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Preface

The “Università degli Studi di Palermo” in Italy hosts the eleventh edition of
the “International Conference on Complex Networks and Their Applications”
(COMPLEX NETWORKS 2022) from November 8 to November 10, 2022. Every
year, COMPLEX NETWORKS brings together researchers from various scientific
backgrounds to review the field’s current state and formulate new directions. The
diversity of the attendees’ scientific interests (Finance, Medicine and Neuroscience,
Biology and Earth Sciences, Sociology and Politics, Computer Science and Physics,
etc.) is a unique opportunity for crossfertilization between fundamental issues and
innovative applications.

This edition attracted authors from all over the world, with 313 submissions from
54 countries. Each submission has been peer-reviewed by at least three independent
reviewers from the international program committee. The 104 papers included in the
proceedings result from this rigorous selection process.

The quality of the contributors is undoubtedly an essential element for a successful
edition. The success also goes to the keynote speakers. These leaders and visionaries
in their fields present fascinating plenary lectures with big-picture ideas and unique
perspectives to help attendees deepen their understanding of scientific challenges.
We are delighted to bring together this great line-up of speakers.

• Luís A. Nunes Amaral (Northwestern University, USA)
• Manuel Cebrian (Max Planck Institute for Human Development, Germany)
• Shlomo Havlin (Bar-Ilan University, Israel)
• Giulia Iori (City, University of London, UK)
• Melanie Mitchell (Santa Fe Institute, USA)
• Ricard Solé (Universitat Pompeu Fabra, Spain)

Our thanks also go to the speakers of the traditional tutorial sessions for delivering
insightful talks on November 7, 2022.

• Michele Coscia (IT University of Copenhagen, Denmark)
• Adriana Iamnitchi (Maastricht University, Netherlands)

xvii



xviii Preface

The success also relies in the deep involvement of many individuals, institutions,
and sponsors.

We sincerely gratify the advisory board members for inspiring the essence of the
conference:

Jon Crowcroft (University of Cambridge), Raissa D’Souza (University of Cali-
fornia, Davis, USA), Eugene Stanley (Boston University, USA), and Ben Y. Zhao
(University of Chicago, USA)

We record our thanks to our fellow members of the organizing committee:
The lightning sessions chairs:

Alessandro Rizzo (Politechnico di Torino, Italy), Giancarlo Francesco Ruffo
(Università degli Studi di Torino, Italy), and Huijuan Wang (TU Delft, Nether-
lands)

The poster sessions chairs:

Manuel Marques Pita (Universidade Lusófona, Portugal), Michele Tumminello
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Modeling Node Exposure for Community Detection in Networks . . . . . . . 233
Sameh Othman, Johannes Schulz, Marco Baity-Jesi,
and Caterina De Bacco

Community Detection for Temporal Weighted Bipartite Networks . . . . . 245
Omar F. Robledo, Matthijs Klepper, Edgar van Boven,
and Huijuan Wang

Robustness and Sensitivity of Network-Based Topic Detection . . . . . . . . . 259
Carla Galluccio, Matteo Magnani, Davide Vega, Giancarlo Ragozini,
and Alessandra Petrucci

Community Detection Using Moore-Shannon Network Reliability:
Application to Food Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Ritwick Mishra, Stephen Eubank, Madhurima Nath, Manu Amundsen,
and Abhijin Adiga



Contents xxiii

Structural Network Measures

Winner Does Not Take All: Contrasting Centrality in Adversarial
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Anthony Bonato, Joey Kapusin, and Jiajie Yuan

Reconstructing Degree Distribution and Triangle Counts
from Edge-Sampled Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Naomi A. Arnold, Raúl J. Mondragón, and Richard G. Clegg

Generalizing Homophily to Simplicial Complexes . . . . . . . . . . . . . . . . . . . . 311
Arnab Sarker, Natalie Northrup, and Ali Jadbabaie

Statistical Network Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Pierre Miasnikof, Alexander Y. Shestopaloff, Cristián Bravo,
and Yuri Lawryshyn

Intersection of Random Spanning Trees in Small-World Networks . . . . . 337
András London and András Pluhár

Node Classification Based on Non-symmetric Dependencies
and Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Emanuel Dopater and Miloš Kudělka

Mean Hitting Time of Q-subdivision Complex Networks . . . . . . . . . . . . . . 359
Pankaj Kumar, Anurag Singh, Ajay K. Sharma, and Hocine Cherifi

Delta Density: Comparison of Different Sized Networks
Irrespective of Their Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Jakub Plesnik, Kristyna Kubikova, and Milos Kudelka

Resilence and Robustness of Networks

Robustness of Network Controllability with Respect to Node
Removals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Fenghua Wang and Robert Kooij

Optimal Network Robustness in Continuously Changing Degree
Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Masaki Chujyo and Yukio Hayashi

Investments in Robustness of Complex Systems: Algorithm Design . . . . . 407
Van-Sy Mai, Richard J. La, and Abdella Battou

Incremental Computation of Effective Graph Resistance
for Improving Robustness of Complex Networks: A Comparative
Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Clara Pizzuti and Annalisa Socievole



xxiv Contents

Analysis on the Effects of Graph Perturbations on Centrality
Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Lucia Cavallaro, Pasquale De Meo, Keyvan Golalipour, Xiaoyang Liu,
Giacomo Fiumara, Andrea Tagarelli, and Antonio Liotta

Robustness of Preferential-Attachment Graphs: Shifting
the Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Rouzbeh Hasheminezhad and Ulrik Brandes

The Vertex-Edge Separator Transformation Problem
in Network-Dismantling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Xiao-Long Ren

Network Analysis

Gig Economy and Social Network Analysis: Topology of Inferred
Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Gustavo Pilatti, Flavio L. Pinheiro, and Alessandra Montini

Understanding Sectoral Integration in Energy Systems Through
Complex Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Andrea Diaz, Stephane Tchung-Ming, Ana Diaz Vazquez,
Nicoleta Anca Matei, Esperanza Moreno Cruz, and Florian Fosse

An Analysis of Bitcoin Dust Through Authenticated Queries . . . . . . . . . . . 495
Matteo Loporchio, Anna Bernasconi, Damiano Di Francesco Maesa,
and Laura Ricci

Optimal Bond Percolation in Networks by a Fast-Decycling
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Leilei Wu and Xiao-Long Ren

Motif Discovery in Complex Networks

Integrating Temporal Graphs via Dual Networks: Dense Graph
Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Riccardo Dondi, Pietro Hiram Guzzi,
and Mohammad Mehdi Hosseinzadeh

Exploring and Mining Attributed Sequences of Interactions . . . . . . . . . . . 537
Tiphaine Viard, Henry Soldano, and Guillaume Santini

Air Transport Network: A Comparison of Statistical Backbone
Filtering Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Ali Yassin, Hocine Cherifi, Hamida Seba, and Olivier Togni

Towards the Concept of Spatial Network Motifs . . . . . . . . . . . . . . . . . . . . . . 565
José Ferreira, Alberto Barbosa, and Pedro Ribeiro



Contents xxv

Improving the Characterization and Comparison of Football
Players with Spatial Flow Motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Alberto Barbosa, Pedro Ribeiro, and Inês Dutra

Dynamics on/of Networks

Bayesian Approach to Uncertainty Visualization of Heterogeneous
Behaviors in Modeling Networked Anagram Games . . . . . . . . . . . . . . . . . . 595
Xueying Liu, Zhihao Hu, Xinwei Deng, and Chris J. Kuhlman

Understanding the Inter-Enterprise Competitive Relationship
Based on the Link Prediction Method: Experience from Z-Park . . . . . . . 609
Jiayue Yang, Lizhi Xing, and Guoqiang Liang

Analyzing Configuration Transitions Associated
with Higher-Order Link Occurrences in Networks of Cooking
Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
Koudai Fujisawa, Masahito Kumano, and Masahiro Kimura

Role of Network Topology in Between-Community Beta Diversity
on River Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
Richa Tripathi, Amit Reza, and Justin M. Calabrese

Can One Hear the Position of Nodes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
Rami Puzis

Memory Based Temporal Network Prediction . . . . . . . . . . . . . . . . . . . . . . . . 661
Li Zou, An Wang, and Huijuan Wang

Drug Trafficking in Relation to Global Shipping Network . . . . . . . . . . . . . 675
Louise Leibbrandt, Shilun Zhang, Marijn Roelvink, Stan Bergkamp,
Xinqi Li, Lieselot Bisschop, Karin van Wingerde, and Huijuan Wang



Network Models



Modularity of the ABCD Random Graph
Model with Community Structure

Bogumił Kamiński, Bartosz Pankratz, Paweł Prałat, and François Théberge

Abstract The Artificial Benchmark for Community Detection graph (ABCD) is a
random graph model with community structure and power-law distribution for both
degrees and community sizes. The model generates graphs with similar properties
as the well-known LFR one, and its main parameter ξ can be tuned to mimic its
counterpart in the LFR model, the mixing parameter μ. In this paper, we investigate
various theoretical asymptotic properties of the ABCD model. In particular, we
analyze the modularity function, arguably, the most important graph property of
networks in the context of community detection. Indeed, the modularity function is
often used to measure the presence of community structure in networks. It is also
used as a quality function in many community detection algorithms, including the
widely used Louvain algorithm.

Keywords ABCD model · Modularity function · Community detection

1 Introduction

One of the most important features of real-world networks is their community struc-
ture, as it reveals the internal organization of nodes [9]. In social networks communi-
ties may represent groups by interest, in citation networks they correspond to related
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papers, in the Web communities are formed by pages on related topics, etc. Being
able to identify communities in a network could help us to exploit this network more
effectively.

Unfortunately, there are very few datasets with ground-truth identified and
labelled. As a result, there is need for synthetic random graph models with com-
munity structure that resemble real-world networks in order to benchmark and tune
clustering algorithms that are unsupervised by nature. The LFR (Lancichinetti, For-
tunato, Radicchi) model [18, 20] generates networks with communities and at the
same time it allows for the heterogeneity in the distributions of both node degrees and
of community sizes. It became a standard and extensively usedmethod for generating
artificial networks.

In this paper, we analyze the Artificial Benchmark for Community Detection
(ABCD graph) [14] that was recently introduced and implemented,1 including a fast
implementation that uses multiple threads (ABCDe).2 Undirected variant of LFR
and ABCD produce graphs with comparable properties but ABCD/ABCDe is faster
than LFR and can be easily tuned to allow the user to make a smooth transition
between the two extremes: pure (disjoint) communities and random graph with no
community structure. More importantly from the perspective of this paper, it is easier
to analyze theoretically.

The key ingredient for many clustering algorithms is modularity, which is at the
same time a global criterion to define communities, a quality function of community
detection algorithms, and a way to measure the presence of community structure in
a network. The definition of modularity for graphs was first introduced by Newman
and Girvan in [25].

Despite some known issues with this function such as the “resolution limit”
reported in [10], many popular algorithms for partitioning nodes of large graphs
use it [8, 19, 24] and perform very well. The list includes one of the mostly used
unsupervised algorithms for detecting communities in graphs, the Louvain (hierar-
chical) algorithm [4]. For more details we direct the reader to any book on complex
networks, including the following recent additions [15, 17].

1.1 Summary of Results

In this paper, we investigate the modularity function for the ABCD model A. The
paper is structured as follows. The ABCD model is introduced in Sect. 2.2 and the
modularity function is defined in Sect. 2.3. Results for other random graph model in
the context of the modularity function are summarized in Sect. 3.

We start analyzing the ABCD model by investigating some basic properties—see
Sect. 4. These propertieswill be needed to establish results for themodularity function
but they are important on their own. In particular, we show that the degree distribution

1 https://github.com/bkamins/ABCDGraphGenerator.jl/.
2 https://github.com/tolcz/ABCDeGraphGenerator.jl/.

https://github.com/bkamins/ABCDGraphGenerator.jl/
https://github.com/tolcz/ABCDeGraphGenerator.jl/
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is well concentrated around the corresponding expectations. Moreover, we show a
concentration for the number of communities and well as for the distribution of their
sizes. The same generating process is applied in LFR so the two results hold for that
model as well. The ABCD model assigns nodes to communities randomly. Clearly,
there is no hope to predict the volumes of small communities of constant size but
sufficiently large communities have their volumes as well as the number of internal
edges well concentrated around the corresponding expectations.

Then we move to the results for the modularity function. By design of the ABCD
model, 1 − ξ fraction of edges should become community edges and so should end
up in some part of the ground truth partition C. (ξ is the main parameter of the model
responsible for the level of noise.) It is indeed the case but it turns out that a negligible
fraction of the background graph join them there. As a result, the modularity function
of the ground-truth partition C is asymptotic to 1 − ξ , as proved in Theorem 1.

Analyzing themaximummodularity ismuchmore complex.We have two types of
results. The first result (Theorem 2) shows that when the level of noise is sufficiently
large (ξ close to one), then the maximum modularity q∗(A) is asymptotically larger
than q(C), the modularity of the ground-truth. In this regime, the number of edges
within community graphs Gi is relatively small so a partition of the background
graph into small connected pieces yields a better modularity function. To show this
result, we need to investigate the degree distribution of the background graph which
might be of independent interest.

The second set of results is concerned with graphs with low level of noise (ξ close
to zero). For these graphs, the situation is quite opposite. It turns out that the ground
truth partition is asymptotically the best possible, that is, the maximum modularity
q∗(A) is only o(1) away from q(C), the modularity of the ground truth partition C;
both of them are asymptotic to 1 − ξ (see Theorem 3). For some technical reason, it
is assumed that δ, the minimum degree of A, is sufficiently large: the lower bound
of 100 easily works but it may be improved with more detailed treatment. Having
said that, it seems that one needs a different approach to uncover the real bottleneck.
On the other hand, the above property is not true if δ = 1 (see Theorem 4): if δ = 1,
then q∗(A) is substantially larger than q(C), regardless of how close to zero ξ is.

Finally, let us mention that all proofs, statements of various technical lemmas,
and results of simulations are omitted in this proceeding version of the paper. For
much more details, we direct the reader to the journal counterpart of this short paper
that is available on ArXiv [11].

1.2 Simulations

This paper focuses on asymptotic theoretical results of theABCDmodel. Having said
that, we performed a number of simulations and compared asymptotic predictions
with graphs generated by computer. These simulations show that the behaviour of
small random instances is similar to what is predicted by the theory. This is a good
news for practitioners as it shows that, despite the fact that the generative algorithm
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is randomized, the model has good stability. We discuss the results of simulations
in the full journal version of the paper. The code with experiments is accessible on
GitHub repository.3

1.3 Open Problems

Theoretical results and simulations suggest that if δ, the minimum degree of A,
satisfies δ ≥ δ0 for some δ0 ≥ 2, then there exists a constant ξ0 = ξ0(δ) (that possibly
depends also on other parameters of the ABCD model A) such that the following
holds w.h.p. (that is, with probability tending to one as n → ∞):

• if 0 < ξ < ξ0, then q∗(A) ∼ q(C), where C is the ground truth partition of the set
of nodes of A,

• if ξ > ξ0, then q∗(A) is separated by a constant from q(C).

Our results make the first step towards this conjecture by showing upper and lower
bounds for such threshold constant ξ0, when δ0 = 100. The bounds for ξ0 are not
close to each other. The next step would be to narrow the gap down or perhaps to
determine the threshold value exactly, provided that δ0 is sufficiently large. Another
natural direction would be to decrease the lower bound for δ, that is, to decrease the
value of δ0. We showed that δ = 1 does not have the desired property but maybe
δ0 = 2? Or maybe one can always construct a better partition than C when δ = 2,
regardless how small parameter ξ is? These questions are left as open questions for
future investigation.

2 Definitions (of ABCD Model and Modularity)

2.1 Asymptotic Notation

Our results are asymptotic in nature, that is, we will assume that the number of
nodes n → ∞. Formally, we consider a sequence of graphs Gn = (Vn, En) and
we are interested in events that hold with high probability (w.h.p.), that is, events
that hold with probability tending to 1 as n → ∞. It would be also convenient to
consider events that hold with extreme probability (w.e.p.), that is, events that hold
with probability at least 1 − exp(−�((log n)2)). An easy but convenient property
is that if a polynomial number of events hold w.e.p., then w.e.p. all of them hold
simultaneously.

3 https://github.com/bkamins/ABCDGraphGenerator.jl/.

https://github.com/bkamins/ABCDGraphGenerator.jl/
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Table 1 Parameters of the ABCD model

Parameter Range Description

n N Number of nodes

γ (2, 3) Power-law exponent of degree distribution

δ N Minimum degree at least δ

ζ
(
0, 1

γ−1

]
Maximum degree at most nζ

β (1, 2) Power-law exponent of distribution of community sizes

s N \ [δ] Community sizes at least s

τ (ζ, 1) Community sizes at most nτ

ξ (0, 1) Level of noise

2.2 ABCD Model

TheABCDmodel is governed by 8 parameters summarized in Table 1. For a fixed set
of parameters, we generate the ABCD graph A following the steps outlined below.
Each timewe refer to graphA in this paper, we implicitly (or explicitly, but it happens
rather rarely) fix all of these parameters.

Degree Distribution Let γ ∈ (2, 3), δ ∈ N, and ζ ∈ (0, 1). Degrees of nodes of
ABCD graphA are generated randomly following the (truncated) power-law distri-
bution P(γ, δ, ζ ) with exponent γ , minimum value δ, and maximum value D = nζ .
In order to make sure the sum of degrees is even, if needed, we decrease by one the
degree of one node of the largest degree.

It is easy to show that for any ω = ω(n) tending to infinity as n → ∞ w.h.p. the
maximum degree of A is at most n1/(γ−1)ω (of course, by definition, it is determin-
istically at most nζ ). As a result, for any two values of ζ1, ζ2 ∈ ( 1

γ−1 , 1) one may
couple the two corresponding ABCD graphs A so that w.h.p. they produce exactly
the same graph. Hence, for convenience but without loss of generality, we will later
on assume that ζ ∈ (0, 1

γ−1 ].
Distribution of Community Sizes Let β ∈ (1, 2), s ∈ N \ [δ], and τ ∈ (ζ, 1). Com-
munity sizes of ABCD graph A are generated randomly following the (truncated)
power-law distributionP(β, s, τ )with exponent β, minimumvalue s, andmaximum
value S = nτ . Communities are generated with this distribution as long as the sum
of their sizes is less than n, the desired number of nodes. Suppose that the last com-
munity has size z and after adding it to the remaining ones, the sum of their sizes will
exceed n by k ∈ N ∪ {0}. If k = 0, then there is nothing else to do. If z − k ≥ s, then
the size of the last community is reduced to z − k so that the total number of nodes
is exactly n. Otherwise, we select z − k < s old communities at random, increase
their sizes by one, and remove the last community so that the desired property holds.

The assumption that τ > ζ is introduced to make sure large degree nodes have
large enough communities to be assigned to. Similarly, the assumption that s ≥ δ + 1
is required to guarantee that small communities are not too small and so that they
can accommodate small degree nodes.
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Assigning Nodes into Communities At this point, the degree distribution (w1 ≥
w2 ≥ · · · ≥ wn) and the distribution of community sizes (c1 ≥ c2 ≥ · · · ≥ c
) are
already fixed. The final ABCD graph A will be formed as the union of 
 + 1 inde-
pendent graphs: 
 community graphsGi = (Ci , Ei ), i ∈ [
], and a single background
graph G0 = (V, E0), where V = ⋃

i∈[
] Ci . Roughly ξwi edges incident to node i
will, by definition, belong to its own community but a few additional edges from the
background graph might end up in that community. In order to create enough room
for these edges, node of degree wi will be allowed to be assigned to a community of
size c j if the following inequality is satisfied:

	(1 − ξφ)wi
 ≤ c j − 1, where φ = 1 −
∑
k∈[
]

(ck/n)2.

Note that this condition is equivalent to the following one:

wi ≤ c j − 1

1 − ξφ
. (1)

An assignment of nodes into communities will be called admissible if the above
inequality is satisfied for all nodes. We show that there are many admissible assign-
ments. In particular, there are linearly many nodes of degree δ but, fortunately, w.h.p.
communities of size more than nζ (more than the maximum degree) have space for
almost all nodes. We select one admissible assignment uniformly at random. Sam-
pling uniformly one of such assignments turns out to be relatively easy from both
theoretical and practical points of view.

Distribution of Weights Parameter ξ ∈ (0, 1) reflects the amount of noise in the
network. It controls the fraction of edges that are between communities. Indeed,
asymptotically (but not exactly) 1 − ξ fraction of edges are going to end up within
one of the communities. Each node will have its degree wi split into two parts:
community degree yi and background degree zi (wi = yi + zi ). Our goal is to get
yi ≈ (1 − ξ)wi and zi ≈ ξwi . However, both yi and zi have to be non-negative
integers and for each community C ⊆ V ,

∑
i∈C yi has to be even. Note that since∑

i∈V wi is even, so is

∑
i∈V

zi =
∑
i∈V

(wi − yi ) =
∑
i∈V

wi −
∑
C

∑
i∈C

yi .

For each communityC ⊆ V we identify the leader, a node of the largest degreewi

associated with community C . (If many nodes in C have the largest degree, then we
arbitrarily select one of them to be the leader.) For non-leaders we split the weights
as follows:

yi =
⌊
(1 − ξ)wi

⌉
and zi = wi − yi ,
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where for a given integer a ∈ Z and real number b ∈ [0, 1) the random variable
�a + b
 is defined as

�a + b
 =
{
a with probability 1 − b

a + 1 with probability b.
(2)

(Note that E[�a + b
] = a(1 − b) + (a + 1)b = a + b.) For the leader of commu-
nity C we round (1 − ξ)wi up or down so that the sum of weights in each cluster
is even. If (1 − ξ)wi ∈ N and the sum of weights yi in C is odd, then we randomly
make a decision whether subtract or add one to make the sum to be even.

Creating Graphs As already mentioned, the final ABCD graphA = (V, E) will be
formedas the unionof 
 + 1 independent graphs: 
 community graphsGi = (Ci , Ei ),
i ∈ [
], and a single background graph G0 = (V, E0), where V = ⋃

i∈[
] Ci , that is,
E = ⋃

i∈[
]∪{0} Ei . Each of these 
 + 1 graphs will be created independently. The
partition C = {C1,C2, . . . ,C
} will be called a ground-truth partition.

Suppose then that our goal is to create a graph on n nodes with a given degree
distribution w := (w1, w2, . . . , wn), where w is any vector of non-negative integers
such that w := ∑

i∈[n] wi is even. We define a random multi-graph P(w) with a
given degree sequence known as the configuration model (sometimes called the
pairing model), which was first introduced by Bollobás [5]. (See [3, 27, 28] for
related models and results.) We start withw points that are partitioned into n buckets
labelled with labels v1, v2, . . . , vn; bucket vi consists of wi points. It is easy to see
that there are w!

(w/2)!2w pairings of points. We select one of such pairings uniformly at
random, and construct a multi-graphP(w), with loops and parallel edges allowed, as
follows: nodes are the buckets v1, v2, . . . , vn , and a pair of points xy corresponds to
an edge viv j in P(w) if x and y are contained in the buckets vi and v j , respectively.

2.3 Modularity Function

The modularity function favours partitions of the set of nodes of a graph G in which
a large proportion of the edges fall entirely within the parts but benchmarks it against
the expected number of edges one would see in those parts in the corresponding
Chung-Lu randomgraphmodel [7]which generates graphswith the expected degree
sequence following exactly the degree sequence in G.

Formally, for a graph G = (V, E) and a given partition A = {A1, A2, . . . , A
} of
V , the modularity function is defined as follows:

q(A) =
∑
Ai∈A

e(Ai )

|E | −
∑
Ai∈A

(
vol(Ai )

vol(V )

)2

, (3)

where for any A ⊆ V , e(A) = |{uv ∈ E : u, v ∈ A}| is the number of edges in the
subgraph ofG induced by set A, and vol(A) = ∑

v∈A deg(v) is the volume of set A. In



10 B. Kamiński et al.

particular, vol(V ) = 2|E |. The first term in (3),
∑

Ai∈A e(Ai )/|E |, is called the edge
contribution and it computes the fraction of edges that fall within one of the parts.
The second one,

∑
Ai∈A(vol(Ai )/vol(V ))2, is called the degree tax and it computes

the expected fraction of edges that do the same in the corresponding random graph
(the null model). The modularity measures the deviation between the two.

The maximum modularity q∗(G) is defined as the maximum of q(A) over all
possible partitions A of V ; that is, q∗(G) = maxA q(A). In order to maximize q(A)

one wants to find a partition with large edge contribution subject to small degree
tax. If q∗(G) approaches 1 (which is the trivial upper bound), we observe a strong
community structure; conversely, if q∗(G) is close to zero (which is the trivial lower
bound), there is no community structure. The definition in (3) can be generalized to
weighted edges by replacing edge counts with sums of edge weights. It can also be
generalized to hypergraphs [12, 13].

3 Related Results for Random Graphs

Analyzing themaximummodularity q∗(G) for sparse randomgraphs is a challenging
task. The most attention was paid to random d-regular graphs Gn,d but even for
this family of graphs we only know upper and lower bounds for q∗(Gn,d) that are
quite apart from each other. For example, for random 3-regular graph Gn,3 we only
know that w.h.p.

0.667026 ≤ q∗(Gn,3) ≤ 0.789998.

These bounds were recently proved in [21] but the main goal of that paper was to
confirm the conjecture from [22] that w.h.p. q∗(Gn,3) ≥ 2/3 + ε for some ε > 0.
We refer the reader to [22, 26] for numerical bounds on q∗(Gn,d) for other values
of d ≥ 3 and for some explicit but weaker bounds. It is also known that w.h.p.
q∗(Gn,2) ∼ 1 [22].

The binomial random graphs G(n, p) were studied in [23] where it was
shown that w.h.p. q∗(G(n, p)) ∼ 1, provided that pn ≤ 1, On the other hand, w.h.p.
q∗(G(n, p)) = (1/

√
pn), provided that pn ≥ 1 and p < 1 − ε for some ε > 0.

The modularity of the well-known Preferential Attachment (PA) model [2] and
the Spatial Preferential Attachment (SPA) model [1] was studied in [26]. Finally,
the modularity of a model of random geometric graphs on the hyperbolic plane [16],
known as the KPKBV model after its inventors, was recently studied in [6].

4 Some Properties of ABCD

4.1 Degree Distribution

Let γ ∈ (2, 3), δ ∈ N, and ζ ∈ (0, 1). Recall that the degrees of nodes of the ABCD
model are generated randomly following the (truncated) power-law distribution
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P(γ, δ, ζ ) with exponent γ , minimum value δ, and maximum value D = nζ . More
precisely, if X ∈ P(γ, δ, ζ ), then for any k ∈ {δ, δ + 1, . . . , D},

qk = Pr(X = k) =
∫ k+1
k x−γ dx∫ D+1
δ

x−γ dx
= k1−γ − (k + 1)1−γ

δ1−γ − (D + 1)1−γ

= (1 + O(n−ζ(γ−1)) + O(k−1)) k−γ (γ − 1)δγ−1. (4)

The first lemma provides an upper bound for the maximum degree, which justifies
our assumption that ζ ∈ (0, 1/(γ − 1)]. The second lemma shows that the degree
distribution is well concentrated around the expectation. Since the statements are
quite technical, we omit them. However, let us mention the following corollary. The
volume of all nodes in A is w.e.p. equal to

vol(V ) =
D∑

k=δ

kYk = (1 + O((log n)−1)) dn, where d :=
D∑

k=δ

kqk .

4.2 Distribution of Community Sizes

Let β ∈ (1, 2), s ∈ N, and τ ∈ (ζ, 1). Recall that community sizes of the ABCD
model are generated randomly following the (truncated) power-law distribution
P(β, s, τ ) with exponent β, minimum value s, and maximum value S = nτ . More
precisely, if X ∈ P(β, s, τ ), then after following exactly the same computation as
in (4) we get that for any k ∈ {s, s + 1, . . . , S},

pk = Pr(X = k) =
∫ k+1
k x−βdx∫ S+1
s x−βdx

= k1−β − (k + 1)1−β

s1−β − (S + 1)1−β

= (1 + O(n−τ(β−1)) + O(k−1)) k−β(β − 1)sβ−1. (5)

Our next lemma shows that community sizes of ABCD are well concentrated
around their expectation. Again, we omit technical statements only reporting that
w.e.p. the number of communities is equal to


 = 
(n) = (1 + O((log n)−1)) ĉ n1−τ(2−β),

where

ĉ = 2 − β

(β − 1)sβ−1
.
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4.3 Assigning Nodes into Communities and Distribution
of Weights

Recall that at this point of the process, the degree distribution (w1 ≥ w2 ≥ · · · ≥ wn)

and the distribution of community sizes (c1 ≥ c2 ≥ · · · ≥ c
) are already fixed. In
order to assign nodes to communities we will use the following easy and natural
algorithm. We consider nodes, one by one, starting from w1 (high degree node)
and finishing with wn (low degree node). Recall that node i of degree wi has to be
assigned to a community of size c j so that inequality (1) holds. We assign node wi

randomly to one of the communities that have size larger than 	(1 − ξφ)wi
 and still
have some “available spots”. We do it with probability proportional to the number
of available spots left. One can show that the above simple algorithm generates one
of the admissible assignments uniformly at random.

The volumes of small communities are not well concentrated around their means.
On the other hand, the volumes of very large communities are well concentrated
around their means, as our next lemma shows. As usually, we skip the statement
directing the reader to the journal version of this paper.

5 Modularity

5.1 Modularity of the Ground-Truth Partition: q(C)

Let us start by investigating the modularity of the ground-truth partition of A.

Theorem 1 Let C = {C1,C2, . . . ,C
} be the ground-truth partition of the set of
nodes of A. Then, w.e.p.

q∗(A) ≥ q(C) = (1 + O((log n)−(γ−2))) (1 − ξ).

5.2 Maximum Modularity: q∗(G)

As mentioned in Sect. 3, analyzing the maximum modularity q∗(G) for sparse ran-
dom graphs is a challenging task and typically only bounds for q∗(G) are known that
are far apart from each other. Since the ABCD modelA is more complex than other
sparse random graphs, especially random d-regular graphs, there is no hope for tight
bounds for the maximum modularity function but we will make some interesting
observations below.

Large Level of NoiseLet us start with investigating graphswith a large level of noise,
that is, with ξ close to one. For such graphs, one should focus on the background
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graph G0 which involves all but a small fraction of edges. It turns out that G0 is
connected w.h.p., provided that its minimum degree is at least 3, or otherwise w.h.p.
it has a giant component. By restricting ourselves to a spanning tree of the giant
component of G0, we may partition the set of nodes into small parts such that each
part induces a connected graph. This is not much, but for noisy graphs it yields the
modularity that is larger than the modularity of the ground-truth partition.

Theorem 2 Let γ ∈ (2, 3), δ ∈ N, ζ ∈
(
0, 1

γ−1

]
, and ξ ∈ (0, 1).

(a) If ξδ ≥ 3, then set α = 1.
(b) If ξδ < 3, then there exists a universal constant α > 0 which depends on the

parameters of the model but it is always separated from 0 (that is, α is not a
function of n).

There exists a partitionC of the set of nodes V ofA such that the following properties
hold w.h.p.

q∗(A) ≥ q(C) ≥ (1 + O(n−(1−ζ )/2))
2αn

vol(V )

= (1 + O((log n)−1))
2α

d
, where d =

D∑
k=δ

kqk .

(Note that qi is defined in (4).).

Recall that the modularity function of the ground-truth partition is w.e.p. asymp-
totic to 1 − ξ . The above theorem implies that if δ ≥ 4 and the graph has a large
level of noise, namely, ξ ≥ 3/δ and ξ > 1 − 2/d, then w.h.p. the modularity func-
tion obtained from dissecting the spanning tree of G0 is larger! The same conclusion
can be derived when δ ≤ 3 by considering ξ sufficiently close to one.

Low Level of Noise This time we will investigate graphs with a low level of noise,
that is, with ξ close to zero. Let us fix a value of δ ∈ N such that δ ≥ 100. For any
a ∈ N and b ∈ N \ {1, 2} such that ab < δ, let

c(a, b) := b − 2
√
b − 1

2b

ab

ab + b − 1
− b − 1

ab + b − 1
− 0.011. (6)

Let

ξ0(δ) := max
a∈N,b∈N\{1,2},ab<δ

min

(
1 − ab

δ
,
c(a, b)

4
,
1

20

)
. (7)

It is clear that ξ0(δ) is a non-decreasing function of δ. Moreover, ξ0(100) ≈ 0.0217
(the maximum is achieved for a = 8 and b = 12), and ξ0(δ) = 1/20 for δ ≥ 340.

Our first result says that ABCD graph A with minimum degree δ ≥ 100 and
ξ ∈ (0, ξ0(δ)) has w.h.p. the maximum modularity q∗(A) asymptotically equal to
the modularity function on the ground-truth.
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Theorem 3 Let δ ∈ N such that δ ≥ 100 and 0 < ξ < ξ0(δ), where ξ0(δ) is defined
in (7). Let C = {C1,C2, . . . ,C
} be the ground-truth partition of the set of nodes of
A. Then, w.h.p. q∗(A) ∼ q(C) ∼ 1 − ξ.

The lower bound of 100 for δ as well as the constants ξ0(δ) are not tuned for the
strongest result. Since the proof technique we use will not allow us to close the gap
anyway, we aimed for a simple argument that works for large enough δ and relatively
simple constants. Having said that, the above property is not true for δ = 1; that is,
ifA has minimum degree δ = 1, then one may find a partition of the nodes ofA that
yields larger modularity than the one associated with the ground-truth.

Theorem 4 Fix δ = 1 and let 0 < ξ < 1. Let C = {C1,C2, . . . ,C
} be the ground-
truth partition of the set of nodes of A. Then, w.e.p.

q∗(A) ≥ (1 + O((log n)−(γ−2)))

(
(1 − ξ) + ξq1

d

(
2 − q1

d

))

> (1 + O((log n)−(γ−2))) (1 − ξ) = q(C),

where qk is defined in (4) and d = ∑D
k=δ kqk.
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ous. A generalization of various existing canonical models, based on preferential
attachment is studied, where new nodes form connections dependent on both their
attribute values and popularity as measured by degree. We consider several canon-
ical attribute agnostic sampling schemes such as Metropolis-Hasting random walk,
versions of node2vec (Grover and Leskovec 2016) that incorporate both classical
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1 Introduction

Attributed networks, namely graphs in which nodes and/or edges have attributes,
are at the center of network-valued datasets in many modern applications. In one
direction, machine learning pipelines such as network representation learning [10],
clustering [8], classification [17], and community detection [6] have been developed
to study the entire network. Driven by the scale of data, the main motivation of this
paper, is network sampling, where limited explorations are used to learn network
level functionals such as the degree distribution [19].

One standard phenomenon in many such real world systems is homophily [18, 20,
22], i.e., node pairs with similar attributes being likelier connected than node pairs
with discordant attributes. Performance of network sampling algorithms in such set-
tings has received some attention including: the bias of several sampling methods in
conserving position of nodes and visibility of groups [23]; the effect of homophily
on centrality measures and visibility of minority groups and fairness questions [14].
This paper studies the estimation of the attribute distribution (both discrete and
continuous) for homophily networks. We extend the attributed driven preferential
attachment model [13, 14] where new nodes connect to existing ones based on the
attributes of both end points of the potential edge and centrality of the existing ver-
tex. Uniform random sampling of nodes or edges is the “gold standard”, providing
unbiased estimates of corresponding attribute distributions. However, owing to both
computational and privacy issues in settings such as social networks, such sampling
is often infeasible. In these cases, link trace sampling, such as random walks (RW)
are typically used; see references in [3, 4] for estimation of functionals such as
degree distribution and clustering. Much less is known in the context of attribute dis-
tribution estimation. In this paper, we consider several canonical attribute agnostic
sampling schemes such as Metropolis-Hasting random walk, versions of node2vec
[12] that incorporate both classical random walk and non-backtracking propensities
and propose variants of node2vec where edge weights depend on attributes of the
node pair. The performance of the considered random walk sampling schemes in
terms of estimation error of the attribute distributions is studied across the following
four dimensions in both synthetic and real world settings: (a) Inherent homophilc
propensity of the network and underlying density of attributes; (b) Impact of cen-
trality of nodes as measured by degree in the evolution of the network; (c) Nonlinear
impact of incorporating “escape echo chamber” mechanisms in random walks by
encouraging walks to jump across edges with discordant attributes; (d) Impact of
reducing the backtracking propensity to encourage walks to explore the network.

Overview of findings and organization of the paper: We find that (i) RWs with
attribute dependent weights can perform better over attribute agnostic RWs in
homophilic networks; (ii) theweights need to balance themovements between/within
nodes with different/same attributes; (iii) non-backtracking seems to improve per-
formance, especially in conjunction with attribute dependent weights; (iv) the per-
formance of RWs is well below the “gold standard” of random node sampling; (v)
methods seem to work comparably well for discrete and continuous attributes.
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The paper is organized as follows. A synthetic model with homophily is given in
Sect. 2. Sampling schemes for learning attribute distribution are described in Sect. 3.
Statistical learning tasks are discussed in Sect. 4. Numerical evaluation on synthetic
and real data are described in Sect. 5. Section 6 concludes.

2 Attribute Network Models with Homophily

Wenowdescribe themain syntheticmodel, termednon-linear preferential attachment
(NLPA) model with homophily. Fix an attribute (or latent) spaceA with probability
measure μ. Fix a (potentially asymmetric) function f :A × A → R+ which mea-
sures propensities of node pairs to interact based on their attributes. Fixα ≥ 0 playing
the role of degree in measuring popularity. Let N be the number of nodes (vertices)
in the network. Nodes {vt : 1 ≤ t ≤ N } enter the system sequentially starting at t = 1
with a base connected graph G1 with every node having an attribute in A. Every
node vt has attribute a(vt ) ∈ A generated independently using μ. The dynamics are
recursively defined as follows: for any t and v ∈ Gt , let deg(v, t) denote the degree
of v at time t . Conditional on Gt , the probability that vt+1 connects to v ∈ Gt is
proportional to:

Pvt+1v ∝ f (a(v), a(vt+1))[deg(v, t)]α. (1)

The model (1) extends various existing models including: Barabási-Albert model
[5] ( f ≡ 1, α = 1), sublinear PA [16] ( f ≡ 1, 0 < α < 1), PA with multiplicative
fitness [7] ( f (a, a′) = a, α = 1), scale free homophilic model [9] ( f (a, a′) = 1 −
|a − a′|,A = [0, 1], α = 1), and geometric versions with α = 1,A a compact metric
space and f an appropriate function of the distance [11, 13]. Most existing studies
focus on asymptotics for either the degree distribution or maximal degree.

When the latent space A = {1, 2, . . . , K } is finite, one can define, macroscopic
measures of homophily, and the converse heterophily from an observed network G
(either synthetic or empirically observed) on N nodes as follows [21]. Let E denote
the total edge set; for a ∈ A, Va the set of nodes of type a, and for a, a′ ∈ A, let
Eaa′ be the set of edges between nodes of type a and a′. Let p = |E |/(N2

)
be the edge

density. For a ∈ A, Da = |Eaa|/(
(|Va |

2

)
p) measures the contrast in edges within the

cluster of nodes a as compared to a setting where all edges are randomly distributed;
thus Da > 1 signals homophilic characteristics of type a nodes while Da < 1 sig-
nifies heterophilic nature of type a. Similarly, for a 	= a′, Haa′ = |Eaa′ |/(|Va||Va′ |p)
denotes propensity of type a nodes to connect to type a′ nodes as contrasted with
random placement of edges at the same level as the global edge density.

An illustration of synthetic networks generated using the NLPA model (1) with
finite latent space is given in Fig. 1. Here, A = {1, 2, 3} represent 70, 20 and 10%
of the total N = 1000 nodes, resp.; f (a, a) = 0.95, f (a, a′) = 0.025, for a 	= a′ =
1, 2, 3. The network is plotted for different values of α—Fig.1a–c. For α = 0.2, the
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Fig. 1 Networks generated by the NLPA model with a α = 0.2, b α = 1, c α = 1.2

corresponding homophily measures are D1 = 1.45, D2 = 4.36, D3 = 7.38, H12 =
0.07, H13 = 0.14, H23 = 0.45. For α = 1.2, the homophilymeasures are D1 = 1.38,
D2 = 4.84, D3 = 9.12, H12 = 0.08, H13 = 0.08, H23 = 0.16.

3 Network Sampling Schemes

This section describes sampling schemes for learning attribute distribution, both
random walk based, as well as corresponding “gold standard” schemes. Throughout
this section, for graph G and node i ∈ G, di will denote its degree.
Metropolis Hasting RandomWalk (MHRW). At each step, if the walk is currently
at node i , a neighbor j is selected uniformly at random and the proposed move to j
is accepted with probability min(1, di/d j ), else the walk stays at i . Thus proposed
moves towards a node of smaller degree, are always accepted whilst we reject some
of the proposed moves towards higher degree nodes. It is easy to check that the
stationary distribution is uniform over the node set, i.e., πi = 1/N for 1 ≤ i ≤ N .

Node2vec (N2V). As proposed in [12], in full generality, the transitions of N2V
depend on the neighborhood both of the currently visited node, and the node visited
prior to the current node. Let the previous and current visited nodes be k and i , resp.
The next visited node j is chosen according to the transition probability proportional
to:
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wherewi j is the weight of edge (i, j)—see figure. We now describe specific variants
of this class of random walks.

Node2vec-1(N2V-1): If the network is undirected, unweighted and θ = β = γ , one
obtains the classical RW with the well-known stationary distribution,

πi = di
2|E | . (2)

Node2vec-2(N2V-2): If the network is undirected and θ = β = γ , one obtains a
weighted RW. This walk can use node attributes through weights in contrast to N2V-
1. The stationary distribution in this case is given by

πi ∝
∑

j

wi j . (3)

Node2vec-3(N2V-3): If the network is simple (i.e. unweighted, undirected, without
self-loops andmultiple edges) andβ = γ , θ > 0, the stationary distribution for nodes
is given by Eq. (2). With small θ , the walk approaches the non-backtracking random
walk.

Node2vec-4(N2V-4): One can consider other variants of N2V. We consider below
the combination of the last two schemes, with β = γ , θ > 0 and weights wi j depen-
dent on the attributes of i and j . In this setting, one major technical hurdle is that,
unlike the settings above, there is no explicit formula for the stationary distribution.
Analogous to the stationary distribution for N2V-3 matching the usual RW in the
stationary regime, it is expected that especially in the small θ setting, the stationary
distribution can still be approximated by that in Eq. (3). We explore the efficacy of
this approximation for moderate size synthetic networks below.

For comparison to RWs, we will also use the following baseline samplings. These
can be viewed as “ideal” for sampling purposes and correspond to the limiting dis-
tributions of some RWs.

Node Sampling (NS). NS sampling requires full access to the network and is unavail-
able for many real networks. In the classical NS, nodes (and their attributes) are
chosen independently and uniformly from the network (with replacement).

Edge Sampling (ES). In the classical ES, edges are chosen independently and uni-
formly from the network. Since ES selects edges rather than nodes to populate
the sample, the node (attribute) set is constructed by including both incident nodes
(attributes) in the sample when a particular edge is sampled.
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4 Statistical Learning Methods

We now discuss the estimation of attribute distributions from the data collected
through RWs, with discrete attributes described in Sect. 4.1 and continuous attributes
in Sect. 4.2.

4.1 Discrete Attributes

Run a random walk (any of the schemes described in Sect. 3) for n steps and let
is denote the s-th node sampled by a RW, for 1 ≤ s ≤ n. Since nodes are sampled
with replacement and with probabilities πi in the stationary regime, the attribute
distribution can be estimated as

p̂(a) = 1

Nn

n∑

s=1

1{a(is) = a}
πis

, a ∈ A, (4)

where 1{B} = 1 if B is true and 0 otherwise [15] (Chap.5). If the total number of
nodes N is unknown, its estimator is given by (1/n)

∑
s 1/πis . For N2V-2 this results

in,

p̂(a) = 1
∑n

s=1 1/wis

n∑

s=1

1{a(is) = a}
wis

, a ∈ A. (5)

For fixed a, the MSE of p̂(a) is given by E[( p̂(a) − p(a))2]. In the stationary
regime, p̂(a) in (4) is an unbiased estimator of p(a) and the MSE is equal to the
variance V [ p̂(a)]. The variance of p̂(a) can be related to the spectral gap of the RW.
More specifically, let P be the associated transition matrix of the random walk with
eigenvalues (real by reversibility): 1 = λ1 ≥ λ2 ≥ · · · ≥ λN ≥ −1. The spectral gap
is defined as δ = 1 − λ2. Equivalently, the relaxation time of the RW is the reciprocal
of the spectral gap. A larger spectral gap implies a faster convergence of the RW to
its stationary distribution. From [1] (Proposition 4.29), we have

V ( p̂(a)) ≤ 2	(a)

δn

(
1 + δ

2n

)
, (6)

where Λ(a) = ∑N
i=1 1{a(i) = a}/(N 2πi ). The error in estimating the proportion of

nodes with attribute a is upper bounded by the inverse of the spectral gap and Λ(a),
the latter is small if the probability of sampling nodes with attribute a is large. We
will see in Sect. 5 that for N2V-2, if edge weights wi j are inversely related to the
concordance of the attributes, thus encouraging the walk to explore vertices with
different attributes, then in some settings, this increases δ and decreases Λ(a) (for
attributes with small proportions), resulting in a smaller variance of the estimator.
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4.2 Continuous Attributes

Let g(·) be the density of the continuous attributes, and as before (is : 1 ≤ s ≤ n)

be the states visited by the RW with corresponding attributes (a(is): 1 ≤ s ≤ n).
Analogous to (5) the natural estimate for g(·) is through standard kernel smoothing as

ĝ(a) =
n∑

s=1

K

(
a − a(is)

h

)
1

h
ws, (7)

where h > 0 is a bandwidth, K is a kernel function, and the weights ws satisfy

ws ∝ 1

πis

,

n∑

s=1

ws = 1. (8)

The performance of the estimator can be assessed through the estimation error:
for q > 0,

error =
[∫

|ĝ(a) − g(a)|qda
]1/q

. (9)

The values of q usually considered are 1 and 2.

5 Numerical Studies

5.1 Synthetic Networks

We consider the NLPA model in (1) for networks with attributes and explore the
effect of homophily on the accuracy of the RWs to estimate the attribute distribution
in a controlled setting.

Discrete Attributes. The total number of nodes is N = 2000 with attributes labeled
a = 1, 2, 3. If a node attribute is selected at random, its p.m.f. is given by p(1) = 0.7,
p(2) = 0.2 and p(3) = 0.1. The tendency of two nodes to connect according to the
NLPA model is f (a, a) = 0.9, f (a, a′) = 0.05, a, a′ = 1, 2, 3, a 	= a′. Consider
first the case α = 0.2, where the number of nodes with a large degree tends to
be smaller—see Fig. 1a. For the largest component of the generated network, the
homophily measures are D1 = 1.39, D2 = 3.93, D3 = 7.26, H12 = 0.17, H13 =
0.10, H23 = 0.35.

The network attributes are sampled with the different RWs on the largest compo-
nent and the p.m.f. of the attributes is estimated using (4). Table1 shows the standard
deviations of the estimates using 300 runs for each RW with length 0.15N . The
MHwalk presents the worst performance. Compared to the baseline method NS that
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Table 1 Standard deviations, spectral gaps and quantities Λ(3), under the PA model with α = 0.2
and attribute values a = 1, 2, 3

Random walks MH N2V-1 N2V-
2a

N2V-
2b

N2V-
2c

N2V-3 N2V-4 NS ES

st. dev.; a = 1 0.235 0.172 0.199 0.142 0.169 0.123 0.102 0.029 0.051

st. dev.; a = 2 0.198 0.152 0.176 0.127 0.151 0.107 0.089 0.025 0.042

st. dev.; a = 3 0.137 0.077 0.098 0.069 0.086 0.065 0.049 0.018 0.035

Spectral gap (δ) 0.019 0.048 0.037 0.040 0.011 0.107 0.106 – –

Λ(3) 0.088 0.149 0.165 0.135 0.243 0.149 0.135 – –

For the RW weights: N2V-2a (waa = 1.5, waa′ = 1), N2V-2b (waa = 0.3, waa′ = 1), N2V-2c

(waa = 0.05, waa′ = 1)

samples nodes according to the limit stationary distribution of MH, the difference in
variability is large. The N2V-1 walk performs the worst among the variants of N2V.
It represents the classical RW since edges are sampled at random in its stationary
limit. However, the variability of the baseline method ES is smaller. The results for
MH and N2V-1 can also be explained through the bound of the variance (6). The
spectral gap δ is sufficiently larger for N2V-1, resulting in a lower variability for
attribute a = 3, in spite of smaller Λ(3) for MH.

We examine how the different choices ofweights affect the performance ofN2V-2.
Wewritewaa for theweights of nodeswith the same attributes, andwaa′ with different
attributes. If waa is greater than waa′ (N2V-2a in Table1), the RW hardly transits
from one attribute value to another, which creates a bottleneck for approaching the
stationary probability. On the other hand, if waa is smaller than waa′ (N2V-2b),
movements between different attribute values are more frequent, accelerating the
convergence. In this case, the spectral gap increases. However, as the difference
between waa′ and waa increases (N2V-2c), the convergence is decelerated because
exploration within the same attribute is not sufficient due to the inter-attribute moves.
We also see that ifwaa′ is greater thanwaa until a certain point, the probability of the
random walker of sampling nodes with attribute a = 3 increases andΛ(3) decreases
[see the discussion below (6)]. The tradeoff between δ andΛ(a) explains the smaller
variability for the three attribute values of N2V-2b, which outperforms N2V-1.

In N2V-3, the parameter θ of the propensity for the random walk to backtrack is
decreased to θ = 10−3 and β = γ = 1 are kept for the other two parameters. (Note
that if the walker arrives at a node with degree 1, it always backtracks in the next
time step since this is the only possible move.) In this case, a random walker tends
to explore better the network within the same attribute value, which accelerates the
convergence. The result is consistent with the non-backtracking RWs on regular
graphs [2]. In many cases, they find spectral gap “twice as good” compared to the
classical RW, as also in our case.

N2V-4 combines features of both weighted and non-backtracking RWs. We use
the same weights and backtracking parameter as in N2V-2b and N2V-3, resp. Since
the stationary distribution is not known, we approximate it using (3). The choice is
heuristic but the results show that N2V-4 has lower variability. This can be explained
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Table 2 Standard deviations for various RWs (N2V-2 withwaa = 0.3, waa′ = 1), under the NLPA
model with α = 1 and with/without homophily and attribute values a = 1, 2, 3

Random walks MH N2V-1 N2V-2 N2V-3 N2V-4 NS ES

With homophily st. dev.; a = 1 0.291 0.153 0.131 0.126 0.100 0.031 0.054

st. dev.; a = 2 0.256 0.131 0.107 0.108 0.090 0.028 0.045

st. dev.; a = 3 0.160 0.094 0.073 0.068 0.059 0.021 0.036

Without homophily st. dev.; a = 1 0.146 0.059 0.055 0.049 0.045 0.029 0.040

st. dev.; a = 2 0.116 0.055 0.051 0.041 0.039 0.025 0.036

st. dev.; a = 3 0.110 0.039 0.036 0.031 0.024 0.018 0.027
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Fig. 2 a Probability density function of attributes estimated using kernel smoothing,b the generated
NLPA network with attributes less than 10 (blue) and greater than 10 (green)

by the decrease of Λ(a) for attribute values 2 and 3 (see Λ(3) for N2V-3 and N2V-4
while δ is approximately equal). We have confirmed these findings by using the true
stationary distribution of N2V-4 obtained through simulation.

We next consider theNLPAnetworkwithα = 1 and take its remaining parameters
as above. For the largest component of the network, the homophilymeasures areD1 =
1.38, D2 = 4.30, D3 = 6.25, H12 = 0.16, H13 = 0.23, H23 = 0.32. The standard
deviation of 300 runs for each RW is given in Table2. In this case, the standard
deviation of MH increases and of N2V-1 decreases. This can be explained by nodes
with different attribute values attracted to high degree nodes— see Fig. 1b. Unlike
the case α = 0.2, the RWswhich are attracted by high degree nodes will benefit from
this to move between different attribute values. The same conclusions can be drawn
as above for the other variants of N2V.

Finally, we consider a network without homophily where f is constant and α = 1.
The results are shown in Table2. As seen from the table, if the homophily decreases,
the differences between the RWs tend to be smaller.
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Table 3 Estimation error and spectral gap for various RWs, under the NLPA model

Random walks MH N2V-1 N2V-2 N2V-3 N2V-4 NS ES

Average error 0.818 0.487 0.457 0.385 0.364 0.186 0.270

Spectral gap (δ) 0.005 0.042 0.051 0.080 0.096 – –

Continuous Attributes. We consider the NLPA model with N=2000 nodes and
α = 1. Nodes have continuous attributes with values drawn independently from the
following probability distribution. Let X be a gamma random variable with shape
and scale parameters 1 and 1.5, resp. For the attributes, we draw 0.7N and 0.3N
independent random variables X and 10 + X , resp. The density function of attributes
estimated using kernel smoothing is shown in Fig. 2a. Additionally, we set

f (a(i), a( j)) =
{
0.95, a(i), a( j) < 10 or a(i), a( j) > 10,
0.05, otherwise.

(10)

The network generated is plotted in Fig. 2b, where nodes are divided in two groups:
with attributes less than 10 (group 1) and greater than 10 (group 2). The homophily
measures are D1 = 1.378, D2 = 3.092, H12 = H21 = 0.112.

For N2V-2, the weights are taken as wi j = |a(i) − a( j)|b, which allows moving
between the groups of nodes but also giving more weight to edges with different
values within each group. The choice of b is motivated by similar arguments as in
the case of discrete attributes. If the weights between edges of different groups are
too large, then the convergence is decelerated because exploration within the same
group attribute is not sufficient due to the inter-group moves. From the experiments,
we found that values of b close to zero decrease the range of weights and show good
results.

The network attributes are sampled with the different sampling methods on the
largest component and the density function of the attributes is estimated using (7).
Table3 shows the average of the estimation error (9) with q = 1 and the spectral
gap from 300 runs for each RWwith length 0.15N . We fixed b = 0.3 (N2V-2/4) and
θ = 10−3 (N2V-3/4). The performance of the samplings methods is akin to the case
of the discrete attributes.

5.2 Real Networks

We analyze two publicly available datasets of real networks with attributes and
homophily.1

Discrete Attributes. The dataset is a webgraph of Facebook sites. Nodes represent
pages while the links are mutual likes between sites. Node features were extracted

1 https://snap.stanford.edu/data/.

https://snap.stanford.edu/data/
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Table 4 St. dev. of the estimates

Random walks N2V-1 N2V-2 N2V-3

Politician (1) 0.052 0.0561 0.0489

Government (2) 0.051 0.046 0.043

TV show (3) 0.047 0.045 0.038

Company (4) 0.0669 0.058 0.054

from the site descriptions that the page owners created to summarize the purposes of
the sites. The graph was collected through the Facebook Graph API and restricted
to pages from four attributes which are defined by Facebook. These attributes are:
politicians (1), governmental organizations (2), television shows (3) and companies
(4). We consider the simplified network which has N = 22, 470 nodes and 170, 823
edges. The distribution of node attributes is p(1) = 0.31, p(2) = 0.26, p(3) = 0.29,
and p(4) = 0.14. The homophily measures are D1 = 3.28, H1∗ = 0.17, D2 = 5.08,
H2∗ = 0.21, D3 = 3.46, H3∗ = 0.14, D4 = 1.41, H4∗ = 0.11, where Ha∗ denotes
the propensity of attribute a nodes to connect to the other types of attributes.

To estimate the p.m.f. of the node attributes, we consider only the variants of N2V
with known stationary distributions. For N2V-2, we set the weights as waa = 0.3,
waa′ = 1, a, a′ = 1, 2, 3, 4, a 	= a′, and for N2V-3, we set θ = 10−3. Table4 shows
the standard deviations of the estimates usingRWs of length 0.15N and 500 runs. The
results are in line with the synthetic model with discrete attributes where sampling
with N2V-3 produces more accurate estimates.

Continuous Attributes. Pokec is a social network with attributes from Slovakia. We
use the age attribute viewed as continuous as in [24]. Considering only the nodes with
age attributes results in a network with N=1,138,314 nodes and 22,301,601 edges—
see Fig. 3. It is well known that the network is moderately homophilic with respect to
age. If we divide the nodes in two groups: say, age less or equal to 37 (group 1) and
greater than 37 (group 2), the homophilic measures of the groups are D1 = 1.166,
H12 = 0.30 and D2 = 1.46. Group 2 represents 9% of the total number of nodes.
The average of the estimation errors from 20 runs for each RW with length 0.05N
are: 0.036 (N2V-1), 0.031 (N2V-2 with b = 0.2), 0.030 (N2V-3 with θ = 10−3).

6 Discussion and Future Directions

In this paper, we developed a statistical learning framework for the attribute distri-
butions in networks and evaluated numerically the impact of homophily, degree cen-
trality, and randomwalk explorationmechanisms on estimation accuracy. The results
seem to indicate intricate non-linear relationship between intrinsic homophilic char-
acteristics of the network, parameters modulating random walk exploration schemes
and the error of proposed learning algorithms. Untangling the precise relationship
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Fig. 3 P.d.f. of the age

will require careful theoretical understanding both of macroscopic functionals such
as the spectral gap of proposed RWs and their relationship to parameters such as
backtracking propensities and jump rates across different attribute sets, as well as
microscopic functionals such as asymptotics for local neighborhoods of the under-
lying network. This should lead to more principled ways of choosing RWs and their
parameters in terms of the network homophily, centrality and possibly other mea-
sures.

Random walks are also closely tied to ranking mechanisms such as the Page-rank
centrality, and we plan to study the impact of the parameters driving the random
walk on such centrality scores, thus looping back to one of the central motivations
for studying attributed networks namely fairness of ranking mechanisms [14]. Other
questions, including learning joint distributions of the degree and the attribute through
sampling mechanisms, as well as multivariate attribute distributions, both in terms
of developing synthetic models, as well as real world data will also be considered.
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A More Powerful Heuristic for Balancing
an Unbalanced Graph

Sukhamay Kundu and Amit A. Nanavati

Abstract We present a more powerful heuristic algorithm for the N P-complete
problem of finding a minimum size subset of edges in an unbalanced signed graph
G whose ‘+’/‘−’ labels can be flipped to balance G. Our algorithm finds a minimal
flipping edge-set, starting with a given spanning tree T of G, by considering both the
edges not in T and those in T because flipping a tree-edge can sometimes balance
multiple fundamental unbalanced cycles at the same time. This can give a much
smaller minimal flipping edge-set than the current algorithm where only the edges
not in T are considered for flipping.

Keywords Balancing signed graph · Heuristic algorithm · Spanning tree

1 The Problem of Balancing an Unbalanced Graph

In a signed graph G = (V, E), each edge (x, y) has a ‘+’/‘−’ label (sign), denoted
by s(x, y). A political or social network can be modeled [1, 2] by a signed graph G,
where the nodes represent individuals and the edges represent pairs of individuals
who communicate directly with each other, with s(x, y) = ‘+’ indicating that x and
y agree on some given issue such as voting the same way (‘yes’/‘no’) on the issue,
and s(x, y) = ‘−’ indicating that x and y disagree (voting differently). The signed
graphs are also used in modelling intra-cellular regulatory system [3], where nodes
represent proteins, metabolites, etc. and the edges represent excitation or inhibition
interaction. G is called balanced if each cycle in G contains an even number of ‘−’
edges. This is equivalent to saying [4] that we can partition V = V1 ∪ V2 into disjoint
non-empty subsets V1 and V2 (assuming that G has at least one ‘−’ edge) such that
each ‘+’ edge connects two nodes in the same Vi and each ‘−’ edge connects two
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Fig. 1 A connected balanced signed graph G = (V, E); the ‘−’ edges form a bipartite graph, with
the parts V1 = {x1, x2, x3} and V2 = {x4, x5} forming a partition of V

nodes in different Vi ’s. For example, V1 = the people who voted ‘yes’ and V2 = the
people who voted ‘no’; see Fig. 1. Clearly, G is balanced if each of its connected
components is balanced. The partition V = V1 ∪ V2 is unique if G is connected. If
G is unbalanced, then there are two ways to balance it: (1) by flipping the signs of a
subset of the edges E , and (2) by deleting a subset of the edges E . It is known [5] that
the optimal (minimum size) flipping edge-sets Eopt Flip whose labels can be flipped
to balance G are the same as the optimal (minimum size) deletion edge-sets EoptDel

whose deletion makes G balanced. If each edge in G is a ‘−’ edge, then finding an
EoptDel is the same as finding a maximum size bipartite subgraph of G. Because the
latter problem is known to be N P-complete, finding an Eopt Flip for a general signed
graph G is also N P-complete.

In [6], bounds on |Eopt Flip| are derived in terms of |V | and |E |. In [7], a related
NP-hard problem is considered where one wants to find a maximum size node set
V ′ ⊆ V such that the induced subgraph of G on V ′ is balanced. An O(2k |E |2) algo-
rithm for balancing G is given in [8], where k = |Eopt Flip|. A heuristic algorithm
based on signed spectral theory and perturbations of the graph Laplacian is given
in [9]. The problem of balancing G as much as possible by deleting up to b edges is
considered in [10].

2 Preliminaries

If s(x, y) = ‘+’ (short for ‘+1’), we call (x, y) a p-edge; likewise, if s(x, y) = ‘−’
(short for ‘−1’), we call (x, y) an n-edge. For a cycle ξ = 〈x1, x2, . . . , xm, x1〉
of length m ≥ 3, we write s(ξ) =

∏
j≤m s(x j , x j+1), where xm+1 = x1. We call ξ

balanced if s(ξ) = ‘+’, i.e., #(n-edges in ξ ) is even; otherwise, we call ξ unbalanced.
The cycle ξ is called simple if the nodes x1, x2, . . . , and xm are distinct. If ξ is not
simple and unbalanced, then there is a simple unbalanced cycle ξ ′ whose edges are a
subset of the edges of ξ . Henceforth, by a cycle we will mean a simple cycle. Thus,
G is balanced if and only if every (simple) cycle in G is balanced. Because each
cycle in G is contained in a bicomponent of G, it follows that G is balanced if and
only if each of its bicomponents is balanced. Henceforth, we assume G is connected
and |V | ≥ 3.

Given a signed (connected) graph G and a spanning tree T in G, we can assign a
‘+’/‘−’ sign (label) s(x) to each node x as follows. Choose an arbitrary node, say, x1
as the root of T and let s(x1) = ‘+’. For each node xi 	= x1, if π(xi ) = 〈x1, x2, · · · , xi 〉
is the unique x1xi -path in T , then let s(xi ) =

∏
j<i s(x j , x j+1), i.e., s(xi ) = ‘+’ if #(n-
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edges in π(xi )) is even and, otherwise, s(xi ) = ‘−’. In particular, if node y is a child
of node x (equivalently, x = par(y), the parent of y), then s(y) = s(x)s(x, y), which
is the same as s(x, y) = s(x)s(y). If we start with the opposite label s(x1) = ‘−’ for
root(T ), then the new label of each xi would be the opposite of its previous label. In
this sense, we can say that the above method gives a unique ‘+’/‘−’ labeling of the
nodes in G based on T . Henceforth, the node labels s(x) will correspond to those
obtained with s(root (T )) = ‘+’. We say x is a p-node (resp., an n-node) if s(x) =
‘+’ (resp., ‘−’). Clearly, the computation of all node labels s(x) takes O(|V |) time.
Note that if G is balanced, then the product

∏
s(x j , x j+1) of the labels of the edges

in an xy-path in G is independent of the xy-path because two xy-paths would form
a cycle (which may not be simple) and that cycle is balanced. Thus, the node labels
s(x) are independent of T for a balanced G.

2.1 Verifying Balancedness of G Via Node Labels s(x)

Consider a fixed rooted spanning tree T in G. For each edge (x, y) ∈ E − T , we
have a unique cycle ξx,y in T + (x, y); this is sometimes called the fundamental
cycle of (x, y) with respect to T . If G is balanced, then each ξx,y is balanced and
that means s(ξx,y) = s(x, y)s(πx,y) = +1, i.e., s(x, y) = s(πx,y), where πx,y is the
unique xy-path in T . If z is the nearest common ancestor in T of x and y, then πx,y

= πx,zπz,y , the concatenation of the xz-path πx,z in T and the zy-path πz,y in T . If z
= x , say, then πz,x is taken to be empty-path (with no edges) and s(πz,x ) = +1. We
have s(x)s(y) = s(π(z))s(πz,x )s(π(z))s(πz,y) = s(πx,y). This gives Eq. (1) below
to test the balancedness of the fundamental cycle ξx,y for an edge (x, y) not in T .
Recall that the Eq. (1) holds when (x, y) ∈ T .

ξx,y is balanced: s(x, y) = s(x)s(y). (1)

2.2 An Efficient Version of the Algorithm in [11] Based
on Eq. (1)

The algorithmMinimalFlipSetOfNonTreeEdges below is a more efficient version of
the algorithm in [11] based on Eq. (1) by a factor of O(|V |). It obtains the same
minimal flipping edge-set EmalFlip ⊆ E − T for balancing G for a given spanning
tree T of G. The size of EmalFlip obtained, which depends on T , can be much
larger than that of an optimal flipping edge-set Eopt Flip, in general. For each edge
(x, y) ∈ E − T , determining whether ξx,y is balanced or not based on Eq. (1) takes
O(1) time compared to O(|V |) time in [11]. We use the breadth-first-label of a node
bfl(x) = k ≥ 1, if x is the kth node visited in a breadth-first traversal of T starting at
root(T ), to avoid adding an edge to EmalFlip more than once. Figure2 illustrates our



34 S. Kundu and A. A. Nanavati

Fig. 2 Illustration of the algorithm MinimalFlipSetOfNonTreeEdges, giving EmalFlip =
{(x5, x4), (x3, x5)}. The thick lines show the spanning tree T

algorithm. It gives EmalFlip = {(x5, x4), (x3, x5)}, which is also an optimal flipping
edge-set. We add (x5, x4) first to EmalFlip in processing x5 because bfl(x5) = 4 >

3 = bfl(x4); (x3, x5) is added next in processing x3. Here, an alternate Eopt Flip is
{(x3, x4), (x4, x5)} � E − T . It is shown in [5] that the removal of the edges in an
EmalFlip from G leaves G connected. This means given a particular EmalFlip = E ′
and a spanning tree T ofG with edges in E − E ′, the algorithm in [11] or its modified
form given here will give the minimal flipping edge-set E ′. The following theorem
is straightforward.

Theorem 1 The algorithm MinimalFlipSetOfNonTreeEdges takes O(|E |) time.

Algorithm MinimalFlipSetOfNonTreeEdges (an efficient version of the algo-
rithm in [2] based on eqn. (1)):

Input: A connected signed graph G = (V , E), with |V | ≥ 3, and a rooted
spanning tree T of G. For each node x, assume par(x) = parent of
x in T , with par(root(T )) = root(T ), and adj(x) is a  list of the pairs
(y, s(x, y)) for nodes y adjacent to x in G.

Output: A minimal flipping edge set EmalFlip ⊆ E − T to balance G.

1. Let s(root(T )) = ’+’, the breadth-first-label bfl(root(T )) = lastBFLassigned =
1, and EmalFlip = empty-set.

2. Do a breadth-first traversal of T starting at root(T ), and do one of the follow-
ing for each node y in adj(x), where x = current node and y ≠ par(x):

(a) [par(y) = x, hence y is not visited before and neither of s(y) and bfl(y)
is defined.] If (par(y) = x) then add 1 to lastBFLassigned and let bfl(y)
= lastBFLassigned and s(y) = s(x)s(x, y).

(b) [both s(y) and bfl(y) are defined; y may be an ancestor of x or a
descendant of an ancestor of x in T but not a descendent of x, meaning
all nodes in the fundamental cycle ξ x,y in T + (x, y) hav e been visited.]
If (s(y) is defined, bfl(y) < bfl(x), and ξ x,y is not balanced, i.e.,
s(x)s(y) ≠ s(x, y)), then add (x, y) to EmalFlip.
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3 Flipping Edges in T to Balance G

For a given spanning tree T of G, flipping the label of an edge (x, y) ∈ E −
T changes the balancedness of only ξx,y and has no effect on other fundamental
cycles. However, flipping the label of (u, v) ∈ T changes the balancedness of all
fundamental cycles covered by (u, v), i.e., ξcov(u, v) = {ξx,y : (x, y) ∈ E − T and
(u, v) is in the xy-path in T or, equivalently, (u, v) is in ξx,y}. If ξx,y ∈ ξcov(u, v)

is balanced, then flipping the label of (u, v) makes ξx,y unbalanced and we need to
rebalance ξx,y by flipping the label of some other edge in T that covers ξx,y or by
flipping the label of (x, y) itself. We can sometimes obtain a smaller EmalFlip when
we use a combination of edges in T and edges in E − T than that when we limit
ourselves to use only the edges in E − T as is done in [11]. For the signed graph
G = (V, E) and its spanning tree T shown in Fig. 3, which illustrates the notion of
“cover", each edge E − T is a p-edge and there are two Eopt Flip = {(x1, x2), (x5, x6)}
and{(x2, x3), (x6, x7)}; theyboth have size 2 and consist of edges inT .Here, EmalFlip

based on T consists of 6 out of 7 edges in E − T , excluding the edge (x1, x7).

3.1 Selection Criteria for a Tree Edge (u, v) for Flipping

Let T be a spanning tree of G, (u, v) an edge in T , and (x, y) and edge in E − T .
Let ξbcov(u, v) = {ξx,y : ξx,y is balanced and covered by (u, v)} and ξucov(u, v) =
{ξx,y : ξx,y is unbalanced and covered by (u, v)}. Clearly, ξcov(u, v) = ξbcov(u, v) ∪
ξucov(u, v), a disjoint union. Ifweflip the label of (u, v), then to rebalance each ξx,y ∈
ξbcov(u, v) we can flip the label of (x, y). Thus, flipping the label of (u, v) ∈ T to
balanceG is better than flipping the labels of all edges in {(x, y) : ξx,y ∈ ξucov(u, v)}
when inequality in Eq. (2) is strict.

Condition for flipping (u, v) ∈ T : |ξbcov(u, v)| ≤ |ξucov(u, v)| + 1 (2)

3.2 The New More Powerful Heuristic Algorithm

The algorithm MinimalFlipSet below repeatedly selects an edge (u, v) in the given
spanning tree T based on Eq. (2) to include in EmalFlip. When we cannot find such
an (u, v) ∈ T , we choose the remaining edges (x, y) ∈ E − T such that ξx,y is
still unbalanced. We need to select tree-edges before selecting non-tree edges partly
because flipping the label of a selected (x, y) ∈ E − T cannot help the selection
of an (u, v) ∈ T and partly because if we start selecting non-tree edges first and
at some arbitrary point start selecting tree-edges, then we may still need to switch
back to selecting non-tree edges again to complete balancing G. Note that if we let
the loop in step 2 iterate any number of times (≥ 0) instead of terminating it when
M < 1, then we can generate many alternative EmalFlip. The choice of (u, v) in step
2(b) also lets us generate alternative EmalFlip.
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Fig. 3 Illustration of ξcov(u, v) for (u, v) ∈ T

Algorithm MinimalFlipSet:

Input: A connected signed graph G = (V , E) and a spanning tree T of G.
Output: A minimal flipping edge-set EmalFlip consisting of possibly edges

from both T and E − T for balancing G.

1. Initialize EmalFlip = empty-set.

2. Repeat steps (a)-(c):

(a) For each edge (u, v) ∈ T , determine ξ bcov(u, v) and ξucov(u, v).

(b) Determine M = max {|ξucov(u, v)| − |ξ bcov(u, v)|: (u, v) ∈ T} and an
(u, v) that gives M . If (u, v) is not unique, choose one arbitrarily.

(c) If (M ≥ 1), then flip the label of the edge (u, v) and add (u, v) to
EmalFlip.

while (M ≥ 1).

3. For each remaining unbalanced ξ x,y, (x, y) ∉ T , if any, add (x, y) to EmalFlip.

Example 1 Figure4 illustrates algorithmMinimalFlipSet forG = K−
5 , the complete

graph on 5 nodes with all n-edges. Figure4i shows the depth-first tree T of G for
root(T ) = x1. Figure4ii–iv shows a sequence of choices of tree-edges for flipping
and the results of flipping them. Finally, we flip (x3, x5) ∈ E − T to balance G. The
resulting EmalFlip is also an Eopt Flip. There are many other possible sequences of
choice of tree-edges in our algorithm here; if we choose (x2, x3) and (x3, x4) in T in
that order, then we must choose (x1, x5) and (x2, x4) in E − T to balance G, again
giving an Eopt Flip. The algorithm in [11] here also give an Eopt Flip. The situation is
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Fig. 4 Illustration of MinimalFlipSet for G = K−
5

quite different if we choose T with root(T ) = x1 having 4 children {x2, x3, x4, x5}.
In this case, each EmalFlip determined by MinimalFlipSet is an Eopt Flip, involving
2 edges in T and 2 edges in E − T but the algorithm in [11] gives an EmalFlip of 6
edges in E − T , which is not an Eopt Flip.

Theorem 2 Given any spanning tree T in a connected signed graph G, we can
compute all minimal flipping edge-sets EmalFlip, including all optimal flipping edge-
sets Eopt Flip, using different choices of edges in T and edges in E − T .

4 An Efficient Implementation of MinimalFlipSet

We give below an efficient implementation of the algorithmMinimalFlipSet when T
is a depth-first spanning tree ofG. (The case when T is not a depth-first spanning tree
of G will be discussed elsewhere.) Each edge (x, y) ∈ E − T is now a back-edge,
with one of x and y being an ancestor of the other but not the parent. We say a back-
edge (x, y) is balanced (resp., unbalanced) if ξx,y is balanced (resp., unbalanced).
Let d f l(x) be the depth-first label of x and T (x) the subtree of T at x (including
node x).

We define several counts related to balanced and unbalanced back-edges and their
cumulative forms as shown in Table1 for efficient computation of |ξbcov(u, v)| and
|ξucov(u, v)| used in Eq. (2) for all edges (u, v) ∈ T . Note that for a terminal node
x in T , we have cbt (x) = cut (x) = 0 and for x = root(T ) we have cb f (x) = cu f (x)
= 0, ccb f (x) = ccbt (x) = #(balanced back-edges in T ) and ccu f (x) = ccut (x) =
#(unbalanced back-edges in T ). All these counts at a node x are determined when
we backtrack from x in the depth-first traversal of G. Clearly, cb f (x) + cu f (x)
= #(back-edges from x) and cbt (x) + cut (x) = #(back-edges to x). Table2 gives
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Table 1 Definitions of various basic counts related to back-edges

cb f (x) = #(balanced back-edges from node x to its ancestors)

cbt (x) = #(balanced back-edges to node x from its descendents)

cu f (x) = #(unbalanced back-edges from node x to its ancestors)

cut (x) = #(unbalanced back-edges to node x from its descendents)

ccb f (x) = #(balanced back-edges from nodes in T (x)) = �y∈T (x)cb f (y)

ccbt (x) = #(balanced back-edges to nodes in T (x)) = �y∈T (x)cbt (y)

ccu f (x) = #(unbalanced back-edges from nodes in T (x)) = �y∈T (x)cu f (y)

ccut (x) = #(unbalanced back-edges to nodes in T (x)) = �y∈T (x)cut (y)

Table 2 Definitions of counts related to back-edges covered by a tree-edge (x , par(x))

cbcov(x) = #(balanced back-edges covered by the tree-edge (x , par(x))

= #(balanced back-edges from nodes in T(x) to ancestors of x)

= �y∈T (x)(cb f (y) − cbt (y)) = ccb f (x) − ccbt (x)

cucov(x) = #(unbalanced back-edges covered by the tree-edge (x , par(x))

= #(unbalanced back-edges from nodes in T(x) to ancestors of x)

= �y∈T (x)(cu f (y) − cut (y)) = ccu f (x) − ccut (x).

Fig. 5 Illustration of the balanced and unbalanced back-edges for a depth-first tree T in a signed
graph G

the related counts of the fundamental cycles covered by a tree edge (x , par(x)); for
example, cbcov(u) = |ξbcov(u, par(u))|.

Figure5 shows a connected unbalanced signed graphG, a depth-first spanning tree
T ofG, the nodes labels s(xi ) based on T , and the resulting balanced and unbalanced
back-edges. Table3 shows the various counts for the nodes in Fig. 5.
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Table 3 Illustration of various counts at some of the nodes for G and T in Fig. 5; nodes are listed
in the order they are back-tracked in the depth-first traversal
Node xi cb f (xi )

cbt (xi ),
cu f (xi ),
cut (xi )

ccb f (xi ),
ccbt (xi )

ccu f (xi ),
ccut (xi )

cbcov(xi ) and its
associated edges

cucov(xi ) and its
associated edges

x5 1, 0 1, 0 1, 0 1, 0 1 − 0=1 1 − 0 =1

(x5, x3) (x5, x1)

x6 1, 0 0, 0 1, 0 0, 0 1 − 0=1 0 − 0 = 0

(x6, x3) –

x4 0, 0 2, 0 2, 0 3, 0 2 − 0=2 3 − 0 =3

(x5, x3), (x6, x3) (x5, x1), (x4, x1),

(x4, x2)

· · · · · · · · · · · · · · · · · · · · ·
x1 0, 1 0, 2 3, 3 3, 3 3 − 3=0 3 − 3 = 0

– –

4.1 Algorithm to Determine the Counts in Tables1 and 2

The algorithmModifiedDFSforVariousCounts below is a modified depth-first traver-
sal of G to determine the various counts in Tables1 and 2. The total of the counts
cb f (x), cbt (x), cu f (x), and cut (x) for all nodes x equals 2(|E | − |V | + 1) because
a back-edge (x, y) contributes 1 to each of the counts cb f (x) and cbt (y) or to each
of the counts cu f (x) and cut (y). The computation of the corresponding cumulative
counts in Table1 at a node x is done by combining the counts at x with with the
cumulative counts at its children. Thus, their computation takes O(|V |) time. Thus,
the total computation time of the algorithm is O(|E |). For each of the counts cb f (x)
and cu f (x), we can also compute the associated list of nodes for the other end point
of the back-edges bbe f (x) = {y : back-edge (x, y) is balanced}, and similarly for
ube f (x) that contribute to those counts. We do not compute similar list of nodes
related to cbt (x) and cut (x) for reasons explained later. The computation of these
lists require only additional O(|E | − |V | + 1) time.

4.2 Selecting a Best Flipping Tree-Edge in a Depth-First Tree

A best flipping edge in a dept-first spanning tree T for balancing G is (u, v), v =
par(u) and u 	= root(T ), is one that maximizes cucov(u) − cbcov(u) is maximum
and the maximum is > 1, based on Eq. (2). If there is more than one such u, then
select any one arbitrarily.

For the selection of the next best tree-edge in T , we need to determine the back-
edges (x, y) covered by the selected tree-edge (u, par(u)). For this, we form the
union of the node-lists bbe f (x) and ube f (x) for nodes x ∈ T (u) and from this we
subtract the nodes y with d f l(y) ≤ d f l(u). This can be done in O(|E | − |V | +
1) computation time if we use depth-first labels of nodes in the lists bbe f (x) and
ube f (x) throughout instead of the original node names. As we flip the labels of
the back-edges (x, y) covered by the selected tree-edge (u, par(u)), we update the
counts related to cb f (x) and cbt (y) or cu f (x) and cut (y) depending on whether
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(x, y) was balanced or not; we can also update the associated node-lists bbe f (x)
or ube f (x) accordingly. We also need to flip the sign of the selected tree-edge (u,
par(u)) and flip the node labels of each node y in the subtree T (u), including u. This
takes O(|V |) time. We are now ready to update the various cumulative counts in
Table1 for all nodes in T (u) and the ancestors of u and then proceed to select the
next best flipping edge in T , if any.

The process terminates because #(tree-edges selected) + #(unbalanced fundamen-
tal cycles with respect to T ) keeps decreasing. In particular, it will not happen that
we flip a tree edge (u, par(u)) at one point and then later we flip the same tree edge
again. Note that there is no change in T itself in the whole process although the labels
of some of its edges and nodes may change. Once a tree-edge selection provides no
advantage, wemake one more pass to select edges in E − T for the remaining unbal-
anced fundamental cycles. The following theorem is now straightforward.

Algorithm ModifiedDFSforVariousCounts:

Input: A connected signed graph G = (V , E), a start-node, and the lists
adj(x) of the pairs (y, s(x, y)) for nodes y adjacent to x.

Output: A depth-first tree T with root(T ) = start-node and for each node x
its depth-first label dfl(x), ’+’/’−’ label s(x), the counts in Table 1,
and the node-lists bbef(x) and ubef(x) related to cbf(x) and
cuf(x).

1. For each node x, initialize dfl(x) and each of the counts in Table 1 for node x
to 0, and initialize the lists bbef(x) and ubef(x) to empty-list. Also, let
root(T ) = start-node, par(start-node) = start-node, s(root(T )) = ’+’, lastD-
flAssigned = dfl(root(T )) = 1, and the current node x = root(T ).

2. Let y be the next node in adj(x) to visit, if any.

3. If (there is no y), then do one of the following to backtrack from x to par(x):

(a) If (x = root(T )), then stop.

(b) Otherwise, add ccbf(x) to ccbf(par(x)) and, likewise, for ccbt(x),
ccuf(x), ccut(x), and also let cbcov(x) = ccbf(x) − ccbt(x) and cucov(x)
= ccuf(x) − ccut(x) and then let the current node x = par(x).

4. Otherwise, i.e., if (y exists), then do one of the following for the first visit of
either a depth-first tree-edge from x to a child y of x or a back-edge (x, y):

(a) If (dfl(y) = 0), then add 1 to lastDflAssigned and let dfl(y) = lastDflAs-
signed, s(y) = s(x)s(x, y), par(y) = x, and the current node x = y.

(b) If (dfl(y) > 0 and y ≠ par(x), i.e., dfl(y) <  dfl(par(x))), then do one of
the following for the back-edge (x, y):

(b.1) If ((x, y) is balanced, i.e., s(x)s(y) = s(x, y)), then add y to
bbef(x) and add 1 to each of cbf(x), cbt(y), ccbf(x), and ccbt(y).

(b.2) Otherwise, add y to ubef(x) and add 1 to each of cuf(x), cut(y),
ccuf(x), and ccut(y).
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Theorem 3 For a depth-first spanning tree T in G, we can compute a minimal
flipping edge-set EmalFlip combining edges in T and edges in E − T in time O((k +
1)|E |), where k = #(edges in T selected in EmalFlip).

5 Conclusion

We first provide an O(|E |) time heuristic algorithm, which is more efficient than
the heuristic algorithm in [11] by a factor of |V |, to find a minimal flipping edge
set EmalFlip to balance a connected unbalanced signed graph G = (V, E) based on
a spanning tree T of G. Here, we use the concept of ±-labeling s(x) of the nodes
x ∈ V based on T and the fact that the fundamental cycle ξ(x, y) in T + (x, y) for
an edge (x, y) /∈ T is balanced if and only if s(x, y) = s(x)s(y). As in [11], we
flip the label of (x, y) /∈ T if and only if ξ(x, y) is not balanced; it balances only
the fundamental cycle ξ(x, y). We then provide a more powerful heuristic to find a
EmalFlip than in [11]. The key idea in our new heuristic algorithm is that if several
ξ(x, y) share a common edge (u, v) ∈ T , then flipping the label of (u, v) balances
all those ξ(x, y)’s. Because it will also unbalance the balanced fundamental cycles
that share (u, v), our algorithm uses a specific criteria to select the edges (u, v) ∈ T ,
in addition to some edges (x, y) /∈ T , to balance G and it typically obtains a smaller
minimal flipping edge-set for a given T than [11]. Our algorithm has, however, a
higher time complexity as shown in Theorem 3.
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DC-RST: A Parallel Algorithm
for Random Spanning Trees in Network
Analytics

Lucas Henke and Dinesh Mehta

Abstract The Mantel Test, discovered in the 1960s, determines whether two dis-
tancemetrics on a graph are related.We describe DC-RST, an algorithm to accelerate
a key step of a network science statistical computation associated with DimeCost,
an approach that is faster the Mantel Test. DC-RST is a parallel, divide-and-conquer
algorithm to compute a random spanning tree of a complete graph on n vertices.
Relative to an implementation of Wilson’s sequential random-walk algorithm, on a
system with 48 cores, DC-RST was up to 4X faster when first creating random par-
titions and up to 20X faster without this sub-step. DC-RST is shown to be a suitable
replacement for Wilson’s sequential algorithm through a combination of theoretical
and statistical results.

Keywords Wilson’s algorithm · Mantel test · Dimecost

1 Introduction and Background

The Mantel Test [1] is a statistical test for characterizing the relation between two
distance metrics. For example, in a road network, one would expect drive times
to be closely related to driving distances. The Mantel Test provides a quantitative
way for doing so—it entails computing Pearson’s correlation coefficient on an n × n
matrix for a number of permutations (denoted by t), making the overall computation
Θ(t · n2). This is prohibitive for Big Data applications (social networks, the internet
web graph, etc.), where n ∼ 109. Bourbour et al. recently presented DimeCost,
similar to the Mantel Test, that utilizes uniform random spanning trees. DimeCost
has an improved complexity of Θ(t · n) [2].
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Fig. 1 Distance matrices D1 and D2 with corresponding graphs G1 and G2. Since both matrices
are symmetric, only their upper triangles are drawn

This paper goes one step further: a key step in DimeCost is the computation of
a uniform random spanning tree of a complete graph using Wilson’s algorithm; we
aim to perform this step in parallel. While this problem has been studied before,
this was only done theoretically [3]. Our proposed algorithm, DC-RST (Divide
and Conquer—Random Spanning Tree), has been analyzed theoretically and imple-
mented experimentally, and is shown to be a suitable replacement for this step.
Definitions Consider a set of n objects and two distance metrics d1 and d2, which
can be used to compute pairwise distances between all pairs of objects1. A distance
metric can be interpreted as a symmetric matrix: an n × n matrix, say D1, where
D1[i, j] is the distance between i and j using the d1 metric. It may also be viewed as
a weighted network: a weighted, undirected, complete graph, G1, where each vertex
corresponds to an object, and an edge from vi to v j has weight equal to the distance
between i and j using the distance metric d1. Both representations are equivalent:
matrix D1 can be viewed as the weighted adjacency matrix for G1 as illustrated in
Fig. 1.
Mantel Test The Mantel test answers the question: is there a statistically significant
relationship between distance metrics d1 and d2? In the road network example, we
expect drive times to be closely related to driving distances, and the Mantel test pro-
vides a quantitative method for measuring this relationship. Specifically, the Mantel
test takes as input the matrices D1 and D2 and:

1. Computes the Pearson’s correlation coefficient (rinit ) between D1 and D2.
2. Randomly permutes the rows and columns of D1 to obtain D′

1.
3. Compute r between D′

1 and D2.

1 Note: distance metrics are assumed to be symmetric.
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Steps 2 and 3 are run t times and the number of times x that r > rinit is recorded.
If x/t ≤ p (e.g., p could be 0.05), the test asserts that metrics d1 and d2 are related
[1].

The Mantel Test (and its variants) have been a widely used tool for distance
metric analyses (e.g., a package for the statistical language R implements the Mantel
Test [4]). Schneider and Borlund review its use in anthropology, psychology, and
geography [5]; see also [6–8]. Ricaut et al. used it to determine whether there is a
correlation between genetic and discrete trait proximity matrices for individuals in
the Egyin Gol necropolis in Mongolia [9]. Smouse et al. describes the importance of
the Mantel Test in biology, on distance metrics of genetic markers, morphological
traits, ecological divergence, etc. [10]. Kouri et al. used it in cheminformatics, to
study the relationship between bond count distances and Tanimoto distances [11].
Dimecost Bourbour et al. proposed an algorithm called Dimecost, which uses uni-
form, random spanning trees instead of matrices [2]. Recall that the distance matrix
is equivalent to a weighted, undirected, complete graph on n vertices. Dimecost
computes a random spanning tree of this graph. rinit is then computed using the
edges of the spanning tree and permutations of the d1 weights are used to perform a
test similar to Mantel. Bourbour et al. show this method works better than randomly
selecting edges, has a lower complexity than the originalMantel test (Θ(t · n) instead
of Θ(t · n2)), and results in similar correlation values between distance metrics.
RandomWalksA key step inDimecost uses randomwalks on the graph to obtain a
uniform, random spanning tree. Given an undirected graph G = (V, E), a spanning
tree is any undirected, acyclic, connected sub-graph T = (VT , ET ) that spans the
graph. In general, undirected graphs have many spanning trees; thus, a uniform
random spanning tree is a spanning tree, selected at random from the possible set
of all spanning trees (where each tree is equally-likely [uniformly] to be selected).
Aldous [12] and Broder [13] gave equivalent algorithms using a random walk to
generate a uniform random spanning tree by tracking the edges traversed when
discovering a vertex. Their algorithm has complexity equal to the mean cover time
of the graph—for cliques, this is O(n log n) [14]. Later, Wilson [15] gave a different
algorithm,whose complexity is equal to themeanhitting timeof a graph—for cliques,
this is O(n) [14]. Dimecost uses Wilson’s algorithm.

2 Parallel Algorithm and Analysis

2.1 Algorithm Outline

We propose the following approach to create random spanning trees.

1. Randomly partition the original clique into k sub-cliques.
2. Run Wilson’s algorithm on each sub-clique, forming a forest of k spanning sub-

trees.
3. “Merge” the sub-trees together to form the final tree as follows:
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Fig. 2 Four random partitions of the original clique

Fig. 3 Sub-trees from Step 2

Fig. 4 Supergraph and
supertree for this example

(a) Consider each sub-clique to be a “supernode”, mutually connected to form a
“supergraph” clique.

(b) Run Wilson’s algorithm on the “supergraph” to get a “supertree”.
(c) For each superedge in the supertree, obtain a “real” edge by choosing uni-

formly at random a vertex from both subtrees and join with an edge.

Consider a clique of 24 vertices randomly partitioned in Step 1 into four subgraphs
of six vertices each, as shown in Fig. 2.

For each of the four sub-graphs, Step 2 runs four independent instances ofWilson’s
algorithm (one per sub-graph) in parallel resulting in a forest of spanning trees
(referred to as “sub-trees”) shown in Fig. 3. Recall, Wilson’s algorithm generates
uniform random spanning trees, thus this forest of spanning trees is just one ofmany
possible forests.
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Fig. 5 Connecting the forest with edges using super tree

With these sub-trees, we now run the “Merge” step of Step 3. Step 3a creates
the “supergraph”, which is a clique of 4 vertices as shown in Fig. 4. Step 3b runs
Wilson’s algorithm on the supergraph, to form a “supertree”, also shown in Fig. 4.

Step 3c converts each superedge in the supertree to a “real” edge by choosing
uniformly at random a vertex from each tree and joining those two with an edge. The
example supertree indicates trees 0 and 2 should be connected with an edge, thus a
vertex from each tree is chosen at uniform random to be connected (vertex 12 and
3). This process, repeated for the remaining superedges, results in the final tree (new
edges in red), shown in Fig. 5.

2.2 Theoretical Analysis

We first show that our algorithm meets the following necessary condition for a
uniform random spanning tree. (Our theorems are stated without proof due to space
limitations.)

Theorem 1 Let G = (V, E) be a complete, undirected graph (i.e., a clique), with
n = |V | and m = |E |. Let (u, v) ∈ E be any edge in G. Let T be a spanning tree,
chosen uniformly at random from all possible spanning trees of G (i.e., T is a uniform
random spanning tree). Then, the probability (u, v) ∈ T is: P((u, v) ∈ T ) = 2

n

Theorem 2 Let G = (V, E) be a clique, let (u, v) ∈ E be any edge in G, and let T
be a spanning tree our algorithm creates. If the vertices V are partitioned uniformly
at random into k groups of possibly unequal size, then the probability (u, v) ∈ T is:
P((u, v) ∈ T ) = 2

n
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Fig. 6 The “star” tree for
n = 8: all vertices are
connected to one central
vertex

However, a simple counterexample shows that DC-RST does not generate random
spanning trees with uniform probability. Specifically, the “star” tree (Fig. 6) will
never be generated by DC-RST unless k = 1 or k = n (when DC-RST degenerates
toWilson’s algorithm). Thus, DC-RST creates a random (but non-uniform) spanning
tree of a clique such that edges are chosen with the same probability as a uniform
random spanning tree.

2.3 Statistical Analysis

This raises the following question: if DC-RST does not generate uniform random
spanning trees, then is DC-RST a suitable replacement for Wilson’s algorithm in
DimeCost? To answer this, we compared two versions of DimeCost—one using
Wilson’s algorithm, the other using DC-RST—on three data sets used by Bourbour
et al. In each experiment, we use the Mantel Test to compute the correlation coeffi-
cient between a pair of distance matrices (r ), and compute 95% confidence intervals
(CIs) for DimeCost using both Wilson’s algorithm and DC-RST for spanning tree
generation. We then examine whether the CIs contain r .
Data Set 1: Comparison of Distance Norms For this first data set, we generated
25 (x, y) points and applied four distance matrices based on L1, L2, L3, and L∞
norms; considering these pairwise gives six data sets.2 The results are summarized
in Table1.

The CIs using DC-RST differ slightly from those using Wilson’s algorithm, but
still contain r from the Mantel Test.

2 The L p-norm for p ≥ 1 of a vector �x is a commonly used measure of “distance” in machine

learning for clustering, and is defined by ||�x ||p = (|x1|p + |x2|p + · · · + |xn |p)
1
p . Note that

L∞(�x) = max{|x1|, |x2|, ..., |xn |} is the limit of the L p norm as p −→ ∞.
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Table 1 Comparison between the Mantel test and DimeCost on various L p-norms

d1 d2 r CI using Wilson CI using DC-RST

L1 L2 0.9798 (0.9785, 0.9819) (0.9776, 0.9806)

L1 L3 0.9584 (0.9550, 0.9613) (0.9558, 0.9621)

L1 L∞ 0.9167 (0.9096, 0.9209) (0.9154, 0.9255)

L2 L3 0.9959 (0.9956, 0.9962) (0.9955, 0.9961)

L2 L∞ 0.9754 (0.9743, 0.9782) (0.9751, 0.9785)

L3 L∞ 0.9907 (0.9898, 0.9917) (0.9901, 0.9918)

Fig. 7 Two line graphs with 6 vertices

Table 2 Comparison between the Mantel test and DimeCost on data set 2

n r CI using Wilson CI using DC-RST

6 0.400 (0.342, 0.504) (0.314, 0.477)

10 0.350 (0.230, 0.358) (0.232, 0.378)

30 0.422 (0.362, 0.432) (0.387, 0.458)

50 0.596 (0.584, 0.630) (0.570, 0.610)

100 0.872 (0.869, 0.887) (0.866, 0.885)

Data Set 2: Line Graph For this example, consider a road network represented
by a line graph, modeling a long continuous stretch of an interstate highway where
each edge represents a highway segment. In the first graph, the weights of all edges
(representing travel distances) are equal to 1. In the second graph (representing travel
time), the weights of all edges are again 1 except the last edge, which possesses an
unusually high weight, 100. This could represent an accident in that segment of the
highway causing times, but not distances, to drastically increase. Both graphs are
illustrated for the case of n = 6 in Fig. 7.

We then computed distance matrices for both metrics by computing the shortest
path distance between each pair of vertices. Corresponding elements in the two
matrices have identical values, except the last row and column, which represent
edges to the last vertex. The results are summarized in Table2.

As before, while the CIs using DC-RST differ slightly from those computed using
Wilson’s algorithm, they still contain the r value calculated by the Mantel Test. This
test previously showed that simply choosing random edges from the complete graph
does not suffice, as the CIs generated in this example with random edges do not
contain the r value calculated by the Mantel Test [2].
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Table 3 Comparison between the Mantel test and DimeCost on data set 3

n r CI using Wilson CI using DC-RST

10 −0.159 (−0.227,−0.108) (−0.199,−0.083)

20 −0.136 (−0.200,−0.106) (−0.217,−0.129)

30 0.043 (0.033, 0.105) (−0.004, 0.071)

40 0.016 (−0.008, 0.045) (0.003, 0.064)

50 0.072 (0.034, 0.090) (0.037, 0.092)

Data Set 3: Random Lastly, we consider the case of two random distance metrics;
i.e., the value returned by d1(a, b) and d1(b, a) is simply a random number (likewise
for d2). We expect these two distance metrics to be uncorrelated. The results are
summarized in Table3.

Again, the confidence intervals both contain the correlation coefficient calculated
by the Mantel Test. These results suggests that DC-RST is indeed a suitable replace-
ment for Wilson’s algorithm in DimeCost.

3 Performance Analysis

3.1 Implementation Details

We implemented DC- RST in C++ along with the OpenMP parallel library. The
pseudocode is shown below in Fig. 8.

The function random-partition() was implemented by (1) initializing an
array A with entries 1 . . . n and (2) shuffling A uniformly at random. This array now
defines the partitions. If parts 1 . . . k, have sizes |p1|, . . . , |pk |, then the first |p1|
elements of A are assigned to part 1, the next |p2| elements of A are assigned to
part 2, etc. Step (2) of random-partition() involves shuffling an array of size

Fig. 8 Pseudocode for the
parallel algorithm
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Fig. 9 Speedup over serial when using DC-RST with MergeShuffle

n—the best known serial algorithm for this is Fisher-Yates, which runs in O(n) time
[16].

3.2 Performance on a Symmetric Multiprocessor
Architecture

We compared DC- RST against the serial implementation of Wilson’s algorithm on
various combinations of k and n. The function std::uniform_int_
distributionwas used to generate the random numbers required in wilsons-
algorithm(). This code was executed on Colorado School of Mines’ “Isengard”
server, which is a 48-core symmetric multiprocessor architecture with over 350 GB
of main memory.

We implemented step (2) of random-partition() with a parallel shuffling
algorithm:MergeShuffle [16], which was chosen because of the availability of an
implementation that uses OpenMP. The authors of MergeShuffle suggest it is the
current fastest parallel shuffling algorithm. The speedups are shown in Fig. 9. While
this results in an improvement over Wilson’s algorithm, observe that the speedup of
DC-RST remains sub-linear w.r.t. the number of processors, with k = 200 partitions
achieving a little less than 4x speedup on the largest clique.

To further assess our algorithm, we simply removed the shuffle step from
random-partition(). For timing purposes this yields the equivalent of shuf-
fling in 0 time. We called this variation NoShuffle, and re-ran our benchmarks on
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Fig. 10 Speedup over serial when using NoShuffle

Fig. 11 Comparison of shuffling variations (k = 200)

NoShuffle to compare its performance to the previous results. This is shown in
Fig. 10.

As expected,NoShuffle performs significantly better: on some inputs,NoShuf-
fle is more than 20X faster than serial. This illustrates the potential for DC-RST
to improve the performance of generating random spanning trees, should a better
solution to Shuffle be found or if random partitions are pre-computed.

The results are summarized in Fig. 11. This figure illustrates the speedup the dif-
ferent variations of DC-RST (std::shuffle,MergeShuffle, and NoShuffle)
over serial across the different clique sizes, all at k = 200 partitions. NoShuffle is
by far the fastest, followed by MergeShuffle, with std::shuffle coming up
last.
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4 Conclusion

We have described DC-RST, a parallel divide-and-conquer algorithm for creating
random spanning trees on a clique. While DC-RST does not create uniform random
spanning trees, the impact on the proposed network science application,Dimecost, is
not significant and makes it suitable for replacement ofWilson’s algorithm inDime-
cost. Additionally, the performance gains over Wilson’s algorithm is significant: on
a machine with 48 cores, DC-RST achieves 4X speedup when using MergeShuf-
fle, and when shuffling is not used at all, achieves 20X speedup. This points to the
need for a faster parallel implementation of shuffling.

Note that to interface with DimeCost, DC-RST only needs the size of the par-
titions (in order), and returns the list of edges in the computed spanning tree. This
means the entire complete graph does not need to be generated to run DC-RST:
instead, n − 1 queries could be executed to determine spanning tree edge-weights.
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A Stochastic Approach for Extracting
Community-Based Backbones

Zakariya Ghalmane, Mohamed-El-Amine Brahmia, Mourad Zghal,
and Hocine Cherifi

Abstract Large-scale dense networks are very parvasive in various fields such as
communication, social analytics, architecture, bio-metrics, etc. Thus, the need to
build a compact version of the networks allowing their analysis is a matter of great
importance. One of the main solutions to reduce the size of the network while main-
taining its characteristics is backbone extraction techniques. Two types of methods
are distinguished in the literature: similar nodes are gathered and merged in coarse-
graining techniques to compress the network, while filter-based methods discard
edges and nodes according to some statistical properties. In this paper, we propose a
filtering-based approach which is based on the community structure of the network.
The so-called “Acquaintance-Overlapping Backbone (AOB)” is a stochastic method
which select overlapping nodes and themost connected nodes of the network. Experi-
mental results show that theAOB ismore effective in preserving relevant information
as compared to some alternative methods.

Keywords Community structure · Weighted network · Backbone

1 Introduction

Complex networks are widely analyzed in various fields such as social, biological,
communication and transportation [1–3]. Tremendously large real-world networks
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are the results of the daily production of data. Because of memory and time con-
straints, it is more and more challenging and sometimes impossible to analyze such
large-scale networks containingmillions of nodes and billions of links. Therefore, the
appropriate extraction of the essential nodes and links that conserve important infor-
mation, while downsizing the network has become a matter of great importance.
Backbone extraction methods provide a way to achieve this. The coarse-grained
backbones and filter-based backbones are the two main research approaches that
address this problem. In the first one, nodes sharing similarities are grouped together
to reduce the size of the network [4, 5]. In the second case, nodes or edges are dis-
carded from the network based on a given statistical criterion [6–10]. Serrano et al.
propose the popular disparity filter method [10]. The latter one uses a null model
of the link weights in order to retain statistically significant edges. The H-backbone
[11] is another filter-based method which preserve only links with high betweenness
and high h-index.

One of the important properties of real-world networks is community structure
[14, 15]. Indeed, it strongly shapes their underlying functionality and dynamics
[16–19]. It is usually represented as densely packed regions of connected nodes
that are loosely connected with nodes from other regions. Communities can be non-
overlapping [20–23] where each node belongs to one community, or overlapping
[24–31] where nodes could belong to several communities simultaneously. Recent
work has shown that community structure can be effectively exploited to extract
backbones. The authors in [12] try to preserve only the overlapping nodes and the
hubs in their backbone. By preserving these two types of nodes, they obtained a
backbone that is more efficient than some alternative methods such as the Disparity
filter backbone. In this context, the so-called “Acquaintance-Overlapping Backbone”
selects these two types of nodes while following a stochastic approach. Our aim is to
adapt thismethod for very large networks (composed ofmillions of nodes and billions
of links) by proposing a technique having a very low computational complexity. The
proposed method discards also links with very low weights while ensuring that the
backbone remains composed of a single connected component. This is in order to
preserve only very the relevant links that connects overlapping nodes and the nodes
with the highest connectivity in the network. In this work, we suppose that the set of
the overlapping nodes is already defined (ifwe have ground truth data) or can be easily
defined by using a community detection algorithm. Then, the highly connected nodes
of the network are defined by using a stochastic approach. This approach considers
only the nodes that have been selected randomly as an acquaintance many times. The
latter ones are likely to have a very high connectivity in the network.

Experiments are conducted on real-world weighted networks covering a variety of
sizes and domains. The proposed method is compared to the previously developed
community-based method “Overlapping nodes and hubs backbone” [12] as well
as the “H-backbone” [11]. Results show that it is as effective as the Overlapping
nodes and hubs backbone, and sometime it outperforms all the alternative methods
in preserving the relevant information of the network. The major contributions of
this manuscript can be briefly summarized as follows:
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• The community structure of networks is exploited to create a backbone filtering
method.

• Experiments conducted on real-worl weighted networks show that it performs as
good or better than the other alternative methods.

• It can easily be adjusted to all types of networks (i.e., unweighted, directed and
undirected networks).

• It can be also adapted to very large-scale networks (which is one of the most strong
advantages of our method)

The remainder of this article is structured as follows. Section2 introduces the
Acaquaintance-Overlapping Backbone. Sections3 presents all the datasets used in
the experiments, while the evaluation measures are presented in Sect. 3. Section5
of this article discusses the main results of the comparative analysis. Finally, Sect. 6
concludes this article.

2 Acquaintance-Overlapping Backbone (AOB)

The Acquaintance-Overlapping Backbone extraction process is based on the idea
that hubs and overlapping nodes as well as the edges that connect them are the most
influential elements in a network. The approach followed to extract theAcquaintance-
Overlapping Backbone in weighted networks with an overlapping community struc-
ture is described as follows: the first step is to reveal the overlapping community
structure of the network if the ground truth data is not available. After that, the
Acquaintance-OverlappingBackbone canbe defined. It combines two types of nodes;
the overlapping nodes and the highly connected nodes of the network (i.e., hubs).
The overlapping nodes are firstly selected in the backbone. These nodes may belong
to more than one community simultaneously. Therefore, there is a great chance that
they are connected to hubs located in different parts of the network, hence their big
influence. Secondly, a stochastic approach is launched in order to preserve the most
connected nodes in the backbone. To this end, nodes that verify two conditions are
preserved.On one hand, randomneighbors of randomly selected nodes that have been
selected n times as an acquaintance are selected. In fact, most of real-world networks
display the scale-free property [32]. They have, then, few hubs. Thus, selecting nodes
that verify this first condition will ensure to reach the most connected nodes of the
network. On the other hand, only acquaintances that have at least one overlapping
node as a neighbor are maintained in the backbone. This second condition will allow
us to select the most influential links in the network. Indeed, the overlapping nodes
belong to several communities in the network. As a result, the links between them
and the most connected nodes may act as a gateway to several areas in the network.
On top of that, it will also ensure that there is only one connected component instead
of many small ones.

The pseudo-code of the algorithm to extract the Acquaintance-Overlapping Back-
bone is given in Algorithm 1. Note that if the extracted backbone is composed of
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Algorithm 1: Acquaintance-Overlapping Backbone Extraction
Input : G(V, E): Graph,

C = {C1,C2, ....,Cα}: Community set, where α is the number of
the communities in the network,
n: Number of times nodes should be selected as an acquaintances,
s: Parameter that controls the size of the backbone

Output: ̂G(̂V , ̂E): Backbone or pruned graph

1 Define the variable nacq as the number of hubs or acquaintances that should be preserved in
the backbone ̂G

2 Define the variable counter as the the counter of the acquaintances

3 Define the set of the overlapping nodes A of size no
4 nacq ← s − no
5 counter ← 0
6 while counter < nacq do
7 Select a random node v

8 Select randomly one of its acquaintances vacq
9 if vacq was selected as acquaintance n times then

10 Add vacq to the set of acquaintances B
11 counter ← counter + 1
12 end
13 end
14 ̂V = A ∪ B
15 if ̂G is disconnected then
16 ̂G ← LCC(̂G) // LCC returns the Largest Connected Component of ̂G
17 end
18 Sort the set of edges ̂E according to their weights
19 Remove the edges with small weights e ∈ ̂E while keeping the largest connected component

connected
20 Return the backbone ̂G

many components, only the largest connected component is maintained. Yet, with
the second condition of the acquaintances selection, there is a great chance to extract
only one single component. Moreover, all the links with small weights are removed
from the obtained backbone to keep only the most important ones. This is while
ensuring that the backbone stays composed as one connected component.

3 Datasets

A set of seven real-world networks of different sizes and from multiple fields (tech-
nological, social, transportation and collaborative) are used in the experiments.
The size of the studied networks (number of nodes and edges) ranges from a few
dozen to thousands. Small networks are included in this study for a better under-
standing to the extraction process. The topological properties of the networks are
reported in Algorithm 1. The community structure of the network are used to uncover
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the Speaker-Listener Label Propagation Detection Algorithm (SLPA) [13]. All the
datasets used in this work are available on “github.com/zakariyaGH/Datasets” and
“toreopsahl.com/datasets”.

1. Zachary’sKarate Club: themembers of the karate club are represented by nodes
and their friendship is represented by links. The links are also weighted by the
relative interactions that take place between the members.

2. Les Misérables: the characters of the novel ’Les Misérables’ are represented by
the nodes, while the links indicate their co-appearance in the same chapter. The
weights stand for the number of co-appearances.

3. Madrid Train Bombing: Nodes are the terrorists involved in the bombing of the
train in Madrid on March 11, 2004. The links are the connections between the
terrorists, while the weights are measured by the strength of their relationship.

4. US Airport network: The commercial airports of the United States are repre-
sented by nodes in this networks. Only the flights scheduled in 2010 are collected
in this dataset.

5. Openflights network: This networkwas formed based on the dataset downloaded
from “Openflights.org” which contains non-US-based airports. The Openflights
network is weighted by the number of routes between two airports.

6. Facebook-like Forum network: This network contains 899 nodes representing
facebook users sharing messages about 522 subjects in a forum. The messages
exchanged are represented by links. The amount of messages posted by a user on
a given topic represent the weights of links.

7. ScientificCollaboration: The authors of the articles published in the “Condensed
Matter” category of arXiv are represented by nodes in this network, while the links
indicate their co-authorship. The links are weighted by the number of times they
were co-authors.

4 Evaluation Measures

In this paper, the similarity between the proposed backbone extraction technique and
both the Overlapping hub backbone and the H-backbone is measured. Then, their
effectiveness is compared based on three classical evaluation measures (Table 1).

1. Proportion of common nodes: This similarity measure indicates the number of
elements in two different sets of the same size. By definition, it is the ratio of the
size of the intersection of the two sets divided by their size. The proportion of
common nodes An between two sets of nodes having the size n is:

An = |X ∩ Y |
n

(1)

Where X and Y represent the sets of nodes of two different backbones. n denotes
their size.
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Table 1 The estimated parameters of the real-world networks

Networks |V| |E| 〈k〉 ρ r c

Zachary’s karate
club

33 77 13.59 0.114 −0.476 0.256

Madrid Train
Bombing

62 243 8.81 0.121 0.029 0.561

Les Misérables 77 254 21.3 0.087 −0.165 0.499

Facebook-like
forum

899 7046 1.09 0.017 −0.108 0.06

US Airport
network

1574 17215 66.15 0.014 −0.113 0.384

Openflights
network

7976 15677 0.234 0.004 0.05 0.254

Scientific
Collaboration

16726 47594 9.23 0.0003 0.185 0.36

N denotes the number of nodes in the network. |E | is the number of edges. 〈k〉 is the average
weighted degree. ρ is the density of the network. r indicates the assortativity while c refers to the
transivity of the network

2. Average Weighted degree: The weighted degree of a node denotes the total sum
of the weights of its immediate links (links connected to it). Thus, a backbone
with a higher average weighted degree tends to keep the most significant nodes,
highlighting its connectivity. The average weighted degree is defined as follows:

< k >= 1

|V |
∑

i, j∈V
wi j j∈Ni (1) (2)

Ni (1) represents the set of the immediate neighbors of the node i .
3. Average link weight: The information flow of the original network should be

preserved by the backbone links. Accordingly, a higher average link weight value
implies a better backbone to preserve the network core information. The average
weight is defined as follows:

< w >= 1

|V |
∑

i, j∈V
wi j (3)

4. Average betweenness: Information can be disseminated more rapidly by nodes
with a high betweenness. As a result, backbones with higher average betweenness
are more likely to preserve the speed of information dissemination of the original
network. The betweenness of a node i is defined as follows:

βi =
∑

s,t∈G

σ i
st

σst
(4)
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where σst represents the number of shortest paths between the nodes s and t , and
σ i
st is the number of shortest paths between nodes s and t and passing through the

node i . The average betweenness is de fined as:

< β >= 1

|V |
|V |
∑

i=1

βi (5)

5 Experimental Results

In this section, the Acquaintance-Overlapping Backbone is compared to the
Overlapping nodes and hubs backbone and the H-backbone. The three backbones are
compared in terms of both their similarity and effectiveness. In all the experiments,
the backbone size is fixed to 30% of the original network. In a previous work [33],
the results showed that the community structures uncovered by multiple community
detection algorithms are quite stable in these networks. That is why, the SLPA is
the only algorithm that was used in this work. At first, the proportion of common
nodes is used to check if the proposed backbone select the same nodes as the alter-
native ones. Before reporting all the results, let’s consider ’Les Misérables’ network
(represented in Fig. 1) which is a network having a very small size to illustrate the
differences between the three backbones visually. One can point out form Fig.2 that
the Acquaintance-Overlapping Backbone is very similar to the Overlapping nodes
and hubs backbone. Indeed, these two backbones select all the most important char-
acters of Victor Hugo’s novel (Valjean, Javert, Cosette, Mr. and Mme thenardier,
Fantine, Marius and Gaveroche). Similarly to the Overlapping nodes and hubs back-
bone, the Acqauintance-Overlapping Backbone based method tend by following a
stochastic approach to target the same type of nodes. That is the reason why these
two backbones are quite similar. However, the H-backbone is relatively different to
the other backbones. Actually, the latter one misses some characters such as Gave-
roche which is one of the most important characters of this novel. This is because
this technique is based on link selection instead of node selection as it is the case
of the other backbone extraction techniques. The same results are noticed for all the
other networks reported in Table2.

The effectiveness of the proposed backbone and its alternatives is investigated and
reported in Table2. To this end, three backbone quality metrics are employed: the
average weighted degree (〈k〉), the average link weight (〈w〉), the average between-
ness (〈β〉). The averageweighted degree is firstly discussed. The backbone extraction
technique with the highest value is the one that succeeds in preserving the salient
nodes having the highest connectivity in the original network. According to the
results reported in Table2, theH-backbone has the lowest performance. Additionally,
the Acquaintance-Overlapping Backbone has comparable results to the Overlapping
nodes and hubs backbone. Yet, the average weighted degree of the proposed method
is slightly even higher in both Madrid train bombing and Scientific Collaboration
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Fig. 1 Les Misérables network. The overlapping nodes are in grey while the other colors represent
the different communities. The size of the nodes is proportional to their weighted degree. Likewise,
the weight of links determine their size

networks. Indeed, as it was mentioned previously, these two backbones select about
the same sets of nodes in all the networks under study. These results confirm our
intuition that nodes that have been selected many times as acquaintances are more
likely to be the highly connected nodes of the network.

Now, the results of the average link weight are discussed. The average link weight
is an indicator of the pertinence of the links maintained in a backbone. Therefore,
as its value increases, the more the backbone is likely to retain essential and critical
links. The results show that the Acquaintance-Overlapping Backbone outperforms
the other alternative methods. Indeed, the proposed backbone extraction technique
keeps only the links with high weights connecting the overlapping nodes and the
highly connected nodes of the network. These links connect all the various commu-
nities and zones of the networks. Note that the Overlapping nodes and hubs method
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Fig. 2 Different methods for
extracting the backbone of
Les Misérables’ network. a
Acquaintance-overlapping
backbone, b overlapping
nodes and hubs backbone, c
H-backbone. The
overlapping nodes are in
grey while the other colors
represent the different
communities. The size of the
nodes is proportional to their
weighted degree. Likewise,
the weight of links determine
their size
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preserves all the links between the overlapping nodes and hubs which could include
some links with minor pertinence. That shows that the proposed backbone can pre-
serve links that play a very important role in information dissemination in the original
network as compared to the other methods.

Finally, let’s turn to the average betweenness. This measure reflects the volume
of information flow that may pass over the nodes of a backbone. The greater a
backbone’s value, the greater its efficiency in spreading information. Results show
that the Acquaintance-Overlapping Backbone as well as the Overlapping nodes and
hubs backbone have very close values for all the networks under study. In some
networks the proposed method outperforms all the others, whereas in others the
Overlapping nodes and hubs backbone performs better. Therefore, they can maintain
the nodes that participate the most in the information flow of the network. However,
both backbone extraction techniques have higher performance than the H-backbone
in terms of the average betweenness.

To summarize, the Acquaintance-Overlapping Backbone performs as good as
the Overlapping nodes and hubs backbone and sometimes better, although it is a
stochastic approach. This is because they preserve around the same set of nodes
in all the networks. However, the H-backbone has always the lowest performance.
Furthermore, the proposed backbone extraction method is also the most effective
one in terms of the average link weight. Therefore, it preserves essential nodes
and the most relevant links in the network. On top of that, the Overlapping nodes
and hubs backbone extraction method requires information about each node of the
network, while the H-backbone needs to compute the betweenness for each link of
the network, making it a global method. However, the proposed method follows a
stochastic approach. Thus, it only needs local information about some selected nodes
of the network. It has, then, a very low computational complexity. It is around O(k),
where k is the number of nodes that must be preserved in the backbone. Therefore,
the Acquaintance-Overlapping Backbone is the most suitable extraction method for
very large network, given its very low computational complexity.

6 Conclusion

Understanding large-scale networks is crucial to better comprehend their underly-
ing dynamics and topology. However, the massive size of some networks makes
this difficult. Thus, it is important to remove all the redundant information while
maintaining the relevant nodes and links of the network. Both coarse-grained and
filter-based backbones are proposed to address this problem.

In this work, a filtering-based method is proposed which is based on community
structure of networks. It selects firstly the overlapping nodes given their importance
on connecting all the different communities of the network. Moreover, it follows a
stochastic approach to select also the highly connected nodes given their big influence
in the network. This is done by randomly selecting the nodes that have been selected
as acquaintances multiple times. Additionally, this method preserve also the highly
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weighted links between these to type of nodes which strategically connect nodes
from different parts of the network, hence their importance.

Experiments show that the Acquaintance-Overlapping Backbone performs as
good as the Overlapping nodes and hubs backbone in terms of the connectedness of
the selected nodes measured by the average weighted degree, as well as the infor-
mation flow measured by the average betweenness. However, it outperforms all the
alternative methods in term of the relevancy of links (contributing to the efficiency
of information spreading) measured by the average link weight. Globally, the H-
backbone has always the lowest effectiveness in all these three aspects. Furthermore,
the proposed method has a very low computational complexity since it is based on a
stochastic approach, which makes it a perfect fit with very large networks.
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Correcting Output Degree Sequences
in Chung-Lu Random Graph Generation

Christopher Brissette, David Liu, and George M. Slota

Abstract Randomgraphs play a central role in network analysis. TheChung-Lu ran-
dom graphmodel is one particularly popular model, which connects nodes according
to their desired degrees to form a specific degree distribution in expectation. Despite
its popularity, the standard Chung-Lu graph generation algorithms are susceptible to
significant degree sequence errorswhen generating simple graphs. In thismanuscript,
we suggest multiple methods for improving the accuracy of Chung-Lu graph gen-
eration by computing node weights which better recreate the desired output degree
sequence. We show that each of our solutions offer a significant improvement in
degree sequence accuracy.

Keywords Graph theory · Random graphs · Graph generation

1 Introduction

Random graph generation is an important task in several fields of study, such as
biology and the social sciences. Random graphs arising from graph generation algo-
rithms have uses as nullmodels and as algorithmic benchmarks [7, 10, 14]. Stochastic
block models are random graph models in which a number of nodes is predefined
and each possible edge is assigned a probability of existing [12]. A random graph can
then be constructed by generating edges with respect to these assigned probabilities.
Conversely, the common configuration model [3, 15] assigns to each vertex some
number of stubs, equal to each vertex’s desired degree, and then selects two stubs
uniformly at random to create an edge. This process is repeated until all stubs are
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attached, and a graph exactly matching some input degree sequence can be output.
The expected pairwise degree probabilities (probability of a vertex of degree x

attaching to a vertex of degree y) arising from the configuration model may be
expressed as a stochastic block model via the Chung-Lu random graph model [6].
This model assigns a weightwv to each node v ∈ V in the graph, and then it attaches
nodes u, v ∈ V according to the probability puv = wuwv/

∑
a∈V wa . If each weight

is taken to be the desired degree of each given node, then this model produces a
desired degree distribution, but only in expectation. This model is used as a sub-
routine in more complex graph generation algorithms [8, 13, 17, 18], and the given
probabilities are also implicitly used to define network measures such as modularity
for graph clusters [9, 16].

Despite its popularity and theoretical importance, Chung-Lu random graph gen-
eration often results in graphs with significant degree distribution errors [5, 8, 10, 13,
19].While this can be resolved inmany cases by using an explicit graph configuration
model instead of Chung-Lu, these approaches have limited room for parallelism and
are not scalable, particularly when a simple graph output is desired. An appealing
feature of Chung-Lu graph generation is that the method is naïvely parallelized and
is additionally expedited by techniques such as edge skipping [1, 2], even when gen-
erating simple graphs. Because of the algorithm’s high scalability and wide usage,
some work has been done to correct and quantify these errors. In Durak et al. [8], it
is shown that Chung-Lu generation often under-estimates the number of low degree
nodes, and they perform an artificial inflation in the number of nodes with unit
weight to account for this. Other related work has used this specific approach [13]
or a similar approach where unit weight nodes are instead manually configured [17].
Alternatively, in our prior work [5], we approximate the output degree distribution of
Chung-Lu generation with a matrix equation, and we solve a linear system to deter-
mine an input distribution that will best generate the desired output. We also show
that the inverse of many degree sequences with respect to this matrix yield vectors
with negative entries. These vectors do not have a useful interpretation with respect
to the Chung-Lu generation algorithm, and the method is greatly limited because
of this. This manuscript aims to remedy the issues present in previous work while
utilizing the same matrix model as an important building block.

In the Chung-Lu model, each set of nodes with the same weight w may be dis-
cussed as a block in a stochastic blockmodel, and the degreeswithin that block should
be approximately Poisson distributed about the weight w. Therefore, for degrees
{w1 = 1, w2 = 2, . . . , wd = d}, one may generate a matrix P given by Eq.1. Each
column of the matrix represents the probability mass function of degrees within each
block. The inner product of any given row r of this matrix with a degree sequence
vector adds together the predicted number of nodes with degree r produced by each
block. By considering the entire matrix simultaneously, the output vector predicts the
output of Chung-Lu. That is, by representing an input degree sequence as a vector
x , one can approximate the output degree sequence of Chung-Lu generation y as
Px = y. As presented, P is of infinite dimension and needs to be reduced to a finite
dimension for computational use. For this purpose, the matrix is truncated by remov-
ing all rows beyond some maximum degree. This cut off can be chosen depending
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Fig. 1 Visualization of degree sequences: Comparisons of degree sequences for the as20, GrQc,
HepTh, and lastfm graphs. The dotted lines denote the predicted output using standard Chung-Lu
weights, the solid grey region denotes the output sequence using optimized Chung-Lu weights, and
the solid line denotes the desired output sequence. Each optimization here was performed using our
polynomial update method which is discussed in Sect. 2

on the desired output distribution y, and d may also be chosen to make P square, in
which case an explicit inverse is known. For details regarding this analysis, a reader
may consult the original citation [5].

P =
⎡

⎣
| | |

poiss(w1) poiss(w2) · · · poiss(wd)

| | |

⎤

⎦ (1)

We note that this matrix can be easily generalized. By choosing a set of arbitrary
positive weights w = {w1, w2, . . . , wd}, instead of simply the nodal degrees, one
obtains a matrix P(w) where the means of each Poisson distribution correspond to
the given weights. This produces a new stochastic block model.

OurContribution: This paper focuses on determining, for a given number of weight
parameters d, the set of weights such that the error between the desired output and
actual output of Chung-Lu graph generation will be minimized. We develop and
optimize several novel methods tominimize this error. Visualized in Fig. 1 for several
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graphs in the Stanford LargeNetworkDataset Collection1 are their degree sequences,
the unoptimized output fromChung-Lu generation using these degree sequences, and
the generation output after applying one of our methods. We will discuss our varying
methods in Sect. 2 and analyze their results in Sects. 3 and 4.

2 Methods

As we note in our prior work [5], there are numerous sequences that can not be
reliably generated using naïve Chung-Lu weights. To remedy this short coming,
there are two algorithm parameters which may be adjusted to alter the output. One
parameter is the input sequence. This is the specific parameter studied in prior work.
The other parameter is the set of weightsw = {w1, w2, . . . , wd}. Conceptually, both
methods are trying to approximate a distribution as a linear combination of Poisson
distributions. In the formermethod, the Poisson distributions havemeans equal to the
target degree classes, and the approximation is improved by altering the coefficients
applied to each distribution. Alternatively, changing the weights equates to changing
these means, effectively moving the Poisson distributions along the x-axis.

We present two methods incorporating weight alteration. Our first method relies
on several greedy updates, where weights are chosen such that ‖P(w)x − y‖ is
minimized at each step. The latter method uses maximum likelihood estimation [20]
to solve for weights.

Before discussing either method, let us first formalize goals and definitions. Take
P(w) to be the square matrix given by weights w = {w1, . . . , wd} and removing
both the first row and everything beyond row d + 1 in Eq.1. The first row is removed
because it corresponds to the number of zero-degree nodes. These nodes may be
ignored after generation, so removing the first row of P(w)mathematically represents
this.Wecall our input degree sequencevector x = [x1, . . . , xd ] andour desiredoutput
degree sequence vector y = [y1, . . . , yd ]. Additionally, call the output of the Chung-
Lu algorithm with weight set w and input vector x , CL(w, x). Then, our goal is
to find a combination w, x such that ‖CL(w, x) − y‖1 is minimized. The 1-norm
is specifically considered because it can be directly interpreted as the number of
nodes with incorrect degrees. A log2-binned version of this error will additionally
be considered later and is discussed in Sect. 3.

2.1 Greedy Updates

Wefirst discuss the greedyupdatemethod.This is based off of a simple approximation
and update loop. The basic idea is as follows. Given an input degree sequence x ,
determine the first k derivatives of each column of P(w) with respect to their means
and use these derivatives to approximate ‖P(w + ε)x − y‖ for small perturbations in

1 https://snap.stanford.edu/data/.

https://snap.stanford.edu/data/


Correcting Output Degree Sequences in Chung-Lu Random Graph Generation 73

the elements of the mean-setw + ε. Then, update the means in the optimal direction
according to some minimization algorithm and repeat this process for some number
of iterations.

Two update objectives are discussed in this section, which we call linear updates
and polynomial updates. These objectives only differ in the number of derivatives
considered. Linear updates approximate error based on the first derivative of each
column in P(w) . Alternatively, polynomial updates use an arbitrary number of k
derivatives and the Taylor series to approximate error. As is shown later, both of
these methods reduce the per-node degree error significantly; however, they require
different numbers of iterations. All instances of the polynomial-update variant use
k = 2 in this manuscript. In Algorithm 1, we show a general template of the greedy
method. Themain difference in each of these methods comes from how our objective
changes the opt_E(·) function. The objectives are discussed in more detail in the
following subsections.

Algorithm 1 Greedy-Update (x , y, {w1, . . . , wd}, δ, t)
1: P ← fill_P( {w1, . . . , wd } )
2: for iters ∈ [1…t] do
3: U = {U1, . . . ,Uk} ← compute_U_set ({w1, . . . , wd })
4: E ← opt_E( P, U, x, y, δ )
5: P ← fill_P( {w1 + E11, . . . , wd + Edd } )
6: return {w1, . . . , wd }

Algorithm 1 is initialized with an input degree sequence vector x , a desired output
degree sequence vector y, a set of initial weights {w1, . . . , wd}, a maximum update
step-size δ, and an iteration number t . For this paper, initial degree sequences are
taken to be x = cy for some positive constant c ∈ R

+. Additionally, initial weights
are taken to be {w1 = 1, . . . , wd = d}. The iteration number and step size will vary
depending on desired accuracy and whether linear, or polynomial updates are being
used. The algorithm proceeds as follows. P(w) is initialized with the input weights.
Then, within the loop, a set of matrices U = {U1, . . . ,Uk} is computed within the
compute_U_set(·) function. Each matrix Ui corresponds to the i th derivative of
each column. These matrices are then used in the opt_E(·) function to determine
how much each mean in w should change. For the purposes of this manuscript,
opt_E(·) uses the sequential least squares minimization [4] implementation from
scipy.optimize.minimize(·) in Python. Then new weights are computed
and P(w) is updated.

Linear Updates: Linear updates are the simpler of the two greedy update meth-
ods. In the linear update method, k = 1 and only a single U matrix is computed in
compute_U_set(·). This matrix has the same form given in Eq.2 and the columns
take the form of the derivatives of the columns in P(w) as given in Eq.3 with respect
to their means. In Eq.2, μ j corresponds to the mean of the Poisson distribution.
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U =
⎡

⎣
| | |

∂
∂μ1

poiss(μ1, x)
∂

∂μ2
poiss(μ2, x) · · · ∂

∂μm
poiss(μm, x)

| | |

⎤

⎦ (2)

∂

∂μi
poiss(μi , x) = (x − μi )e−μi μx−1

i

x ! (3)

The linear update objective function used in opt_E(·) takes the form of minimizing
γ = ‖(P(w) + UE)x − y‖2 with respect to the diagonal matrix E, where each entry
is bounded by δ, |E j j | ≤ δ. Unfortunately, linear approximations lack significant
accuracy, and as such, the step size δ needs to be rather small to maintain stability
within each optimization step opt_E(·). This ultimately leads to a method which
requiresmanyupdates. This can be prohibitive for graphswith highmaximumdegree,
since the dimensionality of our optimization problem depends on this. This issue is
discussed in Sect. 4 at the end of the manuscript.

Polynomial Updates: The polynomial update method is very similar to the linear
update method. In this method, higher order derivatives are considered in the Taylor
series. This higher order error approximation is then used to predict degree sequence
errors. The Taylor series approximation of the Poisson distribution is given by Eq.4.

poiss(z, x) = e−μμx

x ! +
∞∑

j=1

(
∂ j

∂μ j
poiss(μ, z)

)

(z − μ) j (4)

For a given number of derivatives k, a truncated series is used to make approx-
imations. Note that the term on the left of the sum is an entry of the matrix P(w) .
Additionally, the right hand sum consists of two components, the j th derivative, and
a difference term. This allows us to rewrite this expression in terms of matrices as in
Eq.5.

P(w′) ≈ P(w) +
k∑

j=1

U jE j (5)

In Eq.5, U j is the matrix corresponding to the j th derivative of each column,
similar to Eq.2. E j is a diagonal matrix with entries E j (a, a) = e j

a , corresponding
to the step size in each dimension. In the polynomial update function, the error to
be minimized is of the form γ = ‖(P(w) + ∑k

j=1 U jE j )x − y‖2. Because of the
increased accuracy of the polynomial method, a larger bound δ may be used for the
step size. While we do not present bounds for this here, the size of δ can be chosen
to be larger for larger instances of the number of derivatives k.
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2.2 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) based clustering is a popular statistical
method for determining probabilistic clusters for a data set [20]. Given a pre-defined
type of statistical distribution (e.g. normal, binomial, Poisson, etc.) and a number
of distributions m, MLE clustering determines the parameters and coefficients for
those distributions such that their mixture distribution has the highest likelihood of
generating the data set. While MLE is most commonly used for clustering data, we
instead use it here for function approximation. Consider the desired degree sequence
y as a realization of a mixture distribution and the underlying statistical distributions
as Poisson distributions. Then, the coefficients and means which are output as a mix-
ture model from MLE may be interpreted as the input vector x and the μ values in
P(w) , respectively.

Algorithm 2MLE-Update (m, y, d, iters)

1: x ← [ 1
m , . . . , 1

m ]
2: py ← y

‖y‖1
3: μ ← [ dm , 2d

m , · · · , d]
4: (x,μ) ← poiss_EM(x,μ,py ,iters)
5: x ← ‖y‖1x
6: return (x,μ)

Our MLE based method proceeds as follows, and is demonstrated in pseudocode
in Algorithm 2. Begin by considering a desired output sequence y, a number of
means m, and an interval [0, d]. Initialize a vector x = [ 1

m , . . . ,
1
m ] and a vector

of means μ = [μ1 = d
m ,μ2 = 2d

m , . . . ,μm = d]. Note that these means may be ini-
tialized randomly within the interval [0, d], if desired. Then, normalize y to obtain
a probability distribution py = y

‖y‖1 , from which points are sampled for maximum
likelihood estimation. Maximum likelihood estimation is then run on these inputs,
updating the entries of x and μ at each iteration. Once this has concluded, x is scaled
by ‖y‖1 and each entry is rounded to the nearest natural number. This ensures that x
now corresponds to the number of nodes instead of a proportion of all nodes.

As discussed earlier, there are two parameters which may be tuned when improv-
ing Chung-Lu graph generation. While our earlier work focused on changing the
input sequence, and both the linear and polynomial methods focus on changing the
means of Poisson distributions, Algorithm 2 simultaneously solves for both. Addi-
tionally, expectation maximization has a tune-able dimensionality. This means that
one may take small samples from py , and consider fewer Poisson distributions to
improve compute time. This is not an option that is readily available in the case of
greedy linear and polynomial updates.
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Fig. 2 Proportional errors: Degree error plots for all methods on a number of graphs. Both the
proportional error (top), and log2-binned proportional error (bottom) metrics are as described in
the Results section. As is seen, every method drastically reduces the proportional L1 error of the
degree sequence when compared with naïve Chung Lu. However, different methods perform better
on differing degree sequences

3 Results

In Fig. 2, the three methods discussed in the previous section are compared against
naïve Chung-Lu generation on a set of degree sequences from the Stanford Large
Network Dataset Collection. Graph generation is performed using the expected_
degree_graph(·) function from the NetworkX [11] package in Python.

As can be seen, each method outperforms naïve Chung-Lu by a considerable mar-
gin. However, our different methods perform better on different degree sequences.
The exact reason for this requires further analysis. Figure2 considers two different
proportional error functions. The first one is L1 proportional error which is com-
puted as the ratio ‖CL(w, x) − y‖1/‖y‖1. This can be directly interpreted as the
proportion of nodes which have the correct degree. Additionally, one can inter-
pret this error function as a normalized version of the total variation distance.
The log2-binned proportional error is also considered. In this case the sequences
CL(w, x) and y are partitioned into b = 	log2(d)
 bins, forming the sequences
β(CL(w, x)) and β(y), both of which are in R

b. The entries of β(CL(w, x)) are
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Fig. 3 Average proportional errors of methods: The proportional (left) and log2-binned propor-
tional (right) errors are compared over all test graphs for each optimization method as well as naïve
Chung-Lu. Both the proportional error, and log2-binned proportional error metrics are as described
in the Results section. As is seen, on average the polynomial update method results in the more
significant reduction of proportional error, however theMLEmethod results in the largest reduction
in log2-binned proportional error

β(CL(w, x))i = ∑2(i−1)+2i

j=2(i−1) CL(w, x) j , and the entries of β(y) follow similarly. The
proportional binned error is then computed as ‖β(CL(w, x)) − β(y)‖1/‖β(y)‖1.
The reason for defining this error function is that there are many applications where
the exact degrees are less important than simply having the correct number of “low-
degree”, or “high-degree” nodes. For this purpose, the log2-binned proportional error
provides a quantitative understanding of how many nodes are being generated for
different “sections” of the sequence.

As is seen in Fig. 3, the polynomial update method outperforms the other opti-
mization methods in proportional error. Additionally, the MLE optimization method
outperforms the others for log2-binned proportional error. Conceptually, this implies
that the polynomial update method may be the best at matching the degrees of
nodes exactly, while the MLE method is superior for approximate reproduction of
sequences.

4 Discussion

4.1 Parameters

When choosing parameters for Algorithm 1, a reader may be rightfully curious as to
what constitutes a “good” choice. In Fig. 4, a parameter search over several choices
of iteration number t and constant c, such that x = cy are shown for two example
graphs from the Stanford Large Network Dataset Collection. As is seen, the error
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Fig. 4 A parameter search of error, varying the coefficient c ∈ R
+ for x = cy, and the num-

ber of iterations for both the polynomial and linear update methods respectively. The poly-
nomial update method in this case has k = 2. The colors indicate the proportional L1 error
‖CL(w, x) − y‖1/‖CL(y) − y‖1. As can be seen for the two sample graphs, the polynomial update
method converges to a smaller proportional L1 error than the linear method does in the same number
of iterations

reaches similar levels for both the polynomial and linear update methods for different
parameters. We note that 1.05 < c < 1.15 appears to work best for both graphs.
While not shown, this behavior is also seen a across many other degree sequences.
Furthermore, the number of iterations required to achieve a similar error reduction
with polynomial updates versus linear updates is seen to be considerably smaller. In
fact, for these two graphs, a similar error reduction is seenwith an order of magnitude
fewer update steps.

