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Abstract. The epistemic position of an agent often depends on their
position in a larger network of other agents who provide them with
information. In general, agents are better off if they have diverse and
independent sources. Sullivan et al. [19] developed a method for quan-
titatively characterizing the epistemic position of individuals in a net-
work that takes into account both diversity and independence and pre-
sented a proof-of-concept, closed-source implementation on a small graph
derived from Twitter data [19]. This paper reports on an open-source re-
implementation of their algorithm in Python, optimized to be usable on
much larger networks. In addition to the algorithm and package, we also
show the ability to scale up our package to large synthetic social network
graph profiling, and finally demonstrate its utility in analyzing real-world
empirical evidence of ‘echo chambers’ on online social media, as well as
interdisciplinary diversity in an academic communications network.

Keywords: Social epistemology · Python · Social network analysis ·
Testimonial networks

1 Introduction

Most of what we know we know because we learned about it from other people.1

Social epistemology is the subfield of philosophy that studies how knowledge and
justification depend on the testimony of others transmitted through social net-
works [7]. A focus on networks has been influential because it allows philosophers
to connect their concerns to the substantial body of empirical and simulation
work on real-world networks and their graph-theoretic properties. Sullivan et al.

1 Our acknowledgments to Ehsan Abedin, Ignacio Ojea Quintana, and Ritsaart
Reimann for their kind feedback on this paper.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2016 2022, SCI 1077, pp. 62–73, 2023.
https://doi.org/10.1007/978-3-031-21127-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21127-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-21127-0_6


The wisdom of crowds: An Efficient, Philosophically-Validated 63

[19] presented a method for quantitatively characterizing the epistemic position
of individuals in a network. Broadly speaking, individuals are in a better epis-
temic position if they are receiving information from diverse and independent
sources, with the more diversity and independence the better. This method was
based on, amongst others, the Wisdom of Crowds hypothesis, that the aggre-
gated judgements of many individuals can systematically be more accurate than
the judgements of those individuals taken singly [20]. They then operational-
ized these two concepts in a way that allowed them to provide an interesting
profile of a small 185-member Twitter community [19]. That work relied on a
bespoke, closed-source codebase. As it was built as a proof-of-concept, it was
also not optimized in ways that naturally scaled to larger networks. This made
it difficult to apply the technique to other datasets, such as networks from other
social media sites, or networks created from artificial social simulation algo-
rithms, e.g. Laputa [16]: all of which are of interest to both philosophers and
computer scientists alike. That work’s codebase had an emphasis on the genera-
tion of Java-based visualizations—using a combination of several platforms and
toolchains—which does not lend itself to convenient large-scale network analysis
due to performance limitations.

To make this tool more widely available to researchers, we therefore present
wisdom of crowds, a complete ground-up re-implementation in Python of the
core Sullivan et al. [19] concepts. The code is optimized to deal with larger
networks. It also includes some standardized helper functions to allow for coor-
dinating results between research groups and data scientists. We have made
the code for this package open source, under the GNU General Public License
3.0 2, on GitHub (https://github.com/cvklein/wisdom-of-crowds/). It has also
been accepted to the Python Package Index (PyPI, at http://pypi.org/project/
wisdom-of-crowds), and is available for any user to install via pip.3

As much as possible, we have relied on open-source Python packages such as
networkx [17] and matplotlib [9] as they have been rigorously tested and are
freely available for auditing and peer review. For good practices in verification
and validation, the pytest [10] library is used to provide a unit-testing frame-
work. Having created this new implementation, we sought out to deploy it in
our investigation of contemporary social network data, to provide a data-driven
perspective to complement existing conceptual and theoretical work. This paper
thus aims to present three key findings:

– the core concepts of the wisdom of crowds package, including compatibility
with (and optimization for) contemporary network-related datasets and pack-
ages in Python. This includes improvements to the base [19] algorithm, by
clearly defining the bounds (and justifications for) parameters used, as well
as suggested extensions including the h-measure derived from [8].

– application of wisdom of crowds on simulated large networks; to investigate
its feasibility/performance.

2 Full license terms can be found at https://www.gnu.org/licenses/gpl-3.0.en.html.
3 It can be installed by the Python community via: pip install wisdom of crowds.

https://github.com/cvklein/wisdom-of-crowds/
http://pypi.org/project/wisdom-of-crowds
http://pypi.org/project/wisdom-of-crowds
https://www.gnu.org/licenses/gpl-3.0.en.html
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– application of wisdom of crowds on actual real-world networks—Twitter dis-
course about the Black Lives Matter (BLM) movement between January and
July 2020 centering around the May 25th 2020 murder of George Floyd [2];
and the email-Eu-core network on communications patterns in “a large Euro-
pean research institution” [11,12,23]—to corroborate theoretical findings on
modern-day social networks centered on current phenomena.

