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Abstract. We introduce a simple model of knowledge scaffolding, sim-
ulating the process of building a corpus of knowledge based on logic
derivations starting from a set of “axioms”. The starting idea around
which we developed the model is that each new contribution, still not
present in the corpus of knowledge, can be accepted only if it is based
on a given number of items already belonging to the corpus. When a
new item is acquired by the corpus we impose a limit to the maximum
growth of knowledge for every step that we call the “jump” in knowl-
edge. We analyze the growth with time of the corpus and the maximum
knowledge and analyzing the results of our simulations we managed to
show that they both follow a power law. Another result is that the num-
ber of “holes” in the knowledge corpus always remains limited. Using an
approach based on a death-birth Markov process we were able to derive
some analytical approximation of it.
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1 Introduction

Whether knowledge accumulation is equivalent to scientific progress [3,4] or
not [9] or whether this latter concept is broader than either theories suggest [8],
we can assume that an increasing amount of knowledge is fundamental for the
advancement of science, as actually reported in many fields [5,7,11]. Moreover,
accumulation of information and knowledge is as much important to groups as
it is for individuals, and, In general, knowledge accumulates over separate yet
related learning episodes [2].

In all aspects of scientific disciplines based on deduction, such as most of
mathematics and many parts of physics, among others, the derivation of higher-
level achievements depends on previous knowledge. In these cases, new pieces of
knowledge that are accepted and inserted into the existing corpus are based on
previous results. Therefore it is not correct to define this process by the word
“accumulation”, while “scaffolding” is best suited, in our opinion.
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Fig. 1. The fundamental knowledge scaffolding model. (left) Knowledge bits are rep-
resented as nodes of a network, where different colors represent different levels, and
nodes at a certain level only depend on a certain number of nodes at lower levels. Green
(basic) nodes represent axioms. (right) Observing the filling of the network (here with
fixed width and with fixed number of dependencies), one can detect holes that are filled
after the appearance of nodes at higher levels.

A graphical representation of this process is given by an oriented or grow-
ing network [1] in which the single bits of knowledge are the nodes, and the
links represent connection between the new items and its prerequisites, i.e., the
elements of the existing corpus needed to prove the new result.

As shown in Fig. 1, this feed-forward structure can be seen as a layered net-
work in which an item at any level depends on other items at lower levels. In
this way one can put into evidence the structures that group together all simul-
taneous and independent derivations.

In this model it is easy to identify the “knowledge holes”, which are miss-
ing items at levels which are lower than the highest one. Notice that holes are
evident in a static snapshot of the fixed-width version (Fig. 1-right), but can be
identified also in the variable-width model by observing the temporal filling of
the structure.

The “filling” of knowledge holes have been studied for instance in world
learning [10]. In this case, however, authors only had at their dispositions a
static snapshot (of an arbitrary semantic network) so they had to resort to the
analysis of the connectivity (robustness) of the network to identify the location
of possible missing items. However, it is not granted that the possible missing
items will appear, for instance, in the example provided in the cited article [10],
the missing item, identified by the words “large” and “yellow”, was a school-bus,
but school-buses are not always yellow in every country.
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Fig. 2. The linear scaffolding model. In this version there are no well-defined levels.
Known items are denoted by ones in a linear array of elements (X), and unknown ones
by zeros. The “highest” known item is at position m. New items (i) become known
(Xi = 1) if all random prerequisites jk are known. The maximum knowledge jump L
limits the choice of i so that 1 ≤ i − jM ≤ L, where jM is the highest of prerequisites
jk.

In the following we shall use a simpler, unstructured layout representing a
linear progress, illustrated in Fig. 2. This is of course a simplification of the
previous process, since even the existence of yet unknown pieces of knowledge is
in many cases not knowable: while in the layered structure one can add a variable
number of intermediate nodes, in the linear version this is not possible. However,
the analysis in this case is easier, and in a practical case it may correspond to an
“ex-post” analysis of the temporal development of a knowledge space, for which
the final number of items, their dependencies and the temporal sequence of the
filling are known.

In summary, in this paper we want to investigate such a model of linear
knowledge scaffolding, that despite its simplicity shows interesting behavior and
can be approximated in an analytic way.

The model is presented in a detailed way in the following section, numerical
and analytical results are reported in Sects. 2 and 3, respectively. Conclusions
are drawn in the last section.

2 The Model

The knowledge space is represented by an array Xi of N items, which can be
known (Xi = 1) or unknown (xi = 0). We denote by

c(t) =
∑

i

Xi

the size of the knowledge at a certain time.
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Fig. 3. Evolution of knowledge corpus and maximum knowledge with N = 10000,
K = 4 and L = 5. a Maximum knowledge (m) versus time. b Knowledge corpus (c)
versus time.

Fig. 4. Comparison between the evolution of knowledge corpus (c) and maximum
knowledge (m) versus time for N = 10000, K = 4 and L = 20.

The linear scaffolding process can be modeled by a random proposal of the-
orems, each of which depends on a certain number, say K, of prerequisites,
and furnishes a higher contribution. We assume that there is a limit to jumps
in knowledge, and therefore the newly proposed item cannot be at a distance
greater than L from the highest prerequisite (Fig. 2).

Let us denote by m the index of the highest known item in the corpus, i.e.,
Xm = 1 and Xj = 0∀j > m. The corpus can contain holes, i.e., Xj = 0 with
j < m.

A theorem cannot be based on prerequisites higher than m, but could be
rejected because it is based on holes in the present corpus. Redundant theorems
(i.e., theorems providing known items) are not considered even if they are valid.
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Fig. 5. Logarithmic plot of the knowledge corpus c for N = 10,000. a Fixed L = 5 and
five values of K. b Fixed K = 4 and five values of L.