There is significant work to be done deciding parameters. While Fig. 4 suggests
some best practices, it is far from definitive. Furthermore, the choice of step-size δ is
currently somewhat arbitrary. In this paper, it is taken to be 0.05 ≤ δ ≤ 0.2 for linear
updates, and 0.2 ≤ δ ≤ 0.5 for polynomial updates. Different step sizes drastically
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alter the stability and number of requisite iterations of the method. This requires
further experimental and theoretical results for varying degree sequences.

4.2 Timing Considerations

The methods presented in this manuscript require varying times to run. The linear
update method uses a miniscule step size, and as such requires many iterations to
terminate. This is a significant concern when the maximum degree of the desired
output is large. This is because the maximum degree controls the dimensionality of
the optimization step, which must be performed at every iteration. To this end, the
polynomial updatemethod can iterate with a larger step size, requiring less iterations.
However, in the case of a significantly large maximum degree, the optimization
step may still not be practical. The MLE-method does not suffer from these same
drawbacks, because the sample number and number of distributions may be tuned.
This means the MLE method should not perform slower on larger degree sequences,
given constant sample and distribution numbers.

In the case of the greedy update methods, a simple change can be made which
drastically speeds up compute time. This is the method of truncation. Note that, for
most real world degree sequences the vast majority of the weight lies in the lowest
degrees of the graph. Because of this, one may ignore a portion of the sequence
when using either greedy update method. This drastically reduces compute time,
but may introduce additional error. In our limited testing, removing the final 1% of
the sequence by node count greatly improves run times and minimally affects error.
Despite this, the best practice for truncation is an open problem.

5 Conclusion

In this manuscript, we presented two methods for improving the accuracy of Chung-
Lu random graph generation. These methods consist of an iterative algorithm (Algo-
rithm1),which greedily updates theweights of nodes, and an algorithm (Algorithm2)
relying on maximum likelihood estimation. Both methods were shown to dramati-
cally reduce degree sequence error in comparison to naïve Chung-Lu; however, they
require different considerations. The greedy update methods suffer from long com-
pute times in the case of sequences with high maximum degree, while the maximum
likelihood method is significantly faster. While parameter choices for these algo-
rithms are presented, a systematic study of their affect on resulting error is an avenue
for further research.



80 C. Brissette et al.

References

1. Alam,M., Khan, M., Vullikanti, A., Marathe, M.: An efficient and scalable algorithmic method
for generating large-scale random graphs. In: SC’16: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. pp. 372–383. IEEE
(2016)

2. Batagelj, V., Brandes, U.: Efficient generation of large random networks. Phys. Rev. E 71(3),
036113 (2005)

3. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular
graphs. Euro. J. Combin. 1(4), 311–316 (1980)

4. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization: The-
oretical and Practical Aspects. Springer Science & Business Media (2006)

5. Brissette, C., Slota, G.M.: Limitations of Chung Lu random graph generation. In: International
Conference on Complex Networks and Their Applications. pp. 451–462. Springer (2021)

6. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc.
Nat. Acad. Sci. 99(25), 15879–15882 (2002)

7. Drobyshevskiy, M., Turdakov, D.: Random graph modeling: a survey of the concepts. ACM
Comput. Surveys (CSUR) 52(6), 1–36 (2019)

8. Durak, N., Kolda, T.G., Pinar, A., Seshadhri, C.: A scalable null model for directed graphs
matching all degree distributions: in, out, and reciprocal. In: 2013 IEEE 2nd Network Science
Workshop (NSW). pp. 23–30. IEEE (2013)

9. Fosdick, B.K., Larremore, D.B., Nishimura, J., Ugander, J.: Configuring random graph models
with fixed degree sequences. SIAM Rev. 60(2), 315–355 (2018)

10. Garbus, J., Brissette, C., Slota, G.M.: Parallel generation of simple null graph models. In: The
5th IEEE Workshop on Parallel and Distributed Processing for Computational Social Systems
(ParSocial) (2020)

11. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using
network. Tech. rep., Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
(2008)

12. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2),
109–137 (1983)

13. Kolda, T.G., Pinar, A., Plantenga, T., Seshadhri, C.: A scalable generative graph model with
community structure. SIAM J. Sci. Comput. 36(5), C424–C452 (2014)

14. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs:
simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

15. Molloy,M., Reed, B.: A critical point for random graphswith a given degree sequence. Random
Struct. Algorithms 6(2–3), 161–180 (1995)

16. Newman, M.E.: Modularity and community structure in networks. Proc. Nat. Acad. Sci.
103(23), 8577–8582 (2006)

17. Slota, G.M., Berry, J., Hammond, S.D., Olivier, S., Phillips, C., Rajamanickam, S.: Scalable
generation of graphs for benchmarking HPC community-detection algorithms. In: IEEE Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis
(SC) (2019)

18. Slota, G.M., Garbus, J.: A parallel LFR-like benchmark for evaluating community detection
algorithms. In: The 5th IEEE Workshop on Parallel and Distributed Processing for Computa-
tional Social Systems (ParSocial) (2020)

19. Winlaw, M., DeSterck, H., Sanders, G.: An in-depth analysis of the Chung-Lu model. Tech.
rep., Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) (2015)

20. Zaki, M.J., Meira Jr, W., Meira, W.: Data Mining and Analysis: Fundamental Concepts and
Algorithms. Cambridge University Press (2014)



Switching In and Out of Sync:
A Controlled Adaptive Network Model
of Transition Dynamics in the Effects
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Abstract Interpersonal synchrony is associated with better interpersonal affiliation.
No matter how well-affiliated people are, interruptions or transitions in synchrony
rebound to occur. One might intuitively expect that transitions in synchrony nega-
tively affect affiliation or liking. Empirical evidence, however, suggests that time
periods with interruptions in synchronymay favor affiliation or liking evenmore than
time periods without interruptions in synchrony. This paper introduces a controlled
adaptive network model to explain how persons’ affiliation might benefit from tran-
sitions in synchrony over and above mean levels of synchrony. The adaptive network
model was evaluated in a series of simulation experiments for two persons with a
setup in which a number of scenarios were encountered in different (time) episodes.
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Our controlled adaptive network model may serve as a foundation for more realistic
virtual agents with regard to synchrony transitions and their role in affiliation.

Keywords Controlled adaptive network model · Interpersonal synchrony ·
Synchrony transitions · Liking · Affiliation

1 Introduction

When two or more individuals are interacting, their behavior tends to become
mutually coordinated in time, or synchronized. Such interpersonal synchrony has
been found to lead to behavioral adaptivity by enhancing, for example, closeness,
concentration, cooperation, affiliation, alliance, connection, or bonding; e.g., [2,
19, 21, 29, 33, 37, 41]. However, perhaps counterintuitively, interruptions in inter-
personal synchrony may positively affect behavioral adaptivity [12]. Furthermore,
interpersonal liking is highest when a balance between interpersonal synchrony and
complexity/unpredictability during a mirror game is obtained [30]. In this paper, we
demonstrate how a controlled adaptive network model can computationally capture
how behavioral adaptivity is induced not only by synchrony, but also by transitions
of synchrony.

The controlled adaptive network model is based on an adaptive interplay of a
number ofmechanismsdrawn fromcognitive, behavioral, and affective neuroscience.
For example, a neural basis for behavioral adaptivity in the formof adaptive affiliation
can be found in recent work on the (nonsynaptic, intrinsic) adaptive excitability of
(neural) states; e.g., [5, 8, 40, 42]. The extent of adaptation that a person requires may
vary from situation to situation, which is called metaplasticity (e.g., [1, 31]). This
controls the plasticity in a context-sensitive manner. The resulting network model
yields a controlled adaptive network model.

The adaptive network model was evaluated in a series of simulation experiments
for two persons with a setup in which a number of scenarios were encountered in
different (time) episodes. The simulations included not only episodes with a common
stimulus for the two persons, but also episodes with different stimuli for the persons.
Moreover, to analyze the role of communication (interaction), circumstances were
also included for episodes when communication was enabled by the environment
and episodes when communication was not enabled.

2 Background Literature

Interpersonal synchrony usually leads to behavioral adaptivity in the form of mutual
adaptation of interactive behavior; e.g., [2, 19–22, 26, 28, 33, 38, 39, 41; Fairhurst
et al. 29]. For example, therapists were rated more favorably and as more empathic
when, they were instructed to make their movements more synchronized with the
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client [24, 29, 32, 36] found that initial movement synchrony between client and ther-
apist was predictive of the client’s experience of the quality of the therapeutic alliance
at the end of each session. Moreover, Koole and Tschacher [21] reviewed converging
evidence that movement synchrony has a positive effect on the working alliance
between patient and therapist. Interpersonal synchrony in face-to-face interactions
has been found to promote interpersonal alliance [11, 41].

However, it seems that more interpersonal synchrony is not always better for
behavioral outcomes, such as good (working) relationships.Amoderate range instead
of a very low or very high behavioral synchrony between children and their parent is
related to children who are more securely attached to their parent [3]. Another study
[27] found a comparable pattern regarding the success of a therapy and movement
synchrony. Patients who improved during therapy had a medium level of movement
synchrony at the beginning of therapy, whereas patients who did not improve and
consensually terminated their therapy had the highest level of movement synchrony
at the beginning of therapy. Other findings indicating that high levels of synchrony
do not always link to the best behavioral outcomes by Deres-Cohen et al. [9], suggest
that therapists increase their levels of movement synchrony towards their patient to
keep a strong alliance when difficulties occur.

Also, a more nuanced view of the link between interpersonal synchrony and
behavioral adaptivity is found in several experimental paradigms with the mirror
game, a task inwhich participants have the goal tomove as synchronously as possible.
On real world experimental data with the mirror game, Dahan et al. [6] have fitted
multiple mathematical models. The models that only included moving in synchrony
fit the real data worse than an alternative model that included a tendency to withdraw
from synchrony (i.e., moving in and out of synchrony). As another example with the
mirror game, Ravreby et al. [30] found that a combination of movement synchrony
and interruptions by events with more complexity explains liking almost two times
better than movement synchrony by itself does. Thus, in addition to synchrony,
maintaining interest may be essential for bonding.

Partly inspired by the few available empirical studies, some conceptual studies
have been published on the importance of both interpersonal synchrony and tran-
sitions in interpersonal synchrony with regard to other outcomes like affiliation.
García and Di Paolo [12] propose that transitions in interpersonal synchrony play
an important role, instead of only interpersonal synchrony itself, in the relation
between movement synchrony and phenomena, such as therapeutic alliance. Simi-
larly, Mayo and Gordon [25] claim that, to have an adaptive interpersonal system
within a social context, people have two simultaneous tendencies: (1) to achieve
interpersonal synchrony and (2) to switch in and out of interpersonal synchrony. The
above empirical and conceptual literature on how interrupted synchrony can lead to
stronger affiliation than ‘just’ synchrony was a main inspiration for the development
of the controlled adaptive network model introduced here.
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3 Self-Modelling Network Modelling

The presented controlled adaptive network model is based on network-oriented
modelling. Following [34, 35], a temporal-causal network model uses nodes X
and Y, also called states, with values X(t) and Y (t) over time t and the following
characteristics:

• Connectivity characteristics

Connections from a state X to a state Y and their weights ωX,Y

• Aggregation characteristics

For any state Y, some combination function cY (..) defines the aggregation that is
applied to the impacts ωX,YX(t) on Y from its incoming connections from states X

• Timing characteristics

Each state Y has a speed factor ηY defining how fast it changes for given causal
impact

The following difference (or related differential) equations that are used for simu-
lation purposes and also for analysis of temporal-causal networks, incorporate these
network characteristics ωX,Y , cY (..) and ηY in a standard numerical format:

Y (t + �t) = Y (t) + ηY [cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) − Y (t)]�t (1)

for any state Y and where X1 to Xk are the states from which Y gets its incoming
connections. Within the software environment described in [34, Chap. 9], a large
number of currently around 65 useful basic combination functions are included in a
combination function library. The above concepts make it possible to design network
models and their dynamics in a declarative manner, based on mathematically defined
functions and relations. The examples of combination functions that were applied
in the model introduced here can be found in the Appendix (as Linked Data at
https://www.researchgate.net/publication/361435085). In Table 1, the new transition
detection functions are shown. Here, W is a representation of the sliding windows.

Realistic network models are usually adaptive: often not only their states but also
some of their network characteristics change over time. By using a self-modelling
network (also called a reified network), a similar network-oriented conceptualization
can also be applied to adaptive networks to obtain a declarative description using
mathematically defined functions and relations for them as well; see [34, 35]. This
works through the addition of new states to the network (called self-model states)
which represent (adaptive) network characteristics. In the graphical 3D-format as
shown in Sect. 4, such additional states are depicted at a next level (called self-model
level or reification level), where the original network is at the base level.

For instance, the weight ωX,Y of a connection from state X to state Y can be
represented (at a next self-model level) by a self-model state namedWX,Y . Similarly,

https://www.researchgate.net/publication/361435085
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Table 1 The new transition detection combination functions used in the introduced network model

Notation Formula Parameters

Average
transition

transdetavabsιδ,σω(W ) |mean1≤ν≤σω(W (ιδ, ν)) −
meanσω+1≤ν≤2σω(W (ιδ, ν))|

ιδ state
identifier
σω sliding
window size

Maxmin
transition

transdetmaxminabsιδ,σω (W ) | max1≤ν≤σω(W (ιδ, ν)) −
min1≤ν≤σω(W (ιδ, ν))|

ιδ state
identifier
σω sliding
window size

Standard
deviation
transition

transdetstdevιδ,σω (W ) 2
√
[mean1≤ν≤σω (W (ιδ, ν) −

mean(W )) 2]
ιδ state
identifier
σω sliding
window size

All Greek letters bold and also the words in the column under notation

all other network characteristics from ωX,Y , cY (..) and ηY can be made adaptive by
including self-model states for them. For example, an adaptive excitability threshold
τY (e.g., [5, 8, 42]) for a logistic combination function for state Y can be represented
by a self-model state named TY and an adaptive speed factor ηY can be represented
by a self-model state named HY .

As the outcome of such a process of network reification is also a temporal-causal
network model itself, as has been shown in [34, Chap. 10], this self-modelling
network construction can easily be applied iteratively to obtain multiple orders of
self-models atmultiple (first-order, second-order,…) self-model levels. For example,
a second-order self-model may include a second-order self-model state HTY repre-
senting the speed factor ηTY

for the dynamics of first-order self-model stateTY which
in turn represents the adaptative excitability threshold τY for Y. In the current paper,
this multi-level self-modelling network perspective is applied to obtain a second-
order adaptive network architecture addressing controlled adaptation induced by
detected synchrony and detected synchrony transitions. The control level is used
to make the adaptation speed context-sensitive as addressed by the metaplasticity
literature such as [1, 31]: the metaplasticity principle ‘Adaptation accelerates with
increasing stimulus exposure’ formulated by [31] can easily be modelled by using
second-order self-model states, this is discussed in Sect. 4.

4 The Adaptive Network Model

In this section, we introduce an adaptive neural agent model covering the detection
of interpersonal synchrony and transitions of interpersonal synchrony and its related
behavioral adaptivity. It applies a self-modelling network architecture of three levels:
a base level, a first-order self-model level, and a second-order self-model level. The
(middle) first-order self-model level models how excitability of states at the base
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level are adapted over time, and the (upper) second-order self-model level models
the control over this adaptation.

4.1 Base Level

Figure 1 shows a graphic overview of the base level of the person model (persons are
indicated by the big boxes) and the abovementionedAppendix provides explanations
for all of its states. Each person uses six states for the interactionwith the other person:
three states (indicated by sense) for sensing the other person on the left-hand side of
each box, and three states for execution or expression of actions (move, exp_affect,
talk) on the right-hand side. Within a box the person’s internal mental states can
be found, outside the boxes are the world states. Note that the ws-states are sensed
by one agent and determined by another agent, while the state worlds represents an
external world state that is independent from the agents. Each person also senses its
own actions, modelled by the arrows from right to left outside the box.

The internalmental states cover sensory representation states (rep) andpreparation
states (prep) for each of the threemodalities: movementm, expression of affect b, and
verbal action v. In addition, each person has a conscious emotion state for affective
response b (cons_emotion). Each of the mentioned states is depicted in Fig. 1 by
a light pink circle shape. For each modality, the corresponding representation state
has an outgoing response connection to the related preparation state and it has an
incoming (prediction) connection back from that preparation state to model internal
mental simulation [7, 18].

Six synchrony detector states are depicted in Figs. 1 and 2 by the darker pink
diamond shapes: (1) three of them for intrapersonal synchrony for the three pairs
of the three modalities movement—emotion (m-b), movement—verbal action (m-v),
emotion—verbal action (b-v), and (2) the other three for interpersonal synchrony
for each other three modalities [15]. In addition, we introduce three interpersonal

Fig. 1 Base level of the introduced adaptive network model with three modalities, six synchrony
detection states for intrapersonal and interpersonal synchrony (dark pink diamonds) and three states
for interpersonal synchrony transition detection (light pink diamonds)
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Fig. 2 Overview of the overall second-order adaptive network model, the purple plane represents
the second-order self-model level (upper), the blue plane the first-order self-model level (middle)
and the pink plane the base level (lower)

synchrony transition detector states (the light purple diamonds) that are able to note
transitions in the synchrony.

Following (Ravreby et al. [30]), we assume that both the detected interpersonal
synchrony and the detected transitions of interpersonal synchrony contribute to
behavioral adaptivity of each person: detected synchrony and synchrony transition
lead to becoming more sensitive to sensing a person and to expressing to that person
(a form of homeostatic regulation). This is modelled through self-model T-states for
adaptive excitability thresholds [5, 8, 42].

Thus,more synchrony and synchrony transitiondetectionwill enhance excitability
for the representation and execution states. More sensitive states for representations
will lead to having better images of the modalities of the other person, which will
make the sensed signals better available and accessible for the brain. More sensitive
states for execution will lead to better expressed own modalities, so that the other
personwill sense thembetter. In Sect. 4.2, we discuss inmore detail howwemodelled
this behavioral adaptivity and its control.

At the base level some world states (worlds) are modelled for stimuli s that are
sensed by the persons. The world’s suitability for enabling communication between
the two persons is modelled byW-states. Two general context states are included to
model the conditions to maintain excitability thresholds represented by T-states.
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4.2 Modelling Controlled Adaptation

Following what has been described in Sects. 3 and 4.1, the behavioral adaptivity
is modelled by first-order self-model states TY for adaptation of the excitability
thresholds τY for the internal representation states Y and execution states Y,
covering the three considered modalities (movement, affective response and verbal
action). In addition, second-order self-modelHT-states are used for context-sensitive
control of the adaptation of these adaptive excitability thresholds τY for the internal
representation states and execution states Y.

Figure 2 shows a 3D picture of the overall design of the model; here, the first-
order self-model states are in themiddle (blue) plane and the second-order self-model
states in the upper (purple) plane. By changing the activation values of the T-states,
the corresponding excitability thresholds change accordingly [4, 5, 42]. This change
occurs due to the influences from the detected synchronies and synchrony transitions,
modelled by the upward (blue) arrows in Fig. 2 to the T-states in the middle plane.

The two second-order self-model states HTA and HTB model context-sensitive
excitability adaptation control, one for each person. They represent the adaptation
speed for the excitability for the concerning person according to the second-order
adaptation (or metaplasticity) principle ‘Adaptation accelerates with increasing stim-
ulus exposure’ [31]. Therefore, they have incoming connections (blue upward arrows
from base plane to upper plane) from the stimulus representation states at the base
level.

In the Appendix, the full specification of this network model by role matrices and
explanations for all of its states can be found.

5 Simulation Results

In this section, we study how our controlled adaptive network model behaves during
an experimental setting with different episodes. In this experimental setting, it was
manipulated whether or not person A and B each received the same stimulus and
whether or not they were able to communicate, in such a way that each condition
happened. Person A was always stimulated for 120 time units, followed by 60 time
units of no stimulus (180 time units in total), and thereafter this process was repeated.
Regarding person B, the first 60 time units no stimulus was present, followed by 180
time units with the stimulus (i.e., 240 time units in total), and this (non-)stimulus
episode of 240 time units was thereafter repeated. The communication enabling
conditions in the environment are indicated by the self-model states Wexec-wsx, A,B
(fromA toB) and the statesWexec-wsx, B,A (fromB toA). They are activated to activation
value 1 from time 30 to time 60 and then repeated every 60 time units; when they are
not activated, they have activation value 0 (from time 0 to time 30 and then repeated
every 60 time units). Limit cycles in the results and repetition of conditions occur
after a certain amount of time. We will depict the simulations until 360 time units
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were reached with a step size (�t) of 0.5, meaning that our shown simulation run
contains 720 computational steps. In Figs. 3 and 4 examples of simulation outcomes
are shown. All initial state values can be consulted in the Appendix (Table 2).

5.1 Comparing Time Intervals with Transitions and Time
Intervals Without Transitions

Since the focus of this paper is the role of intrapersonal synchrony, interpersonal
synchrony and interpersonal synchrony transitions in relation to affiliation, we high-
light the results of these processes in the controlled adaptive network model. The
results of the other states in the model can be consulted in the Appendix that can
be found as Linked Data at https://www.researchgate.net/publication/361435085.
Within a simulation, in different time periods different phenomena can be observed.
First of all, in the period 0–30 mainly startup phenomena can be observed. After that,
the following more specific patterns can be observed.

• If a person does not get a stimulus and communication is not enabled then this
results in a low level of detected subjective intrapersonal synchrony for that person;
e.g., for personA in Fig. 3a, time period 120–150;when communication is enabled
with just one person having a stimulus, then there is increasing intrapersonal
synchrony for both persons

• Large values for interpersonal synchrony occur in periods of enabled communi-
cation, even when a person has no stimulus; e.g., Fig. 3b, time 30–60

• When the stimulus is absent for a person, then the H-state (not depicted) for that
person becomes 0 and therefore the related T-states of that person show flat lines
for: e.g., Fig. 3d, time 120–180 for person A

• When no communication is enabled, then sensing becomes 0 and when the stim-
ulus is absent also actions become 0 as well; therefore, interpersonal synchrony
increases; e.g., Fig. 3b, time 240–270 (person B); note that this does not really
hold at time 120–150 (only a small effect of movement only of person A)

• When detected interpersonal synchrony goes from high to low, then a peak in the
transition follows results in lower T-states due to the transitions and not due to
the interpersonal synchrony; e.g., Fig. 3b–d, time 180–210
Oppositely, when detected interpersonal synchrony goes from low to high, then a
peak in the transition follows resulting in lower T-states due to both the transitions
and the interpersonal synchrony; e.g., Fig. 3b–d, time 90–120

• The lowest values for the T-states are reached when both interpersonal synchrony
and transition are high; e.g., Fig. 3b–d, time 90–120, time 210–240

As shown in Fig. 3, for each person the activation of intrapersonal synchrony
detection seems to rely heavily on the stimulus the person itself receives. Moreover,
in time intervals inwhich transitions occur theT-states reach lower values than in time
intervals where only synchrony occurs; this means stronger behavioral adaptivity in

https://www.researchgate.net/publication/361435085
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Fig. 3 The trajectory over the stimuli episodes of a the intrapersonal synchrony detector states
(first), b the interpersonal synchrony detector states (second), c the interpersonal synchrony transi-
tion detector states (third), d the affiliation states when both interpersonal synchrony and interper-
sonal synchrony transitions are connectedwith the affiliation (fourth). The horizontal axis represents
time and the vertical axis represents the activation levels (from 0 to 1)
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Fig. 4 The trajectory over the stimuli episodes of the affiliation states when only interpersonal
synchrony (and not interpersonal synchrony transitions) is connected with the affiliation. The
horizontal axis represents time and the vertical axis represents the activation levels (from 0 to
1)

Table 2 Stimuli and communication for the first 4 episodes

Type Stimulus person A, B Communication enabled Duration Time intervals

Episode 1 Different No 30 0–30

Episode 2 Common Yes 30 30–60

Episode 3 Different No 30 60–90

Episode 4 Common Yes 30 90–120

the former type of time intervals. So, overall, the results are in accordance with
findings reported in literature such as [30].

5.2 Comparing Continuous Synchrony Without Transitions
with Synchrony with Transitions

In Fig. 4 the simulation results of the T-states (regarding other simulation results,
see Appendix) are shown in case that the connections from the transition detectors
to the T-states are disabled. For both persons, the excitability thresholds represented
by the T-states reach lower values in the case with enabled transition detectors in
Fig. 3, which means a stronger short-term behavioral adaptivity. Moreover, the peaks
of the T-states in Fig. 3 (transition detector states enabled) last for less time units
than those in Fig. 4, likely due to the effect of the enabled transition detector states
that change at a higher frequency.
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Table 3 Average behavioral adaptivity through excitability thresholds (represented by T-states)
for enabled and disabled transition detection over 1080 time units

Average excitability threshold Person A Person B Person A and B

Enabled transition detection 0.394 0.400 0.397

Disabled transition detection 0.507 0.526 0.517

Difference % enabled of disabled (%) 22 24 23

To quantify the precise role of the transition detector states, Table 3 displays the
specific averages of the adaptive excitability thresholds over 1080 time units for both
simulations in Figs. 3 and 4. It turns out that the transitions make that the excitability
thresholds are 20–25% lower, which is substantial: it makes activation much easier.
This once more is in accordance with findings reported in the literature such as [30].

6 Discussion

Within psychotherapy sessions, more interpersonal synchrony usually leads to a
better therapeutical affiliation. However, in practice also switching in and out of
interpersonal synchrony often occurs, which breaks synchrony for some period of
time. Given that in general interpersonal synchrony positively affect affiliation, a
reasonable expectation would be that transitions in synchrony negatively influence
affiliation. In contrast, it has been put forward [12, 25, 30] that such transitions also
positively affect affiliation and do this even to such an extent that time periods with
interpersonal synchrony interrupted by transitions may positively affect affiliation or
liking more than time periods with synchrony without such transitions. This paper
has introduced a controlled adaptive network model that addresses this effect.

Computational modelling of interpersonal synchrony was already addressed in
earlier work such as [13–17]. However, in the models described in [13, 14], no
(subjective) internal detection of synchrony takes place. Furthermore, in [14] no
adaptivity was covered, whereas in [13] another type of adaptivity was incorporated,
namely of internal connections from representation states to preparation states. As far
as we know, [15–17] describe the only publications on other computational models
where subjective synchrony detection is addressed in relation to affiliation. A differ-
ence is that in these publications no subjective detection of synchrony transitions
was addressed, which is the novelty introduced by the current paper. The controlled
adaptive network model introduced in the current paper has adopted part of the
model of [16] as point of departure but has extended it by detector states for inter-
personal synchrony transitions and their effect on behavioral adaptivity. In this way,
the introduced controlled adaptive network model was obtained for the way in which
detected interpersonal synchrony transitions also lead to different types of behav-
ioral adaptivity concerning affiliation between two persons. The model can provide a
basis to develop adaptive virtual agents that are able to concentrate on each other by
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short-term behavioral adaptivity in a human-like manner not only during periods of
interpersonal synchrony but also during periods inwhich from time to time transitions
of the interpersonal synchrony occur.
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Uniformly Scattering Neighboring Nodes
of an Ego-Centric Network
on a Spherical Surface for Better
Network Visualization

Emily Chao-Hui Huang and Frederick Kin Hing Phoa

Abstract Ego-centric networks are an important class of networks to represent
a particular node’s connections to its neighbors. This work aims at providing an
efficient method to represent an ego-centric network so that all neighboring nodes
are scattered on the surface of the unit sphere uniformly. Such uniformity is not just a
simple space-filling distributionwithmaximumEuclidean distance among nodes, but
with the consideration of existing edges among these nodes and without overlapping
of node clusters. Our proposed method is a three-step method that partitions the
spherical surface associated to a criterion on the edge-to-node ratio, then scatters
the nodes on the respective subspace according to the relationship between nodes
and modularity. To compute efficiently, the particle swarm optimization method is
employed in all three steps to allocate the respective points. We show the connection
between our space-filling distribution of points on a spherical surface to theminimum
energy design on a two-dimensional flat plane with a specific gradient. We provide a
demonstration on allocating nodes of an ego-centric network of 50 nodes, and some
distance statistics show the good performance of our method when compared to four
state-of-the-art methods via self-organizing maps and force-driven approaches.

Keywords Ego-centric networks · Space-filling · Particle swarm optimization ·
Modularity · Minimum energy design

1 Introduction

The analysis of large-scale networks has grown in importance since the turn of the
millenium. The structure of a network helps to describe the relationship among indi-
viduals in the network, and its wide applications include anthropology, biomedical
research, communication studies, and social sciences. Among all networks with spe-
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cial structure, an ego-centric network is an important class to represent a particular
node’s connections to its neighbors. The traditional presentation of an ego-centric net-
work is given as a two-dimensional circular form, where the center node is located at
the center of the circle and all neighboring nodes are located on the circle’s perimeter.
Although this presentation is simple to draw, the existence of edges between neigh-
boring nodes greatly reduces the visualization quality of the network, not mentioning
if node clusters exist. Rather than a two-dimensional circle with limited space to
allocate neighboring nodes, a three-dimensional sphere not only provides additional
space for node allocations, its extra dimension allows edges between neighboring
nodes to be drawn with possibly fewer overlaps. This brings up the research question
of this work: How to allocate neighboring nodes “uniformly” on a spherical surface
with the consideration of the existence of edges between nodes and node clusters?

Distributing points uniformly on a spherical surface is a well-known problem.
It was first proposed in [1], which tried to determine equilibrium configurations of
electrons constrained to the surface. The spiralmethodwas first proposed to distribute
points over a surface. For example, [2] investigated the energy of allocations of N
points on a sphere, and constructed a suitable partition with N parts of equal areas to
obtain bounds of extremal energy. Inspired by the phyllotaxis, [3] proposed a fast and
effective approach called the Fibonacci grid, which optimizes the packing efficiency
by the mapping from golden spiral, and each point on the surface represent almost
the same area. Some mathematical works also introduced the spherical t-design [4]
to allocate points uniformly for numerical integration with equal weights. It was
defined by a set of points locating on an unit spherical surface if the integral of any
polynomial of degree almost t is equal to the average value of the polynomial over the
set of points. However, all above methods are appropriate for allocating independent
points, which is hardly fulfilled when we consider network nodes as the points.

There are many recent algorithms being developed for drawing a network on a
spherical surface. Fu et al. [5] extended the self-organizing map (SOM) algorithm to
layout email network on a spherical surface. SOM is an unsupervised artificial neural
network training approach via competitive learning as a substitution of backpropa-
gation with gradient descent to minimize the loss function. It is useful in visualizing
network clusters, especially in small-word network, but its overlapping between
nodes and edges lowers the quality in network visualization. Thus, [6] proposed a
two-stage SOM algorithm, where the next stage after the original SOM is a circular
layout algorithm to adjust the node positions to prevent overlapping of nodes and
edges. Other than SOM-type algorithm, [7] proposed a stochastic neighbor embed-
dingmethod called Doubly Stochastic Neighbor Embedding on Spheres (DOSNES).
It overcomes the problem of crowd nodes with highly imbalanced data by a novel
normalization method.

In fact, point allocation on a surface is called the space-filling problem in statistics
and experimental design, computer experiments in particular. The separation distance
of an experimental design DN is its minimal pairwise Euclidean distance ρ(D) =
minx,y∈D

{∑N
k=1(xk − yk)2

}
. Johnson et al. [8] introduced a popular space-filling
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design that achieves thegreatest separationdistanceρ(D). Readerswhoare interested
in space-filling designs on a flat and regular space are referred to [9].

In this work, we propose a new approach to allocate the neighboring nodes of an
ego-centric network on a spherical surface that is uniform with the consideration of
the existence of edges and node clusters. Notations and definitions are provided in
Sect. 2. Section3 describes our method and algorithm, together with the connection
to the minimum energy design. We show the performance via numerical simulations
in Sect. 4 and a discussion is given in the last section.

2 Notations and Definitions

Weconsider an undirected ego-centric networkG(V, E)with a set of nodes V , which
includes a center node denoted as v00, and a set of edges (E) between pairs of nodes.
We define a cluster in G as connected components of the maximal subgraph with
vertex set V \ {v00}. Let k be the number of clusters and we denote {C1, . . . ,Ck}
as these k clusters with sizes |Ci | = ci for i = 1, . . . , k. Note that our definition of
node cluster may differ from traditional definitions of network community, and the
method of detecting communities is not the main focus of this work. A brief review
of the literature of community detection can be found in [10]. Here we assume to
use a simple node cluster method, but if network communities are detected in prior,
they can be implemented accordingly.

For all neighboring nodes in the node cluster, we denote them as vi j for i =
1, . . . , k and j = 1, . . . , ci . For all remaining neighboring nodes with degree 1, we
denote them as v0 j for j = 1, . . . , N , and N = |V | − ∑

i ci − 1. For each clusterCi ,
we denote Ei as the set of edges in Ci with size |Ei | = ei for i = 1, . . . , k. Let A be
the (|V | − 1) × (|V | − 1) adjacency matrix of V \ {v00} with each element ast = 1
if (vis, vi t ) ∈ Ei and 0 otherwise for s, t = 1, . . . , (|V | − 1).

In practice, we recast all nodes vi j and all clusters Ci in the form of spherical
caps. Every nodes vi j is located on the apex of a spherical cap characterized by a
cone angle θ

j
i and a solid angle Ω

j
i = 2π(1 − cos θ

j
i ). Every cluster Ci can also be

similarly characterized with a different solid angle Ωi .
To define optimality on uniform node allocation, we first define the distance

between two points vi j and vi j ′ on a unit sphere with the center point v00 at the
origin of coordinate as the angle φ j j ′ = cos−1

(|vi j · vi j ′ |
)
, for i = 0, . . . , k. Then

the uniform allocation is optimal if they maximize the minimum of φ j j ′ for all nodes
vi j and clusters Ci in G(V, E). Note that the distance between a pair of nodes in a
cluster needs to be adjusted by the cluster’s edge density. Conventionally, a simple
measure of edge density is given by the Beta index β = total number of edges

total number of nodes , but it is
equal to zero for a single point and it causes zero-denominator problem in the first
step of our three-stage optimization. Therefore, we define an adjusted Beta index
βi = ei+ci

ci
to represent the degree of connectivity of Ci .
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3 Method

3.1 Preliminaries

Particle Swarm Optimization. Space-filling distribution is an NP-hard problem,
so we suggest to use the Particle Swarm Optimization (PSO) [11] for its computa-
tional efficiency. PSO has been widely used in computational intelligence, indus-
trial optimization, and many engineering problems. It starts with an initial set of
particles randomly assigned in the solution domain. These particles are iteratively
updated for quality improvements by its two best particles: the personal best, pBest ,
and global best, gBest . The personal best for each individual particle indicates the
one with the best location that the particle has ever visited, and the global best
for all particles is the best one among all personal best particles. The update of
particle i at iteration t is conducted via the velocity wi (t) update and the posi-
tion Xi (t) update:wi (t + 1) = ω × wi (t) + a1γ1(pBest − Xi (t)) + a2γ2(gBest −
Xi (t)) and Xi (t + 1) = Xi (t) + Vi (t + 1), where γ1 and γ2 are random numbers in
(0, 1), constants ω, a1, and a2 are predefined parameters.

The PSO algorithm we use in our method is the standard version as in [11]. Each
particle is a vector v recording the positions of node on the spherical surface. The
objective function is f (v) = −min

v∈V
{
φ j j ′

}
. It aims to find the optimal v before the

maximum iteration reached or the objective change is less than 10−8.
Eigenvector ofModularity. Modularity is a common tool to detect network com-

munities. A node cluster with high modularity implies a high connection probability
between nodes within a cluster while low connection probability for nodes in the
cluster to connect to nodes outside cluster. The standard definition of modularity

[12] is Q =
N∑
i=1

N∑
j=1

(
ai j − ki k j

2m

)
1i, j∈S , where ai j is an element of the N × N adja-

cencymatrix A, ki , k j are degrees of the vertices,m = 1
2

∑N
i=1 ki , and S stands for the

same group. To improve the efficiency, [13] proposed the modularity-based spectral
approach that helps to approximate the partition problem using the eigenvector of
modularity matrix. The modularity matrix B is a real symmetric matrix with ele-
ments Bi j = ai j − ki k j

2m , which the sign of elements of the leading eigenvector divide
all nodes in this communities to two different groups. By implementing the same
algorithm over the newly formed communities, the network can be partitioned to
small clusters until all the communities are indivisible.

3.2 Three-Stage Optimization

We consider an ego-centric network that consists of clusters and scattered points
among the neighboring nodes. In order to allocate these neighboring nodes uniformly
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on a spherical surface, we propose a three-stage optimization algorithm to solve this
maximin distance problem.

Step 1: Allocation of Cluster Center. Every cluster is viewed as points with
different weights in this step. We aim to allocate the connected nodes closer than the
unconnected ones, so a smaller polar angle is expected to a cluster with a higher edge
density. The weight of each cluster Ci is defined by a weight function w(ci , ei ) =
ci
βi

= c2i
ei+ci

and the corresponding proportion is ri = wi (c0 + ∑k
i=1 w(ci , ei ))−1. This

implies that the solid angle of Ci is Ωi = 4πri and its corresponding polar angle
θi = cos−1(1 − 2ri ). Then this step aims at maximizing the following criterion:
f (pi , p′

i ) = mini �=i ′,i,i ′∈{1,...,k} φi i ′
θi+θi ′

, where φi i ′ is angle between cluster center pi
and pi ′ . We employ the PSO algorithm to solve this optimization problem.

Step 2: Allocation of Nodes within Every Cluster. All nodes that belong to their
respective clusters are scattered within the limit of the spherical cap formed in Step
1. Because a latent community structure may exist within clusters, we suggest to use
the leading eigenvector method to detect them in the beginning of Step 2. To avoid
overfitting that creates tiny fragments, a user-defined small number of communities
is allowed.Within each community, we use a circular sector to constrain the locations
of communities in the cluster spherical cap. For communities with only one point,
they are allocated in the same circular sector. Suppose there are M communities in
cluster Ci , the angle of circular section m is defined as αm = 2πwm(

∑M
m=1 wm)−1,

where wm is the weight function mentioned in step 1. Inside each circular sector, all
angles of node pairs min j �= j ′ φ j j ′ are maximized.

Step 3: Allocation of Remaining Nodes outside Clusters. All remaining nodes
outside clusters are degree 1 that connects only to the center node. They are allocated
to the spherical surface that maximizes the angle between pairs of nodes. We also
avoid the overlap between the spherical caps of these nodes and those of the clusters’
spherical caps.

Regarding the overlap of the spherical cap, [14] proved that for n points on a

unit sphere, the angle between any two points φ ≤ sin−1

√
4−csc2

(
nπ

6(n−2)

)

2 . A failure to
satisfy this constraints for the polar angle of clusters in Step 1 results in an overlap
of the spherical caps, then we consider the set difference of spherical caps as the new
constraint region instead of the whole circular sector, thus the resulting allocation is
slightly less uniform but simpler to compute than uniformity.

3.3 A Connection to Minimum Energy Designs

Minimum energy design (MED) is a space-filling design with the domain gradient
following a given function instead of being uniform [15]. The basic idea of MED
is to allocate more points on the more important regions than other less important
regions when a prior knowledge on the functional of the solution domain is given.
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A criterion to optimize MED is defined as: max
D

min
i, j

d(xi ,x j )

q(xi )q(x j )
, where d(xi , x j ) is the

Euclidean distance between points xi and x j , q(x) = 1
f (x)1/(2p) is the charge function

and f (x) is a desired density function.
For the space-filling problem in the previous subsection, the node allocation on

the three-dimensional spherical surface can be viewed as a two-dimensional MED
on a flat surface with a specific gradient. Specifically, the Lambert cylindrical equal
area projection is used as the gradient. Consider a point (a, b, c) with a2 + b2 +
c2 = 1 on a unit spherical surface, it can be mapped to (x, y) ∈ R2 according to
the transformation equations: a = cos(x)

√
1 − y2, b = sin(x)

√
1 − y2, and c = y.

On the two-dimensional space, the distance of high-latitude region is elongated.
Therefore, the amount of points on high-latitude region should be less than those
on low-latitude region. The gradient function is given by f (x, y) = cos(sin−1 y).
Roshan Joseph et al. [15] proved that the limiting distribution of points in MED
converges to uniform distribution for an arbitrary density function. Based on the
one-to-one projection from the spherical surface space-filling problem to MED with
our specific projection as gradient, the distribution of points calculated by ourmethod
is also uniform.

3.4 A Demonstration

We demonstrate how our three-step method uniformly allocates 49 neighboring
nodes of an ego-centric network on a spherical surface. This ego-centric network
is generated randomly ourselves and for verification purpose, we include the net-
work structure in the appendix. In addition to the step-by-step illustration of the
three-dimensional network on the left of Fig. 1, we also include their corresponding
two-dimensional MED side-by-side on the right.

First, there are three node clusters in the network, which are a 5-node clique, a 5-
node pentagon, and a 10-node subgraph. Step 1 identifies the spherical caps of three
clusters and Fig. 1a allocates the apex of these caps. In Step 2, five nodes of the clique
and five nodes of the pentagon are allocated to their respective spherical caps. For
ten nodes of the subgraph, our method further identifies three separate communities
among these ten nodes. Figure1c shows the allocated positions of these 20 nodes.
The remaining 29◦C-1 nodes are allocated to the open area outside the clusters’
spherical caps, and Fig. 1e shows the node allocations of all 49 neighboring nodes.
The point allocation of the respective MED in Fig. 1f looks uniform.

4 Performance Comparison

We compare the performance of our method with state-of-the-art methods in the lit-
erature, including SOM [5], two-step SOM [6], Schulz’s method [16], and DOSNES
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(a) Step 1. Our Method (b) Step 1. MED

(c) Step 2. Our Method (d) Step 2. MED

(e) Step 3. Our Method (f) Step 3. MED

Fig. 1 Step-by-step result

[7]. The first two are good self-organizing map algorithms and the last two are
good force-directed algorithms. The test network is the same ego-centric network
as in the demonstration above. The simulation repeats 10 times for each of the five
methods. We use the solid angle of single nodes Ω0 to evaluate the degree of uni-
formity of node positions on the spherical surface. Ω0 can be estimated by the solid
angle of all nodes in this network multiplying their corresponding Beta index, thus
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(a) SOM (b) Two-Step SOM

(c) Christian Schulz (d) DOSNES

Fig. 2 Results from four state-of-the-art methods

Ω̂0 = 1
|V |−1

∑k
i=0

∑ci
j=1 βiΩ̂

j
i = 1

|V |−1

∑k
i=0

∑ci
j=1(Ω̂0)

j
i , where (Ω̂0)

j
i is the solu-

tion of φ = cos−1(1 − Ω0
2πβi

) + cos−1(1 − Ω0
2πβp

), φ is the angle between vi j and its

nearest point vpq . The variance of Ω̂0 indicates the degree of uniform allocation.
Figure2 shows the results obtained from the four state-of-the-art methods, and the

result of our method is in Fig. 1e. Table1 provides the statistics of Ω0 of each node
allocations by five methods. SOM is highly efficient in terms of computational time
but it fails to allocate the nodes that belong to the same clusters to the surrounding
positions, not mentioning the node overlap that appears as the minimum Ω0 is close
to 0. Its two-step variant improves the overlapping situation by adding an extra step
for node separation. Although its mean Ω0 is also improved from 0.0746 to 0.0911,
its variance (i.e. distance variation among node pairs) and the computational time
increase substantially. The two force-directed algorithms suffer the same problem
of node overlap as SOM, but their mean Ω0 are at the same par as two-step SOM
and their variance Ω0 are lower than that of SOM. This indicates that the two force-
directed methods achieve better uniformity than SOM in general.

Compared to the four methods, our method successfully achieves the highest
minimumΩ0, the highest meanΩ0 and the lowest varianceΩ0. This implies that the



Uniformly Scattering Neighboring Nodes … 105

Table 1 Performance comparison of five methods

Method Ours SOM Two-step
SOM

Schulz DOSNES

Time (s) 113.982 4.769 359.040 23.291 1.092

Minimum (Ω̂0) 0.0986 8.73×10−5 0.0015 9.41×10−5 0.0001

Mean (Ω̂0) 0.1898 0.0746 0.0911 0.0991 0.0874

Variance (Ω̂0) 0.1261 0.3912 0.6462 0.2939 0.2469

distance between two closest nodes and the average distance among all node pairs
are both maximized while the distance variation among node pairs are minimized,
indicating a good uniformity on the node distance and thus a uniform node allocation.
The only weakness of our method is the computational time. It requires additional
works to perfect the program codes to achieve lower computational time.

5 Conclusion

In this article, we develop a new method to scatter the neighboring nodes of an
ego-centric network on a spherical surface, and the node allocation is uniform with
the consideration of edges and node clusters. Our method is a three-step optimiza-
tion process optimized via PSO. Given a close connection to the minimum energy
design, we ensure that the node allocation is uniformly distributed on the spherical
surface. We compare our result with other network visualization methods, showing
that our method can generate a spherical-looking network with a better uniform dis-
tribution of nodes, although the computational time of our method still needs further
improvement via better code writing. Besides, it is possible to have other algorithms
for allocating nodes on a spherical surface that we do not include in this paper. We
will compare them in the extended version of this paper. In addition, there are better
metaheuristic algorithms other than PSO to handle discrete optimization problem,
like the swarm intelligence based (SIB) method [17, 18]. Since this SIB method is
employed to the search of optimal MED in [19], it has a great potential to be applied
to the search of optimal node allocation in our work. Finally, it is efficient to use
modularity for an ego-centric network with only distance-1 neighboring nodes, and it
faces challenges when we add neighboring nodes with distances greater than 1. Such
scenario commonly exists in many large-scale networks like scientific networks [20,
21]. A remedy to this obstacle is to use another metric that considers neighboring
nodes with larger distances, like the scan statistics [22] and its generalized version
[23], or many others.
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Appendix

For the network in the demonstration, Node 01 is the center node that connects to all
other 49 nodes. Here is the remaining edge list for the network: 04-06, 04-11, 05-07,
05-10, 05-12, 05-14, 06-09, 07-10, 07-12, 07-14, 08-09, 08-11, 10-12, 10-14, 12-14,
21-22, 21-23, 21-24, 21-29, 22-23, 24-31, 28-29, 28-30, 29-30, 31-32, 32-33.
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The Hyperbolic Geometric Block Model
and Networks with Latent and Explicit
Geometries

Stefano Guarino, Enrico Mastrostefano, and Davide Torre

Abstract In hyperbolic geometric networks the vertices are embedded in a latent
metric space and the edge probability depends on the hyperbolic distance between the
nodes. These models allows to produce networks with high clustering and scale-free
degree distribution, where the coordinates of the vertices abstract their centrality and
similarity. Based on the principles of hyperbolic models, in this paper we introduce
the Hyperbolic Geometric Block Model, which yields highly clustered, scale-free
networks while preserving the desired group mixing structure.We additionally study
a parametric network model whose edge probability depends on both the distance
in an explicit euclidean space and the distance in a latent geometric space. Through
extensive simulations on a stylized city of 10K inhabitants, we provide experimental
evidence of the robustness of the HGBM model and of the possibility to combine a
latent and an explicit geometry to produce data-driven social networks that exhibit
many of the main features observed in empirical networks.

Keywords Urban social network · Graph model · Simulator · Hyperbolic
geometric graph · Data-driven

1 Introduction and Background

Defining accurate models for real-world social networks is instrumental in several
research fields, e.g., in sociology [1], epidemiology [2] or marketing [3]. Dynamic
processes, such as the spread of a disease or a rumour, can be represented on appro-
priate networks that encode patterns of connection and interaction among individuals
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in a population. The structure of the network has a direct impact on the process [4],
e.g., the topology of urban social networks, their size and demography, can affect
disease spreading [5] in and within cities [6]. The efforts towards a deeper under-
standing of the mechanisms underlying the formation of real world networks have
led to the development of a number of network models, mostly driven by the desire
to reproduce—and possibly explain—specific observed features of such complex
networks [7].

A recent line of research builds on the intuition that the vertices of the network
can be embedded into a hidden metric space [8], so that notions of centrality and
homophily in the network find a direct counterpart in the position and proximity
of the vertices in this space. Assuming a hyperbolic latent geometry, rather than an
euclidean geometry, allows to generate networks with a high clustering, a scale-free
degree distribution and, possibly, a soft community structure [9].

Computational social sciences require network models that encode real data and
empirical findings about the socio-demographic and geographic features of the con-
sidered population. Age and geographic distance emerged as two critical factors in
guiding the formation of social ties [10, 11]. This led to the definition of data-driven
spatial social network models [12–14] that rely upon the wide availability of spatial
density data [15] and age-based mixing patterns deduced from census and/or survey
data [16].

The aim of this study is to investigate ways to endow data-driven network models
with desirable topological properties, thanks to a latent hyperbolic geometry. The
Geometric Block Model (GBM), proposed in [17], generalizes the Stochastic Block
Model (SBM) embedding the vertices in an euclidean metric space and considering a
different connectivity threshold for each possible block pair. Including group mixing
in a hyperbolic setting is not equally straightforward, because of the interplay between
the rules governing the distribution of the vertices in the hyperbolic space and the
rules determining whether two vertices must be connected based on their hyperbolic
distance. To the best of our knowledge, there is no previous model that considers
both a latent and an explicit metric space, making edge probabilities dependent on
the distances computed in both spaces.

Among the class of hyperbolic geometric graph models, we focus on the 0-
temperature model, which is the one guaranteeing the stronger transitivity. We first
propose, in Sect. 2, the Hyperbolic Geometric Block Model (HGBM), where a dif-
ferent hyperbolic latent space is considered for each group pair in order to guarantee
the desired group mixing. We then analyze, in Sect. 3, the topological features of a
parametric model obtained as a linear combination of the HGBM with the spatially-
explicit USN model proposed in [13, 18]. We simulate both models for a stylized
urban population, with age-based mixing patterns inferred from survey data for Italy
and distance-based mixing adjusted according to previous empirical findings. We
provide experimental evidence of the robustness of our HGBM model and of the
possibility to obtain suitable data-driven social networks by combining a latent and
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an explicit geometry. All software used in this paper is available as open-source under
the GPLv3.1

1.1 Related Work

A number of random graph models, proposed across decades of research, have been
widely used in computational social sciences. Ideally, the models should reproduce
the main features of real-world social networks, well summarized in [19]. These
networks show a heavy-tailed (e.g., lognormal) degree distribution, often with a
finite cutoff in agreement with Dunbar’s number. The transitivity of the networks is
high, compared to a random graph model, as a consequence of the well-established
principle that “friends of my friends are my friends.” Moreover, they show positive
assortativity by degree and type.

Defining simple models that capture all of these features is not an easy task.
Models designed to mimic the scale-free degree distribution emerging in many real
networks, for instance, may fail to yield the expected clustering structure [20, 21].
Exponential random graphs have been shown to overcome some of these limitations
[22, 23].

Recently, network instances having suitable features have been generated by
means of the so-called random geometric models [8, 24, 25], where the popularity
and similarity of the nodes depend on their position in some latent metric space [26].
The distance function chosen for this space impacts on the properties of the obtained
network. Embedding the vertices into a hyperbolic disk [8] has proved a way to
obtain both high clustering and heavy-tailed degree distribution.

In real social networks, individuals tend to socialize with their peers [27]. Among
other aspects, such as education or economy, age emerged as a critical element in the
formation of social ties [10, 11], possibly thanks to the availability of age-related data
at different spatial scales [15]. Another widely studied type of homophily is spatial
proximity,which gives rise to the so-called spatial networks.Most authors considered
variations ofwell known randomnetworkmodels obtained by embedding the vertices
in ametric space. The imposed spatial constraints influence the topological properties
of the network [28] and the imposed penalty on “long” edges causes the spatial
distribution of the vertices to impact on clusters, path lengths, degree distribution,
and more [29].

Stochastic BlockModels (SBM) are commonly used for generating networkswith
a known community structure [30, 31], which is a typical feature in the presence of
some homophily principle. In this type of networks the nodes are partitioned into
disjoint sets named blocks and the probability of an edge existing between two nodes

1 Both the HGBM model and the parametric model presented in Sect. 3 are included in the USN
package at https://gitlab.com/cranic-group/usn; the HGBM model is also released as a standalone
software at https://gitlab.com/cranic-group/hgbm.

https://gitlab.com/cranic-group/usn
https://gitlab.com/cranic-group/hgbm
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depends on the blocks towhich the two nodes belong. The SBMand its generalization
have gained their success in the last decades as they can be used to discover and
understand the structure of a network, as well as for clustering purposes [32, 33].

2 Hyperbolic Geometric Block Model

LetG = (V, E) be an undirected simple graph with vertex set V and edge set E . The
set V is partitioned into n blocks {Vi }1≤i≤n . The imposed mixing patterns between
different blocks is expressed in terms of a n × n mixing matrix P , where, for each
i, j ∈ {1, . . . , n}, Pi j measures the connection strength between Vi and Vj , i.e., the
average probability the (u, v) ∈ E over all u ∈ Vi and v ∈ Vj . Based on the mixing
matrix P , on the given demographics and on the chosen average degree k̄, we can
compute the expected number Ki j of edges between blocks i and j (see Appendix 1.2
for more details).

We define the Hyperbolic Geometric Block Model (HGBM) as follows. Let
pH2(x) be the probability that two vertices at distance x in the hyperbolic disk
are connected by an edge in the H

2 model with fixed parameters T , γ and ζ (see
Appendix 1.1 for more details on theH2 model). In the HGBMmodel, for each pair
of blocks i ≤ j , let Ei j be the set of edges that connect vertices in Vi and Vj . If
i = j , the set Eii of intra-block connections for block i is generated according to the
standard H

2 model, using Vi as vertex set and setting the target average degree to
k̄i i = 2Kii

|Vi | . If i < j , instead, Ei j is the set of inter-block connections between blocks i

and j . To obtain Ei j , we consider the bipartite analogous of theH2 model with vertex
set Vi ∪ Vj : for each u, v at distance x , the probability that the edge (u, v) exists is
pH2(x) if u ∈ Vi and v ∈ Vj , whereas it is 0 otherwise. In this case, the parameter

k̄i j is set to k̄i j = Ki j (|Vi |+|Vj |−1)
|Vi ||Vj | , with a multiplicative factor that accounts for the fact

that a vertex u ∈ Vi can establish links with just a fraction |Vj |/(|Vi | + |Vj | − 1)
of the vertex set (Vi \ {u}) ∪ Vj . Throughout the paper, we consider the following
parametrization of the H2 model: the power-law exponent of the degree distribution
is set to γ = 2.5, which is typical for real-world social networks; the curvature is set
to ζ = 1, to make sure that the graph is generated in the hyperbolic regime [34]; the
temperature is set to T = 0, to maximize clustering. The impact of these parameters
on the topology of the obtained graph has been studied extensively in the literature [8,
34], and we leave a deeper assessment of their impact on the HGBMmodel to future
work.

The experimental results presented in the following consider a synthetic popula-
tion of 10K vertices representing people subdivided into n = 4 different age groups,
labeled child (0 to 17), young (18 to 34), adult (35 to 64), or elder (65+). The age
distribution is taken from the Italian Institute of Statistics (ISTAT) (further details
can be found in [13]). The age-based social mixing matrix P (shown in Fig. 1a) is
obtained from aggregated contact data from [16], collected through the SOCRATES
Data Tool [35]. The expected average degree of the network is set to k̄ = 10. We ran
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(a) Input mixing matrix P . (b) Relative error matrix ε (see (2)).

Fig. 1 The mixing matrix P and the relative empirical error matrix ε. The relative error range is
1–8%

20 simulations of the HGBMmodel and analyzed the resulting graphs by looking at
the group mixing matrix, the local clustering coefficient distribution and the degree
distribution.

Social Mixing First of all, we verify that the simulated networks respect the imposed
age-based social mixing structure. In Fig. 1, we show the input matrix P , as defined
in 2, and the relative error of the connection probability evaluated between the matrix
P and the experimental contact matrix obtained averaging over the 20 simulations.
Formally, the simulated mixing matrix is defined as:

P sim
i j =

∑20
t=1 |Et

i j |
20Mi j

(1)

where |Et
i j | is the number of edges between age-group i and age-group j in run t ,

whereasMi j is themaximumnumber of possible such edges (see (6) in theAppendix).
The relative error between the elements Pi j and P sim

i j is:

εi j = Pi j − P sim
i j

Pi j
. (2)

From Fig. 1 we observe that each element of the average simulated mixing matrix
differs from the input matrix by about 5%, thus confirming that the HGBM model
preserves, within a reasonable error, the desired mixing structure.

Clustering Figure2b shows the complementary cumulative distribution function
(CCDF) of the local clustering coefficient C loc

u , for the entire network and sepa-
rately for each age-group. C loc

u is the fraction of neighbors of u that are themselves
adjacent [7]. As common practice, the vertices with less than 2 neighbors have been
ignored. The average of C loc

u over the entire network is 〈C loc
u 〉 ∼ 0.2 (with a variance
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(a) CCDF of the vertex degree ku, av-
eraged over 20 simulations, for the en-
tire network (dashed) and for the differ-
ent age-groups (solid). The distribution is
scale-free and relatively heavy-tailed, as
expected, and the average degree of dif-
ferent groups is in line with the matrix P .

(b) CCDF of the local clustering coefficient
C loc

u , averaged over 20 simulation runs, for
the entire network (dashed) and for the
different age-groups (solid). Stronger clus-
tering emerges for age-groups with greater
average degree and stronger internal cohe-
sion, as expected.

Fig. 2 Vertex degree and local clustering coefficient CCDF of HGSM

of ∼ 0.013 across different simulations), while the global clustering coefficient is
Cglo ∼ 0.064 (with a variance of ∼ 0.018). The obtained value 〈C loc

u 〉 ∼ 0.2 is com-
patible with real-world network such as the networks of email address books and of
email messages [7], to name two. Moreover Fig. 2b shows that 70% of the network
has C loc

u > 0.02. As a benchmark, in a SBM with mixing matrix P and an identi-
cal population, we obtained 〈C loc

u (SBM)〉 ∼ 0.00177 ± 0.00002 over 1000 exper-
iments, generated and evaluated with the Python library igraph [36]. Our HGBM
thus provides a significant increase of the local clustering coefficient—100-fold on
average, and at least 10-fold for most of the networks—with respect to the SBM,
while preserving the mixing structure. Finally, Fig. 2b shows the same trend for all
age-groups, and an especially high clustering for those age-groups, i.e., child and
young, having a greater average degree and a stronger internal cohesion, based on
the input mixing matrix P—the average degree of group i is proportional to

∑
j Pi j .

Degree Distribution Figure2a shows CCDF of the vertex degree ku , on a log-log
scale, for the entire network and separately for each age-group. The expected scale-
free heavy-tailed distribution, given by the latent hyperbolic geometry, is clearly
visible, with a similar trend for all groups. The average degree of the simulated
graphs is k̄sim = 10.003 ± 0.336, while only ∼ 0.1% of the network has ku > 200,
in line with the Dunbar’s number [19]. Again, the expected ranking of the age-groups
by their average degree is preserved.
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3 Combining Latent and Explicit Geometries

To analyze the possible combined effect of a latent and an explicit geometry, we
embed our synthetic population into a stylized physical territory represented as a
disk of radius 2.5Km, with each vertex position sampled uniformly at random in
the disk. We consider a parametric model in which the edge probability is a linear
combination of two terms:

puv(α) = αpHGBM
uv + (1 − α)pUSN

uv (3)

In (3), pHGBM
uv is the probability that edge (u, v) exists in the HGBMmodel defined

in Secion 2. pUSN
uv is instead the probability that the same edge (u, v) exists in a

simplified version of the Urban Social Network (USN) model proposed in [13]. In
short, pUSN

uv ∝ Pgugv
· d−1

uv , where gu is u’s age-group and duv is the euclidean distance
between u and v in the synthetic territory. A brief description of the USN model can
be found in Appendix 1.3, while we refer the interested reader to [13, 18] for further
details. With respect to the original USN model [13], here we ignore the households
and the vertex-intrinsic fitness.

As α varies in [0, 1], (3) shifts from a model only based on an explicit euclidean
geometry to a model only based on a latent hyperbolic geometry, with values
α ∈ (0, 1) guaranteeing that the probability that edge (u, v) exists depends on the
distance between u and v in both metric spaces. By generating and analyzing 20
networks for each α ∈ [0, 0.1, 0.2, . . . , 1], we experimentally evaluated how some
characteristics of the obtained network vary as a function of the parameter α. Ideally,
we look for a suitable α that provides a network where the frequency of social ties
decays as an inverse power of the geographic distance, as agreed by many empirical
studies [28, 37], and having high clustering and scale-free degree distribution thanks
to the contribution of the hyperbolic model [8].

Figure3 shows the distribution, over the 20 simulation runs, of the average local
clustering coefficient C loc

avg and of the global clustering coefficient C
glo, as a function

of α. In Fig. 4a, instead, we compare the CCDF of the vertex degree for different
values of α. Finally, Fig. 4b shows the CCDF of the geographical distance between
neighboring nodes, again for different values ofα.We see that in theUSNmodel (α =
0) both C loc

avg and C
glo are negligible and the degree distribution decays exponentially

fast. The topological properties of the network improve slowly for small α, but both
the clustering and the degree distribution become reasonably good for α ≥ 0.7. On
the other hand, the distribution of distances changes quite smoothly with α and even
fairly high values of α show a significant prevalence of “short” edges.
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(a) Average local clustering coeffi-
cient as a function of α.

(b) Global clustering coefficient as
a function of α.

Fig. 3 Distribution of the average local and global clustering coefficients over 20 simulations for
each α. Reasonably good clustering is obtained for α ≥ 0.7

(a) CCDF of the vertex degree for different
values of α ∈ [0, 1].

(b) CCDF of the distance between adja-
cent nodes, for different α ∈ [0, 1].

Fig. 4 CCDF of the vertex degree and of the geographic distance between adjacent nodes, for
different values of α ∈ [0, 1]. For α > 0.5, the degree distribution glides smoothly towards the
one given by the HGBM model. The distance distribution changes smoothly with α and, even for
α ≥ 0.7, it is still quite similar to the one of the USN model (i.e., to α = 0)

4 Discussion and Conclusions

Hyperbolic geometric graph models are gaining increasing attention, mostly due to
their ability to producenetworkswith high clustering coefficient and scale-free degree
distribution in a simple and elegantway. Combining different ingredients into a single
model to obtain suitable topological features is relatively common in the literature—
e.g., see [38], that blends Stochastic Block Models and Chung-Lu random graphs,
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or [39], that generalizes preferential attachment with a vertex-intrinsic fitness. Until
now, however, it was not clear whether a latent hyperbolic geometry could be used
to enrich data-driven social network models with desirable topological properties.
We made a first step in that direction, through the definition and the analysis of two
novel network models.

Our Hyperbolic Geometric BlockModel (HGBM) incorporates social groupmix-
ing patterns (e.g., age-based mixing inferred from survey data) into the framework of
hyperbolic geometric graphs. Through extensive simulations on a stylized population
of 10K individuals, we verified that the obtained networks respect the imposed age-
based social mixing patterns, and show a high clustering coefficient and a scale-free
heavy-tailed degree distribution, in line with empirical findings from social science.
To the best of our knowledge, the HGBM is the first block-structured extension of
hyperbolic geometric graphs. It is a static model that allows to generate a random
graph with high clustering coefficient and heavy-tailed degree distribution, while
preserving the input mixing structure. Moreover, it works regardless of the specific
configuration chosen for the underlying H

2 model.
We also defined a composite model whose edge probability is the linear combi-

nation between the edge probability of the HGBM and that of the USN model [13].
Among the many possible ways to combine a latent hyperbolic and an explicit
euclidean geometry, the proposed model has a flexible design and a simple inter-
pretation. A single parameter α controls to which extent the topology of the obtained
network depends on the latent and/or data-driven spatial density patterns. If two ver-
tices are very similar—in some sense encoded in the latent geometry—they have
a positive edge probability regardless of where they live (e.g., because they share
common habits or passions); on the other hand, if two vertices live very close to
each other, they have a positive edge probability regardless of their similarity (e.g.,
because they use the same neighborhood facilities). To simulate the model, we ran-
domly placed the vertices on a disk that represents a small urban area of diameter
2.5 km. Our simulations provide preliminary evidence that we can effectively get
the most of the two models: at least for some intermediate values of α ≈ 0.7, we
obtain a relatively high clustering coefficient, a scale-free and heavy-tailed degree
distribution, and the frequency of social ties that decays as an inverse power of the
geographic distance.

We believe that this work paves the way towards the incorporation of hyperbolic
latent spaces into data-driven network models, with the potential of producing more
realistic social networks while preserving data-driven and empirical features, such
as age-based and distance-based mixing. In the next future, we plan to refine our
models and to further investigate how the parameters of the underlying hyperbolic
graph impact on the properties of the obtained network.
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Appendix 1

1.1 H2 Hyperbolic Geometric Graph

The H
2 model [8, 34] is a hyperbolic geometric model with five parameters: the

number of nodes N , the temperature T , the target average degree k̄, the exponent γ
of the desired power-law degree distribution, and the curvature ζ of the latent space.
It works by assigning to each node a radial coordinate r and an angular position θ

according to the distributions

ρ(r) = a
sinh(ar)

cosh(aR) − 1
, (4)

ρ(θ) = U(0, 2π),

where, in (4), a = ζ

2 (γ − 1) and R is the radius of the hyperbolic disk, which depends
on N , T and k̄. The probability that any two vertices are connected by an edge is
a function of their hyperbolic distance x , with a functional form that depends on R
and T . In the special case T = 0 considered in this paper, the connection probability
reads

p(x) = 	(x − R), (5)

where 	(·) is the Heaviside step function.
For the generation of the hyperbolic graph we used the C++ library [34].

1.2 Data-Driven Social Mixing Matrix

Given a vertex set V , let us consider a partition of V into disjoint sets {Vi }1≤i≤n called
blocks. The total number of pairs of nodes u, v with u ∈ Vi and v ∈ Vj is

Mi j =
{ |Vi |(|Vi |−1)

2 , if i = j

|Vi ||Vj |, if i �= j
(6)

Let P be a n × n mixing matrix, i.e., Pi j is the frequency of edges between blocks Vi

and Vj . If we set the average degree of the whole graph G to k, the expected number
of edges Ki j linking blocks Vi and Vj is

Ki j = k̄
|V |
2

Pi j Mi j
∑

i≤ j Pi j Mi j
(7)

where |V | is the total number of nodes in the graph G.
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1.3 Urban Social Network

TheUrban Social Network [13] is amodel for generating a network of strong ties that
captures the social fabric of an urban region. Each node of the network represents
an agent u having coordinates in the given territory. The population is partitioned
into age-groups based on census data provided by the Italian Institute of Statistics
(ISTAT) (all details can be found in [13]). A social fitness score fu , drawn from an
adjustable distribution, accounts for agents having variable sociability.

For the purposes of this work, we only consider edges that represent acquaintance
ties, ignoring household links. Further, we consider a constant fitness. In this case,
the connection probability of the USN model is given by

pUSN
uv = k̄

|V |
2

Pi j Mi j
∑

i≤ j Pi j Mi j

d−1
uv∑

u′∈Vu ,v′∈Vv
d−1
u′v′

(8)

where: k̄ is the imposed average degree, |V | is the total number of nodes in the
network, Pi j and Mi j are defined as in Appendix 4, duv is the euclidean distance
between node u and node v, and Vu is the set of all vertices having the same age as
u. More details on the USN model can be found in [13].
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A Biased RandomWalk Scale-Free
Network Growth Model with Tunable
Clustering

Rajesh Vashishtha, Anurag Singh, and Hocine Cherifi

Abstract Complex networks appear naturally in many real-world situations. A
power law is generally a good fit for their degree distribution. The popular Barabasi-
Albert model (BA) combines growth and preferential attachment to model the emer-
gence of the power law. One builds a network by adding new nodes that preferentially
link to high-degree nodes in the network. One can also exploit random walks. In this
case, the network growth is determined by choosing parent vertices by sequential
random walks. The BA model’s main drawback is that the sample networks’ clus-
tering coefficient is low, while typical real-world networks exhibit a high clustering
coefficient. Indeed, nodes tend to form highly connected groups in real-world net-
works, particularly social networks. In this paper, we introduce a Biased Random
Walk model with two parameters allowing us to tune the degree distribution expo-
nent and the clustering coefficient of the sample networks. This efficient algorithm
relies on local information to generate more realistic networks reproducing known
real-world network properties.

Keywords Network model · Complex network · Clustering coefficient · Biaised
random walk · Barabasi Albert model

1 Introduction

In complex networks, nodes follow connectivity properties and the system’s topology
[10, 13, 17, 19, 20, 26, 27]. Connectivity property is simply “who connects to who”.
TheWorldWideWeb (WWW) [3], biological networks [1, 38], and the Internet [37]
are typical examples of complex networks. In theWWWnetwork, nodes represent the
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web pages, and edges are the hyperlinks. On the internet, The nodes are computers,
and the edges represent the physical andwireless connection. In a biological network,
nodes are neurons, and there is an edge between two nodes if a synapse connects the
two neurons. The primary purpose of studying complex networks is to characterize
the network’s properties and develop the correct model for generating real-world
networks. The ubiquitous properties of real-world networks are: (1) Small World.
Indeed, generally, one needs to visit a few numbers of hops to go from one node
to another node as compared to the total number of nodes present in the networks.
(2) High clustering coefficient. Indeed, they usually contain a high proportion of
triangles. (3) Scale-free degree distribution. Certainly, real-world networks are non-
homogeneous. They include a small proportion of high degree nodes and a vastmajor-
ity of small degree nodes.Hence, a power law is a goodfit for their degree distribution.

In recent decades, numerous works have been conducted to better understand
real-world network structure [4, 5, 9, 12, 16, 30, 34]. Network modeling is still a
very active research field [23, 24, 32]. Network modeling is done with an emphasis
on the structural properties of the network, e.g., diameter, degree distribution, clus-
tering coefficient, etc. These properties are ubiquitous in many real-world networks,
e.g., social networks [35], technological networks, information networks, and so on.
Generally, these networks follow the power-law degree distribution p(d) ∼ d−γ .
The value of γ lies within the range, 2 ≤ γ ≤ 3. Where d denotes the degree of the
node. Based on the preferential attachment mechanism, the Barabasi Albert Model
(BA) explains real-world network formation. Several models have been developed
for generating static real-world networks in recent years. In the famous Erdos-Renyi
(ER) model, the number of nodes is fixed, and edges are formed randomly. Note
that this model does not respect the high clustering property typical of small-world
networks. property (i.e., clustering coefficient) of the real network.

Watts and Strogatz also proposed a static model for generating real-world net-
works [36]. We consider a network static when the number of nodes is fixed [22].
This model is unsuitable for satisfying the nodes’ power-law degree distribution.
In this model, the main result is that the diameter of real-world networks increases
slowly with increasing network size (number of nodes). They also show that the
clustering coefficient of their small-world network model is high compared with the
ER model. Some models are used to generate growing network [2]. The BA model
by Barabasi and Albert is the most famous example of a growing network model.

In this model, preferential attachment defines the rule for attaching a new node
to the existing network. A new node in the networks tends to link with high-degree
nodes rather than being attracted by low-degree nodes. In the BA model, one needs
global information about the network connectivity to attach a new node [25]. In
contrast, in real-world networks, e.g., social networks or WWW networks, one does
not assume such knowledge when adding a new node to the network. Real-world
network formationmay not use global information to attach a newnode to the existing
one.

The main idea proposed in this paper is to generate a real-world network that does
not use global information. We suggest using biased random walk [?] to develop
the network model. With the local knowledge, the generated networks satisfy all the
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characteristic properties of complex networks. The biased random walk provides a
way to understand the network structure, using the local information of the network
[11]. Note that one can use the biased random walk to define structural centrality
[6] of the networks. One achieves the desired goal using a random walk, where the
transition probability is proportional to the degree of node reached through a random
edge [15].

Networks may represent many complex systems, nodes (V ), and their intercon-
nection by edges (E). A graph can represent each social network, and edges represent
peoples’ relationships. How strongly they are connected is represented by the weight
matrix. The graph is a collection of three tuples (V, E,W ). Where V is the set of
vertices, E is the set of edges, W is the weight matrix, W (i, j) = wi j if an edge
exists between i and j and 0 otherwise. For an unweighted graph, there is no weight
matrix. Instead of a weight matrix, one uses the adjacency matrix.

The various classical models (WS, BA, ER) used to analyze real networks’ prop-
erties are not suited to many real-world applications. For example, in the WS model,
the network follows the Poisson degree distribution. However, many real networks
exhibit a power-law degree distribution. The BAmodel fulfills the power-law degree
distribution but uses global information about the network in its growing process.
The main drawback is that one needs to estimate the preferential attachment prob-
ability of each node before linking a new node to the existing network. Indeed, by
adding a new node to the existing network, one needs to know the degree of all the
existing nodes in the network. In other words, knowledge about the network needs to
be global to perform the growing process. Furthermore, the BA model’s clustering
coefficient of the generated real networks is almost zero.

We develop a model to generate real-world networks based on a biased random
walk in the proposed work. It uses the existing seed network’s local information (i.e.,
information about the vertex and its first-order neighbors). One can also control the
clustering coefficient of the generated network.

Section2 briefly presents the existing generating models with their limitations.
Section3 describes the biased random walk and the proposed model. Section4
reports its experimental evaluation. Section5 concludes thework and discusses future
research directions.

2 Literature Review

Network modeling is essential to understanding the property of real-world networks.
Alexei et al. [32] proposed a model for growing the network based on a local rule.
According to them, one can rely on local information to control the network’s various
properties (degree distribution, clustering, hierarchy) [7]. They propose three models
for networkmodeling: (1) the RandomWalkmodel (RWM), (2) the Recursive search
model (RSM), and (3) Connecting the nearest-neighbors model (CNNM). The RWM
model answer two questions (1) How to add a new node in the network? (2) How to
add an edge to the existing network? Initially, the network contains only one node
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as a seed network. To add a new node to the existing network, a random node is
selected in the existing network and connected to the new node. Therefore, an edge
is created between the randomly selected node and a new node. One can also connect
a new node to one of the neighbors of a randomly selected node with probability
pe. The limitation of the RWM model is that a new node can only be connected to
a random node and its neighbor. Recursive Search Model (RSM) overcomes these
limitation. TheRSMmodel uses a recursive approach for connecting newnodes in the
existing network. Now, a new node can connect with any randomly selected node’s
neighbors. Hence, it affects a larger fraction of the network. In the CNNM model,
two non-adjacent nodes are connected if they share at least one common neighbor.
Poster et al. [33] show that the clustering coefficient and average neighbor degree
depend on the vertex degree. Alexei et al. [32] concluded that the local clustering
coefficient of a vertex is inversely proportioning to the vertex degree. Saramaki et
al. [28] proposed a model based on the random walk. They found that the random
walk can generate a similar network as the BA model (BA model at γ=3). They
also conclude that a random walk is sufficient to achieve the preferential attachment,
which Albert Barabasi previously suggests. They focused on the power-law degree
distribution and ignored other network properties. Toivonen et al. [31] proposed a
model for a social network. Their work aims to capture the features of a real-world
social network. The model contains two growth processes, (1) random attachment
and (2) implicit preferential attachment. This model has an initial seed network with
n0 vertices. Choose some vertices randomly, called the initial vertex. The neighbor of
these initial vertex is known as secondary contacts. A new node is connected to some
initial and secondary contacts. This process repeats until the desired size network is
reached. The limitation of this model is that one cannot control triangle formulation.
Indeed, every new node is connected to a randomly selected node and its neighbor.

Serrano et al. [29] proposed a model for generating real-world networks. This
model has three different parts for generating the real-world networks, (1) assignment
of a degree to each node and assignment of several triangles to each degree class
according to the expected distributions, (2) closure of triangles, and (3) closure of the
remaining free stubs. The limitations of this model are that (1) the number of nodes,
(2) the degree distribution, and (3) the clustering coefficient of generated networks
are fixed.

Remember that some other models use global information for generating real-
world networks. WS, BA, and ER models are the most popular examples of models
that use global information.

3 Biased RandomWalk Model

We propose a model for generating a real-world network using local information,
i.e., information about the vertex and its neighbors. It uses a biased random walk
for attaching a new node to the existing network. Using local information gener-
ates the network quicker than models relying on the global network information.
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We show that the resultant network follows the power-law distribution. The main
advantage of the proposed solution is that it helps control the network’s clustering
coefficient.

3.1 Random Walk (RW)

A randomwalk is simply based on aMarkov-chain model. It is a finite Markov chain
that is time-reversible [18]. Time-reversible Markov chain can be viewed as random
walks on an undirected graph [18]. A random walker jumps from node to node, and
each node represents the state of the Markov process [8]. In a random walk, a walker
randomly selects a node and jumps to its neighbors according to a transition matrix.

The random walk is defined with the help of single step transition matrix, Tm
[11]. Where, element of Tm , pi j is the probability to jump from node i to node j .
Transition probability is defined as pi j = ai j

ai
, where, ai = ∑n

j ai j . Basically,
∑

j ai j
is the degree of node i .

3.2 Biased Random Walk (BRW)

Initially, a walker is placed at any vertex randomly. It canmove to one of its neighbors
with some probability p. But in the case of a biased random walk, we add one
parameter β controlling the biasedness of the walker [14]. In a biased random walk,
initially, a walker is placed at vertex x . It jumps to the neighbor of x , i.e., y with
some probability pxy defined as follows:

pxy = dβ
x

∑dx
x=1 d

β
x

(1)

where, dx is the degree of node x . β is the biased parameter used to manage the
biasedness of the random walker.

The value of β lies between − ∞ to + ∞. If the value of β is very low, i.e.,
approaching − ∞, then the random walker visits dangling ends more often. Alter-
natively, if the value of the β is very high, i.e., approaching + ∞, then the random
walker is stuck at the central part or hub of the network.

3.3 Algorithm of the Biased Random Walk Model

Initially, the network contains a fixed number of nodes as seed nodes. New nodes are
added one at a time in the network with a fixed number of edges. A new node will
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form a certain number of connections or edgeswith the existing nodes of the network.
Biased random walk helps to mark the nodes in the existing network to which new
node will get connected. There are other essential network properties to remember
during network formation. One of the properties is the clustering coefficient. The
clustering coefficient is managed by controlling triangles formation in the network
(transitive connections).

The biased random walk path length controls the Triangle formulation, which
eventually controls the clustering coefficient. If the path length of a random walker
is greater than or equal to 2, i.e., l ≥ 2, no triangle is added to the network. In
contrast, if the path length is equal to 1, i.e., l = 1, then adding a new node with
m edges results in the formation of m − 1 triangles in the network. Therefore, a
parameter α manages the mixing of the path length in a biased random walk. α helps
in controlling the transitive connections in the network. 0 ≤ α ≤ 1. The following
algorithm 1 describes the procedure for generating a network using BRW. In a biased
random walk, another parameter β helps control the network’s power-law degree
distribution.

Algorithm 1 Algorithm for generating real world networks through BRW
1: Set parameters: (i) n0: number of initial nodes, (ii) 0 ≤ α ≤ 1, (iii) target network size n0 + n,

(iv) the number of edges m that a newly node is connected with that edges to the existing nodes.
The value of m is less or equal to number of nodes in the seed network i.e., (m ≤ n0).

2: Input: Initial seed network with n0 nodes. 0 ≤ α ≤ 1. The number of nodes are to be added in
the seed network n. The number of edges that are uses to add a new node.

3: Output: Real networks with contain n0 + n nodes. The degree distribution of nodes is follow
power law.

4: Initialization {Mark nodes} ← φ, Current_node ← φ, Assign the prob_value of each
existing nodes using binomial distribution i.e., p(n, k).

5: while Until n new node are added to the network. do
6: Select a node vs randomly.
7: From node vs start a l ≥ 1 step biased random walk and reach a end node ve and mark that

node and add that node into the mark nodes set i.e., {mark nodes} ← {mark nodes} + {ve}
8: while size{mark nodes} ≤ m do
9: Set Current_node ← ve
10: if Prob_value(Current_node) ≤ α then make a 1-step BRW reach a vertex ve and

mark ve node. Add that ve to the mark node set i.e., {mark nodes} ← {mark nodes} + {ve}
11: else make a 2-step BRW and mark that node ve. Add that mark node to the mark node

set i.e., {mark nodes} ← {mark nodes} + {ve}.
12: end if
13: end while
14: Add new node to all the nodes that are present in the mark node set i.e., {mark nodes}.
15: end while

The inputs of Algorithm 1 are the seed network, the number of links of the new
node, and the number of nodes to add to the existing network. If the value of α is
near zero, then, most of the time, the random walker performs a 2-step walk, and
there is no new triangle in the network. Consequently, the clustering coefficient of
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the sample network is low. In contrast, if α is near 1, the clustering coefficient is very
high because the walker often performs a single-step walk adding more triangles to
the network.

4 Experimental Results

This section reports the results of the simulations performedwith the proposedmodel.
First, we illustrate the behavior of the biased randomwalk on a toy network example.
Then we investigate the degree distribution and the clustering coefficient of the
generated sample networks.

4.1 Biased Random Walk

The biasedness of the random walker depends on the value of the parameter β.
Figure1 present a toy example network used to illustrate the walker’s biasedness for
visiting it. Table1 reports the number of visits of each node by a random walker in
the toy example network for various values of the biased parameter β. If the value of
β is very low, then the random walker visits dangling ends more often. In contrast,
if the value of β is very high, then the random walker is stuck in the central part or
in the hub node of the network.

4.2 Degree Distribution Analysis

To analyze the degree distribution of the generated network, we use a star network
with five nodes as seeds (n0 = 5). Four thousand new nodes are added at timestamp
to the seed network. Each new node is added with m = 2 edges. Figure2a shows
the generated network degree distribution estimate. The maximum degree of the
generated network is 77. There is a unique node with a maximum degree value.

Fig. 1 Toy example network
for investigating the BRW
behavior. It contains a
triangle (7, 10, 9) linked to a
Hub (3) and low degree
nodes (1, 2, 4, 6, 8)
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Table 1 Number of visits of the nodes by the Biased random walk for the toy network example of
Fig. 1

β = 100 β = 10 β = 0 β = −10 β = −100

1 0 1 403 2517 0

2 0 0 424 2483 0

3 1698 1666 1745 5001 0

4 0 32 916 0 0

5 1617 1680 1405 0 0

6 0 0 495 0 0

7 3302 3330 1861 0 5000

8 1 0 493 0 5001

9 0 27 920 0 0

10 3383 3265 1339 0 0
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Fig. 2 Power law degree distribution of the generated networks

The minimum degree of nodes is two, and the number of nodes with minimum
degree nodes is 1388, as shown in Fig. 2a. Starting with the same seed network, we
add the same number of nodes one at a time with m = 3 edges. Once again, the
generated network degree distribution estimate follows a power law as illustrated in
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Fig. 2b. In this case, the maximum degree is 93, and the frequency of the maximum
degree is 1. The minimum degree of generated network is three, and the number
of minimum degree nodes is 1753. Rather than starting with a star, the original
network used as a seed is a complete network of 5 nodes (n0 = 5). We add 4000
new nodes at timestamp to the seed network. Each new node hasm = 2 edges. Once
again, the generated network follows the power law shown in Fig. 2c. The maximum
degree of this network is 115, and the frequency of the maximum degree is 1. Its
minimum degree is two, and the number of minimum degree nodes is 1398. Now to
the same seed network, we add the same number of nodes one at a time with m = 3
edges. Again, the generated network follows the power law as shown in Fig. 2d. The
maximumdegree of the generated network is 117, and the frequency of themaximum
degree is 1. The minimum degree is three, and the number of minimum degree nodes
is 1705. The power law exponent estimation ranges between 2 and 3. As desired,
these values are typical of real-world power-law degree distributions.

4.3 Clustering Coefficient Analysis

Clustering Coefficient The clustering coefficient is a measure of the nodes ability
to form clusters. The local clustering coefficient of a node v is defined as follows:

CCl (v) = 2Nv

Kv (Kv − 1)
(2)

where, Nv the number of links between neighbours of v. Kv the number of neighbours
of node v.

Global Clustering Coefficient The Global clustering coefficient is the measure
of a number of triad closures in graph relative to connected triples [21]. Three nodes
form connected triple if we can reach from one node to other two nodes. Three
nodes form a triad closure if each pair of nodes has a direct link. Global clustering
coefficient is the ratio of the number of triad closures to the connected triples. The
clustering coefficient of a graph is denoted by CCg(G).

CCg(G) = 3TC

CT
(3)

where, TC is the total number of triad closure in the graph.CT is the total number of
connected triples. One can control the clustering coefficient of the generated network
by tuning α. When the values of α are small, i.e., approaching 0, the clustering
coefficient of the sample network is small. It grows almost linearly with α until it
reaches an asymptotic value, as shown in Fig. 3.

In Fig. 3, the initial seed network is the star of 5 nodes, and we add 4000 nodes.
Each new node has two edges. Figure3 reports the evolution of the clustering coeffi-
cient versus the value of α. When the value of α is zero, the clustering coefficient is
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Fig. 3 Clustering coefficient versus α

small, and the variance of the clustering coefficient is high. Increasing alpha increases
the clustering coefficient’s value. The value of the variance also decreases. In Fig. 3a,
the maximum value of clustering coefficient is 0.58 at α = 1 and the minimum value
of the clustering coefficient is 0.01 at α = 0. Now in the same seed network, the
same number of nodes are added one at a time with m = 3 edge. In Fig. 3b, the
maximum value of clustering coefficient is 0.62 at α = 1, and the minimum value of
clustering coefficient is 0.02 at α = 0. When the initial seed network is a complete
network of 5 nodes, and one adds 4000 nodes with two edges, the maximum value
of the clustering coefficient is 0.63 at alpha 1 (see Fig. 3c). The minimum value of
the clustering coefficient is 0.03. In the same situation, if one adds nodes one at a
time with m = 3 edges, the maximum value of the clustering coefficient is 0.65 at
alpha 1, and the minimum value of the clustering coefficient is 0.03 (see Fig. 3d).

5 Conclusions

Real-world networks are characterized by a power-law degree distribution and a high
clustering coefficient.We propose amodel based on a biased randomwalk to generate
networks with these typical properties. The random walk has the advantage of using
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local information about the seed network rather than global information. Therefore,
it is more efficient than popular methods such as the BA model. Experiments show
that the generated real-world networks follow the power law degree distribution.
Additionally, one can control the clustering coefficient of the sample networks. The
value of the clustering coefficient Increases almost linearly with the tuning parameter
α value until it reaches an asymptotic value. In future work, we plan to investigate
controlling the average diameter of the network with a biased random walk and
exploit this property to design a community detection algorithm.
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The Distance Backbone of Directed
Networks

Felipe Xavier Costa, Rion Brattig Correia, and Luis M. Rocha

Abstract In weighted graphs the shortest path between two nodes is often reached
through an indirect path, out of all possible connections, leading to structural redun-
dancies which play key roles in the dynamics and evolution of complex networks.
We have previously developed a parameter-free, algebraically-principled method-
ology to uncover such redundancy and reveal the distance backbone of weighted
graphs, which has been shown to be important in transmission dynamics, inference
of important paths, and quantifying the robustness of networks. However, themethod
was developed for undirected graphs. Here we expand this methodology to weighted
directed graphs and study the redundancy and robustness found in nine networks
ranging from social, biomedical, and technical systems. We found that similarly to
undirected graphs, directed graphs in general also contain a large amount of redun-
dancy, as measured by the size of their (directed) distance backbone. Our methodol-
ogy adds an additional tool to the principled sparsification of complex networks and
the measure of their robustness.
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1 Introduction

Networks are a canonical method to model complex multivariate interactions and
have been proven useful in the study of a variety of problems, such as social inter-
action and human mobility to predicting epidemic spreading [6, 16]. and modeling
biochemical networks to predict the onset of diseases [8, 12]. Thismodeling approach
allows for a shift from the traditional scientific focus on the (reductionist) study of
things (e.g., animals or proteins), to the study of system-wide interactions among
these things, such as friendships among animals, or bonding among proteins. In net-
work science, typically, these multivariate interactions are represented as edges that
connect variables as nodes in a graph. In addition, networks built to represent real-
world complex systems often denote variable interactionwith a weight that is propor-
tional to the strength of interaction between nodes, such as a proximity (similarity)
or a distance (dissimilarity). For instance, edge weights can represent the probability
of interaction between genes [8], similarity between concepts in a knowledge space
[10], or a measure of how much time two individuals spent together in close vicinity
[9]. In its simplest form, edgeweights are non-directed,meaning interactions between
nodes are symmetric. This is especially the case when distance and shortest paths
between nodes are relevant for analysis—e.g. inferring the likelihood that a person
infects another in a population under epidemic spread—because distance measures
are by default symmetric (in addition to being non-negative and anti-reflexive [26]).

Redundancy is considered a fundamental aspect in the evolution of complex sys-
tems [7].Distinct aspects of the phenomenon have been shown to greatly contribute to
our understanding of network dynamics, controllability, and robustness [13, 14, 24].
In particular, we have shown that most networks where edges represent distance (or
dissimilarity) contain large amounts of topological redundancy in computing shortest
paths, which can be identified through our algebraically-principled and parameter-
free distance backbone [24]. This means our method differs from other backbones by
requiring no tunning parameter, null model comparisons, orMonte Carlo approxima-
tions. However, even though distance is typically considered to be symmetric [11],
many real-world complex systems are best modeled by directed, weighted graphs.
Indeed, asymmetric interactions have been to shown to be important in a variety of
domains, ranging from unreciprocated friendships [2], food-webs and host-parasite
ecological networks [15], to designing smarter urban traffic and cities [1, 22].

Here, ourmain contribution is the extensionof the distancebackbonemethodology
to directed weighted graphs. Specifically, we build upon the concepts of transitive
and distance closure for undirected weighted graphs [26] to identify a subgraph
whose edges do not break a generalized triangle inequality and which are sufficient
to compute all shortest directed paths. In other words, we obtain a directed distance
backbone that preserves the distribution of shortest paths in directedweighted graphs.
This in turn allows us to quantify both the structural redundancy of such networks
and their robustness to random attacks. Real-world examples also show preliminary
results that having directed edges yields a larger distance backbone than it does for
undirected graphs.
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2 Closures in Complex Networks

In social networks, indirect associations are often exemplified as “the friend of my
friend is also my friend”. These indirect associations can be described in a graph
G(X), defined on the set of nodes X , in terms of the transitive and distance closures.
Transitive closures assume edge weights to measure a similarity while distance clo-
sures assume weights to be a dissimilarity between nodes [26]. The formalism for
closures in weighted undirected networks has been introduced in Simas et al. [24].
We revise this mathematical construction in this section and, in Sect. 3, we relax
the symmetry condition previously considered while showing that the formalism of
closures in complex networks is applicable to both undirected and directed networks.

2.1 Transitive Closure

The strength of interactions between the nodes xi ∈ X can be measured by a prox-
imity graph, P(X). This is a reflexive network with edges weights pi j ∈ [0, 1], a
continuous range of values, with pii = 1. Transitivity is computed via the composi-
tion of generalized, weighted logical operators. These are extensions of the binary
logic operators, derived from probabilistic metric spaces and fuzzy logic, and are
called triangular norms and conorms [17, 24, 26].

A triangular norm (t-norm) is a generalized logical conjunction given by the opera-
tion∧: [0, 1] × [0, 1] → [0, 1]. It satisfies the properties of commutativity (p ∧ q =
q ∧ p), associativity (p ∧ (q ∧ w) = (p ∧ q) ∧ w), monotonicity (p ∧ q ≤ w ∧ v

implies p ≤ w and q ≤ v ), and having 1 as its identity element (p ∧ 1 = p). Sim-
ilarly, a triangular conorm (t-conorm) is a generalized logical disjunction given by
the operation∨ : [0, 1] × [0, 1] → [0, 1]. It is also commutative, associative, mono-
tonic, but has 0 as its identity element (p ∨ 0 = p). Combining them gives us the
compositions of P with itself as

Pη = P ◦ Pη−1 ⇐⇒ p(η)

i j = ∨
k

(
pik ∧ p(η−1)

k j

)
, (1)

considering η ∈ Z ≥ 2 and P1 = P . This leads to the transitive closure of P(X)

given by

PT (X) =
κ⋃

η=1

Pη ⇐⇒ pTi j = pi j ∨ p(2)
k j ∨ · · · ∨ p(κ−1)

i j ∨ p(κ)
i j . (2)

For general t-norms and t-conorms the closure is reached as κ → ∞. But with
proximity graphs, as long as ∧ ≡ min, the closure PT (X) converges for a finite
κ no larger than the graph diameter [17, 26]. The adjacency matrix Pη(X) measures
the proximity for paths of size η, while the transitive closure PT (X) accounts for the
strongest proximity for paths up to size κ .
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We say that a proximity graph is transitive with respect to the algebraic structure
([0, 1],∨,∧) if for every weighted edge pi j in the graph we have:

pi j ≥ ∨
k
(pik ∧ pkj ) (3)

for any node xk ∈ X . By construction, all edges of PT (X) obey this generalized
transitivity constraint, while only a subset of edges of P(X) typically do. In the
context of the generalized transitivity criterion given by Eq.3, fully transitive graphs
denote a similarity multivariate relation, whereas graphs that break transitivity for at
least one edge denote a proximity relation [17].

For connected, undirected graphs, this leads to a closure where pTi j > 0 for all xi
and x j in X , i.e. a complete or fully connected graph. Unfortunately, this does not
generalize for directed graphs, where there can be nodes that only have outwards
connections, and therefore can never be reached from other nodes.

2.2 Distance Closure

In network science, we often need to compute shortest paths on graphs to infer the
(direct and indirect) influence of variables on one another. This requires casting the
network as a distance (or dissimilarity) graphs, D(X) on the set of node variables
X . These graphs have non-negative weights, i.e. adjacency matrix elements di j ∈
[0,∞), and are anti-reflexive: dii = 0. They are also isomorphic to proximity graphs
[26] via a strictly monotonic decreasing map ϕ: [0, 1] → [0,∞) constrained by:

f
k
{g(ϕ(pik), ϕ(pkj ))} = ϕ(∨

k
(pik ∧ pkj )) ∀xi , x j , xk ∈ X, (4)

where f and g are isomorphic operations to ∧ and ∨, respectively, in the sense that
they are associative, commutative, monotonic, and having identity elements given
by ϕ(0) → ∞ for f and ϕ(1) = 0 for g. Due to this construction, g and f are named
triangular distance norm (td-norm) and conorm (td-conorm), respectively [26].

Though an infinite number of maps satisfy the isomorphism, the simplest, which
we use here unless otherwise noted, is the familiar distance function:

di j = ϕ(pi j ) = 1

pi j
− 1, (5)

that easily converts between proximity P(X) and distance D(X) graphs. In addition
to being non-negative and anti-reflexive, distance measures are typically symmetri-
cal, and if transitive, are also known as metric [11].

Equation (4) allows us to study transitivity of distance graphs by establishing an
isomorphism with transitive closures of proximity graphs. Thus, the distance closure
DT (X) is obtained via compositions of f and g:
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d(η)

i j = f
k
g

(
dik, d

(η−1)
k j

)
& dT

i j = f
(
di j , d

(2)
i j , . . . , d(κ−1)

i j , d(κ)
i j

)
, (6)

where, because of the isomorphism, κ is the same as for the transitive closure (Eq.2).
The adjacency matrix Dη(X) measures the shortest distance for paths including η

connections, while the distance closure DT (X) accounts for the shortest path length
up to κ links. For distance graphs, the transitivity criterion is defined by each algebraic
structure ([0,∞), f, g):

di j ≤ f
k
g(dik, dkj ) ∀xi , x j , xk ∈ X. (7)

The distance closure DT (X) is transitive by construction, but generally only a subset
of edges D(X) obey Eq. (7).

2.3 Shortest-Path, Metric and Ultrametric Closures

The general transitive and distance closures of Sects. 2.1 and 2.2 yield a number of
well-known cases used in network science [24, 26]. When f ≡ min (or ∨ ≡ max
in proximity graphs), we have the large class of shortest-path closures, DT,g(X),
for any distance function g (or ∧ in proximity graphs), as the closure selects the
minimum path with length given by g. This leads to a generalized triangle inequality
[24] as a transitivity criterion:

di j ≤ g(dik, dkj ) ∀xi , x j , xk ∈ X. (8)

For instance, when g ≡ +, we obtain the familiarmetric closure, DT,m(X), where
the length of the path is obtained by summing the distance edge weights. Similarly,
when g ≡ max, we instead obtain the ultrametric closure, DT,u , where the length of
the path is obtained by the maximum distance weight in path (the weakest link).

Many other shortest-path distance closures—and thus different path length mea-
sures and transitivity criteria—can be usefully employed in network science [26].
Here we exemplify the approach with these twowell-known cases because themetric
closure is the most common way to compute shortest path on weighted graphs, and
the ultra-metric closure is the lower bound of distance closures [24].

2.4 Distance Backbone Subgraph

The distance backbone Bg(X) of a distance graph D(X) is the invariant subgraph
under a shortest-path distance closure DT,g(X) with f ≡ min and some g [24]. It is
sufficient to compute all shortest paths in D(X) given a path length measure g. The



140 F. X. Costa et al.

distance backbone is invariant because its edges are the ones that obey the generalized
triangle inequality (Eq. 8) and are thus called triangular edges. That is, the distance
backbone is defined by edges that have the same weight in the shortest-path closure:

bgi j =
{
di j , if di j = dT,g

i j

∞, if di j > dT,g
i j

, ∀xi , x j ∈ X, (9)

where dT,g
i j are the adjacency matrix weights of the distance closure graph DT,g(X).

The edges that break the generalized triangle inequality are called semi-triangular
and are not on the backbone, i.e. bgi j = ∞. If (and only if) an edge between xi and x j

is semi-triangular (i.e., not present on the backbone), there exists a shorter indirect
path (i.e., which is present on the backbone) connecting them via some xk [24].

Themetric (g ≡ +) and ultrametric (g ≡ max) backbones of distance graph D(X)

are denoted by Bm(X) and Bu(X), respectively. Similarly, edges on these backbones
are called metric and ultrametric, while those off are known as semi-metric and
semi-ultrametric, respectively [24].

3 Directed Distance Backbone

Here we extend the concept of distance backbone by relaxing the symmetry con-
straint of distance functions, thus considering distance graphs D(X)where di j �= d ji ,
or directed distance graphs. As summarized above, distance backbones exist when
enforcing a generalized triangle inequality (Eq. 8) as a transitive closure criterion.
This is the same as computing all shortest paths of D(X) using a measure of path
length determined by g.

Computation of the all pairs shortest path problem (APSP) for undirectedweighted
graphs with g ≡ + is straightforward using the Dijkstra algorithm [5] (though it can
also be computed with the distance product directly via Eqs. (2) and (6) [26, 28]).
Since all shortest-path distance closures are based on setting f ≡ min in Eqs. (6)
and (7), they can also be computed as a APSP problem by adjusting the chosen
algorithm with a different path length measure for each g used, such as g ≡ max for
the ultrametric backbone [24].

We also know that the standard triangle inequality, Eq. (8) with g ≡ +, is valid
for directed distances [18]. This way, the APSP of directed distance graphs based on
this transitivity criterion can also be computed via the Dijkstra algorithm [5] or the
distance product [28]. Indeed, the methodology of closures in complex networks is
found to be applicable to both undirected and directed weighted graphs. The latter
is shown in the real world examples of Sect. 4.
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3.1 Redundancy and Robustness

The fraction of edges in the backbone

τ g(X) = |Bg(X)|
|D(X)| = |{di j : di j = dT,g

i j }|
|{di j }| ∀xi ,x j∈X :i �= j (10)

measures the proportion of triangular (or topologically invariant) edges, while its
complement σ(X) = 1 − τ(X) quantifies the proportion of semi-triangular edges.
The latter measures the structural redundancy of complex networks given a specific
transitivity criterion (Eq.8). That is, the edges that are redundant for shortest-path
computation given the path lengthmeasure g chosen. Note that due to the introducing
of directionality, now τ g must be computed for all entries of the adjacency matrix,
and not just for the upper or lower diagonal as previously done for the undirected
case [24].

If a network has a small backbone (small τ g), most of its edges are semi-triangular
and do not affect the shortest path distribution. This way, random attacks would most
likely not interfere with the backbone itself, a robustness1 that can be inferred from
the measure of topological redundancy σ g(X).

4 Experimental Analysis

Now we investigate the backbone of nine real-world networks pertaining to three
distinct domains: biomedical, social, and man-made technological systems. Here
we discuss in more detail the backbones of a giraffe social network [3], the U.S
airport transportation system [23, 24], and the bike-sharing system of the City of
London [21]. Additional details for this and the remaining networks can be found in
the accompanying digital supplemental material. Descriptive data for each directed
weighted graph, and the size of their respective metric and ultrametric backbone are
shown in Table 1.

4.1 Giraffe Socialization

Evidence suggests that giraffes have complex social structures, with females having
social preferences and suggestive that adult giraffes have friendships beyond only
mother-child interactions [3]. We analyze a network of social interaction of captive
giraffes at the San Diego Zoo’s Wild Animal Park. The original observational study
included 6 adult female Rothschild’s giraffe (Giraffa camelopardalis) housed in

1 A finer characterization of robustness in terms of edge properties [25] in the case of directed
graphs is left for future work.

https://casci.binghamton.edu/publications/CN22-dbdn.php
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Table 1 Topological invariance of weighted directed graphs modeling real-world systems

Network |X | |di �= j | δ τm τ u τ u/τm

Biomedical Co-morbidity
risk

95 8,930 1.0 47.44 2.17 4.57

Drug
interaction

412 2,966 1.75e-2 59.00 40.49 68.63

Species-
Species
inter.

10,578 18,529 1.66e-4 99.47 99.46 99.99

Social Giraffe
socialization

6 30 1.0 76.67 30.00 39.13

Telephone calls 322 609 5.89e-3 91.63 84.89 92.64

Technological Bicycle trips
(min. 7)

725 53,118 0.1 59.53 2.75 4.62

U.S. Airports
2006

1,075 18,906 1.64e-2 27.59 18.99 68.83

Water pipes 1,836 2,351 6.98e-4 99.62 95.83 96.20

The number of nodes |X | and edges |di �= j | are used to compute the network density δ. The relative
size of the metric (τm ) and ultrametric (τ u ) backbones are presented as percentages

a single herd. In the study, they were observed 5 mornings a week for a total of
300d, and the behavior of each subject was recorded for a 20-min focal sample in
random order. Data on nearest neighbor and proximity (measured at 2 neck lengths)
were collected at 1-min intervals for the focal subject. Affiliative social interactions
involving the focal subject were recorded and included: approach, necking, head rub,
bumping, social exam, muzzle, co-feed, and sentinel (details in [3]). In total, 600h
of observation time and 2,748 affiliative interactions were observed.

In the social network directed edge weights represent the frequency in which
giraffe xi interacts with giraffe x j as a measure of similarity pi j (see Fig. 1a). This
is a small network containing only 6 nodes and fully connected with 30 directed
edges (density δ = 1.0). The metric backbone consists of 23 edges (τm = 76.7%)
and the ultrametric of only 9 (τ u = 30%) edges. Interestingly, the metric backbone
completely removes the edge between giraffes Yanahmah and Chokolati, both the
oldest giraffes in the herd. In the metric backbone the mother-daughter relationships
are also kept between Yanahman-Ykeke and Chokolati-Chinde. In other words, and
as previously noted for human contact networks [9], the backbone preserves the
hierarchical structure of social networks.

4.2 London Bike-Sharing Trips

The SARS-Cov-2 pandemic caused unprecedented shifts in urban mobility with
bike-share systems having a significant increased in demand in several major capitals
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Fig. 1 Giraffe socialization network in the San Diego Zoo [3]. a Directed distance graph; bmetric
backbone subgraph; and c ultrametric backbone subgraph. The original distance graph contains 30
edges, while the metric backbone contains 23 (76.7%) and the ultrametric backbone only 9 (30%)
edges. Plotted with Gephi [4]

[19, 27].We analyze the City of London’s bike-sharing system, available through the
Transport for London Open Data API and previously analyzed in Munoz-Mendez et
al. [21]. Data contains records for each unique bicycle and their rental transactions,
including timestamped information on which bike-sharing station it was picked up
and then returned in a network of 770 stations through the city. A month’s worth
of bike-sharing transactions is analyzed, from June to July 2014. Transactions that
started or ended in a repair station, as well as stations with too few transactions,
were discarded. This means we only included stations that accounted for 75% of all
transactions (i.e., a minimum of 7 monthly trips per station), which in turn resulted
in 726 bike-sharing stations and 948,339 bike-sharing transactions.

In this network a node represents a bike-sharing station, xi , and edges areweighted
by the average trip duration between stations as a directed distance, di j . This net-
work has 725 nodes and 53,118 nodes (density δ = 0.1). The metric and ultrametric
backbones consist of τm = 59.53% and τ u = 2.75%, respectively, of the directed
network. Along with the co-morbidity risk network, the bike sharing network has
one of the largest differences in the sizes of the metric to the ultrametric backbone
(τ u/τm = 4.6%). This means that a directed attack on the metric backbone will have
a small impact on ultrametric backbone and thus in the distribution of shortest paths
[24]. In other words, the network of the bike-sharing system for the City of London
is very robust to directed attacks, translated to the possible closure of bike-sharing
stations or street changes that cyclists use (Fig. 2).

4.3 U.S. Airport Transportation

This network is the domestic nonstop segment of the U.S. airport transportation sys-
tem for the year 2006, retrieved from http://www.transtats.bts.gov. Each node is an
airport, and edgeweights are the normalized number of passengers traveling between
two airport-nodes. This networkwas analyzed in Simas et al. [24] and is a reconstruc-

https://api.tfl.gov.uk/
http://www.transtats.bts.gov
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Fig. 2 Domestic nonstop segment of the U.S. airport transportation system [23]. (a) Undirected
distance graph with its respective (b) metric, and (c) ultrametric backbone subgraphs [24]. (d)
Directed distance graph with its respective (e) metric, and (f) ultrametric backbone subgraphs.
The original directed (undirected) distance graph contains 18,906 (11,973) edges. From those,
27.59% (16.14%) are in the metric backbone, and 18.99% (8.98%) in the ultrametric backbone.
The difference in number of edges between the undirected and directed representation comes from
the fact that 5040 (26.65%) of all flights are only in one direction. Network plotted with Gephi [4]

tion of the one used by Serrano et al. [23]. Differently from previous work, however,
here we consider directionality in the flow of passengers as 5,040 (approximately
27%) of all flights are only in one direction In other words, flight routes may include
stops in multiple airports from initial to final destination, and not necessarily contain
a direct return to the initial departure airport. Airports in theAmerican Samoa, Guam,
Northern Marianas, and Trust Territories of the Pacific Islands have been removed
from the analysis. This is a large but relatively sparse network with 1075 nodes and
18,906 edges (density δ =1.64e−2). The relative size of the metric and ultrametric
backbone are τm = 27.59% and τ u = 18.99%, respectively, (see Table 1).
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5 Discussion

Directionality and strength of interactions are relevant properties of real complex
networks. The structure of such networks can be reduced in a principled manner,
while preserving the entire distribution of shortest paths (for a given length measure
g), with the computation of the distance backbone.

In the nine networks we analyzed, we found that the size of the metric back-
bone ranges from 27.59 to 99.6%—three networks have metric backbones above
92% of the distance graph. Ultrametric backbones range from 2.17 to 99.5%, with
two networks having ultrametric backbones above 95.8%. In contrast, for undirected
graphs studied in Simas et al. [24] the metric (ultrametric) backbones range from
1.75 to 83.59% (0.2–78.45%), which shows a substantial increase in the size of back-
bones due to directionality. A direct comparison can be made for the U.S. airports
network. Its undirected representation has a relative size of the metric and ultramet-
ric backbone of τm = 16.14% and τ u = 8.98%, respectively [24]. Here, we found
that the relative size of the metric and ultrametric backbone are τm = 27.59% and
τ u = 18.99%, respectively (see Table 1). This increase is likely due to the fact that
the closure for directed graphs does not lead to a complete graph—unlike what hap-
pens to connected undirected graphs. In other words, having many connections in
only one direction (approximately 27% in this case) can make them necessary for
shortest paths irrespective of the edge weight, which emphasized the importance of
directionality when studying real-world networks. The large difference between the
size of backbones in directed and undirected graphs warrants future studies of the
effect of directionality vis a vis various topological parameters.

The metric and ultrametric backbones of the networks we analyzed (Table 1)
exemplify networks which are robust to random edge removal, as is the case of the
comorbidity risk and bicycle trips networks, for having a smaller backbone (small
τ g). On the other hand, the species-species interaction network and water pipes
networks have a large τ g and little redundancy. That is, the backbone is most of the
network, suggesting that they mostly contain necessary interaction information, or
were perhaps optimized tominimize the cost of implementing redundant edges, being
susceptible to random edge removal or failure. In the case of the water pipe network,
little redundancy is expected because its distanceweights represent an actual physical
distance between nodes, which must conform to a naturally metric topology. Thus,
it is an expected result that its metric backbone is almost the entire distance graph
(99.6%). This highlights the fact that semi-metric (and semi-triangular) behavior
can only occur in high-dimensional spaces [24]. In contrast, the metric backbone
of the passenger traffic between U.S. airports is only 27.59%, making its shortest
path distribution very robust to random attacks, as the odds of randomly removing
semi-metric edges are much higher than removing metric ones that contribute to the
backbone. The precise impact in the shortest path distribution for those networks
requires the computation of edge distortion [24, 25] and is left for future work.
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6 Conclusion

We introduced directionality to study shortest-path redundancy in weighted directed
graphs via a novel directed distance backbone subgraph, the computation of which
we showed to be feasible. This consideration brings improvement over other spar-
sification methods that considers only undirected networks [20, 24] or that treat
incoming and outgoing edges independently [23]. We focused on the metric (where
g ≡ +) and the ultrametric (where g ≡ max) backbones, but the methodology is
applicable for any length measure g, allowing other backbones to be considered in
the future.

We applied the methodology to study redundancy of a variety of real-world
weighted directed graphs modeling biomedical, social, and technological systems.
The size of the metric (ultrametric) backbone ranges from 27 to 99% (2–99%), but
is typically much smaller than the original distance graph. However, the size of the
directed backbones observed are larger than the undirected backbones previously
reported, emphasizing the difference in shortest-path robustness for the two different
classes of graphs. The comparison using the same underlying U.S. airports network
is particularly illuminating. We found that both the metric and the ultrametric back-
bone for the directed graph are larger than the ones for the undirected version—71%
and 112%, respectively. Thus, asymmetric airline seat capacity between cities (27%
of all connections exist only in one direction) has a large impact on shortest paths
between them. This exemplifies the importance of our contribution in the study of
distance backbones for directed networks, which will lead to a study with additional
networks in the future.

Themethodology further allows us to infer the robustness of shortest path distribu-
tions to random attack, via the relative size of the metric and ultrametric backbones.
This can aid the design of more resilient social and technological systems or the iden-
tification of key evolutionary properties in biomedical systems.We are confident that
the study of directed distance backbones can help the understanding and control of
a variety of complex multivariate systems where both strength and directionality of
interactions is key.
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Structure of Core-Periphery
Communities

Junwei Su and Peter Marbach

Abstract It has been experimentally shown that communities in social networks
tend to have a core-periphery topology.However, there is still a limited understanding
of the precise structure of core-periphery communities in social networks including
the connectivity structure and interaction rates between agents. In this paper, we use
a game-theoretic approach to derive a more precise characterization of the structure
of core-periphery communities.

Keywords Core-Periphery communities · Social networks · Game-Theoretic
model

1 Introduction

Experimental results have shown that communities in social networks tend to have a
core-periphery topology consisting of two types of agents, core agents and periphery
agents, that differ in their objectives for participating in the community [12, 13]. The
objective of periphery agents is to obtain content that is of interest to them.As a result,
periphery agents follow other agents in the community to obtain the content that is
of most interest to them. The objective of the core agents is to attract followers,
and attention, from the periphery agents. To achieve their objective, core agents
aggregate/collect content from the community and make it available to the periphery
agents [3, 4, 9]. These two different objectives lead to a community structure where
the core agents follow periphery agents in the community in order to collect content,
and the periphery agents connect with the core agents and other periphery agents in
order to obtain the content they are interested in [12, 13].

In this paper, we provide a mathematical model that allows us to derive these
structural properties of core-periphery communities in social networks in a formal
manner. The results of our analysis provide a precise characterization of the connec-
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tivity structure, and interactions rates, of core-periphery communities. This allows us
to use the structural properties to formally design algorithms for social networks such
as (core-periphery) community detection algorithms, and content recommendation
algorithms based on the users’ interaction with a content item.

For our analysis, we use a game-theoretic frameworkwherewe assume that agents
in the communitymake the decision onwhich other agents to interactwith in amanner
that maximizes their own objective. The proofs of the results presented in paper are
provided in [11].

2 Related Work

Experimental studies have shown that communities in social networks tend to have
a core-periphery topology with two types of agents, core agents and periphery
agents [12, 13], where the core agents collect (aggregate) content from the com-
munity, and make it available to the periphery agents. While experimental studies
show that this structure exists, they do not provide a (precise) characterization of the
connectivity structure, as well as the interaction rates between the different agents.
The goal of this paper is to provide such a characterization. An interesting result from
the experimental studies is that core-periphery communities in online networks tend
to have a small set of core agents, typically in the order of 1-6 core agents [12, 13].

Theoretical results on the structural properties of communities were obtained in
the context of network formation games[1, 2, 5, 7, 8, 10]. Jackson andWolinsky pre-
sented one of the first, andmost influential, analyses of network formation games [8].
For their analysis, Jackson andWolinsky assume that a) agents in the network obtain
a benefit from having paths to other agents and b) pay a cost for each direct con-
nection (link) that they have with another agent. The benefit that an agent obtains
from another agent is discounted by a factor δd , where d is the length of the path
(distance) between the two agents and δ, 0 < δ < 1, is a discount factor. Assuming
bi-directional links, Jackson andWolinsky show that the star topology is a Nash equi-
librium for the game that they consider. The paper by Jackson and Wolinsky makes
several important contributions. First, it shows that a game-theoretic model can be
used to derive the structural properties of communities. Second, the star-topology of
the Nash equilibrium suggests that a core-periphery topology might indeed naturally
emerge as the community topology in social networks.

Bala and Goyal use in [1] the model of Jackson and Wolinsky, except that they
consider unidirectional links instead of bidirectional links. For this model, Bala and
Goyal show that the star topology again emerges as a Nash equilibrium, and side
payments from the periphery agents to the core agent are required for the star topology
to emerge as a Nash equilibrium.

A limitation of the analysis by Jackson and Wolinsky is they assume a homoge-
neous set of periphery agents. Hegde et al. consider in [6] a more general model that
allows for a heterogeneous population of periphery agents where periphery agents
differ in the benefit they obtain from other agents. To model the heterogeneous pop-
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ulation, Hedge et al. embed agents in a Euclidean space. Agents that are close (in the
Euclidean distance) to a given agent provide a higher benefit to the agent compared
with agents that are further away. Assuming that all agents have the same number
of connections, Hegde et al. consider the game where agents choose connections to
other agents in order to maximize their own benefit. For this model, Hedge et al.
show that there exists a Nash equilibrium. However, due to the complexity of the
model, Hedge et al. were not able to derive and characterize the structural properties
of the Nash equilibrium.

In summary, existing mathematical models are either too simple (as it is the case
for [1, 8]) and lead to a core-periphery community structure that does not accurately
reflect the community structures observed in real-life social networks; or they are
too complex and can not be used to derive the structural properties of core-periphery
communities (as it is the case for [6]). The goal of this paper is to propose a model
that is simple enough to characterize the structural properties of a community, and yet
is complex enough to lead to results that accurately reflect the community structures
that are observed in real-life social networks and can be used to design algorithms
for social networks.

3 Core-Periphery Community

We use the following model for our analysis.

Core-Periphery Community C : A core-periphery community consists of a set of
core agents and periphery agents. To simplify the notation and analysis, we assume
that there exists a single core agent yc. This assumption is also motivated by the
experimental results which show that core-periphery communities tend to have a
small set of core agents, typically in the order of 1-6 core agents [12, 13]. The results
that we obtain for a single core agent can be extended to the case of multiple core
agents. Using this assumption, a core-periphery communityC is then given by a core
agent yc and a set Cp of periphery agents, i.e. we have that C = Cp ∪ {yc}.
Periphery Agents Cp: For our analysis, we assume that periphery agents both pro-
duce and consume content. In addition, we assume a heterogeneous set of periphery
agents, where agents differ in the content (topics) that they are interested in. To
model this situation we use a similar approach as in [6], and assume a “topic space”
that specifies how closely two topics are related to each other. The topic space that
we consider is given by the interval IC = [I0 − LC , I0 + LC ] ⊂ R. Each periphery
agent is then characterized by its main interest y ∈ IC , which is the topic that the
agent is most interested in. For content production, we assume that each agent pro-
duces content on the topic that is their main interest. For the content assumption, we
use the following model. The probability that a periphery agent with main interest y
is interested in a content produced by an agent with main interest x is given by

p(x |y) = f (||x − y||), x, y ∈ IC , (1)
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where f : [0,∞) �→ [0, 1] is a decreasing concave function. Note that this definition
implies that periphery agents aremore interested in content that is produced by agents
whose main interest is close to their own main interest.

For our analysis we assume that the (main interests of the) periphery agents
are"uniformly" distributed in the interval IC , with equal distance δ between two
agents. That is, we assume that the set of periphery agents Cl consists of K agents
with main interests yk , k = 1, ..., K , given by

Cp = {y1, ..., yK } ⊂ IC = [I0 − LC , I0 + LC ],

with y1 = I0 − LC and yk+1 = yk + δ, k = 1, ..., K − 1, where δ = 2LC
K−1 . In the

following, we identify periphery agents by their main interest y.

4 Utility of Periphery Agents

For our analysis, we assume that periphery agents can obtain content from three
different sources: a) directly from other periphery agents by following these agents,
b) indirectly from the core agent, where the content provided by the core agent is the
content that the core agent obtains by following periphery agents in the community,
and c) by following content platforms outside the community.1

We use the following notation to characterize the following rates between the
agents, and the following rates of periphery agents to content platforms outside the
community.

Let μc(y) be the rate with which core agent yc follows periphery agent y ∈ Cp,
and letμc = (μc(y))y∈Cp be following rate vector of the core agent yc to all periphery
agents y ∈ Cp.

Similarly, let μ(y) = (μ(z|y))z∈C\{y} be the following rate vector of periphery
agent y ∈ Cp to all other agents z ∈ C\{y} in the community. Furthermore, let
λ(y) be the rate with which periphery agent y follows content platforms outside
the community, and let μp(y) = (μ(y), λ(y)) be the overall following rate vector of
periphery agent y ∈ Cp.

Finally, let�p = (μp(y))y∈Cp be the following rate vectors of all periphery agents.
We next define the utilities that periphery agents obtain from following a) other

periphery agents directly, b) the core agent, and c) content platforms outside the
community.

Utility from Following a Periphery Agent Directly: We first define the utility that
a periphery agent y obtains by following another periphery agent z with rate μ(z|y).
Suppose that agent y receives a reward of value 1 for each content item that is of
interest to agent y. Furthermore, suppose that each content item that agent y receives

1 For example, users on Twitter will generally also get content from additional content platforms
such as other news or other social media sites.
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incurs a processing (reading) cost c, 0 < c < 1. If agent y receives content from
agent z with delay d(z|y), then the (expected) utility rate of agent y is given by

UC,p(z|y) = rp
[
p(z|y)e−αd(z|y) − c

]
I (μ(z|y)), (2)

where p(z|y) is the probability that a content item of agent z is of interest to agent y,
I (μ(z|y)) is the indicator function of whether agent y follows agent z and is equal to
1 if μ(z|y) > 0, rp is the rate at which z produces content, and α is a given constant
that captures how sensitive the content produced by agent z is towards delay. This
utility function captures the intuition that the longer the delay d(z|y) is, the lower is
the utility of the received content.

For our analysis we define the delay d(z|y) by

d(z|y) = 1

μ(z|y) ,

where μ(z|y) is the rate with which agent y follows agent z. Note that this definition
implies that the higher the rate with which agent y follows agent z, the lower the
delay d(z|y) will be.
Utility from Following the Core Agent: We next define the utility that a periphery
agent y ∈ Cp receives from content of periphery agent z ∈ Cp, when the content is
received through the core agent yc. For this, suppose that the core agent yc follows
periphery agent z with rate μc(z), and periphery agent y follows the core agent yc
with rate μ(yc|y). The total delay with which agent y receives content from agent z
through yc is given by

d(z|yc) + d(yc|y) = 1

μc(z)
+ 1

μ(yc|y) .

Using this result, the utility rate of periphery agent y for getting the content of agent
z via the core agent yc is given by

UC,c(z|y) = rp
[
p(z|y)e−α

(
1

μc (z) + 1
μ(yc |y)

)
− c

]
I (μc(z))I (μ(yc|y)). (3)

Utility from Following other Content Platforms: Finally we define the utility that
a periphery agent y ∈ Cp obtains by getting content from other platforms. For this,
we assume that the overall rate (over all content platforms) at which new content
items are generated by the other platforms is equal to r0 > 0, and that each content
item is of interest to agent y with probability B0. If periphery agent y follows other
content platforms with rate λ(y), then the corresponding utility rate is given by

U0(y) = r0
[
B0e

− α
λ(y) − c

]
I (λ(y)). (4)
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5 Agents’ Decisions and Interactions

In this section,wemodel the interaction among agents in a core-periphery community
where we assume that each agent decides on its following rates in order to maximize
its own objective function.

5.1 Core Agent’s Decision Problem

Recall from Sect. 1 that the objective of the core agent yc is to attract attention from
periphery agents by aggregating/collecting content that is of most interest to the
periphery agents [3, 4, 9]. We formulate the resulting decision problem of the core
agent as an optimization problem as follows.

Recall that �p is the rate allocation vector over the all periphery agents y ∈ Cp,
and μc = (μc(y))y∈Cp is the rate allocation of the core agent yc. Furthermore recall
Eq. (3) that defines the utility UC,c(z|y) that periphery agent y obtains from getting
content of agent z through the core agent yc. For a given rate allocation �p of the
periphery agents, the decision problem of the core agent yc is given by the following
optimization problem OPT (μc|�p),

maximize
μc

∑
y∈Cp

∑
z∈Cp\{y}

UC,c(z|y)

subject to
∑
y∈Cp

μc(y) ≤ Mc,

μc(y) ≥ 0, y ∈ Cp,

(5)

where Mc is a constraint on the total rate that the core agent can allocate to follow
periphery agents y ∈ Cp. This constraint reflects that the core agent yc has limited
resources (time) to follow periphery agents in the community. Note that the opti-
mization problem OPT (μc|�p) captures the goal of the core agent: the core agent
yc wants to use its limited resources to attract attention from the periphery agents by
aggregating content that is of most interest to the periphery agents.

5.2 Periphery Agents’ Decision Problem

Recall that the objective of a periphery agent y is to obtain as "much content that is
of interest as possible". A periphery agent can achieve this goal by following other
periphery agents directly, by getting content through the core agent yc, and by getting
content from other content platforms. We formulate the resulting decision problem
of a periphery agent as follows.
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Let μc = (μc(y))y∈Cp be a given rate allocation of the core agent yc, and let

Up(μp(y)|μc, y) =
∑

z∈Cp\{y}
UC,c(z|y) +

∑
z∈Cp\{y}

UC,p(z|y) +U0(y) (6)

be the total utility rate that periphery agent y obtains under its rate allocation μp(y)
and the allocation μc of the core agent. For a given rate allocation μc of the the
core agent, the decision problem of the periphery agent y is given by the following
optimization problem OPT (μp(y)|μc, y),

maximize
μp(y)

Up(μp(y)|μc, y)

subject to μ(yc|y) + λ(y) +
∑

z∈Cp\{y}
μ(z|y) ≤ Mp,

μ(z|y), λ(y), μ(yc|y) ≥ 0, z ∈ Cp\{y},

(7)

where Mp > 0 is a constraint on the total rate that periphery agent y can allocate. To
simplify the notation and analysis, we assume that the rate budget Mp is the same
for all periphery agents.

5.3 Nash Equilibrium

The optimal solution of the maximization problem OPT (μc|�p) of the core agent
depends on the given rate allocation �p of the periphery agents. Similarly, the opti-
mal solution of the maximization problem OPT (μp(y)|μc, y) of periphery agent
y depends on the given rate allocation μc of the core agent. This coupling creates a
strategic interaction (game) between the agents in the community. A Nash equilib-
rium for the resulting game is given as follows.

Let � = (μc,�p) be the rate allocation vector that characterizes the rate alloca-
tion μc of the core agent, and the rate allocation vector �p = (μp(y))y∈Cp over all
periphery agents.

Definition 1 An allocation �∗ = (μ∗
c ,�

∗
p) is a Nash equilibrium if we have that

μ∗
c = argmax

μc≥0
OPT (μc|�∗

p) and μ∗
p(y) = argmax

μp(y)≥0
OPT (μp(y)|μ∗

c , y).

Definition 1 states that under a Nash equilibrium �∗ = (μ∗
c ,�

∗
p) no agent is able to

increase the value of their objective function by unilaterally changing their allocation.
In Sect. 5.4 we show that there exists a unique Nash equilibrium, and in Sect. 6 we
characterize the structural properties of the Nash equilibrium.
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5.4 Existence of Unique Nash Equilibrium

For our analysis we make the following assumptions.

Assumption 1 For all periphery agents y ∈ Cp we have that

∑
z∈Cp\{y}

[p(z|y) − c] > 0 and
∑

z∈Cp\{y}
[p(y|z) − c] > 0.

Assumption 1 states that if the content of agent y is received by all other agents
z ∈ Cp\{y} without delay, then the resulting total utility is positive. Similarly, if
agent y receives content from all other agents z ∈ Cp\{y} without delay, then the
resulting total utility y is positive.

In addition we make the following assumption for the processing cost c.

Assumption 2 We have that c > e−1.

Assumption 2 implies that if agent y follows agent z with rate μ(z|y) < α, then the
utility from content received through agent z will be negative. As a result we have
that if agent y follows agent z with a positive rate μ(z|y) > 0, then we have that
μ(z|y) > α. We then obtain the following results.

Proposition 1 There exists a unique Nash equilibrium �∗ = (μ∗
c ,�

∗
p).

6 Structural Properties of Core-Periphery Communities

In this section, we derive the structural properties of a core-periphery community at
the Nash equilibrium �∗ = (μ∗

c ,�
∗
p).

6.1 Condition for Core-Periphery Communities to Emerge

We first characterize how the rate budget Mc of the core agent, and the rate budgets
Mp of the periphery agents, impact the structural properties of the Nash equilibrium.
We have the following result.

Proposition 2 There exists constants mc and mp such that if for the rate budget Mc

of the core agent and the rate budget Mp of the periphery agents we have that

Mc > mc and Mp > mp,

then the following is true for the resulting Nash equilibrium �∗ = (μ∗
c ,�

∗
p). For all

periphery agents y ∈ Cp we have that
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μ∗
c(y) > 0 and μ∗(yc|y) > 0.

Proposition 2 states that if the rate budgets Mc and Mp are high enough then all
periphery agents follow the core agent, and the core agent will follow all periphery
agents.

Proposition 2 provides conditions for a core-periphery community to emerge.
In a core-periphery community, the core agent collects content from (almost) all
periphery agents and makes it available to the periphery agents. In addition, in a
core-periphery community (almost) all periphery agents follow the core agent in
order to obtain content from the community. Proposition 2 states that in order for
this structure to emerge, the agents have to be sufficiently interested in getting content
and allocated a sufficient amount of time (a sufficiently large rate budget) to sharing
online content.

6.2 Connectivity Between Periphery Agents

We next study the structural properties of how periphery agents follow each other in
a core-periphery community. We have the following result.

Proposition 3 For a Nash equilibrium�∗ = (μ∗
c ,�

∗
p) as given in Proposition 2 the

following is true. For each periphery agent y ∈ Cp there exists a threshold t (y) > 0
such that I (μ∗(z|y)) = 1, if, and only if, p(z|y) > t (y).

Note that the value of p(z|y) is higher for agents z that are close to agent y. As a
result, Proposition 3 states that each periphery agent y follows other periphery agents
z that are not too far away from y. Combining this result with Propositions 2 and
3 states that core-periphery communities have the structural property that periphery
agents follow the core agent, as well as other periphery agents that produce content
close to the agents’ main interest. This result provides insight into how content is
propagated within a core-periphery community. In particular, the result implies that
content propagates in the following two manners: it spreads (globally) through the
core agent within the community, as well as locally through the connection between
periphery agents that have similar interests.

6.3 Following Rates

Next, we characterize the following rates between the core agent and periphery
agents. We obtain the following result.

Proposition 4 For a Nash equilibrium�∗ = (μ∗
c ,�

∗
p) as given in Proposition 2 the

following is true. If for two periphery agents y, y′ ∈ Cp we have

||y − I0|| < ||y′ − I0||,
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then we have that

μ∗(yc|y) > μ∗(yc|y′) and μ∗
c(y) > μ∗

c(y
′).

Proposition 4 states that periphery agents that are close to the center I0 of the com-
munity have higher interaction rates compared with a periphery agents further away
from I0. More precisely, both the rateμ∗(yc|y)with which periphery agent y follows
the core agent yc, and the rate μ∗

c(y) with which the core agent follows periphery
agent y, is higher for an agent y closer to the center of the community I0.

Proposition 4 provides a “ranking” or “ordering” of periphery agents y ∈ Cp

based on how close they are to the center I0 of the community. While it is impossible
to directly measure how close a periphery agent is with respect to the center of the
community, it is possible to measure/estimate the interaction rates of the agent with
the core agent. These measurements/estimates can be used in return to infer how
close an agent is to the center of the community.

7 Conclusions

We characterized the structural properties of core-periphery communities using a
game-theoretic framework. Assuming that agents allocate a sufficient rate (as given
by Proposition 2), we obtain the following results:

(a) Connectivity of Core Agents: Core agents follow all periphery agents (Propo-
sition 2). This confirms the results obtained from experimental studies that core
agents serve as a “hub” for the community by collecting (aggregating) content
and making it available to the other agents in the community [12, 13].

(b) Connectivity of Periphery Agents: Periphery agents have two types of con-
nections. First, they all follow the core agents (Proposition 2). Second, they also
follow other periphery agents whose main interest closely matches their inter-
est (Proposition 3). This result implies that the structure of a core-periphery is
not given by a star structure, but has a more complex structure with connec-
tions between periphery agents. In addition, this result provides insight into how
content propagates within a community (see discussion after Proposition 3).

(c) Interaction Rates: Periphery agents whose main interest is closer to the center
of the community I0 have higher interaction rates with the core agent compared
with agents further away from I0 (Proposition 4). One possible application of
this result is to rank periphery agents with respect to how close their main interest
is to the community center I0 (see discussion after Proposition 4).

The obtained results provide a mathematical characterization of the structure of
core-periphery communities, that can be used to design algorithms. We are cur-
rently using these structural properties to derive community detection algorithms
that require only local information, and community-based content recommendation
algorithms. The obtained allow us to derive these algorithms in a formal manner, and
provide formal performance guarantees.
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Outliers in the ABCD Random Graph
Model with Community Structure
(ABCD+o)

Bogumił Kamiński, Paweł Prałat, and François Théberge

Abstract The Artificial Benchmark for Community Detection graph (ABCD) is a
random graph model with community structure and power-law distribution for both
degrees and community sizes. The model generates graphs with similar properties
as the well-known LFR one, and its main parameter ξ can be tuned to mimic its
counterpart in the LFR model, the mixing parameter μ. In this paper, we extend the
ABCD model to include potential outliers. We perform some exploratory experi-
ments on both the new ABCD+o model as well as a real-world network to show that
outliers posses some desired, distinguishable properties.

Keywords ABCD model · Outliers · Community detection

1 Introduction

One of the most important features of real-world networks is their community struc-
ture, as it reveals the internal organization of nodes [7]. In social networks communi-
ties may represent groups by interest, in citation networks they correspond to related
papers, in theWeb communities are formed by pages on related topics, etc. Being able
to identify communities in a network could help us to exploit this networkmore effec-
tively. Grouping like-minded users or similar-looking items together is important for
a wide range of applications including recommendation systems, anomaly or outlier
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detection, fraud detection, rumour or fake news detection, etc. [10]. For more discus-
sion around various aspects of mining complex networks see, for example, [14, 19].

It was identified as one of the major current challenges in detecting communities
that most of the existing algorithms treat all nodes the same way, that is, they try to
assign them to precisely one community. On the other hand, many complex networks
(regardless whether their nodes correspond to, say, users of some social media or
movies on Netflix) consist of nodes that are more active participants of their own
communities while others are not [17]. As a result, there is a need to detect outlier
nodes that are not part of any of the communities. Moreover, some communities
might be overlapping which is reflected by some of the nodes belonging to a few
communities via fuzzy membership. Some recent algorithms (see, for example [2, 8]
or NI-Louvain [22]) try to incorporate these notions but more research is expected
to be pursued in the near future. For more on anomalies and outliers in graphs see,
for example, the survey [1].

Another well-known challenge recognized by many researchers is that there are
very few datasets with ground-truth identified and labelled. As a result, there is
need for synthetic random graph models with community structure that resemble
real-world networks in order to benchmark and tune clustering algorithms that are
unsupervised by nature. The LFR (Lancichinetti, Fortunato, Radicchi) model [15,
16] generates networks with communities and at the same time it allows for the
heterogeneity in the distributions of both node degrees and of community sizes. It
became a standard and extensively used method for generating artificial networks
with (non-overlapping) community structure.

Unfortunately, the situation is much more challenging if one needs a synthetic
model with outliers. There seems to be no standard model that one may use. For
example, in [8] the authors adjust the classical Stochastic Block Model to simultane-
ously take into account the community structure and outliers by introducing different
probabilities of connection between inliers and pairs involving outliers. To validate
algorithms tested in [2], the authors start with a synthetic LFR network or a real-
world one and then randomly perturb edges around some randomly selected nodes
in order to create artificial outliers. LFR itself [15] has some basic functionality to
create overlapping clusters but not outliers.

In this paper, we revisit the Artificial Benchmark for Community Detection
(ABCD graph) [13] that was recently introduced and implemented,1 including a
fast implementation that uses multiple threads (ABCDe) [11].2 Undirected variant
of LFR and ABCD produce graphs with comparable properties but ABCD/ABCDe
is faster than LFR and can be easily tuned to allow the user to make a smooth transi-
tion between the two extremes: pure (disjoint) communities and random graph with
no community structure. Moreover, it is easier to analyze theoretically. For example,
various theoretical asymptotic properties of the ABCD model are analyzed in [12],
including themodularity function that is, arguably, themost important graph property
of networks in the context of community detection.

1 https://github.com/bkamins/ABCDGraphGenerator.jl/.
2 https://github.com/tolcz/ABCDeGraphGenerator.jl/.

https://github.com/bkamins/ABCDGraphGenerator.jl/
https://github.com/tolcz/ABCDeGraphGenerator.jl/
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We extend the original ABCD model to include potential outliers (see Sect. 2).
We examine one of the few real-world networks with identified outliers, the College
Football Graph (see Sect. 3.1), and identify a few distinctive properties of outliers
that are present in this network. We then perform a few simulations with our new
ABCD+o model to show that its outliers posses similar properties (see Sects. 3.2
and 3.3). Future directions are briefly mentioned in Sect. 4.