2 Background and Methods

2.1 Core Concepts

Epistemology is a branch of philosophy which, simply put, “is concerned with
how people should go about the business of trying to determine what is true”
[18]. Social epistemology concerns the testimony of others embedded in social
contexts [7]; in contrast with ‘individual’ epistemology which concerns how an
individual conducts reasoning, abstracted away from their “social environment”
[18].

In recent years, social epistemologists have moved away from considering
dyadic relationships between individuals to consider the ways in which social
epistemic networks shape the information we receive [4,15]. Consider an epis-
temic network G where nodes are epistemic agents and edges represent the rela-
tionship of receiving information via testimony. ‘Testimony ’ is used broadly in
social epistemology for any way in which one source delivers information to
another, and includes speech, writing, and other forms of media. All things being
equal, a node is better off receiving information from more and more diverse
nodes. However, testimony is often transmitted in chains, and this transmission
need carry only the content of the information, not (meta-)information about
the original source or the intermediate links. This complicates the position of
any individual who is trying to learn from multiple sources. For example, a piece
of gossip heard from two people seems more reliable than from one, but that
reliability is undermined if both heard it from the same person [3].

2.2 Sullivan et al. (2020)’s Operationalizations

Defining the m, k observer: Following [19], we say that a node n is an m, k-
observer just in case it receives information from a set of at least k different nodes
which are pairwise at least m steps away from one another, when considered on
the subgraph of G that does not contain n. If G is directed, then candidate
sources must be at least m steps away in both directions. The removal of n
from consideration in the case of distances is necessary for directed graphs, as
otherwise all sources to n are trivially at most 2 steps apart; we carry over that
requirement to undirected graphs as well.

In this work, we assume 1 ≤ m ≤ 5, as most real life networks have length 6
paths between most arbitrarily chosen nodes [13]. We bound 2 ≤ k ≤ 5, because
a node with a single source is in a very poor epistemic position with respect
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to diversity of input. Note that it is a consequence of the definition that if n is
an m, k-observer, it is also both an m − 1, k-observer and an m, k − 1-observer
(assuming m − 1 and k − 1, respectively, are permissible values).

Given this definition, the core concepts in [19] are defined as follows.
S(n), independence of sources. S(n) gives a measure of the independence of
sources to node n. Consider the set s of possible pairs (m, k) for which n is an
m, k-observer. Then define

S(n) =

{
0 if s = ∅
max{mk: (m, k) ∈ s} otherwise

(1)

In other words, S(n) is just the largest mk such that the n is an m, k-observer.
If S has 0 or 1 nodes as sources, they are considered as being in an epis-
temically bad position, and so S(n) = 0. Note that given this definition,
possible S values do not increase smoothly. Given the bounds set out above,
S(n) ∈ {0, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25}.
D(n), diversity of sources. D(n) measures the diversity of the sources that
contribute information to n. Let each node i be associated with a set ai of
epistemically-relevant attributes. These might be group affiliations, topics of
interest, scientific approaches, political leanings, and so on. Let s be the set of
n’s sources. Then define

D(n) =|
⋃

{ai: i ∈ s} | (2)

That is, D gives the number of distinct types of information that feed into n.
π(n), epistemic position. Finally, as the epistemic position of a node is a
function of both the diversity and independence of sources, we define

π(n) = S(n)D(n) (3)

2.3 Caveats and Considerations

There are a few notes to make about the implications of the Sullivan et al. [19]
core concepts in real social networks.

Regarding m, k-observers, while higher rankings are better and all the nodes
with a specific value of m and k are members of an equivalence class, the frame-
work does not posit which of two m, k-observers is better positioned if one has
a higher m value and the other a higher k value—for instance, whether 2, 3-
observers are better- or worse-placed than 3, 2-observers. The framework thus
does not provide a total order but instead provides a collection of partial orders.
Intuitively, for instance, a 1, 2-observer is worse placed than a 2, 3-observer
despite having neither an m or a k value in common, because a 2, 3-observer
is better placed than a 2, 2-observer when considering k values, which in turn is
better placed than a 1, 2-observer when comparing m values. Thus, a node’s S
value does provide a way to more easily compare the epistemic position of nodes,
by combining their m and k values into a single value.
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The choice of multiplying m and k values together to come to a single measure
is ultimately arbitrary. The S value contains less information than the m and
k values does, because it fails to preserve the difference between being a 2, 3-
observer and being a 3, 2-observer (the former has fewer independent sources, but
these have a greater degree of independence from each other than in the latter’s).
Simultaneously, it posits that a node which is a 3, 3-observer is determinately
better placed than either a 4, 2-observer or a 2, 4-observer, but worse than a
5, 2-observer or a 2, 5-observer.

