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Abstract. Falsification is the basis for testing existing hypotheses, and
a great danger is posed when results incorrectly reject our prior notions
(false positives). Though nonparametric and nonlinear exploratory meth-
ods of uncovering coupling provide a flexible framework to study net-
work configurations and discover causal graphs, multiple comparisons
analyses make false positives more likely, exacerbating the need for
their control. We aim to robustify the Gaussian Processes Convergent
Cross-Mapping (GP-CCM) method through Variational Bayesian Gaus-
sian Process modeling (VGP-CCM). We alleviate computational costs
of integrating with conditional hyperparameter distributions through
mean field approximations. This approximation model, in conjunction
with permutation sampling of the null distribution, permits significance
statistics that are more robust than permutation sampling with point
hyperparameters. Simulated unidirectional Lorenz-Rossler systems as
well as mechanistic models of neurovascular systems are used to eval-
uate the method. The results demonstrate that the proposed method
yields improved specificity, showing promise to combat false positives.
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1 Introduction

Coupling measures derived from data allow discovery of system characteristics
and information flow when the experiment does not permit intervention in the
physical process. Traditionally, pairwise coupling metric such as mutual infor-
mation or correlation are used for assessing coupling between systems [1], such
as for assessing functional connectivity in the brain [2]. Dynamical system meth-
ods have been popular for uncovering coupling, such as Granger causality and
its nonparametric extension, transfer entropy [3–5]. However, in their standard
form, they assess linear relationships through multivariate autoregression models
[4], though extensions have been made for assessing nonlinear coupling through
kernel methods [6]. Nonetheless, such methods have been shown to report spuri-
ous detections of causality, i.e. false positives [7,8]. Straining out the possibilities
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of false positive is imperative in hypothesis driven analysis to avoid improper con-
clusions based on a priori expectations [9]—in causal analysis, the prior notion
is non causal relationship between two variables.

Convergent cross-mapping was introduced to account for cases when syner-
gistic nonlinear coupling may emerge from complex dynamical systems [10]. This
phenomenon is possible to be exploited as, holistically, the history of state space
is assessed (nonparametrically) rather than being purely an analysis of the lag
values’ predictive power as with Granger causality. Formally, convergent cross-
mapping (CCM) suggests that, in deterministic systems, there should be high
correlation in predicting a cross-mapped system by taking a state from a state
space reconstruction (as in [11]) of a putative variable to the state space recon-
struction of a caused variable [10]. Subsequent ameliorations introduced Gaus-
sian processes with the notion that the reconstructed state space has uncertainty,
thus a prior Gaussian process mean and covariance functions were applied, either
as in [12] to optimize the free parameters for state space construction, in [13] to
analyze residuals in cross-mapping, or to assess a probability ratio as in [14]. We
shall refer to the latter method in our paper.

Gaussian process models are characterized by mean and covariance (often
referred to as the kernel) functions [15]. Though they provide nonparametric
inference models for a posteriori analysis of random processes conditioned on
observed data, they are sensitive to the hyperparameters of the kernel func-
tion that describes the covariance between observations. Point estimates of
hyperparameters are optimized by maximum marginal likelihood of the observa-
tions. However, these point estimates may provide degenerate distributions when
generating null distributions derived from permutation sampling for hypothe-
sis testing as empirically seen in [14] and other contexts of Bayesian model-
ing [16]. We thus propose placing prior distributions on the hyperparameters
and subsequently obtain an approximate posterior distribution conditioned on
observations (who a priori are zero mean Gaussian processes) using variational
Bayesian methods, hereafter referred to as Variational Gaussian Process Conver-
gent Cross-Mapping (VGP-CCM). This method avoids expensive Markov Chain
Monte Carlo integration methods for conditional distributions [17]. With the
approximate posterior we integrate out hyperparameters effects from the cou-
pling statistics and derive nondegenrate null distributions for hypothesis testing.
We test this amelioration on unidirectional coupled Lorenz-Rossler systems and
neurovascular systems.

