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6 Santa Fe Institute, Santa Fe, NM, USA

Abstract. Most models for pseudoknotted RNA structures can be
described by multi-context free grammars (MCFGs) and thus are
amenable to dynamic programming algorithms. They differ strongly in
their definition of admissible structures and thus the search space over
which structures are optimized. The accuracy of structure prediction
can be expected to depend on choice of the MCFG: models that are
too inclusive likely over-predict pseudoknots, while restrictive models by
their definition already exclude more complex pseudoknotted structures.
A systematic analysis of the impact of the grammar, however, is difficult
since available implementations use incomparable energy parameters. We
show here that Algebraic Dynamic Programming over MCFGs naturally
disentangles energy models (as specified by the evaluation algebra) and
the definition of search space defined by a MCFG. Preliminary com-
putational experiments indicate that the choice of the grammar has an
important impact already for short RNA sequences.
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1 Introduction

RNA secondary structure without pseudoknots can be predicted efficiently by
means of dynamic programming using a well-established standard energy model.
Pseudoknots, however, play an important role in RNA function, contributing in
particular to the regulation of translation and splicing, and ribosomal frameshifts
[3,24]. With pseudobase there is a dedicated repository of biologically relevant
RNA pseudoknots [26]. The RNA folding problem for general pseudoknotted
structures and energy models that depend on stacked base pairs can be formally
stated as follows:
General RNA Folding
Input: An ordered sequence of vertices (x1, . . . , xk), weights ω(i, j; k, l) that are
non-positive only for “stacked edges”, i.e., if k = i+1 and l = j−1, and a bound
E.
Question: Is there a matching M , i.e., a set of edges such that each vertex is
incident to at most one edge, with f(M) :=

∑
{i,j},{k,l}∈M ω(i, j; k, l) ≤ E?

The General RNA Folding problem is known to be NP-complete if arbi-
trary stacking energies ω( . ) can be used [1]. It remains NP complete in the
unweighted case, i.e., for ω(i, j; i + 1, j − 1) = 1 if and only if xixj and xi+1xj−1

are Watson-Crick base pairs [10]. Additional hardness results can be found in
[20].

Several research groups proposed dynamic programming algorithms that
solve the corresponding folding problem for certain restricted classes of match-
ings M with restrictions on the patterns of crossing edges {i, j} and {k, l} with
i < j < j < l) forming the pseudoknots. These algorithms differ drastically
in their definition of admissible pseudoknot types and thus in the extent of
the search space, see [4,12] for an overview. The performance of the differ-
ent algorithms is difficult to compare because they typically employ different
parametrizations of the energy model and thus already differ in their prediction
of structure without pseudoknots. It is hard to decide, therefore, whether differ-
ences in the prediction accuracy are the consequence of better energy parameters
for the stems and loops of pseudoknot-free parts of the structure, or whether
they have to be attributed to the pseudoknots. It has remained an open ques-
tion, therefore, whether the choice of the search space has an important impact,
and whether there is an optimal pseudoknot model that is sufficiently inclusive
to cover the known structures but rules out structures that are impossible or
unlikely to be realized at all.

In this contribution we consider re-implementations of different pseudoknot
models in a common framework. This allows us, in particular, to ensure that
all knot-free structures and substructures are handled identically. Furthermore,
it makes it possible to assign the same energy contributions to matching types
of pseudoknots. Dynamic programming (DP) algorithms are commonly defined
as recursion relations that iteratively fill memo-tables. These tables are often
indexed by complex structures that make the implementation of DP recursions a
tedious and error prone task [6]. The theory of Algebraic Dynamic Programming



22 D. Eggers et al.

(ADP) [7] addresses this issue for a restricted class of DP algorithms for which (i)
generation of the state space, (ii) scoring of states, and (iii) selection of desired
solution can be separated completely. ADP is therefore the ideal framework for
our endeavor, although there are attractive alternative abstract formalisms, such
as “super-grammars” [18], forward-hypergraphs as an alternative description of
dependencies [13] and inverse coupled rewrite systems (ICORES) [8].

