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Abstract. We investigate a graph-based approach to exploratory data
analysis in the context of network security monitoring. Given a possibly
large batch of event logs describing ongoing activity, we first represent
these events as a bipartite multiplex graph. We then apply a model-
based biclustering algorithm to extract relevant clusters of entities and
interactions between these clusters, thereby providing a simplified situa-
tional picture. We illustrate this methodology through two case studies
addressing network flow records and authentication logs, respectively. In
both cases, the inferred clusters reveal the functional roles of entities
as well as relevant behavioral patterns. Displaying interactions between
these clusters also helps uncover malicious activity. Our code is available
at https://github.com/cl-anssi/MultilayerBlockModels.
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1 Introduction

The ever-increasing prevalence of cyber threats compels network administrators
and information security specialists to constantly monitor ongoing activity inside
sensitive networks. Such monitoring often boils down to collecting and analyzing
event logs, which can be generally defined as structured records reflecting all sorts
of actions. These logs are continuously produced in massive amounts by nearly
all devices within a monitored network, which is both a blessing and a curse:
while wide and systematic log collection provides a detailed situational picture,
extracting actionable insights from such volumes of data is highly challenging.
Data mining algorithms are thus needed to efficiently analyze and summarize all
the available information.

Interestingly, various types of event logs can be naturally represented as het-
erogeneous graphs. Consider for instance a network flow recorded at the border
of a protected network, indicating that a connection has occurred between inter-
nal host u and external host v. A collection of such events can be abstracted into
a bipartite graph whose top (resp. bottom) nodes are the internal (resp. exter-
nal) hosts. In addition, each network flow is further characterized by additional
categorical variables, such as the transport layer protocol (e.g. TCP or UDP) or
the source and destination ports. Therefore, each internal–external host pair can
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be linked by various kinds of edges. This suggests that a multiplex graph [17]
might be an appropriate representation. However, when considering a real-world
network, such a graph could easily have tens of thousands of nodes, making it
hard to interpret without any further processing.

To alleviate this issue, we propose to use a model-based multiplex graph
biclustering algorithm. This algorithm extends previous work on latent block
modelling [10,12] by factoring in the existence of multiple types of edges. It allows
us to extract relevant clusters of entities along with their interactions across
various network layers, thereby creating a simplified view of the information
contained in the logs. While graph biclustering has already been used for event
log analysis [20], to the best of our knowledge, the use of multilayer models to
account for the heterogeneity of events is novel. In addition, we present detailed
case studies on two publicly available datasets consisting of network flow records
and authentication logs, respectively.

The rest of this paper is structured as follows. We first introduce the statis-
tical model and inference procedure we use for multiplex graph biclustering in
Sect. 2. The two case studies are then presented in Sects. 3 and 4, respectively.
Finally, we review some related work in Sect. 5 and discuss potential areas of
improvement in Sect. 6.

2 The Multilayer Latent Block Model

Before diving into the specifics of authentication logs and network flows, we
first introduce the statistical tools we use to analyze them. Section 2.1 presents
our generative model for multiplex bipartite graphs, and Sect. 2.2 describes the
algorithms we use for model inference and selection.

2.1 Model Description

Key notations. Let U = {u1, . . . , uI},V = {v1, . . . , vJ} be two node sets of size
I and J , respectively. We consider a multiplex bipartite graph G = (U ,V, E),
where E ⊂ U ×V × [L] denotes the edge set (with [L] def= {1, . . . , L}). Specifically,
each edge (u, v, �) ∈ E between a top node u and a bottom node v is further
characterized by an edge type �, and L denotes the number of possible edge types.
The multiplex graph G can then be characterized by L biadjacency matrices
B(1), . . . ,B(L), where for each � ∈ [L], the matrix B(�) =

(
b
(�)
ij

) ∈ R
I×J is

defined by

∀(i, j) ∈ [I] × [J ], b
(�)
ij =

{
1 if (ui, vj , �) ∈ E
0 otherwise.

