of a sphere able to represent spherical signals, such as
the dMRI signal acquired using uniformly distributed gradient directions [13,15].
Previous work used deep learning methods to map the SH coefficients from one
shell to another [20,24]. However, no prior work, to the best of our knowledge,
relies on the SH decomposition to enhance the spatial image resolution.

In this study, we have used unsupervised learning to extend the application
of autoencoders for through-plane super-resolution [21,30] in the image domain
to spherical harmonics domain where we synthesize SH coefficients of missing
slices. As such, our network has access to both angular and spatial information.
In contrast to training with non-DWI volumes [21], we have additionally trained
a second network on spherical averaged dMRI images to complement and com-
pare its performance in relation to the SH trained network. Moreover, we have
compared both methods to conventional interpolation methods both using raw
dMRI signals and their SH representation. The comparison was performed both
on the raw dMRI signal; and on fractional anisotropy (FA) and mean diffusivity
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(MD) maps derived from the estimated diffusion tensors. Finally, we verified
that the SH networks trained on pre-term data successfully generalized to fetal
images, where we present the coherence of the synthesized slices.

2 Methodology

2.1 Materials

Neonatal Data - The developing Human Connectome Project (dHCP) data1

were acquired in a 3T Philips Achieva scanner in a multi-shell scheme (b ∈
{0, 400, 1000, 2600} s/mm2). Details on acquisition parameters can be found in
[17]. The data was denoised, motion and distortion corrected [3] and has a final
resolution of 1.17×1.17×1.5 mm3 in a FOV of 128×128×64 mm3. In addition
to b = 0 s/mm2 images (b0), we have selected the corresponding 88 volumes
with b = 1000 s/mm2 (b1000) from all pre-term subjects (31) defined with less
than 37 gestational weeks (GW) ([29.3, 37.0], mean = 35.5). In the anatomical
dataset, brain tissue labels and masks [26] were provided.

Fetal Data - The fetal data were acquired with the approval of the ethics
committee. Acquisitions were performed at 1.5T (GE Healthcare) with a single
shot echo planar imaging sequence (TE = 63 ms, TR = 2200 ms) using b = 700
s/mm2 (b700) and 15 directions. The acquisition FOV was 256 × 256 × 14 − 22
mm3 for a resolution of 1×1×4−5 mm3. Three axial and one coronal acquisitions
were performed for each subject. Four subjects were used in our study: two of
35 and 29 GW where three axial volumes were used, and two young subjects of
24 GW where one axial volume was used. We have only used axial acquisitions
to avoid any confounding factor due to interpolation in the registration that
would be needed between the orthogonal orientations. Volumes were corrected
for noise [34], bias-field inhomogeneities [33] and distortions [1,25] and did not
require any motion correction.

2.2 Model

Network Architecture - Our network is composed of four blocks in the
encoder and four blocks in the decoder, where each block consists of two layers of
3×3 convolutions, a batch normalization and an Exponential Linear Unit (ELU)
activation function [9]. After each block of the encoder, a 2 × 2 average pooling
operation was performed and the number of feature maps was doubled after each
layer. Hence starting from 32 feature maps to 256 while three additional 3× 3
convolutions were added in the last block with 512, 256 and M feature maps
respectively, M ∈ {16, 32, 64, 128}. The last M feature maps were considered as
the latent space of our autoencoder. The decoder goes back to original input
dimensions by means of either 3× 3 transposed convolutions with strides of 2 or
by 2 × 2 nearest neighbor interpolations (mutually exclusive), where the num-
ber of feature maps decreases by two after each layer from 512 to 32. A last
1 http://www.developingconnectome.org/data-release/second-data-release/.

http://www.developingconnectome.org/data-release/second-data-release/
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1× 1 convolution with sigmoid activation function was performed to generate
the predicted image.

Training - Using the same architecture, we have trained three networks, with
different inputs: b0 images (b0-net), average b1000 (Avg-b1000-net) (see Raw
signal networks subsection) and a maximum SH order (Lmax) of 4 (SH4-net) (see
Spherical harmonics networks subsection). Input images were first normalized
to the range [0, 1] by x = x−xmin

xmax−xmin
where xmin and xmax are the minimum

and maximum intensities respectively in a given slice. All networks were trained
using an Nvidia GeForce RTX 3090 GPU in the TensorFlow framework (version
2.4.1) with Adam optimizer [23] for 200 epochs using mean squared error loss
function, a batch size of 32 and a learning rate of 5 × 10−5. The validation was
performed on 15% of the training data. The number of feature maps of the latent
space was optimized using Keras-tuner [8] and the checkpoint with the minimal
validation loss was finally selected for inference.

Raw Signal Networks - While b0-net was trained using b0 images, Avg-
b1000-net was trained on average b1000 images, as training directly on individual
b1000 images did not consistently converge [21]. We have thus trained Avg-b1000-
net on average b1000 images with the aim of increasing the SNR and reducing
variability. The average was computed over n randomly selected volumes, n ∈
{3, 6, 15, 30, 40}. Empirically, higher n means a lower risk of network divergence,
at the cost of increased smoothness/risk of losing image detail. Therefore n must
be tuned. In the end, b0-net was used to infer b0 images whereas Avg-b1000-net
was used to infer b1000 volumes.

Spherical Harmonics Network - We have fit SH representations by using
Lmax = 4 to the dMRI signal using Dipy [14] and fed the resulting 15 SH
coefficients, slice by slice, to SH4-net. Let us note that we preliminary computed
the mean squared error difference with respect to the ground truth data when
estimating SH and projecting back to original grid from SH bases of Lmax ∈
{4, 6, 8}. As differences were relatively low between them (9.80, 8.64 and 9.95
for Lmax ∈ {4, 6, 8} respectively, scale ×10−4) and we aim at further testing on
fetal data (where only 15 DWI are available) we selected to stick in what follows
to Lmax = 4.

Inference in Neonates - For all networks (b0-net, Avg-b1000-net and SH4-
net), nested cross validation was performed where the 31 subjects were split
into 8 folds. For each subject and each volume in the testing set, we removed
N intermediate slices, N ∈ {1, 2} that were considered as the ground truth we
aim to predict. Using the two adjacent slices, we input each separately to the
encoder part of the network to get the M latent feature maps. These feature
maps were averaged using an equal weighting for N = 1 and a {1

3 ,
2
3}, { 2

3 ,
1
3}

weighting for N = 2 (Fig. 1). The missing slices were then recovered by using the
decoder part from the resulting latent feature maps. The output of the network
was then mapped back to the range of input intensities. This was performed
using histogram matching (using cumulative probability distributions) between
the network output as a source image and the (weighted) average of the two
adjacent input slices as a reference image. Finally, the histogram matched output
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of SH4-net was projected back to the original grid of 88 directions to recover
the dMRI signal in the image domain.

Fig. 1. Inference for two adjacent slices of the first coefficient of SH-Lmax order 4
illustrated for the case of N = 2 where α = 2

3
.

Evaluation in Neonates - The inferred slices of Avg-b1000-net were com-
pared to conventional interpolations, namely trilinear, tricubic and B-spline of
5th order [1,31]. The comparison was performed separately for one and two miss-
ing slices (N ∈ {1, 2}) using the mean squared error (MSE). As all interpolation
baselines produce similar results with a slight overperformance for the linear
method (for N = 2, MSE of 0.003164, 0.003204 and 003211 for linear, cubic
and B-spline respectively), the former was chosen for further comparison with
autoencoders. The two networks were additionally compared for FA and MD
maps that were extracted from the diffusion tensors , as estimated in Dipy [14].
The DTI fit used the synthesized b0 by b0-net. The linear baseline was further
compared with SH4-net and with the signal recovered from the same interpo-
lation of the SH coefficients. The comparison was also extended for DTI maps
(FA, MD). To compute them, DTI fit of SH4-net relied on the b0 as synthe-
sized by b0-net, and the linear SH4 used corresponding linear interpolated b0.
All comparisons were done using MSE for FA and MD maps in white matter,
cortical gray matter, and corpus callosum. Moreover, we have fit SH representa-
tions of the ground truth signal by using Lmax = 4 which were compared after
projecting back to the original grid of 88 gradient unit vectors to the original
DWI signal, separately for (N ∈ {1, 2}). This was considered as the lower bound
error of SH4-net.

Application to Fetal DWI - After fitting the SH coefficients with Lmax=4
to the fetal data. We have used SH4-net, i.e., trained on pre-term neonates to
infer SH coefficients of middle (N ∈ {1, 2}) slices of fetal subjects. The inference
was performed in a similar manner as for neonates (Fig. 1). Cropping of fetal
images to 128 × 128 voxels was necessary before feeding them to the encoder.
Then, we generated the diffusion tensor based on this new DWI signal and b0
using b0-net, and visually assessed the consistency of the new slices in MD and
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FA maps for the four subjects. Only qualitative evaluation was performed for
fetal enhancement because of the lack of ground truth.

3 Results

Based on the validation loss, the optimal number of feature maps in the latent
space was found to be 32 for b0-net and Avg-b1000-net, and 64 for SH4-net. For
Avg-b1000-net, averaging n = 15 DWI was also found to be optimal. Moreover,
the transposed convolution in the decoder did not reduce the validation loss as
compared to performing a nearest neighbor interpolation. Hence all networks
used the latter in the decoder part to avoid unnecessary overparameterization
of the network.

3.1 DWI Assessment

Autoencoder average b1000 trained network (Avg-b1000-net) produces superior
results compared to linear interpolation (Fig. 2). The difference is higher for the
case of two slices removed (N = 2).

Fig. 2. Mean squared error (MSE) on dMRI images of autoencoder enhanced using
Avg-b1000-net slices (AE-1, AE-2 for N = 1, 2 respectively) and for the baseline
interpolation (linear on raw signal: Lin-1, Lin-2) and for SH4-net and SH linearly
interpolated (Lin4-1, Lin4-2 for N = 1, 2 respectively). The lower bounds for the SH
errors (SH4GT) were also included as a reference. (Method-1, Method-2 for synthesiz-
ing/interpolating N = 1 and N = 2 slices, respectively)
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Comparing raw and SH domain enhancement (Fig. 2), we first observe that
independently of the method (autoencoder or linear), working directly on the
raw signal outperforms working on SH and projecting back to signal. In fact,
autoencoder Avg-b1000-net outperforms linear interpolation, and for N = 1 it
is closely comparable to the SH encoding (SH4GT-1 in Fig. 2). While the SH
autoencoder enhancement underperforms the classical SH linear interpolation
for N = 1, SH4-net slightly outperforms linear-SH for N = 2. This gap between
N = 1 and N = 2 for SH linear and autoencoder can be explained by the rich
information that the autoencoder was exposed to in the training phase from
similar images compared to the interpolation that has solely access to local
information.

3.2 FA and MD in Newborns

Comparing DTI scalar maps (Fig. 3) for the same previous configurations (see
Fig. 2), we notice that the autoencoder enhancement outperforms the linear
interpolation in all brain regions (except MD for cortical gray matter when
removing one slice, i.e. N = 1) regardless of whether raw signal or SH was
used. This outperformance is significant (paired Wilcoxon signed-rank test) for
FA in all SH configurations, and for MD in one third of all configurations. The
difference is typically more pronounced when we remove two slices (N = 2).
Let us note that, opposite of what we observed at the DWI signal level, SH4-
net outperforms linearly interpolated SH. Furthermore, for the FA map, SH4-net
obtains the lowest mean squared errors, thus it is more suitable than autoencoder
Avg-b1000-net or the linear interpolation. The opposite trend, i.e. Avg-b1000-net
outperforming SH4-net with statistical significance, can be noticed for MD, with
exception of the corpus callosum.

3.3 Qualitative Results of FA and MD in Fetuses

The DWIs synthesized by SH4-net using the latent space were visually consis-
tent as they smoothly vary between the adjacent slices. Figure 4 displays the
corresponding FA and MD maps for four subjects. We can clearly delineate the
smooth transition between the two adjacent slices, especially in late gestational
weeks fetuses in which the structures are more visible. For instance, the corpus
callosum and the internal capsules of the synthesized slices displayed in FA maps
are coherent with respect to their neighbouring slices.
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Fig. 3. Mean squared error of fractional anisotropy (FA) and mean diffusivity (MD)
for different methods in three brain regions. See caption Fig. 2 for methods description.
(Paired Wilcoxon signed-rank test: **: significant, p<0.028 - t: trending, p = 0.06 -
N.S.: non significant: p>0.06)

Fig. 4. Fractional anisotropy (FA) and mean diffusivity (MD) for four fetal subjects
of respectively, from left to right, 4, 5, 4 and 4 mm of slice thickness. The middle
row (red frames) illustrates synthesized slices corresponding to the diffusion tensor
reconstructed with inferred DWI volumes with SH4-net and b0 with b0-net, using the
two neighboring original slices (top and bottom rows). (Color figure online)
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4 Conclusion

We have proposed autoencoders for dMRI through-plane slice inference in early
brain development. The assessment was performed in both raw signal and spher-
ical harmonics (SH) domains, where the latter proved to be more accurate for
DTI-FA maps reconstruction and the former for raw data estimation. We hypoth-
esize that this could be explained by some global bias introduced to the back
projected raw signal by the SH trained autoencoder. However, the orientation
information (i.e., signal’s shape) was better preserved and hence, FA which is
scale invariant, was clearly better depicted by SH autoencoder estimation. Lastly,
we have successfully applied our method trained on newborn data to enhance
the through-plane resolution of fetal data acquired in a different scanner, with
a lower b-value and fewer gradient directions. Inferring missing slices or realis-
tically increasing the through-plane resolution has to potential to translate to
more accurate diffusion properties and hence a better uncovering of the underly-
ing brain structure. In future work, we aim to increase the angular resolution in
fetal images by using supervised learning to map spherical harmonics coefficients
of order 4 (i.e., the maximal order that can be fit with clinical fetal images) to
higher orders (6 or 8) using pre-term data.
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Abstract. Diffusion MRI is the foundation for understanding the struc-
tures and disorders in the human connectome, but low spatial resolu-
tion fundamentally limits this understanding. Methods for increasing
DTI resolution post hoc must carefully utilize all available information
to reduce bias and uncertainty in this ill-conditioned inverse problem.
Previous machine learning approaches have largely cast this problem
as a standard super-resolution task without taking advantage of domain
knowledge surrounding DTIs. Outside this domain, recent work in super-
resolution has given attention to preserving an input’s fine-scale infor-
mation as it is passed through a network. Our contribution consists of a
novel deep learning model for DTI super-resolution with three important
advancements: 1) a novel procedure for refining DTI predictions with
high-resolution T2-weighted images, 2) interpolation over log-Euclidean
tensors that is immune to the “swelling effect,” and 3) the effective use of
densely-connected residual networks that preserve detail from the input.
Through experiments on HCP data, we show that our model achieves
the best performance in the literature for increasing the resolution of
DTIs. We further analyze the effect of each proposed component with
thorough model ablation tests.

Keywords: Super-resolution · Diffusion tensor imaging · Log
euclidean

1 Introduction

Since its invention nearly 30 years ago, diffusion MRI (dMRI) has remained the
only imaging modality capable of studying the connections in the human brain
non-invasively and in vivo. This is made possible through methods that estimate
local diffusion models and subsequently infer fiber orientations from the diffusion
data. In both the clinic and the dMRI literature, the diffusion tensor image (DTI)
model is the most widespread and well understood of such models [6]. While
many other diffusion representations exist, such as those in diffusion spectrum
imaging [21] and q-ball imaging [18], all suffer from low spatial resolution in
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S. Cetin-Karayumak et al. (Eds.): CDMRI 2022, LNCS 13722, pp. 14–25, 2022.
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the diffusion-weighted images (DWIs) themselves. Compared to structural T1-
weighted (T1w) or T2-weighted (T2w) MRIs, dMRIs are acquired at roughly
half the spatial resolution. This poses serious limitations in dMRI applications.
For example, clinicians planning a treatment based on a lesion’s position relative
to a fiber tract. Another example is tractography, where low resolution induces
severe partial volume effects, confounding signals from overlapping fiber tracts.
Consequently, tractography methods struggle to distinguish tracts when fibers
are crossing, “kissing,” or otherwise laid out in complex configurations.

Unfortunately, the MRI sequences needed for measuring diffusion fundamen-
tally require a trade-off between spatial resolution, scan acquisition time, and
signal-to-noise ratio. Consequently, methods of reconstructing high-resolution
dMRIs have existed almost as long as dMRI itself. One of the first such methods
relied on sub-pixel spatial shifts while acquiring low-resolution diffusion-weighted
images (DWIs) [12]. A high-resolution DWI was estimated with iterative back-
projection. Later methods treated super-resolution as a general reconstruction
problem performed post hoc, reducing dependency on the scan sequence. For
example, Nedjati-Gilani et al. [11] used damped least-squares with a spatial coher-
ence constraint to recover fiber orientation based on neighborhood anisotropy.

Machine learning (ML) methods have largely replaced more traditional image
processing algorithms due to increased performance and the availability of the
high-quality dMRI data from the Human Connectome Project (HCP) [19]. The
first of these was in Alexander et al. [3], where authors used random forest regres-
sion to learn a map between downsampled HCP images and their full resolution
counterparts; this approach was named image quality transfer (IQT). Tanno et
al. [16] improved on this with a simple 3-layer convolution (conv, for brevity)
network. Blumberg et al. [7] extended their conv network with “reversible lay-
ers,” which required less memory in backpropagation. Other works expanded the
scope of single-image super-resolution (SISR) in diffusion. Qin et al. [13] added
a secondary network that used DWIs and high-resolution T1w images to predict
high resolution NODDI parameters. Anctil-Robitaille et al. [4] took the use of
T1w images further and synthesized entire DTI volumes from only T1w images.

In this work, we propose an ML model that builds upon these works and pro-
duces accurate, high-resolution DTIs. Our novel contributions are driven by the
observation that DTI SISR requires algorithms that preserve the information in
the low-resolution input DTI throughout the model, while also taking advantage
of information outside the input. In the following sections, we describe a novel
deep learning model that effectively leverages information from low-resolution
DTIs and high-resolution T2w images, while respecting the nature of DTIs being
in the space of symmetric positive-definite (SPD) matrices.

2 Background and Methods

2.1 Background

Structural MRI with Diffusion. Structural MRIs have previously been used
with diffusion to compensate for weaknesses inherent to dMRI. In Sect. 1, we
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gave specific examples such methods used with ML models [4,13]. Other works
have treated T2w images as a low-distortion reference of the b = 0 DWIs to com-
pensate for EPI distortions [17]. We note that the dependency on high-resolution
T1w or T2w scans is reasonable, even in the clinic, as the (time-consuming) dif-
fusion scans are usually accompanied by (relatively quick) structural scans.

Extracting and representing the information from T1w or T2w images must
be handled carefully in SISR. With ML models, as discussed by Qin et al. [13],
simple concatenation of DTIs and anatomical MRIs at a network’s input would
require manipulating the spatial scale of at least one volume. In general, combin-
ing multi-modal MRIs in such black-box models risks creating undesirable bias
learned from features in the anatomical image. For example, a network could
maintain low prediction error by mapping certain T2-weighted textures to their
most common tensor component values, but such a mapping would perform
poorly on subjects with conditions only visible in the diffusion maps.

DTIs on the SPD Manifold. The first and most widespread diffusion model
in dMRI is the DTI [6], which is estimated at a given voxel as a 3 × 3 SPD
matrix. Ideally, such matrices could be analyzed using standard Euclidean dis-
tances. However, processing DTIs with the standard Euclidean distance, e.g., in
interpolation or filtering, leads to physically unrealistic tensors that suffer from
a swelling effect [5,8], i.e., a decrease in anisotropy and increase in determinant.

To resolve this, Arsigny et al. [5] proposed the use of Riemannian metrics
on the matrix logarithm of the DTIs, the log-Euclidean (LE) metrics. Given an
SPD diffusion tensor D, let D = UΛUT be its eigendecomposition. Then let the
matrix logarithm of D, noted as T, have the eigendecomposition of T = UΛ̃UT .
The mapping between D and T is given by

T = Log(D) = U
[
log λ1

log λ2
log λ3

]
UT

D = Exp(T) = U

[
exp λ̃1

exp λ̃2

exp λ̃3

]
UT

In this logarithmic domain, the Frobenius distance ‖T1−T2‖F is the geodesic
distance under a particular Riemannian metric, and we use this distance in our
objective function during optimization. Given that T is a symmetric matrix by
the definition of D, computation can be simplified by indexing and scaling the
lower triangular values in T as a 6-vector such that ‖Ti −Tj‖F is equivalent to
the vector L2 distance ‖Vi − Vj‖2. Here, for any given T = Ti,

V =
[
T1,1

√
2T2,1 T2,2

√
2T3,1

√
2T3,2 T3,3

]
. (1)

Super-Resolution with Deep Learning. Super-resolution methods from the
computer vision literature often serve as starting points for medical image pro-
cessing. Recently, works in SISR have developed architectures and transforma-
tions suited to the precise, computationally sensitive problem of artificial resolu-
tion enhancement. Two prominent developments are the efficient sub-pixel conv
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neural network (ESPCN) channel shuffling layer [14], and the use of densely-
connected residual layers [1]. The ESPCN layer casts SISR as a prediction of
offsets, rather than regressing to a higher-resolution image directly. This layer
has been utilized in DTI resolution enhancement as in Blumberg et al. [7] and
Tanno et al. [16]. ESPCN has been further improved to minimize checkerboard
artifacts in the output. Such additions include a nearest-neighbor weight initial-
ization of the ESPCN conv layer, known as initialization to conv network resize
(ICNR) [2], and a small average pooling performed on the output [15].

Other recent SISR methods highlight the sensitivity of resolution enhance-
ment to the loss of scale information throughout the network. Residual conv
layers preserve information by only predicting an additive map over the input,
which reduces the distortion a network can induce relative to performing a full
conv layer [1]. Between-layer dense connections, also called cascading layers, pro-
vide “shortcuts” for information to be passed from earlier layers to those deeper
in the network, relaxing the information dependencies between layers. Of note
is the cascading residual network (CARN) [1], a high-performing, lightweight
architecture that exemplifies information preservation through previously men-
tioned techniques and the removal of normalization layers entirely. The CARN
model forms the backbone network behind our proposed method.

2.2 Proposed Method

Our proposed method is illustrated in Fig. 1. In essence, the method consists
of a lightweight CARN-based network that operates on the Log-mapped DTIs.
Given a subject’s low-resolution DTI volume, D, and their corresponding high-
resolution T2w structural volume, S, we wish to predict a high-resolution DTI,
∗
D. We compute the Log map of each voxel in the input and target DTIs,
T = Log(D) and

∗
T = Log(

∗
D), respectively. To lessen the amount of redun-

dant computation, we reduce T from a volume of 3 × 3 matrices to a volume of
6-vectors V = s(T) (where s(·) follows Eq. 1) when processing inputs through
the network. We use the matrix notation T and D for notational brevity.

The network F (· ;Θ), parameterized by Θ, is illustrated in Fig. 1. Our pro-
posed network is a densely-connected conv network built up from basic residual
blocks, similar to those found in CARN [1] and illustrated in Fig. 1A. The resid-
ual blocks are stacked into so-called cascade blocks (see Fig. 1B). These cascade
blocks themselves are also connected in a cascading pattern, which forms the
two sub-networks of our model. As shown in Fig. 1C, the first sub-network only
takes the low-resolution T as input, where the sub-network has three cascade
blocks. This model’s output is given to an upsampling layer, which consists of a
13 ICNR-initialized conv layer, an ESPCN shuffling layer, and a final 23 average
pooling layer padded by 13 to maintain the correct upsampled shape [2,15]. The
upsampling layer increases the resolution by 2× in each spatial dimension. This
output is copied, with one copy being passed off as a “pre-anatomical” predic-
tion T̃pre, and another passed to the anatomical refinement sub-network. The
structural volume S is concatenated and merged channel-wise with the upsam-
ple layer’s output. The refinement sub-network processes this merged volume
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Fig. 1. The proposed model for SISR on LE matrices. A) A basic residual block with
two conv layers that learns an additive transformation of the input. B) A densely-
connected cascade block. Residual blocks (red circles, shown in A) and 13 conv layers
are stacked, with layer outputs “cascading” to subsequent layers. C) The full proposed
model with two CARN sub-networks; blue rectangles are cascade blocks as shown in B.
The blue rectangle containing blue rectangles indicates a “cascade of cascades”, where
each cascade module itself is connected as shown in B. This is the CARN module. The
upsample layer is a modified ESPCN layer (see Sect. 2.2). (Color figure online)

through a CARN model with two cascade blocks. The final network output is
mapped to Euclidean space with Exp, and the final prediction is given as T̃.

To approach the problem of multi-modal image fusion as laid out in Sect. 2.1,
we promote a soft “compartmentalization” of the sub-networks. The first sub-
network maximizes its prediction based solely upon the low-resolution diffusion
tensor, and the second sub-network serves as a minimal “refinement” step given
a T2w image S. At minimum, our proposed model can be inspected through its
pre-anatomical predicted DTI D̃pre = Exp(T̃pre). We further promote this sep-
aration by calculating training loss over both the output of the ESPCN upsam-
pling layer and the final output prediction:

� = λ‖T̃pre − ∗
T‖F + (1 − λ) ‖T̃ − ∗

T‖F , (2)

with the Frobenius norm ‖ · ‖F , ground truth
∗
T, predictions T̃pre and T̃, and

regularization term λ.



Multi-modal DTI Super-Resolution 19

3 Experiments

3.1 Data

All data were sampled from the HCP Young Adult Study [19], with all the acqui-
sition parameters and HCP pre-processing methods described in Glasser et al.
[9]. We randomly selected 48 subjects with dMRI scans for the training, validat-
ing, and testing steps in our experiments. All DWIs were limited to scans with
b ≤ 1600 s/mm2. The high-resolution ground truth data were processed in the
original resolution of 1.25mm3, while the low-resolution data were downsam-
pled by a factor of 2 in the DWIs with a mean filter of size 2. The full-resolution
and low-resolution DWIs were independently fitted to their own DTIs using
weighted least-squares regression. Each subject’s T2w image was downsampled
from 0.7 mm isotropic to 1.25 mm isotropic with cubic spline interpolation.

During our experiments, we found that the HCP DTIs contained a small
number of outlier voxels located at barriers between the brain and skull.
These outliers were orders of magnitude larger than was biologically possi-
ble, resulting in less stable training and biased quantitative metrics. So, as a
preprocessing step, we clipped the eigenvalues of all subjects to the range of
[1.0 × 10−5, 3.32008 × 10−3] mm/s2. This upper bound was found by taking the
eigenvalues of subjects’ cerebral spinal fluid, which should contain the highest
diffusivity values in the brain, and calculating the 99th percentile of the eigen-
value distribution. This resulted in more consistent model training and testing,
with a negligible effect on the DTIs themselves. However, we found that this
clipping improved scores for all models, including RevNet4, compared to past
IQT reports, [7,16]. So, our quantitative results cannot be directly compared to
these works.

3.2 Implementation and Training Details

During training, subjects were randomly assigned to different subsets, with 10
for training, 4 for validation, and 34 for testing. Similar to Tanno et al. [16] and
Blumberg et al. [7], we increased sample heterogeneity during training by using
only small regions of subject DTIs. For every training epoch, we sampled 4,000
random patches of size 243 for every training subject; each subject had patches
re-sampled at the start of every epoch. These patches were selected such that
every patch had at least one voxel found in the subject’s brain mask (provided
in the HCP dataset). Both the input and target were sampled to produce a pair
of patches at the same location in the subject’s data. These patch pairs were
collated into batches of size 32, and the model was trained for 50 epochs.

