
Detection of Sparsity in Multidimensional
Data Using Network Degree Distribution

and Improved Supervised Learning
with Correction of Data Weighting

Shinya Ueno1,2(B) and Osamu Sakai1

1 Department of Electronic Systems Engineering, The University of Shiga Prefecture,
Hassaka-cho 2500, Hikone, Shiga 522-8533, Japan

s.ueno@sakigakes.co.jp
2 Checkers Co., Ltd., 50, Nishishichijoonmaedacho, Shimogyo, Kyoto 600-8897, Japan

Abstract. Multidimensional data are representatives in a wide range of
applications, from those in the latest state-of-the-art science and technol-
ogy to specific social issues. And they have been subject to analysis using
methods such as regression analysis and machine learning. However, they
are rarely obtained as complete data and contain more or less biases and
deficiencies. In this study, we form a network from a multidimensional
dataset and use its degree distribution to detect data sparsity. Although
model analysis based on the degree distribution has been conducted for
many years, sparsity detection has not been a target of the degree distri-
bution analysis. Furthermore, we attempt to increase the accuracy and
precision of supervised learning by applying regressive weighting accord-
ing to node grouping in the degree distribution spectrum. By making use
of this algorithm, we can expand the range of utilization of incomplete
data together with other promising progresses in complex networks.

Keywords: Network analysis · Multidimensional data · Sparsity ·
Supervised learning

1 Introduction

Multidimensional data are essential elements for various types of analysis and its
analysis method has been developed for more than a quarter of a century. They
are representative datasets in various fields and applications, such as medical
applications [1–4] like clinical trials for new drug development and determina-
tion of physical condition based on skin color, social applications like road and
railroad maintenance [5,6], industrial applications like product inspection [7–
10], and chemical applications like synthesis of material compounds [11]. We
have also been performed on the evaluation of plasmas with multiple dimen-
sions where multidimensional data is inevitable for the evaluation of plasmas for
industrial applications [12–14].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2016 2022, SCI 1077, pp. 390–401, 2023.
https://doi.org/10.1007/978-3-031-21127-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21127-0_32&domain=pdf
https://doi.org/10.1007/978-3-031-21127-0_32


Detection of Sparsity in Multidimensional Data Using Network 391

They have been subjected to analysis using various methods such as regres-
sion analysis [15–17], data mining, and supervised learning [18–20], both linear
and nonlinear. In supervised learning, multidimensional data are often used as
teacher data, and in our previous work, we have also used a multidimensional
dataset as Training Data for calibrating optical sensors using neural networks
[21].

However, all data that are targeted cannot always be available as a complete
dataset in which their distributions in the multiple dimensions are quite uniform.
For example, anomalous values may be observed, and it is quite possible that
the amount of data may be biased or missing. We will discuss this in more detail
below, but we have confirmed that bias or lack of data exists even in the Training
Data we have used in our past studies [22].

Analysis on a dataset with missing data may reduce the accuracy and preci-
sion of the analysis results; for example, if the missing data contain information
that is crucial for the analysis, it may result in a linear approximate model,
whereas the original data distribution might be actually nonlinear. Therefore,
how to treat incomplete data with missing data as if it were complete data is an
important item in multidimensional data analysis.

Seeking more complete data can be expensive, and this hinders the use of
multidimensional statistical data in various fields, not just for machine learning.
In other words, when the statistical data have some degree of incompleteness, the
data-analysis procedure with capable technology to perform accurate analysis
based on such incomplete data with sparsity will expand the possibilities of
using data analysis. Here, we note that on literature [23] defines “sparse” as
areas where edges are not connected, and another report [25] defines it as areas
where data do not exist. We treat sparsity as the absence of data in a region
where it should be present.

In the previous studies, complete-case analysis or listwise deletion was used
to address missing or biased data in multidimensional data. When the number
of variables is large and the proportion of missing data is high, methods called
available-case analysis and pairwise deletion have been used. These methods are
used in various situations because they are intuitive and easy to implement. For
example, methods such as assigning data to missing parts to prepare pseudo-
complete data [26,27] and approximating missing parts by weighting formulas
[28–30] have been studied. On the other hand, since machine learning has become
widely used, supervised learning is often performed with missing and biased data
[31].