Finally, we aim to partition U (resp. V) into a fixed number H (resp. K) of
clusters, which we denote U = {U1, . . . ,UH} (resp. V = {V1, . . . ,VK}). For each
top node ui (resp. bottom node vj), the unique index h such that ui ∈ Uh (resp. k
such that vj ∈ Vk) is denoted Ui (resp. Vj). In order to find the optimal partition,
we adopt a model-based approach relying on the generative model described in
the next paragraph.
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Generative model. We propose a multilayer extension of the Poisson latent block
model introduced by Govaert and Nadif [12]. This model relies on the fundamen-
tal assumption that the probability of an edge between two nodes depends on
the cluster assignments of these nodes. The biadjacency matrices B(1), . . . ,B(L)

are then generated by the following hierarchical model:

(i) for each i ∈ [I], sample Ui ∼ Multinomial(π);
(ii) for each j ∈ [J ], sample Vj ∼ Multinomial(ρ);

(iii) for each (i, j, �) ∈ [I] × [J ] × [L], sample b
(�)
ij ∼ Poisson

(
μiνjθ

(�)
UiVj

)
.

In words, the proportion of top (resp. bottom) nodes falling into each cluster is
controlled by a parameter π ∈ (0, 1)H (resp. ρ ∈ (0, 1)K). The probability of an
edge of type � linking a top node ui and a bottom node vj then depends on three
parameters: the node-specific factors μi and νj represent the overall propensity
of each node to form edges across all layers, and the rate θ

(�)
UiVj

controls the
number of edges between clusters UUi

and VVj
in the �-th layer. Note that the

Poisson distribution is only used here to facilitate calculations: in practice, the
biadjacency matrices only contain zeros and ones.

2.2 Model Inference and Selection

Given an observed graph G = (U ,V, E), we now aim to find the optimal partitions
U and V using the model introduced above. To that end, we need to infer the
parameters π, ρ, μ =

(
μi) ∈ R

I
+, ν =

(
νj) ∈ R

J
+, and Θ =

(
Θ(1), . . . ,Θ(L)

)

(where Θ(�) =
(
θ
(�)
hk

) ∈ R
H×K
+ for each � ∈ [L]). The number of top clusters

H and bottom clusters K must also be set in a principled manner. These two
problems are addressed in the next paragraphs.

Model inference. The parameters of the model and the cluster assignments are
obtained by maximizing the complete data log-likelihood

LC(T,U,V) =
I∑

i=1

log πUi
+

J∑

j=1

log ρVj

+
I∑

i=1

J∑

j=1

L∑

�=1

{
b
(�)
ij log

(
μiνjθ

(�)
UiVj

)
− μiνjθ

(�)
UiVj

}
,

where T = {π,ρ,μ,ν,Θ} denotes the complete set of parameters. To that end,
we use the block expectation-maximization algorithm described in [12], with
minor adjustments to factor in the multilayer nature of the data. This algorithm
first introduces soft cluster assignment matrices U =

(
ũih

) ∈ [0, 1]I×H and
V =

(
ṽjk

) ∈ [0, 1]J×K , with
∑H

h=1 ũih =
∑K

k=1 ṽjk = 1 for all i ∈ [I] and
j ∈ [J ]. It then maximizes the fuzzy criterion

G(T,U,V) = LS(T,U,V) + H(U) + H(V),
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where H(U) = −∑I
i=1

∑H
h=1 ũih log ũih denotes the total entropy of the soft

cluster assignments of the top nodes, H(V) denotes the total entropy for the
bottom nodes, and

LS(T,U,V) =
I∑

i=1

H∑

h=1

ũih log πh +
J∑

j=1

K∑

k=1

ṽjk log ρk

+
H∑

h=1

K∑

k=1

I∑

i=1

J∑

j=1

L∑

�=1

ũihṽjk

[
b
(�)
ij log

(
θ
(�)
hk

)
− μiνjθ

(�)
hk

]

is the fuzzy likelihood function. The criterion G(T,U,V) is maximized by alter-
natively performing two steps: optimizing U and V with Θ fixed (E-step), and
optimizing Θ with U and V fixed (M-step). These two steps are iterated until G
stabilizes. The node partitions U and V can then be obtained by assigning each
node to the most probable cluster according to U and V. Algorithm 1 describes
the detailed inference procedure. Note that since the result depends on the ran-
dom initialization of the parameters, we run the whole procedure 50 times with
different initializations and return the model with the highest likelihood.