2 Materials and Methods

2.1 Cross Mapping

A central tenet of nonlinear analysis in state space using a single time series,
which we refer to in lower case letters such as x, hinges on state space recon-
struction, where a time series of a variable in a system is viewed as a projection
of system’s topology to a single dimension (focusing on reals, RN×1 where N
is number of time points), and where using delay-coordinate embedding maps
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(φ(xi) = {xi, xi−τ , xi−2τ , ..., xi−mτ} for i in 1..N − τm, where m is an “embed-
ding dimension” and τ delay time) of said time series can reconstruct a state
space with isomorphisms to the generating system’s structure in terms of dif-
ferential geometry [11,18]. Cross-mapping exploits this theoretical feature of
reconstructed state spaces and the nature of time series being low dimension
projections of systems, such that a state space reconstructed by a putative vari-
able (φ(x)) should be independent of a caused variable (φ(y), implying its recon-
structed state space contains no dynamical information of the caused variable
leading to the independence of predictions of a caused variable by a putative
variable’s state. On the other hand, a prediction of a putative variable from a
caused variable’s state space should not be independent of the putative variable
as its reconstructed geometry needs to have topology consistent with that of
the putative variable to predict itself. Convergent cross-mapping in its original
form approaches this problem as a regression task, particularly as performed by
simplex regression [10,19].

2.2 Gaussian Process Convergent Cross Mapping

Introduced in [14], GP-CCM utilizes probability ratio to determine the most
likely coupling direction based on spatial analysis in state space through incor-
porating a delay-coordinate map into the kernel function that defines the a priori
covariance function of the Gaussian process, i.e. Cov(xi, xj) = K(φ(xi), φ(xj)).
In other words, rather than assess predictive powers through regression analy-
sis, GP-CCM proposed a probabilistic approach that relates the cross-mapping
power as a multivariate probability distribution. Let X and Y be stochastic pro-
cesses that generate the observed time series of x and y respectively. Probability
functions for X and Y are derived by posterior analysis from conditioning a joint
Gaussian Processes by the observed time series y and x respectively. Consider X̃
and Ỹ the null distributions for uncoupled processes (e.g. through permutation
sampling). Then, the null GP-CCM probability ratio test would be:

κ̃k(X,Y ) =
P (Ỹ |X; θx)
P (X̃|Y ; θy)

(1)

θx or θy are considered nonrandom point values, κ̃ is a function of the null
distribution, and k is the permutation sample iteration. For sake of conciseness,
we shall abuse the notation, e.g. P (X|Y ), for a conditioned distribution, e.g.
P (X|Y = y), for the rest of this paper.

Information Theoretic Results In [14], the maximum a posteriori (MAP)
of the distributions P (Ỹ |X; θx) and P (X̃|Y ; θy) were used to provide scalar
results. Given the form of a normal distribution with dimensionality d, mean μ
and covariance Σ:

fx(X) = ((2π)d|Σ|)− 1
2 exp((X − μ)Σ−1(X − μ)�) (2)
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The MAP would be where X = μ, making the exponential an identity matrix,
thus:

MAP (N (μ,Σ)) = ((2π)d|Σ|)− 1
2 (3)

Which we can see, from taking the negative logarithm, is equivalent to the
differential entropy of a Gaussian distribution with an offset of d

2 :

H(N (μ,Σ)) =
d

2
+

d

2
log(2π) +

1
2
log(|Σ|)

= −log(MAP (N (μ,Σ))) +
d

2
(4)

Let Kk(X̃, Ỹ ) = log( MAP (P (Ỹ |X;θx)

MAP (P (X̃)|Y ;θy)
), we then obtain:

Kk(X̃, Ỹ ) = −H(Ỹ |X; θx) + H(X̃|Y ; θy) = log

( |ΣX̃|Y |
|ΣỸ |X |

)
(5)

An interpretation of our probability ratio test in information theory can be
the difference of the amount of information X provides given we were informed
of Y a priori vs how much information Y provides given we were informed of
X a priori. Caused variables should provide minimal information to the causing
variable’s state space, thus H(X|Y ) < H(Y |X) if X drives Y.

Standardizing Results and Null Distributions N samples of Kk(X,Y ) can
be generated from N permutations. The values Kk(X,Y ) are normalized by the
number of samples in the time series and then passed to a hyperbolic tangent
function in order to standardize the values between (-1,1). From the samples of
Kk(X,Y ), an empirical cumulative distribution is derived and a 1 sided test is
performed to see whether the probability of the causal statistic is less than an α
in the null distribution. α is often chosen to be 0.05. Concretely, to test whether
X GP-CCM causes Y , the following is calculated:

p =

∑N
j=1 U(K(X,Y ) − Kj(X̃, Ỹ ))

N
(6)

where U is the Heaviside function which is only 1 when the measured statistic
for the actual observations K(X,Y ) is greater than the permutation samples
K(X̃,Ỹ ), otherwise 0.