2 Adjusting the ABCD Model to Include Outliers

We start this section with a brief description of the ABCD model taken from [11];
details can be found in [13] or in [12]. We then carefully explain the adjustments
needed to incorporate the existence of outliers.

2.1 The Original Model

As in LFR model [15, 16], for a given number of nodes n, we start by generating a
power law distribution both for the degrees and community sizes. Those are governed
by the power law exponent parameters (γ, β).We also provide additional information
to themodel, again as it is done inLFR, namely, the average and themaximumdegree,
and the range for the community sizes. The user may alternatively provide a specific
degree distribution and/or community sizes.

For each community, we generate a random community subgraph on the nodes
from a given community using either the configuration model [4] (see [3, 23, 24]
for related models and results) which preserves the exact degree distribution, or the
Chung-Lu model [5] which preserves the expected degree distribution. On top of it,
we independently generate a background random graph on all the nodes. Everything
is tuned properly so that the degree distribution of the union of all graphs follows the
desired degree distribution (only in expectation in the case of the Chung-Lu variant).
The mixing parameter ξ guides the proportion of edges which are generated via the
background graph. In particular, in the two extreme cases, when ξ = 1 the graph has
no community structure while if ξ = 0, then we get disjoint communities. In order
to generate simple graphs, we may have to do some re-sampling or edge re-wiring,
which are described in [13].

During this process, larger communities will additionally get some more internal
edges due to the background graph. As argued in [13], this “global” variant of the
model is more natural and so we recommend it. However, in order to provide a
variant where the expected proportion of internal edges is exactly the same for every
community (as it is done in LFR), we also provide a “local” variant of ABCD in
which the mixing parameter ξ is automatically adjusted for every community.

Two examples of ABCD graphs on n = 100 nodes are presented in Fig. 1. Degree
distribution was generated with power law exponent γ = 2.5 with minimum and
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Fig. 1 Two examples of ABCD graphs with low level of noise (ξ = 0.2, left) and high level of
noise (ξ = 0.4, right)

maximumvalues 5 and 15, respectively. Community sizeswere generatedwith power
law exponent β = 1.5 with minimum and maximum values 20 and 40, respectively;
communities are shown in different colours. The global variant and the configuration
model was used to generate the graphs. The left plot has the mixing parameter set
ξ = 0.2while the “noisier” graph on the right plot has the parameter fixed to ξ = 0.4.

2.2 Adjusting the Model to Include Outliers

The adjustedmodel,ABCD+o (ABCDwith outliers), will have additional parameter
s0 which is equal to the number of outliers. Because of a well structured and flexible
design of the original model, adjusting it to include outliers is simple. One trivial
adjustment needed is in the way the distribution of community sizes is generated.
Slightly more delicate modification is needed in the process of assigning nodes to
communities. However, before that the algorithm needs to select suitable nodes for
outliers. Below, we independently discuss these issues and explain how they are
generalized.

The ABCD+o extension is defined only for the default settings of the original
ABCD algorithm, namely, for the global version of the algorithm, configuration
model used to generate community and background graphs, and accepts only param-
eter ξ as the level of noise.

Distribution of Community Sizes

As in the original ABCD model, the degree distribution is generated randomly fol-
lowing the (truncated) power-law distribution P(γ, δ,�) with exponent γ ∈ R+,
minimum value δ, and maximum value � ≥ δ. No adjustment is needed.

Let β ∈ R+, s, S ∈ N such that δ < s ≤ S. Community sizes in the original
ABCD model are generated randomly following the (truncated) power-law distri-
bution P(β, s, S) with exponent β, minimum value s, and maximum value S. It is
recommended to use β ∈ (1, 2), some relatively small value of s such as 100 or
500, and S larger than �. The condition for S is needed to make sure large degree
nodes have large enough communities to be assigned to. Similarly, the assumption
that s ≥ δ + 1 is required to guarantee that small communities are not too small and
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so that they can accommodate small degree nodes. These conditions are needed to
make sure that generating a simple graph with the desired properties is feasible.

Communities in the original model are generated with this distribution as long as
the sum of their sizes is less than n, the desired number of nodes. After drawing a
predetermined number of samples from this distribution, the algorithm is selecting
one sequence with the sum as close to n as possible and carefully adjusts it, if needed.

Since there are s0 outliers in the new model, the community sizes (si , i ∈ [�] :=
{1, . . . , �}) are generated as in the original model but this time with the condition
that the sum of their sizes is equal to n − s0 (instead of n).

Assigning Nodes to Outliers

Parameter ξ ∈ (0, 1) reflects the amount of noise in the network. It controls the
fraction of edges that are between communities. Indeed, in the originalABCDmodel,
asymptotically (but not exactly) 1 − ξ fraction of edges end up within one of the
communities. Each node in the original model has its degree wi split into two parts:
community degree yi and background degree zi (wi = yi + zi ). The goal is to get
yi ≈ (1 − ξ)wi and zi ≈ ξwi . However, both yi and zi have to be non-negative
integers and for each community C ⊆ V ,

∑
i∈C yi has to be even. Fortunately, this

can be easily achieved by an appropriate random rounding of (1 − ξ)wi to the nearest
integers.

In the generalized ABCD+o model, each non-outlier has its degree wi split into
yi and zi , as in the original model. These nodes will be assigned into one community.
On the other hand, outliers will not get assigned to any community and all of their
neighbours will be in the background graph and so they will be “sprinkled” across
the whole graph. As a result, their degrees will satisfy wi = zi . Note that the only
potential problem with outliers that might occur is when ξ is close to zero. At the
extreme case when ξ = 0, only outliers have non-zero degree in the background
graph. In order to make sure that there exists a simple graph that satisfies the required
degree distribution, in such extreme situations all outliers must have degrees smaller
than s0. The model needs to be prepared for such potential problems but in practice
(when the number of nodes n is large, the number of outliers s0 is relatively small,
and the level of noise ξ is not zero) there are plenty of nodes with non-zero degree
in the background graph and so there is no restriction for outliers.

To prepare for a potential problem we do the following. Once the degree of each
nodewi is split into yi and zi , we get a lower bound for the number of nodes that will
have non-zero degree in the background graph, namely, L := |{v ∈ V : zi ≥ 1}|.
Note that L̄ = E[L] = ∑

i∈V min(1, ξwi ) since each node with ξwi ≥ 1 satisfies
zi ≥ 1 and each node with ξwi < 1 has zi = 1 with probability ξwi and zi = 0
otherwise. Moreover, since by default outliers have zi = wi ≥ 1, there will be at
least s0 vertices of positive degree in the background graph. Assuming that outliers
are selected uniformly at random, we expect L + (n − L)(s0/n) nodes of positive
degree in the background graph. (In fact, since there is a slight bias toward selecting
small degree nodes for outliers and L has a bias toward large degree nodes, we expect
slightly more nodes of positive degree in the background graph, which is good.) We
introduce the following constraint: a node of degree wi can become an outlier if
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wi ≤ L̄ + s0 − L̄s0/n − 1. (1)

Finally, s0 nodes satisfying (1) are selected uniformly at random to become outliers.
(In the implementation, these nodes simply form an independent “community” with
yi = 0 and zi = wi .)

Assigning Nodes to Communities

Similarly to the potential problem with outliers, we need to make sure that non-
outliers of large degree are not assigned to small communities.Basedon the parameter
ξ we know that roughly (1 − ξ)wi neighbours of a node of degree wi will be present
in its own community. However, this is only the lower bound as some neighbours in
the background graph might end up there by chance. Hence, in order to make enough
room in the community graph for all neighbours of a given node, the original ABCD
algorithm needs to compute xi , the expected number of neighbours of a node of
degree wi that end up in its own community. We need to recompute xi to incorporate
the existence of outliers.

Assuming that nodes are assigned randomly with a distribution close to the
uniform distribution, we expect Ws0/n points (in the corresponding configuration
model) in the background graph to be associatedwith outliers, whereW := ∑

i∈[n] wi

is the volume of the graph (equivalently, the total number of points in the correspond-
ing configurationmodel). Similarly, we expect ξ fraction of the points associatedwith
non-outliers to end up in the background graph, that is,W (1 − s0/n)ξ points. In order
to estimate what fraction of neighbours of a given non-outlier node is expected to be
within the same community, we need to answer the following question: what is the
probability that a random point in the background graph associatedwith a non-outlier
is matched with a point within the same community? It is equal to

∑

j∈[�]

s j
n − s0

·
s j

n−s0
W (1 − s0/n)ξ

W (1 − s0/n)ξ + Ws0/n
=

∑

j∈[�]

(
s j

n − s0

)2
(n − s0)ξ

(n − s0)ξ + s0
.

Indeed, with probability s j
n−s0

a random point belongs to community j . There are
s j

n−s0
W (1 − s0/n)ξ points associated with community j and the total number of

points in the background graph is W (1 − s0/n)ξ + Ws0/n. Hence, one can easily
estimate the probability that the point from community j is matched with another
point from the same community. The expected number of neighbours of a node of
degree wi that stay within the same community is then

xi :=
⎛

⎝1 − ξ + ξ
∑

j∈[�]

(
s j

n − s0

)2
(n − s0)ξ

(n − s0)ξ + s0

⎞

⎠ wi = (1 − ξφ)wi ,

where

φ := 1 −
∑

j∈[�]

(
s j

n − s0

)2
(n − s0)ξ

(n − s0)ξ + s0
.
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Fig. 2 Two examples of ABCD+o graphs with low level of noise (ξ = 0.2, left) and high level of
noise (ξ = 0.4, right). The number of outliers is s0 = 5

In particular, we expect (1 − ξφ)(1 − s0/n) fraction of edges to stay within one of
the communities. Moreover, as expected, if s0 = 0, then we recover the value of φ

used in the original ABCD model, namely,

φ = 1 −
∑

j∈[�]

( s j
n

)2
.

As in the original ABCD model, a node of degree wi can be assigned to community
of size s j if xi ≤ s j − 1. We select one admissible assignment of non-outliers to
communities uniformly at random which turns out to be relatively easy from both
theoretical and practical points of view.

Two examples of ABCD+o graphs on n = 100 nodes are presented in Fig. 2. The
number of outliers is s0 = 5 and the remaining parameters are exactly the same as the
ones to produce Fig. 1. Communities are shown in different colours and outliers are
displayed with triangular shape. The left plot has the mixing parameter set ξ = 0.2
while the “noisier” graph on the right plot has the parameter fixed to ξ = 0.4. In
the left plot it is visible that 4 out of 5 outliers are clearly located between the
communities (one of them is within a community as outlier can, by pure chance, get
many edges within one community). In the right plot, which is more noisy, we still
see that outliers are surrounded by nodes belonging to different communities.

3 Experiments—Distinguishing Properties of Outliers

In order to better understand properties of outliers, we perform a few simple and
exploratory experiments on the well-known College Football real-world network
with known community structure and the presence of outliers. We identified three
natural properties that distinguish outliers from non-outliers.

In order to show that our new ABCD+o model exhibits similar desired properties,
we generated graphs on n = 10,000 nodes and s0 = 500 outliers (5%). Degree dis-
tribution was generated with power law exponent γ = 2.5 with minimum and max-
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Fig. 3 The college football
graph; outliers are displayed
with triangular shape

imum values 5 and 500, respectively. Community sizes were generated with power
law exponent β = 1.5 with minimum and maximum values 100 and 1,000, respec-
tively. We independently generated graphs for all values of ξ ∈ {0.0, 0.1, . . . , 1.0}
but the degree distribution and the distribution of community sizes were coupled (it
is easy to do in our implementation) so that all 11 graphs use the same distributions.

3.1 The College Football Graph

The College Football real-world network represents the schedule of United States
football games between Division IA colleges during the regular season in Fall
2000 [9]. The data consists of 115 teams (nodes) and 613 games (edges). The teams
are divided into conferences containing 8–12 teams each. In general, games are more
frequent between members of the same conference than between members of dif-
ferent conferences, with teams playing an average of about seven intra-conference
games and four inter-conference games in the 2000 season. There are a few excep-
tions to this rule, as detailed in [18]: one of the conferences is really a group of
independent teams, one conference is really broken into two groups, and 3 other
teams play mainly against teams from other conferences. We refer to those 14 teams
as outlying nodes, which we represent with a distinctive triangular shape in Fig. 3.

3.2 Participation Coefficient

The following definitions are commonly used in the literature [6, 21] (see also [14]).
We say that a set of nodes C ⊆ V forms a strong community if each node in C
has more neighbours in C than outside of C . One may relax this strong notion and
say that C forms a weak community if the average degree inside the community C
(over all nodes in C) is larger than the corresponding average number of neighbours
outside of C . In this context, an outlier could be formally defined as a node that
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does not have majority of its neighbours in any of the communities. In the ABCD+o
model, non-outliers are expected to have more than half of their neighbours in its
own community, provided that ξ < 0.5. On the other hand, outliers are expected to
satisfy the desired property, unless there is an enormous community spanning more
than 50% of nodes.

A more refined picture is provided by the next coefficient that is a natural mea-
sure of concentration. For any partition A = {A1, . . . , A�} of the set of nodes, the
participation coefficient of a node v (with respect to A) is defined as follows:

p(v) = 1 −
�∑

i=1

(
degAi

(v)

deg(v)

)2

,

where degAi
(v) is the number of neighbours of v in Ai . The participation coefficient

p(v) is equal to zero if v has neighbours exclusively in one part. Members of strong
communities satisfy, by definition, p(v) < 3/4. In the other extreme case, the neigh-
bours of v are homogeneously distributed among all parts and so p(v) is close to the
trivial upper bound of

1 −
�∑

i=1

(
deg(v)/�

deg(v)

)2

= 1 − 1

�
≈ 1.

For the experiments shown below, even though we have the ground truth commu-
nities available to use, we computed the participation coefficients using communities
(partition A) we obtained with the ECG clustering algorithm which we describe in
the following subsection. The distribution of the participation coefficient among out-
liers and non-outliers for the College Football Graph is presented on box plot in Fig. 4
(left). We see that outliers have significantly larger average value of p(v) than the
corresponding value for non-outliers: 0.709 vs. 0.439. The corresponding averages
(together with associated standard deviations) for the ABCD+o model with different
level of noise are presented in Fig. 4 (right). For low level of noise (small values of
ξ ) there is a clear difference between outliers and non-outliers but the discrepancy
diminishes for noisy graphs (large values of ξ ). In the extreme case when ξ = 1 there
is no difference between the two classes and so the averages are close to each other
as they should.

3.3 ECG Votes

Ensemble Clustering algorithm for Graphs (ECG) [20]3 is a consensus clustering
method based on the classical Louvain algorithm. In its first phase, several low-
level partitions are computed with different randomization, and for each edge the

3 https://github.com/ftheberge/graph-partition-and-measures.

https://github.com/ftheberge/graph-partition-and-measures
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Fig. 4 Distribution of the participation coefficient for regular and outlier nodes: college football
graph (left) and ABCD+o model (right)

Fig. 5 Distribution of the ECG coefficient for regular and outlier nodes: college football graph
(left) and ABCD+o model (right)

proportion of times both nodes ended up in the same part is computed. Those are the
ECG edge scores. High scores are indicative of stable pairs that often appear in the
same part. For a given node v, we define E(v) to be the average ECG score over all
edges incident to v, and we call it the ECG coefficient of a node v. It is expected that
outliers are more challenging to cluster which should be manifested by relatively
small ECG coefficients E(v) associated with these nodes.

As it was done for the participation coefficient, we investigate the distribution of
theECGcoefficient amongoutliers andnon-outliers for theCollegeFootballGraph—
see Fig. 5 (left). We see that it is another distinguishing coefficient—outliers have
significantly smaller average value of E(v) than the corresponding value for non-
outliers: 0.465 vs. 0.701. Similar conclusions can be derived from the correspond-
ing averages for the ABCD+o model—see Fig. 5 (right). As before, the difference
becomes less visible as more noise is introduced.
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4 Future Directions

In this paper, we extended the ABCD model to ABCD+o which incorporates the
presence of outliers. We investigated a few properties that are able to distinguish
outliers from regular nodes. One may try to extend these ideas further and build
an outlier detection algorithm. Another important extension of the original ABCD
that we leave for the future is to design a variant of the model to include overlapping
clusters. An orthogonal future direction that we (and industry partners that we collab-
orate with) are interested in is to design a hypergraph model with known community
structure.
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Influence-Based Community Deception

Saif Aldeen Madi and Giuseppe Pirrò

Abstract This paper studies the novel problem of influence-based community
deception. Tackling this problem amounts to devising tools to protect the users of a
community from being discovered by community detection algorithms. The novel
setting considers networks that have both edge directions and models the influence
of nodes as edge weights. We present a deception strategy based on modularity. We
conducted an experimental evaluation that shows the feasibility of our proposal.

Keywords Community deception · Community hiding

1 Introduction

Social network analysis has been an active area of research thanks to the accelerating
growth of social media platforms with billions of users worldwide. A particular
example is community detection which has become a relatively well-established
research problem, owing to itswide range of applications, including recommendation
systems [17], fraud detection [19], and citation networks [1].

Naturally, social networking platforms, such as Facebook or Twitter, constitute
an important application area for community detection. Therefore, it is expected
that such algorithms will play an increasingly influential role in the lives of millions
of users. This raises subtle ethical dilemmas, particularly regarding user privacy
[23], freedom of speech, and security. Such concerns ignited serious efforts toward
designing algorithms that help communities of users protect their privacy by evading
community detection algorithms. This new research field has been variously referred
to as community deception [6] or community hiding [23], where the goal is to hide
a target community from detection by rewiring connections incidents to its nodes.
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Table 1 State-of-the-art deception algorithms

Quality function Mathematical formulation Deception algorithms

Modularity [15, 16] 1
m

∑
C∈C̄

∑
i j∈C Ii j − douti dinj

m Nagraja [14], DICE [23]

Safeness [6] τ
|V u (C)|−|E(u,C)|

|C |−1 + χ
|Ẽ(u,V )|

δ(u)
SADDEN [6]

Permanence [2, 3] Perm(u,G) =
|E(u,V )|
Emax (u)

× 1
δ(u)

− (1 − Cin(u))

NEURAL [13]

Normalized mutual
information [5]

I (X, Y ) =∑
x,y p(x, y)log

p(x,y)
p(x)p(y)

Q-Attack [4]

Related Work Community deception [6] or community hiding [13, 23] is a rela-
tively new research area, which came into existence as countermeasure against some
issues posed by detection algorithms, particularly privacy-related concerns [6, 23].
Its noteworthy that some authors refer to deception as an attack [4], which reflects the
perspective of the detector. Table1 gives an overview of the state-of-the-art deception
algorithms.

However, previous work on deception algorithms overlooked an essential com-
ponent of social relationships, namely, influence [8, 11]. Indeed, to the best of our
knowledge, all previous deception algorithms have been devised using influence-less
0–1 edge. Such a representation assumes that a pair of nodes is either connected or
not, ignoring the strength of influence a node exerts on its neighbors. We consider
this a serious drawback of state-of-the-art community deception for several reasons.
First, real-world social relationships vary in their influence. For example, a person,
say, Bob, probably exerts a greater influence on his son than on his neighbor. Indeed,
while it might be reasonable to assume that some social connections share relatively
similar influences, it is certainly not a universal truth. Such variation in influence has
not, so far, been covered by the deception literature. Secondly, the notion of influ-
ence has already been incorporated as an important component in several detection
algorithms [8, 11, 12, 22]. This necessarily leaves state-of-the-art deception algo-
rithms lagging, as they fail to account for such influence-aware detection methods.
Moreover, deception algorithms have been applied to undirected networks only. This
was another critical drawback in previous approaches. Suppose that Bob follows a
celebrity, say, Alice, on Twitter. This does not necessarily imply that Alice follows
Bob as well. We can argue that the followed—Alice, influences the follower—Bob,
but not vice-versa. Indeed, she probably does not even know who Bob is. Finally,
and maybe more importantly, deception algorithms can make much more intelli-
gent decisions when considering influence. Specifically, several previous deception
algorithms have utilized an edge modification budget, implying the desire to per-
form deception with the least number of edge updates. By considering influence and
direction, we can distinguish between edges’ importance and carefully choose those
which make the most deceptive effect to be modified.

Contributions andOutline. Themain aim of this work is to address all previous issues
by introducing directed influence as an essential component of the deception process.
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We comprehensively study community deception in Directed Influence Networks
(DIN), using modularity as the quality function of choice. We focus in this study
on modularity because it is a popular quality function [7], subsequently making our
deception algorithm intuitive. Specifically, we present the following contributions:
(i)We formally present community deception in the context ofDIN; (ii)We introduce
an upgraded version of modularity that accommodates the concept of influence; (iii)
We develop an influence-aware deception algorithm called InflDec and compare it
with the state-of-the-art.

The remainder of the paper is organized as follows. Section2 introduces the
community deception problem. Section3 introduces the influence-based community
deception problem in directed networks and a greedy algorithm called InflDec.
Section4 reports on an experimental evaluation. We conclude in Sect. 5.

2 Background

The objective of community deception is to devise an algorithm that can be used by
a group of nodes to conceal their relationship from community detection algorithms.
Particularly,we assumeadirected networkG(V, E),whereV is the set of vertices and
E is the set of edges. This network is representedwith an adjacencymatrixA = [Ii j ],
where Ii j is the influence of node i (the influencer) on node j (the influenced). We
emphasize here that since G is directed, the influence Ii j need not be the same
as I j i . A non-overlapping community detection algorithm Adet partitions V into
a community structure C̄ = {C1,C2, ...,Ck}, where Ci ⊆ V , and Ci ∩ C j = φ, for
all i, j ∈ {1, ..., k} and i �= j . We also define two types of edges. Considering a
communityC ⊆ V , an edge (u, v) ∈ E is called an intra-community edge, if and only
if u, v ∈ C . On the other hand, (u, v) is called an inter-community edge, if and only if
u ∈ C , v ∈ C ′, andC ′ �= C . The notation used in this paper is summarized in Table2.

Problem Statement. In a typical deception scenario, there are two players. The first
is the detector, who possesses a detection algorithm Adet . The second is the target
community C—a group of nodes that wants to hide itself by utilizing a deception
algorithmAdec. By runningAdet , the detector reveals a set of communities C̄ , which
we call the revealed community structure. The nodes of the target community can
be either dispersed among different communities in C̄ , or in a worst-case scenario,
totally located in a single community: C ⊆ C where C ∈ C̄ . On the opposite side,
the target community’s goal is to conceal its identity as a single community from
the detector. Specifically, members of C should be distributed over C̄ in a way that
prevents their being identified as a single community. To this end,C usesAdec in order
to maximize a certain deception score [6, 23] that measures the concealment level
of the target community. Eventually, Adec produces two sets of edges E− and E+,
for edges to be deleted and added, respectively. After applying these modifications,
the target community C minimizes the chance of its being detected again either as
community or even as a subset of a larger community, the next time Adet is run.
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Table 2 Notation table for influence-based modularity

Symbol Meaning Formula

E(C) The set of intra-community edges in
community C

{(u, v)|u, v ∈ C}

Ẽ(C) The set of inter-community edges
having one side in community C

{(u, v)|u ∈ C ∨ v ∈ C}

I↑
i Total influence outgoing from node i

∑
j Ii j

I↓
j Total influence received by node j

∑
i Ii j

I Total influence of the entire network
∑

i, j∈V Ii j
η Total intra-community influence of the

network

∑
C∈C̄

∑
i j∈C Ii j

θ Total inter-community influence in
network G

I − η

C̄ ′ Community structure excluding
community C , where (u, v) ∈ C is the
edge to be modified.

C̄ ′ = {C |C ∈ C̄ and u, v /∈ C}

C∗ The community for which an edge
(u, v) is added/deleted

C∗ = {C |C ∈ C̄ and (u, v) ∈ E(C∗)}

I↑
C Let C ∈ C̄ I↑

CC = ∑
i∈C I↑

i

I↓
C Let C ∈ C̄ I↓

C = ∑
i∈C I↓

i

Now, let G∗ be the whole network after applying the aforementioned edge mod-
ifications. If s1 and s2 are the deception scores after running Adet on G and G∗,
respectively, then Ct ’s goal would be to maximize s2 − s1. Typically,Adec indirectly
improves the deception score by choosing edge modifications E− and E+ that opti-
mize some deception optimization function. Thus, letting Q be such function, we
define the net loss as �Q = QG − QG∗ , where QG and QG∗ are the values before
and after applying edge modifications, respectively. Naturally, the deceiver’s goal is
to introduce edge modifications that maximizes the net loss. Hence, making it no
longer feasible for AD to select Ct as a member of the community structure C̄ . This
can be formulated as an optimization as follows:

argmax
G∗

φ(G,G∗,C ) (1)

where G∗ = (V, E ′) and E ′ = (E ∪ E+)\E−
E+ ⊆ {(u, v)|u ∈ C ∨ v ∈ C , (u, v) /∈ E}
E− ⊆ {(u, v)|u ∈ C ∨ v ∈ C , (u, v) ∈ E}
|E−| + |E+| ≤ β

where β is the budget of edge updates. Hiding a community requires a measure of
concealment, i.e., quantifying how much hidden a community is. Several previous
papers proposed such measures, including [6, 23].
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3 Deception in Directed Influence Networks (DIN)

This section introduces InflDec, our novel influence-based deception approach for
directed networks. We based InflDec on modularity. This is because modularity is
very intuitive; it neatly captures our intuition of what forms a community: a group
of people sharing denser connections between each other than with people from
outside. This intuitive appeal is crucial because we consider modularity a clustering
index rather than an objective function. Therefore, we argue that a target community
applying our deception mechanism generally improves its concealment level, even
if the detector utilizes different clustering indices. In what follows, we incorporate
influence into directed modularity and study the effect of intra/inter-community edge
modifications that will represent the toolbox of our deception strategy.
Directed Modularity. In this paper, we deal with directed graphs that incorporate
influence between nodes as an edge coefficient.Modularity for a directed network can
be expressed as in Eq. (2), which is a slightly modified version of the one described
by [10]:

Q = 1

m

∑

C∈C̄

∑

i j∈C
Ii j − dout

i din
j

m
(2)

where dout
i and din

j are the out/in degrees of nodes i , j respectively. However, since
we are considering a DIN, we further modify the preceding function:

Q = 1

I
∑

C∈C̄

∑

i j∈C
Ii j − I↑

i I↓
j

I (3)

Now, we consider the effect of edge modifications on �Q. We can simplify eq. (3)
as follows:

Q = 1

I
∑

C∈C̄

∑

i j∈C
Ii j − I↑

i I↓
j

I = η

I − 1

I2

∑

C∈C̄

∑

i j∈C
I↑
i I↓

j

= η

I − 1

I2

∑

C∈C̄

∑

i∈C
I↑
i

∑

j∈C
I↓
j = η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C

(4)

3.1 Effect of Edge Modification on the Modularity Loss

In this section, we study the effect of the addition/deletion of each type of edge on
modularity loss �Q. This will drive the InflDec deception strategy presented in
Sect. 3.2.
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3.1.1 Intra-community Edges

Let (u, v) be an intra-community edge deleted from community C∗.

Theorem 1 Deleting an intra-community edge results in modularity loss, �Q > 0,
if and only if the following condition holds:

ηIuv

I + θ + 2I − Iuv

I2

∑

C∈C̄
I↑
CI↓

C > I↑
C∗ + I↓

C∗ (5)

Proof First, note that the modularity before modification can be expressed as:

QG = η

I − 1

I2

∑

C∈C̄
I↑
CI↓

C = η

I − 1

I2

(

I↑
C∗I↓

C∗ +
∑

C∈C̄ ′
I↑
CI↓

C

)

(6)

With slight modification of Eq.6, we obtain modularity after intra-community
edge deletion:

QG∗ = η − Iuv

I − Iuv

− 1

(I − Iuv)2

(

(I↑
C∗ − Iuv)(I↓

C∗ − Iuv) +
∑

C∈C̄ ′
I↑
CI↓

C

)

(7)

With Eqs. 6 and 7, we obtain:

�Q = QG − QG∗ =
[

η

I − 1

I2

(

I↑
C∗I↓

C∗ +
∑

C∈C̄ ′
I↑
CI↓

C

)]

−
[

η − Iuv

I − Iuv

− 1

(I − Iuv)2

(

(I↑
C∗ − Iuv)(I↓

C∗ − Iuv) +
∑

C∈C̄ ′
I↑
CI↓

C

)]

= Iuv(I − η)

I(I − Iuv)
+ Iuv

I2(I − Iuv)2
[(

(2I − Iuv)
∑

C∈C̄
I↑
CI↓

C

)

−
(

I2
(
I↑
C∗ + I↓

C∗ − Iuv

))]

(8)

With basic algebraic operations we get to:

�Q = Iuv

(I − Iuv)2

[

I − η + ηIuv

I − I↑
C∗ − I↓

C∗ + (2I − Iuv)

I2

∑

C∈C̄
I↑
CI↓

C

]

(9)

Equation. 9 shows that the sign of�Q depends on the term between square brack-
ets, which is positive if and only if:

ηIuv

I + θ + 2I − Iuv

I2

∑

C∈C̄
I↑
CI↓

C > I↑
C∗ + I↓

C∗ (10)
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The proofs of the following theorems develop along with a similar line Theorem
5; we omit them for the sake of space.

Theorem 2 Adding an intra-community edge results in modularity loss, �Q > 0,
if and only if the following condition holds:

ηIuv

I + I↑
C∗ + I↓

C∗ > θ + (2I + Iuv)

I2

∑

C∈C̄
I↑
CI↓

C (11)

3.1.2 Inter-Community Edges

Let Cu,Cv ∈ C̄ be two arbitrary communities, then consider a inter-community
edge (u, v), where u ∈ Cu and v ∈ Cv . In this section, we study how does the dele-
tion/addition of (u, v) affect �Q.

Theorem 3 Deleting an inter-community edge will increase modularity if and only
if:

ηIIuv + (2I − Iuv)
∑

C∈C̄
I↑
CI↓

C > I2

(

η − I↓
Cu − I↑

Cv

)

(12)

Theorem 4 Adding an inter-community edge results in modularity loss, �Q > 0,
if and only if:

ηIIuv + I2

(

η + I↓
Cu + I↑

Cv

)

> (2I + Iuv)
∑

C∈C̄
I↑
CI↓

C (13)

3.2 The InflDec Deceptor

Now we present our InflDec deceptor, a greedy algorithm that leverages the theo-
rems to produce edge updates that maximizes the modularity loss. We note that only
intra-community edge deletion and inter-community edge addition have the high-
est potential of inflicting modularity loss. Other edge modifications, such as adding
an intra-community edge, do not cause modularity loss, except in the case of an
extensive target community, see inequality (11). Therefore, the algorithm has two
main tasks. First, it has to choose the best intra/inter-community edge to be deleted
or added. Secondly, it has to choose which of the two operations will cause more
modularity loss and subsequently execute it. Algorithm 1 takes as input the network
with influence coefficients on the edges and the target community. Line 3 calls a
procedure that searches C for the edge with the strongest influence, which will be
the candidate for deletion. Next, line 4 selects the highest influence inter-community
edge with its destination node in C . Alternatively, line 5 selects the highest influ-
ence inter-community edge with its source being inside C . The inter-community
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Algorithm 1 The InflDec deception algorithm.
1: procedure modifyNetwork(G,C )
2: do
3: intraEdg ← getHighestIntra(C )

4: select(nu , nv) /∈ E, nu ∈ Ci , nv ∈ C ∩ C j ,Ci ∈ argmax(I↓
Ci

),C j ∈ argmax(I↑
C j

)

5: select(n p , nt ) /∈ E, n p ∈ Cl ∩ C , nt ∈ Cm ,Cl ∈ argmax(I↓
Cl

),Cm ∈ argmax(I↑
Cm

)

6: MLdel ← getDelLoss(intraEdg, C̄,G)

7: ML↑
add ← getAddLoss((n p , nt ), C̄,G)

8: ML↓
add ← getAddLoss((nu , nv), C̄,G)

9: if MLdel ≥ max(ML↑
add ,ML↓

add ) and MLdel > 0 then
10: G ← (V, E\{intraEdg})
11: else
12: if ML↑

add ≥ ML↓
add andML↑

add > 0 then
13: G ← (V, E ∪ {(n p , nt )})
14: else
15: if ML↓

add > 0 then
16: G ← (V, E ∪ {(nu , nv)})
17: end if
18: end if
19: end if
20: β ← β − 1

21: while β > 0 and (ML↑
add > 0 or ML↓

add > 0 or MLdel > 0)
22: end procedure

edges selected are our candidates for addition. Lines 6–8 compute the modularity
loss caused by deleting/adding the three selected edges. Moreover, the algorithm
performs the modification using the edge yielding the highest possible modularity
loss. Line 20 keeps track of the available budget for modifications.

4 Experimental Evaluation

This section reports on an experimental evaluation. The overall goal is to gain insight
into how our approach, which considers both edge directions and node influence, is
effective. Moreover, we want to compare our influence-based community deception
approach for directed networks with the state-of-the-art focused on undirected net-
works. The comparison will shed further light on our novel techniques’ effectiveness
in hiding capabilities. In what follows, we describe the experimental setting and then
report on the experimental results. The algorithm has been implemented in Python.
Code and datasets are available online.1

Detectors.We considered community detection algorithms (detectors) that will act as
adversaries to the deception techniques focusing on approaches that work on directed
networks and support edge weights, that in our case model influence. We considered
the following algorithms available in the cdlib library2: Leiden [21] (leiden);

1 https://communitydeception.wordpress.com/.
2 https://cdlib.readthedocs.io.

https://communitydeception.wordpress.com/
https://cdlib.readthedocs.io
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Table 3 Datasets

Network [4] |V| [4] |E| Number communities

leiden dm surprise gemsec

Freeman 50 500 5 5 7 5

Email ∼1K ∼25K 28 32 21 16

Anybeat ∼12K ∼67K 129 81 43 112

WikiVote ∼7K ∼103K 30 34 43 49

Facebook ∼9K ∼142K 6 5 6 5

Epinions ∼75K ∼508K 795 896 Timeout Timeout

Slashdot ∼77K ∼905K 825 1115 Timeout Timeout

Directedmodularity [10] (dm); Surprise community [20] (surprise); Gemsec [18]
(gemsec).
Deceptors. We considered the following deceptors: Delete Internal Connect Exter-
nal [23] (DICE): this community deception algorithm is based on the heuristic of
deleting intra-community edges and adding inter-community edges;ModularityMin-
imization [6] (modMin): this approach corrects for some issues with DICE; the
authors of modMin showed that in some cases, DICE fails to perform edge updates
that minimize modularity; Safeness-based deception [6] (SAF): this approach intro-
duces safeness maximization for community deception; Permanence-based decep-
tion [13] (NEUR): this approach is based on permanence minimization; Random
edge updates (RND): we consider an approach that randomly selects both the type of
update and the endpoints of the edge addition/deletion.
Datasets. As this paper aims to introduce influence-based deception for directed
networks, we focused on various real directed social networks. In order to compute
influence between nodes, we used the approach described in Kumar et al. [9], which
is also able to predict the influence of missing links; we leave as a future work the
investigation of further influence measures. These networks are available online.3,4,5

Table3 gives an overview of the networks considered. The table also reports, for
each network, the number of communities found by the Detectors considered. We
note that some of the detectors could not complete community detection on the more
extensive networks after a timeout of 3h.
Evaluation Methodology. To test deception algorithms, we cannot directly apply the
deception score introduced in Fionda et al. [6] This is because this score was devised
for undirected and unweighted networks. Therefore, as similarly done by the state-
of-the-art [13], we considered a combination of community spread and community
ratio, that is, in how many communities the member of C are scattered and in which
percentage; the large the value the better the hiding.

3 https://data4goodlab.github.io/dataset.html.
4 https://snap.stanford.edu.
5 https://toreopsahl.com/datasets.

https://data4goodlab.github.io/dataset.html
https://snap.stanford.edu
https://toreopsahl.com/datasets
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Fig. 1 Comparison between directed and undirected deception approaches

4.1 Deception Score Comparison

We now compare our novel approach for community deception based on influ-
ence in directed networks with the state-of-the-art. We note that competitors were
not designed to work on directed networks; neither these approaches support edge
weights, that in our case model influence. We also note that most of the datasets con-
sidered are directed networks, which underlines the importance of adding directions
in social network relations.

For each experiment round, we chose one of the communities found by the detec-
tion algorithm we want to deceive by looking at the distribution of the sizes of the
communities found; this represents the worst-case scenario where the community is
completely revealed to the detector. Hence, the initial deception score is zero. For the
competitors, we treated the networks as undirected. Moreover, we focus on a budget
of updates equal to 60% of the edges of C as this configuration worked best for all
approaches. Figure1 reports results in terms of deception score. In the figure, each
column represents a detection algorithm; the x-axis represents a network in each
subfigure, while the y-axis is the deception score.

In all networks, InflDec performs better than the undirected approaches; this
is true for all detectors. However, we observe that for leiden in the smaller net-
works, the deception score tends to be lower than in the larger ones. As an example,
on Freeman, the smallest network, this value reaches 0.61, while on Slashdot the
largest network is 0.66. Moreover, gemsec seems to be the approach less robust
to all deception techniques; deception score values are higher than those obtained
when deceiving other detectors. It is interesting to look at the relative performance of
InflDec, DICE, and modMin all based on modularity. DICE, which is the simplest
approach based on randomly deleting internal edges and adding external, seems to
perform better than modMin, which adopts a more elaborated strategy to determine
the best set of edge updates that also looks at the degree of communities. However,
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Fig. 2 NMI comparison

we note that these two approaches were devised for undirected networks, while the
networks considered here are directed. Nevertheless, InflDec’s approach that opti-
mizes the modularity loss for deception by taking into account both edge directions
and influence performs consistently better. The other deceptorsSAF and NEUR, based
on node safeness and node permanence performed better than DICE and modMin.
As one would expect, the worst-performing deceptor is RND, which adds/remove
edges randomly starting from C ’s members. This is an important result underlining
that achieving deception requires some strategy and does not just amount to deleting
and adding edges.
Normalized Mutual Information. To shed more light on the impact of deception
on the community structure found by a detection algorithm, we computed the nor-
malized mutual information (NMI) score comparing the communities before and
after applying deception techniques. Each column in Fig. 2 represents a detection
algorithm where the x-axis represents one of the networks and the y-axis the value
of NMI.

The values of NMI seem to be lower for smaller networks meaning that the com-
munity structure changes more than in the case of larger networks. However, in both
cases, the value is greater than for all deception approaches but RND. In general,
InflDec seems to be the algorithm that best preserves the original community struc-
ture. This again, points out how a carefully designed deception strategy can act to
hide a community while not impacting too much on the other part of the commu-
nity structure. Again, RND significantly changes the community structure while not
providing a good deception score.

5 Concluding Remarks and Future Work

We introduced the novel problem of influence-based community deception, that is,
hiding the members of a community from community detection algorithms in a
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setting that considers both directed networks and edge weights that model influence.
We devised a strategy based on modularity, which performs better than the state-of-
the-art. In the future, we plan to tackle the problem from the perspective of node
updates.
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AutoGF: Runtime Graph Filter Tuning
for Community Node Ranking

Emmanouil Krasanakis, Symeon Papadopoulos, and Ioannis Kompatsiaris

Abstract A recurring graph analysis task is to rank nodes based on their relevance
to overlapping communities of shared metadata attributes (e.g. the interests of social
network users). To achieve this, approaches often startwith a fewexample community
members and employ graph filters that rank nodes based on their structural proximity
to the examples. Choosing betweenwell-knownfilters typically involves experiments
on existing graphs, but their efficacy is known to depend on the structural relations
between community members. Therefore, we argue that employed filters should be
determined not during algorithmdesign but at runtime, upon receiving specific graphs
and example nodes to process. To do this, we split example nodes into training and
validation sets and either perform supervised selection betweenwell-knownfilters, or
account for granular graph dynamics by tuning parameters of the generalized graph
filter form with a novel optimization algorithm. Experiments on 27 community node
ranking tasks across three real-world networks of various sizes reveal that runtime
algorithm selection selects near-best AUC and NDCG among a list of 8 popular
alternatives, and that parameter tuning yields similar or improved results in all cases.

Keywords Node ranking · Graph signal processing · Parameter tuning

1 Introduction

When graph nodes are attributed (e.g. they are social network users and attributes are
their areas of interest), they can be organized into communities of shared metadata
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attributes [26]. By definition, these communities are not tied to specific high-level
structural characteristics, such as strong connectivity between nodes. Still, it is com-
monly accepted that attributes could correlate to low-level dynamics leading to the
creation of edges, in which case graph structure can help predict metadata. For exam-
ple, nodes of social network graphs often exhibit homophilous behavior [23], a term
describing their tendency to form edgeswith others of similar attributes. Then, tightly
knit structural communities become good predictors of parts of -but not of whole-
metadata communities [35].

A recurring graph analysis task, which we tackle in this work, is to rank nodes
based on their relevance to communities sharing metadata attributes of interest [16,
19, 29, 32, 33]. Ranking provides greater granularity than clear-cut predictions, for
example in the scope of recommending more community members. It also respects
overlaps and fuzzy boundaries between communities [21]. Furthermore, node rele-
vance scores obtained during ranking are often the core of more sophisticated sys-
tems, such as graph neural networks for classification after initial neural estimations
[13, 15] and post-processing strategies that threshold transformations of scores to
predict community membership [3].

A popular use case for community node ranking, which we also follow, is to
start with a few known community members serving as examples, and inferring the
relatedness of all nodes to respective communities based on their structural proximity
to the examples [19, 34, 37]. This task is performed independently for one or more
communities. Assumptions about what constitutes proximity have coalesced under
the field of graph signal processing [Sect. 2], where they are modeled with ad-hoc
graph filters and controlled by a small number of parameters [8, 25].1 Different filters
and parameters match different types of communities. For example, filter efficacy
could depend on the number of communitymembers [1, 12, 19].As a result, deployed
filters may work well in certain graphs but not necessarily in others. By extension,
running filter-based tools ‘off-the-shelf‘ in deployed systems risks producing node
ranks of lesser quality.

In this work, we address the above issue by exploiting autotune principles [17]
for runtime selection of graph filters. We explore two strategies: a) choosing the best
among a list of promising filters, and b) tuning the parameters of a generalized filter
form. For the second strategy, we also introduce a novel tuning algorithm that keeps
examining awide search breadth in the solution space but convergeswithin a bounded
number of filter runs. The effectiveness of our approach is corroborated on 27 com-
munity node ranking tasks across 3 real-world graphs of different domains. Results
indicate that neither strategy falls significantly behind best-performing ad-hoc fil-
ters when optimizing popular node rank quality measures. Furthermore, parameter
tuning frequently captures structural proximity better than ad-hoc assumptions and
improves rank quality.

1 Most non-filter node ranking algorithms, such as k-shell decomposition and variations [36], blindly
rank the importance of nodes within graph structures and can not personalize ranks in terms of
importance to specific communities.
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This paper is organized as follows. In Sect. 2 we present graph filters as an
approach for ranking nodes with respect to metadata communities, alongside a gen-
eralized literature filter form. In Sect. 3, we describe our runtime filter selection
approach and its implementation choices. We also present a novel algorithm for tun-
ing parameters of generalized graph filters. In Sects. 4 and 5we evaluate our approach
in real-world data and discuss practical applicability and potential risks. Finally, in
Sect. 6 we summarize our findings and present promising research directions.

2 Background

Graph edges are often represented by adjacency matrices Awith elements A[u, v] =
{1 if edge (u, v) exists, 0 otherwise}. These are symmetrically normalized byweigh-
ing edges to mitigate the importance of highly connected nodes per:

W = D−1/2AD−1/2

where D with elements D[u, v] = {∑v′ A[u, v′] if u = v, 0 otherwise} are diagonal
matrices of node degrees. The graph’s spectrum can be defined as the eigenvalues of
the normalized adjacency matrix.2 In detail, eigenvalue decomposition yields W =
U�U−1, where� are diagonal matrices of eigenvalues� = diag([λ1, λ2, . . . , λn])
andU are orthogonal matrices whose columns hold the corresponding eigenvectors.
For connected graphs, eigenvalues of the normalized adjacencymatrix are real-valued
and reside in the unit range λi ∈ [−1, 1].

Graph signal processing [24, 27, 28] manipulates signals p whose elements p[u]
correspond to values stored at nodes u. To do this, it defines their graph Fourier trans-
form as F{p} = U−1 p and its inverse as F−1{F{p}} = UF{p}. Then, it observes
thatWn = U�nU−1 ⇒ H(W ) = UH(�)U−1 for function forms H(·) whose Tay-
lor expansions exist aroundzero, anddefinesfiltersHF = [H(λ1), H(λ2), . . . H(λn)]
in the Fourier space, whose parameters arise through transformations H(λi ) of eigen-
values λi . Graph filters can be applied on signals via an element-wise multiplication
� on their Fourier transform F{p}. The outcome of filtering in the node space
becomes:

F−1(HF � F{p}) = UH(�)U−1 p = H(W )p

During the above analysis, the function forms H(·) determining graph filters can
be parameterized in terms of their Taylor coefficients h0, h1, . . . per:

H(W ) =
∞∑

k=0

hkW
k

2 The graph’s spectrum can also be defined as the eigenvalues 1 − λi of its normalized Laplacian
I − W . This, too, can express filters as infinite-degree polynomials of W .
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As Wk p propagates graph signals p at k hops away through normalized adjacency
matricesW , the above formula describes a weighted aggregation of multi-hop signal
propagation. Filters matching different structural assumptions arise from different
coefficients hk . Two well-known filters are personalized PageRank [3, 4] and heat
kernels [16]. These respectively adopt degrading hop weights hk = (1 − a)ak and
the kernel hk = e−t t k/k! for parameters a ∈ [0, 1) and t ∈ {1, 2, 3, . . . }.

Given the above formulation, graph filtering can rank how nodes pertain to com-
munities of interest [19, 34, 37]. Approaches start with signals p whose values
capture whether nodes v belong to sets C of known community members per:

p[v] = {1 if v ∈ C, 0 otherwise}

Then, for graphs with normalized adjacency matrices W , graph filters H(W ) yield
new signals r = H(W )p with elements r [u] corresponding to how proximate nodes
u are to known member sets C under some understanding of proximity. Finally,
nodes are ranked by order of their proximity to known members.

3 Tuning Graph Filters at Runtime

As previouslymentioned, graph filters for community node ranking should ideally be
selected at runtime, after graphs and example community members become known
and therefore can be used to understand underlying structural features. We consider
best-performing filters those with higher node rank quality, for instance measured
with the area under curve of the receiver operating characteristics (AUC) [6] and
the normalized discounted cumulative gain across all graph nodes (NDCG) [14].
Employed measures should coincide with practical objectives on unknown test data.
For example, high AUC indicates higher ranks for community members than non-
members, whereas high NDCG verifies the community membership of top-ranked
nodes.

To optimize node rank quality at runtime, we follow an autotune paradigm that
searches through the parameter space of black box algorithms to optimize validation
objectives. Originally, the term was associated with specific approaches [17], but
nowadays broadly describes automatic selection of machine learning model param-
eters. This comes at the expense of multiple algorithm runs, but there exist mature
solutions for fast computation of graph filters [18].

Our approach starts with sets C of known community members among graph
nodes, which are organized into binary graph signals p per the formulation of Sect. 2.
We split knownmembers into non-overlapping subsets Ctrain, Cvalid ⊆ C, which cor-
respond to “training” graph signals ptrain to be used as filter inputs, and desired
output validation signals pvalid . We employ evaluation measures M(·, ·), such as
AUC or NDCG, that assess node rank quality via pairwise comparison between pre-
dictions and ground truth, and select filters with highM(rtrain, pvalid) for predicted
ranking scores rtrain = H(W )ptrain . We avoid overfitting by computing measures



AutoGF: Runtime Graph Filter Tuning for Community Node Ranking 193

Fig. 1 Overview of graph filter autotuning under measures M. Example nodes are split between
training and validation graph signals, where the latter assume the role of ideal training outputs.
Highlighted signal elements correspond to higher node values

only across non-training nodes. As long as graphs exhibit homogeneous correla-
tions between communities and edges, filters maximizing validation evaluation are
expected to also maximizeM(r, ptest ) for r = H(W )p on nodes other than known
community members, where ptest are unknown ideal test labels. Our pipeline’s data
flow is summarized in Fig. 1.

We follow two strategies for graph filter selection by the autotune component
of our approach. The first is to perform a simple selection among a list of popular
filters, such as those we experiment with later on. The second is to start with the
parameterized graph filter form presented in Sect. 2 and tuning a vector of its param-
eters h = [h0, h1, . . . , hK ]T to optimize validation objectives. We explore only non-
negative parameters to match the widespread literature practice of introducing only
non-negative correlations between hops and high-quality node ranks. Then, without
loss of generality, we tune all parameters in the range [0, 1].

When tuning graph filter parameters on non-differentiable (potentially even non-
convex) validation objectives, a first take is to adopt existing generic black box
optimization algorithms [7, 10]. However, these do not guarantee convergence for
all deployed system inputs. At the same time, adjusting one graph filter parameter
to control the importance of propagating graph signals a fixed number of hops away
could drastically affect the validity of other propagation weights. This hypothesis is
also corroborated by experiments later on.



194 E. Krasanakis et al.

To address the above concerns, we propose an algorithm for graph filter parameter
tuning that maintains a broad parameter search space while converging in finite
time. This involves cycling through parameters, and progressively minimizing a
loss function �(h) = 1 − M(H(W )ptrain, pvalid) by finding the best permutation
around each parameter with coarse linear search. As tuning progresses, we shrink
the search range, so that small permutations around ideal values are eventually found.
Intuitively, this is equivalent to moving the center of the selected rectangle chosen
for each parameter based on subsequent selections of other parameters. If shrinking
is slow enough, by the time when parameter permutation breadths become small,
potential combinations with drastically different permutations of other parameters
have already been considered.

Conceptually, this procedure is a variation of divided rectangles (DIRECT) [9]
that, instead of keeping many candidate rectangles to divide, keeps only one, though
of larger width than the partition. This practice corresponds to the shrinking radius
technique proposed for non-convex block coordinate optimization [22], although
the two are not mathematically equivalent due to the finite sum of rectangle widths
that limits the optimization within the hypercube of searched parameters instead of
looking at an unconstrained range.

In detail, we start from the center of the parameter hypercube and cycle through
parameters i . For each of those, we consider the range �h[i] in which to search
for new solutions and partition it uniformly to 2P + 1 candidate points, P of which
examine higher parameter values and an equal number lower values. Values are
snapped to the search bounds 0 or 1 if they subceed or exceed those respectively.
Perturbations form a set Hsearch of potential parameter vectors, of which we select
the one minimizing the loss. Finally, we contract the search range by division with
constant T > 1 andmove on to the next parameter. Cycling through parameters stops
when loss reduction becomes smaller than a tolerance ε across all parameters. This
process is outlined in Algorithm 1.

Algorithm 1 Parameter tuning
Inputs: parameter loss �(h), tolerance ε, line search partitions P , range shrinking T
Outputs: near-optimal vector of K parameters
h ← [0.5] × K , �h ← [0.5] × K , err ← [∞] × K , i ← 0
while maxi err [i] > ε do

ui ←unit vector with ui [ j] = {1 if i = j, 0 otherwise}
Hsearch ← {max(0,min(1, h + ui · �h[i] · (p/P − 1))) | p = 0, 1, . . . , 2P}
err [i] ← �(h) − minh∈Hsearch �(h)

h ← argminh∈Hsearch �(h)

�h[i] ← �h[i]/T
i ← (i + 1)mod K

return h

If the objective �(h) is Lipschitz continuouswithLipschitz constant L < ∞ (when
the loss is differentiable, this means that sup ‖∇�(h)‖ ≤ L), it is easy to see that the
division of the parameter permutation radius by T every K iterations lets the algo-
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rithm run in amortized time O
(
K (run �(h)) logT

L
ε

)
. If graph nodes are fewer than

edges (as happens for connected graphs), in which case the running time of �(h) is
not dominated by node validation. Using sparse matrix multiplication to iteratively
compute Krylov space elements {Wk ptrain |, k = 0, . . . , K } by left-multiplying pre-
vious ones withW , graph filters run in time O(K E), where E is the number of graph
edges. Thus, our graph filter parameter tuning mechanism can be implemented to
run in amortized time:

O
(
K 2E(logT L − logT ε)

)

Running time scales linearly with the number of edges and quadratically with the
number of parameters. We recommend and employ default parameters P = 2, T =
1.01, which suffice to minimize the Beale and Booth functions often used in opti-
mization benchmarks [2] to 10−6 parameter (instead of loss) tolerance.

4 Experiment Setup

We experiment on three publicly available real-world graphs with metadata commu-
nities. First is the Amazon co-purchasing graph [20], whose nodes and edges corre-
spond to products and frequent co-purchases. Products are organized into metadata
communities based on their type (e.g. book, movie) attribute. Second is the Citeseer
citation graph [11], whose nodes and edges correspond to scientific publications and
citations. Publications are organized into communities based on scientific field. Third
is the Maven dependency graph [5], whose nodes and edges correspond to software
projects and dependencies. Projects are organized into communities based on the
organization responsible for their development.

These graphs were chosen for experimentation on merit of comprising metadata
communities with enough member nodes to conduct robust validation. To not over-
represent graphs with many communities and obtain enough validation nodes later
on, we experiment with the first three communities of each graph with at least 500
nodes. We treat all edges as undirected so that symmetric normalization of filters is
applicable. Community details are summarized in Table1.

For each of the the above-described communities, we generate three splits of
known-test members by assuming that known members are uniformly sampled to
comprise 10, 20, or 30% of total members. We remind that validation nodes can only
be subsampled from known members. Sampling is seeded to ensure reproducibility
and fair comparison between approaches. In total, experiments on 9 communities
create 9 · 3 = 27 different known-test member splits. For each split, we consider two
different node ranking objectives; optimizing AUC, and optimizing NDCG. Thus,
we obtain 27 · 2 = 54 experiment setups. Sampling and splits are seeded so that
evaluations of different graph filters in the same setups are comparable.

We investigate the ability of our approach to produce high-quality community
node ranks compared to ad-hoc graph filters and parameters often encountered in the
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Table 1 Details of communities we experiment on

Community Graph Nodes Edges Members

amazon0 Amazon 554,789 3,577,450 280,507

amazon1 Amazon 554,789 3,57,7450 64,915

amazon2 Amazon 554,789 3,577,450 17,966

citeseer0 Citeseer 3327 9464 596

citeseer1 Citeseer 3327 9464 668

citeseer2 Citeseer 3327 9464 701

maven0 Maven 1,965,359 19,431,302 1687

maven1 Maven 1,965,359 19,431,302 1043

maven2 Maven 1,965,359 19,431,302 49,883

literature. We compare the following alternatives, all of which we integrated in the
pygrank Python library [18] alongside experiment setups:

• ppr a [3, 4, 25]. Personalized PageRank that performs stochastic random walks
with restart probabilities 1 − a at each step [29]. We test common values a ∈
{0.5, 0.85, 0.9, 0.99} and compute filters to numerical tolerance 10−9.

• hk k [8]. Heat kernels that form bandpass windows around desired propagation
hops k. We test common window centers k ∈ {2, 3, 5, 7}.

• select [this work]. Runtime selection of the best among ppr a and hk k by with-
holding a 10% validation subset of known community members. When graphs are
unknown during algorithm selection, this becomes a baseline for tuning.

• tune [this work]. Tuning a generalized graph filter with 40 parameters, where the
filter is obtainedwith non-zeroTaylor coefficientsh0 = 1and tunedh1, . . . , h40 via
Algorithm 1 towards maximizing measures of choice on the same 10% validation
subset as in select. Optimization absolute deviation tolerance is set to ε = 10−6.

• tuneLBFGSB [ablation study]. A variation of tune that substitutes our tuning algo-
rithm with the L-BFGS-B optimizer [7] provided by the scipy library [31] with
default parameters and 10−6 percentage decrease on the evaluation function as a
stropping criterion to make sure that tuning does not stop early. This is a popular
optimizer still used for parameter search [30] and approximates Neuton’s method
while limiting the number of computations to only first-order gradients. Experi-
ments with the Nelder-Mead optimizer yielded similar or worse results that we do
not report due to space constraints.

5 Experiment Results

Tables2 and 3 present the quality of community node ranking across experiment
setups in terms of AUC and NDCG respectively. Before exploring graph filter selec-
tion, we verify that individual ad-hoc filter efficacy varies across communities and
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training-test splits. Indeed, no explored filter outperforms the rest in all experiments.
For instance, ppr0.99 is often the best in Amazon communities, but also the worst
in Maven communities, where it lags behind others up to 0.035 AUC. Runtime filter
selection would be useful as long as it lags less behind.

Choosing between ad-hoc filters with our validation strategy does not always
retrieve the best-performing ones.We attribute this behavior to fewmissing examples
still impacting the ideal filter propagation weights needed for high-quality node
ranking. Withholding fewer nodes could degrade validation robustness and future
research could investigate new mechanisms to improve generalization. For the time
being, selection of best among existing alternatives at runtime chooses the best filters
in 31/54 settings. But, even when this scheme fails to identify the best filter, it often
retrieves near-best ones that at worst lag behind only by 0.011 in terms of AUC or
NDCG, where this gap usually shrinks to 0.001.

Parameter tuning with Algorithm 1 outperforms all ad-hoc filters in 40/54 exper-
iment settings. This induces up to 0.010 AUC and 0.033 NDCG improvements,
indicating that it manages to discover nuanced notions of structural proximity. It lags
behind by at worst 0.007 on account of either measure, and often bymuch less. Com-
pared to selecting among filters, tuning yields better evaluation outcomes in 49/54
of experiment settings. As such, we recommend it as an out-of-the-box solution for
community node ranking in new graphs, especially if structural characteristics corre-
lating to the formation of communities are not known beforehand. Finally, comparing
our optimization algorithm to L-BFGS-B, the latter induces marginal improvements
in the Citeseer graph, but falls significantly behind -even compared to filter selection-
in the Amazon and Maven graphs. This corroborates the need for retaining a wide
parameter search space.

In relation to applying our methodology, we experimented on communities with
enough examplemembers to achieve a robust evaluationwhen randomlywithholding
10% of them. Fewer known members may not yield robust validation strategies and
we hereby caution against blindly applying our methodology when too fewmembers
are known. In principle, we expect our approach to work well -and therefore be
applicable on- community node ranking based on at least the same number of known
members (at least 50) as in our experiments.

As evidence that tuning discovers non-trivial graph propagation schemes, Fig. 2
shows the first 41 parameters of high-AUC filters for citeseer0 with 30% known
members. There, tuning discovers a different propagation strategy than ad-hoc filters,
which subsequentlymanages to (slightly) improve the best filter inTable2.Moreover,
Fig. 3 shows that tuning is tailored not only to communities but even to specific sets
of example nodes, yielding drastically different filters for the same communities.
Given that tuned graph filters generally outperform others, this finding corroborates
our hypothesis that filters should be selected at runtime tomatch the characteristics of
data they are about to process. Finally, filter differences between different fractions
of community examples support our practice of withholding only a small fraction of
validation nodes.
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Fig. 2 Parameters hi of filters with high AUC on citeseer0 with 30% examples

Fig. 3 Parameters tuned on citeseer0 and citeseer1 with 10 and 20% examples

6 Conclusions and Future Work

This work introduces a runtime graph filter selection scheme for community node
ranking based on known member nodes. Selection involves either choosing between
promisingfilters or tuning theparameters of a generalizedfilter form.For the latter,we
introduced a novel algorithm that meshes parts of previous alternatives to satisfy both
scalability and a wide parameter search breadth needed by graph filters. We verified
the efficacy of our approach with experiments across real-world graph communities,
where we found that, given enough example community members to satisfy robust
evaluation by withholding a few of them, our methodology (especially tuning) yields
filters with similar or better AUC and NDCG than alternatives. Thus, we recommend
its adoption in practice.

In the future, we are interested in experimenting on more graphs, improving our
tuning algorithm, and theoretically probing its optimality. More robust evaluation
could also be devised to autotune from fewer known community members.

Acknowledgements This work was partially funded by the European Commission under contract
number H2020-951911 AI4Media.
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Dynamic Local Community Detection
with Anchors

Konstantinos Christopoulos, Georgia Baltsou, and Konstantinos Tsichlas

Abstract Community detection is a challenging research problem, especially in
dynamic networks, since in this case communities cannot remain stable as they
evolve. In evolving networks new communities may emerge and existing communi-
ties may disappear, grow or shrink. There are many cases where someone is more
interested in the evolution of a particular community, to which an important node
belongs, rather than in the global partitioning of a dynamic network. However, due
to the drifting problem where one community can evolve into a completely different
one, it is difficult to track the evolution of communities. Our aim is to identify the
community that contains a node of particular importance, called anchor, and its evo-
lution over time. The framework we propose circumvents the identity problem by
allowing the anchor to define the core of the relevant community partially or fully.
Preliminary experiments with synthetic datasets demonstrate the positive aspects of
the proposed framework in identifying communities with high accuracy.

Keywords Local community detection · Networks · Dynamic · Anchor

1 Introduction

Networks are used to represent entities and their relations for systems of almost
any domain like biology, society, transportation etc. In such systems, there is a
huge amount of data that is constantly generated. Community detection constitutes
an important task of network analysis. It’s aim is to uncover groups of densely
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connected entities called communities. Most of the existing literature is concerned
with the global community detection problem, i.e. a whole network’s division into
communities. However, in many cases we are interested only on the communities
around a few particular nodes. For this reason, local community detection has lately
attracted scientists’ interest. Consequently, there are different cases where global
approach is preferred over the local and vice versa. Generally, local community
detection is more suitable for discovering the communities for nodes of interest
on complex networks with low computational cost. Most existing work on com-
munity detection problems is on static networks. Static networks do not change
their structure (nodes and edges) over time. However, most real-world networks
change rapidly, and sometimes relationships are established only instantaneously.
Networks that are time evolving are called dynamic or temporal. Moreover, with
the rapid growth of the internet and its applications, real-world network datasets
are extremely large, making it unreasonable to process them in their entirety as it
must be done in the case of global community detection. One way to model such
rapidly changing networks is by assuming that updates/actions1 come in a stream-
ing fashion. This means that in each time instance one update is performed on the
network. In this sense, time is defined with respect to these updates and the life
span of an edge is defined by the updates between its insertion and its removal
from the graph [2, 9]—that is, we use transaction time as our main notion of
time.

In the present work, we focus on the detection of local communities of particular
nodes in temporally evolving networks by revising the theoretical framework of [1]
and providing preliminary experimental results that verify its effectiveness. More
specifically, our goal is to uncover the community evolution of a node of particular
interest, called anchor. The importance of this node for the evolving community is
considered external knowledge, that is, knowledge that cannot be inferred from the
structure of the network. This node defines the evolving community and functions
as an anchor for the community circumventing in this way the identity problem. As
an example, one can think of a football team community in a social network. This
community evolves since new fans may connect or existing fans may stop supporting
the team. However, the core fans (e.g., ultras) of the team are more stable and in some
sense behave as an anchor for this community.

1.1 Contributions

Our present work focuses on the identification of the community of a specific node
called anchor, which is assumed to be of particular importance to this community
based on external knowledge in temporal networks. To achieve this, we propose a
multi-step framework that firstly applies a static algorithm to discover the initial

1 We use the terms updates and actions interchangeably to refer to a small change in the network,
such as edge insertion or/and deletion.
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anchor’s community and then for each update “near” the anchor its community is
updated. We experimentally show the promise of the suggested framework when
compared to other methods in synthetic datasets. Our contribution is twofold:

• From a modeling perspective, our contribution lies in the introduction of the
notion of the anchor node in the local community detection problem in time evolv-
ing networks.

• From an algorithmic perspective, a general multi-step framework is suggested
to be used in order to uncover stable communities of an important node in time
evolving networks.

The remaining sections are organized as follows. In Sect. 2, we review the litera-
ture on local community detection in dynamic networks. The proposed framework is
described in Sect. 3. In Sect. 4, we present experimental results illustrating our algo-
rithmic framework. Finally,we discuss future expansions of the suggested framework
and conclude in Sect. 5.

2 Related Work

Local community detection, which is also known as the seed set expansion problem,
has attracted the attention of researchers as it is very common to process only a small
part of the network, either because of its large size or because it is dynamic or someone
might be interested in focusing on a specific part of the network. Consequently, there
have been many different approaches proposed. However, the literature in dynamic
networks is much smaller when compared to the case of static networks. In the
following, we discuss local community detection algorithms that are closely related
to our work, i.e. in dynamic networks processed in a streaming fashion

In [14] the authors adopt the static L-metric approach [3] in order to find dynamic
communities in an incremental way. L-metric is a measure based on the assumption
that a community has fewer connections to nodes outside of this community. At
each snapshot communities are uncovered using information from previous snap-
shots and at the end communities found in different snapshots are matched based on
their similarity (L-metric). Experiments showed that the method resulted in mean-
ingful communities. In addition, a dynamic seed set expansion method is proposed
in [16, 17] where the authors suggest updating the fitness score of each snapshot
incrementally. In order to keep a community centered around the seed, their method
ensures that the order of fitness scores remains monotonically increasing by tracking
the order of nodes added. Experiments showed that the suggested method is quite
fast and the performance is better when low-latency updates are required. Further-
more, in [4] a method called PHASR to find the temporal community with the lowest
conductance is proposed. This work aims to find communities with stable mem-
bership over time. Experiments showed that the suggested method has low runtime
and achieves to find high quality communities. Moreover, the authors of [7] use a
metric called local fitness to firstly find the starting nodes of a community and run
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a static algorithm to define the communities in the first snapshot. In the following
snapshots, they use a node contribution metric to incrementally reveal communities.
Their experiments showed that the proposed method uncovered communities with
high accuracy. Finally, to the best of our knowledge, two methods, [10, 15], have
been proposed for local community detection in graph streams. In [10], the CoEuS
algorithm is suggested. The constraint of this method lies in the fact that only a sin-
gle access to the stream is possible and the working memory is limited. Experiments
on networks showed that the algorithm is able to discover local communities with
high accuracy. More recently, the algorithm called SCDAC that is suggested in [15],
seeks an optimal community on the subgraph intercepted by the streaming model.
Experiments showed that SCDAC is more effective and efficient than CoEuS in real
networks.

3 Dynamic Local Community Detection with Anchors

3.1 Preliminaries and Problem Formulation

LetG = (V, Et ) be a dynamic networkwhich is composed of a node setV and a set of
time-stamped edges Et . Et represents interactions among the nodes at time t , where
t ∈ N, generated by an interaction streaming source S. The interaction streaming
source S may produce new interactions between nodes which can be either already
part of the network or new ones. In particular, it forms a sequence of actions in which
interactions flow in streams over time. In this paper, we assume that an action may
be an edge insertion or an edge deletion. As a result, the corresponding network’s
communities also change as the network evolves. Dynamic community detection is
the process by which we can observe the evolution of the network’s communities.

Given a node A called anchor, the network G and an interaction generator S, our
aim is to discover the community C which includes A. We assume that the anchor
is of particular importance for the community (external knowledge) it belongs and
thus, it operates as a reference point for this community, i.e., anchor defines in a
sense the community it belongs to.

In order tominimize the avalanche effect2 [13], we suggest to limit the community
updating only to an influence range around the anchor. The influence range, R, defines
the radius of the ball centered around the anchor in each time instance of the evolving
network. In this ball, all nodes with maximum length of their shortest path to the
anchor ≤ R are contained. For example, an influence range equal to 1 means that
we should update the community structure considering both the anchor as well as its
adjacent nodes. Generally, a high influence range value would increase the process
demands, since a larger network area would be examined.

2 The avalanche effect corresponds to the phenomenon where communities can experience substan-
tial drifts compared to what a static algorithm computes in each time instance.
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Besides, with a view to discover the most stable anchor’s community, we can
use a node rewarding method. That is, for each update, we suggest to reward the
edges in the anchor’s influence range by a weight increase. In our setting, we use
three different rewarding methods. Assuming that R is the influence range and d the
distance between the anchor and a node, we define the rewardingmethods as follows:

1. Dynamic reward 1: w = 2R − 2(d − 1). For instance, if R = 3, the edges of the
anchor to its adjacent nodes get a weight ofw = 6, as d = 1. Consequently, all the
edges of the anchor’s adjacent nodes to their adjacent nodes, where the distance
from anchor is d = 2, get a weight of w = 4, and so on until d = R.

2. Dynamic reward 2:w = RR/d . Similar to the previews one, if R = 3, the edges of
the anchor to its adjacent nodes get a weight of w = 27, as d = 1. Consequently,
all the edges of the anchor’s adjacent nodes to their adjacent nodes, where the
distance from anchor is d = 2, get a weight of w = √

27, and so on until d = R.
3. Dynamic reward 3: this is a rewarding system that takes into account in a very

simple manner the history of an edge.When a new edge arrives that its nodes have
minimumdistanced from the anchor,we initially set itsweight tow = R − d + 1.
Then, if the edge persists after a batch of y actions we assign an extra unit reward
to it. y is a user-determined parameter. If an edge is reinserted and lies in the
influence range of the anchor then the reward that receives is estimated by the
ratio of edge appearances to total number of actions (edge insertion or deletion)
in the influence range.

The quality of a community C can be measured by different quality metrics.
We use three such metrics in order to objectively evaluate the performance of our
suggested framework. The first quality metric is fmonc, which is defined as the ratio
of the sum of the degrees of internal nodes to other nodes within the community
divided by the total sum of the degrees of nodes in C [8]:

f (C)monc = 2kCin + 1

(2kCin + kCout)α
,

where kCin and kCout are the total internal and external degrees of the nodes of com-
munity C , and α is a positive real-valued parameter, controlling the size of the
communities. The second quality metric we choose to use is LW P which is the ratio
of interior edges to edges leaving community C defined in [11] as:

LW P(C) = kCin
kCout

.

The third community quality metric that we use is conductance as defined in [6].
For community C and its complement C = V \C conductance is defined as:

cond(C) = c(C)

min(l(C, V ), (C, V ))
,
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Table 1 Community evolution depending on the fitness scores order

Sequence 0 1 2 ... n

Nodes u0 u1 u2 ... un
Interior edges K0,in K1,in K2,in ... Kn,in

External edges K0,out K1,out K2,out ... Kn,out

Fitness score f0 f1 f2 ... fn

where c(C) is equal to cut (C), which is defined as the number of edges between
nodes in C and nodes in its complement C . l(A, B) is the number of edges between
nodes in A and nodes in B

3.2 Proposed Framework

We assume network G with node set V and edge set E where edges are unweighted.
Our method is divided into five steps. The first two are the initialization and the rest
the streaming process.

Initialization: The first step of the suggested framework, is to apply weights
on the edges according to the anchors influence range. More precisely, we apply
a weighting scheme that rewards the edges being closer to the anchor. The depth
till which edges are rewarded starting from the anchor is predefined by the chosen
influence range R.

The second step of our proposed framework is the application of a greedy static
algorithm [8] on the initial state of network G, at timestamp defined as t = 0. At
this timestamp, the community C contains only the anchor (u0), and then new nodes
are iteratively added. A node is added to C (e.g. u1) only if the fitness score (e.g.
f (C)monc) is increased ( f0 < f1). The static algorithm terminates when the fitness
score can not be increased anymore. At the end of the second step, a community
evolution sequence3 is created and interior(Kn,in)/external(Kn,out ) community edges
are also recorded (i.e. the sequence in which each node entered the community, see
Table1).

Streaming process: In the third step of the process, a stream of network updates
i is applied. These updates can be either edge insertions or deletions. If i occurs in
the anchors’ influence range: (1) influence range has to be recomputed and (2) edge
weights have to be updated considering a rewardingmethod.Consequently, if i occurs
in the anchor’s community C or the updated weights affects it, then the C quality
measure has to be updated. More precisely, the measure has to be recalculated and if
after this recalculation the fitness scores are not anymore in an increasing order, then
the node that disrupts this order must be removed and interior/border edges must be

3 If the quality metric is Conductance then the fitness score must be decreased and so, the fitness
scores should be in a decreasing order.
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Fig. 1 The proposed approach for dynamic local community detection with anchors

modified as well. Then, the same procedure is applied for community nodes that are
neighbors of the removed node, and repeat as long as there are neighbors that are not
affected by these changes. Even if i does not occur in the anchors’ influence range,
we should still check the anchors’ community because is may extended beyond the
influence range. In the fourth step, after fixed-size batches of actions: (1) we check if
the sequence of fitness scores is in increasing order and if not, we remove all nodes
from the sequence from the leftmost violation up to end and (2) we apply the static
algorithm on the updated community of the anchor. The number of actions in each
batch is calculated as the ratio of the total number of actions to a user-defined constant
value x . That is, the static algorithm will run no more than x times. We need to note
here that the more times we choose to run the static algorithm, the more accurate is
the outcome of the process. However, the computational cost is higher. Thus, after
experimental evaluation, we conclude that the value of the constant should be equal
to 20. Figure1 depicts the steps of the proposed framework.

4 Experiment Design

4.1 Datasets

The synthetic datasets we use in our experiments are generated by RDyn [12], an
approach capable of generating dynamic networks that respect well-known real-
world network properties along with time-dependent ground truth communities with
adjustable quality, i.e., allowing both merging and splitting communities. The gen-
erator contains two significant, user-defined, parameters. The first is the number of
nodes of the produced dynamic network and the second is the number of iterations.
Each iteration consist of a batch of actions (edge insertion/deletion) and the number
of these actions are not necessary equal in every iteration. The first iteration of each
synthetic dataset is utilized for the purpose of the creation of the initial graph. So
that, in each dataset the actions of first iteration are not taken into consideration to the
total amount of actions. In our experiments, we use three different datasets produced
by the RDyn generator. The basic characteristics of these datasets are described in
Table2.
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Table 2 Synthetic datasets with number of nodes, iterations, initial/final edges and actions

Dataset Nodes Iterations Initial edges Final edges Actions

SD1 100 100 99 478 6268

SD2 500 1000 495 1648 40,939

SD3 5000 1000 4917 25,590 246,191

4.2 Evaluation Metrics

To evaluate our proposed framework, we compare the results of our community
detection with the ground truth communities produced by the synthetic dataset gen-
erator. However, an eligible (to some extent) argument against using the ground truth
communities of the synthetic generator is that the discovered community is affected
by the anchor. To this end, on the one hand we tried to setup the generator so that
communities are not so intertwined while on the other hand we are more interested
in comparing the methods between each other rather than looking at values of the
metrics w.r.t. the ground truth. The evaluation metrics that are suitable for our pur-
poses are precision, recall, and the F1 score. Precision is the ratio of elements found
correctly to the total number of elements found. Recall is the proportion of relevant
elements that were successfully retrieved. The F1 score is the harmonic mean of
precision and recall [5]. The harmonic mean is used instead of the simple average
because in this way the extreme values are penalised.

4.3 Experiment Results

In our experiments we use three different quality metrics, fmonc, Conductance and
LW P . The node we use as an anchor for each experiment is determined based on
its degree centrality. That is, in the first dataset we use a node with low degree as
an anchor, in the second we choose two nodes with medium degree, and in the third
we use a node with high degree. In the experiments with the first dataset, we use the
three quality metrics, while for the others we use the fmonc since it provides the best
results.We choose the user-defined parameter for fmonc to be a = 1 and the influence
range equal to 2.

Regarding the first synthetic graph, Figs. 2, 3 and 4 shows the results of the three
quality metrics. The values on the x-axis represents the number of actions. The
graph generator provides the graph partition after one or more iterations, where in
each iteration the number of actions are not equal. As a consequence, each interval on
the x-axis consist of the same number of iterations but different number of actions.
The vertical lines on the x-axis shows the events (merge or split) that occurred in the
ground truth communities, right after an action. One of these communities contains
our anchor.
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Fig. 2 Results using the synthetic dataset with 100 nodes and conductance as a quality metric
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Fig. 3 Results using the synthetic dataset with 100 nodes and LWP as a quality metric
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Fig. 4 Results using the synthetic dataset with 100 nodes and fmonc as a quality metric
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Analyzing the experimental results, we find that all three dynamic methods with
rewards (Dynamic Reward 1, Dynamic Reward 2, and Dynamic Reward 3) out-
perform dynamic method without rewards [17] (Dynamic 1). More precisely, the
critical point of community evolution is the time when the first event (merge) occurs.
Before this point, recall and precision were very low. There is an explosion in the
recall metric and as a result, an improvement in the F1 score. In addition, between
actions 4969 and 5786, the static algorithm is activated and as a consequence, the
nodes affiliation in anchor’s community is nearly the same with those in ground truth
community. This is true for all quality metrics and for all dynamic methods except
for Dynamic 1. For the latter method, we observe large variations in recall values,
which is reflected in the F1 score. In more detail, looking carefully in dataset we can
observe the following: (1) just before the action 5700, few edges (not related directly
to anchor) that belong to the influence range of our community are inserted and at
the same time the static algorithm is activated. As a consequence, our methods using
conductance as a quality metric, take advantage of rewards and remain stable with
high recall values. On the contrary, the same is not true for Dynamic 1. (2) In Fig. 3
using LWP as a quality metric, we notice the same outcome. Here, our reference
point is the action 5896. Again, before this action we observe few edge insertions
in the influence range with similar results as before. (3) On the other hand, for both
quality metrics the recall values of Dynamic1 method rises between actions 5928
and 6091. Here, we notice an edge insertion between our anchor an its adjacent node.
This action helps the method without rewards to reach the high recall values of other
methods. Lastly, fmonc provides more stable and better results but still our methods
outperform Dynamic1.

Next, we consider the second synthetic graph containing 500 nodes. Figures5
and 6 shows the results of the three evaluation metrics using the fmonc. Here we
run the experiment twice with two different anchors. In Fig. 5 we see 10 events.
In the first actions, 6 events take place, which affect the recall and precision of
each method. More specifically, all dynamic methods have extreme ups and downs,
and Dynamic1 being the most affected. After these events, it is clear to see that
our methods outperform Dynamic 1. The small time interval in which Dynamic 1
outperform the other methods is due to an edge deletion just before action 37,154,
which belong to the influence range. In Fig. 6, a different anchor was chosen to show
the dominance of the rewarding methods. In particular, we observe six events that
cause negative fluctuations, mainly for Dynamic 1 method. After the fourth event,
Dynamic1 is overlapped by Dynamic reward 3 and at the end by Dynamic reward 2.

Finally, Fig. 7 shows the results of the generated graph with 5000 nodes. Here, a
split event take place at the beginning, which affects the performance of all methods.
Nevertheless, not long after the third event and in combination with the activation of
the static algorithm, Dynamic reward1 and reward 2 have a significant improvement
in recall and precision values, which has a consistently positive impact on the F1
score.On the other hand,Dynamic 1 andDynamic reward 3 are almost congruent for a
long time, but after action 218,895 and until the end, the latter method performsmuch
better. For the other two rewarding methods, it is obvious that recall and precision
reflect the positive result of F1-Score.
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Fig. 5 Results using the synthetic dataset with 500 nodes and fmonc as a quality metric
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Fig. 6 Results using the synthetic dataset with 500 nodes and fmonc as a quality metric
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Fig. 7 Results using the synthetic dataset with 5000 nodes and fmonc as a quality metric
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The fluctuations we observe could be explained in two ways. First of all, many
actions in the influence range of anchor are occurred. For instance, after a missing of
an edge with extra reward the community coherence breaks, which reflects on quality
metrics. Secondly, as mentioned previously, due to the fact that the static algorithm
is used after a fixed batch of actions and not whenever the graph generator provides
the ground truth communities, this have an effect on our outcome.

5 Conclusions

Dynamic local community detection constitutes a research field that has drawn sci-
entists’ interest the last years. In the present work, we focus on the discovery of
local communities that contain important nodes termed anchors. Our aim is not only
to identify such communities but also track their evolution over time as new edge
insertions and/or deletions occur in a network. To achieve this, we suggest a multi-
step framework that firstly applies a static algorithm to discover the initial anchor’s
community and then for each incoming edge change in the influence range of the
anchor, we update the anchor’s community. Influence range is used to minimize
the avalanche effect. With a view to discover the most stable anchor’s community,
we suggest using a node rewarding method. That is, for each update, we suggest
to reward the stable edges in the anchor’s influence range by a weight increase. A
preliminary experimental evaluation of the proposed framework is conducted using
three different synthetic datasets. We also used three proposed rewarding methods
and compared the results with the case where no rewarding method is used. Our
findings indicate that all three dynamic methods with rewards (Dynamic reward1,
Dynamic reward2 and Dynamic reward3) outperform the dynamic method without
rewards in terms of recall, precision and F1 score.

This work contains preliminary results and we intend to extend these results along
the following axis: 1. Extended experimental evaluation of more rewarding schemes
that take into account the history of edges. 2. Experimentation on real temporal
networks. 3. Elaborate tuning of the various parameter of the rewarding schemes
and 4. Efficiency comparison between different rewarding schemes since the more
complicated a scheme is the more time it needs per action.
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Abstract Most popular algorithms for community detection in graphs have one
serious drawback, namely, they are heuristic-based and in many cases are unable
to find a near-optimal solution. Moreover, their results tend to exhibit significant
volatility. These issues might be solved by a proper initialization of such algorithms
with some carefully chosen partition of nodes. In this paper, we investigate the impact
of such initialization applied to the two most commonly used community detection
algorithms: Louvain and Leiden. We use a partition obtained by embedding the
nodes of the graph into somehighdimensional space of real numbers and then running
a clustering algorithm on this latent representation. We show that this procedure
significantly improves the results. Proper embedding filters unnecessary information
while retaining the proximity of nodes belonging to the same community. As a
result, clustering algorithms ran on these embeddings merge nodes only when they
are similar with a high degree of certainty, resulting in a stable and effective initial
partition.
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1 Introduction

The main trait of most empirical complex networks is the fact that they tend to dis-
play a modular organization where one can easily separate sets of nodes (subgraphs)
with considerably larger density of edges between nodes in such sets than between
two different sets. This property is widely referred to as a community structure [8].
Finding such partitions is interesting not only from a theoretical perspective. Indeed,
often communities that are extracted, or nodes inside them, exhibit different proper-
ties than the entire graph, so identifying them might give a meaningful insight into
the data. However, in most cases such underlying structure is unknown beforehand,
thus we must use an unsupervised algorithm that is able to detect it. There are many
existing solutions; the most common ones are built around a heuristic optimization
of some carefully chosen score function.

Communities are somewhat elusive; without the full knowledge about the graph
generating process (which is obviously the case for most real-world networks) it
is not clear what score function or measure should be used to assess them and,
consequently, what algorithm should be used to detect them, especially since no
algorithm can uniquely solve community detection task [25]. This problem is widely
discussed, see, for example, [19, 21, 34], and plenty of different score functions were
proposed up to them. The modularity function [23] is possibly the most often used
one.

Modularity measures the difference between the number of the edges within
groups induced by a given partitionA and the expected number of such edges given
by an appropriately selected null-model, usuallyChung-Lu randomgraphmodel [1].
For a graphG = (V, E) and a given partitionA = {A1, A2, . . . , A�}, the modularity
function is defined as follows:

qG(A) = 1

|E |
∑

Ai∈A

(
eG(Ai ) − EG ′∼G(d)[eG ′(Ai )]

)
, (1)

where |E | is the number of edges in G, eG(Ai ) = |{v jvk ∈ E : v j , vk ∈ Ai }| is the
number of edges in the subgraph of G induced by set Ai , and EG ′∼G(d)[eG ′(Ai )] is
the corresponding expectation in the null-model.

However, optimizingmodularity function is aNP-hard problem [5]; thus, basically
all proposed solutions are heuristic in nature. One of the most popular, fastest, and
best performing [18] ones is the Louvain algorithm [4]. Its core idea is simple yet
effective, it is a two-step technique: it first moves each node to the community that
provides the largest increase of the score function, ensuring that the score will be
locally optimal; during the second step, it aggregates the communities into super-
nodes. Then, both phases are repeated until there is no improvement of the score
function. By default, theLouvain algorithm starts from a singleton partition inwhich
each node belongs to its own community but it is possible to initialize the algorithm
with a preexisting partitioning.
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Despite the fact that Louvain is a great algorithm, it has some serious and known
drawbacks. First, the obtained results are heavily stochastic, that is, each run of the
algorithm on the same network may lead to the vastly different partitions. Moreover,
it may create a weakly connected or even internally disconnected communities [32].
These problems are causedby two factors, both inherent to the nature of the algorithm.
It is a greedy algorithm; sometimes, especially on early iterations, nodes might be
added to communities that they should not belong to because the algorithm finds
the local best solution without considering the broader structure of the graph. Then,
during the second phase, it merges the community into a supernode which makes it
impossible to backtrack and fix these bad early connections.

This shortcoming might be addressed in two manners; either by allowing the
algorithm to backtrack and refine the created communities in each step, which was
proposed by Leiden algorithm [32] or by ensuring that the initial partitioning is
stable and contains the nodes that certainly belong to the same community, as in
ECG (Ensemble Clustering algorithm for Graphs) algorithm [27].

The latter idea is the center of this work, namely, we want to propose a method of
community detection based on the modularity optimization with a spectral clustering
initialization step. The procedure starts with an embedding of the nodes of the graph
in the high dimensional space of real numbers, then the clustering algorithm is run
on the obtained representation. The algorithm is fine-tuned to obtain many small
clusters where only nodes that are very close in the latent space are merged together.
As a result, we obtain a stable partition which is finally used to initialize the Louvain
algorithm. In the same manner, such initial partition might also be used to improve
other greedy optimization algorithms such as the Leiden one. In the experiments
presented in this paper, we will test both of them but when describing the reasoning
behind the proposed method we will use the Louvain algorithm as an example.

Our motivation is simple; we believe that carefully selected embeddings preserve
the proximity of nodes belonging to the same community and clearly separate them
from the other ones, reducing the chance of misguided connections at the early stages
of the algorithm. Having said that, relying only on the embedded representation is
causing problems on its own; by their nature (typically local), embeddings preserve
some properties of the nodes but filter some other ones, resulting in the inherent
information loss that might induce a significant bias if we decide to run the clustering
algorithm only on the embedded data and use it as the final partition. Therefore, the
most promising approach that we propose in this paper is to combine both methods.

The goal of this paper is to test this premise. In order to do this, we perform an
experiment aimed to answer the following four questions:

(1) How the proposed method performs compared to the other extensions of the
Louvain algorithm (Leiden and ECG)?

(2) How stable is the proposed method? How volatile are the results compared to
the Louvain algorithm?

(3) Is this method able to improve the Leiden algorithm?
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(4) Which embedding methods and clustering algorithms give the best results?What
is the relation between the graph’s properties and the way how it is embedded
into the latent space?

The rest of the paper is organized as follows. In Sect. 2 we further describe the
proposed method and motivate it. Sections3 and 4 introduce an experiment designed
to test the hypothesis and, respectively, present obtained results. Finally, Sect. 5 pro-
vides some concluding remarks.

2 Method Description

Let G = (V, E) be a graph on the set of n nodes V = {v1, v2, . . . , vn} and the set of
m edges E = {e1, e2, . . . , em}. In order to find the partition A = {A1, A2, . . . , A�}
of V that tries to maximize the modularity function qG(A), we perform the following
three steps:

Step 1: Find the embedding function E : V → R
s which embeds each node of

graph G into a s-dimensional latent vector E(v) = {z1, z2, . . . , zs}, where s � n.
Step 2: Run the clustering algorithm on the obtained latent representation E to
get the partition C = {C1,C2, . . . ,Ck}. The goal is to use C as an initializing
partitioning for the Louvain (or Leiden) algorithm so the number of clusters k
should be significantly larger than the desired number of parts in the partition A:
k � �.
Step 3: Run the Louvain (or Leiden) algorithm on graph G using the partition C
as a starting point. The result of this procedure, partitionA, is the outcome of our
algorithm.

2.1 Motivation

First of all, let us discuss the reasons why one might want to use the embeddings
at all. One issue is a nature of graphs as data structures; they are discrete objects,
which reduces the number of possible approaches to the problem of community
detection. It basically forces one to use the heuristic-based approaches such as the
classical Louvain algorithm. On the other hand, embedded latent representation is
a vector of real numbers which creates new possibilities, mostly because there are
more algorithms designed for working with real numbers and they are often more
efficient [2]. Also, properly selected embeddings might be considered as a form of
“denoising” data; they retain only the properties of nodes that are important for the
task at hand, removing the remaining useless relations, resulting in a representation
of data that is significantly lower dimensional and possibly easier to cluster.

In the case of community detection algorithms these advantages are clearly visible.
Instead of greedily merging nodes into communities, we merge them when that



Community Detection Supported by Node … 225

are close in the latent space, ensuring that the connections are more stable (not
merely a result of a random enumerating). Indeed, equipped with a properly selected
embedding, nodes that are close in the latent space will almost surely be part of the
same community.

However, experimental results (see: [30]) show that using only an embedded rep-
resentation to obtain the desired partition is not enough. An obvious explanation
is a fact that embeddings are usually too reductive, that is, the representation gap
between the graph G and its latent representation E is too large. Indeed, embed-
dings preserve some proximity of nodes but remove other useful global information
that might be crucial to achieve a satisfactory result. Overcoming this issue is the
main reason why the proposed solution consists of two separated partitioning steps.
The reasoning is pretty straightforward: starting the Louvain with a visibly smaller
starting set of nodes in which most sensitive elements are already connected should
improve the results and decrease the volatility of the method. Similarly, it is expected
that these ideas will also improve the quality of the results obtained by the Leiden
algorithm—because of the additional refinement stage it gives a significantly better
results compared to Louvain algorithm but still it is a greedy algorithm with all the
inherent issues mentioned above.

Starting any of the two clustering algorithms from a properly generated initial
partition seems to be a good idea but there are two problematic issues that we need to
deal with: selection of the embedding E and selection of clustering algorithm. There
are plenty of different embedding methods to choose from (see, for example, [6,
9, 11, 17]), that measure the proximity between nodes in different manners, which
makes the selection of the algorithm a demanding task, often requiring a domain
expert knowledge or time-consuming experiments. One of the goals of this work is
to look at various embedding algorithms and test their behaviour in this particular
task in order to find the best solution to create a guidance for future users. We also
want to compare the results with divergence scores obtained by the CGE [12, 15]—
unsupervised framework created to compare and asses different embeddings. We
believe that this framework might become a useful tool, significantly simplifying the
selection process of a suitable embedding.

Similarly, finding a clustering algorithm for the first step might be challenging.
There are plenty of the well-known, efficient, and scalable algorithms; they might
result in vastly different behaviour of the initial partitioning. For example, density-
based algorithms will cluster only the points occupying the same densely connected
regions whereas the points in the sparsely inhabited areas will be considered as noise
and will not be assigned to any cluster. Thus, the initial partition C will contain
only the nodes which are almost surely the parts of the same communities, leaving
the more ambiguous nodes for the Louvain or Leiden algorithm. On the other
hand, distribution-based methods of clustering will return the probability of a node
belonging to each cluster, not a fixed assignment. As a result, one might fine-tune
the certainty of the partition C instead of leaving it to the algorithm. Obviously, it is
necessary to validate the described above intuitions which will be an important part
of the experiment described in the next section.
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3 Experiment Design

The main body of the experiment was written in Julia 1.7.0 programming language
with additional code and packages written in Python 3.7.10. The code for execu-
tion and analysis of the experiments is available on GitHub repository1 and so are
Jupyter notebooks with a more details and further result analysis.2 The experimen-
tal design was as follows. At the beginning, a comprehensive family of graphs
with various properties was generated using the ABCDe (Artificial Benchmark
for Community Detection) model [13, 16] and following parameter sweep: the
number of nodes n = 1000, exponents of the power-law distributions for com-
munity sizes β ∈ {1.1, 1.5, 1.9} and degree distributions γ ∈ {2.1, 2.5, 2.9}, com-
munity sizes cmin = 0.005n and cmax = 0.2n, the minimum degree δ ∈ {1, 2, 5},
the maximum degree � = √

n and, finally, we set the mixing parameter ξ ∈
{0.15, 0.25, 0.35, 0.5, 0.65, 0.75, 0.85} that controls the level of noise in the result-
ing graph. Detailed explanation on how these parameters impact the graph structure
is available in [13, 14, 16].

Louvain, Leiden, and ECG algorithms were each run 50 times for every given
graph in order to obtain the baseline for the comparison. Then, every graph was
embedded using the following algorithms taken from the PythonOpenNE3 package:
Locally Linear Embedding (LLE) [29], Laplacian Eigenmaps (LE) [3], deep-
Walk [26],node2vec [10],LINE [31],SDNE [33],GraRep [7] andHOPE [24]. For
each of the selected algorithms, we tested dimensions d ∈ {8, 16, 32, 64, 128, 256}.
To find the most suitable clustering algorithm and get the best initial partitioning
C , for every embedding E we tested the following three methods: k-means [20],
HDBSCAN [22] and Gaussian Mixture Model (GMM) [28]. Parameters of all the
embedding and clustering algorithms used in this experiment are further described in
the aforementioned accompanying Jupyter notebook. Finally, every partition C was
used as the initial partitioning for both Leiden and Louvain algorithm. To achieve
comparable results, both methods were run 50 times on every C .

Roughly 55,000 different embeddings were tested with more than 1,500,000 ini-
tial partitions. Experiments were performed on the machines with 32 Intel Xeon
Processors (Cascadelake) 2.30 GHZ vCPUs with 160GB RAM memory, 120GB
disk space and Ubuntu 20.04.1 operating system. Computations were run simulta-
neously on eight machines for five consecutive days, totalling in around 960 vCPU
hours.

1 https://github.com/bartoszpankratz/ECCD.
2 https://github.com/bartoszpankratz/ECCD/blob/main/Embedding-Clustering_Community_Dete
ction_Experiment.ipynb.
3 https://github.com/thunlp/OpenNE.

https://github.com/bartoszpankratz/ECCD
https://github.com/bartoszpankratz/ECCD/blob/main/Embedding-Clustering_Community_Detection_Experiment.ipynb
https://github.com/bartoszpankratz/ECCD/blob/main/Embedding-Clustering_Community_Detection_Experiment.ipynb
https://github.com/thunlp/OpenNE
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Fig. 1 Comparison of the
modularity function for a
single but representative set
of parameters: ξ = 0.5,
β = 1.5, γ = 2.5, and δ = 5

4 Results

Figure1 presents the results for one representative set of parameters: ξ = 0.5, β =
1.5, γ = 2.5, and δ = 5. As one can easily see, the results obtained by Louvain
after using a better initialization procedure are clearly improved. Both ECG and
EC–Louvain4 are able to improve over the vanilla Louvain. In some rare cases,
EC–Louvain is able to achieve performance similar to Leiden. But what is the most
interesting, adding the initial partitioning C to Leiden significantly improves its
quality and reduces the volatility.

The presented figure shows the results only for a single case; Table1 shows how
different values of ξ impact the performance of the algorithms. The relation here
is pretty obvious; ξ is a noise parameter, it controls the expected fraction of edges
between communities. As a result, with an increasing value of ξ one should expect
the modularity to decrease, but also relative better performance of the augmented
methods. We could see that EC–Louvain gives a relatively small improvement over
the baseline Louvain, but Leiden with initial partitioning is able to outclass the rest
of the algorithms with a large margin. Also it reduces the volatility to the negligible
levels. Interestingly, for ξ = 0.75 ECG gives worse results than Louvain; ECG
seems to be very sensitive to the graph’s parametrization. In some cases it performs
very well (see, for example, Fig. 1), but it can also be weaker than Louvain. In
comparison, it is never a case for the EC methods—in the worst case scenario, they
return the same value of the modularity as Louvain.

One can see similar pattern for other parameters of the ABCD model5: when
change of the parameter distorts the community structure of the graph, then the
advantage from using the augmented methods is more visible. However, in almost

4 EC stands for Embedding–Clustering and denotes the proposed extension of Louvain and
Leiden algorithms. If not otherwise stated, the results for the EC algorithm uses the best possible
initial partitioning C .
5 For details please refer to: https://github.com/bartoszpankratz/ECCD/blob/main/Embedding-
Clustering_Community_Detection_Experiment.ipynb.

https://github.com/bartoszpankratz/ECCD/blob/main/Embedding-Clustering_Community_Detection_Experiment.ipynb
https://github.com/bartoszpankratz/ECCD/blob/main/Embedding-Clustering_Community_Detection_Experiment.ipynb
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Table 1 Comparison of the algorithms for different values of ξ (β = 1.5, γ = 2.5, and δ = 5). Col-
umn Louvain (baseline) shows the average modularity obtained by this algorithm. Other columns
present the average difference between the results of each algorithm and Louvain. Standard devi-
ation is given in parenthesis

ξ Louvain
(baseline)

ECG Leiden EC–Louvain EC–Leiden

0.35 0.58132 0.00027 0.0029 0.00145 0.00302

(0.00502) (0.00019) (0.00042) (0.00237) (0.0)

0.5 0.45263 0.00907 0.01593 0.00596 0.0192

(0.00847) (0.00124) (0.00289) (0.00696) (0.0002)

0.75 0.30533 −0.01987 0.01955 0.00976 0.03096

(0.00357) (0.00279) (0.0029) (0.00448) (0.00206)

all casesEC–Louvain gives small tomediocre improvement, but EC–Leiden gives a
significant performance boost. Why is this happening? The answer is pretty straight-
forward and lies in the very nature of both algorithms, Louvain and Leiden.

As it was mentioned before, Louvain merges two nodes if such move maximizes
the modularity locally, without any broader context. The initial partitioning C was
designed to overcome this issue, guaranteeing the stability of the first step of the
algorithm. But this problem is prevailing in later steps until the algorithm reaches
the stage when the communities are large enough. As a result, the impact of the
initial “good” partitioning is minimized. This problem might be fixed by repeating
the embedding process after every iteration up to the moment when the algorithm
reaches its stable stage but obviously such procedure would be unfeasible for large
graphs as it is very time consuming.

On the other hand, refinement stage in Leiden solves this issue. After every
iteration, when communities are created in the same manner as in Louvain, they are
split and recombined into new, better partitions, ensuring that all nodes are optimally
assigned in the context of the given subgraph induced by a single community. But
still, Leiden backtracks only in a limited scope; early on, when initialized with a
singleton partition, it might still merge nodes that should not belong to the same
community and that will be irreversible. By initializing it with a fine-tuned initial
partitioning C we ensure that this will not happen.

The last question remaining concerns the way how one should design the proce-
dure. Clearly, proper selection of embedding and clustering gives a significant boost
of the performance of Leiden (and to the lesser extend Louvain), but how should
one chooses them?

Figure2 shows the relation between the modularity and the CGE scores obtained
by the unsupervised framework for comparing graph embeddings [12, 15], both local
and global. Results show some interesting behavior. Let is first focus on the EC–
Louvain. As can be seen on the twoupper plots, the relation between the quality of the
embedding and the achieved modularity is pretty insignificant, basically any kind of
the reasonable embedding could give us a similar performance. These observations
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Fig. 2 Comparison of themodularity function and global/local CGE scores for different embedding
algorithms and a single set of parameters: ξ = 0.5, β = 1.5, γ = 2.5, and δ = 5

are in line with previous results showing that the inherent volatility of Louvain
decreases the relevance of the initial partitioning C . However, it is not a case for
EC–Leiden. We could clearly see that there is a strong relation between the quality
of the embedding and the finalmodularity value.Moreover, plots show that node2vec
is usually the best performing embedding algorithm. It is quite intuitive; it represents
the nodes through the use of randomwalks and in the case of the community detection
it is a natural form of representing proximities—nodes that are parts of the same
communities are likely to be present close to each other in the associated random
walks.

Let us now briefly comment on the performance of different clustering algorithms.
HDBSCANwas usually the best one,whichwas somewhat foreseeable—this density
based algorithm clusters nodes only when they are certainly a part of the same com-
munity. Figure3 shows the result for an example but representative parametrization.
Further analysis of the impact of parametrization of both embeddings and clustering
algorithms is available in the accompanying Jupyter notebook.

However, presented method have one serious limitation—the execution time of
augmented algorithms is significantly (about two orders of magnitude) higher than
the execution time of the baseline methods, which is a directly caused by time-
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Fig. 3 Comparison of the
modularity function for a
graph embedded with
node2vec into a
16-dimensional space and
one set of parameters:
ξ = 0.5, β = 1.5, γ = 2.5,
and δ = 5

complexity of the embedding algorithms. At the moment, the method presented in
this paper might be somewhat infeasible for some applications, but it shows how the
community detection algorithms could be further refined in order to obtain better
and more stable solutions.

5 Final Remarks

The results presented in this paper show that the usage of the initial partitioning
C obtained by clustering of nodes in graph embeddings improves the results of the
popular community detection algorithms. In the case of Louvain the impact is rather
small, almost negligible, but the initial partitioning of Leiden significantly improves
its performance and reduce the volatility.We also provided results showing that there
are some certain classes of embeddings (such as node2vec) and clustering algorithms
(such as HDB-SCAN) that are the most suitable for this particular task.6
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Modeling Node Exposure for Community
Detection in Networks

Sameh Othman, Johannes Schulz, Marco Baity-Jesi, and Caterina De Bacco

Abstract In community detection, datasets often suffer a sampling bias for which
nodes which would normally have a high affinity appear to have zero affinity. This
happens for example when two affine users of a social network were not exposed to
one another. Community detection on this kind of data suffers then from considering
affine nodes as not affine. To solve this problem, we explicitly model the (non-)
exposure mechanism in a Bayesian community detection framework, by introducing
a set of additional hidden variables. Compared to approaches which do not model
exposure, our method is able to better reconstruct the input graph, while maintaining
a similar performance in recovering communities. Importantly, it allows to estimate
the probability that two nodes have been exposed, a possibility not available with
standard models.

Keywords Networks · Community detection · Latent variable models

1 Introduction

Modeling the mechanisms of how nodes interact in networks is a relevant problem
in many applications. In social networks, we observe a set of interactions between
people, and one can use this information to cluster them into communities based
on some notion of similarity [7]. Broadly speaking, the connections between users
can be used to infer users’ membership, and this in turns determines the likelihood
that a pair of users interacts. Real networks are often sparse, people interact with a
tiny amount of individuals, compared to the large set of possible interactions that
they could in principle explore. Traditionally, models for community detection in
networks treat an existing link as a positive endorsement between individuals: if two
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people are friends in a social network, this means they like each other. In assortative
communities, where similar nodes are more likely to be in the same group [8, 13],
this encourages the algorithm to put these two nodes into the same community. On
the contrary, a non-existing link influences the model to place them into different
communities, as if the twonon-interacting individualswere not compatible.However,
many of these non-existing links—especially in large-scale networks—are absent
because the individuals are not aware of each other, rather than because they are
not interested in interacting. This is a general problem in many network datasets: we
know that interacting nodes have a high affinity, but we can not conclude the contrary
about non-interacting nodes.

This problem has been explored in the context of recommender systems [2, 10,
18, 19], where it is crucial to learn what items that a user did not consume could be
of interest. In this context, items’ exposure is often modeled by means of propensity
scores or selection biases assigned to user-item pairs that increase the probability of
rare consumption events.

It is not clear how to adapt these techniques to the case of networks of interacting
individuals, hence the investigation of this problem in the context of networks is
still missing. Existing approaches partially account for this by giving more weight to
existing links, as in probabilistic generative models that use a Poisson distribution for
modeling the network adjacency matrix [1, 5, 17, 20]. These methods are effective,
but may be missing important information contained in non-existing links.

2 Community Detection with Exposure

We address this problem by considering a probabilistic formulation that assigns
probabilities to pairs of nodes of being exposed or not. These are then integrated into
standard probabilistic approaches for generative networks with communities. For
this, as a reference model we consider MultiTensor [5], as it is a flexible model that
takes in input a variety of network structures (e.g. directed or undirected networks,
weighted or unweighted) and detects overlapping communities in a principled and
scalable way.

2.1 Representing Exposure

Consider an N × N observed network adjacency matrix A(o), where A(o)
i j ≥ 0 is the

weight of the interaction between nodes i and j , this is the input data. For instance,
A(o)
i j could be the number of times that i and j met or exchanged messages. If a

link A(o)
i j exists, this indicates an affinity between individuals i and j , triggered by

both individuals’ inner preferences. If the link does not exist (A(o)
i j = 0), one usually

assumes that this indicates a lack of affinity between i and j . However, the link might
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Fig. 1 Diagram of the exposure mechanism. On the left we have the full graph (A(g)). We then
set to zero the probability of some connections through a mask Z (center), and reconstruct the true
graph and communities based solely on the visible links, A(o) (right)

not exist simply because i and j never met. This is the case in social networks, where
an egomight follow an alter because of personal preference, but this choice is subject
to being exposed to the alter in the first place. This suggests that the event of being
exposed to someone influences the patterns of interactions observed in networks. We
are interested in incorporating this notion of exposure in modeling network data, and
investigate how results change.

To represent this, we postulate the existence of a ground-truth adjacency matrix,
A(g), that indicates the affinity between nodes i and j regardless of whether the two
nodes were exposed to each other (Fig. 1—left). In addition, we introduce a dilution
matrix Z (red crosses in Fig. 1—center), with values Zi j = 0, 1 indicating whether
nodes i and j were exposed (Zi j = 1) or not (Zi j = 0). The observed matrix is then
the element-wise product of the ground truth network times the dilution matrix,

A(o) = A(g) ⊗ Z , (1)

where ⊗ indicates an element-by-element multiplication. A diagram of the resulting
matrix is shown in Fig. 1—right. Through this representation, a zero-entry A(o)

i j = 0

can be attributed to A(g)
i j = 0 (lack of affinity), Zi j = 0 (lack of exposure) or both.

Standard models for community detection do not account for exposure, therefore
they treat a zero-entry A(o)

i j = 0 as a signal for non-affinity. We aim at measuring

both communities and exposure, given the observed data A(o)
i j . In other words, for a

given node i , we would like to estimate its community membership and for a given
pair (i, j) we want to estimate the probability that they were exposed to each other.
For simplicity, we show derivations for the case of undirected networks, but similar
ones apply to directed ones.
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2.2 The Ground Truth Adjacency Matrix

In our notation,we use θ to denote the latent variables affecting community detection,
i.e. determining the probability of observing an interaction between i and j given
that they have been exposed. Following the formalism of Ref. [5], we assign a K -
dimensional hidden variable ui to every node i . Since different communities may
interact in different ways, we also introduce a K × K affinity matrix w, regulating
the density of interactions between different groups. The latent variables related to
the ground truth matrix are then θ = (u, w).

We express the expected interaction between two nodes through a parameter

λi j =
K∑

k,q

uiku jqwkq , (2)

and extract the elements of A(g) from a Poisson distribution with mean λi j ,

P(A(g)
i j |ui , u j , w) = Pois

(
A(g)
i j ; λi j

)
= e−λi j λ

A(g)
i j

i j

A(g)
i j ! . (3)

We then assume conditional independence between different pairs of edges given
the latent variables P(A(g)|u, u, w) = ∏

i< j P(A(g)
i j |ui , u j , w), but this can be gen-

eralized to more complex dependencies [4, 15, 16]. We do not explore this here.

2.3 The Observed Adjacency Matrix

The observed adjacency matrix depends on whether two nodes were exposed or not,
through thematrixZ. If Zi j = 1, the two nodes are exposed, and the edge comes from
the ground truth matrix, i.e. P(A(o)

i j |Zi j = 1, θ) = P(A(g)
i j |θ) = Pois(A(g)

i j ; λi j ). If

Zi j = 0, then A(o)
i j = 0 regardless of λi j . Therefore, the elements ofA(o) are extracted

from the distribution

P(A(o)
i j |Zi j , θ) = Pois(A(o)

i j ; λi j )
Zi j δ(A(o)

i j )1−Zi j . (4)

Since Zi j is binary, we assign it a Bernoulli prior with parameter μi j ,

P(Z|μ) =
∏

i< j

P(Zi j |μi j ) =
∏

i< j

(
μi j

)Zi j
(
1 − μi j

)1−Zi j
. (5)

The parameterμi j will depend on some latent variable related to nodes i and j . There
are several possible choices for that. Here, we consider a simple setting:



Modeling Node Exposure for Community Detection in Networks 237

μi j = μi μ j , (6)

μi ∈ [0, 1] , (7)

This allows to keep the number of parameters small and has an easy interpretation.
In fact, the parameter μi acts as the propensity of an individual to be exposed to
others: the higher its value, the higher the probability that node i will be exposed
to other nodes. This way of modeling exposure only adds one more parameter per
node, allowing for heterogeneous behaviors among users while keeping the model
compressed. The full set of variables that need to be inferred consists of the u, the
w and the μ variables, which amounts to NK + K 2 + N parameters, which is one
order of magnitude smaller than the N 2 elements of A(o).

2.4 Inference and Expectation-Maximization

Given the data A(o), our goal is to first determine the values of the parameters θ ,
which fixes the relationship between the hidden indicator Zi j and the data, and then
to approximate Zi j given the estimated θ .

We perform this using statistical inference as follows. Consider the posterior
distribution P(Z, θ |A(o)). Since the dilution Z is independent from the parameters
θ and all the edges are considered conditionally independent given the parameters,
Bayes’ formula gives

P(Z, θ |A(o)) = P(A(o)|Z, θ)P(Z|μ)P(θ)

P(A(o))
. (8)

Summing over all the possible indicators we have:

P(θ |A(o)) =
∑

Z

P(Z, θ |A(o)) =
N∏

i< j

∑

Zi j=0,1

P(Zi j , θ |A(o)) , (9)

which is the quantity that we need to maximize to extract the optimal θ . It is more
convenient to maximize its logarithm, as the two maxima coincide. We use Jensen’s
inequality:

log P(θ |A(o)) = log
∑

Z

P(Z, θ |A(o)) ≥
∑

Z

q(Z) log
P(Z, θ |A(o))

q(Z)
:= L(q, θ, μ)

(10)
where q(Z) is any distribution satisfying

∑
Z q(Z) = 1, we refer to this as the vari-

ational distribution.
Inequality (10) is saturated when
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q(Z) = P(Z, θ |A(o))
∑

Z

P(Z, θ |A(o))
, (11)

hence this choice of q maximizesL(q, θ, μ)with respect to q. Further maximizing it
with respect to θ gives us the optimal latent variables. This can be done in an iterative
way using Expectation-Maximization (EM), alternating between maximizing with
respect to q using Eq. (11) and then maximizing L(q, θ, μ) with respect to θ and μ.

To obtain the updates for the parameters we need to derive the equations that
maximize L(q, θ, μ) with respect to θ and μ and set these derivatives to zero. This
leads to the following closed-form updates:

uik =
∑

j Qi j Ai j
∑

q ρi jkq∑
j Qi j

∑
q u jqwkq

(12)

wkq =
∑

i, j Qi j Ai jρi jkq∑
i, j Qi j uiku jq

(13)

ρi jkq = uiku jqwkq∑
k,q uiku jqwkq

(14)

μi =
∑

j Qi j
∑

j
(1−Qi j ) μ j

(1−μi μ j )

, (15)

where we defined Qi j = ∑
Z Zi j q(Z) the expected value of Zi j over the variational

distribution.
As μi appears on both sides of Eq. (15), this can be solved with root-finding

methods bounding μi to the interval [0, 1], to be compatible as a parameter of the
Bernoulli prior.1

Finally, to evaluate q(Z), we substitute the estimated parameters inside Eq. (8),
and then into Eq. (11) to obtain:

q(Z) =
∏

i< j

Q
Zi j

i j (1 − Qi j )
(1−Zi j ) , (16)

where

Qi j = Pois(Ai j ; λi j )μi j

Pois(Ai j ; λi j )μi j + δ(Ai j ) (1 − μi j )
. (17)

In other words, the optimal q(Z) is a product
∏

i< j qi j (Zi j ) of Bernoulli distribu-
tions qi j with parameters Qi j . This parameter is also a point-estimate of the exposure
variable, as for the Bernoulli distribution Qi j = Eq

[
Zi j

]
.

1 In practice, we limit the domain ofμi to the interval [ε, 1 − ε], where ε is a small hyperparameter
chosen to avoid numerical overflows ofL. Tomaintain the model interpretable in terms of exposure,
at the end of the optimization we set to zero each μi ≡ ε and to one each μi ≡ 1 − ε.
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The algorithmic EMprocedure thenworks by initializing at random all the param-
eters and then iterating Eqs. (12)–(15) for fixed q, and the calculating Eq. (17) given
the other parameters, and so on until convergence of L. The function L is not con-
vex, hence we are not guaranteed to converge to the global optimum. In practice, one
needs to run the algorithm several times with different random initial parameters’
configurations and then select the run that leads to best values of L. In the following
experiments we use 5 of such realizations.

3 Results

We test our algorithm on synthetic and real data, and compare it to its formulation
without exposure, i.e. the MultiTensor algorithm described in Ref. [5]. In the fol-
lowing, we refer to our algorithm as EXP, and we use NoEXP for the algorithm that
does not utilize exposure.

3.1 Synthetic Data

Synthetic data experiments are particularly interesting, because we can validate our
model performances on the ground truth values. The creation of a synthetic dataset
follows the generative model described in Sect. 2.1:

1. For a graph with N = 500 nodes, we generate the latent parameters θ and μ

as follows. We draw overlapping communities by sampling ui from a Dirichlet
distribution with parameter αk = 1, ∀k; we choose an assortative w by selecting
the off-diagonal entries to be 0.001 times smaller then the on-diagonal ones. We
then vary K ∈ [3, 5, 8]. We draw μi from a Beta distribution Beta(μi ; 2, β),
where we vary β ∈ [0.1, 10] to tune the fraction of unexposed links.

2. Sample A(g)
i j from a Poisson distribution with means λi j = ∑

k,q uiku jqwkq .
3. Sample Z from a Bernoulli distribution of means μi j = μiμ j .
4. Calculate the matrix A(o) = A(g) ⊗ Z. This matrix has on average 〈k〉 links per

node.

We repeat this procedure 10 times for each set of parameters to obtain different
random realizations of synthetic data. We then apply the EXP and NoEXP algorithms
to A(o) to learn the parameters and study the performance as a function of 〈k〉,
controlling the density of observed edges.

Reconstructing hidden links We start by testing the ability of the model to predict
missing links, a procedure often used as a powerful evaluation framework for com-
paring different models [11, 12]. We use a 5-fold cross-validation scheme where we
hide 20% of the edges in A(o) and train the model on the remaining 80%. Perfor-
mance is then computed on the hidden 20%of the edges. As a performance evaluation
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metric we measure the area under the receiver operating characteristic curve (AUC)
between the inferred values and the ground truth used to generate A(o) on the test
set. The AUC is the probability that a randomly selected existing edge is predicted
with a higher score than a randomly selected non-existing edge. A value of 1 means
optimal performance, while 0.5 is equivalent to random guessing. As the score of an
edge A(o)

i, j we use the quantity Qi j λi j for EXP, and λi j for NoEXP. In both cases,
these are the expected values of A(o)

i j using the estimates of the latent parameters and,
for EXP, over the inferred q(Z). We find that the EXP algorithm outperforms NoEXP
by a large margin, which increases as the network becomes more dense, going above
10%, as shown in Fig. 2—left. At low densities, the performance increase of the EXP

algorithm is narrow for models with a large number of communities, while at large
densities it becomes bigger and independent of the number of communities. This
result suggests that EXP is capturing the input data better–consistently for varying
dilution densities–than a model that does not account for exposure.

Guessing unexposed links Our algorithm not only allows us to predict missing edges
but also gives interpretable estimates of the probability of exposure between nodes.
These probabilities follow naturally from the posterior distribution on Z, which is
the Bernoulli distribution in Eq. (16). Standard algorithms as NoEXP cannot estimate
this.We can use themean value Qi j as in Eq. (17) as a score of an edge to compute the
AUC between inferred and ground truth values of Z, analogously to what was done
for reconstructing A(o). We report in Fig. 2—center the ability of EXP to reconstruct
the matrix Z, i.e. to infer which edges were removed in the dilution step. The AUC
varies between 0.65 and 0.75, well above the random baseline of 0.5. We notice how
the values increase as the density of connection increases, but stay above 0.65 even
at small density values, where reconstruction is more challenging.

Inferring communities In Fig. 2—right, we can see that EXP and NoEXP show simi-
lar performances in reconstructing communities. From this plot we can also notice
how reconstruction improves for larger densities and fewer communities. The similar
performances may be due to selecting a simple prior as in Eq. (6). For a more struc-
tured prior, the inferred communities would likely change and potentially improve.
Given this similar community detection abilities but the better predictive power in
reconstructingA(o), we argue that the learned Qi j ’s are important to boost prediction
compared to a model that does not properly account for exposure. This is true even
for a simple prior.

Dependence on the number of communities All of these metrics exhibit a scaling
w.r.t. the variable 〈k〉/K , as can be seen in the insets of Fig. 2. This suggests that the
curves seem to be independent of the number of communities when accounting for
this rescaling. Thus observing the behavior for one particular value of K should be
informative enough to understand how the model behaves for various densities.

Suggesting good matches Since the EXP algorithm is good at predicting which nodes
were removed from the original graph (Fig. 2—center), we can use this to address
the following question: Is the EXP algorithm able to suggest two nodes that have high
affinity despite not having any connection? In other words, we are asking whether
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Fig. 2 Performance of theEXP andNoEXP algorithms on synthetic data. ThematrixA(g) has K =
3, 5, 8 communities and N = 500. The exposure mask Z is extracted from a binomial distribution
with parameter μi j = μiμ j . Left: AUC between the inferred values and the ground truth used to
generateA(o).Center: AUC of the reconstruction of the exposure maskZ.Right: Cosine similarity
between inferred and ground truth communities. Inset: We show the same data as in the main plots
by rescaling the average number of links by the number of communities

Fig. 3 Suggesting unexposed compatible nodes. For each node i , we suggest the 20 links with
highest λi j inferred by our algorithm from the non-observed links where A(o)

i j = 0. We show the
P@20 averaged across all nodes and compare with a uniform-at-random baseline (random) where
20 nodes are selected at random among the available ones. Error bars are standard deviations. Here
we use a synthetic network generated as in Sect. 3.1 with N = 500 and K = 5

we are able to find links that in A(o) are absent, but have a high expected value in
A(g). To test this ability, we take for each node i : a) all the possible neighbors j
such that A(o)

i j = 0; b) select among them the 20 with the largest inferred affinity λi j ;
and c) check how many of those are present in A(g). We call Precision@20 (P@20)
the fraction of links which were correctly inferred, averaging across all nodes. In
Fig. 3 we show that for intermediate dilution values, the P@20 reaches around 80%,
and outperforms random guessing at any value of the dilution. Notice that random
guessing in not constant in 〈k〉. This is because this depends on the number ofmissing
links in A(o), and those depend both on the density of A(g) and on the dilution mask
Z. Specifically, P@20 of the random baseline goes as (〈k〉g − 〈k〉)/(N − 〈k〉), where
〈k〉g is degree of A(g). This is a decreasing function of 〈k〉, for 〈k〉g < N .
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Fig. 4 Left: Performance in predicting missing links of the EXP and NoEXP algorithms on the
ACFN dataset. Different marker shapes correspond to different numbers of communities, while blue
(red) markers denote instances where EXP (NoEXP) has better performance than NoEXP (EXP).
There is a total of 150 markers, denoting 5 folds repeated for 10 random seeds for each value of K .
Right: Top 10 games that are recommended by the EXP algorithm with K = 11, which were not
played in the AFCN data set. Different colors indicate different conferences

3.2 Real Data

To test our algorithm on real data, we use the American College Football Network
(ACFN) dataset provided in Ref. [9], which represents the schedule of Division I
games for the season of the year 2000. Each node in the data set corresponds to a team,
and each link is a game played between teams. Teams are grouped in conferences,
and each team plays most of its games within a same conference (though not all
teamswithin a conference encounter each other). Conferences group teams of similar
level, but another main criterion is geographic distance. Therefore, this dataset has a
community structure which is not based on affinity. Here, affinity indicates that teams
are of similar level, and therefore should play in the same conference, if conferences
were based solely on affinity.

We randomly hide 20% of the links in the ACFN and check how well the EXP

and NoEXP algorithms are able to reconstruct which links are missing. We run the
algorithmwith various number of communities K = 9, 11, 13, finding the best result
at K = 11, which is also the number of conferences in the dataset. In Fig. 4—left we
show a scatter plot of the AUC trial-by-trial. This reveals a superior performance of
the EXP method which outperforms NoEXP in 142 out of 150 trials (5 folds per 10
random seeds for each of K = 9, 11, 13). This suggest that EXP is better capturing
the data.

In Fig. 4—right we show the top 10 recommendations that we can extract from
the EXP algorithm by taking, among the links missing fromA(o), those with smallest
predicted exposure Qi j and the highest affinity λi j . Although, in the absence of
ground truth, we are not able to assess the validity of these suggestions, we note that
all the suggested links represent unplayed games within the the same conference and
that games within teams in different conferences were ranked lower.
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4 Conclusions

In networks, nodes that would enjoy a highmutual affinity often appear disconnected
for reasons that are independent of affinity. This is the case, for example, with people
or entities in social networks that have never met, or due to some kind of sampling
bias. This introduces a sampling bias in the datasets used for community detection.
We studied this problem through a general framework, where we postulate that
affinity in terms of compatibility of communities is not enough in order to explain
the existence of a link, but rather a mechanism of exposure between nodes should
be taken into account as well.

We proposed a principled probabilistic model, EXP, that takes into account this
type of bias and is able to estimate the probability that two non-connected nodes are
exposed while jointly learning what communities they belong to. We tested the EXP

algorithm against a version of itself that does not account for exposure, NoEXP. On
artificial data, where we could validate our results on ground truth parameters and
unobserved ground truth data, we found that EXP is as good as NoEXP in learning
communities, but it outperforms it when it comes to reconstructing missing links.
In addition, the EXP approach allows us to satisfactorily infer which links remained
unexposed, an estimate that cannot be done with standard method as, for example,
NoEXP. We finally tested our algorithm on a real dataset which has a hidden structure
that is independent of the affinity between links, finding that also here the EXP

algorithm is better at reconstructing missing links.
The principled approach that we used based on statistical inference is general. It

can be made more specific depending on the application at hand. For example, we
considered the simple casewhere exposure only depends on each individual’s propen-
sity towards being exposed. However, this could depend on a more fine structure of
society, and we could think of introducing an exposure mechanism that mimics the
presence of communities which are independent of affinity (e.g. different schools,
or different classes in a school). Allowing for community-dependent exposure has
the potential to better mimic the kind of dilution that occurs in many real datasets.
This can also apply to the AFCN dataset, where a better way to model exposure
may be one that allows a structure that is able to account for different conferences
or geographical regions. We leave this for future work. Additionally, exposure could
be driven by covariate information on nodes, as also used in recommender systems
[10]. This could be integrated using variants of community detection methods that
account for this extra information [3, 6, 14]. Exposure could also change through
time, and it could also have some dependence on the structure of A(g). These are all
interesting avenues for future work.
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Abstract Community detection of temporal (time-evolving) bipartite networks is
challenging because it can be performed either on the temporal bipartite network, or
on various projected networks, composed of only one type of nodes, via diverse com-
munity detection algorithms. In this paper, we aim to systematically design detection
methods addressing both network choices and community detection algorithms, and
to compare the community structures detected by differentmethods.We illustrate our
methodology by using a telecommunications network as an example. We find that
three methods proposed identify evident community structures: one is performed on
each snapshot of the temporal network, and the other two, in temporal projections.
We characterise the community structures detected by each method by an evaluation
network in which the nodes are the services of the telecommunications network, and
the weight of the links between them are the number of snapshots that both services
were assigned to the same community. Analysing the evaluation networks of the three
methods reveals the similarity and difference among these methods in identifying
common node pairs or groups of nodes that often belong to the same community. We
find that the two methods that are based on the same projected network identify con-
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1 Introduction

Networks [10] have been used to represent complex systems. In a network, nodes
represent the elements of a system, and their interactions or relations are represented
by links. Community detection has been a fundamental network characterisation
method to discover communities of nodes where nodes within a community are more
similar or more strongly connected, whereas two nodes from different communities
are less similar or weakly connected.

The detection of disjoint communities has been broadly studied, especially for
static networks [4–6, 12].Modularity [7], definedbyNewmanandGirvan, is one clas-
sic quantification of the quality of a partition of network nodes into disjoint groups,
among many other possibilities. A partition of network nodes that maximises the
modularity is recognised as the community structure of the network, and the corre-
sponding maximal modularity is called the modularity of the network. Algorithms
to detect communities that optimise the modularity have been widely proposed and
applied; e.g., the greedy techniques proposed by Newman [8], and Blondel et al. [3].
These algorithms do not require the number of communities as an input.

Many real-world networks evolve over time. In a physical (virtual) contact net-
work, two individuals are connected only when there is a face-to-face (email) contact
instead of constantly. Community detection algorithms for static networks could be
applied to detect the communities at each snapshot of the temporal (time evolv-
ing) network independently. Algorithms have been further developed for temporal
networks to enhance the stability of the community structure over time, especially
between two consecutive time steps [13]. Many real-world networks are static bipar-
tite networks, where the nodes can be divided in two disjoint sets (such as authors
and papers), and links (authorship relations) can only connect nodes from different
sets. Bipartite graphs have been projected to networks composed of only one set of
nodes in various ways, and classic static network community detection algorithms
can be applied to the projected networks. Moreover, the definition of modularity has
been further updated for static bipartite networks [2]. Correspondingly, algorithms to
detect communities in a static bipartite network that optimised the bipartite network
modularity have been designed [14].

A challenging problem is the community detection of a temporal weighted bipar-
tite network [11] (e.g., a telecommunications network that records the data transfer
between services and base stations, over time). For such networks, communities
can be detected by diverse combinations of the network (original network or pro-
jected ones) and community detection algorithms (to detect the community structure
per snapshot independently, or stably overtime). Each detection method identifies
the communities, with possibly a specific community definition. The foundational
questions are two. First, how to systematically design detection methods that utilise
existing network projection methods and community detection algorithms, and sec-
ond, and most importantly, how to compare the community structures detected by
different methods, so that we can have an integrated overview.
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In this work, we developmethodologies to address these two questions, illustrated
by using a telecommunications network as an example. We introduce a basic frame-
work to design community detection methods that systematically consider diverse
network or network projection choices, and, correspondingly, various community
detection algorithms. Three of the proposed methods recognise relatively evident
community structures, at least in a fraction of network snapshots. To compare the
community structures identified by these algorithms, we propose to construct an
evaluation network that characterises the evident community structures detected by
a method. By analysing the evaluation networks of these three methods, we obtain
insights regarding, e.g., when different methods are applied, whether the frequency
that a node pair belong to the same community is consistent, andwhether the group of
nodes that frequently belong to the same community differ. Our work may shed light
on how to utilise existing community detection and network projection algorithms
to obtain a multi-perspective vision of the community structure(s) of a network.

This paper is organised as follows. In Sect. 2, we design community detection
methods. In Sect. 3, we evaluate and compare the community structures found by
these methods. Finally, we present our conclusions in Sect. 4.

2 Methods

In this section, we propose methods to detect the community structure of a tempo-
ral bipartite weighted network from different perspectives. We start by introducing
the temporal bipartite network. Second, we propose methods to project a temporal
bipartite network to one or multiple networks composed of only one type of nodes.
Finally, we briefly review the community detection algorithms that will be applied
to the temporal bipartite network and to the projected networks, respectively.

2.1 Weighted Temporal Bipartite Network

Static bipartite networks are a type of networks in which the nodes can be divided
in two disjoint sets, S, of size S, and U, of size U , and links (L) can only connect
nodes from different sets. A weighted bipartite network can be represented by its
biadjacency matrix R, an S ×U rectangular matrix in which each element Rs,u

represents the weight between nodes s and u.
Take the data transference between services and base stations in a telecommu-

nications network as an example. It could be represented as a temporal weighted
bipartite network (see Fig. 1). A temporal bipartite network observed or measured
at discrete time T = [1, 2, ..., T ], and composed of a set S of S services and a set U
of U base stations can be represented by a S ×U × T temporal biadjacency matrix
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Fig. 1 Example of a temporal bipartite network at T = 4 time steps

Table 1 Basic properties of the bipartite telecommunications network

Number of services (S) 253

Number of base stations (U ) 5166

Time window length (T ) in steps 1440

Time window length in days 60

Time resolution per step 1 h

R. Each elementRs,u,t represents the amount of data that has been transferred from
service s to base station u at time t , where s ∈ [1, S], u ∈ [1,U ] and t ∈ [1, T ].
Basic properties of this telecommunications network can be found in Table1.

2.2 Projections of Weighted Temporal Bipartite Network

Static bipartite networks have been projected to networks that contain only one type
of nodes. The projected network, resulted from a given projection method, captures
a specific relation among the same type of nodes. Such projection is motivated by
the following. First, we might be interested in detecting communities within one
type of nodes. Second, classic community detection methods can be further applied
to a projected network. Projected networks are usually weighted networks, with the
weights representing, e.g., a given kind of similarity between nodes. In this section,
we will introduce diverse ways of projecting a temporal bipartite network, either per
snapshot or as a whole, resulting in T projected networks or one projected network
respectively. To illustrate our method, we project the temporal telecommunications
network to networks among the services.

Static projection based on average cosine similarity. First, we explain a basic
method that projects the temporal network as a whole to a static network of services.
The volume of data transfer between a service i1 and a base station j per step over
time can be represented as a time series wi1,j, where each element wi1,j(t) = Ri1,j,t

describes the volume of the data transfer between service i1 and station j at time
t . In this projection, the weight ŵi1,i2 between two services i1 and i2 is the average
cosine similarity between the two services’ data transfer wi1,j and wi2,j with a base
station j . Mathematically,
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ŵi1,i2 = 1

U

∑

j∈Ui1 ,i2

wi1,j · wi2,j

||wi1,j||2 · ||wi2,j||2
, (1)

where Ui1,i2 represents the set of base stations that have transferred data from both
nodes i1 and i2 at least once in T. A large weight ŵi1,i2 between two services implies
that they are demanded by a base station over time in term of traffic in a similar way.

Temporal projection based on number of common neighbours. Temporal pro-
jection refers to methods that project each snapshot G(t) of the temporal bipartite
network G to a network of the services. The first temporal projection method is
defined as follows. In the projected network of G(t), two services are connected if
they share any common neighbours in G(t), and the corresponding weight ŵi1,i2(t)
is the number of common neighbours they have in G(t). That is,

ŵi1,i2(t) =
∑

j∈U
1W(i1, j,t)W(i2, j,t)>0, (2)

where the indicator function 1W(i1, j,t)W(i2, j,t)>0 equals one when the amount of data
transfer W(i1, j, t) and W(i1, j, t) are both positive, or equivalently when j is a
common neighbour for i1 and i2 at time t . A large weight ŵi1,i2(t) between two
services indicates that both services have traffic with a large number of stations in
common at time t .

Temporal projectionbased on the average geometricmean. At each time step t ,
wemaywonderwhether two services tend to have a large amount of data transferwith
a common station, beyond their number of common neighbours. Hence, in the second
temporal projection method, the weight ŵi1,i2(t) between two services projected
from G(t) is defined as the geometric mean

√

wi1, j (t) · wi2, j (t) of their traffic with
a common neighbour j , averaged over all common neighbours. Specifically,

ŵi1,i2(t) =
∑

j∈U,W(i1, j,t)W(i2, j,t)>0

√

wi1, j (t) · wi2, j (t)
∑

j∈U 1W(i1, j,t)W(i2, j,t)>0
. (3)

A large weight ŵi1,i2(t) between two services indicates that they tend to have a
large amount of traffic with a station in common at time t .

2.3 Community Detection Methods

We adopt the concept of community and community detection algorithms that orig-
inated from modularity optimisation proposed by Newman [9] for networks of one
type of nodes. We will illustrate how classic concepts and algorithms can be applied
to detect the community structure of a weighted temporal bipartite network system-
atically.
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2.3.1 Community Detection of Projected Networks

Classic community detection algorithms for static networks can be applied to the
static projected network and the temporal projected network at each time step, to
detect the communities of projected networks.

Consider first an undirected weighted network G that is composed of one type of
nodes. It can be represented by a weighted adjacency matrix A. Given a weighted
network and a partition of all the nodes into non-overlapping communities, the quality
of this community partition can be measured by the modularity

Q = 1

2L

∑

i, j

[

Ai, j − ki · k j

2L

]

δci ,c j , (4)

where ki = ∑

j Ai, j is the sum of the weights of all the links connected to node i ,
so-called node strength; ci is the label of the community to which node i belongs;

the Kronecker delta δci ,c j = 1, if ci = c j , and 0 otherwise; and L = 1

2

∑

i, j Ai, j is

the total weight in the network.
The modularity of a partition describes the extent to which the weight of links

within each community is bigger than the weight of those between communities. The
modularity Mod(G) ∈ [0, 1] of a network is the maximal modularity that could be
obtained via community detection. Computing the modularity of a network is an NP-
hard problem. We adopt the classic Louvain method [3] to obtain the approximate
optimal modularity of a static network and its corresponding community partition.

The Louvain method [3]. This method starts with every node in its own commu-
nity. For each node, it checks whether the modularity increases or not when changing
its community to that of one of its neighbours. If there is an increase in modular-
ity, then the community of that node is changed. This assignment step is repeated
until there is no increase in modularity. The final community structure is considered
as the optimal partition and the corresponding modularity is the modularity of the
network. We will apply the Louvain method to detect the community structure of
the static projected network and of the temporal projected network at each time t
independently.

StabilisedLouvainmethod. Tomaintain the consistency of the community struc-
tures at two consecutive snapshots, we will also apply the stabilised Louvain method
[1] to the temporal projected networks. Aynaud et al. modified the Louvain method,
such that it considers the resulting community partition from the previous snapshot as
the initialisation, whereas the modularity optimisation procedure remains the same.

2.3.2 Community Detection of a Temporal Bipartite Network

In the previous section, we have shown how to detect the communities of a temporal
bipartite network by applying classic community detection methods to its projected
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Table 2 Summary of the community detection methods proposed that combine the network and
community detection algorithm differently. The methods that find evident community structures
are highlighted in bold

Network CD algorithm Method name

Bipartite network Bi-Louvain BiLouvain

Cosine similarity static projection Louvain CS-Louvain

Common neighbours temporal projection Louvain CN-Louvain

Stabilised Louvain CN-stabilised

Geometric mean temporal projection Louvain Geometric-Louvain

Stabilised Louvain Geometric-Stabilised

networks. However, we can also apply a community detection algorithm for static
bipartite networks to each snapshot G(t) of the temporal bipartite network.

Themodularity definition for a static bipartite weighted network has been adapted
by Barber [2] by redefining the null model to which we compare the weights within
each community. We can express it as

Q = 1

L

S
∑

i=1

U
∑

j=1

[

Ri, j − ki · d j

L

]

δci ,c j , (5)

which considers the random weighted bipartite network with the same node strength
as the given bipartite network as the null model.

The Bi-Louvain method [14]. Zhou et al. have proposed this community detec-
tion algorithm for static bipartite networks based on the Louvain method and mod-
ularity definition (5).

In summary, combinations of the aforementioned network choices, projected or
not, and community detection algorithms lead to in total six community detection
methods, as shown in Table2.

3 Results

In this section, we evaluate the communities of services detected by the methods
that we have proposed. First, we study to what extent the community structures
found are evident through their modularity. Second, we investigate how the evident
community structures (partition of services) detected by diverse methods provide a
complementary or consistent vision.



252 O. F. Robledo et al.

Fig. 2 Representation of the a modularity and b number of communities of each of the methods

3.1 Modularity

Only the BiLouvain, Geometric-Louvain and Geometric-Stabilised methods have
found evident community structure, i.e., the modularity is higher than 0.3 in, at
least, a portion of the snapshots. Hence, the other methods will not be discussed
further. Each of the three considered methods, partitions the nodes (services) into
communities for each snapshot of the bipartite temporal network, or of the geometric
mean temporal projection. In Fig. 2, we show the distribution of the modularity in a
snapshot. The BiLouvain method shows the largest modularity of the three methods.
For each of the three methods, we will further analyse the community structures in
snapshots when the corresponding modularity is larger than 0.3.

