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Abstract. Understanding the impact of social factors on disease pre-
vention and control is one of the key questions in behavioral epidemi-
ology. The interactions of disease spreading and human health behavior
such as vaccine uptake give rise to rich dueling dynamics of biologi-
cal and social contagions. In light of this, it remains largely an open
problem for optimal network targeting in order to harness the power
of social contagion for behavior and attitude changes. Here we address
this question explicitly in a multiplex network setting. Individuals are
situated on two layers of networks. On the disease transmission network
layer, they are exposed to infection risks. In the meantime, their opinions
and vaccine uptake behavior are driven by the social discourse of their
peer influence network layer. While the disease transmits through direct
close contacts, vaccine views and uptake behaviors spread interperson-
ally within a long-range potentially virtual network. Our comprehensive
simulation results demonstrate that network-based targeting with ini-
tial seeds of pro-vaccine supporters significantly influences the ultimate
adoption rates of vaccination and thus the extent of the epidemic out-
break.

Keywords: Multilayer networks · Network-based interventions ·
Influence maximization · Opinion formation · Epidemic models

1 Introduction

According to WHO, vaccine hesitancy—the reluctance or refusal to vaccinate
despite the availability of vaccines—jeopardizes the progress made in combat-
ing vaccine-preventable diseases and was listed among the ten threats to global
health in 2019 along with air pollution, climate change and global influenza
pandemic [35]. Paradoxically, vaccine hesitancy has became a particularly big
problem in high-income countries that manifests itself in the growing decline of
trust in experts, the state, corporations, and media [21]. Unsurprisingly, vaccine
hesitancy should not be underestimated in the current COVID-19 pandemic as
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well [6,11,18]. Overcoming vaccine hesitancy has became a serious issue in the era
of worldwide use of social media [23,27]. In particular, negative experiences like
side-effects of vaccination spread quickly and undermine trust in medical care.
As observed in [33], individual’s vaccination decision depends in part on that
of those surrounding the social network. Modeling and studying the interaction
between the social environment and vaccination behavior, and thus the dynam-
ics of a disease spread remains therefore an active research topic. Approaches
from evolutionary dynamics [5,8], game theory [36], decision-making [3] come
into use; we refer to [1,2] for an overview. Regardless of the methods, there are
two further distinctions that can be made. On the one hand, the surrounding
infrastructure—either both social and epidemic aspects are considered within
one network or each one has its own environment. On the other hand, the vacci-
nation strategy—the individuals are motivated to vaccine either by information
campaign or by the apprehension of getting infected. The separation between
the social and epidemic environment allows capturing the different dynamics
of the processes driven thereon as well as the interaction between them. Prior
work has made a number of advances on studying such disease-behavior inter-
actions, including: a two-stage game with vaccination decision followed by the
health outcome on an epidemiological process [8,13], an immunization strategy
based on vaccination sentiments shared on Twitter and applied to a network
with a spreading infection [32], a 2-layer network where diffusion of an infec-
tious disease on one layer interacts with diffusion of preventive behavior on the
other [25], or—supplemented by an information diffusion layer—a 3-layer net-
work [24], and a stochastic agent-based model for influenza transmission asso-
ciated with vaccination uptake considered as a socially contagious process [20].
Here, we consider a two-layer multiplex, one with a social communication net-
work and one with a disease transmission network. The novelty of our approach
is twofold. Unlike [4], which modeled public opinion formation and the spread
of infectious disease as two serial processes that occur on the same contact net-
work, we assign a separate layer of contacts to each of the processes and thus
consider a multiplex. Additionally, in some previous multiplex approaches, the
spreading processes taking place on the layers are of the same kind, e.g. opin-
ion formation on different social networks [29] or diffusion or epidemic spread
in complex networks [7,10,14,25,30,37]. In contrast, we consider transmission
dynamics of different sorts. There is active ongoing research on how to use social
media influencers for advertisement or health campaigns [17,22]. Over the years,
various strategies have been developed to identify those individuals in a net-
work who contribute to a maximal spread of information. This includes tracking
the values of network centralities like degree and betweenness centrality [31],
eigenvalue centrality for community structured networks [26], other community-
based strategies [15] or following random acquaintances [9,32]. Generally, intrin-
sic motivation is more fruitful than that caused by fear. The same applies for
vaccination. In addition, prophylactic vaccinations can prevent the outbreak of
an epidemic if the pro-vaccine campaign has started sufficiently in advance [12].
Therefore we opt for a word-of-mouth vaccination campaign and trigger on the
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layer of social communication network with an opinion formation process. We
propose a multiplex network framework to investigate the impact of an ongo-
ing vaccine sentiments on epidemic spreading. Our contribution is structured as
follows. First, we specify the structure of the layers of the multiplex as well as
parameterize the dueling contagion processes on them. Next, we set up modeling
scenarios and discuss their implications, followed by conclusions with an outlook.