2 Algebraic Dynamic Programming and ADPfusion

ADP utilizes a grammar to specify the state space and thus the structure of the
recursion without any explicit reference to indices. The original setting of ADP
are context-free languages, and thus productions of the form A → α, where
A is a non-terminal and α is an arbitrary expression formed from terminals
and non-terminals [7]. More recently, the formalism was extended to so-called
multi-context-free grammars [16]. The main difference is that non-terminals
may now be multi-dimensional, corresponding to non-overlapping sub-objects
that are parsed independently. For both CFGs and MCFGs, each production
determines a partition of the non-terminal on the l.h.s. Interpreting each non-
terminal on the r.h.s. as a parser alleviates the need to specify indices explicitly.
For instance, the simple production S → [ S ] S corresponds to the recursion
relation Sij +=

∑j
k=i+1 ciSi+1,k−1c̄kSk+1,j , (with the convention that the empty

parse Sk,k−1 = 1 serves as neutral element), where the sequence interval [i, j] on
which a structure “lives” is indicated by the index pair Sij . The terminals c and
c̄ together signify a base pair.

In ADP, each production is interpreted by an evaluation algebra. Productions
as grammatical objects are linked to the evaluation algebra via a common (type)
signature. To understand this connection, consider the grammar {S → cScS},
where the brackets ’[’ and ’]’ have been generalized to accommodate any par-
ticular character. The r.h.s. of the single rule of this grammar has the following
“type”: c×x×c×x, while the l.h.s. holds objects that evaluate to x. The full type
of the rule then is c × x × c × x → x. This type signature provides a constraint
for both the grammar and the evaluation of parses of inputs. The terminal types
c indicate that single characters are to be matched upon, while x indicates not
only that the parse has to continue recursively but also that each recursive parse
can immediately be replaced by a value of type x (by means of memoization), for
example a locally optimal score. This finally points to the structure of the eval-
uation algebra. An evaluation algebra is devoid of any structural notion. Instead
it only contains functions that interpret each parse and immediately replace it
by a value. In the example above, for each i, k, j, the parse ciSi+1,k−1c̄kSk+1,j is
evaluated by a function of type, say, Char×Int×Char×Int→Int, which is either
Si+1,k−1 + Sk+1,j + 1, if ci and c̄k are pairing, or −∞.

The same grammar thus can be used to minimize scores, compute partition
functions, density of states, or enumerate a fixed number of sub-optimal solu-
tions by simply employing a different evaluation algebra. In addition, not only
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is each algebra comparatively simple, the notion of product operations on alge-
bras allows for easy combination of different algebras to calculate diverse and
complex questions over grammars [25].

We employ a particular variant of the idea of ADP, namely ADPfusion [21].
This framework performs in-depth program fusion during compilation, which
effectively turns a very high-level declarative description of a dynamic program-
ming into tight loops that operate directly on flat memory. Authors of dynamic
programs may freely mix different types of grammars, which can operate on
diverse and heterogeneous index spaces [23] while still producing the desired,
efficient loops that are required for dynamic programs that are asymptotically
costly.

The latter property is very useful for the type of grammars we are interested
in here. Multiple Context-Free Grammars (MCFGs) [19] are a particular type of
weakly context-sensitive grammar that, in contrast to the general case, employ
in their rewrite rules only total functions that concatenate constant strings and
components of their arguments. As a consequence MCFGs admit polynomial-
time parsing, i.e., the membership of word w of length n in a language generated
by an MCFG G can be determined in O(nc(G)), with a constant c(G) depending
only on the grammar.