3.2 Community Structure Comparison

We aim to compare the evident community structures found by these methods. In
order to do that, we define an evaluation network to characterise the evident com-
munity partitions detected by a method.

3.2.1 Evaluation Network

An evaluation network contains the set S of services as nodes, and is constructed
based on the community structures detected by a given method in every snapshot.
Two nodes are connected if they have been assigned to the same community in, at
least, one snapshot in which the modularity is larger than 0.3. The weight of the link
is the total number of snapshots in which both nodes belong to the same community
and the modularity is larger than 0.3. We build a weighted static evaluation network
for each of the three methods. The weight distributions of the three evaluation net-
works are shown in Fig. 3. The average link weight in BiLouvain evaluation network
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Fig. 3 Link weight
distribution in each
evaluation network

is evidently smaller than that in Geometric-Louvain and Geometric-Stabilised eval-
uation networks. This could be due to the larger number of communities detected by
BiLouvain. This could also imply that the community structure detected by BiLou-
vain changes more significantly over time. The average link weight in the Geometric-
Stabilised evaluation network is slightly larger than that in Geometric-Louvain eval-
uation network, supporting that Stabilised Louvain detects more stable community
structure over time than Louvain.

3.2.2 Recognition Rate

First, we aim to understand whether two nodes that more frequently belong to the
same community according to one method, or, equivalently, have a high weight in
the corresponding evaluation network, also tend to belong to the same community
more often according to another method. This is evaluated via the recognition rate
between two methods, defined as follows. We rank the links in each evaluation
network according to their weights. The set of f L links, with f being the ratio of
links considered, with the highest link weights in the evaluation network derived
from, e.g., the BiLouvain (Geometric-Louvain) method can be represented as J BL

f

(JGL
f ), where L = (S

2

)

is the maximal possible number of links among S services,
and f ∈ [0, 1]. The top f fraction recognition rate between, e.g., (the evaluation
networks of) BiLouvain and Geometric-Louvain methods is defined as rBL ,GL( f ) =
|J BL

f ∩ JGL
f |

|J BL
f | , which measures the number of links in common between the two sets

J BL
f and JGL

f normalised by the number of links f L in each set.
The link densities of the evaluation networks are all slightly above 0.7. Therefore,

we compute the recognition rate for f ∈ (0, 0.7]. The top f recognition rate between
random ranking of links and any ranking of links is f . As we can see in Fig. 4, the
top f recognition rate between any two community detection method is higher than
f , suggesting that all the evaluation networks share similarity in identifying similar
set of links with a large weight. Moreover, the co-occurrence between the top links
in Geometric-Louvain and Geometric-Stabilised is the highest. This is in line with
the fact that Geometric-Louvain and Geometric-Stabilised use the same network
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Fig. 4 Top f recognition rate between the proposed methods

Fig. 5 Sub-evaluation network composed of 50 links with the largest weights derived by a BiLou-
vain, b geometric-Louvain and c geometric-stabilised respectively. All nodes are coloured in blue
except those in the largest, second largest, and third largest component in the geometric-Louvain
sub-evaluation network, which are coloured in orange, green and red, respectively

projection for community detection. The visualisation of the sub-evaluation network
composed of the top 50 links with the largest link weight derived by each method in
Fig. 5 reveals the same. For example, nodes in the largest, second largest, and third
largest components of the Geometric-Louvain sub-evaluation network (coloured in
orange, green and red respectively) are more likely to appear, or to be connected, in
the Geometric-Stabilised sub-evaluation network in comparison to BiLouvain.

3.2.3 Persistent Community Component

Besides the similarity of two evaluation networks in identifying links with large
weight, measured by the recognition rate, we explore further the similarity between
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Table 3 Number of snapshots in which all the nodes in the indicated component (or clique) in the
sub-evaluation network with 50 links belong to the same community

Method BiLouvain Geometric-Louvain Geometric-stabilised

Giant component 11 174 95

Second largest
component

124 372 336

Largest clique within
giant component

141 311 472

two methods in identified groups of nodes that frequently belong to the same com-
munity, so-called persistent community component. Finding the persistent groups of
size m requires the counting of the number of snapshots in which each of the

(S
m

)

groups belong to the same community, according to a given community detection
method. Its computational complexity is high and it is difficult to be simplified when
the community structure changes over time.

Identifying whether components in the aforementioned sub-evaluation network,
composed of links with the highest weight, are persistent, could be an intuitive and
insightful start. The motivation is that a group of nodes may frequently belong to the
same community if pairs of them often belong to the same community.

The number of snapshots in which all the nodes in the largest (second largest)
component of a sub-evaluation network fall into the same community is shown in
Table3.We find that nodes in the largest component of the BiLouvain sub-evaluation
network belong to the same community less frequently compared to that of other sub-
evaluation networks, although the largest component of theBiLouvain sub-evaluation
network is denser. This difference in frequency is evident, especially in view that
the total number of snapshots that have a modularity larger than 0.3 is far larger
when BiLouvain is applied. For the Geometric-Louvain and Geometric-Stabilised
methods, nodes in the biggest component and, especially, in the second biggest com-
ponent belong to the same community in up to almost a quarter of the snapshots that
have an evident community structure. The same observation holds when examining
whether nodes in the second largest component and the largest clique within each
giant component are persistent community components. This difference could be
due to the lower average link weight in the BiLouvain sub-evaluation network, and
the highly dynamic community structure detected by BiLouvain over time.

Wefind that each component in Fig. 5 tends to be persistent and composed of a spe-
cific type of services, e.g., related to social networks or provided by the same brand.
The biggest component of the Geometric-Stabilised method, though persistent, is an
exception, containing various types of services.
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4 Conclusions

In this paper, we define multiple methods to detect community structures of a tem-
poral weighted bipartite network. We study how the partitions found by different
community detection methods align or complement each other, illustrated via a
telecommunications network. The three community detection methods that find evi-
dent community structures are performed either on the original bipartite temporal
network or on a temporal projection; i.e., projecting each temporal network snapshot
independently. To compare them beyond their difference in community definition,
we define an evaluation network to characterise the community structures found by
eachmethod, in which the nodes are the services of the telecommunications network,
and the weight of the links between them is the number of snapshots in which both
services belong to the same community. Then, we compare which nodes are the ones
that are most commonly clustered together, first in terms of node pairs through the
recognition rate, and then in terms of groups of nodes by studying the components
of the sub-evaluation network with the highest-weight links. The two methods that
partition the network based on the same temporal projection, using Louvain and
stabilised Louvain, respectively, identify consistent community structures, whereas
the third method, based on the original temporal bipartite network, provides a com-
plementary perspective of the community structure. Moreover, we find that all three
methods share a non-trivial number of common node-pairs that are often in the same
community.

Our methodology, exemplified by a limited choice of candidate algorithms and
one network, is the starting point to explore the multi-perspective vision of the com-
munity structure of a temporal bipartite network. It could be further improved by
investigating, e.g., the time series associated to each link of an evaluation network
that records the time stamps when two nodes belong to the same community, and
networks with known ground truth community structure.

Acknowledgements We thank NExTWORKx, a collaboration between TU Delft and KPN on
future telecommunication networks, for the support.
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Robustness and Sensitivity
of Network-Based Topic Detection

Carla Galluccio, Matteo Magnani, Davide Vega, Giancarlo Ragozini,
and Alessandra Petrucci

Abstract In the context of textual analysis, network-based procedures for topic
detection are gaining attention as an alternative to classical topic models. Network-
based procedures are based on the idea that documents can be represented asword co-
occurrence networks,where topics are defined as groups of strongly connectedwords.
Althoughmanyworks have used network-based procedures for topic detection, there
is a lack of systematic analysis of how different design choices, such as the building
of the word co-occurrence matrix and the selection of the community detection
algorithm, affect the final results in terms of detected topics. In this work, we present
the results obtained by analysing a widely used corpus of news articles, showing how
and to what extent the choices made during the design phase affect the results.

Keywords Text network analysis · Community detection · Topic detection

1 Introduction

The need to gather information from large textual datasets has led to the development
of automated information extraction methods [12, 18]. Among these methods, those
aimed at identifying topics have become very popular inmachine learning and natural
language processing [1].

Recently, network-based procedures have gained attention in the context of tex-
tual analysis as an alternative to classical topic models for detecting topics in large
collections of documents [9]. These methods are based on the idea that any text can
be represented as a word co-occurrence network, where topics emerge as groups
of strongly connected words. In addition, the network can be used to explore and
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present the relations between the topics. Although many works have used network-
based procedures for detecting topics in textual data, there is a lack of systematic
analysis of how different design choices affect the final results in terms of detected
topics.

Essentially, a network-based topic discovery process takes the following form:

• pre-processing the text, a step-by-step procedure during which the researcher
selects which methods to apply to clean the text and make it ready for the analysis
(e.g. removal of non-alphanumeric characters, removal of stopwords, reduction of
terms to a common root);

• forming of the word co-occurrence matrix by defining the context in which two
words will be considered semantically related. This is usually done by defining
what is meant by “co-occurrence” between words;

• building of the network and selection of the community detection algorithm.

This procedure requires the researcher to make decisions in each of these steps.
In this work, we focus on the two defining steps of this process, as they are unique

to network-based approaches: building the word co-occurrence matrix and select-
ing the community detection algorithm. From our point of view, the definition of
the word co-occurrence matrix, which determines the shape of the network, and the
community detection algorithm employed are strongly related to the characteristics
of the discovered topics. Moreover, the impact of other design choices on text clas-
sification has already been studied in a non-network context. For instance, Uysal
and Gunal have investigated the impact of text pre-preprocessing on text classifi-
cation, revealing that choosing an appropriate combination of pre-processing steps
may improve the classification accuracy [17].

As an example, Fig. 1 shows four different networks built using the same docu-
ments. They represent the word co-occurrence matrices of 9 news extracted from the
BBC news articles collection [8] concerning business, sport, and tech. More specifi-
cally, in the first (Fig. 1a) and the third (Fig. 1c) networks two words belonging to the
same document are adjacent, or co-occur, if they are at most 2 words apart (that is, if
between the two words there is at most one word in between). On the other hand, the
second (Fig. 1b) and the fourth (Fig. 1d) networks have been built considering that
twowords in the same document co-occur if they are at most 10 words apart. Further-
more, in order to identify the topics, we applied the Louvain community detection
algorithm [4] on the first and the second networks (Fig. 1a, b), while on the other two
networks we applied Newman’s leading eigenvector method for detecting commu-
nities [13]. It is possible to observe how the shape of the networks and the detected
communities change. For example, we can observe more defined communities in
the networks with a window size equal to 10, some communities recognised by one
method are split into two by the other, and some nodes are assigned to a different
community.

Analysing the effect of the relevant design choices on the final results allows us
to identify the fundamental aspects that should be taken into account when using
network-based procedures to analyse textual data and discover topics, and those
which may require further research. Therefore, the main contribution of this work
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Fig. 1 Example of networks obtained from 9 news of the BBC news article collection. In networks
a and c the window size is equal to 2, while it is equal to 10 in networks b and d. The colours
represent the community to which each node belongs according to community detection algorithms:
the Louvain algorithm in (a) and (b) and Newman’s leading eigenvector method in (c) and (d). Note
that the organization of nodes in communities varies between networks. Indeed, while in (b) and
(d) the organization in communities is clear, in (a) and (c) the partition is much less defined

is to evaluate the relationship between the shape of the network, which changes
depending on the word co-occurrence matrix, the community detection algorithm
employed, and the features of the discovered topics.

Another unexplored question about network-based topic detection is about its rela-
tionship with probabilistic topic models, such as Latent Dirichlet Allocation (LDA)
[3]. While this question is also important, before addressing it we need to develop a



262 C. Galluccio et al.

deeper understanding of optimal design choices for network-based methods. There-
fore, this paper is a first step towards enabling a comparison between these different
approaches.

2 State of the Art

In recent years, many works have been written about applying community detection
methods for topic discovery.

For example, Sayyadi and Raschid find topics as communities in a keyword co-
occurrence matrix using the Girvan-Newman community detection algorithm based
on the betweenness centrality measure [16]. They build the keyword co-occurrence
matrix considering that two keywords are connected if they co-occur in at least one
document, and the weight of that link is given by the number of documents in which
both keywords co-occur. Then, they compute each word’s document frequency and
remove the links with a value below a specific threshold.

Another example is given by Salerno et al., who apply the Louvain community
detection algorithm for discovering topics on a weighted network in which nodes
represent individual words in the vocabulary and links indicate the co-occurrence of
a pair of words within a document [15]. The weight of the links between words is
determined by the context inwhich twowords co-occur: for example, a co-occurrence
within the same sentence carries more weight than a co-occurrence within the same
paragraph. Then, they evaluate their results usingmodularity and comparing the error
rate to the results achieved by two baselines: one that classifies documents randomly
and another one that classifies documents based on the most common label in the
training set. Similar approaches can be found in Dang and Nguyen [6].

Instead, de Arruda et al. investigate how specific definitions of the co-occurrence
between words favour the emergence of communities of semantically related words,
allowing for the identification of relevant topics [7]. In particular, they consider three
different ways to define the co-occurrence between two words in the pre-processed
text: two words are connected if they are separated by at most a given number of
other words; words belonging to the same paragraph are linked together in a clique,
disregarding links between words further from each other than the given maximum
distance; finally, the statistical significance of co-occurrences with regard to random,
shuffled texts is tested. The fast-greedy method is used to find communities of high
modularity.

Lancichinetti et al. discover topics using the Infomap algorithm on networks built
considering that twowords are connected if they co-occur in the same document [12].
More specifically, they compute the dot product similarity of each pair of words that
co-occur in at least one document in order to compare it against the expectation for a
null model where words are randomly shuffled across documents. Then, a threshold
is defined for retaining words for which the co-occurrence between them cannot be
explained by the null model. However, because Informap is run as a non-overlapping
community detection algorithm, to cope with generic words used in multiple topics,
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they refine the results obtained from applying the community detection algorithm
using a latent topic model that allows for non exclusivity.

Some of the most recent contributions in this area are given by Kim and Sayama
[11] and Hamm and Odrowski [9]. The former transform the textual data into a vec-
tor form by computing the tf-idf (term frequency inverse document frequency) score
considering each sentence as a document. Afterwards, they compute the pair-wise
cosine similarity of the tf-idf vectors to build adjacencymatrices of the sentences, and
then they use the Louvain community detection algorithm on the sentence networks,
where the nodes are the sentences, and the cosine similarity of tf-idf representations
between every node pair represents the link weight. Hamm and Odrowski apply the
Leiden community detection algorithm on undirected weighted networks investigat-
ing the effects of the resolution parameter onmodularitymaximisation [9].Moreover,
they define a measure to identify the most significant words within a topic.

This work contributes to this research line by considering the relationship between
the definition of the word co-occurrence matrix, the selection of the community
detection algorithms, and the final results.

3 Method and Material

In this section, we describe the data and the tested design choices.

Data. For the analysis, we used the corpus of BBC news articles, a collection of
documents widely used as a benchmark for machine learning research [8]. The col-
lection is composed of 2,225 complete news articles collected from 2004 to 2005 and
divided into five topics: business, entertainment, politics, sport, and tech. The total
number of articles and unique words per topic is reported in Table1. We considered
both the headline and the body of each news in the analysis.

Data pre-processing. We removed non-alphanumeric characters, numbers, and
words composed of 1 or 2 characters. Afterwards, we divided the text into tokens,
choosing single words (uni-grams) as unit of analysis. Then, we removed the stop-
words using a list provided with the dataset, and stemmed the text in order to reduce
the size of the vocabulary, that is the set of unique words used in the text corpus.

Table 1 Number of documents and unique words for each topic of the BBC collection

Topics Documents Unique words

Business 510 10,790

Entertainment 386 11,040

Politics 417 10,636

Sport 511 9,997

Tech 401 11,444



264 C. Galluccio et al.

Finally, to remove very common words not included in the stopword list, we filtered
out words with a value of tf-idf less than 0.01 [2]. After the pre-processing stage, the
number of unique word tokens was equal to 18,422.

Word co-occurrence matrix. Once we pre-processed the corpus and obtained the
vocabulary, we built the word co-occurrence matrices. To generate the word co-
occurrence matrices we counted the number of times two words co-occur in the
same document within a specific window size.

There are three ways of positioning the window: to the left of the word, to the
right, or on either side [5]. Herein, we considered windows of different sizes placed
to the right of the words, as usually done in the literature. More specifically, in this
work we have considered window sizes equal to 2, 5, 10, 15 and 20.

Furthermore, in the literature many authors apply different filters to the word
co-occurrence matrix based on the distribution of the words or their frequency in
order to reduce the size of the matrix. For this reason, we decided to test this aspect
by using different filters for the word co-occurrence matrices. More specifically, we
removed the 100, 500, and 1000 words with the lowest co-occurrence values and the
50, 100, and 500 words with the highest co-occurrence values.We also filtered words
with the highest or lowest co-occurrence values considering specific percentages of
the total, but the results were similar to those obtained in the first two cases, so we
do not report them here.

Afterwards, inspired by Salerno et al., who applied different weights based on the
context in which two words co-occur [15], we defined an experimental condition by
modifying the co-occurrence values assigned to words within the window size. In
particular, we assigned weights proportional to the words’ proximity. For example,
for a window size equal to 3, the word adjacent to the target word gets a value equal
to 1; the next word takes a value equal to 2/3; then, we assign a value equal to 1/3 to
the last word.

Network and community detection algorithm. Starting from the word co-
occurrence matrices, interpreted as weighted adjacency matrices, we built the undi-
rected weighted networks on which we applied three different community detection
algorithms.

Since almost all the works reported in Sect. 2 applied modularity optimisation
algorithms, we decided to use the Louvain community detection algorithm as one
of the most popular among them. Then, to investigate the performance of a different
kind of approach we employed a spectral algorithm, namely Newman’s leading
eigenvector method. The rationale behind this choice is that if the network obtained
after the pre-processing phase presents clearly separated topics, different algorithms
should find similar results, while for networks with a less clear community structure
the specific types of community that each different method is designed to identify
would potentially lead to significantly different results.

Finally, we argue that despite the absence ofmethods finding overlapping commu-
nities in the literature on network-based topic detection, in theory these methods are
the most appropriate. In general, we cannot exclude that a word belongs to multiple
topics at the same time, but using a partitioning method prevents the identification
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of such cases. As a consequence, we also tested the SLPA algorithm as a method
designed to discover overlapping community [19].

4 Results and Discussion

In this section,wepresent the results of our experiments, focusingonhow thedifferent
choices we made in the definition of the word co-occurrence matrix and the selection
of the community detection algorithm affect the features of the detected topics.

4.1 The Effect of the Window Size

The main result we observe is that the number of communities obtained by the three
algorithms is generally higher for smaller window sizes. Indeed, as the window
size increases, the number of communities the algorithms find decreases, remaining
constant for a window size greater than 5.

Figure2 shows the number of communities found applying the three algorithms
on the word co-occurrence matrices without filters: here, the number of communities
identified by the non-overlapping community detection algorithms, that is, the Lou-
vain and Newman’s leading eigenvector methods, is always greater than the number
of communities identified by SLPA for window sizes greater than 2. In particular,
SLPA finds only one community with these settings.

4.2 Filters on the Word Co-occurrence Matrix

The results remain stable when we remove the words with the lowest co-occurrence
values from the word co-occurrence matrix. Instead, removing the words with the
highest co-occurrence values changes the number of detected communities only for
a window size equal to 2: the Louvain community detection algorithm found 47
communities, Newman’s algorithm found 27 communities, while the SLPA found
112 communities. The results for window sizes greater than 2 remain stable.

4.3 Weighting Scheme

Finally, we assessed the effect of using a different weighting scheme within the
window sizes. We evaluated this aspect in the condition without any filters on the
word co-occurrence matrix. In this case, results were significantly different from
those obtained in the other experimental conditions for the Louvain and the SLPA
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Fig. 2 Number of communities per window size and community detection algorithm. Observe that
the number of communities decreases as the window size increases

community detection algorithms, with a number of communities ranging from 10 to
51 for the former and from 30 to 179 for the latter. However, also in this case the
number of communities decreases when we increase the window size.

4.4 Selection of the Community Detection Algorithm

Regarding the community detection algorithm, the Louvain algorithm showed the
most interesting results. In almost all the experimental conditions, this algorithm
found a number of communities equal to the number of the actual topics in the
document collection for window sizes greater than 5. Moreover, as shown in
Fig. 3a–c, the communities are coherent with the content of the actual topics in
the BBC document collection, with each community representing mainly one topic.

Note that Fig. 3 was built by matching the communities’ words with the actual
topics’ words, enabling possible overlapping. Therefore, in the representation of the
correspondence between communities’ words and topics’ words, generic words such
as “month” or “show” could be included in more than one topic.

To better understand these results, take as an example the communities found by
the Louvain community detection algorithm for a window size equal to 10 (Fig. 3a).
First, the size of communities is quite balanced, with a number of words ranging
from 3162 to 4283. Then, from an inspection of the words with the highest node
degree within each community, we observed that they are coherent with the topic
they represent. So, for example, among the top 15words with the highest node degree
in the first community there are words such as “show”, “film”, “record”, “star”, and
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Fig. 3 Matching of the communities’ words to actual topics’ words for the Louvain community
detection algorithm for window sizes equal to 10 (a), 15 (b), and 20 (c), and for the SLPA algorithm
for window size equal to 2 (d). In this case, no filter was applied to the word co-occurrence matrix.
On the y axis we reported the percentage of words in each community belonging to each actual
topic (every group of bars sum up to 100%). “C”means “community”, while “WS”means “window
size”

“music”, coherent with the topic “entertainment”. We observed the same for window
sizes equal to 15 and 20.

Instead, in the cases in which the Louvain algorithm finds more than 5 commu-
nities, namely for window sizes equal to 2 and 5, we observed that there are always
5 bigger communities coherent with the original topics and a variable number of
smaller communities. Moreover, the largest communities generally include a num-
ber of words greater than 2000, whereas the smallest are composed of hundreds,
tens, or just a few words.

To provide a more detailed analysis of the communities identified by the Louvain
algorithm under different settings, we computed the Adjusted Rand Index (ARI)
[10], a metric for comparing disjoint clustering solutions. Table2 shows the ARI for
different window sizes. Observe that the ARI is generally high, particularly between
the partitions obtained considering window sizes greater than 5. More specifically,
for window sizes greater than 5, ARI values range from 0.604 to 0.878, showing
high similarities, but also that the algorithm finds the same number of communities
but the communities are not identical.
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Table 2 Value of the ARI computed between all the partitions obtained by the Louvain community
detection algorithm applied to networks built from the different word co-occurrence matrices

WS2 WS5 WS10 WS15 WS20

WS2 1

WS5 0.348 1

WS10 0.289 0.651 1

WS15 0.279 0.624 0.828 1

WS20 0.277 0.604 0.793 0.878 1

Here, “WS” means “window size”

The lowest ARI values are associated to the partitions obtained using smaller win-
dow sizes, requiring an additional analysis to show how these communities relate to
those found with larger window sizes. Therefore, we computed the contingency table
between the partitions obtained with window sizes equal to 5 and 10, respectively, to
better understand the tendency of the algorithm to merge communities related to the
same topic by increasing the window size. The table is not reported here for space
reasons, but it shows that some of (but not all) the clusters obtained using a window
size equal to 5 are assimilated into some of the larger clusters found in the partition
obtained using a window size equal to 10.

The two other algorithms failed to find a reasonable number of communities, with
the SLPA algorithm finding only one community for window sizes greater than 2 in
all the experiments. Even in those cases where SLPAfindsmore than one community,
the communities are not balanced,with almost all thewordswithin one of the detected
communities. Figure3d shows the results we obtained applying the SLPA algorithm
on theword co-occurrencematrix without filters using awindow size equal to 2. Note
that in the first community there are 18,402 words, while in the others the number of
words ranges from 1 to 5. As an overlapping community detection algorithm, we also
tried to use the K-clique algorithm [14] with different values for the k parameter, but
we did not manage to obtain results because of the presence of large dense subgraphs,
making this approach computationally intractable.

5 Conclusions

In this work we assess the effect of different design choices in network-based proce-
dures for topic detection. In particular, we tested different ways of building the word
co-occurrence matrix found in the literature and the selection of different community
detection algorithms.

Our findings show that, for all tested algorithms, increasing the window size
initially decreases the number of communities, which becomes stable for window
sizes equal to or greater than 5 depending on the algorithm. This suggests that some of
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topics identified in the literature may have been influenced by this design choice, and
leads to the consideration that the window size should be regarded as an important
hyperparameter in future studies.

In addition, considering the number of detected topics applying different filters on
the word co-occurrence matrix, we observe that the Louvain community detection
algorithm generally performs better than the other tested algorithms. Indeed, consid-
ering the information available on the actual number of topics in the BBC document
collection, the Louvain algorithm always detects the correct number of topics for a
window size greater than 5, whereas the other two algorithms fail. This does not lead
to a rejection of our hypothesis that overlapping community detection methods are
more appropriate to find topics inword co-occurrence networks: it is still possible that
the Louvain algorithm could correctly cluster together words belonging to a single
topic, while arbitrarily including multi-topic words in only one of the communities
where they should have been included. However, we can conclude that some of the
typical overlapping community detection methods are not able to identify significant
topics under the experimental settings tested in this paper. The fact that these settings
are taken from the literature suggests that more research should be done to identify
pre-processing schemes leading to networks better suited to the application of these
methods. One feature of the networks obtained in our experiments that may have
determined the poor results of the tested methods is their high density, suggesting
that stronger filtering schemes should be considered.

Finally, regarding theweighting scheme, our results show that whileweighting the
links can significantly affect the results, finding a good setting is not straightforward,
with the number of communities suddenly becoming very high after imposing the
basic scheme considered in this paper. This shows that this aspect should be analysed
in more depth, also testing different combinations of pre-processing steps to select
the words and to define co-occurrence weights and values.

In summary, on the one hand our preliminary results confirm what is stated in
the literature, where network-based procedures for topic discovery show promising
results; on the other hand, they highlight how different design choices, such as choos-
ing specific algorithms or window sizes, applying filters on the word co-occurrence
matrix, or defining different weighting schemes, may significantly affect the results
in terms of detected topics.

Most importantly, this study highlights a number of aspects deserving additional
attention. First, as further developments, we plan to extend our study considering
additional community detection algorithms, to evaluate which methods are appro-
priate depending on the applied pre-processing steps. Second, additional ways to
define the word co-occurrence matrix should also be studied, to enable the appli-
cation of a broader range of algorithms and consequently the discovery of different
types of communities. Third, we plan to define additional measures aimed at eval-
uating the quality of the detected topics, going beyond the basic measure of word
overlapping used in this paper. Finally, we aim to assess the effects of these design
choices on different kinds of texts. For example, we can expect different window
sizes to be relevant for shorter documents, such as social media posts, and different
vocabulary sizes to lead to networks with different sizes and densities.
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Community Detection Using
Moore-Shannon Network Reliability:
Application to Food Networks

Ritwick Mishra, Stephen Eubank, Madhurima Nath, Manu Amundsen,
and Abhijin Adiga

Abstract Community detection in networks is extensively studied from a structural
perspective, but very few works characterize communities with respect to dynamics
on networks. We propose a generic framework based on Moore-Shannon network
reliability for defining and discovering communities with respect to a variety of
dynamical processes. This approach extracts communities in directed edge-weighted
networks which satisfy strong connectivity properties as well as strong mutual influ-
ence between pairs of nodes through the dynamical process.We apply this framework
to food networks. We compare our results with modularity-based approach, and ana-
lyze community structure across commodities, evolution over time, and with regard
to dynamical system properties.

Keywords Moore-Shannon network reliability · Networked dynamical systems ·
Food networks · Community detection · Modularity

1 Introduction

A community in a static network is usually defined as a set of vertices that are more
densely connected with each other than with other vertices [23]. There are many
ways to generalize this notion for a networked dynamical system. We suggest using
two criteria

(1) The states of nodes in a community evolve more coherently with each other than
with those in other communities.

(2) This coherence is robust against removing a few interactions both within and
outside the community.
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The fundamental object of study in a dynamical system is the probability P that a
system in a given configuration at time t1 evolves into a particular configuration at t2.
This probability is a function of the configurations, the time duration, the nature of
the dynamics and any dynamical parameters, as well as the network of interactions
when the system consists of discrete interacting elements. Moore-Shannon Network
Reliability (MSNR) [21] highlights its dependence on the network, and Birnbaum
importance [2]measures how it changes as interactions are removed from the system.
Communities are subgraphs with certain user-defined properties that are resilient to
the removal of these interactions, thus meeting both the defining criteria above.
Network reliability is famously hard to evaluate [28] or even approximate [25]. We
take advantage of a statistical physics perspective on the underlying probability P:
it is the value of the propagator, which can be well-approximated by strong- and
weak-coupling perturbation expansions [5]. See Eubank et al. [8] for more details.

Application to food networks. Advances in technology and the resulting globaliza-
tion have made it possible to break down geographical barriers to the movement of
agricultural commodities. This has led to an increased reliance on the long-distance
trade of commodities, making food systems vulnerable to extreme weather events,
pests and pathogens, contamination, and politics [3, 7, 17]. Understanding the com-
munity structure of international food networks particularly in the context of spread
processes representing cascading failures and biological invasions can help inform
surveillance and control strategies. Food networks are directed and weighted, with
weights representing the volume or value of trade between the exporter and importer.
In this work, we apply our methods to identify communities that satisfy the two crite-
ria stated in the beginning in country-to-country networks fromFood andAgriculture
Organization’s TradeMatrix database [10] and domestic food networks from Freight
Analysis Framework [9].

Contributions. We apply the MSNR-based approach to detect communities in
directed edge-weighted networks that are well-interacting with respect to the under-
lying dynamical process, which in our case is the discrete-time Susceptible-Infected-
Removed (SIR) diffusion process, and involves Monte-Carlo simulations and pertur-
bation techniques. Our community detection algorithm is parameterized by the max-
imum size of the community, a transmission probability parameter that determines
every edge probability as a function of its weight, and a quantization parameter that
fixes the maximum possible number of distinct edge weights. We apply this frame-
work to the four food networks. We compare our method with the Directed-Louvain
algorithm [6] as well as from a network dynamics perspective. We also analyze the
community structure resulting from varying the three parameters. The communities
discovered in the food networks are extensively analyzed.
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2 Related Work

Community detection is an extensively studied topic, with many methods that have
beendeveloped and applied tomanyfields [11, 16, 20].Modularity-based approaches
are very popular. Here, we use the Louvain algorithm adapted for directed edge-
weighted graphs as a baseline to compare with our approach [6]. There has been
recent work on community detection by local approaches which offer lower time
complexity, valuable in large complex networks [1, 29]. In another line of work,
spectral clustering has been utilized for community detection [24].

However, characterizing communities with respect to dynamical processes is an
emerging body of work. Ghosh et al. [13] define a generalized Laplacian matrix
that captures a class of linear dynamical processes. They introduce the notion of
generalized conductance to measure the quality of communities with respect to the
dynamical process. However, their work is limited to undirected networks. In another
line of work, Zhang et al. [30] consider the problem of discovering clusters of nodes
that have similar roles in a dynamical process (e.g., influential nodes or bridges).

There are very few works that have analyzed food networks from a dynamics per-
spective. Ercsey-Ravasz et al. [7] analyze country-to-country trade networks of agri-
cultural commodities induced by ComTrade database [4]. Using a diffusion model
called the food flux model, the authors show that contaminants can rapidly spread
through a food network while, due to network effects, their origin becomes hard to
trace. Sutrave et al. [26] use a diffusion model to evaluate surveillance strategies
for the detection of pathogens. The precursor to this work, Nath et al. [22], adapts
a network reliability framework for unweighted networks to analyze food networks
from FAO (more details in Sect. 4). Lin et al. [19] analyze US domestic food flow
networks using the Commodity Flow Survey (CFS) database [27] that belong to
same class as the FAF networks analyzed in this paper, and Gephart and Pace [12],
analyze global seafood trade. None of these works (except [22]) study community
structure of these networks.

3 Preliminaries

Let G(V, E) be a directed, edge-weighted graph. We use C to denote a community.
For an edge e ∈ E , let we denote its weight. For a community C , let dG(C) denote
the maximum distance between any pair of nodes belonging to C in G. Let F(C)

denote the sum of weights on all edges belonging to the subgraph ofG induced byC .
The diffusion probability on each edge e is 1 − exp(−xwe), where x is a tunable
parameter. An induced subgraph is strongly connected (SC) if there is a directed
path from any source to any target in the subgraph. A maximal strongly connected
subgraph is a strongly connected component (SCC).

Diffusion model. Here, we apply the discrete-time SIR diffusion process, where each
node that has transitioned from state S to I at time t infects each of its susceptible
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out-neighbors with edge probability 1 − exp(−xwe) (where e is the corresponding
edge) at time t + 1, and then moves to state R, never to participate in the diffusion
process again. For some applications such as plant disease or pest epidemiology, SIR-
like models have been considered at various spatial scales [14, 15]. The likelihood
of spread via an edge is considered to be a direct function of its weight.

We used the Directed-Louvain (DL) method as the baseline to compare against.
It partitions the node set with the objective of maximizing directed modularity for

weighted networks [6, 18]: Q = 1
m

∑
i, j

[
Ai j − win

i wout
j

m

]
δ(ci , c j ), wherem is the sum

of weights of all edges, Ai j represents the weight of the edge (if present) between
nodes i and j belonging to communities ci and c j , win

i (resp. wout
i ) is the sum

of weights of incoming edges (resp. outgoing edges) of i , while δ(ci , c j ) is the
indicator of the event: ci = c j . To evaluate communities from the perspective of
the SIR process, we introduce the concept of minimum influence. Let puv denote
the probability that a perturbation introduced at node u propagates to node v. The
minimum influence for a node pair (u, v): pmin(u, v) = min(puv, pvu).

4 Community Detection Framework

Here, we describe the Moore-Shannon Network Reliability community detection
(MSNR-CD) method applied to directed edge-weighted graphs. Our approach is as
follows. Given a networked dynamical system, let E be the desired outcome of a
diffusion process whose probability, Pr(E), is a monotone non-decreasing function
of iterative edge removal. This Pr(E) is the MSNR, and is the sum of all such
configurations for which E is true. This is calculated using the Inclusion-Exclusion
expansion to avoid over-counting. The probability of picking a single edge is a
polynomial in e−x , where x is the probability parameter (see Sect. 3), the probability
of picking any particular random subgraph is also a polynomial in e−x .

In our case, we calculate Pr(E) as the probability of the event that the graph of
infected nodes resulting from the SIR process starting from a single random node
contains an SCC of size ≤ nSCC, the maximum community size. In this iterative
process, an edge whose removal maximizes Pr(E) in the residual graph is chosen and
removed from the graph. The iterative process is terminated when the residual graph
has no SCC of size > nSCC, in which case, Pr(E) = 1. The SCCs in the residual
graph constitute the communities. This process of discovering communities can
be described from an adversarial viewpoint. An adversary desires to minimize the
likelihood of many nodes being infected (akin to maximizing the Pr(E)) by making
minimal structural changes to the network (in this case, edge removal). The SCCs that
survive this process emerge out as communities. The greater the number of iterations
needed to destroy an SCC, the stronger the corresponding community.

Since computing the significance of edges in order to rank them is a computa-
tionally hard problem [25, 28], we apply perturbation techniques and Monte-Carlo
simulations to estimate them. Here, we provide a sketch of our approach to calculate
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Pr(E). The details are in Eubank et al. [8]. In our case, a subgraph H is minimal if its
size is at least nSCC + 1 and it is strongly connected, but none of its subgraphs satisfy
this property. Let EH be the event that H occurred and letH denote all such H . If the
sampled random subgraph (containing the random seed node) contains any H ∈ H,
then E does not hold. Therefore, E is the disjunction of EH events, and its probability
can be expressed as an inclusion-exclusion expansion involving only conjunctions of
one or more EH . The probability of a conjunction of EH is given by the probability of
the union of the corresponding subgraphs, which is, as above, a polynomial in e−x .

There are three challenges in evaluating this probability expression. Firstly, the
size ofH could be very large. Second, there are 2|H| terms in the inclusion-exclusion
expansion. Finally, heterogeneous weights can lead to extremely high degree polyno-
mials. To copewith the first problem,we sample fromH. Evenwith only a sample set,
though, evaluating the exact probability may be infeasible. To cope with the second
problem, we truncate the inclusion-exclusion expansion at combinations of no more
than k events EH . We denote the smallest power of e−x appearing in the polynomial
for the probability of any union (conjunction) of k + 1 subgraphs (clauses) by m(k).
Then the truncated inclusion-exclusion expansion yields the first m(k) terms of a
Taylor series expansion for the probability of E in the limit as e−x → 0. Finally,
we expect that the larger the degree of the polynomial, the worse the Taylor series
approximation is. The true degree is given by the sum of the weights on all the edges,
divided by their greatest common factor. To reduce the degree, we can bin theweights
so that they are all small positive integers.

This work significantly extends the work by Nath et al. [22], where an itera-
tive process of removal of significant interactions reveals strong communities. Our
approach accounts for weights on the edges, while in the previous work, the approach
was limited to unweighted networks; weighted edges were converted to multi-edges
and post-processed to obtain communities.

5 Experimental Results

Data and networks. We analyzed food networks at two spatial scales: (a) country-
to-country commodity-specific trade networks induced by the data from FAO [10],
and (b) sub-national coarse food class flows between FAF zones in the US [9]. For
FAO flows, we considered two commodities, tomato and corn. These are represen-
tative crops for vegetables and cereal respectively. We obtained the Detailed Trade
Matrices at the country level for each of these crops corresponding to multiple years
(2000–2019). Each edge is directed and associated with a weight corresponding to
the quantity of trade (measured in tonnes) from source to destination. Henceforth,
we refer to these networks as tomato and corn. Since there is some inconsistency
in the reporting of trade volume by exporting and importing countries, we consid-
ered only edges with volume at least 10 tonnes. For the sub-national FAF flows,
we looked at two commodity classes, cereal and other-ag-prod-mixed-freight and
considered edges with volume at least 100 tonnes. We refer to these, as cereal
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Fig. 1 Comparison of communities obtained using MSNR-CD and DL. Here, each community C
is plotted with respect to its size |C |, max. distance dG(C), and the total flow within the commu-
nity F(C) normalized by Fmax, the maximum value of F(·) across all communities. We fix x = 0.5
and number of bins for Poisson rates = 16

and other-ag-prod. We denote each country by its ISO Alpha-3 codes, while
each FAF zone has its state code prefixed to a numeric ID. Properties of networks
are provided in Table1.

Experiment design and implementation. We considered the following values of the
diffusion probability parameter x : 0.1, 0.5, and 0.9 to study how the ranking of edges
and, in turn, the community structure is affected by variations in transmission proba-
bility. For themax community size nSCC, we consider these values: 10, 20, 30, and 40.
The values considered for the number of bins for discretizing the weights were 2, 4,
and 16. We then analyze the resulting communities in terms of both structural and
dynamical properties. Since the method has a stochastic component, we replicate
the experiment for up to 100 times, and analyze the similarity between the replicate
results. The MSNR-CD framework is implemented using C++ and all the analysis
was performed using Python 3.8. All experiments in this thesis were performed on
an HPC system that runs Linux x86_64 operating system with a memory of 100GB.

Comparison with modularity-based approach. In Fig. 1, we compare the structure
of the communities resulting from MSNR and DL. Firstly, most of the communi-
ties (and all of the top communities) obtained using DL do not satisfy SC property.
Secondly, in both tomato and corn, many communities have large dG(C) relative
to their size |C |. On the other hand, we observe that with MSNR, the communi-
ties, by design, satisfy SC property, and have comparatively smaller dG(C) relative
to their size. For nSCC = 40, MSNR also captures a large community with high
total flow F(C). We compared the weighted modularity values (see Sect. 3 for the
definition) of the community sets found by MSNR-CD and DL (Table1). For all
networks, DL generated community sets have significantly higher modularity values
than those of MSNR-CD. This is expected as DL iteratively maximizes the modular-
ity, in contrast to our reliability-based method. As we varied the nSCC, the modularity
was lowest at nSCC = 40. However, in the case of the FAF networks, cereal and
other-ag-prod, the modularity values of MSNR-CD are comparable to that of
DL.
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Table 1 Network properties and themodularity values of community sets found byMSNR-CD and
DL. The fourth column corresponds to total traded volume (106 tonnes). The fifth and sixth columns
correspond to maximum in degree and out degree respectively. The last two columns correspond to
community size nSCC
Network Nodes Edges Vol. Max. in Max. out DL MSNR-CD

10 40

tomato 150 770 7.6 26 56 0.62 0.24 0.07

corn 183 1482 180 33 109 0.47 0.10 0.05

cereal 113 533 1.3 25 21 0.82 0.51 0.25

other-ag-prod 132 1067 1.1 36 36 0.80 0.66 0.57
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Fig. 2 Comparison of minimum influence pmin(u, v) for node pairs (u, v) across different com-
munity detection methods. The node pairs are categorized based on whether they belong to the
same community or not. For MSNR-CD, we fix x = 0.5 and number of bins for Poisson rates =
16. To avoid clutter, only pmin(u, v) > 0 are plotted. However, greater the x , greater the number
of non-zero pmin values. But the trend remains the same. These are representative results for the
tomato network. We have omitted remaining networks due to space constraint

Community and dynamics. In Fig. 2, we have plotted minimum influence pmin for
node pairs with non-zero pmin. In a good community partition, it is expected that
node pairs belonging to the same community have relatively higher pmin than pairs
where nodes belong to different communities. We compare DL with MSNR-CD
for nSCC = 40 as the larger communities in the latter are comparable in size with
those obtained using DL. In the case of DL, the number of node pairs with nodes
belonging to different communities and having large pmin is considerably higher than
that in MSNR-CD. From a dynamics perspective, the DL approach fails to group
together several mutually influential node pairs. Lastly, we compare the quality of
communities for different values of nSCC. When the community sizes are restricted
(like nSCC = 10), many mutually influential node pairs are assigned different com-
munities. However, this happens only for node pairs for which pmin is small.

Comparison of communities across commodities. We observe from Fig. 3 that in
tomato, the communities are often spatially contiguous, e.g., in Europe, Asia, and
the Americas. In corn however, communities can be geographically diverse, e.g.,
the community formed by Americas, India, and Southeast Asia or the one formed
by Australia and Southern Africa. In the FAF networks, we see strong geographic
contiguity. Also, the community structure differs across networks.
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Fig. 3 Geographic contiguity in community structure, or the lack thereof: top eight communities
(in order of size) in tomato, corn, cereal and other-ag-prod are shown for x = 0.5,
nSCC = 20 and number of bins = 16

Fig. 4 Evolution of community structure over time in a tomato, b corn. TheMSNR-CD param-
eters are x = 0.5, nSCC = 20 and number of bins = 16

Evolution of community structure over time. We compared communities found in
tomato and corn across the years in the range 2000–2019 at 5year intervals
(Fig. 4). New communities emerge while others disintegrate through the years. In
tomato, early communities were often pairs of countries, which coalesced into
significant groups by the year 2019, e.g., in recent years, Russia and Lithuania are
part of a larger community showing intensification of trade. Similarly, in corn, the
general trend is of an increase in the number of large-sized communities.

Hierarchy in communities. In Fig. 5, we compare the top communities obtained for
different values of nSCC in corn and other-ag-prod. We observe hierarchi-
cal clustering. The larger communities obtained for large values of nSCC (starting



Community Detection Using Moore-Shannon Network … 279

Fig. 5 Change in community structure with decreasing size of nSCC for a corn, b
other-ag-prod , keeping x = 0.5 and number of bins for Poisson rate = 16. The remaining
networks are omitted due to space constraints

with 40) progressively break into smaller stronger communities when nSCC is low-
ered. In other-ag-prod, the few large communities turn into many medium
sized ones, accompanied by numerous exchanges of members. Not surprisingly,
communities that were relatively small to begin with remain relatively unaltered
with decreasing nSCC. We observe the same hierarchical patterns in tomato and
cereal too thus demonstrating the effectiveness of our methods in discovering
strong sub-communities.

Sensitivity to parameters. The ranking of edges in the MSNR-CD algorithm can
depend on the diffusion probability, and, in turn, can affect the community structure.
The edge probability depends on the phenomenon being studied and can varywidely;
some species are more invasive than others, for example. In Fig. 6a, we observe that
the community structure is stable for almost all communities. Plot (b) shows that
the community structure hardly varies with the number of bins for Poisson rates. We
observe generally a power-law relationship in edge weights. For most of the edges,
since their weights are very small, discretizing has the effect of increasing their
weight. Lesser the number of bins, the greater the increase in weight. For very few
edges (less than 5%), the effect is opposite, their weight decreases with the number
of bins. Despite this, the community partition does not seem to be changing.

Stability of the resulting communities. Due to the stochastic nature of MSNR-CD,
we replicated the community detection experiment up to 100 times. To find how
similar the obtained community sets were, we computed the Rand index for every
pair of results. In tomato and cereal, we found that MSNR-CD produced the
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Fig. 6 Changes in community structure with varying MSNR-CD parameters: a probability param-
eter x and b number of bins for Poisson rates. Both plots are for tomato. In plot (a), number of
bins = 16, and in plot (b), x = 0.5. In both, we set nSCC = 30

exact same communities on every run. In corn and other-ag-prod, there were
only two different community structures found among all the runs with Rand index
of 0.919 and 0.97 respectively, indicating their high similarity.

6 Future Work

In this work, we developed an approach to discover strong communities in directed
edge-weighted networks with respect to both network structure and dynamics. An
important direction of work to explore in this regard is the effect of introducing edge
costs and budget. Some interactions might be more difficult to remove than others,
thus potentially leading to very different communities. In the context of commodity
flow networks, it is important to consider aggregated flows of commodities as it
is common to transport many commodities together (mixed freight). Our generic
frameworkbasedonMonte-Carlo andperturbation techniques canbeused to discover
communities in multilayer networks with complex diffusion processes.
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Winner Does Not Take All: Contrasting
Centrality in Adversarial Networks

Anthony Bonato, Joey Kapusin, and Jiajie Yuan

Abstract In adversarial networks, edges correspond to negative interactions such
as competition or dominance. We introduce a new type of node called a low-key
leader in adversarial networks, distinguished by contrasting the centrality measures
of CON score and PageRank. We present a novel hypothesis that low-key leaders
are ubiquitous in adversarial networks and provide evidence by considering data
from real-world networks, including dominance networks in 172 animal populations,
trading networks between G20 nations, and Bitcoin trust networks. We introduce a
random graph model that generates directed graphs with low-key leaders.

1 Introduction

Adversarial networks, where edges capture competition, dominance, or enmity, are
gaining prominence in the study of complex networks. Negative interactions are crit-
ically important to the study of social networks and more broadly, real-world com-
plex networks, and are often hidden drivers of link formation. Adversarial networks
appear throughout network science, and examples range from negatively correlated
stocks in market graphs [2], trade deficit between nations [12], the spatial location
of cities as a model to predict the rise of conflicts and violence [9], and animal pre-
dation networks and food webs [13]. Even in the highly cited Zachary Karate club
network [21], the negative interaction between the administrator and instructor was
the impetus for the split of the club participants into two communities. Adversarial
networks may be directed or undirected, and we focus on the directed case in the
present paper.

The Dynamic Competition Hypothesis (or DCH) was introduced in [5] and pro-
vides a quantitative framework for the structure of evolving adversarial or competition
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networks. TheDCHposits that leaders in adversarial networks exhibit high closeness,
low in-degree, and high out-degree. Leaders also possess high common out-neighbor
(or CON) scores, which measures shared competition versus other nodes; see Sect. 2
for a definition and discussion of CON scores.

We focus on the role of competing notions of centrality in adversarial networks.
Centrality measures are used to identify certain key nodes within complex networks.
There are several methods to measure centrality, such as degree distribution, PageR-
ank, closeness, andbetweenness.Our focuswill be on the novel detection and analysis
of certain nodes in adversarial networks, measured by comparing CON scores and
PageRank; the latter measure is an established tool for determining influential nodes
in a network.

To motivate our discussion of low-key leaders, we consider the popular social
game television franchise Survivor, where contestants progressively eliminate each
other by voting until only one remains. In the 35th season of the American social
game show Survivor, Ben Driebergen won over finalists Chrissy Hofbeck and Ryan
Ulrich [17]. While Ryan and Chrissy played a strategic game throughout the reality
show competition by forging alliances and voting out key competitors, Ben won in
part based on his findingmultiple immunity idols and the sympathy he garnered from
the jury as a veteran. Although Ben won the game, more low-key players like Ryan
were instrumental in shaping the underlying adversarial, co-voting network.

In Sect. 2, we identify a low-key leader as a node which has a relatively high CON
score, but low PageRank; intuitively, a low-key leader is highly likely to affect link
evolution while remaining less visible in the network. This notion is analogous to
so-called silent or quiet leaders in management positions in companies, who may be
more diplomatic, introverted, but remain influential; see [8]. Low-key leaders appear
to be ubiquitous in adversarial networks, and we support this hypothesis in Sect. 3
with data from three distinct sources: dominance networks in 172 distinct animal
populations, trading networks between G20 nations, and Bitcoin trust networks. A
new random graph model is introduced in Sect. 3, with the aim of synthetically
generating low-key leaders in scale-free directed graphs. The concluding section
contains several directions for future research.

We consider directed graphs (or digraphs) with multiple directed edges in the
paper. Additional background on graph theory and complex networks may be found
in the book [20].

2 Low-Key Leaders

An approach taken in [5, 6] in the detection of leaders in adversarial networks is
the common out-neighbour score (or CON score). For nodes u, v, w in a graph G,
we define w to be a common out-neighbor of u and v if (u, w) and (v,w) are two
directed edges in G. We let CON(u, v) be the number of common out-neighbour of
distinct nodes u and v, and define
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CON(u) =
∑

v∈V (G)

CON(u, v).

A high CON score for a node indicates it shares many of the same adversaries with
other nodes, and hence, is more in sync with how links evolve in the network. A
low CON score indicates the opposite trait, where the node is less of a driver of link
evolution.

PageRank centrality is based on the stationary distribution of a random walk on
the network that periodically teleports to a node chosen uniformly at random. For
a formal definition of PageRank, see [4]. In adversarial networks, we compute the
PageRank of nodes on the reversed-edge network, where we change the orientation
of the directed edges. Hence, if a node in the network has many out-edges, they will
more likely have higher PageRank in the reversed-edge network.

We define a low-key leader (or LKL) in an adversarial networks as a node whose
CON score and PageRank are negatively correlated, with high CON score and low
PageRank. Recall that, according to the DCH, leaders in a network are nodes that
exhibit high closeness, high CON score, low in-degree, and high out-degree. In
contrast, low-key leaders have less centrality due to their low PageRank but remain
influential actors in the network owing to their high CON score.

The definition of low-key leader given in the previous paragraph is more heuristic,
as having low or high scores is subject to interpretation. To make the definition
more precise, we consider the following approach. While CON scores are integers,
PageRank consists of probabilities in [0, 1]. To compare the difference between the
two scores to validate the presence of LKLs, we re-scale both scores by using the
unity-based normalization, defined as follows. Suppose we are given real numbers
X1, X2, . . . , Xn , with minimum Xmin and maximum Xmax. For 1 ≤ i ≤ n, define

Xi,norm = Xi − Xmin

Xmax − Xmin
.

Such scaling measure is used to set all values Xi,norm ∈ [0, 1]; note that we apply this
normalization also to PageRank (whose values are already in [0, 1]) for consistency.

Suppose that for a set of nodes xi ,where 1 ≤ i ≤ n, the CON score and PageRank
of xi are denoted by CONi and PRi , respectively. Define

εi = CONi,norm − PRi,norm.

Note that ε ∈ [−1, 1]. We abuse notation and refer to εi as simply ε. We consider a
node to be a low-key leader if it has the maximum value of ε, and ε > 0.5. We refer
to ε as the low-key leader strength of a node.

We hypothesize that adversarial networks typically contain at least one low-key
leader.Note that the assertion is on the presence of influential nodeswithin adversarial
networks; noother data is requiredother than the presenceof negative ties.Weprovide
evidence for the hypothesis in real-world, adversarial networks in the next section.



288 A. Bonato et al.

3 Data and Methods

To validate our hypothesis on low-key leaders, we consider three types of adversarial
networks: dominance networks in animal groups, Bitcoin trust networks, and the
trading networks between nations. In the interest of space, we refer the reader to
https://github.com/jkapusin/Low-Key-Leaders for complete data sets, as well as
CON, PageRank, and low-key leader strengths of nodes for each network.

3.1 Dominance Networks

We first consider dominance networks, where directed edges correspond to some
form of dominant-subordinate relations between members of an animal population.
The animal social dominance data set, compiled by Shizuka and McDonald [16] and
available in the Dryad Digital Repository, contains 172 distinct dominance networks
of an animal group. Networks are represented as weighted adjacency matrices, and
each entry in a given matrix corresponds to the number of times that the animal in
the row is dominated by the one in the column.

We first consider more closely the Bonanni2007-2 data set, which was randomly
chosen. The Bonanni2007-2 data set contains information on dominance behaviour
of mongrel dogs living in a free-ranging or semi-free-ranging state. Directed edges
correspond to aggressive signals such as lunging, biting, or snarling between the
dogs. Each individual dog is identified using a three letter code. See Fig. 1 for a
visualization of this network and see [3] for more discussion.

Fig. 1 The Bonanni2007-2
dominance network

https://github.com/jkapusin/Low-Key-Leaders
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Fig. 2 CON score versus PageRank in the Bonanni2007-2 dominance network. Nodes such as leo,
fia, and cla represent a population of mongrel dogs, and edges correspond to an observed dominance
behavior. The table lists the CON scores, PageRank (PR), and low-key leader strengths (ε). The
histogram depicts normalized CON scores versus PageRank

Fig. 3 A Slope Graph to compare the rankings via CON and PageRank in the Bonanni2007-2
dominance network. On the left, the top nodes via CON scores, while on the right, the top nodes
via PageRank on the reversed-edge network. Nodes are labeled in grey if the difference in rankings
is less than five. Nodes are labeled in red if the CON ranking is at least five places higher than the
PageRank, and in blue if the PageRank is at least five places higher than the CON score

See Fig. 2 for a comparison of centrality scores in the Bonanni2007-2 network.
We seriate the animals via the difference in their CON score and PageRank from
the highest value to the lowest. A slope graph representation of the data is provided
in Fig. 3 and compares the rankings with CON scores and PageRank. The dog leo
emerges as having the top CON score and highest difference between their CON
scores and PageRank, with low-key leader strength 0.9206. We therefore determine
that leo is the low-key leader in the Bonanni2007-2 network (Fig. 4).
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Fig. 4 CON scores versus PageRank in four animal dominance populations. From top left and
clockwise, we list the data set name, predicted low-key leader, and relevant citation: Allee1954-3,
II, [1]; Poisbleau2005-1a, C14, [14]; deWaal1977-1, f, [7]; and Watt1986-1a, F, [19]

We considered the low-key leader strengths of nodes in all the 172 animal domi-
nance networks and detected LKLs in 155 or 90.12% of them using a low-key leader
strength of ε = 0.5. If we let choose ε to be at least 0.4, then 95.35% of them contain
a low-key leader. We think the prevalence of LKLs in these dominance networks
provides support for our hypothesis. Figure 4 compares CON scores and PageRank
in four other animal dominance populations [1, 7, 14, 19]. As referenced at the
beginning of the section, see https://github.com/jkapusin/Low-Key-Leaders for a
list of all the detected LKLs.

3.2 Trade Networks

UN Comtrade [18] is a statistical database storing international trading information
between nations that is organized by the United Nations Statistics Division. There
are over 170 nations reporting their annual international trading data in the database.

We extract trading data of the 19 nations within the G20 and Spain from 2019.
An edge directed inward to the reporter nation represents importation, while edges
directed outwards represent exportation. Hence, nations with larger in-degree than
out-degree have larger trading deficits; a trading deficit between nations may be
viewed as form of dominance or adversarial relationship. Trading volumes are con-
sidered as the weights of the edges in the weighted graphs. See Fig. 5.

Figure6 is the histogramof theweightednetworks of theCONscore versusPageR-
ank of the trading networks. Figure7 is the corresponding slope graph. Among these

https://github.com/jkapusin/Low-Key-Leaders
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Fig. 5 The G20 trade network

Fig. 6 CON score (blue) versus PageRank (red) for the trade deficit network of G20 nations. Nodes
are nations denoted by three-letter codes such as CAN, USA, and CHN

nations, Canada (CAN) emerges as a low-key leader with low-key leader strength
0.9401. These results support that anecdotal view that while Canada does not have the
highest trade in theG20, it plays an influential secondary role in shaping international
trade dynamics among the higher income nations.
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Fig. 7 A Slope Graph to compare the rankings via CON and PageRank in the G20 trade deficit
network. On the left, the top nodes via CON scores, while on the right, the top nodes via PageRank.
Nodes are labeled in grey if the difference in rankings is less than ten. Nodes are labeled in red if
the CON ranking is at least ten places higher than the PageRank, and in blue if the PageRank is at
least ten places higher than the CON ranking

3.3 Bitcoin Trust Networks

Our final data set consists of a graph with a much larger number of nodes and edges
than the dominance networks and trading networks. Users trading the cryptocurrency
Bitcoin may anonymously rate others on their trustworthiness. The members of
Bitcoin trust networks rate other members by assigning an integer from −10 (total
distrust) to +10 (total trust); see [10]. We formed an adversarial network with nodes
the users and edges corresponding to negative ratings; for example, if user x rates user
y with −2, then we formed a directed edge (x, y). The rating scores are considered
as the weights in the weighted network. Data for Bitcoin trust networks was taken
from [11].

Figure8 provides a visualization of the OTC Bitcoin trust network with 5882
nodes and 3563 edges. As the number of users is large, we select the top 340 users by
sorting the difference between CON score and PageRank of each user ranked from
the highest to the lowest. Users outside this set of 340 had scores at or near zero and
so were omitted. The histogram contrasting CON scores and PageRank is given in
Fig. 9. The user with ID 3789 emerged as a LKL from our analysis, with low-key
leader strength 0.5552.
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Fig. 8 A visualization of the bitcoin over-the-counter (or OTC) trust network, where nodes are
users and directed edges correspond to negative ratings between them

Fig. 9 CON (blue) and PageRank (red) scores in the OTC bitcoin trust network
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4 Directed Ranking Model

Many models for complex networks were proposed over the last two decades involv-
ing various mechanisms such as preferential attachment and copying; see [4], for
example, for an early survey. We introduce a random directed graph generation
model based on ranked-based attachment that simulates digraphs containing a low-
key leader. In rank-based attachment models, the degree of a node is a function of
their predetermined rank. An undirected rank-based attachment model was intro-
duced in [15]. Such models are offline, in the sense that the number of nodes will
not change over time.

The directed ranking model produces a sequence of digraphs Gn with nodes
Vn = {1, 2, . . . , n}, where n ≥ 1 is an integer. The model has a fixed parameter and
an adjustable parameter: the order of the digraph n ∈ N

+ is fixed and the attachment
strength α is chosen in (0, 1). Note that n will not change over time. For each vi ∈ Vn ,
it receives a label l(ni ) ∈ {1, 2, . . . , n} chosenuniformly at random.Nodes are ranked
based on their labels; that is, we denote l as the label which node receives and r as its
corresponding rank. If l(vi ) < l(v j ), then the nodes are ranked r(vi ) > r(v j ). Each
node has a unique rank and the node that receives label 1 obtains the highest rank
among all, while whichever node receives label n has the lowest rank. For simplicity,
we reorder the sequence of nodes and simply let r(vi ) = i for all choices of i .

Edges in the model are added according to the attachment strength α. They are
generated by following the random process: for each distinct pair of nodes vi and v j ,
the probability of generating a directed edge (i, j) equals

P((i, j) ∈ E(Gn)) = j−α.

We set α = 1
2 for simplicity. We next uniformly choose one node at random from the

existing nodes, say vm , that we call the copy node. Let vr be the node with the highest
out-degree.We deterministically add directed edges (vm, v j ), for every directed edge
(vr , v j ). The copy node vm has high out-degree but note that its in-degree remains
unchanged. Note that only one copy node is selected.

Note that for a node vi , its in-degree deg−(vi ) is the sum of n − 1 independent
Bernoulli trials with a predetermined probability based on the ranking scheme. The
expected in-degree of a node vi with strength attachmentα = 1

2 may be expressed as:

E(deg−(vi )) =
n∑

j=1

i−
1
2

= i−
1
2

n∑

j=1

1

= ni−
1
2 .

Therefore, the expected in-degree of vi is one of n, n√
2
, n√

3
, . . . ,

√
n.
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(a) The in-degree distribution of G200. (b) ε values of G200.

Fig. 10 Simulation of the directed ranking model with 200 nodes

We consider an example simulating a digraph with n = 200 using the directed
ranking model. As shown in Fig. 10a, the in-degree distribution possesses a heavy
tail. We determined the CON scores and PageRank in our simulated digraph. As
depicted in Fig. 10b, the copy node v148 is the low-key leader as it has the largest
low-key leader strength equaling 0.9354.

5 Discussion and Future Work

We introduced a new type of node in adversarial networks using centrality measures.
A low-key leader (or LKL) corresponds to a node that has a relatively high CON
score, but relatively low PageRank. We asserted that LKLs typically exist in adver-
sarial networks. To validate the assertion in real-world networks, we analyzed three
different types of adversarial networks: animal dominance networks in 172 animal
populations, trading networks between G20 nations, and Bitcoin trust networks. The
analysis of the contrasting CON scores and PageRank in the three types of data
sets supported presence of LKLs in trade networks, Bitcoin trust networks, and in
over 90% of the considered animal dominance networks. We introduced the directed
ranking model that generates with high probability digraphs that have an expected
power law in-degree distribution, and also possess low-key leaders.

While we provided evidence for our hypothesis on LKLs using three different
types of networked data sets, wemay consider networks in other knowledge domains
to further validate their presence. We will consider a more rigorous analysis of the
directed ranking model in future work, exploring concentration results on the in-
degree distribution, as well as small world and spectral properties. An on-line version
of the directed ranking model, where new nodes are introduced over time, will be
considered in the full version of the paper. Finally, while we predicted the existence
of the low-key leaders in adversarial networks, we do not posit in this work why
they exist. The underlying mechanism as to why LKLs appear to be prevalent in
adversarial networks remains open.
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Reconstructing Degree Distribution
and Triangle Counts from Edge-Sampled
Graphs

Naomi A. Arnold, Raúl J. Mondragón, and Richard G. Clegg

Abstract Often, due to prohibitively large size or to limits to data collecting APIs,
it is not possible to work with a complete network dataset and sampling is required.
A type of sampling which is consistent with Twitter API restrictions is uniform edge
sampling. In this paper, we propose a methodology for the recovery of two funda-
mental network properties from an edge-sampled network: the degree distribution
and the triangle count (we estimate the totals for the network and the counts associ-
ated with each edge). We use a Bayesian approach and show a range of methods for
constructing a prior which does not require assumptions about the original network.
Our approach is tested on two synthetic and two real datasets with diverse degree
and triangle count distributions.

Keywords Network reconstruction · Bayesian statistics · Sampling

1 Introduction

Analysis of complex networks remains a growing area and network data sets are
more and more commonly available. However, some data sets are only a sample of
the entire network. For very large networks, it may not be possible to work with
complete data because of its size. Additionally, APIs can rate-limit the number of
queries, meaning that not all nodes and edges are present [15]. A common example
is the Twitter stream API which returns a 1% random sample of all tweets in real-
time [21]. In the usual Twitter graph formulationwhere edges constitute 1:1 replies or
retweets, this corresponds to uniform edge sampling of the full Twitter reply/retweet
graph. Inferring even simple characteristics such as the true number of nodes or edges
from a sample can be nontrivial [6, 12].

In this work we present a methodology for recovering the degree sequence and
the triangle sequence (per edge) under a uniform edge-sampling scenario where for
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an undirected graph G, a sample is constructed by uniformly sampling each edge of
G with probability p. First, we build on methods by Ganguly et al. [11] who recover
the degree distribution from node-sampled networks using a Bayesian approach and
we extend this to edge-sampled networks. We address the problem of finding an
appropriate prior degree distribution by proposing two different ways to construct a
prior. We further extend this Bayesian approach to estimating the edge triangle count
(the number of triangles associated with each edge) and the total triangle count.

We find that our Bayesian method outperforms the standard scale-up method at
estimating the degree sequence, particularly in small p scenarios where as few as
10% of the edges remain. Moreover, the priors we use do not make any assumptions
about the original degree distribution. For estimating the triangle per link count, in 3
out of the 4 network datasets we use, a Poisson prior achieves similar performance
to a correct prior.

This paper is structured as follows. First, in Sect. 3 we describe the edge sampling
procedure and derive properties of graphs that have been sampled in this way. Then
in Sect. 4 we introduce the various estimators used for these properties, with Sect. 5
showing how to construct a prior for the Bayes estimators. Finally in Sect. 6 we
present our results on recovering these properties on synthetic and real datasets. We
discuss the implications in Sect. 7.

2 Related Work

Sampling of complex networks in general is a well studied problem. One point of
interest is how well sampling preserves different properties, such as node rankings
in Twitter networks [15], temporal features [1] and scaling properties [14]. These
works have aimed also at designing sampling schemes specifically to preserve a given
quantity. Other works have used sampling to estimate quantities on graphs that are
prohibitively large to work with in their entirety, with a focus on triangle counting [2,
18, 20] or other motifs [5, 13].

Two recent works studied the problem of recovering a network’s degree distribu-
tion working from a small sample, first posed by Frank [10] in his PhD thesis in 1971.
The first by Zhang et al. [24] frames it as an inverse problem involving the vector of
observed degree counts and a linear operator representing the sampling scheme. The
second by Ganguly et al. [11] uses a range of estimators for individual vertex degrees
in node-sampled networks; simple scale-up estimators, risk minimisation estimators
and Bayes posterior estimates. Antunes et al. [2] whose work was on sampling meth-
ods for estimating the triangle distribution, studied the n = 1 sample size problem
as restricted access scenario as a case study. Other than this, little attention has been
given specifically to these restricted access problems, noted in [24].

A related problem is reconstructing network structure from unreliable or noisy
data, such as social networks constructed from reported friendships, which are well
known for having missing or spurious edges due to the different interpretations of
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“friendship” [23]. Young et al. [23] address this using aBayesian approach for finding
posterior probabilities for an edge’s existence given the measurements obtained.
Newman [17] use a Bayesian approach involving the empirical false and true positive
rates of observing an edge from the data.

3 Properties of Edge Sampled Graphs

Let G = (V, E) be an undirected simple graph with vertex set V = {v1, . . . , vN }
and edge set E = {e1, . . . , eM }. Consider a sampling regime where each edge el ∈
E is included in the sampled graph with probability p ∈ [0, 1], and each vertex
vi ∈ V is included if any edge incident to it is included. Denote this sampled graph
G ′ = (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E . Let the sizes of V ′ and E ′ be N ′ and M ′
respectively. This is known as incident subgraph sampling [14].

3.1 Degree

Let ki , respectively k ′
i denote the degree of a node vi ∈ G and G ′ respectively. Then

k ′
i follows a binomial distribution k ′

i ∼ B(ki , p), with conditional probability given
by

P(k ′
i = k ′|ki = k) =

(
k

k ′

)
pk

′
(1 − p)k−k ′

, (1)

with expectation E(k ′
i |ki = k) = kp and variance Var(k ′

i |ki = k) = kp(1 − p). The
probability that node vi ∈ V of degree ki has degree 0 in G ′ is given by P(k ′

i = 0) =
(1 − p)ki .

Nodes in G that become isolated as part of the sampling process are invisible to
observers of G ′ and should be considered removed. In this way, let δi be the indi-
cator random variable representing the removal of node vi from G, with probability
(1 − p)ki .

Fig. 1 Proportion of nodes removed in Erdős-Rényi and Barabási-Albert graphs, of size 1000
nodes and 10,000 (ER) and 9900 (BA) edges (see Table 1), using the edge-sampling procedure
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Then, the expected number N0 of removed nodes from G is given by E (N0) =∑N
i=1 E (δi ) = ∑

k≥1(1 − p)k Nk , where Nk is the number of vertices in G of degree
k. This is dependent on the degree distribution; distributions with large numbers of
low-degree nodes will experience higher numbers of nodes removed. This brings to
mind the friendship paradox [9], where a node incident to a randomly chosen edge
will on average have a higher degree than a randomly chosen node. FromFig.1we see
Barabási-Albert [4] networks experience more node removal than Erdős-Rényi [8]
networks.

The variance in the number of nodes removed is given by

Var(N0) = Var

(
N∑
i=1

δi

)
=

N∑
i=1

Var(δi ) +
∑

1≤i �= j≤N

Cov(δi , δ j )

=
∑
k≥0

(1 − p)k
[
1 − (1 − p)k

]
Nk

+
∑
k,k ′≥0

[
(1 − pk+k ′−1 − (1 − p)k+k ′]

Nk,k ′

where Nk,k ′ is the number of edges connecting vertices of degree k and k ′.

3.2 Triangles

Let Tl be the number of triangles in G which include edge el ∈ E . Then the number
of triangles in G, denoted by T , is given by

T = 1

3

∑
el∈E

Tl (2)

where the factor of 1
3 is present because each triangle in the sum is counted three

times, once for each link.
Let T ′

l be the number of triangles which include edge el in the sampled graph G ′,
defining T ′

l = 0 if el /∈ E ′. In the case that edge el remains in the sampled network,
then each triangle that includes el will remain in the sampled network if and only
if the other two edges remain; this occurs with probability p2. There are Tl such
triangles, so the number of these which remain in the sampled network is binomially
distributed with Tl trials and probability p2. That is,

P(T ′
l = t ′|Tl = t, el ∈ E ′) =

(
t

t ′

)
p2t

′
(1 − p2)t−t ′ . (3)

In the case that el does not remain in the sampled network, the following holds:
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P(T ′
l = t ′|Tl = t, el /∈ E ′) = δ0,t ′ (4)

where δ0,t ′ is the Kronecker delta function, taking the value of 1 if t ′ = 0 and 0
otherwise (since we defined T ′

l = 0 if el /∈ E ′).
We can use the law of total probability to remove the conditioning on el from Eqs.

(3) and (4) and find P(T ′
l = t ′) as follows,

P(T ′
l = t ′|Tl = t) = P(T ′

l = t ′|Tl = t, el ∈ E ′)P(el ∈ E ′)
+ P(T ′

l = t ′|Tl = t, el /∈ E ′)P(el /∈ E ′)

= p

(
t

t ′

)
p2t

′
(1 − p2)t−t ′ + δ0,t ′(1 − p). (5)

Therefore, the conditional probability mass function for T ′
l given Tl is given by Eq.

(5).
The expected value of T ′

l given Tl is given by

E(T ′
l |Tl = t) =

t∑
t ′=0

t ′P(T ′
l = t ′|Tl = t)

=
t∑

t ′=0

t ′
[
p

(
t

t ′

)
p2t

′
(1 − p2)t−t ′ + δ0,t ′(1 − p)

]

= p
t∑

t ′=0

t ′
(
t

t ′

)
p2t

′
(1 − p2)t−t ′ = p × p2t = p3t (6)

where Eq. (6) comes from noting that the sum in the lhs precisely evaluates the
expected value of a binomial random variable with t trials and probability p2.

Let T ′ be a random variable representing the triangle count of G ′, then

E(T ′) = E

⎡
⎣1

3

∑
el∈E

T ′
l

⎤
⎦ = 1

3

∑
el∈E

p3Tl = p3 T

where T ′ is the triangle count of the sampled network G ′.
The variance of T ′

l given Tl is then

Var(T ′
l |Tl = t) = p3t (1 − p2 + p2t − p3t). (7)

An argument involving computation of the covariances Cov(Tj , Tl) shows that
the variance of the expected total triangle count of G ′ given the individual triangle
counts T1, . . . , TM is given by
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Var(T ′|T1, . . . , TM) = 1

9

[
3p3(1 − p2)T + (p3 − p2)

∑
el∈E

T 2
l

+ 6T (p3 − p6) + 8k(p5 − p6)

]
. (8)

where k is the number of triangles which share a link. Full derivations of Eqs. (7) and
(8) can be found in the first author’s thesis [3] which also contains derivations for
wedge counts and clustering coefficient. An expression for this variance conditioned
on total triangle count T not edge triangle counts is given in [20].

The number of triangles per node Ti can be obtained from Te�
from 2Ti =∑

k Te�=(i,k)∈E meaning the estimators of the edge-sampled network can be
extended to evaluate vertex statistics e.g. local transitivity of the nodes ci =∑

k Te�=(i,k)∈E/(ki (ki − 1)).

4 Estimators for the Degree Sequence and Triangle Count

The previous showed how the distribution of a quantity X ′ in a sampled graph G ′
could be calculated as a conditional probability P(X ′ = x ′|X = x) given the unsam-
pled measurement X = x . This section aims to estimate the true network quantity X
given its sampled counterpart X ′.

4.1 Method of Moments Estimators

Let X be a random variable associated with a statistic of G and let X ′ be that statistic
onG ′ with expectedvalueE(X ′) = f (X, p).Anaive ‘scale-up’ estimator for X given
observed value x ′ for X ′ is the solution x̂ to the equation x ′ = f (x̂, p), provided a
solution exists.Borrowing the terminology from [11],wewill refer to these estimators
as method of moments estimators(MME).

4.1.1 Degree

For a node of degree k ′
i in G ′, the MME for ki is given by k ′

i/p. This is an unbiased
estimator with mean E (k ′

i/p) = 1
p ki p = ki and variance Var(k ′

i/p) = 1
p k(1 − p).

Nodes with the lowest possible degree (one) in the sampled graph are estimated
as having degree 1/p in the unsampled graph so as p decreases, the estimation of
low-degree nodes becomes poorer.
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4.1.2 Triangle Count

The expected triangle count E(T ′
l ) of edge el is p3Tl . If in addition, el remains in

G ′, its expected triangle count is given by p2Tl . Therefore the MME for Tl is p−3T ′
l

or p−2Tl , without and with the conditioning respectively. Similar to the MME for
degree, it provides poor estimates for edges that have a low triangle count, as it
disallows any estimates of Tl in the range (0, 1/p2).

Similarly, an MME estimate proposed by Tsourakakis et al. [20] for the total
triangle count of a network is p−3T ′, which has expected value E (p−3T ′) = T .
They found that this estimator has variance 1

p6
(
(p3 − p6)T + 2k(p5 − p6)

)
, where

k is the number of pairs of triangles which share a link.

4.2 Bayes Estimator

This estimator relies on Bayes theorem, giving

P(X = x |X ′ = x ′) = P(X ′ = x ′|X = x)P(X = x)

P(X ′ = x ′)
. (9)

P(X ′ = x ′|X = x) is the likelihood which is determined by the edge sampling pro-
cedure and is known. P(X = x) is the prior function which will be denoted by π(x);
this is in general not known.

A posterior estimate for X given X ′ can then be given as the expected value

E (X |X ′ = x ′) =
∑

x xP(X ′ = x ′|X = x)π(x)

P(X ′ = x ′)
. (10)

The immediate question arises of how to deal with the prior π(x), as this may involve
making assumptions about the structure of G. This will be discussed case by case
for the degree and triangle count.

4.2.1 Degree

Using the likelihood function for the degree from Eq. (1), a posterior estimate for
the degree of node vi given it has degree k ′

i in G ′ is

E(ki |k ′
i = k ′) =

∑∞
k=k ′ k

(k
k ′
)
(1 − p)kπ(k)∑∞

k=k ′
(k
k ′
)
(1 − p)kπ(k)

(11)

where π(k) is a prior for the degree distribution P(k) of G.
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4.2.2 Triangle Count

Using the likelihood function from Eq. (3), a posterior estimate for the triangle count
of edge el in G given it remains in G ′ is

E(Tl |T ′
l = t ′, el ∈ G ′) =

∑∞
t=t ′ t

( t
t ′
)
(1 − p2)tπ(t)∑∞

t=0

( t
t ′
)
(1 − p2)tπ(t)

(12)

where π(t) is a prior for the proportion of edges with triangle count t .1

To establish the total triangle count, summing the value of this estimator over the
remaining edges in G ′ and dividing by 3, as in Eq. (2), will provide an underestimate
for the total triangle count of G, since there are potentially many missing edges in
G ′. To mitigate this, we scale this factor up to the estimated number of edges in G.
That is, our estimate of the total triangle count becomes

T̂ = 1

3p

∑
el∈G ′

T̂l .

5 Constructing a Prior

TheBayes estimators for the degree and triangle per link sequences require the choice
of a prior. In this section, we propose methods for constructing priors.

5.1 Degree Distribution

A prior could be obtained from chosen family of distributions such as the Zipf
distribution or a power law distribution, but this baked-in assumption may not be
desirable. Furthermore, it has been shown that the distribution of a sampled network
may not even follow the distribution of the true network [19]. Therefore, we propose
two different methods of constructing a prior which do not make assumptions about
the degree distribution of the true network.

First, it is possible to estimate the prior using a Monte Carlo method to minimise
the �2 norm of the error. In this approach, we find a degree sequence {κi } which min-
imises min

(||pκi − k ′
i ||22

)
, with the restrictions that the degree is an integer number

and the sum of the degrees is equal to twice the number of links. To do this, we start
with κi = 
k ′

i/p�. If the sum
∑

vi∈V ′ κi of the estimated degrees is not equal to the
estimated number of links 
2M ′/p� then we increment or decrement the degree of

1 In experimental runs, the native binomial functions introduced numerical inaccuracies for large
powers of (1 − p). Therefore, an equivalent evaluation of binomial probabilities using the log-
gamma function and laws of logs was used in practice.
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nodes chosen uniformly at random until equality holds. Then we rewire links at ran-
dom for a large number of iterations (15,000 in our case), accepting each proposed
rewire if it decreases the �2 error. If 1/p is an integer, then the MME κi = k ′

i/p is a
global minimum.

The MME (and hence sometimes the minimisation method) cannot estimate the
degree ki ≈ k ′

i/p when k ′
i = 0; that is, the lowest possible estimated degree is 1/p.

If a good estimate for the original number of nodes is known then another prior we
for capturing these low degree nodes is constructed by “cascading” links from high
degree to low degree nodes. More precisely, as with the minimisation method, we
start with an estimated degree sequence κi = 
k ′

i/p�, redistributing links as before
if the total estimated degree does not match twice the estimated number of links.
Then, we place the nodes in descending order based on their estimated degree, with
the knowledge of the original number of nodes in the network being used to append
placeholder nodes which would have been removed by the sampling process. Finally,
we pick the first occurring node in this list with degree zero, and increment this degree
by simultaneously decrementing the degree of the node directly before it. This step
is performed iteratively until there are no degree zero nodes. Finally, as a comparison
point representing the best possible result achievable with the Bayes method, we use
a true prior which is the degree frequencies of the original network as a probability
distribution.

5.2 Triangle per Link Distribution

The twomethods for prior construction of the degree distribution do not immediately
translate to an analogue for triangles, and little is known about the triangle per edge
distribution as a starting place for selecting a prior. As an initial approach therefore,
we use a Poisson distribution Po(λ)withλ = 3T̂ /M ′, the average number of triangles
per link in the MME estimator. As with the degree distribution, we include a result
with a true prior as a comparison point.

6 Results

To test the capability of our estimators of degree sequence and triangle count, we
consider four different starting networks: an Erdős–Rényi G(N , M) network [8]
with N = 1000 and M =10,000, a Barabási–Albert network [4] of approximately
the same size and density, a real collaboration network from authors who submitted
to the ArXiV high-energy theoretical physics category [16] (henceforth Hep-Th for
brevity) and an Internet autonomous systems topology dataset (henceforth AS) [7].
A quick reference of some summary statistics can be found in Table 1. These datasets
were chosen to represent a heterogeneous selection of network types. TheERnetwork
has a Poisson degree and edge triangle count distribution and an overall low number



306 N. A. Arnold et al.

Table 1 Original statistics of network datasets used prior to sampling. Shown is the number of
nodes N , number of edges M , average node clustering coefficient C̄ [22], degree assortativity ρ

and average number of triangles per edge T̄l
Dataset N M C̄ ρ T̄l

Erdős-Rényi 1000 10,000 0.019 0.021 0.39

Barabási-Albert 1000 9900 0.063 −0.038 1.91

Cit-Hep-Th
collaborations

5835 13,815 0.506 0.185 2.31

AS topology 11,174 23,409 0.296 −0.195 2.55

Fig. 2 Error in estimation of the true degree sequence. Each value is averaged over experiments
with the shaded error bars representing standard deviation. The MME is overlays the minimisation
method in all

of triangles for the density of the network. The BA network has a theoretically power
law degree distribution, and a low triangle count for its density. The Hep-Th and
AS networks have a heavy-tailed degree distribution but have very different degree
correlations and the Hep-Th has a higher clustering than the AS network. For each
of these datasets modelled as a graph G, we take an edge-sampled network G ′ with
edge sampling probability p, for p = 0.1, 0.2, . . . , 0.9 and from this, reconstruct the
degree sequences, edge triangle counts and total triangle counts using our estimators.
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Fig. 3 Error in estimation of the triangles per link sequence using our different approaches, and
total triangles. Each value is averaged over experiments with the shaded error bars representing
standard deviation. The MME overlays the Bayes estimator with Poisson prior in the right hand
column
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In the degree distribution experiment, we reconstruct the degree k of nodes in
V ′ using our chosen estimators k̂, and compute the root mean squared error of the

degree sequences as RMSE(k̂) =
√

1
N ′

∑
vi∈V ′(ki − k̂i )2. These results are shown

in Fig. 2, showing the mean and s.d. error over 10 experiments. In all but the AS
topology network, the Bayes estimator with true prior has the lowest error, though
this is included only to show the best possible result that could be obtained with
the Bayes method since the true prior is unknowable. The next approaches that do
well at this task are the “link cascade” method and the Bayes estimator using the link
cascade as a prior. This method assumes knowledge of the number of nodes inG (i.e.
the number of nodes pruned by the edge-sampling) so performs better at estimating
low degree nodes. This is particularly evident in Fig. 2c, performing better than the
Bayes approach with true prior. The Monte Carlo minimisation method on its own
in many cases overlays the MME, due to the restriction that the degree sequence is
an integer (c.f. Sect. 5).

In the triangle count experiment, we estimate the triangle per edge count T̂l for
edges el ∈ E ′ and compute the mean squared error as RMSE(T̂) =[

1
M ′

∑
el∈E ′(Tl − T̂l)2

] 1
2
. In addition, we estimate the total number of triangles as

described in Sect. 4 and calculate the mean squared error over the 10 experiments
performed. These are shown in Fig. 3 with the triangle per link error on the left
column and total triangle error on the right. In all experiments, the Bayes estimator
with Poisson prior overlays the MME for total number of triangles; this is because
the λ used in the Poisson distribution is the MME estimate of the average number of
triangles per link. However, in all but the AS topology, the Poisson prior improves
the estimate of triangles per link especially in the small p scenario. In the AS topol-
ogy dataset, the Poisson is an inappropriate prior, performing poorly even with large
sample sizes.

7 Conclusion

This paper providedmethods for recovering statistics fromnetworks sampled via uni-
form edge sampling such as graphs limited to a sample by the Twitter API. Our results
show that our Bayesian estimators perform much better than standard approaches on
the degree sequence even when the priors were constructed without knowledge of
distributions for the original network. For the triangle count per edge, we showed that
while the Bayes estimates do not always improve upon the MME for total triangle
counts, they provide a markedly better estimate of triangles per link in the small p
scenario. However, an inappropriate choice of prior can lead to a bias even when the
sample size is large.

Future work will investigate generalising methods we used for constructing a
degree distribution prior for constructing a prior for triangle counts per link. One can
also consider other sampling regimes and network properties for which a likelihood
can be calculated.
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Generalizing Homophily to Simplicial
Complexes

Arnab Sarker, Natalie Northrup, and Ali Jadbabaie

Abstract Group interactions occur frequently in social settings, yet their proper-
ties beyond pairwise relationships in network models remain unexplored. In this
work, we study homophily, the nearly ubiquitous phenomena wherein similar indi-
viduals are more likely than random to form connections with one another, and
define it on simplicial complexes, a generalization of network models that goes
beyond dyadic interactions. While some group homophily definitions have been
proposed in the literature, we provide theoretical and empirical evidence that prior
definitions mostly inherit properties of homophily in pairwise interactions rather
than capture the homophily of group dynamics. Hence, we propose a new measure,
k-simplicial homophily, which properly identifies homophily in group dynamics.
Across 16 empirical networks, k-simplicial homophily provides information uncor-
related with homophily measures on pairwise interactions. Moreover, we show the
empirical value of k-simplicial homophily in identifying when metadata on nodes is
useful for predicting group interactions, whereas previous measures are uninforma-
tive.

Keywords Social network analysis · Homophily · Simplicial complexes

1 Introduction

Group interactions fundamentally differ from interactions between pairs of individ-
uals. When individuals assemble in groups of size three or more, social pressure
increases [2], social loafing may occur [16], and joint decisions can become polar-
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Fig. 1 a A closed but not filled triangle, indicating only pairwise interactions (e.g., three separate
two-author papers). b A closed and filled triangle, indicating a group interaction (e.g., a single
paper by three authors, which would additionally indicate that all pairs of authors have co-authored
with one another). c Example where group homophily is inherited from edge structure. If nodes
were randomly labeled, then 1/7 filled triangles would have nodes of the same type on average (c.f.
(3)), suggesting the presence of homophily (2 out of 3 filled triangles have nodes of the same type,
and 2/3 > 1/7). However, the edge structure of the network is such that 4 out of 6 closed (filled or
unfilled) triangles have nodes of the same type, which suggests that the homophily of filled triangles
is as if they were randomly placed into the underlying edge structure

ized [5]. However, fundamental properties of group interactions in complex networks
are not yet fully explored. As such, higher order models, which explicitly encode
group interactionswith data structures such as simplicial complexes and hypergraphs,
have received attention in recent literature [3, 4, 23].

In this work, we consider the principle of homophily as it pertains to group inter-
actions. Homophily, the well-known tendency for individuals to form social con-
nections with those similar to themselves, is a core organizing principle of social
networks [17, 18]. This notion is nearly ubiquitous, appearing in contexts such as
marriage, friendship, information transfer, physical contact, and online social net-
works [14, 18, 24]. In such networks, social ties are correlated with similarity in
age, occupation, religion, and/or each individual’s local network structure [6, 18].
Although this empirical ubiquity of homophily makes it valuable in understanding
social structure, previous studies have restricted to analysis of graphs, which only
encode pairwise interactions between individuals.

Ourwork builds on group homophily definitions considered recently in the context
of hypergraphs, a generalization of graphs that can encode interactions between
arbitrarily large groups of individuals [25]. For a particular hypergraph with labeled
nodes, priorwork considers all hyperedges of fixed size g ≥ 3, and defines homophily
relative to if nodes were labeled at random, which we refer to as a node baseline.
However, this approach can potentially inherit the dyadic, graph-based notion of
homophily rather than that of group interactions. In otherwords,muchof the variation
of group homophily scores with a node baseline can be explained by the standard
dyadic notion (Fig. 1). This observation goes beyond the provided example: in the
16 empirical datasets of this work, nearly 70% of the variation in group homophily
(for groups of size 3) using a node baseline can be explained by homophily scores
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defined only on edges. Hence, we introduce a new measure, k-simplicial homophily,
which properly isolates homophily due to group dynamics.
Contributions. In Sect. 3, we precisely define k-simplicial homophily as a formal way
to account for underlying interactions in a network when establishing the presence of
homophily for groups. Rather than model the social network with a hypergraph, we
use a simplicial complex which requires additional structure in the network model.
We establish theoretically that when k-simplicial homophily is applied to edges,
we recover a standard definition of homophily on graphs, suggesting it is a natural
generalization of homophily for groups.

Furthermore, contrary to the existing notions of homophily, k-simplicial
homophily successfully isolates properties of group dynamics. We provide theo-
retical evidence of this in Sect. 4, where we introduce the simplicial stochastic block
model, a generative network model which allows for homophily in pairwise inter-
actions to be decoupled from that of triadic interactions. We show prior measures
can incorrectly conclude the presence of group homophily, whereas k-simplicial
homophily identifies group homophily if and only if the formation of triadic inter-
actions depends on node class labels.

We then apply group homophily definitions to empirical data. In 15 out of 16
empirical datasets, we find that homophily scores using k-simplicial homophily are
lower than scores computed with the node baseline. Moreover, in 4 of these datasets,
we find anti-homophily with respect to k-simplicial homophily, and note that the
anti-homophily is justified in each dataset. Importantly, we do not find a significant
relationship between edge homophily scores and k-simplicial homophily scores on
triangles, suggesting that k-simplicial homophily provides novel insights into group
dynamics.

In Sect. 5, we show the utility of the new information provided by k-simplicial
homophily in the data-driven application of higher order link prediction. Originally
proposed by Benson et al. [4] as a benchmark problem for higher order models
and algorithms, higher order link prediction involves using network information
up to a certain time t to predict if new group interactions will occur after time t .
We find that k-simplicial homophily indicates whether node labels are useful in the
prediction task, whereas previous definitions of group homophily are uninformative
in determining the utility of node labels.

1.1 Related Work

Group homophily has been considered for data-driven applications such as transduc-
tive learning [22] and clustering [15]. In such works, the authors use a homophily
parameter as an input into a generative hypergraph model, and homophily is defined
relative to a baseline distribution computed using frequencies of node class labels.
Here, we instead propose homophily measures which describe existing datasets to
aid analysis of group interactions in empirical settings.
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A particularly relevant work is Veldt et al. [25], as it aims to broadly define
homophily in the context of hypergraphs. Like previouswork, the baseline considered
by the authors uses randomization of node labels in order to determine if hyperedges
in a network are more likely than random to be among nodes of the same type. The
author’s main focus in the work is understanding the complexity that arises in group
homophily due to the fact that different numbers of each category of individuals can
be present in a particular group. That is, for the setting considered by the authors
where nodes are given one of two labels, a hyperedge of size k can have t members
of one group, and k − t members of the other for any 0 ≤ t ≤ k. For a fixed k, the
authors define a homophily score for each t , and prove impossibility results showing
their homophily scores can not be strictly increasing in t and can not be greater than
unity for all t ≥ k/2. In this work, we define similar metrics for homophily which are
based on simplicial complexes as opposed to hypergraphs. We also consider a more
general setting where three or more class labels are allowed, which helps to avoid
impossibility results from prior work and allows for a broader selection of data.

2 Preliminaries

We discuss three data structures, each of which considers a set of nodes V , where
|V | = n, and a labeling functionC : V → {1, . . . ,m}, which maps each node to one
of m ≥ 2 classes.

Graphs and Hypergraphs. Graphs and hypergraphs are common models of inter-
actions in complex networks [3]. We consider undirected graphs which consist of a
set of nodes V and a set of edges E , where each edge e ∈ E denotes a pairwise inter-
action between nodes. Hypergraphs, in contrast, have a set of hyperedges H ⊆ 2V

which are unrestricted in size. Hence, group interactions can be encoded as elements
of H , with no additional structure required of H .
Simplicial Complexes. Simplicial complexes provide a way to encode group inter-
actions which requires more structure than hypergraphs. A simplicial complex is a
set of simplices X ⊆ 2V , where each element x ∈ X is referred to as a k-simplex
if it contains k + 1 different elements of V . In Fig. 1, nodes would then correspond
to 0-simplices, edges to 1-simplices, and filled triangles to 2-simplices. Simplicial
complexes also have the following structural property:

x ∈ X =⇒ σ ∈ X, ∀σ ⊆ x .

That is, for every simplex x in X , all subsets of x must also be contained in the
simplicial complex. In Fig. 1 the network can be modeled as a simplicial complex
because for each filled triangle, all edges associated with the triangle are in the
network. This simple assumption leads to a rich mathematical theory from algebraic
topology [12]. While we will not discuss algebraic topology at length (instead, see
[11, 12]), we do utilize the definition of a k-skeleton.
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Definition 1 (k-skeleton [11]) For a simplicial complex X , let X j denote the set
of all j-simplices in X , i.e. those elements of X with exactly j + 1 elements. The
k-skeleton of X , denoted X (k), is defined

X (k) =
k⋃

j=0

X j . (1)

As we will see, the k-skeleton accounts for underlying interactions when defining
group homophily, as it encodes all interactions of size at most k + 1. For example,
in Fig. 1, we used the 1-skeleton, referred to as the underlying graph, to argue that
homophily in triadic interactions (filled triangles) can be inherited from homophily
in closed triangles, which are defined by pairwise interactions.

3 Defining Group Homophily

Defining homophily for groups is far more complex than for edges, as there are
significantly more options for node labels to be assigned in a group of size g ≥ 3
than there are for an edge which only contains two nodes. To reduce this complexity,
we focus on two types of homophily in this work: one based on the proportion of
homogeneous groups in a network, and another which takes into account the number
of individuals in a group which share a particular class label.

3.1 Homophily of Homogeneous Groups

In what follows, we refer to a group as homogeneous if all nodes share the same
class. We use g to refer to group size in a hypergraph, and k to refer to k-simplices
in a simplicial complex, which have size g = k + 1. For an arbitrary hypergraph H ,
let Hg represent the hyperedges of size g and Hg

h ⊆ Hg represent the homogeneous
hyperedges of size g. The affinity score is then defined

ag(H) = ∣∣Hg
h

∣∣ /
∣∣Hg

∣∣ . (2)

The following random baseline formalizes notions of higher order homophily from
previous literature [15, 22, 25], and can be applied to arbitrary hypergraphs:

bgh(H) =
m∑

c=1

(
nc
g

)
/

(
n

g

)
, (3)
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where nc represents the number of individuals in class c, so bgh(H) represents prob-
ability that a group of size g in H with random node labels is homogeneous.

Definition 2 (Hypergraph Homophily Score [25]) The hypergraph homophily score
sgh (H) is defined

sgh (H) = ag(H) / bgh(H) . (4)

The score sgh (H) indicates the presence of homophily if sgh (H) > 1, or anti-
homophily if sgh (H) < 1. The score also coincides with a traditional metric of graph
homophily when g = 2, which we denote the graph homophily score [7].

The second random baseline applies only to simplicial complexes. Let ¯X (k−1),k

represent the possible k-simplices that may occur in X .1 The baseline is then

bkx (X) = ak+1( ¯X (k−1),k) . (5)

Intuitively,bkx (X) is the probability that a randomlyplaced k-simplex into the (k − 1)-
skeleton of X is homogeneous. The corresponding homophily score is:

Definition 3 (k-Simplicial Homophily Score) The k-simplicial homophily score
skx (X) is

skx (X) = ak+1(X) / bkx (X) . (6)

The primary difference between k-simplicial homophily and hypergraph homophily
lies in the definition of the baseline score. In hypergraph homophily, the baseline
depends only on the composition of nodes, whereas for k-simplicial homophily, the
(k − 1)-skeleton accounts for the underlying interactions.

Example 1 In Fig. 1, consider the case k = 2, such that we are focused on triangles.
Then, X (k−1) represents the underlying graph, and ¯X (k−1),k represents closed trian-
gles in the underlying graph. Because 4 out of 6 closed triangles are homogeneous,
b2x (X) = 4/6, and similarly because 2 out of 3 filled triangles are homogeneous,
a3(X) = 2/3. Therefore, s2x (X) = 1.

Notably, simplicial homophily and hypergraph homophily coincide when edges
are the focus, as both generalize the standard definition of homophily in edges.

Proposition 1 Let G = (V, E) represent an undirected graph, and let C : V →
{1, . . . ,m} represent a labeling of nodes into m classes. Then, the graph homophily
score and the k-simplicial homophily score on edges coincide.

The proof of the claim follows directly from the equivalence of (3) and (5) when
applied to edges. Proposition 1 shows that k-simplicial homophily is actually a natural
extension of graph-based notions of homophily [7, 20]. However, the two approaches
to homophily differ when group size increases beyond 2, as edges in a simplicial
complex can impose structure on triads.

1 Formally, given X (k−1) is the (k − 1)-skeleton of X , ¯X (k−1),k represents the maximal set of k-
simplices which could be added to X (k−1) while preserving that X (k−1) ∪ ¯X (k−1),k is a simplicial
complex.
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3.2 Homophily in Heterogeneous Groups

While the scores of the previous section conveniently summarize homophily into a
single value, they cannot handle heterogeneity in node labels for a group. To handle
this distinction, we focus on type-t interactions as defined in [25]. For a class c and
group size g, a type-t interaction is an interaction with exactly t members from class
c. The type-t affinity score for class c is defined [25]:

ag
c (t; H) = t × ∣∣Ht,g

c

∣∣ /

g∑

i=1

i ×
∣∣∣Hi,g

h,c

∣∣∣ , (7)

where Hi,g
h,c is the set of type-i hyperedges for class c. The random baselines for the

heterogeneous scores are then

bgh(t; H) =
(nc−1
t−1

) × (n−nc
g−t

)
(n−1
g−t

) , and bkx (t; X) = ak+1
c (t; ¯X (k−1),k) , (8)

where the former can be shown to be the expectation of agc (t; H)when node labels are
assigned randomly, and the latter generalizes the randomization scheme of Sect. 3.1.
The heterogenous homophily scores can then be defined as follows.

Definition 4 (Heterogeneous Homophily Scores) For a hypergraph H , group size
g, and class c, the heterogenous hypergraph homophily score is [25]

sgh,c(t; H) = ag
c (t; H) / bgh(t; H) . (9)

For a simplicial complex X , the heterogeneous k-simplicial homophily score is

skx,c(t; H) = ak+1
c (t; X) / bkx (t; H) . (10)

These definitions provide additional granularity when understanding homophily.
However, we note such definitions are prone to impossibility results: when nodes are
divided into two classes, heterogeneous homophily scores can not increase mono-
tonically with the parameter t or exceed unity for all t > g/2. [25].

4 Homophily in Network Data

Synthetic Networks In order to show the difference in homophily definitions, we
build upon recent models of random simplicial complexes to introduce the simplicial
stochastic block model, a straightforward generalization of the�-ensemble of Kahle
[13]. The generative model has the following inputs:
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Fig. 2 Triadic homophily in the simplicial stochastic block model. Error bars represent 95% confi-
dence intervals. (Left)Varying p1/q1 with p2 = q2 = 0.5. The hypergraph homophily score defined
on triangles inherits the homophily due to edges, whereas the 2-simplicial homophily is near 1.
(Right) Varying p2/q2 with p1 = 4q1. The k-simplicial homophily score is larger than 1 if and
only if p2/q2 > 1, and hence correctly captures homophilous group dynamics. In contrast, since
p1 > q1, hypergraph homophily scores are consistently inflated

• n1, . . . , nm , the number of nodes in each class for the model.
• p1 and q1, the probability of an edge (1-simplex) forming between nodes in the
same or different communities, respectively.

• p2, the probability that a closed triangle consisting of nodes in the same community
becomes filled as a 2-simplex.

• q2, the probability that a closed triangle consisting of nodes in different commu-
nities becomes filled.

Each random simplicial complex is then built using a generative process. First, edges
form between communities with probabilities p1 and q1 as noted above, creating
a graph G. Then, for each closed triangle in G, the triangle becomes filled with
probability p2 if all nodes in the closed triangle are of the same community, or with
probability q2 otherwise.

This model can control the presence of homogeneous edges and homogeneous
triangles in the network while maintaining the structural requirement of a simplicial
complex. p1 and q1 determine whether there is homophily in pairwise interactions,
and p2 and q2 dictate how much homophily occurs in the filled triangles beyond that
of the underlying pairwise interactions.

We provide two sets of experimental results on the simplicial stochastic block
model, each using two classes of nodes and community sizes of 1000 for each class.
In the left of Fig. 2, we set p2 = q2 which indicates that by construction group for-
mation is not influenced by class labels. k-simplicial homophily detects that p2 = q2
and reports a value close to 1, whereas the value reported by hypergraph homophily
depends on the parameters p1 and q1. The hypergraph homophily score in this case
is above 1 if and only if p1/q1 > 1, indicating that hypergraph homophily defined on
triangles inherits the properties of edge homophily prescribed in the model. In con-
trast, the right figure illustrates that k-simplicial homophily can effectively identify
whether group dynamics are homophilous. We let p1 > q1 and vary the ratio p2/q2.
The k-simplicial homophily score on triangles is above 1 if and only if p2/q2 is above
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Table 1 Summary statistics for the 16 datasets used for homophily comparisons, 9 of which are
also used for link prediction experiments. Additional details can be found at https://github.com/
arnabsarker/SimplicialHomophily

Dataset Nodes Classes Edges Triangles Time
steps

cont-village [21] 46 5 329 610

cont-hospital [10] 81 5 1381 6268 12,605

cont-workplace-13 [10] 100 5 3915 80,173 20,129

email-Enron [4] 148 2 1344 1159

cont-workplace-15 [10] 232 12 16,725 329,056 21,536

cont-primary-school [10] 241 11 8317 5139 3124

bills-senate [8, 9] 297 4 10,555 11,460 4975

cont-high-school [10] 326 9 5,818 2,370 8,938

bills-house [8, 9] 1495 3 29,959 16,884 4871

hosp-DAWN [4] 2558 364 124,155 1,081,440 8

soc-youtube [19] 10,513 10 85,134 24,903

soc-flickr [19] 54,104 10 1,231,068 2,692,349

coauth-dblp [1] 105,256 2 316,631 384,549 55

clicks-trivago [4] 172,737 160 176,194 116,264

soc-livejournal [19] 259,865 10 329,954 176,547

soc-orkut [19] 399,314 10 1,120,880 17,339

1, whereas the hypergraph score is consistently above 1 because p1 > q1. Because
the hypergraph score is influenced by both p1/q1 and p2/q2, it can not decouple their
effects.
Empirical Networks To understand the effect of different homophily definitions in
empirical networks, we apply the definitions to the 16 publicly available datasets
described in Table1. With the empirical networks, we are able to quantify the differ-
ence between the k-simplicial homophily score and the hypergraph homophily score
for triadic interactions. Using the definitions fromSect. 3.1, we compute the homoge-
neous homophily scores for all 16 datasets and display them in Fig. 3. For all but one
dataset (contact-hospital), the hypergraph homophily score is higher than the
k-simplicial homophily score, consistent with synthetic experiments where p1 > q1.
The result is particularly strong for retail-trivago, cont-high-school,
bills-house, and coauth-dblp, for which k-simplicial homophily suggests
anti-homophily in group formation. In retail-trivago, which has the strongest
tendency for anti-homophily, we posit that travelers headed to a specific destination
might look at two hotels to compare cost and amenities, but if a traveler is browsing
more than three hotels, they are likely taking a longer trip or have more flexibility
for their search. For the remaining three datasets, the tendency for anti-homophily
is much smaller, but can still be explained by a desire for diversity in larger group
sizes.

https://github.com/arnabsarker/SimplicialHomophily
https://github.com/arnabsarker/SimplicialHomophily
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Fig. 3 Scatterplot of global homophily scores with a hypergraph baseline compared to a simplicial
complex baseline. In 15 out of 16 datasets, the 2-simplicial homophily score is lower than the
hypergraph homophily score, as the hypergraph homophily score inherits properties from edges

In the context of heterogeneous homophily definitions, it appears that pairwise
interactions explainmuch of hypergraph homophily, as suggested in Fig. 4. For nearly
all classes and each value of t , the observed metric is closer to the random baseline of
k-simplicial homophily than that of hypergraph homophily. That is, the baseline in
k-simplicial homophily tends to “flatten” the homophily scores as a function of type
t . This intuition is confirmed with homogeneous homophily scores. When using the
graph homophily score to predict hypergraph homophily, we find that a simple linear
model results in an R2 value of 0.698 (p < 0.001), with a positive coefficient that
further indicates that edge homophily positively influences hypergraph homophily. In
contrast, the same analysis using graph homophily to explain k-simplicial homophily
on triads results in an R2 value of 0.167 (p = 0.117), suggesting that k-simplicial
homophily offers distinct insights on group dynamics. In particular, we show that this
distinct information is particularly useful in the task of higher order link prediction.

5 Homophily and Higher Order Link Prediction

Higher order link prediction has been introduced as a “benchmark problem to assess
models and algorithms that predict higher-order structure” [4]. One is given a partial
time series of network data up to a time t , and then is asked to predict if a closed
but not filled triangle will become filled the after time t . In the prediction task, we
learn two separate logistic regression models on the first 50% of simplices observed
in the data, and test the logistic regression model on the remaining 50% of data.
The first model (“Without Labels”) serves as a baseline and uses the local features
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Fig. 4 Homophily scores with heterogenous group compostion for cont-hospital. Error bars
represent 95% confidence intervals. We find the simplicial complex baseline often results in less
extreme values of homophily for the majority of classes in the data and all values of t , suggesting
that pairwise interactions account for much variation in hypergraph homophily

described in Benson et al. [4] to predict the binary outcome of whether a particular
closed but not filled trianglewill becomefilled. The features of this regression include
the frequency with which each tie occurs between each pair of nodes in the closed
triangle, the degree of each node (in the traditional graph sense and weighted by the
number of simplices each node is in), the number of common neighbors between the
nodes, and logarithmic rescalings of all of these factors. The second model (“With
Labels”) uses the features of the first model and an additional binary indicator feature
which is 1 if and only if all nodes in the closed triangle are the same type.

Table 2 Group Formation Prediction Performance. Prediction performance is measured using
the AUC-PR and presented relative to a random baseline. Bolded entries indicate a statistically
significant larger performancemetric via a bootstrapping procedure which also produces confidence
intervals. Table is sorted by 2-simplicial homophily score of the training set, and shows that extreme
2-simplicial homophily scores indicate when node labels are useful

Prediction Performance Homophily Score

Dataset Without
Labels

With Labels 2-Simplicial ↓ Hypergraph

bills-house 1.12 (±0.016) 1.18 (±0.031) 0.92 2.01

coauth-dblp 1.25 (±0.029) 1.42 (±0.037) 0.99 1.12

cont-workplace-13 2.36 (±0.019) 2.22 (±0.016) 1.05 1.30

bills-senate 4.74 (±0.257) 3.38 (±0.161) 1.16 1.76

cont-workplace-15 1.16 (±0.001) 1.16 (±0.001) 1.17 3.87

cont-primary-school 1.08 (±0.000) 1.08 (±0.000) 1.34 2.03

cont-hospital 3.38 (±0.028) 4.46 (±0.038) 1.79 1.56

hosp-DAWN 4.48 (±0.001) 4.50 (±0.001) 2.36 6.82

cont-high-school 1.48 (±0.001) 1.55 (±0.001) 2.84 8.05
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The results of the logistic regression are presented in Table2. We evaluate perfor-
mance of different features using the area under the precision-recall curve (AUC-PR)
and report the score relative to a random baseline, as has been done in the literature
[4]. The table is sorted by the 2-simplicial homophily score computed on the training
set of data, i.e. the first 50%of simpliceswhich are used to train the logistic regression
model. We find that for extreme values of the 2-simplicial homophily score, indicat-
ing either homophily or anti-homophily, that the prediction performance increases
when homogeneous node labels are used as a regressor. Specifically, the two lowest
2-simplicial homophily scores and the three highest 2-simplicial homophily scores
are for datasets where node labels increase predictive performance, whereas the four
datasets withmoderate scores see no change or decreases in performance. In contrast,
when hypergraph homophily scores are sorted, no clear patterns emerge.

6 Conclusions

We proposed a measure for homophily in simplicial complexes, k-simplicial
homophily,which isolates the homophily present in group dynamics. The necessity of
such a definitionwas established on synthetic and empirical data,which indicated that
prior notions of homophily for arbitrary hypergraphs can inherit homophilous struc-
ture from underlying pairwise interactions and miss the effect of group dynamics.
k-simplicial homophily applies to groups of arbitrary size, and we provided experi-
mental and theoretical evidence on triadic interactions that k-simplicial homophily
provides distinct information fromhomophily scores on edges.Moreover, we showed
the empirical value of k-simplicial homophily, as extreme scores indicate the value
of node labels for predicting if group interactions will occur. These techniques ulti-
mately provide a general approach to isolate group dynamics in simplicial complexes,
which we believe will be useful in analyzing group interactions in complex networks
more broadly.
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Statistical Network Similarity

Pierre Miasnikof, Alexander Y. Shestopaloff, Cristián Bravo,
and Yuri Lawryshyn

Abstract Graph isomorphism is a problem for which there is no known polynomial-
time solution. The more general problem of computing graph similarity metrics,
graph edit distance ormaximumcommon subgraph, isNP-hard.Nevertheless, assess-
ing (dis)similarity between two or more networks is a key task in many areas, such as
image recognition, biology, chemistry, computer and social networks. In this article,
we offer a statistical answer to the following questions: (a) “Are networks G1 and
G2 similar?”, (b) “How different are the networks G1 and G2?” and (c) “Is G3 more
similar to G1 or G2?”. Our comparisons begin with the transformation of each graph
into an all-pairs distance matrix. Our node-node distance, Jaccard distance, has been
shown to offer an accurate reflection of the graph’s connectivity structure. We then
model these distances as probability distributions. Finally, we use well-established
statistical tools to gauge the (dis)similarities in terms of probability distribution
(dis)similarity. This comparison procedure aims to detect (dis)similarities in connec-
tivity structure and community structure in particular, not in easily observable graph
characteristics, such as degrees, edge counts or density. We validate our hypothesis
that graphs can be meaningfully summarized and compared via their node-node dis-
tance distributions, using several synthetic and real-world graphs. Empirical results
demonstrate its validity and the accuracy of our comparison technique.

Note on terminology: For the sake of compactness, the work in this article focuses
exclusively on simple graphs. We only consider unweighted, undirected graphs with
no self-loops or multiple edges. Throughout this article, the terms graph and network
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are used interchangeably. Similarly, the terms vertex and node and the terms edge,
arc, link and connection are used as synonyms.

1 Introduction

Graph isomorphism is a problem for which there is no known polynomial-time solu-
tion. The more general problem of computing graph similarity metrics, graph edit
distance or maximum common subgraph, is NP-hard. Nevertheless, assessing net-
work (dis)similarity is a key task in many areas, such as image recognition, biology,
chemistry, computer and social networks. In this article, we offer a statistical answer
to the following questions: (a) “Are networks G1 and G2 similar?”, (b) “How different
are the networks G1 and G2?” and (c) “Is G3 more similar to G1 or G2?”.

We obtain these answers by first converting networks (graphs) into an all pairs
distances matrix. To achieve this transformation, we use Jaccard distance instead of
the typically used shortest-path or the also common random walk-based distances
(e.g., commute, resistance, ...). Previous work has highlighted the shortcomings of
shortest-path [1] and random walk-based distances [16, 17, 22]. The advantages
of Jaccard distance, especially its relation to connectivity structure, have also been
demonstrated [4, 19, 20].

Our comparison technique is focused on comparing each network’s connectiv-
ity structure and community structure in particular, not on easily observable graph
characteristics. We argue that changes in connectivity may be indicative of critical
network event occurrences, which makes structural conectivity-based (dis)similarity
worthy of investigation. For example, the presence of denser subgraphs may indicate
a loss of connection to the broader network and the appearance of bottlenecks, in a
physical or computer network. They can also be an indicator of malicious activity,
especially of the multi-party coordinated variety [24, 27, 28].

As described later in this article, Jaccard distance also has a probabilistic interpre-
tation. On the basis of this interpretation, we then compare networks as probability
distributions of distances, using well-established statistical techniques. As stated ear-
lier, our comparisons are not restricted to a few key statistical or graph characteristics,
such asmean degree or density. Instead, our conversion to a distancematrix and inter-
pretation of these distances as a probability distribution captures each graph’s entire
structure.

This probabilistic approach and associated statistical tests are the major contri-
bution of this work. Converting graphs to probability distributions not only allows
the use of well-established statistical tools, it offers objective significance metrics.
It also opens the door to similarity comparisons based on subsampling. While space
restrictions do not allow us to explore this avenue here, our initial investigations in
this area show promise. For now, this avenue is left for future work. Our future work
will explore similarity comparisons through statistical subsampling in great detail.
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2 Previous Work

The comparison of static graphs and the study of temporal graphs are overlapping
topics. Indeed, the study of temporal graphs naturally includes comparisons of snap-
shots of time-evolving graphs. In the past, several authors have highlighted the need
to study graph similarity and their evolution over time. These authors have illustrated
their claims using various areas of application, areas as varied as image recognition
[3], network robustness and resilience [14], mobile telephony [7, 14, 25] and public
transportation [18]. Notably, graph comparisons and temporal graphs remain current
topics of inquiry [6, 12, 26].

A full review of the graph similarity and temporal graphs literature is beyond the
scope of this short article. However, we wish to highlight the fact that this article is
built upon the foundations of Schieber et al. [23] and the very recent work of Wang
et al. [26]. These authors have modeled graphs as probability distributions. We also
wish to highlight that our work does not rely on costly embedding computations
which have been presented in the recent literature (e.g., [2, 26]).

3 Methods

Wemodel graphs as probability distributions of vertex-vertex distances.We too posit
that graphs can bemeaningfully summarized and compared on the basis of their node-
node distances. Just as others before us, we begin by obtaining the distances between
all vertex pairs. However, unlike in previous work, we use Jaccard distances [4, 13,
19, 20]. The main difference between earlier work and ours lies in the choice of
node-node distance.

Schieber et al. [23] use shortest path distance. However, previous work has high-
lighted its shortcomings. For example, Akara-pipattana et al. [1] stated the following:
“While intuitive and visual, this notion of distance is limited in that it does not fully
capture the ease or difficulty of reaching point j from point i by navigating the graph
edges. It does not say whether there is only one path of minimal length or many such
paths, whether these paths can be straightforwardly located, or whether alternative
paths are considerably or only slightly longer”. In the past, Chebotarev and Shamis
[5] as well as Fouss et al. [8] have also highlighted the unsuitability of shortest-path
distance as a similarity measure between vertices. We have also echoed these asser-
tions in recent publications and have demonstrated the superiority of the Jaccard
distance as a reflection of graph structure [19, 20].

In their very recent work, Wang et al. [26] use a combination of embedding
and Euclidean distance. While they report interesting results, this two-step process
appears cumbersome and ill-suited to larger graphs, at first glance. Arguably, embed-
ding graphs into vector space carries a non-trivial computational cost. In this specific
case, the authors use the DeepWalk algorithm [21] to obtain their embedding. While
the creators of DeepWalk claim their technique is scalable and parallelizable, it simu-
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lates incomplete randomwalks across the network, relies on simplifying assumptions,
requires several input parameters and also performs gradient descent optimization.
In contrast, Jaccard distance only relies on simple vertex-pair level arithmetic com-
putations, instead of multiple layers of neighborhoods (multiple layers of neighbors’
neighbors), and has been shown to offer an accurate reflection of graph structure
[19, 20]. Its computation can also be easily performed incrementally or in parallel
(not possible with random walk simulations). In addition, several authors have high-
lighted the breakdown of the random-walk based commute (resistance) distance in
the case of larger graphs [16, 17, 22].

We would also like to draw attention to the fact some authors restrict their com-
parisons to graphs with equal numbers of nodes [9]. Yet, others are interested in the
more general case of comparisons between graph with unequal numbers of nodes
[15]. Because we compare connectivity through cumulative distributions, the num-
ber of nodes in each graph is not relevant. Our technique applies equally to either
case.

3.1 Vertex-vertex Jaccard Distance

The Jaccard distance separating two vertices i and j is defined as

ζi j = 1 − |ai ∩ a j |
|ai ∪ a j |
︸ ︷︷ ︸

si j

∈ [0, 1] .

Here, ai (a j ) represents the set of all vertices with which vertex i ( j) shares an edge.
The ratio si j is the well known Jaccard similarity. The Jaccard distance (ζi j ) is its
complement.

3.1.1 Probabilistic Interpretation of the Jaccard Distance

The Jaccard similarity (si j ) between two nodes i and j can be interpreted proba-
bilistically. Consider all nodes of a network excluding i and j and select at random
a node k. The Jaccard similarity is then an estimate of the (conditional) probability
that both i and j are connected to k, given that at least one of i and j is connected
to k. Mathematically, we express si j as,

si j = P
((

eik ∧ e jk
) | (

eik ∨ e jk)

))

,

where ei j indicates the existence of an edge between nodes i and j .
The Jaccard distance (ζi j ) is its complement. It can be interpreted as one of these

two cases:
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(a) the (conditional) probability that i is connected to k, but j is not,

(exclusive) or

(b) the (conditional) probability that j is connected to k, but i is not.

Mathematically, we express it as

ζi j = 1 − P
((

eik ∧ e jk
) | (

eik ∨ e jk)

)) = P
((

eik � e jk
) | (

eik ∨ e jk)

))

.

3.1.2 From Graph to Empirical Probability Distribution

Once all distances ζi j have been obtained, we examine their statistical distribution.
On the basis of the probabilistic interpretation of the ζi j just described, we treat these
quantities as random variables. This model allows us to study and compare graphs
as empirical probability distributions of node-node distances.

This transformation from graph to probability distribution also opens the door to
similarity comparisons based on subsampling. While space restrictions do not allow
us to explore this avenue here, our initial investigations in this area show promise.
Our future work will explore similarity comparisons through statistical subsampling.

Figure1 illustrates the interpretation of a graph as a probability distribution. The
image on the left shows the distribution of node-node distances for an Erdős-Rényi
(ER) graph with an edge probability of p = 0.5. The image on the right is of the
distribution of distances between nodes of a stochastic block model graph (SBM) of
varying cluster sizes and inout edge probabilities of 0.9/0.1.

The structural differences between these two graphs is immediately obvious. The
ER graph’s distances are symmetrically distributed about their mean, in a Gaussian-
like pattern. In stark contrast, the SBM graph’s distances are left-skewed and
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bi-modal. The leftmode reflects distances between nodes in the same blocks,whereas
the right mode reflects distances between nodes not in the same blocks. Naturally,
this pattern does not occur under the ER model.

3.2 Dissimilarity of Probability Distributions

We compare the networks of interest via the empirical probability distributions of
the Jaccard distances between their nodes. To perform these comparisons, we use
the Kolmogorov-Smirnov (K-S) distance and the Wasserstein distance of order p.
These distances are defined as follows: In a comparison between two networks, let
F1(x) be the empirical cumulative distribution function (CDF) of Jaccard distances
for the first network, and F2(x) the empirical CDF of Jaccard distances for the second
network (F−1 denotes the inverse CDF). The Kolmogorov-Smirnov (K-S) distance
to compare F1 and F2 is defined as

D = sup
x

|F1(x) − F2(x)| (∈ [0, 1]) .

Meanwhile, the Wasserstein distance of order p between F1 and F2 is defined as

Wp(F1, F2) =
(∫ 1

0
|F−1

1 (u) − F−1
2 (u)|pdu

)1/p

.

(In our experiments, we set the parameter p = 2.)
The K-S distance metric D is also a test statistic. In this specific case, it is a test

statistic for the two-sample K-S test. The hypotheses of this test are listed below.

• Null hypothesis (Ho): the two samples are drawn from the same distribution
• Alternative hypothesis (Ha): the two samples are drawn fromdifferent distributions

The p-values of the K-S test provide an interpretation and validation of the test
statistic (distance D). Concretely, they are the measure of the area under the Kol-
mogorov distribution’s probability density curve beyond the point D. This area rep-
resents the probability of obtaining a distance of the same or greater magnitude,
under the (null) hypothesis that both samples were drawn from the same distribu-
tion. Small p-values provide evidence that the maximum vertical distance between
the empirical CDFs of two compared graphs is statistically significantly different
from zero. These p-values are obtained directly from the Kolmogorov distribution.
We compare the D metric against the critical values (cv) of a statistical table or,
more conveniently, by using statistical software (e.g., SciPy https://docs.scipy.org/
doc/scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html). For example, in a
two-sample two-sided test with sample sizes n1 and n2, the α = 0.01 cv for D is
1.63 × √

(n1 + n2)/(n1n2). In all our tests, these cv are at most ∼ 10−3. Hence, the
p-value of any D greater than 10−3 is less than 0.01.

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.ks_2samp.html
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While the K-S distance is always contained in the interval [0, 1], the Wasserstein
distance is not. To make comparisons more meaningful and easier to interpret, we
transform the latter, so that it also lies on the same interval. After obtaining the
quantity Wp, we perform the following transformation,

W̃p = 1 − exp(−Wp) (∈ [0, 1]) .

In our comparisons, we use the quantity W̃p.

4 Numerical Results

Due to space limitations, we restrict our attention to comparisons using our own
technique, only. We reserve comparisons to other similarity techniques for future
work. Here, we validate our hypothesis that graphs can be meaningfully summarized
and compared via their node-node distance distributions. We begin with validations
using several synthetic graphs with known (dis)similarity. To illustrate real-world
relevance, we also compare several real-world networks. Key characteristics of our
test graphs are reported in Table1. The columns correspond to

• |V |: number of vertices,
• |E |: number of edges,
• K: density,

Table 1 Graph characteristics

|V | |E | K min(D) D̄ max(D) |CC |
Synthetic ER.333 2500 1,039,694 0.33 753 831.76 929 1

ER.35 2500 1,092,408 0.35 794 873.93 944 1

ER.5 2500 1,562,067 0.50 1,157 1249.65 1344 1

ER.3332cc 2500 887,948 0.28 45 710.36 843 2

ER.333N1K 1000 166,417 0.33 289 332.83 381 1

SBM0701 2495 348,674 0.11 230 279.50 334 1

SBM0901 2495 360,867 0.12 235 289.27 346 1

Real-world 1997/11/08 3015 5156 0.00 1 3.42 590 1

1997/11/09 3,011 5150 0.00 1 3.42 589 1

1998/11/08 4,296 7815 0.00 1 3.64 935 1

1998/11/09 4,301 7838 0.00 1 3.64 938 1

1999/11/08 6,127 12,046 0.00 1 3.93 1383 1

1999/11/09 3,962 7931 0.00 1 4.00 837 1

2000/01/01 3,570 7033 0.00 1 3.94 740 1

2000/01/02 6,474 12,572 0.00 1 3.88 1458 1
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Fig. 2 Degree distributions, box-plots

• min(D): minimum degree,
• D̄: mean degree,
• max(D): maximum degree and
• |CC |: number of connected components (Fig. 2).

The generative models used to create the synthetic graphs are listed below. These
graphs were generated using the NetworkX library [10].

• ER.333: ER with n = 2500, p = 0.333
• ER.35: ER with n = 2500, p = 0.35
• ER.5: ER with n = 2500, p = 0.5
• ER.3332cc: ER also with p = 0.333, but with two connected components (n1 =
2300, n2 = 200)

• ER.333N1K: ER also with p = 0.333, but with only n = 1000
• SBM0701: stochastic block model, with clusters in range of [37,62] and pin =
0.7, pout = 0.1

• SBM0901: stochastic block model, with clusters in range of [37,62] and pin =
0.9, pout = 0.1

Meanwhile, the real-world graphs were obtained from the Harvard Dataverse reposi-
tory [11]. These data sets are from the University of Oregon’s “Route Views Project”.
Each graph contains a daily snapshot of a set of internet “autonomous systems” and
their connections (Tables 2, 3, 4 and 5).

Our results show that our technique based on a transformation fromgraph to proba-
bility distribution anddistancemeasurementswith either theWasserstein andK-Sdis-
tances between node-node distributions are validmeasures of network (dis)similarity.
Indeed, thesemetrics accurately identify network structure changes, even in arguably
difficult cases. For example, both metrics accurately detect the disconnection into
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Table 2 Wasserstein distances, synthetic graphs

ER.333 ER.35 ER.5 ER.3332cc ER.333N1K SBM0701 SBM0901

ER.333 NA 0.01 0.13 0.07 0.01 0.13 0.13

ER.35 NA NA 0.11 0.07 0.01 0.14 0.14

ER.5 NA NA NA 0.16 0.13 0.24 0.24

ER.3332cc NA NA NA NA 0.06 0.12 0.12

ER.333N1K NA NA NA NA NA 0.13 0.13

SBM0701 NA NA NA NA NA NA 0.00

SBM0901 NA NA NA NA NA NA NA

Table 3 Wasserstein distances, real-world graphs
1997/11/08 1997/11/09 1998/11/08 1998/11/09 1999/11/08 1999/11/09 2000/01/01 2000/01/02

1997/11/08 NA 0.00 0.03 0.03 0.04 0.04 0.04 0.04

1997/11/09 NA NA 0.03 0.03 0.04 0.04 0.04 0.04

1998/11/08 NA NA NA 0.00 0.02 0.03 0.03 0.02

1998/11/09 NA NA NA NA 0.02 0.03 0.03 0.02

1999/11/08 NA NA NA NA NA 0.02 0.02 0.01

1999/11/09 NA NA NA NA NA NA 0.01 0.02

2000/01/01 NA NA NA NA NA NA NA 0.02

2000/01/02 NA NA NA NA NA NA NA NA

Table 4 K-S distances and (p-values), synthetic graphs (Note α = 0.01 cv for D is at most∼10−3)
ER.333 ER.35 ER.5 ER.3332cc ER.333N1K SBM0701 SBM0901

ER.333 NA 0.43 1.00 0.15 0.11 1.00 1.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ER.35 NA NA 1.00 0.46 0.38 1.00 1.00

(0.00) (0.00) (0.00) (0.00) (0.00)

ER.5 NA NA NA 1.00 1.00 1.00 1.00

(0.00) (0.00) (0.00) (0.00)

ER.3332cc NA NA NA NA 0.15 0.85 0.85

(0.00) (0.00) (0.00)

ER.333N1K NA NA NA NA NA 1.00 1.00

(0.00) (0.00)

SBM0701 NA NA NA NA NA NA 0.07

(0.00)

SBM0901 NA NA NA NA NA NA NA

two connected components of the ER graph with probability p = 0.333 (ER.333 vs.
ER.3332cc).

Our results also confirm that our procedure correctly identifies the structural sta-
bility of the internet networks. In fact, our procedure is robust to degree outliers
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Table 5 K-S distances and (p-values), real-world graphs (Note α = 0.01 cv for D is atmost∼10−3)

1997/11/08 1997/11/09 1998/11/08 1998/11/09 1999/11/08 1999/11/09 2000/01/01 2000/01/02

1997/11/08 NA 0.00 0.01 0.01 0.01 0.02 0.02 0.01

(0.98) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1997/11/09 NA NA 0.01 0.01 0.01 0.02 0.02 0.01

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

1998/11/08 NA NA NA 0.00 0.01 0.01 0.02 0.01

(0.87) (0.00) (0.00) (0.00) (0.00)

1998/11/09 NA NA NA NA 0.01 0.01 0.02 0.01

(0.00) (0.00) (0.00) (0.00)

1999/11/08 NA NA NA NA NA 0.01 0.02 0.00

(0.00) (0.00) (0.00)

1999/11/09 NA NA NA NA NA NA 0.00 0.01

(0.00) (0.00)

2000/01/01 NA NA NA NA NA NA NA 0.02

(0.00)

2000/01/02 NA NA NA NA NA NA NA NA

that are very common in real-world networks. Arguably, while the number of nodes
and edges of internet networks do vary, the graph’s connectivity structure remains
constant. This robustness is reflected in the small distance between the distributions.

Even so, here, wemust also acknowledge the limitations of ourmethod.While our
network comparison technique is indeed robust to degree outliers, it does correctly
detect changes in the number of edges and vertices and classify these networks as
significantly different. However, the magnitude of their difference is very small,
which is why we highlight robustness. For example, in the comparison between
internet networks, our technique correctly identifies the difference between graphs
2000/01/01 and 2000/01/02 as statistically significant (p = 0.00). As mentioned
earlier, the magnitude of the difference is very low (D, W̃ = 0.02), in spite of a
very significant difference in the number of edges and vertices. This low distance
variation in response to large node and edge count variations in the distances between
CDFsmay be considered a limitation. For this reason, we caution against interpreting
absolute magnitudes of distances without testing for significance.

Nevertheless, these graphs appear to be rather similar, from a structural point of
view. Indeed, both networks, have equal density and avery similar degree distribution.
We posit that the magnitude of the difference remains small, although statistically
significant, due to the structural similarity of these networks. Meanwhile, in the com-
parison between the ER graphs with 1000 and 2500 nodes (ER.333 vs. ER.333N1K),
our technique did correctly identify a variation in network structure and a greater
dissimilarity (distance) between these graphs.While these two graphs share the same
edge probability parameter, their degree distributions differ significantly.

Finally, we must also offer a comparison of our technique to arguably simpler to
obtain network characteristics, namely density and degree distribution.While density
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does indeed offer valuable information about a graph’s structure, a comparison of
densities is not sufficient to detect a change in structure. For example, the graphs
ER.333 and ER.333N1K have identical densities, yet have significantly different
degree distributions. Also, a graph’s density does not offer any information regarding
local connection patterns, such as community structure for example.

Degreedistribution alsooffers veryvaluable information about a network.Again, a
comparison of degree distributions only offers a partial assessment of (dis)similarity.
For example, the ER.333 and ER.333N1K graphs have significantly different degree
distributions, yet have very similar connectivity patterns. Our two stochastic block
model graphs (SBM0701 and SBM0901) have degree distributions that are very
similar to the ER.333N1K, yet their connectivity (community) structure is totally
different.

5 Conclusion

In this article, we present a statistical graph comparison technique which is based
on node-node distances. Our results show that our technique accurately detects dif-
ferences in graph structure. Future work will focus on statistical comparisons via
subsampling, which should offer greater scalability for our comparison technique.
Naturally, we will also conduct further tests, using different scenarios and compare
our results to those obtained with other similarity techniques.
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Intersection of Random Spanning Trees
in Small-World Networks

András London and András Pluhár

Abstract Alon et al. [1] investigated the following 2-player zero-sum game on a
connected graph G: tree player chooses a spanning tree T of G, while edge player
chooses an edge e of G. The payoff to the edge player is defined by a function
cost(T, e). It is a natural continuation of their work is to consider the case when both
players are a tree player. This also leads us to the problem of intersection of random
spanning trees, that is the number of common edges of two spanning trees ofG chosen
uniformly at random. In this paperwe derive a lower bound for theminimumexpected
intersection and using bootstrap simulations we determine the empirical mean value
for synthetic and real networks. Experiments show that for random model networks
there is no significant difference between the two value. On the other hand, interest-
ingly, for some real networks the observed empirical mean intersection highly differs
from theminimumexpected.Ourfindingmayprovide anewperspective of investigat-
ing real small-world networks and gives some new insights on the structure of them.

Keywords Random spanning trees · Small-world networks

1 Introduction

Given an undirected, connected graphG, a spanning tree T ofG is a subgraph that is a
treewhich includes all nodes ofG. In case ofweighted graphs the concept ofminimum
spanning tree, that is a spanning tree with the minimum possible total edge weight,
has an extraordinary importance. Spanning trees play a key role in many applications
such as network design including computer networks, telecommunications networks,
transportation networks, water supply networks and electrical grids, see e.g. [8];
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clustering, see, for instance, single linkage method and applications in finance [10,
11]; or image registration and segmentation [12, 13], just to mention a few without
being exhaustive.

The starting point of this paper is thework ofAlon et al. [1]where they investigated
a zero-sum game played on a connected graph G by two players, namely the tree
player and the edge player. In a turn, tree player chooses a spanning tree T ofG, while
edge player chooses and edge e of G. The cost cost(T, e) of edge player defined as
follows: if e is an edge of T then cost(T, e) = 0, while if e is not in T , then the cost is
the lengthof theunique cycle (also called fundamental cycle) formedbyadding e toT .
They derived bounds on cost(T, e) for various graph classes and pointed out that the
game arose in connection with the k-server problem, an online optimization problem,
on road networks. In a different scientific community a similar game introduced and
analyzed [2], which later referred as a secure broadcast game e.g. in [3]. In this game
broadcaster B, located in a network node wants to broadcast a message to all other
nodes. This is accomplished by choosing a spanning tree. The other player, called
eavesdropper E can observe the transmission along a single link. B wins the game
if the spanning tree avoids E’s edge, while E wins if the tree includes it. The game
has been used as an interpretation of the p-modulus theory of graphs, see [3, 4].

A natural continuation of the game theoretic work is to consider another tree
player instead of the edge player. In this scenario we are given a connected graph G,
two players P1 and P2 choose a spanning tree, T1 and T2 of G respectively, by not
knowing each other’s choice. P1’s goal is to maximize the number of common edges
of T1 and T2, i.e. the intersection of two trees, while P2’s goal is the opposite.

Finding the optimal strategies and the value of this game seems far from being
obvious for general graphs. Optimal strategies are often sought as so-called mixed
strategies, means that players pick each spanning tree with a certain probability.
For some graph classes the optimal strategy for both players are taking a uniform
random spanning tree. Therefore we arrive to the problem of intersection of random
spanning trees, that is the number of common edges of two spanning trees that are
chosen uniformly at random. Of course this choice is not an optimal strategy of the
game in general, but the parameter it provides (the size of the intersection) captures
a lot about the structure of a graph. For real small-world networks the size of the
mean intersection provides meaningful insights on the structure of them. We think
that mainly the modular structure and the number of weak links (i.e. links between
communities) [17] drive the value of the parameter since links between communities
tend to be part of spanning trees of the network.

Spanning trees in complex networks have been investigated from various per-
spectives. They considered e.g. as skeletons of the network [15], used for dimension
reduction [10] or utilized for efficient visualization of evolving networks [16]. In this
work provide another perspective and based on that some new insights on the marco-
scale structure of small-world networks. For instance, one expects large intersection
if the graph has high Newman modularity, since the edges between the clusters, the
weak links are over-represented in the spanning trees. On the other our findings sug-
gest that network heterogeneity, i.e. heterogeneous degree distribution, by itself does
not indicate higher spanning tree intersection as minimally expected.
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Next we discuss the main concepts and definitions we are dealing with. Then
we derive a lower on the expected value of intersection of two random spanning
trees by considering a more general problem. We present experimental results on
both synthetic network models and real-world networks and provide some potential
directions of future work as well.

Throughout this paper, G = (V, E) will be a finite, connected, undirected and
unweighted graph with |V | = n and |E | = m.

2 Random Spanning Trees

Let TG be the set of all spanning trees of a graph G. The cardinally of TG , by
Kirchhoff’s matrix tree theorem is explicitly known and can be calculated as the
product of the positive eigenvalues of the graph Laplacian divided by n. This allows
to consider random spanning trees of G chosen randomly from among all spanning
trees with equal probability. Another results of Kirchhoff states that the probability
of an edge e ∈ T for a random tree T equals to the effective resistance of that edge,
when considering the graph as an electrical network with unit edge conductance.
For more details and computation methods see [19]. Besides, there are several good
Monte Carlo Markov chain algorithms providing uniform spanning trees that can be
used in simulations, see, for instance, Wilson’s algorithm [14].

We should note here, that more general random spanning trees can be considered
given any probability mass function over TG . Related problems and results are dis-
cussed e.g. in [4]. In this work we are dealing with the case of uniform distribution
only.

2.1 Minimum Expected Intersection

In order to provide a lower bound on the expected value of the number of common
edges of two random spanning trees of G we consider a more general problem on
hypergraphs. We point out that the calculations can be easily done directly for graphs
and its random spanning trees.

Definition 1 Let H = (X, F) be a uniform hypergraph where X denotes the set
of nodes, while F denotes the set of hyperedges of H. Let |X | = μ, |F | = k and
|T | = ν for each hyperedge T ∈ F .

Accordingly, we define the expected intersection of two hyperedges of H as
follows:

Definition 2 Let T1 and T2 be two hyperedges of H chosen independently with
probability 1/k. The expected intersection of T1 and T2 is In(H) := E(|T1 ∩ T2|).
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The key theorem that works for any hypergraph H is the following.

Theorem 1 In(H) ≥ ν2/μ.