In short, while a node’s S value is one measure of the independence of its
sources, it is a measure that throws away information and makes finer-grained
distinctions than may be warranted in some cases. This was the impetus for us
introducing a further measure, the h measure(n) [8] which returns the highest
h such that n is a h, h-observer, as discussed below.

2.4 Our Re-implementation

The core of the wisdom of crowds is a class Crowd.4 Crowd is initialized with
a NetworkX graph (encapsulating the social network’s edges and nodes), and
provides various functions to calculate the metrics defined above.

Calculating whether a node is an m, k-observer combines multiple shortest-
path problems with clique-finding problems. Näıve approches to the latter have
complexity O(nk) [22]. Given that we are considering unweighted paths, the
shortest-path problem has a reasonably efficient linear-time solution, but the
requirement to remove n from the distance calculations also means that network
shortest paths cannot simply be calculated at the outset. In the worst case
scenario, they must be recalculated for each pair of sources for each node.

Hence this is a computationally difficult problem to brute-force. In prac-
tice, efficient caching and testing of seen paths plus greedy k-clique algorithms
means that worst-case performance can often be avoided for realistic networks:
we memoize (i.e., cache) intermediate path values, trading-off space for a reduced
processing time. As the envisioned use case for large graphs is for one-shot batch
processing, our code allows for easy multithreading or multiprocessing (e.g. using
multiprocessing or concurrent.futures) allowing it to attain substantial perfor-
mance gains, in conjunction with the memoization mechanism.

The m, k-observer functionality is the basis for calculating D, S, and π. D is
calculated on node attributes, and users can specify the appropriate key for the
attribute. If a single attribute is supplied, D is calculated using the singleton set
containing that attribute.

In addition to the standard measures, we also introduce an improvement:
the h measure() of a node n as the largest x such that n is an x, x-observer;
comparable to the standard definition of Hirsch’s h-index in citation practices
[8]. As suggested by [19], being a 3,3-observer is the minimal secure epistemic

4 Due to space constraints, we only discuss our substantial contributions within this
paper. The full documentation for all implemented methods is available at https://
github.com/cvklein/wisdom-of-crowds/blob/main/docs/wisdom of crowds.py.md.

https://github.com/cvklein/wisdom-of-crowds/blob/main/docs/wisdom_of_crowds.py.md
https://github.com/cvklein/wisdom-of-crowds/blob/main/docs/wisdom_of_crowds.py.md
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position, and the use of a single non-multiplicative standard may be useful for
some cases.

Finally, the package includes two helper functions to allow for compara-
ble reporting and display across different users. iteratively prune graph()
takes a NetworkX graph, removes small-degree nodes, small-weight edges, and
takes the largest connected component in what remains, iterating this process
until the graph is stable. The thresholds are parameterized; the default is for
indegree + outdegree ≤ 1 and no edge culling, as per [19]. In the spirit of scien-
tific reproducibility, make sullivanplot() makes a summary figure of a whole
network in the style of [19, refer to their Fig. 7]. It can produce standalone plots
or return a subplot in a specified matplotlib axis.

3 Experimental Results

3.1 Efficiency Tests

Firstly, to benchmark the ability of wisdom of crowds on different magnitudes
of nodes, typical of modern-day datasets, we sought to batch calculate S for
different magnitudes of node sizes (|N |), given various probabilities of edge con-
nections.

Figure 1 shows the efficiency of batch calculating S for each node of a Crowd
on random graphs with varying parameters for probability of edge connection.
Random directed graphs were generated using the networkx generator
fast gnp random graph() with the parameters indicated in the figure. Timing
was done using the python timeit package over a single iteration.

Fig. 1. Timing curve for random graphs by number of nodes. Different markers repre-
sent different connection probabilities for nodes.