2 Model

The multiplex we consider consists of two layers having equal sets of individuals
but differing in the connections between the individuals. One layer represents
the local community environment of an individual, where the person physically
encounters family members, coworkers, friends and other people at leisure times
or hobbies. We assume a uniform distribution of the number of these contacts
for all individuals and thus represent these relationships with a two-dimensional
lattice graph. In this environment, a disease dissemination process is emulated.
On the other layer, we use a social network with non-local links, which provides
a platform for opinions exchange. On this opinion network layer, the connections
between the individuals are built on the basis of the Barabási-Albert graph. Its
structure provides an environment in which an agent’s network position affects
the dynamics of the dissemination of opinions. It is known that scale-free net-
works enhance both the vaccination behavior and thus the effective immunization
[5].

Algorithm 1: The simulation
Input: All parameters listed in Table 1.
1: Initialize the multiplex with a grid graph and the Barabási-Albert graph.
2: Set up the opinion layer on the Barabási-Albert graph and the disease layer on

the grid graph.
3: while more infected individuals than at start do
4: Select randomly an individual.
5: if rand() < ω then
6: Update the state of the individual on the disease layer.
7: else
8: Update the state of the individual on the opinion layer.
9: end if

10: end while
Output: The state of each individual per iteration and layer.

The spread of the disease on the one layer and the opinion formation on
the other take place alternately during a simulation run. With every iteration,
one individual is chosen uniformly at random. The next step is to select the
layer on which the respective process is to be continued. Since the processes
that run separately on the two layers have different dynamics, the probability of
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choosing a layer does not need to be the same. For that we introduce the first
parameter ω and refer to Table 1 for the overview of all model parameters for
the agent-based simulation. Once the layer is chosen, the corresponding process
is continued according to the state of the individual in this layer as is explained
below in detail.

2.1 The Opinion Layer

Our interest is to qualify the effects of the willingness of the population to prevent
an epidemic through vaccinations. Therefore, we simulate an exchange of views
on the subject of vaccines. Based on the way the agents represent their opinions,
we consider a voter model with single discrete variable with more—in our case
three—states, according to the classification given in [19,34]. In our setting,
an individual can have one of the three discrete opinions: counter, neutral or
pro, indicated by the values −1, 0 and 1 respectively. The number of supporters
and opponents at start is given by the parameters υ+ and υ− respectively. To
compare the impact of the supporters’ position in the network on the opinion
formation process and thus on the epidemic, we consider several strategies for
the initial assignment of the pro-opinions.

1. hubs: The supporters are assigned to hubs—vertices with the highest degree.
2. betweenness: The betweenness centralities of the nodes underlay the proba-

bility distribution, from which the vertices are drawn. The higher the value,
the more likely a vertex will be chosen.

3. high-degree: Pro-opinions are assigned with respect to the degree distribution
of the vertices. Again, the higher the value, the more likely a vertex will be
chosen.

4. random: The vertices are selected uniformly at random from the entire pop-
ulation.

5. hub-community: A heuristic community search. Initially, the supporter set is
filled with a vertex with the highest degree along with its neighbors. Next,
repeatedly as long as there are places for pro-opinions available, new vertices
are added to the supporter set. These are neighbors of a supporter that has
not been considered yet and that has the highest degree with respect to the
entire opinion layer.

6. low-degree: The least connected vertices are among the candidates for vac-
cination supporters. Pro-opinions are assigned with respect to the degree
distribution of the vertices. The lower the value, the higher probability to be
chosen.

7. hub-neighbors: The candidates are adjacent to but not themselves hubs.
8. mod-community: The supporters are members of communities calculated

using Clauset-Newman-Moore greedy modularity maximization algorithm.1

The communities are sorted by the number of members and taken one by one
as long as the number of available supporters is not exhausted.