The model was optimized with the Adam with weight decay (AdamW) algo-
rithm [10], with a rate of 2.5 × 10−4, β1 = 0.9, β2 = 0.999, and weight decay
λadamw = 0.01. The activation function was the exponential linear unit (ELU).
For training, the loss regularization term was λ = 0.35 (Eq. 2). This was selected
such that the ratio of T̃ loss to T̃pre loss was approximately 2:1. In each back-
wards pass, the L2 norms of the gradients were clipped to a maximum of 0.25 to
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help training stability. Models were implemented in the Pytorch library, version
1.10.2. To reduce memory usage and lower training time, network parameters
were cast to half-precision (16-bit) floating point values. Input and ground truth
DTIs were scaled such that the foreground voxels of each subject and each tensor
component followed a standard normal distribution; the same was performed on
the T2w inputs. During validation and testing, the model predictions and ground
truths were un-scaled before their similarity was calculated. For other imple-
mentation details, see our github repository and results files publicly available
online1.

3.3 Models and Evaluation Metrics

Our primary experiments were run over three different models. As a baseline,
cubic spline interpolation was performed on both the DTIs and the matrix log-
arithms. For comparison to a previous work, we trained and tested the RevNet4
[7] for 50 epochs. RevNet4 was trained with outliers removed as described in
Sect. 3.1, patches re-sampled every epoch (otherwise leading to overfitting), the
mean Frobenius distance as its loss function, and normal backpropagation per-
formed without output caching; other training parameters are as described in
Blumberg et al. [7]. Finally, we trained our proposed model on log-Euclidean
tensors.

We ran further ablation experiments to analyze three different effects: 1)
training on Euclidean DTIs vs. LE tensors, 2) including high-resolution T2w
inputs (for those models with the refinement sub-network), and 3) increasing
the number of network weights with the refinement sub-network. Models trained
on Euclidean DTIs (the “DTI” models) were trained as described in Sects. 2.2
and 3.2, but without the Log and Exp mappings. Models without an anatom-
ical refinement sub-network are shown as “No Anat Net.” Models with this
sub-network that were not given anatomical images (the “Fake Anat” models)
replaced those inputs with an equally-sized 1-tensor (the “fake” T2w).

We report four metrics in total: 1) square root of the mean Euclidean dis-
tance on DTIs (DTI RMFD), 2) square root of the mean Frobenius distance on
log-Euclidean tensors (LE RMFD), 3) peak signal-to-noise ratio (PSNR) of the
DTIs where tensor components are considered as “channels”, and 4) the mean
structural similarity index [20] of the fractional anisotropy (SSIM FA). We com-
pute SSIM over FA because SSIM is based on human perception. DTIs are rarely
viewed directly by clinicians and are not meant for direct human interpretation,
while FA maps are very commonly interpreted for clinical purposes. Each model
prediction was made in the model’s training domain, then Log or Exp mapped
to or from the domain of the metric. For example, models trained on LE tensors
have their outputs Exp mapped back into DTIs for measuring the DTI RMFD.
Cubic spline interpolation was calculated both on the DTIs and the LE tensors.

1 https://osf.io/r37v5.

https://osf.io/r37v5
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Table 1. Average performance scores over test sets for all models, ± standard devi-
ation. Best average scores are printed in bold. Each sample in a model’s performance
distribution is the mean metric over a subject’s image in the test set, over each train-test
split; 34× 3 samples in total, for each model and metric. The cubic spline distribution
was estimated from the average score over each subject.

model

metric DTI RMFD ↓
×10−2

LE RMFD ↓ PSNR ↑ FA SSIM ↑

Cubic Spline 0.050 ± 0.003 1.055 ± 0.030 43.746 ± 0.107 0.881 ± 0.010

RevNet4 0.038 ± 0.001 0.825 ± 0.055 44.609 ± 0.121 0.883 ± 0.011

CARN LE (Proposed) 0.036 ± 0.003 0.684 ± 0.047 44.595 ± 0.182 0.919 ± 0.008

CARN DTI 0.033 ± 0.003 0.764 ± 0.060 44.778 ± 0.190 0.916 ± 0.009

CARN LE No Anat Net 0.042 ± 0.002 0.724 ± 0.041 44.450 ± 0.129 0.907 ± 0.008

CARN DTI No Anat Net 0.038 ± 0.001 0.820 ± 0.055 44.578 ± 0.125 0.899 ± 0.009

CARN LE Fake Anat 0.041 ± 0.002 0.722 ± 0.042 44.527 ± 0.123 0.909 ± 0.008

CARN DTI Fake Anat 0.037 ± 0.001 0.820 ± 0.056 44.611 ± 0.127 0.899 ± 0.009

4 Results

4.1 Proposed Model Performance

We provide all model performance scores in Table 1. To show the variance in
model results, Fig. 3 illustrates the distribution of test subject performance for
each model. In every performance metric, our proposed CARN model, either
trained on LE tensors or Euclidean DTIs, matches or exceeds the performance
of RevNet4, on average. When looking at the distribution of model performances
on subjects in the different test sets, RevNet4 only comes within one standard
deviation of the full CARN model on the PSNR metric.

Qualitatively, CARN LE predicts overall improved DTIs compared to
RevNet4. We use the examples in Fig. 2. Starting with the colored fiber direction
map, the proposed model accurately resolves edges between regions with high
and low FA and preserves voxels containing thin “strands” of oriented fibers.
This is most evident in the thin white matter forming the outer-most gyri of the
brain.

However, FA is derived from equally-weighted differences in all the DTI’s
eigenvalues, and may “average out” some prediction errors. Looking at the Dx,x

on-diagonal component of the diffusion tensor, we see even more advantages for
the proposed CARN model. High-frequency details and edges are more evident
in the CARN LE model, whereas edges in the cortical gyri are almost completely
lost in RevNet4. Some details found in the predicted Dx,x component can be seen
as cerebral spinal fluid regions found directly in the T2w input. However, the
proposed model also flexibly incorporates information for all tensor components,
as seen in the Dy,z comparison. Here, our proposed model provides a distinct
edge near the corpus callosum, even in components with relatively low contrast.
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Fig. 2. Visual comparison of predictions between models. Each column is a model’s
prediction, and each row is a DTI measurement. A zoomed-in region of interest is
outlined in yellow. All images are from predictions of the same subject in the test
set (never in the training set) at the same axial slice. Color FA: FA-weighted color
direction map; Dx,x: on-diagonal component of the diffusion tensor; Dy,z: off-diagonal
component of the diffusion tensor. (Color figure online)

4.2 Model Ablation Results

The performance results for our model ablation experiments are quantified in
Table 1, and the full distributions of each model’s test performances are given in
Fig. 3. To test the effect of adding the refinement sub-network without any real
T2w input, we compare the “No Anat Net” models to the “Fake Anat” models.
Consistently, there is little to no difference across all metrics when marginalizing
out model training domain, indicating that the additional parameters given by
the sub-network provide very little improvement on their own. Thus, we can
examine other effects with minimal concern for the confound of model size.

We also analysed the effect of training the models on LE tensors vs. DTIs.
Here, when the model definition is marginalized out, performance differences
are primarily affected by the metric used (the test domain). Models trained
on DTIs perform better on DTI RMFD and PSNR, while models trained on LE
tensors perform better on LE RMFD and SSIM FA. For both RMFD metrics, this
performance gap is explained by the use of RMFD in the objective function itself
- DTI models were trained to minimize DTI RMFD, and similar for LE models
and LE RMFD. PSNR is also based on the mean-squared error of the DTIs,
which is proportional to the DTI RMFD, giving a similar advantage to DTI
networks. Explaining the advantage of LE models in FA SSIM is less obvious.
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Fig. 3. Test performance distributions of all models tested shown as violin plots with
nested box plots. Each subplot is a separate performance metric. See Table 1 for a
description of the model performance distributions.

The score improvements are modest, especially in the full proposed model (with
anatomical refinement). One possible cause is that each LE model guarantees
that all diffusion tensor eigenvalues will be greater than 0, while the DTI models
have no such guarantee. In practice, this is an uncommon issue for all CARN
models, but its rarity may explain the modest difference in performance.

Finally, the benefits of anatomical refinement are shown directly when com-
paring models without T2w images (“Fake Anat” models) to the full proposed
CARN models (CARN LE and CARN DTI). In every metric, either CARN
DTI or CARN LE achieved the best performance out of all other tested models.
However, this increase in performance is accompanied by a slight increase in per-
formance variance. Some of this variance may be explained by a small number
of outlier subjects (for example, DTI RMFD scores shown in Fig. 3). We leave
the characterization of this sensitivity as a question for future research.
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5 Discussion

In this work, we have proposed and evaluated a novel neural network system for
accurately reconstructing high-resolution DTIs from low-resolution DTIs. We
built upon previous work in the general SISR literature and utilized domain-
specific features of DTIs through interpolation with LE tensors and refinement
with high-resolution T2w images. CARN LE outperforms the previous best
model in the literature, RevNet4 to the best of our knowledge, with less than
half the number of trainable weights (CARN LE with ∼350,000 vs. RevNet4
with ∼875,000). We validated this finding quantitatively and qualitatively.

We have clearly demonstrated the benefit of using information from a high-
resolution T2w image in reconstructing DTIs. However, the benefits of training
the network on LE tensors are less clear. This ultimately comes down to the
choice of evaluation metric that best aligns with one’s goals. The DTI RMFD
and PSNR metrics are the most commonly-used for DTI SISR, and they consider
errors in all tensor components. However, neither metric considers the DTIs as
being in the space of SPD matrices, and PSNR in also has an unclear interpre-
tation metric as measured in decibels. Alternatively, minimizing LE RMFD may
be more appropriate when performing further interpolation in the LE domain
after resolution enhancement. Finally, optimizing FA SSIM may be best suited
towards direct clinician-facing applications considering that FA maps are the
most common DTI measure used by clinicians, more so than the DTIs them-
selves.

In future work, we would like to expand our model to enhance the spatial
resolution of more detailed representations of the underlying biology, such as
NODDI parameters or fiber orientation density functions (fODFs). However,
both estimations would require as input all DWIs of all gradient strengths and
directions that are not consistent between datasets, requiring a more flexible
signal parameterisation than the 6-parameter DTI [13]. We would also like to
extend our model towards improving interpolation performed in many tractog-
raphy algorithms. The possibility of highly detailed, precise, and accurate maps
of an individual patient’s connectome, available to the average clinician, would
fulfill one of the most important promises made by diffusion MRI.
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Abstract. In this work, we evaluate how neural networks with periodic
activation functions can be leveraged to reliably compress large multidi-
mensional medical image datasets, with proof-of-concept application to
4D diffusion-weighted MRI (dMRI). In the medical imaging landscape,
multidimensional MRI is a key area of research for developing biomarkers
that are both sensitive and specific to the underlying tissue microstruc-
ture. However, the high-dimensional nature of these data poses a chal-
lenge in terms of both storage and sharing capabilities and associated
costs, requiring appropriate algorithms able to represent the informa-
tion in a low-dimensional space. Recent theoretical developments in deep
learning have shown how periodic activation functions are a powerful tool
for implicit neural representation of images and can be used for compres-
sion of 2D images. Here we extend this approach to 4D images and show
how any given 4D dMRI dataset can be accurately represented through
the parameters of a sinusoidal activation network, achieving a data com-
pression rate about 10 times higher than the standard DEFLATE algo-
rithm. Our results show that the proposed approach outperforms bench-
mark ReLU and Tanh activation perceptron architectures in terms of
mean squared error, peak signal-to-noise ratio and structural similar-
ity index. Subsequent analyses using the tensor and spherical harmonics
representations demonstrate that the proposed lossy compression repro-
duces accurately the characteristics of the original data, leading to rel-
ative errors about 5 to 10 times lower than the benchmark JPEG2000
lossy compression and similar to standard pre-processing steps such as
MP-PCA denosing, suggesting a loss of information within the currently
accepted levels for clinical application.

Keywords: Data compression · Multidimensional imaging ·
Diffusion-weighted MRI · Deep learning · Neural implicit representation

1 Introduction

Modern medical imaging provides both structural and functional information
on anatomical features and physiological processes. In particular, Magnetic
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Resonance Imaging (MRI) is a formidable imaging technique providing a
plethora of contrasts through different modalities which can be used to quan-
tify specific features of biological tissues non-invasively. As such, the MRI use in
clinics has transformed the diagnosis, management and treatment of disease.

Recent developments in both MRI scanners’ hardware [6] and methods (e.g.,
[14,26]) have pushed further the capabilities of medical imaging but also opened
new challenges in terms of storage and sharing requirements of ever larger MRI
datasets. For example, advanced 4D diffusion-weighted MRI (dMRI) datasets can
require ∼ 100 MB - 10 GB, depending on the spatial resolution and the number of
measurements. Moreover, large imaging studies scale this figure up to > 10 TB. An
example is the UK-Biobank initiative (https://www.ukbiobank.ac.uk) which aims
to collect extensive multi-modal MRI datasets from about 500,000 participants.
For each participant, the size of a dMRI dataset is 550 MB, leading to a required
storage of 275 TB for the dMRI data alone. Clearly, the high-dimensional nature
of these data poses a challenge in terms of storage and sharing capabilities and
associated costs and technology needs, requiring appropriate algorithms able to
represent the information in a low-dimensional space.

In this respect, neural networks have been recently shown to be ideal tools to
map pixel/voxel locations to image features. The learnt mappings are typically
called implicit neural representations and have been used to represent images
[18], 3D scenes [17], videos [10] audio [16], and more. In particular, neural net-
works with periodic activation functions have been recently proposed as powerful
tools for implicit neural representation of images [16] and can be used for effi-
cient lossy compression of 2D images [4]. With this strategy, there is no need to
generalize to out-of-distribution samples: the compression procedure coincides
with the training itself, with reasonable time/energy consumption on ordinary
workstation or even low-power devices. A drawback of this approach is that the
resulting compression is lossy, meaning that the compression comes at the cost of
losing a fraction of the information. The suitability of lossy compression in clini-
cal applications has been widely investigated for CT, but relatively less for MRI.
The few studies concerning MRI have concluded that JPEG and JPEG2000 lossy
compression ratio up to 25 preserves diagnostic accuracy and perceived image
quality [19]. However, some of the issues arising from the compression of CT
data may be relevant to MR imaging. A wide range of studies have investigated
mostly JPEG2000 compression of CT data and have concluded that acceptable
lossy compression ratios range from 4 to 20 [1,7,9,13,25].

The aim of this work is to evaluate how neural networks with periodic acti-
vation functions can be effectively leveraged to compress large multidimensional
medical image datasets, with proof-of-concept application on 4D dMRI. By
extending the approach proposed in [4,16] to 4D images, we quantitatively inves-
tigate the impact of lossy compression and show how any given 4D dMRI dataset
can be accurately represented through the parameters of a sinusoidal activation
network, achieving a data lossy compression rate about 10 times higher than the
current standard lossless DEFLATE algorithm [3]. We envision that this architec-
ture will aid not only compression but also security and anonymization and could
be applied to other image modalities, beyond this demonstration on dMRI.

https://www.ukbiobank.ac.uk
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Fig. 1. Compression and decompression procedure. Overview of the main steps
involved in the proposed compression and decompression procedure.

2 Methodology

The proposed compression approach uses the SIREN (sinusoidal representation
networks) architecture [16], which consists of a multilayer perceptron (MLP)
with sine activation functions for implicit neural representations. The overall
compression and decompression procedure is outlined in Fig. 1. As proposed in
[4], the encoding step leverages the overfitting of the MLP to a given image,
quantizing its weights and biases and storing those as a compressed reconstruc-
tion of the image. As a further lossless compression step, the network parameters
are archived with a Lempel-Ziv-Markov chain algorithm (https://7-zip.org). At
decoding time, the MLP is initialized with the stored parameters and evaluated
using pixel locations as input to reconstruct the image.

We generalized this formulation for 4D datasets, where the goal becomes
learning the mapping between the 3D coordinates of a given voxel and its
modality-specific signal variations. As benchmark, we compared the perfor-
mances of this approach with those from standard MLPs with ReLU and Tanh
activation functions, widely used for implicit neural representation tasks [16].
To quantify their performances, we relied on several measures, including mean
squared error (MSE), peak signal-to-noise ratio (PSNR) and structure similarity
index (SSIM). Furthermore, we compared the loss of information from the pro-
posed SIREN approach with benchmark lossy compression JPEG2000 in terms of
relative error of estimated indices from tensor and spherical harmonics represen-
tations. Finally, as reference for the acceptable margins of these relative errors,
we compared them with those resulting from two commonly used pre-processing
steps in dMRI: MP-PCA denoising [23] and smoothing with a Gaussian kernel
(FWHM = 1.5).

https://7-zip.org
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SIREN Mathematical Formulation. We propose to approach the com-
pression problem of a multi-dimensional image as finding an implicit representa-
tion Φ between its coordinates xi and its features yi = f(xi). In the application
to dMRI images mentioned in the introduction, each voxel is associated with a
distribution of Nmeas directional values. To approximate Φ, we seek to solve the
optimization problem with loss function L =

∑ ‖Φ(xi) − f(xi)‖2. Leveraging
previous work on implicit representation, we define Φ through a neural network
with periodic activation function [16]:

Φ(xi) = Wn(φn−1◦φn−2◦φ0)((x))+bn, xi �→ φi(xi) = sin(Wixi+bi) (1)

where φi represents the ith layer of the network, Wi is the weight matrix, and
bi is the bias term. The main advantage of periodic activation functions is that
the derivatives remain well behaved for any weight configuration, and as a result
it is possible to learn not only the mapping Φ but also all its derivatives. One
caveat of these activation functions is that due to their periodic nature, catas-
trophic forgetting phenomena during training can occur. This issue can be easily
overcome initializing the weights from a uniform distribution between −√

(6/n)
and

√
(6/n), where n is the number of inputs to each activation unit: this con-

strain ensures that the periodic activation input has a normal distribution with
a unitary standard deviation [16]. In principle, this formulation can be applied
to a tridimensional volume where xi = (xi, yi, zi). However, in this case the
number of parameters needed to properly learn the mapping Φ could become
dramatically higher and poses a burden on the subsequent implementation. For
this reason, a more feasible approach could be to learn Φ for each slice relying on
its bidimensional coordinates xi = (xi, yi). Here, we implemented and compared
both the approaches. A further observation is that combining SIREN and ReLU
approaches could lead to the best of both worlds, hence we also experimented
with hybrid architectures.

Implementation. The networks were implemented using PyTorch, extend-
ing previous work made available from Sitzmann and colleagues (https://github.
com/vsitzmann/siren). All the code is publicly available at the following GitHub
repository: https://github.com/palombom/SirenMRI. For our experiments, we
used five subjects from the publicly available MGH HCP Adult Diffusion dataset
(https://db.humanconnectome.org/). The model fitting was performed using a
NVIDIA Titan XP GPU for 2D architectures, while for 3D ones up to four
NVIDIA Tesla V100 SXM2 GPUs were used in parallel. The training is per-
formed in a self-supervised way, so the training set consists of all the voxels
within a dMRI dataset (in this case 140× 140× 96 = 1881600). There is no split
in training/validation/testing sets (and no need for it) as our goal is to over-
fit the input data. A new network is trained for each dataset. During training,
which corresponds to the encoding or compression phase, we update the net-
work’s weights and biases using back-propagation and mean squared error as
loss function (calculated between the input data and the network’s predictions)
which is minimized using the ADAM algorithm (2000 epochs, determined exper-
imentally as trade-off between highest peak SNR, highest compression ratio and

https://github.com/vsitzmann/siren
https://github.com/vsitzmann/siren
https://github.com/palombom/SirenMRI
https://db.humanconnectome.org/
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fastest training). The learning rates were determined experimentally as 3 · 10−4

and 2·10−4 for 2D and 3D architectures, respectively. The training (i.e. compres-
sion) for the whole dMRI dataset took on average 13 min, while the prediction
(i.e. decompression) took about 2 s. We explored the impact of both deeper and
wider architectures testing networks with 3/4/5 layers and 128/256/512 units
per layer (1024 units for 3D architectures).

Assessing Networks’ Performances. In the first experiment, we assessed
the performance of each network. We quantified the average MSE, PSNR and
compression ratio for a representative dMRI dataset (Subject ID: MGH1001) as:

MSE =
1

Nvoxels

1
Nmeas

Nvoxels∑

i=1

Nmeas∑

j=1

[Ŝground−truth
j (xi) − Ŝdecomp

j (xi)]2 (2)

PSNR = 20 log10(
1

√
(MSE)

) (3)

where Ŝ(xi) is the vector of Nmeas dMRI signals from the voxel at location xi,
normalized between 0 and 1. For each decompressed image, we also calculated
voxel-wise the relative error and the local SSIM with respect to the ground-truth
using the windowing approach proposed in [24] and implemented in scikit-image
(https://scikit-image.org). We finally computed the compression ratio as the
ratio between the uncompressed and compressed image file sizes.

Evaluating Compression Quality and Accuracy. In the second experi-
ment, we quantitatively assessed the quality of the compression obtained by the
network comprised of 3 layers and 256 units which showed a good compromise
between PSNR (> 36) and compression ratio (∼10). Specifically, we quantified
the accuracy of the compression for metrics of interest in dMRI applications,
such as the diffusion tensor [8], the spherical harmonics coefficients [2] and the
fibre orientation distribution function (fODF) [21]. From each of the five sub-
jects in our dataset, the diffusion tensor and related rotational invariant metrics
fractional anisotropy (FA) and mean diffusivity (MD) were estimated using only
the shell at b = 1, 000 s/mm2 with MRtrix3 (https://www.mrtrix.org) [22]. The
spherical harmonics coefficients up to the 4-th order were estimated using only
the shell at b = 5, 000 s/mm2 with MRtrix3. The corresponding rotational invari-
ant metrics RISH0 and RISH2 were then computed according to [12]. Finally,
the fODF was estimated using the constrained spherical deconvolution algorithm
as implemented in MRtrix3 using only the shell at b = 5, 000 s/mm2.

3 Results

Networks’ Performances. In Fig. 2a we show the performances during train-
ing for the representative networks comprised of 3 layers and 256 units, demon-
strating that all the networks converged to their best PSNR/MSE. We note
that introducing a ReLU activation function after the last layer of a SIREN-
2D network (SIREN-2D-relu) stabilizes the training and slightly improves the

https://scikit-image.org
https://www.mrtrix.org
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Fig. 2. Networks’ performances. (a) PSNR (solid lines) and log10 (MSE) (dashed
lines) as a function of training epochs for the different networks and the exemplar
configuration of 3 layers and 256 units per layer, chosen as overall good compromise
between the achievable PSNR and corresponding compression ratio. (b) PSNR as a
function of compression ratio for the different networks used and JPEG2000. In each
curve, the points represent an increasing number of units per layer when going from
higher to lower compression ratios. Specifically, for the 2D networks (SIREN-2D, MLP-
ReLU and MLP-Tanh) these correspond to: 128/256/512 units, while for the 3D one
(SIREN-3D): 256/512/1024 units.
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Fig. 3. Compression quality of an exemplar dataset (MGH1001). The first
row shows a representative slice of the b = 0 image for the ground-truth and each
decompressed image using JPEG2000 and the 2D (SIREN-2D, MLP-ReLU and MLP-
Tanh) and 3D (SIREN-3D) networks, all with 3 layers and 256 units. As reference,
the results after a commonly used pre-processing step - the MP-PCA denoising - are
also reported. The second and third rows report the relative percentage error and the
SSIM with respect to the ground-truth. The average PSNR and compression ratio are
respectively: 29.3 and 9.0 for JPEG2000; 36.4 and 9.0 for SIREN-2D; 28.4 and 6.2 for
MLP-ReLU; 24.7 and 6.3 for MLP-Tanh; 31.6 and 59.5 for SIREN-3D.

performances, while adding a first layer with sinusoidal activation functions to
a MLP with ReLU activation functions (MLP-SIREN) significantly improves
the performances with respect to the ReLU-only MLP (MLP-relu) but still per-
forming substantially worse than SIREN-2D and SIREN-2D-relu. In Fig. 2b we
show the average slice-wise PSNR as a function of the compression ratio for each
network. We observe that SIREN-2D outperforms the other 2D-based MLPs in
terms of both PSNR and compression ratio; and the JPEG2000 at compres-
sion ratios higher than 3. With respect to the 3D implementation SIREN-3D,
SIREN-2D still provides higher PSNR, although at a reduced compression ratio.

Compression Quality and Accuracy. In Fig. 3 we compare the compres-
sion quality for the commonly used lossy compression JPEG2000 and all the
networks comprised of 3 layers and 256 units using the b = 0 image from the
subject MGH1001. We find that SIREN-2D provides the lowest relative error
and the highest SSIM among the lossy compressions. It is worthwhile noting
that masking the brain, if the background is not of interest, can lead to further
compression of a factor 2 to 3. In terms of diffusion metrics, in Table 1 we report
the comparison of the relative error obtained by SIREN-2D with 3 layers and
256 units with the relative error obtained by JPEG2000 and two pre-processing
steps commonly used in dMRI data analysis: MP-PCA denoising and Gaus-
sian smoothing. We found that the relative error from SIREN-2D is close to
the relative error from MP-PCA denoising, and from about 5 to 20 times lower
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Table 1. Relative error of diffusion-based metrics (MD: mean diffusivity and FA: frac-
tional anisotropy from the data at b = 1000 s/mm2; RISH: rotiationally invariant
spherical harmonics from the data at b = 5000 s/mm2) for one representative subject
after the two exemplar pre-processing steps: MP-PCA denoising and smoothing with
a Gaussian kernel; and compression/decompression using two lossy compression meth-
ods: the SIREN-2D network with 3 layers and 256 units, and the JPEG2000 algorithm
with equivalent compression ratio. The mean (± std) values were calculated using the
voxels in the white (WM) and gray (GM) matter, and cerebrospinal fluid (CSF) masks.

Method MD

WM GM CSF

Pre-Processing: MP-PCA 1.98%(±12.54%) 0.75%(±1.27%) 1.64%(±2.55%)

Smoothing 3.02%(±44.87%) 2.89%(±13.03%) −2.29%(±3.73%)

Compression: JPEG2000 5.71%(±132.38%) 3.89%(±29.59%) −4.01%(±10.22%)

SIREN-2D 2.16%(±83.81%) 1.02%(±7.45%) 1.56%(±3.31%)

Method FA

WM GM CSF

Pre-Processing: MP-PCA 0.44%(±4.58%) −0.12%(±9.10%) −1.10%(±18.05%)

Smoothing −5.36%(±5.75%) −8.68%(±8.34%) −8.49%(±11.18%)

Compression: JPEG2000 −7.98%(±21.92%) −0.09%(±36.63%) 5.39%(±40.73%)

SIREN-2D −0.72%(±9.82%) −1.03%(±16.13%) −0.07%(±22.81%)

Method RISH0

WM GM CSF

Pre-Processing: MP-PCA 0.01%(±0.80%) 0.01%(±0.72%) 0.01%(±0.66%)

Smoothing −1.83%(±2.63%) 0.78%(±5.24%) 6.16%(±7.99%)

Compression: JPEG2000 −1.54%(±5.24%) 0.69%(±11.89%) 11.02%(±21.09%)

SIREN-2D −0.50%(±3.39%) 0.24%(±5.31%) 0.99%(±7.44%)

Method RISH2

WM GM CSF

Pre-Processing: MP-PCA −0.73%(±10.91%) −6.94%(±41.90%) −10.95%(±45.00%)

Smoothing −11.41%(±8.18%) −19.78%(±16.17%) −27.42%(±21.47%)

Compression: JPEG2000 −8.60%(±18.78%) −6.32%(±62.54%) 10.25%(±106.32%)

SIREN-2D −4.92%(±17.55%) −6.80%(±53.25%) 2.52%(±92.75%)

Table 2. Relative error for five subject after compression/decompression of diffusion-
based metrics (MD and FA from the data at b = 1000 s/mm2; RISH from the data at
b = 5000 s/mm2) for the SIREN-2D network with 3 layers and 256 units. The mean
(± std) values were calculated using all the voxels in the brain mask, including CSF.

