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Abstract. We study the emergence of congestion patterns in urban net-
works by modeling vehicular interaction by means of a simple traffic
rule and by using a set of measures inspired by the standard Between-
ness Centrality (BC). We consider a topologically heterogeneous group
of cities and simulate the network loading during the morning peak-hour
by increasing the number of circulating vehicles. At departure, vehicles
are aware of the network state and choose paths with optimal traversal
time. Each added path modifies the vehicular density and travel times for
the following vehicles. Starting from an empty network and adding traffic
until transportation collapses, provides a framework to study network’s
transition to congestion and how connectivity is progressively disrupted
as the fraction of impossible paths becomes abruptly dominant. We use
standard BC to probe into the instantaneous out-of-equilibrium network
state for a range of traffic levels and show how this measure may be
improved to build a better proxy for cumulative road usage during peak-
hours. We define a novel dynamical measure to estimate cumulative road
usage and the associated total time spent over the edges by the popula-
tion of drivers. We also study how congestion starts with dysfunctional
edges scattered over the network, then organizes itself into relatively
small, but disruptive clusters.

Keywords: Traffic · Urban networks · Betweenness centrality ·
Congestion

1 Introduction

Urban networks have been widely studied in recent years [1–3], both their growth
over time and their complex dynamics under different traffic levels. Network
science has considerably helped to improve our understanding of cities and to
analyze and predict the reaction of the different parts of the network under
stress [4,5]. Such predictive analyses may be performed by considering just
the geographical and topological features of a city, without having to recur to
experimental traffic data, but these datasets constitute nonetheless the reference
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against which every theoretical model should be evaluated [6,7]. Urban net-
works belong to the special class of (almost) planar graphs and in this context
there have been some notable results recently [8,9]. The geographical embed-
ding leads to several constraints to topology such as limitations to the number
of long-range connections and to the maximum connectivity observed at the sin-
gle edge level [10]. The study of edge degree distributions did not improve much
our understanding of cities, but non-local higher-order metrics such as network
centralities have been widely used both for theoretical studies and for practical
applications with notable success [11,12]. One of the metrics that have been used
the most in recent years is the Betweenness Centrality (BC), which is defined
as the total flow passing over each node of the network when enumerating all
Origin-Destination (OD) pairs and connecting them via shortest-path routing.

This definition is easily extended to Edge BC (EBC) by counting edge usage
instead. We will write BC instead of EBC in the rest of paper since our focus
will be on edges.

BC and other measures have been used to predict which edges are subject
to the highest traffic demand that leads to the breakup of the network into
functionally independent pieces. This phase transition has been well studied via
percolation theory and it is known that the size distribution of the resulting
sub networks follows a power law with a critical exponent that depends on
traffic intensity and on the time of the day. This transition has been observed
for real world datasets in large cities such as London, Beijing and New York
City [4,13,14]. During the most extreme conditions, total network breakdown
has been observed to last for several hours or even days [5].

The percolation phase transition is not specific of high congestion levels, but
an edge may be classified as dysfunctional even with vehicles traveling just below
the speed limit [2,4,13]: this transition simply signals a change in the network
behavior that happens at all traffic levels, but for different critical speeds. On
the other hand, in this work we will follow the more practical definition of calling
an edge dysfunctional only when it cannot receive traffic anymore, due to road
density nearing the maximum value and speed approaching zero [5]. The tran-
sition happens when there is suddenly a large part of the desired travel paths
that are no longer usable.

Standard BC approaches can only grasp a limited picture of the network
under stress because BC relies on several assumptions [15,16]: traffic origins
and destinations uniformly spread over the nodes; shortest paths with fixed cost
function; non-interacting multiple paths sharing the same edge; the amount of
traffic density contributed by each vehicle is the same regardless of its driving
time. Edge usage obtained from a BC computation approximates well a network
with very small (or extremely fast) agents, each using shortest path navigation
with no congestion awareness [17]. A urban transportation network is charac-
terized by vehicle travel times comparable to the typical timescale of congestion
buildup during peak-hours.