In contrast, in our previous study [22], we applied the model of locally lin-
ear embedding (LLE) [23] and attempted to ensure the reliability of the target
region by emphasizing the weight of the data surrounding the missing-data or
sparse area. Here, the missing data were checked not automatically but man-
ually, and the missing data were evaluated by simple doubling and/or tripling
of the number of missing data. Although this study achieved certain results,
such intuitive methods were only valid for this model data, and the method was
not universally applicable to other datasets. In the field of machine learning for
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complex networks, rebalancing has been done by undersampling, which reduces
the amount of data, and oversampling, which increases the amount of data [32].
In contrast, the method we are going to describe here is a method that attempts
to supplement data regions that either do not exist or are extremely scarce by
increasing the surrounding data.

Therefore, in this study, we propose a model based on a complex network
that takes into account mutual positions of a large number of data points, and
based on methods such as degree-distribution derivation and clustering, we select
the amount of data that should be handled for rebalancing. Here, we propose
a new algorithm that applies regressive weighting in the model. In contrast to
LLE [23], which is based on distributions of local data points, our research is
based on topology of the derived network and its statistical property. Over the
years, many studies have been conducted on models based on complex networks,
such as a random network in which each node is connected randomly and its
degree distribution follows a Poisson distribution, and scale-free networks [24]
in which the degree distribution follows a power-law distribution. That is, there
have been many studies on degree distributions, but this study is unique since
decomposition of the degree distribution is used for data-deficiency correction
to improve accuracy of analysis, in particular, for supervised learning which
requires training datasets preferably without sparsity.

2 Calculation Methods

2.1 Two Dimensional Color Coordinate and Target Task in Our
Supervised Learning

Datasets in the multidimensional space are found in various scientific and tech-
nological areas, and in this study, color data on xy coordinates, which have been
used in previous studies [21,22], were used in a model for examining the algo-
rithm we propose here. The color data are expressed in three parameter red (R),
green (G), blue (B), which are converted to points on the xy color coordinates
by the following formulas defined in CIE1931 [33]: X = 2.7689 R + 1.7517 G +
1.1302 B, Y = 1 R + 4.5907 G + 0.0601 B, Z = 0 R + 0.0565 G + 5.5943 B,
x = X / (X + Y + Z) , y = Y / (X + Y + Z).

When we consider data points on the xy color coordinates, color data are
reduced from the three-dimensional attributes to the two-dimensional variables.
Through this conversion, all R, G, and B color data are mapped on the xy
color coordinates, and this conversion is not completely linear to R, G and B
values; the data that were spaced at every equal step along the R, G, and B
axes are not similarly spaced on the xy color coordinates. Furthermore, if we
detect color values using any optical sensors, they include error rates due to
poor matching coefficients to R, G, and B wavelength spectra. Thus, we always
adapt a nonlinear calibration procedure to obtain sufficient accuracy for such
multidimensional data. In our previous study [21], we successfully performed
one way of suitable calibration, but we have not been sure about its validity
with universality. In this study, we aim to accomplish a suitable and universal
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calibration method that can be performed automatically according to a simple
algorithm, specifically for tuning weight coefficients for sparse training datasets
in the multidimensional space.

2.2 Method for Network Diagram Formation and Analysis
Algorithm

We show the flow chart about the data processing proposed in this study in Fig. 1.
For the dataset described below, we calculated Euclidean distance between all the
nodes with the specific xy color coordinate values (x, y) to find out connections
or edges between nodes. A threshold for a connection was set for this distance
value ranging from 0.01 to 0.05, and the adjoining points with a distance that
fell below the threshold were connected to form an edge, and the resulting edge
list was used to configure a network using Cytoscape [34]. The network created
by this step is then evaluated for deficiencies and bias using the following two
point of views. First, from the generated network diagram or visualized network
topology, we detect differences from the case with the complete dataset without
sparsity, based on an intuitive evaluation of its shape. Second, the degree k of
each node is detected, the node count is summed up to create a spectrum for
every 10◦C, and the differences in the distributions among the datasets clarify
sparsity in the datasets, being useful to determine if there is any bias or missing
data. Finally, to make use of such unveiled features, for the training dataset
with sparsity, supervised learning including regressive weighting is performed
based on this degree-distribution analysis, and the effects of the weighting are
evaluated using mean absolute errors (MAEs) in the test dataset.