Each MCFG contains rules that conform to the canonical pseudoknot-free
structures – and thus substrings that are juxtaposed – and rules over substrings
that contain “holes” and are interleaved with each other. The latter are repre-
sented by higher-dimensional index objects. MCFGs therefore operate on non-
terminals that have an interpretation as tuples of strings over an alphabet A –
rather than strings as in the case of CFGs. Due to space constraints, we cannot
give a formal presentation of MCFGs here and instead refer to [16]. Instead, we
use the minimal pseudoknot model of GenussFold [16] as a means of explaining
the notations at an operational level. Consider the following productions:

S → ε
∣
∣ •S

∣
∣ [ S ] S

∣
∣ A1B1A2B2

(
A1

A2

)

→
(

S [A1

A2S ]

)
∣
∣

(
ε
ε

) (
B1

B2

)

→
(

S [B1

B2S ]

)
∣
∣

(
ε
ε

) (1)

In addition to the terminals ε, •, [ , ] , which refer to the empty string, a single
unpaired nucleotide and base pair, this MCFG uses three non-terminals: the one-
dimensional nonterminal S represents arbitrary structures. The two-dimensional

terminals
(

A1

A2

)

and
(

B1

B2

)

describe the two interleaved interacting parts of an

H-type pseudoknot. Note that any one-dimensional index is represented by the
tuple (i, j) with i ≤ j to fully identify a substring. A simple example of a
successful parse of the string [{]} is given in Fig. 1.

In [16,22] we introduced a domain specific langauge (DSL) that makes it
fairly convenient to write productions with 2-dimensional non-terminals. Here,
we employ the same idea. First, the l.h.s. is “reformatted” such that the com-
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Fig. 1. Parse tree of the string [{]}. Compared to Eq. 1, the terminal symbols for the

case
(
B1
B2

)
have been replaced with the symbols {, } to emphasize the two terminals

forming base pairs: [ pairs with ], while { pairs with }. The rule S → A1B1A2B2

splits the string into four (possibly empty) substrings, say, [1,1, {2,2, ]3,3, }4,4. The

two-dimensional rule
(
A1
A2

)1,1

3,3
then operates on pairs of indices simultaneously, while

the construction guarantees that only legal parses are derivable, i.e., the parse over
(1, 1), (3, 3) for A1 and A2.

ponents of the 2-dimensional non-terminal are aligned:
(

S [A1

A2S ]

)

�
(

S [ A1 − −
− − A2 S ]

)

and then each column is transposed into a tuple to obtain a linear text

[S,-] [nt,-] <A,A> [-,S] [-,nt]

The “gap symbols” - are used to specify whether one-dimensional terminals and
non-terminals nt and S refer to the first or second dimension. The DSL also
suppresses the indices of the components of two dimensional non-terminals. One
thus simply writes

S -> hpk <<< A B A B
<A,A> -> pka <<< [S,-] [nt,-] <A,A> [-,S] [-,nt]
<B,B> -> pkb <<< [S,-] [nt,-] <B,B> [-,S] [-,nt]

following as far as possible the notational convention of other ADP implemen-
tations [7].

Dynamic programming can be used to answer more complicated questions
than the computation of maximum likelihood (or more generally score-optimal)
solutions. One important class of problems concerns the relative likelihood with
which a substructure occurs, weighted by its likelihood. This question, which
also appears e.g. in certain algorithms for parameter fitting, requires a combina-
tion of inside and outside algorithms. These two algorithms describe the same
search space. While the inside algorithm operates bottom-up, the corresponding
outside algorithm traverses the search space in top-down order. Traditionally,
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the outside algorithm is carefully constructed by hand to correctly match in all
cases and generate exactly the same probabilities (or scores). It is possible to
fully automate this construction [23] along with the required conversions of the
each evaluation algebra. While not shown here, this automated construction is
available in ADPfusion and thus for all grammars we consider here. This yields,
for instance, algorithms to compute Boltzmann-weighted base pairing probabil-
ities for the different classes of pseudoknotted structures.