Subject ID MD FA RISH0 RISH2

MGH1001 −0.69%(±5.37%) −3.93%(±11.96%) −0.06%(±4.54%) −13.99%(±28.00%)

MGH1002 −0.72%(±5.57%) −3.89%(±12.17%) −0.11%(±4.66%) −14.17%(±28.14%)

MGH1003 −0.87%(±4.99%) −4.37%(±12.06%) −0.13%(±4.72%) −15.56%(±29.64%)

MGH1004 −0.82%(±5.48%) −3.94%(±12.32%) −0.09%(±4.60%) −14.51%(±29.04%)

MGH1005 −0.65%(±5.23%) −3.65%(±11.56%) −0.10%(±4.49%) −11.33%(±25.60%)
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Fig. 4. Reconstructed diffusion tensor and fODF for an exemplar dataset
(MGH1001) and different SIREN-2D architectures. Arrows point at regions
where differences are more evident, especially for the 3 layers/128 units case.

than smoothing and JPEG2000 compression. In Table 2 we report the relative
error after compression and subsequent decompression for FA, MD, RISH0 and
RISH2, obtained with the same SIREN-2D network with 3 layers and 256 units
across five subjects. Consistently, we find that the relative error on FA is < 5%,
on MD and RISH0 < 1% and on RISH2 ∼ 15%. Finally, in Fig. 4 we show the
impact of the number of units for the SIREN-2D network with 3 layers on the
diffusion tensor and the fODF. As expected, SIREN-2D with 512 units provides
the most accurate result, however its compression ratio is only ∼ 2. Very small
differences can be seen between this network and SIREN-2D with 256 units,
while some relevant differences are noticeable with SIREN-2D with 128 units.

Summary. Overall, our results show that SIREN-2D with 3 layers/256 units
is a good compromise to achieve a compression ratio of ∼ 10 with high accuracy.
Importantly, the relative error obtained with this approach is a) smaller than
commonly used lossy JPEG2000 compression; b) much smaller than commonly
used pre-processing steps of Gaussian smoothing and c) similar to the commonly
used pre-processing MP-PCA denoising, suggesting minimal loss of information
within the currently accepted levels for clinical applications and utility.
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4 Discussion and Conclusion

The results of our experiments show how periodical activation functions can
dramatically change the performances of MLPs, providing a powerful tool for
compression purposes. This is thanks to the ability of periodical activation func-
tions to learn the non-linear mapping between the position of each voxel in a
4D dMRI image and the corresponding features of the dMRI signal as well as
all its derivatives [16]. Here, we have demonstrated two important aspects for
the design and training of sinusoidal activation networks: a) a single layer with
sinusoidal activation functions in a conventional MLP with ReLU (or Tanh)
activation functions improves its performances but is not enough to fully exploit
SIREN’s properties; b) a ReLU activation function after the last layer of a sinu-
soidal activation network provides more stable convergence to the optimum.

This work is inspired by recent studies showing how SIREN networks can be
used to compress several kind of data, including images from different modal-
ities, videos and audios [4,5,16]. However, none of the previous studies have
assessed quantitatively the downstream impact of the SIREN lossy compression
on medical images analysis, and to what extent this is acceptable. To the best of
our knowledge, this is the first work to quantitatively evaluate the performance
of SIREN for compression of multidimensional medical imaging modalities. Our
quantitative results highlight how the compression procedure, despite lossy, pre-
serves the measures underlying the images with high accuracy. In fact, the esti-
mated relative error subsequent to SIREN compression (up to compression ratio
10) were very similar to the error from commonly used pre-processing steps,
such as MP-PCA denoising. This suggests minimal loss of information within
the currently accepted levels for clinical applications and utility.

It is worthwhile noting that, for compression ratios ≤ 2, JPEG2000 outper-
forms SIREN-2D(-relu) in terms of peak SNR and it would be a better choice for
the lossy compression. For higher compression ratios, SIREN-2D(-relu) should
be used instead, as it largely outperforms JPEG2000. Also, on average, the lossy
compression algorithms tested here showed large standard deviations which may
require further investigations. With respect to JPEG2000, SIREN-2D showed
consistently lower standard deviations, but larger than MP-PCA denoising.

In addition to the good compromise between PSNR and compression ratio,
the proposed implementation does not require to generalize as the goal of this
approach is to overfit the data itself. Therefore it does not require large datasets
for training and testing, as in other deep learning based compression methods
(e.g. autoencoders [20]). Our results from different subjects confirm the stabil-
ity of the compression performances. Moreover, given the relatively shallow and
simple architecture of the SIREN network, the proposed method can be imple-
mented on ordinary workstations, offering a valid low-energy/low-cost alterna-
tive to more demanding deep learning solutions. Future iterations could take
advantage of multiple low-energy devices to parallelize the compression, reduc-
ing even more the associated costs. In fact, the main cost behind this approach is
related to the time consumption of the compression phase, e.g. 8 s per slice with
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the 3-layers/256-units SIREN-2D on a NVIDIA Titan XP GPU (our datasets are
comprised of 96 slices). Nonetheless, in the application scenario we envision, the
compression needs to be done only once and could potentially be done overnight,
even directly on the MRI scanner workstation.

It is finally worth noting that, as most multi-dimensional medical imaging
modalities are inherently tridimensional, a 3D architecture would be a tempt-
ing choice. However, as observed in our experiments, the number of parameters
necessary to obtain reasonable PSNR would be prohibitive: even using multiple
GPUs in parallel, it was not possible to outperform the simpler 2D implemen-
tation. We refer the reader to recent works explaining further the challenges
involving 3D compression and possible solutions [5,11]. Potential future direc-
tions could explore patch-based approaches, as indeed recently explored in these
works. Future work will also explore the performance of the proposed compres-
sion methods on multidimensional MRI data entailing the acquisition of diffusion
images with different TE, TR, etc., such as the MUDI dataset [15].
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Abstract. Echo planar imaging (EPI) is the most common approach
for acquiring diffusion and functional MRI data due to its high tem-
poral resolution. However, this comes at the cost of higher sensitiv-
ity to susceptibility-induced B0 field inhomogeneities around air/tissue
interfaces. This leads to severe geometric distortions along the phase
encoding direction (PED). To correct this distortion, the standard app-
roach involves an analogous acquisition using an opposite PED leading
to images with inverted distortions and then non-linear image registra-
tion, with a transformation model constrained along the PED, to esti-
mate the voxel-wise shift that undistorts the image pair and generates a
distortion-free image. With conventional image registration approaches,
this type of processing is computationally intensive. Recent advances in
unsupervised deep learning-based approaches to image registration have
been proposed to drastically reduce the computational cost of this task.
However, they rely on maximizing an intensity-based similarity mea-
sure, known to be suboptimal surrogate measures of image alignment.
To address this limitation, we propose a semi-supervised deep learn-
ing algorithm that directly leverages ground truth spatial transforma-
tions during training. Simulated and real data experiments demonstrate
improvement to distortion field recovery compared to the unsupervised
approach, improvement image similarity compared to supervised app-
roach and precision similar to TOPUP but with much faster processing.

Keywords: Deep learning registration · Susceptibility distortion
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1 Introduction

Echo planar imaging (EPI) is the most common approach for acquiring diffusion
and functional MRI data due to its high temporal resolution which both reduces
the influence of motion and allows the acquisition of a large number of volumes in
a time frame amenable to neuroscientific and clinical research. This is, however,
at the cost of higher sensitivity to susceptibility-induced B0 field inhomogeneities
around interfaces of air, bone, and soft tissue. This leads to severe geometric dis-
tortions in the form of local expansions or contractions along the phase encod-
ing direction (PED), breaking alignment with the corresponding anatomical scans
and corrupting subsequent diffusion model fitting or tractography. Moreover, the
effect of EPI susceptibility distortions radiate over the whole image, introducing
systematic alterations even far from the apparent hot spots [6].

To tackle this problem, the strategy that has proved most effective is to
acquire an extra scan with identical settings, except for an opposite PED [1] (also
referred as blip up, blip down). It produces an analogous image with reverse dis-
tortion: expansions where there were contractions and vice versa. One can then
apply non-linear image registration, with a transformation model constrained
along the PED, to estimate the shift in voxel coordinates that undistorts the
image pair and generates a distortion-free image. Standard implementations of
this strategy, e.g. TOPUP [4] in FSL, are computationally intensive. They rely
on traditional image registration methods that align each new pair of images
with a separate iterative optimization. A comparison of such algorithms is avail-
able in [2]. It was proposed in [3] to synthesize a b = 0 image through deep
learning thus allowing to use TOPUP with the economy of the opposite PED
acquisition, but with no gain in terms computational time.

Recently, image registration based on deep learning (DL) architectures, con-
volutional neural networks (CNN) in particular, have been developed. With the
investment of an upfront cost during training, test images can be registered in one-
shot almost instantaneously. In the same vein as the unsupervised Voxelmorph [16]
framework for anatomical images, it has led to the development of fast EPI dis-
tortion correction with DL-powered registration. In [8] and [7], similarly to tra-
ditional registration, the optimization relies on maximizing an intensity similar-
ity measure, known to be suboptimal surrogate measures of image alignment [9].
Also, [8] does not integrate intensity modulation to account for signal stretchings
and pile-ups associated to geometric expansions and contractions. This aspect is
given due consideration in [7], but the network is based on a 2D architecture likely
to miss volumetric characteristics. In [5], more reliable fiber orientation distribu-
tion (FOD) features are used, although this is intended only to be used as sec-
ondary correction of the distortion residuals after an external primary one.

To address those limitations, we propose a 3D semi-supervised DL algorithm
that directly leverages ground truth spatial transformations during training. We
hypothesise that constraining DL model training with the most direct representa-
tions of spatial correspondence will significantly improve the fidelity of the recov-
ered spatial correspondence during testing. Also we integrate Jacobian intensity
modulation when constructing the undistorted images.
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We performed two experiments to evaluate the proposed method against
the unsupervised approach similar to [8], but also against a fully transformation
supervised one. The first experiment makes use of real data to assess the practical
performance. For this experiment, transformations produced by TOPUP are
used as ground truth for training and testing. The second experiment makes
use of simulated data, generated by DW-POSSUM [1], a realistic Spin-Echo
EPI simulator. This sets up a scenario where we have genuine ground truth for
both undistorted image and the distortion-inducing deformation, and allows the
comparison with TOPUP.

The code used to implement the proposed semi-supervised model, as well as
the unsupervised and field supervised ones (and more), is available in the open
source sudistoc1 repository.

2 Background

2.1 Distortion Model

Susceptibility-induced EPI geometric distortion is well understood [11]. For such
multi-slice acquisitions, distortion due to B0 field inhomogeneities is negligible
along the frequency encoding direction. Its effect can thus be parametrized by a
unidirectional deformation field V shifting voxel coordinates x along the PED.
For the typical PED from posterior to anterior, we have T+(x) = x+V (x). If the
PED is reversed, an opposite displacement field will result: T−(x) = x − V (x).
Henceforth, we will refer to this as the opposite symmetry constraint for the two
displacement fields.

Without loss of generality, we will refer to T+ as the forward transform, and
the corresponding distorted image as I+. Likewise, T− will be referred to as the
backward transform and the corresponding distorted image as I−. The latent
undistorted image will be denoted as Î. Following [12], it can be expressed both
in terms of the forward and backward images following:{

Î(x) ∼ JT+ · I+ ◦ T+(x)
Î(x) ∼ JT− · I− ◦ T−(x)

(1)

where JT+ (resp. JT−) is the Jacobian determinant of T+ (resp. T−), ◦ denoting
composition and · element-wise multiplication. JT encodes the local expansion (if
|JT | ∈ [1,+∞)) or contraction (if |JT | ∈ (0, 1]) properties of the transformation
and will modulate the resulting intensities accordingly [13].

2.2 Distortion Correction Using Image Registration

Under the above distortion model, it is evident image registration can be used
to estimate the transformations for correcting the distorted image pair. Equa-
tion (1) suggests the correction can be formulated as the following image regis-
tration problem:

arg min
V

C
(
JT+ · I+ ◦ T+, JT− · I− ◦ T−

)
(2)

1 sudistoc: https://github.com/CIG-UCL/sudistoc.

https://github.com/CIG-UCL/sudistoc
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where C is a dissimilarity criterion between the two corrected images (from I+
and I− respectively). The mean squared error (MSE) between intensities is par-
ticularly well suited in this case since we are dealing with the same subject, the
same modality, the same acquisition parameters (with the exception of PED);
we therefore expect almost identical intensities at endpoint. The sought trans-
formations (T+ and T−) are parametrized by V which, even though constrained
to be unidirectional, can have a large number of degrees of freedom: up to the
number of voxels of the image.

As noted in the introduction, this image registration problem is currently
typically solved via computationally intensive iterative optimization, with each
new image pair solved completely independently. Recent advances in DL-based
image registration have recently been leveraged to substantially accelerate this
task by replacing iterative optimization with a one-shot computation [14,15].
The idea behind DL-based image registration is to learn a model that can pre-
dict from an image pair the transformation that put them into correspondence.
During training, model parameters are tuned to output an optimal transforma-
tion, for each training sample, that maximises either some similarity between
transformed images (unsupervised) or the resemblance to the corresponding
ground truth transformation (supervised). While the training may be compu-
tationally expensive, once completed, new image pairs can be registered almost
instantaneously. The most popular publicly available implementation is Vox-
elMorph [16,17] which provides an unsupervised framework, making use of a
U-Net convolutional neural network (CNN) architecture. This framework was
recently exploited for EPI distortion correction [8]. However it has now been
limited to optimisation over purely intensity-based losses and does not embed
intensity modulation.

3 Method

We implement the proposed semi-supervised approach using the Voxelmorph
framework. The framework must be adapted 1) to predict a spatial transform
pair with opposite symmetry, 2) to constrain predicted spatial transforms to be
unidirectional along the PED, 3) to support the image registration formulation
represented by Eq. (2) that includes Jacobian intensity modulation, 4) to enable
semi-supervision with ground truth spatial transforms, and 5) to handle weight
maps that modulate the contribution of each voxels according to anatomical
regions of interest. Points 3, 4 and 5 are not present in the work from [8]. The
details of the model are described below.

3.1 Model Architecture

The model is organised into three sequential blocks (Fig. 1). The first block takes
a distorted image pair as input and outputs a unidirectional vector field which
is used to produce a forward and a backward transformation. Those, together
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with the associated input images, are fed to a resampling block that reconstruct
undistorted images by interpolating from transformed coordinates.

The CNN block is a U-Net as in VoxelMorph, but its input and output are
different. Instead of any arbitrary image pair, it must be given a pair of analo-
gously distorted images {I+, I−} as input. Instead of a vector field, it outputs
a scalar field V characterizing constrained displacements along a single direc-
tion (PED). As in VoxelMorph, all the trainable parameters of the model are
contained in this block.

Fig. 1. Diagram of the proposed semi-supervised distortion correction network. Por-
tions specific to unsupervised are highlighted in blue, whereas the ones associated to
supervised are in red. (Color figure online)

To preserve the opposite symmetry constraint induced by the PED reversal,
the pair of forward and backward transformations {T+, T−} are built from the
estimated field V following: T+ = Id + V and T− = Id − V .

Resampling block implements image warping. Unlike VoxelMorph and [8],
our implementation includes intensity modulation, which allows us to account for
signal pile-up in the presence of contraction and signal reduction in the presence
of expansion. It takes I+ (resp. I−) and T+ (resp. T−) as input to produce
undistorted, intensity-modulated images JT+ · I+ ◦T+ (resp. JT− · I− ◦T−). This
requires computing the Jacobian determinant of the transformations.

3.2 Models

The model architecture described above is used to implement an unsupervised
and a transformation supervised model, as baselines for comparison, and the
proposed semi-supervised model.

A diagram illustrating the different models can be found in Fig. 1. The parts
exclusive to the unsupervised model, comparable to [8], are highlighted in blue. It
includes the resampling block that unwarps the input images with the estimated
field allowing their comparison (unsupervised loss). The red parts are exclusive
to the supervised model. It includes the ground truth field that is compared to
the estimated one (supervised loss). The black parts are common to both. It
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includes the distortion field estimation (a regularization loss is computed on it).
The semi-supervised model encompasses both the unsupervised and supervised
components.

The unsupervised loss LU is an image similarity metric between the two
undistorted images that have undergone Jacobian intensity modulation. As men-
tioned in Sect. 2.2 the MSE is well indicated and Eq. 1 leads to:

LU =
n∑

i=1

wi

(
JT+ · I+ ◦ T+(xi) − JT− · I− ◦ T−(xi)

)2 (3)

This loss is only required for the unsupervised and semi-supervised models.
The supervised loss is a distance between the estimated distortion field V

and the ground truth one V̂ . The MSE is also well adapted when dealing with
displacement vectors as it corresponds to an average of geometrical distances,
it’s a direct quantitative measure of the goodness of the registration:

LS =
n∑

i=1

wi

(
V (xi) − V̂ (xi)

)2

(4)

This loss is only required for the supervised and the semi-supervised model.
A regularization loss LR is also use on the estimated distortion field V to

encourage smoothness:

LR =
1
n

n∑
i=1

‖∇V (xi)‖2F (5)

where ∇V is the Jacobian of the field V and ‖.‖F is the Frobenius norm. This
loss is computed for all models.

For each models, the overall loss is a sum of the ones above, weighted to
account for large order-of-magnitude differences in different loss terms.

To prevent the learning process to be influenced by meaningless information
from background (which represent the majority of the image!), another kind of
weighting, spatially this time, occurs when computing the unsupervised and the
supervised losses. It corresponds to the wi in Eq. 3 and Eq. 4. The contribution
of each voxels is modulated such as only areas of interest (typically just the
brain) contribute to the loss, ignoring the background. This is not present in
Voxelmorph and [8].

4 Evaluations

The idea is to evaluate how well, having processed a portion of a dataset with
a regular tool (here TOPUP), one can use those to train a DL model that will
rapidly process the rest of the dataset. Corrections from three DL registration
approaches are engaged for comparison: unsupervised, transformation supervised
and semi-supervised. We will perform experiments on two datasets: 1- A real
dataset with TOPUP outputs as ground truths, 2- A synthetic dataset with
absolute ground truths allowing to integrate TOPUP to the comparison.
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4.1 Datasets

We acquired anatomical and diffusion weighted data as part of an ongoing study
investigating memory learning and consolidation. We have, for 60 healthy sub-
jects, T1-weighted images and distorted EPI b = 0 image pairs from opposite
PED acquisition that are antero-posterior (AP) and postero-anterior (PA).

Distorted EPI images have been processed through TOPUP to obtain undis-
torted images and associated distortion fields.

Fig. 2. Preprocessing steps involved in creating the real and the simulated datasets.

In addition, simulated data were produced using DW-POSSUM [1] (an exten-
sion of FSL POSSUM [10]), a realistic Spin-Echo EPI simulator. It takes as
input tissue segmentations, MR parameters associated with these tissues and a
pulse sequence, and produces an EPI image by solving the Bloch equations. We
obtained the tissue segmentations by processing the anatomical scans with FSL
FAST, producing probability maps for grey matter, white matter and cerebro-
spinal fluid. We then applied the distortion estimated by TOPUP on the real
EPI data of each subject to their corresponding simulated undistorted images
to create new synthetic pairs of AP and PA distorted images.

Acquired, TOPUP processed and simulated data have been used to produce
two datasets, denoted as real and simulated, in order to cover various experi-
mental configurations. A diagrammatic representation of the processing paths
followed to obtain the two datasets is presented in Fig 2.

– In the real dataset: the inputs of the model are the acquired AP and PA
images, the ground truth distortion fields used at training and for evaluation
are the ones from TOPUP, the ground truth images used only for evaluation
are the undistorted images from TOPUP. The advantage of this dataset is
that it is made of real data and all the artifacts it implies. The drawback is
that TOPUP is used as ground truth and therefore cannot be included in the
comparison.
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– In the simulated dataset: the inputs of the model are the simulated AP and
PA images, the ground truth distortion fields used at training and for eval-
uation are the ones from TOPUP (same as for the real dataset), the ground
truth images used only for evaluation are simulated non-distorted images.
The advantage of this dataset is the synthetic, absolute nature of the ground
truths allowing any algorithm comparison. The drawback is that the sim-
ulation process is not able to reproduce all the artifacts induced by a real
acquisition.

For both, the weight maps have been computed by thresholding (binary brain
mask), then dilating (3 voxels), then smoothing (Gaussian, σ = 6 mm) the
T1-weighted images.

We divided the same way the two datasets into training (n = 40), validation
(n = 10) and testing (n = 10) samples. Although it was shown in [16] that
Voxelmorph-like architectures can achieve decent registration with only ten or
so training subjects.

4.2 Models

We compared 3 deep learning approaches: unsupervised, transformation super-
vised and semi-supervised. Each model is trained and assessed separately for real
and simulated experiments. To form the overall loss, the unsupervised loss was
attributed a weight 200 000 (unsupervised and semi-supervised models only),
the supervised loss was attributed a weight 300 (supervised and semi-supervised
models only) and the regularization loss was attributed a weight 1 (all models).
Each model was trained for 1000 epochs, with the epoch giving the best valida-
tion loss kept. Learning rate was set to 10−4. The training time for each model
was about 3 h on a GPU.

4.3 Assessment Metrics

For both real and simulated data experiments, their respective unseen test
data were used to quantitatively assess the performance of the proposed semi-
supervised approach against the current unsupervised approach. The assessment
made use of the following metrics: 1) Image fidelity: MSE between the estimated
undistorted versions of the AP and PA images and the corresponding ground
truth undistorted image. 2) Field fidelity: MSE between the estimated distortion
field and the corresponding ground truth distortion field (expressed in fraction
of the voxel size which is 2 mm). These mean measures were weighted by the
weight maps to ignore the background.

5 Results

Table 1 and Fig. 3 summarise the evaluation results for both real and simulated
data experiments.
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Fig. 3. Fidelity (MSE) to ground truth distortion fields and images for the different
models for real data with TOPUP as ground truth and for synthetic data. The field
fidelity is expressed as a fraction of the voxel dimension (2 mm). Large frames share the
same scale for global overview between experiments whereas yellowish ones are zoomed
in for intra-metric, between models comparison. (Color figure online)

– The real dataset experiment uses real acquired EPI images and evaluate how
close to TOPUP (ground truth) the different models behave. In terms of field
fidelity, supervised and semi-supervised models show a mean voxelique MSE
around 0.2 (equivalent to 0.4 mm2), way better than the unsupervised app-
roach that shows an error about 4 times bigger with also a much higher vari-
ance. In terms of image similarity, the unsupervised and the semi-supervised
approach show an error equivalent to 2/3 of the one of the supervised app-
roach with akin variance. The semi-supervised approach performs well for
both metrics whereas the other models present weaker results in one situa-
tion. An example case subject from the testing sample, corrected with the
semi-supervised approach, is shown in Fig. 4.

– The synthetic dataset experiment uses simulated EPI images and evaluate
how each model and TOPUP are able to retrieve a synthetic ground truth. It
quite follow the same trend as above for the deep-learning models. TOPUP,
the supervised and the supervised models show similar field fidelity that is
better than the one of the unsupervised model. TOPUP, the unsupervised and
the supervised models show similar image fidelity that is better than the one
of the supervised model. TOPUP and the semi-supervised model performs
similarly well for both metrics whereas the supervised and the unsupervised
models are weaker in one situation.
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Table 1. Fidelity (MSE: mean (std)) to ground truth distortion fields and images for
the different models for real data with TOPUP as ground truth and for synthetic data.
The field fidelity is expressed as a fraction of the voxel dimension (2 mm).

Uncorrected TOPUP Unsupervised Supervised Semi-supervised

Real dataset Field

fidelity

2.21

(0.70)
∅

0.86

(0.34)

0.21

(0.07)

0.22

(0.07)

Image

fidelity

1.39 .103

(3.39 .104)
∅

2.22 .104

(6.76 .105)

3.27 .104

(9.09 .105)

2.10 .104

(6.29 .105)

Synthetic dataset Field

fidelity

2.21

(0.70)

0.17

(0.02)

0.36

(0.11)

0.17

(0.05)

0.21

(0.08)

Image

fidelity

3.89 .103

(5.94 .104)

8.73 .104

(1.51 .104)

8.98 .104

(1.82 .104)

1.55 .103

(3.41 .104)

9.25 .104

(1.81 .104)

Fig. 4. Example case from the testing sample (unseen) of the real dataset, corrected
using the semi-supervised model.

6 Discussion

This study show that, with proper distortion model, one can use deep-learning
registration trained on some tens of subjects to rapidly correct a larger set for
susceptibility-induced distortion, with results as good as TOPUP. One can use a
processed subset of a dataset to include transformation supervision and improve
the transformation fidelity which is a direct measure of the quality of the regis-
tration. One might have expected the semi-supervised model to perform half-way
between its unsupervised and supervised counterparts in terms of field and image
fidelity. However, our findings suggest it offers the best of both worlds.

Similar to TOPUP [4], the proposed approach requires reversed PED acqui-
sitions to correct distortion in EPI images trough registration, although this
process is performed using a deep-learning architecture, much faster than its
classical counterpart. Our approach builds on the purely unsupervised approach
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in [8], but enhance the training notably using more reliable transformation super-
vision.

In the broader context of applying deep learning to EPI distortion correction,
Schilling et al. [3] proposes a technique that allows TOPUP-based correction in
the absence of a second reversed PED acquisition. It works by applying deep
learning-based modality transfer to synthesise a distortion-free b = 0 from a
T1-weighted scan; the distortion-free b = 0 is then used with the acquired b
= 0 for TOPUP processing. Our method can be readily extended to drastically
shorten this distortion correction process as well. It could also be used as the
primary correction prior to the FOD-based secondary one from [5].

In future work, we plan to evaluate the effect of the training sample size
on performance. We also intend to study the generalizability of the proposed
approach. Although decent performance may be expected when training and
testing on different datasets, due to the relative homogeneity of b = 0 images
compared to anatomical ones for example, the high variability of acquisition
parameters (TE, TR...) may still lead to sub-optimal results.

