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Abstract. Capturing the rules that govern a particular system can be
useful in any field where the causes of its effects are unknown. Indeed,
discovering the causes that produced a particular effect is extremely use-
ful in fields such as biology. In this paper, a reverse engineering method
based on machine learning is proposed. This method was used to repli-
cate real world behaviour and use this knowledge to generate the relative
Gene Regulatory Network. The datasets from the DREAM4 Challenge
were used to validate this method.
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1 Introduction

Most real-world systems can be represented by a graph with a nontrivial topol-
ogy, called a complex network, where the nodes represent real-world entities (or
variables) and the arcs represent the interactions between the entities them-
selves [15]. The goal is to better understand the functioning of the real system
by studying the interactions between the entities involved and the properties
of the network [12]. To build the complex network associated with a real-world
system we need to carefully reverse engineering it. In other words, we have to
build the complex network representing the real system by measuring only the
outputs of the system over a period of time [22].

Unlike forward problems, where the effects can be accurately predicted by
the system model given one or more causes as inputs, inverse problems are the
opposite [20]. Here, the mathematical formulation of the problem is not known
and therefore it is not possible to assert anything about it [5]. The only known
information come from the observations of the system. Explaining the actual
causes of a particular phenomenon, however, can be an extremely difficult, if not
impossible, because small differences in effects can lead to large differences in
causes, or the same effect can result from more than one cause [21]. In reality,
estimating the parameters of the model is a difficult and time-consuming pro-
cess due also to the large dimensional space, although some efficient algorithms
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were proposed [6,7]. Several approaches can be found in literature to solve such
inverse problems. For example, in [9] different mathematical approaches to solve
this problem are explained. However, as stated in [4], mathematical approaches
may not be sufficient to find a solution in reasonable time with high accuracy.
Therefore, in recent years, many studies have been focused on the application
of deep learning techniques to inverse problems, e.g., in image processing [14],
astronomy [8], physics [16], biology [1], civil engineering [3], and so on.

In this paper, we present a novel approach based on machine learning tech-
niques that has two goals: create an artificial environment capable of replicating
the behaviour of a real environment based solely on observations of the variables
of interest, and generate a complex network that reveals the relationships among
variables in the system.

One of the most interesting areas of computer science where the application
of reverse engineering is on the rise, is in the field of genetics [17]. Micro-array
technology allows researchers to examine the presence of multiple genes in a
DNA sample and their levels of expression [11]. Using our method, we were
able to firstly artificially reproduce this behaviour and secondly create a genetic
regulatory network showing the iterations between genes.

In Sect. 2 we will discuss modelling and creating an artificial environment
that can replicate the real environment. In Sect. 3, we will discuss a methodology
that uses the artificial environment to facilitate the creation of a gene regulatory
network. In Sect. 4, we present the results obtained.

2 Modeling

To solve the inverse problem the goal we need to find the best model m such
that

d = G(m) (1)

where G(·) is an operator describing the explicit relationship between the
observed data d and the model parameters [2]. In this section, we present a
novel approach based on machine learning techniques to determine the best
model m that can replicate the behaviour of a real environment when only the
observations are available.

2.1 Environment

An environment basically consists of several elements (such as entities or vari-
ables) that interact with each other according to well-defined rules established
during the design process. The two main components of an environment are: the
agents and the rules that govern their interactions. Each agent is responsible
for predicting the future value of a variable based on the current state of the
environment. The interaction rules between the agents, on the other hand, define
the mechanism by which the state of the environment evolves. Figure 1 depicts
the environment scheme under consideration.
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Fig. 1. Environment architecture

Given an environment with k variables, the state of the environment at time
t, denoted by s(t), is defined as a k-vector in which the generic element s

(t)
i is

the value of the i-th variable at time t. The subsequent state of the environment
s(t+1) is computed as follows:

s(t+1) = f
(
s(t)

)
(2)

It can be seen from figure 1 that each agent in the environment is responsible
for predicting the value of the variable to which it refers. Accordingly, there are
as many agents as there are variables in the environment, so the equation 2 can
also be written as follows.

s(t+1) = f
(
s(t)

)
=

[
f1

(
s(t)

)
, f2

(
s(t)

)
, . . . , fk

(
s(t)

)]
(3)

where fi denotes the agent function and represents the i-th component of the
function f .