1 This method is designed to find communities in, among others, scale-free networks.
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9. coworkers: The pro-opinion is assigned to vertices that build a connected
rectangular shaped sub-grid on the disease layer.

Once the pro-opinions are assigned, the opponents are chosen randomly from
the remaining nodes, and all others are set to neutral. Which strategy is used in
the simulation is set in the parameter Os.

After the initialization, while the opinion formation process unfolds, the view
of a selected individual is updated according to one of the following four adoption
methods. The individual assumes the opinion of a randomly chosen neighbor
(random) or of the majority of the neighbors (max) or indicated by the sign of
the sum of the opinions of the neighbors (sum) or the closest to the average
of the neighboring opinions (mean). Which method is used in the simulation is
specified by the parameter Oa. It is possible to apply all methods by randomly
choosing one at each iteration step. As a matter of fact, accepting the contrary
opinion does not usually come easy. Therefore the parameter ρ represents the
probability that the calculated opposite opinion will ultimately be accepted.

2.2 The Disease Layer

The epidemic dissemination process we consider on the disease layer is based
on the Susceptible-Infected-Recovered (SIR) model extended by the state of
immunization [16,28]. Individuals who consent to the vaccination, in particular
the initial supporters in the opinion layer, enter the epidemic simulation in the
immunized state. An infection begins in a predefined number of individuals in
the population—given by the parameter ι—who, of course, are not vaccinated.
Once the simulation is triggered and it is the turn of the disease layer, the state
of the individual being considered is updated according to one of the follow-
ing rules. A susceptible supporter is vaccinated without restrictions whereas a
susceptible neutral with a predefined very low probability η. If not eligible for
immunization, a susceptible can get infected provided there are infections in the
direct neighborhood. As a matter of fact, the more infected neighbors the higher
risk of infection. For that, the parameter β that represents the probability of
getting infected, increases by the percentage of the infections in the neighbor-
hood: β

(
1 + Iu

Nu

)
, where Nu is the number of all neighbors of the considered

susceptible u and Iu is the number of the infected. An infected individual recov-
ers with a predefined probability γ. A vaccinated or recovered one remains in
the assumed state till the end of the simulation. At one iteration, an individual
may record exactly one state.

To give an impression of how the process on the opinion layer influences the
disease spread, we show the results of one simulation run initialized with the
default values as given Table 1. In Fig. 2, the curves capture the two simulta-
neously started and alternately altered processes on the opinion layer (far left)
and the disease layer (second from the left). Both plots on the right side display
the epidemic spread launched in parallel with the same initial parameters as on
the left side but with the disengaged opinion layer. Here, the individuals are
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Table 1. Parameters controlling the simulation.

Layer Par. Def. value Parameter definition

ω 0.75 Probability of selection of the disease layer

n 50 Range of the square lattice graph, n2 is the number of nodes in each layer

m 1 # edges to be attached from a new node in the Barabási-Albert graph

Opinion υ− 10% Initial anti-opinions

υ+ 10% Initial pro-opinions

Os rand Strategy to assign supporters

Oa all Opinion adoption method

ρ 0.25 Probability that the contrary opinion is adopted

Disease ι 1% Initial infections

β 0.95 Probability that a susceptible gets infected by infectious neighbors

γ 0.25 Probability that an infected recovers

η 0.02 Probability that a susceptible neutral gets vaccinated

Fig. 1. An example of a multiplex with an opinion (top) and disease (bottom) layer
initialized on a 15 × 15 - lattice and with respect to default values of parameters
m, υ−, υ+,Os, and ι as displayed in Table 1.

vaccinated only in the initial phase (third from the left) or not at all (far right).
To measure the extent of the epidemic and thus to compare different scenarios,
we count all individuals who became infected within a simulation run. Con-
sidering the three disease courses in the given example, 58% of the population
gets infected when the disease spread is decelerated by increasing vaccinations
upon opinion formation, while 88% in the case of a fixed number of immunized
individuals and 99% if no one is vaccinated at all.

3 Results

In our numerical experiments, we focus on exploring how the pro-opinions should
be scattered on the opinion layer in order to achieve the most efficient diffusion
of supporters’ views in terms of flattening the infection curve on the disease
layer. Thus we mainly concentrate on variation of the parameters that deploy
the opinion layer: methods for the supporter placement and view adoption as
well as the number of initial pro and anti-opinions.
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Fig. 2. An example of a disease spread course (second from the left) linked to an
opinion formation process (far left) and thus affected by a growing rate of vaccination
supporters, compared to the constant (third from the left) or absent rate of immunized
individuals (far right). All other parameters are set to default.

