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Preface

The Brazilian Symposium on Bioinformatics (BSB) is an international conference with
a focus on bioinformatics and computational biology, organized by the special interest
group in Computational Biology (CE-BioComp) of the Brazilian Computer Society
(SBC). Under the coordination of the general chair, Kele Belloze from CEFET/RJ,
Brazil, the 15th BSB edition was held during September 21–23, 2022, at the Atlântico
Búzios Convention and Resort, in the city of Armação dos Búzios (Brazil), after two
years of online-only events. BSB 2022 was co-located and jointly organized with the
Brazilian Databases Symposium (SBBD 2022), which took place during September 19–
13, 2022. All BSB participants could attend the SBBD activities and vice versa.

As in previous editions, BSB 2022 had an international Program Committee, which
was composed of 43 members. We received a total of 50 submissions, comprising 15
full papers, eight short papers, 25 poster abstracts, and two software demonstrations. All
papers were reviewed by at least three independent reviewers. After a rigorous single
blind review process, a total of 17 papers (10 full papers and seven short papers) were
selected to be presented in three technical sessions, and are published in this volume.
The submitted abstracts and software were presented in two exciting poster sessions.
In addition, BSB 2022 featured keynote talks from Yaser Hashem (Institut National de
la Santé et de la Recherche Médicale, France), Peter Stadler (University of Leipzig,
Germany), and Sérgio Lifschitz (PUC-Rio, Brazil).

This year we celebrated 20 years of the first Brazilian Workshop on Bioinformatics
(WOB 2002), which was later renamed as the Brazilian Symposium on Bioinformatics.
A round table composed of previous editions chairs, André Ponce Leon de Carvalho,
Maria Emília Walter, João Setúbal, Sérgio Lifschitz, and Daniel de Oliveira, presented
a retrospective of the last 20 years of BSB and discussed what we can expect to see in
the next 20 years.

BSB 2022 was made possible by the dedication and work of many people and
organizations. We would like to express our thanks to the general chairs of BSB and
SBBD, Kele Belloze and Sérgio Lifschitz, respectively, for their tireless dedication to
make this event happen, together with the members of the steering committee and the
volunteers. We are also grateful to the Program Committee members, to the sponsoring
institutions SBC, CEFET/RJ, FAPERJ, and CAPES, and to Springer for their continued
support by agreeing to publish this proceedings volume. Last but not least, we would
like to thank all authors for their time and effort in submitting their work and the invited
speakers for having accepted our invitation.

September 2022 Nicole M. Scherer
Raquel C. de Melo-Minardi
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BDDBlast—A Memory Efficient
Architecture for Pairwise Alignments

Demian Bueno de Oliveira, Alessandra Faria-Campos, and Sérgio Campos(B)

Computer Science Department, Universidade Federal de Minas Gerais,
Belo Horizonte, MG, Brazil

scampos@dcc.ufmg.br

Abstract. BLAST, or Basic Local Alignment Search Tool, is one of
the most widely used bioinformatics tools today. However, as biological
data accumulates, its use can become a bottleneck limiting biological
analyses both in time and memory usage. In this work we propose the
use of a new data structure to re-implement BLAST. We use Binary
Decision Diagrams (BDDs) to store the biological sequences and opti-
mize resources, reducing memory requirements. This new approach has
allowed us to construct the alignment of biological sequences with gains
of up to 65.7% in memory usage for the allocation of the BLAST data
structures and up to 16.3% faster search results, without altering the
BLAST algorithm or its results.

Keywords: BLAST · Basic Local Alignment Sequencing Tool · BDD ·
Binary Decision Diagrams

1 Introduction

In Bioinformatics, BLAST is one of the most well-known and widely used
tools available to search for similarities between biological sequences, such as
amino acids of proteins or nucleotides sequences of DNA. BLAST searches allow
researchers to compare an input sequence (query) against a database of sequences
(subjects) to obtain the best matches and the longest alignments for the biolog-
ical sequence of study and the object(s) of comparison. The BLAST algorithm
was developed by Altschul et al. [1]. More recently Gapped BLAST [2] a more
efficient implementation has been made available. Gapped BLAST is the version
used in this work.

Currently, as more biological data are being sequenced, the demand for
more powerful platforms that are able to handle data more efficiently increases.
BLAST is an important piece of this puzzle, but it can become a very expensive
computational tool if not considered carefully.

To address this question, this work introduces BDDBlast, a new architec-
ture for Gapped BLAST that uses Binary Decision Diagrams, or BDDs as the
major data structure. BDDs are used in different fields like formal verification,
optimization, computer-aided design (CAD), among others [3]. One of the fea-
tures that makes BDDs attractive is their capacity for eliminating redundancy by
automatically eliminating paths between nodes that share common information.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. M. Scherer and R. C. de Melo-Minardi (Eds.): BSB 2022, LNBI 13523, pp. 1–13, 2022.
https://doi.org/10.1007/978-3-031-21175-1_1
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BDDBlast does not change the algorithm or require special hardware. It
executes the same algorithm as Gapped BLAST, and generates the same results.
Preliminary experiments have shown gains up to 16.3% in search time for average
sized searches and reductions up to 65.7% in memory usage for the biological
data structures using real biological sequences.

While Gapped BLAST is a very efficient algorithm, several academic and
commercial alternatives have been developed to increase its efficiency. They can
be separated in two categories, those that use the same algorithm as Gapped
BLAST, and as such are directly comparable to BDDBlast, and those that do not
use the same algorithm. Some projects in the first category accelerate the original
algorithm with the use of special hardware, like FPGAs (Field-Programmable
Gate Array) or GPU’s (Graphics Processing Units) [4,5]. PLAST [6] uses the
Gapped BLAST algorithm, but it is also optimized for parallel architectures.
These alternatives offer benefits with the use of parallel or cloud computing
through distributed clusters of systems with hundreds of processors and large
memory capacity [7]. These gains, unlike those obtained by BDDBlast, require
access to restricted environments, not available to most researchers.

CS-BLAST and DELTA-BLAST [8] also use the Gapped BLAST algorithm,
having as one of the main differences the use of a more sophisticated choice of
score matrices. Since BDDBlast does not change the way in which these matrices
are used, it is complementary to these tools, adapting the BDD data structure
to be used in CS-BLAST and DELTA-BLAST could potentially multiply the
savings obtained by these methods. Diamond [9] is another tool based on Gapped
BLAST. It uses double indexing to take advantage of data locality, reducing
memory usage, a similar objective as BDDBlast. It, however, does not change
the data structures used, and in the same way as the previous tools, could be
potentially adapted to obtain even more memory gains using BDDs.

2 System and Methods

2.1 The Gapped BLAST Algorithm

To better understand how this work explores the Gapped BLAST algorithm,
two amino acids sequences will be used as an example in a walk through the
main steps of a Gapped BLAST search. The first biological sequence of a
search is called Query sequence, and represents the input data or object of
study for our Gapped BLAST search. The Query is given by the user (i.e., a
nucleotide or amino acid sequence). The second biological sequence is the Sub-
ject sequence and for this example we used a Staphylococcus protein sequence
(GI 1004172080)1 To make our example easier to understand, we have reduced
our Query sequence to a sub-sequence of the protein sequence aforementioned:

Query: LMYKGQPMTFR
Subject: DGDTVKLMYKGQPMTFRLLLVDT

1 Available at https://www.ncbi.nlm.nih.gov/protein/1004172080.

https://www.ncbi.nlm.nih.gov/protein/1004172080
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The Gapped BLAST algorithm can now be explained as follows2:

1 Generate a list of words (W ) from the query sequence
Gapped BLAST first breaks the query sequence into a subset of words. Each
word is then searched against the database or subject sequences. When the
word is found in the subject sequence, we say there is a match. The word is
then used as a seed to start a new alignment. Next, the seed is extended in
both directions to expand the alignment.

2 Compare and score the words to qualify the alignment
The words of the query sequence are then compared to the words of the
database sequences (subjects). This returns a score value, which is calculated
using a scoring matrix. The scoring system evaluates the quality of an align-
ment. Each word scoring uses a matrix that is responsible to define which
relationships are stronger and are likely to correspond to more meaningful
alignments.
For proteins, Gapped BLAST uses BLOSUM62 [10] as the default substi-
tution matrix. BLOSUM (BLOcks SUbstitution Matrix) is a substitution
matrix (or table of values) used to score alignments between amino acids. It is
one of the most widely used substitution matrices [11] and as such it provides
a good testbed for BDDBlast.
In order for a word to become a seed of an initial alignment, it must also
score higher than a score threshold (T ). The value of T is preconfigured and
can be set by the user. In our example, let’s consider a threshold value of T
= 15. In this case, word 1 (LMY), extracted from our query sequence, has
aligned with the subject sequence, as seen in Fig. 1. Therefore using the scor-
ing matrix the LMY sequence scores 4, 5 and 7, respectively. This would give
us a total score of 16 at the position 7 of the subject sequence and therefore
meet the requirements to become a seed of a new alignment.

Fig. 1. Words creating alignments

3 Extend the alignment in both directions
The seeds are then extended in both directions and an accumulated score is
obtained. This expansion process stops when the total alignment score drops
off by a value X when compared to the previous best score. The value of X is
also defined by the user. After the expansion is complete the final alignments
are called high scoring pairs (HSP).

2 The value for parameters W, T and X are used to explain a simplified example, and
were not used in any experiments. W and T have either default or typical values.
Parameter X is mentioned for completeness, but not used in the example.
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4 Preserve and Present the search results
The result of a Gapped BLAST search is a collection of HSPs that were
computed during the alignment process. Figure 2 shows part of one out of the
290 HSPs that were obtained by the Gapped BLAST protein search for the
example we are using. We have compared this sequence to the PDB Protein
Database, using parameters word size = 3, expect value = 10, gap penalty =
11, gap extension = 1, threshold = 11, and matrix = blosum62.

Fig. 2. Partial result from a Gapped BLAST search - 83% alignment

2.2 Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (BDDs) were initially introduced by [12] and later
explored by Bryant [13]. BDDs can be manipulated with very efficient algo-
rithms, as demonstrated by [14].

A binary decision diagram is a rooted, directed acyclic graph with terminal
and non-terminal vertices. Two terminal vertices exist, labelled 0 and 1. Each
non-terminal vertex v is labeled by a variable var(v) and has two successors,
zero, followed when v is false, and one, followed when v is true.

To illustrate this concept and show the potential benefits of a BDD, let’s
consider a two bit comparator function f , given by the following formula:

f(a1, a2, b1, b2) = (a1 ↔ b1) ∧ (a2 ↔ b2)

The BDD that represents this formula can be seen in Fig. 3.
We can decide if a truth assignment to the variables in the formula satisfies f

by following a path from root to leaf, following the zero successor if the variable
is false, and the one successor otherwise. Applying those steps into our example,
the assignment below leads to a leaf vertex labeled 0. That means the formula
is false for this assignment.

〈a1 ← 1, b1 ← 1, a2 ← 0, b2 ← 1〉
BDDs explore redundancy in the representation by eliminating isomorphic

and redundant subtrees, and generating extremely compact representations of
boolean functions in many cases3.
3 BDDs can have a worst case exponential memory complexity in cases where the

dependencies between the variables is circular or very complex. These dependencies
do not typically occur in BDDBlast.
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Fig. 3. Binary Decision Diagram for function f

3 Algorithm

In order to better understand BDDBlast, we will outline its main steps by explor-
ing a hypothetical alignment result (shown below) of a protein sequence search,
also extracted from the Staphylococcus protein example (GI 1004172080).

Query → VDTPEFNEKYGPEASAFDKKM
Align → VDTPEFNEKYGPEASAFKKM
Sbjct → VDTPEFNEKYGPEASAFHKKM

The algorithm starts by selecting a potential seed to initiate the alignment.
BDDBlast does not change how Gapped BLAST chooses the potential seed, the
same algorithm is used. For this example, the word YGP with a score of 20 (7 +
6 + 7) was chosen to illustrate how the algorithm works. A new node is created
to represent the seed word. The BDD node contains the position of the seed word
in the subject sequence (value 10 in this case). This is done by associating the
BDD variable in this node with the appropriate numerical value in an external
data structure. For easier visualization, we show in the BDD node the word it
represents, and not its numerical position.

The BDDBlast steps are described as follows:

STEP 1. The BDD construction starts with a single (root) node storing only
the seed word, as illustrated in Fig. 4.

STEP 2. Once the seed word (YGP) has been created to represent the initial
alignment between the query and subject sequences, the alignment extension
process—in both directions—can start.

In this step, as the alignment is extended to the right and left sides of the root
(seed word), if there is a match between the query and the subject, a new positive
(v = 1) ramification is created. Figure 5 shows a positive path or ramification
being created when the alignment is extended to the right side of the root of the
query sequence given in our example.

By contrast, if there is a mismatch between the query and the subject, a
new negative branch or path is created. In essence, the negative nodes store only
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Fig. 4. Initial node representing the
alignment start

Fig. 5. Positive successor nodes, repre-
sent a match between query and sub-
ject

the subset of the subject sequence that differs from the query sequence, as all
the biological sequences that match between the query and the subject (in other
words, have aligned), are stored by the positive nodes. A mismatch example (the
biological information that has not aligned) between the query and the subject
can be seen stored in the negative node AFH shown in Fig. 6.

Fig. 6. Negative successor nodes repre-
sent a mismatch

Fig. 7. Nodes generated through align-
ment extension

The extension process and BDD node creation will then proceed until the
alignment total score drops off by a value X. For our example the complete graph
generated by the extension to the right side of the root of the query sequence
can be seen in Fig. 7.

STEP 3. After the graph is created, BDDBlast will eliminate the trivial paths,
i.e. paths in which all nodes have only one successor, such as YGP → EAS.

A sequence of positive paths represent a subsequence that is fully matched.
Therefore if there isn’t any negative path between two nodes or inside a sequence
of nodes, these nodes can be combined into one longer node. In our example
(Fig. 5), nodes YGP and EAS are connected only by a positive path. Therefore
these two nodes can be combined into a single node that represents them.

As the trivial/insignificant paths are combined into single nodes that will now
be responsible to carry the information that was originally stored by multiple
nodes along trivial paths, the BDDs get smaller, as can be seen in Fig. 8.

This expansion and reduction process is also applied to the negative con-
secutive paths sequences should they exist. In our example the left expansion
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Fig. 8. BDDBlast - reduced BDD representing the right side alignment

is shown in Fig. 9, and a single node will represent this fully aligned sequence
VDTPEFNEK, as seen in Fig. 10, once the reduction process takes place.

Fig. 9. Expansion to the left of the seed
word

Fig. 10. Left expansion nodes com-
bined

Reading through the Binary Decision Diagram
Once the reduced BDDs have been generated, reading its content to obtain the
query, subject and therefore knowing the alignment information is straightfor-
ward. The process below shows the reading process of the BDD that represents
the right side expansion of the sequences starting from the seed. The left side
expansion is similar. For example, we can read the BDD in Fig. 8 as follows:

– An initial node representing the seed/root and containing the biological
sequences that have aligned so far. Therefore at this point in time the query
and subject information are the same as shown below:

Query → YGPEAS
Align → YGPEAS
Sbjct → YGPEAS

– The negative ramification that appears after the initial node contains
sequences from the subject that did not match the query. The data in this
negative node goes to the subject:

Sbjct → YGPEASAFH

in the next step when the next positive node is read, in addition to updating
the query sequence, it will update the subject sequence at the offset position
where it has stopped. In this case, as the negative nodes contain 3 amino acids,
the offset position is marked to resume at position 4. This means that when
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the positive node containing the AFDKKM sequence is read, the subject
sequence will be updated starting at the offset position 4, meaning in this
case that only the KKM biological data is added to the subject.

– The positive node is read, updating the query sequence. It will also update
the subject sequence with the additional information that has aligned after
the failure point.

This takes us to the following query, subject and alignment values, under the
Gapped BLAST results format:

Query → YGPEASAFDKKM
Align → YGPEASAFKKM
Sbjct → YGPEASAFHKKM

The positive nodes represent the Query sequence used for the search. Over-
write the query with the negative nodes at the appropriate points and you will
have the Subject sequence aligned with the query. Furthermore, if you compare
the difference between a positive and negative node in the same branch, you will
obtain the alignment line information between the query and the subject. Some
codes are also used to represent this divergence. A gap (−), a positive score (+)
or a non-positive score (“ ”) are used.

The left side expansion is performed in the same way, except that the new
subsequences are appended to the left of the already processed subsequences.
The left side must be processed and printed before the right side to generate the
correct output.

4 Implementation

We have implemented a BDDBlast prototype using the NCBI Toolkit using the
Gapped BLAST implementation as basis. The program was used in several tests
to compare its memory usage to the original Gapped BLAST, as well as assess
its performance. The tests were performed using a Lenovo laptop containing
an Intel(R) Core(TM) i5-3320M CPU @2.60 GHz processor with 8 GB of RAM
memory, using an IBM Edition Windows 7 64-bit v1.10.00.AG 811 operating sys-
tem. Different data sets from different databases publicly available in the NCBI
servers were used, including NCBI’s Reference Sequence (RefSeq) database [15].
The databases used in our tests are available in the supplementary documenta-
tion.

To validate the results, 500 different tests were performed using 50 differ-
ent scenarios. Each testing scenario was executed 10 times. The details of each
scenario, as well as all files are available in the supplementary documentation.
The tests have used Gapped BLAST’s implicit default parameters (For Proteins:
word size = 3, expect value = 10, gap penalty = 11, gap extension = 1, threshold
= 13, matrix = blosum62. For Nucleotides: word size = 11, expect value = 10,
gap penalty = 5, gap extension = 2).
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Table 1. Databases used for testing BDDBlast. Refseq is NCBI’s Reference Sequence
database; PDB is a protein database from PDB; NCBI is a genome chromosomes
database; NT contains environmental samples; 16S is a 16S Microbial sequences
database; WGS has whole-genome-shotgun sequences.

Database Sequences Longest seq. Residues

Refseq Prot 2,761,826 33,467 997,236,991

Refseq Gen 141 171,031,299 3,908,663,647

PDB 82,575 5,037 20,366,134

NCBI 35 14,668,833 73,153,929

NT 3,169,069 170,452 3,103,377,759

16S 9,251 2,952 13,610,589

WGS 42,751 987,023 60,008,585

4.1 Databases and Sequences Tested

The number of sequences and sizes of the databases used are shown in Table 1.
The Staphylococcus protein sequence, GI 1004172080, used as example in the
theoretical sections of this work was also used in the majority of the tests.

To ascertain the scalability of our method we used also some large sequences
to stress test the tool and verify if memory gains scale as well as the total memory
usage by the tool. To this purpose we have used as query sequences Titin, or
Connection, the largest human protein. We have used the DNA sequence with
more than 83,000 nucleotides, as well as the protein sequence, with about 35,000
amino acids. Another set of sequences used contains 47 sequences with up to
500,000 nucleotides each, with a total of more than 6,000,000 nucleotides [16]
(used with permission). The largest sequence used in this work is a fragment of
the human chromosome 22 with 7,650,000 nucleotides.

Although the Staphylococcus protein sequence belongs to the Protein Data
Bank, it was also tested against the RefSeq database so the performance of
BDDBlast could be evaluated against a different data set from a genetic per-
spective. Tests that varied the size of the protein sequences were also conducted
to verify how BDDBlast would perform from a scalability perspective.

Databases were randomly selected (othen than RefSeq) to assess if any impact
in the tools performance would be noticed as database content or sizes were
changed. No impact was observed.

5 Discussion

5.1 Efficient Memory Usage

A significant reduction in memory usage has been observed, as can be seen
in Table 2. When the initial HSPs align perfectly, savings are expressive. As
alignments start to have decreasing similarities, savings show small variations.
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Table 2. Chart showing gains as searches are scaled up - Memory usage - Staphylo-
coccus and PDB

Query size
(residues)

Memory used (bytes)

BLAST BDDBlast Mem. gain (%)

100 2,942,400 1,401,408 52.37%

149 6,002,688 2,072,704 65.47%

304 14,543,616 4,989,760 65.69%

507 1,686,144 810,048 51.96%

1000 179,427,840 90,932,480 49.32%

2001 82,115,712 41,035,840 50.03%

4011 70,974,528 37,405,248 47.30%

5005 7,734,912 3,522,112 54.46%

Tests involving a biological sequence of the Staphylococcus protein against the
PDB (Protein Data Bank) have provided gains of up to 65.7% in memory usage
to represent the biological data structures.

Finally, the Staphylococcus sequences were tested against the RefSeq
database. This test evaluates how the BDDBlast algorithm would perform when
tested against a database source different from the protein source. It is expected
that the similarities will be smaller in this case. The memory gains have dropped
in this scenario but are still very positive, showing an average gain of more than
58% when compared to Gapped BLAST.

Table 3. Memory gains for very large sequences.

Sequence DB Seq. size BLAST mem (Mbytes) BDDBlast mem (Mbytes) Gains BDDBlast memory allocated

Titin gen. RF Gen 81,940 11.8 4.4 62.91% 674 MB

Titin prot. RF Prot 34,993 3,069 1,635 46.73% 703 MB

Corumba90k NT 6,276,248 187 76 59.41% 716 MB

CHR22-150k RF Gen 7,650,064 1,863.6 727.5 60.96% 1,071 MB

CHR22-150k NCBI 7,650,064 52,212 20,314.5 61.09% 1,982 MB

We have also tested the proposed methodology in very large sequences to
determine if savings scale up. We used the same databases but used three differ-
ent sequence sets of increasing size. The results of these comparisons are shown
in Table 3, showing consistent memory gains in the order of 60% (with protein
comparisons showing slightly smaller gains).

5.2 Faster Execution Time

In addition to memory gains, CPU execution time speedups have also been
observed with gains of up to 16.3% in faster search results. The execution



BDDBlast—A Memory Efficient Architecture 11

Table 4. Table showing gain levels as searches are scaled up - CPU time - Staphylo-
coccus and PDB

Query size
(residues)

CPU (time in seconds)

BLAST BDDBlast Time gain (%)

100 10,185 9,244 9.24%

149 19,870 16,987 14.51%

304 22,791 19,896 12.70%

507 46,991 43,071 8.19%

1000 69,980 62,830 10.22%

2001 123,766 113,665 8.16%

4011 165,780 148,539 10.40%

5005 192,462 179,264 6.86%

times reported correspond to the complete execution of the Gapped BLAST
or BDDBlast programs. As previously noticed in the memory gains, the CPU
savings are also consistent for sequences of different sizes, but not for very large
sequences, as will be seen. Table 4 shows a comparison table between Gapped
BLAST and BDDBlast for CPU execution time with different search sizes.

An additional test involved the RefSeq database, also used for the Memory
testing. As previously mentioned, this test aimed to check a different database
from the protein’s origin database. As the alignment levels were reduced, the
CPU execution time showed a slight drop. However even in this scenario
BDDBlast was able to outperform the original Gapped BLAST architecture,
with gains averaging about 10%.

For the very large sequences tests time results show a slight slowdown when
using BDDBlast, averaging 8.84%. It is, however, much less significant than the
memory usage gains. Further research is needed to optimize running times in
these cases.

6 Conclusion

This work proposes a version of Gapped BLAST that incorporates the benefits
of Binary Decision Diagrams. The new BDDBlast architecture allows the con-
struction of more efficient pairwise alignments for biological sequences, resulting
in memory and time savings. The performance improvements have shown to be
consistent and therefore potentially scalable.

The relevance of our result is that we have shown a novel approach to manage
and store the Gapped BLAST alignments, under a known data structure but
that had never been tried before. This work opens the path towards a new
optimization discussion for the Basic Local Alignment Tool through the use of
the BDDs.
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Future work includes applying BDDs to Gapped BLAST implementations
that optimizations that modify substitution matrices or the order in which oper-
ations are executed. It is expected that gains can be obtained in those cases as
well, in addition to the gains of these tools.

Another area of future exploration is the use of BDDBlast in comparisons
between full databases, i.e., comparing multiple input sequences to a database.
While intuitively the behavior can be seen as the addition of the time taken
by each comparison, it is possible to share BDD nodes between different com-
parisons, obtaining even larger gains. Implementing this idea is left for future
work.
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Abstract. Reproducibility, resilience, and large-scale data processing
have become fundamental for developing scientific research, particularly
in bioinformatics. One may consider the use of Scientific Workflow Man-
agement Systems (SWfMS) to address these topics. However, user inter-
activity during the execution of workflows, especially with a preliminary
result generated by an inner workflow task, is still an issue. We present
in this paper an architecture that meets the interactive requirements of
these systems, allowing the development of a flexible layer for end users
to interact directly with SWfMS. Besides presenting our software solu-
tion, we show an application in the context of cancer gene identification
for drug design.

Keywords: Bioinformatics · Workflows · Human-in-the-loop ·
Interactions · Cancer

1 Introduction

Reproducibility is an essential aspect of science and has been increasingly
demanded to publish scientific works. The ease of reproducibility increases con-
fidence in the scientific environment and allows the development of new research
by additional collaborators [13].

In addition to reproducibility, by having processes and data flow standardiza-
tion, data provenance can also be managed [5]. This is a very relevant point, par-
ticularly with the beginning of the General Data Protection Regulation (GDPR)
and other similar initiatives around the world focused on governance and data
security [1].

A scientific workflow is a chain of processes that allows the automation
of tasks more straightforwardly using the necessary computational resources
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[3,15]. Scientific Workflows Management Systems (SWfMS) improve experiment
reproducibility, data provenance, and governance of scientific processes.

Interactive workflows allows people with no computer ability to execute
scientific tasks [15] and improve workflow execution with additional human
knowledge. This makes scientific development more accessible and will enable
researchers from various branches of science to reproduce published studies
or even carry out new studies by reusing other previously established work-
flows [2,11].

The SWfMS needs a more intuitive interface for the use case in question
to achieve greater interactivity. Not all problems will be better illustrated as
generic workflows as mentioned in [2] as we must interact between one workflow
stage and another. The concept of Human-in-the-loop (HITL) may be applied
to workflows [14,20]. The most common interaction in a workflow is between
the output of one step and the start of the other. Some examples of workflow
systems implemented for specific purposes allow interactivity [10,16], but not
applied to cancer genes identification.

This paper proposes an architecture that implements this interaction con-
cept only to detect cancer gene hubs as a study case. Cancer is a multifac-
torial and highly heterogeneous disease affecting the response to therapy and
patient prognosis [4]. Efforts in improving treatment in oncology have centered
around grouping tumors into molecular subtypes based on their characteristics
and developing specific therapies targeting each subtype’s main players [23]. An
interactive workflow allows the user to choose whether to stratify analyzed sam-
ples into groups representing molecular subtypes or make other choices based on
their expert knowledge. New applications will be contemplated in the future.

2 Methods

During workflow development, it is first necessary to strategically organize its
steps, as well as the interaction between each of them. After that, we need an
analysis of each SWfMS to choose the most suitable for your particular workflow.

2.1 Workflow Abstraction

The importance of an abstract workflow goes beyond the organization of its
stages. The standardization also favors its use to scale each process in a simpler
way [6].

In this work, we develop the abstract workflow. It comprises three main steps:
Data preparation, Network Analysis, and Validation. To analyze the interaction
points, we also expanded the Network Analysis showing its several steps that
can be precisely one or several processes as illustrated in Fig. 1. After that, it is
possible to explore some interaction points in each stage and think about how
the user will do these interactions.

In the development of this work, we explored two main points of interac-
tion. First, when the gene expression table emerges from Data Preparation, the
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Fig. 1. Abstract workflow with Network Analysis component expanded. A gene expres-
sion table is provided by the user and undergoes grouping based on expression values,
leading to the construction of Co-expression modules. Then, each module is provided
for protein-protein interactions (PPI) search and modules are converted into PPI net-
works. Drug-gene interactions are also evaluated for each component of the network.
Finally, gene hubs are selected for each PPI network based on the network’s topology.
User interaction for gene table and graphs are marked.

user should be able to remove genes according to some stipulated business rule,
such as genes with low expression across all samples or with low variability. The
second point is at the end of the processing of the Network Analysis compo-
nent at the end of the processing, over the output of the component when the
genes have undergone grouping by co-expression analysis, network building using
protein-protein interactions based on each co-expression module, identification
of network hubs, and drugs associated with network components. At this point,
interaction graphs allow the user to choose the best ones to continue the work-
flow by selecting potential cancer drivers from the hubs list or good candidates
for drug repositioning, for example. These points are illustrated in Fig. 1.

The interaction ends up not being a functionality nor a responsibility of the
SWfMS, so we chose an interactive web interface made with Django [7] and
React JS [8].

2.2 Choosing SWfMS

We need to choose an SWfMS that would meet the demands for user interactions,
as well as other project requirements.

In our case, the workflow needs (i) external integration (API or CLI) for
the interactions, (ii) task cache because tasks have a high computational cost;
(iii) parallelism, as the same operation will be processed in multiple genes; and
(iv) version control, because if the workflow is changed, users need to know
that particular version that was executed for future executions.

2.3 Interactions

The Prefect framework [19] met all the requirements and was chosen to develop
this research work. It is written in Python [24] and contains many features to
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Fig. 2. HITL with workflow using Cytoscape for human analysis.

avoid Negative Engineering [17], which is the development of code to work around
problems that a workflow manager should solve for their code to run without
needing too many adaptations.

3 Results

The architecture, user interactions integration and results of this interactions
with the workflow build on top of Prefect are shown in the current section.

3.1 Architecture

The architecture design is composed by: a Frontend for user interaction; a Web
Server that controls access and make Frontend interaction with SWfMS; and the
SWfMS that process tasks and is available for user debugging. The interaction
between the user and all components of this architecture is illustrated in Fig. 2.

Prefect’s architecture is composed of the interaction between several services1

In this architecture, the most important part is the API that we can interact
with the workflow and build an interactive experience.

The Django framework was chosen as the Server-Side development platform
for interactions with the workflow. As an interactivity technology, React was
chosen because it is simpler to port to applications and because it already has
some visual components ready on the internet. Along with React, the Cytoscape
[21,22] pattern was used for graphs interchange during HITL interactions.

The user can interact through the SWfMS UI just by running the workflow
or using the interface that allows interactivity between the workflow steps. If
the option is to use the interactive interface, this interface communicates directly
with the server in Django (Web Server) that asks the Prefect (SWfMS) to execute
that step of the workflow. After execution, the SWfMS returns the response with
the processing data and the resulting graph clusters to the Web Server. Then,
these graph clusters are saved on a database and it is displayed a download
option to the user. With this option, the clusters are retrieved from the database,

1 Prefect architecture: https://docs.prefect.io/orchestration/server/architecture.html.

https://docs.prefect.io/orchestration/server/architecture.html
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saved on separated Cytoscape files, and grouped on a single compacted file for
the user to download. This interactive implementation is available at https://
github.com/BioBD/sgwfc-gene-web.

The researcher starts sending to the SWfMS a list of interested genes. The
SWfMS starts clustering modules with WGCNA [12] and enrich data with
StringDB [9], later Girvan-Newman clustering algorithm [18] is applied to obtain
genes communities as sub-graphs. These sub-graphs are downloaded to be anal-
ysed in Cytoscape program and the user can choose which one will continue
the workflow. All theses workflow steps were implemented as tasks and now are
available at https://github.com/BioBD/sgwfc-gene-python.

4 Conclusions

In this work, we show the feasibility of developing a workflow with interactive
inputs and outputs in each task that works with gene communities identification
with the SWfMS Prefect. This architecture enables HITL that empower users
to contribute with their knowledge.

In future work, it is necessary to thoroughly implement the workflow, devel-
oping the interactive steps according to the project’s needs and designing a
workflow that is fully interactive and adaptable to the user’s needs. Another
future work is that workflow can learn from previous submissions and suggest
better sub-graphs to new users.
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6 Santa Fe Institute, Santa Fe, NM, USA

Abstract. Most models for pseudoknotted RNA structures can be
described by multi-context free grammars (MCFGs) and thus are
amenable to dynamic programming algorithms. They differ strongly in
their definition of admissible structures and thus the search space over
which structures are optimized. The accuracy of structure prediction
can be expected to depend on choice of the MCFG: models that are
too inclusive likely over-predict pseudoknots, while restrictive models by
their definition already exclude more complex pseudoknotted structures.
A systematic analysis of the impact of the grammar, however, is difficult
since available implementations use incomparable energy parameters. We
show here that Algebraic Dynamic Programming over MCFGs naturally
disentangles energy models (as specified by the evaluation algebra) and
the definition of search space defined by a MCFG. Preliminary com-
putational experiments indicate that the choice of the grammar has an
important impact already for short RNA sequences.

Keywords: RNA Pseudoknots · Multi-context free grammar ·
Algebraic dynamic programming · ADPfusion

This work was funded by the German DFG Collaborative Research Centre AquaDiva
(CRC 1076 AquaDiva), the German state of Thuringia via the Thüringer Aufbaubank
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1 Introduction

RNA secondary structure without pseudoknots can be predicted efficiently by
means of dynamic programming using a well-established standard energy model.
Pseudoknots, however, play an important role in RNA function, contributing in
particular to the regulation of translation and splicing, and ribosomal frameshifts
[3,24]. With pseudobase there is a dedicated repository of biologically relevant
RNA pseudoknots [26]. The RNA folding problem for general pseudoknotted
structures and energy models that depend on stacked base pairs can be formally
stated as follows:
General RNA Folding
Input: An ordered sequence of vertices (x1, . . . , xk), weights ω(i, j; k, l) that are
non-positive only for “stacked edges”, i.e., if k = i+1 and l = j−1, and a bound
E.
Question: Is there a matching M , i.e., a set of edges such that each vertex is
incident to at most one edge, with f(M) :=

∑
{i,j},{k,l}∈M ω(i, j; k, l) ≤ E?

The General RNA Folding problem is known to be NP-complete if arbi-
trary stacking energies ω( . ) can be used [1]. It remains NP complete in the
unweighted case, i.e., for ω(i, j; i + 1, j − 1) = 1 if and only if xixj and xi+1xj−1

are Watson-Crick base pairs [10]. Additional hardness results can be found in
[20].

Several research groups proposed dynamic programming algorithms that
solve the corresponding folding problem for certain restricted classes of match-
ings M with restrictions on the patterns of crossing edges {i, j} and {k, l} with
i < j < j < l) forming the pseudoknots. These algorithms differ drastically
in their definition of admissible pseudoknot types and thus in the extent of
the search space, see [4,12] for an overview. The performance of the differ-
ent algorithms is difficult to compare because they typically employ different
parametrizations of the energy model and thus already differ in their prediction
of structure without pseudoknots. It is hard to decide, therefore, whether differ-
ences in the prediction accuracy are the consequence of better energy parameters
for the stems and loops of pseudoknot-free parts of the structure, or whether
they have to be attributed to the pseudoknots. It has remained an open ques-
tion, therefore, whether the choice of the search space has an important impact,
and whether there is an optimal pseudoknot model that is sufficiently inclusive
to cover the known structures but rules out structures that are impossible or
unlikely to be realized at all.

In this contribution we consider re-implementations of different pseudoknot
models in a common framework. This allows us, in particular, to ensure that
all knot-free structures and substructures are handled identically. Furthermore,
it makes it possible to assign the same energy contributions to matching types
of pseudoknots. Dynamic programming (DP) algorithms are commonly defined
as recursion relations that iteratively fill memo-tables. These tables are often
indexed by complex structures that make the implementation of DP recursions a
tedious and error prone task [6]. The theory of Algebraic Dynamic Programming



22 D. Eggers et al.

(ADP) [7] addresses this issue for a restricted class of DP algorithms for which (i)
generation of the state space, (ii) scoring of states, and (iii) selection of desired
solution can be separated completely. ADP is therefore the ideal framework for
our endeavor, although there are attractive alternative abstract formalisms, such
as “super-grammars” [18], forward-hypergraphs as an alternative description of
dependencies [13] and inverse coupled rewrite systems (ICORES) [8].