7 Conclusion

We presented a semi-supervised approach for the distortion correction of EPI
images with opposite PED using DL-based image registration. We compared this
model with an unsupervised and a supervised one, as well as a traditional algo-
rithm: TOPUP. By leveraging ground truth distortion transformations during
training, the proposed method can produce more accurate estimate of distor-
tion fields (direct quantitative metric) compared to unsupervised approaches at
testing. It also outperforms the supervised approach for the image metric. On
synthetic data, the results were similar to TOPUP but with much faster compu-
tation. The proposed model can typically be trained on a processed subsample
of a dataset with an external tool and then be applied to the rest of the dataset
to produce distortion correction very efficiently.
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Abstract. Diffusion MRI (dMRI) is widely used to chart the develop-
ment of brain white matter (WM) microstructure across the lifespan,
but suffers from susceptibility distortions and signal loss in brain regions
at air-tissue boundaries like the brain stem, and ventral regions of the
temporal and frontal lobes. Due to time limitations when acquiring data
in adolescent, aging, and clinical populations, acquiring dMRI data twice
with opposite phase encoding directions (blip-up, blip-down), as required
by existing susceptibility correction tools, may not be feasible. Here we
used 3T dMRI data from 99 healthy adolescents (age range: 8–21 yrs;
48% Male) from the HCP Development cohort to compare six prepro-
cessing schemes—using either no, full, or various degrees of duplicate
blip-up blip-down data as input for FSL’s widely used topup and eddy
distortion correction tools—to provide guidance on dMRI acquisition
protocols when scan time is limited and a trade-off needs to be made.
For each preprocessing pipeline, we compared the error in regional WM
DTI and NODDI model fits, as well as regional associations with age.
We found that model fitting errors were significantly higher in pipelines
that did not use the full blip-up blip-down acquisition; associations with
age were largely not affected by the preprocessing scheme used to correct
susceptibility distortions.

Keywords: Susceptibility distortion · Development · White matter ·
Diffusion MRI

1 Introduction

Diffusion MRI (dMRI) is widely used to study brain microstructure and chart the
development of the brain’s white matter (WM) across the lifespan. As children
transition into adolescence, their brains undergo a complex sequence of pruning
and integration, making accurate modeling of WM microstructure particularly
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important [1]. dMRI, however, is highly prone to a number of imaging artifacts.
dMRI acquired using echo-planar imaging (EPI) is very sensitive to magnetic
field inhomogeneities which can result in distortions in brain regions with exten-
sive magnetic susceptibility variations; this can lead to distorted anatomy and
signal loss in regions of the brain near air-tissue or air-bone boundaries like the
brain stem, and ventral areas of the temporal and frontal lobes [2]. These dis-
tortions happen along the phase encoding (PE) direction and may either cause
the signal of several voxels to “pile up” into one voxel (compression) or “smear”
the signal of one voxel over several voxels (spread).

Existing susceptibility distortion correction tools, such as FSL’s topup and
eddy [3–5], TORTOISE’s dr-buddi [6], and ACID’s hysco [7] require that dMRI
data be acquired, at least partially, in duplicate, with reverse PE directions
(i.e., blip-up, blip-down). Due to the variety of biological, neuropsychiatric, and
imaging data acquired for adolescent, aging, and clinical population studies, time
constraints are often placed on imaging protocols to reduce attrition or motion
and ensure adequate sample sizes. This precludes the acquisition of the longer
dMRI protocols needed to optimally use existing correction tools.

The Human Connectome Project (HCP) [8,9] studies have allotted over
20 min of scan time to acquiring a full stack of dMRI volumes in both PE direc-
tions. By contrast, many clinical datasets, including ADNI [10] and PPMI [11],
need to limit dMRI scan times to under 10 min and do not acquire any opposing
PE volumes. Still other population studies, like ABCD [12] and UK Biobank
[13], limit reverse PE to the b0 volumes. As of yet, there is not a general con-
sensus on the optimal acquisition for studies that are not able to acquire a full
stack of b0 and diffusion weighted images (DWI) with reversed PE.

Recently, Synb0-DISCO [14] was introduced to synthesize undistorted b0 vol-
umes in lieu of acquiring b0 volumes in both PE directions. The efficacy of this
tool, which was trained on one dataset (Baltimore Longitudinal Study of Aging
study [15]) and validated on 26 subjects, has not yet been well established on
a wide range of heterogeneous datasets (with diverse clinical, demographic and
imaging quality). In addition to b0 volumes, the question remains as to whether
collecting only a small subset of DWI volumes with opposite PE directions mit-
igates some of the distortion and signal loss.

Here, we set out to compare measures from two dMRI models—(1) single-
shell diffusion tensor imaging (DTI) [16] and (2) multi-shell neurite orienta-
tion dispersion and density imaging (NODDI) [17]—derived from data prepro-
cessed with 1) FSL topup field estimation using either Synb0-DISCO or blip-up
blip-down b0; and 2) FSL eddy distortion correction using all b0 but 0%, 25%,
50% or 100% of DWI volumes with reversed PE. We used dMRI data from
healthy adolescents (age range: 8–21 years) from the Lifespan Human Connec-
tome Project Development (HCP-D) cohort, to compare the effects of each pre-
processing scheme on 1) the error in each dMRI model’s fit and 2) regional WM
microstructural associations with age. We aim to help establish guidelines about
minimum dMRI acquisition protocol requirements when scan time is limited.
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2 Methods

2.1 Study Participants and MRI Data

We analyzed data from the HCP-D study that includes healthy children, ado-
lescents, and young adults, ages 8–21 years [8,9]. Here, we analyzed a subset
of 99 participants spanning the same age range as the full sample (mean age:
13.9 ± 3.9 yrs.; 51 female). The HCP-D dMRI protocol was acquired on 3T
Siemens Prisma scanners and includes 185 directions split across 2 shells of
b = 1500 and 3000 s/mm2, and 28 b = 0 s/mm2 images (multi-band factor = 4;
TE/TR = 0.0892/3.23 s; 1.5 mm isotropic voxels); these were each acquired twice
with reversed PE directions (i.e., 213 anterior-posterior -AP- and 213 posterior-
anterior -PA- volumes). The total dMRI scan time was 22.7 min.

2.2 dMRI Preprocessing and Subsampling

Raw DWI were first denoised using DIPY’s MP-PCA filter [18,19] and DIPY’s
Gibbs ringing suppression tool [20]. As most studies collecting dMRI data cannot
collect the extensive dMRI protocol acquired in HCP-D, we used the framework
presented in Zhan et al. (2010) [21] to first subsample the original 213 AP and PA
volumes to 5 b0, 50 b = 1500 s/mm2, and 50 b = 3000 s/mm2 volumes to match
the angular resolution of the frequently used UK Biobank dMRI data [13]. From
there, the AP DWI volumes from each of the two shells were subsampled to
include either 50% (N = 25) or 25% (N = 13) of all the DWI volumes. Gradient
subsets were selected by optimizing the spherical angular distribution energy.
Briefly, the angular distribution energy, Eij , of a pair of points, i and j, on the
unit sphere may be defined as the inverse of the sum of the squares of (1) the
least spherical distance between point i and point j, and (2) the least spherical
distance between point i and point j’s antipodal, symmetric point, J :

Ei,j =
1

dist2(i, j) + dist2(i, J)
(1)

The total angular distribution energy EL(N) for a subset of N DWI volumes
is defined as the sum of the angular distribution energy of all pairs of unit gradi-
ent vectors on the sphere, using least spherical distances. The optimal sampled
gradient subset N can be achieved by selecting the set that maximizes EL(N):

EL(N) =
∑N

i=1

∑N

j=i+1
Ei,j (2)

Susceptibility-induced off-resonance field estimation using FSL’s topup [4,5]
was then either (1) not done at all, (2) completed using a synthetic undistorted
b0 created using Synb0-DISCO [14], or (3) completed using 5 PA and 5 AP b0s.
Eddy correction was performed with FSL’s eddy tool [3] including repol outlier
replacement [22] with either (1) no topup field (‘no AP’), (2) topup field esti-
mation using Synb0-DISCO’s synthetic b0 (‘SynB0’), (3) topup field estimation
using 5 PA and 5 AP b0 and no additional AP DWI volumes (‘B0 AP’), (4) topup
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Table 1. Geometric distortion correction schemes using FSL’s topup and eddy.

Correction scheme Topup field estimation No. of Eddy AP volumes

‘no AP’ None 0% AP DWI

‘SynB0’ Synthetic b0 0% AP DWI

‘B0 AP’ 5 PA and 5 AP b0 0% AP DWI

‘B0+25% AP DWI’ 5 PA and 5 AP b0 25% AP DWI

‘B0+50% AP DWI’ 5 PA and 5 AP b0 50% AP DWI

‘B0+100% AP DWI’ 5 PA and 5 AP b0 100% AP DWI

fields estimated using 5 PA and 5 AP b0 and either 25% of the AP DWI volumes
(‘B0+25% AP DWI’), (5) 50% of the AP DWI volumes (‘B0+50% AP DWI’), or
(6) all of the AP volumes (‘B0+100% AP DWI’). The resulting corrected dMRI
from these six eddy processing pipelines were then skull-stripped using FSL’s
bet [23] and run through FSL’s fast bias field inhomogeneity correction [24]. For
reference, the different correction schemes can be seen in Table 1.

2.3 dMRI Models and Regional Measures

For each of the six processing schemes, DTI [16] fractional anisotropy (FA) and
mean diffusivity (MD) maps were calculated with weighted least squares (FSL’s
dtifit), using only the subset of 5 b0 and 50 b = 1500 s/mm2 DWI volumes.
NODDI was fitted with DMIPY [17,25], yielding maps of the intra-cellular vol-
ume fraction (ICVF) and the isotropic volume fraction (ISOVF).

To extract WM atlas ROI summary measures, first, an ANTs [26] two-
channel non-linear registration was used to warp each participant’s dMRI to the
FSL-HCP1065 DTI template [27]. DTI FA and MD equally drove registrations
to the template FA and MD. The resulting deformations were then applied to all
NODDI and DTI maps. Mean dMRI measures were extracted from seven WM
ROIs from the JHU stereotaxic WM atlas (Table 2) [28]. We evaluated five WM
ROIs in regions of the brainstem (CP, MCP, ML) and temporal lobes (UNC,
CGH) - regions that are more likely to suffer from susceptibility distortions. We
also included two less distortion-prone ROIs (SLF and FullWM), which have
demonstrated robust WM maturation trends in prior studies [29]. In addition
to average regional NODDI and DTI scalar measures, we extracted the average
mean squared error (MSE) between measured and predicted DWI signals for
both DTI and NODDI models.

Table 2. Index of 7 JHU atlas WM ROIs analyzed.

MCP Middle Cerebellar Peduncle UNC Uncinate Fasciculus

ML Medial Lemniscus CGH Cingulum of the Hippocampus

CP Cerebral Peduncle Full WM Full White Matter

SFO Superior Fronto-Occipital Fasc
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2.4 Statistics

First, for each subject, we compared the normalized mutual information between
NODDI ICVF maps generated from each of the six processing schemes to ICVF
derived from ‘B0+100% AP DWI’ volumes (i.e., our silver standard), using the
R ‘aricode’ package. We then tested for differences in regional DTI and NODDI
model MSE values across the six processing schemes with a one-way analysis of
variance (ANOVA).

As WM development trajectories are not entirely linear, we used generalized
additive models (GAMs) to test for associations between age and mean dMRI
measures in each ROI using the R ‘mgcv’ package. Age and age-by-sex interac-
tions were modeled using spline smoothing functions (cubic regression b-splines,
k = 10); sex and acquisition site were included as fixed effect covariates. The
false discovery rate (FDR) procedure was used to correct for multiple compar-
isons across ROIs (q = 0.05) [30]. Differences in resulting age F -values and model
adjusted R2 across the six processing schemes were tested with ANOVA.

3 Results

3.1 DTI and NODDI Map Comparisons

As illustrated in Fig. 1, qualitatively, ICVF map distortions from an example
subject are gradually less visible (Fig. 1A) and normalized mutual information
between subjects’ ICVF maps derived from ‘B0+100% AP DWI’ volumes (i.e.,
our silver standard) and each processing scheme increases (Fig. 1B) as the num-
ber of AP DWI volumes included in the FSL eddy corrections increases. Whole
brain normalized correlations between DTI and NODDI maps derived from each
processing scheme confirm greater similarities when any number of AP DWI are
used (25%, 50%, or 100%; Fig. 2).

3.2 DTI and NODDI Fit Evaluations

MSE in DTI and NODDI model fits gradually decreased as the number of AP
DWI volumes included in the FSL eddy corrections increased with the most
signal recovered in the temporal lobes with ‘B0+100% AP DWI’ volumes (Fig.
1C,D). ANOVA revealed significant MSE group differences between processing
schemes across all seven ROIs in both dMRI models (Fig. 3). Post-hoc pairwise
t-tests were subsequently performed to directly compare ROI MSEs between
each pair of pipelines and corrected with FDR for 15 pairwise tests. We found
fewer significant differences in regional DTI or NODDI MSE between ‘no AP’,
‘SynB0’, and ‘B0 AP’, while ‘50% AP’ and ‘100% AP’ almost always showed
stepwise improvements (i.e., decreases) in MSE.
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Fig. 1. (A) Examples of NODDI ICVF maps are shown for a single subject. (B) Nor-
malized mutual information between subjects’ ‘B0+100% AP DWI’ derived ICVF and
ICVF derived from each of the six processing pipelines. (C) Mean squared error (MSE)
between measured and predicted DWI signals for DTI and (D) NODDI models, aver-
aged across all participants. Temporal regions prone to susceptibility distortions are
highlighted with orange boxes. (Color figure online)
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Fig. 2. Normalized correlations between full brain DTI (left) or NODDI maps (right)
derived from each of the six processing pipelines.

3.3 GAM Age Associations

Using GAMs, significant age associations were detected across almost all seven
ROIs (i.e., CP, MCP, ML, UNC, CGH, SLF, Full WM), four dMRI measures,
and six processing schemes evaluated (Fig. 4). We note that DTI FA and MD
effects may be influenced in part by the high b-value (b = 1500 s/mm2), which
is above the optimal diffusion weighting for DTI [30]. The variance explained by
each model (adjusted R2) is shown in Fig. 4B. ANOVA revealed no significant
differences in age F -values or model adjusted R2 between processing schemes.
However, qualitatively, improvements can be seen in MD and ICVF for the MCP
and CP adjusted R2 as well as Full WM ISOVF when any number of AP DWI
are used (25%, 50%, or 100%); MD UNC, ML ICVF and ISOVF, and MCP
ISOVF adjusted R2 only improve when using 100% AP DWI. For reference, MD
and ICVF values in the CP and UNC are plotted in Fig. 5.

4 Discussion

Overall, we found that while DTI and NODDI errors in fit were significantly
higher in pre-processing pipelines that did not use the full set of blip-up blip-
down DWI volumes, associations with age were largely unaffected. While we
hypothesized that the preprocessing schemes using a greater number of AP vol-
umes would perform significantly better, it is possible that age effects in these
regions are too robust to be affected by small but significant differences in model
fit. Future work examining either microstructure in more peripheral WM regions
or cortical gray matter, and evaluating more complex microstructural relation-
ships with, for example, genetics or cognition, may reveal different trends.

Another factor that may drive similarities between methods is registration;
as in the EPI distortion correction method whereby each subject’s b0 is warped



dMRI Susceptibility Distortion Correction Comparisons 57

Fig. 3. Average regional mean squared error (MSE) between measured and predicted
DWI signals for (A) DTI (single-shell; top) and (B) NODDI (multi-shell; bottom).
Given that pairwise tests between processing schemes revealed that the majority of the
MSE differences were significant, differences that are NOT significant (FDR corrected
p > 0.05) are demarcated by red brackets. (Color figure online)
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Fig. 4. (A) F -values (left) and (B) adjusted R2 (right) for GAM models evaluating
associations between age and regional DTI FA and MD (single-shell) or NODDI ICVF
and ISOVF (multi-shell). The number of ROIs that were significant after multiple com-
parisons correction (FDR corrected p < 0.05) is noted in the legend as ‘N’; significant
ROIs are shown as opaque in the figure.
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Fig. 5. MD and ICVF in the (A) CP (top) and (B) UNC (bottom), plotted against
age. For the CP, lower average MD for correction schemes with no AP DWIs (‘no AP’,
‘SynB0’, ‘B0 AP’) is evident; MD gradually increases the more AP DWIs were included
in FSL eddy (25%, 50%, 100% AP DWI). The reverse effect is evident for ICVF. This
trend is more subtle for the UNC.

to their respective undistorted T1-weighted anatomical image, the registration of
subject dMRI maps to the template may have helped mitigate some remaining
distortions across approaches. However, nonlinear registrations are dependent
on accurate brain masks - which may be difficult to automatically delineate in
distorted images. Such issues may be alleviated by using alternative methods
that are more robust to misregistration, such as TBSS [31], to extract regional
diffusion measures.

In addition, we found that processing schemes that included no reversed PE
DWI volumes (i.e., ‘no AP’, ‘SynB0’, and ‘B0 AP’) showed similar MSE to one
another (i.e. fewer significant differences). This suggests that when scan time is
very limited, there might be little benefit in dMRI protocols that only acquire
b0 volumes with reversed PE; it might be more beneficial to focus on optimizing
angular or spatial resolution instead. The lack of significant improvements in MSE
when using the true ‘B0 AP’ could be driven in small part by relatively greater
levels of noise and artifacts in true b0 data compared to synthetic or no b0.

Future studies should examine differences in independent cohorts to establish
the degree to which these results can be generalized to other age ranges and
datasets, in addition to evaluating the sensitivity of biological variables of interest
beyond age. These studies will help further establish minimum dMRI acquisition
protocol requirements needed to meet specific research goals when scan time is
limited and a trade-off needs to be made.
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Abstract. The analysis of diffusion weighted brain magnetic resonance
images, including the estimation of fibre orientation distribution (FOD),
tractography, and connectomics, is a powerful tool for neuroscience
research and clinical applications. However, focal brain pathology and
imaging acquisition artifacts affecting white matter tracts may disrupt
or corrupt FOD values respectively, invalidating tractography and con-
nectome reconstructions. In this work, we propose a 3D FOD inpainting
framework, named order-wise coefficient estimation network (OCE-Net),
to dynamically reconstruct the affected regions. Our feature encoding
stage, based on gated convolutions, extracts features from all the input
FOD coefficients and re-weights them using channel attention and inde-
pendent order-wise decoders, to independently predict the coefficients
for each spherical harmonic order. We evaluated our model on a subset
of scans from the HCP dataset, and conducted tractography and con-
nectomics to further analyse the impact of inpainting. Our experimental
results, including a statistical analysis of the reconstructed connectomes,
show that our OCE-Net approach can successfully reconstruct the orig-
inal FODs in the focally disrupted regions.

Keywords: Diffusion MRI · Fibre orientation distribution ·
Inpainting · 3D gate network

1 Introduction

Diffusion weighted imaging (DWI) is a magnetic resonance imaging (MRI) tech-
nique that can be used to visualise white-matter fibre bundles in vivo. It serves as
a powerful tool for studying the organisation and microstructure of white-matter
in healthy and diseased populations; and has broad applications in neuroscience
research and clinical translation, where it may improve diagnosis, facilitate pre-
cision monitoring, and guide surgical intervention for a variety of brain diseases.

Z. Tang and X. Wang—Equal contributions.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Cetin-Karayumak et al. (Eds.): CDMRI 2022, LNCS 13722, pp. 65–76, 2022.
https://doi.org/10.1007/978-3-031-21206-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21206-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-21206-2_6


66 Z. Tang et al.

Derivatives of DWI include whole-brain tractography and connectomics [29],
which can be used to investigate global changes in brain connectivity (e.g., using
graph metrics), and probe the connectivity of specific regions of interest (ROIs)
with the rest of the brain. A key intermediate step for tractography is the compu-
tation of the white-matter fibre orientation distribution (FOD) image [25]. This
image is typically generated by applying constrained spherical deconvolution to
the pre-processed DWI data [8,11,24]. In the context of tractography, the FOD
models local fibre direction(s), and permits the reconstruction of crossing and
intersecting fibres.

Failure to generate accurate FODs can have deleterious repercussions for trac-
tography. Absent or disrupted FODs could lead to inaccurate tractograms [6],
and subsequently, incorrect connectivity and graph theory estimates. Erroneous
FODs may arise from focal, destructive brain pathology [20] or changes in dif-
fusivity due to compromised white-matter integrity [12]. Such focal disruptions
may also subsequently prevent the subject FODs from being accurately warped
to the population template, and may result in the image being discarded. These
scenarios can be particularly problematic in neurological conditions such as mul-
tiple sclerosis (MS), where there is substantial interest in quantifying white-
matter integrity in the presence of focal, destructive lesions [13]. While tradi-
tional intensity-based neuroimaging analysis pipelines apply lesion inpainting
methods [20] on the corresponding T1 image to prevent the mis-classification of
whiter matter lesions as gray matter [21], diffusion image analysis is critically
dependent on the FOD. There is therefore incentive to improve the quality of the
FODs in ROIs disrupted by focal pathology (or also by acquisition artefacts).

To this end, we propose an order-wise coefficient estimation network (OCE-
Net)1 for restoring disrupted ROIs through inpainting, based on the neighbour-
ing voxels. OCE-Net consists of a feature encoding stage and an order-wise coef-
ficient estimation stage, which are specifically designed for inpainting FODs. To
the best of our knowledge, this is the first work that addresses inpainting directly
on the FODs, rather than the raw DWI sequence. Our evaluation results show
that the proposed OCE-Net is capable of recovering the original FODs on a set
of images from the Human Connectome Project (HCP) with any localized FOD
disruption. Furthermore, downstream tasks such as the connectome construc-
tion, and graph-based connectivity metrics presented no significant differences
when the results derived from inpainted images and the original FOD images
were compared.

2 Methods

2.1 The Human Connectome Project Dataset

50 different subjects were selected from the Human Connectome Project (HCP)
database2 [28]. The HCP dataset was acquired using a 3T Siemens ‘Connectom’

1 The project page of this work is available at: https://mri-synthesis.github.io.
2 https://www.humanconnectome.org/.

https://mri-synthesis.github.io
https://www.humanconnectome.org/
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Skyra scanner, and included anatomical T1-weighted imaging and diffusion-
weighted imaging. The high resolution T1-weighted data were acquired with
0.7 mm isotropic resolution, TR/TE = 2400/2.14 ms, and flip angle = 8◦. The dif-
fusion MRI protocol consisted of three diffusion-weighted shells (b=1000, 2000,
and 3000 s/mm2, respectively, with 90 directions per shell) and eighteen ref-
erence volumes. The diffusion MRI data were acquired with 1.25 mm isotropic
resolution, TR/TE = 5520/89.5 ms, and flip angle = 78◦.

2.2 Data Preprocessing

The preprocessing steps for raw diffusion images included corrections for motion,
susceptibility distortions, gradient nonlinearity and eddy currents [1,2,19]. Bias
correction was then applied to the structural images [27], followed by a multi-
shell multi-tissue constrained spherical deconvolution to generate the FODs in
each voxel [11,26]. These steps were performed consistently on each subject using
the MRtrix software package v3.0.2 [22,23]. The resulting FOD images had a
resolution of 145 × 174 × 145 × 45, 45 being the number of spherical harmonic
coefficients (corresponding to lmax = 8).

To analyze the effect of inpainting on disrupted ROIs in a controlled envi-
ronment, we generated a synthetic mask for each subject based on the lesion
distribution of a set of MS patients as described in [21]. To simulate the influ-
ence of the disrupted ROIs in real-world cases, Gaussian noise was added in
the masked ROIs and the resulting spherical harmonics coefficients of FOD were
then multiplied by an attenuation coefficient of 0.5 to simulate the effect of signal
loss.

To further study the effect of disrupted and inpainted FODs on downstream
tasks, and therefore investigate their practical consequences, we performed trac-
tography and constructed connectomes with the following pipeline. Five tissue
type (5TT) segmentations were first generated by hybrid surface and volume
segmentation [15]. The 5TT image and the corresponding FOD data were then
used to produce 10 million streamlines using anatomically constrained proba-
bilistic tractography with dynamic seeding [16,25]. The parameters used for the
tractography framework followed the default settings in MRtrix, except that the
maximum length was set to 300 mm and the following options enabled: dynamic
seeding, backtracking and cropping at the grey-matter-white-matter interface.
A weight was assigned to each streamline by applying spherical-deconvolution
informed filtering of tractograms 2 (SIFT2, [18]) on the streamlines, in order to
integrate the biological information into the connectivity measurements [17].
The T1-weighted images were segmented according to the Desikan-Killiany
atlas [5,9], to generate a parcellation image consisting of 84 discrete nodes.
Finally, a weighted-undirected connectome matrix was generated using the 10
million streamlines (and their corresponding SIFT2 weights).
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Fig. 1. The training procedure of the proposed OCE-Net. The skip connections between
each block in the feature encoder and decoder are omitted for clarity. (a) Gated con-
volution scheme designed to compute a dynamic gate mask to guide the inpainting.
(b) The architecture of the encoder block (in blue). (c) The architecture of the bottle-
neck between the encoding and decoding stages (in grey). (d) The architecture of the
decoder for each order of the spherical harmonic coefficients (in orange). (Color figure
online)

2.3 3D FOD Inpainting Framework

In this work, we present a novel 3D FOD inpainting framework, named OCE-Net,
to inpaint free-form disrupted ROIs on FOD images in an end-to-end manner. Our
framework, extends the encoder and decoder structure of the original 3D U-Net [4]
based on the characteristics of FODs: (1) the feature encoding stage is designed to
extract high-level features from the coefficients of each voxel outside the disrupted
ROIs; and (2) the order-wise coefficient estimation stage estimates the final coef-
ficients with a dynamic selection of encoded features. The details of our proposed
OCE-Net are illustrated in Fig. 1. To avoid using the disrupted FOD values as
the input of our framework, the disrupted ROIs under the masks were treated
as empty holes. Due to memory constraints, each input volume was cropped into
patches of size 64 × 64 × 64 × 45 using a sliding window of stride 32.

2.4 Feature Encoding Stage

The features from the disrupted FODs are dissimilar to those of normal-appearing
regions and we argue that the true FODs can be reconstructed based solely on
these neighboring regions. However, typical convolutional layers treat all voxels
equally and do not account for unreliable voxel values. To address this shortcom-
ing, we used a trainable dynamic gate mask block [30] in each 3D convolutional
layer to compute attention scores in an efficient and light-weight manner [14].
Thus, our final feature encoding stage consists of four gated convolution encoders
with 32, 64, 128, and 256 filters, respectively, that are defined as:
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GatedConv = g(x) = δ(Wfeature · x) � σ(Wgate · x), (1)

fencoder(xin) = g2(g1(xin)), (2)

where Wfeature and Wgate are two 3D convolutional weight matrices. Wfeature

extracts high-level features, while Wgate provides a re-weighting mechanism for
all the voxels across all the channels dynamically; δ is an activation function,
LeakyReLU with a slope of 0.2 in our case; σ is the sigmoid function to guarantee
voxel weights in the [0, 1] range; and, g1, g2 denote two gated convolutions with
stride 1 and stride 2, respectively. Therefore, our proposed encoders can learn
and highlight regions and semantic information for each channel independently
at different resolution levels.

2.5 Order-Wise Coefficient Decoders

FODs encode local white matter fibre orientations as coefficients of spherical
harmonics represented as a vector of fixed size (based on the order of the har-
monics) despite the number of diffusion gradients used during the DWI acquisi-
tion [11,26]. The number of coefficients is commonly constrained to 45 coefficients
by setting the maximum harmonic order to 8.

To reconstruct the disrupted ROIs with a proper selection of extracted fea-
tures, we present an order-wise coefficient estimation stage based on the follow-
ing observation of the characteristics of the FODs: lower order coefficients are
known to get influenced by the higher order ones [3]. Consequently, we designed
a single encoding path to extract features from all the even spherical harmonic
coefficients together and analyse such dependencies.

