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Chapter 10
Ecological Impacts and Toxicity of Micro- 
and Nanoplastics in Agroecosystem

S. A. Aransiola, M. O. Victor-Ekwebelem, A. E. Ajiboye, S. S. Leh-
Togi Zobeashia, U. J. J. Ijah, and O. J. Oyedele

Abstract  Micro- and nanoplastics are fragments of small plastics that are of sizes 
1–5000  microns and <1 μm and consist of carbon and hydrogen atoms chained 
together by polymer. Micro- and nanoplastics are environmental pollutants, and 
their degradation depends on the properties of plastics, soil type, environmental 
condition, and microbial community. Their presence in the agricultural system is an 
emerging concern, which is basically attributed to the ability of the plastics to pen-
etrate the soil and contaminate the soil plants, and microflora and fauna which 
thereby affect the food chain and security. Micro- and nanoplastics pollution in 
agrosystems originates from human activities (agricultural practices and anthropo-
genic sources) and natural sources (atmospheric inputs and flooding). Micro- and 
nanoplastics contamination of soil plants alters the chemical, physical, and biologi-
cal properties of the soil ecosystem due to increased adsorption capacity when in 
combination with another organic contaminant. In agricultural ecosystems, micro- 
and nanoplastics affect soil microbial activity, microbial biomass, functional diver-
sity, and the cycling process of plant nutrient elements in the soil, which have an 
indirect effect on plant seed germination and growth. When ingested or in associa-
tion with the soil biota, micro- and nanoplastics can influence the agro-functionality 
through effects on soil root-associated microbiome and root symbionts, soil 
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structure, nutrient immobilization, contaminant adsorption, and diffusion which can 
directly impact the fertility of the agricultural soil, plant qualities, and its yield. 
Microplastics excessive accumulation can directly result in toxic risk effects, includ-
ing the interruption of the nutrient transport system by the obstruction of the pores 
in the cell wall, alter the community diversity, activity of the soil biota, and inhibi-
tion of nitrification. Microplastics and nanoplastics contribute to a major distribu-
tion of toxic and harmful compounds to soil plants, soil fauna, and photosynthetic 
organisms.

Keywords  Environment · Contamination · Microplastics · Nanoplastics · 
Agriculture · Soil

10.1 � Introduction

It is undoubtedly true that the need for hygienic products and equipment for peo-
ple’s daily lives has led to an astronomical increase in the demand for plastics. It is 
also evident that the problem will only grow as almost 400 million tons of plastics 
are produced annually, with a mass projected to be more than double by 2050 (Lim, 
2021; Auta et al., 2022). Though plastics are discarded within 3 years of their pro-
duction, above one-third of the plastics is used in disposables (Paul et al., 2020). 
Indiscriminate disposal of these materials recently become an issue of concern 
globally because of their potential environmental hazard due to their resistance to 
degradation and long-term persistence in the environment. Doubtfully, if all plastic 
production were magically stopped from now on, the existing plastics; that is, a 
sizeable number of debris that has already accumulated in landfills and the ecosys-
tem would continue degrading into tiny fragments that are impossible to collect or 
clean up, constantly raising micro and nanoplastic levels. This global problem 
affects probably all ecosystems as well as the complete food chain (Abioye 
et al., 2015a).

Officially, there is no published definition for micro and nanoplastics but they are 
generally considered to vary in size from 0.1 to 5000 mm and 1–100 nm respec-
tively (EFSA, 2016; Hardy et al., 2018). Microplastics are primary and secondary 
by classification according to their source into the environment. The key source of 
primary microplastics is the raw materials used in the manufacture of plastic items, 
poor handling, accidental loss, run-off from processing facilities, and residues from 
the production process while secondary microplastics comes from fragmentation of 
larger plastic particles when exposed to the physical, chemical, and biological pro-
cesses (Gouin et al., 2015). The first part of the environment at the receiving end of 
micro and nanoplastics is soil. Farming remains an important activity on soil, as 
food is the main sustenance of human beings. However, farmland may be 
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particularly vulnerable to accumulation of micro and nanoplastics (Nizzetto et al., 
2016) because agricultural plastics remain valuable items in farming, particularly in 
sustainable agriculture (United States Government, 2018). Applications include 
mulch films, high tunnel coverings, drip tape, row covers, silage films, packaging 
use for seedlings, fertilizers, etc. (Scarascia-Mugnozza et al., 2011; Steinmetz et al., 
2016). In practice, these agricultural plastic materials employed are mostly polyeth-
ylene and non-biodegradable. After some time, the plastics become brittle because 
of weather-related effects and form small fragments that disperse in the soil that 
house plants and living organisms. More so, pesticides can adsorb plastic fragments 
which could be used in plasticizers or production by plastics manufacturing compa-
nies that may be released during breakdown of plastics, resulting in soil contamina-
tion (Bouwmeester et al., 2015).