Fig. 1. Flow chart of data processing in this study.

2.3 Datasets on the Color Coordinate

Three datasets were prepared for the model used in this study; one of them is
our target set that is the training dataset for calibration based on supervised
learning, and the other two sets are for comparative data processing to clarify
how our model with algorithm works.

In the first dataset, points are randomly placed on the xy color coordinates
within the restricted area that can exhibit color data values. On the xy color
coordinates, depending on formulae of R, G, and B variables, the color data
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points should be located inside the triangle whose vertices correspond to R, G,
and B as shown in Fig. 2a. “Random Data” refers to this dataset in this study,
and the total count of data points is 1892.

In the second dataset, the data values covering all combinations of R, G,
and B variables with every equal value step were transformed to the xy color
coordinates, and here this dataset was defined as “RGB All Data” and the total
count of data points is 1728. The profile of data points representing these data
in the color coordinates is shown in Fig. 2b. As explained in Sect. 2.1, when the
dataset of R, G, and B with every equal value step is mapped to the data points
on the xy color coordinates, the corresponding x and y coordinates of these
points are in inequal spatial steps. While the density of data points in the center
of the triangle and in the light blue direction is sufficient, certain gaps exist in
the purple and yellow directions. In addition to these gaps, we find isolated data
points around the red area.

The third dataset is our target in this study; this is referred to as “Training
Data,” and the total count of data points is 1631. We used the entire set of color
data from the color catalog given on more than 1600 sample sheets (PANTONE
FORMULA GUIDE, Pantone LLC, X-rite Inc.), and converted all data into the
xy color coordinates, which we used in our previous study [21]. The distribution
on the xy color coordinates shown in Fig. 2c reveals sparse areas or regions of
missing data in the circled areas.

Thus, the obtained dataset is not necessarily comprehensive, and in many
cases, the dataset contains some elements of bias or missing data. Therefore, we
aim to identify such biases and deficiencies using network diagrams, reinforcing
these incomplete elements by adjusting weight coefficients of the existing data,
and to augment and calibrate the data using supervised learning.

Fig. 2. Distributions of data points on the xy color coordinates for a “Random data”,
b “RGB all data”, and c “Training data”. The circles in blue line indicate sparse areas.

2.4 Data Calibration Methods and Weight Tuning

In Training Data, the values given in the color catalog on sample sheets are super-
visory output signals whereas the counter values are obtained in the measure-
ments of the sample sheets by the color sensor (“color checker” CC-01, Checkers
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Co.) as measured values. Supervised learning with a neural network that is a
simple one-hidden-layer perceptron was performed with R, G, and B in the
measured values as inputs and x and y of the catalog values as outputs. Super-
vised learning was performed using the R package [35]. In our previous study,
weight tuning among the given data points was performed simply by duplicating
the target data; details are described in Ref. [21] and here we briefly review in
the following. We categorized edge regions as areas with relatively small amounts
of data, located on the edge of the given data space, and enhanced accuracy of
their calibration by this simple weighting; we call this method “Edge-region”.
In this study, we propose a method to classify data points with lower densities
based on the degree distribution of a complex network derived from distributed
points in the multi-dimensional space, and to assign weights to these data points.
We define this method as “byDegree”. The difference detected over the cata-
log data, the measured data, and the calibrated data was quantified by MAE,
and the MAE levels are representatives for the evaluation of this network-based
weighting.

3 Calculation Results

3.1 Network Diagrams and Degree Distributions

For each dataset, from data points scattered on the xy color coordinates in
Fig. 2, we perform calculations and derive distributions measured by varying
the distance threshold between 0.01 and 0.05 and a network diagram when the
threshold is set to 0.05, as shown in Figs. 3, 4 and 5. In the case of Random Data,
the network diagram is triangular as shown in Fig. 3a, just like the distribution of
spatial data points on the xy color coordinates. In addition, when the threshold
is changed linearly from 0.01 to 0.05, as shown in Fig. 3b, the degree distribution
is getting close to that of the Poisson’s distribution as the threshold increases.
Although the shape is slightly distorted due to the triangular arrangement of the
points, this is similar to the cases with p = 0.003 − 0.038 in a random graph,
where, in general random graphs, the probability of connecting each node is
defined by p. In our case of this graph in Fig. 3, since the distance between each
node is random, it can be said to be a derivative of a random graph.