2.3 Variational Gaussian Process Convergent Cross Mapping

Variational Approximation of the Hyperparameter Distributions The
proposed method, Variational Gaussian Process Convergent Cross-Mapping
(VGP-CCM), proposes to treat hyperparameters as random effects to be inte-
grated out of the model, via Monte Carlo integration, exploiting a proposed a
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posteriori distribution of hyperparameters Q(θx|X) that approximate the true a
posteriori distribution P (θx|X) in order to exploit independence structures that
make integration computational feasible rather than resorting to more expensive
methods such as Gibbs conditional sampling of the true posteriori [20].

To elaborate, hyperparameters are considered point estimates with no uncer-
tainty in eq. 1. However, studies have shown that point estimates may not be
stable in a variational sense and can correspond to models that overfit [21].
Calculus of variations provides a method to discover models that exhibit mini-
mal ”action” from perturbations in their function. We utilize this framework to
discover functions of our hyperparameters from which we can draw samples to
integrate out the effects of the hyperparameters in the model subsequently. We
modify eq. 1 accordingly:

κ̃ =
∫

P (Ỹ |θx)P (θx|X)dθx∫
P (X̃|θy)P (θy|Y )dθy

=
P (Ỹ |X)
P (X̃|Y )

(7)

The hyperparameter posterior distribution tend to be intractable to compute
as they depend on the marginal distributions of P (X) or P (Y ) (model evidence)
respectively:

P (θx|X) =
P (X|θx)P (θx)∫
P (X|θx)p(θx)dθx

(8)

We, instead, consider a simpler model Q(θx) that approximates the poste-
rior P (θx|X) based on mean field approximations, eliminating the dependency
of conditioning samples on X while minimizing the statistical distance in the
Kullback-Leibler sense [22] from the true posterior distribution which is condi-
tioned on X. In other words, we want to substitute a simple distribution Q(θx)
with independence structures for P (θx|X) in eq. (7) to permit computationally
efficient Monte Carlo integration:

κ̃ ≈
∫

P (Ỹ |θx)Q(θx)dθx∫
P (X̃|θy)Q(θy)dθy

(9)

The best approximation Q can be derived by maximizing the lower bound for
the evidence (ELBO) provided the approximate posterior via the KL divergence.

KL(Q||P ) = Eθx∼Q(log(
Q(θx)

P (θx|X)
)) = Eθx∼Q(log(

Q(θx)P (X)
P (X|θx)P (θx)

)

= log(P (X)) + KL(Q(θq)||P (θq)) − Eθx∼Q(P (X|θx)) (10)
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As the KL divergence is strictly greater than 0, its minimization thereby is
also a maximization of the ELBO. This can be seen by multiplying both sides
by -1 and taking the evidence (log(P (X))) and moving it to the left hand side:

ELBO = Eθx∼Q(log(P (X|θx))) − KL(Q(θx)||P (θx))
log(P (X)) − KL(Q||P ) = ELBO

log(P (X)) ≥ ELBO (11)

Thus our objective to obtain the optimal hyperparameter distributions Q(θx)
is to maximize the above ELBO. The next question becomes how to choose the
form of our distribution Q(θx).

Approximate Posterior Form The form of the posterior distribution is the
art of the practitioner based on their domain knowledge. For the sake of this
paper, we choose its form to follow a mean-field approximation that factorizes
as Q(θ) =

∏K
k=1 Q(θk) for K hyperparameters. θ comprises the hyperparameters

of an exponential squared distance kernel with automatic relevance detection σ
and l [23], and the inducing pseudopoints for a sparse kernel z [24]. In order
to maintain strictly positive parameters for the kernel parameters as well as
having a distribution from which we can reparameterize to draw samples to
automatically compute gradients [25] and in which we can derive easily the KL-
divergence, we choose log normal distributions as their priors. The distribution
for the inducing points, instead follows a normal distribution. For the KL diver-
gences in the ELBO, analytic expressions can be derived. It happens that log
normal logN (μ, σ) and normal distribution N (μ, σ) [25] share the same expres-
sion for KL divergences.