However, toxicological effects of micro and nanoplastics on humans and animals 
have become a great concern to researchers globally because of their interconnec-
tion with the food chain in relation to the environment (Verma et al., 2016). On the 
terrestrial animals, recent reports suggest that microplastics in soil affect soil geo-
chemistry and microorganisms (de Souza Machado et al., 2017). Earthworms and 
collembolans (hexapods) exposed to MPs underwent increased mortality and 
reduced growth and reproductive rates (Huerta et al., 2017; Zhu et al., 2018), and 
this will deprive the soil of its fertility and retard the plant growth. In all studies, 
terrestrial micro and nanoplastics have received less attention and their occurrence 
in soil is at higher levels than in marine systems, by at least a factor of four (Nizzetto 
et al., 2016; Horton et al., 2017; Alimi et al., 2018). In this regard, since everyone 
eats foods and inhales sand and dust, and it’s not clear if an extra diet of plastic 
specks will harm us, it has become imperative to reveal the findings on the threat the 
micro and nanoplastics would have on plant-based food. This article also provides 
information into sources of micro and nanoplastics in soil, the potential effect on 
soil microflora and fauna, soil properties and toxicity, and evaluating the plant per-
formance in a soil containing micro and nanoplastics.

10.2 � Sources of Micro and Nanoplastics in Soil

Soil is a critical component of nearly every ecosystem but is often taken for granted. 
It plays a significant role in sustaining life on earth. More importantly, most of the 
foods that humans consume, except for what is harvested from marine environ-
ments, are grown in the earth’s soils. The soil consists of chemical, physical, and 
biological environment leading to material transformation, possibly rendering ini-
tially harmful materials less dangerous and immobilizing others as a result of the 
interactions between these added materials and the organic and inorganic soil con-
stituents (Nortcliff, 2012). However, numerous human activities result in different 
forms of soil pollution when materials are indiscriminately disposed on the soil.
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10.2.1 � Micro- and Nanoplastics in Soil

Globally, the pollutants of major concern in soil are micro and nanoplastics. In 
recent years, most of the reports in the scientific and popular press have focused 
upon the accumulation and fate of micro and nanoplastics in marine environments, 
particularly oceans whereas micro and nanoplastics are usually transported from 
land to other parts of ecosystems. Our major interest is on micro and nanoplastics in 
soil, and this chapter addressed the sources of micro and nanoplastics in soil. The 
problem of microplastic pollution in the soil is extremely serious. Horton et  al. 
(2017) summarized the sources and hazardous maturing of micro and nanoplastics 
in the soil environment in recent years. However, one of the most serious risks is 
that microplastics may be ingested by humans and other organisms via the food 
chain. It is important to note that micro and nanoplastics are easily transported from 
their sources into soil environment and get transformed via the soil chemistry and 
impact negatively (Fig. 10.1).

Around the world, various sources of micro and nanoplastics in the soil have 
been identified to include agricultural production activities; that is, the use of agri-
cultural films, and the addition of organic fertilizers, the industrial production activ-
ities, urban construction, daily life, atmospheric subsidence, automobile tire wear, 
among others. 

	(a)	 Micro- and Nanoplastics from Industrial Activities
About 9.7 billion people would share the world by 2050 (United Nation, 2019) 

with food supplies needed globally projected to increase by 50% (Guillard et al., 
2018). As a result of this geometric increase in population, there will definitely be 
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Fig. 10.1  Schematic diagram of the sources of microplastic in soil ecosystem (Yu et al., 2022)
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an increase in food demand, which could drastically lead to an increase in food 
packaging material usage (Ncube et al., 2021).