In this work we want to extend the standard BC as a measure of road con-
gestion, especially by taking into account the strong interaction effects observed
in real traffic. The interaction among vehicles depends on the duration and
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vehicular volume of the network loading: the longer the edge travel times, the
higher the probability of finding a vehicle in a given road segment during the
observation period. The present approach stems directly from this fact and aims
at focusing on the peak-hour periods, that usually last for one hour, to esti-
mate the cumulative traffic seen on the roads during that finite time window.
Thus, we propose a dynamical model to compute the contribution to traffic at
a road-segment level due to each vehicle added to the network, while iteratively
recomputing travel times after each addition. From the vast literature on trans-
portation we choose one of the simplest models to describe vehicular behavior
depending on geography (edge properties) and on the dynamical network state:
the single regime Greenshields model [9,18], for which speed starts at the free
flow value to decrease linearly to zero when maximal road density is attained. To
complement the traffic model, we assume that vehicles know exactly the network
state before their departure, in order to plan an optimal path. The proposed sce-
nario mimics a network with a mixture of self-driving cars and human drivers
generating a shortest-time route at the start of their trips. It is likely that this
will become increasingly relevant in the near future.

In this paper we employ our dynamical model and the associated metrics
to theoretically predict the behavior of five large cities under growing traffic.
Results will be validated against real traffic data in future works.

2 Methods

2.1 Interaction Model

We aim at modeling the network evolution, as observed by travelers, while the
traffic increases from zero up to complete gridlock. The desired network traffic
over simulation time (τ) will be added incrementally, activating one new path
π(i) at each simulation step i. Thus, i can be interpreted both as the current
number of added paths and as a temporal marker to define the sequence of OD
pairs randomly generated for each simulation.

For simplicity, and to be able to compare results with the standard BC, traffic
will be added uniformly to the network. It is however straightforward to adapt
our procedure to any OD matrix.

We model the traffic network as a directed, weighted graph G = (V,E) with
N = |V | nodes and M = |E| edges. Each edge e represents a road segment
between two intersections and it is characterized by three constant features: its
physical length le, maximum speed v∗

e and number of lanes ce.
The state of the network at each time step will be represented by the occu-

pancy of vehicles added so far in each edge se(i), where se(i) =
∑i

j=1 σe(j). We
will define the occupancy σ of a single vehicle so that it will sum to one only
when its total traveling time is equal to or longer than the simulation time (in
general:

∑
e∈π(i) σe(i) ≤ 1). To each edge we also associate a normalized vehicle

density ρe(i), that increases monotonically as we add vehicles:

ρe(i) =
se(i)L
lece

∈ [0, 1] , (1)
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where L is the average space occupied by one vehicle.
We define the occupancy σe(i) of a new vehicle added to the network using

a simple approximation of the time it might spend on edge e:

σe(i) = min
(

Te(i)
τ

, 1
)

, where Te(i) =
le

ve(i)
, (2)

and with speed ve(i) following a Greenshields linear law [19]:

ve(i) = v∗
e(1 − ρe(i − 1)) , (3)

thus the approximate time for the complete path π(i) will be Tπ(i) =∑
e∈π(i) Te(i). A non-interacting system is obtained in the limit L → 0. In more

detail, the state s(i) of the network is obtained iteratively (s(i) = f(s(i − 1))),
starting with an empty network (s(0) = 0) and according to the following
dynamic process:

– a pair of OD nodes is chosen, independently and uniformly at random, and
the fastest path π(i) connecting the nodes is computed;

– starting from O, for each edge e ∈ π(i), we accumulate the average occupancy
σ(i) induced by π(i) during τ :

se(i) = se(i − 1) + σe(i) , (4)

and the number of vehicles on the edge:

ne(i) = ne(i − 1) + 1 . (5)

Note that, as soon as the sum along π(i) of the added Te(i)/τ factors reaches
1, we choose to skip the remaining edges up to D, to avoid adding more than
a unit factor to vehicle occupancy along π(i);

– ve(i + 1) and Te(i + 1) are updated according to Eqs. 2 and 3, using the new
ρe(i) value;

– this process is iterated until the desired total traffic is reached.