Note that if the prior P(X) were chosen independent point distributions, i.e.
P (X) = δ(X −μp), the optimal Q(X) distribution would have a collapsed mode
on μp, arriving at the original formulation of GP-CCM in eq. (1) in the case
that the prior μp were chosen as the maximum marginal likelihood solution to
P (X; θx).

A priori the hyperparameters are ansatz from the data. We standardize the
data to be zero mean unit variance, thus the covariance amplitude σ has param-
eters μσ = exp(1) and σσ = 1. Length factor l of the kernel has μl = exp(1),
σl = 1. The inducing points are a priori mean equal to a random selection of a
subset of the observations with σz = 1. Calculus of variations could be used to
derive a coordinate ascent method of obtaining the optimal distribution Q [26].
We, instead, choose to maximize the ELBO using stochastic gradient ascent as
in [25] and automatic differentiation in PyTorch [27] to avoid manually deriving
the update equations. The expectation Eθx∼Q(P (X|θx)) is approximated by 10
draws of θx from Q(θx) [25]. Furthermore, gradient clipping was used to min-
imize the effect of the stochastic gradient’s variance [28]. The final result from
VGP-CCM comes from applying eq. (5) to the distributions in eq. (7). Code is
publicly available in Python at the author’s Github profile.
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2.4 Synthetic Data

Unidirectionally Coupled Lorenz and Rossler We simulate Rossler (Y)
and Lorenz (X) systems with nonlinear unidirectionally coupling defined by
either εx or εy and diffusion dynamics defined by a 6d Wiener process W. The
joint system has the following form:

dX0 = (σ(X1 − X0) + εyX0(Y0 − 1))dt)dt + σL(t)dWX1

dX1 = (X0(ρ − X2) − X1)dt + σL(t)dWX2

dX2 = (X0X1 − βX2)dt + σL(t)dWX3

dY0 = (−ω2Y1 − Y2 + εxY0(X0 − 1))dt + σR(t)dWY 1 (12)
dY1 = (ω2Y0 + aY1)dt + σR(t)dWY 2

dY2 = (b + Y2(Y 1 − c))dt + σR(t)dWY 3

The coupling values were chosen as ε = {εx, εy} = {(0, 0), (2, 0), (4, 0),
(0, 0.2), (0, 0.5)}. Thirty realizations of the dynamical system was drawn, where
subsequent permutation analysis was performed to obtain a p-value. The values
of the parameters of the system are used in order to induce deterministic chaos
as seen in Table. 1.

Table 1. Parameters of the Lorenz-Rossler systems.

Lorenz σL dt σ β ρ Rossler σR dt ω1 ω2 a b c

10−5 0.1 10 8
3

28 0.1 0.1 1.015 0.918 0.15 0.2 10

Unidirectionally Coupled Neurovascular Responses The previous sys-
tem, as mentioned earlier, exhibit highly oscillatory behaviors specified by its
chaotic nature where nearby states may exhibit drastically divergent trajecto-
ries. We also simulate signals which may not be as drastically oscillatory, though
may be emergent of nonlinear phenomenon as seen in neurovascular signals as
observed in neuroscientific studies that exploit hemodynamics like functional
magnetic resonance imaging (fMRI) [29]. From [29], stimuli generating neurovas-
cular signal (x) is approximated by a bilinear state equation

ẋ = Ax +
m∑

j=1

ujB
jx + Cu (13)

where the A matrix describes the autonomous undriven dynamics of the system
(here treated as a diagonal matrix with values −1), u are stimuli of a condition
(where the element uj is 0 when jth event is not occurring, and 1 when the jth
event is occurring), where Bj describes the interconnectivity between voxels of



384 A. Ghouse and G. Valenza

interest (i.e.
[
ρ11 ρ12
0 ρ22

]
for voxel 1 causing voxel 2, and each ρij is an i.i.d. random

variable ρij ∼ N (0, 1)). The B matrices do not change in time, rather they are
realized for each simulated time course. C describes which voxels the stimulus
condition interacts with (in this paper, simulated as a diagonal matrix). In our
simulations, we have two conditions u1, u2 and u3. u1 and u2 are events that
occur 10 time each over a period of 1000 s; each event lasts 6 s on intervals of
1 min. u1 invokes voxel 1 to voxel 2 interactions via a random variable, ρ112 ∼
N (0, 1) while u2 does not invoke interaction between the voxels, i.e. ρ212 = 0. u3

is a binomial point process with p = 0.3 that describes random neural activity
that elicit no functional interconnectivity between voxels 1 and 2, i.e. ρ312 = 0.
This serves as background noise where the activities are occurring on top of.