Long ago, polymers have been beneficial to man and plastics appeared as the 
most important polymer helping human to survive (Al-Salem et al., 2009; Rahimi 
& García, 2017; Payne et al., 2019; Horodytska et al., 2019; Papadopoulou et al., 
2019; European Bioplastics, 2021; Auta et al., 2022). These waste plastics are dis-
carded indiscreetly, leading to soil contamination (Aarnio & Hämäläinen, 2008; 
Aransiola et al., 2013, 2021). Plastics used in packaging of materials often served a 
purpose but many are discarded and become post-consumer waste (Tencati et al., 
2016; Ragaert et  al., 2017). Discarded plastics find their way into incinerating 
plants, landfills, recycling plants, or the environment (Geyer et al., 2017; Abioye 
et  al., 2015b). However, during recycling of plastics by mechanical operations, 
micro and nanoplastics could escape by contaminant separation, cutting/shredding, 
milling, floating, drying, washing, extrusion, quenching, and agglutination into the 
soil (Kumar et al., 2016). 

	(b)	 Micro- and Nanoplastics from Agricultural Activities
Farmlands have been identified to be vulnerable to accumulation of micro and 

nanoplastics (Nizzetto et al., 2016). Because most agricultural activities nowadays 
involve valuable uses of plastics, particularly in sustainable agriculture (United 
States Government, 2018). Agricultural film manufactured from polyethylene and 
polyvinyl chloride is commonly employed in agriculture. Applications include 
mulch films, high tunnel coverings, drip tape, row covers, silage films, packaging 
for seeds, seedlings, or fertilizers, among others (Scarascia-Mugnozza et al., 2011). 
Most plastics used for this purpose of production are non-biodegradable. The plas-
tics become brittle due to sunlight and other weather-related effects and form small 
fragments that disperse in the environment due to flowing water and wind (Benedict, 
2018). Often, plastic fragments become incorporated into the soil due to incomplete 
retrieval of the mulch film when it is being removed or recovered prior to disposal. 
Fragments of polyethylene are frequent in the soil in high concentrations of up to 
60–-300 kg/ha, which could rise to 500 kg/ha as reported in China (Bloomberg, 
2017; Tremblay, 2018; Bouwmeester et  al., 2015). The long-term fate of plastic 
fragments in soil is unknown. Recent reports predict that plastic fragments may 
reside in soils for over 100 years due to the near absence of oxygen and ultraviolet 
radiation from the sun (de Souza Machado et al., 2017).

Another aspect of agriculture that introduced micro and nanoplastics into soil is 
irrigation of farmland with wastewater and sewage sludges. Wastewater serves as a 
medium that transfers a large part of micro and nanoplastics materials from the 
sources; soil, industrial environment, roads to surface water bodies, and domestic 
environment (Carr et al., 2016; Ziajahromi et al., 2017; Mahon et al., 2017; Sun 
et al., 2019). Comparatively, more than 90% of microplastics found in wastewater 
are accumulated in sewage sludge, which in turn is used for land applications: the 
annual amount of microplastics entering the soil in this way is greater than that 
entering the oceans (Zhang et al., 2020a, b; Hurley & Nizzetto, 2018). Microplastic 
sources in domestic sewage are detergents and personal care products. About 20 
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million hectares of arable land worldwide are reported to be irrigated with untreated 
or partially treated sewage, and an estimated 10% of the world’s population depends 
on food grown with contaminated wastewater (Abioye et al., 2021).

	(c)	 Micro- and Nanoplastics from Other Sources
Runoff from roads or urban areas that is not captured by sewer systems can con-

taminate surrounding soils. Moreover, atmospheric transport has the potential to 
move plastics in the smallest size classes over long distances and likely contributes 
to a proportion of micro and nanoplastics in soils. Atmospheric deposition has been 
demonstrated in urban environments (Dris et al., 2016) and the transport of particles 
from landfill sites to soils has also been discussed (Rillig, 2012; Rocha & Duarte, 
2015). More so, overbank deposition likely enriches alluvial soils with micro and 
nanoplastic particles. It has been shown that fluvial sediments comprise of high 
concentrations of microplastics (Castañeda et al., 2014; Leslie et al., 2017) which 
gathered during flooding (Veerasingam et al., 2016). This leads to accumulation of 
plastics in the soils. This likely represents a significant, albeit localized, source of 
microplastics.

10.3 � Effects of Micro- and Nanoplastics to Soil Microflora 
and Fauna

Microflora plays a major role in biogeochemical transformation in the soil ecosys-
tem. The activities carried out by soil microflora helps in the availability of nutrients 
to soil biota and also affect the physical and chemical properties of the soil eco-
sphere (Rillig et al., 2017b; Huerta Lwanga et al., 2018; Li et al., 2020). The micro-
flora is affected when the soil environment is contaminated with plastics such as 
macro and nano.