3 Pseudoknot Grammars

The context-free grammar describing the folding algorithms for pseudoknot-free
structures as implemented e.g. in the ViennaRNA package [9] can be written in
the following form

S → ε
∣
∣ •S

∣
∣ BS

B → crc̄
∣
∣ crBr′c̄

∣
∣ cMM ′c̄

M → rB
∣
∣ MB

∣
∣ M • M ′ → B

∣
∣ M ′•

(2)

The non-terminals denote an arbitrary structure (S), a structure enclosed by a
base pair (B), a component of a multiloop with at least one base pair inside (M),
and a multiloop component whose initial base is paired (M ′). The grammar con-
forms to the standard energy model for RNA secondary structures [27], which
distinguishes hairpin-loops, interior loops (including base pairs) with a single
enclosed base pair, and multiloops with two or more enclosed pairs. The termi-
nals •, and c, c̄ denote an unpaired base and base pair, respectively. In addition,
we write r for a region without base pairs of length at least 1 and r, r′ for a
pair of regions of total length at least 1. The last two lines implement the loop
decomposition, i.e., distinguishes hairpin, interior, and multibranch loops and
decomposes multiloops to support and energies that are linear in the number of
unpaired bases and the number emanating stems.

Fig. 2. The four types of pseudoknots with topological genus 1 [15] correspond to
H-type pseudoknots (H), kissing hairpins (K) and two types of rare, more complex
pseudoknots. The four types of pseudoknots correspond to the four alternatives in the
LP+ and RN grammars.

Many of the competing models of pseudoknots are compared in terms of their
MCFG grammars and languages in [12]. Table 1 summarizes the subset consid-
ered in the contributions: The RE (Rivas & Eddy) model specifies the most
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Table 1. Overview of the Pseudoknot Grammars, adapted from [4] and [12].

LP S → ε
∣∣ •T

∣∣ [ T ] T
∣∣ TA

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2

T → ε
∣∣ •T

∣∣ [ T ](
A1

A2

)
→

(
A1 [ T

] TA2

) ∣∣
(

[ T

] T

)

LP+ S → ε
∣∣ •T

∣∣ [ T ] T
∣∣ TA

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2

∣∣ TA
(1)
1 A

(2)
1 A

(1)
2 A

(3)
1 A

(2)
2 A

(3)
2

TA
(1)
1 A

(2)
1 A

(3)
1 A

(1)
2 A

(2)
2 A

(3)
2

∣∣ TA
(1)
1 A

(2)
1 A

(1)
2 A

(1)
2 A

(4)
1 A

(2)
2 A

(3)
2 A

(4)
2

T → ε
∣∣ •T

∣∣ [ T ](
A1

A2

)
→

(
A1 [ T

] TA2

) ∣∣
(

[ T

] T

)

DP S → ε
∣∣ •S

∣∣ [ S ] S
∣∣ A

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2(

A1

A2

)
→

(
A1 [ S

] SA2

) ∣∣
(

[ S

] S

)

RG S → ε
∣∣ •S

∣∣ [ S ] S
∣∣ A

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2(

A1

A2

)
→

(
A1 [ S

]A2S

) ∣∣
(

[ S

] S

)

RN S → ε
∣∣ •S

∣∣ [ S ] S
∣∣ A

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2

∣∣ A
(1)
1 A

(2)
1 A

(1)
2 A

(3)
1 A

(2)
2 A

(3)
2

∣∣
A

(1)
1 A

(2)
1 A

(3)
1 A

(1)
2 A

(2)
2 A

(3)
2

∣∣ A
(1)
1 A

(2)
1 A

(3)
1 A

(1)
2 A

(4)
1 A

(2)
2 A

(3)
2 A

(4)
2(

A1

A2

)
→

(
A1 [ S

]A2S

) ∣∣
(

[ S

] S

)

AU S → ε
∣∣ •S

∣∣ A1A2

(
A1

A2

)
→

(
M1

K1M2K2

) ∣∣
(

[ S

] S

)