2 Algebraic Dynamic Programming and ADPfusion

ADP utilizes a grammar to specify the state space and thus the structure of the
recursion without any explicit reference to indices. The original setting of ADP
are context-free languages, and thus productions of the form A → α, where
A is a non-terminal and α is an arbitrary expression formed from terminals
and non-terminals [7]. More recently, the formalism was extended to so-called
multi-context-free grammars [16]. The main difference is that non-terminals
may now be multi-dimensional, corresponding to non-overlapping sub-objects
that are parsed independently. For both CFGs and MCFGs, each production
determines a partition of the non-terminal on the l.h.s. Interpreting each non-
terminal on the r.h.s. as a parser alleviates the need to specify indices explicitly.
For instance, the simple production S → [ S ] S corresponds to the recursion
relation Sij +=

∑j
k=i+1 ciSi+1,k−1c̄kSk+1,j , (with the convention that the empty

parse Sk,k−1 = 1 serves as neutral element), where the sequence interval [i, j] on
which a structure “lives” is indicated by the index pair Sij . The terminals c and
c̄ together signify a base pair.

In ADP, each production is interpreted by an evaluation algebra. Productions
as grammatical objects are linked to the evaluation algebra via a common (type)
signature. To understand this connection, consider the grammar {S → cScS},
where the brackets ’[’ and ’]’ have been generalized to accommodate any par-
ticular character. The r.h.s. of the single rule of this grammar has the following
“type”: c×x×c×x, while the l.h.s. holds objects that evaluate to x. The full type
of the rule then is c × x × c × x → x. This type signature provides a constraint
for both the grammar and the evaluation of parses of inputs. The terminal types
c indicate that single characters are to be matched upon, while x indicates not
only that the parse has to continue recursively but also that each recursive parse
can immediately be replaced by a value of type x (by means of memoization), for
example a locally optimal score. This finally points to the structure of the eval-
uation algebra. An evaluation algebra is devoid of any structural notion. Instead
it only contains functions that interpret each parse and immediately replace it
by a value. In the example above, for each i, k, j, the parse ciSi+1,k−1c̄kSk+1,j is
evaluated by a function of type, say, Char×Int×Char×Int→Int, which is either
Si+1,k−1 + Sk+1,j + 1, if ci and c̄k are pairing, or −∞.

The same grammar thus can be used to minimize scores, compute partition
functions, density of states, or enumerate a fixed number of sub-optimal solu-
tions by simply employing a different evaluation algebra. In addition, not only
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is each algebra comparatively simple, the notion of product operations on alge-
bras allows for easy combination of different algebras to calculate diverse and
complex questions over grammars [25].

We employ a particular variant of the idea of ADP, namely ADPfusion [21].
This framework performs in-depth program fusion during compilation, which
effectively turns a very high-level declarative description of a dynamic program-
ming into tight loops that operate directly on flat memory. Authors of dynamic
programs may freely mix different types of grammars, which can operate on
diverse and heterogeneous index spaces [23] while still producing the desired,
efficient loops that are required for dynamic programs that are asymptotically
costly.

The latter property is very useful for the type of grammars we are interested
in here. Multiple Context-Free Grammars (MCFGs) [19] are a particular type of
weakly context-sensitive grammar that, in contrast to the general case, employ
in their rewrite rules only total functions that concatenate constant strings and
components of their arguments. As a consequence MCFGs admit polynomial-
time parsing, i.e., the membership of word w of length n in a language generated
by an MCFG G can be determined in O(nc(G)), with a constant c(G) depending
only on the grammar.

Each MCFG contains rules that conform to the canonical pseudoknot-free
structures – and thus substrings that are juxtaposed – and rules over substrings
that contain “holes” and are interleaved with each other. The latter are repre-
sented by higher-dimensional index objects. MCFGs therefore operate on non-
terminals that have an interpretation as tuples of strings over an alphabet A –
rather than strings as in the case of CFGs. Due to space constraints, we cannot
give a formal presentation of MCFGs here and instead refer to [16]. Instead, we
use the minimal pseudoknot model of GenussFold [16] as a means of explaining
the notations at an operational level. Consider the following productions:

S → ε
∣
∣ •S

∣
∣ [ S ] S

∣
∣ A1B1A2B2

(
A1

A2

)

→
(

S [A1

A2S ]

)
∣
∣

(
ε
ε

) (
B1

B2

)

→
(

S [B1

B2S ]

)
∣
∣

(
ε
ε

) (1)

In addition to the terminals ε, •, [ , ] , which refer to the empty string, a single
unpaired nucleotide and base pair, this MCFG uses three non-terminals: the one-
dimensional nonterminal S represents arbitrary structures. The two-dimensional

terminals
(

A1

A2

)

and
(

B1

B2

)

describe the two interleaved interacting parts of an

H-type pseudoknot. Note that any one-dimensional index is represented by the
tuple (i, j) with i ≤ j to fully identify a substring. A simple example of a
successful parse of the string [{]} is given in Fig. 1.

In [16,22] we introduced a domain specific langauge (DSL) that makes it
fairly convenient to write productions with 2-dimensional non-terminals. Here,
we employ the same idea. First, the l.h.s. is “reformatted” such that the com-
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Fig. 1. Parse tree of the string [{]}. Compared to Eq. 1, the terminal symbols for the

case
(
B1
B2

)
have been replaced with the symbols {, } to emphasize the two terminals

forming base pairs: [ pairs with ], while { pairs with }. The rule S → A1B1A2B2

splits the string into four (possibly empty) substrings, say, [1,1, {2,2, ]3,3, }4,4. The

two-dimensional rule
(
A1
A2

)1,1

3,3
then operates on pairs of indices simultaneously, while

the construction guarantees that only legal parses are derivable, i.e., the parse over
(1, 1), (3, 3) for A1 and A2.

ponents of the 2-dimensional non-terminal are aligned:
(

S [A1

A2S ]

)

�
(

S [ A1 − −
− − A2 S ]

)

and then each column is transposed into a tuple to obtain a linear text

[S,-] [nt,-] <A,A> [-,S] [-,nt]

The “gap symbols” - are used to specify whether one-dimensional terminals and
non-terminals nt and S refer to the first or second dimension. The DSL also
suppresses the indices of the components of two dimensional non-terminals. One
thus simply writes

S -> hpk <<< A B A B
<A,A> -> pka <<< [S,-] [nt,-] <A,A> [-,S] [-,nt]
<B,B> -> pkb <<< [S,-] [nt,-] <B,B> [-,S] [-,nt]

following as far as possible the notational convention of other ADP implemen-
tations [7].

Dynamic programming can be used to answer more complicated questions
than the computation of maximum likelihood (or more generally score-optimal)
solutions. One important class of problems concerns the relative likelihood with
which a substructure occurs, weighted by its likelihood. This question, which
also appears e.g. in certain algorithms for parameter fitting, requires a combina-
tion of inside and outside algorithms. These two algorithms describe the same
search space. While the inside algorithm operates bottom-up, the corresponding
outside algorithm traverses the search space in top-down order. Traditionally,
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the outside algorithm is carefully constructed by hand to correctly match in all
cases and generate exactly the same probabilities (or scores). It is possible to
fully automate this construction [23] along with the required conversions of the
each evaluation algebra. While not shown here, this automated construction is
available in ADPfusion and thus for all grammars we consider here. This yields,
for instance, algorithms to compute Boltzmann-weighted base pairing probabil-
ities for the different classes of pseudoknotted structures.

3 Pseudoknot Grammars

The context-free grammar describing the folding algorithms for pseudoknot-free
structures as implemented e.g. in the ViennaRNA package [9] can be written in
the following form

S → ε
∣
∣ •S

∣
∣ BS

B → crc̄
∣
∣ crBr′c̄

∣
∣ cMM ′c̄

M → rB
∣
∣ MB

∣
∣ M • M ′ → B

∣
∣ M ′•

(2)

The non-terminals denote an arbitrary structure (S), a structure enclosed by a
base pair (B), a component of a multiloop with at least one base pair inside (M),
and a multiloop component whose initial base is paired (M ′). The grammar con-
forms to the standard energy model for RNA secondary structures [27], which
distinguishes hairpin-loops, interior loops (including base pairs) with a single
enclosed base pair, and multiloops with two or more enclosed pairs. The termi-
nals •, and c, c̄ denote an unpaired base and base pair, respectively. In addition,
we write r for a region without base pairs of length at least 1 and r, r′ for a
pair of regions of total length at least 1. The last two lines implement the loop
decomposition, i.e., distinguishes hairpin, interior, and multibranch loops and
decomposes multiloops to support and energies that are linear in the number of
unpaired bases and the number emanating stems.

Fig. 2. The four types of pseudoknots with topological genus 1 [15] correspond to
H-type pseudoknots (H), kissing hairpins (K) and two types of rare, more complex
pseudoknots. The four types of pseudoknots correspond to the four alternatives in the
LP+ and RN grammars.

Many of the competing models of pseudoknots are compared in terms of their
MCFG grammars and languages in [12]. Table 1 summarizes the subset consid-
ered in the contributions: The RE (Rivas & Eddy) model specifies the most
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Table 1. Overview of the Pseudoknot Grammars, adapted from [4] and [12].

LP S → ε
∣∣ •T

∣∣ [ T ] T
∣∣ TA

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2

T → ε
∣∣ •T

∣∣ [ T ](
A1

A2

)
→

(
A1 [ T

] TA2

) ∣∣
(

[ T

] T

)

LP+ S → ε
∣∣ •T

∣∣ [ T ] T
∣∣ TA

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2

∣∣ TA
(1)
1 A

(2)
1 A

(1)
2 A

(3)
1 A

(2)
2 A

(3)
2

TA
(1)
1 A

(2)
1 A

(3)
1 A

(1)
2 A

(2)
2 A

(3)
2

∣∣ TA
(1)
1 A

(2)
1 A

(1)
2 A

(1)
2 A

(4)
1 A

(2)
2 A

(3)
2 A

(4)
2

T → ε
∣∣ •T

∣∣ [ T ](
A1

A2

)
→

(
A1 [ T

] TA2

) ∣∣
(

[ T

] T

)

DP S → ε
∣∣ •S

∣∣ [ S ] S
∣∣ A

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2(

A1

A2

)
→

(
A1 [ S

] SA2

) ∣∣
(

[ S

] S

)

RG S → ε
∣∣ •S

∣∣ [ S ] S
∣∣ A

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2(

A1

A2

)
→

(
A1 [ S

]A2S

) ∣∣
(

[ S

] S

)

RN S → ε
∣∣ •S

∣∣ [ S ] S
∣∣ A

(1)
1 A

(2)
1 A

(1)
2 A

(2)
2

∣∣ A
(1)
1 A

(2)
1 A

(1)
2 A

(3)
1 A

(2)
2 A

(3)
2

∣∣
A

(1)
1 A

(2)
1 A

(3)
1 A

(1)
2 A

(2)
2 A

(3)
2

∣∣ A
(1)
1 A

(2)
1 A

(3)
1 A

(1)
2 A

(4)
1 A

(2)
2 A

(3)
2 A

(4)
2(

A1

A2

)
→

(
A1 [ S

]A2S

) ∣∣
(

[ S

] S

)

AU S → ε
∣∣ •S

∣∣ A1A2

(
A1

A2

)
→

(
M1

K1M2K2

) ∣∣
(

[ S

] S

)

(
M1

M2

)
→

(
M1K

(1)
1

K
(1)
2 K

(2)
1 M2K

(2)
2

) ∣∣
(
K1

K2

) (
K1

K2

)
→

(
K1 [ S

] SK2

) ∣∣
(

[ S

] S

)

inclusive class of pseudoknots for which DP algorithms have become available
so far [17]. On the other end of the spectrum, Lyngsø and Pedersen [11] consid-
ered non-recursive H-type pseudoknots. Below, we write T for the non-terminal
describing pseudoknot-free structures. The LP+ model [4] includes also the four
types of pseudoknots shown in Fig. 2. The model of Dirks & Pierce (DP) gen-
eralizes (LP) to include recursive H-type pseudoknots [5]. Reeder and Giegerich
(RG) further restrict the appearance of unpaired bases in this setting [14]. While
the two grammars look identical in Table 1, they differ in the implemention of
the parsers for the terminals. This is due to a (recently remedied) limitation of
the ADPfusion high-level parser that did not allow for interleaved non-terminals
and terminals in the same “horizontal stack”. The more efficient, original con-
struction of RG in [14] is now possible, whereas the one in Table 1 disregards
alternatives that do not fit into the RG scheme during parsing – which is semanti-
cally correct, but asymptotically suboptimal. “Simple pseudoknots” were defined
by Akutsu and Uemura (AU) [1] as comprising two interleaving distinct sets of
base pairs. These pairs create an interleaved stem within both groups. Base pair-
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ings are organized so that the first group’s right bases and the second group’s
left bases are arbitrarily interleaved, while the other bases are all outside the
interleaved area. Categorizing secondary structures by the topological genus,
Reidys et al. [15] showed that there are exactly four types of pseudoknots with
genus 1, the simplest of which is the H-type pseudoknot, see Fig. 2. The genus-1
structures are referred to as (RN) below.

In order to connect the pseudoknot grammars with Turner’s standard energy
model [27], we interpret [ S ] and [ T ] as a nonterminal B in the ViennaRNA
recursions and employ the loop-decomposition of Eq. (2). Furthermore, we use
the notation A

(i)
1 and A

(i)
2 for the components of two-dimensional non-terminals

that have isomorphic productions (albeit possibly with different values in the
evaluations algebras). For the latter we simply dropped the superscript (i) in
Table 1.

In line with the simplified multiloop model, we consider a single parame-
ter, namely a pseudoknot initialization penalty, Ψ , which is associated with all
productions that introduce a 2-dimensional non-terminal on their left side. For
all helical parts within pseudoknots, the standard stacking energies are used.
Unpaired positions are assigned additive contributions corresponding to the mul-
tiloop model.

4 Computational Experiments

In order to evaluate the accuracy of pseudoknot prediction we used a subset of
the RNAstrand database [2]. Due to the computational costs of the pseudoknot
algorithms, which have asymptotic running times of O(n6), we restricted our-
selves to entries with at most 70 nucleotides. This leaves 131 pseudoknot-free
and 63 pseudoknotted target structures.

On the pseudoknot-free subset accuracy cannot exceed the accuracy on pseu-
doknot-free structures.1 Very large values of Ψ , in fact, force the predictions
to be pseudoknot-free. By construction, then, there is no difference between
different grammars and the ViennaRNA-like baseline. On this data set, we achieve
a limiting F1-measure of about 0.85 for Ψ ≥ 8 kcal/mol. We note that this value
is surprisingly large in comparisons with other benchmarks of RNA folding,
probably due to the short sequences.

On the subset with pseudoknots, the performance does not depend very
strongly on Ψ for moderate values, it decreases, however, for large values of
Ψ > 12 kcal/mol as sensitivity decreases. This is expected, since excessive energy
penalties for pseudoknots cause them to become markedly underpredicted.

Figure 3 summarizes the results. To give a balanced picture of performance
and pseudoknotted and pseudoknot-free instances despite the difference in sam-
ple sizes, we averaged the performance measure for the two samples. As expected
1 Since we use here an energy model that is slightly simplified in the evaluation of cer-

tain loop terms compared to the full model implemented in ViennaRNA, occasionally
we predict structures that are closer to structure model in the STRAND database
and thus accuracy may also be (slightly) better than the ViennaRNA predictions.
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Fig. 3. Performance of five different MCFGs for pseudoknotted RNA structures in
comparison with the pseudoknot-free background (VRNA). Both F1 and MCC show
the best performance for Ψ ≈ 10 kcal/mol and indicate a qualitative difference between
the three grammars with recursive pseudoknots (LP+, RG, and RN) compared to DP
and LP.

from analyzing the two subsets separately, we observe a performance peak for
Ψ ≈ 10 kcal/mol. Despite the short sequences in the test set we observe a supe-
rior performance of grammars that admit recursive pseudoknots.

5 Availability

This work is accompanied by git repositories. For readers who are interested in
experimenting with pseudoknot grammars, we offer the “GenussFold” repository
at https://github.com/choener/Prj-GenussFold. This project comes with all nec-
essary dependencies and two options to experiment with and build pseudoknot
grammars. It provides, via a nix flake, a complete development environment.
In addition, if nix is not available, a more usual path via GHC Haskell and cabal
is available. We refer to the readme in the project file on how to build the project.
In addition, implementations for the different grammars are made available here:
https://github.com/deggers/GenussFoldEnergyMin.

6 Concluding Remarks

Different grammars for the prediction of RNA structures with pseudoknots define
vastly different search spaces. Variations of the grammar, therefore, include or
exclude certain types of structures and thus in general will affect the predicted
structures. While much effort has been expended to study and compare differ-
ent implementations, no unifying framework was available in which all relevant
pseudoknot model grammars are available together with a full fledged scoring
system. As a consequence it has remained unclear to what extent differences in
predictive power have to be attributed to the different scoring model, and to
what extent the grammars themselves play an important role.

https://github.com/choener/Prj-GenussFold
https://github.com/deggers/GenussFoldEnergyMin
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In this work we have begun a comprehensive study of the predictive power,
advantages, and disadvantages due to the choice of grammar. So far, our study
has been constrained to a subset of six grammars, including the pseudoknot-free
RNA folding grammars from the ViennaRNA package [9]. Furthermore, we had
to restrict ourselves to the set of sequences that can be folded by all grammars
within predefined resource limits in order to accurately compare the quality of
predictions. In order to minimize the influence of differences in scoring models we
used here the initialization energy Ψ for a pseudoknot as the single free parameter
and otherwise treated pseudoknots like multiloops. Prediction performance as a
function of Ψ suggests a plausible value of about 10 kcal/mol for the optimal
choice of this parameter. Interestingly, this value matches well with regression-
based multiloop initialization terms, see [28] for an overview of multiloop energy
models. We also observed that the two grammars LP and DP that do not admit
recursive pseudoknots are outperformed by the three grammars that include
recursive pseudoknots. Given the short size of the benchmarking targets this is
surprising and deserves a closer examination.

This first study exposes several avenues for further exploration. When we
began this study, we noted that certain production rules did not fit immediately
into our framework. We chose to rewrite grammars to fit into the framework,
while keeping their semantics intact. Since then, progress in ADPfusion amelio-
rates these shortcomings. A forthcoming more detailed study hence will encom-
pass the full range of pseudoknot grammars. Recent improvements in the pars-
ing and compiler fusion system further optimizes the resulting program code,
enabling a systematic benchmark on significantly longer input sequences and
thus more difficult instances.

Inspection of the grammars in Table 1 shows that the grammars are com-
posed of many common rules or parts of rules. This suggests to make systematic
use of another feature of ADP, namely the capability to compose grammars by
additions, subtractions, and multiplications [22]. This type of construction will
provide a guarantee that subsets of grammars that are supposed to be equal, will
indeed generate the same structures, while at the same time reduce the complex-
ity of the algorithms themselves. This approach will also simplify the exploration
of more sophisticated energy models for pseudoknots, which in the simplest case
distinguish the initialization terms for different knot types as suggested e.g. in
[15].

Finally, the ability to automatically generate outside grammars opens up the
possibility of calculating ensemble quantities and provides an important building
block for parameter training extensions. The latter are required as grid based
searches, as we performed for the pseudoknot initialization penalty, do not scale
beyond two or three independent parameters.
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Abstract. Advances in genetic sequencing technologies have enabled
the understanding of the course of diseases in a manner like never before.
These technologies produce a data structure called an expression matrix,
which contains gene expression values taken under certain sampling
conditions. In this paper, we present preliminary work on comparing
the application of different machine learning pipelines to an expression
matrix. As a case study, we consider a dataset from the Gene Expression
Omnibus containing gene expression levels (obtained through scRNA-
seq) in the context of Breast Cancer disease. We present a generalized
processing pipeline instantiation and discuss the corresponding results.

Keywords: Machine learning · scRNA-seq · Breast cancer

1 Introduction

Cancer is a set of genetic diseases characterized by an uncontrollable growth of
cells. Normal cells die when replication errors trespass a certain threshold. Cancer
cells seem to avoid control mechanisms and continue to replicate uncontrollably,
even when replication errors accumulate [7]. Cancer is the leading cause of death
worldwide, with about ten million deaths in 2020 [10]. Any part of the body can
develop cancer. Breast cancer was the fifth type that most killed in 2020, with
nearly 685 thousand deaths [10]. It was also the type of cancer with the highest
number of registered new cases in the same year.

Due to the heterogeneity of cancer, there is no one-size-fits-all treatment.
Even the same type of cancer may have several subtypes that differ consider-
ably. On top of that, each person is unique, and individual genetic variation may
influence the outcome of treatments. Both characteristics have proven personal-
ized approaches more successful than generic treatments [5].

With the advances in genetic sequencing, it is possible to understand the
course of diseases like never before. RNA sequencing [4] techniques have been
used over the past decades, resulting in humongous amounts of data about the
human body and many genetic diseases.

The traditional method of RNA sequencing (RNA-seq) analyzes bulks of
cells, resulting in each bulk’s gene expression being represented by the mean of
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expression levels in each cell in bulk. This type of analysis is useful in most cases.
However, due to cancer’s heterogeneity, means can mask important information
about individual cell’s expression levels [8]. As computational resources become
more accessible, Single Cell RNA sequencing (scRNA-seq) becomes possible.

In contrast with the traditional RNA-seq, scRNA-seq captures gene expres-
sion levels for each cell individually. While genetic sequencing is not a perfect
process, the technology has become more accessible over the years, resulting in
growing amounts of data being generated every year. As more data is generated,
Machine Learning techniques have been used to advance the current understand-
ing of cancer [3].

Machine Learning (ML) is a subarea of Artificial Intelligence (AI) in which
computers are not explicitly programmed to perform a task. Instead, a model
learns to perform such a task by looking at examples. The more quality data is
available, the better results yielded by ML models tend to be. In this paper, we
report ongoing research whose objective is to analyze how different scRNA-seq
data pipelines perform in identifying potential therapeutic targets for treating
breast cancer.

This paper is divided into four sections, including this introduction. Section 2
describes the methodology applied in this study and the minimal background
needed to understand the research. Section 3 presents the results achieved so
far. Finally, Sect. 4 summarizes what was presented in the paper and lists future
steps for this ongoing research.

2 Methodology

This research aims to analyze how different scRNA-seq pipelines support drug
discovery for Breast Cancer. The pipeline created for our experiments currently
consists of four steps: (i) gene filtering, (ii) normalization, (iii) dimensionality
reduction, and (iv) cell clustering. Figure 1 illustrate these steps, which will be
further discussed in this section.

Fig. 1. Single Cell RNA-sequencing analysis pipeline high-level steps.

Gene Filtering. Gene expression data is noisy. For that reason, as a first step
in the pipeline, we define a filtering activity in which lowly expressed genes
are discarded from the analysis. Several filtering alternatives can be used to
instantiate this step, e.g., mean, variance, and log-fold change.
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Normalization. Normalization is a set of data transformation techniques to pre-
pare the data to be ingested by an ML model. Many ML algorithms expect the
input data to adhere to specific constraints. Normalization techniques must be
chosen based on the algorithm to be used, as well as the problem to be solved.

Dimensionality Reduction. Dimensionality reduction, as the name suggests, con-
sists of applying techniques to reduce the number of features (genes) of each
sample (cells). This technique is essencial in the scRNA-seq analysis as each cell
has expression levels for hundreds of thousands genes.

Cell Clustering. Clustering is an unsupervised machine learning technique that
aims to group similar samples. Our scRNA-seq case study applies clustering
techniques to group tumor and control cells in distinct clusters.

3 Experiments and Results

The experiments were conducted on an Windows Subsystem for Linux (WSL)
Arch Linux distribution, with an Intel i9-10900k CPU with 10 cores (20 threads)
and 64GB RAM. The pipeline was implemented using Scikit Learn [9]. We
first describe the dataset used (Sect. 3.1), followed by the pipeline instantiation
(Sect. 3.2) and main results of the experiment (Sect. 3.3).

3.1 Dataset

The data utilized in our research is available in the Geo Expression Omnibus
database (GEO), accession GSE1615291. It consists of approximately 430 thou-
sand samples (cells) collected from 69 scRNA-seq profiles performed in 52
patients. Different types of tumors can be found on the dataset, such as TNBC,
ER+, HER+, BRCA1 TNBCs and lymph-node metastases. The distribution of
cells for each class, grouped by breast cancer subtype, can be found in Table 1.

Table 1. Accession GSE161529 cells distribution.

Tumor type Cell count

ER+ 162,160

Normal 122,800

HER2+ 48,010

TNBC BRCA1 42,767

BRCA1 26,272

TNBC 22,616

PR+ 3,406

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161529.
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The following sections describe the experiments executed. All cells of the
previously described GSE161529 dataset were used. A pipeline containing the
following steps was analyzed: (i) mean expression level for gene filtering, (ii)
maximum absolute scaling for normalization, (iii) incremental PCA for dimen-
sionality reduction, and (iv) K-Means for clustering. Although differential cluster
analysis is a step planned to be performed by the pipeline, it has not been per-
formed at this time.

3.2 Pipeline Instantiation

Gene Filtering → Mean Expression Level. In the gene filtering step, we
removed all the genes with zero mean expression level. As a result, from the total
of 33538 genes in the original matrix, 2522 genes were discarded.

Normalization → Maximum Absolute Scaling. In preparation for PCA,
it is important to scale the gene expression values, so all genes have the same
weight. Due to the dataset can only be loaded in memory in a sparse format,
maximum absolute scaling was applied to the data not to disrupt its sparsity.
The operation performed by the maximum absolute scaling is y = x

max(x) . In this
equation, x denotes the gene expression level for a given cell, max(x) denotes the
highest expression level for the same gene in all cells, and y denotes the scaled
value, which is a value between −1 and 1. As gene expression levels cannot
be negative, our case study’s values are always non-negative. As a result of the
maximum absolute scaling, each gene in the expression matrix has its expression
levels at the same magnitude.

Dimensionality Reduction → PCA Principal Component Analysis (PCA)
technique identifies which components (linear combinations of features) most
explain the variance of a given dataset. Its output is a list of features ranked,
from highest to lowest, by the amount of variance explained.

A limitation of the traditional PCA is that the whole dataset must be loaded
in memory. As the dataset contains about 430 thousand cells, with expression
levels for about 30 thousand genes, the whole dataset could only be loaded in
memory as a sparse matrix. The traditional PCA does not work with sparse
matrices, so Incremental PCA [1] was used. We use 295 components in our
experiments.

Clustering → K-Means. K-Means starts by defining K centroids, data points
in the same space as the given dataset. Then, each sample is assigned to the
cluster whose centroid is the closest. After all samples have been assigned, the
mean of each cluster is calculated. The means are elected as the new centroids,
and each sample is reassigned to a cluster based on them. The process repeats
until there is no significant change between iterations [6]. In the current pipeline
instantiation, we use K = 7, since we have 6 types of cancerous cells plus normal
cells.

There are different techniques to initialize centroids, which are stochastic.
This initialization influences the final result [2]. Also, notice that centroids are
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not necessarily a sample in the dataset but a data point in the same dimensional
space.

3.3 Results

The pipeline described above was trained with all cells in GSE161529. The hyper-
parameters utilized for PCA were 295 components, and 1024 batch size. For K-
Means, the K value chosen was 7. Figure 2 presents the pipeline steps and the
hyperparameters used.

Fig. 2. Pipeline instantiation and hyperparameters.

The silhouette coefficient was applied as a metric to evaluate the quality of
the clustering yielded by the pipeline. The silhouette coefficient is calculated by
using s(o) = b(o)−a(o)

max{a(o),b(o)} . In this equation, o denotes a cell, a(o) denotes the
average distance between o and all cells in the same cluster as o, and b(o) denotes
the the distance between o and all cells not in the same cluster as 0.

The silhouette coefficient results in a value between −1 and 1, and our
pipeline achieved a 0.6274 upon clustering the cells in the dataset. The code
to execute the experiments is available at GitHub2.

4 Final Remarks

Due to the heterogeneous nature of cancer and individual genetic variation,
scRNA-seq analysis can be an important tool towards understanding cancer.
This paper described ongoing research aimed at analyzing different scRNA-seq
pipelines applied to breast cancer patients data. The current ongoing step in this

2 https://github.com/MLRG-CEFET-RJ/brca-scrna-seq/tree/BSB2022.
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research is implementing the differential cluster analysis. The expected outcome
of this step is to highlight over-expressed genes in cancer cells, which would be
potential therapeutic targets.

Once the differential cluster analysis is complete, diverse techniques could be
applied in each step of the existing pipeline. This variation would generate new
pipelines and results, which could be compared against the existing one. Also,
quality metrics should be applied to filter bad quality cells before training a new
pipeline instances.
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Abstract. Drug development is often a complex and time-consuming
process. Especially in the initial phase, selecting a target for drug devel-
opment can take many years. Essential genes and proteins are biological
entities responsible for the biological processes of survival and reproduc-
tion of organisms. Studies indicate that essential genes tend to have
higher expression and encode proteins that engage in more protein-
protein interactions. All these characteristics make essential proteins
potential drug targets. Thus, this work proposes using protein-protein
interaction-based features to train and evaluate machine learning algo-
rithms to identify essential proteins. Experiments with the organism Sac-
charomyces cerevisiae indicate that the application of the Random Forest
algorithm and balancing techniques obtained better recall values.

Keywords: Machine learning · Protein-protein interaction · Essential
protein

1 Introduction

The development of a new drug, from the original idea to the launch of a final
product, is a complex process that can take 12 to 15 years [2]. The entire drug
discovery process during clinical trials takes much time because there are mul-
tiple testing phases. Especially the first phase can be very costly to build a
supporting body of evidence before selecting a target for an expensive drug dis-
covery program [2,12]. On the other hand, there is currently a vast collection of
publicly available biological databases [7] that greatly assist in in silico research
for targeted drug development. In this context, essential genes and proteins are
potential drug targets.

Genes considered necessary for the survival or reproduction of an organism
are classified as essential genes [1,3]. Essential genes have wide applications in
the pharmaceutical field, and their encoded proteins also have important roles
in several vital functions of organisms [3,5]. Essential genes also tend to be more
expressed and encode proteins that engage in more protein-protein interactions
(PPI) [11]. Given this situation, detecting essentiality in genes or proteins is one
of the first tasks in discovering drug targets.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Several work in the literature present computational methods (or in silico
searches) related to identifying essentiality in genes and proteins. Some work use
protein-protein interaction (PPI) networks, gene expression, homology, sequence
features, and machine learning in predictive algorithms to predict essentiality in
genes and proteins [3,5,10,16]. In general, the works combine several types of
inputs and not a specific one to make predictions.

Machine learning (ML) deals with algorithms that learn through training
data from a problem. It is an area that has wide application in bioinformat-
ics [13]. Specifically, in gene and protein essentiality prediction, some works use
PPI data in Machine Learning algorithms [8,9]. In this view, this on going work
proposes using protein-protein interaction-based features to train and evaluate
machine learning algorithms to identify essential proteins. We present an instan-
tiation with Saccharomyces cerevisiae data, an eukaryotic well-studied organism.

The article is organized into four sections, including this introduction.
Section 2 presents the proposed research methodology and its minimal back-
ground. Section 3 presents the results achieved, and Sect. 4 summarizes the final
remarks and the next steps for this work.

2 Methodology

This work aims to evaluate machine learning models to identify essential pro-
teins. This work’s methodology proposes using centrality measures and clustering
in graphs as model features. The following activities are conducted this work:
(i) Data Preparation and (ii) Data Training and Prediction.

2.1 Data Preparation

PPI networks are complex, and one possible way to characterize them is through
measures, for example, clustering or centrality. Centrality is one of the funda-
mental principles of network analysis. It measures how “central” a node is in the
network. For this work, the input features of machine learning models are based
on the calculation of the measures: Degree Centrality, Eigenvector Centrality,
Betweenness Centrality, Closeness Centrality and Clustering. The calculations
considered the graph formed by the PPI network of the experimental organism.

The PPI data utilized in our research is available in the STRING database [6].
The measurements were calculated using the NetworkX library [15]. After the
calculations, we label the data with the aid of an integrated essentiality dataset
built based on the DEG database [14] to label training and test data. This
integrated dataset (available at Github1) consists of 6, 394 proteins of the exper-
imental organism, 1, 100 essential, and 5, 294 non-essential.

1 https://github.com/JessicaIta/deg-data-essentiality.

https://github.com/JessicaIta/deg-data-essentiality
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2.2 Data Training and Prediction

Five algorithms were selected for applying ML models: K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), Random Forest, Decision Tree and
Logistic Regression. They were selected based on related work. The hyper-
parameter search was performed using the grid search method and stratified
cross-validation, given that the classes (essential and non-essential) are unbal-
anced. The stratified division of training and testing data classes was performed
with 70% of the database for training and 30% for testing. In addition to using
the original data, Oversampling and Undersampling techniques were applied to
balance the classes. Random Undersampling and SMOTE (Synthetic Minority
Oversampling Technique) were applied for Undersampling and Oversampling,
respectively.

Algorithm implementations from the Scikit-Learn library were used. Specifi-
cally for Decision Trees, the CART implementation is available [17]. Two metrics
are used for selecting the best hyperparameters: accuracy and AUC-ROC. Accu-
racy measures the correctness of a classifier. The AUC-ROC is a measure that
summarizes the probability curve of the rate of true positives concerning the
rate of false positives [4]. The best hyperparameter results are selected for the
prediction phase with test data. High accuracy in the model can be influenced
by the majority class, in this case, non-essential. Therefore, in this work, we
adopted precision and recall to evaluate the model in identifying essentiality in
proteins.

3 Results

This section presents the results found according to the proposed methodology.
Figure 1 shows the data characteristics of the PPI network’s calculated measures.
In Closeness Centrality the essential proteins are concentrated between 0.4 and
0.6. As for the clustering index, the values range from 0.1 to 0.8, while the non-
essential are more distributed between 0 and 1. In the Betweenness Centrality,
the presence of outliers is noticed. Figure 2 presents the correlation between the
features of the model through a heatmap graph. Although the classes are unbal-
anced, eigenvector, centrality, and closeness measures have the highest positive
correlations for essentiality. These results indicate that the three measures may
have greater weight in the prediction.

Table 1 presents the accuracy metrics and AUC ROC achieved in each model
in the training data. A group of hyperparameters with the best result in training
data for each algorithm and balancing technique is selected for the predictions.
In total, 30 groups of hyperparameters were found, from which 15 groups were
selected for prediction in the test group. Considering the application of Over-
sampling or Undersampling techniques for balancing classes, it is important to
highlight that the best hyperparameters were achieved with AUC ROC in the
cross-validation. Table 2 shows precision and recall results of the selected models.

The evaluation shows the original data have high recall for the non-
essentiality class and low recall for essentiality. The results also show that the
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Fig. 1. Distribution of data from the calculated measures of the PPI network

Fig. 2. Correlation of data from the calculated measures of the PPI network
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Table 1. Accuracy and AUC ROC for each balancing technique and ML algorithm

Data Metric KNN SVM Random forest CART Logistic

Original data Accuracy 0.831 0.827 0.832 0.829 0.827

AUC-ROC 0.719 0.731 0.754 0.741 0.735

Oversampling Accuracy 0.835 0.697 0.719 0.708 0.67

AUC-ROC 0.878 0.753 0.791 0.769 0.746

Undersampling Accuracy 0.674 0.692 0.706 0.7 0.665

AUC-ROC 0.732 0.754 0.76 0.738 0.743

original data lead to high precision with the majority class, in this case, non-
essentiality. We observed Random Forest algorithm obtained better recall values
for essentiality than other methods, mainly using balancing techniques, corrob-
orating with other works. However, no method showed high precision for essen-
tiality.