Microplastics act as a vector for transport of harmful substances and microbes in 
soil. The movement of microplastics will affect the soil microflora as microbes 
attach to the plastics, colonize the surface area of the plastics, and interact with the 
pollutant. The harmful interaction of the plastic-microbial association will affect the 
ecological functions of the microflora, retard the growth of some organisms and 
alter the microbial community composition and density (Judy et  al., 2019; Chai 
et al., 2020; Atugoda et al., 2021). In addition to microbial dispersal and DNA trans-
fer in biofilm formation on microplastics, microbial attachment to microplastics can 
act as a vehicle of transport of plastics to plants (Hoellein et al., 2019; Chai et al., 
2020). Soil contaminated with nanoplastics affect the metabolic activities and func-
tion of the microflora when the plastics (nano) enters the lipid membrane of the 
microflora (Rossi et al., 2014), which can be prevented by the microbes through 
protection mechanisms such as secretion of extracellular molecules that degrades 
the plastics contaminant or through changes of cell membrane structure (Henriques 
& Lov, 2007). In addition, nanoplastics can induce redundancy and resilience in the 
functional properties of the microorganism in the soil flora, which can impact the 
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ecological activities including nutrient cycling, decomposition of organic matters, 
energy flow, and biofilm formation of the organism (Tang et  al., 2018; Wang 
et al., 2020).

Microplastics can affect soil microflora via changes in the soil structure. Changes 
in soil structure can have direct effects on soil parameters, which can result in a shift 
in microbial community composition, abundance, and distribution. Microplastics 
contamination of the soil can change the soil porosity through oxygen flow and can 
also alter the soil profile (soil pore space), leading to loss of inherent soil microbes 
and an alteration in microbial structure (Machado et al., 2018; Judy et al., 2019).

Micro and nanoplastics are high in carbon content and contribute to carbon 
sources in the soil which impact the microbial biomass and also result in microbial 
immobilization (Rillig, 2018). The carbon in the plastics is relatively inert, which is 
due to slow decomposition of the plastics, especially microplastics. When degraded, 
the C:N ratio increases, this will lead to increase in microbial activities (Qi et al., 
2018). As reported, increase in abundances and activity of Ascomycota fungi in the 
presence of readily degradable microplastics (polylactic acid).

Micro- and nanoplastics impact the symbiotic relationship between plant and 
microorganism in the soil. The plant growth, reproduction, and cycling of nutrients 
depend heavily on the interaction of soil biota and the root of a plant, especially on 
root colonizing microbes, which include mycorrhizal fungi-fixers and pathogens 
(Wagg et al., 2014; Powell & Rillig, 2018). The change caused by micro and nano-
plastics in soil structure, affects the community diversity of the soil, rate of decom-
position, and also the community abundance and distribution of root symbionts 
(Vallespir Lowery & Ursell, 2019). For instance, nanoplastics contamination affect 
the soil-borne stage root symbionts of arbuscular mycorrhizal fungi via toxic effects 
and functional activities of mycorrhizal. (Feng et al., 2013). Macro- and nanoplas-
tics association in the rhizosphere affect root exudate quality and quantity by alter-
ing the length of the root, the weight, and oxidative responses to stress, cell wall 
pores disruption, and cell-to-cell relationship used for transport of nutrients (Jiang 
et al., 2019). Plastics also impact the ability of plants to uptake some soil microbi-
ome and promote the expression of genes, including those required for chemotaxis 
and biofilm formation (Jing et al., 2014).