However, to allow for flexibility in terms of maximum harmonic order selec-
tion, our proposed estimation stage comprises five order-wise coefficient decoders
(OCDs) that can compute the output of each even order ([0, 2, 4, 6, 8]) inde-
pendently. Compared to other conventional medical imaging techniques, FOD
volumes have a high number of channels due to the number of coefficients per
spherical harmonic order. To calibrate the channels for each decoder, channel
attention [10] is used as the input to the OCD blocks to model the relation-
ships between channels for each order: the spatial dimensions are squeezed using
global pooling and the channels are excited and re-weighted using a fully con-
nected layer followed by a sigmoid activation function.

Moreover, applying attention for each channel can highlight high-level spatial
information in the masked regions. Therefore, our decoding stage can reconstruct
the disrupted regions with the proper high-level features for each harmonic order,
independently. Finally, we concatenate the outputs of each decoder to generate
the final image prediction.

2.6 Implementation Details

We conducted a 5-fold cross validation on a subset of 50 subjects from the
HCP dataset for all experiments. All the networks were trained for 50 epochs
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Table 1. Summary of the quantitative metrics for the restoration of the disrupted
FOD values. The best performance measures (the lowest MAE and MSE; and the
highest PSNR) are marked in bold. w/o OCDs represents a single decoder setting and
* denotes the use of channel attention.

Method MAE ↓ MSE ↓ PSNR ↑
Empty ROIs 0.0961 ± 0.0059 0.0284 ± 0.0036 15.5077 ± 0.5500

Noisy ROIs 0.0581 ± 0.0026 0.0089 ± 0.0008 20.5109 ± 0.4111

U-Net [4] 0.0442 ± 0.0029 0.0044 ± 0.0006 23.5429 ± 0.6261

w/o OCDs 0.0424 ± 0.0028 0.0042 ± 0.0006 23.8114 ± 0.6231

w/o OCDs * 0.0421 ± 0.0028 0.0041 ± 0.0006 23.8962 ± 0.6210

OCE-Net 0.0403 ± 0.0027 0.0038 ± 0.0005 24.1856 ± 0.6260

using the L1 loss for each harmonic order and the Adam optimizer with an
initial learning rate of 0.001 and minibatches of 4 image patches on a single
NVIDIA GeForce Tesla V100-SXM2 GPU (PyTorch 1.10.1 and Python 3.7.11).
Spherical harmonic coefficients of FOD images were z-score normalized before
being cropped into patches. During the training phase, we discarded any patches
outside the disrupted ROIs to reduce the computational complexity of regions
ignored by our loss function. During inference we reconstructed the final FOD
image from the prediction of all the possible input patches inside the disrupted
regions.

3 Experimental Results

3.1 Inpainting Quality Analysis

To analyse the ability of the network to restore the original FOD coefficient val-
ues, we used the following commonly used metrics to compare the predictions
to the original images: mean squared error (MSE), mean absolute error (MAE),
and the peak signal-to-noise ratio (PSNR). For completeness, we compared our
OCE-Net framework to the original 3D U-Net [4], the current state-of-the-art for
a diverse range of medical image processing tasks; and conducted several abla-
tion studies to validate our extensions. Furthermore, we also computed all the
metrics for the images with noisy and empty values (holes) within the disrupted
regions. The experimental results shown in Table 1 represent the average across
the five folds and demonstrate that our proposed OCE-Net achieved the best
performance among all competing methods with minimum MAE and MSE, and
the highest PSNR score.

In addition to traditional computer vision metrics used for reconstruction,
we also included an FOD-specific metric to calculate the error of the estimated
orientations of the white matter fibres (peaks) [18]. The max peak error [31] in
each ‘fixel’ (corresponding to a fibre population within a voxel [7]) inside the
disrupted ROIs was calculated for each subject and we report the mean, max,
and percentage-wise max peak error for all the subjects in Table 2.



FOD Inpainting 71

Fig. 2. Qualitative FOD inpainting results in the disrupted ROIs (red bounding box
in the whole brain image) overlaid on a 5-tissue-type image. The color-coding of the
sperical harmonic representation indicates directionality, whereby red, green and blue
represent right-left, anterior-posterior, and inferior-superior directions, respectively. A
significant example of a disrupted ROI and a FOD voxel are zoomed in for visualization:
(a) ground truth, (b) empty value, (c) noisy value, inpainted value predicted by (d)
OCE-Net, (e) 3D U-Net, (f) OCE-Net w/o OCDs, and (g) OCE-Net w/o OCDs *,
respectively. (Color figure online)

In terms of ablation studies, we trained OCE-Net with a single decoder with
gated convolutions (denoted as w/o OCDs) to determine the importance of the
independent order-wise coefficient estimation. We also studied the use of channel
attention with a single decoder setting (denoted as w/o OCDs *) to validate the
efficacy of OCDs. According to the experimental results, OCE-Net w/o OCDs
* outperforms a 3D U-Net with conventional convolutional blocks across all
qualitative metrics, proving that the introduction of gated convolutions and
incorporation of such an attention mechanism can extract better features for
the masked regions and restore the disrupted FODs. The lower performance
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Table 2. Summary of the max peak results. Mean, max and mean % error are reported.
Peak values of 0 for non-zero voxels are considered to have 100% difference.

Method Mean ↓ Max ↓ Percentage ↓
Empty ROIs 1.2959 ± 0.0774 5.0507 ± 0.5790 100.00 ± 0.00

Noisy ROIs 0.5539 ± 0.0391 2.5010 ± 0.2849 40.31 ± 0.74

U-Net 0.2665 ± 0.0360 2.6021 ± 0.4782 20.71 ± 1.95

w/o OCDs 0.2620 ± 0.0322 2.5559 ± 0.4901 20.55 ± 1.68

w/o OCDs * 0.2586 ± 0.0327 2.5128 ± 0.5037 20.40 ± 1.68

OCE-Net 0.2307 ± 0.0253 2.4322 ± 0.3103 18.17 ± 0.96

for both OCE-Net w/o OCDs and OCE-Net w/o OCDs * relative to OCE-
Net proves the need for both independent order decoders and the re-calibration
from channel attention. The channel attention blocks can further enhance the
inpainting results by re-weighting the encoded features (based on the high-level
spatial features) to adapt to the prediction of the coefficients for one specific
harmonic order.

For qualitative analysis, general and zoomed in visualization results of dis-
rupted FOD voxels are shown in Fig. 2. The inpainted result generated by the
OCE-Net achieved a closer spherical harmonic representation to ground truth
across the comparisons. Visualization results for the tractography reconstruction
are shown in Fig. 3. In addition, the mean absolute differences in the connectiv-
ity matrices derived from the corresponding tractograms are visualised in Fig. 4.
These visualizations of downstream outputs show that the proposed OCE-Net is
able to recover the original connections when compared to the inaccurate (under
and over) estimations for the empty and noisy FOD images.

3.2 Connectome Matrix Analysis

To further demonstrate the effectiveness of inpainting, we performed a battery of
statistical tests between the connectomes derived from the ground truth FOD,
and the disrupted FODs that had been recovered with OCE-Net. Due to the
probabilistic nature of tractography, variability is introduced into the connec-
tome construction for a given FOD image. To account for how that variability
can affect the analysis, we randomly selected a training fold and constructed
10 connectome matrices per subject and image. Then, we performed multiple
comparisons between the distributions of connectomes derived from processed
connectomes (empty, noisy and inpainted) and the ground truth images for each
connection and subject independently and counted the percentage of signifi-
cantly different edges (different edges % in Table 3). Since the repeated connec-
tome edges did not pass a normalcy test, we used the Mann-Whitney U test and
defined an overall significance α of 0.01. We used Bonferroni’s method to correct
for multiple comparisons and set a significance value per test of α

n , where n =
3486 was the number of unique edges in the graph, excluding the diagonal. We
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Fig. 3. Qualitative visualisations of the tractography (down-sampled to 1 million
streamlines) estimates. The color-coding of the streamlines indicates directionality,
whereby red, green and blue represent right-left, anterior-posterior, and inferior-
superior directions, respectively. Two examples of successful reconstructions of the
tractography are zoomed in for visualization: (a) ground truth, (b) inpainted values
predicted by OCE-Net, (c) empty values, and (d) noisy values, respectively. (Color
figure online)

Fig. 4. Qualitative visualisations of the mean of all subject differences between the con-
nectome matrices derived from the tractograms of the (a) empty ROIs or (b) inpainted
values and the ground truth. Each node (columns and rows) represents a brain region
and the edges (cells) indicate the connection between regions color-coded by the edge
weight (white and black being highest and lowest, respectively).

were able to recover 98.44% of the original connections from the empty ROIs
and halved the number of disrupted connections due to noise. Finally, to study
the differences at an inter-subject level for the whole connectome, we computed
two commonly used network metrics (strength and efficiency) per connectome
as suggested in [17] and averaged the repeated values per subject to determine
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Table 3. Summary of the statistical tests. The first column represents the percentage of
statistically significant edges, while the other two contain the p-values for the Wilcoxon
tests (α = 0.01).

Pipeline Different edges (%)↓ Strength (p-value) ↑ Efficiency (p-value) ↑
Empty ROIs 33.07 0.002 0.002

Noisy ROIs 2.48 0.002 0.232

OCE-Net 1.56 0.0371 0.625

whether there were significant differences between connectomes derived from
processed and ground truth images (Wilcoxon rank tests, shown in Table 3). In
comparison with the original images, the inpainted results show a larger p-value
than the disrupted connectomes and no significant differences using a signifi-
cance value α = 0.01. According to these results, OCE-Net is therefore capable
of recovering the original tractography, which is essential for downstream tasks
and neuroscience applications.

4 Conclusion

In this work, we proposed OCE-Net, a new framework for reconstructing dis-
rupted FODs via inpainting for whole brain tractography and connectome anal-
ysis. OCE-Net combines a feature encoding stage with gated convolutions and
an order-wise coefficient decoding stage specifically designed for predicting the
underlying true spherical harmonic coefficients. We evaluated our method on
images from the public available HCP database with synthetically disrupted
ROIs and our results show that OCE-Net is capable of recovering the original
FODs by only using information from neighbouring voxels; and demonstrate
relevance from both computer vision and neuroscience perspectives.
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4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS,
vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46723-8 49

5. Desikan, R.S., et al.: An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage
31(3), 968–980 (2006)

6. Deslauriers-Gauthier, S., et al.: Edema-informed anatomically constrained parti-
cle filter tractography. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-
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Abstract. Machine learning is a powerful approach for fitting
microstructural models to diffusion MRI data. Early machine learning
microstructure imaging implementations trained regressors to estimate
model parameters in a supervised way, using synthetic training data with
known ground truth. However, a drawback of this approach is that the
choice of training data impacts fitted parameter values. Self-supervised
learning is emerging as an attractive alternative to supervised learning
in this context. Thus far, both supervised and self-supervised learning
have typically been applied to isotropic models, such as intravoxel inco-
herent motion (IVIM), as opposed to models where the directionality
of anisotropic structures is also estimated. In this paper, we demon-
strate self-supervised machine learning model fitting for a directional
microstructural model. In particular, we fit a combined T1-ball-stick
model to the multidimensional diffusion (MUDI) challenge diffusion-
relaxation dataset. Our self-supervised approach shows clear improve-
ments in parameter estimation and computational time, for both sim-
ulated and in-vivo brain data, compared to standard non-linear least
squares fitting. Code for the artificial neural net constructed for this
study is available for public use from the following GitHub repository:
https://github.com/jplte/deep-T1-ball-stick.

Keywords: Microstructure imaging · Machine learning ·
Self-supervised learning

1 Introduction

Microstructure imaging aims to quantify features of the tissue microstructure
from in-vivo MRI [1]. Historically, microstructure imaging utilised diffusion MRI
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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(dMRI) data. Recently, combined diffusion-relaxation MRI - where relaxation-
encoding parameters such as inversion time (TI) and echo time (TE) are varied
alongside diffusion-encoding parameters such as b-value and gradient direction
- has been emerging as an extension [23]. The typical approach to estimating
tissue microstructure from such diffusion or diffusion-relaxation data is multi-
compartment modelling, which utilises signal models comprising linear combi-
nations of multiple compartments - such as balls, sticks, zeppelins, and spheres
- each representing a distinct tissue geometry [21].

Multi-compartment microstructure models are usually fit to the data with
non-linear least squares (NLLS) algorithms. However, these can be computa-
tionally expensive and are prone to local minima, necessitating grid searches
or parameter cascading [9] to seek global minima. Machine learning is a pow-
erful alternative. Thus far, most machine learning microstructure model fitting
approaches have used supervised learning [7,10,14,17–20]. However, a crucial
limitation is that the distribution of training data significantly affects fitted
parameters [8,12]. It has also proved difficult to estimate directional parame-
ters, such as fibre direction, with existing machine learning methods instead
directly estimating rotationally invariant parameters, such as mean diffusivity,
fractional anisotropy, mean kurtosis, and orientation dispersion. This may be due
to the difficulty of constructing a training dataset that adequately samples the
high-dimensional parameter space, and/or complications due to the periodicity
of angular parameters.

Self-supervised (sometimes imprecisely called unsupervised in the microstruc-
ture imaging context) learning is an alternative with the potential to address
these limitations. Self-supervised algorithms learn feature representations from
the input data by inferring supervisory constraints from the data itself. For
microstructure imaging, self-supervised learning has been implemented with
voxelwise fully connected artificial neural networks (ANNs). However, thus
far self-supervised microstructure imaging has been limited to isotropic mod-
els [6,11], including many intravoxel incoherent motion (IVIM) MRI examples
[2,8,13,25,26]. To our knowledge, self-supervised model fitting has not yet been
demonstrated for directional microstructural models.

In this paper, we fit an extended T1-ball-stick model to diffusion-relaxation
MRI data using self-supervised machine learning and demonstrate several advan-
tages of this approach over classical NLLS, such as higher precision and faster
computational time.

2 Methods

2.1 Microstructure Model

As this is a first attempt at fitting directional multi-compartment models with
self-supervised learning, we choose a simple model - the ball-stick model first
proposed by Behrens et al. [3]. According to the ball-stick model, the expression
for the normalized signal decay is

S(b,g) = f exp
(−bλ||(g.n)

)
+ (1 − f) exp (−bλiso) (1)
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where b is the b-value, g is the gradient direction, λ|| and λiso are the par-
allel and isotropic diffusivities of the stick and ball respectively, and n is the
stick orientation, which we parameterise using polar coordinates. The relation-
ship between Cartesian and polar coordinates is n = [sin θ cos φ, sin θ sin φ, cos θ]
where φ ∈ [0, π] and θ ∈ [−π, π].

We extend the ball-stick model to account for T1 relaxation time, by assum-
ing the ball and stick compartments have separate T1 times, represented by
T1ball and T1stick respectively. Note that we assume a single T2 for both com-
partments, so the volume fraction f will be affected by the T2 of each compart-
ment. Given a combined T1 inversion recovery [5] and diffusion MRI experiment,
where inversion time (TI), b-value and gradient direction are simultaneously var-
ied, we can fit the following T1-ball-stick equation

S(b, g, TI , TR) = f exp
(−bλ||(g.n)

)
∣
∣
∣
∣1 − 2 exp
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T1stick

)
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∣
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In this work, we first fit this model to combined T1-diffusion data with standard
NLLS, then demonstrate self-supervised fitting with an ANN. We first describe
the data, then the model fitting techniques.

2.2 Combined T1-Diffusion in Vivo Data

We utilise in-vivo data from 5 healthy volunteers (3 F, 2 M, age = 19–46 years),
acquired from the 2019 multidimensional diffusion (MUDI) challenge [22]. The
acquisition sequence comprises simultaneous diffusion, inversion recovery (giving
T1 contrast), and multi-echo gradient echo (giving T2* contrast) measurements.
We chose to ignore the subsection of the data that is sensitive to T2* by only
included signals captured with the lowest echo time (80 ms). This is since the two
higher TEs have very low signal intensity and the 3 TEs have a small range, and
thus there is limited T2* information in the data. Our subsequent description
hence only refers to the subsection of the data with TE = 80 ms.

The datasets were obtained using a clinical 3T Philips Achieva scanner (Best,
Netherlands) with a 32-channel adult headcoil. Each scan includes 416 volumes
distributed over five b-shells, b ∈ {0, 500, 1000, 2000, 3000} s/mm2, with 16 uni-
formly spread directions, and 28 inversion times (TI) ∈ [20, 7322] ms. For all
datasets, the following parameters were fixed: repetition time TR = 7.5 s, resolu-
tion = 2.5 mm isotropic, FOV = 220×230×140 mm, SENSE = 1.9, halfscan = 0.7,
multiband factor 2, total acquisition time 52 min (including preparation time).

The MUDI data has already undergone standard pre-processing, see [22] for
full details. Upon inspection, we noted that the lowest (20 ms) and highest (7322
ms) inversion times, which comprise 7.14% of the data, were clearly dominated
by noise and/or artifacts (see Fig. 1). We therefore removed them from the data
prior to model fitting, leaving 416 MRI volumes in total. After removing these
TIs, the dataset contains 26 TIs ∈∈ [176, 4673] ms.
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Fig. 1. Average signal of all b= 0 voxels within the brain mask at each inversion time.
Note the outlying signals at the smallest (20 ms, blue) and largest (7322 ms, green)
inversion times. We removed these from the data before fitting. (Color figure online)

We normalised each voxel’s data independently, by dividing by the signal
generated from the b = 0 volume with the highest TI, i.e. the volume with the
highest expected signal. We then removed all background voxels using the brain
mask provided with the MUDI data.

2.3 Simulated Data

In-vivo MRI data does not have ground truth tissue-related parameters values,
making it hard to quantitatively assess the accuracy of model fitting. We thus
simulated 100,000 synthetic signals using the T1-ball-stick model signal equa-
tion (Eq. (2)). We used the same 416 acquisition parameters (b-values, gradient
directions and inversion times) as our reduced MUDI dataset. The ground truth
values of λ||, λiso, T1ball and T1stick were sampled randomly from physically-
plausible ranges (Table 1). Note that we choose units so that parameter values
are close to 1; this prevents having to normalise parameter values before train-
ing neural networks. Complex Gaussian noise was added to simulate the Rician
distribution of noisy MRI data [16].

2.4 Non-linear Least Squares Fitting

The modified T1-ball-stick model (Eq. (2)) was fit with non-linear least squares
by modifying the open source diffusion microstructure imaging in python
(dmipy) toolbox [9], with parameter constraints as in Table 1. Specifically, we
used the “brute2fine” function, which uses a brute force grid search followed by
non-linear optimisation.
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Table 1. Constraints on T1-ball-stick parameters for simulating data and model fitting.

Parameter Minimum Maximum

λiso 0.1 μm2/ms 3.0 μm2/ms

λ|| 0.1 μm2/ms 3.0 μm2/ms

f 0 1

T1ball 0.01 s 5 s

T1stick 0.01 s 5 s

θ 0 π

φ −π π

2.5 Self-supervised Model Fitting

We built an ANN to generate estimates for the T1-ball-stick parameters. The
network comprises an input layer, 3 fully connected hidden layers and an output
layer, (see Fig. 2). The input layer and hidden layers each have 416 nodes -
mirroring the 416 MRI volumes. The final layer has 7 output neurons, one for
each parameter of interest. The normalised signal from a single voxel of the
MRI data, S, which comprises 416 measurements, is fed into the input layer and
passed through the ANN. The output layer is fed forward into the T1-ball-stick
model equation, giving a synthetic signal Ŝ. Training loss is the mean squared
error between input (S) and synthetic (Ŝ) MRI signals across all voxels passed
through the ANN.

We implemented the ANN on Python 3.9.5 using PyTorch21 1.10.0. For both
simulated and in-vivo data, we used the Adam optimiser [15] with learning rate
0.0001, batch size 128, and dropout [24] with rate 0.5. Parameter constraints
(Table 1) were imposed using PyTorch’s clamp feature, which converts any value
outside the bounds to the value closest to it within the boundary. Following [2],
we trained the network with patience 10, i.e. until there 10 consecutive epochs
without loss improvement. As the self-supervised approach estimates T1-ball-
stick parameters directly from the data, we didn’t use a train-test split. Instead,
the ANN was trained on each dataset separately.

3 Results

3.1 Simulated Data

The T1-ball-stick model was successfully fit to the simulated signals using both
the ANN and NLLS. Scatter plots and Pearson correlation coefficients of param-
eter estimates against ground truth values are shown in Fig. 3 (note that we don’t
report correlations for θ and φ as the values are confounded by the periodicity of
these angular parameters). Correlation coefficients for the ANN fits are higher
for all model parameters, with coefficients above 0.9 for all parameters except
λ||. NLLS correlation coefficients for T1 relaxation time are particularly low.
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Fig. 2. Our ANN for T1-ball-stick fitting and the flow of data through it.

3.2 Real Data

Figures 4 and 5 show T1-ball-stick model fits for all MUDI subjects. ANN param-
eter maps are qualitatively less noisy and show more anatomically plausible con-
trast than NLLS. This is particularly clear for T1ball, λ|| and direction encoded
colour (DEC) maps. All 5 MUDI subjects showed similar trends. ANN inferred
higher and lower values than NLLS for T1ball and T1stick respectively. The ANN
clearly shows highest λ|| values in the corpus callosum, while the Dmipy fit has
high λ|| values in many places. λiso maps are generally similar across both meth-
ods.

Average time taken for ANN fits on real data was 1966s, compared to 8833 s
in Dmipy, meaning ANN was 77.25% faster than NLLS on average. All model
fits were performed on a 2017 Macbook Pro’s central processing unit (3.1 GHz
Dual-Core Intel I5-7267U).

4 Discussion

This study demonstrates self-supervised microstructure imaging for a combined
T1-ball-stick model. Our ANN approach is faster and more precise that con-
ventional NLLS model fitting. In the ANN model fits, parametric maps show
plausible estimates for both diffusivity (λ||, λiso) and relaxation (T1ball and
T1stick), whereas some NLLS maps, particularly T1ball, show dubious contrast.
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Fig. 3. NLLS and ANN T1-ball-stick estimates against ground truth values, after fit-
ting the model to simulated signals. r denotes the Pearson correlation coefficient.

The ANN model fits potentially reveal more accurate tissue information than
NLLS counterparts. Throughout the brain, white matter T1 times are expected
to be around 0.7–0.9 s [4]. The ANN estimates fall within this range - the T1stick
voxels displayed in Figs. 4 and 5 average to 0.87 s - while NLLS estimates are
higher, with some regions reaching 4 s. T1 times in the CSF are expected to
be around 4 s [4], which is reflected in the ANN T1ball estimate, but not in the
NLLS estimate, where it is approximately 0 s (Figs. 4 and 5).

These observations match those in the simulations (Fig. 3), with NLLS cor-
relation being extremely poor in both T1 times. In line with our qualitative
analysis of MUDI data fits, Figure 3 shows that the ANN outperforms Dmipy
in every parameter, except potentially for θ and φ, whose correlations are not
straightforward to quantify due to their periodicity. Direction encoded colour
(DEC) maps are less noisy for ANN fits, with less visible noise, and are hence
potentially more useful for tractography.

The ANN approach was faster in all datasets, with a 77% improvement in time
on average. This will hopefully improve the feasibility of utilising similar modelling
in clinical scenarios. However, the ANN would still require retraining for every
new dataset. A possible next step would be to explore the viability of using multi-
ple datasets to train an ANN to be generalisable to unseen data, then fine-tuning
the network on each new dataset, effectively combining advantages of super-
vised and self-supervised learning, as recently demonstrated by Epstein et al. [8].
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Fig. 4. Parameter maps for all models fit to the first 3 MUDI datasets using both
Dmipy and ANN methods. Each parameter map is a cross-sectional view of the brain.
The maps presented are generated from the middle Z-axis slice.

If successful, this could significantly reduce time taken to generate parameter esti-
mates for new patients, but possibly at the cost of accuracy.

Whilst the ANN outperforms NLLS in our experiments, we applied NLLS
“out of the box” without focusing on improving the fitting. The NLLS fits could
be improved - e.g. the vertical lines in Fig. 3 are likely local minima. . In future,
we could use a larger grid in the grid search stage, although this can quickly lead
to infeasible computational times, or initialise the NLLS fit from “reasonable”
parameter values. Whilst these would likely improve the NLLS fits, the fact that
our self-supervised ANN bypasses these ad-hoc tuning steps presents a significant
advantage. We also only compare parameter estimates with the ground truth
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Fig. 5. As Fig. 4 but for the remaining 2 MUDI datasets.
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using correlation coefficients, effectively merging bias and variance. In future, we
could calculate bias and variance separately, and also explore tuning the training
cost function towards accuracy or precision depending on the application. Ball-
stick is a very simple single bundle model, in future we will explore multi-fibre
models that more accurately reflect brain microstructure.

The small sample size is a limitation of this study. In future, we can adapt
our ANN to fit standard microstructural models that only require diffusion MRI
data. This would enable us to test self-supervised learning against NLLS, and
quantify test-retest repeatability, on large open source datasets. Additionally, the
5 datasets are all from healthy patients with normal physiology. Hence, we are
unable to judge the suitability of the T1-ball-stick model parameters as imaging
biomarkers. The overall goal is to identify imaging biomarkers that can be used
for diagnosis, prognosis, and monitoring of brain conditions such as stroke and
dementia, so future studies should involve MRI data from patients with these
conditions. This would also help us determine thresholds for model parameters
to differentiate between healthy and diseased tissue.

5 Conclusion

We demonstrate, for the first time, self-supervised learning fitting of a direc-
tional microstructural model, T1-ball-stick. We show vastly improved perfor-
mance, in terms of speed and accuracy, compared to the current standard fitting
technique, NLLS. Self-supervised machine learning model fitting had only been
demonstrated in a limited number of simple MC models thus far, such as IVIM
[2]. This work can pave the way for self-supervised fitting of a wide range of
multi-compartment microstructure models to MRI data.
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Abstract. Fitting of the multicompartment biophysical model of white
matter is an ill-posed optimization problem. One approach to make
it computationally tractable is through Orientation Distribution Func-
tion (ODF) Fingerprinting. However, the accuracy of this method relies
solely on ODF dictionary generation mechanisms which either sample
the microstructure parameters on a multidimensional grid or draw them
randomly with a uniform distribution. In this paper, we propose a step-
wise stochastic adaptation mechanism to generate ODF dictionaries tai-
lored specifically to the diffusion-weighted images in hand. The results we
obtained on a diffusion phantom and in vivo human brain images show
that our reconstructed diffusivities are less noisy and the separation of
a free water fraction is more pronounced than for the prior (uniform)
distribution of ODF dictionaries.

Keywords: Brain microstructure · White matter · ODF
Fingerprinting · Diffusion MRI · Stochastic optimization

1 Introduction

Brain White Matter (WM) microstructure features are reconstructed in vivo
from Diffusion Weighted Images (DWIs) by fitting biophysical models [4,9,17]
of acquired signal. In a typical scenario, this boils down to solving a non-convex
optimization problem with multiple local optima [10] which is computationally
challenging.
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One numerical approach to this problem uses Orientation Distribution Func-
tion Fingerprinting (ODF-FP) [2] to find near-optimal solutions in linear time
by matching ODFs of the acquired signal with the elements of a precomputed
ODF dictionary. However, the accuracy of this approach relies solely on the
ODF dictionary generation mechanism which either samples the microstructure
parameters on a multidimensional grid [2] or draws them randomly with a uni-
form distribution [6]. Both these techniques lack specificity due to the inherent
assumption that every element of an ODF dictionary is equally likely to be found
in the dataset.