Table 2. Precision and Recall metrics of the best hyperparameters for each ML algo-
rithm and balancing

Data Class KNN SVM R. Forest CART Logistic

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Orig. Essential 0.54 0.1 0 0 0.5 0.02 0.46 0.07 0 0

Non essential 0.84 0.98 0.83 1 0.83 1 0.84 0.9 0.83 1

Over Essential 0.26 0.43 0.29 0.69 0.28 0.78 0.27 0.72 0.3 0.65

Non essential 0.86 0.74 0.91 0.65 0.93 0.58 0.91 0.59 0.9 0.68

Under Essential 0.27 0.72 0.3 0.64 0.28 0.76 0.29 0.7 0.3 0.65

Non essential 0.91 0.6 0.9 0.69 0.92 0.59 0.91 0.64 0.9 0.69

4 Final Remarks

This work evaluated Machine Learning algorithms to predict essential proteins
using PPI data’s characteristics as algorithms’ input. Five algorithms were
selected, and their best hyperparameters were calculated in training set with
the original data and balancing techniques: oversampling and undersampling.
The chosen algorithms for prediction in the test data were evaluated based on
the precision and recall metrics. We observed that balancing techniques with the
Random Forest algorithm obtained better recall results.

The next step of this ongoing work includes improvements related to input
data of the classifier algorithm, adding protein sequence features. After that,
new experiments will be conducted applying neural network algorithms. At the
end of this research, the expected outcome is applying the machine learning
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predictive model in organisms with unknown essential proteins and supporting
the first phase of the drug development process.
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Abstract. The use of machine learning approaches in studying cancer
through omics datasets has been an important research tool since the
advent of high-throughput technologies. However, these datasets present
an intrinsic data complexity that may hinder model development despite
their information richness. This work, therefore, aims to study the char-
acteristics of different omics data commonly employed for clinical predic-
tive analysis using a broad set of data complexity measures tailored for
imbalanced domains. We focus on the task of cancer survival prediction
in eight tumor types based on four types of omics data (i.e., copy number
variation, gene expression, microRNA expression, and DNA methylation)
and the combination among them (i.e., multi-omics approach). We found
that F1-MaxDr, F3 partial, F4 partial, and N3 partial could be used as pre-
dictors of performance in this scenario. Furthermore, our experiments
suggested that the studied omics data types are strongly correlated in
terms of data complexity, including the multi-omics approach. All eight
cancer types appeared to be highly correlated with each other, except
for Adrenocortical Carcinoma (ACC), which showed a significantly lower
complexity than the others in the analyzed data.

Keywords: Complexity measures · Omics data · Multi-omics · Cancer

1 Introduction

Cancer diagnosis and clinical prognosis are issues of profound importance in cur-
rent medicine. For patients diagnosed with cancer, in particular, the prognosis is
a matter of special interest since accurately predicting the chance of survival can
help doctors make better treatment decisions [6]. Given that cancer is known to
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de Amparo á Pesquisa do Estado do Rio Grande do Sul (FAPERGS) [21/2551-
0002052-0] and Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq)
[308075/2021-8].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. M. Scherer and R. C. de Melo-Minardi (Eds.): BSB 2022, LNBI 13523, pp. 44–55, 2022.
https://doi.org/10.1007/978-3-031-21175-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21175-1_6&domain=pdf
http://orcid.org/0000-0002-7760-9303
http://orcid.org/0000-0002-9054-9093
http://orcid.org/0000-0003-2800-1032
https://doi.org/10.1007/978-3-031-21175-1_6


Study on the Complexity of Omics Data for Cancer Survival Prediction 45

be related to an individual’s genetic characteristics, the omics datasets constitute
a powerful tool for further investigating the disease and improving its prevention,
diagnosis, treatment, and prognosis. Numerous advances for predicting diagnosis
or patient survival from omics data have been powered by concurrent progress in
machine learning (ML) techniques [15]. Omics datasets, however, present intrin-
sic characteristics that hinder the construction of reliable ML models.

Two well-known characteristics of omics datasets are their high dimension-
ality and class imbalance [3,11,14]. However, other forms of characterizing the
complexity of datasets in a broader scope have been developed in the last years
[1,2,5,8]. These complexity measures assess characteristics such as class overlap,
data sparsity, and the complexity of the decision boundary, and may be applied
to obtain scientific insights into the domain or even conduct data-driven choices
regarding pre-processing and classification techniques.

Previous works analyzed complexity measures for transcriptomics (Sect. 2).
However, there has been no exploration of the intrinsic complexity of other omics
data types, nor a comparison between cancer types in terms of their omics-based
complexity. Furthermore, complexity measures have been recently adapted to
better assess data complexity in class-imbalanced scenarios [1,2] - a particularity
that was not considered by previous analyses on gene expression data.

Therefore, the goal of this work is to conduct an initial investigation of the
intrinsic characteristics of omics datasets across multiple types of omics and
cancers. We focus our study in the task of predicting 3-year overall survival
in patients with cancer, analyzing complexity measures in eight cancer types
and five distinct omics datasets (i.e., mRNA expression, microRNA expression,
copy number variation (CNV), DNA methylation, and multi-omics). We compare
and discuss the data complexity measures concerning the minority class (i.e.,
non-survivors), assessing their utility as predictors of classification performance.
Moreover, we make comparisons among types of cancers and omics data to assess
if any differences or similarities exist regarding data intrinsic characteristics.

2 Related Works

The difficulty of classification problems is often linked to data complexity, which
arises due to data intrinsic characteristics. As means to assess aspects that influ-
ence data complexity, Ho and Basu [5] proposed an initial set of twelve measures
to evaluate geometrical characteristics of the class distributions, including the
overlap of individual features, separability of classes and geometry, topology,
and density of manifolds. This original set was further reviewed and extended
by Lorena et al. [8], who also proposed standardizing metrics in bounded inter-
vals (i.e., [0, 1]) where higher values indicate greater complexity, thus making
them more easily comparable and interpretable. Later, Barella et al. [1] adapted
complexity measures to consider the class imbalance found in many datasets. In
what follows, we review the main studies that explored data complexity mea-
sures, adjusted or not for data imbalance, in the domain of omics data.

Okun and Priisalu [11] presented one of the first works involving complexity
analysis of omics data. Authors identified an association between data complex-
ity and the performance of k-nearest neighbors (k-NN) models applied to gene



46 C. D. Andrade et al.

expression datasets for binary classification in cancer diagnosis. Lorena et al. [9]
studied how data scarcity affects the performance of classifiers in the task of
gene marker selection from microarray datasets. Data scarcity is a complexity
measure given by the ratio between dimensionality and the number of samples
[5].

De Souto et al. [14] conducted a more comprehensive analysis of the difficulty
of cancer diagnosis prediction using microarray data, adopting more complexity
measures and evaluating their correlation with the error rates of a Support Vector
Machine (SVM) classifier. This investigation was further expanded to address the
issue of class imbalance, feature correlation, and the impact of feature selection
[7]. Lorena et al. [7] found that data sparsity and class imbalance are important
factors influencing classification performance and that dimensionality reduction
by feature selection tends to decrease the impact of these characteristics.

The correlation between complexity measures and classification performance
based on microarray data was also identified in other studies [3,10]. Morán-
Fernández et al. [10] showed that measures related to class overlap were positively
associated with classification accuracy, while measures reflecting characteristics
of class boundary and dispersion among samples were particularly helpful in
predicting the performance of k-NN models. Moreover, their results corroborate
the fact that feature selection may reduce data complexity. Finally, Sánchez and
Garcia [13] sought to study the relationship between the curse of dimensionality
and intrinsic data characteristics, such as class overlapping and class separability,
using gene expression data as a typical example of high-dimensional data.

None of these works, however, analyzed other types of omics data besides gene
expression profiles (i.e., transcriptomics), despite their growing availability and
use as features in clinical prediction models [12]. In addition, the aforementioned
works were developed before the changes proposed by Barela et al. [1] to adapt
the metrics to class imbalance scenarios - a recurrent characteristic in biomedical
and omics data. In this sense, our work differs from the previous ones in that it
seeks to study other types of omics data besides gene expression data, including
multi-omics data, and compare complexity measures across types of cancers and
omics. Furthermore, we use complexity metrics adapted to class imbalanced data
to obtain more robust results for the analysis of omics data.

3 Data Complexity Measures

Although several efforts were made to standardize and review data complexity
measures [2,5,8], this work follows the definitions provided by Barella et al. [2],
which adapted the original measures for class imbalanced scenarios. The origi-
nal definitions were shown to be inappropriate for imbalanced datasets because
the majority class dominates measures calculation, hiding the behavior of other
classes that may actually be more interesting, depending on the domain. The
modified complexity measures compute the original measures per class, yielding
a set of C values for each measure, where C is the number of classes (hence the
use of the suffix partial below) [2]. This adaptation allows an analysis focused
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on the class of interest (usually the minority class). Finally, we note that the
complexity measures output a value between 0 and 1, such that higher values
indicate higher data complexity and, thus, harder classification tasks.

Feature-Based Measures. Four different feature-based measures were used,
which aim at describing how informative the features are. Maximum Fisher’s
Discriminant Ratio (F1-MaxDr) calculates how much overlap exists between
classes for each predictive feature by using the Fisher discriminant ratio. Volume
Overlapping Region (F2 partial) is based on the hyper-volume of the overlapping
region between classes. Finally, Individual Feature Efficiency (F3 partial) mea-
sures the complexity in terms of the individual efficiency of each feature to sep-
arate the classes, and Collective Feature Efficiency (F4 partial) follows a similar
idea as F3 partial but is based on computing feature efficiencies after the other
features have been used to separate the data.

Neighborhood-Based Measures. The neighborhood-based measures
attempt to analyze the boundary between classes. In this work, we considered
five measures in this category. The Fraction of Points on the Class Boundary
(N1 partial) assesses the fraction of instances that are close to the class boundary
using a minimum spanning tree. Ratio of Average Intra/Inter Class NN Dis-
tance (N2 partial) compares intraclass and interclass dispersion by computing
their ratio. The dispersion formulas are based on the distance between nearest
neighbors (NN) of similar and different classes. Leave-one-out Error Rate of the
NN Classifier (N3 partial) is based on the error rate of the 1-NN algorithm com-
puted using leave-one-out cross-validation. Non-linearity of a 1-NN Classifier
(N4 partial) is similar to N3 partial but is performed on a synthesized dataset
constructed by interpolating instances from the same class. Finally, the Frac-
tion of Maximum Covering Spheres (T1 partial) consists in growing hyperspheres
around each instance until it touches a hypersphere of a different class. Hyper-
spheres contained within larger ones are eliminated, and the ratio of remaining
hyperspheres and instances is used to estimate the metric value.

Linearity-Based Measures. The linearity measures aims to assess whether
the task is linearly separable. We considered three linearity-based measures.
Minimized Sum of Error Distance of a Linear Classifier (L1 partial) constructs
a linear classifier (such as linear SVM, as used in this work) and calculates the
average distance between the wrongly classified instances and the separating
hyperplanes for each class – greater distances imply in higher complexity. Train-
ing Error of a Linear Classifier (L2 partial) is also based on a linear classifier,
but instead of using the distances, it simply computes the error rate of the linear
classifier for each class. Finally, Non-linearity of the Linear Classifier (L3 partial)
uses a similar technique as N4 partial. It creates an interpolated dataset and uses
them to evaluate the error rate of the model.

4 Methodology

Our goal is to study the intrinsic characteristics of omics data for predicting
cancer prognosis through data complexity measures adapted for class imbalance.
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Specifically, we addressed the 3-year survival prediction task for eight types of
cancer, each containing four different omics datasets and a multi-omics dataset.
In this section, we present our methodology for data collection and analysis. All
analyses were performed using the R programming language.

4.1 Collection and Preparation of Omics Data

We used the omics datasets shared by Duan et al. [4]. Authors collected four
types of omics data from The Cancer Genome Atlas (TCGA) for several tumors:
copy number variation (CNV) at the genome level, messenger RNA (mRNA) at
the transcriptome level, and DNA methylation (methy) and micro-RNA (miRNA)
at the epigenome level. The choice for these data types was due to their frequent
use in studies developing diagnosis and prognosis models for cancer. Raw data
was pre-processed by authors to remove batch effects, filter our features with
more than 20% of missing values, impute remaining missing values with k-NN
algorithm, and normalize values using z-scores. Moreover, we chose the signifi-
cant version of the datasets [4], which has a reduced number of feature selected
based on statistical analysis.

We analyzed eight cancer types: Adrenocortical Carcinoma (ACC), Invasive
Breast Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Renal Papillary
Cell Carcinoma (KIRP), Clear Cell Renal Carcinoma (KIRC), Hepatocellular
Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), and Squamous Cell Lung
carcinoma (LUSC). For a given cancer, all omics data types share the same
instances, that is, each individual has CNV, mRNA, Methy, and miRNA data.
Furthermore, we created a multi-omics dataset for each type of cancer by sim-
ply concatenating the array values for the four types of omics per individual.
The motivation for generating this dataset is based on the increasing atten-
tion given to the integration of multi-omics data as inputs to inform precision
medicine-based decision-making [12]. For more details about the datasets and
the pre-processing steps, we refer reader to the work by Duan et al. [4].

The collected datasets, however, did not contain clinical information for the
patients. Therefore, we obtained the clinical variables from FireBrowse1, which
contains data generated by the TCGA project. In particular, we obtained infor-
mation on vital status and survival time for each tumor sample in the datasets
and synthesized this information into a new binary target attribute indicating
whether the patient had survived three years after the tumor diagnosis (3-year
survival). We kept only the instances for which this information was available.
Table 1 summarizes the information about each dataset used in this work.

4.2 Extraction of Data Complexity Measures

We extracted the data complexity measures using the R packages ECoL2 and Imb-
CoL3. For each of the 40 datasets summarized in Table 1 (i.e., five omics datasets
1 http://firebrowse.org/.
2 https://github.com/lpfgarcia/ECoL.
3 https://github.com/victorhb/ImbCoL.

http://firebrowse.org/
https://github.com/lpfgarcia/ECoL
https://github.com/victorhb/ImbCoL
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Table 1. Number of samples per class for each cancer type and number of features for
each omics type. Note that the individuals (i.e., instances) are shared across all omics
types given a cancer type, such that the number of instances are the same for all omics.

3-Year Survival No. features

Yes No Total mRNA miRNA Methy CNV Multi-omics

ACC 60 17 77 2000 200 2000 524 4274

BRCA 707 49 756 2000 200 2000 1974 6174

COAD 241 48 489 2000 200 2000 1449 5649

KIRC 239 68 307 2000 200 2000 2102 6302

KIRP 246 25 271 2000 200 2000 1023 5223

LIHC 263 101 364 2000 200 2000 2050 6250

LUAD 328 116 444 2000 200 2000 3446 7646

LUSC 246 108 354 2000 200 2000 3074 7274

and eight cancer types), a total of 12 data complexity measures were calculated,
namely: feature-based metrics F1-MaxDr, F2 partial, F3 partial, and F4 partial;
neighbourhood-based metrics N1 partial, N2 partial, N3 partial, N4 partial, and
T1 partial; and the linearity-based metrics L1 partial, L2 partial, and L3 partial.
With the exception of F1-MaxDr that has no imbalanced version, we analyzed
the metric value obtained for the class of interest, which in the case of the target
attribute 3-year survival, refers to non-survivors (i.e., negative) class.

4.3 Training and Evaluation of the Predictive Models

Model training and evaluation was performed using the R package caret. Two
algorithms were selected to train predictive models for 3-year survival: Naive
Bayes (NB) and generalized linear models (GLM) fitted using a boosting app-
roach (the glmboost method in R). The choice of these algorithms was due to the
simplicity in terms of hyperparameters to be adjusted. The models were trained
for each type of omics data, including the multi-omics dataset, and for each type
of cancer using 5-fold cross validation repeated 10 times.

We evaluated the models considering as the class of interest (commonly called
the positive class) the No class, which represents patients who did not survive
for more than three years after tumor diagnosis. The focus on this class is based
on the importance of identifying tumor cases with a worse prognosis as soon
as possible, allowing for a more careful medical follow-up in order to try to
prevent such adverse outcome. We analyzed recall, precision, and F1-score for
each combination of cancer type and omics dataset.

5 Results

5.1 Complexity Measures and Classification Performance

Figure 1 shows the dataset complexities according to measures F1-MaxDr,
F3 partial, and N3 partial (F4 partial was omitted due to large similarity with
F3 partial).
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Fig. 1. Complexity of each cancer type and omics data for F1 MaxDR, F3 partial, and
N3 partial.
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Fig. 2. F1-scores for each dataset and omics data using GLM and Naive Bayes.

The complexity measures showed in Fig. 1 had the highest correlations with
classification performance metrics and thus, due to space constraints, were
selected for our analyses4. In general, few differences were observed among omics
datasets for the same type of cancer, implying that the difficulty in determin-
ing cancer prognostic based on data of this nature is similar among all types
of omics for a given cancer type. Complexity measures showed some degree of
variation for ACC, KIRC, and KIRP when analyzing F1-MaxDr; KIRP when ana-
lyzing F3 partial; and ACC, COAD, KIRC, LIHC, LUAD, and LUSC when analyzing
N3 partial. Thus, among the complexity measures showed in Fig. 1, N3 partial had
the largest variation across different omics datasets for each cancer type. The
F1-scores obtained using GLM and NB for each cancer and omics data type are
shown in Fig. 2 and the correlations between complexity measures and classifi-
cation performance are presented in Fig. 3.

4 The raw results of our experiments can be found in the project Github repository:
https://github.com/carlosdanielandrade/complexity-of-omics-data-in-cancer.

https://github.com/carlosdanielandrade/complexity-of-omics-data-in-cancer
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Fig. 3. Correlations between complexity measures and performance metrics using (a)
GLM and (b) NB. The correlations are computed using all cancers and omics types.

We note that due to the large class imbalance, GLM suffered from low recall
for BRCA, thus setting the value of F1-score to zero. It is interesting to observe
that there is no standard in the relative performance of omics data types, as there
is no single omics data that stands out for all types of cancer (Fig. 2). In many
cases, we have observed that the multi-omics dataset does not increase predictive
performance as expected - a finding that has been discussed in previous works
[4]. Moreover, as can be seen in Fig. 3, almost all correlations between complexity
measures and performance metrics are negative, as expected, since more complex
datasets (values closer to 1) should indicate a more difficult task (performance
closer to 0).

Furthermore, the two models (GLM and NB) showed similar trends for both
complexity and performance measures. As aforementioned, F1-MaxDr, F3 partial,
F4 partial, and N3 partial showed the strongest correlations with the performance
of the classification models. In some situations, these measures can work as
predictors of performance level. In this sense, a lower complexity may indicate
a trend towards higher performance. Finally, it is also interesting to note that
N1 partial has a positive correlation with performance. For the GLM, these values
are not very significant, but become more relevant in the case of NB.

5.2 Comparison Among Omics and Cancer Types

In this Section, we consider how omics data types and cancer types compare in
terms of their complexity measures. Specifically, we use F1-MaxDr, F3 partial,
and N3 partial, since those were found to be the most correlated measures with
performance. Figure 4 shows swarm plots of these complexity measures. The left
side of the figure shows the measures grouped by cancer type, such that each
point corresponds to the complexity of an omics data for a specific cancer group.
Similarly, the right side of the figure groups the measures by omics data type.



Study on the Complexity of Omics Data for Cancer Survival Prediction 53

Fig. 4. Swarm plots showing complexity measures grouped by cancer type in (a), (c),
and (e) and omics data type in (b), (d), and (f).

It is possible to observe that the behavior of the different omics types is quite
similar for the measures considered, corroborating the idea of similar complexity
among distinct omics datasets. More interestingly, we note that the use of the
multi-omics approach did not result in less complexity overall. However, the
multi-omics dataset never has the result below all other omics. Additionally,
often within a cancer type, multi-omics data have results quite close to or equal
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to those achieved by the best omics. In this way, it can be suggested that the
use of multi-omics data introduces some robustness in predictive analysis.

Regarding the complexity of cancer types, the datasets for the ACC consis-
tently presented a lower complexity according to the complexity measures most
correlated with the performance metrics in our observations. The results of the
performance analysis corroborate this perception. ACC cancer type performance
values are consistently better in both models. This evidence supports the idea
that complexity measures can be used to predict the trend of improved perfor-
mance. The other types of cancer, however, showed similar complexity.

6 Conclusion

In this work, we have studied the complexity of eight different types of cancers,
considering four omics datasets for each cancer, plus a multi-omics dataset. We
considered only the task of 3-year cancer survival prediction, evaluating the
performance of the NB and GLM algorithms on each of these datasets. To the
best of our knowledge, this is the first work to assess data complexity measures
for distinct omics types, across different tumors.

Our experiments led to the conclusion that the best complexity metrics
for estimating performance of models in the omics domain were F1-MaxDr,
F3 partial, F4 partial, and N3 partial. F4 partial and F3 partial, however, were
found to be redundant, so that we have chosen only F3 partial to further use.
Considering only these metrics, we found that all omics data types were quite
similar in terms of complexity. Differences were not significant to allow charac-
terizing one type of omics data as more complex (or harder) for cancer survival
analysis. In particular, we observed that the multi-omics dataset produced results
in general similar to the best omics data type for each cancer. When comparing
the complexity of cancer types, in turn, we found that the ACC had significant
less complexity than the others - a finding that should be further investigated
to better understand its reasons.

As mentioned, we have used only the metrics most correlated with the per-
formance metrics when analyzing the complexity of the datasets. It would be
interesting to consider the other metrics as well, since they can point to differ-
ent characteristics of the dataset that may be interesting for other reasons than
performance estimation. Furthermore, we have considered only two classifiers,
and one could naturally ask whether the found metrics would remain the most
correlated if different classifiers were considered. Finally, we chose survival pre-
diction as our task of interest given its importance in the context of cancer and
omics-based prediction, but one could also consider other tasks. We are currently
working on extensions of this work to take these considerations into account.
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Abstract. Conformational changes in protein structures are strongly
correlated with functional changes. Some conformational modifications
may be easily noticeable, others are more subtle. In this work, we model
the problem of protein conformation classification through its represen-
tation as images that illustrate the interatomic distance matrices. We
aim then to discover if a convolutional neural network would be able to
identify these conformational changes only from the distance patterns in
these maps. Hence, this work presents the development of a model based
on convolutional neural networks, capable of identifying large scale con-
formational changes in proteins. As a case study, we used the S protein
from SARS-CoV-2, a protein known for its function in the infection of
human cells through a conformational change to binding to the human
cell receptor. Initially, we intend to identify large-scale conformations,
such as states where the S protein trimers are closer together (closed)
or further away (open). The proposed classifier achieved a satisfactory
performance after cross validation, reaching an average accuracy in val-
idation of 90.58%, with an error of 22.31%. The model was also able to
successfully distinguish both classes (open and closed states for S pro-
tein) achieving a precision of 84.32% and a recall of 89%. In the test,
the accuracy of the model reached 71.79%, with an error rate of 28.2%.
Precision and recall reached 68.18% and 78.94%, respectively. For future
work, we want to evaluate the ability of such model to identify even
more subtle conformational changes, as well as those caused by point
mutations that occur in virus variants.

Keywords: Conformational changes · Distance maps · Convolutional
networks

1 Introduction

The emergence of new algorithms with potential application in computational
biology has significantly contributed to the advancement of research related
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to human health, the understanding of biological systems and biotechnological
advances [31].

Furthermore, it is observed that the areas of biological and health sciences
have produced a growing volume of data due to technological advances in omics
sciences (genomics/metagenomics, proteomics, transcriptomics, metabolomics,
interatomic, etc.) [8]. As an example, the Protein Data Bank (PDB) [7,15] cur-
rently provides 202.228 biological macromolecular structures, 7.416 only in the
first 7 months of the year.

Mathematical and computational approaches applied to the study of protein
features are quite useful in structural bioinformatics. An interest and robust
model of protein structures is distance matrix [22]. A distance matrix (dij)
is obtained by calculating the distance between the ith and the jth Cα (α–
carbons) of the amino acid residues belonging to the protein chains. Applications
in structural bioinformatics involving the alignment of protein structure or to
infer protein-protein interactions used distance matrices [14,33]. From them, it
is possible to generate distance maps that is, a 2D visual representation of these
matrices [23].

More recently, the use of artificial intelligence (AI) has stood out, mainly of
deep neural networks, in solving problems related to structural computational
biology [3,4,20]. Recent applications of Deep Learning (DL) in bioinformatics
have been used to gain insights from data, which has been emphasized both in
academia and industry. Artificial intelligence has been used for over a decade
both in modeling biological data and catalyzing new discoveries [30] in the field
of molecular biology.

In this sense, recent approaches have emerged, such as AlphaFold2, a DL-
based artificial intelligence program developed by Google’s DeepMind that builds
theoretical models of protein structures [2,20]. In addition to Alphafold, recent
works involving protein structure prediction have used distance maps in the
development of models based on DL [3,4,34]. These models were able to recognize
complex patterns during the training process with large datasets.

Recent works involving the classification or structural prediction of proteins
have performed these analyzes based on distance maps [2–4,20,34].

Among the widely used DL algorithms there are the Convolutional Networks
(ConvNet’s) [24], characterized by a specialized type of neural network for data
processing that has a topology similar to a grid. The architecture of a CNN is
analogous to the pattern of connectivity of neurons in the human brain. Being
inspired by the organization of the visual cortex, it stands out as an example of
neuroscientific principles that influence deep learning [16].

Convolution is a linear operator that, given two functions, results in a third
which measures the sum of the product of these functions along the region
implied by their overlap as a function of the displacement between them [16].
Let f and g be continuous functions at time t, and u be a displacement, the
convolution s can be represented mathematically as

s(t) = (f ∗ g)(t) =
∫ ∞

−∞
f(u)g(t − u)du. (1)
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In digital image processing applications, the input is commonly represented
by a multidimensional array of data (an image, for example), and the kernel
as a multidimensional array of parameters that are adapted by the learning
algorithm. These data structures are referred to as tensors [16]. Let xi,j be a
two-dimensional image and w be a kernel of dimensions l and k, the value of the
convolution at any point (i, j) in the image can be described as

w � xi,j =
∑

l

∑
k

wl,kxi−l,j−k. (2)

This class of neural networks has shown great potential in applications involv-
ing pattern recognition in images [16], being used recently in conformational
analysis, structure prediction, protein classification, etc [26]. The basic structure
of CNNs consists basically in two parts: feature learning (convolution layers,
non-linear layers and pooling layers) and classification (flatten layer and fully
connected layer) [26].

Given this, and due to the current pandemic scenario, this work proposes the
development of AI-based models capable of identifying conformational changes
in SARS-CoV-2 (coronavirus) proteins through distance maps and convolutional
neural networks. In particular, we evaluate if the CNNs can identify Spike protein
(S) in open and close conformation through distances maps.

The COVID-19 (Coronavirus Disease) is a respiratory disease caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 - betacoronavirus
belonging to the coronavirus family - coronaviridae, recently named as new coro-
navirus). The virus has zoonotic origin and the first known case of the disease
dates back to December 2019 in Wuhan, China [25,37,39].

On January, 2020, the World Health Organization (WHO) classified the out-
break as an International Public Health Emergency and, on March, 2020, as a
pandemic. Worldwide, more than 562 million cases of the disease were recorded,
and a total of about 6.37 million deaths were due to complications of COVID-19
[12]. There are numerous computational challenges that permeate the models
and algorithms that will be developed to support computational biology devel-
opments aiming at a better understanding of SARS-CoV-2 genome, proteins
and variants, as well as to aid in drug and vaccine development for this or other
emerging pathogens.

The main contributions of this work are: i) modeling the problem of clas-
sification of protein conformational changes as an image classification problem
ii) design and implementation of a convolutional neural network capable of dis-
criminating between protein conformations iii) the application of the proposed
methodology to a case study involving the S protein of SARS-CoV-2, responsible
for the entry of the pathogen into the human cell.

This work is organized as follows: in the next section we present the work
methodology, starting with the collection and processing of protein data followed
by the creation of distance maps. Next, we present the topology and parame-
terization decisions of the proposed network and the experimental design. This
section is followed by the results and discussions and, finally, the conclusions and
perspectives of the work.
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2 Methodology

The methodological approach developed in this work can be summarized in the
following steps: data collect and alignment for labeled the structures, generation
of distance maps, implementation of the model based on deep learning (ConvNet)
and model evaluation (Fig. 1).

2.1 Dataset

2.1.1 Data Collection in the PDB and Its Processing
We collect files in .pdb format (Protein Data Bank - PDB) [7] containing the S
protein of SARS-CoV-2 (betacoronavirus belonging to the coronavirus family -
coronaviridae, recently named as new coronavirus) [25,37,39], from the public
database RCSB PDB - Research Collaboratory for Structural Bioinformatics
PDB. These files are composed of protein sequences and atomic three-
dimensional coordinates, molecular compounds (small molecules and peptides)
as well as their interactions with target proteins.

To generate the training labels, one of the proteins was used as a model (in
this case the SARS-CoV-2 Spike PDB ID 6VYB [35]). We manually identified
the open and closed chains for this file. Each of the other files were processed
and protein chains were extracted, and superposed with model chains.

Fig. 1. The methodological approach developed can be summarized in the following
steps: data collect and alignment for labeled the structures, generation of distance
maps, implementation of the ConvNet and model evaluation.

TM-align is an algorithm for obtaining the best superposition between a pair
of proteins through a rotation matrix built with the TM-Score and dynamic

https://www.rcsb.org/
https://www.rcsb.org/
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programming [38]. The TM-align source code was downloaded and the C++
version of the program was installed, with two metrics extracted to label the
protein chains: TM-Score and RMSD. The TM-score can have a value between
(0.1], where 1 indicates a perfect superposition between two structures [38]. The
RMSD (Root Mean Square Deviation) is an average measure of the distances,
or deviations, of a set of atoms. This metric is used to assess how similar (or
dissimilar) are two proteins. RMSD is used to compute the deviation between
the equivalent atom sets [23]. We labeled the protein chains according to the
most similar model protein superposed. If a chain was closer conformationally
to the open model, them we labeled it as open. On the contrary, we labeled it
as close.

2.1.2 Generation of Distance Maps
We generated .png image files (Portable Network Graphics), with visual repre-
sentation of the Distance Map of the S protein chains. These images are produced
by extracting the coordinates (x, y, z ) of the residues Cα (alpha carbons) and
calculating the Euclidean distance between all pairs residues [22,23]. Once the
intra-chain distances are calculated, we generate an matrix of distances of dimen-
sions 309×309. An example distance map is shown in the Fig. 2 for both protein
states (open and closed).

We sampled one for every 3 Cα. This was necessary to adapt the distance
maps to the ConvNet input. Some large-scale conformations, such as the opening
and closing of the S protein trimer, can be observed using thresholds above 3
Å RMSD. Furthermore, polypeptide chains contain periodic structures, where
residues 3 or 4 units apart are spatially close. An example is the α-helices,
which have the lowest periodicity, around 3,6 amino acid radicals [6]. Thus, even
sampling the structure every 3 Cα, the most significant conformation will still
be represented by the distance maps [19].

We cleaned the data coming from the PDB, excluding chains whose amount
of unique residues Cα was below 1000 alpha carbons (the complete S protein
of SARS-CoV-2 has a total of about 1200 residues). Since certain regions of the
protein tend to be more flexible than others, during the X-ray crystallography
process, it is possible that the coordinates of these regions are not captured. This
event constitutes a form of noise to the data. In addition, antibodies or other
structures can bind to the protein and their removal is also mandatory.

2.2 Model Building

2.2.1 Model Architecture
The algorithms for obtaining distance maps and artificial intelligence models
were implemented using the Python programming language, machine learning
libraries and consolidated neural networks libraries such as TensorFlow and
Keras [1,9]. Since the distance map is the result of transforming the 2D distance
matrix into images, it was decided to develop models based on convolutional
networks [2–4,20,34].



Identifying Conformational Changes Through Distance Maps and ConvNet’s 61

Fig. 2. (a) 3D representation of the S protein (PDB ID 6VSB) in the open state.
A-chain (orange) is further away from B-chain and C-chain (green); (b) Distance map
between pairs of α–carbons residues of the A-chain of protein S. The axes correspond
to the residues used to obtain the distance matrix; (c) 3D representation of the S
protein (PDB ID 6VSB) in the closed state. It is possible to observe the conformational
variation since A-chain is closer to B-chain and C-chain (closed state); (d) Distance
map between pairs of α–carbons residues of the B-chain of protein S. (Color figure
online)

The architecture of the model (shown in the Fig. 3) is based on the approach
known as representation learning [5], in which a system automatically extracts
the characteristics needed for classification/detection from the raw data. The
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convolution layer is the first layer in the model’s architecture and the convolution
operation is performed in this layer. A convolution is the application of a filter
over an input (image) that can result in an activation [16]. Repeatedly applying
the same filter (known as kernel) to an entry results in a map of activations
called feature map. To increase the non-linear properties of feature maps we use
an activation function, ReLU (Rectified Linear Unit) [16].

Fig. 3. ConvNet architecture developed. The number of filters (convolutional layers)
and units (fully connected layers) are represented as <integer>. The pooled maps in
the output (1) serve as input to the flatten layer (1). As the number of convolutional
layers increases, it is possible to extract more complex features from the input data
[16].

To reduce the variance for small changes in the image and the amount of
parameters trained by the network (a technique commonly known as down sam-
pling), pooling layers were used. Among existing pooling operations, max-pooling
is often widely used. Max-pooling is a operation where the maximum value from
kernel is extracted from the area it convolves [16]. Combined with convolution
and pooling layers, dropout layer is used to prevent certain parts of the neu-
ral network from having too much responsibility and, consequently, being very
sensitive to small changes [28].

The flatten layer basically operates a transformation of pooled feature map,
changing its format to an array. The, dense layer, also called fully-connected
layer, refers to the layer whose inside neurons connect to every neuron in the
preceding layer. The activation function defined for this layer was sigmoid [13].

2.2.2 Model Parametrization
The convolution operation is applied to the input images, and to the pooled
maps, using a 3 × 3 kernel, with a stride equal to 1. The Activation maps gen-
erated from the convolution layer serve as input to the pooling layer, where
max-pooling was applied with a 2× 2 pool array, with a stride equal to pooling
size [9].

The defined batch size is 32. This number defines the number of samples that
are propagated through the network. A larger batch size requires more memory,
so it is common to find batch sizes equal to 32, or 64 [20,27]. Structures called
tensors serve as input data for training the models. A tensor is composed of the
input shape (image dimensions - height and width - and number of channels -
RGB is equal to 3) and batch size [10].
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The images were normalized with each pixel converted to a range of [0−1],
since neural networks tend to operate better with values in this range [16]. Since
distance maps have low dimensionality and are invariant to the rotation, or
translation, of proteins, parameter calculation and learning becomes efficient
[11], which is desirable for artificial intelligence models.

2.3 Experimental Design

The dataset has a total of 834 images, being partitioned for training, validation
end test. 600 images were used for model training, 400 from the closed class
and 200 from the open class. For validation, 150 images were used, 100 from
the closed class and 50 from the open class. For the test set, 84 distance maps
were previously separated, with the samples of each class distributed equally. To
train and validate the model, the dataset was partitioned using a subset of these
data for training, and validating the model in the complementary subset. This
technique is known as cross-validation (CV), and it may vary according to the
application [13].

However, an alternative version of this approach was used, known as k-fold
cross-validation [29]. Basically, the technique consists of randomly partitioning
the training set into k mutually exclusive subsets of the same size (n/k), where
n is the total training samples. A subset is used for validation and the remaining
k − 1 are used for parameter estimation. This process is performed k times by
circularly toggling the validation subset. The performance is estimated based on
the average of the k error rates corresponding to each of the [13] partitions. In
this case, a k = 5 was used because, in this way, it is possible to guarantee that
γ ≥ 0.1, often recommended and effective in most applications [13].

Since this is a binary classification problem, the objective is to decide in which
class a new observation belongs among two possible classes (open or closed). We
chose to use accuracy and error to evaluate model quality, often used in binary
classification problems. Precision and recall were also calculated, as we want
to know the correctness rate of the model for each of the problem classes [36].
We computed the average for each metric after 5-fold CV. Adaptive Moment
Estimation (Adam) was used as an optimizer [21] and, the model was trained
during 100 epochs.

3 Results

The Table 1 presents the model validation results and the error rate for each
partition. The model selection, by cross-validation, was based on an approach
whose objective is minimization of generalization error [17]. Furthermore, both
precision and recall suggest that the model tends to successfully discriminate
both classes, even considering that the dataset is quite unbalanced [36].