As the log-linear plot in Fig. 1 shows, there is a roughly exponential relation-
ship between the number of nodes and runtime, with the exponent a function
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of the number of edges. This suggests that the efficiency of our code approaches
what would be expected given the fundamental complexity of the clique-finding
problem. Note that the exponential growth means that the boundary between
computationally tractable and intractable graphs can be relatively tight. Judi-
cious pruning often makes a difference.

Further, note that this was achieved in standard Python operating condi-
tions, i.e. in the absence of any multiprocessing/multithreading support (see also
Sect. 2.4). Performance gains will be attained for batch calculations on high-CPU
(16-or-more CPU cores) systems.

3.2 Application on Social Network Data: BLM on Twitter

Secondly, as part of our investigation of real-world phenomena, in line with [19],
we replicate their findings on a real-world Twitter retweet network to examine
the information-sharing dynamics during the Black Lives Matter movement. An
earlier version of this dataset was used by [19] who were able to examine a
network of 185 nodes. For further information on the dataset5 used, see [2]. For
brevity, the key details are summarised here.

A retweet network [2,19] was generated: i.e., a weighted directed network
where nodes are authors and the weight of an edge from node u to node v rep-
resents the number of times that user v retweeted user u. We took the largest
connected component of this graph as the starting point for cluster-analysis
[6,21]. Following [2], We found first-level clusters using Modularity Vertex Par-
titioning, preserving clusters with more than 10% of the original nodes. This
gave 4 clusters, covering 83% of the graph. Next, we manually inspected the
100 most-influential nodes within each group, characterizing the communities
as Activists, Center-Left Democrats, Republicans, and a set of “Boosters” who
mainly amplified the content of the first two groups. Topic models were fit using
scikit-learn’s non-negative matrix factorization (NMF), fit on a tf-idf repre-
sentation of the Twitter text (post-sanitization) with min df=0.05. Finally, we
used iteratively prune graph() with a node and weight threshold of 3, which
resulted in a tractable subgraph with |N | = 16249 nodes and |E| = 145246
edges. This subgraph had very little representation from the ‘booster’ group, so
they were omitted from further analysis. By comparison with [19], our analysis is
an increase in the number of nodes by a magnitude of ∼ 100×. Batch processing
took about 6.25 h on a 2017 desktop iMac.

Figure 2 plots S, D, and π for the current experiment. For the left side of 2,
D was calculated using the cluster identity of the node. For the right side, D
was calculated using the argmax of the fitted and normalized W matrix for the
topic model. This gives the topic that is most distinctive of each user’s tweets.

5 We queried the Twitter Streaming API with a series of Black Lives Matter (BLM)-
related keywords, hashtags, and short expressions in a window between January and
July 2020.The dataset comprised ∼ 4.6 M original tweets between January 13th and
July 18th and ∼ 94.5 M retweets from January 18th to July 23rd; these tweets were
produced by ∼ 2.0 M distinct authors.
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Fig. 2. Profile plots for entire network and subgroups looking at clusters (left) and
topics (right). X axis is proportion of total, Y axis shows both S (height of bars) and
π (black line), plotted on a log scale.
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We examine both the network as a whole and three identified subclusters in
the graph. The left half of Fig. 2 shows S, D, and π for the network, where
D is calculated via the subcluster identity of sources. The right half of Fig. 2
recalculates D and π based on a 9-topic NMF topic model of aggregated tweets
(compared with the 3-topic model of [19]). The results illustrate the utility of
profiling networks using our toolkit. On the left, one can see that Republicans
appear to be in the worst epistemic position in terms of the other subgroups with
which they interact: they have a generally low D, suggesting that they tend to
listen mostly to in-group members. However, they have a relatively high S and
therefore a π comparable to other subgroups. Compare this to the topic-wise
graph, in which Republicans have a relatively high diversity for topics, one at
least as good as other groups. The activist group shows something of the inverse
pattern. That is, they show a more varied range of S and D values for group-
group interactions, but a comparatively lighter graph with fewer topics for the
broad span.

These results might suggest that both groups are part of ‘echo chambers’
[1,14], but in different ways: the right tends to be a monoculture socially but a
polyculture topically, with a converse pattern on the left. Finally, we note that
all subgroups, in both domains of measurement, tend to have an S < 10 for more
than half the population. This replicates the observations of [19], in which most
participants end up in a comparatively poor epistemic position. However, most
groups tend to contain at least a small sub-population which is well-connected
and often with a relatively high D. We note that this is especially the case with
our ‘Booster’ group, a small subset who seemed to be mainly concerned with
amplifying and relaying the content of other groups.