Fig. 6. Logarithmic plot of knowledge corpus c for N = 10000 and K = 4. It is
possible to numerically rescale the function with different L to obtain an asymptotic
convergence. The same results could be obtained by varying K.

The corpus filling proceeds by randomly choosing K items, j1, . . . , jk, . . . , jK ,
with jk ≤ m, as the prerequisite for the new theorem. It may happen that two
or more of the jk correspond to the same item, since they are chosen at random
in the interval 0, . . . ,m.

We denote by jM the largest values of the selected jk, and we extract a
random integer i such that

i ∈ (jM + 1, . . . , jM + 1 + L)

as a candidate for the new piece of knowledge.
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Fig. 7. Time evolution of the number of holes (h) for N = 10000 and different values
of K and L.

If all the prerequisites are known (i.e., Xjk = 1 ∀k) and the piece of knowl-
edge Xi is not already known (i.e., Xi = 0), then this derivation is added to the
corpus (Xi = 1 and c is incremented by one), and if i > m then m = i. In any
case, the time t is incremented by one.

At the beginning we start with a knowledge vector of zeros, except the 2K
smallest locations, that represent the axioms from which the knowledge structure
is built.

The choice of the number of axioms is arbitrary, and in our case 2K was
chosen so that the first theorem is not forced to use all present axioms (since
each theorem is based on K prerequisites), but the number of starting axioms
does not influence the evolution of the corpus.

For L > 1 the knowledge corpus may contain holes, i.e., locations � with
� < m and X� = 0. We denote by h(t) the number of holes in the corpus at time
t.

We repeat the previous steps until the maximum knowledge m is equal to N .

3 Numerical Results

A typical evolution for the maximum knowledge m(t) and corpus size c(t) are
reported in Fig. 3. As one can see in Fig. 4, both values grows with the same trend
regardless of the value of K and L, separated by a gap that remains finite after
an initial growth. This gap is related to the number of holes in the knowledge
corpus.

By plotting c(t) in a log-log scale, as shown in Fig. 5, we can notice that,
regardless of the values chosen for L and K, it is asymptotically approximated
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by an power law
m(t) = μ(K,L)tα

and
c(t) = γ(K,L)tα,

with α = 1/2.
Looking at Fig. 5, we can notice that the transient depends on K and L:

increasing these values the curve becomes less linear in the left part of the graph.
But the asymptotic trend is independent of K and L, as shown in Fig. 6.

By investigating the number of holes h(t), one sees that the value remains
quite constant and that this effect is present regardless of the value of L and K,
as reported in Fig. 7. Indeed, h increases at first, and the value around which
the number of holes oscillates increases with L and, in a less evident way, also
with of K, but eventually, for every K and L, the the filling of inner holes takes
place, in correspondence with a slowing growth of c(t).

4 Markov Birth-Death Approach

Let us consider the simplest case possible: K = L = 1, for which there is no
hole in the corpus, since every piece of knowledge depends on the immediately
previous one. In this case c = m.

For each time step, either the knowledge increases by one, or stays constant.
Therefore it is an example of a birth-death Markov Chain, with no deaths [6].

Let us denote by P (y, t) the probability that at time t the corpus or maximum
knowledge is y. The evolution of P is given by

P (y, t + 1) = P (y, t)
(

y − 1
y

)
+ P (y − 1, t)

(
1

y − 1

)
, (1)

where there are two processes: the knowledge increases by one if the j1 prereq-
uisite is equal to y − 1 (with probability 1/(y − 1), or stays constant and equal
to y if j1 is one of the other y − 1 possibilities.

The average knowledge ȳ(t) at time t is defined as

ȳ(t) =
∑

y

yP (y, t). (2)

The Markov process starts from the condition P (y, 0) = δy,2K .
The time and space continuous approximation of the Markov equation (1)

(valid far from the initial conditions, for y � 2K and t � 0) is:

∂P

∂t
= −1

y

∂P

∂y
, (3)

which implies that P is a function of y2 − 2t.
Therefore, in this approximation

ȳ(t) ∝
√

2t (4)
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for large t.
Indeed, this is the case, as shown in Fig. 8.
The approximation Eq (1) has been obtained in the case L = 1, K = 1, for

which there is no hole. It is possible to generalize it to the case L > 1, imposing
the absence of holes, as

P (y, t + 1) =
1

Z(t)

L∑

k=0

P (y − k − 1, t)
(

L − k + 1
L(y − k − 1)

)
,

where y−k−1 > 0 and Z is a normalization constant, such that
∑

y P (y, t) = 1.
This generalization is justified by the fact that even for L > 1 the number of
holes stay limited. This approximation reproduces the power-law growth of the
corpus.

Fig. 8. Comparison of the ȳ(t) (ym in the graph) with the function 0.5 · t+ log(2)
2

, with
N = 10000 and the total time of the simulation T = 400000. As shown in Eq. (4) there
is a linear proportionality between time and ȳ(t).

5 Conclusions

We have presented and analyzed a simple model of knowledge scaffolding,
approximated by the growth and filling of a knowledge vector. The idea is that
of providing a model corresponding to an ex-post analysis of the temporal devel-
opment of a knowledge space.

The elementary step of our model is the proposal of a new theorem depending
on at most K prerequisites and providing a knowledge jump of at most L steps.



A Simple Model of Knowledge Scaffolding 49

This move is accepted and inserted in the corpus if the prerequisite does already
belong to the known corpus and the result does not.

The size of the corpus, i.e., the number of known items and the maximum
knowledge grows in time following a power law with exponent 1/2, regardless of
the number of input items K and jump L.

An analytical approximation, based on a death-birth Markov process is pro-
posed, reproducing the power law.

We believe that this very simple and approximate model can be used as a
basis for a qualitative description of more complex systems.
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