Intuitively, the occupancy factor induced by a vehicle over an edge e is pro-
portional to the time the vehicle is supposed to spend on it (Te/τ), as forecast at
the moment of its generation, and the sum over the whole path will be equal to
unity (certainty of finding the vehicle within π during τ) only when Tπ ≥ τ . The
initial OD pairs find a nearly empty network, so their fastest paths and travel
times are very similar to the L = 0 case. With rising traffic, however, edges
slow down and subsequent fastest paths will be slower and, in general, different.
Some edges will eventually reach maximum density and become dysfunctional. If
the fastest route from origin to destination comprises a dysfunctional edge (i.e.,
the network is disconnected) we still choose to add the initial part of the path,
but we will skip the edges starting from the first dysfunctional one. This allows
us to model the backward propagation of traffic jams observed at high traffic
volumes [14,20]. Since the order in which OD pairs are added to the network
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can lead to different final results, we replicate the system and perform several
simulations to analyze the stability of the results.

The main limitations of this model are: the Greenshields model is very rough;
no explicit time evolution as in the Nagel-Schreckenberg CA model, but just
a sequence of path addition in a first come, better served approach; no true
time evolution means that long paths added initially will generally experience
faster times (uncongested) for edges that will likely become congested later by
newer paths; OD pairs are uniformly extracted at random over the network: it
is known, e.g., that morning and evening peak hours show an opposite average
traffic direction [1].

2.2 Cumulative BC Definition

BC implicitly assumes that the different paths do not interact, i.e., that the
cost (typically the shortest length between two points) does not change when
adding agents in the network. If, however, we assume that the active network
traffic does alter the cost function, as it is the case when choosing fastest vs
shortest paths, then the standard BC gives a biased picture of bottlenecks and
hotspots. A good approximation of the BC can be obtained by sampling the OD
pairs uniformly [21], and it is natural to think about it as a dynamical process
of subsequent path additions. In particular, if the exact paths, their order of
appearance and their travel times are known, the timescale τ of the dynamical
phenomenon becomes a crucial parameter to better estimate the edge visiting
frequencies.

Several studies extending the original BC concept have been presented in the
past [11,12,22], to deviate from the idea of shortest paths by introducing routing
randomness. Here, on the other hand, we extend the BC idea by taking into
account the evolution of the network state. To this aim, we define a Cumulative
BC (CBC), based on the average occupancy se(i), defined in Eq. 4 as:

γe(i) =
se(i)

i
. (6)

This quantity is normalized and tends to the original BC for L → 0.

3 Simulation Details

We select the vehicular transportation layer of the urban networks relative to
five large cities and their surroundings from OpenStreetMap. The radius R of the
circle inscribed in each region varies from 12 km for Rome to 20 km for Boston,
and the number of edges of the corresponding graphs ranges from about 65k
of Rome to about 200k of London. For every city, we perform 10 simulations,
each with a reshuffled order of the OD additions to the network to estimate
the sensitivity of the evolving configurations to external conditions. The total
number of added ODs was 106, sufficient to bring all cities to a deeply congested
state. The total computation time for simulation and analysis is less than one day
for each city, running with shared-memory parallelism on Intel E5-2680 nodes
(12 cores, 2 threads/core) with 250 GB RAM.
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4 Results and Discussions

