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Abstract. The identification of superspreaders is essential to contain an
epidemic, especially when there is not enough information about the dis-
ease to develop precautionary measures. Unlike infections caused directly
between individuals of the same species, epidemics caused by vectors
have well-explored peculiarities. In this direction, we intend to study
the networks obtained from the dissemination of dengue to verify, from
the results of a simulation of agent based models, if the transmission
of this disease follows the 20/80 rule for the proportion of spreaders
and infected. We built different transmission networks considering the
spread between vectors and humans up to the second generation and
we observed that, despite the human-to-human transmission network
follow the 20/80 rule, the other networks (human–mosquito, mosquito–
mosquito and mosquito–human) did not follow this rule. Varying the
density of agents, we show that the phenomenon of superspreading is
accentuated with high density of mosquitoes. These characteristics of
vector-borne disease networks need to be further explored, as these vec-
tors are highly vulnerable to climate change, and a better understanding
of disease spread can help better target dengue epidemic control strate-
gies.
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1 Introduction

Numerous infectious diseases spread from human to human or human to animal
and vice versa, creating infection networks [18]. Research in graph theory has
provided a wide variety of tools over time for describing networks, many of them
with applications in epidemiological studies [10]. Many epidemic control methods
can be modeled with networks, such as contact tracing and vaccination, allowing
the study of the effect of different strategies in an artificial environment before
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their real application [10]. The introduction of many actual elements and better
knowledge about the temporal pattern of the network is essential for a better
understanding of the epidemic propagation [14].

In the spread of infectious diseases, heterogeneity in the behavior of a popula-
tion often plays a crucial role in determining whether an epidemic occurs [2]. The
social network structure is essential in the dynamics of disease spread [13], and
the network topology influences the general spreading behavior of an epidemic
and the fluctuations of network connectivity, which can increase the incidence
of infection [14].

In the study of disease transmission, including vector-borne parasites and
sexually transmitted pathogens, it is estimated that about 20% of those infected
are responsible for 80% of infections (20/80 rule) [19]. This rule can be ver-
ified through the study of networks. For COVID-19, for example, a study in
Hong Kong constructed the disease transmission networks and found that 69%
of infected individuals did not spread the disease to anyone, while 17–19% of
infectious individuals were responsible for 80% of all transmission events [1].

Regarding dengue, a mosquito-borne viral disease transmitted mainly by
Aedes aegypti, a study showed that the disease epidemic in Singapore organized
itself in a scale-free network of transmission during outbreaks between 2000 and
2005 [12].

Dengue epidemics have recently increased due to the rapid spread of the
disease in many tropical countries, Europe, and the USA [7]. It has already
been considered a minor public health problem but has become an important
reemerging disease and was considered the most important vector-borne viral
disease in the last decade [6].

The disease transmission occurs from the interaction between humans, mos-
quitoes, viruses, and the environment factors [7], and its epidemics usually show
periodic patterns related to mosquito population dynamics, which are driven
by natural climate variations [15] (Fig. 1). Given the importance of re-emerging
diseases and climate change, including mosquito-borne diseases, we aim to inves-
tigate whether dengue transmission follows the 20/80 rule using network analysis
applied to the results of an agent-based model simulation.

2 Methods

We use an agent-based model (ABM) to simulate the dynamics of dengue in an
urban environment. Mosquitoes and humans are agents in the model, and the
environment is built using a satellite image of the study area (Belo Horizonte,
Brazil), which corresponds to an area of 100 m × 100 m. Regular square network
cellular automata (each site corresponding to ∼ 1m2) were used to build the
environment. Thus, agents interact not only with each other but also with the
environment. The total simulation time was two years, and the time step is
equivalent to one minute.

Only female mosquitoes were used in the simulation, as they transmit
the disease to humans [4,8]. We use the SIR compartment model dynamics



602 L. L. Lima and A. P. F. Atman

Fig. 1. Accumulated dengue cases recorded over time in Belo Horizonte, Minas Gerais,
Brazil. Inset of dengue cases over time.