(
M1

M2

)
→

(
M1K

(1)
1

K
(1)
2 K

(2)
1 M2K

(2)
2

) ∣∣
(
K1

K2

) (
K1

K2

)
→

(
K1 [ S

] SK2

) ∣∣
(

[ S

] S

)

inclusive class of pseudoknots for which DP algorithms have become available
so far [17]. On the other end of the spectrum, Lyngsø and Pedersen [11] consid-
ered non-recursive H-type pseudoknots. Below, we write T for the non-terminal
describing pseudoknot-free structures. The LP+ model [4] includes also the four
types of pseudoknots shown in Fig. 2. The model of Dirks & Pierce (DP) gen-
eralizes (LP) to include recursive H-type pseudoknots [5]. Reeder and Giegerich
(RG) further restrict the appearance of unpaired bases in this setting [14]. While
the two grammars look identical in Table 1, they differ in the implemention of
the parsers for the terminals. This is due to a (recently remedied) limitation of
the ADPfusion high-level parser that did not allow for interleaved non-terminals
and terminals in the same “horizontal stack”. The more efficient, original con-
struction of RG in [14] is now possible, whereas the one in Table 1 disregards
alternatives that do not fit into the RG scheme during parsing – which is semanti-
cally correct, but asymptotically suboptimal. “Simple pseudoknots” were defined
by Akutsu and Uemura (AU) [1] as comprising two interleaving distinct sets of
base pairs. These pairs create an interleaved stem within both groups. Base pair-
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ings are organized so that the first group’s right bases and the second group’s
left bases are arbitrarily interleaved, while the other bases are all outside the
interleaved area. Categorizing secondary structures by the topological genus,
Reidys et al. [15] showed that there are exactly four types of pseudoknots with
genus 1, the simplest of which is the H-type pseudoknot, see Fig. 2. The genus-1
structures are referred to as (RN) below.

In order to connect the pseudoknot grammars with Turner’s standard energy
model [27], we interpret [ S ] and [ T ] as a nonterminal B in the ViennaRNA
recursions and employ the loop-decomposition of Eq. (2). Furthermore, we use
the notation A

(i)
1 and A

(i)
2 for the components of two-dimensional non-terminals

that have isomorphic productions (albeit possibly with different values in the
evaluations algebras). For the latter we simply dropped the superscript (i) in
Table 1.

In line with the simplified multiloop model, we consider a single parame-
ter, namely a pseudoknot initialization penalty, Ψ , which is associated with all
productions that introduce a 2-dimensional non-terminal on their left side. For
all helical parts within pseudoknots, the standard stacking energies are used.
Unpaired positions are assigned additive contributions corresponding to the mul-
tiloop model.

4 Computational Experiments

In order to evaluate the accuracy of pseudoknot prediction we used a subset of
the RNAstrand database [2]. Due to the computational costs of the pseudoknot
algorithms, which have asymptotic running times of O(n6), we restricted our-
selves to entries with at most 70 nucleotides. This leaves 131 pseudoknot-free
and 63 pseudoknotted target structures.

On the pseudoknot-free subset accuracy cannot exceed the accuracy on pseu-
doknot-free structures.1 Very large values of Ψ , in fact, force the predictions
to be pseudoknot-free. By construction, then, there is no difference between
different grammars and the ViennaRNA-like baseline. On this data set, we achieve
a limiting F1-measure of about 0.85 for Ψ ≥ 8 kcal/mol. We note that this value
is surprisingly large in comparisons with other benchmarks of RNA folding,
probably due to the short sequences.

On the subset with pseudoknots, the performance does not depend very
strongly on Ψ for moderate values, it decreases, however, for large values of
Ψ > 12 kcal/mol as sensitivity decreases. This is expected, since excessive energy
penalties for pseudoknots cause them to become markedly underpredicted.

Figure 3 summarizes the results. To give a balanced picture of performance
and pseudoknotted and pseudoknot-free instances despite the difference in sam-
ple sizes, we averaged the performance measure for the two samples. As expected
1 Since we use here an energy model that is slightly simplified in the evaluation of cer-

tain loop terms compared to the full model implemented in ViennaRNA, occasionally
we predict structures that are closer to structure model in the STRAND database
and thus accuracy may also be (slightly) better than the ViennaRNA predictions.
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Fig. 3. Performance of five different MCFGs for pseudoknotted RNA structures in
comparison with the pseudoknot-free background (VRNA). Both F1 and MCC show
the best performance for Ψ ≈ 10 kcal/mol and indicate a qualitative difference between
the three grammars with recursive pseudoknots (LP+, RG, and RN) compared to DP
and LP.

from analyzing the two subsets separately, we observe a performance peak for
Ψ ≈ 10 kcal/mol. Despite the short sequences in the test set we observe a supe-
rior performance of grammars that admit recursive pseudoknots.