3.1 Varying the Opinion Assignment and Adoption Method

In the first test scenario, we investigate the impact of the initial opinion assign-
ment and the opinion adoption method applied to the opinion layer on the extent
of the outbreak of the disease. To do this, we vary the parameters Os and Oa and
set all other to defaults given in Table 1. The results are displayed in Fig. 3. The
boxplots compile percentage of the total number of infected individuals within
a simulation. Per method of the initial assignment of the vaccine supporters,
ordered on the x-axis, all four different adoption methods and its random mix-
ing, distinguished by different colors, are considered.

Fig. 3. Comparing the percentage of all infections while running 100 simulations per
initial opinion assignment (x-axis) and adoption method (the color map in the legend).

According to the plot, both, the initial placement of the vaccine supporters
on the opinion layer as well as the opinion adoption method decide on the extent
of the epidemic. Hubs and generally vertices with the highest network central-
ities values are the most effective influencers. It may be well assumed that the
potential number of nodes a supporter can influence plays a crucial role. The
performance drops when the best connected nodes are stuck in a like-minded
community, as the numbers for hub-community and mod-community show. In
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these cases, the results are close to and even worse than the fully random app-
roach. A highly connected node may have only a few connections to like-minded
neighbors so that there are enough candidates left to be persuaded. Such a pat-
tern is certainly missing in the case of coworkers. Here, we notice that seeding
a pro-opinion to a group of individuals connected physically, e. g. by a common
working place, does not contribute to a fruitful transfer of views. The expec-
tation that vertices of low-degree usually being simultaneously hub-neighbors
would be able to affect the potent neighbors and transmit a spark that set off
the entire network, turned out to be gratuitous.

Regarding the opinion adoption methods, the rank order of the colored
boxplots per initial assignment method, x-tick, is the same except for mod-
community. Taking the sign of the sum of the neighboring opinions, the purple
color, appears to be the most efficient adoption method, followed by the random
approach after a visible gap, and then max and mean close behind, both per-
forming almost equally with a slender advantage of the majority approach. The
outstanding case mod-community confirms that in a closed like-minded commu-
nity there is little room for an exchange or spread of opinions. Regardless of the
adoption method the flow of information is limited.

3.2 Varying the Initial Number of Pro and Anti-opinions

Beside the selection of the supporters of the pro-vaccine opinion, it is the number
of supporters and opponents present when the epidemic breaks out that shapes
the infection curve. In the following test scenario we vary the parameters υ+ and
υ− which stand for the percentage of the pro and anti-opinions that are assigned
on the opinion layer at the beginning of a simulation. All other parameters
remain fixed to defaults as given in Table 1 and every simulation begins with a
generation of a new pair of graphs the layers are based on. The results are shown
in Fig. 4. In the outer frame of the chart, a boxplot corresponds to a pair (υ−, υ+)
being an element of the cross product on the set {5, 20, 15, 20, 25}% and arranged
along the x-axis. On the y-axis, we have the percentage of infected individuals
in total. The boxplots form a noticeably regular pattern. For a fixed υ+ and
increasing υ−, the number of total infections ascend, predictably. The growth
is moderate and close to linear with the smallest slop when υ+ = 25%, and it
generally gets flatter the lower the y-value, except for the group of υ+ = 5% in
the lower chart. On the other side, the boxplots for a fixed υ− and increasing
υ+ form a steep descent.

A similar pattern can be assumed for higher rates. Hence for the values 30%
to 50%, again with a 5% step, only the cases when υ+ = υ− are considered
and the results shown in the inner frame. As one reads from the plot, from
30% on minor disease outbreaks can be observed and they practically vanish
by 50%, regardless of the initial placement of the pro-vaccine individuals. For
comparison, we mark the outcome of the epidemic when both υ+ and υ− are set
to zero, i. e. the opinion layer is disabled and thus no vaccination takes place on
the disease layer. In this case, close to 90% of the population gets infected. As
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Fig. 4. Comparing the percentage of all infections when varying υ+ and υ−, with Os

set to random. Each boxplot compiles results from 100 simulations.

we determined in further tests, the arrangement of the boxplots as exposed in
Fig. 4 is independent from the initial pro-opinion seed Os.