Model selection. In order to run the aforementioned inference procedure, we must
first set the number of top clusters H and bottom clusters K. In the absence
of any prior knowledge, we use the integrated completed likelihood (ICL [3]) to
pick the best values out of a predefined set of candidates. More specifically, for
each (H,K) ∈ {2, . . . , 16}2, we run the inference procedure to obtain the optimal
parameter set T and node partitions U,V. We then compute

ICL(U,V;H,K) = LC(T,U,V) − H − 1
2

log I − K − 1
2

log J − LHK

2
log(LIJ)

for each candidate model, and the highest-scoring model is selected. The ICL
penalizes the complete data log-likelihood by subtracting terms proportional to
the number of free parameters, thus enabling a trade-off between goodness-of-
fit and model complexity. Note that it relies on several approximations, which
makes it an arguably imperfect evaluation criterion. This has motivated many
subsequent contributions on model selection for stochastic and latent block mod-
els (see e.g. [4,19,27]). However, for the sake of simplicity, we leave the use of
more sophisticated criteria for future work.

3 First Case Study—Network Flows

Having described our modelling tools, we now move on to our first case study.
Section 3.1 describes the dataset we consider and the preprocessing steps we
apply to turn it into a multiplex network. We then discuss the results obtained
by applying our methodology in Sect. 3.2.
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Algorithm 1: Block expectation-maximization algorithm for maximum
likelihood inference of the node clusters and model parameters.

Data: Biadjacency matrices B(1), . . . ,B(L); number of top clusters H; number
of bottom clusters K; stopping criterion ε.

Result: Set of estimated parameters T; node partitions U and V.
M ← ∑L

�=1

∑I
i=1

∑J
j=1 b

(�)
ij ;

foreach i ∈ [I], j ∈ [J ] do

μi ← 1√
M

∑L
�=1

∑J
j=1 b

(�)
ij ; νj ← 1√

M

∑L
�=1

∑I
i=1 b

(�)
ij ;

end
Randomly initialize Θ, π, ρ,U,V; Δ ← ∞;
while Δ > ε do

Gold ← G(T,U,V);
foreach i ∈ [I], h ∈ [H] do

sih ← log πh +
∑K

k=1

∑L
�=1

∑J
j=1 ṽjk

(
b
(�)
ij log θ

(�)
hk − μiνjθ

(�)
hk

)
;

ũih ← exp(sih)
∑H

h′=1
exp(sih′)

;

end
foreach j ∈ [J ], k ∈ [K] do

tjk ← log ρk +
∑H

h=1

∑L
�=1

∑I
i=1 ũih

(
b
(�)
ij log θ

(�)
hk − μiνjθ

(�)
hk

)
;

ṽjk ← exp(tjk)
∑K

k′=1
exp(tjk′)

;

end
foreach h ∈ [H], k ∈ [K] do

πh ← 1
I

∑I
i=1 ũih; ρk ← 1

J

∑J
j=1 ṽjk;

foreach � ∈ [L] do

θ
(�)
hk ←

∑I
i=1

∑J
j=1 ũihṽjkb

(�)
ij

(
∑I

i=1 ũihμi)(
∑J

j=1 ṽjkνj)
;

end

end
Gnew ← G(T,U,V); Δ ← |1 − Gnew/Gold|;

end
return T, Round(U), Round(V)

3.1 Data Description

The dataset we use was originally created for the Mini-Challenge 3 of the
VAST 2013 competition [26]. It represents two weeks of simulated network traffic
between approximately 1400 hosts, most of which belong to an enterprise net-
work. We refer to these hosts as internal ones, while hosts that are not part of the
enterprise network are called external hosts. The dataset contains benign traffic
as well as various kinds of attacks. Some of these attacks are rather noisy—e.g.
distributed denials of service (DDoS), port scans—while others are more sub-
tle (e.g. data exfiltration). Overall, 53 out of 200 external hosts are involved in
malicious traffic, which is a rather high ratio. This, along with the small number
of hosts and synthetic nature of the data, makes this dataset a somewhat easy
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test case for our methodology. Moreover, a thorough description of the hosts
and their respective roles is available, as well as a complete list of attack-related
events. This allows us to evaluate the relevance of our results.