(Susceptible–Infected–Recovered) in our ABM. The statuses of mosquitoes and
agents are: “susceptible”, “infected” or “incubated”. Humans can also be “recov-
ered”. Mosquitoes cannot be recovered because once infected, the mosquito
remains so until the end of its life, even after repeated meals of human blood [4].

We also evaluated local precipitation and temperature as attributes of the
environment. If it rained and if the maximum temperature was less than 30 ◦C
and the minimum temperature was greater than 20 ◦C,which are ideal conditions
for eggs to hatch [17], we increased the site attribute by 50%. To introduce this
meteorological data, we used the average daily temperature and precipitation
data from 2000 to 2016 from the Pampulha Meteorological Station, in Belo
Horizonte, Minas Gerais, Brazil.

While each mosquito lives approximately 45 d [3], being replaced as soon
as it dies, human renovation only occurs with a probability of 5% per year in
the model. Mosquitoes and humans are randomly distributed across the sites.
Humans can walk (random walk), and mosquitoes can fly, both in two dimen-
sions. Mosquitoes can also bite humans or reproduce. A random walk guides
the mosquito’s flight with weight (quenched noise) according to the value of
the environment. Mosquitoes and humans walk with a step size of one site. A
mosquito decides on its activities at each time step: it can fly (25% probability),
reproduce (25% probability, but only happens if weather conditions are favor-
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able; otherwise, it flies), or bite (50% probability, but only happens if there is at
least one human in the same location; otherwise, it flies).

The simulation starts with two mosquitoes infected. It was considered that
there is a possibility that an egg infected with a randomly selected serotype will
hatch during reproduction to simulate the introduction of new dengue serotypes
over time.

The model was previously calibrated using data from mosquito traps [16].
We found that the best calibration occurred with approximately 100 mosquitoes
and 500 humans per area. However, other simulations were tested with different
amounts of mosquitoes and humans to build the infection network in this work.
The simulations combined 250, 500, 750 and 1000 humans with 100, 180, and
360 mosquitoes. Each combination refers to a scenario. We ran 30 simulations.

We built the infection networks from the simulation results. The networks
are directed, and if a node i infects a node j, there is a connection from i to
j. We notice that the greater the number of mosquitoes, the larger and more
connected the networks. The greater the number of humans, the smaller the
networks since the simulations showed a lower percentage of infected humans.

We measure the degree of network nodes to assess superspreaders, following
the same procedure as Lima and Atman [11]. However, as dengue involves a
vector in its transmission between humans, we analyzed four types of networks:
human-human, mosquito-mosquito, human-mosquito, and mosquito-human.

3 Results

The percentage infected is showed in Fig. 2. We can see that the higher the num-
ber of humans and the lower the number of mosquitoes, the lower the percentage
infected. This indicates that, at the simulation level, even with many humans in
an area, the percentage of infection will be small if the number of mosquitoes is
small, highlighting the importance of vector control. In contrast, this number is
high when the number of mosquitoes is high (Fig. 2L).

On the other hand, with few humans (Figs. 2A, 2B, and 2C), population sat-
uration occurs rapidly, with almost the entire population infected within the first
few days of simulation. This saturation occurs for all cases with high numbers
of mosquitoes over time (Figs. 2C, 2F, 2I, and 2L). An example of a network
generated at the end of each simulation scenario is shown in Fig. 3.

Figure 2 shows that the growth of dengue cases over the simulation time
(2 years) represents some recorded epidemic years, especially epidemic ones (such
as 2010, 2013, and 2016) (Fig. 1). Notice that this simulation result should be
compared with Fig. 1 considering a time window of two years in the real data.