In this paper, we propose a stepwise stochastic adaptation mechanism to
generate ODF dictionaries tailored specifically to the DWIs in hand. Our app-
roach implements an Estimation of Distribution Algorithm (EDA) [7,14] to sta-
tistically infer posterior distribution of ODF dictionary elements. By gradually
improving the prior uniform distribution of microstructure parameters, our algo-
rithm adapts the sampling mechanism of the ODF dictionary to the acquired
DWIs in an unsupervised, data-driven manner. Through this, we address the
lack of specificity in the original ODF dictionary design [6], which in practice
led to storing multiple ODF fingerprints that were unlikely to be selected.

We present the results obtained on a diffusion phantom and in vivo human
brain images showing that our approach improves microstructure parameters
estimation with ODF-FP. Our reconstructed diffusivities are less noisy and the
separation of a free water fraction is more pronounced. This leads to more accu-
rate approximation of clinically significant microstructure features attributed to
axonal loss [4], inflammation [20], or demyelination [11].

2 Methods

In this study, we reconstructed WM microstructure parameters using ODF-FP.
Note that our method did not impose any particular definition of ODF. For
brevity, though, we considered the so-called diffusion ODF variant [23]. From
now on, we will refer to it simply as ODF.

2.1 Biophysical Diffusion Model

We used the multicompartment diffusion model [8] defined as

S(b) = S(0) ·
[
pisoe

−bDiso +
N∑
i=1

p(i)κ(i)(b,g · n(i))

]
, (1)

where S(0) is the signal without diffusion encoding (b = 0), while the contribu-
tion of i-th fiber (i = 1, . . . , N) is

κ(i)(b,g · n(i)) = f (i)e
−bD

(i)
a,‖(g·n(i))2

+
(
1 − f (i)

)
e
−bD

(i)
e,‖(g·n(i))2−bD

(i)
e,⊥(1−(g·n(i))2),

(2)
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where n(i) ∈ R
3 is the fiber orientation and g ∈ R

3 is the direction of the diffusion
encoding gradient. The compartment volumes of free water piso ∈ [0, 0.8] and
neurites p(i) ≥ 0.1 sum up to 1. The fraction sizes are f (i) ∈ [0, 0.8]. The ranges of
diffusivities are as follows: free water Diso ∈ [2, 3], intra-axonal D

(i)
a,‖ ∈ [1.5, 2.5],

and extra-axonal D
(i)
e,‖ ∈ [1.5, 2.5], D

(i)
e,⊥ ∈ [0.5, 1.5] · 10−9 m2/s, assuming that

D
(i)
a,‖ ≥ D

(i)
e,‖ as advocated in [9].

2.2 Orientation Distribution Function Fingerprinting

Throughout this study, we maintained the following two types of ODF dictio-
naries designed for our two datasets:

(a) phantom dataset—a simplified dictionary of 104 elements, each of them
limited to N ≤ 2 fibers per voxel and equal fiber fractions, i.e. Da,‖ = D

(i)
a,‖,

De,‖ = D
(i)
e,‖, De,⊥ = D

(i)
e,⊥, and f = f (i) for i = 1, 2.

(b) in vivo dataset—a dictionary of 106 elements, each of them limited to
N ≤ 3 fibers per voxel as suggested by Jeurissen et al. [12], without any
simplifications of the diffusion model.

In either case, the b-values and the diffusion sampling directions g matched
the data acquisition protocols defined later in Subsect. 2.4.

For matching of ODF fingerprints, we used a k-point tessellation of a unit
hemisphere (with k = 321) to discretize ODFs. Having this, we applied the
matching formula [2,6] defined as

x̃ = arg max
d∈D

(
log xTd − N · λ

)
, (3)

where x ∈ R
k is the fingerprint of a given ODF computed from the acquired

signal, x̃ is its best-fitting representative among the elements d of the ODF
dictionary D, and λ > 0 is the penalty factor to limit the number of ODF
peaks. Note that the formula in Eq. 3 is a modification of the Akaike information
criterion [1], where xTd approximates the likelihood function of the diffusion
model, while the N · λ component discourages overfitting. Here, we chose the
empirical values of λ = 2 · 10−4 in our phantom study and λ = 1 · 10−3 in vivo.

2.3 Stepwise Stochastic Adaptation of a Dictionary

Our approach implements the stepwise stochastic mechanism of gradual improve-
ments introduced in EDA. In this vein, we began by generating ODF dictionar-
ies with the microstructure parameters uniformly distributed in their respective
ranges of feasibility (defined in Subsect. 2.1) as suggested in [6]. We will refer to
this distribution as prior and to such dictionaries as prior ODF dictionaries.

For each dataset, we first ran ODF-FP with the respective prior ODF dictio-
nary and looked up the estimated microstructure parameters (Fig. 1a). This first
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Fig. 1. Schemes of ODF-FP and the proposed ODF dictionary adaptation mechanism.

run implemented the original ODF-FP procedure (as defined in [2,6]) which we
will use for reference.

Later on, we trained two types of Gaussian-based Kernel Density Estima-
tors (KDEs) [19] to represent the empirical distributions of the microstructure
parameters that we found with ODF-FP. We defined them as follows:

Type #1 estimator represented the random vector of compartment volumes
(p(1), . . . , p(N)), such that the free water fraction could be computed as piso =
1 − ∑N

i=1 p(i). In every experiment, there was only one such estimator.

Type #2 estimators represented the random vectors of diffusivities and intra-
axonal volume fractions (D(i)

a,‖,D
(i)
e,‖,D

(i)
e,⊥, f (i)). The number of such estimators

depended on the number of distinct sets of fiber parameters per voxel, i.e. one
in the phantom dataset and three in vivo.

Based on these, we generated the posterior ODF dictionary, such that its
elements were no longer uniformly distributed in the space of parameters, but
instead they reflected the empirical distribution that we have estimated.

Then, we trained our KDEs again and we used them to generate another
instance of the posterior ODF dictionary. We repeated the above procedure 10
times to observe the evolution of the posterior ODF dictionaries in the consec-
utive iterations of this stepwise adaptation loop (Fig. 1b).

2.4 Data

Diffusion Phantom. We used an anisotropic diffusion phantom manufactured by
Psychology Software Tools (Pittsburgh, PA, USA). The phantom contained syn-
thetic fibers made of textile water-filled microtubes (TaxonTM technology [18])
with 0.8 μm diameter. In our experiments, we considered three regions of inter-
est (ROIs) containing pairs of fibers crossing at 90◦, 45◦, and 30◦, as illustrated
in Fig. 2.
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Fig. 2. A slice of the T1-weighted image of the diffusion phantom with 3 regions of
interest (in yellow) containing synthetic fibers crossing at 90◦, 45◦, and 30◦. (Color
figure online)

We scanned the phantom at 2 mm isotropic resolution, with TE/TR =
74/8000 ms, using a diffusion protocol with 60 exact same sampling directions
(forming radial lines [3]) at every b-shell for b = 1000, 2000, 3000 s/mm2, inter-
leaved with 20 images at b = 0. We then ran Radial Diffusion Spectrum Imaging
(RDSI) [3] to compute ODFs. The MATLAB code that we used for data pro-
cessing is available at: https://bitbucket.org/sbaete/rdsi recon

In Vivo Data. We considered one healthy subject from the HCP dataset [21]
acquired at 1.25 mm isotropic resolution with b = 1000, 2000, 3000 s/mm2, 90
directions each, interleaved with 18 images at b = 0. We computed ODFs for all
WM voxels using Generalized Q-sampling Imaging (GQI) [24] pipeline provided
in DSI Studio.

2.5 Evaluation

Due to the lack of ground truth values for the microstructure parameters of our
diffusion model, we quantified the results by comparing coefficients of variation of
the respective variables. To account for the stochastic character of our approach,
we repeated every experiment 10 times and computed mean values with standard
deviations. Finally, we compared the in vivo results with the values reported in
the literature [4,15,22].

3 Results

Our experiments—consisting of 10 iterations of the stepwise stochastic
adaptation—were sufficient to observe gradual changes in the estimated

https://bitbucket.org/sbaete/rdsi_recon
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microstructure parameters. In many cases, the compartment volumes and dif-
fusivities converged to stable states that were visibly less noisy than the ones
obtained with the prior ODF dictionaries.

Diffusion Phantom. Fig. 3 shows the evolution of the coefficients of variation of
the estimated parameters. Note that all the variables, except for fin, stabilized
after approximately 5 iterations. Among them, the compartment volume frac-
tions (i.e. piso, p(1), and p(2)) increased their dispersion, whereas the diffusivities
(i.e. Da,‖, De,‖, and De,⊥) decreased it.

The detailed maps of the estimated parameters (Fig. 4) give more insight
into these two classes of convergence. Indeed, as the adaptation mechanism was
progressing, the computed compartment volume fractions were evolving from
rather blurry images (in the prior case) towards more crisp ones. Particularly, the
posterior piso maps gradually revealed the free water fraction at the boundaries
of the fibers reflecting the partial volume effects, while the maps of p(2) correctly
highlighted the contribution of the second fiber fraction in the crossing areas.
Simultaneously, our maps of diffusivity parameters evolved from fairly scattered
images corrupted with noise (in prior ODF dictionary) towards nearly uniform

Fig. 3. Coefficients of variations (averaged over 10 runs ± standard deviations) com-
puted on the phantom data converged after approximately 5 iterations in all studied
variables except for fin. The plots illustrate the ODF dictionary adaptation process
from the prior ODF dictionary (in blue) throughout the 10 iterations of the posterior
ODF dictionaries (in red). (Color figure online)
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Fig. 4. Detailed maps of the estimated microstructure parameters (in rows) in the
diffusion phantom dataset. The images show the adaptation process from the 0th iter-
ation (prior ODF dictionary) throught the 1st, 5th, and 10th iterations of the posterior
ODF dictionaries. The regions of interest (in columns) present pairs of synthetic fibers
crossing at 30◦,45◦, and 90◦.

maps which better reflected the expected uniform microstructure of the synthetic
fibers.

In Vivo Data. We observed a little different convergence pattern on the human
brain WM than in the phantom. Here, the ODF dictionary adaptation required
more than 5 iterations during which the dispersion changes evolved towards
decreasing the coefficients of variation in almost all variables, even the compart-
ment fraction volumes (Fig. 5).

The maps of a sample axial slice (Fig. 6) again provide a more in-depth per-
spective of the stochastic adaptation process that took place. Note that param-
eters like piso and the diffusivities evolved in a similar way to the phantom case,
i.e. by emphasizing the partial volume effects (at the boundaries with gray mat-
ter or the ventricles) and by smoothing the intra- and extra-axonal diffusivity
values. On the other hand, the compartment fraction volumes, especially p(2)

and p(3), also tended to decrease their variability (Figs. 5 and 6). This was not
surprising due to differences in heterogeneity of the brain tissue (occurring at
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the microscale level) as compared to the diffusion phantom with clearly distin-
guishable macroscale components (i.e. single-fiber vs. crossing-fiber voxels).

Finally, let us point out that the histograms of the estimated parameters (in
the whole WM) converged from relatively broad and flat distributions towards
more clustered ones with distinguishable dominants (Fig. 7).

4 Discussion

The main limitation of ODF-FP is its dependence on the ODF dictionary [6].
Similarly to other lookup techniques, a uniform distribution of dictionary ele-
ments is used there by default to ensure optimal sampling of the parameter
space. However, this reasoning can only hold under the assumption that every
combination of microstructure parameters is equally probable. In the case of
DWIs, though, this assumption seems inadequate.

In this study, we proposed an approach that allows for adaptation of ODF
dictionaries in an unsupervised, data-driven manner. Moreover, we intentionally

Fig. 5. Coefficients of variations (averaged over 10 runs ± standard deviations) com-
puted on in vivo human data (with the white matter mask applied) were converging
towards lower dispersion in all studied variables except for fin. The plots illustrate the
ODF dictionary adaptation process from the prior ODF dictionary (in blue) through-
out the 10 iterations of the posterior ODF dictionaries (in red). (Color figure online)
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Fig. 6. Detailed maps of the estimated microstructure parameters in the in vivo human
dataset. The images show the comparison between the 0th iteration (prior ODF dic-
tionary) and the 10th iteration of the posterior ODF dictionary.

did not impose any extra assumptions on the microstructure parameters (other
than the feasibility ranges defined in Subsect. 2.1 and the Da ≥ De inequality
that were already assumed in ODF-FP [6]) to avoid unwanted bias, e.g. favoring
a healthy tissue over pathology. Instead, we simply aimed at replacing a fraction
of ODF fingerprints that were highly unlikely to be chosen with the ones that
better represented a given dataset. We also required that the algorithm estimates
such a distribution automatically.

Our results showed that the values of microstructure parameters that we
found with the posterior ODF dictionaries conformed with the values reported in
literature [4,15,22]. In WM, most of our reconstructed intra-axonal diffusivities
Da,‖ ranged between 2.2 and 2.5 · 10−9 m2/s, while the parallel extra-axonal
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Fig. 7. Histograms of the estimated microstructure parameters in the in vivo human
dataset. The gray plots show the 0th iteration (prior ODF dictionary), while the color
plots show the 10th iteration of the posterior ODF dictionary. (Color figure online)

diffusivities De,‖ typically lied within 1.9–2.4 · 10−9 m2/s. The perpendicular
extra-axonal diffusivities De,⊥ were less than a half of De,‖, conforming to the
extra-axonal space tortuosity levels reported in other studies [5,8,10,16]. Also,
the clusters of high intra-axonal fraction volumes fin > 0.6 located in the corpus
callosum and along superior longitudinal tracts agreed with earlier reports [13].
In the other areas, the posterior fin remained at or below 0.33 in agreement with
histological findings [8].

Nonetheless, we must point out that our minimal set of assumptions on the
microstructure parameters carries a risk of homogenization of the estimated val-
ues. The observed tendencies of our approach to smooth diffusivities and volume
fractions, especially in the human dataset, or to shift the extra-axonal diffu-
sivities (De,‖ upward and De,⊥ downward) might require a counter-balancing
mechanism. Future work should address these issues, for instance, by applying
targeted anatomical constraints or DWI noise compensation mechanism.

Moreover, our in vivo study presented in this paper mainly targeted intra-
subject reproducibility. In order to draw more general conclusions, a dataset
composed of multiple subjects with and without pathologies must be processed
next.
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5 Conclusions

In this study, we used ODF-FP to estimate the fraction volumes and diffusivi-
ties of the multicompartment diffusion model at the linear time complexity. To
improve the accuracy of this technique, we proposed a stepwise stochastic adap-
tation mechanism for generating posterior ODF dictionaries that better reflects
the variability of DWIs in hand. As a result, we obtained less noisy estimates of
the microstructure parameters and the more pronounced separation of the free
water fraction of the diffusion signal.
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Abstract. This paper demonstrates spherical convolutional neural
networks (S-CNN) offer distinct advantages over conventional fully-
connected networks (FCN) at estimating scalar parameters of tissue
microstructure from diffusion MRI (dMRI). Such microstructure param-
eters are valuable for identifying pathology and quantifying its extent.
However, current clinical practice commonly acquires dMRI data con-
sisting of only 6 diffusion weighted images (DWIs), limiting the accu-
racy and precision of estimated microstructure indices. Machine learning
(ML) has been proposed to address this challenge. However, existing ML-
based methods are not robust to differing gradient schemes, nor are they
rotation equivariant. Lack of robustness to differing gradient schemes
requires a new network to be trained for each scheme, complicating the
analysis of data from multiple sources. A possible consequence of the
lack of rotational equivariance is that the training dataset must contain
a diverse range of microstucture orientations. Here, we show spherical
CNNs represent a compelling alternative that is robust to new gradient
schemes as well as offering rotational equivariance. We show the latter
can be leveraged to decrease the number of training datapoints required.
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1 Introduction

Diffusion MRI (dMRI) plays an important role in neuroscientific and clini-
cal research because it can help infer tissue microstructure [3]. To infer tissue
microstructure from dMRI, we use mathematical models to estimate parame-
ters from dMRI data. At each voxel, the measurements made according to some
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acquisition scheme - commonly consisting of gradient schemes coupled with their
diffusion sensitising factor - are fitted to mathematical models, such as the dif-
fusion tensor (DT) [2]. From these models, dMRI parameters can be derived to
reveal the microstructure such as fractional anisotropy (FA), which characterises
the anisotropy of the tissue. The computation of these parameters from dMRI data
is known as dMRI parameter estimation, which has traditionally been achieved
with model fitting. However, the fidelity of dMRI parameters estimated in this
way is limited by relatively high noise in the data, requiring more measurements
to be acquired than what are routinely made in the clinic [10].

As in many other fields, dMRI parameter estimation has recently been revo-
lutionised by exploiting deep learning (DL), yielding greatly increased accuracy
than conventional fitting when the acquisition scheme has a small number of
samples [1,8]. However, current deep-learning methods, e.g. fully-connected net-
works (FCN), are ignorant of the acquisition scheme of a given acquisition, ren-
dering these methods potentially not generalisable to new acquisition schemes.
This complicates the application of a DL model to data acquired from multi-
ple sources. Moreover, these methods do not exhibit rotational equivariance, a
property that may help reduce the demand for training data.

There have been a number of attempts to capture the relationship between
an acquisition scheme and the corresponding data [4,12]. However, they do
not utilise the topological features of the associated gradient schemes. Gradi-
ent schemes for a given diffusion sensitising factor can be represented by points
on the unit sphere. Therefore, spherical convolutional neural networks (S-CNN),
recently proposed as an alternative to FCNs [7,13], provide a more natural solu-
tion to this problem. However, currently there exists no direct evidence of the
theoretical benefits of S-CNNs, such as rotational equivariance and robustness
to different gradient schemes. Here we aim to provide the very first empirical evi-
dence of these advantages in the context of estimating rotation-invariant dMRI
parameters.

The rest of the paper is described as follows: Sect. 2 how machine learning
has been used to solve the dMRI parameter estimation problem and the theo-
retical beneficial properties of S-CNNs; Sect. 3 then goes on to explain how we
empirically test these properties; Sect. 4 summarises the results and discusses
future work.

2 ML Solutions to the dMRI Parameter Estimation
Problem and the Theoretical Benefits of S-CNNs

Deep learning (DL) has been proposed as a solution to dMRI parameter esti-
mation from small numbers of diffusion weighted images (DWI). This section
provides (1) an example of the current machine learning standard for voxel-wise
estimation (2) the theoretical limitations of this architecture (3) the architec-
ture features that theoretically benefit S-CNNs. As an example, we show how
the dMRI parameter FA is estimated from a common clinical diffusion MRI
acquisition consisting of 6 DWIs.



How S-CNNs Benefit ML-Based dMRI Parameter Estimation? 103

Deep learning models, F , map the dMRI signals, s, and their corresponding
acquisition scheme - consisting of b-values, B, and gradient scheme G - directly
to dMRI parameters, denoted t.

t = F (s,B,G; θ) (1)

This function is learnt by optimising the trainable parameters, θ, on training
data. After training, the quality of the network estimation depends on many
factors. The two factors explored in this work are the training data distribution
and the choice of network architecture.

2.1 Fully-Connected Networks

The first and most common deep learning network architecture applied to dMRI
data is the FCN [1,8]. Conventionally these have been implemented following:

t = FFCN(s; θFCN ), (2)

where FFCN is a fully-connected network with trainable parameters θFCN . The
network’s input consists of the dMRI signals. Absent from the equation is the
acquisition scheme so the network is ignorant of the acquisition scheme. Estima-
tion from a new set of DWIs is accurate only if the acquisition scheme for the
new data is consistent with the acquisition scheme during training [12].

An FCN’s architecture is not designed to be rotationally equivariant. A theo-
retical consequence of lacking rotational equivariance is that the training dataset
may have to contain a diverse set of tissue microstructure orientations for FCNs
to accurately estimate independent of fibre orientation.

2.2 Spherical CNNs

S-CNNs theoretically improve over FCNs - both in terms of robustness to the
gradient scheme and robustness to the training data distribution - because of
the difference in network architecture.

An S-CNN’s architecture differs greatly to an FCN’s but not in the way one
may expect. In S-CNNs, the convolution isn’t across multiple voxels, like tradi-
tional CNNs, but over the spherical image space. Therefore, S-CNNs are voxel
wise networks just like FCNs. The spherical image is generated at each voxel
from the dMRI signals, s, along with their corresponding gradient scheme G.
We see that this architecture may naturally address the highlighted limitations
of FCNs. Firstly, an S-CNN’s input is informed of the gradient scheme as shown
in the following equation:

t = FS-CNN(s,G; θS-CNN) (3)

where FS-CNN is an S-CNN with trainable parameters θS-CNN. We hypothesise
this input will allow S-CNNs to be robust to a change in gradient scheme at
inference time as long as the diffusion sensitising factors are the same.



104 T. Goodwin-Allcock et al.

Another benefit of S-CNN’s is the rotationally equivariant architecture [6].
We hypothesise that this property will allow S-CNNs to extrapolate from a train-
ing dataset with a common primary fibre orientation and, during the inference
stage, well estimate tissue with fibres oriented along any direction. As a result,
S-CNNs do not require a diverse set of tissue microstructure orientations in the
training dataset, reducing demands on the training dataset.

3 Experiments

Each claim made in this paper is evaluated with an individual experiment. The
first experiment evaluates network robustness to differing gradient schemes; the
second assesses network robustness to the distribution of the primary fibre ori-
entations in the training set.

3.1 Experiment 1

Study Design. In this experiment we test if the networks are robust to new
gradient schemes at inference time. In order to show this we propose an experi-
ment where both networks are trained with a typical gradient scheme and then,
in the inference phase, the trained networks are applied to data collected using
a gradient scheme (1) the same as the training gradient scheme and another (2)
different to the training scheme.

Network Architectures and Training Parameters. Both network archi-
tectures are voxel-wise networks. The S-CNN architecture we use, known as the
hybrid spherical CNN architecture [5], was chosen as it has been shown to be
highly rotationally equivariant whilst also being computationally efficient. The
specific network parameters follow the spherical MNIST experiment and the
input to this network is a densely sampled spherical signal, described later. The
FCN network architecture implementation, used as the baseline, is consistent
with the established implemented FCN techniques for dMRI parameter estima-
tion [1,8]. This network input follows the standard practice consisting of 6 b = 0
normalised diffusion-weighted signals. The network hyperparameters are: three
hidden layers with number of units = [100,100,10] and ReLU activation function.

The training parameters are chosen in order for FCN to perform optimally
and consistent between the networks so that any difference between trained net-
works is solely because of their architectures. To achieve this, the training param-
eters are consistent with the FCN literature; specifically the training regime used
Adam optimiser for 50 epochs with learning rate set to 0.001, the batch size 32
and the loss metric MSE.

Generating Densely Sampled Spherical Signals. S-CNNs require densely
sampled spherical signals as input. Densely sampled spherical signals are gen-
erated for each voxel by utilising the property of the 1-to-1 mapping between
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six-directional dMRI signals and the 6 independent values of the diffusion ten-
sor. Due to this property, six-directional dMRI signals, with all of their noise,
are perfectly and uniquely described by a DT. From this DT a spherical func-
tion called the ADC profile may be derived and sampled to generate the input
required for S-CNNs. This process is visually described in Fig. 1.

Fig. 1. This figure shows how the testing data is generated for the both experiments
(blue box). The figure also shows how the training data is generated for experiment
1 (blue box) and experiment 2 (green box). In the blue box, from the 90 directional
b = 0 normalised diffusion weighted signals (DWS) we estimate the ground truth
diffusion tensor, and generate a 6-dir clinical scan by subsampling. The clinical scan’s
measurements are used as input to the FCN, but for compatibility with the S-CNN
they must first be re-parameterised as an ADC profile. This is achieved by exploiting
the 1-to-1 relationship described in Sect. 3.1. For the second experiment training data
is required that has the primary fibre oriented along the AP axis. This is achieved by
changing the orientation of the estimated DT and calculating the 6 DWS, for FCN, or
calculating the ADC profile for S-CNN. (Color figure online)
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Datasets. A dataset is required for training and testing the models. All of the
deep learning models evaluated in this paper are supervised machine learning
techniques, therefore, the training dataset must consist of a set of input values
paired with ground truth output values. For the high-quality ground truth out-
put, a dataset is required that contains a sufficiently large number of DWIs to
provide accurate estimation of FA.

For this reason, we have chosen dMRI data from the Human Connectome
Project (HCP) which includes 90 DWIs at b = 1000 s/mm2. Ground-truth FA
maps are computed from the complete set of DWIs. Subsets of six-directional
DWIs are sampled from the 90 DWIs to be in maximal agreement with the
chosen gradient schemes to mimic clinical scans. Although clinical scans are
collected with a much lower spatial resolution than HCP data, for the purpose
of this evaluation, HCP data can be argued to resemble typical clinical scans. As
the networks we evaluate are voxel-wise, the main effect of a change in spatial
resolution is a change in SNR. While HCP’s increased resolution reduces the
SNR, the state-of-the-art gradients of the scanner used to acquire HCP data
increases the SNR. The resulting SNR is comparable with clinical data. Training
was performed with one participant and, to show generalisation, data from 12
unseen participants was used for testing.

Evaluation. Both networks are trained using diffusion weighted signals cor-
responding to one gradient scheme, the Skare scheme [14], and evaluated with
signals corresponding to both the original Skare scheme as well as a new scheme,
Jones [9]. Quantitative measurements of the estimation error are calculated with
root mean square error (RMSE) over specific FA ranges over the whole image.
Statistical significance between distributions is quantified with paired t-tests.
Qualitative assessments are made using maps of estimates and errors relative to
the ground truth.

3.2 Experiment 2

Study Design. In this experiment we test the network’s robustness to the
distribution of the primary fibre orientations in the training set by testing the
networks on a set of microstructure configurations whose primary fibre orienta-
tion lies both inside and outside of the training dataset’s distribution. We achieve
this by restricting the primary fibre orientation in the training dataset to align
with the anterior-posterior axis and testing on microstructure oriented in all
directions. We hypothesise that networks robust to the distribution of primary
fibre orientation in the training set will estimate the FA equally well independent
of the direction of the primary fibre orientation.

Restricting Primary Fibre Orientation. The training distribution of the
primary fibre orientations is restricted to the anterior-posterior axis by adapting
the dense ADC sampling algorithm. In the dense ADC sampling algorithm,
after a noisy DT’s estimation, the noisy DT’s shape and size are extracted by
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eigendecomposition. Next, the primary fibre orientation, otherwise known as the
principal eigenvector, is set to the anterior-posterior axis whilst the secondary
eigenvector is set to the superior-inferior axis; see visual description in the light
green dashed box in Fig. 1. This new AP-aligned diffusion tensor is used to
generate the input required for FCN, by computing the 6 directional b = 0
normalised diffusion-weighted signals from the DT forward model, and the input
required for S-CNN, by densely sampling the ADC profile.

Evaluation. Network architectures, training scheme, training dataset and eval-
uation metrics are the same as experiment 1. Only one gradient scheme is
required for this experiment so the Skare scheme is chosen for training and test-
ing. Training data undergoes primary fibre orientation restriction, whilst testing
data is unrestricted. To show further benefits of rotational equivariance we test
to see if this property allows S-CNNs to estimate with high fidelity when starved
of training data points. For this, an S-CNN is trained with only 10 % of the total
training datapoints. The distribution of estimation error over the primary fibre
orientation is evaluated.

4 Results and Discussion

4.1 For Experiment 1

Qualitative and quantitative results of experiment 1 are shown in Figs. 2 and 3
respectively.