Note that while the dataset encompasses several data sources, we only keep
the network flow records between internal hosts and external hosts. We turn
these records into a bipartite multiplex graph as follows. First, each internal
(resp. external) host is represented by a top (resp. bottom) node. For each flow
between an internal host IH and an external host EH, we then build an edge
between IH and EH, of type (Protocol, Destination Port, Direction). Note that
due to the large number of possible destination ports, we only keep 10 distinct
values corresponding to well-known protocols1 and represent the other values as
a single Other token. As for the direction of the flow, it is either inbound (the
internal host is the destination) or outbound (the internal host is the source).
Note that each observed (IH, EH, Type) triple is represented by one single edge,
regardless of its number of occurrences. See Table 1 for some descriptive statistics
about the dataset and the obtained graph.

Table 1. Description of the datasets: number of top nodes I, number of bottom nodes
J , number of layers L, number of distinct edges M , and total number of events N .

Dataset I J L M N

VAST 1220 200 18 26,597 68,793,510

LANL 74,049 16,119 44 869,547 842,282,832

3.2 Results

Our methodology yields three clusters of internal hosts and three clusters of
external hosts. These clusters, as well as the aggregated edges between them,
are shown in Fig. 1. Note that for the sake of readability, only edges representing
at least 40 events are displayed. The size of each cluster is proportional to the
logarithm of the number of hosts it contains. Similarly, the width of each edge
grows logarithmically with the number of underlying events.

Starting with internal clusters, we observe that cluster 1 initiates HTTP and
SSH connections, and that it has more outbound flows than inbound ones. Sim-
ilarly, cluster 3 primarily interacts through outbound flows, including HTTP
and FTP traffic. In contrast, cluster 2 receives many inbound connections, with
HTTP, SMTP and DNS among the most represented protocols. It also sends
SMTP traffic to external cluster 3. Overall, we can thus safely assume that
clusters 1 and 3 contain workstations while cluster 2 contains servers, which is

1 TCP/20 (FTP-Data), TCP/21 (FTP), TCP/22 (SSH), TCP/23 (Telnet), TCP/25
(SMTP), TCP/53 (DNS), TCP/80 (HTTP), TCP/443 (HTTPS), TCP/465
(SMTPS), and TCP/587 (SMTP message submission).
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Fig. 1. Clusters found in the VAST dataset and interactions between them.

indeed confirmed by the ground truth description. As for external clusters, clus-
ter 1 mostly receives HTTP connections from internal workstations, suggesting
that it contains Web servers. This is consistent with the ground truth. Cluster
3 contains a mail server and an FTP server, which explains the inbound SMTP
traffic coming from internal servers as well as the inbound FTP connections
coming from internal workstations. Finally, cluster 2 contains the majority of
external hosts, which are primarily observed connecting to the internal servers.
In particular, attackers all fall into cluster 2, along with many benign hosts.

Even though partitioning the set of external hosts does not isolate malicious
ones, studying the interactions between clusters allows us to uncover several
attacks. For instance, all TCP traffic from external cluster 2 to internal cluster 2
on ports 20, 21, 22, 23, 53, 443, 465 and 587 originates from two hosts (10.9.81.5
and 10.10.11.15), which happen to be attackers. This also holds for all UDP
traffic between these two clusters. These edges stand out in Fig. 1 because of
the relatively small number of events they represent. Such scarce connections on
many different ports suggest port scanning activity, which is confirmed by the
ground truth. Similarly, ICMP traffic from external cluster 2 to internal cluster
2 also results from network scans. Finally, all SSH traffic from internal cluster 1
to external cluster 2 is directed towards one single host (10.0.3.77), which calls
for further investigation. These flows actually represent beaconing activity from
compromised internal hosts to a command and control server.