3.3 Extending the Lattice

The experiments discussed so far were carried out on a fixed population size of
2500 individuals. Figure 5 gives an insight into how sensitively our simulation
reacts to the growing number of participants. Beginning with the default 50×50
lattice, the remaining ticks on the x-axis correspond to 10,000, 22,500, 40,000
and 62,500 number of nodes on each layer. To assess the impact of the initial
supporter assignment in this test scenario, we consider a selection of three Os-
methods: high-degree, random, and coworkers; each of them belongs to one of
the three distinguishable y-value ranges in Fig. 3. Each boxplot compiles results
of 10 simulations. As the number of nodes in the layers increases, the infection
rates decrease and become less volatile, as shown in the left plot. The trend
towards a lower infection rate as the network grows is maintained with every
initial setting of the opinion layer. The relative position between the boxplots
of different colors, i.e. corresponding to different Os-methods remains preserved.
For each graph size, high-degree performs best, followed by random and then
coworkers. Again, we observe the robustness of the simulation with regard to
the initial pro-opinion assignment. It is to be expected that the relative position
of the boxplots obtained for different Os-methods as well as (υ−, υ+)-pairs will
lean on the patterns formed in Figs. 3 and 4 respectively.

According to the right plot in Fig. 5, the simulation times2 grow steadily,
approximately quadratic in the number of nodes. Starting with about one minute
for a 50 × 50-lattice and reaching to over three hours on 250 × 250. The com-
putation time is, however, less sensitive to the parameter Os. Generally and
intuitively, the less infections in total the sooner an epidemic is over.

2 The computations were conducted on 3.2 GHz 16-Core Intel Xeon W with Turbo
Boost up to 4.4 GHz and 768 GB RAM.
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Fig. 5. Comparing the percentage of all infections (left) and the running times of the
simulations (right) when increasing the number of nodes in the layers. Each boxplot
compiles 10 simulations.

It should be mentioned that according to additional tests, our simulation is
not sensitive to the density of the network where the disease spreads.

3.4 Further Remarks

Our scope is to observe how the dynamic process on the opinion layer influ-
ences the epidemic spread. Therefore, in our tests, we focused on varying the
parameters controlling the opinion layer by keeping fixed the remaining param-
eters. In our tests, we assume that a disease spread process is more dynamic
than the exchange and acceptance of views and thus set ω = 0.75. The default
values assigned to ι, η, β and γ were chosen intuitively with a reliable disease
spread course on a lattice in mind. The values ι = 1% and β = 0.95 ensure
that the infection circulates despite sparse connections between the individuals.
Considering the SIR model, we assume that individuals who recover from the
infection become immune and thus they are not in need for a vaccination. The
remaining parameters ρ and η are similarly of negligible importance. Summing
up, varying the values of any of the parameters mentioned in this paragraph
leads to a slightly different shape of the infection curve. However, the impact of
the opinion layer on the disease spread is noticeable in any case and we assume
it is analogous to the results presented above.

4 Conclusions

We presented an approach of coupling an opinion formation with a diffusion
process. For this we consider a multiplex social network consisting of two layers
spanned on the same set of individuals. Both processes are initially started inde-
pendently on a different layer, but influence each other as they progress. The
opinion formation process bases on vaccine sentiments and the diffusion process
is an epidemic spread. Our main concern was to observe how the spread of the
disease is sensitive to individuals’ immunization readiness. As one would expect,
the selection of the pro-opinion seed determines the extent of the epidemic out-
break. The notable choice are individuals with a central position in the opinion
layer. What is striking, however, that individuals related through employment—
referred to as neighbors on the lattice—poorly exchange their views. Comparing



586 M. Fügenschuh and F. Fu

opinion adoption methods, we made another remarkable observation that taking
the signum of neighboring opinions leads to a superior influence of the supporters.
Regardless of the technical setting of the considered multiplex and its layers, our
simulation shows that a social contagion such as epidemic spread is conditioned
by the population’s views on the immunization. It points out that spreading
a positive attitude towards vaccination is a powerful tool in the fight against
the virus and encourages further reflection of complex systems of this kind. The
approach from the multiplexity, which we pursued in this contribution, allows
investigating a coupling of two dynamic processes in an equalized complexity.
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