Proof The degree dH(x) of a node x ∈ X is the number of hyperedges contains x .
Then

∑
x∈X dH(x) = kν, while the average degree is dH = kν/μ. If we pick two

hyperedges randomly, then the probability they both containing a node x having
degree dH(x) is

Pr(x ∈ T1 ∩ T2) =
(dH(x)

2

)

k2

and hence the expected number of edges in the intersection is

E(|T1 ∩ T2|) =
∑

x∈X

(dH(x)
2

)

k2
≥ μ

(
kν
μ

)2

k2
= ν2

μ
,

by noting that the expectation is minimized when all node has the same degree.

Observation 1 Let p(e) = Pr(e ∈ T ), where T ∈ F chosen uniformly at random.
The exact intersection value is In(H) = ∑

e∈X p2(e).

Now let us defineH = (X, F) as follows. Each node x ∈ X ofH corresponds to
an edge e ∈ E of G and a hyperedge T ∈ F corresponds to a spanning tree of G.
Hence H is an (n − 1)-uniform hypergraph with |X | = m and applying Theorem 1
we get the following lower bound for graphs.

Corollary 1 Given a connected graph G of n nodes and m edges and T1, T2 ∈ TG
two random spanning trees. The minimum expected intersection of T1 and T2 is
(n − 1)2/m.

We note here, that in a special case when G is the union of two spanning trees the
expected intersection (n − 1)/2 can be easily obtained and it equals to the value of
the game in the 2-player game on this graph introduced above.

In the next section by performing numerical experiments, we investigate that how
the the experimentally observed intersection values differs from the derivedminimum
expected intersection. In order to provide a simple metric that shows how random
spanning trees of a network likely to intersect (compared to the minimum expected
intersection) we use the following normalized score:

RTI = observed mean − min. expected

maximum − min. expected
= observed mean − (n−1)2

m

n − (n−1)2

m

.

RTI takes values between 0 and 1. RTI = 0 means that the observed mean inter-
section equals to the minimum expected intersection, while RTI = 1 if and only if
the network is a tree. (Note that the maximum possible intersection of two spanning
trees is n − 1, but we used n in the formula to avoid division by zero).



Intersection of Random Spanning Trees in Small-World Networks 341

Fig. 1 Experimental results on synthetic networks Erdős-Rényi, random regular, Barabási-Albert
andWatts-Strogatz (top-down)with 500 nodes, respectively. Blue triangles (with red lines indication
std) shows the observed results based on bootstrap experiments, while orange line indicates the
minimum expected intersection

3 Experiments

We performed our experiments with the following setup. For each network we ran-
domly sampled 100 pairs of spanning trees with bootstrap sampling (i.e. a sample
may be used multiple times) and calculated the empirical mean intersection and
the corresponding standard deviation. This is referred as observed mean intersec-
tion. The minimum expected intersection, according to the findings of the previous
section was calculated as (n − 1)2/m.

3.1 Experiments on Random Model Networks

Firstly we performed experiments on some synthetic networks including Erdős-
Rényi random graphs G(n, p) [5] (i.e. a graph of n nodes with the probability
of drawing an edge between any pair of nodes is p) with n = 100, 200, 500 and
p = 0.1, 0.2, . . . , 1; random regular graphs RR(n, d) (i.e. a randomgraph of n nodes
where each node having degree d) with n = 100, 200, 500 and d = 3, 4, . . . , 9;
Preferential attachment networks PA(n, k) [6] (i.e. a network of n nodes created
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by a process where at each step a new node is added to the network and con-
nects to k already existing nodes) with n = 100, 200, 500 and k = 1, 2, . . . , 10 ;
Watts-Strogatz networks WS(n, k, p) [7] (i.e. starting from a 4-regular network of
n nodes each edge is rewired with probability p) with n = 100, 200, 500, k = 4
and p = 0.1, 0.2, . . . , 1 . For each parameter we generated 10 graph (e.g. 10 graphs
for G(200, 0.1) or BA(500, 2), etc.) and for each graph we sampled 100 pairs of
spanning trees. Then sample means and standard deviations were calculated.

The results for n = 500 are shown in Fig. 1 and suggest that in case of random
networks models the minimum expected intersection equals to the observed (real)
intersection obtained by the simulations. Similar conclusions can be drawnwhen n =
100 andn = 200. For almost all cases the standarddeviationwas close to 0 confirming
the robustness of the simulations. An interesting observation is that heterogeneous
degree distribution (i.e. power-law), by itself does not indicate higher spanning tree
intersection as minimally expected. Deeper investigation of the intersection value
as the function of the model graph’s parameter (like parameter p for WS(n, k, p))
could be a topic of another study. For instance, sincem ∝ (n

2

)
p forG(n, p)we expect

intersection size 2/p that is confirmed by the simulations (Fig. 1 top right).
Here we are more interested in that how the minimum expected value differs from

the real one in case of real complex networks. In the next section we present our
experiments considering networks having various global structural characteristics.

3.2 Experiments on Real-Networks

To perform experiments on real-world networks we considered the largest connected
component in case of disconnected networks and we did not take into account the
direction and/or weight of the edges in case of directed and/or weighted networks,
respectively.

We compared the RTI score with some metrics that are commonly used as indica-
tors of the small-world structure of a network. These are network density ρ = m/

(n
2

)
,

clustering coefficient cc = 3 × number of triangles/
(n
3

)
and average shortest path

length � = 1/
(n
2

) · ∑
i �= j �i j , where �i j is the length of the shortest path between

nodes i and j .
Table1 shows the results on 12 networks including social, biological and tech-

nological networks as well (the network data is available on websites [20–22]). The
network size varies from n = 15 (marriage links between Florentine families) to
n =33,696 (Enron email communication network). The average shortest path length
varies between � = 2.408 (Zachary karate club) and � = 6.05 (Arxiv collaboration
network on general relativity and quantum computing), except the US power grid
technological network with � = 19, while almost all network have relatively high
clustering coefficient ensuring a strong small-world property of the examined net-
works.
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Table 1 Network statistics and random spanning tree intersection of some real-world network

network n m ρ cc � min. exp. obs.
mean

RTI

Florentine 15 20 0.190 0.191 2.486 9.8 10.5
(0.888)

0.166

Zachary 34 78 0.140 0.256 2.408 13.961 15.00
(2.291)

0.052

Dolphins 62 159 0.084 0.309 3.357 23.40 28.34
(2.19)

0.131

Adjnoun 112 425 0.068 0.157 2.535 29.00 38.8
(4.3)

0.120

Jazz 198 2742 0.141 0.520 2.235 14.15 23.51
(3.66)

0.051

C-elegans 297 2148 0.049 0.180 2.455 40.79 57.8
(5.5)

0.067

NetSci 379 914 0.013 0.431 6.042 156.328 182.12
(7.98)

0.116

Wiki-Vote 889 2914 0.007 0.127 4.096 270.61 430.47
(9.66)

0.259

Polblogs 1222 16,717 0.022 0.226 2.737 89.18 300
(10.55)

0.186

Arxiv GR-QC 4158 13,428 0.002 0.629 6.053 1287 2102
(21.65)

0.284

Power grid 4941 6594 0.0005 0.103 18.99 3700.87 3921
(16.71)

0.178

Email-Enron 33,696 180,811 0.0003 0.085 4.025 6279.225 16,602
(64.73)

0.376

The highest RTI score was obtained for the Enron email network (RTI = 0.376)
where the difference between the empirically observed mean andminimum expected
intersection is more than 10,000, i.e. more than 5% of the total number of edges.
The Arxiv collaboration network and the Wiki-Vote network also provided high
RTI (0.284 and 0.259, resp.). We observed that RTI value larger than 0.1 suggests
significant difference between the real tree intersection value and the expected lower
bound with respect to the total number of edges in the network. Besides the RTI
scores, it is worth to compare the normalized scores obtained by dividing the two
intersection values (min. expected and observed, resp.) by the size of a spanning tree
of the network (n − 1), both taking values between 0 and 1. The difference of the
two values shows that howmuch larger the size of the intersection (in percentages) in
reality compared to that is minimally expected on the bases of the spanning tree size.
In case of the networks investigated here this value varies between 3% (Zachary)
and 30% (Enron) with relatively large values in between, e.g. for Wiki-Vote (18%),
PolBlogs (17.2%) and Arxiv-GR-QC (19.6%).
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Comparing RTI and Newman modularity scores (calculated by considering the
community structure given by the “Leuven” fast greedy method [18]) provides
another interesting aspect of random tree intersection. Among the investigated net-
works the Zachary, the Jazz musician and the C-elegans networks show the lowest
RTI score (in the range 0.051–0.067) and the lowest modularity score (in the range
0.369–0.439) as well. On the other hand, Email-Enron and Arxiv GR-QC (having
the highest RTI scores) has modularity 0.504 and 0.793. However, NetSci citation
network has the highest modularity (0.838), suggest that not just modularity, but it
seems also the density correlates with RTI, the former positively, while the latter neg-
atively. Deeper analysis on correlations and relationship with other metrics remains
the topic of a future study.

4 Conclusions and Future Work

In this work we investigated that how randomly chosen spanning trees likely to
intersect in order to get some new insights on the macro-scale structure of complex
networks. At first, we derived a lower bound on the expected value of intersection
(i.e. the number of common edges of two randomly chosen spanning trees) as a
function of the number of nodes and edges of the network. We compared this value
with the real (empirical) intersection value (obtained by simulation experiments) and
observed that in case of random model networks there is no significant difference
between the two value. On the other hand, more interestingly, experiments show
that for some real networks the observed mean intersection highly differs from the
minimum expected suggesting the existence of special links likely to appear in most
of the spanning trees. For instance, we expect large intersection if the graph has high
Newman modularity, since the edges between the clusters, sometimes called weak
links, are over-represented in the spanning trees. Moreover if many such links are in
the intersection then the connectivity of the network can be more easily destroyed.
The edges appears more often in the intersection aremore crucial for the connectivity
and in this sense, RTI could be thought as a measure for robustness or resilience
of the network. We are planning further investigations in this direction. Another
possibilities for futurework are to derive the exact bounds for randommodel networks
and examine the relation between the tree intersection value and widely-used global
structural metrics of complex networks.
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Node Classification Based
on Non-symmetric Dependencies
and Graph Neural Networks

Emanuel Dopater and Miloš Kudělka

Abstract One of the interesting tasks in social network analysis is detecting network
nodes’ roles in their interactions. The first problem is discovering such roles, and
the second is detecting the discovered roles in the network. Role detection, i.e.,
assigning a role to a node, is a classification task. Our paper addresses the second
problem and uses three roles (classes) for classification. These roles are based only on
the structural properties of the neighborhood of a given node and use the previously
published non-symmetric relationship between pairs of nodes for their definition.
This paper presents transductive learning experiments using graph neural networks
(GNN) to show that excellent results can be obtained even with a relatively small
sample size for training the network.

Keywords Complex network · Graph neural network · Non-symmetric
dependency · Node prominency

1 Introduction

Today’s technologies offer us many different ways to connect with each other. As a
whole, these connections form networks of different types, and we are represented
as nodes in them and our connections as edges. These edges are not symmetrical and
have different strengths (weights). In the world of networks organized in this way,
communities emerge, and nodes play different roles within or between them. Our
paper focuses on working with the roles that nodes play in networks.

The first area we need to work with roles is “role discovery.” Its goal is to use dif-
ferent methods to understand what are the internal similarities between nodes. Then,
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based on these similarities, nodes can be divided into groups, and each of these
groups becomes a role. An overview of the many different methods is provided, for
example, by Rossi and Ahmed in [14]. They describe roles as the main node-level
connectivity patterns such as star-center/edge nodes, peripheral nodes, near-clique
nodes, and bridge nodes that connect different regions of the graph, among many
other types of connectivity patterns. In essence, they divide role discovery approaches
into graph-based, feature-based, and hybrid. Network embedding provides a network
representation in which similar nodes are close together. Pengfei et al. in [7] present
a survey on role-based network embeddings and a general framework for under-
standing role-oriented network embedding and a two-level categorization to better
classify existing methods. Alvarez-Gonzalez et al. in [1] look at the problem of
finding inductive network embeddings in large networks without domain-dependent
node/edge attributes.

The second area is “role detection”, where we know the roles and the rules (algo-
rithm) based on which we are able to assign each node of the network to one of
the roles. In our approach (see Kudelka et al. [9]), we use an algorithm based on
the analysis of non-symmetric relationships around the given node, which works
with three different roles. Alternative approaches to role detection based on analysis
of structural properties are provided by Ghalmane et al. in [3], and Henderson et
al. in [6].

The third area is the classification of network nodes, i.e., assigning roles to nodes
whose roles we do not know but with knowledge of roles of other nodes. In this case,
we can use various methods from machine learning and artificial intelligence. In this
paper, we use transductive learningwith graph neural networks (see Hamilton in [5]).
Relatively similar work has been done, e.g., by Lizhong Xiao et al. in [16]. In this
work, they classified nodes in social networks using traditional approaches such as
DeepWalk and logistic regression, and the GNN-based GraphSage classifier. They
compared the results of the traditional and GNN-based approaches and determined
the superiority of the GNN-based approach.

The text is organized as follows. We first summarize the previously published
description of non-symmetric dependency and prominency and add the definition of
prominency weight that we need for transductive learning experiments. In the next
section, we describe the three datasets that were the subject of our experiments. This
is followed by the experiments section and a discussion of the results. In the final
section, we summarize the results we have achieved.

2 Dependency and Prominency

Dependency [9] of node x on node y is defined as

D(x, y) = w(x, y) + ∑
vi∈CN (x,y) w(x, vi ) · r(x, vi , y)
∑

v j∈N (x) w(x, v j )
(1)
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r(x, vi , y) = w(vi , y)

w(x, vi ) + w(vi , y)
, (2)

where CN (x, y) is set of all common neighbors of x, y, N (x) is a set of all neigh-
bors of node x , w(x, y) is weight of edge between node x, y and r(x, vi , y) is the
coefficient of the dependency of node x on node y via the common neighbor vi .
For the following text, we binarize the dependency so that node x is dependent on
node y if D(x, y) ≥ 0.5. This dependency does not apply mutually. Node y does
not have to be dependent on node x (i.e., in general, the dependency relationship is
non-symmetric).

The analysis of non-symmetric dependencies is mainly intended for weighted
networks. However, this non-symmetry also manifests itself in unweighted networks
(see Fig. 1).

Based on the dependency type, we can divide the neighbors of a given node into
four groups (some of the groups may be empty). The first group includes those nodes
on which the given node is dependent; the second group includes those dependent on
the given node. The third group includes the nodes with which the node is mutually
dependent, and the fourth group includes nodes mutually independent with the given
node. Next, let us define four group properties for a given node as depicted in Fig. 2.

Fig. 1 Dependencies and
strongly-prominent nodes [9]

Fig. 2 Four neighbor groups
of the given node
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owDepOn is the number of neighbors onwhich a given node is unilaterally depen-
dent.

owIndepOn is the number of neighbors that are unilaterally dependent on the
node.

twDepOn is the number of neighbors with which the given node is mutually
dependent.

twIndepOn is the number of neighbors with which the given node is mutually
independent.

These four properties and neighbor groups allow us to define roles in the net-
work. The roles are based only on the structural properties of the network and the
dependencies derived from them. These roles describe the prominency of a node:

A strongly prominent node is not dependent on any of its neighbors, and at least
one of its neighbors is dependent on it (ow I ndepOn > 0 ∧ owDepOn = 0 ∧
twDepOn = 0), see (see red nodes in Fig. 1).

A weakly prominet node has at least one neighbor that is dependent on it, and the
node itself is not dependent on that neighbor (ow I ndepOn > 0 ∧ (owDepOn >

0 ∨ twDepOn > 0)).
A non-prominent node is a node that is neither strongly nor weakly prominent,

see green nodes in Fig. 1.

Although it is not evident at first glance, it is necessary to explain that the nodes
in the same role can differ. This is because they can have substantial differences
in degree and clustering coefficient, and similarly, they can have different types of
dependencies with their neighbors. Therefore, when learning, as will be shown later,
it makes sense to perform a structural analysis on only a small part of the network
(or another network) and for the rest to investigate whether the learned information
is sufficient to classify the other nodes.

2.1 Prominency Weight

For use in the experiments presented below, let us define the prominency weight.
This weight for each node determines how independency over dependency prevails
for that node, and it may be the case, for example, that a weakly-prominent node
may have a much higher weight than a strongly-prominent one.

Further, let

pScore = ow I ndepOn

ow I ndepOn + 1
2 · (owDepOn + twDepOn)

(3)
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Table 1 Networks used in experiments

Network n m kavg kmax CC Q NP% SP% WP%

condmat 16,726 47,594 5.691 107 0.621 0.874 64.40 13.59 22.01

enron 36,692 183,831 10.020 1383 0.497 0.593 93.93 5.48 0.60

facebook 63,731 817,090 25.642 1098 0.221 0.605 69.46 28.75 1.79

and

pWeight = ow I ndepOn2

ow I ndepOn + tw I ndepOn
, (4)

then the prominency weight is defined as

Prominency Weight = pScore · pWeight (5)

Note that all four properties related to dependencies in the neighborhood of a given
node are used to calculate the prominency weight.

3 Datasets

In our experiments, we work with three networks of three different types (co-
authorship, email, and social). These networks differ in their properties and also
in the relative frequency of occurrences of each role. These networks are:

cond-mat (condmat) [11] network of coauthorships between scientists posting
preprints on the Condensed Matter E-Print Archive.
Available at http://www-personal.umich.edu/~mejn/netdata/

Email-Enron (enron) [17] communication network that covers all the email com-
munication within a dataset of around half a million emails.
Available at https://snap.stanford.edu/data/email-Enron.html

fb-friends (facebook) [15] network of friendshipwhere nodes are users and edges
between the users represent friendship relations.
Available at http://networkrepository.com/fb-wosn-friends.php.

The structural properties of these networks are presented in Table1. For each
network, the table lists the number of nodes and edges, average andmaximumdegree,
clustering coefficient and Louvain modularity. This is followed by the percentage
of the relative frequency of occurrences of non-prominent, strongly-prominent, and
weakly-prominent nodes. Note that in terms of roles, all sets are highly imbalanced,
which can strongly affect classification quality.

http://www-personal.umich.edu/~mejn/netdata/
https://snap.stanford.edu/data/email-Enron.html
http://networkrepository.com/fb-wosn-friends.php
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4 Node Prominency Classification

Weaimed to carry out experiments with classifiers based on layers of the graph neural
network [5] and predict the prominencies of the nodes using various information
about the nodes in three different networks in Table1. We performed a classification
in the manner of transductive learning, where we randomly chose 20% of the nodes
intended for training, and the remainingnodeswere used for the testing and evaluation
of the classifier. In this work, we performed only classification with transductive
learning. However, our goal was to examine the effectivity of GNNs to leverage this
effectivity on inductive learning tasks in our future research.

Procedure of experimentWhenperforming the experiments,we followedour exper-
imentation scheme, which is shown graphically in Fig. 3. In this subsection, we
describe only the basics of our approach.

Data preparation The data preparation part aimed to prepare the data in a suitable
form to train the classifier.

Node attributes: In all experiments, we classified the prominency of nodes, so the
prominency types were class labels of the nodes. For each network in Table1, we
performed three independent experiments, whereas node features (information
about the nodes spread by message passing) were used:

1. Network connectivity—each node had one-dimensional vector containing
scalar 1.

2. Node degree and local cluster coefficient, we used standard scaling for this
feature.

3. Prominency weight (see Eq.5), we used standard scaling for this feature.

Fig. 3 Visualization of experiment scheme
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Fig. 4 Node classifier architecture

Edge attributes: We did not use any information on the edges. In this step,we only
loaded the adjacency list containing information about the network’s connections.

Train-mask generation: A train-mask is an array indicating which nodes are
intended for training and which are for evaluating the classifier. For training
and testing our model, we used five-fold cross-validation. Our train-mask was
generated on the basis of the cross-validation split in each of these splits.

Data object construction: In the final step of data preparation, we placed all the
information prepared about the network into one object that represents the whole
network.

Classifier architecture Our classifier architecture, with layers and their dimension
and activation functions, is represented graphically in Fig. 4. We tried to perform
classificationswith several architectures andGNN layers, but the resultswere similar.
We have also determined that three GNN layers are sufficient to extract all relevant
information from the neighborhood. Our goal was not to find the best architecture
and most suitable GNN layers, so we stayed with architecture in Fig. 4.

In the inner rectangle, there is a neural network layer with its input and out-
put dimensions, and the round rectangle represents the activation function. Arrows
represent flow through layers.

Hyperparameter settings Our hyperparameters were set to the recommended and
used values in the literature, and we experimentally verified their performance. Our
training setting was as follows:

• The number of folds in cross-validation is 5.
• in_d was the same value as the node feature vector size.
• h1_d was 20.
• h2_d was 30.
• h3_d was 40.
• out_d was 3 (which was the number of predicting classes).
• As an optimizer algorithm, we chose Adam [8].
• The learning rate of Adam was 0.005.
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Table 2 F1-score describing the GNN classifier performance for each role

Non-prominent Strongly-prominent Weakly-prominent

Mean SD Mean SD Mean SD

condmat_C 0.904 0.027 0.678 0.009 0.601 0.027

condmat_DC 0.887 0.059 0.707 0.016 0.597 0.070

condmat_PW 0.987 0.010 0.698 0.025 0.763 0.056

enron_C 0.941 0.027 0.584 0.114 0.083 0.074

enron_DC 0.895 0.091 0.605 0.212 0.130 0.110

enron_PW 0.938 0.050 0.604 0.171 0.148 0.118

facebook_C 0.889 0.009 0.787 0.009 0.225 0.030

facebook_DC 0.953 0.005 0.895 0.008 0.677 0.024

facebook_PW 0.939 0.013 0.862 0.022 0.567 0.058

• The learning rate decay of Adam was 0.0005.
• The loss function was the cross-entropy loss function.
• The number of training epochs was 1000.
• We used class weighting due to class imbalances during training. The class weight
is a number that indicates a “weight” of the trained node when the optimization
algorithm updates the learnable parameters. We computed the class weight simply
by equation class_weighti = (1 − Li

D )2,where i is index of class, Li is the number
of nodes in the i class and D is the number of all nodes.

Training classifier For training, we used cross-validation with five splits. In each of
these splits, we initialized a new instance of a classifier. One foldwas used for training
and four folds for evaluating the classifier. Before the generation of cross-validation
splits, the set of nodes was randomly shuffled.

Results and evaluation For evaluation, we used the trained classifier to predict the
prominencies of the other 80% of nodes and compare these predicted values with the
real ones. We used the F1-score as a measure of evaluation for individual classes and
the balanced accuracy (BA) andMatthew’s correlation coefficient (MCC) to evaluate
classification as a whole.We used multi-class version of BA andMCCmeasures (see
“Used tools” at page 355). Due to the five-fold cross-validation,we have five different
results for each experiment, so we calculated the mean and standard deviation for
the measures used. The results of the F1-scores of the experiments are presented
in the Table 2, and BA and MCC in the Table 3. In these tables, suffix “C” means
that as node features, only network connectivity was used, “DC” means local degree
coefficient and node degree, and “PW” means prominency weight.

The results with network connectivity (one-dimensional vectors with scalar 1 are
remarkable because GNN can extract significant information to classify the promi-
nency role of the node from its neighborhood structure with relatively high accuracy.
Additional information about the nodes can increase the accuracy of the classifica-
tion.
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Table 3 BA and MCC measure describing the multi-class classification performance

BA MCC

Mean SD Mean SD

condmat_C 0.743 0.011 0.635 0.034

condmat_DC 0.753 0.020 0.632 0.070

condmat_PW 0.823 0.024 0.804 0.040

enron_C 0.689 0.051 0.566 0.100

enron_DC 0.798 0.141 0.507 0.152

enron_PW 0.715 0.078 0.584 0.143

facebook_C 0.674 0.018 0.689 0.013

facebook_DC 0.873 0.012 0.850 0.013

facebook_PW 0.803 0.022 0.807 0.031

Used tools

Here we list the important tools we used to carry out the experiments:

NetworkX [4] is a Python library for network data manipulation. We used it to
calculate the local clustering coefficient and node degree.

PyTorch [12] is an extensive Python-basedmachine learning framework.We used
it to build and train the classifier.

PyTorch Geometrix [2] is a library built on top of PyTorch and provides tools and
layers to deal with network data in machine learning. We used its implementation
of the GraphConv layer [10].

scikit-learn [13] is an extensive Python library with a large number of different
tools for machine learning. We used it for evaluation measures.

5 Discussion

The performance and stability of the GNN classifier are both for individual roles
(classes) and overall at a very high level. The only exception is the classification
of weakly-prominent nodes, especially for the enron network (see Table2). This is
mainly because for the enron network, only 0.60% of the nodes are in this role.
Even for the facebook network, which has only 1.79% weakly-prominent nodes, the
classification value is low. However, unlike the enron network, the use of features
works here, and it does not really matter whether it is a combination of clustering
coefficient + degree or prominency weight. For the other roles, the impact of features
is much smaller, although in most cases, there is at least a small improvement in the
performance of the GNN classifier when they are used.

Table3 shows that if we use multi-class measures to assess the performance of the
GNNclassifier as awhole, then the results here are also very good. This is particularly
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evident for the condmat and facebook networks, where the multi-class MCC exceeds
0.8 when using prominency weight as a feature (for facebook network, this is also
true for the clustering coefficient + degree feature combination). This is even though
MCC evaluates the performance of the classifier very strictly in the case of highly
imbalanced datasets, which is also the case for our experimental datasets.

6 Conclusion

In this paper, we presented experiments on the classification of network nodes in
different roles. The roles are based on the analysis of non-symmetric dependencies
in the neighborhood of a given node. For extremely large and time-varying networks,
it is important to assume that we have knowledge of only a small part of the network
for learning. We used graph neural networks for learning and showed that even with
a relatively small sample of network training data, the performance of the GNN
classifier is very high. This is despite the fact that these were highly imbalanced
datasets.

A limitation of our approach is transductive learning, which works with the same
network for training and testing, even though only a small part of it is used for training.
Therefore, in future research, we will focus on inductive learning for different types
of networks. Based on the results of our experiments, we anticipate that for inductive
learning, and thus for finding general rules applicable to unknown situations, it will be
necessary to distinguishwhich typeof network is involved (in our case, co-authorship,
communication, or social).
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Mean Hitting Time of Q-subdivision
Complex Networks

Pankaj Kumar, Anurag Singh, Ajay K. Sharma, and Hocine Cherifi

Abstract The Mean Hitting Time is a fundamental structural measure of random
walks on networks with many applications ranging from epidemic diffusion on net-
works to fluctuations in stock prices. Itmeasures themean expected time for a random
walker to reach all the source-destination pair nodes in the network. Previous research
shows that it scales linearly with the network size for small-world sparse networks.
Here, we calculate the Mean Hitting Time for large real-work complex networks and
investigate how it scales with the q-subdivision operation used to grow the network.
Indeed, this operation is essential in modeling realistic networks with small-world,
scale-free and fractal characteristics. We use the Eigenvalues and eigenvectors of the
normalized adjacency matrix of the initial network G to calculate the Hitting Time
Ti j between nodes i and j . We consider two complex real-world networks to analyze
the evolution of the Mean Hitting Time as the networks grow with the q-subdivision.
Results show that the Mean Hitting Time increases linearly with the value of q. This
work provides insight into the design of realistic networks with small Mean Hitting
Time.
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1 Introduction

Random walks on networks are extensively exploited to describe the dynamics of
many complex systems in nature and society. Typical applications include infor-
mation flow in social networks [1–5], mobility patterns [6, 7], image segmentation
[8, 9], collaborative recommendation [10, 11], visual saliency [12, 13], community
detection [14, 15], and so on. In this context, the Hitting Time is a fundamental struc-
tural measure. It is the expected time for a random walker to reach its destination
on the network from a starting node. The mean Hitting time is its mean value on all
node pairs in the graph. It is denoted by T̄ (G). One can use the Mean Hitting time
T̄ (G) as a measure of the connectedness of the network. The smaller the value of
T̄ (G), the more connected the network. The Mean Hitting Time T̄ (G) indicates the
mean search cost in a network [16, 17]. Mean Hitting time T̄ (G) is used as global
utility of social recommender networks [10].

Real-world Networks are growing every day by some new connection or addition
of new nodes. The Mean Hitting time calculation for such dynamic or growing
networks is a complex task. Earlier works explored the mean Hitting time for small
networks. In this paper, we compute the mean Hitting time for large networks. We
use the q-subdivision operation to simulate the network x growth dynamic.

Networks subdivision is an essential operation. It proceeds as follows. For each
edge uv, we insert a new node x and replace the edge uv by two edges ux and xv
obtaining the subdivision network S(G). The properties of networks sub-division is
extensively studied by various researchers. The literature reports many extension of
network subdivision such as q-subdivision network (Sq(G)) [18] and q-full subdivi-
sion network [19]. The Sq(G) is obtain fromG by adding ux1v, ux2v, ux3v, …,uxqv
for every edge uv by G [18].

The hierarchical lattice [20] is a complex network model with a unique scale-free
fractal topology. It has recently received significant attention. It is generated using the
iterative q-subdivision operation. The properties of a traditional subdivision network
are well understood. In contrast, Sq(G) properties deserve more investigations.

In Sect. 2, we review previous related work on Mean Hitting Time. Section3
describes the methodology used to calculate the node-pair Hitting Time of a
connected network and its q-subdivision Network. Section4 presents the calcu-
lation of the Mean Hitting Time of a connected network and its q-subdivision
network. Section5 reports the experiments to explore the scale-free properties
of the q-subdivision network. We investigate the variation of mean hitting time
with an increment of q-value in the q-subdivision network. Section6 gives the
conclusion. We also discuss the limitations of the paper and future work direc-
tions.
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2 Related Work

This section reviews some related research. A recent work reports the results of an
extensive study of a simple connected graph q-subdivision [18]. The authors derive
formal expressions of eigenvalues and eigenvectors of normalized adjacency matrix
for the q-subdivision. They also report essential results about the two-node Hitting
Time, the Kemeny constant for random walks, the two-node resistance distance,
and the Kirchhoff index. Considering the scale-free fractal hierarchical lattices, they
provide explicit expressions for some of these quantities.

In [21], the authors calculate the Hitting Time of small real-world networks for q-
triangulation. q-triangulation network is made up of network G by adding q disjoint
path ux1v, ux2v, . . . , uxqv for every edge uv. Properties of the q-triangulation net-
work are fundamental and extensively used for research purposes. They report results
about the variation of Hitting time with increasing value of q in q-triangulation and
the calculation of node-pair Hitting time in which one can generate one or two nodes
after q-triangulation operations. Query suggestion using hitting time is made on the
bipartite undirected graph in which one set of vertices contains queries, the other set
of vertices contains URL, and some weight is given to every edge [22].

Among all networks, Complete Networks with N nodes have a minimum mean
hitting time (N − 1), which scales linearly with the size of Network [23]. A het-
erogeneous sparse network can have a low mean hitting time compared to a dense
complete network. However, the behavior of heterogeneous sparse networks is sim-
ilar to the dense complete network, which is instrumental in designing networks,
where the search is fast between any pair of nodes [23].

In [24] the authors calculate the Mean Hitting Time of a class of sparse networks
using rhombus operation. Results show that the scaling behavior is similar to a
complete network. Note that one uses Rhombus operation to maintain the sparsity
and growth of the network. Mean Hitting time for a recursive growth tree made up
on any arbitrary tree growing due to the implementation of many primitive operation
and purpose a series of combinatorial techniques called mapping transformation to
exactly determine associative mean hitting time [25].

These related works highlight the importance of hitting time and mean hitting
time. Indeed, it is essential to calculate these quantities for a critical q-subdivision
network. Different graph operations have been used to grow the network considering
small real-world networks. The proposed work uses q-subdivision to expand the
network. We rely on two large real-world networks for calculating the mean Hitting
time. We also study the variation of mean Hitting time with network growth due to
q-subdivision operation. We also explore if the Scale-free property of the real-world
network remains after the q-subdivision operation.



362 P. Kumar et al.

3 Methodology

Section3.1 recalls some important matrices required to calculate the Hitting Time.
It is calculated using the eigenvalue and eigenvector of the normalized adjacency
matrix and the degree matrix. First, we show how the various network properties,
such as the number of nodes, number of edges, etc., of the q-subdivision network
relate to the original network. Second, we express the Hitting Time between two
nodes of Sq(G) in terms of Hitting Time between two nodes of G. Finally, we derive
the equation of the mean Heating Time using the node-pair Hitting Time.

3.1 Network Matrices Notation

Let, G be a connected network withm number of edges and n number of nodes, with
E(G) = {e1, e2, e3, . . . , em} for edges and V (G) = {1, 2, 3, . . . , n} for nodes. The
adjacency matrix of the given network G is denoted by A. It has entry A(i, j) = 1 if
node i is connected via an edge e in E(G), otherwise A(i, j) = 0. Let τ(i) represent
the node’s set in network G which are neighbours of node i . node i’s degree is
represented as di = |τ(i)| = ∑

j∈V A(i, j). di becomes the D(i, i) of degree matrix
D of G and rest entries are zero. The network G incident matrix B is a n × m matrix
with entry B(i, j) equal to 1 if the e j edge is incident on node i , else B(i, j) equals 0.

Lemma 1 Suppose G be a n-node simple network with one connected compo-
nent. If G is bipartite, its incident matrix has rank rank(B) = n − 1, otherwise
rank(B) = n.

3.2 Random Walk Model on Networks

A network G can be an unbiased discrete-time random walk [26] model on G.
If node i has degree di , a walker jumps to one of its neighbor nodes with equal
probability 1/di , and the walker jumps to a node other than the neighbor node with
equal probability 0/di or 0. In other words, a walker’s probability of moving from
the initial node i to the final node j is A(i, j)/di . The transition probability matrix
T = D−1A characterizes a random walker on G can move as it can move in Markov
chain [27]. A(i, j)/di is the entry in T (i, j).

P , the normalised adjacency matrix of G is defined as P = D1/2T D−1/2 =
D−1/2AD−1/2, and T , the transition probability matrix is similar to it. The entry
P = D1/2T D−1/2 = D−1/2AD−1/2 indicates that P is a symmetric matrix.

Lemma 2 Suppose G be a non-bipartite network with 1 connected component hav-
ing m edges and n nodes, and eigenvalues of its normalised adjacency matrix P be
1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ λn ≥ −1. λn = −1, if and only if G is bipartite.
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Let the normalized adjacency matrix P has eigenvalues λ1, λ2, . . . , λn and
orthonormal eigenvectors are v1, v2, . . . , vn corresponding to above eigenvalues,
in which vi = (vi1, vi2, . . . , vin)

T . Then

v1 = (
√
d1/2m,

√
d2/2m, . . . ,

√
dn/2m) (1)

and
n∑

k=1

vikv jk =
n∑

k=1

vkivk j =
{
1, i f i = j;
0, otherwise.

(2)

The Hitting Time [18] is a fundamental quantity in random walks [26]. The first
passage time Ti j from source node i to final node j is the expected number of steps
or jumps a traveler takes to reach the destination node j starting from the source
node i . One can use Hitting Times to define or calculate various useful network G
quantities. For example,K (G), The Kemeneny’s constant is defined as the predicted
number of moves a traveler takes, starting at source node i and ending at a randomly
chosen destination node from random walks’ stationary distribution on G [28].

Theorem 1 The first-passage time Ti j from the initial node i to the final node j of
random walks model on a connected network G is given by:

Ti j = 2m
n∑

k=2

1

1 − λk

(
v2
k j

d j
− vkivk j

√
did j

)

. (3)

where theλk is kth eigenvalue of normalized adjacencymatrix as described inLemma
2 and vki or vk j is i th or j th value in the eigenvector vk corresponding to the eigenvalue
λk .

3.3 Matrices Notation of Q-subdivision Network

The diagonal degree matrix, the adjacency matrix, the normalized adjacency matrix,
the number of edges, and the number of nodes of the Sq(G) are denoted by D̂, Â,
P̂ , m̂, n̂ respectively.

Definition 1 [18] Consider G, which is a connected network. The q-subdivision
network ofG is represented by Sq(G). To generate Sq(G) fromG we have to replace
each edge uv with q 2-length disjoint paths: ux1v, ux2v, . . . uxqv. Furthermore, the
paths for the various edges are node disjoint.

Ẑ is the quantity associated with Sq(G) and Z is the corresponding quantity
in G. There are m̂ = 2mq edges and n̂ = n + mq nodes in Sq(G). The node set
V̂ := V ∪ V ′ in which V is the old node’s set while V ′ is new node’s set comes in
Sq(G) [18].
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Now, the adjacency matrix Â [18] of Sq(G) is,

Â =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 B · · · B
BT 0 . . . 0
. . . . . .

. . . . . .

. . . . . .

BT 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

The diagonal degree matrix D̂ [18] is defined in terms of G is,

D̂ = diag{qD, 2Im, . . . , 2Im︸ ︷︷ ︸
q

}

The normalized adjacency matrix P̂ [18] of Sq(G) is,

P̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 D1/2B . . . D1/2B
D1/2B 0 . . . 0

. . . . . .

. . . . . .

. . . . . .

D1/2B 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

3.4 Hitting Time Calculation for Random Walks
on Q-subdivision Network

The expression for Hitting time between two nodes in Sq(G) in terms of Hitting time
between two vertices in G is derived as follows [18].

Theorem 2 Let G be a connected network with m edges and n vertices. The q-
subdivision network of G with V̂ = V ∩ V ′ is Sq(G). Then

1. if i, j ∈ V , then T̂i j = 4Ti j
2. if i ∈ V ′, j ∈ V, τ̂ (i) = {x, y}, then T̂i j = 1 + 2(Tx j + Tyj ) T̂ ji = 2mq − 1 +

2(Tjx + Tjy − (Tyx + Txy)
3. if i, j ∈ V ′, τ̂ (i) = {x, y}, τ̂ ( j) = {z, w}, then T̂i j = 2mq + Txz + Tyz + Txw +

Tyw − (Tzw + Twz)

Here V is a set of old vertices that are present in G, and V ′ represents the new
vertex’s set in which new vertices come after the q-subdivision operation on G. τ̂ (i)
is the set of neighbour node of node i in Sq(G).
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4 Mean Hitting Time for RandomWalks on Q-subdivision
Network

To our knowledge, the Mean Hitting Time of q-subdivision network of a network G
with n nodes has not been derived earlier. Here we give its expression. We aim to
investigate how the mean hitting time varies with the q. q is a parameter whose value
defines the network’s size after applying the q-subdivision operation. The higher the
q-value, the larger the size of the network. In the Eq.4, the Mean Hitting Time of
network G is taken from Definition 2. Equation5 is the expression for the Mean
Hitting Time of the q-subdivision network of the network G derived using Eq.4.
Equation6 rewrite the numerator term of Eq.5 in terms of the quantities of the actual
network G and q.

Definition 2 Mean first passage Time T̄ For Randomwalks modeled on Network of
n nodes is themean of all node pair Hitting Time Ti j where 1 ≤ i ≤ n and 1 ≤ j ≤ n.

T̄ = 1

n2

n∑

i=1

n∑

j=1

Ti j (4)

The Mean Hitting Time For Random walks on Sq(G) network is ˆ̄T is given by

ˆ̄T = 1

(n + mq)2

n+mq∑

i=1

n+mq∑

j=1

T̂i j (5)

where we can write

n+mq∑

i=1

n+mq∑

j=1

T̂i j =
n∑

i=1

n∑

j=1

4Ti j

︸ ︷︷ ︸
i, j∈V

+
n+mq∑

i=n+1

n∑

j=1

1 + 2(Tx j + Tyj )

︸ ︷︷ ︸
i∈V ′, j∈Vandτ(i)={x,y}

(6)

+
n∑

i=1

n+mq∑

j=n+1

2mq − 1 + 2(Tix + Tiy) − (Tyx + Txy)

︸ ︷︷ ︸
i∈V, j∈V ′andτ( j)={x,y}

+
n+mq∑

i=n+1

n+mq∑

j=n+1

2mq + Txz + Tyz + Txw + Tyw − (Tzw + Twz)

︸ ︷︷ ︸
i∈V ′, j∈V ′andτ(i)={x,y},τ ( j)={z,w}

Now in Eq.6, one value is constant where i, j ∈ V otherwise, all other values are
increasing with an increase in the q-values more rapidly than the value (n + mq)2

in Eq. 4 increases. So with the increasing value of q, in Eq. 4, the increment in the
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Table 1 Dataset properties

S. No. Name of data set Nodes Edges

Data set 1 Ego-Facebook 4039 88,234

Data set 2 Feather-lastfm-social 7624 27,806

numerator is higher than the denominator. Hence the average value increase with the
growing value of q.

5 Results and Analysis

It is essential to calculate the mean hitting time in real-world networks. Therefore,
we consider two real-world network data sets for calculating the mean hitting time
with the parameters mentioned in Table1. We use these data sets because they cover
the typical topological properties of numerous real-world networks. The first one,
the ego-Facebook network, is a very dense network as compared to the Last Fm
user Network. Note that Mean Hitting Time calculation is faster in sparse networks
compared to dense networks.

5.1 Scale-Free Property of q-subdivision Network

A ubiquitous property of most real-world networks is that there are very few nodes
with very high degrees and many with low degrees. One can think of an Instagram
network where celebrities like an actor, cricket player, or some famous people have
many followers while regular users have few followers. These few nodes with high
degrees are called influencers in social networks and hubs in technological networks.
The presence of huge hubs distinguishes scale-free networks from other types of
networks. A network having power-law degree distribution is said to be scale-free.
We may simply write the degree distribution for an undirected network as follows:

P(k) ∝ k−γ , (7)

where, γ denotes an exponent. As the degree k increases, this form of P(k) decays
slowly, increasing the chances of finding a node with a very high degree.

In Fig. 1a, degree distribution is plotted in log-log scale experimentally to check
whether the given network is scale-free. k represents the degree, and P(k) repre-
sents the frequency of nodes of degree k. There is a larger number of nodes hav-
ing a low degree. As we move right or increase the degree value, the frequency
decreases. So few vertices have a high degree. The long tail observed in Fig. 1a shows
that the ego-Facebook network is scale-free. Figure1b, c are the degree-distribution
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(a) Degree distribution of ego-Facebook Network (b)S1(G) degree distribution of ego-Facebook network

(c) S2(G) degree distribution of ego-Facebook network

Fig. 1 Degree distribution of q-subdivision network of ego-Facebook network with q = 0, 1, 2

of 1-subdivision network and 2-subdivision network respectively. Here the degree-
distribution curve in the network is shifted downward and right because one adds new
nodes of degree 2, and the degree of old nodes increases. The degree distribution curve
in Fig. 1b, c show the same behavior as shown by the degree distribution curve of the
ego-Facebook Network.We observe similar long tails in the three figures. Therefore,
we can expect that the q-subdivision network of a scale-free network is scale-free.
The goodness of fit test results for the power-law distribution confirms this intuition.

Figure2a illustrates the degree distribution in log-log scale where k represents
the degree and P(k) represents the fraction of nodes of degree k. There is a large
number of nodes with a low degree. In contrast, few vertices have a high degree. The
long tail in Fig. 2a suggests that the ego-Facebook network is scale-free. Figure2b–d
are the degree-distribution of 1-subdivision network, 2-subdivision network and 3-
subdivision network respectively. Here the degree-distribution curve in the network
is shifted downward and right because one adds many new nodes of degree 2, and old
nodes’ degree increases. The degree distribution curve in Fig. 2b–d exhibit the same
behavior as the degree distribution of the ego-Facebook Network. One notices the
same long tail in the three figures. Goodness-of-fit test with the power-law confirms
these results: the q-subdivision network of a scale-free network is scale-free.

5.2 Variation of Mean Hitting Time of Q-subdivision
Network with q

From Eqs. 5 and 6, one can conclude that in calculating the Mean Hitting Time, the
denominator in the Eq. 5 is directly proportional to q2, and the numerator is propor-
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(a) Degree distribution of Last Fm user Network G (b)S1(G) degree distribution

(c) S2(G) degree distribution (d) S3(G) degree distribution

Fig. 2 Degree distribution of q-subdivision network of last Fm user network with q = 0, 1, 2
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Fig. 3 Mean hitting time of q-subdivision network of network with q = 0, 1, 2, . . .. a sample mean
Hitting time vs q in ego-Facebook network b S1(G) sample mean hitting time versus q in last Fm
user networ

tional to q3. Hence the mean Hitting Time is proportional to q. The mean Hitting

time equation takes the form ˆ̄T = c0 + c1q. So the Hitting Time varies linearly with
q. It validates the result obtained from the experiment

As discussed in Sect. 5, Eq. 5, the numerator increases more rapidly than the
denominator with an increasing q-value. Hence, the Mean Hitting Time increases
with q. The variation of Mean Hitting Time is shown in Fig. 3a, b. In Fig. 3a, we use
the ego-Facebook Network with 4039 nodes and 88, 234 edges. We pick a random
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sample of 200 pair of nodes and calculate the average Hitting time for that sample.
A similar process is repeated for the q-subdivision network. We plot the network
Mean Hitting Time versus q-value. As one can see, the mean Hitting time increases
linearly with q. Figure3b shows the variation of Mean Hitting time in the Last Fm
user Network with 7624 nodes and 27, 806 edges. The evolution of the Mean Hitting
Time versus q exhibits the same behavior as the ego-Facebook Network.

6 Conclusions and Future Work

The Mean Hitting Time varies linearly with q in the q-subdivision network. Real-
world networks confirm this behavior. Indeed, Experiments show that the Mean
Hitting Time also scales linearly with the network size. To calculate theMeanHitting
Time, one computes the node-pairHittingTime for theq-subdivision graph. Then,we
perform themean of all possible node-pair Hitting Times.We use the eigenvalues and
their corresponding eigenvectors of the normalized adjacency matrix to calculate the
node-pair Hitting Time. The main limitation of this work is that the time complexity
to calculate the mean Hitting time is very large, about O(n3) where n is the number
of nodes in the network. A second limitation is linked to the calculation of the mean
Hitting time of the q-subdivision network. Indeed,we need tomake the q-subdivision
network to find the neighbor set of new nodes created during the operation. Future
work needs to address the time complexity of calculating node-pair hitting time. One
solution consists in removing the operation of q-subdivision andwriting the equation
of Mean Hitting Time in terms of m edges of the network, q value in q-subdivision
operation, n nodes of the network, i th and j th node of the network. Further, the
work can be done on applying Hitting Time like in the implementation of the EWMA
control chart and checking coronavirus alert levels for symmetric COVID-19 cases
system [29]. First Passage time has applications in optimal stopping time and bond
pricing or cost. Another direction of research is to consider directed networks.
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Delta Density: Comparison of Different
Sized Networks Irrespective of Their Size

Jakub Plesnik, Kristyna Kubikova, and Milos Kudelka

Abstract Two typical characteristics of networks are average degree and density.
Both characteristics are related, but using the second one does not provide eas-
ily interpretable information when analyzing differently sized networks. This paper
deals with the measurement of network density with the possibility of comparing
networks of different sizes. We point out the problems of the classical approach and,
in response, introduce a new measure called �-density. The theoretical background
of �-density is accompanied by a practical application example. We use five real
networks with temporal information in the experiments to analyze the evolution of
�-density.

Keywords Network density · Average degree · Delta density

1 Introduction

The network analysis quite often leads to non-trivial tasks of network comparison.
Techniques for such analysis vary from complex methods, such as network align-
ment, to easily comparing global properties and summary statistics, such as network
density, degree distribution, transitivity, average shortest path length, and others.
When research focuses on network structure and primarily its connectivity, only two
properties are in play: average degree and network density.

An abundance of papers is focused on the relationship between the size of the
network and its density. In their work, Laurienti et al. describe a universal relationship
between network size and connection density across various types of systems and
identify that as a fractal size-density relationship for self-organized networks [1].
Leskovec et al. studied the temporal evolution of complex networks and described
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Densification Power Law which refers to increased density with network growth [2].
Furthermore, Neli Blagus et al. study the relationship between the size and density
of complex real-world networks and their existence in their self-similar scale [3].

From the point of network clustering,Yin et al., with their local closure coefficient,
which is defined as the fraction of length-2 paths emanating from the head node
that induce a triangle, show that even a small change in the definition can provide
very different results from the traditional clustering coefficient [4]. It is important
to note that we can consider the clustering coefficient as a measure of the node’s
neighborhood density. Everything described in this paper about �-density can also
be applied to the clustering coefficient.

The work of van Wijk et al. shows the difficulty of comparing multiple networks
of different sizes and states that either applying a fixed N and kavg or comparing
networks with different N and kavg will lead to a certain bias [5]. Related to network
comparison, Brigham et al. show that size and density strongly interact with all
graph-level measures [6].

In this paper, we propose a new measure called �-density. Its aim is to enable a
straightforward comparison of network density between networks of different sizes.
The paper is structured as follows: In the second section, we introduce datasets used
in the third section to state the problem that this paper aims to solve. The fourth
section defines a measure called �-density, which is applied in the following section
as part of the experiments. In the final section, the summary of this paper is provided.

2 Datasets

We used five dynamic networks of different sizes and origins for our experiments.
In selected networks, communication, collaboration, and social networks are repre-
sented. Each dynamic network has been further split into five subsets/snapshots in
time. These subsets were created at the point in time when networks reached 20, 40,
60, 80, and 100% of the total number of nodes. In the process of subset generation,
we worked with edges as unweighted and undirected.

Linux-kernel. A communication network of the Linux kernel mailing list, in which
each node represents a person identified by their email address, and each directed
edge represents a reply from one user to another. The dataset contains data from
2006 to 2013.

coauth-DBLP. A database of scientific publications such as conference papers,
journal articles, etc. Each node in the network is a publication, and each edge
represents a citation of a publication by another publication. The data used for
this paper are from 2018 to 2022.

Facebook (WOSN). An undirected network containing friendship data of Face-
book users, where nodes represent the users, and a friendship between two users
represents the edge. The dataset contains data from the year 2009.
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epinions. A trust network from the online social network of a general consumer
review site Epinions.com, where edges represent the trust between the users that
are represented by nodes.

Enron. An email Communication network consisting of over a million emails sent
within the Enron company between the years 1999 and 2003.

3 Motivation: Analysis of Network Density and Average
Degree

This paper proposes a solution to a problem concerning the density comparison
of different-sized networks. First, we need to look at the classical approach using
network density and average degree and show its usage and some of its pitfalls. It is
a fact that two networks of different sizes with the same average degree may have
significantly different densities, and two differently sized networks with the same
density can significantly differ in average degree.

By restating definitions, we can say that network density is ameasure of howmany
edges between nodes exist compared to howmany edges between nodes are possible.
The average degree is the average number of edges per node in the network. By the
addition of a new edge, we will always increase both average degree and density,
but by the addition of a node with a degree significantly lower than the number of
nodes in the network, we may still increase the average degree, but we will lower its
density.

In Fig. 1a, we can see how the density of the network changes with network
growth on the example of five real-world datasets. The density of all networks,
except Facebook, is decreasing even though we know from Table 1 that networks are
growing in both the number of nodes and edges.

By closer look, we can see one of the issues with the usage of network density
for comparison between networks. Networks Epinions and Enron seem to have a
similar value of network density, which leads to a question: Are these two networks

Fig. 1 Evolution of network properties: a evolution of network density, b evolution of the average
degree
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Table 1 Properties of analysed datasets

Network Size % n m kavg Density

20 40,000 56,455 2.82 7.06e−5

coauth 40 80,000 132,858 3.32 4.15e−5

DBLP 60 120,001 216,953 3.62 3.01e−5

80 160,000 306,758 3.83 2.40e−5

100 200,000 404,560 4.05 2.02e−5

20 12,746 28,770 4.51 3.54e−4

Facebook 40 25,492 103,851 8.15 3.20e−4

WOSN 60 38,238 262,183 13.71 3.59e−4

80 50,984 584,355 22.92 4.50e−4

100 63,731 817,090 25.64 4.02e−4

20 5585 28,569 10.23 1.83e−3

40 11,170 49,987 8.95 8.01e−4

Linux Kernel 60 16,755 112,775 13.46 8.03e−4

80 22,340 171,701 15.37 6.88e−4

100 27,927 242,974 17.4 6.23e−4

20 26,365 53,698 4.07 1.55e−4

40 52,730 153,380 5.82 1.10e−4

epinions 60 79,095 409,304 10.35 1.31e−4

80 105,460 667,989 12.67 1.20e−4

100 131,828 841,363 12.76 9.68e−5

20 17,454 50,450 5.78 3.31e−4

40 34,908 121,879 6.98 2.00e−4

Enron 60 52,362 196,987 7.52 1.44e−4

80 69,816 256,799 7.36 1.05e−4

100 87,273 321,918 7.38 8.45e−5

similarly dense? Looking back to network properties, we can see a disproportion in
network sizes. Epinions network is much larger with a significantly higher number of
edges. Based on the definition, we could say that these two networks have a similar
proportion of their connectivity compared to their maximum potential, but their
internal density may not be the same, and if compared, we need to keep this in mind.

In Fig. 1b, we can see the average degree for all networks over time. There is an
interesting data point at 80%, where networks Linux(kavg = 15.3) and Epinions(kavg

= 12.6) have values relatively close to each other. That could suggest that those two
networks are similarly dense. If we look for other properties in the Table 1 we can
again see a discrepancy in network sizes. Thus we can say that both networks have a
similar number of connections per node, but the density may be different due to the
network size.

As shown in previous examples, using both average degree and network density in
network comparison is not a simple task. Furthermore, we may face a contradiction
when both properties are considered together. For many real-world networks, it has
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been shown that the average degree is increasing as networks grow [2]. Our data
supports this trend, but the network density itself is decreasing. The question is: Can
we meaningfully compare the density of networks of different sizes?

4 �-Density

This paper aims to define a new measure that considers both the density and the
average degree in such a way that allows the values of this measure to be comparable
for networks of different sizes. Let us further denote this measure as �-density.

The value of �-density is in the [0; 1] interval. One of the most important factors
is an average degree kavg for which we can establish value of�-density. For example
we can assume that for kavg = 12 �-density= 0.9.

The concept of � density is based on the assumption that each existing edge has
a greater influence on the determination of � density than a missing edge between
a pair of nodes. If we consider 1, 2, . . . ,m of existing edges in the network and
gradually count them into �-density, then the previously calculated edge has less
effect on �-density than the later calculated edge. In this context, let us determine
a constant δ ≥ 0. Then m existing and gradually counted edges will have values for
�-density 1 + δ, 1 + 2 ∗ δ, . . . , 1 + m ∗ δ. Then the �-density for a network with
n nodes and m edges is defined as:

�(δ, n,m) = A(m, δ)

(A(m, δ) + M(n) − m)
(1)

where M(n) is the maximum possible number of edges in a network with n nodes
and thus M(n) = n∗(n−1)

2 , and A(m, δ) = m∗(2+δ∗(1+m))

2 is the sum of the arithmetic
series.

As mentioned above, if we add to the network a node with the number of edges
corresponding to the average degree, its density decreases. Informally speaking, δ

compensates for this decrease in such a way that the lower δ is, the less compensation
for the decrease in density it provides, and vice versa.

In determining the δ we need to take into consideration two characteristics, the
network size and the relationship between the average degree k = 2∗m

n and the cor-
responding expected value of �-density �exp. Value of �exp could be, for example,
set to 0.9; this is ideal if we want to compute δ based on a reference network that we
consider dense. By doing so, we will get δ which we can use to compute �-density.
For a reference network,�-density will result equal to�exp, but we can use the same
value of δ to compute �-density of other networks, which then will be comparable
to each other.

If we modify the formula for calculating the�-density we can define a δ function.
Calculation of the δ based on the network size n, average degree kavg and the expected
value of �-density �exp is as follows:
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Table 2 δ calculated for two values of expected �-density and average degree

n kavg = 12,�exp = 0.9 kavg = 5,�exp = 0.5

100 0.214 0.142

1000 0.246 0.158

10000 0.250 0.160

100000 0.250 0.160

Table 3 �-density calculated with δ = 0.16 for artificial networks of different sizes and average
degree

n kavg = 2 kavg = 5 kavg = 9 kavg = 14

100 0.1577 0.5286 0.7876 0.9039

1000 0.1399 0.5029 0.7665 0.8858

10000 0.1381 0.5003 0.7644 0.8870

100000 0.1379 0.5000 0.7642 0.8869

1000000 0.1379 0.5000 0.7642 0.8869

δ(n, kavg,�exp) = 4 ∗ (d ∗ n − d − kavg)

((1 − d) ∗ kavg ∗ (kavg ∗ n + 2))
. (2)

In the Table 2 we can see that the computed δ value is stable for artificial networks
having thousands of nodes; however, it does not differ much for smaller networks.
Further, in theTable 3we can see a demonstration of the�-density values for artificial
networks with different average degree and selected δ = 0.160. As shown in Table2,
the value 0.160 corresponds to the expected Delta-density of 0.5 with an average
degree of 5. We can notice that the values are stable regardless of the network size.

It should also be noted that for δ = 0 the �-density becomes ordinary network
density. However, even for small δ values, the�-density value stabilizes for networks
with a size of more than a thousand nodes, as we can see in the example above. That
means that by choosing the suitable value of δ, we could create a setting that allows
us to calculate �-density with stable results regardless of the network size and can
be used to compare such networks.

5 Experiments

For the application of �-density to compare the density of networks of different
sizes, our first step is to choose a suitable value of parameter δ, which will be used
for all analyzed networks. The value must be greater than 0 without an upper limit,
but in most cases, values in the range of 0–1 are used. Our proposed solution for
finding the ideal value of δ is to choose a reference network that we consider dense for
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Fig. 2 Evolution of
�-density as networks grows
for parameter δ = 0.2

the analysis. The resulting �-density for the given network will create our reference
point, and other networks can be compared relatively to this point. Alternatively,
since δ is computed only from an average degree and size of the network, we could
also use any n and kavg as we see fit.

In our experiments we chose Linux(size 60%) as a reference network. Network’s
n and kavg from Table1 is used in Eq.3 to compute δ value. Function δ(n, k, d) from
Eq.2. The result δ value is 0.2 after approximation.

δ(16, 755, 13.462, 0.9) = 0.198 ≈ 0.2 (3)

With our δ value, we can now compute �-density for all analyzed networks.
Using the same δ will enable comparison where our reference network will have
� − densi ty ≈ 0.9, and will be referenced as dense. Furthermore, we propose to
establish a threshold value of �-density analytically. If the network has a higher
�-density than the threshold, we also consider such network as dense. For this
experiment, we use a threshold value of 0.85.

In Fig. 2 we can see the computed value of �-density for all analyzed networks
as they grow. The obvious observation is that our reference network(Linux) is dense
from its size of 60% and larger. Furthermore, Facebook �-density is above the
threshold, thus is dense, for its sizes 60, 80, and 100%. Linux and Facebook are both
dense after reaching the size of 60%. Network Epinions is for its size of 60% below
the threshold; it can be viewed as dense only for its size of 80 and 100%. Both Enron
andDBLP have�-density under the threshold, so we see them as not dense, but since
DBLP has significantly lower values, we can still say that Enron is denser thanDBLP.

5.1 Effect of Parameter δ

In Fig. 3 we can see cases of not ideally selected δ values. This may occur when
we do not use a reference network for computation of δ but rather try to blind pick.
In plot a, with a too small δ value, the result is almost identical to the plot with the
average degree. On the other hand, in plot b, the value is too large, resulting in almost
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Fig. 3 �-density with poorly selected values of parameter δ. For a δ is too low, b δ is higher than
ideal

Fig. 4 Relationship between �-density (y-axis) and parameter δ (x-axis) presented on multiple
sizes of snapshot. Each plot uses following network size a = 20%, b = 40%, c = 60%, d = 80%,
e = 100%. Plot f shows snapshots normalizes on the size of the smallest of analyzed datasets

all networks converging towards 1, thus making the result considered dense. In both
cases, the analytical value is significantly lowered than in Fig. 2.

In Fig. 4 we can see multiple plots (a,b,c,d,e), each for different network size.
These plots show how �-density grows with a higher value of parameter δ. As we
can see on c, d and e with higher δ values of �-density slowly converge towards
1. Networks that are significantly less dense would require a much higher value of
parameter δ to also converge towards 1.
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For the experiment with �-density on networks of the same size, we have created
snapshots for each network equal in the number of nodes to the smallest analyzed
network. In Fig. 4 f we can see�-density for a network of the same size for different
δ parameter. As we can see overall characteristics of the �-density growth remain
the same for all networks.

6 Conclusion

In this paper, we have presented a problem of network density comparison between
networks of different sizes and introduced a new measure that we call �-density.
Our proposed solution aims at defining a measure that takes into account both the
density and the average degree. Measure definition is supported by application on
both artificial and multiple real-world networks.

In our experiments, we showed an application of �-density on multiple real-
world networks of different sizes and origins. We provide detailed steps on how to
use �-density and interpreted results. In the same section, we pointed out some of
the pitfalls that come with poor parameter selection δ. Furthermore, we have shown
a relationship between �-density and parameter δ.

Even though �-density is novel and has not been tested by many practical appli-
cations, we believe that it brings a new point of view by removing bias that can occur
when an analysis is based solely on network density or average degree.
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Resilence and Robustness of Networks



Robustness of Network Controllability
with Respect to Node Removals

Fenghua Wang and Robert Kooij

Abstract Network controllability and its robustness has been widely studied. How-
ever, analytical methods to calculate network controllability with respect to node
removals are currently lacking. This paper develops methods, based upon generating
functions for the in- and out-degree distributions, to approximate the minimum num-
ber of driver nodes needed to control directed networks, during random and targeted
node removals. By validating the proposed methods on synthetic and real-world
networks, we show that our methods work very well in the case of random node
removals and reasonably well in the case of targeted node removals, in particular for
moderate fractions of attacked nodes.

Keywords Controllability · Complex networks · Node failures · Node attacks

1 Introduction

Network controllability has been investigated for different kinds of networks, like
biological networks [1], transportation networks [2] and corruption networks [3]. A
network is controllable if the states of nodes can be steered to any expected states
in a finite time by imposing external inputs to some of the nodes. Kalman’s con-
trollability rank condition is used to judge whether a linear system is controllable
or not [4]. However, sometimes we do not know the weighted interactions within
the network, which describe the strength with which a node affects other nodes. To
overcome the issue, the concept of structural controllability has been proposed [5].
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The interaction matrix and input matrix of the linear time-invariant system are struc-
tural if their elements are independently free parameters or some are fixed zeros. The
system is called structurally controllable if it is possible to find values of structural
interaction and input matrices to make the system satisfy the usual controllability
condition. Besides investigating the necessary and sufficient conditions to make the
specific system strong structural controllable [6], another research direction is to find
the minimum set of inputs to make the system fully controllable [7]. Liu et al. [8]
reduce the structural controllability problem into the optimization problem of find-
ing a set of unmatched nodes in a maximum matching of the network. The nodes
where the external input signals are imposed are named driver nodes. The number
of unmatched nodes equals the minimum number of driver nodes needed to fully
control the network. Note that the results reported in Liu et al. [8] critically depend
on the assumption that the direct network has no self-links, i.e. a node’s internal state
can only be changed upon interaction with neighboring nodes [9]. We will follow
this assumption throughout the paper.

Network structural controllability as a generic system property is applied to mea-
sure and enhance network robustness. Measuring network robustness is usually done
by measuring network performance changes during perturbations imposed upon the
network [10]. The widely adopted perturbations in the research of the robustness of
network controllability are random node or link removal, which are used as a bench-
mark compared with other perturbations. Another kind of perturbation deals with
targeted attack strategies. For example, attack strategies can relate to network topol-
ogy features, such as betweenness, degree and closeness. Pu et al. [11] demonstrate
that degree-based attacks are more harmful to network controllability compared to
random attacks. Lu et al. [12] find that a betweenness-based attack strategy is more
harmful than a degree-based attack strategy in most real-world networks. However,
Wang et al. [13] find that attacking bridge links, whose removal results in a discon-
nected network, is an effective way to destroy network controllability. Another kind
of targeted attack strategy is based on critical nodes and links. Critical nodes and links
are defined through the property that their removal will increase the number of driver
nodes [8]. Sun et al. [14] report random attack under the protection of critical links is
less efficient than a random link attack, and a targeted attack aiming at critical links
is more harmful than a random attack. Lou et al. [15] propose a hierarchical attack
removal framework where nodes or links are classified into critical, sub-critical and
normal categories. They find that hierarchical attack strategies aremore efficient than
some metric-based attack strategies such as betweenness- or degree-based strategies
in interdependent networks. There is also some research focusing on how to enhance
the robustness of network controllability. Giulia et al. [16] show that network con-
trollability is determined by the density of nodes with in-degree and out-degree equal
to one or two. Adding links to low degree nodes is beneficial to network control-
lability. Lou et al. [17] find that multi-loop structures can improve the robustness
of network controllability. Zhang et al. [18] investigate different redundant design
strategies of interdependent networks. They present that betweenness-based strategy
and degree-based strategy for node backup and high degree first strategy for edge
backup can optimize robustness of network controllability.
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Besides the aforementioned qualitative research on the robustness of network
controllability, quantitative research has been conducted. Lu et al. [12] develop the
numerical approximations of random node attacks and target node attacks based on
degree on Erdös-Rényi (ER) networks. The results fit well when the fraction of nodes
is below 20%. Sun et al. [14] explore the closed-form approximation of the number
of controllable nodes under random link attacks, targeted attacks and random attacks
with protection. Dhiman et al. [19] use machine learning to quantify the minimum
fraction of driver nodes under random link attacks and target link attacks, which per-
forms better than the closed-form approximation proposed by Sun et al. [14]. Later,
Chen et al. [20] develop analytical approximations for theminimumnumber of driver
nodes during random link removal by using methods based on generating functions.

However, to our knowledge, analytical methods to approximate the network con-
trollability during random and targeted node removal on different kinds of networks
are lacking. The framework to calculate the structural controllability of linear sys-
tems for directed networks has been proposed by Liu et al. [8]. This paper uses their
framework to develop analytical approximations based on degree distributions to
calculate the minimum fraction of driver nodes during node removal. We choose two
cases for the removal of nodes: random node removal and targeted node removal,
based upon the node degrees. In order to validate our methods, we use two types of
synthetic networks and four real-world communication networks.

This paper is organized as follows. The second section introduces the networks
used in the study for validation. The analytical results for the robustness of network
controllability during random node removal are presented in the third section. The
fourth section shows the results for the robustness of network controllability for
targeted node removal. The final section reports the conclusion and discussion.

2 Network Data

We will validate our theoretical results, which will be derived in the subsequent sec-
tions, on two classes of synthetic networks and on a number of real-world networks.
In this section, we give details on the used networks.

2.1 Directed Synthetic Networks

We choose two kinds of synthetic networks: Erdös-Rényi (ER) networks and Swarm
Signalling networks (SSNs).

We generate a directed ERnetwork on N nodes, by placing a directed link between
any pair of nodes, with a given probability pER . The average number of links for
such ER networks satisfies L = N (N − 1)pER . In this paper we have used two ER
networks, with N = 50, pER = 0.07 and N = 100, pER = 0.04.
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Table 1 Properties of four real-world communication networks

Name N L <k>

HinerniaGlobal 55 81 2.95

Syringa 74 74 2.00

Interoute 110 146 2.65

Cogentco 197 243 2.47

The topology for Swarm Signalling Networks (SSNs) that we use was suggested
in [21]. The SSN has a regular out-degree, while the in-degree distribution follows a
Poisson distribution. To generate SSNs, we need two parameters. One is the number
of nodes N , and the other is the out-degree value k. For each node, the node randomly
creates k outgoing links to other nodes. In this paper we have used two SSNs, both
with N = 104 and with k = 2 and k = 5.

2.2 Real-World Networks

The real-world networks used in this study are taken from the Internet Topology
Zoo [22], a collection of real-world communication networks. We change those
undirected networks into directed networks by using two attributes: source node
and target node [14]. The properties of the networks are shown in Table1, which
shows the number of nodes N , the number of links L , and the average total degree
<k>. The total degree is the sum of the in-degree and the out-degree. Obviously,
the average in-degree equals the average out-degree and therefore the average total
degree is twice the average in-degree (and hence the average out-degree).

3 Minimum Fraction of Driver Nodes Under Random
Node Removals

This section presents how to analytically approximate network controllability in the
case of random node removals.

3.1 Analytical Approximation

3.1.1 General Networks

From [8], for directed network G(N , L)with N nodes and L links, we can determine
the minimum number of driver nodes by using generating functions of the in- and
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out-degree distributions (Gin(x) and Gout (x), respectively) and of the excess in-
and out-degree distributions (Hin(x) and Hout (x), respectively). These generating
functions are defined as follows:

Gin(x) =
∞∑

k=0

Pin(kin)x
kin ,Gout (x) =

∞∑

k=0

Pout (kout)x
kout ,

Hin(x) =
∑∞

k=1 kin Pin(kin)x
kin−1

<kin >
= G ′

in(x)

G ′
in(1)

,

Hout (x) =
∑∞

k=1 kout Pout (kout )x
kout−1

<kout >
= G ′

out (x)

G ′
out (1)

,

(1)

where kin and kout denote in- and out-degree, respectively, while Pin(·) and Pout (·) are
in- and out-degree probability distribution, respectively. Then the minimum fraction
of driver nodes is given by:

nd = 1

2
{Gin(ω2) + Gin(1 − ω1) − 2 + Gout (ω̂2) + Gout (1 − ω̂1)

+ k[ω̂1(1 − ω2) + ω1(1 − ω̂2)]},
(2)

where ω1, ω2, ω̂1 and ω̂2 satisfy

ω1 = Hout (ω̂2), ω2 = 1 − Hout (1 − ω̂1), ω̂1 = Hin(ω2), ω̂2 = 1 − Hin(1 − ω1),

(3)
and k denotes half of the average degree equal to the average in-degree and the
average out-degree, k = 1

2 <k>=<kin >=<kout >.
During the node removal process, the set of driver nodes includes two parts. One

is the set containing ND driver nodes that control the remaining part of the network,
and the other set is formed by Nr removed nodes. We assume that each removed
node needs to be controlled by an individual driver node. We define the fraction of
driver nodes nD as nD = ND+Nr

N . After randomly removing a fraction p of nodes in
the network, the fraction of driver nodes nD satisfies

nD = nd(1 − p)N + pN

N
= nd(1 − p) + p. (4)

Based on the research of Shao et al. [23], the generating function after randomly
removing a fraction p nodes corresponds to the original generating function, with
the adjusted argument x̄ = p + (1 − p)x . Then the generating functions of in- and
out-degree, and the excess in- and out-degree, after randomly removing a fraction p
of nodes, are adjusted as follows:
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Ḡin(x) = Gin(p + (1 − p)x), Ḡout (x) = Gout (p + (1 − p)x),

H̄in(x) = Ḡ ′
in(x)

Ḡ ′
in(1)

, H̄out (x) = Ḡ ′
out (x)

Ḡ ′
out (1)

.
(5)

Next, we use Eqs. (2) and (4) to acquire the fraction of minimum number of nodes
nD after randomly removing a fraction p of nodes:

nD = 1

2
(1 − p){Ḡin(ω2) + Ḡin(1 − ω1) − 2 + Ḡout (ω̂2) + Ḡout (1 − ω̂1)

+ k(1 − p)[ω̂1(1 − ω2) + ω1(1 − ω̂2)]} + p,
(6)

where ω1, ω2, ω̂1 and ω̂2 satisfy

ω1 = H̄out (ω̂2), ω2 = 1 − H̄out (1 − ω̂1), ω̂1 = H̄in(ω2), ω̂2 = 1 − H̄in(1 − ω1),

(7)
and k is half of the average degree equal to the average in-degree and the average
out-degree, k = 1

2 <k>=<kin >=<kout >.

3.1.2 ER Networks

Both the in-degree distribution Pin(kin) and the out-degree distribution Pout (kout ) of
ER networks follow a Poisson distribution with average degree k [20]. Therefore,
the generating functions of in-degree and out-degree are as follows,

Gin(x) = e−k(−x+1),Gout (x) = e−k(−x+1). (8)

The minimum fraction of driver nodes nD after a fraction p of nodes is randomly
removed in the ER networks can be obtained through Eq. (6) as

nD = p + pω2 − ω2 + [1 − p + k(1 − p)2(1 − ω2)]ek(1−p)(ω2−1) (9)

where ω2 satisfies 1 − ω2 − e−k(1−p)e−k(1−p)(1−ω2) = 0.

3.1.3 SSNs

In a SSN with the number of nodes N and average in-degree and out-degree equal
to k, the in-degree distribution resembles a Poisson distribution with mean value k
and the out-degree distribution follows a Dirac delta function. Then the generating
functions of in-degree and out-degree distribution can be denoted as follows,

Gin(x) = e−k(−x+1),Gout (x) = xk . (10)
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Based on Eq. (6), the minimum fraction of driver nodes nD after randomly remov-
ing a fraction p of nodes can be calculated by

nD = p + pω2 − ω2 + [1 − p + (k − 1)(1 − p)2(1 − ω2)]ek(1−p)(ω2−1) (11)

where ω2 satisfies 1 − ω2 − [p + (1 − p)(1 − e−k(1−p)(1−ω2))]k−1 = 0.
Note that for the real-world networks, the generating functions for the in- and

out-degree distributions, can simply be obtained from the histograms of these distri-
butions. We use the relative frequency of degree as the corresponding probability in
generating functions.

3.2 Validation

We ran simulations on the various networks described in Sect. 2. Specifically, for
each communication network, we do 10,000 realizations, and in each realization, we
remove a node randomly at each step until all nodes have been removed. For each kind
of synthetic network, we heuristically choose two pairs of parameters: ER networks
with N = 50, p = 0.07 and N = 100, p = 0.04 and SSNs with N = 104, k = 2
and N = 104, k = 5. In each realization, we generate a synthetic network, given
its parameters, and remove nodes one by one randomly. After removing a node,
we recalculate the minimum fraction of driver nodes using the maximum matching
algorithm. However, as our SSNs have a large number of nodes, we remove 1% of the
original number of nodes at each step. We do 10,000 realizations for each synthetic
network as well. Then we obtain the average minimum fraction of driver nodes. The
green lines in Fig. 1 show the simulation results.

Since we know each network’s in-degree and out-degree distributions, we can
compute the minimum fraction of driver nodes of a network according to the equa-
tions mentioned above for the minimum fraction nD . The results obtained using the

(a) HinerniaGlobal (b) Syringa (c) Interoute (d) Cogentco

(e) ER(50,0.07) (f) ER(100,0.04) (g) SSN(104, 2) (h) SSN(104, 5)

Fig. 1 The minimum fraction of driver nodes nD during random node removal in different kinds
of networks. The green lines are calculated by the maximum matching algorithm over 10,000
realizations. The red dashed lines are obtained by the analytical methods
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generating functions of the degree distributions are depicted as red dashed lines in
Fig. 1.

The results are shown in Fig. 1. As the predicted values in the red lines and the
simulated values virtually overlap, we conclude that the analytical approximations
for network controllability in the case of random node removals are very accurate.
The reason for this is that, after removing a fraction p of the nodes at random, we still
have expressions for the generating functions of the in- and out-degree distributions,
see Eq. (5).

4 Minimum Fraction of Number of Driver Nodes Under
Targeted Node Removals

Degree centrality has been deeply investigated in the context of network robust-
ness [24]. Nodes with a high degree have a large influence on network functioning
and might be assumed to have a high probability of being attacked. We will explore
how to analytically approximate network controllability during targeteddegree-based
node removals.

Weassume that for node attacks, the probability of attacking anode, is proportional
to some power of its degree. Becausewe consider directed graphsG(N , L), with node
setN , there are three types of node degree: in-degree, out-degree and total degree. In
this paper we will only consider node attacks based upon total degree. If we denote
the probability of removing node i with total degree ki as pi , we have pi = ki α∑

j∈N kα
j
.

For α = 0, each node has the same probability of being removed, hence for this case
targeted node removal corresponds to random node removal, as discussed in Sect. 3.
If α > 0, the node with a larger degree has a higher probability of being removed;
when α < 0, the node with the smaller degree has a higher probability of being
removed. In this section, we focus on analyzing the results with α > 0. Specifically,
we consider two cases: α = 1 and α = 10.

4.1 Analytical Approximation

4.1.1 Case: α = 1

The main challenge is to obtain expressions for the generating functions for the in-
and out-degree distributions after removing a fraction p of the nodes through attacks.
In general, it is not possible to obtain the generating function both for the in- and
the out-degree distribution, after a fraction p of nodes has been attacked. Therefore
we have to come up with a heuristic to deal with this. Here we will map the targeted
node attack process (based upon total degree) into a random node attack process.
We suppose that the generating functions of in-degree distribution and out-degree
distribution change to those corresponding to random node removal, but such that
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the total number of links after randomly removing a fraction p̄ of nodes is equal
to the total number of links after targeted removal of a fraction p of the nodes. As
reported in [24], the fraction p̄ can be calculated by

p̄ = 1 − f G ′
α( f )

< k >
, (12)

where f ≡ G−1
α (1 − p), Gα(x) ≡ ∑

k pkx
kα

and < k > is the average total degree
of the initial network and pk is the probability of total degree k. If α = 1, Gα(x) ≡∑

k pkx
k , which is the generating function for the total degree distribution. For ER

networks, the generating function of total degree is G(x) = e−<k>(−x+1) and for
SSNs, the generating function of total degree is G(x) = x

<k>
2 e− <k>

2 (−x+1).

4.1.2 Case: α = 10

The interesting part of parameterα is thatwhenα approaches∞, the order of removed
nodes follows the rank of node degree values in descending order. At each step, the
node with the largest degree will be removed. In the simulations, we adopted large
values of α, and we found that the results for α = 10 are the same as the results for
α = 100, which means the result for α = 10 is representative for the case α = ∞.

We want to develop an analytical method to estimate the corresponding network
controllability for α = 10. We map the fraction p of removed nodes under targeted
attacks for α = 10 onto the effective proportion p̄ of nodes under random node
attack. Under the attack strategy to remove the largest degree node at each step, total
degree of all removed nodes can be obtained according to the degree distribution
after giving the removed fraction p. The effective proportion p̄ is the total degree of
all removed nodes normalizing by the total degree of all nodes in the initial network,

which can be calculated as p̄ =
∑k=k̄

k=kmax pk Nk
N<k> =

∑k=k̄
k=kmax pkk

<k> , where the largest degree
value is denoted as kmax , the probability of removed nodes with degree k is denoted

as pk and degree k̄ satisfies
∑k=k̄

k=kmax
pk = p. Similarly, except removed probability

pk̄ , other probability pk is equal to probability P(k) in the generating function. Then
the minimum number of driver nodes can be approximated by replacing argument p
by p̄ in Eqs. (5)–(6).

4.2 Validation

4.2.1 α = 1

We choose the same network set to do simulations under targeted node removal,
based on total degree. When using the maximum matching algorithm to calculate
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the minimum fraction of the number of driver nodes, we recalculate the fraction
value nD after removing nodes for each kind of targeted attack with α = 1. We do
10,000 realizations for each communication network and 1000 realizations for each
synthetic network. The simulation results are presented as green lines in Fig. 2. For the
analytical method, we employ the effective fraction of removed nodes p̄ acquired
by Eq. (12). Red lines in Fig. 2 represent the analytical results. We also show the
simulation results under random node removals in grey lines in Fig. 2.

We find that the analytical results are a reasonable fit with the simulations, espe-
cially for small values of the fraction p of attackednodes. It indicates that the proposed
method of calculating the effective proportion p̄ is inaccurate in the late removal
stage.

4.2.2 α = 10

Analogously, we do the simulations with α = 10 under total degree targeted node
removal, 10000 realizations for each communication network and 1000 realizations
for each synthetic network. The simulation results are shown in the green lines.
We present the analytical results in red lines. The simulation results of network
controllability under random node attacks are depicted in grey lines. The results
with α = 10 of total degree target node removal are shown in Fig. 3.

The proposed approaches for the case α = 10 can approximate network control-
lability in a closed-form but do not perfectly fit the simulation results. The analytical
result lines are first above the targeted attack lines, then below the targeted attack
lines but still above the random attack lines, until the fraction of removed nodes
approaches one.

(a) HinerniaGlobal (b) Syringa (c) Interoute (d) Cogentco

(e) ER(50, 0.07) (f) ER(100, 0.04) (g) SSN(104, 2) (h) SSN(104, 5)

Fig. 2 The minimum fraction of driver nodes nD during targeted node removal based on the total
degree with α = 1 in different kinds of networks. The green and grey lines are the average nD
calculated by the maximummatching algorithm over 10,000 realizations of real networks and 1000
realizations of synthetic networks. The grey lines are the results of simulations under random node
removal (α = 0), and the green lines are the results of removing nodes with probability based on
the degree with α = 1. The red dashed lines are obtained by the analytical approximation approach
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(a) HinerniaGlobal (b) Syringa (c) Interoute (d) Cogentco

(e) ER(50, 0.07) (f) ER(100, 0.04) (g) SSN(104, 2) (h) SSN(104, 5)

Fig. 3 The minimum fraction of driver nodes nD during targeted node removal based on the total
degree with α = 10 in different kinds of networks. The green and grey lines are the average nD
calculated by the maximummatching algorithm over 10,000 realizations of real networks and 1000
realizations of synthetic networks. The grey lines are the results of simulations under random node
removal (α = 0), and the green lines present the results of removing nodes with probability based on
the degree with α = 10. The red dashed lines are obtained by the analytical approximation methods

5 Conclusion and Discussion

In this study, we propose analytical methods, based on generating functions, to com-
pute theminimum fraction of the number of driver nodes in directed networks, subject
to node removals. We find that the analytical methods fit simulation results very well
for random node removals. Moreover, we develop analytical methods for two cases
during targeted node removal based on different degrees. One is the probability of
a removed node in proportion to the degree, and the other is that a node with the
largest degree tends to be removed. We find that the proposed analytical methods
for targeted node removal fit the simulation results reasonably well, in particular for
small values of the fraction of removed nodes.

In the future, we aim to extend our results by also considering node attacks, based
on the in-degree or the out-degree of nodes, and localized node attacks, as in [24].
Also, we would like to validate our results on a larger set of networks, both synthetic
and real-world networks, such as scale-free networks, small-world networks and
power grids.
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Optimal Network Robustness in
Continuously Changing Degree
Distributions

Masaki Chujyo and Yukio Hayashi

Abstract Realization of highly tolerant networks against malicious attacks is an
important issue, since many real-world networks are extremely vulnerable to attacks.
Thus, we investigate the optimal robustness of connectivity against attacks on net-
works in changing degree distribution ranging from power-law to exponential or
narrower ones. It is numerically found that the smaller variances of degree distri-
butions lead to higher robustness in this range. Our results will provide important
insights toward optimal robustness against attacks in changing degree distributions.

Keywords Robustness against attacks · Continuously changing degree
distributions · Variance of degree distribution · Feedback vertex set

1 Introduction

In our modern society, the realization of robust systems against malicious attacks is
an important issue. Unfortunately, it has been found that many real-world systems
of social, technological, and biological networks commonly have power-law degree
distributions, and such networks are extremely vulnerable to targeted attacks [1].
Thus, there are several studies for improving network robustness of connectivity
against attacks. In particular, networks with higher degree-degree correlations [13]
are known to be more robust against attacks [14, 15]. Such structures with posi-
tive degree-degree correlations are called onion-like structures and are known to be
robust. Based on increasing the degree-degree correlations, some rewiring methods
have been proposed for improving the robustness [17, 18].
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Recently, a new strong relation between the robustness and loops in networks is
beginning to get attention. The robustness is deeply related to a feedback vertex set
(FVS), which is a minimum set of necessary nodes for loops [7]. In other words,
a network is easily fragmented after it becomes loopless. This relation is also sup-
ported by an asymptotically equivalence of network dismantling and decycling for
a random network whose second moment does not diverge [2]. Network disman-
tling is a minimum set of nodes whose removal makes it a smaller size of connected
components, while network decycling is a minimum set of nodes whose removal
makes it loopless. Through numerical simulations, the network with a large size
of FVS is more robust [6]. Furthermore, based on increasing the size of FVS, two
types of rewiring methods have been proposed with and without preserving degrees
for improving the robustness [5]. The rewiring methods without preserving degrees
significantly increase both the robustness and the size of FVS, even when the degree-
degree correlations is negative. In particular, it is found that the rewiring methods
without preserving degrees tend to decrease the gap of the maximum and minimum
degrees in all tested networks. These results suggest that the robustness and the size
of FVS significantly increase as the gap of degrees decreases, equivalently as the
variance of degree distribution becomes smaller. Thus, we focus on the variance of
degree distributions for improving the robustness of connectivity against attacks.

On the other hand, there are few studies about the robustness against attacks in
changing degree distributions. One of them is a study of the robustness in networks
with specific degree distributions as power-law and exponential ones. Scale-free
networks with power-law degree distributions are more vulnerable to attacks than
networks with exponential distributions [1]. In addition, a growing network (GN)
model [8–10] generates networks with continuously changing degree distributions
between power-law and exponential ones. However, the robustness between them is
still unknown exactly. Another of them has investigated the robustness in a special
class of networks with multimodal distributions including power-law ones [16]. It
is known that bimodal networks with only two types of degrees in this class are
the most robust in the meaning of maximizing the sum of two critical thresholds of
whole fragmentation by random failures and malicious attacks. This means that the
robustness against the sum of attacks and failures increases as the variance of degree
distribution decreases. Thus, we focus on the variances of degree distributions to
investigate the optimal robustness against attacks in continuously changing degree
distributions ranging from power-law to exponential or narrower ones.

2 Continuously Changing Degree Distributions

We introduce a slightlymodified growing network (GN)model [8–10] and an inverse
preferential attachment (IPA) model [11]. The modified GN model and the IPA
model generate various networks with continuously changing degree distributions
by a parameter. In each of the following models, a new node is added and connects
by m links to existing nodes at each time step. The minimum degree of generated
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Fig. 1 Degree distributions by a the modified GN model for ν = 0, 0.5, and 1 and b the IPA
model for β = 0, 1, and 2, in networks with N = 10,000 nodes and m = 3. In both a and b, the
gap between the maximum degree and the minimum degree m becomes smaller as the parameter
ν decreases or β increases. a Brown dotted and blue solid lines show power-law (ν = 1) and
exponential distributions (ν = 0). Orange dashed line shows a degree distribution for ν = 0.5 b
Blue solid line shows an exponential distribution at β = ν = 0. Orange dashed and brown dotted
lines show degree distributions for β = 1 and 2

networks is a constant m and the average degree becomes almost 2m for a larger
number of nodes. The initial configuration is set as a complete graph with 7 nodes.

In the original GN model, a new node connects m = 1 link to an existing node i
with the connection probability proportional to kν

i , ν ≥ 0, where ki denotes a degree
of node i . In the original GN model for m = 1, it is analytically derived that the
degree distributions change from power-law (ν = 1) to power-law with exponential
cutoff (0 < ν < 1) or exponential ones (ν = 0) [8–10]. However, networks generated
by the original GN model for m = 1 are vulnerable because they are random trees,
regardless of the degree distribution. Thus, we extend the original GN model to
m ≥ 2 and distinguish it as a modified GN model. We numerically show degree
distributions of networks generated by the modified GN model for m = 3 in Fig.
1a. The degree distributions change in the same way from power-law to exponential
ones in the original GN model. In Fig. 1a with a log-log scale, brown dotted (ν = 1)
and blue solid (ν = 0) lines show power-law and exponential degree distributions,
which are derived in the original GN model. For 0 ≤ ν ≤ 1, the maximum degree
becomes smaller as ν decreases. In addition, Fig. 2a shows the variances σ 2 of degree
distributions versus the parameter ν. The variances become smaller as ν decreases.
For ν > 1,many links concentrate to a few hub nodes in a star-like structure, however
we do not consider it because the robustness against attacks to the centers is obviously
weak.

For generating narrower degree distributions than exponential ones, we introduce
the IPA model, in which the connection probability from a new node to an existing
node i is proportional to k−β

i , β ≥ 0 [11]. In the IPA model, the degree distributions
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Fig. 2 Variances σ 2 of degree distributions versus (a) the parameter ν in the modified GN model
and (b) the parameter β in the IPA model for N = 10,000 nodes. Black, purple, and orange lines
show the results for m = 2, 3, and 4, respectively. For each value of m, σ 2 decreases as β increases
or ν decreases. Note that the connection probability to a node i with degree ki is proportional to kν

i

or k−β
i

continuously change from exponential distributions (β = 0) to narrower ones as β

increases, as shown in Fig. 1b. Figure 1b shows that the maximum degree decreases
as β increases. In addition, Fig. 2b shows the variances σ 2 of degree distributions
decrease as β increases. However, the variances are converging to constant values
≥ 0. The minimum variances are 0.0048, 0.002, and 0.0034 for m = 2, 3, and 4,
respectively. The variances cannot become zero even for β → ∞, because these
networks must have some nodes with degrees smaller than the average degree of 2m
[11]. Note that lines in Fig. 2 are connected at ν = 0 and β = 0, since the connection
probability functions kν and k−β are continuous as ν → 0 and β → 0.

By combining themodifiedGNmodel and the IPAmodel, we can generate various
networks with continuously changing degree distributions ranging from power-law,
power-law with exponential cutoff, exponential, and narrower ones. Although the
networks generated by these models have specific structures, we focus in particular
on effects of degree distribution on robustness against attacks. In particular, networks
generated by the IPA model tend to have a chain-like structure [11] shown in Fig.
3a. In Sects. 3 and 4, for investigating the pure effect of degree distributions on the
robustness, we use random networks with degree sequences of networks generated
by these models. We apply a configuration model [3, 4] to the networks and remove
such special structures. Figure 3b illustrates a network after applying a configuration
model, which does not have the chain-like structure.
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Fig. 3 Visualization examples of networks for N = 200 nodes and m = 4. They are generated by
a the IPA model for β = 200 and b the corresponding a configuration model with the same degree
distribution

3 Effect of Continuous Changes of Degree Distributions on
Robustness

In continuously changing degree distributions, we consider the robustness index [14]
against two types of attacks: typical high degree adaptive (degree-based) attacks [1]
and more powerful belief propagation (BP) attacks based on network decycling [12].
The robustness index against degree-based and BP attacks denote Rhub and Rbp,

respectively. The robustness index is defined as Rhub
def= ∑N

q=1 S(q)/N , where N is
the number of nodes, q is the number of removed nodes by the degree-based attacks,
and S(q) is the fraction of nodes in the largest connected components [14]. In the
same formula, Rbp is defined as the case where nodes are removed by BP attacks.
In Sects. 3 and 4, we show the averaged results for 100 configuration models with
degree sequences of networks generated by the modified GN model and the IPA
model.

First, we show the results for the modified GNmodel. Table 1 shows the values of
Rhub and Rbp in a configuration model for networks generated by the modified GN
model for N = 10,000 nodes, m = 2, 3, and 4, and ν = 0, 0.5, and 1. Remember
that ν is a parameter in the connection probability proportional to kν in the modified
GN model. In Table 1, Rhub and Rbp increase as ν decreases. Thus, in the range from
power-law to exponential distributions, a smaller variance of degree distributions
leads to higher robustness against both degree-based and BP attacks. Note that Rbp

is slightly smaller than Rhub in comparison with them for the same m and ν.
Next, we show the results for the IPA model. Figure 4a, b show Rhub and Rbp

versus the variances σ 2 of degree distributions in a configuration model for networks
generated by the IPA model for N = 10,000 nodes, m = 3, and β = 0, 10, ..., 200.
In Fig. 4a, b, Rhub and Rbp increase as the variance σ 2 decreases. The green and blue
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Table 1 Robustness index in a configuration model for networks generated by the modified GN
model for N = 10,000

Rhub Rbp

m ν = 0 0.5 1 ν = 0 0.5 1

2 0.1709 0.1439 0.09887 0.1614 0.1354 0.09213

3 0.2564 0.2316 0.1895 0.2475 0.2234 0.1804

4 0.3078 0.2866 0.2516 0.3000 0.2787 0.2424

Fig. 4 Robustness against a typical degree-based attacks and b more powerful BP attacks versus
the variances σ 2 of degree distributions in a configuration model by the IPA model for m = 3 and
β = 0, 10, ..., 200. Red, green, and blue lines with circle, square, and diamond marks indicate the
results for N = 100, 1000, and 10,000. In both a and b, the robustness index becomes higher as
the variance is smaller

lines with diamond and square marks in Fig. 4a, b shows that both Rhub and Rbp are
almost unchanged as the variance σ 2 becomes smaller than 10−2. This is because the
networks are approaching to regular graphs but not complete regular graphs even for
β → ∞ [11]. Also, in the range from exponential to narrower distributions, a smaller
variance of degree distribution leads to higher robustness against both degree-based
and BP attacks.

By combining the above results for the modified GN model and the IPA model,
we can find that the robustness increases as the variance decreases in the two ranges
from power-law to exponential degree distributions and from exponential to narrower
ones. Furthermore, it is suggested that random regular graphswith zero variance seem
to have the highest robustness against attacks. Note that the random 2-regular graph
is unlikely to be fully connected, so even a random regular graph must have more
than the average degree of 3 to be robust.
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Table 2 Correlation coefficients of the robustness index and the rate of FVS in a configuration
model for networks generated by the modified GN and IPA models for N = 10,000

Modified GN model IPA model

m Corr (Rhub, FVS) Corr (Rbp, FVS) Corr (Rhub, FVS) Corr (Rbp, FVS)

2 0.9999 0.9986 0.9987 0.9988

3 0.9999 0.9997 0.9997 0.9990

4 0.9999 0.9994 0.9997 0.9988

4 Relation of Robustness and FVS in Changing Degree
Distributions

It has been suggested that networks become more robust, when they have a larger
rate of FVS by loop enhancement [5, 6]. Thus, we investigate the relation between
the robustness and the rate of FVS in a configuration model for networks generated
by the modified GN model and the IPA model. However, since to obtain the FVS
is NP-hard in a combinatorial optimization problem [7], we apply an approximate
method by a message-passing algorithm for estimating the FVS [19].

We show the relation for the modified GNmodel. Figure 5a, b show Rhub and Rbp

versus the estimated rate of FVS in a configuration model of the modified GNmodel
for N = 10,000 nodes and ν = 0, 0.1, ..., 1. Black circle, purple star, and orange
hexagon points show the results for m = 2, 3, and 4, respectively. In Fig. 5a, Rhub

increases as the rate of FVS increases. This is also supported by their correlation
coefficients, which are higher than 0.99 as shown in Table 2. Furthermore, both
Rhub and the rate of FVS increase as the variances of degree distributions decrease
as shown by color gradations in Fig. 5a. The color gradation of points is darker as
the variance decreases. Similarly, Rbp is strongly correlated with the rate of FVS as
shown in Fig. 5b and Table 2. Therefore, in degree distributions generated by the
modified GNmodel, the robustness against both attacks and the rate of FVS increase
as the variance of degree distributions decreases. Note that the values of Rhub and
Rbp are almost same as shown in Figs. 5a, b.

For degree distributions by the IPA model, similar results are obtained as them
by the modified GN model. Figure 6a, b show Rhub and Rbp versus the estimated
rate of FVS in a configuration model for networks generated by the IPA model for
N = 10,000 nodes and β = 0, 10, ..., 200. Even in narrower degree distributions by
the IPA model, both Rhub and Rbp increase as the rate of FVS increases, as shown in
Fig. 6a, b. This is also supported by their correlation coefficients, which are higher
than 0.99 as shown in Table 2. However, the value of Rbp is slightly lower than that
of Rhub in Fig. 6a, b. Furthermore, color gradation in Fig. 6a, b shows that both Rhub

and Rbp increase as the variance decreases, and that rate of FVS also increases.
By combining the results for the modified GN model and the IPA model, we can

find that the strong correlation of the robustness and the rate of FVS holds in the two
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Fig. 5 Robustness index versus the rate of FVS in a configuration model for networks generated
by the modified GN model for ν = 0, 0.1, ..., 1 and N = 10,000. The y-axis shows the robustness
index against a typical degree-based attacks and b more powerful BP attacks. Black circle, purple
star, and orange hexagon points show the results form = 2, 3, and 4, respectively. Color gradation of
points are darker as the variances of degree distributions are smaller. In both a and b, the robustness
increases as the variance decreases, and the rate of FVS also increases

Fig. 6 Robustness index versus the rate of FVS in a configuration model for networks generated
by the IPA model for N = 10,000 and β = 0, 10, ..., 200. The y-axis shows the robustness index
against a typical degree-based attacks and b more powerful BP attacks. Black circle, purple star,
and orange hexagon points show the results for m = 2, 3, and 4, respectively. Color gradation of
points are darker as the variances of degree distributions are smaller. In both a and b, the robustness
increases as the variance decreases, and the rate of FVS also increases
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ranges from power-law to exponential degree distributions and from exponential to
narrower ones. Moreover, both the robustness and rate of FVS become higher as the
variance of degree distributions decreases in these ranges.

5 Effect of Chain-Like Structure Generated by the IPA
Model on Robustness

We discuss the effect of chain-like structure on the robustness in networks generated
by the IPA model, in comparing them before and after applying a configuration
model. Remember that chain-like structure with a large diameter is generated by the
IPA model especially for a large β as shown in Fig. 3a. The reason for generating
chain-like structure is as follows [11]. For k−β-attachment for a very large β, at the
current time step t , a new node connects to the existing nodes added at t − 1, t − 2,
..., t − (m − 1) whose degrees are m, m − 1, ..., 2m − 2, because the increase of
degree is only one at each time step in prohibiting multi-links. The remaining one
link connects to an existing node with a degree 2m − 1. In addition, by assuming
that a new node connects to the oldest node with a degree 2m − 1, the diameter
of a generated network is estimated by N/�t , �t = m(m + 3)/2 [11]. Here, this
diameter of O(N ) means the existing of chain-like structure.

As β increases, the variance of degree distributions becomes smaller and chain-
like structure is emerged simultaneously by the IPA model. However, for the robust-
ness, there is a trade-off between decreasing variance of degree distributions and
emergence of chain-like structure. The emergence of chain-like structure makes a
network less robust since it is easily fragmented by removing nodes,whereas decreas-
ing the variance makes it more robust. Therefore, these two opposite effects work on
the robustness in the IPA model.

We confirm this trade-off for networks generated by the IPA model before ran-
domizing by a configuration model. We show the results of Rhub before and after
applying the configuration model in Fig. 7. In Fig. 7, solid lines show Rhub on a
configuration model of the IPA model for β = 0, 10, ..., 200 and m = 2, 3, and 4.
This case shown by solid lines reflects the pure effect of degree distributions on the
robustness, since chain-like structure is removed by applying a configuration model.
In solid lines of Fig. 7, Rhub increases as β increases in corresponding smaller σ 2. On
the other hand, dotted lines in Fig. 7 show Rhub on networks by the IPAmodel before
applying a configuration model. Each dotted line of Rhub moves up and down as β

increases because of the trade-off of two effects: emergence of chain-like structure
and making the variance smaller. By the trade-off, Rhub takes a local minimum value
for m = 2 and 3 in Fig. 7a, b. For m = 2, the local minimum of Rhub is given at
β = 20, 45, and 55 for N = 100, 1000, and 10,000 nodes, respectively. For m = 3,
the local minimum of Rhub is given at β = 35, 60, and 85 for N = 100, 1000, and
10,000 nodes, respectively. However, there are no such local minimum values for
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Fig. 7 Robustness index against degree-based attacks versus the parameter β in the IPA model.
Red, green, and blue lines are the results for N = 100, 1000, and 10,000. The dotted and solid lines
indicate the results before and after applying a configuration model for a m = 2, b m = 3, and c
m = 4
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m = 4 in Fig. 7c. The reason is still unknown in revealing the detail mechanism.
In addition, the values of Rhub are convergent for β > 125, because the attachment
becomes always connecting to nodes with the minimum degree.

6 Conclusion

We investigate the optimal robustness in continuously changing degree distributions
ranging from power-law, power-law with exponential cutoff, exponential, and nar-
rower ones generated by the modified GN model and the IPA model. By applying a
configuration model in order to investigate the pure effect of degree distributions on
the robustness against the typical degree-based attacks andmore powerful BP attacks,
we obtain that the robustness against both attacks and the rate of FVS increase as the
variance of degree distributions decreases. These results suggest that networks with
the minimum variance have the optimal robustness against attacks.
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Investments in Robustness of Complex
Systems: Algorithm Design

Van-Sy Mai, Richard J. La, and Abdella Battou

Abstract We study the problem of determining suitable investments in improving
the robustness of complex systems comprising many component systems with an
aim of minimizing the (time) average costs to system operators. The problem is
formulated as an optimization problem that is nonconvex and challenging to solve
for large systems. We propose two approaches to finding a good solution to the
optimization problem: the first approach is based on a gradient method and finds a
local optimizer. The second approachmakes use of a convex relaxation of the original
problem and provides both a lower bound on the optimal value and a feasible point.
The lower bound can be used to bound the optimality gap of the solutions obtained
by our methods. We provide numerical results to demonstrate the effectiveness of
the proposed approaches.

Keywords Complex systems · Optimization · Resilience · Robustness

1 Introduction

With increasing complexity, modern engineering systems, such as information and
communication networks and power systems, consist of many (component) systems
that depend on each other to deliver their services. This interdependence among
systems makes it possible for a local failure or infection of a system by malware
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to spread to other systems. From this viewpoint, it is clear that sound investments
in robustness of the complex system should consider the interdependence among
comprising systems. A similar issue arises also in the problem of managing the
spread of an infectious disease via social contacts.

The problem of optimizing the investments in robustness of complex systems or
the mitigation of disease spread has been studied extensively. In [1–4], researchers
adopted a game theoretic formulation to study the problem of security investments
with distributed agents. In another line of research more closely related to our study,
researchers examined optimal strategies using vaccines/immunization (prevention)
[5], antidotes or curing rates (recovery) [6–8] or a combination of both preventive
and recovery measures [9, 10]. However, these studies do not take into account
dynamics; they focus on either the expected costs stemming from single or cascading
failures/infections [3, 4, 11] or the exponential decay rate to the disease-free state
as a key performance metric. When systems experience random failures over time,
the exponential decay rate adopted in the previous studies is no longer a suitable
performance metric.

In a recent study, Mai et al. [12, 13] investigated the problem of minimizing
the (time) average costs of a system operator while accounting for dynamics, where
the costs include both (security) investments and economic losses incurred following
failures or infections. However, the authors considered investments only in resilience,
but not in recovery. In this paper, we extend this study and consider investments in
both resilience and recovery. It turns out that incorporating two different types of
investments complicates the optimization problem for determining optimal invest-
ments significantly. This is due to additional coupling terms that are introduced in
the new model, which were not present in [12, 13]. This leads to a highly nonconvex
optimization problem that is difficult to solve in general. However, we show that,
under a technical condition, we can formulate a convex relaxation that provides a
lower bound on the optimal value and a good feasible solution for the original prob-
lem (Theorem 4), whose optimality gap can be bounded. In addition, we show that
a gradient-based method also produces a good-quality solution.

Notation and Terminology — Let R and R+ denote the set of real numbers
and nonnegative real numbers, respectively. For a matrix A = [ai, j ], let ai, j denote
its (i, j) element and AT its transpose. We use boldface letters to denote (column)
vectors, e.g., x=[x1, ..., xn]T, 0=[0, ..., 0]T, and 1=[1, ..., 1]T. For any two vectors
x and y of the same dimension, x ◦ y, x

y , and xy are their element-wise product,
division, and exponentiation, respectively. For x ∈ R

n , diag(x) ∈ R
n×n denotes the

diagonal matrix with diagonal elements x1, . . . , xn .
A directed graph G=(V, E) consists of a set of nodes V and a set of directed

edges E ⊆ V × V . A directed path in G is a sequence of directed edges in the form(
(i1, i2), (i2, i3), ..., (ik−1, ik)

)
. The graphG is strongly connected if there is a directed

path from each node to any other node.
The rest of the paper is organized as follows: Sect. 2 describes the setup and the

problem formulation, including the optimization problem. Our proposed approaches
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are described in Sect. 3, followed by numerical studies in Sect. 4. We conclude in
Sect. 5.

2 Model and Formulation

The complex system under consideration consists of N (N � 1) systems, and we
denote the set of (component) systems by A = {1, . . . , N }. Each system in a subset
AR (⊂ A) experiences random failures. The frequency with which a system i ∈
AR suffers random failures depends on the amount of investments in its resilience,
which we denote by s pi ; when system i invests s pi in improving its resilience, it
experiences random failures according to a Poisson process with failure rate λi (s

p
i ).

Here, we assume that λi (s
p
i ) = λ̄i × qi (s

p
i ), where λ̄i ≥ 0 is the failure rate when no

investment ismade in its resilience, and qi : R+ → [0, 1] is a decreasing function and
quantifies how the resilience of system i improves with its investment in resilience.
We assume λ̄ j = 0 for every system j ∈ A \ AR =: Ac

R .
In addition to random failures, systems also experience secondary failures brought

on by the failures of other systems due to interdependence among systems. The rate
at which the failure of system i causes that of another system j depends on system j’s
resilience and is equal to ξi, j × q j (s

p
j ), where ξi, j ∈ R+. Thus, even systems in Ac

R
can experience secondary failures. Note that this failure transmission rate depends
on system j’s investment in resilience. When ξi, j > 0, we say that system i supports
system j or system j depends on system i . We adopt the convention ξi,i = 0 for all
i ∈ A.

When system i suffers a failure, the recovery time required to repair the system
and put it back in service depends on the amount of investment in recovery, which we
denote by sri ; when system i invests sri in recovery, the recovery times are given by
independent and identically distributed exponential random variables with parameter
δi (sri ). We assume that δi : R+ → (0,∞) is strictly increasing. Furthermore, the
recovery times of different systems are assumed to be mutually independent.

In addition to the investments in the resilience and recovery of systems, the system
operator also incurs other costs; when system i fails, it can cause economic losses,
e.g., some servers in system i may need to be taken offline for inspection and repair
and remain inaccessible during the period to other systems that depend on the servers.
We call the economic losses failure costs. To model the failure costs, we assume that
the failure of system i causes economic losses of ci per unit time. Define c = (ci :
i ∈ A) to be the failure cost vector.

From our discussion, we can define a following dependence graph G = (A, E),
where E := {(i, j) | ξi, j > 0, i, j ∈ A}. Let B = [bi, j : i, j ∈ A] be an N × N
matrix that describes the failure transmission rates among systems, where the ele-
ment bi, j is equal to ξ j,i . We assume that B is irreducible. Note that B is irreducible
if and only if the dependence graph G is strongly connected.
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2.1 Model

We adopt the well-known Susceptible-Infected-Susceptible (SIS) model to capture
the evolution of the state of each system: if a system i is up and running at time
t ∈ R+, we say that the system is at ‘susceptible’ state. If the system is being repaired
following a failure at time t , we say that the system is ‘infected’. Let p(t) be a
vector, whose i-th element is the probability that system i is at ‘infected’ state at
time t ∈ R+. The dynamics of p(t) is approximated using the following (Markov)
differential equations, starting with p(0) at t = 0:

ṗ(t) = (1 − p(t)) ◦ (
λ̄ + Bp(t)

) ◦ q(s) − δ(s) ◦ p(t), t ∈ R+, (1)

where s = (
si = (s pi , sri ) : i ∈ A)

, λ̄ = (
λ̄i : i ∈ A)

, q(s) = (
qi (s

p
i ) : i ∈ A)

and
δ(s) = (

δi (sri ) : i ∈ A)
.

Suppose that, for each fixed investment profile s = (si : i ∈ A) inR
2N+ , the system

state p(t) converges to a stable equilibrium (the existence and uniqueness of such
an equilibrium will be addressed shortly), which we denote by p̄(s). From (1), it is
clear that p̄(s) is a solution to the following equation.

gs(p) := (1 − p) ◦ (
λ̄ + Bp

) ◦ q(s) − δ(s) ◦ p = 0 (2)

We are interested in solving the following problem:

[P0] min
s≥0

F(s) := w(s) + cTp̄(s), (3)

where w : R
2N+ → R+ is the cost function that quantifies the investment costs. The

second term in (3) is the average failure costs that the system operator suffers due to
the failures of systems. Although we do not impose any constraints on s (other than
nonnegativity), our analysis can be extended to handle constraints, e.g., 1Ts ≤ sbgt,
where sbgt is the available budget for investments.

3 Main Analysis

In order to make progress, we introduce following assumptions.

Assumption 1 Suppose that G is strongly connected and the following holds:
A1-a. At least one system experiences random failures with a positive rate, i.e.,

AR �= ∅ and λ̄i > 0 for all i ∈ AR .
A1-b. For each i ∈ A, the function qi (s

p
i ) = (1 + κi s

p
i )−αi , where κi and αi are

some positive constants.
A1-c. For each i ∈ A, the recovery rate of system i is given by δi (sri ) = θi (1 +

ζi · sri )βi > 0, where βi , θi and ζi are some positive constants.
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A1-d. The cost of investments is equal to w(s) = 1Tsp + 1Tsr .

Assumption A1-b can be viewed as a form of the law of diminishing returns with
increasing investments in resilience, where the shape is determined by the parameters
αi and κi . Similarly, since the mean recovery time is inversely proportional to the
recovery rate, the law of diminishing returns may suggest βi < 1 in Assumption A1-
c. Larger values of αi and κi (resp. βi , θi , and ζi ) indicate higher effectiveness of
available tools for improving resilience (resp. expediting recovery) and, thus, greater
benefits from investments in resilience and recovery.

The following theorem states that, for fixed investments s ∈ R
2N+ , there is a unique

equilibrium of the differential system described by (1); see, e.g., [14].

Theorem 1 Suppose that Assumption 1 holds. Then, for fixed investments s ∈ R
2N+ ,

there is a unique equilibrium p̄(s) ∈ (0, 1)N that satisfies (2).

Theorem 1 asserts that the unique equilibrium of (1) satisfying (2) is strictly
positive. Hence, under Assumption 1, we can rewrite the constraints in (2) as

(p−1 − 1) ◦ (λ̄ + Bp) = θ ◦ (1 + κ ◦ sp)α ◦ (1 + ζ ◦ sr )β , (4)

where p−1 = (p−1
i : i ∈ A). Based on this observation, we reformulate our original

problem [P0] in (3) as the following equivalent problem:

[P1] min
s,p

w(s) + cTp =: f (s,p)

s.t. (4), p ∈ (0, 1]N , s ≥ 0

Themain difficulty in solving this problem lieswith the constraint in (4). Specifically,
the constraint in (4) involves bilinear terms that are not only nonconvex, but also
known to be difficult to handle. For this reason, although the objective function is
linear in optimization variables s and p, problem [P1] is nonconvex.

In view of the observation that [P1] is nonconvex, finding an optimal point for a
large system (with N � 1) is in general challenging. In this section, we will discuss
how we can obtain a feasible point (s′,p′) to [P1] along with a lower bound flb
on the optimal value f ∗ of [P1] so that we can bound the gap f (s′,p′) − f ∗ using
f (s′,p′) − flb. In order to find a lower bound on f ∗, under a technical assumption,
we formulate a convex relaxation of [P1], which can be solved efficiently. We find a
feasible point to [P1] in two different ways; in the first method, we use a gradient-
based method to find a local minimizer of [P1]. In the second method, we use an
optimal point to the aforementioned convex relaxation to construct a feasible point
and show that it solves [P1] under certain conditions.

In order to cope with the difficulty caused by constraint in (4), we first rewrite the
constraint as following two constraints using an auxiliary variable φ ≥ 1.

(p−1 − 1) ◦ (λ̄ + Bp) = θ ◦ φ (5a)

φ = (1 + κ ◦ sp)α ◦ (1 + ζ ◦ sr )β (5b)
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Notice that constraint (5a) involves only optimization variables p, whereas constraint
(5b) has optimization variables s. This observation will be exploited in our algorithm
design below.Here, wewill briefly illustrate the usefulness of this structure. Consider
the following subproblems for fixed φ ≥ 1:

[SP1] min
p

cTp =: g(p)

s.t. (5a), p ∈ (0, 1]N

[SP2] min
s

w(s)

s.t. (5b), s ≥ 0

Here, in viewof Theorem1, [SP1] is simply the problemof finding the equilibrium
failure probability p̄ for fixed θ ◦ φ corresponding to some investment profile s.
Unfortunately, there appears to be no closed-form solution to this problem. One can,
however, resort to a numerical method instead as shown below.

Theorem 2 ([13]) Suppose λ̄ � 0, θ > 0, and B is irreducible. Then, the iteration

pk+1 = λ̄ + Bpk
λ̄ + Bpk + θ ◦ φ

, k ∈ N, (6)

converges to a unique equilibrium p̂ when starting with any p0 such that p̂≤p0≤1.
Moreover, the convergence is exponential with some rate ρ0 < 1 − mini∈A p̂i .

Next, let us consider problem [SP2],which amounts tofindingoptimal investments
for a given φ, or equivalently, for a given failure probability p̂. Unlike [SP1], problem
[SP2] can be solved analytically as follows:

Theorem 3 For each φ ≥ 1, the solution to [SP2] is given by

ŝri (φ) = ζ−1
i max

{
0, τiφ

1/(αi+βi )

i − 1
}
with τi :=

(
βiζi

αiκi

) αi
αi+βi

ŝ pi (φ) = κ−1
i

(
φ
1/αi

i max
{
1, τiφ

1/(αi+βi )

i

}−βi/αi − 1
)
.

The proof of this theorem is straightforward and is omitted here.
Denote the optimal values of [SP1] and [SP2] for fixedφ ≥ 1 by g∗(φ) andw∗(φ),

respectively. Then, in principle, we can solve problem [P1] by solving

minφ≥1 g∗(φ) + w∗(φ). (7)

Unfortunately, this is in general not a convex problem due to the implicit function
g∗(φ) and possible nonconvexity of ŝ pi (φ) and ŝri (φ) (which is the case when αi +



Investments in Robustness of Complex Systems: Algorithm Design 413

βi > 1) as described in Theorems 2 and 3, respectively. As a result, we resort to a
numerical method that can find a (local) optimizer of the problem. Among different
methods for solving nonconvex problems, we consider next in Sect. 3.1 a gradient
type algorithm due to its simplicity and scalability. Later, in Sect. 3.2 we will show
that when αi + βi ≤ 1, we can obtain practical convex relaxation of the original
problem.

3.1 Gradient Method

First, it is tempting to use a gradient method to solve the problem in (7). However,
note that w∗ is nonsmooth and possibly nonconvex since ŝri (φ) is nonsmooth and
nonconvex. Thus, directly solving this problem using gradient methods is known to
be difficult. As a result, we will use [P0], which is of higher dimension than (7) but
smooth with simple constraints and hence is easier to apply gradient methods to.

To this end, we show how to compute gradient ∇F(s) efficiently. Note that

∇F(s) = ∇w(s) + ∇g(p(φ(s))) = 1 + Jp(s)Tc, (8)

where Jp(s) = [
∂pi (s)/∂s j

]
is the Jacobian matrix. Thus, the bulk of computation

lies in evaluating Jp(s). By applying the chain rule, we obtain

Jp(s) = Jp(φ)Jφ(s). (9)

Here, Jφ(s) can be evaluated easily from (5a, 5b), i.e.,

Jφ(s) =
[
diag

(
φ◦α◦κ
1+κ◦sp

)
,diag

(
φ◦β◦ζ
1+ζ◦sr

)]
. (10)

The matrix Jp(φ) can be computed by totally differentiating (5a) with respect to φ;
this is similar to the approach of [13]. In fact,

M(φ)Jp(φ) = −diag(θ ◦ p̄(s)) (11)

whereM(φ) = diag(θ ◦ φ + λ̄ + Bp̄(s)) − diag(1 − p̄(s))B, and p̄(s)= p̂(φ(s)),
which can be computed efficiently using the fixed point iteration in Theorem 2. We
can show that M(φ) is a nonsingular M-matrix. Thus, from (11) we get

Jp(φ) = −M(φ)−1diag(θ ◦ p̄(s)). (12)

Substituting (10) and (12) in (9) and using it in (8), we obtain

∇F(s) = 1 − Jφ(s)Tdiag(θ ◦ p̄(s))z, where z := M(φ)−Tc.
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As a result, we can now use a projected gradient method for solving [P0]; see [13]
for the detailed algorithm as well as an efficient and scalable approach for computing
z without matrix inversions for large systems (by exploiting the structure of M(φ)

and using the power method).

3.2 Convex Relaxation

We will introduce relaxations to the constraints in (5). First, to relax (5a), we use the
same approach used in [13]. Specifically, define

y := − ln p, t := λ̄ ◦ ey, U := diag(ey)Bdiag(e−y). (13)

Using these new variables, (5a) can be rewritten as

t +U1 = λ̄ + Bp + θ ◦ φ, (14)

which is linear in the variables t,p,φ andU . Next, we relax the nonconvex equality
constraints in (13) with the following convex inequality constraints:

e−y ≤ p ≤ 1, λ̄ ◦ ey ≤ t, diag(ey)Bdiag(e−y) ≤ U (15)

We can express these inequality constraints as a following set of at most 2N + |E |
exponential cone constraints:

(pi , 1,−yi ) ∈ Kexp for all i ∈ A (16a)

(ti , 1, yi + log λ̄i ) ∈ Kexp for all i ∈ AR (16b)

(ui j , 1, yi − y j + log bi j ) ∈ Kexp for all (i, j) ∈ E, (16c)

where Kexp :=cl({(x1, x2, x3) | x1≥ x2ex3/x2 , x2>0}). These constraints in (16) (as
well as those in (19) below) can be handled efficiently by conic optimization solvers,
e.g., MOSEK [15].1

We now consider the constraint (5b). Note that since we aim to minimize the
investment costs from sp and sr and the right-hand side of (5b) is strictly increasing
in each element, at an optimal point the constraint will be active, allowing us to
replace the equality with the inequality, i.e.,

φ ≤ (1 + κ ◦ sp)α ◦ (1 + ζ ◦ sr )β . (17)

In general this is not a convex constraint because of the product term on the right-
hand side; however, it can be recast as convex constraints when α + β ≤ 1. To see

1 Any mention of commercial products is for information only; it does not imply a recommendation
or endorsement by NIST.
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this, let us first use a change of variable to rewrite the right-hand side of (17): for
each i ∈ A, define

ηi = 1 + κi s
p
i and ϑi = 1 + ζi s

r
i . (18)

From their relations, we have s pi (ηi ) := (ηi − 1)/κi and sri (ϑi ) := (ϑi − 1)/ζi . Note
that ηi and ϑi are linear in s

p
i and sri , respectively, and vice versa. With a little abuse

of notation, we denote (s pi (ηi ) : i ∈ A) and (sri (ϑi ) : i ∈ A) by sp(η) and sr (ϑ),
respectively. In order to rewrite constraint (17) as conic constraints, we need the
following assumption.

Assumption 2 We assume α + β ≤ 1.

This assumption implies that the (marginal) rates of both the increase in recovery
rates and the decrease in failure rates slow down relatively quickly with increasing
investments. In other words, the available tools are not very effective and, as a result,
the failure rates do not diminish quickly and the recovery rates do not improve rapidly
with increasing investments in resilience and recovery, respectively. Under Assump-
tion 2, we can express the constraint in (17) as the following conic constraints:

{
(ηi , ϑi , φi ) ∈ Pαi ,1−αi

3 if αi + βi = 1,

(ηi , ϑi , 1, φi ) ∈ Pαi ,βi ,1−αi−βi
4 if αi + βi < 1,

i ∈ A, (19)

where Pa1,...,am
n =

{
x ∈ R

n
∣∣ ∏m

i=1 x
ai
i ≥

√∑n
j=m+1 x

2
j , x1, . . . , xm ≥ 0

}
, m < n,

is an n-dimensional power cone (n ≥ 3), which is convex. Clearly, the above power
cone constraints require Assumption 2. When this assumption does not hold, one
must resort to other techniques to obtain a convex relaxation of (17).

Based on these new constraints (14)–(19), we obtain the following convex relax-
ation of [P1]: define w̃(η,ϑ) := w(sp(η), sr (ϑ)) = ∑N

i=1(s
p
i (ηi ) + sri (ϑi )).

[CR] min
p,t,y,η,ϑ,φ,U

w̃(η,ϑ) + cTp

s.t. (14), (16), (19),

p ∈ (0, 1]N , η ≥ 1, ϑ ≥ 1, y ≥ 0

Suppose that x+
R := (p+, t+, y+, η+,ϑ+,φ+,U+) is an optimal point of [CR],

and let s+ = (sp(η+), sr (ϑ+)). Define

p′ = e−y+
, φ′ = φ+ + diag(θ−1)B(p+ − p′), and s′ = ŝ(φ′), (20)

where ŝ(φ′) is an optimal point of [SP2] for φ′, which was given in Theorem 3. The
above relaxation provides both an upper bound and a lower bound on the optimal
cost as shown below.
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Theorem 4 Suppose that f ∗ is the optimal value of [P1]. Then, (s′,p′) is a feasible
point of [P1], and we have

f (s+,p+) ≤ f ∗ ≤ f (s′,p′). (21)

Moreover, the last two constraints of (15) are active at x+, i.e.,

t+ = λ̄ ◦ ey
+
and U+ = diag(ey

+
)Bdiag(e−y+

). (22)

This result shows that the tightness of our relaxation can be judged via the gap
f (s′,p′) − f (s+,p+). Note that in view of Theorem 4, w(s) can be expressed as
w(ŝ(φ)) =: ŵ(φ), which is a convex function of φ under Assumption 2. Thus,

f (s′,p′) − f (s+,p+) = ŵ(φ′) − ŵ(φ+) + cT(p′ − p+)

≤ ∇ŵ(φ′)T(φ′ − φ+) + cT(p′ − p+) (convexity of ŵ)

= (
c − BT∇ŵ(φ′)

)T
(p′ − p+), (from (20))

where ∇ŵ(φ′) is the gradient of ŵ at φ′ (or any subgradient if non-differentiable).
Since p′ ≤ p+, the above bound suggests that the gap f (s′,p′) − f (s+,p+) is likely
to be small when the failure cost vector c is sufficiently large (which is often the case
in practice). Clearly, this gap is 0when c ≥ BT∇ŵ(φ′), i.e., (s′,p′) is a global optimal
solution to the original problem; this is the case, for example, when α + β = 1 and
c is sufficiently large (independent of φ′). Moreover, when the convex relaxation is
not tight, we can obtain an improved solution using the gradient method in Sect. 3.1
with (s′,p′) as a starting point.

Finally, we note that when either (αi , βi ) = (0, 1) or (αi , βi ) = (1, 0) for all
i ∈ A, both (5b) and (17) are simple affine constraints and can be used directly
in our relaxed problem without the need to transform them into conic constraints
provided in (19); a similar approach for the special case with (α,β) = (0, 1) can be
found in [13].

4 Numerical Results

In this section, we provide some numerical results to demonstrate the usefulness
and efficacy of our proposed approaches. Our studies are carried out in MATLAB
(version 9.5) on a laptop with 8GB RAM and a 2.4 GHz Intel Core i5 processor. For
our numerical studies, we generate a set of strongly connected scale-free networks
with the power law parameter for node degrees set to 1.5, and the minimum and
maximum node degrees equal to 2 and �3 log N�, respectively, in order to ensure
network connectivity with high probability.

For all considered networks, we fix θi = 1 and αi = βi = 0.5 for all i ∈ A. The
failure transmission rates b j,i , ( j, i) ∈ E , and the parameters κi and ζi are selected
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Fig. 1 Comparison between RGM and MOSEK package in two cases ν = 1.5 and ν = 5; here ν

is the parameter associated with the cost vector c = νBT1

uniformly at random in [0.01, 1], [1, 1.5], and [0.5, 1], respectively.Wechoose failure
cost vector c = νBT1 with a varying parameter ν > 0 to reflect an observation that
nodes that support more neighbors should, on the average, cause larger economic
losses. In each considered network, we assign positive failure rates of λ̄i = 0.1 to
20% of the nodes (sampled without replacement).

We solve the relaxed problem [CR] usingMOSEK package and define the relative
optimality gap at (s′,p′) as opt_gap = ∣∣1 − f (s+,p+)

f (s′,p′)

∣∣. We use the Reduced Gradient

Method (RGM) in [13] to find a local optimizer s̃ of [P0] with initial point s(0) = 0.
This gives us F(s̃), which is an upper bound on the optimal cost, and the relative
optimality gap for RGM’s solution is given by opt_gap = ∣∣1 − f (s+,p+)

F(s̃)

∣∣. The results
(averaged over 5 runs) are shown in Fig. 1.

As we can see, when ν is small with smaller failure costs, the relaxation is not
exact, and the RGM yields a solution with a smaller optimality gap (less than 5.5%
for ν = 1.5). When ν is large, the relaxation becomes tight, and both approaches
provide (nearly) optimal solutions. In this case, MOSEK yields a slightly better
solution since it uses an interior-point method. In terms of runtimes, RGM outper-
forms MOSEK, especially for large networks. The above results suggest that RGM
not only is scalable, but also can find a good solution to the original problem, if not
(nearly) optimal.
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5 Conclusion

We studied the problem of determining suitable investments in improving the robust-
ness of complex systems. Unlike in previous studies, we considered investments in
both resilience and recovery, while taking into account dynamics. The problem of
minimizing the average costs of a system operator is formulated as an optimization
problem, which is shown to be nonconvex. We then proposed two approaches to
determining (nearly optimal) investments based on a gradient-based method and a
convex relaxation. The effectiveness of the proposed approaches are demonstrated
using numerical studies.

References

1. Hota, A.R., Sundaram, S.: Interdependent security games on networks under behavioral prob-
ability weighting. IEEE Control Netw. Syst. 5(1), 262–273 (2018)

2. Khalili, M.M., Zhang, X., Liu, M.: Incentivizing effort in interdependent security games using
resource pooling. In: Proceedings of NetEcon (2019)

3. La, R.J.: Interdependent security with strategic agents and global cascades. IEEE/ACM Trans.
Netw. 24(3), 1378–1391 (2016)

4. Lelarge, M., Bolot, J.: A local mean field analysis of security investments in networks. In:
Processing of International Workshop on Economics of Networked Systems, pp. 25–30 (2008)

5. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer net-
works and populations. Phys. Rev. Lett. 91(247901), (Dec 2003)

6. Borgs, C., Chayes, J., Ganesh, A., Saberi, A.: How to distributed antidote to control epidemics.
Random Struct. Algorithms 37(2), 204–222 (Sept 2010)

7. Mai, V.S., Battou, A., Mills, K.: Distributed algorithm for suppressing epidemic spread in
networks. IEEE Contr. Syst. Lett. 2(3), 555–560 (2018)

8. Ottaviano, S., De Pellegrini, F., Bonaccorsi, S., Van Mieghem, P.: Optimal curing policy for
epidemic spreading over a community network with heterogeneous population. J. Complex
Networks 6(6), (Oct 2018)

9. Nowzari, C., Preciado,V.M., Pappas, G.J.: Optimal resource allocation for control of networked
epidemic models. IEEE Control Netw. Syst. 4(2):159–169 (June 2017)

10. Preciado, V.M., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.J.: Optimal resource
allocation for network protection against spreading processes. IEEE Control Netw. Syst. 1(1),
99–108 (2014)

11. Kunreuther, H., Heal, G.: Interdependent security. J. Risk Uncertainty 26(2/3), 231–249 (2003)
12. Mai, V.-S., La, R.J., Battou, A.: Optimal cybersecurity investments for SIS model. In: Proceed-

ing of IEEE Globecom (2020)
13. Mai, V.-S., La, R.J., Battou, A.: Optimal cybersecurity investments in large networks using SIS

model: algorithm design. IEEE/ACM Trans. Netw. 29(6), 2453–2466 (2021)
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Incremental Computation of Effective
Graph Resistance for Improving
Robustness of Complex Networks:
A Comparative Study

Clara Pizzuti and Annalisa Socievole

Abstract Real-world infrastructures are often subject to random failures or inten-
tional attacks that can significantly impact their robustness and hencemany processes
taking place on them. In this paper, we focus on the robustness of complex networks
by proposing a link addition strategy for improving the network robustness. The
approach exploits the incremental computation of the Moore-Penrose pseudoinverse
matrix to efficiently compute the effective graph resistance when a new link is added
to the network. Experiments on both real-world and synthetic data sets show that the
strategy provides a good trade-off between a low percentage error of effective graph
resistance with respect to the exhaustive search and the simulation time needed to
obtain the optimal link.

Keywords Network robustness · Graph spectra · Effective resistance ·
Moore-Penrose pseudoinverse · Genetic algorithm
1 Introduction

During the last decade, the pervasiveness of networks as a representation model of
real-world organizations has gained a central role in the comprehension and control
of such systems. The Internet, electric power grid, airline, railway transportation
systems, and communication systems in general consist of objects interconnected
among them. The daily use of such infrastructures by societies, individuals, and
organizations worldwide has stimulated the study of the capability of networks to
react to failures. The correct functioning of the network in case of either natural or
intentional malfunctioning is a main problem because of the side effects a disruption
could have in maintaining services.
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Though network robustness has been studied in different contexts, a shared def-
inition is that it is a measure of the capability of the network of maintaining good
performances after an attack [1, 2]. Several robustness measures have been proposed
in the last years. Freitas et al. [5] classify robustness measures into three categories:
measures based on graph connectivity, such as diameter or average distance, mea-
sures based on adjacency matrix spectrum, such as spectral radius or gap, and those
based on Laplacian matrix spectrum. In this last category, algebraic connectivity and
effective graph resistance are two popular measures extensively studied in the litera-
ture. The algebraic connectivity has been proposed by Fielder [4] and it is defined as
the second smallest eigenvalue of the Laplacian matrix of a graph. Fielder showed
that the larger the algebraic connectivity, the more difficult to disconnect the graph.
The effective graph resistance RG of a graph G, proposed by Ellens et al. [3], is
a measure that views a graph as an electric circuit. RG is related to the algebraic
connectivity, which provides upper and lower bounds to RG , and to random walks.
In fact, RG is proportional to the time expected to reach any vertex j starting from
a vertex i , averaged over all the pairs of nodes. These connections, and the fact that
RG decreases when edges are added to G, make the effective graph resistance a good
measure to evaluate the robustness of a network.

In [9] a method based on Genetic Algorithms [7], named RobGA, which finds
the edge that maximally improves the effective graph resistance has been proposed.
The main drawback of the approach is that the effective graph resistance must be
recomputed every time an edge is chosen as a candidate solution. Thus, the computing
time when large values of population size are used can be rather high.

In this paper, we propose to modify RobGA by introducing an incremental com-
putation of RG each time a new edge is added to G. The modified approach, named
RobGA{L+}, is comparedwithRobGA and other four strategies of link addition, pro-
posed by Wang et al. [12]. Experiments on both real-world and synthetic data sets
show that RobGA{L+} provides a good trade-off between a low percentage error of
effective graph resistance with respect to the exhaustive search and low simulation
time.

The paper is organized as follows. In the next section, the concept of effective
graph resistance is recalled and the problem we tackle in the paper is defined. In
Sect. 3, the RobGA method is briefly described and the efficient computation of RG

is introduced. Section4 describes the strategies used to choose a link. In Sect. 5,
the methods are executed on both real-world and synthetic networks, and a com-
parison of the results obtained by applying each strategy is reported. Finally, Sect. 6
concludes the paper and discusses the advantages and disadvantages of the new
proposed methodology.

2 Effective Graph Resistance

Let G = (V, E) be an undirected and connected graph without self-loops modeling
a network, where V is the set of n nodes constituting the network, and E the set of
m links connecting pair nodes of V .
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The adjacency matrix A ofG is an n × n symmetric matrix with elements ai j = 1
if there is an edge between nodes i and j , 0 otherwise. LetΔ = diag(di ) be the n × n
diagonal degreematrix,where di = ∑n

j=1 ai j , the Laplacian L ofG is defined as the
n × n symmetricmatrix L = Δ − A. Thus Li j = di if i = j , Li j = −1 if (i, j) ∈ E ,
and Li j = 0 otherwise.

Δ and A are symmetric and have real eigenvalues, thus the Laplacian L is positive
semi-definite, with nonnegative eigenvalues, the smallest eigenvalue being λ1 = 0,
the remaining eigenvalues all positive and can be ordered as 0 = λ1 ≤ λ2 ≤ . . . λn .
The set of eigenvalues {λ1, λ2, . . . , λn} is called the spectrum of L . The second
smallest eigenvalue λ2 is called the algebraic connectivity, known also as the Fielder
vector [4]. Since any Laplacian L has a zero eigenvalue, its rank is at most n − 1,
thus the inverse matrix does not exist. However, the Moore-Penrose pseudoinverse
of L , denoted as L+, can act as the inverse matrix. In particular, for any connected
graph, the eigen-decomposition of the pseudoinverse L+ has the same set of orthog-
onal eigenvectors of L and the eigenvalues of L+ are the reciprocal of the positive
eigenvalues of L , i.e. λ+

1 = 0, and λ+
i = 1

λi
, i = 2, . . . , n.

The effective graph resistance RG is a measure derived from the field of electric
circuit analysis [3] where an edge ei j with weight wi j corresponds to an electrical
resistance ωi j = w−1

i j Ohm. The effective resistance Ri j between two nodes i and j
is the electrical resistance measured between i and j .

Ranjan et al. [10] showed that Ri j can be expressed in terms of the elements of
L+ as:

Ri j = l+i i + l+j j − l+i j − l+j i (1)

Given Ri j , the effective graph resistance is defined as the sum of the effective
resistances between all possible pairs of nodes in the graphG and has been shown by
Klein and Randic [8] that it can be computed using the inverse non-zero eigenvalues
of L as

RG = n
n∑

k=2

1

λk
(2)

As robustness measure, the effective graph resistance is deemed a good measure
by several studies. Ghosh et al. [6] showed that it measures the closeness of two
nodes and how well a graph is connected. Another interesting property is that its
value decreases when edges are added to a graph [3]. This agrees with the intuitive
concept of robustness that complete graphs are more robust than trees or path graphs.
There exists also an analogy between randomwalks and effective graph resistance [3,
11]. The smaller the resistance between two nodes i and j , the smaller the expected
duration time of a random walk from i to j and back. Short random walks and the
existence of many paths between nodes are an indication of robustness since node or
edge failures can be easily recovered by another path. A smaller value of RG means
that the network is more robust.
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The effective graph resistance strictly decreases when a link is added to the net-
work and increases when a link is removed [12]. Thus, a strategy to improve robust-
ness can be the addition of a link that diminishes the effective graph resistance. This
strategy, as outlined in [12], is appropriate when new infrastructural connections
are planned to increase network efficiency. A challenging task is to detect the link,
among all the possible ones, whose addition maximally decreases the effective graph
resistance [12].

In this paper we consider the problem of enhancing the robustness of a network by
adding a link. Let G + {ei j } denote the graph G when the link ei j = (i, j) is added
to G.

Problem (link addition): given an undirected graph G = (V, E) with n nodes
and m links, let Ec = {(i, j) | (i, j) /∈ E} be the set of mc possible new links. Find
the link ei j = (i, j) ∈ Ec such that

RG+{ei j } ≤ RG+{ekl } (3)

for any other edge ekl = (k, l) ∈ Ec.
Several strategies of edge addition have been proposed and evaluated to improve

RG and thus make a network more robust [12]. In [9] the Genetic Algorithm RobGA
that optimizes the effective graph resistance has been proposed and compared with
the heuristics evaluated in [12]. The approach showed very good performance with
respect to such heuristics. However, the computation of the effective graph resistance
every time the link to add to the network is chosen is computationally expensive. In
the following, we propose a variation to RobGA, named RobGA{L+}, that exploits
an approximate computation of RG when a new link is added to G leveraging on
the approach proposed by Ranjan et al. [10] for the incremental computation of the
pseudoinverse Laplacian matrix.

3 RobGA{L+}: Incremental Computation of the Effective
Graph Resistance

In this section, the algorithm RobGA is first summarized, and then the incremental
computation of the effective graph resistance when a link is added to G is described.