After the neural state equations, regional blood flow f , blood volume v, and
deoxyhemoglobin concentration q is simulated using the proposed parameters
and mechanistic equations in [29]. The nonlinear response of deoxyhemoglobin,
q, is the neurovascular variable observed in fMRI. Its emergence from nonlinear
equations provides a complex, nonlinearly saturating signal whose causality may
be affected by parameters of regional properties that make traditional causal
methods hard to apply and begs dynamical systems characterizations [30], and
whose characterizations is vital in connectivity analysis in psychophysiological
data. We simulate q with observational white noise added to corrupt the SNR
to 5dB. Figure 1 demonstrates an exemplary simulation of these interactions.

(a) Deoxyhemoglobin time courses (b) Event time courses

Fig. 1. Exemplary Voxel time course without any SNR observation noise perturba-
tions. a Demonstrates the deoxyhemoglobin signals that are triggered by the event
stimuli shown in b.

2.5 Statistical Analysis

For VGP-CCM, we generate the null distribution of the coupling statistic using
Eq. (2), substituting P (θx|X) and P (θy|Y ) with our approximate distributions
Q(θx) and Q(θy) respectively. Ỹ and X̃ are sampled from 30 permutations of
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the original time series X and Y respectively. GP-CCM, on the other hand, has
its null distribution generated from eq. (1) with its hyperparameters obtained
as the maximum a posteriori point estimate from Q obtained in Eq. (5). An
α = 0.05 is used as the threshold for significance in all tests when applied to eq.
(6). Given the Rossler and Lorenz equations each have 3 variables, we perform
9 comparisons (Xi → Y1,Xi → Y2,Xi → Y3 for i in 1...3). Thus, we have
270 tests for each coupling value. We then calculate the specificity, a measure
of proneness to type I errors, as N correctly accepted H0

N correctly accepted H0+N incorrectly rejected H0
[31].

This same procedure is applied to the neurovascular system, except 100 time
series are realized, thus 100 tests for coupling results are performed.

Table 2. Table displaying the number of rejected Ho for each coupling values and each
directionality test for the chaotic systems (Rossler to Lorenz equations (R→L), Lorenz
to Rossler equations (L→ R)) or the neurovascular system (Voxel 1 to Voxel 2 (V1 → V2)
or Voxel 2 to Voxel 1 (V2 → V1). First 2 columns are results obtained from results
either using point estimates of the hyperparameters (GP-CCM), while the last two
columns are results using approximate posterior distributions over hyperparameters
(VGP-CCM).

GP-CCM VGP-CCM

Chaotic system L→R R→L L→R R→L

ε = (0.00, 0.00) 172 94 0 3

ε = (0.00, 0.20) 203 62 0 62

ε = (0.00, 0.50) 22 248 1 158

ε = (2.00, 0.00) 270 0 207 0

ε = (4.00, 0.00) 270 0 210 0

Neurovascular system V1 → V2 V2 → V1 V1 → V2 V2 → V1

B =

[
ρ11 ρ12

0 ρ22

]
75 25 60 6

3 Results

Table 2 displays the set of significance rates for various couplings values for
the unidirectionally coupled Lorenz-Rossler systems and for the neurovascular
system. For zero coupling, VGP-CCM has only rejects the null hypothesis in
3 out of 270 realizations, whereas GP-CCM rejects the null hypothesis all but
4 of its test. Furthermore, VGP-CCM is more conservative than GP-CCM in
dictating whether to make a claim of significant coupling at low coupling values,
thus VGP-CCM very rarely made a false directionality claim. For the case of
detecting Rossler driving Lorenz coupling, VGP-CCM reports a specificity of
99.6% while GP-CCM reports a specificity of 58.3%. In the direction from Lorenz
driving Rossler, GP-CCM and VGP-CCM both report a specificity of 100%. For
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correctly rejecting the hypothesis in either direction, VGP-CCM has a specificity
of 99.8% compared to GP-CCM’s 79.1%. Similarly for the neurovascular systems,
the proposed variational VGP-CCM provides more specificity at 94% compared
to GP-CCM’s 75%.