Network analysis shows that the human-human network recorded a high
degree for some humans in all simulations with 360 mosquitoes (higher degrees
ranging from approximately 130–180) (Fig. 4). This indicates that some humans
indirectly infected many other humans in the simulation. The same was recorded
in the human-mosquito networks, in which some mosquitoes infect a high number
of humans (higher degrees ranging from approximately 140–180).
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Fig. 2. Percentage of dengue infected in each scenario. Mean of 30 samples and 95%
confidence interval. The percentage was calculated considering the number of humans
in each simulation. Scenarios are A: 250 humans and 100 mosquitoes; B: 250 humans
and 180 mosquitoes; C: 250 humans and 360 mosquitoes; D: 500 humans and 100
mosquitoes; E: 500 humans and 180 mosquitoes; F: 500 humans and 360 mosquitoes;
G: 750 humans and 100 mosquitoes; H: 750 humans and 180 mosquitoes; I: 750 humans
and 360 mosquitoes; J: 1000 humans and 100 mosquitoes; K: 1000 humans and 180
mosquitoes; L: 1000 humans and 360 mosquitoes.

For the human-mosquito network, the maximum degree values were 26 (sim-
ulations with 500 humans and 360 mosquitoes) and 28 (simulations with 250
humans and 360 mosquitoes). This indicates that the same human transmitted
(indirectly) the disease to 26 and 28 humans, respectively. In mosquito-mosquito
networks, the highest degree values are for the network of 250 humans and 360
mosquitoes (maximum degree of 37). It means that 37 mosquitoes were infected
by humans who received the infection from the same mosquito.

In the case of the human-mosquito networks, mosquito control can break
hubs more easily than in lower-grade networks, where it is necessary to remove
many vectors to break a hub. This shows that, at the simulation level, it is easier
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Fig. 3. Examples of directed infection networks in each scenario. Black nodes represent
humans and the red ones represent mosquitoes. Two nodes are directly connected from
the one who transmits the infection towards the new infected. The scenarios are A:
250 humans and 100 mosquitoes; B: 250 humans and 180 mosquitoes; C: 250 humans
and 360 mosquitoes; D: 500 humans and 100 mosquitoes; E: 500 humans and 180
mosquitoes; F: 500 humans and 360 mosquitoes; G: 750 humans and 100 mosquitoes;
H: 750 humans and 180 mosquitoes; I: 750 humans and 360 mosquitoes; J: 1000 humans
and 100 mosquitoes; K: 1000 humans and 180 mosquitoes; L: 1000 humans and 360
mosquitoes.
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Fig. 4. Degree of (A) human-human, (B) human-mosquito, (C) mosquito-mosquito and
(D) mosquito-human networks. Percentage of nodes calculated based on the 30 model
runs.

to control the infection in areas with fewer vectors and humans, highlighting the
need for more outstanding efforts by the community and health authorities to
contain transmission in overcrowded areas and mosquito-friendly environments.
Also, a study that analyzed small dengue networks showed that they allow for
in-depth analysis of dengue transmission, which could be used to inform the
more effective spatial application of disease control strategies [9].

The percentage of mosquitoes and humans responsible for infections in each
scenario (among the infected) is presented in Table 1. It is worth noting that
human-human networks followed the 20/80 rule, then approximately 20% of
humans are responsible for about 80% of human infections in all scenarios. In
the mosquito networks, the values ranged from 16.75 to 39.46% of mosquitoes
infecting about 80% of mosquitoes. In human-mosquito and mosquito-human
networks, approximately 40–70% of the respective infecting agents were respon-
sible for about 80% of infections. This value is more than double the expected
number in the 20/80 rule.

The Shapiro-Wilk normality test showed that the data from Table 1 have
a normal distribution. Thus, to compare the means between the groups, the
ANOVA test was used (α = 0.05), which showed no significant difference between
the percentages of infected agents when comparing the networks. However, there
is a significant difference between all the networks for the percentages of agents
transmitting the infections.
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Table 1. Percentage of mosquitoes and humans responsible for dengue infections in
each scenario and the respective percentage of infections for which they are responsible.
The percentage is calculated concerning the total infected. The scenarios are A: 250
humans and 100 mosquitoes; B: 250 humans and 180 mosquitoes; C: 250 humans
and 360 mosquitoes; D: 500 humans and 100 mosquitoes; E: 500 humans and 180
mosquitoes; F: 500 humans and 360 mosquitoes; G: 750 humans and 100 mosquitoes;
H: 750 humans and 180 mosquitoes; I: 750 humans and 360 mosquitoes; J: 1000 humans
and 100 mosquitoes; K: 1000 humans and 180 mosquitoes; L: 1000 humans and 360
mosquitoes.