For some partitions (as can be seen in the Table 1), an increase in error is
directly related to a lower accuracy rate, and model precision, especially for the
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Table 1. Validation performance metrics (%) obtained from 5-fold CV

Subset Accuracy Error Precision Recall

1 96.00 15.01 94.34 94.00
2 85.33 37.16 70.00 98.00
3 88.00 29.96 79.63 86.00
4 95.33 19.72 92.16 94.00
5 88.24 9.70 85.41 77.99

90.58 22.31 84.32 89.8

class that has few images. However, model performance improves when averaged
after cross-validation, that is, considering all partitions.

In Fig. 4 presents the learning curve of the model after 5-fold CV. It is pos-
sible to observe an alignment between the results (training and validation), as
expected from the model learning process. The validation error tends to decrease
along the training epochs, indicating the non-occurrence of overfitting [13].

Fig. 4. ConvNet learning curves after 5-fold CV. It is possible to observe the accu-
racy, error rate and F1-score in the training (blue curve) and validation (red curve).
Validation was performed over 100 epochs. (Color figure online)

In this sense, the use of techniques such as dropout [32] and batch normaliza-
tion [18], in addition to removing noise in the input data, reduce the possibility
of overfitting. The error rate stabilizes at 20% from the seventieth epoch, when
it no longer undergoes significant changes. It is possible that the increase in the
number of epochs would not bring more gains to the model.

The calculation of the F1-Score was also performed, that is, a harmonic aver-
age between precision and recall, which helps in the evaluation of the model’s
discriminative capacity [36]. The F1-Score indicates that the model can distin-
guish conformations, represented by patterns in distance maps Fig. 4.

Finally, the model was evaluated based on the performance achieved for the
new structures presented, which constitute the test set. The test data correspond
to variants of the original strain, with a structure very similar to those used to



Identifying Conformational Changes Through Distance Maps and ConvNet’s 65

train the model. As a result, the model obtained an accuracy of 71.7%, with an
error of 28.2%. Precision and recall reached 68.18% and 78.94%, respectively.

4 Conclusions

The development of models based on deep learning is not a trivial task requiring
data pre-processing, noise removal, cross validation, etc. Since biological data
are usually highly complex (incompleteness, dimensionality, noise, etc.), finding
patterns in these data poses significant challenges to obtaining a predictive model
capable of discriminating the classes of the problem, with high precision.

The problem addressed sought to identify large scale conformational changes,
related to S proteins of SARS-CoV-2, through distance maps and ConvNets. The
problem is currently relevant, as it is related to the development of bioinformatics
techniques capable of raising the level of understanding about SARS-CoV-2.

Based on the results obtained for new structures (precision equal to 68.18%,
and recall to 78.94%), it is concluded that the model was able to distinguish
conformations referring to the open and closed states of the S protein, with a
good precision. However, as these results reflect the performance of the trained
model, it is still possible to adjust hyperparameters that minimize the influence of
some overfitting. As future perspectives, it is intended to assess whether models
based on ConvNets can identify even more subtle conformational changes, such
as the impacts of a point mutation.
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Abstract. Clustering analysis in gene expression data has been shown
to be useful for understanding gene function, gene regulation, and cell
processes and subtypes. Due to the wide availability of techniques for
this task, the choice of an appropriate method is critical. Trying to mit-
igate this problem, Saelens and coauthors performed, in 2018, a bench-
mark study based on external validation indices. The present work pro-
poses an extension of this analysis by including internal indices and
applying it in a study case to investigate gestational diabetes through
experiments on microarray data of pancreatic beta cells submitted to
supra-pharmacological doses of progesterone. The results of the cluster-
ing method selected by the proposed extension have shown to be helpful
in an enrichment analysis that identified TXNIP gene as relevant for
future work aiming at understanding in more details the gestational dia-
betes phenomena.

Keywords: Gestational diabetes · Clustering methods · Gene
expression data analysis

1 Introduction

Clustering analysis on gene expression data is a widely used technique to help
understand gene function, gene regulation, and cell processes and subtypes and
has been consistently applied to identify and analyze various pathologies such as
cancer, malaria and tuberculosis [5]. Such analysis tries to identify the function
of genes based on a principle known in the literature as guilt by association
[8,20], which establishes that genes with similar functions tend to be clustered
together. The fact that certain genes have been allocated to the same group,
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which in the context of gene expression is called a module, may indicate that such
genes are related to the same cellular processes, that they present co-regulation
or that they share a common mechanism. Furthermore, the detected groups
tend to be significantly enriched with specific functional categories, a fact that
can be exploited to infer the function of genes in a given context [5,11]. The
clustering of gene expression data can be validated in two main ways: through
internal indexes, inherent to the cluster itself, or external indexes, based on the
agreement between the obtained clusters and a reference cluster [11,21].

Due to the existence of a large number of clustering techniques, choosing the
most suitable method for a given application becomes a challenge. In an attempt
to mitigate this problem, the work in [27] presents an overview of the character-
istics and performance of clustering techniques applied to gene expression data
and proposes a benchmark strategy for carrying out comparative studies. In such
work, 49 methods were applied to nine gene expression datasets and evaluated
according to external indexes, so that a score was assigned to each method based
on the agreement between modules identified in the experiments and reference
modules established by regulatory networks. According to the scoring scheme
developed by the authors, the method that obtained the best performance was
that based on independent component analysis (ICA).

Several later studies [2,15,24,28,30] selected the ICA technique for their
experiments based on the results presented in [27]. The problem here is that
this choice is only supported by external evaluation results, which do not take
into account the nature of the problem and the inherent clusters. In fact, as
stated in [31], in a real-world scenario (generally without a reference cluster)
the researcher who performs a clustering task on a new dataset has only the
availability of internal validation indices. The present work intends to extend the
discussion on the benchmark developed in [27] to include internal indices and
the interpretation of the clusters detected through functional analysis studies.
As a case study, a microarray dataset of pancreatic beta cells submitted to
progesterone [19] will be analyzed.

The remainder of this paper is organized as follows. Section 2 introduces the
problem definition. Methods and background are described in Sect. 3. Experi-
mental results are discussed in Sect. 4. Finally, Sect. 5 presents some conclusions
and future work.

2 Problem Definition

Due to the increasing pharmacological use of progestogens throughout preg-
nancy for the prevention of preterm birth [22], understanding the relationship
between these hormones and gestational diabetes requires attention. From in
vitro experiments with the Rinm5f cell line, it was found that progesterone was
able to induce the oxidation and death of pancreatic beta cells, which are insulin
producers [19].

Pancreatic beta cell death is associated with both type I and type II diabetes
[25], but still needs to be better understood in the context of gestational dia-
betes. To investigate this problem, microarray experiments were conducted by
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submitting Rinm5f cell line to progesterone at three doses (0.1 µM, 1 µM and
100 µM) and two time points (6 h and 24 h), which were analyzed in this work.

3 Methods

The experiments can be subdivided into four steps: (i) reproduction of the experi-
ments in [27]; (ii) extension of the discussion by calculating and proposing a score
based on validation indices; (iii) reproduction of all experiments including the
dataset of pancreatic beta cells subjected to progesterone; (iv) analysis of the
best results for the dataset of pancreatic beta cells according the internal and
external validation indices.

3.1 Clustering Methods

Five clustering methods were analyzed, including the best evaluated in [27]: k-
means [17], agglomerative hierarchical clustering [10], spectral bi-clustering [12],
ICA z-score [9], meanshift [3], and random clustering (baseline) [27].

3.2 Reference Modules

External validation measures are calculated by comparing the obtained clusters
with reference modules. For the benchmark experiments, such modules were
defined according to three different criteria: (i) minimal (genes that have at least
one element in common), (ii) strict (genes that have exactly the same regulators
in common), and (iii) interconnected subgraphs (based on the construction of
graphs from regulatory networks). For the dataset studied in this work, given
the absence of regulatory networks, the reference modules were obtained through
the application of the WGCNA algorithm [14] and also through the construction
of modules from [29], applying minimum and strict co-regulation criteria.

3.3 Validation Indices

Validation measures are classified into external and internal, as follows:

– External indices: Four different external validation measures were used
(Recovery, Relevance, Recall and Precision), and then normalized and com-
bined through the harmonic mean in a measure called F1rprr, according to
the scoring scheme proposed in [27].

– Internal indices: Internal indices are based on two main concepts: cohesion,
which refers to how far the items in the same group are (intra-group distance);
and separation, which aims to quantify the distance between groups. Intra-
group and inter-group distances can be calculated using a given distance
criterion. According to the internal indices, the best evaluated clustering for
a given dataset is the one that minimizes the intra-group distance and max-
imizes the distance between groups. The indices that were used are listed in
the Table 1.
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Table 1. Internal validity indexes

Index Best if... Range

Dunn [7] High [−∞, +∞]

Davies-Bouldin [6] Low [−∞, +∞]

Silhouette [26] High [−1, +1]

3.4 Functional Enrichment Analysis

The tools Enrichr [13] and that developed in [18] where used for the functional
enrichment analysis. The databases DisGeNET [23], GO Biological Process 2021,
GO Cellular Component 2021, GO Molecular Function 2021 [4] were also selected
for this task.

3.5 Microarray Experiments

The dataset containing information from 89 genes was obtained in experiments
conducted by one of the authors of this paper, and presented by the first time
here, using microarrays with RT2 Profiler PCR Arrays kit, from the manufac-
turer Qiagen1. Cells were subjected to concentrations of 0.1 µM, 1 µM and 100
µM and expressions relative to the control group were collected at 6 h and 24 h
from the beginning of the experiment, resulting in six measurements. For visu-
alization purposes, the experiments (0.1 µM, 6 h), (0.1 µM, 24 h),(1 µM, 6 h),(1
µM, 24 h),(100 µM, 6 h), (100 µM, 6 h) are referenced by I, II, III, IV, V and VI,
respectively. Hereafter, such dataset is named by ‘progesterone dataset’.

4 Experimental Results

4.1 Module Detection Experiments

Initially, experiments were conducted for the benchmark as proposed in [27], but
now including the progesterone dataset2. To avoid parameter overfitting on par-
ticular datasets, we first optimized the parameters for all methods and datasets
using a grid search and calculated the training scores. Next, such parameters
were applied to assess the performance of each method on all different datasets
(excluding the one used for training), obtaining the test scores, as proposed in
[27]. These results are presented in Fig. 1.

According to external indices scores, agglomerative clustering, meanshift and
k-means were the best evaluated methods for progesterone dataset, when con-
sidering tests scores. Furthermore, it can be noted that ICA z-score was well
evaluated according to training scores, but the same does not occur for testing
1 https://www.qiagen.com/us/.
2 The human datasets were excluded since the authors used a different criteria for

module definition, called ‘regulatory circuits’.

https://www.qiagen.com/us/
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scores. Ideed, after functional enrichment analysis, we also verified that ICA did
not show a good performance for these data. This fact highlights the importance
of the training-and-test strategy.

After these preliminary results, we extended the discussion by also calculating
internal indeces and expanding the score strategy, adding three different scores:
(i) Dunn score; (ii) Davies-Bouldin score; and (iii) silhouette score.

For E. coli data, Dunn scores (Fig. 2) are in agreement with external valida-
tion scores, presenting the same order for the top scores. Considering the pro-
gesterone dataset, we find that the best evaluated method was k-means, which
was the third method according to external validating indices.

From Davies-Boundin score perspective (Fig. 3), meanshift and k-means were
the best evaluated methods. However, meanshift results does not contribute to
the problems comprehension, since all genes were allocated in one single cluster.
Finally, silhouette scores (Fig. 4) also indicated k-means as the best method.

After this investigation, we selected k-means with its best clustering configu-
ration (k = 4) for carring out functional enrichment analysis. The modules that
resulted from these clustering are shown in the Fig. 5. We can see that there are
two generally overexpressed modules (Figs. 5a and 5c) and two underexpressed
(Figs. 5b 5d).

Fig. 1. Training (a) and (b) test scores for each dataset and method

4.2 Functional Enrichment Analysis

Functional enrichment analysis was performed using various datasets available
on Enrichr and the most relevant results to the problem are discussed here. For
understanding purposes, in next sections the modules are referred as: (i) module
A (Fig. 5a); (ii) module B (Fig. 5b); (iii) module C (Fig. 5c); and (iv) module D
(Fig. 5d).
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Fig. 2. Training (a) and (b) test Dunn scores for each dataset and method

Fig. 3. Training (a) and (b) test Davies-Bouldin scores for each dataset and method

Fig. 4. Training (a) and (b) test Silhouette scores for each dataset and method
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Module A. This module was enriched through DisGeNET with Diabetes type
I and type II related terms (Fig. 6). This fact is in agreement with the relation of
oxidative stress in pancreatic beta cells and Diabetes. On other hand, functional
enrichment with the Gene Ontology returns terms such as cellular response to
oxidative stress and response with cytokine-mediated signaling pathway. Through
the guilt by association principle, it can be inferred that the genes of this module
have a role in the response to progesterone stimulus, or in anti-oxidant defense.

Fig. 5. Overview of modules obtained through the best configuration of the experi-
ments. Figures (a), (b), (c) and (d) illustrate the allocation of genes for detected mod-
ules. For each module, the experiments are denoted by I, II, III, IV, V and VI. The
colors represent the expression of genes during the experimental condition in relation
to the control group.
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Fig. 6. Functional enrichment through the DisGeNET for module A

Fig. 7. Functional enrichment through the DisGeNET for module D
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Module B. The enrichment analysis did not return terms related to the studied
problem in DisGeNET. However, Gene Ontology enrichment presented terms like
negative regulation of apoptotic process (or anti-apoptosis), which by definition
is any process that stops, prevents or reduces the frequency, rate or extent of
cell death by apoptotic process. Since this module was suppressed, it could not
prevent cell death.

Module C. A single gene was allocated in this module (LPO gene). The enrich-
ment analysis did not return terms related to the studied problem in DisGeNET.
Nevertheless, the enriched terms from Gene Ontology showed that the module is
related to negative regulation of cell division, which is related to processes that
stop, prevent or reduce the frequency of cell division. Since this gene is over-
expressed, this process can contribute to an imbalance in the mass of pancreatic
beta cells, factor that can contribute to Gestational Diabetes.

Module D. DisGeNET enrichment (Fig. 7), returned terms such as “Pregnancy
in diabetes” and “Gestational Diabetes”, while the enrichment with Gene Ontol-
ogy showed that this module is also associated with the negative regulation of
cell division. This process may contribute to the preservation of pancreatic beta
cell mass, which are cells that reproduce by cell division. In a different way, the
over-expression of this gene is related to Diabetes type I and II [16,32]. The
study of [1] points out that TXNIP deficiency was able to completely rescue
mice from diabetes. However, TXNIP deficiency induced by progesterone was
not able to prevent pancreatic cell death, requiring more studies.

5 Conclusion and Future Work

This work extended the benchmark study developed in [27] to include internal
indices and the interpretation of the clusters detected through functional analysis
studies. As a case study, a microarray dataset of pancreatic beta cells submit-
ted to progesterone was analyzed in an attemption to understand the relation
between this hormone and gestational diabetes. The results showed that the
expression of the TXNIP gene was suppressed by progesterone in a scenario
of cell death, which can be relevant to the comprehension of gestational dia-
betes since this gene is a target for the treatment of diabetes type I and II and
was not able to prevent progesterone-induced pancreatic cell death. In addition,
the importance of studying the internal validation indices of clustering methods
applied to gene expression data is highlighted, even if they have presented good
performance according to external validation measures.
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23. Piñero, J., et al.: The DisGeNET knowledge platform for disease genomics: 2019
update. Nucleic Acids Res. 48(D1), D845–D855 (2020)

24. Poudel, S., et al.: Revealing 29 sets of independently modulated genes in staphylo-
coccus aureus, their regulators, and role in key physiological response. Proc. Natl.
Acad. Sci. 117(29), 17228–17239 (2020)

https://doi.org/10.1109/TKDE.2004.68
https://doi.org/10.1109/TKDE.2004.68


78 L. Marinelli Dativo dos Santos et al.

25. Rojas, J., et al.: Pancreatic beta cell death: novel potential mechanisms in diabetes
therapy. J. Diab. Res. 2018 (2018)

26. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

27. Saelens, W., Cannoodt, R., Saeys, Y.: A comprehensive evaluation of module detec-
tion methods for gene expression data. Nat. Commun. 9(1), 1–12 (2018)

28. Sastry, A.V., Hu, A., Heckmann, D., Poudel, S., Kavvas, E., Palsson, B.O.: Inde-
pendent component analysis recovers consistent regulatory signals from disparate
datasets. PLoS Comput. Biol. 17(2), e1008647 (2021)

29. Shannon, P., et al.: Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

30. Tan, J., et al.: Independent component analysis of E. coli’s transcriptome reveals
the cellular processes that respond to heterologous gene expression. Metabolic Eng.
61, 360–368 (2020)
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Abstract. De novo genome assembly of sequenced reads is a funda-
mental problem in bioinformatics. When there is no reference genome
sequence to guide the process, many assemblers programs consider using
the de Bruijn Graph data structure to improve performances. However,
the construction of such a graph has a high computational cost, mainly
due to internal RAM consumption in the presence of very large and
repeated read datasets. Building a de Bruijn Graph relies on a broad
set of k -mers. Some existing approaches use external memory process-
ing to make it feasible. This work proposes an approach for constructing
the de Bruijn graph that does not generate all k -mers during the execu-
tion. An external memory processing allows reducing the high number of
duplicate k -mers and, consequently, reduces the total number of k -mers
that incur on the number of I/O operations. Some practical experiments
are presented, showing the solution’s viability and its improvements over
other common assemblers in the literature. Our solution reduces the
computational requirements and enables execution feasibility.

Keywords: de Bruijn graph · k -mer · External memory processing ·
De novo assembly

1 Introduction

Next-generation sequencing (NGS) technologies have brought rapid progress for
the biological research area. Nevertheless, the genome assembly problem contin-
ues to be a challenge since we need to reconstruct a whole genome by joining a
vast amount of short reads.

Assembly algorithms and their implementations are typically complex. They
could require high-performance computing platforms for large genomes. Algo-
rithmic success can depend on pragmatic engineering and heuristics formulated
by empirically derived rules of thumb.

Since fragments of DNA are broken in random positions, and sequencer
machines do not have a 100% of accuracy, it is needed to increase the sequencing
coverage. The coverage is measured as a function of the average number of reads
covering a position in the genome.

Given the pieces taking from unknown positions and the great coverage, a
high redundancy level is generated in the fragments. The number of reads could
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be hundreds of millions; thus, the total volume of data may reach tens or even
hundreds of GB. For de novo assembly [15], without a known reference genome,
the complexity is higher.

Some successful approaches are based on the use of de Bruijn graphs (see [3]
and [14]). However, the construction and use of de Bruijn graphs (DBG) demand
a large amount of main memory and execution time because of the large number
of elements (nodes and edges) to process [3,6,12,13].

In a DBG, unique k -mers constitute nodes, and an edge is set between two
nodes when the k -mers of those nodes overlaps k -1 symbols in at least one read.
The total number of k -mers present in one read (not only distinct k -mers), with
length m, is equal to m − k + 1, while the total number of k -mers present in n
reads is (m − k + 1) ∗ n. As n in practice is very large, the number of k -mers is
even larger and computational limits may be reached.

This papers details a new approach for de Bruijn graph construction in de
novo genome assembly that avoids generating all k -mers. We give a detailed the-
oretical explanation of how our approach becomes feasible for external memory
optimization. Furthermore, we show some practical experiments on real data
that illustrate and validate our ideas.

This text is structured as follows: in the next section, Sect. 2, we describe the
related works within the context of this research. The basics of the new approach
are shown in Sect. 3. Next, in Sect. 4, a detailed analysis of the external memory
processing is exposed. Finally, tests and results are shown in Sect. 5 together
with a comparison with other commons assemblers.

2 Related Works

Few works have been found that encourage the de Bruijn graph construction
using an external memory processing [4,5,11,13], and [2,8,9,16]. They might
be classified into four categories: out-of-core sorting, second based on k -mers
partitioning and disk distribution, third based on memory frugal and partition
in disk, and the last one based on the construction of the graph embedded into
a relational database management system (RDBMS).

K -mers partitioning and disk distribution are common approach for the Min-
imum Substring Partition (MSP) approach [13], BCALM1 [4] and BCALM2 [5].
The distributed processing firstly distributes all k -mers into disk partitions (not
disjoint partition for all cases), then processes each partition individually in
the main memory, for later merges the results to build a DBG. In the case of
(MSP) approach, the partitions are made based on the minimum p-substring of
the k -mers, allowing consecutive k -mers to be distributed in the same partition,
decreasing the number of I/O operations. BCALM1 and BCALM2 solutions,
are different from MSP in the sense that they have the goal to obtain com-
pacted graphs by the compression of all its maximal non-branching paths. They
partition using a hash function in DSK (for BCALM1) and the concept of min-
imizers. Their pipes allow that same k -mers to be distributed in more than one
file partition, and hash functions used do not warrant balanced partition file
sizes, affecting the I/O throughput.
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Finally, a group of published works [2,8,9,16], test the viability of using
Relational Database Management System (RDBMS) to management the main
and external memory interchange in the construction of the graph. In [8] was
described the k -mer mapping process as part of the DBG construction, while
a case study was implemented based on the Velvet assembler algorithm using
PostgreSQL. Later, an ad-hoc cost model to measure the performance gained
using different index structures is presented in [8], while in [9] is exposed an
study of indexes like B+-tree, hash over k -mer in [9] and over k -mer p-minimum
substring in [2]. As a distinguishing feature, the use of DBMS to manage the I/O
operations in the mapping k -mer process allows incremental processing without
reprocessing and recovery from failures [16], and the trust of a robust and very
well tested system. However, some optimizations are needed to improve the run-
time given by index evaluation, which could still be considered high.

In summarizing, the external memory DBG construction approaches studied,
initially considering the total number of k -mers, for later obtaining the vertices
of the graph (unique k -mers) and corresponding edges. Using the total number
of k -mers in external memory operations implies maintaining a high level of
redundancy. Consequently, a high available memory resource (main or external)
and a more significant number of I/O operations are needed.

3 de Bruijn Graph Approach Construction

In [7] was presented a novel approach to construct DBG for assembly domains,
which constitutes the preliminaries of the present work. Based on the fact that
k -mers are units that encapsulate a high level of redundancy, it is clear that
working with the total number of k -mers implies maintaining a high level of
redundancy. Consequently, a significant amount of memory (RAM or external)
and I/O operations.

The approach for DBG construction for genome fragment assembly was
founded on the following principles [7]:

1. Find overlaps regions greater than k earlier can save the corresponding mem-
ory to store the redundant information for each k -mer and redundant infor-
mation for consecutive k -mer chains that are duplicated.

2. Avoid generate all k -mers using iterative reduction steps.
3. Use external processing only in the last steps of the current DBG construction

approaches with a minor number of elements.

3.1 Algorithm to DBG Construction

Definition 1. The de Bruijn graph, Gk(V,E) represents overlaps between k-
mers, in which:

– The set of vertices is defined by V = S = {s1, s2, ..., sp}, where S is a set of
unique k-mers over a given set of reads.
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– The set of edges is defined by E = {e1, e2, ..., eq}, where e = (si, sj) if and
only if the k − 1 suffix of si matches exactly the k − 1 prefix of sj. si and sj
must be adjacent k-mers in at least one read.

Definition 2. A dk-mer is a substring of a genome piece with specified d length
(also called dimension in this work), with d ≥ k, over the alphabet of bases
Σ = {A, T,C,G}.

Two dk-mers, dk−mer1 and dk−mer2 are adjacent if they share k−1 bases
(k − 1 suffix of the first is equal to the k − 1 prefix of the second) and they are
adjacent in at least one read.

The Fig. 1a shows a dk-mers representation over read r and how adjacent
dk-mers share k − 1 bases.

Fig. 1. de Bruijn Graph approach construction

Definition 3. An extra-compacted de Bruijn Graph Gd,k(Vd,k, Ed,k) is a graph
G(V,E) in which the set of vertices V corresponds to unique dk-mers of length
smaller or equal to d, and the set of edges E corresponds to unique edges of
dk-mers. Two dk-mers have an edge if they are adjacent, sharing k − 1 overlap.

The new algorithm steps are described below:

– Search overlapped regions with length d1, k < d1 < m, generating one vertex
for each unique d1k-mers and applying the suffix-prefix overlap of (k − 1)
length criteria to generate the edges. The result is d1k-mers vertices and
edges sets of extra-compacted de Bruijn Graph Gd1,k.
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– Search overlapped regions with size d2, k < d2 < d1, decomposing each vertex
in Vd1,k into d2k-mers. Generate one vertex for each unique d2k-mers to get a
set of vertices and apply the suffix-prefix overlap of (k − 1) length criteria to
get the set of new edges. The union of new edges and Ed1,k generates Ed2,k.
The result is d2k-mers vertices and edges sets of extra-compacted de Bruijn
Graph Gd2k.

– Search iteratively duplicated regions with size di, k < di < d2 < d1, decom-
posing each vertex in Vdi−1,k into dik-mers. Generate one vertex for each
unique dik-mers to get a set of vertices and apply the suffix-prefix overlap of
(k − 1) length criteria to get the set of edges, adding the edges from Gdi−1,k.
The result is dik-mers vertices and edges sets of extra-compacted de Bruijn
Graph Gdi,k.

– Search for k overlaps at last iteration with dz = k, and dz < .. < di <
... < d2 < d1, decomposing each vertex in Vdz−1,k into dzk-mers. Generate
one vertex for each unique dzk-mers to get a set of vertices and apply the
suffix-prefix overlap of (k − 1) length criteria to get the set of edges, adding
the edges from Gdz−1,k. Since edges were generated using the suffix-prefix
overlap of (k − 1) length criteria that appear at least in one read, and Vdz−1,k

corresponds to the set of unique k-mers due to dz = k, the result of this
steps is a DBG Gk(V,E) (1) (in Fig. 1b appears a representation of the graph
creation overview through a round of iterations).

The update function defines the value of d for each iteration. For instance,
we proposed the update function in Eq. 1, in which is used the step variable to
decrease d in each iteration.

It is worth to note that the suffix-prefix overlap of (k − 1) length criteria for
edges mentioned above, implies that this overlap exists in at least one read.

di = update(di−1, step) =

{
k if di−1 − step < k

di−1 − step otherwise.
(1)

4 External Memory Processing at Last Step Analysis

Our approach promotes the idea to process the graph as much as possible in the
main memory, reducing the number of duplicated k -mers in each iteration. Only
when the available main memory becomes insufficiently to store the structure of
Gdi,k, the use of an external memory solution is suggested. At that time, large
duplicate regions have already been identified. This will allow avoiding to process
a significant amount of duplicated k -mers in external memory, and consequently,
reducing the number of I/O operations. Moreover, before using external memory
processing, it is possible to apply an intermediate tuning solution to reduce even
more the amount of data to processes in external memory.

Using our approach is possible to build a macro representation of DBG (i.e.,
the extra-compacted DBG) in main memory and, if only if necessary, use a
solution in external memory in the last iterations. In that sense, our vision is



84 E. M. de Armas and S. Lifschitz

to be able to take better advantage of the available RAM, reaching a higher
percentage of processing before going to processing using external memory.

For an iteration i, given i < z, in which M is not sufficient to storing Gdi,k, it
is possible to export Vdi−1,k and Edi−1,k, to be used as input of external solutions.
The dk -mers into Vdi−1,k could be exported so that they can be seen as a set
of reads R with multiplicities for other solutions. The set of edges Edi−1,k is a
subset of final E. Then, the set E of external solution could be initialized making
E = Edi−1,k.

The external memory model [1], also called the “I/O Model” or the “Disk
Access Model” (DAM), is commonly applied in algorithms developed to manage
a massive amount of data. It simplifies the memory hierarchy to just two levels.
The CPU is connected to a fast cache of size M ; this cache, in turn, is connected
to a much slower disk of effectively infinite size. Both cache and disk are divided
into blocks of size B, so there are M blocks in the cache. Transferring one block
from cache to disk (or vice versa) costs 1 unit. Memory operations on blocks
resident in the cache are free. Thus, the fundamental goal is to minimize the
number of transfers between cache and disk [10].

In that scene, using the case of sorting approach in [11], the collection of all
k -mers and edges will be sorted to identify the set of V and E. Therefore the
correspondingly optimal number of I/O to get V , given N k -mers is defined by
the Equation 2.

Θ

(
N log (N/B)
B log (M/B)

)
(2) Θ

(
(N − P (i)) log ((N − P (i))/B)

B log (M/B)

)
(3)

Definition 4. A skipped k-mer is a k-mer element that it was not necessary to
generate. The p(i) is a number of skipped k-mers for iteration i. The accumulated
number of skipped k-mers until iteration z is defined by: P (z) =

∑z
i=1 p(i)

Using our approach, if there exists an iteration i, given i < z, in which M
is not sufficient to store Gdi,k, it is possible to build the DBG using this sorting
approach decreasing the I/O as shown in Eq. 3. In that sense, N is reduced by
the number of k-mers that will be avoided to processed P (i).

Since the number of edges to process was reduced as the number of k -mers
during previous iterations, the same analysis for I/O could be applied to the set
of edges.

Now, we turn to the case of using a partition processing approach in external
memory. In that case, we analyzed the I/O in its three main steps: distribution,
processing, and merging. In the first step, the collection of all k -mers and edges
implicit will be distributed in n partitions. The number of elements and the
criteria used to distribution will determine the size and the number of partitions.
The distribution of the collections is hard to know until the factual data has
been distributed. This fact can cause a re-partition in case the amount of data
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is more extensive than what is supported to be processed in the main memory.
The number of I/O operations in this step is shown in Eq. 4.

In the second step, each partition is read from the disk and processed. Then
the results are writing in the disk in a compiled partition. Compiled partitions
are less than initial partitions. The I/O of processing step is shown in Equation
5 given 0 < γ < 1. It is used γ to represents the I/O operations consumed during
the write of compiled partitions. Finally, the merging step reunites all compiled
partitions to generate a result, as is shown in Eq 6. The overall partition strategy
I/O is given by Eq 7.

∑j=n

j=1

size_of_partj
B (4) (1 + γ)

j=n∑
j=1

size_of_partj
B (5)

γ

j=n∑
j=1

size_of_partj
B (6) 2(1 + γ)

j=n∑
j=1

(
size_of_partj

B
) (7)

Therefore, during the execution of our approach, if there exists an iteration i,
given i < z, in which M is not sufficient to store Gdi,k, it is possible to build the
DBG using this distribution approach decreasing the I/O as shown in Eq. 8 given
0 < γ < 1. The number of k-mers impacts in the number and size of partitions,
given a reduction of initial k -mers by P (i). To represent this reduction, we used
the variable μ, with μ > 1.

Definition 5. μ: Represents the reduction of initial k-mers by P (i), given μ > 1.

IO = 2(1 + γ)
j=n′∑
j=1

(
size_of_partj

μjB
) (8)

Finally, so that external memory implementations for the construction of
DBG can use our approach, we propose that the former implements an input
interface, such as:

– The sequence of dk -mers in Vdi−1,k will treated as reads.
– Initialize the multiplicity for each unique k -mer with the multiplicity of the

dk -mer.
– Initialize the set of edges with Edi−1,k.

5 Implementation and Preliminary Results

In order to validate the approach, an implemented test prototype following the
specification exposed in [7] was used. We have run our executions in a virtual
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machine hosted in private cloud infrastructure, using one virtual machine with
Ubuntu 18.04, one CPU core Intel Xeon E312xx 2.2GHz, with 33GB of RAM
and 500GB of HD.

The datasets used in our experiments include three groups of organisms:

Sugar Cane Libraries. Fragment libraries collected from Brazilian sugarcane
species kept by UFRJ’s Institute of Medical Biochemical (IBqM): (i) R03 with
n = 8, 520, 922, (ii) R06 with n = 5, 298, 464, both with m = 72bp, and (iii) R10
with n = 5, 723, 392 and m = 76bp, where n represent the number of reads, and
m is the read length.

Human Chromosome 14. Fragment library of Human Chromosome 14
(Ch14) available in http://gage.cbcb.umd.edu/data/: (i) H1: Library 1 with
n = 18, 166, 705 and (ii) H2: Library 2 with n = 18, 166, 798, both with
m = 101bp in average.

Bombus Impatiens (Bumblebee). Fragment library of Bombus impatiens
available in http://gage.cbcb.umd.edu/data/: (i) B2: Library 2 with m = 124bp
in average and n = 120, 000, 000.

To validate our experiments, each test was executed in ABYSS to construct
the DBG. We have noticed that, for each execution, the number of vertices and
edges of DBG produced by ABYSS were equivalent to the DBG output that
our approach generates. Table 1 shows our set of planned experiments that helps
with the comprehension of our actual contributions.

Table 1. Experiments description. In all cases step = 10.

Datasets k d1 Goal

R03, R06,
R10, H1, H2

12 64 Test the approach, and proof that it is viable.
Measure unique dk -mers

R10 15 52, 55, 58,
61, 64

Shows how the d1 impact in the number of
k -mers skipped from being processed, the
accumulated number of processed elements and
unique dk -mers

R03, R06,
R10, H1, H2

12, 13 Comparing our approach with the
requirements for DBG construction of other
assemblers like ABYSS and Velvet

Bee 31 100, 55, 35,
31

Proving our approach in case that DBG does
not fit in main memory

5.1 Number of Skipped k-mers at Each Iteration

The execution of the first experiment, reveals that our approach reduces the
need for processing a significant amount of k -mers. For all datasets, the percent

http://gage.cbcb.umd.edu/data/
http://gage.cbcb.umd.edu/data/
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of k -mers that did not have to be processed was over 70%. The accumulate value
P (i) means the number of elements that are skipped from being processed. It
also shows the remaining elements to process if at that point, the execution needs
to be processed in external memory, or even by another approach. The dataset
R03 obtains the highest percentage, with a 84,81%, while the highest amount of
skipped k -mers was given for the Human Ch14 libraries with more than billion.
We may explain this behavior as the number of reads in human libraries is, at
least, two times the number of reads when compared to the other datasets.

Analysis of d. How this affects the number of skipped k-mers
To analyze the impact of d value in the number of saved k -mers, were tested five
values of d over R10, updating d at each iteration through update(d) = di−1−10
(Function 1). Depending on the initial d1, the execution may have more or less
number of iterations. As we can see in Fig. 2, all iterations have the same trend
over the cumulative percentage of skipped k -mers for different di values. The
execution that has the greater number of skipped k -mers was the one whose
last iteration had a d that eventually came closer to k. The average of the
replication factor for execution, meanwhile, showed almost constant behavior
overall executions, varying from 1.23 to 1.57, with an average of 1.31.

The observed variation in the number of skipped k -mers demonstrated that
it is possible to fine-tune d1 to obtain betters results.

Fig. 2. Comparison of accumulative percentage of skipped k -mers over different exe-
cutions starting with different d1.

5.2 Comparison with Other Assemblers

To evaluate the performance of our approach, we compared its results with
common assemblers. In that case, we select ABYSS [17] and Velvet [18] as they
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are commonly used. In competitions such as Assemblathon and Gage they appear
as assemblers most frequently used among those selected by competing teams.
In both cases, they construct an exact representation of the DBG (in case of
ABYSS we executed the version with hash table instead of the BF version).

In the case of ABYSS, it starts generating all k -mers and save the uniques
in a hash table using a 2bit codification and a bitmap for edges representation.
After getting the set of vertices V , it is traversed, and the edges are generated not
over the reads but tested for each k -mer the existence of all possible extensions
in V .

Velvet, in turn, has different processing and data structures. Firstly, it gen-
erates all k -mers and saves them into a hash table, specifically into a splay tree
that resides in each bucket to manage collisions. For each k -mer, the position in
the read and the read identifier are tracked, generating the Roadmap file. After,
the Roadmap and the sequences files are used as inputs to created the vertices
and the edges for complete graph generation.