Figure 2 displays cumulative distributions for simulating a Lorenz system of
equations driving Rossler equations for coupling values ε = {(0, 0)} between
variables X0 and Y0. The cumulative distribution reveals a robust null distri-
bution when using the approximate posterior compared to using fixed values
for the hyperparameters and performing permutations where results from only
permuting samples results in a degenerate distribution with a collapsed mode as
seen with zero coupling between the systems.

Fig. 2. Example null distributions and p values for zero coupling seen from the Lorenz
system to the Rossler system using the original GP-CCM method (left) and the pro-
posed variational GP-CCM method (right). The value for nonpermuted maximum a
posteriori time series results is shown in red. It can be seen that VGP-CCM properly
provides non significant results while GP-CCM does not.

4 Discussion

We propose the VGP-CCM framework, which extends the GP-CCM to use a
variational approximation to the posterior distribution of hyperparameters. The
presented study aimed to use a variational approximation to the posterior dis-
tribution of hyperparameters to develop a more parsimonious distribution for
testing a null uncoupled hypothesis for GP-CCM. Tests were performed on sim-
ulated unidirectionally coupled Lorenz-Rossler systems to control the values of
coupling between the variables of the system of equations to determine whether
GP-CCM and VGP-CCM suffered from false positives in the significance tests
and at what coupling could either make significance statements. Neurovascular
systems were also simulated to illustrate VGP-CCM’s efficacy at uncovering cou-
pling in more slowly oscillating nonlinear signals compared to the chaotic maps
studied in the Lorenz-Rossler system.
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From the results over 30 realizations, as seen in Table 2, VGP-CCM has
much improved results compared to GP-CCM, with nearly 20% greater speci-
ficity than GP-CCM. Furthermore, from the simulations of the neurovascular
system, we demonstrated that the proposed variational extension continues to
provide further robustness even for slow oscillating signals as observed in deoxy-
hemoglobin signals, again with a similar substantial increase in specificity. This
results on the neurovascular system was also impressive as it inferred the proper
directionality even when there was intermittent forcing as described in Sect. 2.4.
As mentioned in the introduction, indeed the degenerate nature of the null dis-
tribution, as seen in Fig 2 with GP-CCM allowed too much liberty to make
claims of significance even in the wrong direction. VGP-CCM proves promising
in the case that even in low coupling it will not make a claim to the wrong
direction, giving researchers confidence in the results that if the raw statistic is
insignificant but with high value, it may be a matter of needing to collect more
realizations, as seen in the low couplings values in Table 2.

The prior distribution used in this study were indeed uninformative naively,
though they allowed ease of computations, reparameterizations of means and
variations with unit Gaussian random sample draws for automatic differenti-
ation, and provided domain constraints. We suggest in studies where domain
knowledge of how samples should a priori correlate is available, such as a ker-
nel derived from mechanistic dynamic equations—e.g. time constants in linear
ordinary differential equations as performed in dynamic causal modeling [32] or
temperature in thermodynamic heat systems [33]–could be used. Otherwise, a
separate dataset with labels can be used to infer optimal distributions through
cross-validations. Even further directions may consider generative models for the
posterior distribution conditioned on data, such as neural networks [17,23].

From this study, we can conclude that integrating out the hyperparame-
ters from the GP-CCM probability ratio may result in a more parsimonious
statistic giving robust null distributions for hypothesis testings. The computa-
tional aspects are lessened by avoiding Markov Chain Monte Carlo integration
on the true conditional a posteriori distribution, instead opting for variational
approximations of the hyperparameter distribution with independent mean field
structures. The robustness was verified on simulated data from unidirectional
Lorenz-Rossler systems, where VGP-CCM achieved much higher specificity than
GP-CCM. Further studies will look into applying this methodology on real world
data such as neurophysiological systems.
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33. Berline, N., Getzler, E., Michèle, V.: Heat Kernels and Dirac Operators. Springer
(1996)

34. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes,
4th edn. McGraw Hill, Boston (2002)


	Inferring Parsimonious Coupling Statistics in Nonlinear Dynamics with Variational Gaussian Processes
	1 Introduction
	2 Materials and Methods
	2.1 Cross Mapping
	2.2 Gaussian Process Convergent Cross Mapping
	2.3 Variational Gaussian Process Convergent Cross Mapping
	2.4 Synthetic Data
	2.5 Statistical Analysis

	3 Results
	4 Discussion
	References