Soil microfauna plays an important role in decomposition of organic compounds, 
nutrient cycling, and food sources for lower trophic levels and are major drivers of 
chemical and biological processes in the soil. Micro and nanoplastics pollution of 
the soil microfauna can impede the growth rate, reproduction, lifespan, and survival 
of the fauna biota through ingestion, bioaccumulation, oxidative stress, DNA dam-
age, neurotoxicity, genotoxicity, reproductive toxicity, histopathological damage, 
gut microbiota dysbiosis, and metabolic disorders. Micro and nanoplastics interact 
with other soil contaminants to produce combined toxicity to soil fauna; their pres-
ence reduces the abundance of microfauna such as soil microarthropod, nematodes, 
and protists. Higher concentration of plastics and continuous exposure have a 
greater negative impact on the soil fauna composition (Zhu et al., 2018). The expo-
sure of Collembola and Nematodes to increased concentrations of microplastics 
results in high mortality and decreased growth and rate of reproduction (Zhu et al., 
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2018). Nematode’s consumption of plastics (microplastics) results in oxidative and 
intestinal damage that leads to a reduction in the level of calcium and an increase in 
the oxidative stress gene gst-4  in nematodes (Liu et al., 2018; Zhu et al., 2018). 
Earthworms are vehicles of movement for plastics especially, microplastics. Their 
burrowing activities transport plastics from the soil surface to the in-depth layers, 
promoting distribution and pollution which stunts their growth and development 
resulting from obstruction and irritation of the digestive tract, limiting nutrient 
absorption. A study reported by Cao et al. (2017) indicated that the growth of earth-
worms was significantly inhibited at concentrations of 1% and 2% and posed a toxic 
effect to them. A study carried out by Rodriguez-Seijo et  al. (2017) reported an 
increase in lipids, polysaccharide and protein content, histopathological damage 
and immune system of earthworms at 10% concentration of polyethylene. In micro-
arthropods, microplastics can prevent migration by filling up soil pores, while pro-
tists can easily absorb plastic fragments (nanoplastics) and colonize their surface 
and increase their abundance in the soil. But for microplastic, their uptake rate 
depends on the type, age, nutritional status, and the microplastics concentration 
(Rillig & Bonkowski, 2018; Lin et al., 2020).

10.4 � Soil Properties and Micro- and Nanoplastics Toxicity

Nanoplastics are the smaller nanoscale fraction of plastics (defined as particles with 
a diameter below 100 nm) and are most likely to be incidentally produced from the 
fragmentation of larger plastic debris. The fragmentation of plastic debris down to 
the nanoscale may be caused by mechanical wear, heat, UV degradation, and, in 
some cases, biological factors (Ekvall, 2019; Hernandez, 2019; Lambert and Wagner 
(2016); Dawson, 2018). Microplastics (MPs), as defined by Frias and Nash (2018), 
are “synthetic solid particles or polymeric matrices, with regular or irregular shape 
and with size ranging from 1 μm to 5 mm, of either primary or secondary manufac-
turing origin, which are insoluble in water.” Nanoplastics have traditionally been 
treated as a size-dependent extension of microplastics, but their size-dependent 
properties distinguish them from microplastics in terms of transport properties, 
interactions with light and natural colloids, analytical challenges, bioavailability, 
potential toxicity, and additive leaching times. In contrast to engineered nanomate-
rials (ENMs), which can include polymer formulations, accidentally produced 
nanoplastics in the environment are essentially debris from the environmental frag-
mentation of larger plastic objects (Gigault et al., 2021).

MPs are common contaminants that are causing increasing concern in aquatic 
and terrestrial ecosystems (Zhang et al., 2021a, b). MPs can harm organisms if they 
are released into the environment (Teuten et al., 2009). Depending on the properties 
of the microplastic, microplastics accumulation in soil could have an impact on the 
characteristics of the soil (Liu et al., 2017; Yi et al., 2020; Lozano et al., 2021a). The 
shape of microplastics may influence how it interacts with soil particles; for exam-
ple, once fused into the aggregate soil, fibers have the ability to undermine the 
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structure of the soil due to their linear shape (de Souza Machado et al., 2018; Rillig 
et al., 2017a; Lehmann et al., 2020; Rillig & Lehmann, 2020). Furthermore, micro-
plastics’ chemical properties, such as molecular chain arrangement and functional 
group, may affect their ability to absorb other chemicals, like antibiotics and toxic 
elements (Fred-Ahmadu et al., 2020), with potential consequences for the proper-
ties of soil and the activities of microorganisms (Pathan et al., 2020). For example, 
polyethylene (PE) had a high sorption capacity for phenanthrene (Wang & Wang, 
2018), which could inhibit the activities of microorganisms in soil when combined 
with its nitrogen heterocyclic analogs (Zhao et al., 2021). Similarly, PVC, PP, and 
PE could have dissimilar capacities of chemical sorption according to research 
(Teuten et al., 2009; Wang et al., 2018). PE, for example, had a higher hydrophobic 
sorption capacity for organic compounds like pesticides and solvents than PE, PVC, 
or PET (Teuten et al., 2009; Fred-Ahmadu et al., 2020), while PS had a higher sorp-
tion capacity for Polycyclic Aromatic Hydrocarbons than PVC, PET, PP, or PE 
(Teuten et  al., 2009; Fred-Ahmadu et  al., 2020). PVC, on the other hand, could 
absorb more Cu than PS. As a result, the polymer type of microplastics may influ-
ence their effects on soil enzymatic activities. A Similarly, different polymer types 
(e.g., PE, PP, and PVC) may have different chemical sorption capacities, according 
to research (Teuten et al., 2009; Wang et al., 2018). PE, for example, had a higher 
sorption capacity for hydrophobic organic compounds like pesticides and solvents 
than PET, PVC, PE, or PP (Teuten et al., 2009; Fred-Ahmadu et al., 2020), while PS 
had a higher sorption capacity for Polycyclic Aromatic Hydrocarbons than PET, 
PVC, PE, or PP (Teuten et al., 2009; Fred-Ahmadu et al., 2020). PVC, on the other 
hand, could absorb more Cu than PS. As a result, the polymer type of microplastics 
may influence their effects on soil enzymatic activities. Soil properties: little is 
known about microplastics’ effects on soil pH, a key soil parameter that could 
impact a range of microbial processes (Zhao et al., 2021).