RobGA is a Genetic Algorithm using a population of individuals consisting of
a vector of 2 genes corresponding to an edge (i, j) /∈ E , i.e. an edge which has
been chosen to be added to the graph G and does not already exist between the
nodes i and j . The crossover operator, for each individual I , generates a child e3
from two parents e1 = (i, j) and e2 = (k, l), by combining e1 and e2 such that the
edge obtained by combining the four nodes {i, j, k, l} does not exist. Finally, the
mutation operator, given an individual (i, j), disconnects i from j and connects it
to another node k chosen at random among the nodes which are not its neighbors.
RobGA initializes the population at random with not already existing edges. Then,
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for a number of generations, for each individual e of the population, the Laplacian of
G + {e} is computed and the fitness function RG+{e} is evaluated. A new population
of individuals is created by applying the variation operators. Finally, the individual
e minimizing RG+{e} is returned as solution to the problem.

In [9] it is highlighted that the computational complexity of the algorithm is
dominated by the fitness computation which is performed T × P times, where T is
the number of generations and P the population size. RG needs the computation of
the eigenvalues of the adjacency matrix of G, which is of the order O(n3), thus the
complexity of RobGA is O(T × P × n3), i.e. O(n3). It is worth pointing out that,
when running the method, the constant T × P sensibly increases the computing
time when high values of population size are used, which is often the case for large
networks in order to obtain good results. Thus avoiding to recompute RG from scratch
could be a good objective to pursue.

A solution to this problem can be obtained by exploiting the equation (1) and the
approximate computation of the pseudoinverse L+ proposed by Ranjan et al. [10].
These authors showed how to compute the pseudoinverse of the Laplacian of the
graph G + {ei j } when a new edge ei j /∈ E is added to G (Theorem 3 in [10]). Let l+i j
and l+(1)

i j denote the elements of the Moore-Penrose pseudoinverse of Laplacians L+

and L+(1) of G and the updated G + {ei j } when en edge is added to G, respectively.
Then

l+(1)
i j = l+i j − (l+j i − l+i j )(l

+
i j − l+j i )

ωi j + Ri j
(4)

where Ri j is the effective resistance of nodes i and j in the graph G.

4 Strategies for Link Addition

This section describes a set of strategies for selecting a link whose addition would
minimize the effective graph resistance. We also consider the exhaustive search
for comparison, which is the best strategy since it checks all the possible links
and computing the corresponding effective graph resistance is able to find the link
optimizing it. Its computational cost, however, is high having a complexity O(n5).
Alternative and lower-cost strategies that are able to determine the link to remove
have been proposed by Wu et al. [12]. In the following, we describe these strategies
and use them for performance comparison.

– S1 (semi-random): the link e(i, j) ∈ Ec has i with the minimum degree and j is
randomly chosen. The complexity of the strategy is O(n2 − n + mc + 1), where
O(n(n − 1)) is required for computing the degree of all the nodes, O(mc) for
finding the node having the lowest degree and O(1) for choosing a random node.

– S2 (degree product): the link e(i, j) is chosen among the links in Ec having the
minimum degree product did j . This strategy has complexity O(n2 − n + 2mc),



424 C. Pizzuti and A. Socievole

where O(n(n − 1)) is for computing the degree of all the nodes, O(mc) for com-
puting did j and O(mc) for finding the minimum did j product.

– S3 (Fiedler vector): the link e(i, j) is chosen using the Fiedler vector y corre-
sponding to the eigenvector of the second smallest eigenvalue of the Laplacian
matrix of G. Nodes i and j are chosen as the couple having the maximum differ-
ence |yi − y j |, where yi and y j are the components i and j of the Fiedler vector,
respectively. The complexity of S3 is O(n3 + 2mc), where O(n3) is for computing
the Fiedler vector, O(mc) for computing |yi − y j | for the mc possible new node
pairs and O(mc) for finding the maximum of the difference |yi − y j |.

– S4 (effective resistance): the link e(i, j) is chosen among the links in E having the
highest effective resistance Ri j . The effective resistance Ri j between nodes i and
j is computed as in equation (1). The complexity of this strategy is O(n3 + 4mc),
where O(n3) is for computing the Moore-Penrose pseudoinverse L+, O(3mc)

for computing Ri j for the mc unconnected node pairs and O(mc) for finding the
maximum value of effective resistance.

5 Experimental Evaluation

In this section,RobGA andRobGA{L+} are compared with the four strategies of link
addition presented in [12]. The strategies have been implemented using MATLAB
R2020a. We used the Genetic Algorithm solver implemented in the Global Opti-
mization Toolbox for RobGA and RobGA{L+} by setting crossover fraction 0.9,
mutation rate 0.2, maximum number of generations 300 and population size 100.
In addition to the aforementioned four strategies, we also consider the exhaustive
search in order to include the worst case scenario in which the search of the optimal
link explores all the possible new links. In the following subsections, we describe
the tested complex networks, the performance indexes and the obtained results.

5.1 Networks

The complex networks on which focuses this paper are both real-world and synthet-
ically generated. Tables1 and 2 summarize their features. Real-world networks are
the following:

– Internet Backbones. From the Internet Topology Zoo1 repository, we selected
5 representative networks, Bell South, ASNET-AM, ITC Deltacom, ION, and US
Carrier. Each of these networks has a backbone topologywhere each node is aBGP
(Border Gateway Protocol) router. An attack as blackholing or traffic redirection
to other destinations on such networks would severely degrade their performance.

1 http://www.topology-zoo.org.

http://www.topology-zoo.org
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Table 1 Topological features of real-world networks: network acronym (I D), number of nodes
(N ), number of links (L), average degree (< k >), average clustering coefficient (< C >), and
density (D)

Network ID N L < k > < C > D

Bell South BS 51 66 1.294 0.081 0.052

ASNET-AM AA 65 77 1.184 0.063 0.037

ITC Deltacom ITC 113 161 1.425 0.053 0.025

ION ION 125 146 1.168 0.006 0.019

US Carrier USC 158 189 1.196 0.002 0.015

Ego 3980 3980 44 138 3.136 0.227 0.072

Ego 686 686 168 1656 9.8572 0.266 0.059

Ego 3437 3437 532 4812 9.045 0.272 0.017

US Power Grid USPG 4941 6594 2.669 0.103 5.403e−04

Table 2 Topological features of synthetic networks

Network type Network ID N L < k > < C > D

Erdős-Rényi ER_128 128 627.3 5.23 0.054 0.041

ER_256 256 1423.2 11.117 0.064 0.043

ER_512 512 3240.2 12.64 0.01 0.024

ER_1024 1024 6310.2 12.222 0.004 0.011

Watts-Strogatz WS_128 128 384 6 0.109 0.047

WS_256 256 768 6 0.104 0.023

WS_512 512 2560 10 0.036 0.019

WS_1024 1024 5120 10 0.039 0.009

Bárabasi-Albert BA_128 128 253.4 3.954 0.132 0.031

BA_256 256 510.2 3.984 0.129 0.015

BA_512 512 1529.7 5.996 0.017 0.011

BA_1024 1024 3065.2 5.986 0.012 0.005

– Facebook Ego Networks. We also considered 3 Facebook ego networks, Ego
3980, Ego 686, and Ego 3437 where each node represents a Facebook user and
a link between them a friendship. These social networks are often subject to fake
news spreading and profile hacking, just to provide some examples. For each
network, we do not consider the whole topology but only the largest connected
component (LLC) since some nodes (8 nodes in Ego 3980, 2 nodes in Ego 686
and Ego 3437) are disconnected from the main component.

– US Power Grid. We finally considered the Western States Power Grid2, a larger
network where transformers, substations and generators are the nodes, and the
high-voltage transmission lines are the links. These networks are vulnerable to
cascading failures and blackouts.

2 http://konect.uni-koblenz.de/networks/opsahl-powergrid.

http://konect.uni-koblenz.de/networks/opsahl-powergrid
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We also consider the following synthetic networks:

– Erdős-Rényi. These random networks are generated from a set of n nodes by
randomly assigning a link between two nodes with a probability pc, also called
link density. When pc = 2 ln(n)/n, the graph is connected. These synthetic net-
works are used tomodel peer-to-peer networks, ad-hoc networks and collaboration
networks.

– Watts-Strogatz. These networks, also named small-world networks, are generated
from a ring lattice of N nodes and k links for each nodewhere each link is randomly
rewired with probability p. Here we set k = 6 and p = 0.5 for the 128-nodes and
256-nodes networks, and k = 10 and p = 0.5 for the 512-nodes and 1024-nodes
networks. These networkswellmodel contact networks such as Bluetooth orWi-Fi
encounters networks.

– Bárabasi-Albert. These networks follow a power law degree distribution and are
characterized by the preferential attachment feature for which nodes tend to link
with high degree nodes. They are generated from n0 initial nodes. Then, at every
time step t , a new node with nk ≤ n0 links is connected to the nk existing nodes
with a probability p = di/2mt , where di is the degree of node i and mt is the total
number of links at time t . Here, we set n0 = 5 and nk = 2 when the network size
is 128 and 256, and n0 = 10 and nk = 3 for the other sizes.

5.2 Performance Measures

To evaluate the improvement of our proposed strategy over S1, S2, S3, S4 and
RobGA, we adopt the following measures built on the effective graph resistance and
the simulation time, respectively.

– Percentage Error: the effective graph resistance percentage error between a link
addition strategy and the exhaustive search of the optimal link to add, where R∗

G+{e}
denotes the best value obtained by the exhaustive search and RSx

G+{e} is the effective
graph resistance value obtained by the chosen link addition strategy Sx .

ΔRG =
∣
∣
∣
∣
∣

RSx
G+{e} − R∗

G+{e}
R∗
G+{e}

∣
∣
∣
∣
∣
∗ 100 (5)

– Speedup: the ratio between the simulation time t Sxsim needed by a link addition

strategy Sx and the time t RobGA{L+}
sim needed by RobGA{L+} .

Speedup = t Sxsim
t RobGA{L+}
sim

(6)

If the speedup is greater than 1,RobGA{L+} is faster than the other strategy.More
specifically, if the speedup factor is n, then RobGA{L+} has an n- f old speedup.
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5.3 Results

In a first experiment, we computed the effective graph resistance for the strategies S1,
S2, S3, S4, RobGA and RobGA{L+}. Then, we measured the percentage error ΔRG

for each strategy with respect to the exhaustive search, which tests all the possible
missing links to find a candidate link e(i, j)minimizing RG+{e}. In particular, for the
genetic algorithms RobGA and RobGA{L+} we considered 10 runs for each network
and provide an average percentage error.We omit the results of the standard deviation
of ΔRG as it is very small. Table3 illustrates the performance of the strategies for
the real-world networks. On the Internet backbones, the percentage error of RobGA
is the lowest, achieving even 0 on Bell South, ASNET-AM and ION. This last result
indicates that RobGA finds the same link of the exhaustive search, as can be observed
in Table5 where we report the links added by the several strategies corresponding to
the bestΔRG value. OnBell South, for example, the link added by both the exhaustive
search and RobGA is [43 47]. For RobGA{L+} we also report both the averageΔRG

value over the 10 networks runs and its minimum value. It is worth pointing out that
RobGA{L+} matches the exhaustive search on the first 3 backbones achieving 0 as
minimumΔRG .While on the other two networks, ION andUSCarrier,RobGA{L+}
is outperformed by RobGA which has the lowest percentage error, RobGA{L+} has
significantly lower values of effective graph resistance if compared to strategies S1,
S2, S3 and S4.

On the Facebook networks, the percentage error of RobGA is again the lowest.
More specifically, on network 3980, the strategies S4, RobGA and RobGA{L+} by
adding link [36 42] equal the performance of exhaustive search. The other strategies,
S1, S2 and S3 have higher error values. The approximation of RobGA{L+} over
network 686 works well, being the second best performing strategy and having a
minimum error of 0.021 and an average value of 0.282. Finally, on the largest Face-
book network (3437)RobGA has an average error of 0.077, followed byRobGA{L+}
with no error in the best case corresponding to the addition of link [440 503], and
with an error value of 0.419 which is the second best in the strategies ranking, fol-
lowed by S4, S3, S2 and S1. Note that RobGA{L+} achieves a minimum error value
of 0.021 by adding link [440 503] having in common node 440 with link [243 440]
added by the exhaustive search.

For the US Power Grid, the number of possible links to add is 1.2 ∗ 107. There-
fore, the strategies were evaluated by comparing only the effective graph resistance
because of the high computational complexity of the exhaustive search. Also for S4
the computational time was too high and we do not consider it in the comparison.
Table4 presents the effective graph resistance values obtained on the US Power Grid.
The leading strategies are again RobGA and RobGA{L+} with RobGA being the top
performing among the other strategies (Table5).

Table6 illustrates the strategy comparison over synthetically generated Erdős-
Rényi, Watts-Strogatz, and Bárabasi-Albert networks with 128 nodes. For each net-
work, we generated 10 samples and run RobGA{L+} and RobGA 10 times. RobGA
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Table 3 Comparison of percentage error ΔRG between effective graph resistances in the aug-
mented network for S1, S2, S3, S4 heuristics, RobGA and RobGA{L+} over real-world networks.
For RobGA{L+}, the minimum and the average ΔRG+{e} values are reported

ID ΔRS1
G+{e} ΔRS2

G+{e} ΔRS3
G+{e} ΔRS4

G+{e} ΔRRobGA
G+{e} ΔRRobGA{L+}

G+{e}

BS 8.918 4.493 0.76 0 0 {0, 0.401}

AA 7.472 6.97 1.914 2.565 0 {0, 1.152}

ITC 15.062 10.591 1.235 1.231 0.184 {0, 0.985}

ION 9.484 7.669 1.749 3.834 0 {0.255, 0.292}

USC 19.869 15.765 5.692 10.453 0.159 {0.396, 0.7}

3980 8.938 3.018 0.386 0 0 {0, 0.77}

686 7.26 0.847 0.435 0.826 0 {0.021, 0.282}

3437 2.186 1.567 0.635 0.522 0.077 {0, 0.419}

Table 4 Comparisonof effective graph resistance in the original network (RG ) and in the augmented
network resulting from the various strategies over USPG

ID RG R∗
G+{e} R

S1
G+{e} R

S2
G+{e} R

S3
G+{e} R

S4
G+{e} RRobGA

G+{e} RRobGA{L+}
G+{e}

USPG 6.377e+07 – 6.242e+07 6.314 e+07 6.173e+07 – 6.105e+07 6.107e+07

Table 5 Links added by the several strategies over real-world networks for the best ΔRG value

ID e∗ eS1 eS2 eS3 eS4 eRobGA eRobGA{L+}

BS [43 47] [32 25] [14 24] [3 6] [3 6] [43 47] [43 47]

AA [32 37] [23 3] [27 52] [15 33] [7 36] [32 37] [32 37]

ITC [34 59] [48 19] [40 80] [40 109] [40 109] [34 59] [34 59]

ION [4 55] [30 20] [7 72] [5 55] [54 103] [4 55] [104 55]

USC [80 93] [78 67] [56 72] [116 148] [41 48] [79 77] [79 78]

3980 [36 42] [37 5] [4 39] [23 42] [36 42] [36 42] [36 42]

686 [26 62] [140 145] [62 89] [62 164] [88 153] [26 62] [7 62]

3437 [243 440] [388 165] [410 434] [366 477] [440 430] [440 503] [440 503]

USPG – [2847
3401]

[1853
3148]

[799
4463]

– [3925
1776]

[4432 2747]
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Table 6 Comparison of average percentage error ΔRG over synthetic networks with 128 nodes

ID ΔRS1
G+{e} ΔRS2

G+{e} ΔRS3
G+{e} ΔRS4

G+{e} ΔRRobGA
G+{e} ΔRRobGA{L+}

G+{e}

ER 1.028 0.029 0.044 0.093 0.004 0.103

WS 0.694 0.055 0.083 0.038 0.027 0.122

BA 0.607 0.219 0.064 0.012 0 0.0426

performs the best over all the datasets having very small ΔRG average values.
Its approximation, RobGA{L+}, performs the third best over the Bárabasi-Albert
networks while on Erdős-Rényi and Watts-Strogatz networks, the ranking of the
strategies changes. On Erdős-Rényi networks, for example, the strategies ranking
is RobGA, S2, S3, S4, RobGA{L+}, S1. On Watts-Strogatz networks, the second
best is S4, followed by S2, S3, RobGA{L+} and S1. Overall, the top performing
strategy remains RobGA. The second best strategy is mainly RobGA{L+} and in
some scenarios S4.

Despite the lower performance of RobGA{L+} over RobGA, which is negligible
over real-world networks and Bárabasi-Albert networks, and more significant over
Erdős-Rényi and Watts-Strogatz networks, its computational time is much lower,
especially when compared to S4. In the second experiment, we focused on analyzing
the simulation time of RobGA{L+} compared to RobGA and S4 by considering
synthetic networks of increasing sizes: 128, 256, 512 and 1024. Table7 illustrates the
results in terms of speedup. Overall, RobGA{L+} is clearly faster than its contestant
strategies. As the number of nodes increases, the speedup of RobGA{L+} becomes
more significant, especially over S4 whose simulation time can be very high. On
Watts-Strogatz networks with 1024 nodes, for example, RobGA{L+} is ten times
faster than RobGA and even 1000 times faster than S4. On large networks, S4 is
not easily applicable, it can be chosen if parallel computation can be run. Compared
to RobGA, RobGA{L+} provides a good trade-off between a low percentage error
of effective graph resistance and low simulation time. Especially on large networks
where the simulation time of the exhaustive search or S4 is too high, theRobGA{L+}
strategywould be a preferable choice.When investing on infrastructure networks, for
example, where the addition of a link is costly and a strategy close to the exhaustive
search is a requirement, RobGA{L+} would provide a computationally efficient
solution.

6 Conclusion

This paper focused on the enhancement of network robustness by evaluating the
impact a single link addition has on the resulting effective graph resistance of the
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Table 7 Speedup of RobGA{L+} over RobGA and S4 on synthetic networks

Network type Strategy N = 128 N = 256 N = 512 N = 1024

Erdős-Rényi RobGA 1.984 5.381 7.612 10.261

S4 1.985 101.993 401.451 1097.735

Watts-Strogatz RobGA 1.805 3.53 5.076 9.708

S4 1.311 97.859 216.135 885.474

Bárabasi-
Albert

RobGA 1.781 2.535 7.347 7.141

S4 2.933 59.4267 379.817 795.38

network. We presented a comparative analysis of 6 different single-link addition
strategies with the aim of evaluating their degree of robustness improvement and the
speedup over the exhaustive search. The results on both real-world and synthetic net-
works indicate that themethods based onGeneticAlgorithms are the best performing.
It is worth pointing out that, though RobGA is still the best performing approach, the
modified version RobGA{L+} is more competitive in terms of computing time, and
finds solutions which are very close to the exact one.

RobGA{L+} can be selected as candidate strategy since it is able to provide
a good trade-off between a low percentage error of the effective graph resistance
with respect to the exhaustive search and low simulation time. Especially on large
and sparse networks where the simulation time of the exhaustive search or similar
strategies, like S4, is too high, theRobGA{L+} strategywould be a preferable choice.
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Abstract Graph robustness upon node failures state-of-art is huge. However, not
enough is knownon the effects of centralitymetrics ranking after graph perturbations.
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affect the centrality metrics. Thus, we considered two type of probabilistic failure
models (i.e., Uniform and Best Connected), a fraction τ of nodes under attack,
with 0 < τ ≤ 1, and three popular centrality metrics (i.e., Degree, the Eigenvector
and the Katz centrality). We discovered that in the Uniform model the amount of
change in the adjacency matrix due to a perturbation is not significantly affected
when τ is small even with a quite high failure probability (i.e., p ≤ 85%) and that
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1 Introduction

Node centrality metrics have been extensively studied by researchers from a broad
range of disciplines such as Computer Science, Sociology, Economics and Life Sci-
ences to identify the most important elements in complex systems [1, 2]. Nodes with
high centrality are those nodes whose removal quickly causes the fragmentation of a
complex system into many independent subsystems [2]. In case of human societies,
nodes with high centrality often contribute the most to the spread of diseases or new
ideas [3].

Popular examples of centrality metrics are the Degree (which counts the number
of neighbours of a node i) and the Eigenvector centrality (which assumes a node
i is important if it is linked to nodes which are, in their turn, important). A further
example of centrality function is the Katz centrality that is defined as the sum of the
contributions associated with all walks1 starting from a node i .

The computation of node centrality heavily depends on the accurate knowledge of
the topology of the graph G; i.e., on the correct specification of the nodes and edges
in G. To this end, the simplest object to describe the graph topology is the adjacency
matrix, A ∈ R

|N |×|N |, namely a square matrix such that the entry Ai j equals one if
and only if nodes i and j are connected by an edge, 0 otherwise.

Malicious external agents as well as the malfunctioning of some components of
the system associated with G might cause the deactivation of some nodes/edges and,
thus, an alteration of the topology ofG. Such an alteration compromises the efficiency
of the system represented by G. In the worst cases, the loss in connectivity can stop
the functioning of the whole system. It is well known, for instance, that the failure
of some routers on the Internet could cause the interruption of communications on
a global scale [4, 5]. According to the terminology introduced in [5], nodes in a
graph are occupied (or not) if the physical elements to which they correspond are
functioning (or not); the probability of occupation of each node can be uniform or it
can depend on other parameters such as the node degree [5].

Previous research works [1, 6] investigated how the connectivity of G would
change if a fraction of its nodes were deleted and such a problem is known as site
percolation problem; other authors, instead, focused on the the bond percolation
problem, namely how graph robustness depends on the corruption of some of its
edges [7].

Despite the prolific research activity in the field of graph robustness upon
node/edge failures, not enough is known on the consequences that the deactiva-
tion of some nodes along with their incident edges would have on node centrality. In
addition, approaches considered so far assume that all nodes in G can fail; however,
such an assumption is unrealistic [8].

In this paper, we consider two probabilistic node failure models which have been
introduced in [8], that is the Uniform model, which assume that each node can fail

1 A walk of length k in a graph is a sequence 〈i0, i1, . . . , ik−1〉 of nodes such that pair of consecutive
nodes in the sequence are connected by an edge.
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with probability p, being p a constant, and the Best Connected (BC) model, which
assume that a node can survive an attack with probability proportional to its degree.
We also assume that a fraction τ (with 0 < τ ≤ 1) of nodes is under attack.

In the scenario above, we are concerned with two main questions: RQ1 Under
which conditions can we classify a perturbation as “small” in theUniform and in the
Best Connected (BC)models, respectively?RQ2 How does the norm of the centrality
vector vary in the Uniform and in the BC models?

To address our research questions we considered four real dataset on which we
applied the two probabilistic failure models by varying the fraction of targeted nodes
τ and the failure probability p. Our results unveiled to be consistent on what asserted
by Albert et al. [9] when τ is small (e.g., τ = 0.1). Indeed, [9] proved that if we
remove a small fraction of nodes from an ER graph, some topological properties of
the graph (such as the size of the largest connected component or the diameter) tend
to vary little. Instead, for high values of τ (e.g., τ = 1), then the role of p became
crucial in the perturbation analysis; indeed, we highlighted a decrease in ψ (i.e.,
the metric that quantify the amount of change in the adjacency matrix A due to the
application of a perturbation) that gets more and more clear as p gets large.

The paper is organised as follows: Sect. 2 briefly summarises the state-of-art, in
Sect. 3 we provide some background materials on graphs and the node centrality
metrics herein considered. In Sect. 4 we define the strategy followed to perform our
experiments as well as we describe the metrics herein used to quantify the amount
of perturbation. Section 5 illustrates the experiments we performed to study how
variation in ||�A|| impact on the the Degree, the Eigenvector and the Katz centrality.
Lastly, in Sect. 6 we draw our conclusions and illustrate our future research plans.

2 Related Works

One of the early approaches to analysing how alterations in graph topology affect
the ranking generated by a centrality metric is due to Costenbader and Valente [10].
The authors taken random samples from an input directed graph and they varied
the proportion of sampled nodes; specifically, they started by sampling 80% of the
available nodes and they gradually decreased the sampling proportion by 10%. The
process above stopped if the sampled network contained less than 10% of the input
nodes. At each sampling level, Costenbader and Valente [10] computed how the
centrality in the original graph and in the sampled graph were correlated. The authors
found that some centralitymetrics such as the in-degree and the eigenvector centrality
in the original and sampled graph were highly correlated; for other centrality metrics
such as the out-degree), they observed a quicker decline in average correlation as
function of the sampling rate.

A nice extension of the work done by Costenbader and Valente is due to Borgatti
et al. [11], who studied whether some centrality metrics can be regarded as robust if
random errors occurred in the graph topology. The authors generated random graphs
of different size and density and they considered four types of errors, namely, edge
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deletion, node deletion, edge addition, and node addition. The main results of the
study proposed in [11] show that the accuracy of centrality measures declines in a
predictable function as function of the amount of error.

The approaches above assume that graph topology is full specified and that some
sampling task has been applied on it.

A different perspective has been considered byDiesner et al. [12]; here, the authors
consider social networks constructed from records of social interactions. Potential
ambiguities of social entities may greatly affect the network construction process:
for instance, nodes associated with the same string could be wrongly merged despite
they correspond to distinct individuals. Diesner et al. [12] investigated the robustness
of some centrality metrics such as the in-degree and they found that some graph
statistics are heavily influenced from incorrect data but the process of detecting the
most important nodes was robust to disambiguation flaws. Such a result implies that
highly central individuals will still continue occupying a prominent ranking if we
heavily corrupt input data. In line with Diesner et al. [12], Mishra et al. [13] studied
to what extent flawed author name disambiguation can lead to wrong conclusions
about gender bias in science.

3 Background

In this section we provide some background materials that will be extensively used
throughout the paper.

We define a graph G as a pairG = 〈N , E〉 in which N is the set of nodes and E ⊆
N × N is the set of edges. Herein, we conducted our experiments on undirected and
unweighted graphs, which means that for each edge 〈i, j〉 ∈ E , we have 〈 j, i〉 ∈ E
(i.e., undirected graphs) and that the edges have all the same cost (i.e., unweighted
graphs). We define the order of a graph as the number n = |N | of its nodes and the
size of a graph as the number m = |E | of its edges.

We say that a graph is sparse (resp., dense) if m = O(n) (resp., m = O(n2)).
Given a node i ∈ N , we define the neighbourhood N (i) of i as the set of nodes

linked to i , namely N (i) = { j ∈ N : 〈i, j〉 ∈ E}. The degree di of i is equal to the
number of neighbours of i , namely di = |N (i)|.

Awalk of length k (being k a non-negative integer) is an ordered sequence of nodes
〈i0, i1, . . . , ik〉 such that consecutive nodes in the sequence are tied by an edge. We
use the term path for walks that do not have repeated vertices. A walk is closed if it
starts and ends at the same node.

Each unweighted graph G of order n is associated with an n × n matrix A called
adjacency matrix such that Ai j = 1 if and only if 〈i, j〉 ∈ E , 0 otherwise. The adja-
cency matrix is relevant to describe many graph properties: for instance, the matrix
A2 where A2

i j = ∑n
r=1 AirAr j , gives the number of walks of length two going from

i to j . By induction, for any positive integer k, the matrix Ak will give the number
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of closed (resp., distinct) walks of length k between any two nodes i and j if i = j
(resp., if i �= j) [14].

The adjacency matrix of any undirected graph is symmetric and, hence, all its
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn are real. The largest eigenvalue λ1 of A is also
called its principal eigenvalue or spectral radius of G. Moreover, the corresponding
eigenvectors e1, . . . , en will form an orthonormal basis inRn [15]. Eigenpairs 〈λi , ei 〉
are formed by the eigenvalue λi and its associated eigenvector ei .

We define the centrality of a node as a function f� : N → R
+ which takes as

input a node i ∈ N along with an (optional) set of parameters � and it returns a
non-negative real number as output. The centrality f�(i) of a node i assesses the
“importance” of i within G; because we can interpret the notion of importance in a
number of ways, we have consequently many definitions of centrality. In particular,
in this paper we focus on three popular centrality metrics, that isDegree, Eigenvector
and Katz centrality.

The Degree Centrality of a node coincides with the degree of that node. If we use
the vector d ∈ R

N to store the degree centrality of the nodes in G and we denote as
1 ∈ R

n the vectors with all entries equal to one, then the degree centrality d can be
computed as follows:

d = A × 1 (1)

A further, interesting centrality metric is the eigenvector centrality [1]. Unlike the
degree, the eigenvector centrality of a node i does not depend on the number of neigh-
bours of i but on the importance of these neighbours. Specifically, the eigenvector
centrality can be recursively computed through the following equation:

A × e = λe (2)

Here e ∈ R
n is the vector storing the eigenvector centrality of nodes in G. If we

assume that the graph G is undirected and connected, we can take the largest eigen-
value λ1 and the corresponding eigenvector e1 (also known as principal eigenvector);
by the Perron-Frobenius theorem [16] we have that all the components of e1 are pos-
itive and, thus, we can interpret the i-th component of e1 as the eigenvector centrality
of A itself.

The Katz centrality [1] of a node i counts all walks beginning at i ; each walk
of length k is associated with a weight equal to βk , being the parameter β called
the attenuation factor [17]. We can introduce a vector k ∈ R

n which stores the Katz
centrality of the node i in its i-th component; the vector k is defined as follows:

k = (
I + βA + β2A2 + . . .

) × 1 =
(+∞∑

k=0

βkAk

)

× 1 (3)
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being I ∈ R
n×n the identity matrix. If we assume that β < 1

λ1
then the series

∑+∞
k=0 βkAk (often called Neuman series) is convergent and its sum equals to the

the inverse of the matrix I − βA [17]:

k =
(+∞∑

k=0

βkAk

)

× 1 = (I − βA)−1 × 1 (4)

4 Methods

In this section we describe the metrics herein used to quantify the amount of change
in the adjacency matrix A due to the application of a perturbation.

We define a perturbation as the action of making inactive a fraction τ (with
0 < τ ≤ 1) of the nodes of a graph G = 〈N , E〉. Let N ′ ⊆ N be a subset of nodes
of size |N |′ = �τ × |N | and we assume nodes in N ′ are under attack.

We assume that each node in N ′ is associated with a failure probability pi and
we considered two options for modelling pi namely: (i) Uniform, in which pi is a
constant and (ii) Best Connected (BC), in which pi is proportional to the degree of
i [8]. Next, let p ∈ R

|N | be a vector such that the i-th component of p equals the
failure probability pi .

A perturbation transforms the adjacency matrix A of G into a new matrix Ã =
A − �A.

Hence, the problem we wish to address can be summarised by the following
research questions:

RQ1 Under which conditions can we classify a perturbation as “small” in the
Uniform and in the BC models, respectively?

RQ2 How does the norm of the centrality vector vary in the Uniform and in the
BC models?

To quantify the amount of change associated with a perturbation we consider the
following parameter ψ :

ψ = ||�A||F
||A||F (5)

where || · ||F is the Frobenius norm [18].
We also computed the deformation of centrality metrics. Specifically, let f�(A)

(resp., f�(Ã)) be the vector containing the centrality scores computed via the function
f�(·) on the input (resp., modified) adjacency matrix A (resp., Ã). Here f denotes
an arbitrary centrality metric while � is an optional set of parameter from which the
calculation of f (·) depends on. To capture the deformation of the centrality vector
we introduce the parameter ζ :

ζ = || f�(Ã) − f�(A)||
|| f�(A)|| (6)
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5 Experiments

In this section we report the experiments we carried out to validate our model to
answer our research questions.

5.1 Datasets

We ran our evaluation on four real datastes, namely: (i) Twitch-PT [19] (1, 912
nodes and 31, 299 edges), a social network of Twitch users collected in Spring 2018.
Twitch is a video live streaming service that provides services including, but not
limited to video game live streaming and e-sports competitions broadcasts. Nodes
are Twitch users located in Portugal and edges are mutual follower relationships
between them. (ii) Twitch-EN [19] (7, 126 nodes and 35, 324 edges) is a dataset
having the same structure and meaning of Twitch-PT, but its nodes correspond to
Twitch users from UK. (iii) AstroPH [20] (18, 771 nodes and 198, 050 edges), a
graph recording scientific collaborations between authors who submitted papers to
the Astro-Physics category in the e-print arXiv service. Here nodes are associated
with authors and there is an edge fromnodes i and j if and only if authors i and j wrote
a paper together. Cond-Mat [20] (30, 460 nodes and 120, 029 edges), a collaboration
network depicting scientific collaborations between authors who submitted papers
to the Condense Matter category in ArXiv. Nodes and edges have the same meaning
of the ones in AstroPH.

5.2 When a Perturbation is Small

In this section we describe the first experiment devoted to answer RQ1, namely
we wish to ascertain under which circumstances a perturbation on a graph G and,
consequently, on its adjacency matrix A can be regarded as small. To do so we
measured how the parameter ψ in Equation (5) varies as function of p and τ in the
Uniform model and as function of τ in the BC Model.

We first focus on the Uniform model and, due to space limitations, we report in
Figure 1a and b our results for τ = 0.1 and τ = 1.0. The Figures indicate that ψ is
independent on the dataset under scrutiny.

In fact, the parameter ψ depends on the norm of �A that depends only on the
product τ × p as well as on the graph order n. The dependence of ||�A||F on n of
nodes is absorbed by the denominator of ψ .

If τ = 0.1, then ψ is constant for all values of p less than 0.85; vice versa, a steep
decrease inψ occurs if p is bigger than 0.85. In other words, if τ is small, the number
of nodes which can actually fail is a small fraction of the entire node set and, thus,
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Fig. 1 Variation of ψ as function of p in the Uniform model for real graphs under investigations
if a τ = 0.1, b τ = 1.0

the failure of these nodes does not significantly affect the norm of the perturbation
matrix (which answer to RQ2).

Such an experimental behaviour extends previous work by Albert et al. [9] on
the robustness of random graphs upon random node removal; in particular, Albert
et al. [9] proved that if we remove a small fraction of nodes from an Erdős-Rényi
(ER) graph, some topological properties of the graph (such as the size of the largest
connected component or the diameter) tend to vary little. The high level of resilience
of ER graphs is still true for ||�A||F .

If τ = 1 all nodes can potentially fail, and, thus, the parameter p plays a key role
in the variation of ψ ; specifically, we highlight a decrease in ψ which gets more and
more clear as p gets large.

In the BC strategy (see Fig. 2) we observe that if τ → 1, then we have a bigger
chance of selecting high-degree nodes. The removal of high-degree nodes clearly
generates a bigger increase in ||�A||F . This explains whyψ increases as τ increases.
Unlike the Uniform model, the topology of the input graph in the BC model affects
the value of ψ , which always increases in an almost linear fashion but the rate of
growth of ψ differs from one dataset to another.

5.3 How the Centrality Metrics Vary in Probabilistic Failure
Models

In this section we study how ζ varies as function of τ ; in our tests, τ increased up to
0.2.

In the Uniform model we fixed p = 0.1. We also fixed α = 0.5 in the calculation
of the Katz coefficient.

From Figures 3 and 4 we observe that both the Degree and the Eigenvector cen-
trality increase in a linear fashion as τ increase. Specifically, in the Uniform model,
the ζ associated with the Eigenvector Centrality grows faster than the ζ correspond-
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Fig. 2 Variation of ψ as function of τ in the BC model for the real graphs considered in our tests

Fig. 3 Variation of ζ as function of τ in the uniform model for real graphs

ing to the Degree. An opposite trend emerges in the BC model: here, ζ grows faster
in case of the Degree than in the Eigenvector Centrality.

From the analyses conducted with Katz Centrality resulted that small values of
τ are sufficient to generate a sharp increase in ζ ; however, the observed values of ζ

tend to quickly stabilise.
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Fig. 4 Variation of ζ as function of τ in the BC model for real graphs

6 Conclusions

In this paper, we considered two probabilistic node failuremodels [8], calledUniform
and Best Connected, and we simulated the removal of nodes (and corresponding
edges) from a graph in both of them to investigate whether and to what extent small
perturbations in a graph will affect the centrality metrics. As evaluation metrics we
defined ψ (which quantifies the amount of change in the adjacency matrix due to the
application of a perturbation) and ζ (which evaluate the deformation of centrality
metrics).

The analyses unveiled that in Uniform model, ψ was constant if τ = 0.1∀p ≤
0.85, whereas a steep decrease of ψ was detected for p > 0.85. Instead, for τ = 1,
ψ depends on p: the larger p, the lower ψ is. In terms of centrality metrics, ζ grown
faster in Eigenvector Centrality than in Degree.

This means that the amount of perturbation is not significantly affected when a
small fraction of nodes is targeted even with a quite high failure probability (i.e., p ≤
85%) and that the Eigenvector centrality is themost susceptiblemetric to deformation
respect to the other herein analysed.

On the other side, when the Best Connected model was considered, ψ grows pro-
portionally to τ , whereas ζ had an opposite trend respect to what encountered in the
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Uniform model; indeed, ζ grown faster in the Degree rather than in the Eigenvector
Centrality.

Thus, when the most connected nodes are the most resilient within the network
an higher fraction of targeted nodes can let to pick and successfully remove those
strong nodes; as a consequence, the amount of perturbation is higher. In addition, the
most affected centrality metric is the Degree as the nodes resilience was established
to be proportional to such a metric.

Our next research goal consists of studying the continuity of the same central-
ity measures herein discussed (i.e., Degree, the Eigenvector Centrality and the Katz
Centrality) if some nodes in a graph fail as well as expanding the range of pool of cen-
tralitymetrics to study. Specifically, given their importance as tools for the analysis of
complex systems, we plan to include centrality metrics such as the betweenness and
the closeness. Unfortunately, the computation of betweenness/closeness relies on the
calculation of all pairs shortest paths in a graph and, consequently, betweenness and
closeness are hard to compute on graphs of even modest size. Recently, however,
[21] introduced scalable Deep Learningmethods to predict betweenness/closeness in
large graphs; thesemethods were able to achieve accurate results even in large graphs
and, thus, our goal is to apply the methods we developed in this paper with the cen-
trality prediction techniques illustrated in [21] to study the continuity of betweenness
and closeness.
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Robustness of Preferential-Attachment
Graphs: Shifting the Baseline

Rouzbeh Hasheminezhad and Ulrik Brandes

Abstract The widely used characterization of scale-free networks as “robust-yet-
fragile” originates primarily from experiments on instances generated by preferential
attachment. According to this characterization, scale-free networks are more robust
against random failures but more fragile against targeted attacks when compared to
random networks of the same size. Here, we consider a more appropriate baseline
by requiring that the random networks match not only the size but also the inherent
minimumdegree of preferential-attachment networks they are comparedwith. Under
this more equitable condition, we can (1) prove that random networks are almost
surely robust against any vertex removal strategy and (2) show through extensive
experiments that scale-free networks generated by preferential attachment are not
particularly robust against random failures.

Keywords Robustness · Scale-free networks · Preferential attachment

1 Introduction

The class of scale-free networks is of particular interest in network science. While
preferential attachment models can generate only a vanishing fraction of all scale-
free networks [17], many claims about scale-free networks arise from experiments
on preferential-attachment instances. One such claim, originating from [1], is that
scale-free networks have a “robust-yet-fragile” nature, i.e., compared to random
networks of the same size, they are more robust against random failures but more
fragile against targeted attacks [9].

Common models for preferential attachment, including the one used in the exper-
iments of [1], yield instances with a constant average degree and a minimum degree
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of half that value. Because of their constant average degree, however, random net-
works of the same size are very likely to contain isolated vertices [10]. We prove,
as a first contribution, that the robustness and connectivity of such random networks
changes significantly if they are required to have a minimum degree of at least k
for any constant k ≥ 3. With this in mind, it seems more appropriate and natural to
compare the robustness of preferential-attachment instances with random networks
of the same size and the same minimum degree. To the best of our knowledge, this
has not yet been done.We aim to fill this gap with our second contribution through an
extensive suite of experiments. Our experiments show, to the affirmative, that scale-
free instances generated by preferential attachment are consistently more fragile than
size-matching random networks whose minimum degree is at least as large. To put
it more bluntly: We find that in an equitable setting, graphs created by preferential
attachment do not exhibit a “robust-yet-fragile” nature. Our formal contributions can
be summarized as follows:

1. For any constant k ≥ 3, almost all graphs with a constant average degree and
a minimum degree of at least k are connected and provably robust against any
vertex removal strategy.

2. Under targeted attacks and random failures, scale-free networks generated by
preferential attachment are more vulnerable than random networks of the same
size whose minimum degree is at least as large.

2 Preliminaries

We use N to denote the set of positive integers. When we say that a statement holds
for large enough n ∈ N, there exists a constant n0 ∈ N such that the statement holds
for all n that are larger. We say that a sequence of events An holds almost surely if
limn→∞ Pr[An] = 1.

2.1 Graphs and Degree Sequences

In this paper, we consider only simple undirected graphs and use the terms graph and
network interchangeably. A graph G = (V, E) consists of a set of vertices V and a
set of edges E ⊆ (V

2

)
. If {u, w} ∈ E , then u and w are said to be adjacent. A graph is

called complete if each vertex is adjacent to all other vertices. The degree, degG(v),
of a vertex v is the number of vertices in G adjacent to v. If v1, · · · , vn is an ordering
of V where deg(v1) ≥ · · · ≥ deg(vn), then D(G) = (deg(v1), . . . , deg(vn)) is the
degree sequence of G.

The subgraph of a graph G = (V, E) induced by V ′ ⊆ V is G[V ′] = (V ′, E ′),
where E ′ = {{u, w} ∈ E |u, w ∈ V ′}. Given a positive integer k, the k-core of a
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graph G is the inclusion-maximal induced subgraph, where all vertex degrees are at
least k. The k-core of a graph is unique and can be determined efficiently [5].

The reachability relation is defined as the reflexive and transitive closure of the
adjacency relation. The connected components of a graph are its subgraphs induced
by the equivalence classes of the reachability relation. A graph is called connected
if it consists of a single connected component. The largest connected component, or
LCC for short, is the one with the largest number of vertices.

2.2 Network Robustness

The invariance of a network structural property when the elements of the network
are removed is referred to as the robustness of that network [14]. We focus only on
the removal of vertices and consider the number of vertices in the largest connected
component as the structural property of interest.

Given a connected graph G = (V, E) and the sequence of vertices B = (b1, b2,
. . . , bT ) in order of their removal, we can quantify the robustness of G by

RG(B) = 1

T

T∑

t=1

|LCC (G[V \ {b1, . . . , bt }]) |
|LCC (G) | .

This robustness score originally proposed in [12] is a generalization of the score
used in [18], where in the latter score, B is a permutation of V . Note that the above
score captures the relative size of the largest connected component and the rate at
which it shrinks when the vertices are removed. The most commonly considered
vertex removal strategies in the literature are random failures and targeted attacks.
In random failures, vertices are removed uniformly at random. In targeted attacks,
the vertices with the highest initial degree are removed first.

If the strategy is clear from the context and we accept random variation due to
vertex selection and tie-breaking rules, we can parameterize the robustness score by
the fraction β of removed vertices rather than by the precise sequence. Note that
RG(β) is upper-bounded by 1 − β/2 + o(1) for any strategy [11].

A graph invariant closely related to robustness is its (vertex) isoperimetric number,

defined ash(G) = min∅	=S⊂V,|S|≤ |V |
2

{
|∂S|
|S|

}
,where ∂S is the subset of vertices inV \ S

that are adjacent to at least one vertex in S. A graphG is called anα-(vertex) expander
for some constant α > 0, if h(G) ≥ α. Intuitively, this means that many vertices need
to be removed to disconnect a sizable subset of vertices from the rest.
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2.3 Network Models

The set of simple graphs with n vertices and m edges is denoted by G(n,m), and
G(n,m, k) is the subset of graphs in G(n,m) that have minimum degree at least k.
The models G(n,m) and G(n,m, k) consist of the uniform distribution on G(n,m)

and G(n,m, k), respectively.
Scale-free networks are those networks in which the fraction of vertices with

degree k is approximately proportional to k−γ for some γ > 1. Since its
popularization by Barabási and Albert [3], preferential attachment has been the most
widely used mechanism for generating scale-free networks.

Although there are several instantiations of the same general idea, here we adhere
to the approach used in the original robustness experiments of [1]. This generative
preferential-attachment model PA(n, k) starts from a complete graph with 2k + 1
vertices and successively adds n − (2k + 1) vertices. Each newly added vertex is
made adjacent to k distinct vertices, drawn without replacement from the pool of
existing vertices and with probability proportional to their current degree. All graphs
generated in this way are connected, have a minimum degree of k, m = kn edges
(an average degree of 2k), and are thus elements of G(n, nk, k). Eliminating the
vertices of a graph generated from PA(n, k) in reverse order of construction shows
that its k-core is the entire graph, with the corresponding seed graph being the only
higher-degree core nested in the k-core.

To assess their relative robustness, preferential attachment graphs are often com-
paredwith random size-matching graphs drawn fromG(n,m). If the number of edges
is bounded linearly and away from one, i.e., m = kn edges for some constant k > 1,
random graphs are not likely to be connected but almost surely have a giant compo-
nent [10, 16]. This is also acknowledged in the robustness experiments of Albert et
al. [1], where rejection sampling is used to find a graph with a large enough largest
connected component.

So, while size and connectivity are largely held constant in the experiments, the
minimum-degree property of preferential-attachment graphs has not been consid-
ered. We will show in the next section that this can be expected to have a major
influence on what can reasonably be considered robust.

3 Theory

Under the condition that the minimum degree is at least k for a constant k ≥ 3, we
show in Theorem 1 that almost all graphs with a constant average degree are not only
connected but also provably robust against any vertex removal strategy.

The significant change in connectivity and robustness of the sparse random net-
works described above by constraining their minimum degree implies that the con-
clusions of studies on the robustness of networks such as [1], in which scale-free
instances with constant average degree are pitted against size-matching random net-
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works, could also change significantly in a fairer framework if the size-matching
random networks satisfy the additional requirement of having a minimum degree at
least as large as that of the scale-free instances compared with them. This observation
is one of the main motivations for our experiments in Sect. 4.

Theorem 1 Let ε ∈ (0, 1) be any constant. Furthermore, let G be a graph drawn
fromG(n,m, k), where 2m = cn and c ≥ k ≥ 3 for some constants c, k. If n is large
enough, then almost surely G is connected and RG(B) = 1 − o(1) for any vertex
sequence B with |B| ≤ nε .

Proof The proof of Lemma 2.3.5 in [15] and Lemma 2.2 in [6] imply that it suffices
to show that G = (V, E) is almost surely an expander, i.e., there exists a constant
α > 0 for which G is an α-expander. Let ξ be the event that G is not an expander.
In the following, we will show that Pr[ξ ] ∈ o(1) and hence almost surely G is an
expander.

Let D = {D(G) : G ∈ G(n,m, k)} and D̃ be a subset of degree sequences in
D for which the maximum degree is at most 2 (log n)2, where log n is the natural
logarithm of n. We can write Pr[ξ ] as

∑

d∈D\D̃
Pr [ξ |D(G) = d]Pr [D(G) = d]

︸ ︷︷ ︸
:=A

+
∑

d∈D̃
Pr [ξ |D(G) = d]Pr [D(G) = d]

︸ ︷︷ ︸
:=B

.

It is sufficient to show that A ∈ o(1) and B ∈ o(1). First, we show the former. Note
that

A :=
∑

d∈D\D̃
Pr [ξ |D(G) = d]︸ ︷︷ ︸

≤1

Pr [D(G) = d] ≤
∑

d∈D\D̃
Pr [D(G) = d] .

The right-hand side of the above inequality is the probability that the maximum
degree of G is greater than 2(log n)2. Based on Lemma 12 in [8], the probability of
the aforementioned event is asymptotic to zero, under our assumptions. This implies
A ∈ o(1). It remains to show B ∈ o(1). Note that

B :=
∑

d∈D̃
Pr [ξ |D(G) = d]Pr [D(G) = d]

≤ max
d∈D̃

Pr [ξ |D(G) = d]
∑

d∈D̃
Pr [D(G) = d]

︸ ︷︷ ︸
≤1

≤ max
d∈D̃

Pr [ξ |D(G) = d] .

In [7] the authors showed that a uniformly sampled graph conditioned on having a
given degree sequence of size n in which the elements are not less than 3 and not
greater than n0.02 is almost surely an expander. This implies that the term on the
right-hand side of the above inequality is asymptotic to zero; hence B ∈ o(1), which
completes the proof. �
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4 Experiments

The conclusions in [1] stemmed mainly from experiments on synthetic scale-free
networks generated from PA(n, k). We use the same type of synthetic networks
to compare the robustness of preferential-attachment networks with size-matching
random networks and random networks of the same size whose minimum degree is
at least as large. To this end, we generate 100 networks using the model PA(n, k),
where n = 10,000, k = 3 and draw an equal number of networks from G(n,m) and
G(n,m, k), respectively, where m = nk.1 For each of the 300 networks, we then
compute their robustness scores under random failures and targeted attacks where
the fraction of removed vertices is β ∈ {0.05, 0.1, 0.2}.

The results shown in Fig. 1 confirm that preferential-attachment networks are
“robust-yet-fragile” when compared to random graphs of the same size, i.e., they are
more fragile against targeted attacks but more robust against random failures. How-
ever, such networks are more vulnerable against both, targeted attacks and random
failures, than size-matching random networks constrained to have at least the same
minimum degree. We corroborate this finding in the following two sections under
varying conditions.

Note that the minimum degree of graphs appears to be a crucial property for their
robustness. This is suggested asymptotically by Theorem 1 and evidenced empiri-
cally, as the robustness scores of graphs drawn fromG(n,m, k) are very close to the
theoretical upper bounds indicated by dashed lines. This is further investigated in
Sect. 4.3.

4.1 Sensitivity to the Choice of the Fraction of Removed
Vertices

In this section, we evaluate the sensitivity of our observed patterns in Fig. 1 to
the choice of the proportion of removed vertices. For this purpose, we repeat the
procedure to create Fig. 1 but instead of choosing moderate proportions of removed
vertices β ∈ {0.05, 0.1, 0.2}, we choose relatively higher proportions by increasing
each previously considered proportion by 0.2, i.e., we consider β ∈ {0.25, 0.3, 0.4}.
The result is shown in Fig. 2, from which we observe that the claimed patterns based
on Fig. 1 still hold in general. The main difference is that the robustness of the
random networks drawn fromG(n,m, k) becomes less optimal when the proportion
of removed vertices increases noticeably.

1 We construct PA(n, k) and G(n,m) graphs using linear-time algorithms [4], rejecting instances
with less than 96% of their vertices in the LCC. Under mild assumptions, for ñ and m̃ given in [13],
the k-core of a graph drawn from G(ñ, m̃) is likely to have n vertices and m edges; in which case
it is uniformly distributed on G(n,m, k) [2]. This observation allows us to efficiently draw from
G(n,m, k) by rejection sampling.
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Fig. 1 Robustness of networks generated fromPA(n, k) compared to networks drawn fromG(n,m)

and G(n,m, k) after 5%, 10%, and 20% of vertices were removed in targeted attacks or random
failures, where n = 10,000, m = 30,000, and k = 3. The dashed lines represent the upper bounds
for the robustness score as given in Sect. 2.2

4.2 Sensitivity to the Choice of Parameters in the PA Model

In this section, we evaluate the sensitivity of our inferred patterns based on Fig. 1, to
the variation of parameters n, k in the underlying preferential
attachment model PA(n, k). For this purpose, we vary k ∈ {3, 4, 5} for fixed n =
10,000 and n ∈ {1000, 10,000, 20,000} for fixed k = 3, all else being equal and pre-
cisely as in the setting presented at the beginning of Sect. 4. For each pair of n, k
considered, we use z-scores to compare the networks generated from PA(n, k) with
randomnetworks drawn fromG(n,m) and randomnetworks drawn fromG(n,m, k),
where m = nk.2 The comparison refers to their expected robustness score when
β ∈ {0.05, 0.1, 0.2} fraction of vertices are removed under targeted attacks or ran-
dom failures. The obtained z-scores are visualized in Fig. 3.

2 Given a group X and a reference group Y , both of size N , with respective meansμX , μY and stan-

dard deviations σX , σY , we compute the corresponding z-score as
√
N (μX − μY )/(

√
σ 2
X + σ 2

Y ).
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Fig. 2 Robustness of networks generated fromPA(n, k) compared to networks drawn fromG(n,m)

and G(n,m, k) after 25%, 30%, and 40% of vertices were removed in targeted attacks or random
failures, where n = 10,000, m = 30,000, and k = 3. The dashed lines represent the upper bounds
for the robustness score as given in Sect. 2.2

Our results suggest that networks generated by using preferential attachment are
consistently more robust against random failures but more fragile against targeted
attacks when compared to random networks of the same size. This is underscored
by the fact that the points corresponding to the latter networks are located in the
fourth quadrants in Fig. 3. However, we note that preferential-attachment networks
are always more vulnerable to targeted attacks and random failures compared to
random networks of the same size whose minimum degree is at least as large. This is
underscored by the fact that the points corresponding to the latter networks are located
in the first quadrants in Fig. 3. We note that our claimed patterns generally hold even
when n or k are varied; however, the significance of the trends we assert increases as
n increases, while it decreases as k increases. In other words, the patterns we discuss
are most evident for more massive and sparser networks, which, are generally of
greater relevance.

Its positive and negative values represent a tendency of elements in X to reach values above and
below the reference mean μY , respectively.
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Fig. 3 In the column on the left, the larger marker sizes correspond to the larger values of n ∈
{1000, 10,000, 20,000} for fixed k = 3. In the columnon the right, the largermarker sizes correspond
to the larger values of k ∈ {3, 4, 5} for fixed n = 10,000

4.3 Consistency of Near-Optimal Robustness

In our experiments, we have used networks drawn from G(n,m, k), where m = nk.
For n = 10,000, k = 3,we have seen in Figs. 1 and 2 that these networks exhibit near-
optimal robustness against targeted attacks and random failureswhenonly amoderate
fraction of their vertices are removed. In this section,we evaluate the sensitivity of this
pattern to variations in n, k, and β. To this end, we consider nine combinations of n, k
with n ∈ {1000, 10,000, 20,000} and k ∈ {3, 4, 5}. Then we draw 100 networks from
G(n,m, k) and compute their average robustness score normalized to the maximum
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Fig. 4 The expected robustness score of networks drawn fromG(n,m, k) normalized by the max-
imum achievable robustness score when β ∈ {0, 0.01, . . . , 0.99, 1} fraction of the vertices are
removed by targeted attacks or random failures. Here, we consider m = nk for each fixed pair
of n ∈ {1000, 10,000, 20,000}, k ∈ {3, 4, 5}
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achievable robustness score when β ∈ {0, 0.01, . . . , 0.99, 1} portion of the vertices
are removed under targeted attacks or random failures.3 The result is shown in Fig. 4.

When no more than 40% of vertices are removed by targeted attacks or random
failures, Fig. 4 illustrates the consistent near-optimal robustness of networks drawn
fromG(n,m, k) in the casem = nk for a constant k ≥ 3. Moreover, we note that this
40% threshold does not depend appreciably on n but increases with k. For example,
when k = 5, we can observe across different n that the robustness score does not
noticeably deviate from its optimal value as long as no more than 60% of vertices
are removed in targeted attacks or random failures. From the discussions here, we
can conclude that for a constant k ≥ 3 and m = nk, the near-optimal robustness of
networks drawn from G(n,m, k) is consistent as long as the fraction of vertices
removed by targeted attacks or random failures is not too large.

5 Conclusions

We have shown that, for any constant k ≥ 3, almost all graphs in which the number
of edges is linear in the number of vertices (i.e., the average degree is upper-bounded
by a constant) and the minimum degree is at least k, are connected and provably
robust against any vertex removal strategy. Motivated by this new theoretical result,
we have shown experimentally that the dictum “robust-yet-fragile” is not a suitable
characterization of preferential-attachment networks, let alone scale-free networks in
general, because it stems from a poorly chosen baseline. It appears that the previously
assessed robustness is largely due to their constant minimum degree, rather than their
skewed degree distribution.

Although the characterization of scale-free networks as “robust-yet-fragile” orig-
inates mainly from experiments with preferential-attachment instances [1, 9], only
a vanishing fraction of scale-free networks can be generated by preferential attach-
ment [17]. While a straightforward extension of our work would consider the robust-
ness of more general classes of scale-free networks, it will also be interesting to study
properties other than robustness.
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The Vertex-Edge Separator
Transformation Problem in
Network-Dismantling

Xiao-Long Ren

Abstract In complex networks, network-dismantling aims at finding an optimal
set of nodes (or edges) such that the removal of the set from the network will lead
to the disintegration of the network, that is, the size of the giant/largest connected
component is not bigger than a specific threshold (for instance, 1% of the orig-
inal network size). Existing algorithms addressing this topic can be divided into
two closely related but different categories: vertex separator-oriented algorithms and
edge separator-oriented algorithms. There has been a lot of research on these two
categories, respectively. However, to the best of our knowledge, less attention has
been paid to the relation between the vertex separator and edge separator. In this
paper, we studied the separator transformation (ST) problem between the separator
of the vertexes and edges. We approximated the transformation from edge separator
to vertex separator using Vertex Cover algorithm, while approximated the transfor-
mation from vertex separator to edge separator using an Explosive Percolation (EP)
approach. Moreover, we further analyzed the results of the vertex-edge separator
transformation through the explosive percolation method in detail. The transforma-
tion problem in network-dismantling opens up a new direction for understanding
the role of the vital nodes set and edges set as well as the vulnerability of complex
systems.
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1 Introduction

Numerous types of complex systems, such as the Internet, social media, power grids,
transport systems, world trading systems, et al., can be represented as networks
(or graphs), composed of a set of nodes and a set of edges [1, 2]. Because of the
heterogeneous nature of these complex networks (systems), different nodes and edges
usually play different roles [3–5]. In most real networks, a small part of nodes and
edges are critical for their structure and function. Examples include communication
networks that affect the spreading of messages and behaviors [4, 6, 7], the role of
superspreaders for the propagation of rumors or diseases [8, 9], drivers to control a
network [10–12], or vital nodes to maintain the connectivity and flow of a complex
network [5, 13, 14], et al.

Among these hot topics, one fundamental challenge in the complex networks is
to identify an optimal set of nodes (or edges), whose removal would dismantle the
network such that the size of the giant connected component (GCC) is at most C ,
known as C-dismantling problem [15–18]. The removed set is referred to as node
separators (or edge separators). The removal (or deactivation, or immunization) of
the separators from the complex networks, usually a very small set, will induce some
fundamental changes to the structure and the function of the networks.

The network-dismantling problem has wide applications in a broad spectrum of
social-economic scenarios. Finding the most efficient network-dismantling strategy
at minimum overall costs belongs to the NP-hard class [16, 17], which means that
we cannot find the optimal vertex or edge separator with minimum removal cost in a
nondeterministic polynomial time. This indicates that there doesn’t exist an efficient
algorithm that can find the exact optimal solution for large-scale networks. Taking a
step back,many researchers proposed algorithms to approximate the optimal solution
of the network-dismantling problem. Some widely used algorithms are based on
network centrality [19–21], spreading and cascading theory [22, 23], spin-glass and
optimal percolation theory [16, 24, 25], as well as the linear programming [26],
semidefinate programming [27], spectral partitioning [28, 29] and even the deep
reinforcement learning techniques [18, 30].

In terms of objects removed, the existing algorithms in this direction can be
roughly divided into two closely related but different categories: vertex (node) sep-
arator algorithms and edge (link) separator algorithms. There has been a lot of
research on these two categories recently. A summary of the progress on the network-
dismantling problem can be found in Refs. [31–35].

However, to the best of our knowledge, less attention has been paid to the relation
between the vertex separator and edge separator. Only recently have people approxi-
mated the vertex separator basedon edge sets (not edge separators) using theweighted
vertex cover approach [17, 36]. In this article, we focused on the transformation prob-
lem between the separator of the vertices and edges. The separator-transformation
problem includes two sub-problem: (1) the transformation from edge separator to
vertex separator, and (2) the transformation from vertex separator to edge separator.
In this article we introduce the algorithm of the Vertex Cover to approximate the
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transformation from edge separator to vertex separator, and then, approximate the
transformation from vertex separator to edge separator using an Explosive Percola-
tion (EP) approach in detail.

2 The Transformation of the Dismantling Set of Nodes
and Edges

2.1 Sub-Problem 1: Transformation From Edge Separator to
Vertex Separator

In this subsection, we will introduce the first sub-problem of the separator-
transformation in network-dismantling, going from the edge separator to the ver-
tex separator. For a network G = (V, E), given an edge separator Se, how can we
get the approximate optimal vertex separator Sv based on Se? One straightforward
but ineffective approach is to randomly remove one of the endpoints of each edge in
set Se. The size of the vertex set found in this way roughly equals to the size of Se.
In this situation, the reinsertion fine-tuning technique [9, 37] can be applied to get a
better node-removal set.

A further idea is to find a set of nodes that can cover all the edges in Se. This
is the famous Vertex Cover problem in graph theory. A vertex cover of Se is a set
of vertices that includes at least one endpoint of every edge in Se. The problem of
finding a minimum vertex cover of a set of edges is a typical example of an NP-
hard optimization problem. If we study this separator-transformation in generalized
network-dismantling [17], which considers non-unit removal cost, this correspond
to the Weighted Vertex Cover problem. In the GND algorithm [17], we adopted a
linear time 2-approximation algorithm [38] to find the node removal set with almost
least removal cost. The pseudocode of the weighted vertex cover algorithm can be
find in the Supplementary Information (SI) of ref. [17]. We will not discuss this in
depth here.

Please note that the Vertex Cover problem in a bipartite graph can be done opti-
mally via maximum matching according to the König’s theorem [39, 40]. In this
sub-problem, however, the edge separator structure may not necessarily be trans-
lated to an exact bipartite graph, for some edges may only appear on one side of the
bipartite graph. But this bipartite approach will undoubtedly prompt the solving of
this sub-problem. We are continuing to work on a fix for this issue.

2.2 Sub-Problem 2: Transformation From Vertex Separator
to Edge Separator

In this subsection, we will address the second sub-problem of the separator-
transformation, going from the vertex separator to the edge separator. For a network
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Fig. 1 Illustration of the
explosive percolation
process in network evolution
comes from [41]. Under the
sum rule of the explosive
percolation, among total
K = 2 samples, the edge (e2)
that minimizes the sum of the
cluster sizes will be selected
to reinsert to the network

G = (V, E), given a vertex separator Sv , how can we get the optimal edge separator
Se according to Sv?

Remove all the vertices in Sv actually means removing all the edges connected
with the vertices in Sv . In terms of edge removal, this kind of operation removes
too much edges. This, however, can help us to narrow down the search scope in the
process of find the suitable set of edges. That is to say, we only need to find a subset
of the edges that connected with any vertices in Sv , whose removal can break up the
original network and make the GCC size of the remaining network smaller than a
specified threshold C .

Let’s make above analysis in a reverse way. For a network G = (V, E) and a
vertex separator Sv , the remaining network G∗ is the network after removing the
vertex separator Sv from G. The size of the largest cluster of G∗ is smaller than C .
Usually G∗ is composed of plenty of disconnected clusters. According to the above
discussion, from the perspective of edge removal-based dismantling, too many edges
were removed from G∗, as some of them were removed unnecessarily. One straight-
forward method to deal with this situation is to reinsert the unnecessarily removed
edges into the remaining network. In our approach, the process of adding edges is
similar to the sum rule-based explosive percolation (EP) process in complex net-
works [41], that is, in every time step, among a total of K randomly selected edges,
the edge minimizing the sum of the sizes of the clusters it merges will be selected to
reinsert to the network (see Fig. 1).

Inspired by the sum rule-based explosive percolation in the network evolution pro-
cess, we propose the following Explosive Percolation-based Transformation Algo-
rithm to solve the problem of transformation from vertex separator to edge separator:

Explosive Percolation-based Transformation Algorithm
Input: Network G, vertex separator Sv , sample size K



The Vertex-Edge Separator Transformation Problem … 461

Output: Edge separator Se
Method:

1. Get the remaining network G∗ by removing Sv from G. Denote the set of the
removed edges as Re.

2. Randomly select K edges from Re so that for each edge, the sum of the sizes of
the two clusters it connected with is smaller than the dismantling threshold C .

3. Select the edge minimizing the sum of the sizes of the two clusters among the
K samples in step 2, and reinsert it into G∗. Update Re, G∗ and the size of the
clusters in G∗.

4. Repeat step 2 and step 3 until there is no more edge that can be reinserted. All the
remaining edges of Re compose the edge separator Se. Output Se.

From the above algorithm, the node separator can be transformed into an edge
separator which needs much less removal cost to dismantle the network when the
edge removal is feasible. In the following section, we will analyze the performance
of the above transformation from node separator to edge separator in detail.

3 Results

Before starting the detailed discussion, wewill introduce several popular dismantling
algorithms used in this paper. Betweenness [42] is a classical vertex ranking algo-
rithm based on shortest paths. TheBetweenness centrality of a vertex is the number of
the shortest paths that go through the vertex. Betweenness is widely used to solve the
network dismantling problems [33]. BPD stands for belief-propagation decimation
algorithm [24], which dismantles a network by finding and deleting the approximate
solution set of the feedback vertex set (FVS) problem to break all the loops in the
networks. BPD then breaks big trees until only small trees are left. Lastly, BPD opti-
mizes the vertex separator by restoring some nodes to the graph. Along similar lines,
theMin-Sum algorithm [16] breaks all the loops in the 2-core of the network byMin-
Sum message passing [43], following with tree breaking and greedy reintroduction
of cycles. CoreHD [21] is a simple and fast decycling-based method that dismantles
networks by removing the node with the highest degree from the remaining 2-core
of the network progressively until there is no 2-core structure remaining. Finally,
CoreHD algorithm ends up with tree breaking and vertex reinsertion. GNDR is short
for Generalized Network Dismantling with Reinsertion algorithm, which is based
on the spectral properties of a node-weighted Laplacian operator [17, 36]. GNDR
allows the removal cost of networks to take arbitrary non-negative real values. A
detailed description of these algorithms can be found in Chap. 2 of ref. [44]. Here
we mainly focus on the performance of solutions to the transformation problems.

Firstly, we compare the performance of the node removal-based dismantling algo-
rithm and its EP-based transformation. In Fig. 2, taking the USAirport network as an
example, we set the dismantling threshold as 50% of the original size of the network
to get a better visualization. In the upper subfigure, the red solid line corresponds
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Fig. 2 Comparison of a vertex(node) separator-oriented algorithm and its explosive percolation-
based edge separator-oriented counterpart, the CoreHD example. To get a better visualization, we
set the threshold of the GCC of the dismantling algorithm to be 50% and then colored the removed
edges with red. It is obvious that to reach the same dismantling target size, the edge-based removal
saves a lot of removal costs

to the stander CoreHD algorithm [21]. The green dashed line is the result of its EP-
based edge separator. In the two subfigures below, the removed edges are represented
in red.

Furthermore, we compare the classical, node removal-based algorithms with their
edge removal results produced by using the EP-based transformation approach. In
Fig. 3, taking the Powergrid network as an example, we compared the CoreHD algo-
rithm [21], BPD algorithm [24], Min-Sum algorithm [16], and GNDR algorithms
[17] (red solid lines)with their EP-based edge separators (green dashed lines), respec-
tively.We set the dismantling thresholdC at the 1%of the original size of the network.
From both the ratio of the removed cost and the area under the curve (AUC) (see
the definition in [44]) perspective, the removal costs of the EP-based edge separators
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Fig. 3 Performance of the edge-removal strategies transformed from vertex-separator using the
explosive percolation approach defined in Sect. 2.2. The vertex-separators are produced byCoreHD,
BPD, Min-Sum, and GNDR algorithm, respectively. After the transformation, the overall removal
costs have been greatly reduced

have been greatly reduced. This is result of identifying and removing necessary edges
by the EP-based edge separator, instead of removing all the edges connected to the
node separator.

From above two figures, we can easily come to this conclusion: Comparing with
the classical node removal-baseddismantling algorithm, theEP-based transformation
algorithm can efficiently obtain the corresponding edge separators, which can save
a lot of removal costs while reaching the same dismantling threshold.

In Fig. 4, we analyse the impact of the sample size K on the performance of
the EP-based transformation algorithm. In the sum rule-based explosive percolation,
with larger sample size K of the randomly selected edges, the algorithm can find
the better edge separator. Fig. 4 verifies this point. But larger K also requires more
computational time. Thus, for all the other result in this paper, we set K = 10.
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Fig. 4 Performance of the proposed explosive percolation-based approach with the different values
of sampling size K , the Petster network example. It is straightforward that larger K leads to better
performance, but requiring more computational time

Finally, in Fig. 5, we compare the original Node Betweenness, original Edge
Betweenness, and the EP-based edge separator of the Node Betweenness algorithm.
Taking the Petster network as an example, we set the dismantling threshold C at 1%
of the network size. This result shows that the EP-based edge removal method is
much better than the original Edge Betweenness algorithm in both indicators — the
ratio of the removed cost and the AUC.

4 Conclusion

In this paper, we firstly studied the transformation problem between the vertices and
edges separator and approximated the transformation going from the edge separator
to the vertex separator using aVertexCover algorithm, and approximated the transfor-
mation from the vertex separator to the edge separator using an Explosive Percolation
approach. Then, we further analyzed the results of the vertex-edge separator trans-
formation through the explosive percolation method in detail. The transformation
problem in network-dismantling opens up a new direction for understanding the role
of the set of vital nodes and edges [5] as well as the vulnerability [45, 46] of complex
systems.
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Fig. 5 Comparison of the
betweenness-based
dismantling algorithms and
its variants. Red line:
Removed nodes according to
Node Betweenness
Centrality. Yellow line:
Removed edges according to
Edge Betweenness
Centrality. Green dash line:
Removed edges according to
the result of the
transformation from the node
separator (the red line).
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Gig Economy and Social Network
Analysis: Topology of Inferred Network

Gustavo Pilatti, Flavio L. Pinheiro, and Alessandra Montini

Abstract Unparalleled advances in information technology have resulted in the
virtualization of the workplace, as well as in a surge in non-traditional work arrange-
ments based on short-term contracts (“gigs”). Work that is done remotely through
online platforms may be hidden by technology. Thus, how could we possibly access
information about the social network of workers? What are the business and social
values hidden in workers’ underlying informal social networks? Here, we propose
applying methods from complex network analysis to have an overview of data from
a Brazilian food-delivery company. We present the steps used to make the infer-
ence of a social network that relates delivery men according to their co-location
patterns. Hence, the obtained network offers a valuable framework to explore, in the
future, questions related to the role of informal social networks in the spreading of
innovations and the coordination of behaviors and business strategies.

Keywords Informal social network · Complex network · Gig economy

1 Introduction

In many practical and theoretical fields, the capacity to infer and characterize social
interactions and their impact is extremely useful. Indeed, the common premise of
network science is that the structure of the network plays an important role in the
emergent behavior of the networked system [7]. Often, the social network is not
directly observed and must be inferred from human digital traces (e.g., emails, chats,
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meetings) or surveyed data [3, 12]. But there is a gap in mapping the relations in
the offline environment when there exists an absence of information available. And
this problem is clear in the gig economy, in which it is difficult to gather digital data
from the participants and, thereby, build their social network and come up with all
the possible insights this information could bring to both workers and platforms.

Gig economy workers usually perform a standard task determined by an online
platform under a temporary and flexible work arrangement. While it may be seen
as an easy-to-perform job or as a commodity task, valuable knowledge is generated
with experience. As the information available to traditional industries is not available
in this context, it is not possible to perform a social network analysis. Our goal is to
understand, infer and analyze the social patterns of the gig economy workers using
network analysis as a framework that could, in future work, help them learn and
improve both their well-being and performance.

Past works have used network analysis to study gig economy workers [5, 9].
However, there is at present no single research about their social network. We aim to
fill this gap and, as such, contribute to the technical analysis of social networks and
also to the social discussion about this new type of job.

Here, we look into the Brazilian food delivery industry and the delivery men’s
work. In this study, we performed a natural experiment where the gathered informa-
tion was easily and accurately recorded in the database of a Food Delivery company.
In particular, the data includes the geolocation and working status of couriers (i.e.,
delivery man) and was captured in real-time from the delivery man’s mobile device.
Thus, studying this information provides a good starting point towards understanding
how work happens outside the offices, at the same time some measures have been
taken to guarantee the anonymity of the workers.

This researchwill be developed to describe and characterize the network attributes
that are more relevant and characterize its topology. To accomplish this goal, there
will be the necessary to study the statistical significance of the connection between
the couriers, avoiding spurious factors.

2 Data and Methods

We conducted our study and gathered the data from a popular online food and gro-
ceries delivery system (platform) to empirically understand the gig workers’ rela-
tions. More specifically, this online platform is a mobile application where registered
customers choose their food or groceries from listed merchants, and the deliveries
are made by couriers that create a profile. Our focus will be on these gig workers,
the couriers.

The dataset used in this study contains information on the geolocation of 226
delivery men for a period of 14d in February 2022. The data was collected from the
company’s data lake and is from one city with approximately 260k residents (2020),
with a platform coverage of 73% of the population.



Gig Economy and Social Network Analysis: Topology of Inferred … 473

First we captured all the telemetry data from the delivery men in this period. This
data consists of their geolocation every 15s and their status (allocated in some deliv-
ery route, paused, or idle). The original dataset containsmore than 837k observations.
The geolocation establishes the latitude and longitude considering 1-m precision.
Since, GPS from mobile phone devices can have variable accuracy, ranging from 1
to 12m [1], we grouped the data to obtain an accuracy of 10m precision and also in
10min intervals. This way, we are able to keep the privacy of the data. Finally, using
their location and time, we matched delivery men according to whether they were
co-located or not (i.e., shared the same location).

During the period of two weeks, we captured 3276 events in which groups of 2 to
4 delivery men were co-located. The remaining records (events with a single delivery
man)were discarded. Each record of this data panelmeans that “Driver i”was present
in a determined latitude and longitude at the same time frame as the “Driver j” was
also in the same location. Moreover, none of the drivers were allocated in a planned
delivery (in other words, we looked for “on route” status as “idle”). Based on the
platform operational data, the drivers are idle, on average, 45% of their online time.
Our assumption at this point is that being “free” (not allocated to a route), in the same
place, at the same time can indicate the potential for social interaction.As an example,
we can observe in Fig. 1 the meeting points during these two weeks analyzed. Also,
we call attention (blue dots) to the meeting points where high-performance couriers
meet (lower fraud costs and high punctuality in deliveries). It is worth highlighting
that gigworkers only use an app towork, and all other activities done outside this app,
like conversations in the messages app, are not recorded or stored by the app, which
creates a hugedifficulty tomap interaction among them, especially virtual interaction.

2.1 Network Statistics

The below network statistics were chosen to describe the delivery men network
broadly. The undirected graph itself stands for a static delivery man-delivery man
network. Edges represent a courier’s relation to another courier and are weighted by
the recurrence of the encounter. The nodes are the couriers themselves.

• Average degree (k) is defined as the number of contact points with whom each
delivery man i was together at the same location and time. It can be associated
with the cohesion of the network and may be used as a proxy for individual social
capital [10]. Our network has an average degree of 20.58, with 1310 being the
sum of unique edges and 226 being the sum of nodes (or delivery men), the
distribution is referenced in Fig. 2. This value of k is lower than that observed in
ordinary organizations (with workers that have jobs inside the offices with official
communication channels such as emails and chats). This difference is supposed
to exist, given that we are inferring an informal network [7].

• Average shortest path length (L) is the shortest connection path between two deliv-
ery men, averaged over all pairs of delivery men. The literature usually associates
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Fig. 1 Geographical location where delivery men met during the analyzed period. The size of the
dot denotes the amount of interactions recorded in that place and the blue color denotes delivery
men with higher performance in the platform (green denotes lower performance)

these statistics with the ability of an idea or innovation to be spread in the network
[7]. These authors bring us an average L of 3.17, and our L is 3.27 for our biggest
component (which is represented in Fig. 3. We can infer that this statistic is similar
to what is found in organizational networks, even though we are capturing just one
way of communication (offline), which can potentially lead to the under-evaluation
of the connections.

• Degree assortativity (A) of our network has a value of −0.0044. This statistic
quantifies the tendency of each node to be connected to nodes with similar proper-
ties in a complex network. Also, the literature shows a correlation between higher
assortativity and cooperation among the players of the network [13]. What is pos-
sible to infer from a low value of assortativity is that the network is internally
connected [15] and it may be considering aleatory drivers encounters. Specifically
in this case, what is possible to deduce is that most couriers have a low degree and
are connected to drivers that are hubs in the network (as can be seen in Fig. 3),
meaning that most meetings occur between drivers with very different degrees.

• Clustering coefficient (C) in our network has a value of 0.2899 and exceeds the
expected value for random graphs [14], being similar to organization networks



Gig Economy and Social Network Analysis: Topology of Inferred … 475

Fig. 2 Degree distribution of the original network using log-log values, where we can identify a
concentration of nodes with lower degrees, what can be inferred as occasional encounters among
delivery men

Fig. 3 The betweenness centrality is represented in the color of the above graph and the size of the
nodes represents their degrees (min:1 max:20)

[7]. This statistic is a measure of density, showing that if the couriers all know
each other, we will have a high clustering coefficient. If the couriers don’t know
each other, then we are going to have a low clustering coefficient. In organiza-
tional literature, this statistic is associated with the idea of the existence of open
communication channels among the players.
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2.2 Network Significance

Considering that the interaction between the nodes influences the importance of the
nodes, we may define a statistically significant connection as a connection where the
probability of finding a delivery man that connects two other delivery men is larger
than what we would expect based on the prevalence of these delivery men alone:
P(i, j) > P(i) P(j). Our main idea is the importance of nodes being linked to their
relative position in the network and the correlations with each other. The correlation
is calculated using the standard method of φ correlation [2, 8].The steps followed to
find the statistically significant values are as follows.

The first step, as described above, was to construct an undirected weighted graph,
where each node is a delivery man and each edge is the simultaneous presence of
both delivery men in the same place, at the same time. This built graph can be
represented as a network G developed from N transactions and can be denoted by G
= (D, E), where D is a set of d nodes and E is a set of edges, thus, we may represent
E ⊆ D × D. With this definition, it is possible to create a d × d symmetric matrix
AG = (ai j )((i j)∈D×D) that is called the adjacency matrix of G. In this matrix, every
ai j > 0 if (i, j) ∈ E is an edge of G, and ai j = 0 if (i, j) /∈ E , or, in other words,
this edge does not exist. In addition, ai j = 0 if i=j.

Then, given the above adjacency matrix G, we may calculate the φ correlation,
that we call PCC (from Phi-Correlation Coefficient). The PCCi j is calculated as:

PCCi j = ((ai j ∗ N ) − (ai ∗ a j ))√
((ai ∗ a j )(N − ai )(N − a j ))

, where:

ai j is the count of transactions containing both i and j nodes, ai is the count of
transactions containing i, and a j is the count of transactions containing j, N is the
count of transactions over the entire network. Each pair of nodes will result in a
connection or an edge with a PCC value [11].

2.3 Bootstrap

The bootstrapmethod is a statistical technique popularized byBradley Efron in 1979.
The goal is to perform simulations (shuffles) on the data and create new, possible
datasets. With the simulation we can estimate the distribution of a value, making
possible the calculation of statistics that are themselves computed from the same
data. In our case, we use a nonparametric bootstrap to estimate the PCC variation,
enabling us to calculate the significance of the PCC with the estimated confidence
intervals (CI). The nonparametric method is a robust alternative to classic methods
for statistical inference. But, we cannot test the null hypothesis of an edge correlation
being different from zero, we can only use the bootstrap to show the accuracy of the
edge correlation estimates and to compare edges to other edges [4].
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Fig. 4 The gray (left) histogram stands for the distribution of PCCs for the 300 bootstrapped
samples and the blue (right) histogram stands for the distribution of PCCs in the original dataset

Since parametric methods assume that the observed data comes from some known
distribution with unknown parameters, which are estimated thanks to this data, we
choose the nonparametric method. Non-parametric bootstrapping fits better for the
situation of this study since we do not know beforehand the PCCs distribution.

First, we performed the resampling, in other words, a sample with a replacement
of the same size as the original network. To do this, we got the list with all connections
(3276), and kept one node of each connection fixed while sorting the others. This
way we got datasets of similar size (since resulting connections among the same
driver were not considered). If NB is the number of bootstrap samples to achieve a
CI with a minimum significance level of α, it is necessary at least NB = 2

α
samples.

We set α = 0.05 and overreached NB value with a total of 300 samples.
Following, for each edge in each one of the 300 generated samples, the PCC was

calculated the same way as in the original dataset. By the end, we had a similar PCC
distribution, as it is possible to infer from Fig. 4.

Finally, using the percentile method, it is possible to construct nonparametric
confidence intervals by calculating percentiles from the bootstrap estimates. As we
previously set α = 0.05 and we want to identify for each node if the original PCC
is inside the confidence interval, the critical value was set in the 95th percentile. In
sequence, the original value was compared with the interval between the minimal
PCC from the bootstrap data and the 95th percentile.

After accomplishing these steps, we could finally approach a clean network with-
out spurious connections, which we go deeper into the statistics and their meaning
in the next section.

3 Results

This research startedwith a courier-courier undirect network inferred from the geolo-
cation of these workers. Since it was inferred, as a first step it is necessary to verify
if the connections found were by chance or not. Assessing the statistical significance
of our network allows us to apply all the social network knowledge generated in
the last few decades. When the steps mentioned above are applied, the edges with
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Fig. 5 The final network, after we made the exclusions mentioned, we arrived in a network with
33 nodes and 26 unique edges

significant PCC are identified, and we can filter the positive PCC. This way, a huge
reduction in the coarse network, as it was supposed to be. The premise behind the
network construction tells that if at least two couriers are idle in the same spot at the
same time, it will possibly lead to social interaction. This premise is not always true,
but the data showed us that it is possible to find some useful patterns, separating the
noise from the signal.

From the original network, a smaller and significant network rises, with 26 sig-
nificant connections (unique edges) among 33 delivery men, as it is possible to
identify in Fig. 5. This final network showed stability in the assortativity coefficient
(−0,1373), with low degree nodes connecting to other low degree nodes, an increase
in the averaged the shortest path of the biggest component to 4.69, and a decrease in
the average degree, to 2.54.

Our first contribution is to illustrate howwe could possibly create a social network
using geolocation and time data in the context of the gig economy, where we lack
information from theworkers andwhere it was possible to infer a significant informal
social network among the delivery men from the studied city, separating from noise
data.

Our second contribution comes up when we apply a well-known method, the
nonparametric bootstrap, in a new situation that generates potential data for new
studies.

Future assessments of temporal changes in the structure of the network, as well
as replicating the method in other cities can identify hidden patterns of offline com-
munication and may help predict, for example, fraud events or highlight the most
central delivery men in the network (influential node), which can help the propa-
gation of information since these workers do not have an official channel between
them and the app platforms. Also, calculating the stability of centrality indices, sub-
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setting the bootstrap datasets, using, for example, correlation stability coefficient
(CS-coefficient) can bring new information on edge significance in the offline com-
munication scenario.
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Understanding Sectoral Integration
in Energy Systems Through Complex
Network Analysis
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Nicoleta Anca Matei, Esperanza Moreno Cruz, and Florian Fosse

Abstract This paper studies the concept of sectoral integration of energy systems
from a network perspective. In the energy arena, the transition towards a cleaner
use of energy has led to a series of changes in how we consume energy, the energy
vectors we use to satisfy our needs and, in general, the configuration of our energy
systems. These developments add complexity to our systems as their production and
consumption configuration evolve. The concept of sectoral integration is recent and
does not yet have a commonly agreed-upon definition nor a consistent measuring
approach. We show that network analysis can be used to explore this evolution,
allowing quantifying the degree of integration of existing systems. By using a stylized
model, we propose a series of global and local measures, focusing on different parts
of the energy system and allowing measuring system integration quantitatively. We
then illustrate the developed measures by analysing the evolution of two European
countries’ energy systems over the recent past (1990–2019).
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1 Introduction

Recently, sectoral integration has been identified as a promising trend to speed up
the transition towards low-carbon, efficient energy systems. This form of “energy
system metabolism” refers to “coupling the energy consuming sectors–buildings,
transport, and industry–with the power producing sector through smart infrastructure,
increasing the penetration of renewable energy and thus decarbonizing the economy”
[6]; other transformation sectors are also concerned. Research projects dealing with
the subject haveflourished over the last fewyears, e.g. under the umbrella of the Smart
Energy Systems ERA-NET program in Europe. Key enabling technologies/pathways
seem tobe synthetic fuels (power-to-X), fuel cells, batteries,waste heat and, of course,
smart management systems.

The main claims associated with sectoral integration relate to its potential to
make the energy transition faster, less GHG intensive and more cost-effective, and to
absorb larger amounts of variable electricity [6]. This topic has emerged as crucial
in the energy modelling community. Existing studies focus on specific technolo-
gies or pathways, like electric vehicles [13], hydrogen [5], storage [14] or, more
generally, poly-generation pathways [3], electricity [2], transport [8] or even cover
the whole energy system [4]. The benefits of system integration, concerning e.g.
the penetration of non-dispatchable energy sources, are highlighted throughout all
the studies. However, there is a need for a more systematic analysis of the conse-
quences of integration at sectoral and system levels and an in-depth analysis of the
policy implications. The forthcoming technological revolution may require policy
and R&D support, e.g. in transport [6], the role of infrastructures (energy, road,
telecommunications etc.) and networks –particularly, the rigidities imposed by their
physical limits.

One relevant and innovative way to fill these gaps in the domain of quantitative
analysis could be to acknowledge the complex nature of energy systems. We cannot
deny that all these structural and technological changes bring complexity to our
energy systems. Complexity methods can help address the energy policy challenges
ahead [1, 9, 10], especially when understanding the evolution of energy systems.

This paper proposes a methodology to analyse energy systems from a network
perspective, a framework that can be used to assess the sectoral integration of energy
systems. The study is structured as follows. A review of the sectoral integration
concept is given in the upcoming section, followed by the presentation of themethod-
ology developed. An application to two actual energy systems is discussed there-
after. The last section concludes while offering some potential directions for future
extensions.
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2 Sectoral Integration: A Definition

There is not yet a commonly agreed-upon definition of sectoral integration in the liter-
ature. For some, the concept is limited to the integration of hydrogen as an energy
carrier [5] or, more generally, the (direct or indirect) electrification of demand [11,
15]. Whereas for others, the notion is related to the connection of supply infrastruc-
tures, such as the gas and electricity networks [12] or even the interconnection of the
demand sectors.

In this paper, we follow the proposal of the EU Strategy for Energy System Inte-
gration [7] primarily because it covers a wide variety of aspects critical to any effort
to address system integration. According to this proposal, energy system integration
involves the coordinated planning and operation of the energy system “as a whole”,
across multiple energy carriers, infrastructures and consumption sectors by creating
stronger links between them with the objective of delivering low-carbon, reliable and
resource-efficient energy services at the least possible cost for society.

An integrated system should therefore encompass at least four complementary
and mutually reinforcing concepts [7]:

• A cleaner power system, with more direct electrification of end-use sectors such
as industry, heating of buildings and transport

• A cleaner fuel system (including clean hydrogen) for hard-to-electrify sectors like
heavy industry or transport

• A ‘multi-directional’ system in which consumers play an active role in energy
supply

• Amore efficient and “circular” system,wherewaste energy is captured and re-used

From this definition, we can conclude that, in order to study sectoral integration,
we first need a holistic view of the energy system that allows tracing the relationships
between the different components from the supply and demand sides. Second, we
need an approach that enables us to quantify the interconnection between the different
components of the system at both the local and global levels. With this in mind, we
look at the energy systems as networks where different producing and consuming
activities are linked through energy flows with a direction and a weight. By using
network analysis techniques, we formulate rules to measure the various aspects of
sectoral integration from the network perspective while focusing at the same time
on some crucial components. Note that this approach considers the networks as an
abstract representation of the whole energy system of a country/region and not as the
representation of the physical networks composing them, such as the electricity grids
or gas infrastructures. For instance, when following this approach, electricity produc-
tion is seen as a node within the network whose inputs are the different sources used
to produce electricity in a given country, irrespectively of the actual configuration of
the electricity production industry or infrastructure in that country.
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3 Methodology

The followingmeasures consider the energy system as a directed and weighted graph
(G) defined by a set of n nodesV (G) representing energy production, transformation,
distribution and consumption activities, and m edges E(G) representing the energy
flows between those activities. Each node uses in-energy flows and releases out-
energy flows in different proportions depending on its role within the system. For
instance, the in-energy flows of the electricity production node correspond to the
different resources used for centralized power generation (e.g. coal, gas, wind). In
contrast, the out-energy flow of this node corresponds to the carrier electricity, which
is centralised in a node. This node can be seen as a hub to gather electricity coming
from different electricity production activities (electricity production nodes) and its
dispatch to other nodes where it is used, such as the demand sectors (e.g. buildings
and transport). In this sense, the node electricity can be seen as representing the
transmission and distribution of electricity. This can be transposed to other carriers,
such as liquid fuels (e.g. gasoline, diesel), whose node can be seen as the distribution
to storage facilities for final consumption.

For every edge, a weight wij is assigned, representing the total energy flow of a
carrier from origin i to destination j. All energy flows are represented in the same
unit (e.g., toe—tonne of oil equivalent) regardless of the type of energy carrier they
correspond to. Throughout the paper, we use the terms energy carrier, energy product,
energy flow or, simply, fuel interchangeably.

The set of nodes V (G) is further differentiated into two subsets: supply (SUP)

and demand (DMD). The nodes on the supply side (vi ∈ SUP) can be either energy
carries or transformation activities. As already said, the nodes representing energy
carriers can be seen as points where an energy carrier is centralised for distribution.
In contrast, transformation nodes convert a specific energy carrier into another (e.g.
wind or hydro into electricity). The nodes on the demand side (vi ∈ DMD) corre-
spond to all the energy-consuming sectors or transformation activities carried out by
consumers (e.g. electricity generation by households or industry). Figure 1 illustrates
the different network components.

For clarity in representation, in Fig. 1 we differentiate the shape of the nodes
according to their type. Hexagons represent products, diamonds represent transfor-
mation activities, and circles represent demand sectors. Products can flow in and out
transformation and demand activities, whereas relationships between products are
not allowed. In the remaining part of this section, we propose a series of measures
meant to assess sectoral integration taking into account the concepts described by
the EU Strategy for Energy System Integration [7] presented above.

Starting from the demand perspective, the aspect of consumers playing an active
role in the energy supply can take two forms. First, the consumers that send energy
to the supply side, which we define as vertical integration of demand. This is, for
instance, the case of end-use sectors producing energy to cover their demand needs
and sending any surplus to the distribution network (e.g. electricity, gas). Second,
the consumers that exchange energy with other consuming sectors, which we call
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Fig. 1 Network representation with differentiation in two subsets: supply and demand

horizontal integration of demand. To measure the degree of vertical integration
of demand (VIDMD), we consider the energy flows from each demand node to the
supply nodes as a share of all the energy in- and out-flowing of that demand node
for each carrier. Keeping the notation wij as the energy flow of a carrier from origin
i to destination j, we define:

VIDMD =
∑

i∈DMD

∑
j∈SUP wij

∑
j∈G

(
wji + wij

)

To measure the degree of horizontal integration of demand (HIDMD), we account
for the energy flows of each specific carrier from the demand to other demand nodes
as a share of all the energy in- and out-flowing of that demand node for each particular
carrier, as follows:

HIDMD =
∑

i∈DMD

∑
j∈DMD wij

∑
j∈G

(
wji + wij

)

Finally, to measure the degree of direct electrification of demand (DEDMD), we
take into account the sum of the share of electricity (elc) in-flowing to each demand
node compared to the rest of energy carriers used, as follows:

DEDMD =
∑

i∈DMD

∑
j∈elc wji∑
j∈G wji
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It would be interesting to multiply this index by a coefficient that measures the
share of renewables in electricity production.1 However, in our case, this share would
only consider the mix of the domestic production without accounting for electricity
coming from other origins (i.e. imports of electricity).

4 Application to Actual Energy Systems

In order to illustrate the developed approach, we analyse the evolution of the energy
systems of two European countries over 30 years (1990–2019): Luxembourg and
France. The dataset employed corresponds to the yearly energy balance of each
country published by Eurostat.2

Among the 40 countries available in theEurostat database,we chose to concentrate
on these two contrasting cases (Luxembourg and France) to provide a sufficiently
wide application with significant differences in terms of network size and configu-
ration. We are currently preparing a public application that includes the database’s
complete set of countries.

The energy balance accounts for the complete chain of supply, transformation and
consumption of energy. The data allow tracing the relative contribution (flow) of each
energy carrier (fuel, product) in the system, which ultimately shows the relationships
between the different activities within the system. Beyond their reliability, these data
allow a comparison between the countries on the same basis.

The energy balance takes the form of a matrix where columns represent all the
different energy sources or products and rows represent all the different flows. This
matrix is translated into a network (Figs. 2 and 3) where nodes represent activities
such as energy supply, energy transformation (grey diamonds), energy distribution of
the different products (hexagons) and energy consumption (blue circles). The colours
of the distribution nodes (also called the product nodes, indistinctively) depend on the
type of carrier represented (e.g. brown for fossil fuels, green for renewables and red
for electricity). For the sake of simplicity, nodes representing energy supply (imports,
exports and primary production) are not explicitly displayed in the representation,
although they are accounted for in the network metrics. Edges represent the flow
of energy products between those activities, with edge colours inherited from the
product type. The size of the nodes is proportional to their degree relative to the
network. For readability, only the nodes with the highest degree are displayed with
their label in the most complex networks.

After a first glance at Figs. 2 and 3, we note significant differences between
the energy systems of the two countries. Throughout the entire period, the energy
system of Luxembourg is smaller, composed of a lower amount of nodes (activities)

1 Such an indicator can take the form of θELC
RNW =

∑
j∈RNW (wji)∑

j∈G wji
∀i ∈ elc, which accounts for the share

of renewables (RNW ) in electricity production (ELC) within the system.
2 Available at: https://ec.europa.eu/eurostat/web/energy/data/energy-balances.

https://ec.europa.eu/eurostat/web/energy/data/energy-balances
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Fig. 2 Luxembourg: energy system network 1990 and 2019
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Fig. 3 France: energy system network 1990 and 2019
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and edges (flows of energy), compared to the French system, even though quite a
significant evolution can be observed in both countries.

The energy system of Luxembourg (Fig. 2) accounted 56 nodes and an average
degree of 2.5 in 1990 and 97 nodes and an average degree of 3.0 in 2019. The
significant increase in the number of nodes (73%) is mainly explained by the growth
in the number of energyproducts consumedand their supply (38nodes in 1990 against
69 in 2019). The new energy vectors/sources are basically renewable sources such as
biofuels (under different forms: solid, liquid and gaseous), wind, solar (photovoltaic
and thermal) and ambient heat (for heat pumps). Note that, although the significant
increase in the number of nodes, the average degree only grows by 23%, revealing
that the increase in connectivity does not follow the same pace of growth of the
network.

When looking at specific nodes (Fig. 2), it is interesting to note that the electricity
node appears more connected in 2019 with respect to 1990, with an out-degree
evolving from 8 to 19 over the observed period. Indeed, as the electrification of
demand has developed, electricity passed frombeing used by only six demand sectors
initially to 17 demand sectors in 2019 (other uses of electricity are exports and other
transformation activities). A similar effect can be noticed for natural gas, whose out-
degree evolves from only four (of which three demand sectors) in 1990 to 18 (of
which 15 demand sectors) in 2019.

On the other hand, France (Fig. 3) accounted 135 nodes and an average degree
of 4.0 in 1990, and 162 nodes and an average degree of 5.8 in 2019. In contrast
to the Luxembourg case, in France, the growth of the number of nodes (20%) is
less significant than the growth of the average degree (45%). This fact suggests an
emphasis in the network’s connectivity rather than the number of activities performed
within the system. We can distinguish therefore two distinct patterns of evolution
between the two countries. The number of products consumed in France increases
with the introduction of, mainly, biofuels (under different forms), wind and solar
photovoltaic.

Compared to Luxembourg, the increase of connectivity of the electricity node
is less important (with an out-degree going from 20 to 26 in the analysed period),
mainly because the French energy system exhibited a strong use of electricity in
final demand from early on. Electricity goes from being used in 18 demand sectors
in 1990 to 22 sectors in 2019 (other uses of electricity are exports and other transfor-
mation activities). An interesting perspective however would be to have a look at the
penetration rate of electricity per sector (taking into account the weights). Finally, a
perhaps more appealing energy carrier to study is heat. In 1990, heat was only used
by one demand sector whereas 15 end-use sectors were using this carrier in 2019.

A slightly different perspective can be gained when looking at the evolution over
time of the basic metrics of the energy networks of both countries (i.e. number of
nodes and average degree), normalized to one with respect to their 1990’s value (see
Fig. 4).3

3 Other common methods of normalization could also be considered in order to control for the size
of the country and the magnitude of its energy system, for example, normalizing with respect to the
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Fig. 4 Evolution of basic network indicators

Over the last three decades, France has seen a relatively constant increase in
the number of activities/energy carriers and average degree regarding the values
registered in 1990. It can be observed that a trend of higher growth of connectivity
compared to number of nodes has arisen in the last decade. Luxembourg, on the other
hand, presents a more irregular evolution over time with a rather stagnant average
degree in the last two decades despite the growth of the number of nodes.

Regarding the indicators of sectoral integration derived in the previous section and
given the dataset employed, from the three measures we developed for the demand
side, only the degree of electrification of demand can be thoroughly calculated.
Concerning the aspects of vertical and horizontal integration of demand, it is impor-
tant to point out that these are relatively recent concepts, and the energy balance
does not trace, as such, these types of energy exchanges. An alternative approach has
been used to compute a slight variation of the measure for the vertical integration of
demand (a proxy), while the horizontal integration could not be calculated altogether.
This highlights the limitation of the data available in the energy balances and points
to the need for traditional energy statistics to evolve in order to be able to capture the
current and foreseen system transformations properly. Current statistics are not any
more aligned with the needs arising from the energy transition.

Figure 5 details the evolution of the electrification of demand for both countries
considered in this analysis. As expected, France exhibits a higher electrification
index than Luxembourg, given the strong use of electricity in final demand since
early on in this country. Nonetheless, it can be observed that the index has more
than doubled over the last three decades for both countries, it increases from 5.9 to
11.5 for France and from 3.3 to 6.9 for Luxembourg. Nevertheless, this indicator
is limited to assessing electricity use in final demand and can be improved in two
aspects. First, by considering the share of renewables used for electricity generation.
Second, by accounting for the share of domestic electricity production. Research
into introducing these points is already underway.

Concerning the vertical integration of demand, as already stated, the energy
balance does not provide the amount of energy that each demand sector sends to
the network. The energy balance traces, however, some energy-producing activities

population of the country or the average final energy consumption of the country or, more generally,
of the European Union.
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Fig. 5 Evolution over time of the electrification of demand

outside the energy sector under the category of “Auto-producers”. These refer to
industrial establishments that produce electricity and heat as “secondary products”
(not as their principal activity). Whereas much of the produced energy is used within
the unit, some is also sold to users outside. The energy balance reports this last
component, which can give an idea of the degree to which demand plays an active
role in supply. We use, therefore, this category as a proxy to calculate the vertical
integration of industry as a whole (Fig. 6).

From Fig. 6 we can note that the level of vertical integration of industry regarding
electricity “supply” (blue line, left axis) has variedover timewith a slightly decreasing
tendency. In any case, the level of 20% of electricity supply by the industry (as a
whole), is not exceeded in both cases. Something, however, encouraging from Fig. 6
is that the share of renewables in that electricity “auto-production” (orange line, right
axis) has been increasing over time, reaching in Luxembourg 60% of the mix and
40% in France. This suggests that the industry is in general using more clean sources
to satisfy its energy needs, being therefore on the right path required to reach the
decarbonisation of this sector.

Fig. 6 Evolution over time of the vertical integration of demand (industry, electricity)
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5 Conclusion

This paper proposes an approach to analysing energy systems from a network
perspective. The methodology can be used to represent energy-system data as
networks of interconnected activities. The resulting visual tool allows a straightfor-
ward comparison and analysis of energy systems as well as a holistic and synthetic
view of them. It also allows inferring crucial qualities of the energy systems, such
as the electrification of demand or the use of renewable sources, which are helpful
for the analysis of sectoral integration and, in a more general manner, the analysis
of energy systems.

The application, with data from Luxembourg and France, reveals some progress
in electrification and the use of renewables by demand. It also shows the different
development patterns followed by both systems, for instance, in the configuration,
connectivity and evolution of the system and, in general, in the evolution of sectoral
integration indicators. However, we have to acknowledge that the use of historical
data limits the study as the concept of sectoral integration is only starting to develop.
The use of these data reveals the need to rethink the statistical accounting of energy
systems presented by the energy balances. The way these balances are constructed
needs to evolve together with the evolutions of the systems. Only in this way, they
will continue to be relevant for the analyses in the sector.

Our study ultimately provides the framework for a new way to analyse energy
systems. Various extensions and future research developments are foreseen starting
from this initial analysis. Firstly, to further our research, we intend to extend the
analyses to the complete set of countries available in the Eurostat database. A more
extensive comparison might provide new elements to understand energy systems’
evolution and challenges. Secondly, after identifying key indicators to quantitatively
measure the sectoral integration of energy systems, their role in determining the
evolution of greenhouse gas emissions in Europe could be studied. Thirdly, future
pathways of the energy systems could be explored to further assess the development
of sectoral integration and complexity indicators under different long-term European
energy policy scenarios.
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An Analysis of Bitcoin Dust Through
Authenticated Queries

Matteo Loporchio, Anna Bernasconi, Damiano Di Francesco Maesa,
and Laura Ricci

Abstract Dust refers to the amounts of cryptocurrency that are smaller than the
fees required to spend them in a transaction. Due to its “economically irrational”
nature, dust is often used to achieve some external side effect, rather than exchang-
ing value. In this paper we study this phenomenon by conducting an analysis of
dust creation and consumption in the Bitcoin blockchain. We do so by exploiting
a new method that allows resource-constrained nodes to retrieve blockchain data
by sending authenticated queries to possibly untrusted but more powerful nodes.
We validate the method effectiveness experimentally and then analyze the collected
data. Results show that a large amount of dust can be traced back to on-chain betting
services.

Keywords Authenticated data structures · Bitcoin · Blockchain · Network
analysis

1 Introduction

Blockchain technology has the potential to transform several social and economic
activities by providing new ways of organizing business processes and handling
information without the need for trusted third-party entities. However, its large-scale
adoption demands the solution of several challenging problems. For instance, the
huge size of current blockchain ledgers is a big factor hindering their widespread
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adoption. Indeed, while it was initially sustainable for ordinary computing nodes, the
current size of blockchains like Bitcoin [9] and Ethereum [13] has reached hundreds
of gigabytes, and in some cases, crossed 1 terabyte.

Taking Bitcoin as a reference, one solution in this regard is to assign the task of
synchronizing the entire blockchain to full nodes, namely nodes with large compu-
tational, storage, and bandwidth capabilities, therefore able to store a copy of the
entire ledger. On the other hand, light nodes with constrained resources may retrieve
transactions of interest only by submitting queries to full nodes. Despite its simplic-
ity, this solution requires light nodes to trust full nodes and thus recreates the main
problem that blockchains aim to solve: the need for trusted intermediaries.

To overcome this, untrusted full nodes may authenticate the query results by
sending a cryptographic proof of integrity, usually referred to as verification object
(VO). To construct such proofs, severalauthenticated data structures [10] likeMerkle
trees [8] have been proposed over the years, yet current solutions are generally
limited to simple queries (e.g., retrieving all transactions involving a specific address).
Nonetheless, in several scenarios itmight be necessary to retrieve data satisfyingmore
complex conditions.

In this paper, we focus on the problem of detecting Bitcoin dust, namely tiny
amounts of value that are often left unspent inside an address because they are
smaller than the fee required to spend them in a transaction. In the Bitcoin network,
dust is particularly relevant since it is frequently related to transactions produced
by specific on-chain services, as will be discussed in our experimental analysis, or
even dust attacks attempting to break users’ pseudonymity [2]. To enable efficient
retrieval and analysis of specific Bitcoin transactions, such as dust ones, in this
paper we propose a method based on range queries that extends our previous work
presented in [6] and allows us to filter out all amounts that fall below the so-called
dust limit [11]. More precisely, we propose to construct a Merkle interval tree (i.e.,
a specialized version of a Merkle R-tree [16]) from the input and output amounts
of Bitcoin transactions. As use case, we simulate a scenario where a Bitcoin light
node submits a range query to a full node to retrieve all Bitcoin dust. We briefly
introduce the algorithms for fetching transaction inputs and outputs within a given
range, and for verifying the integrity of the results. These algorithms are employed
by full and light nodes to fetch and verify results, respectively. We also present a rich
set of analysis of the returned transactions aimed at discovering patterns behind dust
creation and consumption. Our analysis reveals that a significant part of all Bitcoin
dust has been generated by Satoshi Dice [3], a popular blockchain-based gambling
game launched in April 2012.

Related work Blockchain query authentication has already been covered from
a number of different perspectives in the literature. For instance, Nakamoto’s Sim-
plified Payment Verification (SPV) [9] can be considered a primitive form of query
autentication, as it enables light nodes to verify that a transaction has been included in
the blockchain without downloading the entire ledger, but it does not protect against
results omission. More advanced solutions like vChain [15] or the GCA2-tree [17]
rely on set accumulators [5] for authenticating Boolean and aggregate range queries,
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respectively. Concerning Bitcoin dust, Delgado-Segura et al. [4] include dust outputs
in their analysis of the unprofitable outputs contained in the set of Bitcoin unspent
outputs. Finally, the authors of [12] proposed a strategy for identifying and preventing
the creation of large amounts of dust transactions in the Bitcoin blockchain.

2 Background

In this section we introduce the notation and theoretical concepts used throughout
the paper.

IntervalsWe refer to intervals as sets of consecutive integers between a lower and
an upper bound. Given l, u ∈ Z, we will represent an interval as [l, u] = {x ∈ Z | l ≤
x ≤ u}. Moreover, given two intervals I1 = [l1, u1] and I2 = [l2, u2] we will denote
by I1 � I2 = [min{l1, l2},max{u1, u2}] the minimum-width interval enclosing both
I1 and I2.

Authenticated data structures Authenticated Data Structures (ADSs) [10] incor-
porate cryptographic information (e.g., a digest computed with a cryptographic hash
function [7]) for guaranteeing the integrity of the data they are built upon. Among
the most prominent examples, we cite the binary Merkle tree [8], which is widely
employed in Bitcoin and other blockchain systems for ensuring the authenticity of
transactions stored inside a block. More advanced ADSs combine Merkle trees with
existing data structures to enable efficient data retrieval. In this regard, we recall
Merkle R-trees [16], already mentioned in Sect. 1, for managing spatial data and cite
Ethereum’s modified Merkle Patricia tree [13], which is based on Patricia tries for
representing the state of Ethereum accounts.

Bitcoin blockchain The Bitcoin blockchain is an ordered list of blocks, each com-
prising a header and a content payload. The header contains all the data needed to
make the chain immutable, e.g., a cryptographic hash pointer to the previous block
and a Merkle Tree root of the content payload. The content section contains a list of
transactions, namely redistribution of funds between entities. Each transaction can
be associated with a set of general information (e.g., the transaction hash, the block it
is part of, or the fees paid), zero or more inputs, and one or more outputs. Each output
can be seen as a couple (amount, recipient), where recipient specifies who and
under which conditions the amount can be redeemed, i.e., spent by another transac-
tion. The simplest example of redeem condition can be requiring a digital signature
associated to an address (i.e., an encoding of a cryptographic hash of a public key)
receiving the amount, but arbitrarily complex conditions can be specified. Inputs
of transactions are, instead, pointers to previously created transaction outputs. All
outputs redeemed by a transaction are completely consumed and their held value is
redistributed among the newly created outputs (or spent as voluntary fee).
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3 Efficient Information Retrieval in Bitcoin

In this section we detail our approach for authenticating range queries on the Bitcoin
blockchain.

Data model In our model, light nodes issue intra-block range queries, meaning
that they are interested in retrieving data from a single block of the chain. We assume
that a block contains a set of transactions T = {t1, . . . , tn} and that the light node
specifies a query interval [l, u] to retrieve all transaction outputs (or inputs) whose
amount is between l and u (both included). Our goal is to guarantee two fundamental
properties for the query results delivered by full nodes, namely authenticity and
completeness [14]. Results satisfy the former if and only if they are returned without
any modification with respect to the original data stored on the blockchain and the
latter if and only if all objects satisfying the interrogation are returned, without any
omission.

System model Fig. 1 illustrates the proposed system model for our query authen-
tication protocol based on [6]. In this scenario, the miner that constructs a block
also builds a tree-shaped authenticated data structure on the set of transactions in
that block. The cryptographic hash of the ADS root is then embedded in the block
header, using a specific indexHash field. The full node receiving a range query
Q = [l, u] from the light node uses the data structure to fetch transactions from
the corresponding block and builds a verification object which is then sent back
to the requesting node. This task is accomplished with a suitable query algorithm
that traverses the ADS to retrieve relevant information and build the correspond-
ing proof. The light node, in turn, runs a verification algorithm that takes the VO
as input, extracts the matching transactions and reconstructs the ADS root. This
reconstructed value is then compared against the one that has been incorporated in
the header by the miners. If these two do not coincide, then it means that either
some matching transaction has not been returned or data have been modified with
respect to their original version, thus revealing the malicious behavior of the full
node.

Fig. 1 The blockchain query authentication process, based on [6]
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Fig. 2 An example of a Merkle interval tree for a set of m = 15 values with page capacity c = 3

3.1 Merkle Interval Tree

To authenticate unidimensional range queries on the Bitcoin blockchain, we propose
to employ a specialized version of the Merkle R-tree [16], which we will refer to as
the Merkle interval tree. In this section, we provide an overview of the algorithms
for constructing and querying the Merkle interval tree, as well as for verifying the
results delivered by full nodes.

The diagram of Fig. 2 illustrates the structure of a Merkle interval tree with page
capacity c = 3 for a set of m = 11 values. Here, each leaf node � stores at most c
values from the set and is associated with a cryptographic digest h� and an interval
I�. The digest is computed with a cryptographic hash function H and the endpoints
of I� coincide with the minimum and maximum value in �. For instance, the interval
of the leftmost leaf is I1 = [2, 7] and its digest h1 is obtained by hashing the binary
representations of its elements, namely 2, 5, and 7. Conversely, internal nodes store at
most c entries ei = (Ii , hi ) that describe their children. Taking the root as a reference,
the interval I6 of the first entry is obtained as I1 � I2 � I3 from the intervals in the
first child, while the corresponding digest is computed as h6 = H(I1|h1|I2|h2|I3|h3),
where | denotes the string concatenation operator. On the other hand, for the second
entry in the root we have that I7 = I4 � I5 = [25, 32] � [33, 35] = [25, 35] and h7 =
H(I4|h4|I5|h5).

Construction algorithm To build a Merkle interval tree from a set of m values,
miners run the packed algorithm discussed in [6]. The key ideas behind the method
are the following:

(1) first, the set of input values is sorted;
(2) then it is partitioned in �m/c� groups of c consecutive values, each inducing a

new leaf node;
(3) nodes are iteratively merged in groups of c until only one is left, namely the root.

Concerning its complexity, we showed in [6] that if the capacity c is constant, then
this procedure runs in O(m logm) time.

Query algorithm To query the Merkle interval tree, full nodes employ the algo-
rithm described in [16] for Merkle R-trees, which outputs a VO with both matching
records and authenticated information. Given a range query Q = [l, u], the full node
starts from the tree root and proceeds recursively. When it reaches an internal node
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z, the algorithm scans each entry ei = (Ii , hi ) and compares the interval Ii of the
i-th child with [l, u]. If these intersect, then the subtree rooted in ei is immediately
explored with a recursive call. On the other hand, if their intersection is empty the
corresponding child node is pruned, since it does not contain matching transactions.
As soon as a leaf is reached, all the underlying records are added to the VO.

Verification algorithm The light node, in turn, can run the verification algorithm
from [16] to check the authenticity and completeness of the received results. To this
aim, the algorithm takes the initial query and the VO as inputs and uses them to
reconstruct the root node of the Merkle interval tree. The hash of the reconstructed
node is then compared against the indexHash field in the block header. If the
values coincide, then the proposed query authentication procedure guarantees both
authenticity and completeness of the results delivered by full nodes, as formally
proved in [6].

4 Bitcoin Dust

In Bitcoin, the term dust refers to the tiny amounts of value that are smaller than
the minimum fee required to spend them in a transaction. As detailed in [11], an
amount is considered dust if it is lower than the threshold of 546 satoshi1. In the
Bitcoin blockchain, dust may originate on different occasions. For instance, the
popular blockchain-based gambling service Satoshi Dice [3] used to send back 1
satoshi to losing players to notify they had lost their bet. This scenario will be
further investigated in Sect. 5, where we will present our results. Another example
are provably unspendable outputs with zero or dust amounts that can be generated
by creating transactions with the special OP_RETURN redeeming instruction, whose
goal is to store arbitrary data on the blockchain [1].

Even if we will not cover this aspect in our analysis, dust can also be linked
to malicious behaviors. In this regard, we mention dust attacks2, during which an
adversary sends tiny amounts of bitcoin to many different addresses with the goal of
deanonymizing the receivers and breaking their privacy. More precisely, the attacker
hopes that the users (or their wallet software) will eventually aggregate these amounts
as inputs to a larger transaction. Since it is uncommon for input addresses to belong
to different users, this strategy may allow the attacker to link all of them to the same
identity.

For the rest of this paper, we will say that a transaction is dust-creating (resp. dust-
consuming) if and only if it has at least one dust output (resp. input). Furthermore,
an address is a dust receiver (resp. a sender) if and only if it is associated with one
of the dust outputs (resp. inputs) of a transaction.

1 A satoshi represents the smallest bitcoin denomination, namely 10−8 bitcoins.
2 These are also referred to as forced address reuse attacks [2].
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5 Experimental Results

This section is devoted to the presentation and discussion of our experimental results.
Our contribution in this regard is twofold:

(1) first, we evaluate the algorithms of Sect. 3.1 by performing range queries on real
data from the Bitcoin blockchain;

(2) secondly, we analyze the data collected in the previous step with the goal of
better understanding the use of dust amounts in Bitcoin.

The data set used for our experiments includes all Ntxs = 245,410,083 transac-
tions in the first Nb = 479,969 blocks of the Bitcoin blockchain, thus covering the
time period between January 3rd, 2009 and August 10th, 2017. The code has been
written in Java andPython and is publicly available at https://github.com/mloporchio/
BTXA. Our implementation has been tested on a full node running Ubuntu Linux,
with an 8-core Intel Xeon 5218 CPU@ 2.3GHz and 256 GB of RAM, and an Apple
Macbook as light node with a dual-core Intel i7 CPU@ 1.7GHz and 8 GB of RAM.

5.1 Tree Construction

We evaluate the algorithms described in Sect. 3.1 using the Bitcoin data set. For
each block, we build a Merkle interval tree on all transaction outputs using the
corresponding amount as search key.We then fix a range Q = [1, 545]with the intent
of retrieving all non zero dust outputs, query the data structure, and finally verify
the results using the algorithms described in Sect. 3.1. This procedure is repeated
for different values of the page capacity and the corresponding execution times,
expressed in milliseconds, are shown in Table1. For each capacity value, we report
the tree construction, query, and verification times, computed as the average over all
blocks in our data set.

Table 1 Average execution times for the Merkle interval tree construction, query, and verification
methods

Capacity Construction Query Verification

4 1.467 0.001 0.017

8 1.173 0.001 0.025

16 1.034 0.001 0.059

32 0.980 0.002 0.177

64 0.961 0.006 0.456

128 0.948 0.007 0.552

256 0.942 0.007 0.553

Results are expressed in milliseconds

https://github.com/mloporchio/BTXA
https://github.com/mloporchio/BTXA
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Our tree-based approach is compared with the naive solution which scans all
transactions of each block and includes only the matching transaction outputs in the
final result. In this case, the average query execution time, computed over all Nb

blocks in the data set, is equal to 0.052 ms. By comparing this result with the query
times of Table1, the tree-based approach appears to be always an order of magnitude
faster, independently of the page capacity. On the other hand, we remark that there
is no construction cost in the naive solution. However, in our solution, even if the
construction cost is much higher than the query cost, it is only paid once by the miner
which builds the ADS and each full node. In fact, once constructed, Merkle interval
trees can be employed for answering any number of queries and hence the cost of
their construction can be considered as amortized on all subsequent interrogations
issued by light nodes.

The previously described experiments on dust outputs are repeated for retrieving
dust inputs, and the obtained results, both transaction outputs and inputs, constitute
the data sets we use in the rest of this section. More precisely, we refer to Dout

(resp. Din) as the set including all dust outputs (resp. inputs). Each output in Dout is
represented as a tuple containing:

(1) the transaction timestamp;
(2) the block and transaction identifiers;
(3) the destination address;
(4) the amount in satoshi;
(5) the output offset, i.e., its position among all outputs of the same transaction.

Similarly, a dust input in Din consists of all fields from 1 to 4 (in this case, however,
the address represents the payment source) as well as the identifier and offset of the
transaction where it has been created.

5.2 Transaction Analysis

The data sets Din and Dout obtained from Sect. 5.1 contain Nin = 2,569,846 dust
inputs and Nout = 4,400,757 dust outputs, respectively. Using them we can deduce
that 1,705,560 transactions (nearly 0.7% of the total number Ntxs) are creating dust,
while only 429,544 (nearly 0.2% of Ntxs) are consuming it. As a result, each dust-
creating transaction has 2.58 dust outputs on average, while dust-consuming have
5.98 dust inputs. We then evaluate the frequencies of dust outputs and inputs in
dust-creating and dust-consuming transactions, respectively. In this regard, the first
two plots (from left to right) of Fig. 3 show that approximately 106 dust-creating
transactions have exactly one dust output. Similarly, most dust-consuming trans-
actions (i.e., between 105 and 106) have only one input. More generally, we can
observe that transactions with a high number of dust inputs and outputs appear to
be less common. From the second plot, we can also observe that the relationship
between the number of dust inputs ni and the number of transactions with ni dust
inputs can be accurately described by a power law. Finally, in the third (resp. fourth)
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Fig. 3 Properties of dust-creating and dust-consuming transactions

plot of Fig. 3 we reported the average percentages of dust and non-dust outputs
(resp. inputs) in dust-creating (resp. dust-consuming) transactions. The dashed lines
in both charts represent the minimum percentages for dust outputs and inputs. For
instance, since in the third (resp. fourth) plot we are only considering dust-creating
(resp. dust-consuming) transactions, in a transaction with k outputs (resp. inputs) the
percentage of dust outputs (resp. inputs) will always be at least 1/k. Except for the
obvious cases of one output and one input, in both scenarios the subdivision does not
seem to follow any regular pattern, although non-dust amounts seem to be generally
prevailing among the inputs and in transactions with less than 102 outputs.

5.3 Address Analysis

To identify the topdust senders and receivers,we examine themost frequent addresses
in Din and Dout .We select the top 5 addresses for each category and gather our results
in Table2. Concerning the top senders, we can observe that all addresses are related
to Satoshi Dice, the gambling game already mentioned in Sect. 4. All Satoshi Dice
addresses are easily recognizable, since they have been generated with mnemonic
1dice prefixes, and their winning odds (denoted by W ) and winning multiplier
(denoted by M) are known in advance to the players. As discussed in Sect. 4, this
result can be easily explained since Satoshi Dice addresses send back to the bettor a
small fraction of the original wager in case of loss. It is also interesting to notice that
the activity of the top receivers canbe linked to this bettinggame too. For eachof them,
Table2 contains the number of transactions having at least one Satoshi Dice input
address. For 4 addresses out of 5, at least 75% of the received transactions were sent
by a known Satoshi Dice address. This leads us to believe that their owners are gam-
blers,with the only exception of 18d3HV2bm94UyY4a9DrPfoZ17sXuiDQq2B.
Indeed, this address has received dust in 8099 different transactions and 8098 of them
are actually coinbase transactions, used by miners for collecting the block reward.
This fact suggests that the address may belong to a member of a mining pool.
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Table 3 Dust output classification

No. of outputs Percentage (%)

Unspent 1,830,911 41.604

NOD 2,420,707 55.007

OD 149,139 3.389

Total 4,400,757 100.000

5.4 Output Analysis

As detailed in Table3, we classify the transaction outputs in Dout into three distinct
groups:

(1) unspent outputs, still left in the corresponding addresses;
(2) Not Only Dust (NOD), spent in combination with at least one non-dust output;
(3) Only Dust (OD), spent exclusively in combination with other dust outputs.

From Table3 we can notice that most outputs (i.e., nearly 55%) belong to the NOD
category, while nearly 42% of them are still unspent. However, since our analysis
has only taken into account blocks up to August 10th, 2017, these outputs could
have been spent at a later time. Instead, the remaining 3% is made up of all OD
outputs, spent only in combination with other dust outputs. The role of NOD and
OD outputs has been further examined with a temporal analysis, presented in the
following paragraph.

Temporal analysis The temporal analysis we have conducted on the dust outputs
has a dual purpose:

(1) finding the average number of blocks between the output creation and consump-
tion (i.e., their expenditure);

(2) discovering patterns in the consumption itself.

Concerning their consumption, we have discovered that, on average, dust outputs
get consumed after 25,165.33 blocks, while non-dust outputs only last for 3207.36
blocks. Our findings are summarized by the plots of Fig. 4, where we report the
number of dust and non-dust outputs that have been spent after a given number of
blocks. The mean values of the two distributions suggest that dust amounts tend to go
unnoticed and get spent after a longer period of time. Taking 10min as the average
inter-block time3, this results in a period of approximately 175d for dust outputs and
22d for non-dust amounts. This gap is probably due to the fact that users typically
wait until they have collected a sufficient number of dust outputs before they can
aggregate them into a single transaction.

To discover meaningful patterns behind dust consumption, we first associate each
output with the timestamp of the transaction where it is spent and then count the

3 The inter-block time is the time that passes between the creation of two consecutive blocks.
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Fig. 4 Output duration

Table 4 Top 5 addresses for NOD output consumption

Address NOD
outputs

From SD Percentage
(%)

Description

1PEDJAibfNetJzM289oXsW1qLAgjYDjLgN 12,502 10,758 86 Satoshi Dice
gambler (see
Table2)

14z1fVwxMG71WcijX9J9te8G1wyp7tVqdz 7628 7626 100 Satoshi Dice
gambler (see
Table2)

18d3HV2bm94UyY4a9DrPfoZ17sXuiDQq2B 7288 0 0 Mining pool
member (see
Table2)

1GmREU2gwcvQHRQFgwHvbD4dyL8iryCPMY 3614 3270 90 Satoshi Dice
gambler

1dES7RLppoYc8mLQedwUoJMZZ9RnuCP5f 3526 3526 100 Satoshi Dice
gambler

number of consumed outputs on a yearly basis. The results are summarized by the
leftmost plot of Fig. 5, where each year is divided in quarters for better readability.We
can notice that the consumption of NODoutputs has started raising during the second
quarter of 2011, reaching its peak in 2013. Other minor peaks can also be observed
during 2014 and 2015. To identify themain causes of NOD aggregations, we analyze,
once again, the most frequent addresses. The top 5 addresses in terms of NOD output
consumption are listed in Table4. Interestingly enough, the first three have already
been identified in Table2 and we have already linked them to mining activity and
Satoshi Dice. The remaining two addresses can also be associated with this popular
gambling game. Indeed, as reported in Table4, at least 90% of their NOD outputs
have been sent by a Satoshi Dice address, thus confirming our intuition. Moreover,
from the NOD histogram of Fig. 5, we notice that there has been a sudden increase of
aggregations during the second quarter of 2012. As stated in [3], this increase may
coincide with the launch of the betting game, which took place on April 24th, 2012.
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Fig. 5 Temporal analysis of dust output consumption

Regarding OD aggregations, we notice that 2013 has been the most prolific
year. In fact, the rightmost histogram of Fig. 5 shows a peak with more than
105 consumed outputs during the month of October. We have further investigated
this phenomenon by examining the most frequent addresses and found out that
1JwSSubhmg6iPtRjtyqhUYYH7bZg3Lfy1T has spent 134,693 outputs. This
is about 90% of the total number of OD outputs, which, as reported in Table3, is
equal to 149,139. The interesting fact about this address is that its private key has
been compromised4, which allows anyone to redeem bitcoins as soon as they are
sent to it.

6 Conclusions and Future Work

In this paperwe have conducted an analysis ofBitcoin dust creation and consumption.
Our data were collected from the Bitcoin blockchain using a new methodology
for authenticated information retrieval. The proposed approach has been evaluated
experimentally, showing its advantage over a naive direct scan of the chain. On
the other hand, the dust analysis results show that a significant part of these tiny
bitcoin amounts can be traced back to a single service, namely Satoshi Dice, a
popular blockchain-based betting game launched in 2012. The information we have
collected can be further exploited during future work, e.g., to identify dust based
deanonymization attacks and to study their impact on the whole network.

4 Source: https://privatekeys.pw/address/bitcoin/1JwSSubhmg6iPtRjtyqhUYYH7bZg3Lfy1T.

https://privatekeys.pw/address/bitcoin/1JwSSubhmg6iPtRjtyqhUYYH7bZg3Lfy1T
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Optimal Bond Percolation in Networks
by a Fast-Decycling Framework

Leilei Wu and Xiao-Long Ren

Abstract Keeping a physical distance and creating social bubbles are popular mea-
sures that have been implemented to prevent infection and slow transmission of
COVID-19. Such measures aim to reduce the risk of infection by decreasing the
interactions among social networks. This, theoretically, corresponds to the optimal
bond percolation (OBP) problem in networks, which is the problem of finding the
minimum set of edges whose removal or deactivation from a network would dis-
mantle it into isolated sub-components at most size C. To solve the OBP problem,
we proposed a fast-decycling framework composed of three stages: (1) recursively
removes influential edges from the 2-core of the network, (2) breaks large trees,
and (3) reinserts the unnecessarily removed edges through an explosive percolation
process. The proposed approaches perform better than existing OBP algorithms on
real-world networks. Our results shed light on the faster design of a more practical
social distancing and social bubble policy.

Keywords Network-dismantling · Optimal bond percolation · Robustness ·
Explosive percolation

1 Introduction

The process of globalization creates many opportunities, but sometimes also brings
side effects that may cause damage to our societies [1, 2]. One recent example is
the quick global contagion of COVID-19 [3], which has infected more than 5.3 bil-
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lion people and killed more than 6.3 million people worldwide as of June 2022 [4].
Some measures have been implemented to prevent infection and slow transmission
of COVID-19, such as keeping a physical distance and creating social bubbles [5, 6].
Such measures are intended to reduce the risk of infection by decreasing the interac-
tions among social networks. This process, theoretically, corresponds to the optimal
bond percolation in complex networks [7, 8]. Optimal bond percolation (OBP) is the
problem of finding the minimum set of edges whose removal or deactivation from
a network would dismantle it into isolated sub-components, i.e., social bubbles, at
most size C.

The study of optimal site/bond percolation in networks by removing nodes or
edges has been a long time [9–16]. For the wide applications in a broad social-
economic scenario, there has been a lot of research on a similar problem under
the name of network-dismantling [17–19], influence maximization [20, 21], or net-
work immunization [22, 23]. Solutions to the OBP problem are also a theoretical
fundamental of the strategies to cope with the epidemic, such as social distancing
and population immunization when the resource is limited. However, finding the
exact minimal set of nodes or edges for general networks is an NP-hard problem
[12, 17] which means that we cannot find the exact smallest set in nondeterministic
polynomial time. Many researchers approximated this problem by different methods
of linear programming [24], semidefinite programming [25, 26], spectral partition-
ing [11, 13, 18], and deep reinforcement learning techniques [27]. Some of them
achieved performance that is close to the theoretically optimal solution [17, 27–29].
These algorithms, however, are global and need to compute certain equations of the
whole system repeatedly to obtain the solutions.

Inspired by the decycling approach to solving the optimal site percolation problem
in ref. [17, 30], we proposed a 2-core-based fast-decycling framework to address the
optimal bond percolation problem. This is based on the truth that all the loops of a
network are contained in its 2-core structure. Thus, decycling the 2-core structure
means breaking all the loops in the networks, and only trees remain after the decycling
process. Then we introduced two categories of algorithms based on this framework:
localized (decentralized) algorithms (CoreHS) and globalized algorithms (CoreHB
and CoreHCI). To put it simply, the 2-core-based framework is composed of three
stages: (1) recursively removes edges of the highest importance from the 2-core
structure of the network, (2) recursively breaks the trees in the remaining network
[27], and (3) reinserts the unnecessarily removed edges into the networks through the
explosive percolation [31] process. See the illustration and a toy example in Fig. 1. In
Sect. 3, results show that these 2-core-based approaches perform better than existing
simple OBP algorithms and are as good as the state-of-art algorithms when applied
on real-world networks.

2 Materials and Methods

This section describes some empirical network data sets used in this study and some
classical algorithmswe used as ingredientswhen the proposed frameworkwas imple-
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mented. Then, several indicators to evaluate the performances of algorithms were
introduced. Further, we depicted the proposed 2-core-based framework for optimal
bond percolation problem in detail. At last, two categories of algorithms implemented
based on the framework were explained.

2.1 Data Sets

In this study, we mainly focus on some popular used social networks and infras-
tructure networks to show the performance of the proposed algorithms and base-
line algorithms. (a) Petster Network [16]. This is an interest-based social network
with 2,000 users and 16,098 undirected friendships among all the users on the
website hamsterster.com. The raw data set was downloaded from KONECT [32]
(http://konect.unikoblenz.de, last visited 2017). (b) Corruption Network. This data
set comes from well-documented political corruption scandals over two decades in
Brazil [33]. The giant/largest connected component (GCC) of the corruption network
contains 309 nodes and 3,281 interactions [18]. (c) CrimeNetwork. This is a network
with 754 nodes representing people obtained from a set of criminal records [32]. If
two people have committed a crime together, they will share a link. There are 2,127
links in this data set [19]. (d) USAir Network. This network represents the US air
transportation system, consisting of 332 airports and 2126 airlines nationwide [34].
(e) PowerGrid Network. This is an undirected Power Grid network of the Western
States in the United States of America, in which edges are power supply lines and
nodes are generators or transformators or substations. The original network data
contains 4,941 nodes and 6,594 edges and can be downloaded from KONECT [32]
(http://konect.cc/networks/opsahl-powergrid/).

2.2 Classical Algorithms

In this subsection, some classical algorithms involved in this research will be intro-
duced briefly. These algorithms will be used as ingredients or baseline algorithm
when the proposed framework was implemented later.

(1) Bond percolation. Bond percolation was firstly introduced by Broadbent and
Hammersley in 1957 [35]. In the study of network-dismantling problems, bond
percolation is a random process of uniformly removing or recovering edges
from networks. This random method is usually used as a baseline to show the
performance of different edge-removal algorithms.

(2) Explosive percolation [31]. It is the process that recovering edges from networks
according to some rules rather than randomly. For example, in Stage 3 of the
2-core-based link removal framework of OBP, the sum-rule-based explosive

http://konect.cc/networks/opsahl-powergrid/
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percolation minimizes the sum of the sizes of clusters when recovering one edge
from K randomly selected candidates at each step.

(3) K-core decomposition [36, 37]. K-core is the largest subgraph composed of
nodeswith remaining degrees of at least k after all the nodeswith degrees smaller
than k was removed progressively. K-core is an efficient method for identifying
influential nodes in large-scale networks [38]. Recently, the Generalized k-core
[39, 40] is also studied intensively in the topics of network robustness and sta-
bility.

(4) CoreHD [30]. CoreHD is a simple and extremely fast network dismantling algo-
rithm that progressively removes nodes with the highest degree from the 2-core
of the network. This method is based on the idea that all the loops of a network
are contained in its 2-core structure [17]. Thus, decycling the 2-core structure
means breaking all the loops in the networks, and only trees remain after the
decycling process.

(5) Collective Influence (CI) [20]. The CI algorithm identifying a minimal set of
influencers (nodes)which if immunizedwould prevent the diffusion of epidemic.
Each nodes is evaluated by counting the degree of the neighbors belonging to
the frontier of its neighboring ball with radius l. CI algorithm removes nodes
with the highest CI value progressively and reinserts the unnecessarily removed
nodes at the end.

2.3 Evaluation of the Solutions to the OBP Problem

A solution to the OBP problem is usually a set (or list) of links. After the set of links
was removed from the network, the GCC size of the remaining network is not greater
than C . Usually, there are several ways [27, 41] to test the performance of different
algorithms that address the OBP problem. One most common and straightforward
way is the proportion of the links that should be removed such that the size of the
GCC is at most C . This indicator reflects the capability of algorithms to break the
connectivity of networks. In practice, however, one scalar is usually not enough
to reflect the performances of the algorithms during the whole removal process.
Thus, the curve of GCC size versus the link removal proportion is further employed
to evaluate the solutions to the OBP problem. Every solution corresponds to one
curve. The lower the curve, the better the solution. See the example shown in Fig. 3.
What is more, the area under the curve (AUC) puts more weight on the removal
effects throughout the process. See the example shown in Fig. 2. In addition to these
indicators, some research also considered the effect of the removal on the dynamics of
the networks [42, 43], such as the spreading process, synchronization, the evolution
of cooperation, etc. These will be the direction we are working towards.
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2.4 The 2-core-based Framework and Algorithms
to Approximate the OBP Problem

The 2-core of a network can be constructed by iteratively deleting nodes with degrees
smaller or equal to one, i.e., isolated nodes or leaves. Actually, 2-core is a subgraph
composed of the nodes with a (remaining) degree of at least two. See the toy example
in the first row of Fig. 1. Intuitively we can find that all the loops appear only in the
2-core of the network. Thus, to dismantle the network into small pieces, one just
needs to break all the loops, i.e., break its 2-core structure iteratively [17]. After
this decomposition process, the network (graph) has only some trees left. In order to
achieve the goal of optimal site/bond percolation problem, all we need to do is just
break the trees larger than C . Inspired by the above thoughts, Zdeborová et al. [30]
proposed theCoreHDalgorithm to address the optimal site percolation problem (aka,
network-dismantling problem) by iteratively removing node with highest degree in
the 2-core. Following this approach,we proposed a similar framework to approximate
the optimal bond percolation problem in this study by iteratively removing most
influential link in the 2-core. Further, we implemented algorithms that are localized
(decentralized) or globalized. The framework is described below:

Fig. 1 An overview of the proposed 2-core-based fast-decycling framework that can approximate
the optimal bond percolation problem in networks. The framework includes three stages. (1) Loop
breaking: Recursively removes most influential edges from the remaining 2-core of the network. (2)
Tree breaking: Recursively dismantles the largest tree in the remaining network. (3) Link reinsertion:
Restores the unnecessarily removed edges into the networks through the explosive percolation [31]
process. The reinsertion of the links should not lead the GCC size of the network larger than C
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Fig. 2 Performance of the CoreHD algorithm and CoreHS algorithm on the OBP problem, the
PowerGrid example. The X-axis is the removed proportion of links from the networks, and Y-axis
is the size of the GCC after edge removal. The red lines in the small visualizations are the links that
were removed from the network. We can easily see which part of the links was removed when the
dismantling threshold was set as a different value

The 2-core-based link removal framework
Input: Adjacency matrix of a network A
Output: A network with GCC smaller than C

– Stage 1 (a). Getting the 2-core structure of the network by iteratively deleting
nodes a degree equal to zero or one, i.e., isolated nodes and leaves, until all the
nodes have a degree of at least two.

– Stage 1 (b). Iteratively finding and removing the most influential link in the
remaining 2-core structure and updating the 2-core of the network according to
(a). Repeating this step until no nodes belongs to the 2-core.

– Stage 2. Iteratively searching and breaking the largest tree by removing the most
central link, until the sizes of all the trees are at most C .