3.3 Application on Communication Network Data: email-Eu-core

Finally, we apply our wisdom of crowds analysis onto the email-Eu-core net-
work, an existing dataset curated by [12,23] on the Stanford Large Network
Dataset Collection [11]. The rationale behind this is to apply our social epistemo-
logical lens to analyze an existing network which is hitherto (to our knowledge)
never been examined using the tools we have at hand.

Briefly, email-Eu-core consists of “email data from a large European research
institution” [11], represented as a digraph where an edge (u, v) exists “if
[researcher] u sent [researcher] v at least one email”. The beauty of email-Eu-core
lies in the fact that it only considers internal communications in the institution,
ignoring any noise resulting from possible non-academic communication origi-
nating from/in reply to outside actors; and that the ground-truth membership
of each node has already been established, i.e., as belonging to any “one of 42
departments at the research institute” [11].

Compared to more modern social networks, email-Eu-core has a compara-
tively small |N | = 1005 and |E| = 25571. However, again, we note that this
is already ∼ 10× the magnitude as compared to the hitherto state-of-the-art
[19]. The total running time on such a dataset is comparatively trivial (less than
5 min). As we do not have e-mail text associated with the original nodes in this
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dataset, we sought only to analyze the ‘overall epistemic picture’ of the network,
as a whole. In the same vein as Sect. 3.2, Fig. 3 illustrates the profile plot for
email-Eu-core.

Fig. 3. Profile plots for the entire email-Eu-core network [11,12,23]. The X axis is
proportion of total, Y axis shows both S (height of bars) and π (black line), plotted on
a log scale.

Again, the utility of our approach is evident. Given the results, we observe
that the distribution of S is fairly consistent for all the nodes (researchers) in the
research institution’s academic network. However, the progressively darker bars
illustrate that researchers who have connections with a more diverse amount of
departments (thereby maximizing D) can vastly optimize their epistemic posi-
tion. Roughly, about ∼ 40% of researchers—i.e., the right-most data points in
Fig. 3—have a π of about 100 or more, despite having roughly the same S values.
To our knowledge, this is the first time empirical social epistemological analyses
in the spirit of [19] have been conducted on such email networks.

4 Discussion and Conclusion

Our results show that it is possible to replicate the methodology used by [19]
to larger networks, and that insights about the relative epistemic positions of
different communities within a network can be drawn from plotting these param-
eters. As our package and its dependencies are all open source, this makes it
possible for researchers in a range of fields (including philosophy, psychology,
sociology, anthropology, communications, and network science) both to conduct
new research and to reanalyze networks that they have previously studied.

Our work is unique as there are hitherto no comparable tools that analyze
properties of extant networks, excepting [19]. Existing (social) network metrics—
such as PageRank, eigenvector centrality, and in- and out-degree—are premised



72 C. Klein et al.

on the connectedness and topology of nodes, rather than their epistemic qual-
ities. We anticipate that future research will expand the types of social net-
works under study. Other sources from online social media such as Facebook,
Reddit, and YouTube all seem to be viable candidates for study. Considering
offline epistemic networks would be especially valuable, such as those found in
the landmark Bernard-Kilworth-Sailer (BKS ) analyses of social networks [5], as
their structure may be interestingly different from the structures found online.
wisdom of crowds also allows us to conduct research on epistemic network sim-
ulations, created with tools such as Laputa [16], which can quickly scale up to
thousands of nodes. We expect that studies of friend networks, organizational
networks in industry and the military, networks of sources used by journalists,
criminal cartel networks, and academic citation networks would prove valuable.

Moving beyond that, it would be interesting to study networks with more
than one type of testimonial edge (e.g., public communications versus private
ones). One intriguing hypothesis is that these may differ in structure even if
they contain the same nodes, and that individuals who are central in public
networks but peripheral in private networks (or vice versa) would tend to play
unique roles in the social epistemology of those networks. For instance, someone
who is privately in communication with a very large number of others but not
publicly visible is in a position to exert influence because the others may assume
that they have a much better epistemic position than they actually do. We also
envision future work in measuring epistemic power by reversing the direction of
the edges (i.e., from hearer to testifier).

The exploratory profiling made possible by our tool reveals patterns of epis-
temic isolation and interaction across real-world networks, and suggests possi-
bilities for more specific analyses. By providing it to the community at large,
we hope to facilitate further modeling of epistemic networks across a variety of
domains.
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