Transition to Fragmented Network We first focus on the behavior of the
network while it receives an increasing number of paths. Since edges become
progressively dysfunctional as ρ → 1, at some traffic level (set by i) the graph
becomes disconnected, which means that some OD pairs will belong to function-
ally separated subgraphs. When this occurs, all paths connecting those OD pairs
will include a dysfunctional edge and we say that the OD pair is (at least par-
tially) rejected. This is a coarse indicator of a transition in the network behavior.
We present rejection ratio curves in Fig. 1: Nairobi (Fig. 1a) and Rio (Fig. 1b)
are the first to collapse at i ≈ 210k and i ≈ 320k, respectively, with moderately
steep curves. The different transition types depend upon the topological features
of each city (see maps on Fig. 4): London (Fig. 1c) and Rome (Fig. 1d), being
traversed by rivers, abruptly break at i ≈ 335k and i ≈ 490k, respectively, leav-
ing both cities split in two halves (50% of rejected ODs). The collapsed bridges
of both cities, due to heavy usage, are clearly visible in Fig. 4c. Once broken in
two parts, London is able to better support local traffic better than Rome that
collapses quickly even for shorter ODs, as visible from the different slopes after
the transition. Boston (Fig. 1e) is apparently the most resilient to breakup, with
the first hints of congestion appearing at i ≈ 560k, and a global behavior similar
to Nairobi and Rio.

Fig. 1. Fraction of (partially) rejected paths for increasing traffic (i)

We now shift our focus to the spatial configuration of dysfunctional edges:
to display their typical growth over the graph, we choose Rio in Fig. 2 (left):
the number of dysfunctional edges (red curve) and that of edges belonging to
the Largest strongly connected dysfunctional Cluster (LC) grow almost mono-
tonically with i (black curve). It is worth noting that, although scattered dys-
functional edges appear early and grow monotonically, the LC lags and shows a
staircase-like behavior, indicating that dysfunctional edges take time to coalesce
into a set of clusters. We measure only the LC size and the plateaus are explained
by new dysfunctional edges appearing in distant parts of the city. Remarkably,
the table on the right of Fig. 2 shows that, for all cities, a small number of dys-
functional edges of order 0.1% of the total edges, is enough to severely hinder
transportation efficiency.

In order to further analyze the transition to congestion, we define two addi-
tional measures: the average path length ratio: D(i) = 1

iR

∑
e ne(i) · le and the
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Fig. 2. Spatial correlation of congested edges. Left: Fraction of dysfunctional edges
(w.r.t. the entire graph) found at the transition in Rio as traffic increases in red, and in
black (magnified 100 times), the associated largest connected component cluster size
fraction. Right: Values of red (# dysf.) and black (LC size) curves at the transition for
each city.

average path time per vehicle: T(i) = 1
i

∑
e ne(i) · te. Since ne(i) is the number

of vehicles that chose edge e in τ , by summing its products with edge lengths
(traversal times) we obtain the global distance run (time spent) by all vehicles in
τ . D(i), with respect to the traffic level i, shows different regimes up to the tran-
sition: a constant or gentle slope for London and Rio, respectively, a bit steeper
for Boston; a marked peak at the transition for all cities except Nairobi and
Boston (Fig. 3); a final decrease, for all cities after the transition, mainly due to
partial truncation of paths added after the transition. T(i) per vehicle are simi-
lar for all cities: Fig. 3 (right) shows a gentle slope for low traffic regimes, which
suddenly steepens nearing the transition with the dysfunctional edges restricting
the choice of optimal paths. For brevity, D(i) and T(i) are shown in Fig. 3 only
for Boston: as traffic rises, avoidance of congested roads leads to an increase in
the average travel length, but in general by less than ≈ 10%.

Fig. 3. (Average path length ratio D(i) (with respect to R) (left) and path travel
time T(i) (right) per vehicle for Boston. Each color represents a different replica with
reshuffled OD order.
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BC at Increasing Levels of Traffic Standard BC may be used to probe the
network state, after the addition of a number of vehicles, to obtain instantaneous
information on how congestion affects path choices for increasing traffic levels.
Figure 4 a, b show how the BC maps of our five cities change from the empty
state to the transition. Specifically, in Fig. 4b, edges with either larger or lower
BC with respect to the empty state, are shown in red and blue respectively. It
is worth to note that the roads with the highest BC with little traffic become
dysfunctional long before the transition as entirely different path choices emerge:
blue roads in Fig. 4b are those that lost most of their flow due to early saturation
while the red ones became important at higher congestion levels.