5 Availability

This work is accompanied by git repositories. For readers who are interested in
experimenting with pseudoknot grammars, we offer the “GenussFold” repository
at https://github.com/choener/Prj-GenussFold. This project comes with all nec-
essary dependencies and two options to experiment with and build pseudoknot
grammars. It provides, via a nix flake, a complete development environment.
In addition, if nix is not available, a more usual path via GHC Haskell and cabal
is available. We refer to the readme in the project file on how to build the project.
In addition, implementations for the different grammars are made available here:
https://github.com/deggers/GenussFoldEnergyMin.

6 Concluding Remarks

Different grammars for the prediction of RNA structures with pseudoknots define
vastly different search spaces. Variations of the grammar, therefore, include or
exclude certain types of structures and thus in general will affect the predicted
structures. While much effort has been expended to study and compare differ-
ent implementations, no unifying framework was available in which all relevant
pseudoknot model grammars are available together with a full fledged scoring
system. As a consequence it has remained unclear to what extent differences in
predictive power have to be attributed to the different scoring model, and to
what extent the grammars themselves play an important role.

https://github.com/choener/Prj-GenussFold
https://github.com/deggers/GenussFoldEnergyMin
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In this work we have begun a comprehensive study of the predictive power,
advantages, and disadvantages due to the choice of grammar. So far, our study
has been constrained to a subset of six grammars, including the pseudoknot-free
RNA folding grammars from the ViennaRNA package [9]. Furthermore, we had
to restrict ourselves to the set of sequences that can be folded by all grammars
within predefined resource limits in order to accurately compare the quality of
predictions. In order to minimize the influence of differences in scoring models we
used here the initialization energy Ψ for a pseudoknot as the single free parameter
and otherwise treated pseudoknots like multiloops. Prediction performance as a
function of Ψ suggests a plausible value of about 10 kcal/mol for the optimal
choice of this parameter. Interestingly, this value matches well with regression-
based multiloop initialization terms, see [28] for an overview of multiloop energy
models. We also observed that the two grammars LP and DP that do not admit
recursive pseudoknots are outperformed by the three grammars that include
recursive pseudoknots. Given the short size of the benchmarking targets this is
surprising and deserves a closer examination.

This first study exposes several avenues for further exploration. When we
began this study, we noted that certain production rules did not fit immediately
into our framework. We chose to rewrite grammars to fit into the framework,
while keeping their semantics intact. Since then, progress in ADPfusion amelio-
rates these shortcomings. A forthcoming more detailed study hence will encom-
pass the full range of pseudoknot grammars. Recent improvements in the pars-
ing and compiler fusion system further optimizes the resulting program code,
enabling a systematic benchmark on significantly longer input sequences and
thus more difficult instances.

Inspection of the grammars in Table 1 shows that the grammars are com-
posed of many common rules or parts of rules. This suggests to make systematic
use of another feature of ADP, namely the capability to compose grammars by
additions, subtractions, and multiplications [22]. This type of construction will
provide a guarantee that subsets of grammars that are supposed to be equal, will
indeed generate the same structures, while at the same time reduce the complex-
ity of the algorithms themselves. This approach will also simplify the exploration
of more sophisticated energy models for pseudoknots, which in the simplest case
distinguish the initialization terms for different knot types as suggested e.g. in
[15].

Finally, the ability to automatically generate outside grammars opens up the
possibility of calculating ensemble quantities and provides an important building
block for parameter training extensions. The latter are required as grid based
searches, as we performed for the pseudoknot initialization penalty, do not scale
beyond two or three independent parameters.
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