2.2 Agent

An agent can be formally described as a function fi : Sk → S that predicts the
i-th component of the state of the environment at time t+ 1, given its previous
state. We use two different types of prediction scheme: simple agent prediction
and delta agent prediction.

Fig. 2. Agent prediction scheme
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Simple Agent Prediction In the first prediction scheme (Fig. 2a), an agent
directly estimates the future value of the variable according to Eq. 4.

s
(t+1)
i = fi

(
s
(t)
1 , s

(t)
2 , . . . , s

(t)
k

)
(4)

Agent Delta Prediction On the other hand, Fig. 2b illustrates the second agent
prediction scheme. In this case, an agent predicts by how much the current value
should be increased or decreased. In other words, it predicts the offset between
the value of the i-th component of the state at time t + 1 and its value at time
t. The output of the agent is calculated as follows.

s
(t+1)
i = s

(t)
i + Δs

(t+1)
i = s

(t)
i + fi

(
s
(t)
1 , s

(t)
2 , . . . , s

(t)
k

)
(5)

Each agent in the environment can be considered as a black-box function
with its own architecture and configuration. The basic model for each agent is
shown in Fig. 3.

Fig. 3. The basic model of an agent.

The Predictor is the core of the agent and it is responsible for forecasting the
value of a variable given a specific value as input. A predictor can be anything
from a neural network to a regression model to a decision tree. Different types of
predictors were tested to explore different possible configurations of the artificial
environment. In Table 1 we report the available configurations for each predictor.

Table 1. Agent configurations for each type of predictor. 1) Predictor specifies the type
of predictor used to predict the variable; 2) Machine learning tasks defines whether the
predictor is a classifier and returns a class value or whether it is a regressor and predicts
a real value; 3) Agent prediction scheme defines how the agent’s output is composed;
4) Training parameters are used to train the predictor.

Predictor name Machine learning task Agent prediction scheme Training parameters

Fully Connected Neural Network (FCNN) Classification (L)/regression Simple/delta prediction Epochs, mini batch size, learning rate
Reccurent Neural Network (RNN-LSTM) Classification (L)/regression Simple/delta prediction Epochs, mini batch size, learning rate
Convolutional Neural Network (CNN) Regression Simple/delta prediction Epochs, mini batch size, learning rate
Simple Linear Regression (SLR) Regression Simple/delta prediction

Since an environment may contain different types of agents, it is important to
use additional layers to ensure agent interoperability. Therefore two additional
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blocks have to be added before and after the predictor: encoder and decoder. The
encoder’s role is to convert the agent’s input into a format that the predictor can
understand. The decoder’s role, on the other hand, is to convert the predictor’s
output into a format that is compatible with the architecture of the environment
(s(t+1)

i ).

3 Methodology

In a gene regulatory network, each gene can be activated or inhibited depending
upon the expression level of another gene, called regulator or regulatory gene.
To find the regulatory genes of each gene, we used a simple principle: if vary-
ing the expression level of gene Gi causes a significant change in the expression
level of gene Gj , then Gi might be a good candidate as a regulator of gene Gj

[10]. However, this approach can only be used if the mathematical formulation
that determines the relationships between gene expression levels is known. Sev-
eral methods for constructing a gene inference model have been proposed in
the literature. For instance, continuous models such as the ordinary differential
equations ODE, which are based on estimates of the inference level over time.
Although the ODE approach provides detailed information about the dynamics
of gene expression, it requires high quality data to build an accurate model [13].
In this section, we first look at how the model described above can be used to
predict the expression level of genes, and then take advantage of the artificial
environment to generate GRNs.

3.1 Gene Expression Level Prediction

We create an artificial environment by using: the observations (X) represented
by a k × n matrix, where k is the number of variables and n is the number
of observations over time; and the environment’s configuration that consists of
a collection of k tuples, each associated with an agent and containing the ele-
ments listed in Table 1, such as, the predictor, ML Task, prediction scheme, and
training parameters. Algorithm 1 shows the procedure for creating an artificial
environment and the evaluation of the environment thus created.