Using the first experiment as a baseline, we tried to execute the assembly for
the same datasets using ABYSS and Velvet with k = 12. The DBG construction
requirements in ABYSS were comparable with the execution of our implemen-
tation for d1 = 12, which is corresponded to the construct directly the DBG, as
well as, ABYSS could be compared with the execution of our implementation
using our approach through some iterations using d1 = 64 and step = 10. Turn-
ing to Velvet, it does not permit executions when k is an even number. Thus,
we decided use k = 13.

As evidenced, Velvet’s memory consumption is higher than what is reported
when using our approach. For human datasets, Velvet was not able to finish the
execution. For over 1 h for both datasets and 9GB of memory allocated, it could
not assign more memory to continue its execution.

As a last experiment, we used the dataset for Bombus impatiens (bumblebee),
B2, and we ran our experiment using k = 31, estimating 2,820,000,000 k -mers for
30 millions reads. In the case of ABYSS, after 3.45 h, with a load hash factor of
715,400,895/2,147,483,648 = 0.333 using 32.6GB, it presents memory insufficient
error. For Velvet (velveth), the execution crashed after 0.65 h.

Using our approach, we tested two configurations. With d1 = 55 and step =
10, the first iteration completed, skipping 17.65% of k -mers from being processed.
However, if only the first iteration could have been executed, the memory would
have been insufficient for d2 = 45. The second case tested, was using d1 = 100
and using step = 10. At this time it was possible to improve the results, obtaining
18.03%, meaning 10,900,042 skipped k -mers more that the previous result. The
last iteration completed was i = 5, for d5 = 60 using 30.47GB of memory.

6 Conclusions and Future Works

This paper presents a formal and practical approach that enables an external
memory processing to construct a complete and correct de Bruijn Graph that
does not need to count on all k-mers, as most common approaches do. We
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have detailed an analytical evaluation that shows that the number of k -mers
skipped throughout the execution may considerably impact on the reduction of
the number of I/O operations.

Some experiments validate our approach, analyzing the number of skipped
k -mers and the way of d1 affects the execution and make it feasible. We have
also considered a comparison with ABYSS and Velvet, two among some com-
mon referred and used assemblers. The results show that our approach may be
effectively considered for all De Bruyin graph based algorithms.

Finally, we have studied a real case in which the internal memory limit is
reached and we could skip 18% of k -mers, in this case corresponding to a total of
508,491,754 k -mers, that incurred in a better and more efficient external memory
solution.

We are currently interested in the study of the distributions of unique dk -
mers to estimate d1 and step, as we have noticed the actual impact of these
parameters with respect to the number of skipped k -mers.
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Abstract. In 2020, a new pandemic caused by a coronavirus has impacted the
economic and public health landscape on a global level. Named SARS-CoV-2, it
causes COVID-19 and, in two years, has caused thousands of deaths. Among its
viral particles, SARS-CoV-2 has an important structural protein called Spike (S),
and its entry into human cells is mediated by an interaction between the Spike
and the human receptor Angiotensin Converting Enzyme 2 (ACE2). This S/ACE2
binding depends on the cleavage of the Spike into three parts (S1, S2 and S2’) by
host cell proteases. For this, the S protein undergoes a conformational change that
exposes a cleavage site between the S1 and S2 domains, being initially cleaved
by the Furin enzyme. The S2 part is cleaved by TMPRSS2 (Transmembrane
Serine Protease II) to expose the fusion peptide, promoting endocytic entry of the
virus. TMPRSS2 can be inhibited by clinically approved serine protease inhibitors,
making it a promising target for the treatment of viral infections. Consequently,
our objective was to look for peptides that weren’t described as inhibitors for
SARS-CoV-2 but can be repositioned. In this paper, we propose a computational
method to collect, filter, simulate protein-peptide interaction and identify the best
hits based on the pattern of interactions. In addition to the main contribution of
the paper that is the method, another contribution of this work is the proposal of
candidate peptides.

Keywords: SARS-CoV-2 · TMPRSS2 · Peptides

1 Introduction

Coronaviruses are positive-sense single-stranded RNA (ssRNA+) viruses that cause res-
piratory infections in a variety of animals. In 2020, a new pandemic caused by a coron-
avirus, named SARS-CoV-2, generated economic and public health impacts at a global
level. According to studies, the severity of symptoms ranges from mild to critical, with
a fatality rate among critical cases of around 49% [1].

SARS-CoV-2 particles contain four primary structural proteins: spike (S), membrane
(M), envelope (E) and nucleocapsid (N) proteins [1]. Virus entry into human cells is
mediated by an interaction between S-glycoprotein and the Angiotensin Converting
Enzyme 2 (ACE2) receptor. A key point is that binding of S to ACE2 depends on
cleavage of the protein into three parts (S1, S2 and S2’) by host cell proteases, typically
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by transmembrane serine protease 2 (TMPRSS2). For virus entry, theSprotein undergoes
a conformational change that exposes a cleavage site between the S1 and S2 domains,
being initially cleaved by the Furin enzyme. The S2 part is cleaved by TMPRSS2 to
expose the fusion peptide, promoting endocytic entry of the virus [3].

TMPRSS2, the target of our study, is a transmembrane serine protease that has a
trypsin-like C-terminal domain with a canonical catalytic triad Ser441-His296-Asp345
[4]. It belongs to the S1 family of serine proteases with cleavage activity at Arg or Lys
residues [5–7] and, overall, its active can bind to various substrate sequences with the
strictest preference for positions P1 and P2 [4].

This molecule can be inhibited by clinically approved serine protease inhibitors,
making it a promising target for the treatment of viral infections. Consequently, our
objective was to look for peptides that were not described as inhibitors for SARS-CoV-2
but can be repositioned. Furthermore, a unique benefit of blocking TMPRSS2 and related
airway proteases is that in addition to the coronavirus, several other respiratory viruses
can be targeted, such as the influenza virus. In this article, we propose a computational
method to collect, filter, simulate the protein-peptide interaction, and thus identify the
best hits based on the pattern of interactions, acquiring candidates for inhibitors of a
particular molecule to be studied. In addition to the main contribution of the work,
which is the method, we proposed candidate peptides to inhibit the protease of our case
study.

2 Methodology

2.1 Bibliographic Survey

Through a bibliographic survey, information was acquired about the catalytic site of
TMPRSS2 and its mechanism of action in other molecules. We obtained information
that its active site has three chains, two of which are non-catalytic (LDLR and SRCR)
and the catalytic chain SP (serine peptidase), with a canonical catalytic triad Ser441-
His296-Asp345. In addition, this site has a binding preference for the P1 and P2 positions
[4] and it is an Arg/Lys-specific protease.

2.2 Catalytic Site Analysis

Using the information obtained in the previous step, we analyzed one of the TMPRSS2
structures available in the Protein Data Bank (PDB ID: 7MEQ; resolution 1.95 Å;
Fraser et. al., April 2021) and selected the catalytic site (Ser441-His296-Asp345) using
the PyMOL software (The PyMOL Molecular Graphics System, Version 1.2r3pre,
Schrödinger, LLC.) and Fig. 1, below, was generated.

2.3 Catalytic Site Analysis

From the structure, we took the residues that were up to 5 angstroms away from the
catalytic site and then submitted the 7MEQ structure and the selected residues to the
Propedia tool [http://bioinfo.dcc.ufmg.br/propedia/]. Propedia is a database that permits

http://bioinfo.dcc.ufmg.br/propedia/
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Fig. 1. Structure of the serine protease TMPRSS2 (PDB ID: 7MEQ).

clustering, searching, and visualizing of protein-peptide complexes according to varied
criteria. Adding these residues up to 5 angstroms from catalytic site as criteria, this tool
returned 127 peptides that have the pattern of binding to this site. A crucial point is
that we know that the resulting peptides are candidate inhibitors and are not cleaved
by the enzyme because the peptides selected through Propedia are already found in
crystallographic files, so they were not cleaved by the enzyme.

2.4 Sequence Filtering

To filter the best sequences, some criteria were defined: (I) have at least 8 residues, (II)
have arginine or lysine (due to protease preference) and (III) have no arginine at the
end of the sequence (may not be an entire peptide). This initial filtering resulted in 37
sequences. Another criterion studied was the correspondence of the sequence with the
sequence of aprotinin, a known serine protease inhibitor, through a pair-wise alignment
with each of the peptides. This filtering was done by taking those alignments that had
at least 3 matches with the sequence of the aprotinin loop that binds to TMPRSS2 and
results in its inhibition [8]. This second filtering resulted in 11 sequences.

2.5 Molecular Docking

For the binding analysis of each of the 11 selected peptides with TMPRSS2, the
7MEQ structure and the 11 sequences were subjected to molecular docking by HPEP-
DOCK [http://huanglab.phys.hust.edu.cn/hpepdock/] (the two smallest sequences), and
by HDOCK [http://hdock.phys.hust.edu.cn/], with the inclusion of the protease active
site as a parameter. 100 docking models were generated for each of the sequences,
obtaining a total of 1100 files.

http://huanglab.phys.hust.edu.cn/hpepdock/
http://hdock.phys.hust.edu.cn/
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2.6 Filtering the Best Models

This step was made to filter the best models, among the 100 acquired for each of the
ligands. The motivation of the study was that the docking score of each of the models
does not vary significantly, whichmeans that somemodels that were not considered to be
the best, through the score, may be just as good. Thus, in order not to manually analyze
the distance from the residues to the catalytic site of each of the models, a Python script
was created for a final filtering between the docking models. The script was made to run
after data acquisition. Concerning the docking models (Fig. 2, in orange), it opens all
files simultaneously, takes only the rows of carbon (C), oxygen (O), nitrogen (N) and
alpha carbon (CA) atoms, creates an entry for eachmodel with the necessary information
and takes the coordinates of each atom. At the same time (Fig. 2, in blue), it opens the
receptor file, takes the active site coordinates, and calculates an Euclidean distance of
the site with each atom, generating at the end an output file (format.csv) with the best
models based on the shortest distances. A summary of how the script works is shown in
Fig. 2, below:

Fig. 2. Scheme showing how the Python script works to filter the generated docking models.
(Color figure online)

Based on this methodology and the return of the best docking models between the
receptor and each ligand, a visual analysis was performed using PyMOL. The chosen
ligands can be seen in Table 1 and Fig. 3 (results).

3 Results

Our script returned the 10 best models (out of 100) of each of the 11 peptides based
on the criterion of their atoms being less than 5 angstroms away from the active site.
We analyzed these models using PyMOL Software and selected those who had a loop
containing arginine or lysine in a short distance from the active site. The results are
seen in Table 1, where the six chosen peptides are represented with their respective PDB
ID, name, best structural model and remark score (represents the quality of the model,
according to the HDOCK website). The models can be seen anchored to the protease
in Fig. 3. An important observation is that two of the chosen ones are the same peptide
(Antileukoproteinase) anchored to different structures (PDB ID: 2Z7F, PDB ID: 4DOQ).
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Table 1. Table containing the best inhibitors select using this project methodology.

ID Peptide Best model Remark score

1AN1 Tryptase inhibitor (Hirudo medicinalis) 98 −133.14

1GL1 Protease Inhibitor LCMI II (Locusta migratoria) 81 −68.27

2Z7F Antileukoproteinase (Homo sapiens) 23 −128.87

3FP7 Pancreatic trypsin inhibitor 81 −105.17

4DOQ Antileukoproteinase (Homo sapiens) 23 −128.87

4ZKN Upain-1-W3A (murinised human uPA | Hydrolase inhibitor) 64 −125.454

Fig. 3. Best models anchored to the catalytic site of TMPRSS2 (His296, Asp345 and Ser441):
(A) PDB ID: 1AN1 (shown as pink), peptide: chain B; (B) PDB ID: 1GL1 (shown as purple),
peptide: chains D, E, F; (C) PDB ID: 2Z7F (shown as green), peptide: chain B; (D) PDB ID: 3FP7
(shown as pink), peptide: chain B; (E) PDB ID: 4ZKN (shown as yellow), peptide: chain B; and
(F) all peptides overlapped and represented as cartoons. (Color figure online)
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4 Conclusion

In conclusion, this methodology is able to give visibility to peptides that initially would
not be considered for evaluation, since their scores were slightly under the best 10
models, but they proved to have a better fitting when visualizing the whole structure. In
addition, five peptides were selected as potential candidates for TMPRSS2 inhibitors.

As next steps, we are planning to add negative controls (decoys) in our experiment to
show the difference between peptides that bind to the receptor from peptides that don’t
bind and, going forward, we intend to perform in vitro experiments to analyze the results
obtained in silico.
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Abstract. Knowledge of how small molecules interact with target pro-
teins is of great interest in many fields, especially in drug discovery. Gen-
erally, this knowledge is obtained in time-consuming and very expensive
wet experiments, which emphasises the importance of in silico compu-
tational predictions by docking simulations. There are many available
docking software and among them Autodock Vina is one of the most
accurate and largely applied in many studies. In Autodock Vina, among
the different parameter settings, the Exhaustiveness is of crucial impor-
tance as it is directly related to the accuracy of the resulting poses. In
this work, we investigate the Exhaustiveness parameter in a set of 4,463
protein-ligand complexes (PDBbind2018 refined dataset) for which the
correct ligand pose is known. The quality of the Autodock Vina results
is assessed by the distance between the experimental and the predicted
ligand poses and by the Free Energy of Binding calculated by Autodock
Vina. The main purpose of the analysis discussed in this paper is to help
users define the Exhaustiveness parameter and thus achieve a good trade-
off between simulation time and pose prediction quality. The results sug-
gest that there is no difference whether several simulations with small
Exhaustiveness or a few simulations with high Exhaustiveness setting are
performed. In addition, the results give a good indication of the num-
ber of simulations and Exhaustiveness setting required for meaningful
docking results with AutoDock Vina.

Keywords: Molecular docking · Parameter setting · Autodock Vina

1 Introduction

The achievements in bioinformatics and computational biology in recent decades
are remarkable. They are the result of an interplay of several factors, e.g., the
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tremendous developments in computer hardware and developments in biochem-
istry, as well as mathematical, statistical, and computational methods. One of
the most successful computational methods in these fields is molecular docking,
hereafter referred to simply as docking. Docking is a computational method (in-
silico method) that is routinely used in biology laboratories around the world for
drug screening, protein-protein interactions, and nanomaterial behavior studies,
among other applications [20].

Docking is generally understood to be the computational process of estimat-
ing the affinities and pose of small molecules when they bind to a macromolecule,
protein, or enzyme [12]. Docking experiments have yielded very good results in
many different studies. Interestingly, the computational resources required are
usually small, which is why docking is ubiquitous as a standard procedure prior
to experiments in the wet lab.

There are dozens of protein ligand software packages available. The website
[1] provides a good set of software and web servers for docking. In addition,
some reviews present the most common docking software packages from different
points of view, e.g., Pagadala et al. discuss [16] on rigid and flexible docking,
Su et al. [19] presents a comparative analysis of 25 scoring functions (scoring
benchmark), and Garcia-Godoy et al. [8] address single- and multi-objective
meta-heuristics for molecular docking optimization problems. Among all docking
programmes presented in these reviews, we can highlight as examples of docking
programmes: AutoDock Vina [22], Glide [7], GOLD [11], GlamDock [21], etc.

Among all these options, Autodock Vina is one of the most widely used soft-
ware for protein-ligand docking [2]. The reasons for its popularity are the quality
of results, speed, flexibility in configuration, and the fact that it has a free aca-
demic license. Moreover, Vina scoring showed good results in scoring and screen-
ing power and the best results in docking power in CASF-2016 [19]. In addition,
the scoring function ΔVina RF 20 [23], which proposes a parametrization frame-
work combining the Vina scoring function with Random Forest models, achieves
the best ranking power and scoring power and the second best docking and
screening power [19] in CASF-2016. Since Vina originates from the same lab-
oratory as Autodock, it is well known and usually used as the first option in
docking studies, which is why it is cited in many scientific publications.

The most recent version of AutoDock Vina, 1.2.0, features new implemen-
tation of docking methods, a new mode to fit large number of ligands and an
easier way of implementing python scripts [5].

Despite its popularity and quality, the parametrization of docking in Vina
deserves further investigation. In particular, it is known that the setting of
Exhaustiveness has a large impact on the quality of docking results. Exhaus-
tiveness is a parameter that automatically sets all the parameters of the evo-
lutionary algorithm that Vina applies when searching for the best pose. The
default Exhaustiveness in Vina is 8, increasing this value gives a more consistent
docking result [15]. Therefore, the main goal of this paper is to investigate how
the Vina parameter Exhaustiveness affects the quality of the results. In addition,
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two different simulation scenarios are investigated: (i) few simulation runs and
high Exhaustiveness versus (ii) many simulation runs and low Exhaustiveness.

2 Related Work

The prediction of non-covalent binding between a receptor and a ligand in silico
is known as molecular docking. The main goal of molecular docking is to predict
the pose and binding affinity of these molecules [22].

In [9] it was shown that the time Vina takes to run a simulation does not
depend on the search space volume. That is, the size of the docking box does
not affect the number of runs each simulation performs. The same study also
shows that simulation time varies linearly with the value of Exhaustiveness, as
explained in the Vina manual. Given this behavior, it is expected that for the
same Exhaustiveness, the probability of finding the correct answer is lower when
the search volume is larger.

In [17], the authors discussed that the instructions in the Vina manual are not
sufficient to inform the setting of Exhaustiveness and to ensure reproducibility
of results in the context of peptide docking. However, such an investigation in
the context of small ligands is still pending.

In Devaurs et al. [3], the authors analyzed the effects of distributed and incre-
mental approaches on the accuracy and performance of docking large ligands
(especially peptides). They focused on protein-ligand complexes that could not
be accurately docked using classical tools and compared the results of enhanced
conformational selection by Vina (the Exhaustiveness parameter), running mul-
tiple short instances of Vina in parallel and grouping their results (a proto-
col defined as Multi-Vina), and using a distributed incremental meta-docking
method called DINC [4]).

An interesting question raised in [9] is whether running one simulation with
high Exhaustiveness or multiple simulations with low Exhaustiveness has an
impact on the ability to find the minimum binding energy. The time required in
both scenarios is similar. However, in the first scenario, all simulations have the
same simulation initialization (seed), while in the second scenario, a different
simulation seed is used for each simulation, potentially leading to a greater vari-
ety of responses and thus increasing the chance of finding the minimum binding
energy. Therefore, in the present work, we perform a series of simulations to
better understand which of the previously presented scenarios is best in terms
of finding the correct response, i.e., the best pose.

3 Data and Simulations

3.1 Data

In this study, the complexes (protein+ligand) are selected from the PDBbind
database [14]. The compilation of the dataset is based on protein-ligand com-
plexes with high-quality crystal structures and their reliable binding data. PDB-
bind provides information on various biomolecular complexes along with their
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experimental binding data [13,24]. The PDBbind database provides a subset of
the main base of biomolecular complexes called the “refined set”. In the refined
set, complexes are selected according to rules related to the quality of the com-
plex structure, the quality of the binding data, and the type of complex. Exam-
ples of each of these rules: (i) only non-covalent complexes with a structural
resolution of less than 2.5 and an R-factor of less than 2.5 are accepted; (ii) com-
plexes with extremely low (Kd or Ki > 10 mM) or extremely high (Kd or Ki < 1
pM) binding affinities are not selected; and (iii) only ligand molecules composed
of specific atoms (carbon, nitrogen, oxygen, phosphorus, sulphur, halogen, and
hydrogen) are selected [14].

In this work, we use the PDBbind refined set 2018 which consists of 4,463
protein-ligand complexes (first step in the methodology flowchart described in
Fig. 1).

Fig. 1. Flowchart showing data set pre-processing for analysis.

3.2 Simulations

In this study, we want to investigate how results of Vina are affected by the
choice of Exhaustiveness. In the present case, we have access to the experi-
mental (true) pose of the ligand and therefore know whether or not a docking
simulation finds the correct answer, or at least a good one. Two measures that
are generally available to evaluate a docking simulation are the Free Energy of
Binding (FEB) and the Root Mean Square Deviation (RMSD). In Vina, FEB
is the value obtained from the implemented score function. RMSD in this work
is defined as the average distance between the atoms of two ligands, one from
PDBBind and the other from the Vina result.

Normally, the user only has access to FEB values obtained in a docking
simulation. Therefore, we want to investigate the relationship between FEB and
RMSD to understand to what extent the quality of docking results can be judged
from FEB values alone.

We run simulations for a set of eight values of Exhaustiveness, E = {1,
2, 4, 8, 16, 32, 64, 128}. For each of these values, we repeat the simulations
10 times with different initializations (seeds) totalizing 80 simulations for each
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PDBBind complex. Since we have 4, 463 complexes, the total number of docking
simulations is 357, 040.

3.3 Exhaustiveness

Studies show that the execution time of Vina is linearly proportional to
the Exhaustiveness parameter [10]. According to the Vina manual, increasing
Exhaustiveness leads to an exponential decrease in the probability of not finding
the minimum FEB. This is because increasing Exhaustiveness causes the search
algorithm to run more times in each simulation. On the other hand, setting
Exhaustiveness low can save time and most likely leads to premature results.
Investigating the balance between the execution time and the quality of the
results with respect to the Exhaustiveness setting can contribute to a better use
of computational resources while maintaining the quality of the results.

In general, the minimum value of Exhaustiveness that is accepted as sufficient
to find meaningful results is 128 [6]. However, it is known that in some cases for
Exhaustiveness values below than 128 some results are as good as those obtained
with an Exhaustiveness value of 128 or higher.

3.4 Simulation Box

Docking box definition is a crucial step in docking simulation with Vina. Docking
boxes were automatically defined using the pocket information from the PDBind
files. The pocket information is used to check which of the protein chains interact
with the ligand. Only the interacting chains are kept in the protein files prepared
for docking. Finally, the docking box is defined as the one that includes all the
selected chains.

Preparation of pdb files, conversion to pdbqt format, and selection of inter-
acting chains is done using scripts written in Python and in Pymol [18]. The
ligands are also converted to the pdbqt file type. In addition, all ligands were
considered rigid in all simulations.

4 Results

After running the docking simulations as previously explained, 5 complexes were
found to have incorrect atomic syntax, 3 complexes had a problem with insuffi-
cient memory, and 10 complexes had an unknown error. Thus, we ended up with
4445 biomolecular complexes for which the entire simulation could be completed
without any problems.

Since the main interest here is to study the influence of Exhaustiveness on
the quality of the results, we decided to remove cases where Vina is unable to
find the correct pose. These may include cases where Vina’s scoring function is
unable to find the correct pose of the ligand, or where the searching boxes were
poorly defined. Therefore, we removed all complexes for which more than 50%
(5 or more out of 10) of the simulations with Exhaustiveness set to 128 did not
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achieve RMSD ≤ 3Å. Considering this rule, 943 complexes were removed from
the data set before further analysis was performed. The final data set contains
3, 502 complexes.

The results of all simulations are presented in this section. Figure 2 shows a
boxplot of FEB for each of the Exhaustiveness settings. Each box of the boxplot
represents 35, 020 simulations that are the result of 3, 502 different protein-ligand
dockings, each repeated 10 times. Median, first and third quantiles are shown as
horizontal lines and outliers as dots.

Fig. 2. Boxplot of the FEB for each exhaustiveness.

Figure 3 shows the RMSD distribution for each Exhaustiveness setting in a
boxplot. The number of simulations and the meaning of the graphical elements
are the same as for the FEB boxplot.

Fig. 3. Box plot of the RMSD for each exhaustiveness.

One of the most important questions when running docking simulations with
Vina is whether the search algorithm found a meaningful result. Usually, lower
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FEB values indicate better results from the algorithm, but it may be that the
low value is related to a local minimum rather than indicating a really good
pose of the ligand. In this study, we have proposed a simulation setting where
the RMSD is available to us and thus we can determine whether the simulations
have converged to a good result or not. However, it is important to emphasise
that the RMSD value cannot be used to evaluate docking simulations with new
protein-ligand complexes. Consequently, the quality of the results must be eval-
uated using the FEB value or other clear indicators of the complex under study.
Therefore, we created an analysis shown in Fig. 4 with the intention of revealing
the behaviour of the Vina search algorithm given the different Exhaustiveness.

To produce the Fig. 4 we have assumed: (i) a simulation has found the correct
pose if the resulting RMSD is lower or equal to 3Å; (ii) different number of
simulations are considered: sim_size = {1, 2, 4, 6, 8, 10}. Having established
these conditions, for each set of simulations, we select the one that has the
lowest FEB and verify, using its RMSD whether it has converged or not. Using
the number of converged simulations, we calculate the percentage of the “correct”
simulations. The resulting percentage of correct simulations is listed in Table 1.
Note that only the FEB values are evaluated to find the best simulation to be
selected. This is to mimic the real world, where only the FEB values are available.
In fact we are counting how many times the correct pose will be chosen if the
lowest FEB simulation is selected from a set of simulations.

In Fig. 4, the horizontal axis shows the different Exhaustiveness and the ver-
tical axis shows the percentage of docking simulations that have converged, i.e.,
are “correct” ’. Each line represents a different sized set of considered simulations,
either 1, 2, 4, 6, 8 or 10. For example, considering Exhaustiveness 1, if only one
docking simulation is performed the percentage of correct answers is 25.84% (red
line in Fig. 4). However, if ten simulations are carried out, using the same setting
as before, 60.11% of the answers are correct (purple line in Fig. 4).

Another interesting question in running docking simulations with Vina is
whether it is best to run several small simulations (low Exhaustiveness) or a few
long simulations (high Exhaustiveness). To try to address this question, Table 2
is presented. This table lists only the number of simulations that are multiples
of 2 and whose execution time can therefore be compared to the Exhaustiveness
setting. Each coloured diagonal shows simulations and Exhaustiveness that have
equivalent execution times. That is, running 2 simulations with Exhaustiveness
set to 2 is approximately equivalent to running 4 simulations with Exhaustiveness
set to 1.

5 Discussion

The main objective of the present study is to find out how to properly adjust
the Exhaustiveness in Vina in order to optimize the reliability of the results.
To this end, a series of docking simulations are performed with complexes that
we know Vina can find reasonable poses. These complexes are selected based
on their RMSD from the docking simulations. For some of the complexes, we



104 L. K. S. Cecotti et al.

Table 1. Present the percentage of correct results found when considering different
number of simulations. The number of simulations are represented in lines and the
columns are related with the Exhaustiveness setting. One simulation is correct if its
RMSD ≤ 3 Å.

Sim size % Correct by exhaustiveness
E_1 E_2 E_4 E_8 E_16 E_32 E_64 E_128

1 25.84 33.07 44.66 56.65 67.27 78.10 86.55 94.46
2 34.81 43.66 55.08 67.50 78.18 86.69 93.06 97.87
4 44.94 54.94 67.07 78.21 87.01 93.27 96.72 99.17
6 51.37 62.51 73.16 83.01 91.49 96.29 98.06 99.29
8 56.14 67.10 77.01 86.55 93.71 97.28 98.48 99.29
10 60.11 70.76 80.15 88.83 95.11 97.74 98.71 99.29

Table 2. In this table we keep only the results where the number of simulations are
multiple of 2 and therefore can have their execution time compared with the Exhaus-
tiveness setting. Each coloured diagonal presents simulations and Exhaustiveness that
have equivalent execution times. That is, to run 2 simulations with Exhaustiveness
equals 2 is the equivalent of running 4 simulations with Exhaustiveness equals 1. Inter-
estingly, these results show that there is no clear advantage in choosing to run more
simulations with lower Exhaustiveness or fewer simulations with higher Exhaustiveness
as the number of correct simulations are equivalent in both cases.

Sim size E_1 E_2 E_4 E_8 E_16 E_32 E_64 E_128
1 25.84 33.07 44.66 56.65 67.27 78.10 86.55 94.46
2 34.81 43.66 55.08 67.50 78.18 86.69 93.06 97.87
4 44.94 54.94 67.07 78.21 87.01 93.27 96.72 99.17
8 56.14 67.10 77.01 86.55 93.71 97.28 98.48 99.29

never obtained good RMSD values, indicating that either the Vina function was
not working properly, the search boxes were poorly defined, or there were other
unknown reasons. These complexes were excluded because they likely undermine
the present study.

A summary of the results are presented in Figs. 2 and 3 in the form of box-
plots. As expected, the FEB decreases as the Exhaustiveness is incremented.
This indicates that, in many simulations with low Exhaustiveness, the search
algorithm has not found the correct, or near correct, answer. This is confirmed
by the box plot of RMSD, in Fig. 3, that shows a steady decrease of its values
as the Exhaustiveness increases.

A careful inspection of Fig. 2 shows that for Exhaustiveness greater than 4
there are no outliers above the median and the number of outliers below the
median increases for the Exhaustiveness greater than 16. It is also observed that
the number of cases falling between the first and third quartiles increases with
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Exhaustiveness, while the number of outliers decreases, suggesting that a larger
Exhaustiveness leads to a lower variance in the results.

Interestingly, Fig. 3 clearly shows that even when the Exhaustiveness is set to
128, there are still outliers, indicating that some simulations have not converged.
Thus, we can conclude that setting Exhaustiveness to 128 is not sufficient to
guarantee that all simulations converge to acceptable responses.

Fig. 4. In this graph, five distinct scenarios are explored. Each coloured line represents
a different number of simulations considered, namely 1, 2, 4, 6, 8 and 10. The horizontal
axis represents the Exhaustiveness setting. The vertical axis presents the percentage
of simulations that are found to be correct. A simulation is considered to be correct if
the RMSD is lower or equal to 3Å. The pose chosen to have its RMSD calculated is
the one with the lowest FEB. For example, the red line represents the case where only
1 simulation is run. (Color figure online)

Figure 4 undoubtedly shows that the number of correct predictions increases
monotonically with the Exhaustiveness setting, independent of the number of
simulations considered. Moreover, an increase in the number of simulations incre-
ments the total correct predictions. Considering Exhaustiveness 1, if we run 1
simulation we find only 25.84% of correct simulations, however, if we run 10
simulations the number o correct simulations raises to 60.11%. If we run only
one simulation and change the Exhaustiveness to 128, we achieve a 94.46% of
correct simulations.

In the Table 2 only the number of simulations and the Exhaustiveness that
are multiple are presented. It is known that the time a docking simulation takes
is linearly correlated with the Exhaustiveness, thus, a simulation with Exhaus-
tiveness set to 2 takes twice the time of a simulation with Exhaustiveness set to
1. The table shows clearly that for the same equivalent time, the percentage of
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correct answers is the same. This means that there is no advantage in running
many simulations with small Exhaustiveness over running few simulations with
high Exhaustiveness.

For example, one can run 8 simulations with Exhaustiveness set to 16, or 1
simulation with Exhaustiveness set to 128 and the number of correct answers
will be approximately the same, 93.71% vs 94.46%. In practice, it is easier to
run 1 simulation instead of running 8 simulations.

Other aspect that is clear from observing the Table 2 is that the higher the
Exhaustiveness the better the results.

6 Conclusion

In this study, we carried out a comprehensive set of docking simulations. We
ran docking simulations 10 times for each of the 4, 463 complexes for the ex =
{1, 2, 4, 8, 16, 32, 64, 128} resulting in 357, 040 executions of Vina. To automate
the process of creating the simulation boxes, we have decided to run docking in
a non-optimal scenario. Boxes were placed around the protein chain, or chains,
containing the binding site. Therefore, in most cases, the simulation boxes were
much larger than they needed to be. Although this scenario is not ideal, it is not
a problem for our test as it can be considered a worst case scenario.

Many cases have been excluded from the analysis as they were not likely
to contribute to our main goal. These are the cases where the convergence to a
meaningful pose of the ligand was not obtained in the majority of the simulations
even with the Exhaustiveness set to 128. Such cases are likely to be the ones
where Vina’s scoring function does not perform well.

The results of the simulations show undoubtedly that higher Exhaustiveness
leads to better results. Also, it shows that even with the Exhaustiveness of 128
and 10 simulation repeats, some results have not converged to a good ligand
pose.

Interestingly, Table 2 exemplifies that there is no “free lunch” when it comes
to trading the number of simulations for Exhaustiveness. Clearly, the different
seeds, i.e. initialization, in the various simulations scenario, is ineffective in better
sampling the search space when compared with the few long simulations scheme.
Approximately the same percentage of correct results is only achieved if the same
computational time is expended, it does not make a difference whether the time
is consumed in a few long simulations or many short ones. However, in practise,
it is easier to run few simulations than many, thus, one outcome is that few
simulations with high Exhaustiveness should be favoured.

The main conclusion of the present study is that the higher the Exhaustive-
ness the better. Moreover, it does not make sense to set up and run many small
simulations because few long simulations are very likely to produce equally accu-
rate results. Also, it is suggested that the docking set with an Exhaustiveness
of 128 and with four (4) repetitions, or more, will find the correct pose in more
than 99% of the cases.
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Abstract. Tuberculosis is an ancient and current disease. Resistance to
the prodrug pyrazinamide (PZA), one of the most important antituber-
culosis drug, is often associated with various mutations in the pncA gene
that expresses the metalloenzyme pyrazinamidase (PZase). Some hard
and intermediate acids, such as Co(II), Mn(II), and Zn(II), showed the
ability to partially recover the susceptibility to PZA in resistant strains.
In this work, we investigate the affinity that zinc complexes can achieve
in the PZase protein with a low affinity for pyrazinamide. First, we select
the PZase mutant with the best resistance profile to PZA using the web-
server SUSPECT-PZA and a home-made script. Then we use the tmQM
database, which contains 86,665 metal complexes with crystallographic
structures and quantum descriptors, to search for zinc complexes with
high affinity for PZase. Out of 5867 Zn complexes, 100 with lower dipole
moment, higher hardness and lower HOMO energy were selected. Molec-
ular docking studies using (a) empirical scoring functions (SF) and (b)
SF based on machine learning, allowed us to find complexes such as
BUXZUQ, FEQTUS or DOSQUA that have higher affinity for PZase
than PZA. These Zn complexes not only exhibit higher global reactiv-
ity compared to PZA, but are also very similar to each other, and to
a lesser degree their organic part is also similar to that of PZA. The
compounds we have reported can serve as a basis for the design of new
antituberculosis metallodrugs.
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1 Introduction

Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis (Mtb).
Although it is an ancient disease, it still causes a high mortality rate worldwide,
currently ranking in the top 10. The number of new cases has increased in
recent years due to the COVID-19 pandemic, which is an alarming scenario for
the coming decades [11]. The first-line drugs for the treatment of tuberculosis
are rifampicin, isoniazid, ethambutol, and pyrazinamide (PZA), and one of the
reasons for the failure of TB treatment is resistance caused by the evolution of
bacterial strains [29].

From these first-line drugs, Pyrazinamide (PZA) is one of the main as it can
shortening TB therapy and kill persistent strains that other drugs cannot, for
this reason, it is recommended by the WHO, even in the treatment of multidrug-
resistant TB [32]. PZA is converted to pyrazinoic acid (POA), in the cytoplasm
of Mtb by hydrolysis with the enzyme pyrazinamidase (PZase). POA is the active
species against Mtb and has the ability to cross the mycobacterium membrane
in a repetitive cycle of entry (by passive diffusion, like H-POA) and exit (by
efflux system yet to be identified, like POA anion). In this way, it acts as a
proton internalizer, which acidifies the cytoplasm, accumulates POA and alters
homeostasis in permeability and transport through the membrane, leading to
cell death [27]. Other pharmacological targets in Mtb are ribosomal protein S1
(RpsA) and the aspartate decarboxylase enzyme (PanD). PZA resistance genes
have been reported in panD, rpsA and mainly in pncA of Mtb encoding PZase,
however, the mechanisms of action and of resistance to PZA in Mtb are incom-
pletely understood [34].

In wild type PZase, (a) ASP8, LYS96, and CYSs138 form the catalytic triad;
(b) TRP68 and PHE13 are the substrate binding residues and; (c) ASP49, HIS51
and HIS71 are the iron binding amino acids. Various mutations in (b), (c) and
neighboring amino acids are associated with resistance to PZA, due to the alter-
ations to bind to the substrate or due to the loss of the Fe2+ cation that affects
the catalytic cycle to produce POA. Because of this PZA resistance in Mtb, new
drug candidates are needed today [19].