Microplastics could alter the soil microbial communities (Huang et al., 2019; Fei 
et al., 2020), suggesting potential effects on soil respiration (Lozano et al., 2021a, 
b), affecting enzymatic activities. Microplastics have been shown to affect nutrient 
and/or substrate availability, most likely due to microplastic absorption or competi-
tion for physicochemical niches with microorganisms (Lozano et al., 2021b). The 
shape of the microplastics and the type of polymer it is made of may also play a role. 
According to the polymer type, PE and polyvinyl chloride (PVC) microplastics can 
enhance enzymes like urease and acid phosphatase (Huang et al., 2019; Fei et al., 
2020), whereas PP, PES, and PVC can inhibit or enhance soil fluorescein diacetate 
hydrolase activity depending on the polymer type (Liu et al., 2017; Fei et al., 2020). 
Likewise, enzymes such as β-D-glucosidase and cellobiosidase (involved in cellu-
lose degradation), N-acetyl-β-glucosaminidase (involved in chitin degradation), and 
phosphatase, which are related to C, N, P-cycling, could be negatively affected by 
microplastics (Lozano et al., 2021b).
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10.5 � Micro- and Nanoplastics Toxicity 
and Plant Performance

MPs pose a risk to human health because they are harmful to soil flora, which could 
affect plant growth and development. Sludge composts may act as a vehicle of MPs 
into soils and then enter soil biota, which in turn can influence the spread of MPs in 
the environment (Zhang et al., 2020a, b). Meanwhile, MPs can change the structure 
and properties of soil and the performance of plants. The effects of MPs on the 
physicochemical properties of soil adversely affect the root properties, growth, and 
nutrient absorption of plants (de Souza Machado et al., 2018).

Numerous studies validated that MPs delayed the germination of seeds, reduced 
plant growth, and induced the ecotoxicity and genetic toxicity of plants (Jiang et al.,  
2019), depending on the amounts of MPs present in the soil (Wang et al., 2020). 
Plants are the initial source of energy and organic matter in all ecosystems. MPs in 
the soil are migrated and accumulated in plants, and then transported into humans 
through the food chain, ultimately posing risks to the ecological environment and 
human health.

In general, toxicity mechanisms of MNPs hinge on the polymer size, surface 
characteristics, and type of the polymer. Plausible toxicity mechanisms mainly 
include membrane disruption, extracellular polymeric substance disruption, reac-
tive oxygen species generation, DNA damage, cell pore blockage, lysosome desta-
bilization, and mitochondrial depolarization. Positively charged nanoplastics 
accumulated in the root tips at lower levels than negatively charged sulfonic-acid-
modified nanoplastics, but they induced a higher accumulation of reactive oxygen 
species and inhibited plant growth and seedling development. Negatively charged 
nanoplastics, on the other hand, were found frequently in the apoplast and xylem, 
implying that nanoplastics can accumulate in plants based on their surface charge 
(Sun et al., 2020).

10.6 � Conclusion

In agricultural ecosystems, micro and nanoplastics affect soil microbial activity, 
microbial biomass, functional diversity, and the cycling process of plant nutrient 
elements in the soil which have an indirect effect on plant seed germination and 
growth. When ingested or in association with the soil biota, micro and nanoplastics 
can influence the agro-functionality through effects on soil root-associated microbi-
ome and root symbionts, soil structure, nutrient immobilization, contaminant 
adsorption, and diffusion which can directly impact the fertility of the agricultural 
soil, quality of crops, and its yields.
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