Overall, this first case study shows that our approach can indeed infer mean-
ingful clusters, thereby revealing the functional roles of most hosts. It can also
help identify some malicious behaviors by providing a reduced number of start-
ing points for deeper investigation. Note, however, that some types of attacks
are not easily detectable. Typically, data exfiltrations and DDoS attacks only
differ from normal traffic through their volume. Since our graph-based represen-
tation does not include this characteristic, it does not allow us to distinguish
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exfiltrations from regular FTP traffic, or DDoS attacks from regular Web traffic.
However, these high-volume attacks can be detected using other methods.

4 Second Case Study—Authentication Logs

Our second case study focuses on a different data source, namely authentication
logs collected within a real-world enterprise network. The dataset, which we
describe in Sect. 4.1, is significantly larger and more complex than the one studied
in the previous section. It is thus more challenging to extract meaningful insights
from it. However, as we show in Sect. 4.2, our methodology still allows us to infer
some functional roles and uncover malicious behavior.

4.1 Data Description

We use the “Comprehensive, Multi-Source Cyber-Security Events” [14,15]
dataset released by the Los Alamos National Laboratory (LANL). This dataset
represents 58 days of activity within the LANL’s enterprise network, recorded
through several kinds of event logs. A red team exercise took place during this
time span, meaning that penetration testers tried to breach the network in order
to assess its security. The remote authentications performed by the red team are
labelled, providing and interesting example of an advanced intrusion within an
enterprise network. In particular, this attack is stealthier than those considered
in the previous section, which makes it a more challenging test case for our
method.

We focus on Windows authentication logs, more specifically on successful
LogOn events. Each one of these events is described by a source user SU, a desti-
nation user DU, a source host SH, a destination host DH, a logon type LT and an
authentication package AP. Note that SU and DU can be identical, and the same
goes for SH and DH. As for LT and AP, they describe the type of session being
created and the protocol used to authenticate the user, respectively. Examples
of logon types include Interactive (local session with graphical interface) or Net-
work (used for remote file accesses or remote procedure calls, for instance), and
the most frequent authentication packages are Kerberos and NTLM. Note that
these two additional fields are especially meaningful as they allow to distinguish
different behaviors (e.g., remote administrative session versus simple file access).
They can also help characterize users and hosts: for instance, since NTLM is
considered less secure than Kerberos, NTLM authentication can sometimes be
disabled for highly privileged accounts. Conversely, some legacy applications
may not support Kerberos authentication, thus servers hosting such applications
should frequently use NTLM.

We represent users as top nodes and hosts as bottom nodes, and we turn
logon events into typed edges as follows. If SH and DH are identical, we cre-
ate one edge between DU and DH with type (LT, AP, Local). Otherwise, we
create one edge between SU and SH with type (LT, AP, From), and one edge
between DU and DH with type (LT, AP, To). While this construction breaks the
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link between the source and destination of an authentication, it still highlights
the difference between hosts receving many remote authentications (typically
servers) and hosts from which these authentications originate (typically work-
stations). See Table 1 for some descriptive statistics about the dataset.

Fig. 2. Clusters found in the LANL dataset and interactions between them.

4.2 Results

The optimal model has thirteen user clusters and twelve host clusters. We display
them in Fig. 2, along with the main interactions between them. Specifically, we
display all edges (h, k, �) such that θ

(�)
hk ≥ 0.7. Note that we select edges using the

set of rate matrices Θ rather than the number of underlying events because the
behaviors we seek to detect generate relatively few events. Thus cluster–cluster
edges with high rate, which represent many user–host edges occurring at least
once, are more relevant than those representing many individual events.

The global picture is expectedly more complex than in the previous section.
In addition, little information is available on the true functional roles of users and
hosts. However, we can still infer the meaning of some clusters and confirm their
relevance. For instance, user clusters 10, 11 and 13 mainly interact through local
authentications with logon type Service, indicating that they contain service
accounts. User cluster 1 opens remote interactive sessions on many hosts, which
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suggests the presence of administrator accounts. As for user clusters 3 and 5,
they mostly consist of anonymous user credentials, which are typically used to
access shared resources which do not require any access control (such as internal
Web pages). This is consistent with the NTLM-authenticated network logons
associated with these clusters. Interestingly, a significant proportion of the non-
anonymous user names from these two clusters were used for red team activity.
This suggests that looking for inconsistencies between the expected functional
role of an entity and the cluster it falls into can help uncover malicious behaviors.