In vitro studies show the recovery of susceptibility to PZA when PZase coor-
dinates with Co(II), Mn(II) or Zn(II) [24,26]. Du et al. [8] had obtained crystals
of PZase with Zn(II) in Pyrococcus Horikoshii. Similarly, crystals of Zn(II):Fe(II)
1:1 were obtained in PZase from Acinetobacter baumannii and PZase from Mtb
with Fe(II) [10]. According to recent studies, some metallochaperones, such as
Rv2059, could be the in vivo deliverers of Zn(II) [27]. Since PZase activity
depends on metal ions, some studies have reported new metallodrugs with poten-
tial antituberculosis activity [6,7,17,22]. At the catalytic site, the metal-oxygen
distance decreases with increasing metal charge, i.e., with increasing Pearson
hardness. This leads to an increase in dipolar moment, acidity, and probably
production of POA in the catalytic cycle [23]. If the Zn cation can improve the
susceptibility of the pncA mutant, it is interesting to know what binding affinity
it can reach in the active site of the PZase and how its mode of interaction is.
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Protein-ligand molecular docking technique is widely used to predict the
binding/conformation modes of a small molecule at its target receptor binding
site and to estimate the affinity of this complex. Scoring Functions (SF) are
functions used to estimate the binding energy of each pose, and can be classified
into four categories: physics-based, empirical, knowledge-based and machine-
learning-based [16,28]. There is a particular interest in machine learning based
SF because they offer improvements in predictions compared to the other classes
of SF [2,28,31]; in general, these models are proposed using a large number of
descriptors and trained using methods that are not necessarily linear [16].

RFL-Score is a machine-learning-based scoring function inspired by various
works available in the literature [14], its training set is made up of 5273 experi-
mental complexes and 3773 decoys obtained from public databases, it uses 160
molecular descriptors as input data calculated using open-source software (Bio-
phyton, DSSP, BiNANA, PaDEL-Descriptor, RDKit 2D/3D, MSMS, Autodock
Vina); its model is trained using the Random Forest algorithm of the Scikit-learn
software, where the hyperparameters max depth, max features and n estimators
are optimized with GridSearchCV; finally, RF-Score is validated using CASF-
2016, obtaining the following results: 0.812 R (Scoring Power), 0.696 p (Ranking
Power), 86.7% (Docking Power) and 28.1% (Screening Power) [3].

Therefore, in this work we investigate the affinity that zinc complexes can
achieve in the PZase-mutated protein with a low affinity for PZA. Ligands were
selected from a database of transition metal complexes and the PZase-mutated
protein from SUSPECT-PZA [12]. Docking simulations were performed using
Schrodinger 2021-3 suite and binding affinity was assessed using Glide and RFL
score. The proposed methodology and results can serve as a starting point for the
search for metallodrugs based on zinc complexes against resistant strains of Mtb.
The paper is organized as follows: Sect. 2 describes the material and methods,
Sects. 3 and 4 present and discuss the results, and Sect. 5 draws conclusions and
presents future work.

2 Material and Methods

Figure 1 summarizes the proposed methodology for this work.

Fig. 1. Flow chart of the proposed methodology. tmQM: transition metal Quantum
Mechanics Database, EDA: exploratory data analysis, Kd: dissociation constant.
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2.1 Obtaining the Data

The first step is to obtain the structures of the receptor and ligands. The struc-
ture of the wild type PZase (Pzase-wt) was obtained from the Protein Data Bank
(3PL1, 2.2 Å) [20] and that of the mutant PZase (PZase-mut) was obtained using
the web-server SUSPECT-PZA [12].

To select Pzase-mut, we use an in-house developed script to search PZase
mutant candidates in SUSPECT-PZA varying key amino acids in the binding
site and possible mutations. This script compiles all the output parameters of
the SUSPECT-PZA in a CSV file for each mutation and downloads the struc-
tures in PDB format of the proteins. Of the mutant proteins with better sus-
ceptibility/resistance indicators, the one with lower affinity (more positive dock-
ing score) for PZA than PZase-mut was selected. The chosen PZase-mut 3D
structure (F13G) is available at github.com/combilab-furg/Jesus, as well as the
Python codes used for the exploratory data analysis (EDA) and others on this
step.

The set of Zn complexes was obtained from the transition metal Quan-
tum Mechanics (tmQM) data set [4]. tmQM comprises 86,665 transition metal-
organic mononuclear complexes extracted from Cambridge Structural Database
(CSD), including Werner, bioinorganic and organometallic complexes with
closed-shell, formal charge in the range {+1, 0, −1}e, Cartesian coordinates,
optimized structures at the GFN2-xTB level [5] and eight quantum descriptors:
Electronic energy, (2) Dispersion, (3) Dipole Moment, (4) Metal Charge, (5)
Highest Occupied Molecular Orbital Energy, (6) Lowest Unoccupied Molecular
Orbital Energy, (7) HOMO-LUMO Energy ou energy gap and (8) Polarizability.

Since PZA is not found within tmQM, its optimized 3D structure was cal-
culated with Gaussian09 with B3LYP/6-31G(d,p), in implicit aqueous solvent.
This material is available at doi.org/10.19061/iochem-bd-6-150.

2.2 Exploratory Data Analysis About Ligands

First, of the 86,665 tmQM complexes, we selected all the Zn complexes (5,867).
Then, we used Python libraries (Pandas, Numpy, Matplotlib and Statsmodels)
to visual inspection and preprocessing. This step is important to understand
the descriptors distribution of this data set. Finally we selected Zn complexes
considering the optimal values of the 5 descriptors associated with susceptibility
recovery (polarizability ↓, dipole moment ↓, energy gap ↓, HOMO energy ↓ and
metal charge ↑). Of the final Zn complexes list, we arbitrarily selected the first
100 Zn complexes with the best profile for the next stage.

2.3 Molecular Docking

The Schrodinger 2021-3 suite was used for the molecular docking simulations
[1,9,21,33]. The receptors Pzase-wt and PZase-mut structures were pretreated
using Protein Preparation Wizard. Crystallized waters were removed from the

https://github.com/combilab-furg/Jesus
https://doi.org/10.19061/iochem-bd-6-150


Zinc Complexes with High Affinity in PZase 113

Pzae-WT and a pH of 6.0 was adjusted for both structures with PropKa (accord-
ing to the in vitro studies performed for Mtb). In addition, the energy of the
system was minimized with the force field OPLS4. The box was built using
Receptor Grid Generator, centralized in the catalytic triad, using an inner box
of 10 Å and an outer box of 10 Å. Formal charges on the coordination bonds were
performed manually with the zero-order bonds to metal module. Since the Zn
complexes do not require structural optimization because they are crystallized
structures, they were not treated in LigPrep. Glide in extra precision mode was
used for docking the Zn complexes and the Ligand Interaction Diagram module
to visualize the types of intermolecular interactions.

2.4 Docking Descriptors and pKd RFL-Score

The final complexes (Zn complex - PZase-mut) obtained from docking simula-
tions were converted to mol2 (for the Zn complexes and the control PZA) and
PDB/FASTA (for the PZase and PZase-Mut) file formats. These files were used
to generate 160 molecular descriptors (Binana, RDKit 2D and 3D, PaDEL, Delta
Vina, etc.) and predict the negative logarithm of the protein-ligand dissociation
constant (pKd) using RFL-score. This SF was developed in our research group
and is available at github.com/combilab-furg/rfl-score v1 [3]. Finally, Lisica was
used to calculate the similarity index between the ligands [15].

3 Results

3.1 Exploratory Data Analysis for Ligands Selection

For an overview about the quantum descriptors of the total Zn complexes from
tmQM, these data were normalized and plotted. The violin plot shows that
the data density (y-axis) of each property is concentrated in one or at most
two numerical values (Fig. 2). HOMO and LUMO mainly populate intermediate
values and the high data dispersion in HL gap facilitates the selection stage of
complexes with higher global reactivity.

The correlation matrix presented in Fig. 2 shows a higher positive correlation
when it tends toward red (1.00) and a higher negative correlation when it tends
toward blue (−1.00). We found a strong negative correlation between polariz-
ability and electron dispersion (−0.97). This indicates that if, in the population
of Zn complexes in tmQM, we find molecules with low polarizability, it is very
likely that they present high dispersion, that is, resonant effects due to diffuse
electron clouds (π conjugates) [30], as in the case of PZA. We found a good pos-
itive correlation (>0.55) between LUMO energy versus the HOMO and HL Gap
descriptors. That is, Zn complexes in tmQM, with low LUMO, are more likely
to present low HOMO and low HL Gap, therefore, they are expected to present
high global reactivity.

https://github.com/combilab-furg/rfl-score_v1
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Fig. 2. Violin plots (left) and correlation matrix (right) of normalized Zn complexes
descriptors.

3.2 Molecular Docking Simulations

F13G mutation in PZase (PZase-mut) was selected among more than 300 muta-
tions generated in the active site, due to a set of susceptibility/resistance indi-
cators returned by SUSPECT-PZA. The affinity between PZA and PZase-wt
(−4.318 kcal/mol) is reduced when compared with the PZA and PZase-mut
(−3.262 kcal/mol), probably caused by the disappearance of the pi-stacking
interaction between PHE13 and the PZA pyrazine ring.

PZA best pose predicted by docking in the PZase-mut is located in the
vicinity of the iron (Fig. 3a), in a predominantly apolar region (Fig. 3b). The
hydrophobic amino acids VAL7, LEU19, ILE133, ALA134 and CYS138 mainly
stabilize the ligand, although we also found two hydrogen bond receptors, in
ILE133 and ASP8, from the amide group (Fig. 3c). In Fig. 3d we present the con-
tribution in the interaction energy that goes from −7.37 in blue to 1.38 kcal/mol
in red, in this way ILE133 and ASP8 stand out. Analogously in Figs. 3e, 3f,
and 3g, we identify the importance of ILE133 and ASP8, again, in the other
intermolecular interactions.

3.3 Scoring Values: Glide and RFL-Score

We selected the docking results according to Glide BE scores lesser than
−6 kcal/mol (or the highest affinity ligand-protein), totalling nine Zn complexes.
The identifier codes in CSD are: BUXZUQ, EHIBIG, QERMIK, DOSQUA,
FEQTUS, AVOQUX, FIDWUL, UHETUY and FIDWOF (Table 1, columns 1
and 3). Considering only the organic part of these complexes, we found some
similarity between the ligands with PZA, mainly in AVOQUX, BUXZUQ and
DOSQUA (Table 1, column 4). It is also observed that most of the selected com-
pounds have a lower E gap (Table 1, column 5), which indicates that they require
less energy to promote an electronic transition between the frontier orbitals, that
is, they have a higher global reactivity when comparted to PZA.

In order to compare Glide and RFL-Score we normalized the score values
obtained considering PZase-mut as receptor. For RFL-Score, the minimum pre-
dicted pKd was for PZA (2.34) and maximum for the BUXZUQ (4.94) while
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Fig. 3. PZA - PZase-mut: ligand interaction diagrams. These diagrams were generated
by Schrodinger 2021-3 suite.
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Table 1. TmQM hits: pKd (RFL-Score), Binding Energy (BE) Glide, Tanimoto Index
and Energy gap.

Molecule pKd BE (kcal/mol) Tanimoto index E-gap (hartrees)

BUXZUQ 4.94 −7.71 0.40 0.08

EHIBIG 4.48 −6.81 0.07 0.20

QERMIK 4.40 −7.95 0.33 0.11

DOSQUA 4.32 −6.45 0.38 0.09

FEQTUS 4.27 −6.89 0.33 0.11

AVOQUX 4.23 −6.71 0.50 0.16

FIDWUL 3.53 −6.36 0.14 0.15

UHETUY 3.21 −6.40 0.00 0.22

FIDWOF 2.69 −6.46 0.15 0.14

PZA 2.34 −3.26 1.00 0.18*

for Glide score the minimum was also PZA (−3.26) and the maximum was for
QERMIK (−7.95). This comparison is in Fig. 4 where it is possible to notice
proximity in most cases.

Fig. 4. Normalized score comparison between RFL-Score and GLIDE SFs.

From the docking results, we distinguish 3 groups according to the distance
between the Zn in the ligands and Fe in the PZase-mut. The first group presents
their zinc metallic center in a similar position, and a distance to the Fe of PZase-
mut at approximately 5 Å (Table 2). The second group presents Zn also in a
similar position and a distance to PZase-mut Fe between 6–7 Å. Group 3 has
only UHETUY with a distance between Zn and the Fe of 4.362 Å.

Finally, we compared the similarity according to Tanimoto 2D and 3D
(Table 3) of the most similar Zn-complexes. We find BUXZUQ, DOSQUA, QER-
MIK, with a similarity close to 1, according to the Tanimoto 2D index, and
around 0.5, according to the Tanimoto 3D index.
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Table 2. Zn-Fe distances, d(Zn-Fe), in molecular docking

Group 1 Group 2 Group 3

Zn complex Dist Zn-Fe Zn complex Dist Zn-Fe Zn complex Dist Zn-Fe

EHIBIG 5.081 AVOQUX 5.931 UHETUY 4.362

FIDWOF 5.198 BUXZUQ 6.363

FIDWUL 5.007 DOSQUA 6.575

FEQTUS 6.871

QERMIK 6.133

Table 3. 2D and 3D Tanimoto index between tmQM hits

2D BUXZUQ DOSQUA QERMIK 3D BUXZUQ DOSQUA QERMIK

BUXZUQ 1.00 0.94 0.83 BUXZUQ 1.00 0.67 0.65

DOSQUA 0.94 1.00 0.79 DOSQUA 0.67 1.00 0.48

QERMIK 0.83 0.79 1.00 QERMIK 0.65 0.48 1.00

4 Discussion

As reported by Sheen et al. [27], the involvement of some metallic cations such
as Co2+, Mn2+ and Zn2+ can recover susceptibility to PZA. These are hard
acids (Mn2+) and intermediates of Pearson (Co2+ and Zn2+), as well as the
native cation of the metalloenzyme, Fe2+, which is also an acid intermediate.
Since the metal charge is more positive, it polarizes the metal-oxygen bond and
favors the deprotonation of the water molecule coordinated with the metal to
form a nucleophile that catalyzes the enzymatic reaction, i.e., producing more
POA [13,25]. From this perspective, we can justify our selection of compounds
in tmQM by choosing the hardest compounds, i.e., with lower polarizability and
higher metal charge. We also selected compounds with low HOMO energy, or
relative metal-ligand stability and low energy gap, that is, require an amount
of energy comparable to that used by PZA to produce an electronic transition.
Given that the active site of PZase has a predominantly neutral electrostatic
potential surface, and the vast majority of amino acids that stabilize PZA are
hydrophobic, we consider selecting the Zn compounds with the lowest dipo-
lar moment. Therefore, the selected molecules correspond to a filter with low
polarizability, low dipole moment, low energy gap, low HOMO energy, and high
metallic charge.

According to the RFL-score, higher predicted pKd values indicate better
affinity between the ligand and the protein. Therefore, BUXZUQ is the Zn com-
plex with the best affinity for PZase-mut, whereas it is QERMIK for Glide. Such
differences are relative to the score developed by each program, so we do not
expect equal numbers but rather comparable trends. For example, because our
starting point for selecting the mutation in PZase was to obtain a lower affin-
ity compared with the wild-type protein, it was expected that the pKd value
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predicted by RFL-score would give the lowest value of the group, as shown in
Table 1. Of the nine compounds evaluated in Fig. 4, we found that seven had
the expected trend, with FIDWOF and UHETUY being the exceptions, as these
two compounds were expected to have a higher pKd value.

The Tanimoto indices of the organic part of the Zn complexes already give an
idea of the features favoring a good coupling to the active site of the protein with
respect to PZA. On the other hand, all Zn complexes found are between 23 and
29 atoms (with the exception of EHIBIG that has 35) and most contain water
molecules in their first coordination sphere. This is reflected in the distances
between Zn and Fe and in the 3D Tanimoto coefficients for the groups mentioned
in the Results section (Tables 2 and 3).

The proximity or direct intermolecular interactions between the catalytic
triad of PZase-mut and the Zn-complexes found are also important. However,
the effect in this enzyme is not necessarily the conversion of the amine group to
carboxylate. One possible mechanism could be the delivery of drugs coordinated
with Zn for a possible synergistic effect that restores the susceptibility of the
resistant strain to PZA and helps the drug to react with the catalytic triad.
Considering that PZA is a prodrug that exerts its toxicity on Mtb mainly by
altering intracellular pH produced by POA and inhibiting PanD protein, it is
not exptected that these Zn-complexes selected in this work to follow this route.
The mechanism used by these Zn complexes will also depend on their stability,
the possible exchange of ligands with the water in the medium and, of course,
the pH to which they are exposed.

5 Conclusions

In this work we selected the F13G mutation in the PZase enzyme of Mtb (PZase-
mut), which is resistant to PZA, due to its reduced affinity for this drug. We
proposed a methodology to select Zn complexes for PZase-mut using differ-
ent datasets and tools: PDB, SUSPECT-PZA [12], Schrodinger 2021-3 suite
[1,9,21,33], RFL-Score [3], Python and Lisica [15]. We reported nine tmQM Zn
complexes with high affinity for this receptor. These complexes present greater
global reactivity, greater hardness and similarity to PZA (considering only the
organic part), and therefore, they could promote the recovery of susceptibility
to PZA in resistant strains. These complexes can be used to design new metal-
lodrugs against Tuberculosis.

As future work we propose the development of a repository specifically
focused on metallodrugs, which does not currently exist [18]. From this per-
spective, this repository will be used to predict synergistic models (by physi-
cal mixture or by covalent conjugated drugs) that are currently available only
through in vitro experiments [6,17].
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6. Chávez Llallire, N.K., et al.: Śıntesis, caracterización y evaluación de la actividad
biológica de compuestos de coordinación de cobalto con pirazinamida. Rev. Soc.
Quim. Peru 86(3), 315–328 (2020)

7. Coelho, T., et al.: Metal-based antimicrobial strategies against intramacrophage
mycobacterium tuberculosis. Lett. Appl. Microbiol. 71(2), 146–153 (2020)

8. Du, X., et al.: Crystal structure and mechanism of catalysis of a Pyrazinamidase
from Pyrococcus horikoshii. Biochemistry 40(47), 14166–14172 (2001)

9. Friesner, R.A., et al.: Extra precision glide: docking and scoring incorporating
a model of hydrophobic enclosure for protein- ligand complexes. J. Med. Chem.
49(21), 6177–6196 (2006)

10. Fyfe, P.K., et al.: Specificity and mechanism of Acinetobacter baumanii nicotinami-
dase: implications for activation of the front-line tuberculosis drug pyrazinamide.
Angew. Chem. Int. Ed. 48(48), 9176–9179 (2009)

11. Jeremiah, C., et al.: The who global tuberculosis 2021 report - not so good news
and turning the tide back to end TB. Int. J. Infect. Dis. (2022)

12. Karmakar, M., et al.: Structure guided prediction of pyrazinamide resistance muta-
tions in pncA. Sci. Rep. 10(1), 1–10 (2020)

13. Khadem-Maaref, M., et al.: Effects of metal-ion replacement on pyrazinamidase
activity: a quantum mechanical study. J. Mol. Graph. Model. 73, 24–29 (2017)

14. Kundu, I., et al.: A machine learning approach towards the prediction of protein-
ligand binding affinity based on fundamental molecular properties. RSC Adv.
8(22), 12127–12137 (2018)

15. Lesnik, S., et al.: LiSiCA: a software for ligand-based virtual screening and its appli-
cation for the discovery of butyrylcholinesterase inhibitors. J. Chem. Inf. Model.
55(8), 1521–1528 (2015)

16. Liu, J., Wang, R.: Classification of current scoring functions. J. Chem. Inf. Model.
55(3), 475–482 (2015)



120 J. A. Alvarado-Huayhuaz et al.

17. Maldonado, Y.D., et al.: Evaluation of their potential as prospective agents against
mycobacterium tuberculosis. J. Inorg. Biochem. 227, 111683 (2022)

18. Medina-Franco, J.L., et al.: Bridging informatics and medicinal inorganic chem-
istry: toward a database of metallodrugs and metallodrug candidates. Drug Discov.
27(5), 1420–1430 (2022)

19. Njire, M., et al.: Pyrazinamide resistance in mycobacterium tuberculosis: review
and update. Adv. Med. Sci. 61(1), 63–71 (2016)

20. Petrella, S., et al.: Crystal structure of the Pyrazinamidase of mycobacterium
tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS
One 6(1), e15785 (2011)

21. Prasad, H.N., et al.: Design, synthesis and molecular docking studies of novel piper-
azine metal complexes as potential antibacterial candidate against MRSA. J. Mol.
Struct. 1232, 130047 (2021)

22. Quaresma, S., Alves, P.C., Rijo, P., Duarte, M.T., André, V.: Antimicrobial activ-
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Abstract. The description of all living species is an ultimate goal of biology.
Species description, however, is a time-consuming effort that requires specialized
taxonomists in the vast array of existing taxa. With the current rate of habitat
loss, it is plausible to assume more species are becoming extinct than what we
could possibly describe. High-throughput sequencing together with the appropri-
ate bioinformatic analyses is revolutionizing the knowledge regarding microbial
biodiversity, but can also assist in the unraveling of the diversity of higher Eukary-
otes. Here, we describe how transcriptome sequencing, de novo assemble, and
BLAST analyses helped to identify the taxa of an unknown and abundant species
sampled on the banks of a highly contaminated river in Rio de Janeiro, Brazil.
This species is currently being described as a possible new species of Collembola
(Hexapoda). In total, 4.589.437 paired-end 150 bp reads passed quality control
and were used to assemble a de novo transcriptome, resulting in 44.013 transcripts
withN50 of 1.338 bp. Of these assembled transcripts, 4.112 had aBLAST hit, with
Folsomia candida (Collembola) being themost frequent species. Specimens of this
sampled species were sent to a taxonomist specialized in Collembola for accu-
rate taxonomic identification. The sampled specimens are being fully described
and probably belong to a new species ofOrthonychiurus (Hexapoda, Collembola,
Onychiuridae).

Keywords: High-throughput sequencing · Transcriptome · Species identification

1 Introduction

The fundamental question about how many species currently exist on Earth still has no
answer [1, 2]. InAnthropoceneEra, however, answering this question ismore urgent than
ever as the rate of species extinctions is exacerbated, causing the extinction of species
that have never and nowwill never be known to humankind [3, 4]. Forever ignoring these
species and their genetic resources halts not only our understanding of how life evolved
and diversified in this planet, but also our ability to discover new and useful molecules
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and genomic ormetabolic pathways that could benefit humankind from improvements in
the treatment of medical conditions to the discovery of new biotechnological processes.

Traditionally, the discovery of newspecies relies onheavy sampling strategies that are
frequently taxon-oriented and carried out by taxon-specific experts. After sampling, the
shelf life between discovery and description has been estimated to be 21 years [5]. Thus,
it is urgent the need for amore efficient strategy to discover and describe new species. The
current availability of high throughput sequencing and the array of bioinformatic tools
offers an unprecedented opportunity to optimize the efforts to discover and expedite
the description of new species. Here, we describe a successful example of a sample-
to-sequence strategy that generated abundant transcriptomic data from an unidentified
specimen, allowing the fast and accurate submission of the sample to the appropriate
taxon-specific taxonomist, and the ongoing description of a new species.

2 Material and Methods

2.1 Sampling and RNA Extraction

The sequenced species was sampled on the banks of Cunha Canal (22°52′52.9′′S
43°14′28.2′′W) Rio de Janeiro, Brazil, as a by-catch during fish sampling for another
project (ICMBio permit number 75704-1; SISGEN registration number AAB444D).
The abundance of “tiny little worms” among a bunch of mud from this highly and multi-
contaminated canal caught our attention. Due to the large volume of untreated sewage
from the surrounding settlements discharged into the Cunha Canal, we supposed right
after sampling that these “tiny little worms” could be a kind of human intestinal parasite;
so, we decided to preserve few individuals in RNALater in an attempt to identify the
specimens species.

After examining few individuals under a stereoscope, our initial supposition was
ruled out, but we had still almost no clue about what species was that. We then decided
to extract total RNA from a whole individual for transcriptome sequencing. Total RNA
was isolated using the phenol-chloroform method, with TRIzol reagent. The isolated
RNA was quantified using NanoDrop. The quality and integrity of RNA were analyzed
using TapeStation.

2.2 Transcriptome Sequencing and Analysis

The sequencing libraries were prepared using the ILMN Strnd mRNA Prep kit with
individual indexes (IDT ILMN RNA UDI A) and 150 bp paired-end sequencing was
performed on the HiSeq2500 at the Fiocruz NGS Facility RTP01J. The sequencing
files were preprocessed in BaseSpace (Illumina), where fastq files were generated and
adapters trimmed.

The fastq files were transferred to the Fiocruz Bioinformatics Core Facility RPT04A.
The reads were filtered by quality using the Trimmomatic v.0.39 with the follow-
ing parameters: LEADING:28 TRAILING:28 SLIDINGWINDOW:4:28 MINLEN:36.
Reads quality was analyzed using FastQC v0.11.9. The de novo transcriptome was
assembled using the default parameters of Trinity V2.11.0. The coding sequences were
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extracted from the Trinity assembled transcripts using the default parameters of Trans-
decoder. The sequenced reads were mapped using the default parameters of Bowtie2
against the complete set of CDS, and only those CDSwith 50 ormore readsmappedwere
kept for further analysis. This selected set of CDS were subjected to BLASTn searches
against the complete NCBI nr database. Only the BLASTn top hit was retrieved. Using
scripts developed in-house, the species and the gene names were retrieved from the entry
description. A list of unique species names was used to count the number of entries for
each species. Likewise, a list of unique gene names was used to count the number of
entries for each gene. The transcripts annotated as belonging to themost frequent species
were retrieved from the transcriptome and subjected to another round of mapping using
the default parameter of Bowtie2.

2.3 Taxonomical Confirmation

The other sampled individuals were sent to a taxonomist expert in the biological group
suggested by the BLASTn results. Stereomicroscopical analysis before and after depig-
mentation has been performed and a complete description of this putative new species
is ongoing.

3 Results

The data described here is deposited in U.S.A. NCBI databases with the following
accession number: PRJNA860273 (BioProject), SAMN29837419 (BioSample), and
SRR20324169 (SRA).

3.1 Taxa Assignment to an Unidentified Specimen Through Transcriptome
Analysis

The whole-organism transcriptome sequencing of a single individual of an unidentified
species generated more than 7 million reads, of which almost 5 million passed quality
control and were used to de novo assemble more than 44 thousand transcripts, with
an average length of 838 bp (Table 1). In this newly assemble transcriptome, more
than 27 thousand protein coding sequences (CDS) were identified (Table 1). These
CDS were all subjected to BLASTn against the NCBI nr database, resulting in more
than 3 thousand hits (Table 1). The most frequent species among these BLAST top
hits was Folsomia candidaWillem 1902 (Hexapoda, Collembola, Isotomidae) with 174
entries, which had an average nucleotide identity of 76% and an average alignment
length of 686 nucleotides (Table 1). Although the number of entries assigned to the most
frequent species represents only 5% of the total BLAST hits, 70% of the reads used
to assemble the transcriptome mapped in those 174 transcripts assigned to F. candida
(Table 1). TheCDSnot assigned toF. candidawere assigned to hundreds of other species,
including a few other Collembolan species, and together mapped 26% of the reads used
in the assemblage. It is believed most of these reads originated from RNA content
from food sources still available in the digestive tract of the sampled specimen. The low
percentage identity between the assembled transcripts and their respectiveF. candida hits
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suggested the sampled specimen is a different species, while F. candida being the most
frequent species, and the high percentage of reads mapped against BLAST hits assigned
to F. candida indicates the sampled specimen is a Collembola. Therefore, the sampled
specimens were sent to an expert Collembola taxonomist for species identification.

Table 1. Summary of Orthonychiurus sp. nov. (Collembola, Onychiuridae) transcriptome
sequencing and annotation.

Total sequencing reads 7,282,265

Reads after QC 4,589,437

Trinity

Genes 36,197

Transcripts 44,013

N50 1,338

Average length (bp) 838

CDS 27,554

BLAST hits 3,158

Average identity 78%

Average length (bp) 550

Top species BLAST hits 174

Average identity 76%

Average length (bp) 686

Mapping

CDS (all) 96%

CDS assigned to top species 70%

3.2 Species Investigation

The sampled specimen was observed under an appropriate stereomicroscope before
and after depigmentation (Fig. 1) and confirmed to be a Collembola. The designated
ge-nus, however, is not Folsomia candida, a worldwide distributed isotomid species
frequently used as a model organism in ecotoxicological tests. Instead the genus was
conformed as Orthonychiurus, a cosmopolitan genus of Onychiuridae. Due to its usage
in laboratory studies, F. candida is by far the collembolan species most represented
in the existing nucleotide databases. Therefore, the assignment of F. candida as the
most probable species comes with no surprise after BLAST analysis of any unknown
Collembola species. According to the Checklist of the Collembola of the World [6]
there are no known species of Orthonychiurus registered around the geographical area
where these specimens were sampled. Accordingly, the sampled specimens do not fully
match the diagnostic criteria for the already described species of Orthonychiurus. The
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sampled specimen appears to be a new species ofOrthonychiurus and is currently being
investigated for a complete species description.

Fig. 1. Probable new species of Orthonychiurus (Collembola). Photomicrography under light
stereomicroscope of representative individuals of the sequenced. A. Specimens preserved in
ethanol with original coloration; B. Unpigmented specimens in lactic acid (gut contents are evident
due to transparency of the cuticle).

3.3 Evidence of Gene-Specific Expansions in Orthonychiurus sp. nov.

The 174 CDS assembled in the Orthonychiurus sp. nov. transcriptome shared 117
gene descriptions, indicating that different transcripts were annotated as the same gene
(Table 2). The maximum number of CDS assigned to the same gene description was
5. In the case of Kalirin, the 5 assembled CDS showed different lengths (1,500; 1,596;
1,944; 3,303; and 3,651 bp). Kalirin is known to have differently spliced isoforms with
varying lengths [7, 8]. Likewise, other 5 assembled CDS with different lengths (1,872;
3,510; 4,398; 4,812; and 4,938 bp) were annotated as Collagen alpha-1, which is also
known to have differently spliced isoforms with varying lengths [9]. Differently, the 5
assembled CDS annotated as 26S proteasome regulatory subunit 8 had the same length,
1,203 bp. Table 2 shows the annotations assigned to four or more of the assembled CDS.
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Table 2. Descriptions of the BLAST hits assigned to more than four CDS assembled from the
Orthonychiurus sp. nov. (Collembola) transcriptome

BLAST hit description CDS

26S proteasome regulatory subunit 8 (LOC110853827), mRNA 5

collagen alpha-1(I) chain (LOC110856657), mRNA 5

kalirin (LOC110858376), transcript variant X3, mRNA 5

calcium-transporting ATPase sarcoplasmic/endoplasmic reticulum type
(LOC110851249), transcript variant X4, misc_RNA

4

IST1 homolog (LOC110851880), mRNA 4

MAP/microtubule affinity-regulating kinase 3 (LOC110859347), transcript
variant X2, mRNA

4

4 Conclusions

Whole-body transcriptome sequencing and analysis from an initially unidentified organ-
ism expedited the classification of this specimen into a high hierarchy biological taxon,
allowing the submission of this specimen to an experienced taxonomist in the group
to a final species identification or, in this case, to the description of a new species.
We argue that transcriptome sequencing is an efficient tool to complement the current
efforts on genome and DNA barcode sequencing for the discovery and the description
of new species. Transcriptome sequencing generates as much data as genome sequenc-
ing, at a fraction of the cost, while still almost as simple to perform and analyze as
DNA barcode. Database biases toward model species and species from the northern
hemisphere is a current major drawback preventing a more precise species identification
using assembled transcripts. However, the only way to tackle this issue and improve
the representation of non-model species from developing areas of the world is to sam-
ple and sequence species native to these areas. The current abundance of undescribed
species worldwide, but especially in biodiversity hotspots which are frequently located
in developing countries, ensures the success of a sample-to-sequence strategy like the
one adopted here.
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Abstract. Orthologous genes are defined as genes arising from specia-
tion events, being highly conserved in form and function. Several algo-
rithms seek to identify them, but a simple methodology is not avail-
able to determine the quality of their results. This work proposed using
the definition of orthologs and the analysis of phylogenetic trees to
develop a methodology to compare these algorithms. Thirty proteomes
of prokaryotes were obtained, focusing on Leifsonia and Clavibacter gen-
era. The orthogroups were inferred using five graph-based algorithms
(OMA, Orthofinder, PorthoMCL, ProteinOrtho, and Sonic Paranoid).
Frequencies of each homologous group were obtained from the resulting
raw data. The sequences were aligned by MUSCLE software. After that,
the sequences were trimmed by the trimAl software and concatenated
into supermatrices. The percentage of information for each superma-
trix was calculated. The phylogenetic trees were built applying three
tree reconstruction methods: Maximum Likelihood, Bayesian inference,
and Neighbors-joining. The reference trees were made by 16S ribosomal
RNA sequences. Furthermore, gene trees from orthogroups with taxa =
30 were inferred by the Maximum Likelihood methodology. The trees
were compared to the reference tree by topology and Robinson-Foulds
distances. Despite the differences in the quantity of the orthogroups
obtained from each algorithm, no significant differences were observed
between the constructed trees. However, previous work with other dis-
tinct species verified that this methodology may be viable. It is con-
cluded that the proposed methodology is valid, although not to all species
groups. Due to the input data dependencies, this methodology is recom-
mended to be performed for each new data set.

Keywords: Algorithms · Orthologous genes · Phylogenetic trees

1 Introduction

Homologous characteristics are the result of ancestry shared between different
taxa. To understand how homologous genes are related, the term has been refined
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to molecular systematics studies. The terms orthologs and paralogs mean, respec-
tively, genes that have a common ancestry and were separated by speciation
events and genes that originated from duplication events. Genes from horizon-
tal transfer are called xenologs. Gene similarity is a measure commonly used
in methodologies that seek to predict the function and structure of genes. It
is useful, for example, to compare and characterize newly sequenced genes, and
that can be done using orthologous genes. By definition, orthologs tend to retain
equivalent functions in different species, as they are the most similar in terms of
sequence, structure, domain, and function [15].

As they represent speciation nodes, orthologous genes are powerful tools for
constructing phylogenies. The same does not apply to paralogous genes, which
not correctly represent the evolutionary history of the group [1]. After a dupli-
cation event, both genes would likely share the same function, but selective
pressures tend to negatively select one or both genes or diverge them in function
[17]. In literature, it is possible to find several examples of phylogenies based on
orthologs, highlighting the importance of this type of data [14]. Other applica-
tions, such in Healthcare, Biotechnology, and Pharmacology, benefit from their
conservative aspect. They facilitate the discovery of new molecular targets, as
functions of an ortholog can be extrapolated to their homologs, including genes
from different species. TDR Targets, for example, is a biological database that,
among its categories, includes orthologous genes for use in molecular and bio-
chemical studies [32].

Many studies rely on the distinction between orthologs and paralogs, raising
the need for tools to interpret and analyze genomic data. Several computational
algorithms are developed annually to identify orthogroups,i.e.., all genes that
descend from the last common ancestor of a clade of species and originated from
speciation events [22]. Methodologies are commonly divided into two categories:
Graph-based and tree-based. There is no consensus on which one is the best
method. Graph-based methods are based on pairwise genes comparisons across
species, and the least divergent sequences are called orthologs [3]. These algo-
rithms typically have two steps, the construction in which pairs of orthologs are
inferred by similarity score and are connected to edges, and the clustering where
orthogroups are constructed based on the graph structure. Gene similarity score
can be done by bidirectional best hit (BBH) [24], which considers the common
similarity of alignments, or by reciprocal shortest distance (RSD) [33], which
measures their phylogenetic distance. Tree-based algorithms use gene trees with
internal nodes labeled as speciation or duplication events, to determine which
genes are orthologs and paralogs [3]. These input trees are obtained by reconcil-
ing gene and species trees by parsimony strategies. Tree-based methods result in
more information with high statistical power by working simultaneously with all
sequences. However, they need more processing power and depend on reconciled
trees.