– Stage 3. Restoring the unnecessarily removed edges into the network through the
sum-rule-based explosive percolation process [31]. The reinsertion of the links
should not lead the GCC size of the remaining network larger than C .

Based on this framework above, we can define some localized (decentralized) or
globalized algorithms by choosing different implementationmethods of “finding and
removing themost influential link” inStage1 (b). For example, the famous core-based
high degree (CoreHD) algorithm [30] is a typical localized nodal removal approach.
As a link removal counterpart of CoreHD, core-based high strength (CoreHS) algo-
rithm has been studied in detail in this research. The strength of a link is defined as
the product of the degrees of its two endpoints. High strength indicates that CoreHS
always finds and removes the most influential link with the highest strength. Accord-
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Fig. 3 Comparison of theCoreHD,CoreHS,CoreHCI, CoreHBalgorithmwith the baselinemethod
bond percolation, the petster network example. The red lines in the small visualizations are the links
that was removed from the network at the moment when GCC size is reach the 50% of the original
size

ing to the similar way, we also detailed studied the core-based high Collective Influ-
ence (CoreHCI) algorithm and core-based high Betweenness (CoreHB) algorithm.
Obviously, these two algorithms are globalized algorithms. The localized (decentral-
ized) algorithms are usually much faster and are easily used in the situation when
global information is difficult to obtain. The globalized algorithms are generally good
at approximating the minimum removal set but time-consuming.

Besides these implementation methods above, the simple bond percolation [44]
process (that is, removing edges randomly) is used as a baseline to test the evaluation
of all the methods.

Let’s add here how to find the most central link in a tree in Stage 2. This is
different with the process to identify the most influential link in Stage 1(b). To find
the central link and break the largest tree in the remaining networks, we initially set
one unit resource on every node of the tree. Then all the leaves will be removed,
and the number of their resources will be recorded in the first step. At the same
time, the resources of the removed leaves will be transferred to their only neighbor.
Repeating the above process until all the nodes in the tree are removed. At this
moment, every node corresponds to a resource value. Based on this, the centrality of
a link in the original tree can be computed by the product of the resource values of its
two endpoints. At last, we can quickly get the central link with the largest centrality
and break the tree by removing it. This process is similar to the approach in Ref.
[27], but their approach is designed to break the tree by removing central nodes.
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Fig. 4 Performance of the introduced two categories of algorithms based on the 2-core-based
framework: localized (decentralized) algorithms (CoreHD and CoreHS) and globalized algorithms
(CoreHCI and CoreHB). The X-axis is the removed proportion of links from the networks, and
Y-axis is the size of the GCC after edge removal. Four empirical networks were investigated in this
figure: corruption network, crime network, PowerGrid network, and USAir network

After breaking all the loops and big trees in Stage 1 and 2, there would be many
unnecessarily removed edges from a final perspective. One needs to restore as many
edges as possible to approximate the OBP problem. The process of recovering edges
one by one is similar to the bond percolation. To slow down the growth of the
sizes of the clusters, the sum-rule-based explosive percolation will be applied which
minimizes the sumof the sizes of clusterswhen recoveringone edge from K randomly
selected candidates at each step [19, 31].

3 Result and Discussions

In this section, we compared the performance of the core-based algorithms to approx-
imate the OBP problem. Firstly, let’s see the comparison of CoreHD and CoreHS
algorithm in Fig. 2. These are the results of the PowerGrid network example. The
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X-axis is the removed proportion of links from the networks, and Y-axis is the size
of the GCC after edge removal. The lower the curve, the better the performance of
the algorithm. Because the CoreHD is designed for optimal site percolation prob-
lems, i.e., nodal removal problems, its performance is not as good as CoreHS. In
this figure, the red lines in the small visualizations are the links that was removed
from the network. We can easily see which part of the links were removed when the
dismantling threshold was set as a different value (Fig. 3). Then, let’s compare all
the algorithms we mentioned above in the same network, the Petster network, and
visualize all the links that were removed at the point when the size of GCC is at most
50% of the original network. We can see that in this empirical network, CoreHB
performs the best, and CoreHS and CoreHCI also have a good performance. They
are also much better than the CoreHD and the benchmark algorithms.

At last, we detailed investigated the performance of the localized (decentral-
ized) algorithms (CoreHD and CoreHS) and globalized algorithms (CoreHCI and
CoreHB) in Fig. 4. The X-axis is the removed proportion of links from the networks,
and Y-axis is the size of the GCC after edge removal. Four empirical networks were
investigated in this figure: Corruption Network, Crime Network, PowerGrid Net-
work, and USAir network. Because the computation process of CoreHS is extremely
similar to CoreHD, the computational time of CoreHS is also fast. The 2-core struc-
ture can be obtainedwith O(N leaf-removal operations. After removing one edge,we
only needs to update the 2-core structure with O(1) operations on average in sparse
networks. We can conclude that the localized (decentralized) algorithms are usually
much faster and are easily used in situation when global information is difficult to
obtain. The globalized algorithms are usually good at approximating the minimum
removal set.

4 Conclusion

In this paper, we proposed a 2-core-based fast-decycling framework to address the
optimal bond percolation problem. The 2-core-based framework is composed of
three stages: (1) Loop breaking: Recursively removes most influential edges from
the remaining 2-core of the network. (2) Tree breaking: Recursively dismantles the
largest tree in the remaining network. (3) Link reinsertion: Restores the unnecessar-
ily removed edges into the networks through the explosive percolation process. We
introduced two categories of algorithms based on this framework: localized (decen-
tralized) algorithms (CoreHS) and globalized algorithms (CoreHCI and CoreHB).
The localized (decentralized) algorithms are usuallymuch faster and are easily used in
the situationwhen global information is difficult to obtain. The globalized algorithms
are generally good at approximating the minimum removal set but time-consuming.
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Integrating Temporal Graphs via Dual
Networks: Dense Graph Discovery

Riccardo Dondi, Pietro Hiram Guzzi, and Mohammad Mehdi Hosseinzadeh

Abstract Interactions among objects are usually modelled using graphs. Neverthe-
less, these relations may change over time and there exist different kind of relations
among object that need to be integrated. We introduce a new network model, called
temporal dual networks, to deal with interactions that changes over time and to inte-
grate information coming from two different networks. We consider a fundamental
problem in graph mining, that is finding densest subgraphs on this new model. We
propose an approach based on both network alignment and dynamic programming.
Given two temporal graphs, we obtain a dual temporal graph via alignment and then
we look for densest subgraphs in the obtained graph.We present a dynamic program-
ming algorithm to solve the problem in polynomial time. Since this algorithm is not
applicable even to medium size network, we present a heuristic that is based on (1)
constraining the dynamic programming to consider only bounded temporal graphs
and (2) a local search procedure. We show that our method is able to return optimal
or near optimal solution even for temporal graphs having 10,000 vertices and 10,000
timestamps.

1 Introduction

Novel network models have been introduced in graph theory and graph mining to
extend the classic graph model in order to represent properties of complex systems.
For example, temporal information about interactions are represented in temporal
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graphs [5, 14, 16], while integration of different kinds of relationships is considered
in dual graphs [6, 17] and network of networks [10].

In this paper we introduce a new network model, called temporal dual network,
in order to integrate interactions that come from two different networks (as in dual
networks) and that change over time (as in temporal graphs). The new model can
be useful to analyze the evolution of networks, in particular their cohesive parts.
For example, consider the case where we want to analyze a community an author
belongs to. The idea is to consider two networks, a co-authorship network (con-
ceptual network) and a network based on research interest (physical network). The
community an author belongs to may be not static, but dynamic, as she/he may have
new coauthors or may strengthen the relations with an existing author (by publishing
more papers, for example) or again a relation may be weaken over time. On the other
hand, an author may change her/his research interests over time. For these reason,
considering only static graphs is not enough to represent these dynamics, but we
have to consider how networks/communities change over time. Here we consider
two temporal networks (a conceptual and a physical temporal networks) that repre-
sents different information, for example a conceptual temporal network represents a
co-authorship temporal network; a physical network research interests.

Another example of application is the analysis of social networks to understand
the preferences of a users, as it may change some interests over time and this may
be inferred from the context she/he considers on a platform and from new relations
she/he establishes.

In this paper, we consider a fundamental problem in graph mining: the identifica-
tion of dense subgraphs in the context of temporal dual networks. The identification
of cohesive subgraphs is a fundamental problem in graph mining, since it is related
to the identification of cohesive groups [4, 7, 8, 12]. An analysis of the evolution of
motifs in temporal networks has been proposed in [1] and the identification of dense
subgraphs has been recently considered for temporal networks [2, 5, 16]. We pro-
pose a problem for the identification of k densest subgraphs that are temporal disjoint
in a temporal dual networks and we design a heuristic for it. This method is based
on (1) computing an alignment graph of the conceptual and physical graph and (2)
finding k densest subgraphs in the alignment graph. For this second step, we devise
two algorithms: an exact dynamic programming algorithm, which is applicable only
for small datasets and a heuristic. This heuristic is based on solving a constrained
version of the problem via dynamic programming and then applying a local search
approach. We present an experimental evaluation of these algorithms on synthetic
datasets, generated varying the number of timestamps (from 70 to 10,000 and the
number of nodes from 70 to 10,000.

The paper is organized as follows. First, in Sect. 2 we give the definitions that will
be useful in the remaining part of the paper and we present the dual temporal graph
model. Then, in Sect. 3 we present the algorithmic contributions of the paper, while
in Sect. 4 we will present an experimental evaluation of our heuristic on synthetic
datasets. Finally, we conclude the paper with some open problems.
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2 Definitions

In this section, we start by giving the definitions of temporal graphs and dual graphs,
and we introduce the temporal dual graph model. Then we present the formal defi-
nition of the problem we are interested into, that is finding k densest subgraphs that
are active into disjoint intervals.

We start by introducing a discrete time domain over which is defined a temporal
graph and a temporal dual graph.

Definition 1 A discrete time domain T = [0, 1, ..., tmax] ⊆ N, where each t ∈ T is
called a timestamp. We define an interval T = [ti , t j ] over T , with ti , t j ∈ T and
ti < t j , consists of the timestamp between ti and t j .

Two intervals are disjoint if they do not share any timestamp. Next, we can present
the definition of temporal graph. Notice that in themodel we consider the set of nodes
is not changing over time.

Definition 2 G = (V, T , E) is a temporal graph, where V is a set of nodes, and
E ⊆ V × V × T is a set of temporal edges.

Given a temporal graph G = (V, T , E) and a temporal interval T , we define
G[T ] = (V, E[T ]) as the active graph of G in interval T , where E[T ] is the set of
active edges at interval T , defined as: E[T ] = {{u, v, t}|{u, v, t} ∈ E ∧ t ∈ T }.

A similar definition of active edges can be given for active edges at timestamp
t ∈ T : E[t] = {{u, v, t}|{u, v, t} ∈ E}.

We can now define the concept of episodes, which represent the temporal sub-
graphs we will look for.

Definition 3 Let G = (V, T , E) be a temporal graph, an episode is defined as a
pair (T,W ) where T is an interval over T and W is a subgraph of G[T ], that is
W = (VW , EW ), where VW ⊆ V and EW ⊆ E[T ] ∩ (VW × VW ).

Given a weighted temporal graph G = (V, T , E), an interval I over T and an
edge (u, v) ∈ E , then the average weight of (u, v) in E , denoted by wI (u, v), is
defined as follows:

wI (u, v) =
∑

t∈I w(u, v, t)√|I |

where w(u, v, t) is the weight of edge (u, v) at time t . We divide by
√|I | and not

by |I |, since in the latter case this may lead to dense subgraphs defined in a single
timestamp.1

The weighted density of G in a interval I , denoted byw − dens(G, I ), is defined
as follows:

w − dens(G, I ) =
∑

(u,v)∈E wI (u, v)

|V | .

1 Here we use
√|I | but other sublinear functions can be considered as well.
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Fig. 1 A temporal weighted network with two nodes and four timestamps [1, 2, 3, 4]

Notice that the fact that the temporal graph is weighted changes some of the
properties of episodes with respect to unweighted graphs. For example, while, as
discussed in [16], the density of episodes in unweighted graphs is a monotone non
decreasing function, this property does not hold in the weighted case, as it can be
seen in the following example (Fig. 1), w[2,3](u, v) = 1, while w[1,3](u, v) = 0.7,
w[1,4](u, v) = 0.525.

Now, we introduce the definition of dual graph.

Definition 4 G = (V, Ec, Ep, wc) is a dual graph, where V is a set of nodes, and
Gc = (V, Ec, wc), Gp = (V, Ep) are two graphs defined over the same set of nodes
V such that:

• Gc = (V, Ec, wc) is a weighted graph, called conceptual graph
• Gp = (V, Ep) is an unweighted graph, called physical graph.

Now, we are able to introduce the definition of Temporal Dual Graph.

Definition 5 G = (V, T , Ec, Ep, wc) is a Temporal Dual Graph (TDG), where

• V is a set of nodes
• Gc = (V, T , Ec, wc) is a weighted temporal graph, called conceptual temporal
graph

• Gp = (V, T , Ep) is an unweighted temporal graph, called physical temporal
graph.

Now, we are able to define a temporal densest common subgraph.

Definition 6 Temporal Common Subgraph.
Given a temporal dual graphG = (V, T , Ec, Ep, wc), a temporal common subgraph
in G = (V, T , Ec, Ep, wc) is a pair (W, T ) where T ∈ T is a temporal interval and
W ⊆ V such that:

• Gp[W, T ] is connected
• the weighted density of (W, T ), denoted by w − dens(W, T ), is equal to
dens(Gc[W, T ]) (that is the density in the conceptual temporal graph).

We define the first problem we are interested into.

Problem 1 k-Densest-Episodes in a Temporal Dual Graph
Input: A temporal dual graph G = (V, T , Ec, Ep, wc), a positive integer k ∈ N.
Output: A set S of k temporal common subgraphs S = {(I j ,Wj ) : 1 ≤ j ≤ k}, where
{I j : 1 ≤ j ≤ k} is a set of disjoint intervals, such that

∑k
j=1 w − dens(Wj , I j ) is

maximized.
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The k-Densest-Episodes problem is NP-hard, since, given a static dual graph
(hence a temporal graph with a time domain consisting of a single timestamp), it is
NP-hard to find a densest common subgraph [17].

In order to solve the problem, we consider the following alignment approach: (1)
we first align the conceptual temporal graph and the physical temporal graph and
we obtain a temporal alignment graph; (2) then we find a set of k episodes in the
temporal alignment graph.

2.1 Graph Alignment Approach

Here we describe the alignment approach we propose to solve the k-Densest-
Episodes problem on Temporal Dual Graphs. Graph alignment has already been
considered to deal with dual graphs [11, 15]. Here we extend the definition to tem-
poral dual graphs, by essentially defining an alignment for each timestamp t .

Definition 7 Given two input graphs, a weighted graph Ga = (Va, Ea, wa) and an
unweighted graph Gb = (Vb, Eb), where Ea is a set of weighted edges and Eb is a
set of unweighted edges, a graph alignment of Ga and Gb is formally defined as a
mapping A from Va → Vb.

In particular, here we consider a variant of alignment called local alignment which
is defined as a partial injective mapping A from Va to Vb. In our case, the mapping
(hence the alignment) of two graphs is implicitly defined by their identifiers, that is
two corresponding vertices in the networks have the same identifier both in Va and
in Vb. The output of the alignment is a new weighted graph Gal = (Val , Eal), called
alignment graph and defined as follows.

Definition 8 Given a weighted graph Ga = (Va, Ea, wa) and an unweighted graph
Gb = (Vb, Eb), an alignment graph Gal = (Val , Eal , wal), between Ga and Gb is
defined as follows:

• The vertex set Val = {ci : (vai , vbi ) ∈ I }
• The edge set Eal is defined based on two possible cases: match, and mismatch
and depends on a parameter δ. For each set {ci , c j } of two vertices ci , c j ∈ Val

corresponding to pairs (vai , vbi ),(vaj , vbj ), respectively, then:

1. If both (vai , vaj ) ∈ Ea , and (vbi , vbj ) ∈ Eb, then (ci , c j ) ∈ Eal with weight
wal(ci , c j ) = wa(vai , vaj )

2. If (vai , vaj ) ∈ Ea , and (vbi , vbj ) /∈ Eb, where vbi , vbj are at distance lower than δ

inGb, then (ci , c j ) ∈ Eal with weightwal(ci , w j ) defined as the average weight
of the edges of the path connecting vbi , vbj in Gb (mismatch 1 case)

3. If (vai , vaj ) ∈ Ea , and (vbi , vbj ) /∈ Eb, where vbi , vbj are at distance at least δ

in Gb, then (ci , c j ) /∈ Eal (mismatch 2 case)
4. If (vai , vaj ) /∈ Ea , then (ci , c j ) /∈ Eal .



528 R. Dondi et al.

Fig. 2 The possible cases of the graph alignment

The output of the alignment is a new graph Gal = (Val , Eal), called alignment
graph. Figure2 presents the three possible cases, where we draw Ga with blue ver-
tices/edges and Gb with red vertices/edges.

Definition 9 Timestamp Alignment Graph. Given a temporal dual graph G =
(V, T , Ec, Ep, wc), for each timestamp t ∈ T , a TimestampAlignmentGraphGA[t]
is an alignment graph of the conceptual graph Gc[t] and the physical graph Gp[t]
of the same timestamp t . A temporal alignment graph GA = (V, T , EA, wA) is a
collection of timestamp alignment graphs, one for each timestamp

GA =
tmax⋃

t=0

GA[t]

2.2 Finding Episodes in the Alignment Graphs

Once the temporal alignment graph is computed, we consider the problem of finding
a set of (weighted) episodes in it, as defined in the following problem.

Problem 2 k-Densest-Alignment-Episodes
Input: A temporal alignment graph GA = (V, T , EA, wA), a positive natural k ∈ N.
Output: A set S of k temporal densest subgraphs S = {(I j ,Wj ) : 1 ≤ j ≤ k}, where
{I j : 1 ≤ j ≤ k} is a set of disjoint intervals, such that

∑k
j=1 w − dens(Wj , I j ) is

maximized.

We consider also a variant of the problem, called k-�-Densest-Alignment-
Episodes, where there episodes are constrained to happen in a bounded interval.

Problem 3 k-�-Densest-Alignment-Episodes
Input: A temporal alignment graph GA = (V, T , EA, wA), two positive natural
�, k ∈ N, with � ≤ tmax .
Output: A set S of k temporal densest subgraphs S = {(I j ,Wj )} : 1 ≤ j ≤ k}, where
{I j : 1 ≤ j ≤ k} is a set of disjoint intervals each one of length at most �, such that
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∑k
j=1 w − dens(Wj , I j ) is maximized.

We will show in Sect. 3 that, unlike the k-Densest-Episodes problem, k-
Densest-Alignment-Episodes and k-�-Densest-Alignment-Episodes can be
solved in polynomial time.

2.3 The Densest Subgraph Problem

The approach we propose for solving the k-Densest-Alignment-Episodes and
the k-�-Densest-Alignment-Episodes problem is based on the computation of a
solution of the Densest Subgraph problem on static (weighted) graphs. Given a graph
the Densest Subgraph problem asks for a subgraph of maximum weighted density.
The problem can be solved in polynomial-time [9] with Goldberg’s algorithm, that
is based on a reduction to a series of min-cut computation. The time complexity of
the Goldberg’s algorithm is O(mn log n) (also in O(n3) time for unweighted graphs
[13]). Furthermore, theDensest Subgraph problemcan be approximatedwithin factor
1
2 by a greedy algorithm of time complexity O(n + m) for unweighted graphs and
O(m + n log n) for weighted graphs [3]. In what follows, we denote by tdensest the
time required to compute a densest subgraph in a static graphs.

3 Algorithms for K-Densest-Alignment-Episodes and
k-l-Densest-Alignment-Episodes

In this section we start by presenting dynamic programming polynomial-time algo-
rithms for k-Densest-Alignment-Episodes (DP) and k-�-Densest-Alignment-
Episodes (L-DP).

We introduce the DP algorithm for k-Densest-Alignment-Episodes. Given an
alignment graphGA over the time interval [1, j],with j ≤ tmax,wedefine the function
D[ j, h], with h ≤ k, as follows:
D( j, h) = The density of h densest episodes in GA[1, j].

Given two timestamps i and j , with 1≤i ≤ j≤tmax, we denote by Dens(GA[i, j])
the density of a densest subgraph in GA[i, j]. Assume that Dens(GA[i, j]) have
already been computed for all values 1 ≤ i ≤ j ≤ tmax, function D( j, h) can be
computed as follows:

D( j, h) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max

{
max2≤i≤ j D(i, h − 1) + Dens(GA[i + 1, j])
D( j − 1, h)

if h ≥ 2

max

{
max1≤i≤ j Dens(GA[i, j])
D( j − 1, 1)

if h = 1

−∞ if j = 1 and h ≥ 2.

(1)
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Lemma 1 D( j, h) = q if and only if there exist h episodes in GA[1, j] of overall
density q.

The previous lemma leads to the following result.

Theorem 1 k-Densest-Alignment-Episodes can be solved in O(t2max k tdensest )
time.

Next we present the L-DP algorithm for k-�-Densest-Alignment-Episodes.
Similarly to k-Densest-Alignment-Episodes, given an alignment graph GA over
the time interval [1, j], with j ≤ tmax, we define the function Dc[ j, h], with h ≤ k,
as follows:
Dc( j, h) = {The density of h densest constrained episodes inGA[1, j]}.

Assume that given an alignment graph GA[i, j], Dens(GA[i + 1, j]) denotes a
constrained densest subgraph in GA[i, j].

The recurrence to compute Dc( j, h), for each j ∈ {1, 2, . . . , tmax} is defined as
follows:

For h ≥ 2:

Dc( j, h) = max2≤i≤ j
{
Dc(i − 1, h − 1) + Dens(G[i, j]) with j − i + 1 ≤ �

(2)
For h = 1:

Dc( j, 1) = max1≤i≤ j

{
Dens(G[i, j]) with j − i + 1 ≤ �

Dc( j − 1, 1)
(3)

Finally, for if j = 1 and h ≥ 2, Dc( j, 1) = −∞.
Similarly to k-Densest-Alignment-Episodes, we can prove the following result.

Theorem 2 k-�-Densest-Alignment-Episodes canbe solved in O(tmax �k tdensest ).

3.1 A Heuristic for K-Densest-Alignment-Episodes

The time complexity of the dynamic programming to solve k-Densest-Alignment-
Episodes makes it non practical even for medium size temporal graphs. Hence
we propose a heuristic for k-Densest-Alignment-Episodes, which consists of two
phases:

1. The L-DP algorithm for solving k-�-Densest-Alignment-Episodes, with � =
log2(tmax), hence having time complexity O(tmax log2 tmax k tdensest )

2. A local search procedure called LocExt that, starting from a solution returned in
the first phase, aims at improving its density
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Next, we describe the LocExt phase. LocExt starts from a solution S of k-�-
Densest-Alignment-Episodes and applies a procedure to possibly improve its
density. Notice that an interval I of T is said to be uncovered by a solution S if there
is no subgraph of S that contains a timestamp in I . LocExt looks for an improvement
of S by greedily applying the following procedure:

• It considers two temporal subgraphs (I j ,Wj ) and (I j+1,Wj+1) in S and merge
them in a temporal graph (I ′,W ′) (notice that there is no episode defined in an
interval between I j and I j+1)

• It applies the dynamic programming algorithm described in Sect. 3 for k-Densest-
Alignment-Episodes to an uncovered interval in T ; let (Ic,Wc) be the subgraph
computed

• If it holds that dens(Ic,Wc)+dens(I ′,W ′) > dens(I j ,Wj ) + dens(I j+1,Wj+1),
then it replaces (I j ,Wj ) and (I j+1,Wj+1) with (Ic,Wc) and (I ′,W ′).

4 Experimental Analysis

In this section, we describe the synthetic datasets that we have used in the experi-
mental analysis.

Datasets The synthetic temporal graphs consist of k planted communities (which
are cliques) and a background graph. The k planted communities are defined in non-
overlapping intervals and are definedondisjoint sets of vertices.Moreover, theweight
of each edge of the planted communities is defined equal to 10. The background graph
includes all vertices from planted communities over the discrete time domain T and
it is generated based on Erdős-Rényi model with parameter p = 1/|V |, p = 3/|V |,
and p = 5/|V |. The edges of the background graph are uniformly distributed on the
timestamps of the time domain. The weight of each edge of the background graph
is randomly generated in interval [0, 4].

Three groups of synthetic networks called Synthetic-small, Synthetic1 and Syn-
thetic2 are generated. For each group, we vary the time domain, the number of
communities and the number of vertices/edges of background graph and communi-
ties.

The Synthetic-small dataset is generated for comparison with optimal solution.
In each graph of Synthetic-small, the background graph contains 70 vertices over a
time domain of 70 timestamps with k equal to 4; each community has 12 vertices. In
each graph of Synthetic1, the background graph contains 1000 vertices over a time
domain of 1000 timestamps with k equal to 20; each community has 25 vertices.
Finally, in each graph of Synthetic2, the background graph contains 10,000 vertices
over a time domain of 10,000 timestamp, while k is equal to 40; each community
has 50 vertices.

OutcomeWe report density, running time, quality of the solution intervals and com-
munities, averaged over 100 examples for each value of p. In particular, we calculate
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Table 1 Density, running time and quality of the interval and subgraphs solutions (F-measure)
on Synthetic-small dataset with parameter p = 1/|V |, p = 3/|V |, and p = 5/|V | for two phases
(L-DP and LocExt) of the heuristic and DP. Running time is in seconds and the results are averaged
over 100 examples for each value of p

Intervals Subgraphs

p = 1/|V | Time Density F-measure F-measure

DP 304.45 127.08 1 1

L-DP 0.37 89.90 0.52 0.84

LocExt 0.06 94.98 0.65 0.95

p = 3/|V | Time Density F-measure F-measure

DP 339.90 127.12 1 1

L-DP 0.44 89.96 0.50 0.80

LocExt 0.09 96.69 0.66 0.94

p = 5/|V | Time Density F-measure F-measure

DP 392.76 127.18 1 1

L-DP 0.49 90.05 0.52 0.83

LocExt 0.07 95.13 0.64 0.93

the F-measure2 to evaluate the accuracy of the heuristic to find the planted communi-
ties and intervals. In the experimental analysis we report the results of the two phases
of the heuristic, L-DP for k-�-Densest-Alignment-Episodes and LocExt. Table1
illustrates solutions and running time of DP as the optimal dynamic programming
algorithm for k-Densest-Alignment-Episodes and our heuristic.

Due to the time complexity of DP, we consider the comparison only on the
Synthetic-small dataset. The results in Table1 show that the heuristic is able to com-
pute solutions of density approximately 75% of the optimal density for all value p.
For the interval quality (that is the timestamps in the planted intervals that are cor-
rectly identified by our heuristic), the average F-measure is between 64 and 66%. For
the subgraphs quality (that is the nodes in the planted community that are correctly
identified by our heuristic), the average F-measure is between 93 and 95%.

On the Synthetic-small dataset LocExt is able to improve the detected solution
of the first phase of the heuristic (L-DP) in a reasonable time. In the worst case
(for p = 3/|V |), LocExt needs 20% of the L-DP running time. LocExt improves the
density of L-DP at least 5.6% (for p = 5/|V |), and at most 7.5% (for p = 3/|V |).
For interval and subgraph quality, LocExt improves F-measure respect to the solution
of L-DP. More precisely, the F-measure of the interval quality is improved at least
23% (for p = 5/|V |), and at most 32% (for p = 3/|V |); the F-measure of subgraph
quality is improved at least 12% (for p = 5/|V |), and atmost 17.5% (for p = 3/|V |).
As for the running time on the Synthetic-small, the heuristic in the worst case is 641
times (for p = 3/|V |) and in the best case 708 times (for p = 1/|V |) faster than DP.

2 F-measure is the fraction of recall and precision.
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Table 2 Density, running time and quality of the interval and subgraphs solutions (F-measure) on
Synthetic1 dataset with parameter p = 1/|V |, p = 3/|V |, and p = 5/|V | for two phases (L-DP and
LocExt) of the heuristic. Running time is in seconds and the results are averaged over 100 examples
for each value of p

Intervals Subgraphs

p = 1/|V | Time Density F-measure F-measure

L-DP 24.97 607.17 0.36 0.66

LocExt 10.35 685.4 0.54 0.77

p = 3/|V | Time Density F-measure F-measure

L-DP 24.99 607.17 0.38 0.70

LocExt 9.38 689.51 0.57 0.82

p = 5/|V | Time Density F-measure F-measure

L-DP 32.89 607.18 0.41 0.75

LocExt 13.70 709.89 0.63 0.89

Table 3 Density, running time and quality of the interval and subgraphs solutions (F-measure) on
Synthetic2 dataset with parameter p = 1/|V |, p = 3/|V |, and p = 5/|V | for two phases (L-DP and
LocExt) of the heuristic. Running time is in seconds and the results are averaged over 100 examples
for each value of p

Intervals Subgraphs

p = 1/|V | Time Density F-measure F-measure

L-DP 738.07 1413.38 0.18 0.45

LocExt 491.28 1772.62 0.41 0.57

p = 3/|V | Time Density F-measure F-measure

L-DP 843.30 1413.38 0.18 0.47

LocExt 521.10 1755.78 0.40 0.57

p = 5/|V | Time Density F-measure F-measure

L-DP 960.78 1413.38 0.21 0.54

LocExt 382.40 1733.23 0.41 0.64

Table2 reports the results of the heuristic on Synthetic1 dataset. On this dataset
LocExt improves density of detected solution of the L-DP at least 12.9% (for
p = 1/|V |) and at most 16.9% (for p = 5/|V |). For interval and subgraph qual-
ity, LocExt is able to improve the quality of the solution returns by L-DP for k-�-
Densest-Alignment-Episodes by increasing the F-measure of interval solution at
least 50% (for both p = 1/|V | and p = 3/|V |) and at most 54% (for p = 5/|V |),
and F-measure of subgraph solution at least 16.7% (for p = 1/|V |) and at most
18.7% (for p = 5/|V |). As for the running time on the Synthetic1, the LocExt needs
in the worst case 42% (for p = 5/|V |) and in the best case 37% (for p = 3/|V |) of
the running time of L-DP for k-�-Densest-Alignment-Episodes.
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Finally, Table3 shows the results of the heuristic on Synthetic2. On this larger size
dataset, LocExt improves density of the solutions computed by the L-DP for k-�-
Densest-Alignment-Episodes at least 22.6% (for p = 5/|V |) and at most 25.4%
(for p = 1/|V |). For interval and subgraph quality, LocExt improves the F-measure
of interval solution at least 95% (for p = 5/|V |) and at most 128% (for p = 1/|V |),
and F-measure of subgraph solution at least 18% (for p = 5/|V |) and at most 27%
(for p = 1/|V |). Table3 shows the running time of the heuristic on the Synthetic2.
The LocExt improves the solution with running time in the worst case 67% (for
p = 1/|V |) and in the best case 40% (for p = 5/|V |) of the L-DP for k-�-Densest-
Alignment-Episodes.

5 Conclusion

We have introduced a new network model, called temporal dual networks, that inte-
grates the temporal network and dual network frameworks. We have presented a
heuristic for the problem and an experimental evaluation on synthetic temporal
graphs. Future works include the application of the temporal dual network model to
real datasets.
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Exploring and Mining Attributed
Sequences of Interactions

Tiphaine Viard, Henry Soldano, and Guillaume Santini

Abstract Weconsider entities interacting over time: individualsmeeting, customers
buying products, etc., each entity being labeled with some information that may
depend on time, and possibly extracted from the interaction nature. Capturing the
dynamics as well as the structure of these interactions is of crucial importance for
analysis. We are interested here in mining sequences of such interactions. For that
purpose, we define core closed patterns in this context and introduce algorithms to
enumerate them on a labeled stream graph. We run experiments on two real-world
datasets, one representing interactions among students and the other representing
citations between authors.

1 Introduction

We consider mining connected data with the following view: part of the data consists
in attributes values reporting information about objects, while the remaining part
of the data reports information about how objects are related. We search then for
attribute patterns i.e. sentences expressing constraints on the attributes’ values. Var-
ious previous work on graphs (see Sect. 2.1) confront the patterns to the connected
structure, i.e. consider poorly connected objects as poorly relevant to the knowledge
to extract. Then, the mining process enumerates and selects both attribute patterns
and the dense subgraphs associated with them. The purpose of this article is to extend
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one suchmethodology, namely the core closed patternmethodology, in order tomine
temporal interaction data.

Modelling data with a structural component over time has been done in multiple
ways, and in particular recently, by considering interaction data: the connected data
is then a sequence of triplets (t, u, v) indicating that nodes u and v interacted at time
t (see Sect. 2.2). They may represent, for instance, the interactions between scientists
attending a conference, interactions between students, interactions on theweb, among
others. Enriching such connection data with attributes describing individuals allows
to extract knowledge related to them and the way these individuals are connected in
time. The individuals’ descriptions may themselves be time-dependent.

Thepresentwork focus on extending core closedpatternmethodology to attributed
stream graphs, a process which is facilitated by the fact that the notion of graph
cores, which core closed pattern mining heavily relies on, has a natural counterpart
in stream graphs. We develop our contributions as follows: after discussing related
work in Sect. 2, we present the core closed pattern formalism to mine connected data
in Sect. 3. In Sect. 4, we present the stream graph formalism to model interactions
over time, and show how to adapt the mining methodology to stream graphs.We then
present algorithms, in Sect. 5, and apply them to closed pattern mining on two real-
world datasets, in Sect. 6. Finally, we conclude and present some tracks for future
work in Sect. 7.

2 Related Work

2.1 FCA and Closed Pattern Mining on Graphs

A recent review on mining and finding dense subgroups within attributed graphs
[1] discusses a variety of approaches, algorithms and programs addressing this task.
Among them, various works such as [18] or [19] define the subgraph properties that
are suitable both from formal and application standpoints. The latter introduced core
closed pattern mining whose definitions and results necessary for our purpose are
presented in Sect. 3.

Closed patternmining (CPM) is strongly related to Formal concept analysis (FCA)
[24] and search for concepts ordered according to the general-to-specific ordering.
Each concept ismade of a support set together with the corresponding closed pattern,
i.e. the most specific pattern that occurs in this support set. CPM focuses on the
efficient enumeration of closed patterns in large datasets [25].

Core closed pattern mining is a variant in which the support set of a pattern is
reduced to its core support set i.e. the core of the subgraph induced by the original
support set. For instance, the k-core of a graph proposed by Seidman [17] induces the
unique maximal subgraph whose nodes all have degree at least k. Core definitions, as
generalized in [2], always rely, as k-cores, on some topological property. In [19] it is
shown that when reducing support sets to core support sets wemay still define closed
patterns (see Sect. 3). Adapting efficient enumeration algorithms from closed pattern
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mining [14] has allowed to apply the methodology to bipartite [21] and directed [22]
networks.

2.2 Stream Graphs and Modelling of Interactions Over Time

Modelling data that has a structural component over time has been done in multiple
ways, typically through different variants of dynamic graphs. In this setting, one
typically has a sequence of graphs {Gi } and a time frame�, and for all i , Ei contains
all the interactions that happened between times i� and (i + 1)�. There are multiple
variants, for example in which the graph only grows in time [7], or in which multiple
concurrent values of � are considered [12]. The main drawback of these approaches
is the loss of temporal information induced by this aggregation [5].

Recently, a few models take a different perspective, where aggregating is not
necessary. The sequences of interactions are thenmodelled as temporal networks [9],
time-varying graphs [6] or stream graphs [11], depending on the research goals
and the scientific community. All these approaches consider a sequence of (t, u, v)

indicating that nodes u and v interacted at time t . Temporal networks has large bodies
of work around diffusion and temporal causality [8] and temporal motif mining [3];
time-varying graphs focuses on reachability and elaborating algorithmic complexity
classes [4] while stream graphs focus on extending the notions used for large-graph
analysis [11] and applying them to real-world scenarios.

3 Closed Pattern Mining

In this section we report definitions and results required to introduce our attributed
stream graph mining methodology. Except regarding the third item of Proposition 1
and considering some rewriting, they are extracted from [21]. To be self-contained,
let us first recall closure and interior operator definitions: Let S be an ordered set
and f : S → S a self map such that for any x, y ∈ S, f is monotone, i.e. x ≤ y
implies f (x) ≤ f (y) and idempotent, i.e. f ( f (x)) = f (x). Then if f (x) ≥ x , f is
called a closure operator while if f (x) ≤ x , i.e. f is intensive, f is called an interior
operator.

In closed pattern mining, a pattern q belongs to a lattice L with partial order ≥
where q ≥ q ′ means that q is more specific than q ′, i.e. whenever pattern q occurs
in some object o, pattern q ′ also occurs in o. Consider then a set of objects V , each
object v has a description d(v) in L representing the most specific pattern in which it
occurs. Pattern q support set, ext(q) is then the set of its occurrences in V . Applying
an interior operator p to ext(q) results in reducing the support set of q into its so-
called core support set p ◦ ext(q). The most specific pattern with core support set
p ◦ ext(q) is then unique, is called a core closed pattern and denoted by f (q).

Computing the core closed pattern f (q) relies on an intersection operator int
such that int(X) returns the most specific pattern occurring in all objects in X . We
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obtain then the core closed pattern f (q) as f (q) = int ◦ p ◦ ext(q) and f is a closure
operator. In the closed itemset mining setting objects are described as itemsets i.e.
subsets of a set of items I and the intersection operator simply is the set theoretic
intersection operator ∩ as exemplified below:

Example 1 Let us consider L as the powerset 2I where I = abcd, together with the
object set V = 123, with descriptions d(1) = abd, d(2) = acd, d(3) = abc. The
void pattern ∅ has then support set 123. Consider then the interior operator p such
that ∀X ⊆ V, p(X) = X \ 3.We have p(123) = 12 and the core closed pattern f (∅)

is then int(12) = abd ∩ acd = ad.

3.1 Core Closed Pattern Mining

The core of a network is the largest vertex set of a graph that induce a (core) subgraph
whose vertices all satisfy some topological property P . This idea may be extended to
particular cores, called multi-cores which are vertex subset tuples. To obtain a core
definition, and therefore associated interior operators P has to fulfill some conditions.
We summarize results leading to corresponding core closed patterns in what follows.

Let V be a set, X = (X1, . . . , Xk) be a subset tuple, and v be an element of some
Xi , which we simply rewrite as v ∈ X. We show that P monotonicity results in
defining interior operator on 2V .

Proposition 1 Whenever P is monotone, i.e. . for any tuple X and any v ∈ X,
P(v,X) and X′ ⊇ X implies P(v,X′), then:
1. there is a greatest subset tuple C ⊆ X where P(v,C) holds for all v ∈ C
2. pb defined as pb(X) = C is a an interior operator
3. p defined on 2V as p(X) = pb(X, . . . , X) is an interior operator on 2V .

Proof Items 1 and 2 have been established, in a slightly different form, in [21].
Regarding item 3 we need to prove three properties. The proofs straightforwardly
follow from the truth of the corresponding properties of the interior operator pb.
For instance to prove that p is monotone, i.e. X ⊆ X ′ implies p(X) ⊆ p(X ′), we
remark that X ⊆ X ′ means (X, X) ⊆ (X ′, X ′). As pb is an interior operator this
implies pb(X, X) ⊆ pb(X ′, X ′) and it follows that p(X) ⊆ p(X ′). Idempotency and
intensivity are proved in the very same way.

When considering core definitions on a graph, as the k-core definition, the tuple is
a singleton, and we have p(X) as the largest vertex subset that induces a subgraph in
which all vertices have degree at least k. Regarding multi-cores, let G be a directed
graph, the h − a BHAbi-core property states that in the subgraphG(X1, X2) induced
by the directed edges from X1 towards X2, if v is in X1 it has outdegree at least h
and if v is in X2 it has indegree at least a. The corresponding h-a hub-authority (HA)
core p(X) was first defined in [22].1

1 Hub and authority terminology refers to the notions introduced by Kleinberg [10].
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3.2 Exhibiting Patterns of Interest

When selecting individual patterns from a pattern set Q, according to various inter-
estingness criteria, the resulting pattern subset contain patterns very similar to other
patterns. There are various pattern set selection ways of reducing size and redun-
dancy of a pattern set [15, 20]. In our experiments we will use the gβ pattern set
selection algorithm first defined and applied to core closed patterns in [20]. It con-
sists in maximizing in the selected pattern set Qβ the sum of the values of a pattern
interestingness measure g under the constraint that two patterns q and q ′ in Qβ have
to be at distance σ(q, q ′) at least β. The interestingness measure g as well as the
distance measure σ , are gβ parameters.

4 Stream Graphs

Stream graphs [11]model interactions over time by generalizingmany useful notions
from complex and social networks analysis. We denote a stream graph by the tuple
S = (T, V,W, E), where T is a time interval, V a set of nodes.W ⊆ T × V denotes
the presence times of nodes, such that (t, v) ∈ W means that node v is "active" at time
t , and finally, E ⊆ T × V ⊗ V denotes interactions, such that (t, uv) ∈ E means that
nodes u and v interacted at time t . When useful, we write u × � and uv × � to state
that for all t in �, node u is active and u and v interact. We consider streams either
as undirected, where node pairs are unordered and without loop, or as directed.
Bipartite streams are made of directed interactions from a vertex set � to a vertex
set ⊥. Figure1a, b depict toy stream graphs.

We say that S′ = (T ′, V ′,W ′, E ′) is a substream of S if and only if T ′ ⊆ T ,
V ′ ⊆ V , W ′ ⊆ W and E ′ ⊆ E . We denote this by S′ ⊆ S. We denote by S(W ′)
the substream graph induced by a time-node vertex subset W ′ ⊆ W , and whose
interaction subset EW ′ contains interaction between time-nodes of W ′.

Finally, let us define GS = (VS, ES) the graph induced by S, with VS = {u :
∃(t, uv) ∈ E, t ∈ T, v ∈ V } and ES = {uv : ∃(t, uv) ∈ E, t ∈ T }. In other words,
nodes and edges belong to VS and ES if and only if there exist some time t such that
(t, uv) belongs to E . The adaptation to the directed case is straightforward.

For any node v ∈ V , we denote its neighbourhood at time t by Nt (v) = {(t, u) :
∃(t, uv) ∈ E, u ∈ V } the set of (t, u) that interact with node v at time t . We further
denote the degree of v at time t by dt (v) = |Nt (v)|. For example, in Fig. 1(left), node
b at time 2 interacts with nodes a and d, and so N2(b) = {a, d}, and d2(b) = 2.

When the stream graph is directed the outneighbourhood at time t of node v,
N+

t (v), contains time-nodes such that there exists a directed edge (t, uv) in E and
its outdegree at time t d+

t (v) is the size of its outneighbourhood.The inneighbourhood
at time t and indegree at time t of a node are defined in the same way. We also denote
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Fig. 1 Two stream graphs and their cores. From left to right: a Undirected stream graph S1
with time-nodes W = {a × [0, 10], b × [0, 4] ∪ [5, 10], . . . } and interactions E = {ab × [1, 3] ∪
[7, 8], bd × [2, 3], . . . }. b Bipartite stream graph S2 displaying interactions between nodes in � =
{u, v, w} and nodes in ⊥ = {x, y, z}. c The 2-star-satellite core of S1, with stars b × [2, 3] ∪ [7, 8]
(in blue), and satellites {a × [1, 3] ∪ [7, 8], c × [7, 8], d × [2, 3]} (in green). d The 2, 2-BHA-core
of S2 (in blue)

by S(W1,W2) the substream graph of a directed stream graph S induced by two
time-node subsets W1 and W2 of W and whose interaction subset EW1,W2 is made of
the interactions in E from W1 to W2.

5 Pattern Enumeration in Stream Graphs

5.1 Core Operators and Calculation

We introduce two core operators that will be used in our experiments. The k-Star-
Satellite core operator selects in an induced substream graph S(W ′) high degree
time-nodes together with their neighbours (see Fig. 1c):

Definition 1 (k-Star-Satellite) Let S be an undirected stream graph and k ∈ N, the
k-star-satellite property P((t, v),W ′) holds iff in the induced substream graph S(W ′)
either dt (v) ≥ k or there exists (t, v′) ∈ Nt (v) such that dt (v′) ≥ k.

The h-a HA core operator (see Fig. 1d) is a counterpart in directed stream graphs of
the h-a HA core operator in directed graphs discussed in Sect. 3.1.

Definition 2 (h-aBHA)Let S be a directed streamgraph and h, a ∈ N, the h-aBHA
property Pb((t, v),W1,W2) holds iff in the induced substream graph S(W1,W2), if
(v, t) is in W1 then d+

t (v) ≥ h and if (v, t) is in W2 then d−
t (v) ≥ a.

The h-a HA core of G(X) is then obtained as p(X) = H ∪ A where pb(X, X) =
(H, A) is the h-a BHA bi-core of the induced substream graph G(X, X).

For both definitions, we need to prove that the associate properties are monotone
properties (see Sect. 3.1).

Theorem 1 Definitions 1 and 2 are core properties.
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Proof Let us start with the k-Star-Satellite Property 1. We are interesting in prov-
ing that this property is monotonous. Suppose that there exists a substream S′ =
(T ′, V ′,W ′, E ′), S′ ⊆ S such that for all elements (t, v) ∈ W ′, Property 1 holds. In
other words, there are enough interactions in E ′ such that node v at time t either
has at least k neighbours (and is a star), or is a neighbour of such a node (and is a
satellite).

Let us show that there is no stream R = (TR, VR,WR, ER), R ⊃ S′ such that the
property is false. Suppose that such a stream R exists. Then, there exists elements
of W ′ that are not in WR . Since the core properties defined both involves degrees,
this can only mean that there are interactions in E ′ that are not in ER , which in turns
means that R �⊃ S′. This proves monotonicity of the k-Star-Satellite property. An
identical argument holds for Definition 2. �

Generic algorithms to compute cores are detailed in [21]. Such an algorithm
considers an object subset X and starts a first pass in which it remove all objects
from X that do not satisfy the core property P(x, X), resulting in a new X ′. A new
pass is then started removing objects that do not satisfy P(x, X ′), and the process is
repeated until a fixed point C = p(X) is reached. For some properties, such as the
k-star-satellite property, a single pass reaches the fixed point.

In stream graphs, time is modelled as continuous, and testing for all (t, v) a core
property would both (i) require some sort of discretization, (ii) result in redundant
computations. Note that the property is usually valid for all instants t on a number of
intervals of time. For instance, in Fig. 1, (t, b) is a 2-star for all t ∈ [1, 2.5].We obtain
better algorithms by directly attempting to find the maximal such intervals. They use
a data structure to represent the stream graph as a temporal adjacency table DS: for
each node u ∈ V , we store a list DS(u) of triplets (t, v, e), sorted in increasing time
order, indicating that node u started or stopped interacting with node v at time t . The
algorithm computing the k-star-satellite core is detailed in technical note [23].

5.2 Pattern Enumeration and Pattern Set Selection

Let us now discuss the pattern enumeration of all frequent core closed patterns, i.e.
with core support set at least s when patterns are itemsets. The algorithm starts with
the closure q0 of the empty pattern ∅ and associated core support set X . Then, for
all the items x we build the pattern q0 ∪ {x} and compute its core support set in
the stream, the associated core closed pattern qx and recursively all frequent core
closed patterns greater than qx . Maintaining a list EL of prohibited items results in
each pattern being only enumerated once. The algorithm is similar to the one defined
by [19] to mine attributed graphs.
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Algorithm 1 Pattern enumeration algorithm on time-node set W
1: X ← p(W );
2: q0 ← int(X)

3: EL ← [];
4: enum(q0, X, EL)

5: function enum(q, X, EL)
6: print(q, X)
7: for x ∈ I \ q do
8: qx ← q ∪ {x}
9: Xx ← p(ext(qx ) ∩ X)

10: if |Xx | ≥ s then
11: qx ← int(Xx )

12: if qx ∩ EL = ∅ then
13: enum(qx , Xx , EL)
14: EL ← EL ∪ {x}
15: end if
16: end if
17: end for
18: end function

The time complexity of Algorithm 1 runs inO(2m · (l2m + l2 + lm + lγ )) time,
where m = |E | is the number of interactions, l = |I | the size of the attributes lan-
guage, and γ the complexity of computing the core property. We provide a detailed
breakdown in a technical report [23]. This upper bound is rarely reached in prac-
tice : the choice of an adequate core property ensures that there are far less than 2m

patterns.
Notice that there is a correspondence between our patterns and the ones defined

for (static) graphs in [19]. Indeed, saying that pattern q has support set X within W
is equivalent to saying that for any t , q has support set Xt = {v ∈ V | (t, v) ∈ X}
within V . In the experimental section we will consider core closed patterns in the
stream graph and their static counterpart.

6 Experiments

We performed our experiments using two data sets, one of individual contacts
between high school students (HS-327), and another of article citations extracted
from the Association of Computer Linguistics Anthology website. Both datasets are
publicly available, and all the code for the following experiments is available online.2

We did not apply any minimum support constraint on our experiments, though core
definitions do imply such constraints (for instance á 4-star satellite core is of size
at least 5). The pattern distance in the gβ selection process (see Sect. 3) for both
experiments is as follows: let li , l j be two patterns and let Wi ,Wj be their core sup-
port sets, the Jaccard distance σ(li , l j ) is defined as σ(li , l j ) = 1 − J (li , l j ) where

2 https://github.com/TiphaineV/pattern-mining.

https://github.com/TiphaineV/pattern-mining
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Fig. 2 2-star-satellites on a
stream and its induced graph.
There are 4 closed patterns
on the graph, but 3 in the
stream, as closed pattern
(ab, {u, x, y}) cannot exist in
time, since u never interacts
with x and y at the same time

J (li , l j ) = |Wi∩Wj |
|Wi∪Wj | . σ(li , l j ) is equal to 0 whenever Wi = Wj and to 1 if Wi and Wj

have no element in common. As a g interestingness measure we consider the core
support set size.

Contacts between individuals. HS-327 is a dataset constructed from the results
of a study of social interactions of 327 French students conducted in 2013 [13].
The initial dataset provides us with the stream of contacts over 5 days between the
students, which amounts to 33,806 temporal interactions. The dataset also contains,
for each student u, their class, their gender, and three lists of friends: one is the
students u has met (self-report), another is the students that u has declared as friends
(self-report), and finally, the friends u has on Facebook. We express each temporal
interaction between a pair of nodes as a union of consecutive intervals of the form
[ti, j − 20sec, ti, j ].
Academic paper citing. The ACL dataset is extracted from the Association of Com-
puter Linguistics (ACL) anthology,which regroups research papers inComputational
Linguistics. We have built a directed temporal citation network in which interaction
ab, [t, t − 1] means “author a cites author b in some paper published in year t". The
dataset relies on articles published between 1979 and 2008, i.e. over a span of 29
years. The dataset contains 250,000 interactions between about 8000 authors.

Each author is described as the set of keywords extracted from the abstracts’
content of the all articles they authored during the 1979–2008 period, and therefore
authors descriptions do not depend on time. These descriptions are obtained using
the CSO ontology, as described in [16, 26]. This leads to a total of 2500 attributes.

6.1 Results

HS-327. We use the k-star-satellite property, and present in Table1 some numerical
results depending on the value of k and the selection parameter β. Notice that rapidly
(when k ≥ 5), there are no more patterns to enumerate other than the empty pattern.
This is due to the temporal nature of the data, that spreads out interactions as compared
to a static graph.

In the selected patterns, we capture generic patterns, that spread in time, as well
as more specific patterns related to particular time intervals. This allows us to study
the interactions at multiple time scales.
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Table 1 Number of enumerated core closed patterns (β = 0.0) and corresponding enumeration
runtimes in two datasets. Number of gβ-selected core closed patterns is reported for β values
ranging from 0.2 to 0.4

Dataset β Runtimemns

k 0.0 0.2 0.4 0.6 0.8

HS-327 3 620 362 221 125 76 16

HS-327 4 99 75 52 40 31 9

ACL 15, 15 1664 406 175 56 12 90

Fig. 3 Cores of some closed patterns on the HS-327 dataset, selected with β = 0.8. Left: one
general pattern spread in time (blanks represent time periods with no interactions) and displaying a
large number of students. Right: two more specific patterns, involving less students over a shorter
time span

We noticed that many patterns contain the gender of the students (either G_M or
G_F), reinforcing claims that students tends to regroup in non-mixed gender groups.
When considering 4-star satellites, Fig. 3left displays pattern G_M, C_PC, involving 16
male students of the PC class (Physics and Chemistry specialty) whose interactions
spread over time. At the contrary, Fig. 3right-top displays a rather specific pattern
involving both male and female students. This pattern3 represent both Facebook
friendships (F_xx) and self-declared friendships (D_xx) of students belonging to the
same 2BIO3 class (Biology specialty).

Let us compare patterns resulting frommining the stream graph to those obtained
from the associated static graph, enumerated by implementing the code from [20].
In the static graph uv is an edge whenever there is some time t such that (t, uv)

belongs to the stream graph. Note that when using k-star-satellite cores to mine both
graphs, the core closed patterns in the stream graph also are core closed patterns in
the static graph. Indeed, if node u has k neighbours at a time t ∈ T , then u has also

3 namely D_894, F_265, D_205, F_170, F_425, F_871, F_1, D_1, D_883, F_883,

F_205,C_2BIO3, F_272, F_106.
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Fig. 4 The 6 closed patterns selected with β > 0.9 in the ACL dataset

k neighbours in the static graph while it is possible for u to have k neighbours in the
static graph, each related to u at different times (see the small example in Fig. 2).

When mining the static graph, we obtain 11,600 4-star-satellite closed patterns,
to be compared to the 99 closed patterns obtained from the stream graph. Notice that
when considering the time of interaction many of the static patterns do not have any
real grounding. We argue then that stream patterns are fewer but of higher relevance.
ACL. We discuss now the 15-15 BHA core closed patterns enumeration and selec-
tion on the ACL dataset. In total, 1664 closed patterns were enumerated in less than
90 min. Before pattern set selection we retain only patterns made of at least 4 key-
words. The patterns help us highlight different subfields of the ACL Anthology. For
instance, closed patterns with interactions around year 1990 involves often keywords
syntacticsor context-free,whilelearning, natural_language_processing

appear mostly in interactions after 2005. Also, few (16) researchers are active over
more than 14 years and it is interesting to look at the closed patterns in which
core support sets they appear over time. For most of these researchers, the terms
parsing and natural language processing appear in closed patterns occurring
around 2003, even though author Lynette Hirschman has natural language

understanding in closed patterns in which she appears since 1991.
Focusing on the 6 patterns selected with β ≥ 0.9 gives other insights. These pat-

terns, by definition mutually highly dissimilar, are displayed in Fig. 4. They highlight
different sub-areas of research of the Association for Computer Linguistics. The fact
that keywords occur even in various 0.9-selected closed patterns likely comes from
the fact that the scope of the ACL itself regroups researchers on similar topics of
research, possibly at different times. As such, even the most dissimilar patterns,
regarding interaction time or involved authors retain some conceptual similarity. As
an example, correlation analysis, machine translations appear in three
patterns (lines 3, 5, 6) among the 6 selected patterns.
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7 Conclusion

In this article, we strengthen the existing bridges between closed pattern mining and
real-world linked data. We show that beyond graphs, these methods can be adapted
to streams of interactions, in order to mine relevant patterns from large real-world
streams whose time-nodes are labelled by attribute values.

We define cores for undirected and directed stream graphs and show that they
satisfy the necessary conditions for closed pattern enumeration. We also discuss how
efficiently integrating the temporal dimension by considering interactions on time
intervals, alleviates the algorithmic challenges. Our experiments exemplify the kind
of information that can be mined on such attributed stream graphs, to be compared
to information extracted from static graphs.

Beyond that, we are interested in extending these methods on other static and
dynamic linked structures, as hypergraphs or knowledge graphs.
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Air Transport Network: A Comparison
of Statistical Backbone Filtering
Techniques
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Abstract The big break in data collection tools of large-scale networks from biolog-
ical, social, and technological domains expands the challenge of their visualization
and processing. Numerous structural and statistical backbone extraction techniques
aim to reduce the network’s size while preserving its gist. Here, we perform an
experimental comparison of seven main statistical methods in an air transporta-
tion case study. Correlations analysis shows that Marginal Likelihood Filter (MLF),
Locally Adaptive Network Sparsification Filter (LANS), and Disparity Filter are
biased toward high weighted edges. We compare the extracted backbones using four
indicators: the size of the largest component, the number of nodes, edges, and the total
weight. Results show that techniques based on a binomial distribution null model
(MLF and Noise Corrected Filter) tend to retain many edges. Conversely, Dispar-
ity Filter, Polya Urn Filter, LANS Filter, and Global Statistical Significance Filter
(GLOSS) are pretty aggressive in filtering edges. The ECM Filter lies between these
two behaviors. These results may guide users in selecting appropriate techniques for
their applications.

Keywords Complex networks · Backbone filtering techniques · Network
compression · Graph summarization · Sparsification

A. Yassin (B) · H. Cherifi · O. Togni
Laboratoire d’Informatique de Bourgogne, University of Bourgogne,
Franche-Comté, Dijon, France
e-mail: aliyassin4@hotmail.com; aliyassin@etu.u-bourgogne.fr

H. Cherifi
e-mail: hocine.cherifi@u-bourgogne.fr

O. Togni
e-mail: olivier.togniu@u-bourgogne.fr

H. Seba
University of Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, 69622 Villeurbanne, France
e-mail: hamida.seba@univ-lyon1.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Cherifi et al. (eds.), Complex Networks and Their Applications XI,
Studies in Computational Intelligence 1078,
https://doi.org/10.1007/978-3-031-21131-7_43

551

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21131-7_43&domain=pdf
mailto:aliyassin4@hotmail.com
mailto:aliyassin@etu.u-bourgogne.fr
mailto:hocine.cherifi@u-bourgogne.fr
mailto:olivier.togniu@u-bourgogne.fr
mailto:hamida.seba@univ-lyon1.fr
https://doi.org/10.1007/978-3-031-21131-7_43


552 A. Yassin et al.

1 Introduction

In recent decades, networks have become an ideal tool for analyzing complex sys-
tems [1–5]. A network can represent any complex system as a collection of nodes
connected with edges representing binary interactions. Typical analysis include com-
munity detection [6, 7], influential nodes identification [8–10], network formation
[11, 12]. However, in many systems, we can measure the magnitude of these inter-
actions. In these cases, we refer to those networks as weighted networks [13].

Large-scale networks make the performance of processing and visualization algo-
rithms challenging. A naive approach for reducing the network size is setting a global
threshold on the weights of the edge. However, it destroys the heterogeneity of the
distribution of edge weights. Consequently, various backbone extraction techniques
have been proposed to reduce the network size while preserving the highest amount
of “information.” One can classify current backbone extraction techniques into struc-
tural and statistical methods. Structural techniques [14–18] filter edges and nodes
according to a criterion allowing the latent structure of the network to emerge. Statis-
tical techniques [19–25] assess the significance of an edge through a statistical test,
eliminating the least significant edges.

A previous study [26] compared six backbone extraction techniques in the South-
east Asian intercity air transport network [27]. The study includes five structural
methods (global weight thresholding, k-core decomposition, minimum spanning
tree, primary linkage analysis, multiple linkage analysis), and one statistical (dis-
parity filter) [19, 28–31]. They compare the extracted backbones in terms of their
geographical and topological structures, pointing out the potential of each technique
in the light of different transport research applications. For instance, they recom-
mend k-core decomposition to analyze the best-connected core for multiplex net-
works. Primary linkage analysis is well-suited for functional/nodal regions analysis
and highlighting hub-and-spoke structures. Finally, they recommend the Disparity
Filter for analyzing the overall topological and spatial information for large-scale
networks and possible hidden structures.

Neal et al. [32] compared five statistical bipartite backbone extraction techniques:
fixed fill model, fixed rowmodel, fixed column model, fixed degree sequence model,
and stochastic degree sequence model [33–35]. They used synthetic bipartite net-
works and two real networks: the Globalization and World Cities (GaWC) and a
co-authorship network. The comparative evaluation concerns accuracy, speed, statis-
tical power, similarity, and community structure. Although there is no single winner,
they recommend the stochastic degree sequence model for extracting the backbone
of most bipartite projections.

In recent decades, there has been considerable interest in analyzing transportation
and urban networks [36–38]. Network backbone extraction techniques allow faster
analysis and more synthetic visualization. Furthermore, it helps distill the network’s
critical spatial and topological structures quickly. Toour knowledge, there are noprior
comparative analyses including prominent statistical backbone extraction techniques
in weighted transportation networks. This study fills the gap.
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First, we examine the relation between edge weights and the p-values obtained
from each backbone extraction technique. Then we extract the backbones for a clas-
sical significance level α = 0.05 and compare them using four indicators: the size of
the components, the number of nodes, edges, and the total weight. Finally, we inves-
tigate the evolution of the four indicators in each technique for different significance
levels. The main contributions of the paper summarize as follows:

• We perform a comparative analysis of seven statistical backbone extraction tech-
niques on the worldwide air transportation network.

• We explore the relationship between edge weights and the techniques’ parameters.
• We evaluate the techniques for different significance levels using four indicators:
the size of the components, the number of nodes, edges, and the total weight.

The rest of the paper is organized as follows. Section2 introduces the backbone
extraction techniques under test. Section3 presents the data and methods. Section4
the results of the experimental results. Section5 discusses the main findings. Finally,
we make some concluding remarks in Sect. 6.

2 Backbone Extraction Techniques

This section briefly introduces the statistical backbone extraction techniques under
evaluation. Although not exhaustive, it covers a large variety of solutions with var-
ious degrees of sophistication. We refer readers to the original papers exposing the
methods for a detailed description. Except for the Locally Adaptive Network Spar-
sification Filter (LANS), all these techniques share a common framework. They
preserve edges with significant deviations according to a null model for the local or
global assignment of weights to edges. The LANS Filter does not use a null model.
It compares the observed weight to the empirical distribution of weights.

2.1 Disparity Filter [19]

This very popular technique assumes that the normalized weights of a node’s edges
follow a uniform distribution. Comparisons of the observed normalized edgeweights
to this null model allow filtering out edges at a desired significance level α. The
backbone retains only statistically significant edges compatible with the null model.
Since we define a null model for each node, an edge weight can be significant from
the viewpoint of one of its nodes and not the other.
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2.2 Polya Urn Filter [20]

In the Pólya Urn [39], observing a particular event increases the probability of further
observing it. Similarly, one can assume that edge weights are due to an aggregation
process of nodes interacting with each other over time. Based on this assumption, the
authors define a null model for each edge from the viewpoint of its incident nodes.
Then it calculates the probability that a node distributes its strength (summation of
weights) at random through a Pólya process. A reinforcement parameter a governs
this mechanism. The higher the value of the reinforcement mechanism a, the larger
the weight must be for the edge to be considered significant. Note that the disparity
filter is a special case of the Polya Urn Filter.

2.3 Marginal Likelihood Filter [21]

While the Disparity Filter and Polya Urn Filter assess the significance of an edge
in the light of each node it connects independently, the Marginal Likelihood Filter
considers the two nodes the edge connects. An integer-weighted edge is treated as
multiple unit edges. The null model assumes that each unit edge randomly chooses
two nodes, which results in a binomial distribution. In other words, it calculates
the probability of drawing at least w unit edges from the strength of the network
(summation of all weights) with probability proportional to both nodes’ strengths.

2.4 Noise Corrected Filter [22]

Similar to the Marginal Likelihood Filter, it assumes edge weights are drawn from
a binomial distribution. However, it estimates the probability of observing a weight
connecting two nodes using a Bayesian framework. This framework enables us to
generate posterior variances for all edges. This posterior variance allows us to create
a confidence interval for each edge weight. Finally, we remove an edge if its weight
is less than δ standard deviations stronger than the expectation, where δ is the only
parameter of the algorithm. It also provides a direct approximation through Binomial
distribution similar to the Marginal Likelihood Filter.

2.5 Global Statistical Significance Filter (GLOSS) [24]

The GLOSS filter assumes that one cannot assess edges independently of the over-
all network topology. Therefore, it defines a global null model for evaluating the
significance of an edge. However, it makes no assumptions about the distribution
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of weights. Instead, it employs the empirical distribution. The model is a network
with the same topology as the original network and edge weights randomly drawn
from the empirical weight distribution. In other words, it estimates the probability of
observing an edge weight between two given nodes considering the nodes’ observed
degrees and strengths as constraints.

2.6 Locally Adaptive Network Sparsification Filter
(LANS) [25]

Like the GLOSS Filter, it makes no assumptions about the underlying weight dis-
tribution. Instead, it employs the empirical cumulative density function to judge
statistical significance. Thus, from the viewpoint of edge incident nodes, it calcu-
lates the probability of choosing an edge at random with a weight at least equal to
the observed weight.

2.7 ECM Filter [23]

Using the Enhanced Configuration Model of network reconstruction employs a null
model based on the canonical maximum-entropy ensemble of weighted networks
having the same degree and strength distribution as the real network.

3 Data and Method

This section presents the dataset under test, the measures used, and the methodology
of the comparative analysis.

3.1 Data

We perform a comparative analysis of the backbone extraction techniques on the
Worldwide Air Transportation Network [40, 41]. In this network, A node is an
airport. There is an edge between two airports if a direct flight connects them. The
weight of an edge indicates the number of flights offered by different companies
flying between 17 May and 22 May 2018. Table1 lists the main global topological
properties of the network.
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Table 1 The topological features of the Worldwide Air Transportation Networks

# Nodes # Edges Average degree Density Diameter

2734 16,665 12.191 0.004 12

3.2 Methods

To evaluate the performance of the backbone extraction techniques, we perform three
experiments.

First, we examine the relationship between the p-values obtained from the back-
bone extraction techniques and the weights of the edges. The goal is to evaluate if
the techniques are not biased against low weights. Indeed, giving the same impor-
tance to small and high weights would preserve the hierarchies at all scale of weights
and provides a better representation of the network. Then we compute the correlation
between the sample weights and the p values to quantify this relation.We use Pearson
Correlation. It measures the linear correlation and relation between two variables. It
is given by:

ρ(X,Y ) =
∑n

i=1 (Xi − X̄)(Yi − Ȳ )
√∑n

i=1 (Xi − X̄)2
∑n

i=1 (Yi − Ȳ )2
(1)

where n is the sample size, X̄ =
∑n

i Xi

n is the sample mean of variable X , and Ȳ =
∑n

i Yi
n n is the sample mean of variable Y . Pearson’s correlation values are in the

[−1,+1] range. The greater the absolute value of the correlation coefficient, the
stronger the relationship. Extreme values indicate a perfect linear relationship. A
value of 0 implies no linear dependency between the variables.

Second, we extract the backbone for a fixed classical significance level α = 0.05.
The nodes, edges, and weights represent the information in any network. We expect
the extracted backbones to preserve the highest possible information in one giant
component. For evaluation, we use the following four indicators: the size of the
components, the number of nodes, edges, and the total weight of each backbone.

Finally, we investigate the consistency of the previous experiment by comparing
the backbone extraction techniques using different significance levels.

4 Experimental Results

This section reports the results of the three experiments used to compare the backbone
extraction techniques. Note that the Polya Urn Filter requires a parameter. We set
this parameter to 1.0119, following a fine-tuning process. Additionally, for methods
assessing the significance of an edge from each node alone, we consider an edge
significant if it is valid for at least one node.
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Fig. 1 The weights and p-values of the edges for the backbone extraction techniques under evalu-
ation

4.1 Correlation of the Backbone Extraction Techniques

Before looking at the extracted backbones and their properties, we examine the
computed p-values by each backbone extraction technique. The backbone extraction
techniques address the limitation of the naive filtering approach, which sets a cut-
off on the weights. Thus, a good backbone extraction technique should give equal
importance to edges with different weight scales. Figure1 shows a scatterplot for the
weights and p-values corresponding to the backbone extraction techniques. In the
top row, one can see that the Noise Corrected Filter, Polya Urn Filter, ECM Filter,
and GLOSS Filter give importance to small and high weights. Indeed, they assign
small and high p-values for all scales of weights. In contrast, the bottom row shows
a narrow distribution of p-values at the extremes. Indeed, the small and high weights
at the extremes are associated with high and low p-values, respectively. We compute
the Pearson Correlation between the sample weights and p-values of each backbone
extraction technique to validate these findings. Table2 reports these results. It shows
no critical correlation between the p-values and the weights for all the techniques.
We do not see any correlation between the weight and p-values of the Noise Cor-
rected Filter, Polya Urn Filter, ECM Filter, and GLOSS Filter. However, we notice a
low correlation (0.3 < ρ < 0.5) between the weights and p-values of the Marginal
Likelihood Filter, Disparity Filter, and LANS Filter.
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Table 2 Pearson correlation ρ(X, Y ) between X the weights and Y the p-values associated with
the edges using different backbone extraction techniques: noise corrected filter (NC), polya urn
filter (PU), ECM filter (ECM), GLOSS filter (GLOSS), LANS filter (LANS), disparity filter (D),
and marginal likelihood filter (ML)

NC PU ECM GLOSS LANS D ML

0.01 0.01 0.08 0.13 0.37 0.48 0.51

4.2 Comparing the Backbone Extraction Techniques
for the Same Significance Level

Ideally, a sound filtering technique should preserve the highest amount of informa-
tion while filtering as many connections as possible and avoiding the breakup of
the system. Thus, we consider four indicators to evaluate the backbone extraction
techniques: the size of the components, number of nodes, edges, and the total weight.
In this experiment, we extract all the backbones using a significance level α = 0.05
classically used. Table3 reports the size of themost significant connected component
and the number of components with a size less than 5% for each backbone extraction
technique. The Marginal Likelihood Filter, Noise Corrected Filter, and ECM Filter
extract a single giant component containing all the backbone nodes. In contrast, the
other techniques extract a giant component andmultiple small-size components (less
than 5% of nodes). However, one can notice that the size of the giant component
is greater than 80%. For LANS Filter, Disparity Filter, and Polya Urn Filter retain
while it is around 50% for the GLOSS Filter.

Table4 reports the percentage of isolated nodes, preserved edges, and weights for
each backbone extraction technique. One can see that theMarginal Likelihood Filter,
Noise Corrected Filter, ECM Filter, and LANS Filter preserve all the nodes of the
original network. In comparison, the other techniques isolate more than 60% of the
nodes. We observe two typical behavior related to the percentage of edges preserved.
In a so-called conservative category, extracted backbones keep a high fraction of

Table 3 Size of the largest connected component and number of components with a size less than
5% for each filtering technique in the worldwide air transportation network

Filter % LCC # C < 5%

Marginal likelihood 100 –

Noise corrected 100 –

ECM 100 –

LANS 94 36

Disparity 91.1 19

Polya urn 85 62

GLOSS 50.9 102
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Table 4 Percentage of isolated nodes, preserved edges, and weights by each backbone extraction
technique in the worldwide air transportation network

Filter % Isolated nodes % Edges % Weights

Marginal likelihood 0 90.9 93.4

Noise corrected 0 84.3 85.9

ECM 0 68.4 57.5

LANS 0 20.9 40.3

Disparity 70.5 9.8 39.5

Polya urn 62.4 9.6 10.6

GLOSS 69.6 5.1 6.4

edges (greater than 80%). This category regroups the Marginal Likelihood Filter and
Noise Corrected Filter. In contrast, the second behavior is very aggressive in filtering
edges. In that case, the extraction technique removes more than 80% of the edges.
Except for the ECM Filter that lies between these two behaviors and preserves 68%
of the edges, the other methods embrace this behavior. Finally, the last column shows
that the Marginal Likelihood Filter and the Noise Corrected Filter preserve a high
percentage (85%) of the total weights. Indeed, it is due to the large fraction held
edges. In contrast, the Polya Urn and the GLOSS Filter preserve less than 10% of
the weights. At the same time, the other techniques keep between 40 and 60% of the
total weights.

4.3 Comparing the Backbone Extraction Techniques
for Different Significance Levels

To further analyze the previous experiment’s results, we extend the investigation to
the evolution of the four indicators while varying the significance levels. Figure2
illustrates the results of this experiment. We observe a strong filtering regime corre-
sponding to α < 10−2. The top left panel depicts the evolution of the edge propor-
tion preserved. One can consider three typical behaviors. In the first category, the
backbones maintain a steady percentage of edges across all the range of the signifi-
cance levels, even in the strong filtering regime. The Marginal Likelihood Filter and
Noise Corrected Filter belong to this category preserving around 85% of the edges.
The second category includes the ECM Filter. In that case, the percentage of edges
increases monotonically with the significance levels at a low rate within the strong
filtering regime and at a high rate after that. The third category is characterized by a
steady percentage of edges in the strong filtering regime followed by an exponential
increase. Polya Urn Filter, Disparity Filter, GLOSS Filter, and LANS Filter belong
to this category. However, in the strong filtering regime, LANS Filter preserves a
consistent percentage of edges (around 18%) while the others hardly keep any edge.
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Fig. 2 The percentage of edges, weights, isolated nodes, and the largest connected component
size in the extracted backbone using different backbone extraction techniques in the worldwide air
transportation network as a function of different significance levels α

The top right panel reports the evolution of weights. Overall, the curves are pretty
similar. Consequently, we can consider the same categories and members, except for
the Disparity Filter, which joins the ECM filter in the second category. In the strong
regime α < 10−2, the Disparity Filter preserves the same fraction of weights as the
ECM Filter, although it holds a tiny portion of edges. While the ECM Filter keeps
a more significant amount of edges, reaching 40% for α = 10−2. It shows how the
Disparity Filter prioritizes high weights while the ECMFilter preserves weights with
different scales. For α > 10−2, the Disparity Filter retains the same percentage of
weights as the LANS Filter, validating that it prioritizes high weights.
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The bottom left panel reports the evolution of the fraction of isolated nodes. The
Marginal Likelihood Filter and Noise Corrected Filter do not separate any node from
the network because they hardly filter any edges. The LANS Filter also preserves
all the nodes even when filtering around 80% of the edge. In contrast, except for
the ECM Filter, all the other methods isolate a significant portion of nodes in the
strong regime. Indeed, the percentage of isolated nodes decays until there are nomore
isolated nodes as we reach α = 10−2. After that, the percentage of isolated nodes
decreases with the increase of the significance level. It illustrates how the techniques
fail to preserve all the nodes while filtering edges.

Unlike the Marginal Likelihood Filter and Noise Corrected Filter, other filters do
not retain one giant component, as shown in the last panel. The LANS Filter and
GLOSS Filter maintain a giant component with a fixed size in the strong regime.
Its size increases gradually to form a unique component only when adding all the
edges. In contrast, we notice the emergence of a giant component in the Disparity
Filter, Polya Urn Filter, and ECM Filter as we approach the boundaries of the strong
regime. After that, the ECM Filter stops isolating nodes while the others stop only
when maintaining all the edges.

5 Discussion

This study compares seven statistical backbone extraction techniques in the World-
wide Air Transportation network. First, to answer if the backbone extraction tech-
niques give the same importance to small and high edge weights, we examine the
relationship between the edge weights and p-values obtained from the backbone
extraction techniques. The lower the correlation between the weights and p-values,
the better the method in preserving edges with different scales of weights. All tech-
niquesmaintain all types ofweights.However,wenotice that theMarginalLikelihood
Filter, Disparity Filter, and LANS Filter give more importance to edges with high
weights. Indeed, edges with high weight are more likely to be significant, and edges
with small weight are more likely to be non-significant. These findings are reported
in the last column of Table5.

We compare the extracted backbones for a significance level α = 0.05 using four
indicators of performance (the size of the components, number of nodes, edges,
and total weight). Recall that a significance level of 0.05 indicates a 5% risk of
concluding that an edge is significant when it is not. Results show that the Marginal
Likelihood and Noise Corrected Filter based on a binomial distribution null model
retain many edges. Consequently, they generate almost complete networks. They
have a conservative behavior preserving all the nodes in a giant component with a
high percentage of weights.

In contrast, except ECM Filter, the other techniques are very aggressive in filter-
ing edges for this significance level. Indeed, they isolate many nodes, losing many
weights. The ECM Filter lies in between these two extremes.
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Table 5 Properties of each backbone extraction technique: noise corrected filter (NC), polya urn
filter (PU), ECM filter (ECM), GLOSS filter (GLOSS), LANS filter (LANS), disparity filter (D),
and marginal likelihood filter (ML)

Technique
behavior

Retains a LCC Isolate nodes Prioritized weight
scale

ML Conservative Yes No High

NC Conservative Yes No Small and high

ECM Flexible α > 10−2 α < 10−2 Small and high

LANS Aggressive Yes No High

D Aggressive α > 10−2 Yes High

PU Aggressive α > 10−2 Yes Small and high

GLOSS Aggressive α > 10−2 Yes Small and high

We study the evolution of the four indicatorswith significance levels. Results show
that we can distinguish a strong regime corresponding to α < 10−2 and a weaker
regime corresponding to α > 10−2. Table5 reports the properties of each backbone
extraction technique. We can classify the techniques into conservative, flexible, and
aggressive according to their ability to filter edges across all significance levels.
Conservative techniques do not isolate nodes and always retain a large component.
TheFlexible technique is dependent on the significance level. It isolates nodes forα <

10−2 and retains a large component for α > 10−2. The Aggressive techniques always
isolate nodes regarding the significance levels and retain a large component only in
the weak regime except for the LANS Filter. It always retains a large component.

6 Conclusion

Reducing the size of a network has always attracted scientists due to itsmany applica-
tions. Thiswork compares the statistical backbone extraction techniques in theworld-
wide air transportation network. Results show that the Marginal Likelihood Filter,
Disparity Filter, and LANS Filter give more importance to high-weight edges. The
other techniques emphasize both small and high-weighted edges.We show that filters
based on a binomial distribution are conservative techniques. Indeed, they always
retain a high proportion of links and nodes. Other filters beside the ECM Filter are
aggressive in removing edges for reasonable significance levels 10−2 ≤ α ≤ 0.05.
This behavior translates to a high proportion of isolated nodes. The ECM Filter is
more flexible. It lies between these two extreme behaviors. Future work will consider
an extensive investigation of various types of networks (synthetic and real-world) to
consolidate these findings.
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Towards the Concept of Spatial Network
Motifs

José Ferreira, Alberto Barbosa, and Pedro Ribeiro

Abstract Many complex systems exist in the physical world and therefore can be
modeled by networks in which their nodes and edges are embedded in space. How-
ever, classical network motifs only use purely topological information and disregard
other features. In this paper we introduce a novel and general subgraph abstraction
that incorporates spatial information, therefore enriching its characterization power.
Moreover, we describe and implement a method to compute and count our spatial
subgraphs in any given network.We also provide initial experimental results by using
our methodology to produce spatial fingerprints of real road networks, showcasing
its discrimination power and how it captures more than just simple topology.

Keywords Spatial networks · Subgraphs · Network motifs

1 Introduction

Complex networks are a very powerful abstraction of real-world systems that allow
us to analyze the underlying interactions [11]. Many of these systems have a corre-
spondence to the physical world, such as transportation networks (e.g. road, train or
subway), power grids or brain networks. Their components are therefore embedded
in space and topology alone does not capture all the relevant information [1]. Being

J. Ferreira · A. Barbosa · P. Ribeiro (B)
Departamento de Ciência de Computadores, Faculdade de Ciências,
Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
e-mail: pribeiro@dcc.fc.up.pt

J. Ferreira
e-mail: jcff@fc.up.pt

A. Barbosa
e-mail: alberto.barbosa@fc.up.pt

A. Barbosa · P. Ribeiro
CRACS & INESC-TEC, Porto, Portugal

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Cherifi et al. (eds.), Complex Networks and Their Applications XI,
Studies in Computational Intelligence 1078,
https://doi.org/10.1007/978-3-031-21131-7_44

565

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21131-7_44&domain=pdf
mailto:pribeiro@dcc.fc.up.pt
mailto:jcff@fc.up.pt
mailto:alberto.barbosa@fc.up.pt
https://doi.org/10.1007/978-3-031-21131-7_44


566 J. Ferreira et al.

able to understand and analyze these spatial networks is therefore a crucial task with
multidisciplinary applicability [2, 3].

Subgraphs can be seen as the building blocks of networks and they are the core
of rich characterization concepts such as network motifs [9] or graphlet degree dis-
tributions [13]. Despite extensions to incorporate dimensions such as weight [4],
time [12], color [15] or multiple layers [16], to the best of our knowledge there is no
general andwidespread subgraph abstraction that incorporates the spatial dimension.
We should note that for specific domains there has been some related work, such as
in football, where passing networks between different regions of the playing field
have been created [10], but these remain specialized and restricted to their own field
of study.

In this paper we try precisely to aim towards a general concept of spatial motifs
able to characterize networks from any domain. Our first contribution (Sect. 2) is
a novel subgraph abstraction that incorporates spatial information in a way that
is general enough to incorporate several spatial dimensions (e.g. 2D or 3D) and
granularities (e.g. large macroscale vs small microscale regions). The key idea is
to automatically create a spatial partition of the subgraph bounding and to color
the nodes according to the region they are on. Our second contribution (Sect. 3)
is an initial methodology and fully functional framework to detect and count these
spatial motifs, based on enumerating subgraph occurrences and then computing their
spatial and topological type. Our third and last contribution (Sect. 4) is a proof of
concept experimental section, in which we analyze several real word road networks,
showing that unlike purely topological motifs, we can distinguish between grid and
non grid-like layouts.

2 A Novel Concept of Spatial Motifs

There are several possible ways for expressing spatial properties. For instance, the
distance between nodes can be used as edge weight [7], but this would not take into
account the relative position of the nodes. Another option would be to use angles
between nodes, hence losing the distance information. Our approach relies on first
creating a bounding box around the found subgraph using the nodes spatial location,
and then partitioning this box into regular-sized regions, thus taking into account
both the relative position and the distance between nodes.

For the sake of simplicity and given the space constraints, we will mainly focus
on a 2D example divided into 2 × 2 quadrants, but as explained later, our approach
is general and extends naturally to higher dimensions. The creation of the bounding
box is straight-forward: we require a set of coordinates for each node on the input,
and for each found subgraph, we calculate the maximum and the minimum of both
the x and the y values, which gives us the limits of our box. Then, we simply calculate
the relative position of each node when referring to the center of the bounding box,
assigning a quadrant to the node on the form of a color. An example can be seen in
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Fig. 1 Example of subgraphs with spatial coloring by 2D quadrants

Fig. 2 Chain (type A) and
triangle (type B) topological
subgraphs

Fig. 1, where the original spatial network is given above, in the blue nodes, and all
its three node spatial subgraph occurrences are given below.

Taking into account the spatial dimension of the nodes on the previous figure,
we can enumerate five different subgraph types, being the fourth ({3, 5, 6}) and the
fifth occurrence ({3, 5, 7}) of the same type: they both have three nodes in the same
quadrants (one orange, one yellow and one green) and the same connections (one
orange-yellow edge and another yellow-green edge).

By contrast, if only purely topological properties were used, there would exist
only two subgraph types, as depicted in Fig. 2, with the first five occurrences being
a chain of three nodes and the last one (({5, 6, 7}) being a triangle.

The above example already illustrates how much richer our spatial representation
is, but we would like to emphasize how general our conceptual approach is. From a
scale point of view, it naturally extends to higher numbers of nodes (just considermore
nodes in each subgraph). Froma topological point of view, it is also able to organically
integrate features such as direction (just consider that when distinguishing between
different isomorphic types). From a granularity point of view, we can also consider
any regular division. Herewe exemplifiedwith 2 × 2 quadrants, but we could use any
n × n partition, depending onwhat wewant tomeasure (andmoreover we could even
use on the same analysis subgraph occurrences at different n sizes to create a richer
set of features). Finally, our approach also naturally extends to higher dimensions
(for instance, in a 3D space one could use 2 × 2 × 2 octants as the equivalent of 2D
quadrants).
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3 Finding and Counting Spatial Motifs

In this section we explain our methodology for finding and counting the occurrences
of spatial motifs as defined in the previous section. The motivation for counting will
become clearer on Sect. 4, but essentially by computing subgraph frequencies we are
able to obtain numerical features characterizing the underlying network. Counting
subgraphs is therefore a core network analysis primitive. A fully detailed survey on
how to count purely topological motifs can be seen in [14], including approximate
and parallel approaches.

Our proposed initial approach has two steps: (i) we first enumerate all subgraph
occurrences of a given size k, obtaining sets of k connected nodes; (ii) for each
occurrencewe identify its spatial type byproducing a canonical labeling that is unique
to each colored isomorphic type. A fully functional implementation is available at
github.1

3.1 Enumerating Subgraph Occurrences

In order to enumerate the occurrences of subgraphs with k nodes, we opted to use
ESU [17], a general purpose subgraph enumeration algorithm capable of finding each
occurrence only once, avoiding symmetries. In short, this is done by starting from a
single node and expanding from there, using only vertices that have an index (label at
the original graph) greater than that of the original node and that can be neighbors of
a newly added vertex but not of any other one previously added. In Fig. 3 we illustrate
this process with a small example for k = 3 and an original network of six nodes.
Inside each tree node box we indicate two node sets: first the current subgraph being
enumerated (Vsubgraph) and secondly the set of nodeswhich can expand it (Vextension).

The root of the search tree is a starting point to evaluate the subgraph. It’s children,
on the second level, correspond essentially to one branch per node, with the extension
sets being their immediate neighbors with a larger index than the node itself. For
instance, the second branch contains Vsubgraph = {2} and Vextension = {3} (3 is a
neighbor of 2 and 1 is not considered since 1 < 2 and the subgraph with {1, 2}would
be already considered in the first branch). This process continues in the following tree
levels: we add 3 to Vsubgraph since it has two neighbors that meet the requirements,
those are added to Vextension , resulting in Vsubgraph = {2, 3} and Vextension = {4, 5}.
Now we have two possible branches, Vsubgraph = 2, 3, 4 and Vsubgraph = 2, 3, 5. In
both these cases we have |Vsubgraph | = 3 and we have reach the desired node set size.

After doing this to every single node we end up with the subgraphs of size 3
represented on the leafs of the tree. The required conditions for a node to be added
to Vextension make sure that no subgraph is found twice.

1 We will make available a github link to the source code if the paper is accepted.
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Fig. 3 Example of an ESU search tree for k-subgraph enumeration with k = 3

Fig. 4 The first two
subgraphs are of the same
type and should have the
same canonical labeling; the
third one should have a
different labeling

3.2 Subgraph Types and Canonical Labeling

After having the node sets that correspond to each subgraph occurrence, we still need
to discover the spatial type of each one, so that we can increment its frequency. For
instance, as we could observe in Fig. 1 that the fourth and fifth subgraphs belong to
the same type.

In our approach, we first determine the bounding box of each occurrence by com-
puting the minimum and maximum values of each spatial dimension. We then parti-
tion the box into the desired number of regions and we “color” the nodes according
to the region in which each one falls, effectively obtaining what could be considered
a colored subgraph [15]. Afterwards, we compute a canonical labeling such that two
subgraph occurrences will have the same labeling if and only if they correspond to
the same (colored) isomorphic type.

Figure4 illustrates the need for a canonical labeling that takes node colors into
account. From a purely topological point of view, all three subgraphs are chains
and therefore indistinguishable. However, when incorporating spatial information,
this is not the case. We want the first and second subgraphs to have the same label,
as they have the same colored topological properties: one node in each quadrant
except the fourth one (represented by the colors orange, red and yellow), and two
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connections (an orange-red edge and orange-yellow edge). The third subgraph has
different spatial properties that correspond to different colored nodes and edges.

In general, evenwithout colors, computing canonical labelings is a very hard com-
putational task, closely related to the graph isomorphism problem [5]. We therefore
resorted to nauty [8], a third-party and very efficient set of procedures to determine
the automorphism group of a vertex-colored graph. Since nauty has built-in support
for colored nodes, a call to the default method with the required arguments and the
quadrant as color is enough to give us the canonical label. To achieve a labeling using
colors, nauty requires the colors to be given in some order, and the edge labels will
be returned in the order the colors were provided, that is, first the edges with the first
color, then the ones with the second color, and so on.

4 Experimental Results

In order to test our implementation and to showcase the applicability of our proposed
subgraph abstraction, we now provide a proof of concept. We use real world road
networks,which can be considered one of the quintessential spatial network examples
to which everyone can relate to. We selected two cities with “grid-like” street layouts
(Espinho, Portugal and Detroit, USA) and two with “non grid-like” layouts (Porto,
Portugal and Oxford, UK), aiming to distinguish between these two layout groups
using our proposed approach.

Our original source of raw street data was OpenStreetMap (OSM) [6], which is a
collaborative project that aims to provide a free editable geographic database of the
entire world. In Fig. 5, we show an image of the approximate area used for each of
the cities mentioned above, taken from OSM, which clearly indicates the nature of
the road layouts that are being analyzed.

From the raw data we create a network in which the nodes are true road intersec-
tions and edges represent roads between them (this implied the creation of an auto-
mated script that given a geographical bounding box will extract all OSM features
from it, which are further processed and simplified to create the desired intersection
network). In this network, we fix the subgraph size to k = 3 and count the number
of occurrences of each spatial subgraph. Figure6 exemplifies this process for a small
portion of a map, illustrating the extracted network and all its occurring subgraph
occurrences, some of them belonging to the same spatial type. For instance, {1, 2, 3}
and {3, 4, 5} are of the same type, and the same can be said for {1, 2, 7} and {3, 4, 6}.

To better understand and visualize the differences in subgraph occurrences, we
opted to further divide spatial types into classes (families of subgraphs), that corre-
sponds to the four 90 ◦C rotations of the same simple type. Figure7 illustrates this
concept and one class of subgraphs.

Figure8 illustrates representatives of the six most frequent classes of subgraphs
that we found in the studied road networks (the frequency of the other possible classes
is residual and their very low relative frequency does not impact the conclusions of
our analysis).
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Fig. 5 Layout of the four cities used as input

Fig. 6 The network corresponding to a map and its subgraph enumeration
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Fig. 7 Subgraph class 1 and its four spatial subgraph types, corresponding to 90 ◦C rotations

(a)Class 1 (b)Class 2 (c) Class 3 (d)Class 4 (e) Class 5 (f) Class 6

Fig. 8 Representatives of the most frequent classes of subgraphs considered

(a) Espinho (b) Detroit

Fig. 9 Top-4 of subgraphs with most occurrences in the two grid-like cities. Note that all the
subgraphs are of class 1 (as defined in Fig. 8)

4.1 Results for “Grid-Like” Street Layouts

Figure9 represents the top-4 (in order, from left to right) of the subgraphs with most
occurrences in Espinho and Detroit. The results are as expected and capture the grid-
like nature of the layout. Even if the exact order of simple types is not exactly the
same, this top-4 corresponds to class 1 subgraphs, whose representation resembles
a right angle, that is, where each node is in a different quadrant and the subgraph is
a chain that connects nodes in consecutive quadrants.

The difference in frequency from the 5th to the 4th most common subgraph is
noticeable, particularly in the case of Espinho. In both cases, subgraph types from
the 5th to the 8th positions are of class 2. Tables1 and 2 give more detail on the
results, showing the relative frequency (percentage of total occurrences) of the 10
most common subgraph types and their associated class. In total, there were 22
different subgraph types found for Espinho and 32 for Detroit.
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Table 1 Spatial subgraph frequencies in Espinho

Rank Subgraph type Relative frequency

1 1 0.178258

2 1 0.167738

3 1 0.161894

4 1 0.160140

5 2 0.089421

6 2 0.080070

7 2 0.046756

8 2 0.044418

9 4 0.010520

10 3 0.009351

Top-10 total – 0.948567

Table 2 Spatial subgraph frequencies in Detroit

Rank Subgraph type Relative frequency

1 1 0.139369

2 1 0.138028

3 1 0.135329

4 1 0.134110

5 2 0.108859

6 2 0.097870

7 2 0.086585

8 2 0.083102

9 3 0.019452

10 3 0.019208

Top-10 total – 0.961913

4.2 Results for “Non Grid-Like” Street Layouts

On the other hand, if the city does not have a well defined grid layout, we can observe
that the most frequent subgraphs are very different, as can be seen in Fig. 10. In fact,
the top-4 for these two cities does not have any subgraph type in common with
the grid-like cities. Here, the topological chain type of subgraph is still the most
common, which means that if only the topological information of the subgraphs
was used, conclusions with this level of detail would not be possible, but in this case
instead of having each node in a different quadrant, two nodes share a quadrant, there
is a connection between them, and one of them connects to a node in the opposite
quadrant, with the entire top-4 of most frequent subgraphs being of the same class.
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(a) Porto (b) Oxford

Fig. 10 Top-4 of subgraphs with most occurrences in the two non grid-like cities. Note that all the
subgraphs are of class 2 (as defined in Fig. 8)

Table 3 Spatial subgraph frequencies in Porto

Rank Subgraph type Relative frequency

1 2 0.133904

2 2 0.131815

3 2 0.118655

4 2 0.118446

5 1 0.081888

6 1 0.080426

7 1 0.079590

8 1 0.075621

9 3 0.023605

10 3 0.022143

Top-10 total – 0.866095

As on the previous section, we give detailed results of the top-10 most common
subgraph types in Tables3 and 4. Again there is a noticeable increase in frequency
from the 5th to the 4th most common subgraph, and the same class appears from
rank 5 to rank 8. In total, there were 28 different subgraphs found for both Porto and
Oxford.

4.3 Comparison Between Cities

In Fig. 11 we can observe a bar chart of the relative frequency of each subgraph class
per city, with the usage of their spatial properties.

If we remove the spatial component from the subgraphs, we are left with only
two types of subgraphs: chains and triangles. This means that spatial classes 1–4
will be of the single topological type A (chain), and classes 5 and 6 will of the the
topological type B (triangle). Using the same data as the previous plot but ignoring
the spatial properties results in the bar chart depicted in Fig. 12.

We can observe from Fig. 11 that the distribution of the subgraph classes clearly
shows a predominance of class 1 in the two grid-like cities, whilst class 2 is more
common in the two cities without this layout, which allows us to easily distinguish
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Table 4 Spatial Subgraph frequencies in Oxford

Rank Subgraph type Relative frequency

1 2 0.149768

2 2 0.148675

3 2 0.133916

4 2 0.121618

5 1 0.074064

6 1 0.071331

7 1 0.070511

8 1 0.066684

9 4 0.024050

10 4 0.022683

Top-10 total – 0.883302
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Fig. 11 Spatial subgraph fingerprint of each of the studied cities

Fig. 12 Purely topological
subgraph fingerprint of each
of the studied studies
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them, using only this distribution. Conversely, using the data from Fig. 12 it is not
possible to make that distinction, as all cities show a clear dominance of type A
subgraphs with around the same difference in frequency when compared to type B,
which is really uncommon in street networks. It is also interesting to note that the
cities without a grid layout have a bigger frequency of other types of subgraphs other
than classes 1 and 2, even if though those types are still by far the most relevant.

As a final note, we would like to remark that using a normal laptop the sub-
graph counting and labeling phase takes less than a minute to compute even in the
largest considered network (Detroit, with 16,029 nodes and 24,773 edges). A poten-
tial drawback of our proposed strategy is that increasing the size k of the subgraph
will inevitably lead to an exponential growth of the number of subgraph occurrences
and hence on the execution time. However, in this paper we were mainly concerned
with proving that the concept could be useful and there are still many improvements
that can be made regarding efficiency.

5 Conclusions and Future Work

In this paper we present a set of contributions aiming to incorporate spatial properties
into subgraph analysis.We first offer a novel abstraction that relies on a bounding box
and regular spatial partitions to attribute node colors that describe the relative position
of nodes within the subgraph. We then describe an implementation of a framework
capable of discovering and counting these spatial subgraphs, based on enumerating
occurrences and then discovering their type using a specialized canonical labeling
mechanism. Finally, we provide a proof of concept experiment using real life data in
which we show that our approach is able to go beyond classical topological motifs,
capturing enough information to distinguish between different road network layouts.

We believe these are promising results that could lead into new insight on the
characterization and comparison of network with spatial information. Our end goal
is to be able to provide a universal spatial concept of network motifs that can be
generally applicable to networks of any domain.

In order to further extend our work, we intend to study the incorporation of higher
dimensional data, such as 3D brain networks, and wewant to make an extensive eval-
uation of the role of the granularity in the information gained, by carefully analysing
what happens when we use different amounts and sizes of spatial partitions. Further-
more, we want to study how changing the point of reference would impact the results
(e.g. what happens to the patterns when we make arbitrary rotations?) and we intend
to explore different symmetries and subgraph families that could provide classes
that are invariant to spatial transformations (e.g. mirror symmetry). We also want to
understand how we can assess statistical significance of the subgraph frequencies,
by studying what could be appropriate spatial null models.

Finally, we want to improve the efficiency, not only by improving the exact count-
ing computation, but also by trading accuracy for speed (e.g. using sampling) or using
parallelism (e.g. using several threads in multicore machines).
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Improving the Characterization
and Comparison of Football Players
with Spatial Flow Motifs

Alberto Barbosa, Pedro Ribeiro, and Inês Dutra

Abstract Association Football is probably the world’s most popular sport. Being
able to characterise and compare football players is therefore a very important and
impactful task. In this work we introduce spatial flow motifs as an extension of pre-
vious work on this problem, by incorporating both temporal and spatial information
into the network analysis of football data. Our approach considers passing sequences
and the role of the player in those sequences, complemented with the physical posi-
tion of the field where the passes occurred. We provide experimental results of our
proposed methodology on real-life event data from the Italian League, showing we
canmore accurately identify playerswhen compared to using purely topological data.

Keywords Sports analytics · Subgraphs · Network motifs · Spatial data

1 Introduction

Association football, also known as soccer or simply football, is probably the world’s
most popular sport. It is therefore of no surprise that there has been an ever growing
interest on collecting and analysing football data in order to inform players, coaches
and management staff, trying to gain a competitive edge. Examples of related com-
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puter science research include a vast array of topics, such as team behaviour visu-
alisation [16], talent discovery [3], injury forecasting [12], result prediction [11] or
transfer market analysis [6].

In this work our focus is on providing a similarity metric for comparing football
players in what concerns their role in the dynamics and passing behavior of the team.
This is already useful as a rich characterization tool and could be further applied for
instance to come up with suggestions of similar players in other teams that could
potentially be good transfer targets.

Our main contribution is the concept of spatial flow motifs and a novel hybrid
similaritymetric, that incorporates bothwhen andwhere passes occur in the game.We
partition the football field into regions and we use temporal data to construct passing
sequences that can be seen as small subgraphswhere nodes are classified according to
the region of the corresponding passing event.Wealso present experimental results on
real life event data from the Italian League, showcasing how these spatial features can
enrich and complement purely topological information, achieving a higher accuracy
on the player comparison task.

2 Related Work

The amount of research work related to football analytics is too vast to be included in
this paper [13, 14]. Here, we will mainly focus on research that delved into studying
motif based patterns in passing networks.

A passing network can be seen as a graph where the nodes represent players and
directed edges represent successful passes between two players. Milo et al. defined
network motifs as “patterns of interconnections occurring in complex networks at
numbers that are significantly higher than those in randomised networks” [7]. Later,
Gyarmati et al. [4] defined flowmotifs. Considering a passing sequence, a flowmotif
is a subsequence of the passeswhere labels represent distinct playerswithout identity.
In the context of this paper, all motifs are flow motifs and we will use both terms
interchangeably. We will next make a short description of previous research on this
topic.

The application of network motif methodology to football data has been a recent
research topic among the fields of network science and sports analytics.

Using network motif methodology, Bekkers and Dabadghao [2] identified unique
play styles for teams and players. Peña et al. [10] also applied network motif and
clustering techniques to football data from the Premier League, La Liga and Cham-
pions League, concluding that Xavi Hernandez was the outlier in their analysis. Wiig
et al. [15] use centrality measurements and PageRank to identify key passers and/or
recipients in football teams.

Håland et al. [5] modelled sequences of passes as flow motifs and concluded that
no connection between the ranking of a team and its distribution of flow motifs was
clear.
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Regarding team behaviour, Gyarmati et al. [4] present a quantitative method to
characterise the passing behaviours of football teams, concluding that some unique
styles of play do not consist of uncountable random passes but instead are finely
structured.

In a previous work [1], we studied player similarity based on the topology of the
passing networks. Flowmotifs were extracted from sequences of passes that involved
each player and the conclusion was that taking into account the specific position of
the player in a motif, i.e. the orbit that represents a given player in a motif, was
better in comparing players than just comparing the number and type of motifs they
were a part of. Also, we provided a way to objectively measure the performance of
the models generated, which is a great complement to the almost uniquely visual
analysis that is made to evaluate player similarity algorithms.

Even though some work has been done in exploring the spatial dimension of
football games [8], to the best of our knowledge there is no framework that entails
the characterisation of the passing behaviour of a player through the study of spatial
flow motifs.

3 Data Description

The data used in this work was retrieved from a public data set containing spatio-
temporal events in association football [9]. We will be using event data from the
2017/2018 season of the top tier Italian league.

Events in the data were transformed into sequences of passes between different
players. Players that did not participate in, at least, 80%of the games in the 2017/2018
season were not considered in our analysis. We excluded these players to guarantee
that we had the most consistent and complete data as possible regarding the players
we analysed.

4 Methodology

After pre-processing the data, the first step of our method was to extract spatial flow
motifs from the generated passing sequences, as it is explained in this section. Our
code is available at https://github.com/BertoBoss/SpAn.

In the context of this work, we will compute and count “flow motifs”, as defined
in [4], even when referring to them simply as motifs. We note however that flow
motifs are not “network motifs” as classically defined in [7] since they do not take
into account the statistical significance of each of the sequences extracted. This is
mainly due to the lack of an appropriate null model for football spatial motifs, which
could be an interesting future line of work.

We start by overlapping a grid over the space in which the events occurred. This
grid will divide the space inm equal parts lengthwise and in n equal parts heightwise.

https://github.com/BertoBoss/SpAn
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Fig. 1 Grid representing a
passing sequence involving
three players. First pass goes
from player A to player B
from cell 3 to cell 1. The
second pass goes from player
B to player C from cell 1 to
cell 7. This sequence
represents a 3A.1B.7C
spatial flow motif

So there will bem × n different rectangles in which an event can occur. In this work,
we will only consider the case when m = n = 3, so there will always be n2 = 9
different rectangles. All different cells originated by the divisions of the grid will
be numbered in ascending order bottom-up from left to right, the smallest number
being in the bottom cell of the leftmost column and the highest number in the top
cell of the rightmost column.

The insertion of each sequence of passes in the grid is done by inserting each pass
according to the coordinates in which it started, i.e., the coordinates of the origin of
the pass. The only exception is the last point in the sequence that represents where
the last pass ended. This will yield a grid where each cell contains a non-negative
number of points and each point represents where a given pass was made, except for
the last one that represents where the final pass ended. The points are inserted by
order of occurrence in the game they happened and preserving that order is important,
since we are studying the evolution of a passing sequence between members of the
same team. We do so by storing such information in an auxiliary list for each grid
we generate. An example of a grid filled with a size 3 passing sequence is presented
in Fig. 1.

Each of these generated grids now represents a spatial flow motif. For simplicity
purposes, we decided to generate a string that represents each of these motifs in an
uniqueway, so that each of these grids can be easily and uniquely identified by it. Such
string needed to embody three crucial characteristics of thesemotifs: the topology, the
relative order of occurrence of each pass and the space on the pitch where it occurred.
So we transform a sequence into a string of the kind K1C1.K2C2. . . . KN .CN , where
each Ki is an integer representing the cell of the grid in which the pass it represents
occurred, Ci is a character representing the player that made that pass, consistent
with the definition of a flow motif, and the order in which the passes occurred is
preserved by the order of appearance on the string from left to right. For the passing
sequence in Fig. 1, the corresponding string would be 3A.1B.7C. For simplicity sake,
whenever we want to make a reference to a single flow motif, we will use the string
method and only present the visual aid if absolutely necessary.

For each player in our data set, we transformed every passing sequence he partic-
ipated in into a spatial flow motif, using the methodology described above.
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Fig. 2 Fingerprint of
Jorginho passing behaviour
with topological flow motifs

According to [1], the orbit a player occupies in each flow motif is very important
in characterising the passing style of a player. In order to encapsulate that concept, we
also consider the specific position a given player occupied in the passing sequence.
Using the example in Fig. 1 and extending the concept of spatial flowmotifs to include
orbits, we would say that player A participated in a ABC_Amotif topologically and
in a 3A.1B.7C.A spatial flow motif. A similar extension can be made with respect
to nodes B and C .

The spatial flow motif concept as we present it here can be seen as a good com-
plementary analysis to the purely topological flow motif analysis. Now, we will not
only be able to see which types of passing plays a player is involved in more often,
but also the areas on the pitch in which those plays tend to occur.

We will now exemplify how the inclusion of spatial data in motif extraction can
give us better insight regarding the passing behaviour of each player. Unfortunately,
due to the quantity of players analysed, it is not possible to perform this analysis for
each player in our data set. Nonetheless, wewill briefly analyse the passing behaviour
of Jorginho, not only topologically, but also spatially.

Regarding topology, we present in Fig. 2 a plot representing the relative frequency
of the participations of Jorginho in different types of passing sequences. We can
see that the player tends to be more involved in ABC types of plays (involving
three different players) rather than in ABA (involving only two different players).
Moreover, we can see that Jorginho seems to have a somewhat balanced participation
among ABC plays, participating in similar quantities in all three possible roles of
the play. This seems to go along with the intuition that a midfielder like Jorginho,
being a playmaker, is involved in all stages of the offensive game of his team. Also,
we can see that Jorginho, when participating in ABA motifs, tends to occupy the B
position more often, which means that he tends to be the one that receives the pass
from some player A and then passes the ball to that same player A.

Although the study of purely topological flow motifs proved to be a good way
to characterise the passing behaviour of a player [1], more information can still be
extracted from the same data if we look not only at the passing sequences’ topology,
but also at the spatial information encapsulated in that data, specially in football,
where space is a very important aspect of the game.
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To do that, we decided to study the distribution of spatial flow motifs grouped
by their topology. We will consider a 3 × 3 division of the pitch, as presented in
Fig. 1. From Table1, we can actually perform a more detailed analysis of the passing
behaviours of Jorginho, when compared to the analysis of the frequency of each
topological flow motif.

First, one can see that the majority of the highlighted values are on cells that
represent the midfield area (cells 4, 5 and 6). Given that Jorginho is a midfielder, it is
not surprising to see that a big part of the events he will be involved in will take place
on central areas of the pitch. This is however an intuition that we can only confirm
when incorporating the space dimension of the data, since it is not possible to do so
by only analysing the topological motifs as in Fig. 2.

Another important thing to notice is that the relative frequency of C in cells 7,
8 and 9 is lower in ABC_C flow motifs. This can be, at least partially, explained
because he is a player that does not step into advanced areas of the pitch that much,
given that he is not a forward, so when he is the last player on the passing sequence,
that sequence tends to end in not so advanced areas of the pitch, like on cells 4, 5
or 6. This seems to be opposite to the behaviour when Jorginho occupies the A or
B positions in ABC motifs, where position C tends to have higher frequency of
appearance in cells 7, 8 or 9.

A noticeable aspect of the data in Table1 is the fact that Jorginho apparently tends
to impose some progression on the pitch with his passing. This becomes apparent by
the fact that, when he makes a pass, the next player on the sequence tends to have a
higher frequency of appearance in more advanced areas than Jorginho himself. For
example, in ABC_B motifs, player A tends to be in cell 7 in higher frequencies
than Jorginho (player B), which then passes the ball to a player C that, again, has

Table 1 Frequency of each player (A, B or C) on each cell on a 3 × 3 grid according to the
different topological motif they participate in. Values are normalised by sub-column, meaning that,
for example, in ABC_Amotifs, player A (Jorginho) occupies a position in cell 1 0.051%of the times
he participates in an ABC motif occupying position A. Highest values are on bold. Sub-columns
representing Jorginho have a highlighted background

ABC_A ABC_B ABC_C

Cell A B C A B C A B C

1 0.051 0.061 0.054 0.089 0.045 0.051 0.086 0.082 0.047

2 0.055 0.048 0.048 0.077 0.055 0.038 0.073 0.072 0.043

3 0.033 0.042 0.037 0.058 0.027 0.028 0.064 0.061 0.030

4 0.299 0.251 0.238 0.245 0.307 0.220 0.244 0.264 0.297

5 0.287 0.189 0.141 0.142 0.279 0.197 0.128 0.131 0.279

6 0.158 0.133 0.129 0.160 0.159 0.112 0.148 0.157 0.150

7 0.053 0.155 0.176 0.126 0.058 0.197 0.147 0.123 0.065

8 0.040 0.057 0.079 0.035 0.042 0.085 0.023 0.032 0.048

9 0.024 0.066 0.098 0.069 0.028 0.072 0.088 0.077 0.041
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higher frequency in cell 7. This seems to indicate a forward passing bias by Jorginho,
meaning that the players that receive the ball from him are often in more advanced
positions of the pitch than himself.

On themost defensive areas of the pitch,we can see that the only significant change
between the three types of spatial flowmotifs is related to the position Jorginho occu-
pies on the passing sequence: when he occupies a given position p, the frequencies
of that position on more retreated areas of the pitch are lower for p and higher for
the other positions. For example, when Jorginho is on position B on ABC_B motifs,
the frequencies of a player being on cells 1, 2 or 3 and on the B position are lower
than when he occupies either position A or position C .

It also stands out that there seems to be a slight bias for these plays to winding
themselves more on the right side of the pitch than on the left. That becomes more
evident when comparing the values of the frequencies on cell 7 (right attacking side)
to the values in cell 9 (left attacking side) for ABC_A, ABC_B and ABC_C flow
motifs. This can either represent a team behaviour that somehow favours attacking
plays to happen on the right side of the pitch when Jorginho is involved in them or
this can represent a bias imposed by Jorginho to force the team to play through the
right, probably also influenced by the position he occupies on the pitch and the fact
that it is more likely that he will pass the ball to players near him. It can also be both,
since often players positions and characteristics are highly correlated to the team
macro behaviour.

All this domain specific knowledge regarding a single player can be acquired only
when we combine the topological information with the spatial information contained
in the raw event data.

5 Results

With the analysis of the spatial flowmotifs Jorginho is involved in, we intend to show
that incorporating an extra layer of spatial information in flow motif counting can
result in better and more accurate knowledge extraction from event data. However,
when we want to objectively measure if new useful information can be extracted
from the processing of spatial data, we need to setup an experimental environment
that allows us to take valid conclusions about our methodology.

In an ideal world, we would be able to not only check if the addition of spatial
information results in a good complement to the purely topological information that
flow motifs naturally provide and have a way to measure how good such potential
complement is.

We decided to build a similar experimental environment as the one on [1], but we
have adapted it to also account for spatial flow motifs.

We first separate the matches in two different sets: one corresponding to the first
half of the season and the other corresponding to the second half of the season (we also
experimented a division into odd and even match weeks, but no relevant differences
were found).
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The idea behind this division is to be able to see how similar a player is to himself
in different parts of the same season. Given that there is no ground truth in this
domain, we believe that a good way to validate our approach is to exploit the idea
that a player, of course with some exceptions, must have similar passing behaviour
during the course of the same season. To achieve that, we designed a distance metric
to measure the distance between two players, incorporating not only the topological
difference between the different motifs that a player was involved in, but also the
spatial dimension of the data.

After computing all the spatial flow motifs for every player on the dataset, we
calculate the distance between each pair of players. The distance metric has two
components: one incorporates the topological component of the flow motifs and the
other incorporates the spatial dimension of the flow motifs.

The purely topological distance between two players is defined in Eq.1, where
Dtop(A, B) represents the distance between players A and B according to the purely
topological flow motifs that A and B participate in. M is the set of all flow motifs
of size 3 and Am and Bm represent the normalised frequency (between 0 and 1) of
player A and B on motif m, respectively.

Dtop(A, B) =
√∑

m∈M
(Am − Bm)2 (1)

A big part of adding the spatial dimension is the ability to measure how distant
two different sequences are in the pitch. We use cell centroids in order to compute
the distance between two different spatial flow motifs. The centroid of a cell k in
a grid is a point whose coordinates are (minx + maxx/2,miny + maxy/2), where
minx (miny) is the minimum value of x (y) that a point in a cell k can have and
maxx (maxy) is the maximum value of x (y) that a point in a cell k can have. Then
we calculate the distance between two motifs m and n by calculating the Euclidean
distance between the centroid of the cell in which the first pass occurred in motif m
and the centroid of the cell in which the first pass occurred in motif n. We then add
it to the distance between the centroid of the cell in which the second pass occurred
in motif m and the centroid of the cell in which the second pass occurred in motif n,
and so on, until the motif is fully processed. In the context of this paper, we will call
this distance Dcentroids(m, n).

The component of our metric that encapsulates the spatial information of the flow
motifs is given in Eq.2. M represents the set of all flow motifs of size 3, Mk is a
set of motifs that are topologically equivalent between themselves, m and n are two
topologically equivalent spatial flowmotifs, Dcentroids(m, n) calculates theEuclidean
distance of the centroids of the cells in which the passing sequences occurred, f A(m)

represents the frequency of player A in motif m and fB(n) represents the frequency
of player B in motif n.

Dspace(A, B) =
∑
Mk∈M

∑
m,n∈Mk

Dcentroids(m, n) ∗ f A(m) ∗ fB(n) (2)
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It is important to notice that Eq.2 is a distance metric thought to complement
a merely topological setting, by trying to encapsulate some spatial information
that would otherwise be discarded by a purely topological approach. Since both
0 ≤ f A(m) ≤ 1 and 0 ≤ fB(n) ≤ 1, this allows for the weight of the value of
Dcentroids(m, n) to be, in some sense, proportional to the frequency of occurrence of
motifs m and n in players A and B, respectively.

One could argue that a different approach, like using f A(m) − fB(n), would
encapsulate better the idea that “the higher the difference between the frequencies,
the higher the weight the distance would have”. Even though the intuition is correct,
using the difference between the frequencies of each motif when complementing
purely topological motif analysis would not take into account the individual frequen-
cies of f A(m) and fB(n) for players A and B, respectively. For example, whether
f A(m) = fB(n) = 0.1 or f A(m) = fB(n) = 0.9 the value of f A(m) − fB(n) would
be 0. However, using f A(m) ∗ fB(n), the second assignment would result in a higher
value, that better mirrors the fact that m and n are highly frequent motifs for players
A and B, respectively.

The final distance metric is a weighted mean of the two components we
approached, as in Eq.3, where α is a constant between 0 and 1, influencing the
weight of each component in the final distance metric.

Dist (A, B) = α × Dspace(A, B) + (1 − α) × Dtop(A, B) (3)

Now that we have a distance metric that incorporates both topological and spatial
information regarding flow motifs, we can use it to calculate the distance between
players.

Let H1 be the set of games that took place in the first half of the season and H2

the set of games that occurred in the second half of the season. Also, let AHi be the
set of spatial flow motifs that represent player A and were extracted from the set of
games in Hi .

Our task will then be to calculate the distance Dist (A, B) between every AH1

and every BH2 , i.e., we want to calculate the distance between each pair of players
A and B such that the spatial flow motifs regarding player A occurred in games in
the first half of the season and the spatial flow motifs regarding player B occurred in
games belonging to the second half of the season.

Let L A be a list of players such that the position j each player B occupies in the
L A represents that B is the j-th least distant player to A, according to the distance
metric in Eq.3.

So, for each player P1 in AH1 , our job is to compute LP1 such that each player P2
in LP1 belongs to AH2 . When all LPi are calculated for every player Pi in AH1 , we
can see how well our method characterises a player, in the sense that we just need to
measure, for every player Pi , the position Pi occupies in LPi . The lower the position,
the better, since we want Pi to have similar passing behaviour to himself.

In [1], an arbitrary threshold was defined, stating that cases where Pi occupied
a position j ≤ 10 it would be considered a positive case, and a negative otherwise.
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Fig. 3 Boxplot of different distributions generated by the variations in the constantα in Dist (A, B).
α varies from 0 to 1 in increments of 0.1

All positive and negative cases were counted and the evaluation model was simply
given by the percentage of positive cases that the model got right.

In this work we decided to extend that idea to a more continuous analysis of
the distribution of the positions that each Pi occupies in LPi . A boxplot of those
distributions is presented in Fig. 3. Note that in that plot, the values of the constant
α range from 0 to 1 in increments of 0.1, with the plot referring to α = 0 is the one
on the left and each successive plot represents a +0.1 increment.

Analysing the boxplot in Fig. 3, it is noticeable that, for some values of α, the
distribution is more skewed toward smaller position values than on others. Those
values are 0.1 ≤ α ≤ 0.6. The mean values for each of the distributions presented
in Table2 confirm that on those values, the mean and standard deviation of the
distributions are smaller when compared to α = 0, that represents a distribution
based on a merely topological distance metric.

The mean value in the distributions presented in 3 represents the average position
a player Pi is in LPi . This means that, for example, with α = 0.2, any player Pi is on
average the 7th most similar player to himself, which is a really good improvement
when compared to the 11th position, on average, that yields from α = 0. It is also
worth noting that, for α ≥ 0.7, the distributions seem to exhibit a worst behaviour
than considering only the topological nature of the data. That seems to indicate that,
on its own, the metric we designed to complement a merely topological study, is
not better at characterising the passing behaviour of football players than a classical
topologically reliant distance metric.

In Fig. 4,we can see inmore detail the curves representing the distributions for four
different values of α. We can clearly see curves representing α = 0.2 and α = 0.3
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Table 2 Mean and standard deviation values for each distribution in Fig. 3, according to the values
of α

α Mean Standard deviation

0 10.98 14.46

0.1 7.78 11.47

0.2 7.15 10.46

0.3 7.26 10.88

0.4 7.84 11.29

0.5 8.80 12.17

0.6 9.88 12.90

0.7 11.13 14.13

0.8 12.4 14.95

0.9 13.71 15.91

1 15.32 17.31

Fig. 4 Four different curve
plots showcasing the
different distributions caused
by changing the value of α in
the Dist (A, B) distance
metric

have a much more compact look in the smaller position values, specially when
compared to the distribution when α = 1. Another thing we notice is that with α =
0.2 and α = 0.3we have smaller ranges of values in positions and their concentration
is higher in smaller position numbers.

6 Conclusions and Future Work

In this work we extended the concept of flow motif to incorporate the spatial dimen-
sion of football event data.
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We were able to improve the characterisation of the passing behaviour of a player
by encapsulating the spatial nature of the data. The distributions that represented the
similarities between a given player in different halves of the season were proof of
that increase in the capability to characterise a football player passing behaviour,
for some values of α. In the future work, we aim at improving the way we count
spatial flow motifs, since this approach has proven to be too much time consuming.
This can be done either through the conceiving of a parallel algorithm or through
improvements on the way we calculate the distance metric (through the exclusion of
not relevant spatial flow motifs).

It also seems that it is possible to generalise this approach in order for it to be
applied in different domains. In a more formal note, we are building graphs where
the nodes are coloured based on the position they occupy in a two dimensional grid
and the directed edges incorporate a time dimension in the sense that if node v has
an outgoing edge that connects him to node u, then the event that represents node
v happened before node u. This means that in a spatio-temporal domain, similar
methodology may be applied to count k sized subgraphs (flow motifs) of those
spatio-temporal graphs.
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Bayesian Approach to Uncertainty
Visualization of Heterogeneous Behaviors
in Modeling Networked Anagram Games

Xueying Liu, Zhihao Hu, Xinwei Deng, and Chris J. Kuhlman

Abstract Heterogeneous player behaviors are commonly observed in games. It is
important to quantify and visualize these heterogeneities in order to understand col-
lective behaviors. Our work focuses on developing a Bayesian approach for uncer-
tainty visualization in a model of networked anagram games. In these games, team
members collectively form as many words as possible by sharing letters with their
neighbors in a network. Heterogeneous player behaviors include great differences in
numbers of words formed and the amount of cooperation among networked neigh-
bors. Our Bayesian approach provides meaningful insights for inferring worst, aver-
age, and best player performance within behavioral clusters, overcoming previous
model shortcomings. These inferences are integrated into a simulation framework
to understand the implications of model uncertainty and players’ heterogeneous
behaviors.
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heterogeneous behaviors · Networked data · Uncertainty visualization
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1 Introduction

1.1 Background and Motivation

There are many variants of anagram games. Most involve either the unscrambling
of letters to form a single unique word or finding as many words as possible from a
collection of letters. Anagram games involving single individuals have been studied
for over 50 years. As an early example from the 1960s, anagram games were used as
priming activities to study anxiety [16], i.e., anagram games are played in a way to
induce player anxiety. Also dating from the 1960s, these games have been studied in
their own right, e.g., to assess the effects of letter rearrangement and word frequency
on player performance [6].

Evaluation of group anagram games, where players cooperate to form words, is
a much more recent phenomenon. A ground-breaking work in [2] used in-person
group anagram games to prime people to form collective identity. The work in [1]
performed online group anagram games by imposing a network on game players to
control their interactions. Our focus is to model the games in [1], which we now
overview.

The experimental networked group anagram game (NGrAG) setup is shown in
Fig. 1b. Remote human subjects play the game through web browsers. Each player
is provided three initial letters and over a 5-min game duration, players try to form
as many words as possible as a team. Players split evenly the total earnings from
the game, which is based on the number of words the team forms. Players cooperate
by sharing their available letters with their distance-1 neighbors. When a player vl
shares a letter, she retains a copy of the letter; this is to motivate (mutual) assistance
among players. Also, once a letter is acquired, it can be used any number of times
in one word and can be used in any number of words (i.e., there is no mechanism or
action by which a player loses a letter). Words must be at least three letters. A player
is free to take any of the actions in Fig. 1b, any number of times and in any order.
See [1] for additional details.

The network has at least three roles in NGrAGs, and these are intertwined with
game player behavior (i.e., action) models. First, the network determines the number
of neighbors (i.e., degree) of an (ego) player. Section2.1 states how ego game player
data are partitioned by degree in developing behavior models. Second, the letters
assigned to those neighbors, along with those of the ego player, determine the words
an ego player can form. Third, the behaviors of the neighbor nodes are influenced by
their degrees—as for the ego player, in the first point—and hence these neighbors’
interactionswith the ego (e.g., requesting letters) are dependent on their local network
structure.
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(a) online game configuration (b) 4 possible player actions

Fig. 1 a Illustrative networked group anagramgame (NGrAG)with four remote players (v1 through
v4) and four communication channels (in blue). Players participate through their web browsers. A
player’s initially assigned letters are in boxes. b Four actions that may be taken by any player, at
any time during the 5-min NGrAG. Actions can be repeated by a player any number of times. The
action vector a is a = (a1, a2, a3, a4), with ai given in the graphic

1.2 Novelty and Contributions

Modeling of NGrAGs is an interesting and challenging task. A Bayesian modeling
approach is described in [13]. Here, we focus on characterizing variability in player
performance through Bayesian uncertainty visualization. Our contributions follow.

First, because of using posterior samples without asymptomatic distributions
of model parameters (as in [9]), the proposed Bayesian uncertainty visualization
can greatly alleviate the data scarcity issue in model estimation. Consequently, the
obtained posterior samples of model parameters avoid extreme values that cause
some transition probabilities πi j to be 0 or 1. See Sects. 2 and 4 and Fig. 2.

Fig. 2 The three histograms are for group 1, cluster 2, where the initial state is request (a3). M-H
algorithm is applied to draw 1000 B matrix samples after 1000 burn-in. The first histogram is for
the probability of transitioning to idle (π1), the second one is for the probability of transitioning to
reply (π2), and the third one is for the probability of request (π3). The probability of forming words
(π4) is 0 because there is no forming words action a4 in the training data. These data demonstrate
that the extreme value problem is largely alleviated
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Second, the proposed Bayesian uncertainty visualization is a first work to appro-
priately visualize the uncertainties in data and models for NGrAGs. Different from
previous work [9], the proposed method emphasizes the visualization of uncertainty
in a comprehensive manner using a two-dimensional bubble plot described in Sect. 3.
Such a plot can reflect uncertainties of a player’s activeness (i.e., non-idle actions).
Moreover, the location, width, and height of bubbles represent the mean and stan-
dard deviations of the probabilities inferred from the posterior samples of model
parameters. Plots of results from our experiments and analyses are in Sect. 4.

Third, uncertainty visualization enhances agent-based modeling and simulation
(ABMS) of these games. We can naturally identify, interpret, and model worst,
average, and best categories of player performance, even within one cluster of player
behavior. We embed these interpretable inferences within a simulation platform. We
demonstrate these effects by simulating NGrAGs that go beyond the conditions for
which experiments were conducted (Sect. 5). The network of each simulated game
is fixed, consistent with the experiments being modeled.

Our last contribution is broader in scope. The proposed Bayesian uncertainty
visualization greatly enhances the explainability of uncertainty quantification for
NGrAGs. For a complex system such as a NGrAG, in contrast to “one-shot” games
where a game player only makes one binary yes/no decision in a game, quantifying
uncertainty for model and data needs to be properly visualized in order to gain
meaningful insights. It is precisely this need that motivated this work, which is an
outgrowth of thework in [9]. The proposedmethod can be a good exemplar to achieve
such an objective, and can be applied for visualizing uncertainty in other networked
applications. Specific works are provided in Related Work Sect. 1.3.

1.3 Related Work

Modeling of network games and data. There are multiple works [9, 13] related
to the proposed method. In [13], a Bayesian model of human behavior in anagram
games is presented. However, that work does not address methods to identify worst,
average, and best behaviors within a Bayesian context. A process of identifying best,
average, and worst behaviors within behavioral clusters is presented in [9]. How-
ever, that anagram model for determining a player’s next action in a game is based
on asymptotic normal distributions for the primary behavioral matrix B (presented
below), rather than onposterior distributions, aswedohere.Most importantly, neither
of those works address uncertainty visualization, as in this work. Other games incor-
porate multiple player actions over time, e.g., [11, 17]. These games, like ours, use
fixed networks. Other types of network models, for other phenomena, use evolving
networks, e.g., [5].

Bayesian visualization and uncertainty visualization. Visualization is a vital tool
for data analysis to describe uncertainties in data [3, 4]. The effective visualization of
uncertainty is commonly recognized as a challenging task [10, 14]. Potter et al. [15]
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presented a summary of the state-of-the-art techniques in uncertainty visualization,
including comparison techniques, attribute modification, and image discontinuity.
Gabry et al. [7] illustrated the role of visualization in exploratory data analysis in
the context of a Bayesian workflow. House et al. [8] developed Bayesian visual
analytics (BaVA) to justify Bayesian sequential update of parameters. Our work
aims to visualize uncertainty in a Bayesian framework to effectively and accurately
identify the uncertainty in the data and heterogeneous behaviors of players.

2 State Transition Model and Extension

2.1 State Transition Model

Agent-based models (ABMs) for the NGrAG represent the game as a discrete-time
stochastic process. That is, at each time step, a player can transition to one of the four
states (actions a1, a2, a3, and a4); see Fig. 1b. In our previous work [13], a Bayesian
clustering-basedUQ framework is developed as follows. Based on statistical analysis
of the game data, we first partitioned the players into two groups: those with less
than three neighbors (group g = 1) and those with three or more neighbors (group
g = 2). Then we defined two variables xe (for engagement) and xw (for forming
words), where xe is the sum of the number of requests and the number of replies
that a player sends and xw is the number of words a player forms in a game. Based
on these two standardized variables, we applied the Dirichlet process (DP)-based
Bayesian clustering approach [12] with a specific penalty parameter λ (λ = 2.5)
such that when a point is farther than λ away from every existing cluster center, a
new cluster will be formed with this point in it. In this way, we further partitioned
the players in the same group into four clusters where those within the same cluster
have similar activity levels in the game. For data in each cluster, player behaviors in
a game are modeled using the multinomial logistic regression with four predictors
shown in Table1:

πi j = exp(zTβ
(i)
j )/

l∑

m=1

exp(zTβ(i)
m ), j = 1, . . . , l, (1)

where

• l = 4 since we consider four actions a1, a2, a3, and a4.
• πi j is the probability of the player, who took action ai at time t , taking action a j

at time t + 1.
• z = (1, ZB(t), ZL(t), ZW (t), ZC(t))T is the predictor vector; Table1.
• β

(i)
j = (β

(i)
j1 , . . . , β

(i)
j5 )T is the regression coefficient parameter vector.

For a given action ai at time t , the parameters can be expressed as a matrix
B(i) = (β

(i)
1 , . . . ,β

(i)
l )Tl×(l+1) for i = 1, . . . , 4. Thus, from the game network struc-
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Table 1 The four temporal variables of players in the NGrAG and model

Variable Description

ZB(t) Size of buffer of letter requests that player v has yet to reply to at time t

ZL (t) Number of letters that v has available to use at t to form words

ZW (t) Number of valid words that v has formed up to t

ZC (t) Number of consecutive time steps that v has taken the same action

ture (which determines a node’s degree and hence its group g) and the performance
cluster c determined for a node/player (c = 1, 2, 3, or 4), a particular model based
on Eq. (1), with parameter matrix B(i), is assigned to a game player to predict the
probability of next actions.

2.2 Motivation for Model Extension

With theBayesian approach,we canobtain the posterior distribution for the parameter
matrix B(i). One then can quantify the uncertainty of parameters by conducting
posterior inference. Markov chain Monte Carlo (MCMC) methods are commonly
used to obtain samples from the posterior distribution. Posterior inference can then
be conducted empirically. In order to quantify the heterogeneous behavior of players
within a cluster, our strategy is to identify the parameter matrices that generate the
most active behavior, the least active behavior, and the average behavior in terms
of probability of being non-idle. Integrating these different levels of performance
into the simulation of NGrAG will better capture the heterogeneity among players
because we can assign players these different behaviors. These considerations lead
to the new uncertainty visualization method in Sect. 3.

3 Bayesian Uncertainty Visualization Method

This section details the proposed Bayesian uncertainty visualization method. The
goals are to visualize the uncertainty within and between clusters and to identify
the heterogeneous (i.e., worst, average, and best) behaviors of players within each
cluster.

For each observation in the training data, one can obtain the corresponding pre-
dictor vector z. To directly identify the activity level, we transform the parameter
matrix B(i) to a probability vector. In each cluster, players with the same initial
action ai share the same parameter matrix B(i). Thus for these players, without loss
of generality, we omit i in B(i) and πi j to get a parameter matrix B and a probability
vector π = (π1, . . . , π4) containing the probabilities of the next action using Eq. (1).
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Therefore, for a B matrix, a training data set of n observations that have same initial
action can generate n probability vectors. The mean of these probability vectors and
the corresponding standard error can be obtained. Given a sequence of B matrices,
we can compute a sequence of mean probability vectors and their standard errors.
To visualize the uncertainty among these mean probability vectors, we create a bub-
ble plot where the center of each bubble represents the mean probability vector for a
parameter matrix, with the width to be 2× SE(π̄ r

4 ) and the height to be 2× SE(π̄ r
1 ).

Using such a plot, it is easy to quantify the activity levels within a cluster and identify
the worst, average, and best behaviors. The probability of forming words (π4) in the
probability vector represents the players’ ability to formwords and the probability of
not being idle (1− π1) indicates the players’ level of activity in the game—a small
to-idle probability π1 suggests a high activity level.

We summarize the proposed method of uncertainty quantification within a clus-
ter as follows. First, we use Metropolis-Hasting (M-H) algorithm to get R random
samples of Br (r = 1, . . . , R) from the posterior distribution after a burn-in period
(taken to be 1000). Second, for each Br , we apply the size n training data to Eq. (1)
to produce n probability vectors π̂

r,l = (π̂
r,l
1 , π̂

r,l
2 , π̂

r,l
3 , π̂

r,l
4 ), l = 1, . . . , n. Then the

mean probability vector and its standard error are calculated:

π̄ r = 1

n

n∑

l=1

π̂
r,l = (π̄ r

1 , π̄
r
2 , π̄

r
3 , π̄

r
4 )

T ,

SE(π̄ r ) = 1

n

√√√√
n∑

l=1

(π̂
r,l − π̄ r )2 = (SE(π̄ r

1 ), SE(π̄ r
2 ), SE(π̄ r

3 ), SE(π̄ r
4 ))

T .

Third, one can draw a bubble plot of 1− π̄1 against π̄4, with one bubble for
each Br , r = 1, . . . , R. Each bubble is an ellipse centered at the mean probability
(π̄ r

4 , 1− π̄ r
1 ) with width 2× SE(π̄ r

4 ) and height 2× SE(π̄ r
1 ). Fourth, note that a

low mean to-idle probability (π̄1) suggests a high engagement level, and a player
with a high mean to-idle probability is less active. Accordingly, we select the Br

matrix with the maximum π̄ r
1 as the matrix of the worst behavior, and the one with

the minimum π̄ r
1 as the matrix of the best behavior. The Br matrix of the average

behavior is one that produces the mean of π̄ r
1 , r = 1, . . . , R.

A key advantage of this proposed method is that we can visually analyze the
uncertainty among data. In the bubble plot, it is easy to find the best and the worst
behavior and view the heterogeneous behaviors within each cluster. Moreover, the
size of the bubble can help us visually detect the variability among the observations.
One can also quantitatively compare the activity ranges of clusters with players
that have the same number of neighbors to further discover the differences between
clusters within the same group (g = 1 or 2). Note that this visualized uncertainty
quantification was not contained in the previous work [9].
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Another advantage is that our Bayesian method alleviates the extreme value prob-
lem caused by data scarcity in the previous model [9]. When the size of the training
data in each category is unbalanced (e.g., 556 observations have final state idle while
only 4 observations have final state reply (a2) and request (a3) in group g = 1 cluster
c = 2 with initial state a3), the asymptotic normal distribution of B would have a
very large variance. Thus, the estimated parameter in B can be unexpectedly large
and cause an extreme value in the probability vector π and an infinite loop in state
transitions in the ABM. However, the memorylessness property ofMCMC can avoid
this problem since every sample is only generated based on the previous one. For
this reason, the Bayesian approach avoids the extreme scenarios of players’ actions.

4 Visualization of Heterogeneous Behaviors

This section investigates uncertainties within clusters, heterogeneous behaviors, and
differences in activity levels between clusters, using the game data and the models
of Sects. 2 and 3. Under the Bayesian setting, for each initial state in a cluster, 1000
samples of Bmatrices are drawnusing theM-Halgorithmafter 1000burn-in. Figure2
reports the histograms of probabilities for the aforementioned group 1, cluster 2 with
initial state being request (a3). It is seen that the Bayesian uncertainty quantification
methods can alleviate extreme value problems (by producing probabilities away from
0 and 1) caused by data scarcity.

The bubble plots for group 1, cluster 1 and cluster 4, with the initial state being idle
(a1) are presented in Fig. 3a, b, respectively. Clearly, there is uncertainty within the
clusters. Moreover, the size of the bubble reflects the variability in the observations
and the color reflects the replications. The darker the bubble, the more samples have
this transition probability. It is seen in each plot that samples are more gathered at
the maximize-a-posterior (MAP) estimation (the blue bubble) and the standard error
of to-word (transition) probability is larger than that of to-idle probability in most
cases.

Figure4 contains bubble plots of mean probability for initial state idle (a1) in the
top row, and for initial state reply (a2) in the bottom row. When the initial state is
idle, Fig. 4a, b show that four clusters are well separated and the activity level is
ascending, supporting the rationality of clustering players by behavior. It is also seen
that group 2 is more active than group 1 with a larger probability of forming words
and being non-idle, on a per cluster basis. This corresponds to our assumption that
players with more neighbors will be more active in the NGrAG. When the initial
state is reply (second row of plots), there are no data points of forming words in
the training data of group 1. Thus, the mean probabilities of forming words and the
corresponding standard errors will be zero. Consequently, we compare the activity
level only based on the probability of being non-idle as shown in Fig. 4c.