Scenario Human–human (%) Human–mosquito (%) Mosquito–mosquito (%) Mosquito–human (%)

A 21.82→81.54 62.53→84.71 34.68→82.97 46.39→78.2

B 25.11→80.22 61.05→81.64 39.46→83.86 43.61→78.26

C 18.82→80.14 53.75→80.09 27.94→80.35 35.77→78.03

D 17.22→81.14 66.01→79.28 24.89→81.23 48.99→75.92

E 21.51→79.46 64.76→79.8 32.98→80.75 47.61→80.77

F 23.1→70.33 61.14→81.92 34.35→80.58 53.31→79.18

G 13.21→80.15 64.39→82.28 19.78→79.32 49.06→74.72

H 18.83→80.47 68.75→81.61 27.11→79.25 49.25→83.01

I 23.53→80.65 61.45→76.19 34.05→80.16 61.76→76.83

J 11.8→80.31 62.93→74.46 16.78→80.44 51.85→81.13

K 16.64→81.58 71.16→82.83 22.54→81.18 47.84→74.94

L 22.21→80.3 65.44→79.74 31.41→80.03 68.26→82.48

4 Discussion

Although the degree of the nodes of the human-mosquito network are high, this
transmission occurred in areas with lower population density and high numbers
of mosquitoes. Consequently, more mosquitoes tend to bite the same human.
This did not happen in areas with many humans and mosquitoes, as there are
more humans for the mosquito to bite. For mosquito networks, it is worth noting
that as the mosquito population renews itself more frequently (although the
population size remains constant), there are always new susceptible individuals.
This does not happen in human networks, so the population can quickly become
immune, saturating the infection network.

In this work, network analyzes were crucial to investigate the role of agents as
superspreaders of dengue. The analysis of superspreaders individuals and super-
spreading events is essential for emergency public health responses, as one or a
few superspreaders can ignite epidemic outbreaks [5]. Large epidemic outbreaks
can also occur when the spread of a disease starts in superspreaders [21].

Our findings show that, at the simulation level, although human-human net-
works have superspreaders agents and obey the 20/80 rule, this does not happen
in the others. It may be a characteristic of networks involving vectors and hosts.
However, a more extensive study, perhaps involving other vector diseases, is
needed to understand how infections occur in these networks.
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Although the initial results allow inferences about the structure of infection
networks, this model has several limitations, as well as practically all models.
The first limitation is that the population is constant and with low renovation.
This dynamic does not reflect the reality of urban centers, where there is no
frontier for the disease, which spreads temporally and spatially, hardly infecting
the entire population. This population variation is one of the reasons why dengue
has cyclical outbreaks every three or five years. The same limitation occurs in
the mosquito population, which, although renewed more frequently, is restricted
to a space and a population.

Despite being programmed to run with the four dengue serotypes circulating
in Brazil, the model was used only for one serotype for simplification and because
of the short simulation time (two years). If the model is run for a longer time,
it is recommended to include all serotypes. The results can even be studied
in networks with a layer for each serotype. A multiplex approach can also be
adopted for one or more serotypes.

Even though its limitations, this initial study can be used as a starting point
for a more extensive and in-depth analysis, as it is impossible to effectively track
a mosquito-borne disease. It is worth noting that, unlike an airborne or sexually
transmitted disease, it is not feasible to measure the transmissibility of each
mosquito. In this context, one of the best ways to understand whether networks
involving the vector follow the 20/80 rule is via computer simulations.

The structure of the networks of a vector-borne disease involves agents other
than humans and a significant influence of environmental factors. Understanding
dengue transmission networks can help in proposing measures to reduce infection
by the disease, such as vector control [20].
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