Inferring the functional roles of host clusters is more difficult, although it
seems reasonable to assume that cluster 1 contains domain controllers and
applicative servers. Indeed, this cluster is the one receiving the most remote
authentications. Conversely, clusters 2, 3, 8, 9, and 11 are sources of remote
authentications, suggesting that they mostly contain workstations. Finally, clus-
ter 4 stands out as the source of remote NTLM authentications involving three
user clusters. Further investigation reveals that most of these authentications
were performed by the red team and originate from host C17693, which also
happens to be the main source of red team activity. Once again, the simplified
situational picture we generate thus preserves important clues that can lead to
the detection of malicious behavior.

5 Related Work

Biclustering and latent block models. Biclustering, i.e., the idea of simultane-
ously partitioning the rows and columns of a matrix so as to form blocks of coef-
ficients with similar values, can be traced back to the early 1970s [13]. Spectral
methods [7,18] are among the most popular approaches to this task. However,
model-based biclustering has gained traction in the last two decades, following
the introduction of the latent block model [10]. Various inference procedures have
been proposed, most of which rely on the expectation-maximization (EM) algo-
rithm. While we apply the simple variational approximation proposed in [10],
other approaches include the addition of intermediary classification steps [11] or
the use of Bayesian inference [16].

Multilayer stochastic block models. Even though we are not aware of any previous
work on multilayer generalizations of the latent block model, a straightforward
connection can be made with multiplex stochastic block models (SBMs). More
specifically, our model is analogous to the degree-corrected SBM with indepen-
dent layers described in [22]. Note, however, that many other multilayer gener-
alizations of the SBM can be found in the literature. In particular, the existence
of diversely complex statistical dependencies between layers has been addressed
in various ways [2,6,21,24].

Data exploration and visualization for cybersecurity. Finally, our work con-
tributes to a vast research effort aiming to ease network security monitoring
by providing insightful visualizations. In particular, displaying network flows
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between internal and external hosts is a recurring challenge. VISUAL [1], Vis-
FlowConnect [28], NFlowVis [8], and FloVis [25] are some of the existing tools
designed to perform this task. However, none of them focuses on statistical mod-
elling to build a more condensed view. Note that FloVis and NFlowVis use
the hierarchical nature of IP addresses to aggregate hosts by subnetwork, and
NFlowVis also uses k-medoids clustering to find external hosts with similar com-
munication patterns. Even so, the use of behavior-based biclustering makes our
method more effective at reducing the number of elements to display while pre-
serving essential information. As for authentication logs, APTHunter [23] also
focuses on interactivity rather than automated data reduction, only letting the
user manually apply filters to make the authentication graph legible. Finally,
the work of Glatz et al. [9] adopts an approach somewhat similar to ours: they
first extract frequent itemsets from network flow records, then display them as
a bipartite itemset–item graph. While this does provide a simple summary of
large volumes of logs, the extracted itemsets still cover a small minority of the
total number of events, leading to significant information loss.

6 Conclusion and Perspectives

We propose a graph-oriented approach to event log exploration for network secu-
rity monitoring. Through the use of model-based multiplex graph biclustering,
we aim to extract meaningful clusters of entities, such as groups of users or hosts
sharing functional roles or behavioral patterns. Our case studies demonstrate
that such meaningful clusters can indeed be uncovered. In addition, displaying
interactions between these clusters can facilitate malicious behavior detection.

Aside from investigating better model selection criteria (see Sect. 2.2),
extending our model to factor in the temporal dimension could be an inter-
esting lead for future work. Previous contributions on temporal latent block
models [5] provide foundations for such an extension. Finally, looking for mean-
ingful groups of edge types in addition to entity clusters, similarly to the strata
multilayer SBM [24], is another promising direction. Indeed, it could lead to an
even simpler situational picture, especially for large and complex datasets such
as the one studied in Sect. 4.
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