On the other hand, in the network diagram of RGB All Data shown in Fig. 4a,
while maintaining the triangle outlook to some extent, we find a group of data
that almost deviated from the triangle pattern and other nodes completely devi-
ated from it. This automatically indicates presences of gaps or isolated data
groups that were visible on the xy color coordinates in Fig. 2b. In the degree
distribution shown in Fig. 4b, we find a clear difference from that in the case of
Random Data; these differences are more outstanding than those observed in the
network diagram. In this dataset, the degree distribution includes multi spectra
with several maxima and minima, and their widths are large with long tails.
This difference from the degree distribution of Random Data indicates that the
distribution of color information in RGB All Data on the xy color coordinates
is a model with completely different characteristics from that of Random Data,
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(a) Geographical network (b) Degree distribution

Fig. 3. Geographical network and degree distribution for random data. The distance
threshold for networking is set to 0.5 on a, and from 0.1 to 0.5 on b.

arising from regularity in equal R, G and B steps in their components. It also
has a different shape from the power-law distribution, leading to the fact that it
is not a general scale-free network.

(a) Geographical network
(b) Degree distribution

Fig. 4. Geographical network and degree distribution for RGB all data. The distance
threshold for networking is set to 0.5 on a, and from 0.1 to 0.5 on b.

Finally, we consider the network diagram of Training Data, as shown in
Fig. 5a. Although a rough footprint of the triangle remains, its shape is signifi-
cantly broken, suggesting the existence of some kinds of data bias or deficiency,
even when compared to the RGB All data. In other words, it is possible to
diagnose and visualize data deficiencies and biases to some extent automatically
and intuitively by comparing topology of network diagrams. Figure 5b shows
the degree distribution of the Training Data. Figure 6a shows comparison of the
degree distribution of the RGB All Data and the Training Data. We note that
the count of data points in Training Data is somewhat higher approximately by
220, whereas the total k of RGB All Data is smaller. Despite of this discrepancy,
from this comparison, it is outstanding that there is a large bias and sparse
areas in Training Data. Furthermore, for RGB All Data, the degree distribu-
tion reaches at maximum around 51 and 60, from which the data points are
decreasing (with some variation) as the k is raised. However, in Training Data,
the number of data points that once decreased increases after 331, suggesting
that the data can be divided into several clusters or spectra in the degree distri-
bution. From this outlook investigation, we tentatively classified the data point
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into three spectra: Spectrum I (from 0 to 130), Spectrum II (from 131 to 330),
and Spectrum III (from 331 to 440). Over these spectra, we search for suitable
calibration methods by weighting (or replicating) Spectrum I, which is a lower
degree spectrum and is estimated to correspond areas of lower data density or
sparse regions.

(a) Geographical network (b) Degree distribution

Fig. 5. Geographical network and degree distribution for training data. The distance
threshold for networking is set to 0.5 on a, and from 0.1 to 0.5 on b.

(a) Comparison of degree distribution
(b) Distribution on xy color coordinates.

Fig. 6. Classification of data using degree-distribution spectra. a Comparison of degree
distributions of RGB all data (red diagonal lined) and training data (blue hatched)
when the threshold is 0.5. b Distribution of datasets on the xy color coordinates. Blue
squares indicate Spectrum I (k = 1 − 130), orange circles indicate Spectrum II (k =
131 − 330), and brown crosses indicate Spectrum III (k = 331 − 440).