Cumulative BC The “loaded” standard BC discussed above, does not describe
the network behavior during the whole simulation time, but just what would
happen to a small batch of vehicles added on top of a system with a specific
traffic load. The Cumulative BC (CBC), on the other hand, takes into account
the total contributions of all vehicles added within τ . The CBC maps are shown
in Fig. 4c exactly at the transition ic specific for each city, so each edge carries
the contribution to the global traffic experienced during the whole simulation
time. Several edges show high CBC values not detected as important by a BC
in Fig. 4a. This is especially true for peripheral roads that become important
only when the fastest options are already saturated: notably, Boston shows a
somewhat busy eastern region and Rome has several radial roads that show a
relatively large usage.

Total Time Spent in Traffic (TS) After defining the CBC as a proxy for the
number of vehicles to be observed during the network loading, we can use this
information to obtain some interesting features, such as the total time spent by
all vehicles on each edge: TSe(i) = 1

le

∑
e ne(i)Te(i). This measure provides an

intuitive way of estimating the total wait experienced, per unit length, during τ
by all vehicles sharing an edge. As visible in Fig. 4d, the maps show the relative
importance of each road: low values belong to seldom used roads while high val-
ues emerge for roads that are frequently chosen whether with an empty network
(coinciding with BC) or at near-congestion. In general, urban highways, with
several lanes and higher speed limits, are the primary candidates to display top
scores in this metric, but as congestion grows, other roads, often not planned
for heavy use, start to attract a large fraction of vehicles and may compete with
highways. It should be noted how most of the top-ranked roads in London are
bridges over the Thames that in fact are the first to become dysfunctional (as
seen in Fig. 1c), leading to a city split in two roughly equal parts.

CBC and Total Time Spent in Traffic We study how the distributions of
CBC (Fig. 5a) and total time spent in traffic (TS) (Fig. 5b) change for all cities
when traffic grows from light to severely congested. As expected, both distribu-
tions shift to the right and a double peak structure starts to emerge already for
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Fig. 4. (a): Standard BC maps for all cities: red edges are within the 99-th percentile
of the BC distribution for the empty network. (b): ΔBC at the transition: deep red
and dark blue edges increase or decrease their BC by ≈ 100%, respectively. (c): red
edges show the 99-th percentile of the CBC distribution at criticality. (d): red edges
represent the 99-th percentile of the Time Spent in Traffic distribution at criticality
(per unit length, in order not to visually overestimate longer edges).
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medium-low traffic levels. The indications of behavior change obtainable from
the standard BC in the same conditions are much weaker as seen in [3] as the
BC distribution is almost invariant for totally different cities.

Fig. 5. Top: CBC [average occupancy per edge in 1h] for all cities at increasing levels of
traffic (blue: light traffic, green: near transition, red: congested). Bottom: Time Spent
in Traffic (TS) [vehicles·hour]. Colors as for top row.

5 Conclusion

By extending the idea of BC, we proposed a novel approach based on a dynamical
model to take into account interactions among vehicles, to specifically character-
ize the peak-hour network loading, typically the most demanding time in terms of
infrastructural stress. Our results show that the Cumulative BC is able to iden-
tify the bottlenecks of the network, when subjected to a persistent load, and to
study the back-propagation of traffic jams. Interpreting the CBC as an expected
road occupancy, we can also identify the edges responsible for the largest contri-
bution to the total time spent on average by all vehicles. The results appear to be
independent of OD order of addition for all the considered metrics, but this may
change with different dynamical models. In the future we plan to validate the
model against real traffic data (e.g., UBER Traffic Movement) and to improve it
theoretically (e.g., fine temporal evolution, different dynamical systems), while
also extending it to wider and more general networking contexts.
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