Figure 2 shows an example slice of a GT FA map from a test subject along
with the model fitting, FCN and S-CNN estimations and error maps when the
gradient scheme is the same or different between training and testing. When the
training and testing schemes are the same FCN’s performance is consistent with
the literature, estimating FA faithfully. When the gradient schemes are different
the FCN estimates poorly. Estimation is especially poor in areas of high FA, such
as the corpus callosum. S-CNN’s estimations are similar to the GT regardless
of the gradient scheme. This shows S-CNN’s robustness to differing gradient
schemes.

Figure 3 reinforces the qualitative observations with quantitative measures
showing boxplots of the mean RMSE over the 12 subjects. We see for anisotropic
signals (FA > 0.4) the conventional FCN performance is significantly worse
(p < 8e−12) when applied to a new gradient scheme than on the training scheme,
whereas, the S-CNN models estimation fidelity does not decrease when applied
to a new scheme. In both figures, on differing gradient schemes the FCN model
is shown to be more inaccurate in regions of high FA. This loss of accuracy in
high FA regions may be caused by the signal attenuation in these regions being
greatly dependant on the direction of measurement. Therefore, for low FA voxels
the DWS from any two gradient schemes are similar. Whereas, for areas of high
FA the DWS will be vastly different and therefore the training distribution will
be different to the testing distribution.
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Fig. 2. Results of experiment 1 are visualised on an subject unseen during training.
Conventional fully-connected networks are compared against the S-CNN model at esti-
mating FA with either the same gradient scheme as used in training or a new gradient
scheme. The FCN shows a drop in performance when the gradient scheme is different
between training and testing. The S-CNN doesn’t have this issue, therefore, it is robust
to differing gradient schemes.

Gradient scheme robustness may also be achieved with FCN by first encoding
the signals in terms of their corresponding spherical harmonic representation
[11]. This approach is essentially equivalent to S-CNN but does not offer the
property of rotational equivariance, the effect of which is demonstrated in the
next subsection.

4.2 For Experiment 2

The results of experiment 2 are shown in Figs. 3, 4 and 5. Figure 4 qualita-
tively shows the effect of estimating the full brain volume using networks trained
only on tissue microstructure aligned with the anterior-posterior axis. The FCN
model consistently underestimates FA in regions where the underlying tissue
microstructure does not align with anterior-posterior direction (e.g. the corpus
callosum which consists of left-right white matter tracts). In contrast, the S-CNN
models accurately estimate FA independently of the primary fibre direction, and
the error is far less structured than the FCN’s.

This is mirrored in the quantitative measurements over the 12 testing sub-
jects, shown in Fig. 3. The FCN model only well estimates isotropic signals
(FA < 0.2); however the performance difference between different methods is rel-
atively small, with the difference between the mean RMSE for different methods
no larger than 0.04. When the signal becomes anisotropic, the FCN model esti-
mates the signal significantly worse than the S-CNN models, with the difference
in the mean RMSE for different methods no smaller than 0.08. As the signals get
more anisotropic the FCN model performs even worse until in the top FA bracket
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(0.8 ≤ FA< 1) the mean RMSE between the FCN and the S-CNN models is 0.5,
10 times the difference in error of the isotropic signals.

Figure 5 shows the distribution of the absolute error over the full range of
primary fibre orientations for anisotropic signals. The FCN model well estimates
tissue microstructure aligned with the anterior-posterior axis, seen during train-
ing. However the error quickly grows as the primary fibre orientation deviates
from this axis. This adverse feature is not exhibited by the S-CNN model as the
estimation error is low and independent of training dataset distribution of the
primary fibre orientation. The lack of rotational equivariance in FCNs hinders
estimation performance when generalising to microstructure with primary fibre
orientation not sampled in the training distribution. This has potential for orien-

Fig. 3. Boxplots of the RMSE over the 12 testing subjects for both experiments, with
p-values between distributions from paired t-test shown. The testing data is uniformly
split into 5 GT FA ranges. For both experiments the problems with FCN become
apparent when applied to anisotropic signal.
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Fig. 4. Comparison between the FCN model and the S-CNN model at estimating the
FA when trained only with microstrucure oriented along the anterior-posterior axis.
These are also compared against a training data starved S-CNN. We see that spherical
CNN outperforms FCN as the noise is greatly reduced and less structured. Data starved
S-CNN performs similarly well to the S-CNN trained using the full dataset.

Fig. 5. The distribution of the estimation error over the sphere is compared between
the fully-connected network and spherical CNN. To colour each tile we find the voxels
whose GT primary fibre orientation lies within the tile’s surface and compute the mean
RMSE. For this evaluation only voxels with FA > 0.6 were used. We see that FCN’s
error is only low along the AP axis and high in all other directions. S-CNN’s error is
low over the entire surface of the sphere.
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tation bias in the training dataset to lead to poor estimation for under-sampled
directions.

In Figs. 3 and 4 another advantage of rotational equivariance is shown. Per-
formance of the S-CNN network is not greatly changed when only a tenth of
the training dataset is used. This is shown in the maps of FA estimated by the
data starved S-CNN model in Fig. 4 and the RMSE over the 12 testing subjects
shown in Fig. 3. The robustness to a lack of training data is due to S-CNNs
being rotationally equivariant. Therefore, during training only a diverse distri-
bution of the microstructure shape is required and not their orientations as well.
This property of S-CNNs is a real benefit as it reduces the number of training
datapoints required for good estimation at inference stage and, when simulating
training data, allows for denser sampling of the shape parameters as SO(3) need
not be sampled.

5 Conclusion

In this work we explore the advantages of S-CNNs for dMRI parameter esti-
mation over conventional FCNs. Representing diffusion weighted signals as a
spherical image is here demonstrated to gain robustness to the gradient scheme
absent from conventional FCNs, at no cost to fidelity. This removes the need
to retrain a new network for every gradient scheme, a feature especially bene-
ficial when combining data from multiple sites. S-CNN is shown to be superior
to FCN methods additionally because of its rotational equivariance property.
This enables the network to encode information about the pattern of the sig-
nal irrespective of primary fibre orientation. This eliminates the need to sample
diffusion primary fibre orientations, reducing the number of samples needed to
cover the full parameter space.
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Abstract. Diffusion magnetic resonance imaging (dMRI) is a non-
invasive technique for studying the microstructure properties of brain
white matter (WM) in vivo. Segmentation of WM fiber tracts can be
used to characterize the topological structure of the human brain and to
exploit the biological landmark of abnormal areas by dMRI. To improve
the performance of the fiber tract segmentation, we propose a novel U-
Net based architecture with dense criss-cross attention, which captures
non-local rich global contextual information more efficiently. Our model
is evaluated using the real brain data from Human Connectome Project
(HCP). Extensive experiments demonstrate that our model improves the
performance of fiber tract segmentation, especially for the fiber bundle
with complicated topology structure.

Keywords: Diffusion MRI · Fiber tract segmentation · Attention ·
Dense connection

1 Introduction

Diffusion magnetic resonance imaging (dMRI), as a unique non-invasive method,
has facilitated tremendous progress in the study of the microstructure of the
human brain. White matter (WM) fiber tracts connect different regions of the
gray matter, allowing information transmission in the whole brain. Brain diseases
have been found to be closely associated with morphological changes in specific
WM tracts [1,23]. Therefore, how to improve the segmentation accuracy of WM
fiber tracts is very critical for neuroscience studies and brain disorder diagnosis.

Efforts have been dedicated to accurate WM tract segmentation. For
instance, Wassermann et al. [21] proposed a region-of-interest (ROI) based app-
roach to classify fiber tracts by processing fiber streamlines. Garyfallidis et al.
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[6] used a clustering-based approach to classify and select reference fiber stream-
lines. Recently, deep learning techniques have been widely used in WM fiber tract
segmentation. Li et al. [12] proposed a 3D convolutional neural network (CNN)
based approach for WM fiber tract segmentation and performed validation on
a large-scale dataset. Liu et al. [13] developed a graph convolutional neural net-
work (GCNN) to predict the grouping labels of individual fiber bundles. Lu et al.
[14] employed an encoder-decoder CNN to address data annotation scarcity in
WM region segmentation. Wasserthal et al. [22] calculated and embedded fiber
orientation maps to a 2D FCNN.

Despite the progress in tract segmentation, existing works usually rely on
simple fully convolutional networks (FCNs), such as U-Net. FCNs are effective
in capturing the local context information, but are unable to fully locate the
long-range dependencies, which are crucial to accurate tract segmentation since
the global context information provides valuable high-level semantic clues that
are the keys to identifying tract bundles. The self-attention mechanism is pro-
posed to exploit the long-range dependencies with powerful non-local operations.
It has been demonstrated to be effective in segmentation tasks [16], but suffers
from a limitation of large computational burden, which restricts its wide applica-
tions. Furthermore, it has not been investigated in the tract segmentation task.
Therefore, an FCN equipped with an efficient self-attention module is greatly
desired for accurately segmenting WM tracts.

To this end, we proposed a dense criss-cross U-Net (DC2U-Net) to accu-
rately segment tract bundles from fiber peaks. On the basis of U-Net [18], our
DC2U-Net innovatively integrates an efficient self-attention component, criss-
cross attention [9], into the model, which improves the robustness and perfor-
mance of fiber tract segmentation. In addition, we add dense connections to
optimize the original criss-cross attention, yielding an improved self-attention
module, called dense criss-cross attention (DCCA). In general, DC2U-Net uses
DCCA to capture richer global context information and employs the resulting
context information to improve the accuracy of tract segmentation. Finally, we
design a loss function with deep supervision to improve the training procedure.
Our DC2U-Net segments brain WM fiber tracts from fiber peaks rather than
raw dMRI data, allowing better generalization ability to work with dMRI data
acquired using different sampling schemes in q-space. We evaluate the proposed
model using the public Human Connectome Project (HCP) dataset [5]. Quan-
titative and qualitative comparisons demonstrate that DC2U-Net improves the
WM fiber tract segmentation performance effectively.

2 Methods

2.1 Dense Criss-Cross U-Net

Conventional automatic segmentation of WM fiber tracts depends on either fiber
clustering or ROI-based methods, which are difficult to make a joint optimization
and consume a lot of computational resources, therefore they are difficult to be
applied in the practical clinic.
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Fig. 1. The overall architecture of DC2U-Net. Raw HCP data is firstly processed
by constrained spherical deconvolution and peaks extraction. Afterward, we fed ran-
dom inputs from three directions (coronal/axial/sagittal) into a 2D U-Net encoder
for feature extraction. The resulting features are then sent to the DCCA block for
feature enhancement. Finally, deep features are fed to the decoder for predicting the
segmentation maps.

Different from conventional methods, our model segments fiber bundles
directly without additional operations such as fiber clustering or ROI labeling.
Instead of using raw dMRI data as network input, we use fiber peaks instead
for better model generalization, as in [22]. For this purpose, we use multi-shell
multi-tissue constrained spherical deconvolution (CSD) [10] to compute fODF
and then extract a maximum number of three peaks per voxel.

The proposed DC2U-Net consists of three major components, including
a segmentation encoder, a dense criss-cross attention (DCCA) block, and a
decoder. As shown in Fig. 1, random inputs from different directions (coro-
nal/axial/sagittal) are firstly fed into the encoder. The feature maps generated
by four consecutive max pooling operations are sent to the proposed DCCA to
extract enhanced context information. Finally, deep features are reconstructed
using four successive learnable deconvolutions for up-sampling operations.

As in [22], during the training, we randomly select an oriented (coro-
nal/axial/sagittal) slice from one subject and feed it into the network to predict
the probability map for each fiber bundle. Subsequently, these maps correspond-
ing to different orientations are merged by averaging during the test to produce
the final 3D segmentation results. Furthermore, we trained the network with a
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deep supervision [11] component, which allows better supervision and improves
accuracy.

2.2 Dense Criss-Cross Attention (DCCA) Block

A key component in DC2U-Net is the DCCA block, which is designed based on
an efficient criss-cross attention mechanism [9] and dense connections [8]. The
input peak map is subjected to four consecutive downsampling operations in the
encoder branch to obtain the high-level feature map F , and then F is sent to
the first criss-cross attention component to generate a new feature map F

′
.

Specifically, F is divided into Q, K, and V three branches, which are all
obtained by 1 × 1 convolutional network dimensionality reduction, where Q,
K∈ R

C
′ ×W×H with C

′
denoting the number of channels. The attention map

A ∈ R
(H+W−1)×(W×H) is calculated using Q and K through affinity operation

and is defined as follows
di,u = QuΩT

i,u, (1)

where Qu ∈ R
C

′
is the value of the u position in the feature map Q, and

Ωi,u ∈ R
C

′
is the i-th element in Ωu with Ωu ∈ R

(H+W−1)×C
′

denoting the
set of elements at the position u on K. It is worth noting that the dimension
of Ωu is significantly reduced in comparison with traditional non-local based
self-attention mechanism [20] due to the use of a sparse attention map, which
reduces the number of weights from W × H to H + W − 1 [9]. After computing
all di,u, we have D = {di,u}. Finally, a softmax operation is performed on D in
the channel dimension to calculate attention map A.

Another branch V goes through a 1×1 convolutional layer to obtain the adap-
tive features of V ∈ R

C×W×H . We also define Vu ∈ R
C and Φu ∈ R

(H+W−1)×C ,
where Φu is the set of feature vectors at the position u on V . Contextual infor-
mation is learned by aggregation operations defined below

F ′
u =

H+W−1∑

i=0

Ai,uΦi,u, (2)

where F ′
u is a feature vector in F ′ ∈ R

C×W×H at position u, and Ai,u is a scalar
value at channel i and position u in attention map A.

Furthermore, we introduce dense connections [8] into the criss-cross attention
component to improve the training efficiency of the network and prevent the
gradient from disappearing. Finally, as shown in Fig. 1, the output of the DCCA
block, FOut is defined as

FOut = F + F
′
+ F

′′′
, (3)

where F
′′′

is the output of the second criss-cross attention component.
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2.3 Deeply Supervised Loss Function

A deep supervision strategy [11] is employed to design the loss function. Specif-
ically, as shown in Figure 1, supervision is added to each convolution module
of the decoder, which enables better gradient flow and more efficient network
training. We use binary cross entropy (BCE) loss as the loss function of our
network. Therefore, the overall loss is designed as

L =
5∑

k=1

LBCE(pk, g), (4)

where g denotes the ground truth, pk is the k-th prediction output by the net-
work. LBCE(pk, g) is defined as

LBCE(pk, g) = − 1
N

N∑

i=0

(g[i]log(pk[i]) + (1 − g[i])log(1 − pk[i])], (5)

where N represents the number of classes.

3 Experiments

3.1 Dataset and Implementation Details

We evaluate our DC2U-Net with the dataset in [22], which contains 105 subjects
from the Human Connectome Project (HCP) and reference segmentation of 72
major WM tracts per subject. We follow the same dataset partitioning, data aug-
mentation, and experiment settings as in [22]. The data augmentation includes

• Elastic deformation with alpha and sigma(α, σ) ∼ (U [90, 120], U [9, 11]).
A displacement vector is sampled for each voxel d ∼ U [−1, 1], which is then
smoothed by a Gaussian filter with standard deviation σ and finally scaled
by α.

• Rotation by angle ϕx ∼ U [-π/4,π/4], ϕy ∼ U [-π/4,π/4], ϕz ∼ U [-π/4,π/4]
• Resampling (to simulate lower image resolution) with factor λ ∼ U [0.5, 1]
• Gaussian noise with mean and variance (μ, σ) ∼ (0, U [0, 0.05])
• Displacement by (Δ x, Δ y )∼ (U [−10, 10], U [−10, 10])
• Zooming by a factor λ ∼ U [0.9, 1.5]

We use three types of inputs: (1) multi-shell multi-tissue CSD using all gradi-
ent directions, (2) standard CSD using only b = 1000 s/mm2 gradient directions,
(3) standard CSD using only 12 gradient directions at b = 1000 s/mm2. Train-
ing samples are randomly sampled from these three types of peak maps and the
axial, coronal, and sagittal directions of each peak with the size of 144× 144 to
fit the input of the network. We implement the proposed method using PyTorch
[17] on an Nvidia Tesla V100 GPU with 32 GB of memory.

We compare our DC2U-Net with two cutting-edge models. One is recobun-
dles [6], a widely-adopted traditional tract segmentation model. We follow the
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default parameters of recobundles [6] and use an anatomically-constrained par-
ticle filtering probabilistic tractography algorithm [7] to generate whole brain
tracts. Another one is TractSeg [22], a powerful deep learning model for tract
segmentation. The experimental results of TractSeg are generated using the pre-
trained model provided in1.

3.2 Results

The evaluation is performed using the dice score [19], which is one of the widely
used metrics in the field of medical image segmentation. We select one test-
ing subject, whose dice score is closest to the average dice score of the entire
dataset (ID: 623844), and show the qualitative and quantitative results of the
subject in Fig. 2. In the experiment, we also chose the fiber bundles with dif-
ferent reconstruction difficulty levels proposed in the study [15] to represent
the segmentation results of the whole fiber list. The degree of difficulty from
hard to easy is as follows: anterior commissure (CA), corticospinal tract (CST),
and inferior occipito-frontal fascicle (IFO). CA is a fiber bundle that is most
difficult to reconstruct among these three bundles since it is relatively slender,
making it hard to characterize well with dMRI that suffers from low resolution
[3] and heavy noise [2,4]. As shown in Fig. 2, the final dice score of RecoBun-
dles [6] is relatively low due to over-segmentation on CA and IFO right. Our
proposed method has a more significant improvement for small fiber bundles
that are difficult to segment, and outperforms comparing segmentation methods
for grooves and contours of fibers. Table 1 shows the average dice coefficients
between our proposed method and the competing methods on the test dataset
with three major comparisons of fiber bundles. Statistically significant paired
Student’s t-test were also performed for the proposed method and the reference
method. Compared with the competing method, the average dice coefficients in
the three major fibers are improved, indicating improved performance. These
results together demonstrate that our method can significantly improve the per-
formance of WM tract segmentation.

3.3 Ablation Analysis of DC2U-Net

To verify the effectiveness of different components of the proposed method, we
perform an extensive ablation study. Similar to Sect. 3.2, we use 21 subjects
from the test set for evaluation and randomly select one of them to present
the visualization results. CA, FX left, and FX right are selected as bounds of
interest as they are tiny bundles that are more difficult to segment than other
bundles. We use the criss-cross attention block proposed by [9] as a reference for
our comparison. As shown in Table 2, the results of the combination of backbone
and different blocks are provided. Under the three types of fiber bundles that are
difficult to segment, the combination of backbone and DCCA block with deep
supervision strategy (DS) is more effective than other blocks. A higher dice score

1 https://zenodo.org/record/3518348/files/best weights ep220.npz.

https://zenodo.org/record/3518348/files/best_weights_ep220.npz
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Fig. 2. Qualitative analysis of our method and other methods in comparison. Segmen-
tation results (red) and ground truth (green) are presented in 3D with different views
for tract bundles, including the right corticospinal tract (CST), anterior commissure
(CA), and right suboccipital frontal (IFO), respectively. The quantitative results of the
corresponding fiber bundles are also provided in Table 1 (Color figure online).

is obtained, which is nearly 1.4 % higher than the backbone we used. FX left
and FX right are relatively symmetrical in the brain, so we only use FX left to
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Table 1. The mean dice coefficients of the proposed method and the competing meth-
ods in the three fiber bundles (i.e., CA, CST right, and IFO right) on the test dataset.
We use a statistically significant t-test method as our evaluation and competing meth-
ods for the significance of the difference. The best results are marked in bold. (∗∗p <
0.01 , ∗∗∗p < 0.001).

Method Metric CA CST right IFO right Mean

RecoBundles [6] Dice 0.539 0.672 0.714 0.654

p ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
TractSeg [22] Dice 0.682 0.846 0.810 0.829

p ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗
Proposed Dice 0.693 0.855 0.827 0.843

represent this set of visualization results. From the visualization results Fig. 3,
our proposed DCCA block with DS is closer to the ground truth than the others
on two representative fiber bundles, demonstrating that (i) our self-attention
block and deep supervised loss can improve WM tract segmentation performance
effectively.

Fig. 3. Visualization results of ablation experiments for the proposed DC2U-Net. Red
represents the result of segmenting the fibers using our model and its ablated versions,
while green represents the ground truth fiber bundle. (Color figure online)
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Table 2. Quantitative results for the ablation study of our DC2U-Net. DS: deep super-
vision strategy. CCA: criss-cross attention. DCCA: dense criss-cross attention. CA,
FX left, and FX right represent three different fiber bundles. Mean: Mean dice of the
72 major fiber bundles for each subject in the test set.

Backbone DS CCA DCCA FX left FX right CA Mean

� 0.718 0.667 0.682 0.829

� � 0.738 0.679 0.685 0.834

� � 0.737 0.682 0.683 0.834

� � 0.743 0.687 0.687 0.839

� � � 0.751 0.691 0.693 0.843

4 Conclusion

In this paper, we have proposed a novel model, DC2U-Net, for WM fiber tract
segmentation. We employ the densely connected self-attention mechanism to
exploit the long-range relationships for improving the accuracy with less com-
putational cost. Qualitative and quantitative evaluation results on HCP data
demonstrate that our model outperforms cutting-edge methods. Further abla-
tion study verifies the effectiveness of densely connected criss-cross attention and
deep supervision strategy.
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Abstract. Clustering tractography streamlines is an important step to
characterize the brain white matter structural connectivity. Numerous
methods have been proposed to group whole-brain tractography stream-
lines into anatomically coherent bundles. However, the time complexity,
or the initial streamline sorting in conventional methods, or still, using
supervised deep learning models, may limit the results and/or restrict the
versatility of the methods. In this work, we propose an autoencoder-based
method for clustering tractography streamlines. CINTA, Clustering in
Tractography using Autoencoders, is trained on unlabelled data, uses a
single autoencoder model, and does not require any distance thresh-
olding parameter. It obtains excellent classification scores on synthetic
datasets, achieving a 0.97 F1-score on the clinical-style, realistic ISMRM
2015 Tractography Challenge dataset. Similarly, CINTA obtains anatom-
ically reliable results on in vivo human brain tractography data. CINTA
offers a time-efficient bundling framework, as its running time is linear
with the streamline count.

Keywords: Representation Learning · Autoencoder · diffusion MRI ·
Tractography · Clustering

1 Introduction

White matter (WM) brain fiber parcellation, also named bundling , or segmen-
tation –especially when providing a voxel-based output–, or “virtual dissec-
tion” when being done semi-automatically or with some manual intervention,
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encompasses methods that aim to classify and group together fiber entities, i.e.
streamlines. Bundling is an essential processing step in tractography pipelines
allowing to identify the tracks of interest across different brain regions. The
large number of streamlines contained in an average tractogram calls for auto-
mated procedures. Streamline classification for bundling purposes is most com-
monly performed using either of two criteria [6]: (i) the streamline similarity
(defined according to some distance measure); and/or (ii) the regions of interest
(ROI) streamlines traverse or which (gray matter) brain regions their endpoints
connect. Despite being a seemingly simple geometrical entity, adequately char-
acterizing streamlines is still a challenge. Although several distance measures
(such as the closest point distance, the Hausdorff distance, the Mahalanobis
distance, or the Minimum average Direct and Flip distance (MDF), among oth-
ers) have been proposed in literature [6,17], streamline-space point-wise distance
computation and full pair-wise comparisons are computationally expensive, and
might not capture other relevant features. Clustering can be performed in the
streamline native space, or some other representation space (e.g. [17,23,27]), and
some methods provide a volumetric result of streamline groups (bundles) (e.g.
[13,14,22]).

We propose to extend the autoencoder-based latent space nearest neighbor
tractography framework proposed in [12] to cluster streamlines into bundles.
We show that the proposed autoencoder-based method is successful at bundling
streamlines on synthetic and clinical-style realistic phantom and in vivo human
brain data. The method (i) does not require to be trained on labelled data, (ii)
uses a single model, trained only once, to classify streamlines, and (iii) does not
require any distance thresholding parameter to generate the clusters.

1.1 Related Work

Automatic bundle identification of deep white matter pathways has been per-
formed using a variety of methods: (i) anatomical filtering; (ii) clustering; (iii)
atlas-based; (iv) graph-based; (v) dictionary learning;(vi) segmentation-based;
and, more recently, (vii) deep learning-based methods [23]. Automatic anatomi-
cal filtering methods (e.g. [26]), including query languages [21], often offer limited
quality results due to the variability of the streamline locations across subjects,
and are highly sensitive to the streamlines’ waypoints (e.g. streamlines that are
a few voxels short of reaching the gray matter, or apart from each other at a few
locations might be discarded or classified into different groups).

Clustering methods [2,9,15,17,19] use a given streamline similarity distance
definition. These approaches may include some form of hierarchical approach
to progressively improve the results (e.g. [9]). Several methods have used unsu-
pervised machine learning strategies, such as Expectation-Maximization (EM)
[15] or k -means [9]. Similarly, the use of streamline feature descriptors that aim
to capture and summarize the relevant information for the classification, along
with the use of some form of embedding space where the clustering takes place,
have also been proposed [2,17,19]. Some of these methods (e.g. [17]) require
computing pair-wise streamline distances, which has a complexity of O(N2).
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Atlas-based methods such as the ones proposed in [6,25] rely on the anatom-
ical priors provided by the atlas to assign streamlines to a given bundle. They
use bundle or cluster “models” to recognize streamlines in the target tractogram
according to a given threshold with respect to the streamline- or feature-space
centroids. Some of these methods, such as [6], might yield a variable number of
clusters across subjects, or differing results depending on the initial sorting of
the streamlines in the tractogram.

Graph-based strategies [18,20] consider the clustering task as a graph parti-
tioning problem that seeks to cluster the nodes based on a similarity measure.
Dictionary learning methods [23], in turn, generally assume that a dictionary
that contains a representative signature for each bundle can be computed (or
learned), and posit the task of finding the class a streamline belongs to as an
optimization problem that seeks to find the coefficients that fit a given bundle
representation for each streamline.

Lately, deep learning-based methods have also been applied to the bundling
task, and have compared favorably over the mentioned conventional methods
within the studied contexts. Several authors [11,27] have used recurrent neural
networks (RNNs) to solve the clustering problem as a classification problem.
Similarly, regular classification convolutional neural networks (CNNs) have been
employed [10,19,24] to predict the streamline bundle labels. In [3], authors pro-
posed a Deep Embedded Clustering-based (DEC) framework to provide the clus-
ter assignments. Finally, a number of deep learning-based methods have cast the
problem into a segmentation task, yielding bundle-wise voxel masks [13,14,22].

Classification neural networks are trained to reliably provide a prediction on
a fixed-length probability vector, and hence do not allow to change the number of
target labels (i.e. bundles) without retraining. Tractography segmentation meth-
ods, in turn, are inherently binary classification methods: given that the same
voxel cannot be assigned to multiple labels (even if multiple streamlines belong-
ing to different bundles may traverse the same voxel), such methods require a
separate model to be trained for each bundle.

2 Material and Methods

The same deep autoencoder architecture presented in [12] is used in this work.
The chosen autoencoder is a regular convolutional deep neural network, trained
to minimize the mean squared-error loss between the input streamlines and their
reconstructions at the output of the autoencoder.

We propose to cluster streamlines using a k -NN approach in the latent space
learned by autoencoding streamlines. It is essentially assumed that similar data
points (streamlines in our case) will be concentrated to neighboring regions in
the Euclidean sense in the latent space [1,8]. Thus, given (i) an autoencoder; (ii)
a set of streamlines to train the autoencoder; (iii) the anatomical bundle classes
of a subset of the preceding streamlines; and (iv) a new tractogram that needs
to be split into the same set of available bundles, the proposed method proceeds
as follows:
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1. Train an autoencoder using raw, unlabelled streamlines, generated by a pre-
determined tractography algorithm.