Due to its importance for comparative biology, several methods have been
developed to infer orthogroups. Widely used graph-based methods include OMA
[9], Orthofinder [12], PorthoMCL [30], ProteinOrtho [20], and Sonic Paranoid [7],
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each with an approach to overcoming challenges in orthologs discovery such as
duplication events, horizontal gene transfers, insertions and deletions. There-
fore, different behaviors are expected according to the input data, making the
choice of algorithm very important. OrthoMCL, for example, has been reported
as problematic when working with plant genomes due to problems identifying
duplication events [14].

The development of comparative methodologies became necessary to assess
the performance of these algorithms. Since 2010 the Quest for Orthologs (QfO)
consortium has maintained an online benchmarking service, Orthology Bench-
marking (http://orthology.benchmarkservice.org), to compare orthology meth-
ods. The service provides reference proteomes, tests based on phylogeny and
gene function, and data from public submissions [2]. The benchmarking system
is carried out with annually manually cured reference orthogroups [2]. Its results
represent how well the tested methodology manages to retrieve these reference
groups with precision and recall rates. Although annual updates of the QfO
corrects inconsistencies, it is crucial to have a reliable independent methodol-
ogy where the user can define which data will be tested. Emms and Kelly [13],
for example, verified that 39% of the original reference orthogroups [31] were
incorrect.

Phylogenetic trees are essential for comparative studies in biology, includ-
ing genomics. As orthologs represent speciation nodes, it is valid to state that
when comparing phylogenetic trees constructed by orthogroups obtained from
different algorithms, it is possible to infer their quality. Previous work with this
methodology applied to genomes of fungi, mollusks, and arachnids does not indi-
cate a consensus regarding this approach [4,28]. When it comes to prokaryotic
genomes, the only robust data regarding the comparison of results from inference
algorithms of orthologs are found in the Orthologs - Orthology Benchmarking
[2]. In this work, we seek to validate the use of only phylogenetic analysis to com-
pare the performance of different inference algorithms to orthologous genes. For
this, phylogenetic trees built with the orthogroups resulting from each algorithm
were compared.

2 Methodology

To reduce the computational cost, in this work were used only prokaryote pro-
teomes. Thirty species proteomes were selected from the NCBI genome database.
We choose to analyze proteomes of Leifsonia and Clavibacter genera because of
our group focus on these species. Other species were chosen without specific cri-
teria, including bacteria from the Microbacteriaceae family and Gram-negative
bacteria as an external group. From all select species, 16S ribosomal RNA (16S
rRNA) sequences were also obtained from the SILVA database for construction
of the reference trees (ReT) (https://www.arb-silva.de/) [16].

Orthogroups were inferred by five graph-based algorithms listed in Table 1.
This category was chosen for its low computational consumption and for not
depending on reconciled trees. Unless otherwise stated, configurable parameters

http://orthology.benchmarkservice.org
https://www.arb-silva.de/
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from each algorithm have been set as default to compare their standard runs.
We performed the algorithms on a computer with the following configurations:
CPU Intel R©CoreTM i5 8250U (1.60 GHz), 8 GB RAM (DDR4), 1 TB hard disk,
and Linux Ubuntu v.19.

Table 1. Inference algorithms for orthogroups used in this work.

Algorithm Version Observation Reference

OMA 2.3.1 It was inferred OMA Groups/HOGS Dessimoz et al. 2005 [9]

Orthofinder 2.3.3 BLAST + MSA was used as default Emms and Kelly 2019 [12]

PorthoMCL 1.0 None Tabari and Su 2017 [30]

ProteinOrtho 6.0 None Lechmer et al. 2011 [20]

Sonic Paranoid 1.2.6 Due to memory limitations, only half Cosentino and Iwasaki 2018 [7]

of the available threads were used

Frequencies of each type of homolog groups were obtained from the raw out-
put data. For descriptive purposes, co-orthologs were considered paralog groups.
Single copy orthogroups with more than 300 amino acids (AAs) and present in
more than 50% of the species (taxa ≥ 15) were selected for phylogenetic analysis.
These sequences were aligned by MUSCLE software [11] in default parameters.
Poorly aligned regions were eliminated by trimAl software with -automated1
flag [6]. These steps were repeated for the 16S rRNA sequences. The processed
sequences were concatenated into supermatrices. The equation (1) was used to
calculate the percentage of information (Info%) for each tree supermatrix (with
exception of the ReT supermatrix), defined as the ratio between the number of
sites with amino acids (AAS) and the total number of sites (TS), including gaps,
of the tree supermatrix.

Info(%) =
AAS

TS
.100 (1)

The phylogenetic trees, including the ReT, were built applying different
tree reconstruction methods to increase the method robustness. The RAxML
v.8.2.12 [29] was used for the Maximum Likelihood of multiple aligned sequences
method, with GTRGAMMA and PROTCATLG substitution models for ReT
and orthogroups trees, respectively, both with a convergence of 1000 bootstraps
(#autoMRE). Bayesian inference was performed by MrBayes v.3.2 [27] using
the default parameters (generations = 20000 sample frequency = 500, print fre-
quency = 500, diagnostic frequency = 5000 and default run-length = 1000000)
and default substitution models. For the Neighbor-Joining method, MEGA X
[19] was used with default settings, 1000 bootstraps, and distance calculation
by the Poisson correction method. Furthermore, for each single-copy orthogroup
with taxa = 30, the sequences were aligned and trimmed by the respective soft-
ware previously mentioned, and used to construct gene trees by the Maximum
Likelihood method with the previous settings.
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The Robinson-Foulds (RF) distance [26] between the ReT and the
orthogroups/gene trees was calculated by RaxML v.8.2.12. Means and stan-
dard deviations were calculated for the gene trees RF distances. Significance for
differences between means was verified by the ANOVA test with the R aov()
function. For the gene trees, the mean RF distances were compared with the
data available in Quest for Orthologs - Orthology Benchmarking, Species Tree
Discordance Benchmark (2018 public data) for Bacteria, Eukaryota and Fungi.

Qualitative comparisons between the nodes of the phylogenetic trees were
performed using the software FigTree v.1.4.4 (http://tree.bio.ed.ac.uk/software/
figtree/).

3 Results and Discussion

To compare the algorithms presented in Table 1, first we analyzed the quan-
titative parameters of the raw output data. From the total generated data
(Fig. 1a), OMA Groups produced 18,352 homolog groups followed by Pro-
teinOrtho (15,895), PorthoMCL (11,027), Sonic Paranoid (11,526), OMA HOGs
(10,974), and Orthofinder (9,223). Phylogenetic analyses are usually based on
gene families where no duplication events occurred, like in orthogroups. Other
types of homolog groups, such as paralogs and co-orthologs, tend to make analy-
sis difficult because the evolutionary history of the gene is not always congruent
with the evolutionary history of the species [17].

Only orthogroups with one-to-one genes (single copy) were used for the
final analyses. From the total orthogroups (Fig. 1a), the previous proportion
was maintained with OMA Groups inferring 18,352 groups, followed by Pro-
teinOrtho with 14,044 groups and the remaining algorithms below the mean
value. When we observed the total paralog groups distribution (Fig. 1a), the
proportion was inverted concerning the total orthogroups. The algorithms that
inferred the smallest amount of orthogroups are now the most influential paralog
groups, 3,425 paralog groups to Orthofinder, 3,268 to PorthoMCL, and 3,009 to
Sonic Paranoid. In a practical sense, this indicates less helpful information at
the end of the process. For example, approximately 37% of the groups inferred
by Orthofinder are not used in the final analysis. The OMA Groups did not
produce any paralog group, so all the data generated in its pipeline was used in
the phylogenetic construction.

An essential aspect of phylogenetic trees inference is the quality of the input
data. In traditional phylogeny, matrices containing homologous characteristics
shared by large groups of species are preferable to matrices with characteristics
present only in small groups of species, because it decreases the probability of
missing data that can lead to polytomies. A reduced number of polytomies,
which may represent missing or ambiguous data, is desirable to a better results
interpretation. Gaps are defined as sites with no information (missing data) after
sequence alignment. They can be created by sequences size differences derived
from base insertion or deletion. They can also occur due to gene absence in
some species in the analyzed population. So, the selection of orthogroups for a

http://tree.bio.ed.ac.uk/software/-figtree/
http://tree.bio.ed.ac.uk/software/-figtree/
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phylogenetic analysis must pay attention to the number of species represented in
each one to reduce gene absence. This work used orthogroups with at least 50%
of information present (taxa ≥ 15) to reduce the number of gaps and utilize as
much information as possible without compromising the phylogenetic analysis.

Fig. 1. (a) Quantitative description of the results from each algorithm (dotted line
represents the mean value). (b) Characterization of each supermatrix. (c) Curves of
the mean Robinson-Foulds distances of Gene Trees. Orthogroups taxa = 30 (black),
QfO - Species Tree Discordance Bacteria (yellow), Eukaryota (blue) and Fungi (red).
Bars - Standard deviation. For QfO Bacteria, Eukaryota, and Fungi standard deviation
are below 0.02. (Color figure online)

Comparing the total orthogroups with the total orthogroups taxa ≥ 15
(Fig. 1a) a similar proportion were observed. This was expected because more
orthogroups imply more groups with high species representativeness. However,
restricting the observation to orthogroups taxa = 30, the pattern changes
(Fig. 1a). Despite having the highest total orthogroups, the OMA Groups are
the second smallest in groups with taxa = 30, only behind PorthoMCL. A valu-
able classification for orthologs predictor algorithms is their precision and recall
rates [1]. Higher precision implies a lower number of false positives, while higher
recall decreases the rate of false negatives [5]. The OMA Groups have high pre-
cision and low recall, which explains the smaller number of groups with more
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species representation [4]. The other algorithms are near the Pareto frontier, the
definition given to a set of optimal solutions with their respective trade-offs in
multiobjective scenarios, in this case, egalitarian precision and recall rates [2].

Figure 1b presents the characteristics of the supermatrices produced with
the post-processed data from each algorithm. Note that the percentage of infor-
mation contained in each supermatrix is inversely proportional to the total of
orthogroups taxa ≥ 15 (Fig. 1a). This is explained because a higher number of
these groups imply more gaps due to genes absence. The higher the percentage
of information, smaller the number of sites with gaps. The supermatrix with the
highest information percentage is from Orthofinder, which also is the algorithm
with the least amount of orthogroups taxa ≥ 15. It is also noteworthy that the
supermatrix with the lowest percentage of information is OMA Groups, which
has the most significant number of orthogroups with taxa ≥ 15.

By definition, orthologous genes diverge through a speciation event and repre-
sent nodes in phylogenetic trees [15]. Therefore, a tree generated by orthogroups
must present a similar topology to its corresponding phylogenetic tree. Here
Robinson-Foulds (RF) distances, defined as the count of normality of biparti-
tions present in one tree but not in the other, was used as a metric to verify
the difference between the resulting trees of each algorithm. This metric ranges
from 0 to 1, with high values indicating greater differences between the compared
trees. Incongruities were expected due to errors in the input data or the pipeline
itself. Still, they were expected to affect all studied algorithms equally and were
ignored in the final analyses. The results obtained are concerning false positive
rates (precision), not being possible to infer about false negatives rates (recall).

To avoid experimental biases, the phylogenetic trees were constructed using
three distinct methodologies. Qualitatively, the Maximum Likelihood method
produced one distinct tree while the Neighbor-joining and Bayesian inference
methods produced 2 and 3 distinct trees, respectively. These results were con-
firmed by RF distances (Table 2). Distinct results from each tree reconstruc-
tion method were expected, because different substitution models can produce
discordant results. It has also been described that the accuracy of these tree
reconstruction methods varies according to input data [34], with the number of
ambiguous characters, such as gaps, being an important factor to differentiate
their results.

Nevertheless, the tree reconstruction method does not appear to be significant
to impact this study results. Individually the RF distances from each tree recon-
struction method remained constant, except for the Orthofinder and PorthoMCL
algorithms for the Bayesian inference and Neighbor-joining methods (Table 2).
Therefore, for the other algorithms, it is possible to affirm that the lack of dis-
tinct topologies between the trees implies no significant difference regarding the
quality of their generated data.

For Bayesian inference results, the RF distances from Orthofinder and
PorthoMCL differ 3.7% and 7.4% from the other algorithms, respectively, rep-
resenting approximately 1 and 2 distinct internal nodes (Fig. 2). The trees from
both algorithms are identical in the Neighbor-joining method, with their RF
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Table 2. Robinson-foulds distances from reference tree and the orthogroups trees by
each algorithm/methodologies.

Maximum Bayesian Neighbor Average

Likelihood Inference Joining value

OMA Groups 0.259 0.296 0.296 0.284 ± 0.021

OMA HOG 0.259 0.296 0.296 0.284 ± 0.021

OrthoFinder 0.259 0.259 0.259 0.259 ± 0.00

PorthoMCL 0.259 0.222 0.259 0.247 ± 0.021

ProteinOrtho 0.259 0.296 0.296 0.284 ± 0.021

Sonic Paranoid 0.259 0.296 0.296 0.284 ± 0.021

distances varying 3.7% compared to the other algorithms (Table 2). Orthofinder
and PorthoMCL have the smallest supermatrices, but this factor alone does not
explain the more significant similarity of their trees with ReT. Interestingly, the
PorthoMCL tree construct by Bayesian inference was the only one that correctly
inferred the relationship of Clavibacter subspecies [8]. These results are likely
the effect of a combination of factors, such as the supermatrices characteristics,
the quality of the data, and the tree reconstruction method used. However, the
low RF distances from the Orthofinder and PorthoMCL trees do not allow us
to affirm any aspects regarding the quality of their generated data since this
occurred in only two tree reconstruction methods, and this bias cannot be dis-
regarded.

Each supermatrix had different characteristics in terms of percentage of infor-
mation and gap sites. Despite being essential factors in phylogenetic analysis,
the amount of data and gap sites do not always have a deterministic role in the
quality of the final result. The influence of the gaps can vary according to the
data set worked on [18]. The quality of the input data prevails over its quantity
since the increase of non-informative sequences contributes little to the phyloge-
netic analysis [25]. Many high-quality phylogenetic analyses are performed using
only one target gene with few nucleotides, as with 16S rRNA sequences. How-
ever, despite the differences previously verified for the precision and recall rates
of the used algorithms [1,2], which affects the quality of the orthogroups, such
metrics played no significant role in our final results. Deutekom and Snel [10]
demonstrate that even distinct orthogroups can result in the same phylogeny.

For each orthogroups taxa = 30, a gene tree was constructed by the Maxi-
mum Likelihood method. RF distances were averaged for each set of gene trees.
No significant differences were observed between the means (p ¿ 0.05). The mean
values of RF distances of gene trees were compared with those obtained in QfO
- Orthology Benchmarking for Bacteria, Eukaryota, and Fungi 2018 data sets
[2] (Fig. 1c). The chosen benchmark was Species Tree Discordance Benchmark,
whose methodology is similar to the one performed in this study. For the RF
distances of the PorthoMCL, data from OrthoMCL [21] were used.
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Fig. 2. Phylogenetic trees built with Bayesian inference method. ReT - Reference Tree.
A - PorthoMCL. B - Orthofinder. C - Other algorithms. Scale - replacements for every
hundred sites. In red - diverging branches. (Color figure online)

As noted, the QfO values differ from those observed in this study in both
magnitude and mean variation. Comparing the results, it can be seen that the
curve of the gene trees has a linear behavior, which does not occur for the others.
The QfO curves, except for Bacteria, can be approximated by a linear expression
removing the PorthoMCL component. PorthoMCL achieved the highest RF dis-
tance compared to other algorithms, implying great incongruity with its ReT.
Based on these results, it is possible to state that for this dataset (gene trees
and QfO curves), PorthoMCL was the algorithm with the worst performance.

The results obtained for both orthogroups and gene trees suggest that the
proposed methodology is not sensitive enough to detect differences in evolu-
tionarily close groups. Several of the selected species belong to the same family
(Microbacteriaceae) or are closely related (Leifsonia and Clavibacter genera) [23].
Phylogeny reconstructions at the level of genus, order, etc., as performed in this
study, may not be affected by the presence of paralog groups [14]. More diverse
species, as in QfO, can facilitate the identification of differences that algorithms
of orthologs can cause in the topology of phylogenetic trees, as the complexity
of these data makes it more difficult to infer phylogenetic relationships. QfO
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utilizes a set of reference proteomes that are manually cured or derived from
trusted sources [1,31]. Species diversification is a feature present in these refer-
ence databanks.

The sensitivity of the proposed methodology may be directly related to the
input data, either in quality or complexity. Several works with similar approaches
reported favorable and unfavorable results for this method. Shen et al. [28] com-
pared the performance of 3 inference algorithms of orthologs using 332 budding
yeast genomes, resulting in phylogenies with approximately 10% differences (32
nodes). Altenhoff et al. [4] also verified incongruous topologies when reconstruct-
ing the Lophotrochozoa phylogeny using five distinct inference algorithms. On
the other hand, Kallal et al. [18] used two inference algorithms to reconstruct
the phylogeny of Araneidae family, and no significant differences were identi-
fied in the topologies. Therefore, it is impossible to determine which algorithms
of orthologs is the best for every application. So, it is recommended that this
methodology be performed for each new data set, preferably combined with
other types of analysis, such as those based on conservation of gene function, for
additional information.

4 Conclusion

Despite the quantitative differences in the results, there were no significant dif-
ferences in the phylogenetic analyses. Therefore, for the group of bacteria used
in this work, the inference algorithm of orthologs was not significant for the
phylogenetic reconstruction. However, other works obtained different phyloge-
nies when constructed by orthogroups of different algorithms [4,28]. The group
of species analyzed, in addition to other factors, can be a decisive factor in the
accuracy of the algorithm of orthologs. Evolutionarily closer groups of species,
such as those in this work, may provide orthogroups with greater reliability
compared to groups with evolutionarily distant species.
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16. Oliver Glöckner, F., Yilmaz, P., et al.: 25 years of serving the community with
ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176
(2017). https://doi.org/10.1016/j.jbiotec.2017.06.1198

17. Hellmuth, M., Wieseke, N.: From sequence data including orthologs, paralogs, and
xenologs to gene and species trees. In: Pontarotti, P. (ed.) Evolutionary Biology, pp.
373–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41324-2 21

18. Kallal, R.J., Fernández, R., et al.: A phylotranscriptomic backbone of the orb-
weaving spider family araneidae (Arachnida, Araneae) supported by multiple
methodological approaches. Mol. Phylogenet. Evol. 126, 129–140 (2018). https://
doi.org/10.1016/j.ympev.2018.04.007

19. Kumar, S., Stecher, G., et al.: MEGA X: molecular evolutionary genetics analysis
across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018). https://doi.
org/10.1093/molbev/msy096

20. Lechner, M., Findeiß, S., Steiner, L., et al.: Proteinortho: detection of (Co-
)orthologs in large-scale analysis. BMC Bioinf. 12(1), 124 (2011). https://doi.org/
10.1186/1471-2105-12-124

https://doi.org/10.1093/bioinformatics/btp348
https://doi.org/10.1093/bioinformatics/bty631
https://doi.org/10.1093/bioinformatics/bty631
https://doi.org/10.1099/00207713-34-2-107
https://doi.org/10.1099/00207713-34-2-107
https://doi.org/10.1007/11554714_6
https://doi.org/10.1093/bib/bbaa206
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1093/nar/gkh340
https://doi.org/10.1186/s13059-019-1832-y
https://doi.org/10.1186/s13059-019-1832-y
https://doi.org/10.1093/gbe/evaa211
https://doi.org/10.1093/gbe/evaa211
https://arxiv.org/abs/1903.04530
https://arxiv.org/abs/1903.04530
https://doi.org/10.1038/nrg3456
https://doi.org/10.1038/nrg3456
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1007/978-3-319-41324-2_21
https://doi.org/10.1016/j.ympev.2018.04.007
https://doi.org/10.1016/j.ympev.2018.04.007
https://doi.org/10.1093/molbev/msy096
https://doi.org/10.1093/molbev/msy096
https://doi.org/10.1186/1471-2105-12-124
https://doi.org/10.1186/1471-2105-12-124


Phylogeny Trees as a Tool to Compare Inference Algorithms of Orthologs 139

21. Li, L., Stoeckert, C.J., et al.: OrthoMCL: identification of ortholog groups for
eukaryotic genomes. Genome Res. 13(9), 2178–2189 (2003). https://doi.org/10.
1101/gr.1224503

22. Nichio, B.T., Marchaukoski, J.N., Raittz, R.T.: New tools in orthology analysis: a
brief review of promising perspectives. Frontiers Genet. 8, 165 (2017). https://doi.
org/10.3389/fgene.2017.00165

23. Nordstedt, N.P., Roman-Reyna, V., et al.: Comparative genomic understanding
of gram-positive plant growth-promoting leifsonia. Phytobiomes J. 5(3), 263–274
(2021). https://doi.org/10.1094/PBIOMES-12-20-0092-SC

24. Overbeek, R., Fonstein, M., D’souza, M., et al.: The use of gene clusters to infer
functional coupling. In: Proceedings of the National Academy of Sciences, vol. 96,
no. 6, pp. 2896–2901 (1999). https://doi.org/10.1073/pnas.96.6.2896

25. Philippe, H., Brinkmann, H., et al.: Resolving difficult phylogenetic questions: why
more sequences are not enough. PLOS Biol. 9(3), e1000602 (2011). https://doi.org/
10.1371/journal.pbio.1000602

26. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci.
53(1), 131–147 (1981). https://doi.org/10.1016/0025-5564(81)90043-2

27. Ronquist, F., Teslenko, M., et al.: MrBayes 3.2: efficient bayesian phylogenetic
inference and model choice across a large model space. Syst. Biol. 61(3), 539–542
(2012). https://doi.org/10.1093/sysbio/sys029

28. Shen, X.X., Opulente, D.A., et al.: Tempo and mode of genome evolution in the
budding yeast subphylum. Cell 175(6), 1533-1545.e20 (2018). https://doi.org/10.
1016/j.cell.2018.10.023

29. Stamatakis, A.: RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics 30(9), 1312–1313 (2014). https://
doi.org/10.1093/bioinformatics/btu033

30. Tabari, E., Zhengchang, S.: PorthoMCL: parallel orthology prediction using MCL
for the realm of massive genome availability. BigData Analytics 2, 4 (2017).
https://doi.org/10.1186/s41044-016-0019-8

31. Trachana, K., Larsson, S.P., et al.: Orthology prediction methods: a quality assess-
ment using curated protein families. Bioessays 33(10), 769–780 (2011). https://
doi.org/10.1002/bies.201100062

32. Landaburu, L., Berenstein, A., Videla, S., et al.: TDR Targets 6: driving drug
discovery for human pathogens through intensive chemogenomic data integra-
tion. Nucleic Acids Res. 48(D1), D992–D1005 (2020). https://doi.org/10.1093/
nar/gkz999

33. Wall, D.P., Fraser, H.B., Hirsh, A.E.: Detecting putative orthologs. Bioinformatics
19(13), 1710–1711 (2003). https://doi.org/10.1093/bioinformatics/btg213

34. Yoshida, R., Nei, M.: Efficiencies of the NJp, maximum likelihood, and bayesian
methods of phylogenetic construction for compositional and noncompositional
genes. Mol. Biol. Evol. 33(6), 1618–1624 (2016). https://doi.org/10.1093/molbev/
msw042

https://doi.org/10.1101/gr.1224503
https://doi.org/10.1101/gr.1224503
https://doi.org/10.3389/fgene.2017.00165
https://doi.org/10.3389/fgene.2017.00165
https://doi.org/10.1094/PBIOMES-12-20-0092-SC
https://doi.org/10.1073/pnas.96.6.2896
https://doi.org/10.1371/journal.pbio.1000602
https://doi.org/10.1371/journal.pbio.1000602
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1093/sysbio/sys029
https://doi.org/10.1016/j.cell.2018.10.023
https://doi.org/10.1016/j.cell.2018.10.023
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1186/s41044-016-0019-8
https://doi.org/10.1002/bies.201100062
https://doi.org/10.1002/bies.201100062
https://doi.org/10.1093/nar/gkz999
https://doi.org/10.1093/nar/gkz999
https://doi.org/10.1093/bioinformatics/btg213
https://doi.org/10.1093/molbev/msw042
https://doi.org/10.1093/molbev/msw042


Water Pollution Shifts the Soil and Fish Gut
Microbiomes Increasing the Circulation

of Antibiotic Resistance Genes
in the Environment

Maithe Gaspar Pontes Magalhaes, Marilia Alves Figueira Melo,
Aline dos Santos Moreira , Wim Degrave , and Thiago Estevam Parente(B)

Laboratório de Genômica Funcional e Bioinformática, IOC, Fiocruz, Rio de Janeiro, RJ, Brasil
thiago.parente@fiocruz.br

Abstract. The impact of anthropogenic activities onurban rivers is responsible for
changing the diversity and composition of aquatic species and microorganisms.
In this study, soil and fish (Poecilia reticulata) feaces were sampled from two
sites: the Cunha Canal, a heavily impacted urban river in Rio de Janeiro, and a
reference clean site, to investigate how the Cunha Canal pollution impacts the
microbiota composition and the circulation of antibiotic resistance genes (ARGs).
In total, sequencing reads summed 3 million for the feaces and 9 million for
the soil metagenomes. 67% of the soil and 83% of the fish feaces microbiota at
both sites were classified as Bacteria. The soil microbiota of the reference site was
enrichedwith bacteria of the genusBradyrhizobium and Streptomyces known to fix
nitrogen and to metabolize organic material, while the soil microbiota of Cunha
Canal was enriched with Acidovorax and Dechloromonas known to degradate
pollutants as iron and benzene. The five ARGs detected in the feaces microbiome
fromCunhaCanal are different from the five found in the feaces from the reference
site. 22 ARGs were found in the soil sample of Cunha Canal, while no one was
detected in the soil sample of the reference site. These results show that water
pollution changes the microbiota diversity and increases the ARGs circulating in
the environment.

Keywords: Metagenome · Urban rives · Water pollution

1 Introduction

Urban rivers are impacted by anthropogenic activities, especially by the discharge of
domestic sewage and industrial contaminants, which can affect the diversity of microor-
ganisms and promote the spread of antibiotic resistance genes (ARGs) [1]. The Cunha
Canal, located in the city of Rio de Janeiro, RJ, Brazil, is one example of an urban
river that suffered severe degradation by human activities. This river is surrounded by
industries, slums, and one of the main avenues of Rio de Janeiro.

The associated microbiota is crucial for host development and health and in the sus-
tainability of natural water ecosystems [2]. The continuous assessment of the impacts of
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water pollution on microbial communities of the urban rivers is relevant to public health
policymakers. The aims of this work are to analyze how the pollution of Cunha Canal
impacts the diversity and composition of microbial communities and the circulation of
antibiotic resistance genes in the environment. To achieve these goals, the metagenomes
ofPoecilia reticulata feaces, an invasive fish species in Brazil popularly known as guppy,
and the soil of Cunha Canal were sequenced and analyzed in comparison to fish feaces
and soil from a reference site.

2 Material and Methods

2.1 Sampling and DNA Extraction

Male Poecilia reticulata and soil were sampled at Cunha Canal (22°52′51.3′′S
43°14′26.1′′W), a heavily polluted site on the side of the Fiocruz in Rio de Janeiro,
Brazil, and at Perdido River, a clean site inside the Tijuca National Park (22°55′48.7′′S
43°16′07.8′′W). Fish sampling and handling were authorized by the ICMBio (licenses
75704-1 and 75868-1) and by the institutional ethical committee on the use of animals
(CEUA-IOC, L-027/2019), and the access to genetic material was registered at SISGEN
(AAB444D). Three fish from each site and soil were sampled. The feaces were col-
lected and clustered according to the sample site to the total DNA extraction using the
QIAamp PowerFecal Pro DNA (Qiagen). The quantification and quality analyses of soil
and feaces total DNA were performed at TapeStation (Agilent).

2.2 Metagenome Sequencing and Analysis

DNA libraries were prepared using the Illumina DNA-Prep kit and individualized using
IDT ILLUMINA DNA/RNA index kit. The 150 bp paired end reads of metagenomes
were sequenced at Illumina MiSeq using the MiSeq® Reagent Kit v2 (300 Cycles).
The reads quality control, P. reticulata DNA removal, and the contigs assembling were
performed using the ATLAS pipeline v2.3.0 [3], with metaSpades assembler. Kraken2
v2.1.2 [4] was used for the taxonomic classification, and Resfinder 4.1 [5] for antibiotic
resistance genes searching.

3 Results

The data described here are deposited in U.S.A. NCBI BioProject (PRJNA864791)
with the SRA accession numbers SRR20731319, SRR20731320, SRR20731321,
SRR20731322.

3.1 Metagenomes Statistics

The Poecilia reticulata feaces metagenome samples had 3,849,152 sequenced reads
for the reference site, and 5,841,422 reads for the Cunha Canal. The soil metagenome
samples had 10,173,434 sequenced reads for the reference site and 9,686,094 for the
Cunha Canal. After quality control, about 94% of reads survived and were used to
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metagenomes assemble. A total of 9,476 and 3,237 contigs were assembled for the
feaces metagenome of the reference and of the Cunha Canal sites, with the N50 of 2,319
and 1,280. Around 84% of these contigs were classified as belonging to Bacteria and
15%were unclassified. The soil metagenomes had 13,331 and 15,255 assembled contigs
for the reference and the Cunha Canal sites, with the N50 of 5,747 and 3,815. Around
70% of these contigs were classified as Bacteria, and 30% were unclassified.

3.2 Taxonomic Classification

A total of 26 and 35 bacterial genus were identified in the feaces microbiome sampled at
the reference and at the Cunha Canal sites. Aeromonas veronii, a human pathogen, was
the unique species to be identified in both sites. Most of the bacteria species detected
in the feaces of P. reticulata from the Cunha Canal are related to the degradation of
xenobiotics and other environmental pollutants. Examples of bacteria species identified
in the feaces of fish from the Cunha Canal capable to degrade pollutants are species
of the genus Gordonia (Fig. 1). In contrast, most of the bacteria species identified in
the microbiome feaces of P. reticulata sampled at the reference site are pathogenic, for
example, Citrobacter and Aeromonas (Fig. 1).

The soilmetagenomes of the reference andCunhaCanal sites had 100 and 99 bacteria
genus identified. It’s known that soil has an important role in pollutants degradation and
facilitates the nutrient transformation [6]. The taxonomic classification of microbiota of
the Cunha Canal soil follows the pattern found in the P. reticulata faeces of Cunha Canal

Fig. 1. Relative abundance of the 20 most common bacterial genus in Poecilia reticulata feaces
(A) and soil (B) samples from both sites.
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and are related to the degradation of aromatic compounds and other environmental
contaminants, as well as with bioremediation, for example, the species of the genus
Acidovorax andDechloromonas (Fig. 1).While the ones identified at the soil of reference
site includes bacterias that have significant roles in metabolize organic material and
natural carbon and nitrogen cycles in freshwater, as the ones of the genusBradyrhizobium
and Streptomyces (Fig. 1).

3.3 Antibiotic Resistance Genes

The untreated wastewater discharged in urban rivers contains residual antibiotics, dis-
infectants, and metals that contribute to selection pressure for antibiotic resistance [7],
so it is expected a higher concentration of ARGs in these impacted rivers, than in pris-
tine sites [8]. It was identified five antibiotic resistance genes (ARGs) in the feaces
metagenome of the guppy sampled in Perdido River (Table 1), five different ones in
the feaces metagenome sampled in Cunha Canal (Table 1), and 22 ARGs in the soil
metagenome of the Cunha Canal (Table 1), but no one in the soil metagenome of the
reference site. The ARGs detected in the feaces metagenome of the P. reticulata sam-
pled at Cunha Canal were also identified in the soil metagenome of the same site. These
results corroborate the hypothesis that the pollution discharged in urban rivers increases
the antibiotic resistance genes circulating in these environments.

Table 1. Antibiotic resistance genes identified in the sequenced metagenomes.

ARGs Identity Alignment/Gene
length

Coverage Accession no Phenotype

Reference P. reticulata feaces

fosA 93.9 426/426 100 AEXB01000013 Fosfomycin
resistance

fosA7 93.23 325/423 76.83 LAPJ01000014 Fosfomycin
resistance

cphA1 95.34 537/765 70.19 AY261379 Beta-lactam
resistance

imiH 95.34 537/765 70.19 AJ548797 Beta-lactam
resistance

ampH 98.24 795/795 100 HQ586946 Beta-lactam
resistance

Cunha Canal P. reticulata feaces

qnrS2 99.39 657/657 100 DQ485530 Quinolone
resistance

mph(E) 99.45 724/885 81.81 DQ839391 Macrolide
resistance

(continued)
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Table 1. (continued)

ARGs Identity Alignment/Gene
length

Coverage Accession no Phenotype

qacE 100 282/333 84.68 X68232 Disinfectant
resistance

sul1 99.75 804/840 95.71 U12338 Sulphonamide
resistance

aph(6)-Id 98.75 559/837 66.79 AF024602 Aminoglycoside
resistance

Cunha Canal soil

mef(A) 98.98 1179/1218 96.80 HG423652 Macrolide
resistance

mef(C) 99.92 1224/1224 100 AB571865 Missing from
Notes file

mph(E) 100 885/885 100 DQ839391 Macrolide
resistance

mph(G) 100 885/885 100 AB571865 Missing from
Notes file

msr(E) 100 1476/1476 100 FR751518 Macrolide,
Lincosamide and
Streptogramin B
resistance

aac(6’)-Ib3 99.82 555/555 100 X60321 Missing from
Notes file

aadA5 99.38 648/789 82.13 AF137361 Aminoglycoside
resistance

aph(6)-Id 100 837/837 100 M28829 Aminoglycoside
resistance

aadA1 98.99 792/792 99.62 FJ591054 Aminoglycoside
resistance

aph(3”)-Ib 100 803/804 99.87 AF024602 Aminoglycoside
resistance

catQ 99.24 660/660 100 M55620 Phenicol
resistance

cmlA1 97.94 826/1260 65.55 AB212941 Phenicol
resistance

qnrS2 100 657/657 100 DQ485530 Quinolone
resistance

(continued)
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Table 1. (continued)

ARGs Identity Alignment/Gene
length

Coverage Accession no Phenotype

aac(6’)-Ib-cr 99.42 519/519 100 EF636461 Fluoroquinolone
and
aminoglycoside
resistance

qacE 100 282/333 84.68 X68232 Disinfectant
resistance

tet(C) 99.92 1191/1191 100 AF055345 Tetracycline
resistance

sul1 100 840/840 100 U12338 Sulphonamide
resistance

blaVEB-1 98.63 732/900 81.33 HM370393 Beta-lactam
resistance

blaOXA-9 99.15 825/825 100 KQ089875 Beta-lactam
resistance

blaGES-5 100 864/864 100 DQ236171 Beta-lactam
resistance

blaOXA-36 99.78 449/739 60.76 AF300985 Beta-lactam
resistance

blaOXA-10 100 801/801 100 J03427 Beta-lactam
resistance

4 Conclusions

The results presented here corroborate the hypothesis that the Cunha Canal pollution
modulates the microbiota community present in the soil, in the fish gut, and increases
the circulation in the environment of antibiotic resistance genes. It was shown that most
microbial communities present in Cunha Canal are related to contaminants degradation
and bioremediation, unlike what happened in the pristine river. A complete evaluation
regarding the impacts of the CunhaCanal pollution on other vertebrate species, including
humans, living on the banks of this urban river is necessary and will require additional
efforts.
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Abstract. Sorting Permutations by Transpositions is a famous problem
in the Computational Biology field. This problem is NP-Hard, and the
best approximation algorithm, proposed by Elias and Hartman in 2006,
has an approximation factor of 1.375. Since then, several researchers have
proposed modifications to this algorithm to reduce the time complexity.
More recently, researchers showed that the algorithm proposed by Elias
and Hartman might need one more operation above the approximation
ratio and presented a new 1.375-approximation algorithm using an alge-
braic approach that corrected this issue. This algorithm runs in O(n6)
time. In this paper, we present an efficient way to fix Elias and Hartman
algorithm that runs in O(n5). By comparing the three approximation
algorithms with all permutations of size n ≤ 12, we also show that our
algorithm finds the exact distance in more instances than the previous
two algorithms.