Bayesian Approach to Uncertainty Visualization … 603

Fig. 3 a Bubble plot of group 1, cluster 1, where initial state is idle (a1). b Bubble plot of group
1, cluster 4, where initial state is idle (a1). Each bubble is a ellipse centered at the mean probability
(π̄r

4 , 1− π̄r
1 ) with width 2× SE(π̄r

4 ) and height 2× SE(π̄r
1 ), where SE(π̄r

4 ) and SE(π̄r
1 ) are

standard errors of mean to-word probability and mean to-idle probability, respectively. The blue
bubbles are the MAP results. The worst, average, and best performance bubbles are noted

5 Agent-Based Simulations of Networked Anagram Games
and Results

In this section, we build ABMs and run them in a software framework to simulate the
NGrAG. For particular input conditions andmodels, we provide results for individual
players (also referred to as nodes or agents) and for aggregated totals over all players.

5.1 Simulation Process

ABMs are designed and constructed from the models of Sects. 2 and 3. Inputs to
simulations are as follows. The network of Fig. 5 represents the possible interactions
among the seven game players. It contains players in groups g = 1 and 2. Each player
is provided four letters, and the letters are purposely specified to enable players to
form words, e.g., one player v2 is given letters {i, l,m, n} and neighboring players
are given complementary letters, e.g., v3 is assigned letters {o, p, r, s}. Owing to
space considerations, we examine two clusters: cluster c = 3 for g = 1 and cluster
c = 2 for g = 2. With these clusters, we then execute the worst, average, and best
behavior models that are produced and evaluated in Sects. 3 and 4. Note that our
results illustrate differences among worst, average, and best models, but the results
shown are not the largest differences that exist across all [g, c] pairs. This is to
emphasize that the differences that we observe from the simulations are pervasive
across all model parameters; an expanded version will address the full range of
results.
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Fig. 4 a Bubble plot for group 1 where initial action is idle (a1). The bubbles for cluster 1 and
cluster 4 are shown in Fig. 3a, b, respectively. b Bubble plot for group 2 where initial action is
idle (a1). c Bubble plot for group 1 where initial action is reply (a2). Note that the probabilities
of forming words are 0 for all clusters. We assign different values for bubbles in different clusters
to avoid overlapping. d Bubble plot for group 2 where initial action is reply (a2). Note that the
probabilities of forming words are 0 for cluster 1 and cluster 4. We assign a different value for
bubbles in cluster 4 to avoid overlapping

Fig. 5 Seven node (agent) game network on which simulations are run. Red (resp., brown) nodes
are low (resp., high) degree nodes of degree d = 2 (resp., d = 3). Therefore, red (resp., brown)
nodes are in group g = 1 (resp., g = 2)

One simulation is comprised of 100 iterations or runs. Each iteration is a complete
simulation of oneNGrAG, from time t = 0 to t = 300 secondswhere players request
letters from neighbors, reply to neighbor letter requests, and form words, as in the
experiments. Our time step is one second, justified by the fact that players do not take



Bayesian Approach to Uncertainty Visualization … 605

successive actions among request letter, reply to letter request, and form word within
one second in the online experiments. Indeed, actions at time steps are mostly idle or
thinking. The difference among iterations within a simulation is the stochasticity of
themodels in producingprobabilities of actionsπi j of players at each t . Consequently,
when we refer to “average” results below, we mean time point-wise averages across
the 100 iterations, unless specified otherwise. Finally, we use the “worst,” “average,”
and “best” models in the results below. In a simulation, all players use the same
model, so that, for example, if we state that one player is represented by the best
model, then all players in that simulation were assigned the best model.

5.2 Visualization of Simulation Results

Figure6 provides results for a degree d = 3 player (agent 3) and a d = 2 player
(agent 5) from the game setup in Fig. 5. The [g, c] values are given in the caption
of Fig. 6. Data in the first row of plots were generated with the worst behavior
models for the respective [g, c] pairs. In Fig. 6a, the time histories of actions are
given for one of the 100 iterations: number of replies received (rerplRec), of replies
sent (replSent), of requests received (reqRec), of requests sent (reqSent), and of
words formed (words). The stair-stepped nature of the curves is due to the fact that
these curves are from one iteration and so the plotted actions are discrete. In Fig. 6b,
the curves correspond to the same action histories, but are smoother because they
represent the time point-wise average of all 100 iterations. These first two plots are
for agent 3. Figure6c depicts corresponding average data for player 5. Note that a
player with fewer neighbors (player 5) forms more words than a player with a greater
number of neighbors (player 3). This is because player 5’s behavior is from cluster 3
of group 1, while player 3’s behavior is from cluster 2 of group 2; e.g., see Fig. 4a,
b and the x-axis values for the two clusters. This again demonstrates the efficacy of
identifying heterogeneous behaviors of players.

Figures6d through f provide the corresponding plots to those in the first row, but
now the results are for the best model. In Fig. 6e for player 3, the number of words
is greater than that for the worst model, although the numbers of sharing actions are
about the same. This same comparison holds for player 5 in Fig. 6 versus Fig. 6c.

Figure7 contains aggregate data over all seven game players. Time histories of
the total number of words formed for the worst, average, and best models are given in
Fig. 7a; the numbers of words increase in this order of the models. Figure7b provides
similar data for the sharing actions of requests and replies, but now only for the
worst (dashed curves) and best (solid curves) models. Now, the worst and best model
results overlap, with no clear-cut better behavior. This is partially a consequence of
the fact that numbers of requests and replies are bounded by the number of a player’s
neighbors and the number of letters per player. Figure7c shows the time point-wise
average probability over all players of taking each action. These probabilities reflect
the action counts in the previous two plots.
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(a) worst: agent 3, one iter (b) worst: agent 3, ave (c) worst: agent 5, ave

(d) best: agent 3, one iter (e) best: agent 3, ave (f) best: agent 5, ave

Fig. 6 Results of anagram simulations with seven players. Data in plots a through c are for the
worst behavior model. The curves are game time histories of counts of actions over the 300s game.
a Action histories for agent 3 in one iteration, b average action histories for agent 3, and c average
action histories for agent 5. Data in plots d through f are the respective plots for the best behavior
model

(a) sum of words formed (b) sum of requests & replies (c) action probabilities

Fig. 7 Aggregate simulation results across all seven nodes (agents) in a NGrAG. a Sum of words
formed by all players in time for worst (w-words), average (a-words), and best (b-words) behavior
models.bSumof requests and replies across all players.Dashed curves correspond toworst behavior
model (prefix “w-” in legend) and solid curves correspond to best behavior model (prefix “b-” in
legend). c Average action probabilities across all seven players in a game, in time, for replying to
letter requests (reply), requesting letters (request), and forming words (word)

6 Summary

This work presents a Bayesian uncertainty visualization method of complicated
multi-player game data. Our step-by-step procedures have been applied to a net-
worked group anagram game, where players cooperate to share letters and form
words. These visualizations can effectively assist in assessing model uncertainties,
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and in improving the interpretable inference of player behaviors. Software modules
of these models are used to simulate the game for conditions beyond the experi-
ments.

References

1. Cedeno, V., Hu, Z., et al.: Networked experiments and modeling for producing collective
identity in a group of human subjects using an iterative abduction framework. Soc. Netw. Anal.
Min. (SNAM), 43 (2020)

2. Charness, G., Cobo-Reyes, R., et al.: Identities, selection, and contributions in a public-goods
game. Games Econ. Beh. (2014)

3. Chen, C.H., Härdle, W.K., Unwin, A.: Handbook of data visualization. Springer Science &
Business Media (2007)

4. Cook, D., Lee, E.K., Majumder, M.: Data visualization and statistical graphics in big data
analysis. Annual Rev. Stat. Appl. 3, 133–159 (2016)
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Understanding the Inter-Enterprise
Competitive Relationship Based
on the Link Prediction Method:
Experience from Z-Park

Jiayue Yang, Lizhi Xing, and Guoqiang Liang

Abstract Integrating complex network theory, link prediction theory, and related
research on industrial competition relationship, this paper proposes the theoretically
analytical framework of the competitive relationship among Z-Park high-tech enter-
prises. By constructing a link prediction model, we reveal the internal dynamics
that affect the evolution of the competitive network of enterprises, seek the best
index reflecting the network formation mechanism, and apply it to the prediction of
potential competitive associations.

Keywords Competitive relationship · ENMON model · Link prediction ·
Structural similarity index · Evolutionary mechanism

1 Introduction

The industrial complex network is a complex system that is constantly evolving. The
dynamic changes of the network are mainly manifested in the entry and exit of enter-
prises in the market, the emergence or disappearance of competition and cooperation
between enterprises, and so on. For promoting regional economic development, it
is not only necessary to understand the topology characteristics of the network, but
also pay attention to the interaction trend between nodes at the micro-level, then
formulate the industrial layout adjustment and structure upgrading strategies, which
happens to coincide with the problem solved by link prediction.

Link prediction includes both the prediction of unknown links and the prediction
of future links, so it has extensive practical application value and important theoret-
ical guiding significance. The research results of Liu [1] and Liu [2] have proved
the effectiveness of link prediction in explaining the structure as well as evolution
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mechanism of network, and the factors affecting the network evolution. According to
the accuracy of link prediction results, we can discover effective indices to measure
the importance of nodes or suitable properties to characterize nodes. Therefore,
link prediction provides a scientific quantitative method for analyzing the network
evolution mechanism.

Link prediction has been proved to be applicable and effective in explaining
network structure characteristics [3–5] and analyzing network evolution mechanism
[6–12], and has become a powerful tool for revealing value transmission and fluc-
tuation in complex systems. However, the practice of link prediction method in the
research of industrial organizations, especially the research direction of enterprise
competition network is still blank. Therefore, based on complex industrial network,
this paper will apply link prediction to the study of evolution problems in enterprise
competition network.

2 Data and Modelling

This paper selects Zhongguancun Science Park (Z-Park), known as “China’s Silicon
Valley”, as the research object. The changes of Z-Park’s industrial structure over the
past few decades reflect the direction of China’s industrial structure upgrading.

2.1 Data Description

According to the Z-Park Management Committee’s “Z-Park High-tech Enterprise
Directory” (hereinafter referred to as the “Enterprise Directory”), as of November
2021, there were 23,034 high-tech enterprises in the Z-Park. Specifically, Table 1
shows the distribution of parks and technical fields to which high-tech enterprises
belong.

Table 1 The parks and technical fields of high-tech enterprises in Z-park

Category Category details

Affiliated park Dongcheng, Xicheng, Chaoyang, Haidian, Fengtai, Shijingshan, Mentougou,
Fangshan, Tongzhou, Shunyi, Daxing-Yizhuang, Changping, Pinggu, Huairou,
Miyun, Yanqing

Technical field Electronics and information, advanced manufacturing technology, new energy
and energy-efficient technologies, environmental protection, new materials and
application, bioengineering and new medicine, modern agriculture and
breeding of new animal and plant varieties, aerospace technology, marine
engineering, nuclear application, other

Data source “BeijingMunicipal Science andTechnologyCommission,AdministrativeCommission
of Zhongguancun Science Park” official website
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According to the above-mentioned enterprise directory, we collected the basic
information and development status of high-tech enterprises in Z-Park through
tianyancha.com. On tianyancha.com, the “company background” column contains
the company’s establishment time, and the “company development” column contains
the company’s “competitive product information” item, which describes the infor-
mation of companies with the same or similar products and services as the given
company.

Before using Python software to obtain the competitive product data of Z-
Park’s high-tech enterprises, we first obtained the historical names of the renamed
companies in the enterprise directory. Through sorting, it is found that on the
tianyancha.com, 22,955 of the 23,034 high-tech enterprises in Z-Park can be obtained
the company’s establishment time and competitive product information, and the avail-
ability rate is as high as 99.657%. This can prove the effectiveness and accuracy of
the data acquisition strategy.

The statistical results of the year of establishment of the enterprise (see Fig. 1)
show that the earliest high-tech enterprise in Z-Park—Beijing BBEF electronics
group Co., Ltd. was established in 1950, but in the following 30 years, the growth
rate of high-tech enterprises was very slow. Until 1980, the growth of the number
of enterprises began to show an upward trend, entered a stage of rapid growth after
2014, and reached a peak in 2016, with an increase of 2,230 enterprises compared
to the previous year. After 2016, the growth of high-tech enterprises still maintained
a high speed, but the number of new enterprises gradually declined. Affected by the
outbreak of the new crown epidemic in 2020 and the global economic downturn, the
number of new enterprises in 2021 has become the largest in the past 24 years. The
lowest value, only increased by 171.

From the park level (see Fig. 2), Haidian Park, Chaoyang Park, and Changping
Park have the highest concentration of high-tech enterprises, contributing half or

Fig. 1 The number of new enterprises in each park in different years
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Fig. 2 The number of new enterprises in each technology field in different years

more of the new enterprises. Among them, in 2019 and 2020, the number of new
enterprises in Haidian District accounted for more than half of all new enterprises
in the Z-Park. The growth of Fengtai Park and Daxing-Yizhuang Park in the early
stage was not significant, and the expansion strength of the two began to emerge after
2014. From the perspective of the technical field, the Electronics and Information
field covers more than 60% of new enterprises and is an important support for high-
tech enterprises, followed by Bioengineering and New Medicine, and Advanced
Manufacturing Technology. Taking 2019 as an example, The newly added enterprises
of the three accounted for 89.302% of all the newly added enterprises in the Z-Park.

2.2 ENMON Model

This paper endeavors to construct an Enterprises Niche Markets Overlap Network
(ENMON) based on the analysis paradigm of graph theory. The network sets inno-
vative entities in a specific area as nodes, the niche overlapping relationship (that is,
providing similar products and services) between them as edges, forming a weight-

less undirected graph G = (V, E) consisting of node set
↔
V and edge set

↔
E . The

specific construction principles are as follows [13]:

(1) Determine the node set of the network
↔
V = {vi }. vi is composed of all the

enterprises in Z-Park and their competing enterprises, where i ∈ {1, 2, · · · , n}
and n ≤ 23034, the number of nodes is recorded as

↔
n =

∣
∣
∣

↔
V

∣
∣
∣. Among them, this

paper regards the main body that does not compete with any other enterprise as
an isolated node and will not be reserved in the model.
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(2) Determine the edge set of the network
↔
E = {

ei j
}

. ei j represents the competitive
relationship between innovative entities in the park. As the relationship is bidi-
rectional, ei j and e ji bear the samemeaning. In particular, if the competing enter-
prises of the Z-Park’s enterprises are located outside the park, the competitive
relationship will not be considered.

(3) Determine the competitive relationship correlation matrix A = {

ai j
}

. Since
the number of overlapping products or services between enterprises cannot be
obtained on the tianyancha.com, that is, the intensity of competition between
enterprises cannot be quantitatively described, so it is ai j only used to charac-
terize the existence of a competitive relationship. Specifically, if enterprise i
and enterprise j are competing enterprises, then ai j = 1, otherwise ai j = 0.

(4) Build an enterprise competition network model. Taking the competition rela-
tionship matrix as the adjacency matrix, if the element of the matrix between
two nodes is 1, there is an undirected edge ei j between vi and v j , otherwise there
is no connecting edge between the two.

According to the description of the data above, the establishment of the company
spans from 1950 to 2021. Due to the small number of enterprises in Z-Park before
1980, there is almost no competition between enterprises. Compared with 2020, the
number of enterprises in 2021 increases insignificantly. Therefore, this paper takes
1980 as the starting year and 2020 as the ending year, and divides the original network
into 9 sub-networks with a 5-year time window to carry out a series of analyses on
the structural evolution of the enterprise competition network.

By establishing a network model, it is not difficult to find that in the sub-network
before 2000, the number of enterprises in the park was limited and the distribu-
tion areas were scattered, and the competitive network pattern was not yet obvious,
while in the sub-network after 2005, the scale of nodes increased rapidly, the overall
connectivity of the network is strong, and a large number of clump structures appear.
Therefore, this paper takes 2000 and 2005 as examples (see Fig. 3) to show the
topology of the network model, and uses the color and size of the node to distinguish
the degree of the node, and the enterprise serial number as the node name.

3 Methodology

When making link prediction based on the similarity of nodes, it is commonly
assumed that the higher the degree of similarity between two nodes, the greater
the possibility of establishing new connections between them. The degree of simi-
larity between two nodes can be described in various ways, such as node attribute
information, node historical behavior information, and network structure informa-
tion. Among them, the node attribute information brings higher prediction accuracy,
but it is accompanied by the difficulty of acquisition. This is because the behaviors
such as information concealment of nodes will lead to false information or even
information loss. Moreover, large-scale data is often mixed with a lot of noise, and
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Fig. 3 ENMON model

high time costs wasted to determine which information is useful. Compared with
it, network structure information has advantages in terms of availability, accuracy,
and effectiveness. Accordingly, this paper takes this kind of indices as the selection
range.

The similarity defined based on network structural information is called structural
similarity. When the similarity index can essentially capture the structural character-
istics or reflect the internal evolution mechanism of the network, it will show higher
prediction accuracy. For link prediction, this section selected six indices from three
types of existing structural similarity indices, namely local similarity indices, global
similarity indices, and quasi-global similarity indices. The reason for choosing them
is that they perform well in a large number of existing studies and are suitable for
enterprise competition network models with large nodes [13]. The six indices are
shown in Table 2.

4 Results and Discussion

To ensure the feasibility of the prediction and the comparability of the results, the
sample selected in this paper for link prediction is the ENMONmodels of five years
in 2000, 2005, 2010, 2015, and 2020, they are all typical unweighted and undirected
networks. When using the six structural similarity indices for link prediction, it
is necessary to divide the existing edge set in the network into a test set and a
training set. The random sampling method can ensure that the probability of each
edge being selected into the test set is equal, thus it is used as the data set division
method in this paper. At the same time, the division ratio is set to 1:9, that is, 10%
of the connected edges are selected as the test set, and the remaining 90% of the
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Table 2 Structural similarity indices

Index Equation Description

Common neighbors (CN) Si j = |�(i) ∩ �( j)| Two of the non-connected nodes
tend to be connected if they have a
lot of common neighbors

Adamic-Adar (AA) Si j = ∑

x∈|�(i)∩�( j)|
1

log k(x) The common neighbor nodes with a
small degree will contribute more
than those with a larger degree

Resource allocation (RA) Si j = ∑

x∈|�(i)∩�( j)|
1

k(x) No directly connected nodes i and j
in the network, some resources can
be allocated from node i to j , during
which their common neighbors will
become the transmission medium

Preferential attachment (PA) Si j = k(i)k( j) The probability of the new edge
connecting nodes i and j is directly
proportional to the product of the
degree of the two nodes

Local path (LP) S = A2 + αA3 Considering the potential influence
of the three-order path range based
on the CN index, we can define the
LP index

Average commute time (ACT) SACT
i j = 1

E(i, j)+E( j,i) The smaller the ACT of the two
nodes is, the closer the two nodes
will be

connected edges are used as the training set. In addition, this paper uses AUC as the
accuracy evaluation index of the link prediction algorithm, sets the number of random
sampling to 10,000 times, conducts 10 experiments independently, and finally takes
the arithmetic average of AUC of multiple experiments as the evaluation index. The
prediction process is realized by Matlab R2021b software.

4.1 Link Prediction Results

Table 3 shows the prediction accuracy of the 6 algorithms in the ENMON models
from 2000 to 2020, where the weight calculated in the second step of the LP index is
set to 0.5, that is, the influence of the third-order path length is reduced to 50%. It is
commonly believed that the closer the AUC value is to 1, the higher the accuracy of
link prediction, but no specific threshold is set to determine whether the prediction is
effective. As shown inRef. [14], eight real networks in different fieldswere predicted,
and the average AUC obtained in different networks was about 0.819 [15], which
we can use as a standard to test the accuracy of the prediction model. In general,
taking the average of link prediction accuracy in different years, the two lowest
prediction accuracy are 0.716 and 0.788 respectively, and the rest prediction accuracy
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Table 3 Link prediction accuracy of ENMON models

Years AA ACT CN LP PA RA

2000 0.845 0.201 0.843 0.994 0.711 0.846

2005 0.940 0.739 0.941 0.995 0.805 0.940

2010 0.954 0.848 0.951 0.991 0.823 0.956

2015 0.959 0.886 0.961 0.991 0.802 0.959

2020 0.964 0.906 0.963 0.992 0.799 0.964

Mean 0.932 0.716 0.932 0.992 0.788 0.933

is above 0.9, indicating the application of the link prediction method in the ENMON
is effective. On the one hand, it has the validity of the prediction accuracy, and on
the other hand, it can distinguish the prediction results of different indices. Results
of link prediction are as shown in Table 3.

From the performance of different indices, the LP index has the highest prediction
accuracy, and the difference in network scale has no significant impact on its results.
Conversely, the ACT index has the lowest prediction accuracy, and the results with
large errors appeared when the network scale was small. The results of the RA index,
the AA index, and the CN index are very close. More specifically, the performances
of the RA index and the AA index is better than the CN index slightly. Meanwhile,
the prediction accuracy of the PA index and the ACT index is poor, lower than the
threshold standard, and their AUC values fluctuate slightly under different network
scales, indicating that they are less applicable in the ENMON.

4.2 Evolutionary Mechanism

From the performance of the link prediction algorithm, we can divide the selected
six indices into four categories: the first category is the LP index and the CN index,
the latter is a special case of the former, that is, the adjustment coefficient of the LP
index is 0. The second category is the RA index and the AA index, the difference
between them is that the RA index is more sensitive to network heterogeneity, so it is
more accurate than the AA index in the case of higher average degree centrality. The
third category is The ACT index, which measures the distance of the information
transmission path between nodes from two directions. The fourth category is the PA
index, which is related to a certain degree of importance of the nodes themselves,
but has nothing to do with the paths between them. Next, we will discuss the internal
dynamics of the formation of the competitive institution among high-tech enterprises,
as reflected in the results of the six indices.
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4.2.1 Industrial Convergence Intensifies the Competition Pattern

According to the results of the CN index and the LP index, what affects the rela-
tionship between enterprises is not only the direct competition, but also may come
from a wider industrial chain level. This development path is reflected in the trend of
industrial convergence. The impact of this trend on enterprise competition is mainly
reflected in two aspects: First, industrial convergence intensifies the existing compe-
tition situation, because a mutual substitution relationship is generated in products
that originally belong to different markets. Second, industrial convergence attracts
more competitors, which urges enterprises to achieve industrial upgrading through
mergers across industries and regions.

High-tech industries have the characteristics of high industrial growth and are
related to other industries closely. Therefore, the process of industrial convergence
not only affects the competition situation in a single field but also has a profound
chain reaction, which will ultimately affect the innovative development of high-tech
zones.

4.2.2 Enterprises Scramble to Seize the Information Highland

Structural hole theory holds that a third party who connects the two without a direct
connection has a natural information advantage. The role of the RA index and the
AA index is to find the node pairs with less common neighbors and give them a
higher possibility of connection. In the ENMON, it means that if the relationship
between the enterprise and its upstream or downstream enterprises is very weak, then
other enterprises will establish a direct relationship across them. These "structural
hole" enterprises can discover and seize new market opportunities promptly. More-
over, they can improve their brand influence in the process of information exchange
continuously, to expand market share and gain a monopoly market advantage.

The RA index and the CN index have high prediction accuracy in ENMON,
indicating that striving for information and control advantages are important factors
to stimulate the competitiveness of enterprises. Under this circumstance, software
and technical service enterprises with information and data processing capabilities
often become the best in the competitive network and hold a leading position for a
long time.

4.2.3 Powerful Alliances to Alleviate Excessive Competition

The PA index shown in the ENMON is that the newly added enterprises tend to
establish connections with the most influential enterprises. Professional develop-
ment brings higher influence to some enterprises, and it is more likely to establish a
competitive relationship between them, that is, showing a pattern of “strong compe-
tition”. However, in the ENMON model, the performance of the PA index is poor,
which just shows that there is an opposite force, the “strong alliance” is at play. The
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cooperation-competition theory believes that blind competition will bring about a
vicious cycle and lead to both losses, only both competition and cooperation can
achieve mutual benefit and win–win results. In Z-Park, various industrial fields have
formed industrial clusters with a certain scale. A new profit point will often lead
to the pursuit of many enterprises, and finally intensifies the competition within the
cluster. However, under the influence of the market mechanism, various competitors
will cooperate in technology and form a harmonious competition environment.

4.3 Prediction of Potential Competition

Link prediction includes two aspects: the prediction of unknown links and the predic-
tion of future links. This paper mainly focuses on the latter, which is to predict the
possibility of establishing a future connection between two nodes in the network that
have not yet been associated with the known network topology information. Through
the tests of accuracy and stability, the link prediction method is proved to have good
accuracy and feasibility in the ENMON model. Referring to previous studies using
link prediction to discover potential trade relationships or corporate partners, this
paper will apply the best indices in the latest year’s corporate competition network
to quantitatively evaluate the similarity between a group of firms that have not yet
been linked, to provide a long-term reference for the future competition situation of
Z-Park.

Using the LP indexwith the best prediction effect to predict the ENMONmodel in
2020, the similarity matrix based on the LP algorithm can be obtained. Each element
in the matrix represents the relationship between any pair of unconnected nodes in
the network. The degree of similarity can be used to measure the probability that
they will be connected in the future.

SimLP =
⎡

⎢
⎣

Sim11 . . . Sim1N
... . . .

...

SimN1 . . . SimNN

⎤

⎥
⎦ (1)

Among them, N is the number of nodes in the network, and SimLP represents the
similarity matrix obtained based on the LP algorithm. After removing the diagonal
elements of the matrix, arrange the similarity values between any pairs of nodes
in descending order, and then take the 7 pairs of nodes with the highest similarity
as the potential enterprise combinations that are most likely to have competitive
associations in the future, as shown in Table 4.

Through the similarity ranking of node combinations, two obvious features can be
observed: (1) The similarity of node combinations is highly heterogeneous. Among
the 656,424 pairs of nodes with potential competitive associations, the largest simi-
larity value is 788, from the “Kyland Technology—NJA Information”, while the
“Tuoremei Medical—KanCare Nutrition” with the smallest similarity is only 0.5.
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Table 4 Potential competitors of ENMON

Serial number Enterprise—enterprise combinations Similarity value

1 Kyland Technology—NJA Information 788

2 Easted Information—Jrunion 702.5

3 Beijing United Information—NJA Information 698.5

4 NJA Information—LongRuan Technologies 685

5 Jrunion—Capital Online 673.5

6 UltraPower—Transtrue Technology 672

7 Kyland Technology—UltraPower 648.5

Therefore, the similarity calculated based on the LP index is highly discriminative for
the possibility that different nodes will link in the future, and the top-ranked combi-
nations are far more likely to establish a relationship in the future than others. (2) The
corporate entities in the potential competitive combinations are highly overlapping.
Among the top 20 enterprise combinations, there are 14 related to Jrunion, Kyland
Technology, Easted Information, and UltraPower, 4 of them are the combinations of
the above enterprises, which means that the industrial transformation and upgrading
of Z-Park has a strong dependence on software and information technology services.
These popular enterprises will face a more intense competitive environment in the
following years, and they will also have more business overlap with each other.

5 Conclusion

At present, Z-Park’s high-tech enterprises occupy 10% of the country’s total, and
Z-Park has become an important scientific and technological innovation center in
China. Based on the exploration of its dynamic mechanism and the prediction of its
development prospects, the following two policy suggestions are proposed:

(1) Strengthen the characteristics and advantages of the data intelligence industry.
The electronics and information industries, especially software and informa-
tion technology service enterprises are in a dominant position in Z-Park. The
number of such enterprises is the largest and the competition is fierce. The digital
transformation and intelligent upgrading of the industry play an indispensable
intermediary role. To promote the development of data intelligence industry
clusters, the managers should improve the service system for the transforma-
tion of scientific and technological achievements, cultivate high-level innovative
talents, and increase financial support.

(2) Guide the transformation of enterprise competition and cooperative relation-
ship. According to the research on the innovation ecosystem, in the industrial
technology innovation ecosystem, whether the relationship between different
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innovationgroups is competitive or symbiotic is affectedbymany factors. There-
fore, in the ENMON model, competition and cooperation can be transformed
into each other under the influence of different influencing factors. On the one
hand, park managers should guide the implementation of a moderate compe-
tition mechanism. The park should adopt a free market competition policy as
a whole, and formulate regulatory policies for market entry in specific areas
based on industry characteristics and existing competition intensity. On the
other hand, an enterprise collaboration mechanism within the park and across
the park should be created. The managers should establish professional asso-
ciations in conjunction with industry leaders and other outstanding enterprises
to fully understand the resources and development status of the industry, and
formulate scientific guidance for the cooperation of enterprises in the industry.
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Analyzing Configuration Transitions
Associated with Higher-Order Link
Occurrences in Networks of Cooking
Ingredients

Koudai Fujisawa, Masahito Kumano, and Masahiro Kimura

Abstract Time-varying higher-order interactions among more than two units are
typically modeled as a temporal higher-order network in the framework of simplicial
complex. For the temporal evolution of the higher-order structure of human proximity
interactions in five different social settings, previous work found the characteristics
of the configuration transitions in a temporal higher-order network before and after
triplet interaction events occur. Recently, food science and computing have been
attracting attention due to the increasing popularity of recipe sharing services in social
media. In this paper, aiming to reveal the characteristics of the temporal evolution
of homemade recipes in terms of combinations of ingredients, we propose a method
of analyzing the configuration transitions in a temporal higher-order network of
ingredients before and after new higher-order links are formed, in the framework of
temporal simplicial complex by extending the previous work from a perspective of
activity degree of configuration. Using real data of a Japanese recipe sharing service,
we empirically demonstrate the effectiveness of the proposed method, and apply it
to analyzing the dynamical properties of higher-order networks of ingredients for
Japanese homemade recipes.

Keywords Higher-order interaction · Simplicial complex · Temporal network
analysis

1 Introduction

By capturing pairwise interactions between units, complex network science has pro-
vided new insights into a variety of fields such as biology, ecology and sociology [2].
In the framework of ordinary dyadic-network (i.e., simple graph), a node (or vertex)
stands for the unit of an underlying system and a link (or edge) represents the pairwise
interaction between units. However, many real-world systems are very involved with
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higher-order interactions among more than two units. Examples include coauthor-
ship, email sending, human social interaction and neuronal stimulus. A simplicial
complex [6, 13] is a typical model of higher-order network that can represent interac-
tions among any number of units, and this approach has been successfully applied to
several problem domains such as brain organization [14], protein interaction [7] and
social influence spreading [8]. Moreover, Benson et al. [3] have explored the tempo-
ral evolution of simplicial complexes derived for 19 datasets from various domains
in terms of simplicial closure, which is a distinctive phenomenon of higher-order
link creation and cannot be captured by traditional network analysis methods.

Recently, Cencetti et al. [5] have investigated the temporal evolution of the higher-
order structure of human proximity interactions in five different social settings in
terms of temporal simplicial complex. Unlike link prediction tasks such as simplicial
closure, they in particular addressed higher-order interactions involving exactly three
individuals (i.e., triplet interaction events), and examined the transition rates for the
configurations of three individuals before and after a triplet interaction event. Here,
such configurations can be classified into the following four cases. For the three
people, there are no pairwise interactions in the first case, there is a single pairwise
interaction in the second case, and there are two pairwise interactions in the third
case. Also, in the fourth case, there is a larger interaction including the three people.
Then, they empirically showed that the temporal evolution towards and from such a
social triplet interaction event is characterized by the above second and third cases [5].
However, very few attempts have beenmade at analyzing these characteristics for the
case of more than three interactions and other domains. Moreover, the configuration
transition analysis by Cencetti et al. [5] entirely ignored an idea of activity degree
of configuraion before and after a higher-order interaction event, i.e., the activity
degree of each configuration compared to its ordinary occurrence rate.

With the advent of social media for cooking recipes, a large amount of data
on homemade recipes is becoming available, offering an opportunity to investigate
food practices of ordinary people. Thus, attention has recently been devoted to food
science and computing [12], and combinations of ingredients appearing in recipes
have been analyzed from the point of view of complex network science [1, 9, 16].
However, those studies only focused on pairwise relationships between ingredients
and analyzed their static properties.

Aiming to reveal the characteristics of the temporal evolution of homemade
recipes in terms of combinations of ingredients, we investigate a higher-order net-
work of ingredients derived from a recipe stream in social media in the framework of
temporal simplicial complex. Here, for a positive integer n, a higher-order link of size
(n + 1) (i.e., n-simplex) represents a set of (n + 1) ingredients occurring together in
a recipe and can also be regarded as an interaction among (n + 1) ingredients. In this
paper, by extending Cencetti et al.’s work [5] from a perspective of activity degree
of configuraion, we propose a method of analyzing the configuration transition in a
temporal network of ingredients associated with an occurrence of a new n-simplex
(i.e., interaction event of (n + 1) ingredients in a newly posted recipe) in terms of the
occurrence probabilities of the boundaries (i.e., (n − 1)-faces) before and after the
occurrence of the n-simplex. Using real data of a Japanese recipe sharing service, we
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empirically evaluate the proposed method, and apply it to analyzing the dynamical
properties of higher-order networks of ingredients for Japanese homemade recipes.

2 Related Work

Recently, a number of studies have been conducted in the field of food science
and computing [12], and a variety of food-oriented applications are being explored.
Examples include analysis of ingredient networks in terms of flavor compounds [1,
9], and analysis of population-wide dietary preferences based on recipe queries on
the Web [18], and analysis of cuisines and culinary habits around the world from
ingredients, flavors and nutritional values for large-scale data of online recipes [15].
As for recipe recommendation, Teng et al. [16] examined the use of complement and
substitute networks for ingredients, andTrattner andElswiler [17] explored howalgo-
rithmic solutions relate to the healthiness of recipes. As cross-region recipe analysis,
Jiang et al. [10] jointly visualized recipe density and ingredient categories to com-
pare food cultures in the world, and Min et al. gave a framework of culinary culture
analysis by extracting cuisine-course topics of recipes from ingredient combinations
(see [12]). In this paper, we explore the characteristics for the temporal evolution of
higher-order interactions among ingredients in Japanese homemade recipes.

There have been many studies on link prediction for traditional dyadic-networks
[11]. However, little is known about higher-order structure in large real-world data
since its analysis can be computationally challenging. As for predicting higher-order
links in higher-order networks, Xu et al. [19] proposed HPLSF which is a supervised
method using latent features. When restricting candidate higher-order links, Zhang
et al. [20] proposed Coordinated Matrix Minimization (CMM) which is a prediction
method leveraging adjacency space, and empirically showed that CMM can out-
perform several baselines including HPLSF. On the other hand, Benson et al. [3]
established a foundation for analyzing the basic structure of temporal higher-order
networks, and examined higher-order link prediction in terms of simplicial closure.
In this paper, as with Cencetti et al.’s work [5], we analyze the configuration tran-
sitions in temporal simplicial complex associated with new higher-order interaction
events.

3 Preliminaries

Let V be a set of cooking ingredients to be considered. Based on discrete-time
observations (e.g., daily observations), we explore a temporal higher-order network
in V , which is derived from a cooking-recipe stream R consisting of recipes with
time-stamps in recipe sharing services. We represent it as a temporal simplicial
complex K, where each element of V is referred to as a vertex (or a 03-simplex) in
K. A set of n + 1 vertices σ = {v0, v1, . . . , vn} ⊂ V is called a higher-order link of
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size n + 1 (or an n-simplex) in K at time t , i.e., σ ∈ K at time t , when there exists
such a recipe r ∈ R with time-stamp t that includes ingredients v0, v1, . . . , vn ∈ V .
An n′-simplex σ ′ is called an n′-face of n-simplex σ if n′ < n and σ ′ ⊂ σ . Every face
of simplex σ ∈ K at time t is also a simplex in K at time t . For each recipe r ∈ R,
let σ(r) denote the simplex consisting of all the ingredients in r , and let t (r) ∈ Z

denote the time-stamp of r . Here, σ(r) is referred to as the simplex generated by
recipe r , or a recipe simplex, briefly. For each r ∈ R, recipe simplex σ(r) represents
an essentially new simplex (i.e., an essentially new higher-order link) occurred in K
(i.e., the temporal higher-order network of ingredients) at time t (r).

For a recipe n-simplex σ(r) = {v0(r), v1(r), . . . , vn(r)} at time t (r), we inves-
tigate the configuration changes around recipe simplex σ(r) in temporal simpli-
cial complex K before and after the occurrence of σ(r) at time t (r) (see Fig. 1).
As configurations around σ(r) in K, we first focus on its boundaries, i.e., its
(n − 1)-faces, σ0(r) = {v1(r), . . . , vn(r)}, σ1(r) = {v0(r), v2(r), . . . , vn(r)}, . . . ,
σn(r) = {v0(r), v1(r), . . . , vn−1(r)} (see Fig. 2). We also explore the existence of
such higher simplices inK that includes σ(r). In order to incorporate an idea of activ-
ity degree of configuration, we consider three time-periods around the occurrence
time t (r), IA(r) = [t (r) + 1, t (r) + α], IB(r) = [t (r) − α, t (r) − 1] and I ′

B(r) =
[t (r) − α′, t (r) − 1], where α and α′ are positive integers with α � α′ (see Fig. 1).
Here, IA(r) indicates an observation period just after the occurrence of σ(r), IB(r)
indicates a short-term observation period just before the occurrence of σ(r), and
I ′
B(r) indicates a long-term observation period before the occurrence of σ(r) (e.g.,
the last twelve months before it).

Fig. 1 Illustration of
temporal transition for recipe
simplex σ(r)

Fig. 2 Example of recipe
simplex σ(r) and its
boundaries
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First, we empirically estimate the probabilities θh(r), ph(r) and p′
h(r) that a recipe

simplex including σ(r) occurs in K within time-periods IA(r), IB(r) and I ′
B(r),

respectively.Next, by excluding such recipe simplices inK that includeσ(r) fromour
target, we identify the recipe simplices inwhich only one σ j (r) among the boundaries
σ0(r), σ1(r), . . . , σn(r) occurs inK. In this way, for j = 0, 1, . . . , n, we empirically
estimate the probabilities θ j (r), p j (r) and p′

j (r) that σ j (r) occurs inK within time-
periods IA(r), IB(r) and I ′

B(r), respectively. For completeness, we also consider
the recipe simplices in which none of the boundaries σ0(r), σ1(r), . . . , σn(r) occur
in K. We empirically estimate the probabilities θ�(r), p�(r) and p′

�(r) that none of
σ0(r), σ1(r), . . . , σn(r) occur inK within IA(r), IB(r) and I ′

B(r), respectively. Note
that

∑n
j=0 θ j (r) + θh(r) + θ�(r) = ∑n

j=0 p j (r) + ph(r) + p�(r) = ∑n
j=0 p

′
j (r) +

p′
h(r) + p′

�(r) = 1. To analyze the configuration transition around σ(r) in K, we
focus on the following feature vectors (i.e., probability vectors) θ(r), p(r) and p′(r)
for IA(r), IB(r) and I ′

B(r), respectively (see Fig. 1);

θ(r) = (θ0(r), . . . , θn(r), θh(r), θ�(r)), p(r) = (p0(r), . . . , pn(r), ph(r), p�(r)),

p′(r) = (p′
0(r), . . . , p

′
n(r), p

′
h(r), p

′
�(r)).

In this paper, for each recipe simplex σ(r), we investigate the relation between the
probability vectors p(r) and p′(r) for before its occurrence and the probability vector
θ(r) for after its occurrence

4 Analysis Method

For a positive integer n, we consider a set of recipes Rn (⊂ R) such that each
σ(r) ∈ Rn occurs during a specified time-period as a recipe n-simplex in temporal
simplicial complex K. We investigate the configuration transition in K associated
with an occurrence of σ(r) (∀r ∈ Rn).

4.1 Transition Analysis of Active Configuration

For any r ∈ Rn , we explore the transition of active configuration around recipe n-
simplex σ(r) in K. To this end, we decompose Rn as follows:

Rn =
n+1⋃

λ=1

Rn
A,λ ∪ Rn

A,h ∪ Rn
A,� =

n+1⋃

λ=1

Rn
B,λ ∪ Rn

B,h ∪ Rn
B,� (disjoint union).

As explained below, by Rn
A,h , Rn

A,� and Rn
A,λ (λ = 1, . . . , n + 1), we represent the

active configurations around recipe n-simplices in K just after their occurrences.
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Also, by Rn
B,h , Rn

B,� and Rn
B,λ (λ = 1, . . . , n + 1), we represent the active configu-

rations around recipe n-simplices in K just before their occurrences.
We determine towhich subset each r ∈ Rn belongs in the followingway: Suppose

that σ(r) = {v0(r), v1(r), . . . , vn(r)}. First, we set r ∈ Rn
A,h if θh(r) > p′

h(r) and
set r ∈ Rn

B,h if ph(r) > p′
h(r). Here, r ∈ Rn

A,h means that simplices including σ(r)
actively occur in K within time-period IA(r) just after the occurrence of σ(r). Also,
r ∈ Rn

B,h implies that simplices including σ(r) actively occur in K within time-
period IB(r) just before the occurrence of σ(r). Next, in the case of r /∈ Rn

A,h , we
examine whether θ j (r) > p′

j (r) for each boundary σ j (r) of σ(r) ( j = 0, 1, . . . , n).
Let λ denote the number of such boundaries of σ(r) that satisfy the above condition.
We set r ∈ Rn

A,λ if λ > 0 and set r ∈ Rn
A,� if λ = 0. Here, r ∈ Rn

A,λ means that λ

boundaries of σ(r) actively occur in K within time-period IA(r), while r ∈ Rn
A,�

implies that none of the boundaries of σ(r) actively occur in K within time-period
IA(r). Moreover, in the case of r /∈ Rn

B,h , we examine whether p j (r) > p′
j (r) for

each boundary σ j (r) of σ(r) ( j = 0, 1, . . . , n), and define the integer value λ ∈
{0, 1, . . . , n + 1} in the same way as above. We set r ∈ Rn

B,λ if λ > 0 and set r ∈
Rn

B,� if λ = 0. Here, r ∈ Rn
B,λ means that λ boundaries of σ(r) actively occur in

K within time-period IB(r), while r ∈ Rn
B,� implies that none of the boundaries of

σ(r) actively occur in K within time-period IB(r).
We propose examining the transition rates of active configurations in K associ-

ated with occurrences of recipe n-simplices through active-configuration transition
matrix Tn , which is defined by

Tn(x, y) = |Rn
B,x ∩ Rn

A,y |
|Rn| (x, y = �, 1, . . . , n + 1, h). (1)

Here, |S| stands for the number of elements of a set S.

4.2 Influence Analysis

For ∀r ∈ Rn , we consider the recipe n-simplex σ(r) = {v0(r), v1(r), . . . , vn(r)},
and investigate the configuration transition in temporal simplicial complex K under
σ(r). We analyze how the probability vectors p(r) and p′(r) for before its occurrence
affect the probability vector θ(r) for just after its occurrence. For example, since it
is naturally speculated that θ(r) can be closely related to the situation just before
the occurrence of σ(r), we might have relation θ(r) 	 p(r), relation θ(r) 	 p′(r),
or relation θ j (r) ∝ p j (r)/p′

j (r) ( j = 0, 1, . . . , n), θh(r) ∝ ph(r)/p′
h(r), θ�(r) ∝

p�(r)/p′
�(r). In this paper, by assuming that

θ j (r) ∝ exp(w′′){p j (r)}w{p′
j (r)}w

′
( j = 0, 1, . . . , n), (2)

θh(r) ∝ exp(w′′
h){ph(r)}wh {p′

h(r)}w
′
h , θ�(r) ∝ exp(w′′

� ){p�(r)}w�{p′
�(r)}w

′
� ,
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and by employing a multinomial generative model with parameter θ(r), we propose
analyzing the influence of p(r) and p′(r) on θ(r) in terms of weight vector w =
(w,w′, w′′, wh, w

′
h, w

′′
h , w�,w

′
�, w

′′
� ).

By conforming to the MAP estimation framework, we estimate the weight vector
w. Let Sn

A,h be a set of r ′ ∈ Rn such that the time-stamp t (r ′) belongs to time-
period IA(r) and the recipe simplex σ(r ′) includes σ(r). Note that for ∀r ′ ∈ Sn

A,h ,
σ(r ′) represents such a new interaction of ingredients that is higher than or equal
to σ(r). Next, for ∀ j ∈ {0, 1, . . . , n}, let Sn

A, j be a set of r ′ ∈ Rn \ Sn
A,h such that

t (r ′) ∈ IA(r) and σ(r ′) includes the boundary σ j (r) of σ(r). Note that for∀r ′ ∈ Sn
A, j ,

σ(r ′) represents a new interaction including only σ j (r) among the boundaries of
σ(r). Next, let Sn

A,� be a set of r
′ ∈ Rn such that t (r ′) ∈ IA(r) and σ(r ′) does not

include σ j (r) for ∀ j ∈ {0, 1, . . . , n}. Note that for ∀r ′ ∈ Sn
A,�, σ(r ′) represents such

a new interaction that is lower than any boundary σ j (r) within σ(r), and Rn =⋃n
j=0 Sn

A, j ∪ Sn
A,h ∪ Sn

A,� (disjoint union). We set

m j (r) = |Sn
A, j | ( j = 0, 1, . . . , n), mh(r) = |Sn

A,h |, m�(r) = |Sn
A,�|.

In the proposed model, the probability P(m(r) |w) of observing m(r) = (m0(r),
m1(r), . . . , mn(r), mh(r), m�(r)) in time-period IA(r) is given by

P(m(r) |w) ∝ {θh(r)}mh(r) {θ�(r)}m�(r)
n∏

j=0

{θ j (r)}m j (r) (3)

To estimate the value of w, we consider maximizing the objective function,

L(w) =
∑

r∈R(n)

⎧
⎨

⎩
mh(r) log θh(r) + m�(r) log θ�(r) +

n∑

j=0

m j (r) log θ j (r)

⎫
⎬

⎭

− 1

2μ2
‖w‖2, (4)

where μ > 0 is a hyper-parameter, ‖w‖ stands for the Euclidean norm of w, and

θh(r) = exp{ah(r)}
Z(r)

, θ�(r) = exp{a�(r)}
Z(r)

, θ j (r) = exp{a j (r)}
Z(r)

( j = 0, 1, . . . , n),

ah(r) = wh log ph(r) + w′
h log p′

h(r) + w′′
h ,

a�(r) = w� log p�(r) + w′
� log p′

�(r) + w′′
� ,

a j (r) = w log p j (r) + w′ log p′
j (r) + w′′ ( j = 0, 1, . . . , n),

Z(r) = exp{ah(r)} + exp{a�(r)} +
n∑

j=0

exp{a j (r)} (5)
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(see Eqs. 2 and 3). Here, a Gaussian prior for w is assumed. Note that maximizing
L(w) reduces to a sort of softmax optimization problem in neural network (see Eqs. 4
and 5). Thus, we employed a gradient-based method [4].

5 Experiments

For real higher-order networks of ingredients derived from Japanese recipe-sharing
service,Cookpad1 we empirically evaluate the proposed analysismethod, and present
the analysis results for the dynamical properties of higher-order interactions among
ingredients.

5.1 Datasets

As recipe stream R, we employed four datasets of recipe stream from Jan 1, 2010
to Jan 30, 2012, “Dessert”, “Meat-dish”, “Vegetable-dish” and “Fish-dish”, each of
which corresponds to a recipe category of Cookpad. Here, the numbers of recipes
for these datasets were 5, 363, 3, 700, 6, 547 and 2, 147, respectively. For each of
the recipe streams, we adopted the set of its major ingredients2 as a set of vertices V .
Then, the numbers of vertices for the recipe stream datasets were 824, 684, 860 and
610, respectively. Next, for each of the recipe streams, we constructed the dataset
Rn by setting α to one month and α′ to one year, and by extracting such recipes that
consisted of exactly (n + 1) ingredients in V and occurred within 2011. Although
the previous work [5] examined the case of n = 2 (i.e., three people) for social
interactions, we are interested in the case of n > 2 since many recipes included more
than threemajor ingredients. In this paper, we focused on the cases of n = 3 (i.e., four
ingredients) and n = 4 (i.e., five ingredients) for simplicity. Then, the numbers of
samples, (|R3|, |R4|), for Desert, Meat-dish, Vegetable-dish and Fish-dish datasets
were (350, 370), (350, 260), (740, 600), and (350, 200), respectively.

5.2 Results for Transition Analysis of Active Configuration

For each dataset, we investigated the transition of active configuration in temporal
simplicial complex K associated with an occurrence of recipe n-simplex σ(r) by
employing the proposed active-configuration matrix Tn for the cases of n = 3 and

1 https://cookpad.com/.
2 First, we removed general-purpose ingredients for Japanese food such as soy sauce, salt, sugar,
water, edible oil, and so on. Next, we extracted such ingredients that appeared in five or more recipes
as a set of vertices V for each recipe stream.

https://cookpad.com/
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(a) Dessert (n = 3)
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(b) Meat-dish (n = 3)

Fig. 3 Visualization results of active-configuration matrix T3

n = 4 (see Eq. 1). Due to space limitation, we only display the results for Dessert
and Meat-dish datasets in the case of n = 3 (i.e., four ingredients).

Figure3 shows the visualization of T3, where Fig. 3a, b indicate the results of
Dessert andMeat-dish, respectively. As for the possibility of configuration transition
for n = 3, there can be 36 transition patterns, which means that matrix T3 consists
of 36 entries. However, only a relatively small number of transition patterns were
observed, that is, the number of non-zero entries of T3 was relatively small. Also,
T3(h, h) was significantly large in the entries of T3, that is, the temporal transition of
active configuration around σ(r) was characterized as follows: Simplices including
σ(r) actively occurred in K just before σ(r) occurs, and simplices including σ(r)
actively occur in K just after σ(r) occurred. From these facts, we speculate that
social media users for Japanese recipes tend to try to make easy recipes with fewer
ingredients on the basis of recent nice recipes, and also try to create novel nice
recipes by adding some ingredients for a recently posted recipe. Here, we note that
the properties mentioned above were also true for the other datasets of n = 3, 4.
Moreover, we note that these findings for interactions among ingredients in recipe
sharing services were essentially different from the property empirically found by
the previous work [5] for configuration transitions of human interactions in several
social settings.

By examining Tn , we can also extract several interesting phenomena. For example,
forDessert (n = 3) dataset, we observe that T3(h, 4)was relatively large (see Fig. 3a),
indicating that there were several recipes r ∈ R3 satisfying r ∈ R3

B,h ∩ R3
A,4. Exam-

ples include Crispy Sesame Cookies recipe constructed from four ingredients “cake
flour”, “egg”, “margarine” and “sesame” in V . For such a recipe r , the transition of
active configuration around σ(r) is described as follows: Just before the occurrence
of σ(r), simplices including σ(r) actively occurred in K. However, just after σ(r)
was produced, 3-simplex σ(r) decays into its four boundaries σ j (r) ( j = 0, 1, 2, 3)
(see Fig. 2), meaning that all the four boundaries actively occur in K while there are
no simplices that both include σ(r) and actively occur in K.



632 K. Fujisawa et al.

These results demonstrate that the proposed analysis method can reveal several
interesting properties for transitions of active configurations associated with occur-
rences of recipe simplices in temporal higher-order networks of ingredients derived
from social media data.

5.3 Evaluation of Influence Analysis Model

For analyzing the influence of p(r) and p′(r) on θ(r) associatedwith an occurrence of
recipe n-simplex σ(r) (∀r ∈ Rn), we empirically evaluate the proposed generative
model (see Eqs. 2 and 4) in terms of prediction performance. For each dataset, we
split it into training and test sets at a ratio of 7 : 3 along the time-axis. We estimated
the weight vector w from the training set, and evaluated the prediction capability of
the learned model using the test set in terms of prediction log-likelihood ratio PLR.
Here, PLR is defined by the difference between the learnedmodel and the uniformly
random model with respect to the log-likelihood for the test set (see Eqs. 3 and 4),
and measures the relative performance versus the random guessing. Note that the
uniformly random model is obtained by setting w = 0, i.e., w = wh = w� = w′ =
w′

h = w′
� = w′′ = w′′

h = w′′
� = 0 (see Eq. 2).

We compared the proposed model with the following four baseline models. The
first and second baseline models simply assume that the probability vector θ(r) for
IA(r) is the same as the probability vectors p(r) for the time period IB(r) and p′(r) for
the time period I ′

B(r), respectively. These models are referred to as baselines 1 and 2,
respectively. Note that the baselines 1 and 2 are obtained by settingw = wh = w� =
1, w′ = w′

h = w′
� = w′′ = w′′

h = w′′
� = 0 and by setting w′ = w′

h = w′
� = 1, w =

wh = w� = w′′ = w′′
h = w′′

� = 0, respectively (see Eq. 2). By taking into account
activity and inactivity, the third and fourth baseline models assume that θ(r) is
proportional to the ratio of p(r) to p′(r) and the ratio of p′(r) to p(r), respectively.
Here, the elementwise division of two vectors is used. These models are referred
to as baselines 3 and 4, respectively. Note that the baselines 3 and 4 are obtained
by setting w = wh = w� = 1, w′ = w′

h = w′
� = −1, w′′ = w′′

h = w′′
� = 0 and by

setting w = wh = w� = −1, w′ = w′
h = w′

� = 1, w′′ = w′′
h = w′′

� = 0, respectively
(see Eq. 2).

Figure4 shows the evaluation results of the proposed model, baseline 1 and base-
line 2 in terms of PLR metric for the datasets of n = 3 (i.e., 3-simplices) and n = 4
(i.e., 4-simplices) for the four recipe streams. We see that these three models pro-
vided much better performance than the random guessing although the value of
PLR can depend on datasets. Here, we omit the results of baselines 3 and 4 since
they were comparable in PLR to the uniformly random model for all datasets. We
note that baseline 2 was comparable to and slightly better than baseline 1 except for
the Vegetable-dish (n = 4) dataset. Thus, for almost all datasets, probability vectors
p(r) for short-term period IB(r) and p′(r) for long-term period I ′

B(r) had compara-
ble effects on prediction, and the idea of taking into account activity and inactivity
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Fig. 4 Evaluation results of the proposed model

through p(r) and p′(r) was not useful. However, we see that the proposed model
always performed the best. These results demonstrate the effectiveness of the pro-
posed model. Hence, we employed the proposed model for our influence analysis.

5.4 Results for Influence Analysis

For the configuration transition in temporal simplicial complex K under an occur-
rence of recipe n-simplex σ(r) (∀r ∈ Rn), we investigated the influence of p(r) and
p′(r) on θ(r) in terms of weight vector w for the eight datasets by employing the
proposed analysis model. Here, we present the analysis results only for Dessert and
Meat-dish datasets in the case of n = 4 (i.e., interactions of five ingredients).

Figure5a, b indicate the results of w for Dessert and Meat-dish datasets, respec-
tively. We first observe that these datasets had a quite similar tendency. For example,
the bias w′′

h toward such interactions that are higher than or equal to σ(r) was larger,
compared to the other biases w′′ and w′′

� (see Eq. 2). As for each boundary σ j (r) of
σ(r) ( j = 0, 1, . . . , 5), the influence of probability p′

j (r) within long-term period
I ′
B(r) was slightly stronger than that of probability p j (r) within short-term period
IB(r) (see the results of weights w and w′). Also, this property was true for such
interactions that are lower than each boundary σ j (r) within σ(r) (see the results of
weights w� and w′

�). On the other hand, from Eq. (5) and the results of weights wh

and w′
h , we see that feature log ph(r) within IB(r) negatively affected such future

interactions that are higher than or equal to σ(r), while feature log p′
h(r) within

I ′
B(r) positively affected them. Note that the observed properties largely depended
on datasets. Thus, these facts show that the proposed influence analysis method
can reveal interesting category-specific characteristics for the temporal evolution of
Japanese homemade recipes in terms of combinations of ingredients.
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Fig. 5 Results for influence analysis

6 Conclusion

Based on the idea of activity degree of configuraion, we attempted to extend the
previous work [5] that deals with temporal transition analysis of triplet structures of
human proximity interactions. We have proposed a novel method of analyzing the
configuration transitions in a temporal simplicial complex (i.e., a typical model of
higher-order network to represent interactions among any number of units) associ-
ated with occurrences of new simplices, and applied it to a dynamical analysis of
higher-order networks of ingredients derived from a recipe stream in social media.
By taking into account the nature of recipe simplices (i.e., simplices generated by
recipes), we in particular addressed interactions among more than three ingredi-
ents.

In the proposed analysis method, we focused on the boundaries of each new recipe
simplex σ(r) of a given dimension n. First, we have presented an analysis method for
the temporal transition of active configuration associated with the occurrence of σ(r)
through visualizing the active-configuration transition matrix. Next, by proposing a
probabilistic generative model for an influence analysis, we have provided a method
of analyzing how the occurrence probabilities of the corresponding simplices (i.e.,
the boundaries of σ(r) and the higher-order interactions including σ(r)) before the
occurrence of σ(r) affects those probabilities just after the occurrence of σ(r). Using
real data of a Japanese recipe sharing service, we empirically demonstrated the
effectiveness of the proposed method for the cases of n = 3 (i.e., interactions of
four ingredients) and n = 4 (i.e., interactions of five ingredients). Moreover, by
employing the proposed method, we revealed several interesting category-specific
characteristics for the temporal evolution of Japanese homemade recipes in terms of
combinations of ingredients.
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Dataset Service of National Institute of Informatics.
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Role of Network Topology
in Between-Community Beta Diversity
on River Networks

Richa Tripathi, Amit Reza, and Justin M. Calabrese

Abstract The between-community beta diversity of fish species—characterized
using similarity of species between river basins, shows a non-linear drop with topo-
logical distance on river networks. In this work, we investigate the pattern of this drop
with network distances and the role of underlying topology. Using the framework
of optimal channel networks, the species abundances are evolved under the neutral
biodiversity model. We observe that the steady-state species-similarity shows a tran-
sition at a critical network distance. At this critical distance, the average degree over
the nodes crosses the global average degree of the network. This study sheds light on
the role of branching in dendritic networks in ecological community assembly rules.

Keywords Beta diversity · Optimal channel networks · The neutral model of
biodiversity

1 Introduction

River systems across the globe, characterized by dendritic geometry, are natural
habitats of many freshwater fish species. The structure of these dendritic networks
has been shown to affect the biodiversity patterns and is pivotal in maintaining fish
biodiversity [3, 4, 10, 14]. Network-based studies in conjugation with biodiversity
models have successfully predicted emergent patterns in the distribution of biodi-
versity [15]. Network geometry not only assigns designated paths to fish movement
but the dendritic structure is also known to increase the persistence times of species
in the local community [17]. Studies using optimal channel networks (OCN) [6],
which provide a theoretical basis for studying the effects of dendritic geometry in
river networks, have helped in understanding how evolving network geometry and
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dispersal strategies shape the biodiversity patterns [16]. Network analysis [8, 11] and
spectral study of OCNs [1] have contributed to our understanding of the relation-
ship between topology and metapopulation dynamics in riverine ecosystems. These
results suggest a systematic exploration of the impact of river network topology on
species-similarity as a function of network distance.

Beta diversity, which here quantifies species-similarity between river basins, is
observed to decline non-linearly with topological distances between the river basins
[15] in real river systems. While species-similarity decays sharply over smaller net-
work distances, there is long-tailed decay at intermediate to long distances. We are
interested in identifying network topological factors responsible for this pattern of
species-similarity decline. With this aim, we explore how the node properties with
respect to their connectivity in the network, change statistically with topological
distances.

Additionally, it has been found that the more branched the network is, the higher
is the beta diversity [18, 19]. So, for a given network, it is peculiar to understand
changes in branching patterns as a function of topological distance. As a measure
of branchiness, we use average degree of nodes, and find that on average, OCNs
have highly branched nodes at low network distance and low branched nodes at
high network distance. In hyperbolic geometry also, the average degree of complex
networks is found to be decaying exponentially with distance r from the origin [13].
These two pieces of evidence, the decay of species-similaritywith distance and decay
of average degreewith distance,motivate a direct comparative study of these patterns.

In summary, we look at the statistical distribution of the average degree of net-
work nodes as a function of network distance and correlate it with the biodiversity
pattern of beta diversity. We use the neutral model of biodiversity [12] to evolve the
species’ abundances over time on the OCN and record the species-similarity between
basins at system steady-state [15]. Neutral model has been remarkably successful in
reproducing biodiversity patterns of fishes in river system and trees in forests [17].
We find that species-similarity shows phase transition-like behaviour as the average
degree is increased beyond a critical value. Such a study can help us analyze the
structure of the network and its impact on the function, which here is the dynamics
of riverine biodiversity.

2 Methods

In this section we discuss the details of neutral model implementation that is used
to evolve the fish species abundances on branches of optimal channel networks via
three different dispersal kernels. We also discuss how species-similarity is calculated
after the model reaches its steady-state.
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2.1 Neutral Model Implementation

The neutral model of biodiversity assumes species to be “neutral” or functionally
equivalent i.e., they do not have any competitive advantages over one another [12].
The abundances of species change stochastically over time under the processes of
dispersal, and diversification [15]. At any time in the model run, two events occur:
a fundamental entity of the system, here a fish, dies at randomly chosen site (local
community), and the freed space is either occupied by an offspring of species within
the network via dispersal or by a species from outside the system via a diversifi-
cation process with a small probability (ν). The dispersal process is quantified by
mathematical kernels that dictate the movement of fishes on the network. The fishes
disperse locally more often due to shorter network distances, but there is a small but
finite probability for a species to disperse to very large network distances. The model
is run until the steady-state is reached and then the biodiversity patterns, e.g. alpha
diversity, beta diversity and gamma diversity, are recorded.

We first assume all the sites (regions of fish habitat) on the network to be environ-
mentally alike, i.e. they have the same habitat capacities (H), and hence hold same
number of fishes at any given time. Subsequently, we scale the H with respect to the
distance from the outlet, with sites closer to the outlet having higherH and vice-versa.
To incorporate the effect of kind of dispersal in our study, we simulate the neutral
model with three dispersal kernels D: Exponential + Cauchy’s [15], back-to-back
Exponential [16], and Fat tailed radially symmetric Kernel [9]. If ri j is the distance
between the sites i and j on the network, these dispersal kernels are expressed as
follows:

DEC
i j = C

(
ari j + b2

b2 + r2i j

)
(1)

DBBE
i j = C

(
ari j

)
(2)

DFRS
i j = −C

(
η + 2

2πd2

(
1 + ri j

d

2)η/2
)

(3)

Parameter C in above expressions is the normalization constant ensuring that∑
j Di j = 1, or that the dispersal occurs only within the network. Parameter a

(0 < a < 1) characterizes short range dispersal in exponential kernels, and b charac-
terizes long distance decay pattern. d is mean dispersal distance and η is chosen such
that the kernel has fat tails. The values of these parameters are presented in Table. 1.

The probability that a emptied site i will be colonized by a species from site j is
obtained as follows:

Pi j = (1 − ν)
Di j Hj∑
m DimHm

, (4)
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Table 1 Parameter sets of three different Kernels

Kernel Parameter value

Exponential + Cauchy’s a = 0.26, b = 0.03

Exponential a = 0.26

Radially symmetric d = 1, η = −4.4

where (1 − ν) is the probability of the diversification process not happening, and the
rest of the terms determine the influence of distance-dependent dispersal and habitat
capacity of the source site on the total probability.

2.2 Beta Diversity

Tocharacterize beta diversity of fish species in twobasins,we use Jaccard’s Similarity
Index (JSI) and study its decay with distance [7, 15]. For two basins i and j , JSI is
defined as JSI = Si j

Si+Sj−Si j
, where Si and Sj are the numbers of fish species in basins

i and j , respectively, and Si j is the number of common fish species between these
basins. JSI generally shows sharper decay at shorter distances and slower decay at
large distances.

2.3 Optimal Channel Networks

Weuse optimal channel networks (OCN) [2, 6] as the spatial framework for dispersal
on river systems. These structures are optimal in the sense of minimizing energy
dissipation of the erosional process that forms them. The energy is expressed as E =∑N−1

i Liq
γ

i , where Li and qi represent length and discharge of link i , respectively
and N is the number sites in the network. The variation of parameter γ in the energy
function is used to generate OCNs with different bifurcation patterns.

3 Results

We present our results on three 20 × 20 OCNs as generated by setting γ = 0.1, 0.5,
and 0.9 using R-package OCNet [5]. These OCNs are shown in the top row of Fig. 1.
The outlets are at the bottom left site for all three networks. The choice of the OCNs
with 400 sites is arbitrary and γ values are chosen to cover its range 0 <= γ <= 1
in our results. The variation of γ reflects in the drainage pattern, which changes from
an intertwined river network to a more regular-looking pattern as γ is increased. The
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γ = 0.1 γ = 0.5 γ = 0.9

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1 Properties of OCNs. The first row in the figure shows three different OCN networks
obtained by setting three different values of γ . The second row shows the corresponding probability
distribution of shortest paths on the OCNs. The last row shows the average over degrees of nodes
at a network distance r , as a function of r

distribution of pair-wise topological distances r , presented in the next row of Fig. 1
d–f, is almost similar for all three OCNs. The distributions for the first two OCNs are
slightly more right-skewed than the third one, and the OCNwith γ = 0.9 has slightly
larger mean distance r̄ ≈ 17 and broader range of r than the first two with means
as r̄ ≈ 15 and r̄ ≈ 14, respectively. Next, we show the average over the degree of
the nodes at topological distance r . Starting from a node i considered to be at the
origin, we identify its neighbours at a given distance r , and calculate their degrees.
This is repeated for all nodes i = 1, 2, ...N and for all distances r = 0, 1, . . . rmax.
Following this, the average degree at a distance r , K̄ (r) is plotted as a function of
r for all the three networks in parts (j–l) of Fig. 1. The profile for these functions is
similar across all the three variations—it shows higher K̄ at lower r , and lower K̄
at higher r , and roughly flat K̄ for intermediate the r . These three portions form a
smoother curve for γ = 0.9 OCNs than for the other two. Note that at r = 0, K̄ (r)
is the average degree (〈K 〉) of the network.

For the neutral model simulations on these networks, at t = 0, we assume all the
N = 400 sites on these OCNs to be occupied by one of the species chosen from
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γ = 0.1 γ = 0.5 γ = 0.9

)c()b()a(

)f()e()d(

)i()h()g(

(j) (k) (l)

Fig. 2 Simulation of the neutralmodel of biodiversity onOCNs. The top row of the figure shows
OCNs with a fish species occupying each node (indicated by colour) at the start of the simulation.
The second row is a snapshot of the system at a steady-state, showing clear spatial assemblages of
species over the networks. The third row is the distribution of TSR at the steady-state of the system.
The third row shows Jaccard’s Similarity Index as a function of network distance (r )

a list of 10 species. This also means that number of species at each site, or the
local species richness (LSR) is one. Hence, the initial system state has each site
occupied by a single species randomly chosen from a set of species. This is depicted
by coloured dots (species) on the OCN sites in Fig. 2 a–c, where color identifies with
species. The habitat capacities are assumed to be the same Hi = 1, i = 1, 2, . . . N
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for all sites, and dispersal is agnostic to the location of the outlet, i.e., the fish units
move both upstream and downstream with equal probabilities. At each time step,
the system state is updated via a neutral process, with diversification probability
ν = 1.5 ∗ 10−2, and dispersal via one of the kernels. The results in Fig. 2 are for
Exponential and Cauchy’s Kernel (DEC ). These state updates continue until the
system reaches a steady-state when the Total Species Richness (TSR) of the system
shows no directional changes. The steady-state, a snapshot of which is shown in
parts (d–f) of the figure, is characterized by a clear spatial organization of species
into communities. The steady-state has around 35 species for the first two OCNs
(γ = 0.1, 0.5) and 40 species for the last OCN (γ = 0.9) as shown by the distribution
of TSR at the steady-state (a range of values of TSR at steady state). The alpha
diversity or the local species richness is always one because each site is prescribed
to hold only a single fish unit. The JSI measuring the species-similarity between two
basins as a function of distance is shown in parts (j–l) of the figure. The JSI shows a
decline in topological distance between species pairs, as expected. It is finite valued
until topological distance (r ≈ 15), beyond which it goes to 0 for all the three OCNs.

This transition of JSI motivates the search for corresponding changes in network
topology at the network distance at which the transition occurs. Next, we focus on
how beta diversity (shown in the last panel of Fig. 2) varies with average network
degree at a distance r (shown in the last panel of Fig. 1).We plot the former against the
latter for all the three OCNs to observe this relation. As shown in Fig. 3a, we observe
that the JSI only becomes finite when the average degree at a distance r increases
beyond the value 2. The sizes of the dots in the figure are inversely proportional
to network distance r . So, starting from a finite non-zero value, both the JSI and
the K̄ (r) decrease with increasing r , and JSI becomes 0 as K̄ (r) = 2 is crossed.
Notice that K̄ (r) = 2 is also the global average degree (〈K 〉) of the network shown
by dashed vertical lines in the figures. Hence, 〈K 〉 seems to be a critical degree at
which JSI shows a characteristic change. This observation is robust across all the
three OCNs and the three dispersal Kernel choices (see Methods). In all the figures
the (expected) value of JSI = 1 at r = 0, and K̄ (r) = 2 is omitted for visualization
purpose. For γ = 0.1, 0.5,maximum JSI (except JSI = 1) is observed for higher K̄ (r)
than for γ = 0.9. Overall, no pronounced differences are observed in the pattern of
JSI transition either across OCNs or across dispersal kernel choices. Importantly,
this suggests that our quantitative results are not sensitive to these modeling choices.

To further test the robustness of the transition of JSI on the dendritic network from
zero to non-zero values as a function of K̄ (r), we drop the two assumptions: H = 1
and LSR = 1, and simulate the model on higher H values in both two settings. In the
first one, all sites are assumed to have H = 50, and the initial state had each site with
at most 5 species chosen from a list of 10 species. In the second setting, the intial
number of species are similarly assigned, but the H of a site is proportional to its
distance from the outlet. The highest H = 50 at the outlet and the H = 2 headwaters
(farthest sites from the outlet). The expression used to obtain Hs is:

Hi = CH

(1 + rio)
, (5)
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(a) Exponential+Cauchy’s Kernel

(b) Exponential Kernel

(c) Fat-tailed radially Symmetrically Kernel

Fig. 3 Jaccard’s similarity index as a function of average degree at a distance r . The figure
shows a variation of Jaccard’s Similarity Index, a measure of Beta Diversity of Species as a function
of the average degree of nodes at a distance r . The dispersal of fishes over the network is governed
by Kernel set in the neutral model; the top figure is for Exponential + Cauchy’s Kernel, the middle is
for back-to-back exponential Kernel, and the last one is for fat-tailed Gaussian Kernel. The colours
of dots are indicative of the OCN example identified by the γ value. The sizes of the dots are
inversely proportional to the magnitude of network distance. The dashed vertical line shows the
global average degree of the network
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Fig. 4 Jaccard’s similarity Index patterns on OCN with higher and non-uniform habitat
capacities (H) of sites. Panels a and c show OCN with γ = 0.9 where node sizes are scaled
according to H of the site. In (a), all sites have a habitat capacity of 50, and in (c), the habitat
capacities are assigned based on distance from the outlet (bottom left site), with the outlet having
H = 50 and the farthest point from outlet having H = 2. Panels b and d show variation of JSI for
three different OCNs, all with H as depicted in the corresponding left panels

where CH = 50 and rio is the distance of ith site from the outlet (o). These settings
are indicated in Fig. 4a, c. The size of the sites is indicative of habitat capacities.
Since the kernel choice does not show much difference in the pattern, we show the
JSI results only for the Cauchy+Exponential Kernel in parts (b) and (d) of the figure
for all the three OCNs. Overall JSI range has decreased from the H = 1 case, and
there is a corresponding rise in local species richness as the sites can now hold more
fishes. In both of these settings the JSI again shows transition to non-zero values at
critical K̄ (r), i.e. at average degree of the network K̄ (r) = 2.

We also tested these results for a larger extent of dispersal by setting a = 0.5 (long-
distance dispersal) and a = 1 (global dispersal) in the exponential kernel. While in
the former case, the spatial communities still get formed, there are no communities
formed in the latter case (result not shown). In the long distance dispersal scenario,
the JSI as a function of topological distance shows gentler decline from high values
to lower ones, and becomes 0 at a higher topological distance. In the second, JSI
remains constant at very low non-zero values and shows almost no variation with
distance. The first case shows similar results of JSI versus K̄ (r), while for the global
dispersal, the transition pattern is lost.
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4 Discussion and Conclusion

In this work, we simulate the neutral model of biodiversity on OCNs and obtain
patterns of species-similarity as a function of network distance. We observed that as
one moves away from a given node, the degree of nodes encountered decreases
statistically. At distance zero, the K̄ (r) is obviously equal to 〈K 〉, but in range
(0 > r <= rmax), K̄ (r) goes from value greater than 〈K 〉 to a value smaller than
this. Similarly, a decline with topological distance is also observed for the species-
similarity between the basins. We further correlate the obtained species-similarity
pattern and degree of the nodes (as a function of network distance), by simultaneously
studying them as function of each other.

Whendirectly compared, JSI shows interesting variationwith average node degree
at a distance (K̄ (r)). For limited dispersal, we observe that JSI switched from zero to
non-zero values as K̄ (r) crosses global average network degree 〈K 〉. Hence, 〈K 〉 is
the critical network degree at which this transition in JSI occurs. Also, the non -zero
distance at which this crossover occurs also indicates the size of a typical ecological
community. This transition is further shown to be robust under three choices of
dispersal kernels andbifurcation geometries of theOCNsas set by energy exponentγ .

In the simulations of the neutral model, we had a specific choice of the parameters
(a, b, d, η, ν,CH ). The first four parameters are chosen to guide the range of dispersal
with more preference for local dispersal and have a small chance of long-range
dispersal. The ν is chosen to balance extinction and speciation and to avoid the trivial
steady states of neutral model. These are ‘monodominance by single species’ due to
extinction of all species except one, and excess speciation such that TSR keeps on
rising in the large time limit. CH parameter sets the average habitat capacity of sites
in the system. In most simulations, we chose CH = 1 for computational ease and to
visually show community structure on OCN maps. Note that the chosen parameters
represent just one set, and in principle, there can be more parameters that work and
give the same or similar results. However, in this work, we do not perform large
parameter scans. We checked our results on a larger network of size 25 × 25, and the
results still hold. The neutral model could be implemented on still larger networks
that would require more computations to reach the system steady-state.

It is important to conduct similar studies in the real river system and look for
the observations we report. River networks can be constructed from the geograph-
ical data of actual river systems, and species-similarity patterns extracted from the
corresponding fish occurrence data of river basins. Further, the species-similarity
patterns could be studied as a function of network degree for these river networks.
These empirical analyses, however, are beyond the scope of the current paper. It
would also be interesting to develop a theoretical framework that naturally reveals
such observations. In summary, our work contributes to our present understanding
of river network topology and its effect on biodiversity dynamics of fish species.
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Can One Hear the Position of Nodes?

Rami Puzis

Abstract Wave propagation through nodes and links of a network forms the basis
of spectral graph theory. Nevertheless, the sound emitted by nodes within the res-
onating chamber formed by a network are not well studied. The sound emitted by
vibrations of individual nodes reflects the structure of the overall network topology
but also the location of the nodewithin the network. In this article a sound recognition
neural network is trained to infer centrality measures from the nodes’ wave-forms.
In addition to advancing network representation learning, sounds emitted by nodes
are plausible in most cases. Auralization of the network topology may open new
directions in arts, competing with network visualization.

Keywords Deep learning · Centrality · Auralization · Diffusion
1 Introduction

Representation learning in graphs, a.k.a embedding, facilitates variety of downstream
analysis tasks such as node classification [1], link prediction [2], community detec-
tion [3], network classification [4], and more. One challenging application of repre-
sentation learning is inference of the importance (centrality) of nodes in a network
according to their position in the network topology. There were many centrality
measures defined over the years [5, 6]. The the most prominent ones are the con-
nectivity degree (or just degree), closeness, betweenness, and eigenvector centrality.
Researchers continue inventing new centrality measures and node properties from
time to time to fit a particular task that was not properly covered yet [7, 8]. Formulat-
ing new structural node properties, including centrality measures, for a task at hand
requires domain expertise, network analysis expertise, and of course time and effort.
It is important to devise a generic method capable of learning centrality measures
provided ground truth importance of nodes.
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Fig. 1 The pipeline of centrality learning through network auralization and sound recognition

Standard machine learning techniques can utilize previously defined centrality
measures to compute a new one [9–11]. However, such approaches inherit the pros
and cons of the centrality measures used as features and may not be able to learn an
entirely new concept of centrality. Attempts were made to use GNN for centrality
learning. Maurya et al. [12] proposed architectures that do not rely on pre-computed
centralitymeasures but, unfortunately, they use differentGNNarchitectures for learn-
ing closeness and betweenness measures, falling back to relying on human expertise.
A recently proposed method utilizes the generic nature of routing betweenness cen-
trality to learn arbitrary centrality measures [13]. Unfortunately, this approach does
not scale well to large networks.

Spectral graph analysis is a widely accepted tool for graph mining, comparison,
and classification [14–17]. Eigenvalues represent the stationary frequencies (spec-
trum) of heat or wave propagation in a graph. The respective eigenvector components
are used as a form of node representation for classification and clustering of nodes.
In most cases this representation includes a part of the stationary state correspond-
ing to the top k eigenvalues. In this article we consider the full wave-form-based
representation of nodes rather then their spectrum and use sound recognition neural
network to hear their centrality.

High level overview. The centrality learning approach proposed in this article
relies on wave propagation along the links of the network. Instead of focusing on the
stationary spectrum we monitor the impulse response of the network. Natural reflec-
tion and interference that within the network results in complex audible wave-forms
that auralize the nodes and their positions within the network. We use the acoustic
characteristics of the nodes to learn centrality measures using the M5 deep neural
architecture for sound recognition [18]. Figure1 summarizes the general architecture
of the demonstrated centrality learning approach.

1.1 Summary of Contributions

Following is the list of preliminary results reported in this paper and their respective
significance. This article shows that wave-form network analysis facilitates non-
trivial downstream tasks such as centrality learning. The results show that the M5
sound recognition neural network [18] can learn centrality measures for variety of
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network models and centrality measures. Yet, lattice networks, in particular Watts-
Strogats [19], are challenging as well as learning the closeness centrality measure.
Our preliminary results advance state-of-the-art centrality learning making a few
more steps toward automated inference of this important concept. The presented
technique exemplifies the importance of non-stationary pre-convergence state of
network signal propagation. finally this paper demonstrates a surprising combination
of graph analysis with sound recognition neural network, hoping to inspire additional
architectural solutions for classification problems on graphs.

2 Related Work on Centrality Learning

2.1 Traditional Machine Learning

In recent years, with the advancement in the machine and deep learning fields,
researchers utilizedmany of these algorithms to approximate the centrality of graph’s
nodes. Most works in this category infer some centrality measures from other cen-
trality measures. In 2018, Grando et al. [9] rely on the degree and on the eigen
vector centrality to learn other centrality measures. Mendonca et al. [10] improved
the work presented by Grando et al. by proposing the NCA-GEmodel. The NCA-GE
architecture utilizes Strucre2Vec and Graph Convolution Network (GCN) for gen-
erating a high dimensional feature vector for each node in a given graph. To these
generated node embeddings, they added the degree centrality as an additional dimen-
sion. Finally, they utilized the embeddings obtained to approximate node centrality.
Zhao et al. [11] detected influential nodes based on various features including nine
centrality measures. The target measure was the influence of a node as simulated
by epidemic propagation. Relying on pre-computed centrality measures helps infer-
ring correlated measures, but might not generalize well to approximate un-correlated
measures or tasks that require learning new measures.

2.2 Graph Neural Networks

Maurya et al. [12] proposed GNN-Bet and GNN-Close, two graph neural networks
to approximate betweenness and closeness centralities respectively. Fan et al. [20]
proposed a graph neural network encoder-decoder ranking model to identify nodes
having the highest betweenness. Last year, Bachar et al. [13] proposed LRC, a cen-
trality learning architecture that relies on routing betweenness centrality [21]. While
being generic LRC is heavy computation-wise and can learn centrality in graphs
with only dozens of nodes. Moreover, it requires high quality geometric embedding
to produce accurate results.
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Overall centrality learning must be inductive: trained and tested on different
graphs. Centrality learning should be tested on real and synthetic networks with
varying structures. It should be generic and suitable for arbitrary target central-
ity measures and preferably scalable facilitating applications on graphs larger than
those it was trained on.

3 Methods

3.1 Network Auralization

In his subsection a simple wave-form generation process is described. Let G =
(V, E) be a simple undirected unweighted graph where V is a set of n nodes and E
is a set of m edges.

Consider some quantity sv,t ∈ R possessed by every node v ∈ V at time t . Intu-
itively sv,t can be regarded as a potential of the node. St = (sv: v ∈ V ) is the vector
of potentials. Nodes strive to equalize their potentials by distributing energy to their
neighbors. Please note that, although, some physical terms are used here to describe
the network analysis they are not intended to discuss a real physical phenomenon
and lack the rigorousity expected from a physics article.

Let A denote the adjacency matrix of the graph G. Let D = ∑
v Av denote the

vector of node degrees. We define Pu,v = Au,v/Du as the power that u may apply
on v. The total power a node may apply on its neighbors is equal for all nodes. The
more neighbors a node has the less power it can apply on each one of them.

The amount of energy everynodeu passes to everyneighboru at time t is�St,u,v =
St−1,u · Pu,v . In matrix form �St = Diag(St−1) × P , where Diag(St ) is a n × n
matrix with values of St along the main diagonal. The incoming energy flow of a
node v is

∑
u∈V �St,u,v and the outgoing energy flow is

∑
u∈V �St,v,u . Note that

�St,u,v = 0 if u and v are not neighbors. Equation1 describes a simple diffusion
process where nodes exchange energy up to a certain fixed point, much like in the
power iterations method.

St = St−1 +
∑

u∈V
�St,u,v −

∑

u∈V
�St,v,u (1)

Unlike power iterations Eq.1 does not require normalizing the potential vector in
every iteration due to energy conservation (

∑
St is constant).

The stable fixed point of the energy exchange iterations is not of interest for current
paper. Let us take a close look at the dynamics of the energy exchange before the
process stabilizes (see Fig. 2a). The plot shows the potential levels of nodes from the
graph in Fig. 1. On the first iteration the potential of v1 increases the most because
it has low multiple low degree neighbors. The potential of other nodes decreases
after the first iteration because they contribute more energy than they receive. It is
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Fig. 2 Energy exchange interactions with various levels of momentum

Algorithm 1: Network auralization
Input: m: momentum, A: adjacency matrix, l: number of output samples
Output: S: the l × n matrix representing node wave forms

1 ∀v∈V S0,v = 1 ; // Impulse
2 ∀u,v∈V �S0,u,v = 0;

3 P = (A/(A.sum(dim = 0) + ε).T ) ; // ε = 10−32 for numeric stability.
4 for t ∈ [1, . . . , l] do
5 �St = Diag(St−1) × P + m · �St−1;
6 St = St−1 + �St .sum(dim = 0) − �St .sum(dim = 1) ; // Response
7 end
8 S = (S.T − S.T .mean(dim = 0)).T ; // Remove the DC component of the wave-forms.
9 return S

hard to see from this plot but, the energy from node v4 reaches v1 and v2 after the
second iteration and then bounces back to v3 because it is the only neighbor of v4.
Nevertheless, it is clear that the location of the nodes within the network affects the
magnitude and direction of the oscillations.

Next the oscillations are emphasized and the stabilization process is prolonged
by retaining a portion m of the energy flow from previous iteration. We will refer to
m as momentum. The energy flow with momentum is now represented by:

�St,u,v = St−1,u · Pu,v + m · �St−1,u,v. (2)

Note that adding momentum to �S does not affect the energy preservation in Eq.1.
Figure2b, c show the oscillations with m = 0.9 and m = 0.99 respectively. We

can see that the stabilization process is significantly prolonged. We can also see in
Fig. 2b irregularities caused by interference and reflection as explained in the spectral
analysis literature. Setting m = 1 will prevent the process from stabilizing.

Algorithm1 presents the pseudo code of network auralization adapted for PyTorch
implementation.1 The operator T is matrix transpose. The operators sum and mean
aggregate elements of a matrix along the dimension specified by dim. The DC
component of the output wave-forms (values on which S stabilizes after impulse
response) is not of interest. It may also hinder the convergence of sound recognition

1 The full source code is available on GitHub: https://github.com/puzis/centrality-learning.

https://github.com/puzis/centrality-learning
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models. Furthermore, it is a centrality measure on its own, roughly corresponding to
eigenvector centrality. Thuswe remove theDCcomponent inLine 8 ofAlgorithm1 in
order show that the wave-form itself bears significant information about the location
of a node within the graph.

3.2 Centrality Learning as a Sound Recognition Problem

Architecture Sound is the most common and most studied form of waves. Many
deep convolutional neural networks were developed in the past years to recognize
speech [22], emotions [23], background sounds [18], etc. Current study relies on the
M5 very deep convolutional neural network proposed by Dai et al. for recognition of
environmental sounds in urban areas [18]. There are two important details about their
neural network architecture that should bementioned here. First, the filter size of their
first convolutional layer is set to 80, a sufficiently large value to cover the common
wavelengths of natural sounds. Second, their last layers include global pooling and
softmax activation function with 10 outputs to produce a classifier with 10 target
classes.

In current study the M5 classifier is transformed into a regression architecture by
replacing the softmax with a fully connected linear layer. Preliminary experiments
with various activation functions showed that linear activation produces the best
results in terms of Pearson correlation coefficient. Also not tested with other sound
recognition architectures replacing softmax with a fully connected linear layer is a
common tweak for turning a classifier into a regression model. We consider the M5
regressor as a function that maps node’s wave-form to a real number: M5:Rl → R.
The learned centrality measure of the node v ∈ V is therefore M5(S·,v) where ·
represents all possible values. M5(S) is the centrality vector of all nodes in G.

Objective function Let C denote the target centrality measure and P denote the
predicted centrality values. The target variable for training the M5 regressor was
chosen to be the Pearson correlation coefficient:

ρ(C, P) = cov(C, P)

std(C) · std(P)

. The loss for training the M5 neural network is:

loss = 1 − ρ(C, M5(S)) (3)

Correlations are common performance indicators for centrality learning [9, 10,
12, 13]. Pearson correlation coefficient has the most accessible differentiable imple-
mentation in the PyTorch deep learning library. Other correlation coefficients can be
used as long as they have differentiable implementations. A notable one, is differen-
tial implementation of Spearman correlation coefficient [24].
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Fig. 3 Examples of some random and well known networks. On the top: Erdos-Renyi (ER) ran-
dom graph [25], Barabasi-Albert (BA) scale-free graph [26], Watts-Strogatz (WS) small-world
graph [19], connected caveman graph [27], and a regular grid. On the bottom: Karate club [28],
Southern women graph [29], Florentine families graph [30], Les Miserables [31], Autonomous
Systems level random Internet graph [32]

The training procedure In this subsection we consider the general task of centrality
learning. Connectivity degree (Deg), closeness centrality (CC), eigenvector central-
ity (EC), and betweenness centrality (CC) are considered as the target centrality
measures to demonstrate the learning process.

It is evident from past research and from the results in this article that certain kinds
of networks are harder to learn than others. Therefore the models are trained on five
different random network models shown in Fig. 3a–e. All training was performed on
small graphs of 150 nodes and various densities.

The training phase was split to epochs (see Algorithm 2). In every epoch a set
of small random graphs were generated. The number of graphs grows linearly with
epochs (line 3). Graphs are generated from all the fivemodels considered for training.
Graphs are auralized in line 8.Next, ten iterations aremade to optimize the parameters
of the M5 regression model. The numbers in lines 3 and 9 were chosen empirically
and are subject to experiments in future research. Multiple optimization steps on a
set of random graphs (lines 9–12) are required, otherwise, the M5 model parameters
fail to converge. As the model converges the batch size (number of random graphs)
need to increase in order to reduce the noise in the optimization process.

The testing procedure. New random graphs are generated for the testing phase.
Three types of test sets are considered:

1. Small random graphs (n = 150) similar to the training process.
2. Larger random graphs (n = 1500) generated using the same models.
3. Four famous graphs and a random Internet topology as depicted in Fig. 3f–j.
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Algorithm 2: The centrality learning process
1 for epoch ∈ [1, . . . , 300] do
2 Gs ← ∅; // graphs for current epoch

3 for 10 + � epoch10 � times do
4 Gen ← pick a random graph generator;
5 G ← generate a random graph using Gen;
6 Gs ← Gs ∪ {G};
7 end
8 for G ∈ Gs do S(G) ← network auralization (G) for 10 times do // 10 batches on the same

graphs
9 batchloss ← 1

10·|Gs|
∑

G∈Gs (1 − ρ(M5(S(G))));

10 batchloss backprogation;
11 optimizer step;
12 end
13 end
14 return S

Pearson correlation was computed between the centrality leaned using theM5 sound
recognition neural network and the ground truth centrality measures for each one of
the test graphs.

Models trained on the small networks were applied on the large networks as well.
This is possible due to the size-invariant representation of the nodes’ wave-forms in
time domain. The wave-forms of larger networks usually exhibit more frequencies
(a richer sound) corresponding to a larger number of eigenvalues. We use fixed-size
time series of 10K samples as the input for the M5 sound recognition network.

4 Results and Discussion

4.1 The Voice of Graphs and Nodes

The echo chambers formedbygraphs produce soundpatterns as can be seen andheard
in the multimedia Fig. 4. On the left side of the spectrum of nodes depicted. While
peak frequencies remains the same for different nodes in the graph their intensities
vary. The proposed centrality learning approach relies on these differences.

4.2 Centrality Learning Results

Figure5 shows the training loss while learning nodes’ connectivity degree from their
auralization. It is clear that node auralization contains information about connectivity
degree.

Table1 presents the Pearson correlation coefficients while testing the trained M5
sound recognition model. Naturally, degree is the easiest to learn, but the correlation
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(a) Florentine families Click to play (all nodes, 13 seconds)

(b) Karate club Click to play (all nodes, 30 seconds)

(c) Line graph with 150 nodes Click to play (20 nodes, 18 seconds)

Fig. 4 Thevoice of graphs andnodes. Left: the spectra of four nodes in a graph.Right: a spectrogram
of one arbitrary node

Fig. 5 The loss (1 − ρ(M5(S))) as a function of the number of optimization steps when learning
the connectivity degree. Left: 50 epochs. Right: 500 epochs

coefficients for other centrality measures are generally better than the respective
correlations with other centrality measures (0.48–0.91 according to [13]). This fact
suggests that the wave-forms produced by Algorithm 1 encode information about
the position of nodes within their networks.
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Table 1 Performance of the M5 sound recognition neural network when predicting centrality of
auralized nodes on various network

Grid and Cavemen graphs show extreme results due to an over-fitting and sample
leakage from train to test due to their low variability. TheM5 network memorizes the
node wave-forms and fails to extrapolate the learned centrality to larger networks.
This result highlights the fact that the model successfully extrapolates to networks
an order of magnitude larger than those it was trained on.

While performing reasonably well on most small real world networks and on
the random Internet graph, the learned model fails on the Les Miserables social
network. Even the predicted degree of nodes is loosely correlated with the actual
degree. I could not find a reasonable explanation for such behavior.

5 Conclusion

In this paper, demonstrates a surprising application of sound recognition neural net-
work for learning centrality measures from auralized nodes in graphs. The demon-
strated model learns to infer centrality from the sound of nodes. The model extrapo-
lates well to networks larger than network in its training set. This article also demon-
strates by an example that the stabilization process of graph algorithms bears infor-
mation about the graph structure. It may form a basis for new types of message
passing graph neural networks where the energy exchange parameters are learned
during the training process. Future work includes investigating a transfer learning
problem where centrality learned from one kind of graphs (e.g. ER) is adjusted to
fit graphs with significantly different structure (e.g. WS). Another theme with a lot
of fun and unexplored research opportunities is natural graph auralization, not to be
confused with artificial/engineered sonification.
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Memory Based Temporal Network
Prediction

Li Zou, An Wang, and Huijuan Wang

Abstract Temporal networks are networks like physical contact networks whose
topology changes over time. Predicting future temporal network is crucial e.g., to
forecast and mitigate the spread of epidemics and misinformation on the network.
Most existing methods for temporal network prediction are based on machine learn-
ing algorithms, at the expense of high computational costs and limited interpretation
of the underlying mechanisms that form the networks. This motivates us to develop
network-based models to predict the temporal network at the next time step based on
the network observed in the past. Firstly, we investigate temporal network properties
to motivate our network prediction models and to explain how the performance of
these models depends on the temporal networks. We explore the similarity between
the network topology (snapshot) at any two time steps with a given time lag/interval.
We find that the similarity is relatively high when the time lag is small and decreases
as the time lag increases. Inspired by such time-decaying memory of temporal net-
works and recent advances,we propose twomodels that predict a link’s future activity
(i.e., connected or not), based on the past activities of the link itself or also of neigh-
boring links, respectively. Via seven real-world physical contact networks, we find
that our models outperform in both prediction quality and computational complexity,
and predict better in networks that have a stronger memory. Beyond, our model also
reveals how different types of neighboring links contribute to the prediction of a
given link’s future activity, again depending on properties of temporal networks.
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1 Introduction

Complex systems can be represented as networks, where nodes represent the compo-
nents of a system and links denote the interaction or relation between the components.
The interactions are, inmany cases, not continuously active. For example, individuals
connect via email, phone call or physical contact at specific times instead of con-
stantly. Temporal networks [1, 2] could represent these systems more realistically
with time-varying network topology. It has been shown that temporal network prop-
erties such as community structure, the degree distribution in the aggregated network,
inter-event time and the non-Markovian evolution influence dynamic processes on
the temporal network [3–6].

Temporal network prediction is a task of predicting temporal contacts at the next
time step based on the temporal network topology observed in the previous L steps.
Predicting the temporal network such as a physical contact network is essential to
forecast andmitigate the spread of epidemics andmisinformation on the network. The
temporal network prediction problem is also equivalent to problems in recommender
systems, e.g., predicting which user will purchase which product, which individuals
will become acquaintance [7, 8].

Recently, machine learning algorithms have been developed to predict tempo-
ral networks. Examples include temporal network embedding [9–11], restricted
Boltzmann machine (RBM) based methods [12] and Graph neural networks [13].
These methods, however, are at the expense of high computational costs and lim-
ited in providing insights regarding which network mechanisms are used for net-
work prediction thus could possibly form temporal networks. Few network-based
methods have been proposed to predict new links, i.e., the node pairs that will
have contact in the future but have not had any contact in the past, instead of pre-
dicting all contacts at a future time step. These network-based methods consider
a network property, also called similarity, of a node pair as the tendency that a
new link will appear between the node pair [14–16]. Initial network-based meth-
ods for temporal network prediction have been explored recently, assuming that
a link is more likely to have a contact (be active) in the future if it has contacts
recently, depending possibly on the the previous contacts of other neighboring links
[17].

However, we still lack deep understanding of how to design network-based meth-
ods to predict temporal networks and how the performance of prediction methods
depend on properties of temporal networks. Hence, this work aims to explore basic
temporal network properties, to motivate the design of network-based temporal net-
work prediction methods and to explain these methods’ network dependent perfor-
mance. Firstly, we explore the similarity between the activity (i.e., connected or
not) of a link at any two time steps with a given time lag/interval and the similarity
between the network topology (snapshot) at any two time steps with a given time lag.
Intuitively, if such similarity is relatively high, thus there exists memory in temporal
networks, we may predict a temporal network in the future based on the network
observed in the past. We find both similarities, or memories, decay as the time lag
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increases and they are relatively high when the time lag is small. Correspondingly,
we propose two temporal network prediction models utilizing the observed time
decaying memory in temporal networks.

Our first model, called the self-driven (SD) model, assumes that a link’s future
state (connected or not) is only influenced by it’s past states and the influence of
its earlier state is smaller than that of more recent states. Specifically, it assumes
that the tendency for link i being connected or active at time step t + 1 is given by
wi (t + 1) = ∑k=t

k=t−L+1 e
−τ(t−k)xi (k), where xi (k) is the state of link i at time step

k and τ is the decay factor controlling the contribution from each past state. This
definition and concept is not new, and has been used in [17, 18]. The SD model is
emphasized as one model here because we will explore in depth the decay factor and
its implications and it is the basis to built our SCD model. We find the SD model
performs well in network prediction when the decay factor is chosen arbitrarily in the
broad range τ ∈ [0.5, 5] in each of the seven real-world physical contact temporal
networks. This implies that our real-world physical contact networks measured in
the context of school, hospital, workplace etc. may be formed by a universal class of
time decaying memory. This common range of the decay factor τ ∈ [0.5, 5] suggests
that the state of a link is mainly determined by the link’s states in few recent steps.

Furthermore, we generalize the SDmodel to a self- and cross-driven (SCD)model
that predicts a link’s next step activity by using the SD connection tendency of the
link itself and also of the other neighbor links. We find that SCD outperforms SD and
both SCD and SD perform better than the baseline models such as linear regression.
Both models perform better in networks with a stronger memory. The SCD model
also reveals how different types of neighboring links contribute to the prediction
of a given link’s future activity, which we find also depend on temporal network
properties.

We will introduce the presentation of temporal networks (Sect. 2), real-world
temporal networks to be considered (Sect. 3), analyze key temporal networks (Sect. 4)
to motivate our temporal network prediction models (Sect. 5). The proposed models
will be evaluated and interpreted in Sects. 6 and 7 respectively.

2 Temporal Network Representation

A temporal network can be represented as a sequence of network snapshots G =
{G1,G2, ...,GT }, where T is duration of the observation window, Gt = (V ; Et )

is the snapshot at time step t with V and Et being the set of nodes and contacts,
respectively. If node j and k have a contact at time step t , ( j, k) ∈ Et . Here, we
assume all snapshots share the same set of nodes, i.e., V . The links in the aggregated
network Gw are defined as E = ∪T

t=1Et . That is, a pair of nodes is connected with
a link in the aggregated network if at least one contact occurs between them in the
temporal network. Hence, the link set E in the aggregated network contains all the
node pairs that have contact(s) in the temporal network and the total number of
links is M = |E |. We give each link in the aggregated network an index i , where
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Table 1 The number of nodes (N = |V |), the number of node pairs that have contact(s) (M),
the length of the observation time window (T ), time resolution (δ s), the type of contacts and the
location where the data is collected

Network N M T δ Type Location

Hospital 75 1139 9453 20 Physical Hospital

Hypertext2009 113 2196 5246 20 Physical Conference

Workplace 92 755 7104 20 Physical Office

LH10 73 1381 12605 20 Physical Hospital

HighSchool 327 5818 7375 20 Physical School

PrimarySchool 242 8317 3100 20 Physical School

SFHH 403 9565 3509 20 Physical Conference

i ∈ [1, M]. The temporal connection or activity of link i over time could then be
represented by a T -dimension vector xi whose element is xi (t), where t ∈ [1, T ],
xi (t) = 1 when node pair i has a contact at time t and xi (t) = 0 if no contact occurs
at t .

3 Empirical Data Sets

To design and evaluate temporal network prediction methods, we consider seven
empirical physical contact networks: Hospital, Workplace, PrimarySchool, High-
School, LH10 [19], SFHH [20] and Hypertext2009 [21]. Basic properties of these
data sets are given in Table1. The time steps at which there is no contact in the whole
network have been deleted.

4 Memory in Temporal Networks

In this section, we aim to understand whether a temporal network at different times
shares certain similarity or has memory.

Auto-correlation Firstly, we explore the correlation of the activity of a link at
two times with a given interval �, called time lag, via the auto-correlation of the
activity series of each link. The auto-correlation of a time series is the Pearson
correlation between the given time series and its lagged version. We compute, for
each link i , the Pearson correlation coefficient Rxi xi (�) between {xi (t)}t=1,2,...,T−�

and {xi (t)}t=�+1,�+2,...,T as its auto-correlation coefficient. Figure1a shows that the
average auto-correlation coefficient over all links decays with the time lag � in each
of the seven data sets. The average auto-correlation decays slower as the time lag
increases.
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Fig. 1 a The average auto-correlation coefficient Rxx over all links as a function of the time lag �

and b the average Jaccard similarity of two snapshots of a temporal network with a given time lag
� in each of the seven data sets

Jaccard similarity Furthermore, the similarity of the network at two times with
a given time lag � is examined via Jaccard similarity (JS). JS measures how similar
two sets are by considering the percentage of shared elements between them. For two
snapshots of a temporal network Gt and Gt+�, their Jaccard similarity is defined as
the size of their intersection in contacts divided by the size of the union of their con-
tact sets, that is, J S(Gt ,Gt+�) = Et∩Et+�

Et∪Et+�
. Large JS means large overlap/similarity

between the two snapshots of the temporal network. Figure1b shows the average
Jaccard similarity over all possible pairs of temporal network snapshots that have
a time lag �. Similar to auto correlation in link activity, the correlation between
temporal snapshots decays with their time lag in all empirical data sets, manifesting
the time decaying memory of real-world temporal networks.

5 Temporal Link Prediction Methods

Inspired by the time decayingmemory of temporal networks, we propose two tempo-
ral link prediction models. Our previous work on Lasso Regression [22], a statistical
learning model has found that a link’s state at the next step is largely determined
by the current state of the link itself and the neighboring links that share a common
node with the link. Hence, our two network-based models in this work will predict
a link’s future activity based on the past activities of the link itself, and also of the
neighboring links respectively by taking the memory effect into account.
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5.1 Self-Driven (SD) Model

The self-driven (SD) model defines the tendency wi (t + 1) for link i being active at
time t + 1 as:

wi (t + 1) =
k=t∑

k=t−L+1

e−τ(t−k)xi (k). (1)

where the decay factor τ controls the rate of the memory decay and xi (k) is the state
of link i at time step k. A large τ corresponds a fast decay ofmemory, such that a small
number of previous states affect the tendency of connection. When τ = 0, all past
states have equal influence on the future connection tendency and wi (t + 1) reduces
to the contact number of link i during the past L steps. Such exponential decayhas also
been considered in [17, 23]. In Sect. 6, we will show that the SDmodel performs well
for a common wide range of the decay factor τ among all real-world networks con-
sidered andwe do not need to learn τ from the temporal network observed in the past.

5.2 Self- and Cross-Driven (SCD) Model

Furthermore, we generalize the SD model to a self- and cross-driven (SCD) model
that predicts a link’s next step activity by using the SD connection tendency defined in
Eq. (1) of the link itself and also of neighboring links that share a nodewith the link in
the aggregated network. The union of the target link and its neighboring links is also
called the ego-network centered at the target link, exemplified in Fig. 2. Furthermore,
we differentiate three types of links in an ego-network, colored in differently in
Fig. 2: the target link itself, links that form a triangle with the target link and the
rest links. We believe the previous states of these three types of links may contribute
differently to the estimation of the target link’s next step activity, motivated by the
finding of the Lasso Regression in temporal network prediction [22], the common
neighbor similarity method in static network prediction and temporal motifs (e.g.,
three contacts that happen within a short duration and with a specific ordering in
time, and form a triangle in topology) that have been widely observed in temporal
networks [24, 25].

Hence, our SCD model assumes that the SCD tendency hi (t + 1) for link i to be
active at time step t + 1 is a linear function

hi (t + 1) = β∗
0 + β∗

1wi (t + 1) + β∗
2ui (t + 1) + β∗

3 fi (t + 1). (2)

of the contributions of the link itself wi (t + 1) as defined in Eq. (1), the neighboring
links that form a triangle with the target link ui (t + 1) and the other neighboring
links fi (t + 1). The latter two factors ui (t + 1) and fi (t + 1) will be defined soon
as a function of the SD tendency at t + 1 of all the links in the ego-network.
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Fig. 2 An illustrative example of an ego-network centered at a target link i . The three types of
links, the target link itself, links that form a triangle with the target link and the other links, are
colored in grey, blue and green respectively

The contribution ui (t + 1) of the neighboring links that form a triangle with the
target link i is defined as follows. For each pair of neighboring links j and k that
form a triangle with the target link i , the geometric mean

√
w j (t + 1) · wk(t + 1)

suggests the strength that the two end nodes of link i interact with the corresponding
common neighbor. We define ui (t + 1) as the average geometric mean over all link
pairs that form a triangle with the target link, a weighted version of common neighbor
similarity. The contribution of the other links fi (t + 1) in the ego-network is defined
as the average SD tendency of connection. The coefficients β∗

0 , β∗
1 , β∗

2 , and β∗
3 in

Eq.(2) will be learned through Lasso Regression from the temporal observed in the
past L steps for each link. Using previous states of neighboring links to predict the
future connection of a link has been explored in [17]. The design of SCD model in
e.g., ui (t + 1) aims to capture the weighted version of common neighbor similarity,
which enables us later to discover the relation between model performance and the
clustering coefficient of the aggregated network.

5.3 Baseline Models

Here, we introduce two baseline models.

Common neighbor similarity (CN). We generalize the common neighbor sim-
ilarity method from static network prediction to the temporal network prediction
problem. The number of common neighbors [14] of a node pair can be computed for
each of the previous L snapshots. The sum of the number of common neighbors over
the past L snapshots, are used to estimate this node pair’s tendency of connection at
the next time step.

Lasso Regression [26] assumes that the activity of link i at time t + 1 is a linear
function of the activities of all the links at time t , i.e.,

xi (t + 1) =
M∑

j=1

x j (t)βi j + ci . (3)
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The objective is

min
βi

{
∑

t=1
(xi(t+1)−

M∑

j=1
x j(t)βi j −ci )

2+α

M∑

j=1
|βi j |}. (4)

where M is the number of features as well as the number of links, ci is the constant
coefficient and βi = {βi1, βi2, . . . , βiM} are the regression coefficients of all the fea-
tures for link i . The coefficients will be learned from the temporal network observed
in the past L steps for each link. We use L1 regularization, which adds a penalty to
the sum of the magnitude of coefficients

∑M
j=1 |βi j |. The parameter α controls the

penalty strength. The regularization forces some of the coefficients to be zero and
thus lead to models with few non-zero coefficients (relevant features). The optimal
α that achieves the best prediction is chosen from 50 logarithmically spaced points
within [10−4, 10].

6 Model Evaluation

In this section, we firstly introduce the method to evaluate the models in link predic-
tion quality. Secondly, we explore how to choose the decay factor in the SD model.
Thirdly, we compare the link prediction quality of all the models.

6.1 Link Prediction Quality

Eachmodel predicts the link activity at time step t + 1 based on the temporal network
observed in the past L steps. The number of contacts at each time step shows periodic
behaviour, i.e., large number of contact recurs at regular intervals. In order to capture
such potential periodic patterns of a temporal network, we consider L = T/2, i.e.,
half of the length of a real-world temporal network’s time window. The prediction
step t + 1 is sampled 1000 times from [T/2 + 1, T ] with equal space. The average
proportion of the M links that are active at a time step is lower than 1% in all the real-
world networks we considered. The classification labels (the number of active links
and inactive links per time step) are imbalanced. Hence, we evaluate the prediction
quality via the area under the precision-recall curve (AUPR) [27]. AUPR provides
an aggregate measure of performance across all possible classification thresholds.
The average AUPR of a model over the 1000 prediction snapshots quantifies the
prediction quality of the model.
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Fig. 3 Link prediction quality AUPR of the SD model as a function of the decay factor τ in seven
data sets

6.2 Choice of Decay Factor

How to chose the decay factor τ will be motivated by comparing two possibilities.
We first consider a simple case where τ is a control parameter and does not vary
over time, i.e., remaining the same for the 1000 samples of the prediction steps. For
a given τ , the tendency wi (t + 1) (i ∈ [1, 2, ..., M]) is obtained at each prediction
step t + 1 based on Eq.(1). Figure3 shows that the decay factor τ indeed affects the
prediction quality AUPR of the SD model. A universal pattern is that the optimal
performance is obtained by a common and relatively broad range of τ ∈ [0.5, 5] in
all networks. This implies that our real-world physical contact networks measured at
school, hospital, workplace etc. may be formed by a universal class of time decaying
memory. Hence, τ can be chosen arbitrarily within [0.5, 5].

In the second method of choosing τ , a τ(t + 1) for each prediction step t + 1 is
learned from the network observed in the past L steps. The τ(t + 1) is choose as
the one that allows the SD model to best predict the temporal network at t based on
the network observed in the past L − 1 steps just before t . The prediction quality
from the first (second) method of choosing τ are 0.63 (0.61), 0.68 (0.67), 0.69
(0.63), 0.75 (0.74), 0.68 (0.67), 0.34 (0.33) and 0.65 (0.63), for the seven data sets,
respectively.

Hence, τ could be chosen arbitrarily from [0.5, 5], which has lower computational
complexity and better prediction quality than learning τ dynamically over time. We
consider τ = 0.5 to derive the SD tendency and SCD tendency in the rest analysis.
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Fig. 4 Temporal network prediction quality AUPR of baseline CNmethod, baseline Lasso Regres-
sion (LR), SD model and SCD model. All methods consider L = T/2 and τ = 0.5 except for SD
(τ = 5, L = 3), which is needed only for Sect. 7.2

6.3 Comparison of Models

We further compare the prediction quality of our SD model, SCD model and base-
line models in Fig. 4. We find that both SD and SCD models perform better than
the baselines. The SCD model, which predicts a link’s connection utilizing SD ten-
dency of the neighboring links and of the link itself, indeed performs better than
the SD model that uses only the SD tendency of the link itself. Moreover, the
SD and SCD models perform the best (worst) in LH10 (PrimarySchool), in line
with the strongest(weakest) memory/similarity of LH10(PrimarySchool) observed
in Fig. 1.

7 Model Interpretation

In this section,we interpret firstly the SCDmodel, to understand how the past states of
different types of links in the ego-network (neighborhood) contribute to the prediction
of the center link of the ego-network and interpret afterwards the common range
τ ∈ [0.5, 5].

7.1 Interpretation of SCD Model

As defined in Eq. (2), SCD model predicts a link’s future connection, based on the
SD tendency of the link itself, links that form a triangle with the link and the rest
links that share a common node with the link. The contribution of these three types
of links are reflected in the learned coefficients in Eq. (2). The average coefficients
over all prediction steps are given in Table2. We can see a link’s next step activity is
mainly influenced by the past activities of the link itself, and slightly influenced by
the neighboring links that form a triangle with the target link. The other neighboring
links have very limited impact on target link’s activity. The predictive power of
neighboring links that form a triangle with the target link may come from the nature
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Table 2 The learned coefficient β∗
1 , β

∗
2 and β∗

3 in SCDmodel averaged over 1000 prediction steps
are also provided

Network β∗
1 β∗

2 β∗
3 cc

Hospital 0.31 0.07 0.00 0.37

Hypertext2009 0.32 −0.02 0.00 0.32

Workplace 0.32 0.00 0.00 0.28

LH10 0.32 0.21 0.00 0.41

HighSchool 0.33 0.04 0.00 0.38

PrimarySchool 0.24 0.48 −0.02 0.54

SFHH 0.32 0.03 0.01 0.21

And the clustering coefficient (cc) of the aggregated network in each empirical network

of physical contact networks: contacts are often determined by physical proximity
and two people that are close to a third but not yet close to each other are likely to
already be in relatively close proximity.

One exception is the PrimarySchool, where β∗
2 > β∗

1 . The aggregated network of
PrimarySchool has the largest clustering coefficient1 in the aggregated network as
shown in Table2. In general, we find the contribution of links that form a trianglewith
the target link tends to be more significant in temporal networks whose aggregated
network has more triangles.

7.2 Decay Factor

Finally, we interpret the common range of the decay factor τ ∈ [0.5, 5] where the
SD performs optimally. According to the definition of SD tendency of connection in
Eq.(1), only the coefficients/contributions y = e−τ(t−k) of the previous 24 steps (3
steps) are larger than 10−5 when τ = 0.5 (τ = 5), out of L = T/2 > 1000 previous
steps observed. We wonder whether considering only few previous steps instead
of L = T/2 steps would be sufficient for a good prediction. The prediction quality
of our SD model when L = 3 and τ = 5 is given in Fig. 4. It is worse than the
performance of SDmodel when L = 50%T and τ = 0.5. This suggests that although
the contribution of each early state of a link is small, the accumulated contribution
of many early states improves the prediction quality. The prediction quality of SD
model when L = 3 and τ = 5, whose computational complexity is extremely low,
is still better or similar to that of Linear Regression, reflecting the prediction power
of recent states of a link.

1 The clustering coefficient of network is the probability that two neighbors of node are connected.
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8 Conclusion

In this work, we propose two network-based temporal network prediction models
motivated by the observed time decaying similarities/memory in temporal networks.
The proposed self-driven (SD)model and self- and cross-driven (SCD)model predict
a link’s future activity based on the past activities of the link itself, and also of the
neighboring links, respectively. Both models perform better than the baseline models
and the SCD outperforms SDmodel. Interestingly, we find that both models perform
better in temporal networks with a stronger memory (similarity over time). The SCD
model reveals that a link’s future activity is mainly determined by (the past activities
of) the link itself, moderately by neighboring links that form a triangle with the target
link, and hardly by other neighboring links. However, if the temporal network has a
high clustering coefficient in its aggregated, the contribution of the neighboring links
that form a triangle with the target link tends to be significant and possibly dominant.

Ourwork is a starting point to explore network-based temporal network prediction
methods, especially how methods could be designed based on network proprieties
and how their performance could be explained again by network properties. It is
interesting to evaluate network-based prediction methods more systematically in
comparison with learning-based methods and explore the integration of both types
of methods.
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Abstract This paper aims to understand to what extent the amount of drug (e.g.,
cocaine) trafficking per country can be explained and predicted using the global
shipping network. We propose three distinct network approaches, based on topo-
logical centrality metrics, Susceptible-Infected-Susceptible spreading process and a
flow optimization model of drug trafficking on the shipping network, respectively.
These approaches derive centrality metrics, infection probability, and inflow of drug
traffic per country respectively, to estimate the amount of drug trafficking. We use
the amount of drug seizure as an approximation of the amount of drug trafficking per
country to evaluate our methods. Specifically, we investigate to what extent different
methods could predict the ranking of countries in drug seizure (amount). Further-
more, these three approaches are integrated by a linear regression method in which
we combine the nodal properties derived by each method to build a comprehensive
model for the cocaine seizure data. Our analysis finds that the unweighted eigen-
vector centrality metric combined with the inflow derived by the flow optimization
method best identifies the countries with a large amount of drug seizure (e.g., rank
correlation 0.45 with the drug seizure). Extending this regression model with two
extra features, the distance of a country from the source of cocaine production and
a country’s income group, increases further the prediction quality (e.g., rank cor-
relation 0.79). This final model provides insights into network derived properties
and complementary country features that are explanatory for the amount of cocaine
seized. The model can also be used to identify countries that have no drug seizure
data but are possibly susceptible to cocaine trafficking.
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1 Introduction

Complex networks have been widely used to represent real-world complex sys-
tems, where nodes denote the components and links represent relations or interac-
tion between components. Significant contributions have been made to characterize
complex networks and to understand the effect of a network on a dynamic process
unfolding on the network. Diverse nodal centrality metrics [1, 2] have been pro-
posed to measure various topological properties of a node. Nodal centrality metrics
have been applied in general to estimate the importance of nodes in their function,
e.g., to identify nodes with high spreading capacity and to select nodes to be immu-
nizedwhen a virus is prevalent [3–5]. Spreadingmodels such as Susceptible-Infected
(SI) model and Susceptible-Infected-Susceptible (SIS) model have been intensively
studied [6, 7] to model the spread of epidemic and information on networks. Deep
understanding has been achieved regarding how the underlying network topology
affects a spreading process, how to predict and control a spreading process on a
network [8].

Shipping networks play a crucial role in world trade as around 80% of global trade
by volume is carried by sea.1 From the aspect of network topology, prior literature
explored the overall structure of the global shipping network, revealing its scale-
free property [9] and modular structure [10]. Li et al. investigated the relationship
between the centrality of nodes in the global shipping network and the economy of
corresponding areas [11].Global shipping network has been found to have “economic
small-world” characteristic [12], i.e., with high transportation efficiency and low
wiring cost. Some other efforts have been devoted to model dynamic processes on
shipping networks, e.g., marine species invasion process [13, 14]. Nonetheless, how
illicit trafficking, like drug trafficking, is linked to the shipping network from the
angle of network science remains unexplored.

In this paper, we investigate how to explain and predict drug (e.g., cocaine) traf-
ficking using the global shipping network. The amount of drug seizure in each country
is used as an approximation of the amount of drug trafficking to evaluate our meth-
ods.We propose three types of network-basedmethods. Thesemethods are evaluated
via their capability to predict the ranking countries in drug seizure (amount) thus to
identify countries with a large drug seizure. The first method uses traditional nodal
centrality metrics of a country in the shipping network to estimate the volume of
drugs seized in the country [15]. Secondly, we employ the SIS spreading model on
the shipping network. The infection probability of a node (country) in the meta-
stable state is derived to indicate a country’s drug seizure. In the third method, we
formulate drug trafficking as the optimal flow on the shipping network, where the
number of links to route the traffic from countries that produce drugs and countries
that consume drugs is minimized. The inflow to a country is used to estimate the
drug seizure of that country.We finally combine the above threemethods using linear
regression, showing a better prediction of the ranking of countries in drug seizure
and identifying key factors that explain the amount of drug seizure per country. This

1 https://unctad.org/webflyer/review-maritime-transport-2018.

https://unctad.org/webflyer/review-maritime-transport-2018
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linear regression model has also been extended by including two extra country-level
properties, namely the distance of a country from the source of cocaine produc-
tion and a country’s income group/level. We find that these extra features could
further improve the prediction quality and the essential role of network-based prop-
erties.

The paper is structured as follows. Section2 introduces the construction of the
shipping network and drug seizure data. Section3 describes and evaluates our meth-
ods. Section4 summarizes our key findings.

2 Datasets

Shipping Network Construction. The Global Liner Shipping Network has been
derived from service routes data of the world’s top 100 liner shipping companies in
2015, by mapping each service route as a complete graph where any two ports in
the service route were connected via a link [16, 17]. It is composed of 977 unique
ports and 16,680 inter-port connections. We construct the country-level shipping
network as follows. Based on the country code of each port extracted from theMarine
Traffic ports database [18], each port can be mapped to the country it belongs to.
In the unweighted shipping network, nodes are the countries, and two nodes i and
j are connected by a link, i.e., ai j = 1 in the adjacency matrix A if at least two
ports from the two countries respectively have an inter-port connection, otherwise
ai j = 0. Aweighted network can be further constructed by having the same topology
as the unweighted network and associating each link with a weight wi j that equals
the total number of inter-port connections between countries i and j . The weight
wi j = 0 if there is no inter-port connection between i and j . Both networks have
N = 174 countries and L = 2743 links in 2015 and are relatively stable over time.
The unweighted network is visualized in Fig. 1.

DrugSeizureData. The drug seizure data is from theUnitedNationsOffice onDrugs
and Crime annual drug seizures report [15]. The data contains reports for 144 unique
countries between the years 2012–2016.We extract all entries that pertain to the drug
group of Cocaine-type and can reliably be converted to kilogram equivalents. The
average amount of drug seizures per year per country over 2012–2016 is considered.
There is an overlap of N = 110 countries between the shipping network and the drug
seizure data.

Hence, we consider the sub-shipping weighted and unweighted networks, that
contain these 110 common countries as nodes and their connections in this paper.
Both shipping networks contain N = 110 countries and L = 1794 links and the
average (standard deviation) of link weights is 6.1 (13.4) in the weighted network.
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Fig. 1 Unweighted global liner shipping network. Each node represents a country (or district)

3 Methods

Firstly,wepropose three distinct network based approaches tomodel the drug seizure.
Each approach uses the shipping network as main ingredient and creates an output
nodal property that is meant to be representative of the drug seizure of a country.

We evaluate the quality of all approaches in predicting the ranking of countries in
drug trafficking/seizure amount via two measures: Spearman’s rank correlation and
the recognition rate between an output nodal property and drug seizure of a country.
The top f recognition rate rφv( f ) is defined as

rφv( f ) = |Rφ

f ∩ Rv
f |

|Rφ

f |
,

where Rφ

f is the set of f percentage of countries that have the highest drug seizure
amount and Rv

f is the set of f percentage of countries that have the highest (low-
est2) value in property v. The recognition rate rφv( f ) equals the size of the overlap
between Rφ

f and Rv
f , or the number of common nodes, normalized the size of each

set |Rφ

f | = |Rv
f | = N f . We consider f = 10, 20 and 40% as examples. Using these

two measures, we aim to understand the capability of our approaches in identifying
the countries with a high drug seizure.

2 When drug seizure and the nodal property are supposed to be negatively correlated.
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3.1 Topological Metrics

Our first approach uses each nodal centrality metric derived from the shipping net-
work to estimate the drug seizure per country. We are interested in which metric has
the highest correlation with drug seizure and is therefore most representative of drug
seizure. We will briefly introduce our four chosen centrality metrics, our reasoning
and hypotheses for their correlation with drug seizure.

• Degree di of a node i is the number of links incident to the node i . The degree of a
country represents the number of countries directly connected to it in the shipping
network.

• Betweenness Centrality bi of a node i in the unweighted shipping network is the
number of shortest paths that traverse the node i between all possibly node pairs
[19, 20].

• Clustering Coefficient ci of a node i equals the number of links among the neigh-
bors of the node normalized by

(di
2

)
. It tells the link density among the di neighbors

of node i .
• Eigenvector Centrality. The unweighted (weighted) eigenvector centrality of a
node is the principal eigenvector component and the principal eigenvector is the
eigenvector corresponds to the largest eigenvalue of the unweighted (weighted)
adjacency matrix A (W ). A country with a high eigenvector centrality tends to
connect to many countries who themselves have a high connection (eigenvector
centrality).

We suspect that countries with a high degree, betweenness or Eigenvector centrality
are susceptible to large amount of drug trafficking due to their good network con-
nection, infrastructure and the corresponding flexibility to change modus operandi
(e.g., shifting drugs to another port). In contrary, countries with a large clustering
coefficient could be less susceptible since they do not have a large degree and drug
trafficking can be through their mutually connected neighbors without the need of
traversing the country itself.

Results. The Spearman’s rank correlation and recognition rate between the drug
seizure and each chosen centrality metric is given in Table1. We find that all metrics
have a statistically significant (p < 0.01) rank correlation with drug seizure, and the
sign of each correlation is in line with our hypothesis for the corresponding metric.
All centrality metrics can contribute to the identification of countries with large
seizure since their recognition rate rφv( f ) > f , thus is better than that of a random
guess.We find that the unweighted eigenvector centrality metric provides the highest
correlation in strength, however theweighted eigenvector centrality and betweenness
leads to the highest recognition rate when f = 20% and f = 40% respectively.
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Table 1 Evaluation of prediction performance of topological metrics, SIS infection probability,
and inflow (derived from the flow optimization model), via rank correlation and recognition rate

Metric Corr. p-value rφv(10%) rφv(20%) rφv(40%)

Degree 0.39, < 0.01 0.27 0.41 0.57

Betweenness 0.34, < 0.01 0.27 0.36 0.61
Clustering −0.35, < 0.01 0.27 0.36 0.60

Eigenvector (unweighted) 0.40 < 0.01 0.27 0.41 0.59

Eigenvector (weighted) 0.39 < 0.01 0.27 0.50 0.52

SIS infection prob.
(unweighted net)
τ = 0.045

0.41 < 0.01 0.27 0.41 0.59

SIS infection prob.
(weighted net) τ = 0.021

0.40 < 0.01 0.27 0.41 0.59

Inflow 0.33 < 0.01 0.36 0.36 0.57

The best performance of each category is in bold

3.2 SIS Spreading Process

We have shown recently that the SIS epidemic spreading model can be generalized
to model the contagion of traffic congestion at an airport on an airline network and
the infection probability of an airport can be used to estimate the probability of
congestion at the airport [21]. Inspired by this, we propose our second approach:
model the contagion of drug trafficking as an SIS spreading process on the shipping
network and uses the infection probability of a country in the meta-stable state to
estimate the ranking of countries in drug seizure. We will briefly introduce the SIS
model, method to derive infection probabilities and evaluate this approach.

SIS Model. The homogeneous SIS model is defined as follows. At any time t , a
node is either susceptible or infected. A susceptible node can be infected by each of
its infected neighbors with an infection rate β and each infected node recovers to be
susceptible again with a recovery rate δ. Both the infection and recovery processes
are independent Poisson processes. For a given network upon which the SIS process
is deployed, a critical epidemic threshold τc exists. When the effective infection rate
τ = (β/δ) > τc, a non-zero fraction of infected nodes persists in the meta-stable
state. When τ < τc, the epidemic dies out.

Mean-Field Approximation of SIS Model. We derive nodal infection probabilities
in themeta-stable state viaN-IntertwinedMean-FieldApproximation (NIMFA) [22].
NIMFA is chosen as it preserves the network topology in its governing equations,
coupling the infection probability of neighboring nodes. It assumes that the states
of neighboring nodes are uncorrelated. Under NIMFA, the governing equation for a
node i in our heterogeneous SIS spreading model is
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dvi (t)

dt
= −δvi (t) + (1 − vi (t))

N∑

j=1

βwi jv j (t), (1)

where vi (t) is the infection probability of node i at time t , and βwi j is the infection
rate associated to the link (i , j) with weight wi j . The time derivative of the infection
probability vi (t), is determined by two competing processes (a) while node i is
infected, node i is cured at rate δ and (b) while node i is susceptible, each infected
neighbour j infects node i with a rate βwi j . In the meta-stable state, dvi (t)

dt = 0, for
any i ∈ N . Hence, the infection probability of each node in this case, vi∞, can be
derived by solving the equations δvi∞ + (1 − vi∞)

∑N
j=1 βwi jv j∞ = 0. The trivial

all-zero solution corresponds to the absorbing state where all nodes are susceptible.
Both the unweighted and weighted shipping networks will be considered. When

the underlying network is the unweighted, the governing Equation (1) should be
updated by replacing the weighted adjacency matrix element wi j by the unweighted
adjacency matrix element ai j .

Results. In Fig. 2, the Spearman’s rank correlation and recognition rate between the
infection probability and drug seizure amount are plotted as a function of the effective
infection rate τ , when the underlying network is the unweighted shipping network.
The Spearman’s rank correlation varies only slightly when the effective infection rate
is small around the critical epidemic threshold τc = 0.020. This is in linewith the the-
oretical and empirical finding in [23] that the ranking of nodal infection probability
tends to change more with τ , when τ is small. The top f recognition rate is insensi-
tive of the effective spreading rate τ . The same trends have been observed when the
underlying network is the weighed shipping network. The maximal rank correlation
and recognition rate that can be reached by choosing τ (just above the threshold) are
summarized in Table1. We also find the infection probability of a country derived
from the unweighted (weighted) shipping network at the optimal effective infection
rate, is strongly correlated with the unweighted (weighted) principal eigenvector
component derived in Sect. 3.1, with a correlation coefficient around 0.99. This is in
line with the theoretical proof that when the effective infection rate is just above the
epidemic threshold, the meta-stable state infection probability of a node, obtained
by NIMFA is proportional to the principal eigenvector component of the adjacency
matrix A (W) [24]. By tuning the effective infection rate β to optimize the eval-
uation metrics, we improve the performance marginally compared to the principal
eigenvector component.

3.3 Flow Optimization Model

For this method we view transnational drug trafficking as an economic process
where drugs go from production countries to consumption countries through a chain
of intermediaries [25]. This is motivated by two main factors that contribute to
Cocaine trafficking. The first is that the price of Cocaine is largely attributable to
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(a) (b)

Fig. 2 a Spearman’s rank correlation (and the average infection probability over all nodes) and b
recognition rates between nodal infection probability and drug seizure as a function of the effective
infection rate. The underlying network is the unweighted shipping network

risk compensation[25]; in an economic system, distributors may try to minimize
the number of links used to transport drugs from supply countries to consumption
countries. The second factor is that a large portion of Cocaine trafficking uses the
shipment network as way of transportation [26]. We therefore create an optimization
problem in which we minimize the number of links used to transport drugs in our
shipping network whilst adhering to constraints that model the supply and demand
for each country. The total inflow at each country will be used to predict the ranking
of countries in drug seizure.

The following steps will be taken to derive the (normalized) supply and demand
per country. Firstly, we extract the amount of cocaine production si of each country
i in 2012 from [27] and the drug usage ui (as % of population) of each country i
from [28]. We define the normalized supply of a country i as s∗

i = si∑Ns
i=1 si

, where Ns

is the number of supply countries. Similarly, the normalized demand of a country i
is defined as u∗

i = ui∗mi∑Nu
i=1 ui∗mi

, where mi is the population of country i and Nu is the

number of consumption countries. The total normalized supply (or demand) of all
countries is one.

Countries of supply or consumption may not have any port, thus not exist in our
shipping networks. Hence, we extend our unweighted shipping network with 174
nodes by including all the supply and consumption countries listed in the data [27]
and [28] and adding directed link(s) from (to) a supply (consumption) country that
has no port to (from) countries that have a port and share a border with it, using
country border dataset [29]. In total, 49 nodes and 130 directed links have been
added.

We assume that the flow from the multiple supply countries to the consumption
countries follows the paths on the shipping network with the minimal number of
links, i.e.

∑
i, j 1{Ai j ·Fi j>0}, where Fi j is the flow from country i to j and the indicator

function 1x is one (zero) when the condition x is true (false). For each country, the
following constraint must hold:
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s∗
i +

N ∗∑

j=1

A ji Fji =
N ∗∑

j=1

Ai j Fi j + u∗
i (2)

The constraint ensures the total incoming and outgoing flow combined with the
supply and demand in each node is balanced. After the optimization, 68 nodes have
a positive inflow or outflow.

Results. We use the final inflow, Fi = ∑N ∗
j=1 A ji Fji , per country to estimate ranking

of the same set of 110 countries in drug seizure as in previous analysis. The rank
correlation and recognition rate between the amount of in-flow and drug seizure of
a country can be found in Table1. We find that whilst this method produces a lower
rank-correlation than the methods described in Sects. 3.1 and 3.2 likely due to the
zero inflow of many countries, it achieves a significantly higher recognition rate
at f = 10%. This implies the complementary nature of the three methods and the
potential synergy when combining them.

3.4 Regression Model

We have shown that all threemethods (their output nodal properties) contribute to the
estimation of countries with the highest amount of drug seizure. In order to explore
their synergy and identify the key nodal properties in explaining drug seizure, we
build a regressionmodel that uses aforementioned network derived features in combi-
nation with other country features.We fit multiple Gaussian linear regression models
on the logarithm of the drug seizure data, taking different features as independent
variables. We split our analysis into three parts; in Analysis 1 we investigate our
network derived features, in Analysis 2 we investigate extra country features, and in
Analysis 3 we combine the results from analyses 1 and 2 to propose a final model.

Table2 provides an overviewof the results for each analysis. The adjusted R2 value
indicates the predictive power of each regressionmodel.We also provide Spearman’s
rank correlation and recognition rate between the drug seizure amounts predicted by
each regression model and the actual drug seizure amounts. The correlation and
recognition rate in Table2 for the single feature regression in A.1 are in line with the
results produced by each method in Sects. 3.1, 3.2 and 3.3 and serve as a baseline for
the subsequent models.

Analysis 1. We start with regression models that use each output property derived
in Sects. 3.1, 3.2 and 3.3 as the single feature. We find that the unweighted Eigenvec-
tor Centrality (EC), derived in Sect. 3.1, results in the highest scoring R2 value and
therefore provides the best fit over all network basedmethods. Betweenness and clus-
tering coefficient perform worse than EC and are not considered in this analysis. The
Infection Probability (IP), Eigenvector Centrality (EC) on weighted and unweighted
networks are strongly correlated and the unweighted EC performs the best among
these four properties. Hence, we consider the combination of the unweighted EC and



684 L. Leibbrandt et al.

Table 2 Results for regression analyses. Country level features considered include: principal eigen-
vector component of the unweighted shipping network (EC unweighted), of the weighted network
(EC weighted), infection probability (IP) in unweighted and unweighted network respectively,
inflow (IF), distance to source countries (D) and the Income Group (IG)

Formula for regression Adj. R2 Corr. rφv(10%) rφv(20%) rφv(40%)

A.1 (3.1) EC unweighted 0.13 0.40 0.27 0.41 0.59

(3.1) EC weighted 0.10 0.39 0.27 0.50 0.52

(3.2) IP unweighted 0.11 0.41 0.27 0.41 0.59

(3.2) IP weighted 0.11 0.40 0.27 0.55 0.55

(3.3) IF 0.07 0.33 0.36 0.36 0.57

ECu + IF 0.16 0.45 0.36 0.55 0.64

A.2 D 0.27 0.55 0.64 0.59 0.64

IG 0.20 0.41 0.27 0.41 0.43

D + IG 0.41 0.68 0.64 0.50 0.77

A.3 EC unweighted +
IF + D + IG

0.55 0.79 0.73 0.82 0.82

The model that performs the best in each of the three categories are in bold

the inflow (IF). Whilst the total country Inflow (IF), derived in Sect. 3.3, does not
provide relatively high rank correlation, the combined regression of unweighted EC
and IF performs better than that of a single network based property, revealing that
these two features contain cumulative predictive power.

Analysis 2. Besides network based features, we investigate another two key coun-
try level features: the Distance (D) of a country from the countries where cocaine is
produced and the Income Group (IG) of a country, because they are known to influ-
ence cocaine seizure rates [26]. For the Distance (D), we take the geodesic distance
in kilometers between the coordinate of each country and the central coordinate of
the source countries. The betweenness and D are weakly correlated (rank correlation
0.14). We also extract the Income Group (IG) of each country [30] in 2016; this
assigns each country as either a low, lower middle, upper middle or high income
country.

Wefind that both distance and IncomeGroup have a high predictive power for drug
seizure, anddistance is an especially effectivemethod toobtain high recognition rates,
i.e. rφv(10%) = 0.64. The combined predictive power of the two country features is
strong and this model is able to outperform the best model from Analysis 1 in all but
one, rφv(20%), of the evaluation metrics.

Analysis 3. For our final investigation, we combine the best performing models
from Analysis 1 and 2. A correlation analysis reveals low rank correlation amongst
EC, IF, D and IG (< 0.150). Therefore, we conclude that each feature provides
unique information and should be used in the final model. This model outperforms
all the other models. It is able to correctly predict 73% of the countries that are in the
top 10% of the highest scoring countries based on drug seizure amounts, and 82%
of the countries in both the top 20% and 40% lists. This observation highlights the
essential role of both network based properties and the two country level properties
in estimating drug seizure.
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4 Conclusion

In this work, we propose different methods to explain and predict the amount of
cocaine trafficking/seized per country using the global shipping network. We firstly
propose three distinct network-based approaches: a centrality metrics based, an SIS
spreading process based and a flow optimizationmodel based approach. Correspond-
ingly, the derived centrality metrics, infection probabilities, and inflow of drug traffic
of nodes are used to estimate the ranking of countries in drug seizure. Furthermore,
a linear regression analysis is designed to investigate the cumulative power of each
approach with other country features.

We find that each approach with its output nodal property could contribute to the
estimationof the rankingof countries in drug seizure.The eigenvector centrality of the
unweighted shipping network seems to perform the best, also in view of the amount
of data needed. Furthermore, the regression analysis reveals that inflow derived from
the optimization model contains unique information when compared with the eigen-
vector centrality; combining in-flow and unweighted eigenvector centrality results
in an evidently better estimation of drug seizure. We end our investigation by show-
ing the benefit of combining our network-based results with other features, e.g., a
country’s distance to the source of cocaine and its income group.

The identification of countries that are susceptible to a large amount of cocaine
trafficking is crucial in stopping the illicit substance from reaching its destination.
Our final proposedmodel provides a starting point to tackling this problem. For coun-
tries that have no drug seizure data, the model can be used to predict their amount of
drug trafficking. Furthermore, our methods can be applied or extended for drug traf-
ficking of other drug groups such as amphetamine-type stimulants and opioids on a
multi-layer network that includes diverse transportationmodes. Ourmethod could be
further developed to distinguish between drug producing and non-producing coun-
tries, between domestic and trade/port related seizures and to understand whether
the difference in the predicted and actual ranking of countries in drug seizure could
be explained by the variance in law enforcement efforts of countries and other social
and political factors.
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