2. Select a subset of streamlines whose bundle class is known so that they can be
used as the reference set to bundle new streamlines. Project such streamlines
to the latent space.

3. Project to the latent space the streamlines in a new, to-be-bundled trac-
togram.

4. Apply a k -NN method using the readily available labelled (reference) stream-
lines to determine the bundle class of the new streamlines.

We have dubbed the above method CINTA, Clustering in Tractography using
Autoencoders. The method requires all streamline data to dwell in a common or
standard reference space (such as the MNI space).

Fig. 1. Conceptual illustration of CINTA (Clustering in Tractography using Autoen-
coders). The streamlines that belong to the same bundle are naturally clustered
together in the latent space of a trained autoencoder. A k -NN method is applied to
assign the bundle label to such streamlines.

3 Experiments

CINTA’s performance is quantitatively measured on the (i) “Fiber Cup” syn-
thetic tractography dataset [4,5], and the (ii) clinical-style realistic ISMRM
2015 Tractography Challenge dataset [16]. A subject from the Human Connec-
tome Project (HCP) dataset [7] was used to qualitatively demonstrate CINTA’s
bundling ability on in vivo human brain tractography data. Local probabilis-
tic (“Fiber Cup”; ISMRM 2015 Tractography Challenge) and global tracking
(HCP) were employed to reconstruct streamlines. The ground truth WM parcel-
lations were obtained according to the data preparation procedure described in
[12]. Streamlines had their head-to-tail orientations flipped according to a refer-
ence, and were resampled to 256 points prior to training the autoencoder. The k
parameter for the k -NN clustering method was chosen experimentally from the
set 3,5: it was fixed to a value of 5 as it provided a better F1-score on the ISMRM
2015 Tractography Challenge dataset (an identical performance was registered
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for both values on the “Fiber Cup” dataset). RecoBundles [6] was used as the
baseline method (using the synthetic bundle models available in each dataset).

The following results are reported:

– Accuracy : proportion of correct predictions (true positives and true negatives)
over the total number of streamlines.

– Sensitivity (recall): proportion of relevant instances that are predicted as
positives (true positives) among all positive streamlines in the data.

– Precision: proportion of relevant instances that are predicted as true positives
among all retrieved (predicted) positive streamlines.

– F1-score: harmonic mean of precision and sensitivity.

For each bundle, the positive instances are those corresponding to the stream-
lines that are labelled with the given bundle class as determined by the under-
lying scoring method, the negatives being any other streamline in the whole
tractogram.

4 Results

Table 1 shows CINTA’s performance for the “Fiber Cup” and ISMRM 2015
Tractography Challenge datasets averaged over all bundles. As the reported mea-
sures reveal, the proposed autoencoder-based tractography bundling procedure
achieves perfect and close to perfect scores on the respective datasets, and out-
performs the RecoBundles baseline consistently. Additionally, as it can be seen
in figure 2, the classification performance is highly consistent across bundles on
both datasets.

Table 1. Bundling classification scores. Mean and standard deviation values across
bundles.

Dataset Method Accuracy Sensitivity Precision F1-score

“Fiber Cup”
RecoBundles 0.98 (0.04) 0.99 (0.02) 0.96 (0.11) 0.97 (0.09)

CINTA 1.0 1.0 1.0 1.0

ISMRM 2015
RecoBundles 0.99 (0.01) 0.99 (0.01) 0.88 (0.15) 0.91 (0.12)

CINTA 1.0 0.97 (0.04) 0.97 (0.04) 0.97 (0.04)

Figures 3 and 4 show the bundles as classified with the proposed method. As
expected from the scores in table 1, the latent space-based bundling predictions
closely follow the anatomically coherent streamline-space bundle partitions. Fur-
thermore, following from the reconstruction difficulty analysis on the ISMRM
2015 Tractography Challenge dataset [16], which revealed 18 hard or very hard
bundles, results indicate that CINTA reliably identifies hard-to-track bundles in
the data (e.g. left CST and fornix; see (e) and (f) subplots in figure 4).

Figure 5 shows the bundling results on the HCP data subject. As it detaches
from the figure, CINTA successfully clusters streamlines into the corresponding
anatomically meaningful bundles.
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Fig. 2. CINTA’s classification performance bundle-wise breakup: (a) “Fiber Cup”
dataset; and (b) ISMRM 2015 Tractography Challenge dataset.

Fig. 3. Autoencoder-based bundling on the “Fiber Cup” dataset: (a) all bundles; (b)
bundle 5; (c) bundle 6; and (d) bundle 7 (following the numbering in [4]).

Fig. 4. Autoencoder-based bundling on the ISMRM 2015 Tractography Challenge
dataset: (a, b, c) all bundles (axial superior, coronal anterior, sagittal left views, respec-
tively); (d) left SLF (axial superior view); (e) left CST (coronal anterior view); and (f)
Fornix (sagittal left view) (see [16] for the bundle acronyms and names).
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Fig. 5. Autoencoder-based bundling on the HCP dataset: (a, b, c) all bundles (axial
superior, coronal anterior, sagittal left views, respectively); (d) right ILF (sagittal right
view); (e) left OR (axial superior view); and (f) CC (sagittal left view).

5 Discussion

The results in section 4 show that the latent space learned by the proposed
autoencoder provides a low-dimensional representational space where similar
streamlines are clustered close to each other. Thus, streamlines can be appropri-
ately classified into anatomically coherent bundles in such a space.

Our clustering approach only requires a single parameter to be fixed (the
neighborhood value k), and it is experimentally verified that its value does
not influence significantly the results. Its worst case computational time per-
formance is linear (O(Nd) ≈ O(N), where N is the number of data points and
d the number of features, assuming N � d) (see section A.2 for an experi-
mental demonstration). The complexity is thus dominated by the number of
samples. Our clustering framework uses a single model to classify all streamlines
at once. Additionally, CINTA can accommodate a variable number of bundles:
the autoencoder does not need to be retrained if the number of bundles to be
identified changes.

The proposed procedure does not incur notable misclassification errors: it is
verified that when a streamline is assigned to the wrong bundle, such stream-
lines are anatomically close to the wrong class (e.g. left CST streamlines being
classified as left FPT streamlines; see section A.1 for an example). This consti-
tutes an indirect evidence of the fact that the latent space of our autoencoder
appropriately encodes the necessary anatomical information about the input
streamlines.
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CINTA requires a subset of the training streamlines to be appropriately
labelled so that streamlines in any new tractogram can be classified according
to their nearest neighbors in such set. Such a set of labelled streamlines needs to
be built only once (for a target bundle mapping). Investigating the classification
performance dependency on the number of available labelled streamlines, or
whether and how such a value may be variable across bundles or target bundle
mappings, is left for future work. Similarly, a multi-subject dataset comparative
analysis of CINTA is left for a separate piece of work.

6 Conclusion

We present an extension to an autoencoder-based framework to cluster tractog-
raphy streamlines into anatomically consistent bundles. We demonstrate that the
autoencoder-based tractography latent space offers a versatile representational
space to classify streamlines in a straightforward fashion. CINTA (Clustering
in Tractography using Autoencoders), obtains excellent scores in synthetic and
clinical-style realistic phantom data, and outperforms the RecoBundles baseline
method. It also obtains anatomically consistent results on in vivo human brain
data. The method (i) does not require to be trained on labelled data, (ii) uses a
single model, trained only once, to classify streamlines, and (iii) does not require
any distance thresholding parameter to generate the clusters.
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A Appendix

A.1 Misclassified Streamlines

Figure 6 shows the split of the ISMRM 2015 Tractography Challenge right FPT
bundle as classified by the autoencoder-based bundling procedure. As it detaches
from the figure, the misclassified streamlines belong to bundles (right CST and
right POPT) that are closely related to it in anatomical and/or spatial terms.
This reinforces the assumption that streamlines that are close to each other

https://alliancecan.ca/en/services/advanced-research-computing
https://www.calculquebec.ca/en/
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in anatomical space are also located in neighboring regions in the latent space
learned by the CINTA autoencoder. Hence, CINTA provides an anatomically
reliable ground for bundling purposes with minimal disagreement.

A.2 Time Computational Requirements

To demonstrate CINTA’s computational time performance, six (6) tractograms
containing 20 000, 40 000, 100 000, 200 000, 600 000, 1 000 000 streamlines
were generated on the ISMRM 2015 Tractography Challenge dataset using local
probabilistic tracking. Implausible streamlines were filtered following the method
proposed in [12]. The time required to bundle each resulting tractogram was mea-
sured for three (3) runs, and the mean and standard deviation values computed.
Only the time required for bundling was measured, excluding I/O operation time.
Time tests were performed on a conventional desktop machine (Intel(R) Xeon(R)
W-2133 CPU @3.60 GHz 6 core processor; 16 G RAM; NVIDIA GeForce GTX
1080 Ti 12 G graphics card). As shown in figure 7, CINTA requires a linear time
to bundle streamlines. Similarly, its time demands are comparable to other com-
petitive deep learning-based methods reported in literature [3], requiring slightly
less than 200 s to bundle almost 600 000 streamlines.

Fig. 6. Right FPT bundle of the ISMRM 2015 Tractography Challenge dataset as
labelled by the autoencoder-based bundling procedure: (a) right FPT; (b) right CST
in the reference set; (c) right POPT in the reference set; (d) right FPT true positives;
(e) false positive right FPT streamlines belonging to the right CST; (f) false positive
right FPT streamlines belonging to the right POPT. All sagittal right views.
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Fig. 7. Computational time performance for bundling different ISMRM 2015 Tractog-
raphy Challenge dataset tractogram sizes with CINTA. Due to the vertical scale and
reduced standard deviation values, the latter are hardly noticeable around the mean
value. Streamline counts are expressed with SI prefixes and engineering notation. Hor-
izontal axis labels correspond to filtered tractogram streamline counts.
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Abstract. Based on a diffusion tensor image (DTI) and a tentative
tractogram of a fiber bundle we propose a filtering method for opera-
tionally defining and removing outliers using tractometry. To this end
we assign to each track a set of K invariants, i.e. scalars invariant under
rigid transformations. The cluster of K-tuples of all tracks in a bundle
may be pruned using outlier detection methods in R

K , after which back-
projection of the remaining K-tuples produces a filtered tractogram with
enhanced coherence. This intrinsic pruning method is blind to the rela-
tive spatial organization of tracks in a bundle. We consider two types of
invariants, one capturing local diffusion properties and one representing
differential properties averaged along tracks. Our experiments indicate
that our tractometric filtering is complementary to extrinsic methods
based on the relative spatial configuration of tracks.

Keywords: Diffusion tensor imaging · Tractography · Tractometry ·
Tractography filtering · Riemannian geometry

1 Introduction

Tractography aims at reconstructing fiber bundles in the brain from diffusion
weighted imaging (DWI), a non-invasive technique for in-vivo imaging of the
brain’s fibrous structure. For our purpose tractography may refer to any method
providing a bundle of tentative tracks, the most prevalent being either stream-
line methods based on diffusion tensor imaging (DTI) [2,4,28,37], or geodesic
methods [11,15,16,20,25,28,30], whether deterministic or probabilistic.

Given two regions of interest (ROI) any of these methods may yield a col-
lection of putative tracts in-between. In streamline methods this is achieved
by designating one ROI as the seed region from which tracks are initialised to
define integral curves of some a priori preferred diffusion direction, e.g. the main
eigendirection of the diffusion tensor in the case of deterministic tractography
based on DTI. In this case the second ROI serves as an include-region which
ensures only tracks that pass through it are kept in the tractogram. In geodesic
tractography tracks are curves of (locally) shortest length in a Riemannian (or
more generally, Finslerian) space, i.e. geodesics [1,17,27,29,32]. The associated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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metric is constructed on the basis of the DTI (or DWI) data in such a way that
small distances in Riemannian (or Finslerian) sense are tantamount to large
mean free paths. In this case both ROIs are necessary for disambiguation due to
the second order nature of geodesic tractography. Geodesic completeness (aka
the Hopf-Rinow Theorem) ensures that at least one connection between any two
given endpoints exists.

In all cases we obtain as a starting point a single-bundle tractogram consist-
ing of, say, N tracks. This tractogram may contain ‘incoherent’ fibers, i.e. outliers
(not necessarily false positives) that significantly deviate from the main bundle
in one way or another. Our goal is to obtain a filtered tractogram of M ≤ N
selected tracks that, in some precise sense, exhibit more coherence. Instead of
utilizing solely spatial information, e.g. as in [13,14,19,22,26] or streamline den-
sities [33] or the diffusion signal [10], we aim to do this by means of tractometry ,
the assignment of characteristic scalars to each track. Tractometry has been
used for various purposes, such as dimensionality reduction [7], tract-analysis
[38] and anomaly detection [6]. Tractometric scalars can also be used to prune
a tractogram by eliminating N −M tracks (with M an automatic or manual
control parameter) that are deemed deviatory according to some coherence mea-
sure. Underlying this is the assumption that microstructural similarities within
a particular anatomical (sub)bundle are reflected in a (macroscopic) similarity
among the assigned scalars for that (sub)bundle, i.e. assuming no counteracting
pathological effects [6,35]. For this reason we stress that we do not consider the
method to work globally on a whole brain tractogram, but as a a single-bundle
method pruning its streamlines one by one.

2 Theory

In principle any ad hoc set of scalar functionals could be used in the proposed
tractometry framework. However, we will formulate a set of criteria, the first
of which pertains to invariance under rotations. If f is a scalar function of a
diffusion tensor D, it is invariant under rotations if f(D) = f(RTDR) for any
rotation matrix R. We will refer to such invariant scalar functions simply as
‘invariants’. An example of a non-invariant scalar would be any isolated compo-
nent of the diffusion tensor D, whereas the trace Tr(D) is an invariant. Global,
track-wise invariants may be constructed from point-wise invariants sampled
along a track by taking their average, median, minimum, maximum, or other
integral measures. In the rest of the paper we will use the mean for the sake of
definiteness.

Secondly, we require an admissible set of invariants to satisfy well-defined
non-redundancy and completeness conditions. These conditions capture the
notion of the set containing ‘precisely enough’ information.

Let V be the space of all possible invariants and W ⊂ V a subset. A set
X ={x1, ..., xn}⊂V is said to be redundant if there exists an analytic function
f such that xn=f(x1, ..., xn−1). Equivalently, X is non-redundant if

f(x1, ..., xn) = 0 =⇒ f ≡ 0 . (1)
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The set X is complete in W if it generates W with analytic functions, i.e. W is
the image of X under analytic functions

{x ∈ V | x = f(x1, ..., xn) for some analytic f} = W . (2)

Consider the set

{tk
.=Tr(Dk), tk+1

.=Tr(Dk+1), tk+2
.=Tr(Dk+2)} (3)

of Euclidean traces of powers of the diffusion tensor D. For any k∈N this set is a
complete and non-redundant set of invariants by virtue of the Cayley-Hamilton
theorem. The example simultaneously illustrates the non-uniqueness property of
a tractometric framework. We may arbitrarily choose traces of any three consec-
utive powers of D to construct a non-redundant complete invariant set. Alter-
natively we may replace such trace-triples by eigenvalue-triples {λ1, λ2, λ3} of
D, or by their combinations {FA,MD,RD}, known as the fractional anisotropy,
mean diffusivity and radial diffusivity [3]. These invariants will be refered to as
diffusion invariants, since they explicitly relate to apparent diffusion properties.

Besides diffusion invariants we wish to include differential properties, taking
into account local information in the neighbourhood of a track, i.e. geometry. We
will make use of the so-called curvature invariants, constructed from the Rie-
mann curvature tensor. This tensor determines geodesic deviation [1,31,32,34],
and in the context of geodesic tractography it expresses the tendency of nearby
tracks to cohere or repel due to local inhomogeneities in the diffusion tensor
field. In our Riemannian approach the diffusion tensor D, with components Dij

(i, j = 1, 2, 3) relative to a Cartesian coordinate basis, is stipulated to be propor-
tional to the dual Riemannian metric g−1, with components1 gij , i.e. Dij ∝ gij ,
so as to ‘geometrize away’ local diffusivity patterns in the data [11,16,20,25].
Anisotropic water diffusion is then incorporated as intrinsic geometry represent-
ing isotropic diffusion in a curved, Riemannian space.

The Riemann curvature tensor Ri
jkl is constructed from second order deriva-

tives of the metric tensor, as follows :

Ri
jkl = ∂kΓi

jl − ∂lΓi
jk + Γi

kmΓm
jl − Γi

lmΓm
jk , (4)

where
Γi
jk =

1
2
gim (∂jgkm + ∂kgmj − ∂mgjk) , (5)

and in which ∂k stands for ∂/∂xk. Contraction of the Riemann tensor results in
the covariant Ricci curvature tensor as well as its mixed and contravariant forms
by raising indices with the help of the inverse metric tensor:

Rij = Rk
ikj Ri

j = gikRkj and Rij = gikgjlRkl . (6)

1 Super-/subscripts denote contra-/covariant indices, to which Einstein summation
convention applies, i.e. each pair of identical sub- and superscript implies a summa-
tion over the corresponding ‘dummy’ index.
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In turn, the Ricci tensor induces a set of curvature invariants given by

{r1
.=Ri

i, r2
.=Ri

jR
j
i , r3

.=Ri
jR

j
kR

k
i } , (7)

in which r1 is known as the Ricci scalar [8,9]. Thus the set {r1, r2, r3} is composed
of traces of powers of the matrix with entries Ri

j . By similar arguments as for the
diffusion invariants we may instead consider the set {μ1, μ2, μ3} of eigenvalues
of this matrix.

In either case we prefer the use of eigenvalues {λ1, λ2, λ3} and {μ1, μ2, μ3}
over traces {t1, t2, t3}, respectively {r1, r2, r3}, because the former are commen-
surable and of the same order of magnitude, unlike the latter. Diffusion and
curvature invariants provide two complete, non-redundant sets of three invari-
ants each, which we can use separately or jointly as our tractometric invariants
of choice.

Given a tractogram of a putative bundle between two anatomical ROIs, we
wish to prune it based on the above sets of diffusion and/or curvature invariants
by removing ‘incoherent’ tracks one-by-one in some hierarchical fashion. Con-
sider a bundle of N tracks, each with K associated (averaged) invariants. We
thus obtain a correspondence between tracks and points in R

K , yielding a point
cloud for the bundle of interest. This point cloud is subsequently pruned with
the help of an outlier detection method [5,18,21]. We found that the particular
choice of outlier detection method had little effect on the outcome, and chose
to use the isolation forest algorithm [21]. This algorithm assigns to each cloud
point an ‘incoherence’ score between 0 and 1, indicating its likeliness to be an
anomaly within the considered set. A score of 0.5 is then a natural threshold for
a particular sample to be labelled as either outlier (score > 0.5) or not (score
≤ 0.5). This threshold could subserve a baseline configuration from which to
initialise further pruning by more informed means, possibly involving human
interaction. The incoherence score imposes a ranking onto tracks, allowing them
to be hierarchically removed one-by-one, cf. Fig. 1.

3 Experiments

In the following experiments we illustrate the tractometric filtering frame-
work on a DWI dataset from the Human Connectome Data Project (dataset
“WU-Minn HCP Data-1200 Subjects”: subject 100307; TE/TR/echo spacing
89.5/5520.0/0.78 ms; b = 2000 s/mm2), as well as on a clinical dataset acquired
with a Philips Achieva 3T MRI scanner (b = 1500 s/mm2, 50 diffusion-weighting
directions, six b = 0 s/mm2 images, 2 mm isotropic voxel size, TE/TR/echo spac-
ing 87/8000/0.2 ms). DTI tensors are computed using weighted least squares via
the Dipy library in Python [12]. Throughout our experiments the defining Gram
matrix for the Riemannian metric is the adjugate of the diffusion tensor D, i.e.
gij = det(D)Dinv

ij , cf. Fuster et al. [11].
We consider two experiments, the corticospinal tract (CST) on the HCP

dataset and the arcuate fasciculus (AF) on the clinical dataset, to illustrate that
the proposed method has a qualitatively different behaviour on a per bundle
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Fig. 1. An example of the filtering method for the corticospinal tract (CST) using the
diffusion invariants. Top left: Scatterplot of the three invariants {λ1, λ2, λ3} for each
of the 7500 tracks in the tractogram, color-coded according to the isolation score as
determined by the isolation forest algorithm. Each invariant {λ1, λ2, λ3} is projected
onto the coordinate planes in black. Top right: Scatterplot of the invariants after
removing all points with isolation score larger than 0.5. Bottom: Tractograms cor-
responding to the scatterplots above, with the unfiltered tractogram on the left and
the filtered one on the right. The arrow ‘Effective Filtering’ is defined by virtue of the
other three, ‘Tractometry’, ‘Isolation Forest’ and ‘Backprojection’.

basis. Furthermore, these two bundles are of clinical interest to a collaborat-
ing neurosurgeon, clarifying the use of a clinical dataset in the AF-experiment.
Both experiments are set up according to the following structure. We depart
from a probabilistic streamline tractogram computed using the iFOD2 algo-
rithm included in tckgen in MRtrix3 [36] following the data processing pipeline
described in [23]. We then apply four different filterings, three of which are
based on our tractometric invariants, viz. the set of three diffusion invariants,
the set of three curvature invariants, respectively and their union (containing all
six invariants). All track-wise invariants are computed by sampling the voxel-
wise invariants along the curve using trilinear interpolation. The fourth filtering,
introduced as comparison reference, relies on a scalar measure based on the
relative spatial arrangement of tracks in a bundle, the Fiber-to-Bundle Coher-
ence (FBC) [22]. This provides us with a comparison between our tractometric
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filtering based on intrinsic invariant features of each track regardless of spatial
coherence, and one based on relative spatial relations between tracks, but blind
to their intrinsic features. Figure 2 shows the baseline tractogram with the cor-
responding diffusion and curvature invariants for the experiments on the CST
and the AF.

Figure 3 illustrates the filtering procedures applied to the CST tractogram
using the HCP dataset. Since the FBC score and the isolation score are incom-
mensurable we opt to retain a fixed number of tracks in every step, instead
of thresholding on the scores themselves. We start with 7500 tracks and retain
50% in the first step and 10% in the last one. The used colormaps are such that
bright-colored tracks correspond to outliers in the scatterplots, and vice versa for
dark-colored tracks. All tracks in the 90% filtered tractograms are also present
in the 50% filtered one, but are mostly obscured by other tracks. The three trac-
tometric filterings in the first three rows result in very similar filtered bundles,
each one differing only slightly from the others. Interestingly, the spatial pruning
method (fourth row) displays a qualitatively different behaviour with respect to
track elimination. Most prominent is the fact that the fanning of the bundle is
gradually destroyed (which is to be expected by the fourth method’s operational
construction enforcing coherence in the spatial domain), whereas this is retained
by using tractometric filtering (which cannot be expected a priori).

In the second experiment, on the clinical dataset, we consider the AF bun-
dle, cf. Fig. 4. At first glance there appears to be a number of shortcuts in
the tractograms. This behaviour is reflected in the scatterplots, revealing two
point clusters. In all cases, tractometric filtering removes first the smaller clus-
ter, thereby eliminating the shortcuts from the tractogram, in correspondence
with spatial FBC-based pruning. In this case, spatial coherence of tracks appar-
ently correlates strongly with intrinsic tractometric features.

4 Discussion

We have proposed a method for filtering diffusion MRI tractograms. Based on the
assumption that anatomical (sub)bundles are internally structurally coherent,
we have constructed characteristic trackwise scalar invariants, combined into
complete and non-redundant sets so as to capture all degrees of freedom of a
given differential order. For each track, the associated set of invariants defines
coordinates of a point in a feature space. The tractogram of the bundle of interest
is then effectively filtered by removing outliers from the corresponding point
cloud in this space.

Experiments indicate that this method may be used in conjunction to existing
methods, such as filters based on spatial coherence of the tracks. It depends on
the anatomical bundle of interest which method is most appropriate. Whereas
spatial filters will tend to eliminate spatial outliers by construction, tractometric
filters are blind to spatial configurations and driven by intrinsic characteristics
of individual tracks. For instance, sub-bundles or branches of a fanning bundle
may or may not have distinct intrinsic characteristics. Future research should
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Fig. 2. The baseline tractograms for experiments on the CST (left) and AF (right).
The former experiment is performed on the HCP dataset and the latter on the clinical
dataset. The scatterplots depict the diffusion invariants (red-yellow) and the curvature
invariants (light-dark blue). The tractograms are color-coded according to the isolation
score ranking corresponding to the diffusion invariants. While we could have chosen to
use the curvature invariants or the union of both sets, this is merely a practical choice
to illustrate the behaviour of scalar features in the tractogram. (Color figure online)

help to identify the ‘elementary’ anatomical (sub-)bundles for which a particular
method is appropriate. A clustering method applied prior to pruning in the case
of multi-modal point clouds might be instrumental. Experiments with multiple
(sub-)bundles in the same subject as well as studying the inter-subject variability
of this method are interesting avenues for further research.

Interestingly, by employing distinct sets of independent invariants, viz. dif-
fusion and curvature invariants, one may a priori expect a difference in the
outcome. However, the experiments show that, at least qualitatively, using each
in isolation or combining both, hardly affects the result. This is an indication
that the premise of microstructural coherence of an anatomically plausible bun-
dle might be correct, since that would reflect itself in macroscopic coherence of
invariants regardless of their precise nature.

Our framework can be extended in multiple ways. One may add new sets of
invariants and consider various combinations. Considering higher order deriva-
tives of the metric tensor field can systematically add complexity to the sets of
invariants. Moreover, extrinsic spatial (such as FBC) and intrinsic tractomet-
ric features may be combined in a hybrid method. Other integral or projective
operators to construct invariant functionals, besides the simple case of the mean
operator used in this paper, may be considered. In particular one may define
point-wise invariant functionals for each tract, leading to more complex, high-
dimensional descriptors of a tractogram. Our framework may find applicability
beyond DTI, e.g. using RISH features for the spherical harmonic representation
of fiber orientation density functions [24].
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Fig. 3. The effect of filtering the CST tractograms, see Fig. 2, with different sets of
invariants as well as using a spatial filter. Each row represents a different filter and
each column a threshold by which to prune the tractogram (expressed in percentage
of the total number of tracks). Columns: Filtered tractograms with 50%, resp. 10% of
the tracks remaining. Rows 1–4: Diffusion invariants and corresponding scatterplot;
Curvature invariants and corresponding scatterplot; Combined diffusion and curvature
invariants; Fiber-to-Bundle Coherence.

Secondly, even though tractometry is only applied to streamline tractograms
in our experiments, the curvature invariants would have a more transparent inter-
pretation in a Riemannian geodesic framework, for which they were designed in
the first place in the context of uncertainty quantification given data perturba-
tions (noise and end-point conditions). Interpretability of features in terms of
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Fig. 4. The effect of filtering the AF tractograms with different sets of invariants as
well as using a spatial filter. Each row represents a different filter and each column
a threshold by which to prune the tractogram (expressed in percentage of the total
number of tracks). Filtered tractograms with 50%, resp. 10% of the tracks remaining.
Rows 1–4: Diffusion invariants and corresponding scatterplot; Curvature invariants
and corresponding scatterplot; Combined diffusion and curvature invariants; Fiber-to-
Bundle Coherence.
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the specific details of a tractography method is, however, subordinate to com-
pleteness. Complete sets of tractometric invariants can therefore be applied to
prune any tractogram, regardless of its operational definition.
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