Keywords: Genome rearrangements · Transpositions · Time
complexity analysis

1 Introduction

Genome rearrangements are genetic mutations that affect one or more segments
of a genome, such events are widely used in comparative genomics to estimate
the evolutionary distance between organisms, which is the smallest number of
rearrangement events capable of transforming one genome into another. Reversal
and transposition events are among the most studied rearrangement events in the
literature. The reversal inverts a segment of the genome, changing the position
and the orientation of genes in the affected segment. The transposition exchanges
the position of two adjacent segments of the genome.

There are different ways to represent a genome, and in the genome rearrange-
ment field the representation by permutations is the most accepted. Each gene
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is mapped into an element of the permutation, and it is assumed that each gene
is unique.

The Sorting Permutations by Transpositions problem (SbT) was introduced
by Bafna and Pevzner [1], and the best-known approximation algorithm, pre-
sented in 2006, has an approximation factor of 1.375 [7]. In 2012, Bulteau et
al. showed that this problem is NP-hard [2]. Even before the complexity proof,
several approximation algorithms were presented for the problem [1,10], and
most of them were based on a structure called cycle graph. In addition to
the algorithms, heuristics have been developed to improve the practical per-
formance [4,5]. Heuristics tend to improve the practical results, but as a draw-
back may end up significantly increasing the running time of the algorithms.
The look-ahead is an example of such heuristics [6], which works similarly to
a breadth-first search with a depth limitation parameter. The running time of
the look-ahead with a minimum level of search is O(n6), but it can increase
depending on the value adopted for the depth limitation parameter.

The 1.375 algorithm of Elias and Hartman [7] rely on a process that trans-
form the given permutation into a simple permutation and runs in quadratic
time. After the transformation, the next step of this algorithm is to apply what
it is called a (2, 2)-sequence on the permutation to guarantee the approximation
factor. However, a recent study [9] pointed out that this search must be done
before the simplification process, since the input permutation π may have this
sequence but not the simple permutation generated from π by the Elias and
Hartman algorithm. The same researchers presented a new algorithm that guar-
antees the 1.375 approximation factor using an algebraic approach, and it makes
an exhaustive search for a (2, 2)-sequence that takes O(n6) time.

In this paper we present a more efficient way to check if there is a con-
figuration in the cycle graph that allows the use of a transposition called 2-
transposition, which is necessary for the (2, 2)-sequence. Such transposition is
fundamental to obtain an algorithm for the SbT problem that guarantees an
approximation factor of 1.375. Through this improvement, we present a O(n5)
algorithm for the SbT problem.

This work is organized as follows. Section 2 introduces the cycle graph struc-
ture and presents important definitions. Section 3 shows an efficient way to check
if there is a 2-transposition in the cycle graph. Section 4 presents an improved
approximation algorithm for the SbT problem, while Sect. 5 shows the practical
results. Lastly, Sect. 6 concludes the paper.

2 Sorting Distance and the Cycle Graph

In genome rearrangement problems, we model a genome as a permutation π =
(π1 π2 . . . πn), such that each element represents a gene.

A transposition τ(i, j, k), with 1 ≤ i < j < k ≤ n + 1, is an operation
that exchange the position of the segments πi, . . . , πj−1 and πj , . . . , πk−1. We
represent the application of τ in the permutation π as π · τ = (π1 . . . πi−1

πj . . . πk−1 πi . . . πj−1 πk . . . πn).
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The sorting distance d(π) is equal to the minimum number of transpositions
necessary to turn π into the identity permutation ιn = (1 2 . . . n).

Given a permutation π, we extend this permutation by adding the elements
π0 = 0 and πn+1 = n + 1. The cycle graph of a permutation π is the undirected
graph G(π) = (V,Eb∪Eg), where V = {+π0,−π1,+π1,−π2,+π2, . . . ,−πn,+πn,
−πn+1}, Eb = {(−πi,+πi−1) | 1 ≤ i ≤ n + 1}, and Eg = {(−i, (i − 1)) | 1 ≤ i ≤
n + 1}.

We call Eb as the set of black edges, which are edges that connect vertices
using the position of their respective elements in π, and Eg as the set of gray
edges, which connect vertices using the position of their respective elements in
the identity permutation ιn.

A black edge (−πi,+πi−1), for 1 ≤ i ≤ n + 1, has label i. When drawing the
cycle graph G(π), we follow a convention such that the vertices are placed in
an horizontal line, following their positions in π. The black edges are drawn as
horizontal lines such that the black edge with label 1 is the leftmost black edge
and the one with label n + 1 is the rightmost black edge. Also, gray edges are
drawn as arcs.

Since each vertex in G(π) is incident to one black edge and one gray edge,
the graph has a unique decomposition into alternating cycles, that is, a cycle in
which any two consecutive edges are of distinct type (black edge and gray edge).

We say that an m-cycle is a cycle with m black edges and m gray edges. We
say that an m-cycle is even if m is even; otherwise, we say it is odd. We represent
a cycle by the list of its black edges labels: C = (b1, b2, . . . , bm), where this list is
constructed by traversing the cycle starting from the rightmost vertex using the
black edge incident to it, that is, b1 is the label of the black edge (−πi,+πi−1)
that is the rightmost black edge of C and it is traversed from right (−πi) to left
(+πi−1).

The number of cycles and the number of odd cycles in the graph G(π) is
denoted by c(π) and codd(π), respectively. For a transposition τ , we use Δc(π, τ)
to denote the change in the number of cycles caused by applying τ to π, that is,
Δc(π, τ) = c(π · τ) − c(π). Similarly, we have Δcodd(π, τ) = codd(π · τ) − codd(π).
Figure 1 shows an example of the cycle graph built from the permutation π =
(5 4 1 6 3 2).

Fig. 1. Cycle graph created from the permutation π = (5 4 1 6 3 2). Solid and dashed
lines represent the black and gray edges, respectively. Also, notice that the black edges
take a horizontal position while the gray edges form an arc over the vertices. The value
�, below each black edge, indicates the label assigned. (Color figure online)
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In Fig. 1, the graph G(π) has three cycles (c(π) = 3), two cycles are even and
one is odd (codd(π) = 1). The cycles in G(π) are: C1 = (3, 1), C2 = (6, 2, 4), and
C3 = (7, 5). Note that C1 and C3 are even cycles while C2 is an odd cycle.

Lemma 1 (Bafna and Pevzner [1], Lemma 2.3). For any permutation π
and transposition τ , we have that Δcodd(π, τ) = {−2, 0, 2}.
Lemma 2 (Bafna and Pevzner [1], Theorem 2.4). For any permutation π,
we have that d(π) ≥ n+1−codd(π)

2 .

We say that τ is a m-transposition if Δcodd(π, τ) = m. For instance, a 2-
transposition is a transposition that increases the number of odd cycles by 2. A
(2, 2)-sequence is a sequence of 2-transpositions that can be applied consecutive
to π, that is, τ, τ ′ is a (2, 2)-sequence if Δcodd(π, τ) = Δcodd(π · τ, τ ′) = 2.

We classify cycles as oriented and non-oriented. A cycle C = (b1, b2, . . . , bm)
is non-oriented if b1 > b2 > . . . > bm. Otherwise, C is said to be oriented.
In Fig. 1, the cycle C2 = (6, 2, 4) is oriented while the cycles C1 = (3, 1) and
C3 = (7, 5) are non-oriented. Note that an oriented cycle must have at least
three black edges since, in the cycle representation, we have that the label of the
rightmost black edge is the first to be traversed.

Three black edges bi, bj , and bk, with i < j < k, from the same cycle
C = (b1, . . . , bm) form an oriented triple if one of these conditions hold: (i)
bi > bk > bj ; (ii) bj > bi > bk, or (iii) bk > bj > bi. Bafna and Pevzner [1] showed
that every oriented cycle has an oriented triple. Furthermore, they showed that
a transposition τ has Δc(π, τ) = 2 if, and only if, it acts on an oriented triple.

We say that an oriented triple is valid if the transposition acting on it is
also a 2-transposition. That is, a transposition acting on a valid oriented triple
increases both the number of cycles and the number of odd cycles by 2.

A simple permutation is a permutation such that its cycle graph has only
cycles of size at most 3. Due to this characteristic, the algorithm proposed by
Elias and Hartman [7] is quadratic, although it only works in permutations that
were already simple permutations when given as input.

3 Finding 2-Transpositions in Quadratic Time

In this section we prove properties about 2-transpositions in even and odd cycles,
which are used to create a quadratic time algorithm to find a 2-transposition,
if it exists. The following lemma characterize the types of cycles affected by a
2-transposition.

Lemma 3 (Christie [3], Lemmas 3.2.5 and 3.3.1). If there is a 2-transposi-
tion applied to black edges bi, bj , and bk, then either these black edges belong to
two even cycles or these three black edges belong to the same oriented cycle.

When there are even cycles on the graph, Christie [3] showed how to find
a 2-transposition in linear time. In the following Lemmas, we describe more
properties of 2-transpositions affecting oriented cycles.
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Lemma 4. If there is an oriented cycle C that is even, then there is a valid
oriented triple bi, bj, and bk of C = (b1, b2, . . . , bm), with i < j < k, such that
k = j + 1.

Proof. Bafna and Pevzner [1, Lemma 2.3] showed that every oriented cycle C
has an oriented triple bi, bj , and bk, with i < j < k, such that k = j + 1. A
transposition applied to these black edges transform C into three cycles such
that one of them is a unitary cycle. Since C is an even cycle, we know that one
of the other cycles must be odd, which results in two odd cycles being added by
this transposition.

Lemma 5. If there is a valid oriented triple bi, bj, and bk of an odd cycle
C = (b1, b2, . . . , bm) such that i < j < k and bi > bk > bj, then there is a valid
oriented triple bi′ , bj′ , and bk′ of C, with i′ < j′ < k′, such that i′ ∈ {1, 2} or
k′ = j′ + 1.

Proof. Note that a 2-transposition affecting only one cycle also increases the
number of cycles in the cycle graph by two. This transposition creates three
cycles D, D′ and D′′, such that D has the gray edges from the path that goes
from bi to bj , D′ has the gray edges from the path that goes from bj to bk, and
D′′ has the gray edges from the path that goes from bk to bi. Therefore, the
size of these cycles are |D| = j − i, |D′| = k − j, |D′′| = |C| + i − k. For a
2-transposition affecting an odd cycle, we have that |D|, |D′|, and |D′′| are odd.
We divide this proof in the following cases.

When i ∈ {1, 2} or k = j +1 we can set i′ = i, j′ = j, and k′ = k as the valid
oriented triple. Otherwise we have that i ≥ 3 and k ≥ j + 3.

If i is odd, then we have that j is even and k is odd. Therefore, b1, bj , and
bk is a valid oriented triple, since b1 > bi by our definition of listing black edges
of a cycle, and j − 1, k − j, and |C| + 1 − k are all odd.

If i is even, then we have that j is odd and k is even. If b2 > bk, then a
transposition affecting b2, bj , and bk is a 2-transposition, since these edges form
a valid oriented triple, and j − 2, k − j, and |C| + 2 − k are odd. If b2 < bk, we
further divide the proof in the following cases.

– If bk−1 > bk > b2, then we have a 2-transposition acting on the valid oriented
triple b1, b2, and bk−1, since b1 > bk−1 > b2. Because k is even, we have that
(k − 1) − 2 and |C| + 1 − (k − 1) are odd, therefore, the three cycles created
by this transposition are odd.

– If bk−1 < bk, then we have a 2-transposition acting on the valid oriented
triple bi, bk, and bk−1, since bi > bk > bk−1, and the created cycles have sizes
(k − 1) − i, 1, and |C| + i − k, which are all odd.

Lemma 6. If there is a valid oriented triple bi, bj, and bk of an odd cycle
C = (b1, b2, . . . , bm) such that i < j < k and bk > bj > bi, then there is a valid
oriented triple bi′ , bj′ , and bk′ of C, with i′ < j′ < k′, such that i′ = 1.

Proof. Note that if i = 1 we can set i′ = i, j′ = j, and k′ = k as the valid
oriented triple. Otherwise we have that i ≥ 2.
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If j is even, then we have a 2-transposition acting on the valid oriented triple
b1, bj , and bk, since in this case k is odd and b1 > bk > bj . Otherwise, j is odd,
and we have a 2-transposition acting on the valid oriented triple b1, bi, bj , since
i is even and b1 > bj > bi.

Lemma 7. If there is a valid oriented triple bi, bj, and bk of an odd cycle
C = (b1, b2, . . . , bm), with i < j < k and bj > bi > bk, then there is a valid
oriented triple bi′ , bj′ , and bk′ of C, with i′ < j′ < k′, such that at least one of
these conditions hold: (i) i ∈ {1, 2}; (ii) j = i + 1; or (iii) k = j + 1.

Proof. Note that if i ∈ {1, 2}, or j = i + 1, or k = j + 1 we can set i′ = i, j′ = j,
and k′ = k as the valid oriented triple. Otherwise we have that i ≥ 3, j ≥ i + 3
and k ≥ j + 3.

If j is odd, then i and k are even. Consequently, we have a 2-transposition
acting on the valid oriented triple b1, bi, and bj (note that b1 > bj > bi).

Since we have many cases to deal when j is even, we are just going to list the
conditions and the corresponding valid oriented triple. From now on, we assume
that j is even and both i and k are odd.

First we consider the black edge b2:

– If b2 > bj , then b2, bi, and bj is a valid oriented triple.
– If b2 < bi, then b1, b2, and bi is a valid oriented triple.

Otherwise we have that bj > b2 > bi. Now consider bi+1, the black edge after
bi. Recall that i + 1 < j and both i + 1 and j are even.

– If bi+1 < bk, then b1, bi+1, and bk is a valid oriented triple.
– If bi+1 > b2, then bi, bi+1, and bk is a valid oriented triple.
– If b2 > bi+1 > bi, then b2, bi, and bi+1 is a valid oriented triple.

Otherwise we have that b1 > bj > b2 > bi > bi+1 > bk. Consider now bj+1,
the black edge right after bj . Recall that j + 1 < k and j + 1 is odd.

– If bj+1 > bi, then b1, bi+1, and bj+1 is a valid oriented triple.
– Otherwise bj+1 < bi, so bi, bj , and bj+1 is a valid oriented triple.

Lemmas 4–7 imply the following.

Corollary 1. If there is a 2-transposition affecting an oriented cycle of G(π),
then there is a 2-transposition applied to black edges bi, bk, and bk of a cycle
C ∈ G(π), with i < j < k, such that at least one of these conditions hold: (i)
i ∈ {1, 2}; (ii) j = i + 1; or (iii) k = j + 1.

Consider now Algorithm 1.

Lemma 8. Given a permutation π, if there is a 2-transposition applied to G(π),
then Algorithm 1 finds a 2-transposition and returns it. Otherwise, the algorithm
returns that there are no 2-transpositions for this permutation.
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Algorithm 1: Search for a 2-transposition
Input: A permutation π
Output: A 2-transposition τ , if it exists, or ∅

1 Construct G(π)
2 if there is two even cycles in G(π) then
3 return the 2-transposition from Lemma 3.2.5 of Christie [3]
4 else
5 for every oriented cycle C = (b1, b2, . . . , bm) in G(π) do
6 for every j ∈ {2, . . . , m − 1} do
7 for every k ∈ {j + 1, . . . , m} do
8 if b1 > bk > bj and j − 1, k − j, and m + 1 − k are odd then
9 return the 2-transposition τ(bj , bk, b1)

10 else if b2 > bk > bj and j −2, k − j, and m+2−k are odd then
11 return the 2-transposition τ(bj , bk, b2)

12 for every oriented cycle C = (b1, b2, . . . , bm) in G(π) do
13 for every i ∈ {3, . . . , m − 2} do
14 for every j ∈ {i + 1, . . . , m − 1} do
15 if bj > bi > bj+1 and both j − i and m + i − j − 1 are odd then
16 return the 2-transposition τ(bj+1, bi, bj)
17 else if bi > bj+1 > bj and both j − i and m + i − j − 1 are odd

then
18 return the 2-transposition τ(bj , bj+1, bi)

19 for every k ∈ {i + 2, . . . , m} do
20 if bi+1 > bi > bk and both k − j − i and m + i − k are odd then
21 return the 2-transposition τ(bk, bi, bi+1)

22 return ∅ � there are no 2-transpositions in G(π)

Proof. According to Lemma 3, the 2-transposition τ is applied to two even cycles
or to an oriented cycle.

If there is a pair of even cycles in G(π) the algorithm will always find a
2-transposition according to Lemma 3.2.5 of Christie [3].

If τ is applied to an oriented cycle C = (b1, b2, . . . , bm), then there is a 2-
transposition applied on a valid oriented triple bi′ , bj′ , and bk′ , with i′ < j′ < k′,
such that i′ ∈ {1, 2} or k′ = j′ + 1 (Corollary 1). Since the algorithm exhaustive
searches for all transpositions applied on edges bi, bj , and bk, with i < j < k,
such that i ∈ {1, 2} or k = j + 1, we have that the algorithm will find a 2-
transposition.

If there is no 2-transposition, then Algorithm 1 return no operation at its
last line.

It takes linear time to construct G(π) at line 1, and the complexity of lines
2 and 3 is also linear, as shown by Christie [3] in the proof of Lemma 3.2.5.
The complexity of the search in lines 5–11 is the following, where c is a constant
related to the operations of line 8 to 11:
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∑

C∈G(π)

|C|−1∑

j=2

|C|∑

k=j+1

c =
∑

C∈G(π)

|C|−1∑

j=2

(|C| − j)c < c
∑

C∈G(π)

|C|2 = O(n2),

since
∑

C∈G(π) |C| ≤ n + 1.
The complexity of lines 12–21 can be shown to be O(n2) in a similar way, so

it follows that Algorithm 1 has a time complexity of O(n2).

4 O(n5) Time 1.375-Approximation Algorithm

In this section we show how to achieve the O(n5) time complexity while guaran-
teeing the 1.375 approximation factor. We first recall that Algorithm 1 cannot
be used to list all possible 2-transpositions of a permutation, although it always
returns a 2-transposition if G(π) admits a 2-transposition.

Consider Algorithm 3, which uses Algorithm 2 to find a sequence of two 2-
transpositions, if it exists, and EH Algorithm, the original 1.375-approximation
algorithm from Elias and Hartman [7].

Algorithm 2: Find a sequence of two 2-transpositions, if it exists
Input: A permutation π
Output: A sequence of two 2-transposition, if it exists

1 Construct G(π)
2 Let z be the number of black edges in G(π)
3 for every i ∈ {1, . . . , z − 2} do
4 for every j ∈ {i + 1, . . . , z − 1} do
5 for every k ∈ {j + 1, . . . , z} do
6 if τ(i, j, k) is a 2-transposition then
7 π′ ← π · τ
8 τ ′ ← Algorithm 1(π′)
9 if τ ′ �= ∅ then

10 return (τ, τ ′)
11 return (∅,∅) � there is no sequence of two 2-transpositions

Algorithm 3: An improved 1.375-approximation algorithm for SbT
Input: A permutation π
Output: A sequence of transpositions τ1, . . . , τr that sorts π

1 (τ1, τ2) ← Algorithm 2(π)
2 if τ1 �= ∅ then
3 π′ ← π · τ1 · τ2 � a sequence of two 2-transpositions exists
4 return (τ1, τ2) + EH Algorithm(π′)
5 else
6 return EH Algorithm(π)

Recall that the main problem of the EH Algorithm (and other proposed algo-
rithms based on it) to guarantee the 1.375 approximation factor is the possible
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overlook of a sequence of two 2-transpositions after transforming π into a simple
permutation π′.

We will first use the Algorithm 2 that searches for a sequence of two 2-
transpositions for π. For each τ generated using all possible values for i, j, and
k, if τ is a 2-transposition the algorithm will apply this transposition and call
Algorithm 1 with the resulting permutation; if Algorithm 1 returns a second
transposition τ ′, then the algorithm returns this pair of 2-transpositions at line
10. If no pair of 2-transpositions exists, the algorithm returns an empty sequence.

Note that line 6 takes O(1) time, line 7 takes O(n) time, and line 8 uses
Algorithm 1 that takes O(n2) time. This algorithm also uses nested loops at
lines 3–5 to search for the first 2-transposition τ(i, j, k) using all possible indices
for i, j, and k. Since lines 6–10 are inside three nested loops, it follows that
Algorithm 2 executes in O(n5) time.

After using Algorithm 2 once at line 1, the Algorithm 3 uses the
EH Algorithm either at line 4 or at line 6 on the resulting permutation. Since
the EH Algorithm takes O(n2) time, it follows that Algorithm 3 has a time
complexity of O(n5).

Since Algorithm 3 guarantees to first apply a sequence and 2-transpositions
for π if it exists, and only after that uses EH Algorithm that transforms the input
permutation into a simple permutation, it is guaranteed that the approximation
factor of Algorithm 3 is also 1.375.

5 Experimental Analysis

In this section, we present the practical results of Algorithm 3. In addition, we
compare it to the results provided by the approximation algorithms presented
by Elias and Hartman [7] and Silva et al. [9] which we will refer to as EH and
SKRW, respectively.

We tested Algorithm 3 in all permutations π of size m ≤ 12 and compared
the results with their exact distances using the GRAAu tool [8]. We will refer
to Algorithm 3 simply as ALG3.

Table 1 summarizes the results provided by the algorithms ALG3, EH,
and SKRW. Columns MAX APPROX and AVG APPROX represent, for
each permutation size group, the maximum and average approximation ratio
observed, respectively. Columns AVG DIST and % OPT SOLUTIONS
show, for each permutation group, the information regarding the average dis-
tance and the percentage of instances such that an optimal solution was reached.

The EH algorithm returned a sequence with an approximation above 1.375
(compared to the exact distance) in 2 instances of size 8, 20 instances of size 9,
110 instances of size 10, 440 instances of size 11, and 1448 instances of size 12.
On the other hand, algorithms SKRW and ALG3 did not return any sequence
with an approximation above 1.333.

Comparing the maximum approximation ratio observed by algorithms
ALG3 and SKRW in Table 1, it is possible to note that, for all the permutation
size groups, the value was the same and not exceeded the ratio of 1.333. Looking
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Table 1. Practical results of algorithm ALG3 compared to algorithms EH and
SKRW in all permutations of size up to 12, excluding the identity permutations ιn.

MAX APPROX AVG APPROX AVG DIST % OPT SOLUTIONS

n EH SKRW ALG3 EH SKRW ALG3 EH SKRW ALG3 EH SKRW ALG3

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100.00 100.00 100.00

3 1.00 1.00 1.00 1.00 1.00 1.00 1.20 1.20 1.20 100.00 100.00 100.00

4 1.00 1.00 1.00 1.00 1.00 1.00 1.6086 1.6086 1.6086 100.00 100.00 100.00

5 1.00 1.00 1.00 1.00 1.00 1.00 2.0924 2.0924 2.0924 100.00 100.00 100.00

6 1.33 1.00 1.00 1.0004 1.00 1.00 2.6063 2.6050 2.6050 99.86 100.00 100.00

7 1.33 1.25 1.25 1.0129 1.0113 1.0014 3.1762 3.1704 3.1311 94.90 95.47 99.40

8 1.50 1.25 1.25 1.0210 1.0183 1.0042 3.7178 3.7076 3.6512 91.64 92.65 98.29

9 1.50 1.25 1.25 1.0301 1.0256 1.0085 4.2796 4.2603 4.1846 86.62 88.54 96.10

10 1.50 1.25 1.25 1.0341 1.0282 1.0125 4.8051 4.7772 4.7032 83.80 86.53 93.94

11 1.50 1.33 1.33 1.0392 1.0321 1.0170 5.3526 5.3157 5.2367 79.40 82.98 90.88

12 1.50 1.33 1.33 1.0415 1.0336 1.0206 5.8694 5.8248 5.7514 76.67 80.91 88.27

at the average approximation ratio values provided by algorithms ALG3 and
SKRW, we can note that in the groups with sizes from 2 up to 6, the record 1.0
was maintained, which means that, for all the instances of these groups, both
algorithms provided an optimal solution (% OPT SOLUTIONS column also
shows this information). Besides, the ALG3 algorithm provided better results
considering the metrics of average approximation, average distance, and percent-
age of optimal solutions reached in the permutation size groups greater than 6.

It is important to note that the percentage of instances in which the ALG3
algorithm provides an optimal solution was greater than 88% for all permuta-
tion size groups. Algorithm SKRW maintains this behavior only for groups of
permutations with a size less or equal to 9. This behavior indicates that ALG3
not only brings an improvement considering the complexity but also from the
practical perspective.

6 Conclusion

In this work, we show a new algorithm to find a sequence of two 2-transpositions
in O(n5) time, decreasing the time complexity of O(n6) of a recently published
algorithm that corrected an issue in the 1.375 approximation algorithm from
Elias and Hartman.

We tested using this new algorithm before using the algorithm from Elias
and Hartman and showed that in the set of permutations of sizes up to 12, this
combination returned the exact distance in more than 90% of the cases, while
the other two algorithms alone returned the exact distance in less than 85% of
all instances each.
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Abstract. Secondary or specialized metabolites play an important eco-
logical role for the producing organisms. Bacteria isolated from soils
are a major source of specialized metabolites. Species of Bacillus and
related genera, collectively referred to as aerobic endospore-forming bac-
teria (AEFB), produce specialized metabolites with high structural and
functional diversity. In this study, ten genomes of AEFB strains iso-
lated from the soil of Federal District, Brazil, were scanned for special-
ized metabolism genes. Using the antiSMASH 6.0 bacterial standalone
version, we identified 153 putative gene clusters codifying for special-
ized metabolite synthesis in these ten strains. Such clusters encode, for
example, enzymes for bacillibactin, bacillisin, macrolactin H, bacilliaene,
paenibacterin, nostamid A and macrobervin, revealing pathways 100%
similar to the genomic information available in the antiSMASH database.
The results suggest that AEFB are promising for exploring known and
unknown specialized metabolites, notably antimicrobial agents.

Keywords: AEFB · Bacillus · Secondary metabolites · Bacteria

1 Introduction

Secondary or specialized metabolites play an essential ecological role in pro-
ducing organisms such as plants, fungi, and bacteria and are often explored
for commercial and technological applications [7]. Although not essential for
the primary metabolism, these molecules can help to guarantee the availabil-
ity of nutrients in a competitive environment [16] as the soil provides a rich
matrix with a great diversity of functional bioproducts, despite being a nutrient-
limited environment [14,19]. Several classes of specialized metabolites, such as
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
N. M. Scherer and R. C. de Melo-Minardi (Eds.): BSB 2022, LNBI 13523, pp. 158–163, 2022.
https://doi.org/10.1007/978-3-031-21175-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21175-1_17&domain=pdf
http://orcid.org/0000-0003-0412-7618
http://orcid.org/0000-0002-8660-6331
http://orcid.org/0000-0003-1538-2657
https://doi.org/10.1007/978-3-031-21175-1_17


In Silico Analysis of the Genomic Potential for the Production 159

polyketides (PK), non-ribosomal peptides (NRP), alkaloids, and terpenes, are
synthesized by three biosynthetic pathways. The species of Bacillus and other
related genera - collectively called aerobic endospore-forming bacteria (AEFB)
- produce high structural and functional variability of specialized metabolites
and have the soil as the main reservoir [8]. Although many types of specialized
metabolites have already been isolated and identified, there is a consensus that
many of these molecules have not yet been described in microorganisms [17]. We
could emphasize NRP with antimicrobial activity, including lipopeptides, cyclic
peptides, and in some cases, bacteriocins [6,17], which are currently promising
alternatives for a new generation of antimicrobials. AEFB have a high poten-
tial for exploiting these peptides [17]. Thus, studies to prospect the existence
of ways to produce specialized metabolites in these bacteria are essential to aid
in combating the historic and growing wave of resistance. The description of
specialized metabolite classes such as terpenes and alkaloids is still scarce for
AEFB. Analysis for identifying possible clusters involved in synthesizing these
types of metabolites specialized in AEFB strains is also relevant because the
production of these compounds has already been identified in B. subtilis and B.
megaterium strains [13]. Based on the elements presented, the following ques-
tions arise: what is the potential genome for producing specialized metabolites
in AEFB strains? What are the main classes of these metabolites in this group of
microorganisms? Recent in silico tools, like antibiotics and secondary metabo-
lite analysis shell - antiSMASH [3], have allowed us to search for clusters of
genes encoding metabolic pathways devoted to synthesizing specialized metabo-
lites. antiSMASH can detect gene clusters known as biosynthetic gene clusters
(BGC), involved in the synthesis strategies of these products in plants, fungi,
and bacteria. Based on this scenario and the genome’s availability of ten AEFB
species isolated, sequenced, assembled, and annotated by our laboratory, we
aimed to verify them in silico, seeking to identify BGC involved in specialized
metabolism.

2 Material and Methods

2.1 Genomic Sequences

The ten strains used in this work were isolated from the Federal District, Brazil
soil, and stored as described in [1]. Total DNA from the ten strains was obtained
using the Wizard Genomic DNA Purification Kit (Promega), according to the
manufacturer’s instructions [5]. The purified total DNA was sequenced using
the Illumina MiSeq platform, and the genomes were deposited on the NCBI
(Table 1).

2.2 Analysis of the Genomic Potential for the Production
of Specialized Metabolites

The genomic sequences were downloaded directly from the NCBI platform to
analyze the genomic potential of the ten strains used in this work. We ran anti-
SMASH [3] over these genomes to identify biosynthetic gene clusters (BGC)
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Table 1. Genomes of AEFB strains used in this work.

AEFB strain Strain ID NCBI ID Access level

Lysinibacillus fusiformis SDF0005 SAMN12262387 Restrict

Bacillus pumilus SDF0011 SAMN12262389 Restrict

Bacillus oleronius SDF0015 SAMN12262388 Restrict

Bacillus simplex SDF0024 SAMN12262386 Restrict

Bacillus velezensis SDF0141 SAMN12262409 Restrict

Bacillus velezensis SDF0150 SAMN12262428 Restrict

Paenibacillus sp. SDF0016 SAMN06921004 Public

Paenibacillus sp. SDF0028 SAMN06917517 Public

Lysinibacillus sp. SDF0037 SAMN06921005 Public

Lysinibacillus sp. SDF0063 SAMN06917521 Public

related to specialized metabolism. The parameter used for the accuracy of detect-
ing clusters was relaxed with algorithms provided by antiSMASH (KnownClus-
terBlast, ActiveSiteFinder, ClusterPfam, ClusterBlast and Pfam-based GO term
annotation). The collected results were tabulated to identify the main classes of
clusters related to specialized metabolism and identify potential metabolites pro-
duced by the strains. The most promising results were extracted using in-house
Python scripts for future analysis.

3 Results

Results revealed 153 putative biosynthetic gene clusters (BGC) in the ten
genomes analyzed using the antiSMASH. Among these, 20 different groups of
specialized metabolites were detected (Fig. 1), the NRPS (non-ribosomal peptide
synthase) type being the most numerous with 47 (30.7%) BGC recognized; fol-
lowed by trans AT-PKS (polyketide synthase acyltransferase) with 17 (11.1%);
terpenes with 16 (10.5%); T3PKS (type III polyketide synthase) with 12 (7.8%);
betalactone with 10 (6.5%); RiPP-like (ribosomal peptides modified after trans-
lation) with 7 (4.5%). PKS I (polyketide synthase type I) and siderophores com-
prised 6 (4%) of the BGC detected.

Among the ten SDF strains analyzed, the genome of Paenibacillus sp.
SDF0028 showed the highest number of recognized BGC with 38 (24.8%) clusters
identified, followed by B. velezensis SDF0150 with 22 (14.3%) and B. velezensis
SDF0141 with 21 (13.7%); Still, Lysinibacillus sp. with SDF0063, 19 (12.4%); B.
pumilus SDF0011 with 16 (10.4%); B. simplex SDF0024 and Paenibacillus sp.
SDF0016 with 10 (6.5%), Lysinibacillus sp. SDF0037 with 9 (5.8%), L. fusiformis
SDF0005, 5 (3.2%) and B. oleronius SDF0015 with 3 (1.9%).
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Fig. 1. Groups and number of specialized metabolites recognized in the ten genomes
of SDF strains of interest using the antiSMASH tool (clockwise list).

Among the 153 recognized BGC, 63 (41.1%) clusters related to producing
potentially specialized metabolites were identified. Eleven BGC (7.1%) in the
strains B. velezensis SDF0141 and B. velezensis SDF0150, showed 100% simi-
larity with the antiSMASH data for BGC involved in the production of bacil-
libactin, bacilisin, macrolactin H and bacillaene; The same occurred for nos-
tamide A and paenibacterin in the Paenibacillus sp. SDF0028 and macrobervin
in the Lysinibacillus sp. SDF0063.

4 Discussion

The biosynthetic gene clusters (BGC) identification on these SDF strains repre-
sents an in silico finding of their genomic potential for specialized metabolism.
NRPS, the most numerous clusters identified in this study, synthesizes non-
ribosomal peptides whose activities encompass antifungal, antibacterial, antivi-
ral, and immunosuppressive properties [5]. NRPS use many substrates from
amino acids, fatty acids and carboxylic acids due to the structural and topolog-
ical variety identified in these catalysts [5]. This diversity explains the number
of NRPS gene clusters identified in this study.

Terpenes derive from the condensation of isoprene units and are fundamental
constituents of essential oils. These compounds are produced by plants, fungi,
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and bacteria and have various properties, from pigmentation, odour promotion,
and antimicrobial activities [18,20] The production of terpenes and their role in
AEFB species are not yet abundantly elucidated. However, the large number of
clusters obtained in the analysis shows the relevance of these compounds in these
bacteria, indicating that terpenes can expand the collection of antimicrobial
compounds produced by these species.

In silico analysis of the genomic potential for the production of special-
ized metabolites shows that in the AEFB strains evaluated 1, these special-
ized metabolites have a significant profile of antimicrobial agents. Betalactones,
thiopeptide, ranthipeptide and lantipeptides, types of clusters identified, are
classes of compounds that inhibit the growth of other species [6] The identified
metabolites that showed 100 Antimicrobial activity of macrolactin H and bacil-
laene has already been identified, for example, in B. licheniformis [2] Bacilisin,
in turn, is an inhibitor of cell wall synthesis [15] However, sharing this antimi-
crobial action is not a rule for all the identified metabolites, as bacillibactin is a
siderophore used for iron uptake [10]. The B. velezensis has high biotechnologi-
cal potential and has been used as a promoter for plant growth [11]. The results
on our B. velezensis strains (SDF0141 and SDF150), showed a great diversity of
related specialized metabolites such as surfactin, fengicin and polyketides such
as macrolactin, bacillaene and difficidin [11,15].

antiSMASH has been primarily used in recent studies to prospect new
metabolites. A study of near-complete genomes of bacteria isolated from soil
and analyzed them using antiSMASH showed that members from Acidobacte-
ria, Verrucomicobia and Gemmatimonadetes were found to encode diverse PK
and NRP BGC that were thought to have diverged from well-studied gene clus-
ters [4]. Besides soil, marine microorganisms such as Roseobacter and Pseudovib-
rio genera were related as a potential and largely untapped source of specialized
metabolites [9,12].

In summary, although some gene clusters have high similarity rates, it does
not rigorously indicate that the identified clusters effectively synthesize the puta-
tive metabolites. However, the high similarity index is a clue for their genomic
potential. Thus, the clusters identified with a low similarity index and those that
did not obtain a correspondence possibly indicate a great diversity of not yet
described metabolites, reinforcing the need for future studies.
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