3.2 Validity for Supervised Learning: Calibration Using Neural
Networks

After applying our algorithm for supervised learning [21], the estimated effects
on MAE before and after calibration are shown in Fig. 7b, where the varying
spatial scattering of data points on the xy color coordinates is shown in Fig. 7a.
In Fig. 7b, the method proposed in this paper reduces MAE as much as or more
than “Edge Region,” indicating that this method proposed in this study is more
effective on Training Data. The improvement can also be intuitively recognized
from the visualized data-point spatial distributions based on this methods on
the xy color coordinates, with smaller spatial gaps between the catalog and the
calibrated data [21].
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(a) Distribution on the xy color coor-
dinates

(b) Comparison of MAE

Fig. 7. Validation of our method for supervised learning using multidimensional data. a
Profiles of data points on two-dimensional space where orange squares indicate training
data, blue circles indicate test values, and peach crosses indicate calibrated values.
b Comparison of MAE of calibrated values. “BeforeCorrection” indicates the MAE
before correction of data weighting, and “Edge-region,” “byCentroid,” and “byDegree”
indicate the cases using edge region, R package (described in discussion), and degree
distribution, respectively.

4 Discussion

As a comparative experiment using a more complicated method, we performed
clustering of data points using the R package [35], and weights for supervised
learning were set based on this clustering. Among the pre-installed methods,
Centroid was used to optimize the clustering, and the dendrogram was used as
the basis for dividing the clusters into several clumps. We assumed the cluster
with the least number of data to be around the sparse area, and we attempted
to calibrate them by assigning weights to them. This method is called “byCen-
troid” and the calibration results are shown in Fig. 7a. In this “byCentroid”
experiment, we used the intuitive and easy-to-understand centroid method for
creating clusters, but other clustering methods might be better, depending on
the model, although it is sufficient for our aim here. Performance in comparing
the learning results for each method is shown in Fig. 7b. All of the methods
exhibit improvements over the results before weighting, and the best one for
MAE is obtained with the learning based on “byDegree”, proposed here.

Although sufficient results were obtained even with a low magnification fac-
tor in this model, it is necessary to select appropriate conditions based on the
obtained results, such as a steeper gradient or a more detailed segmentation
method for a more complicated dataset. In this case, the spectra were manu-
ally sorted by surveying quantitative data balancing, but it is easily possible to
perform it automatically by deriving an approximate curve of the degree dis-
tribution and applying spectrum deconvolution, considering the maximum and
minimum points discriminated.

Finally, we show results on entropy analysis, which represents macroscopic
features of datasets visualized and configured in complex networks. When we
assume hypothetical information flow from a given node s in a complex network
which is the ensemble of all-node group S is induced into linked nodes t belonging
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to the group T , like Figs. 3a, 4a and 5a, accumulated effects of its flow probability
p(t|s) lead to the conditional entropy H(T |S) [36], given as:

H(T |S) =
∑

s∈S

p(s)H(T |S = s) = −
∑

s∈S

p(s)
∑

t∈T

p(t|s) log2 p(t|s), (1)

where p(s) is the existence probability at the node s. Assuming equal p(s) over S
and equal p(t|s) at the node s over T , the calculated results of H(T |S) are: 6.10
for Random Data, 6.17 for RGB All Data, and 6.88 for Training Data. These
results suggest that, in comparison with cases of balanced node density, the
network of Training Data takes larger conditional entropy, which indicates wider
choices for linkages between nodes in hypothetical information flow of Training
Data. This seems to be contradictory to occurrences of sparsity, in which such
flow mobilities through linkages are somewhat limited. However, in our case of
Training Data, it is not always valid since, around sparse areas, some of nodes
are rather condensed, as indicated in Fig. 6. Furthermore, this high entropy also
points out existences of areas with high density of data points, which is located in
the central aggregation in Fig. 2c. Thus, entropy estimation can support another
insight of the algorithm proposed here and reinforce understandings in terms of
complex networks.

5 Conclusion

In this study, we successfully detected sparsity in given data points using network
diagrams constructed from their multidimensional locations and their degree dis-
tributions. We also succeeded in improving the accuracy and precision of super-
vised learning by applying regressive weights to the spectrum group in the degree
distributions. In a comparative experiment based on a typical clustering method,
our result for supervised learning shows a better accuracy, which indicates that
the simpler method proposed in this study gave better results. By utilizing this
complex network technique, it is possible to obtain more accurate and precise
analysis results in supervised-leaning model even if the acquired multidimen-
sional data contain biases and deficiencies, which will lead to a wider range of
utilization of multidimensional data.
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