Since the model of the i-th agent depends on its associated configuration, each
agent must be trained on its own training set consisting of pairs (X,Yi), where
Yi is a n vector and contains the values of the i-th variable shifted forward by
one time unit. The artificial environment E is composed by all the agents created
according to the architecture described in Sect. 2.1.

Ideally, an optimal artificial environment without any perturbation and with
identical initial conditions should be able to produce the same response as a
real environment. Figure 4 depicts the artificial environment’s response over a
time interval equal to twice the observation time. As we can see, the response
of the artificial environment before 1000 time units is similar to the observation
in the real environment. On the other hand, after 1000 time units, the artificial
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Algorithm 1: Environment-creation algorithm
1 A ← ∅ ; /* collection of agents */
2 for i = 1, 2, . . . , k do
3 Yi = createTargetData (X,Configi) ;
4 Ai = createAgent (X,Yi,Configi) ;
5 A = A ∪ Ai

6 end
7 E = makeEnvironment (A) ;
8 X̂ = simulation(E,0,n) ; /* the simulation starts at time 0 and ends

after n time steps, the resulting matrix is a k × n matrix and
contains all predicted values for each variable for each time point.
*/

9 Q% = evaluation(X, X̂) ; /* using equation 6 */

Fig. 4. Prediction of gene expression levels of ten genes over time. The red line rep-
resents the actual observations, while the blue line shows the predicted values over
time.

environment uses its knowledge to forecast the inference level of the genes for
the subsequent time points.

To validate the effectiveness of the prediction, the cosine similarity measure is
used. Given two matrices, X ∈ R

k×n and X̂ ∈ R
k×n, representing, respectively,

the actual and predicted data and the generic element xij , corresponding to the
value of the i-th variable at the j-th time, the similarity index Q% denotes how
close the prediction is to the target values in percentage terms and it is defined
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as follows:

Q% =
1
k

⎛
⎝

k∑
i=1

∣∣∣∣∣∣

∑n
j=1 xij x̂ij√∑n

j=1 x2
ij

√∑n
j=1 x̂2

ij

∣∣∣∣∣∣

⎞
⎠ ∗ 100, (6)

To choose the appropriate configuration of the agents so to maximize the sim-
ilarity index, we used a local search algorithm [19,24] that continuously improves
a possible solution until the best configuration for the environment is found.

3.2 Gene Regulatory Network

Algorithm 2 shows the pseudo-code of the procedure used to determine the
regulatory matrix by the artificial environment. Suppose we want to determine
whether the gene Gi is a regulatory gene of Gj . Using the artificial environment,
the expression value of Gi can be manually set to Vi at time t (lines 5–6), and it
will be possible to observe how the gene Gj responds to this change after time t+1
(lines 7–8). Clearly, we cannot know whether or not the measurements obtained
in this way are correct. For that, we would need a real dataset and would have
to validate the measurements in the field using micro-array technology.

We denote by “initial time” t − 1 the time when the environment does not
react to perturbations and evolves naturally, by “transition time” t we denote
the time when the perturbation acts on the gene Gi and changes its expression
level manually, and finally by “final time” t + 1 we denote the time after the
perturbation when the artificial environment reacts to it and the expression
level of the genes is calculated taking this change into account. According to
Eqs. 3, 7, 8, and 9 represent the state of the environment calculated at the initial
time, at the transition time, and at the final time, respectively.

Algorithm 2: Building a GRN using the artificial environment
1 Es = findStability (E) ; /* Simulates the system until the variables

no longer greatly fluctuate and are within a certain range. At the
end of this procedure, the current time point of the environment Es

will be equal to the initial time. */
2 for i = 1, 2, . . . , k do
3 Ê = clone (Es) ;
4 s(t−1) = getCurrentState (Ê) ;
5 Ê = nextStep (Ê,i,Vi) ;
6 s(t) = getCurrentState (Ê) ;
7 Ê = nextStep (Ê) ;
8 s(t+1) = getCurrentState (Ê) ;
9 for j = 1, 2, . . . , k do

10 calculate the regulatory value ri,j according to the equation 10
11 end
12 end
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The initial time defined above is determined by the procedure in line 1 of
the Algorithm 2. Basically, we used a linear regression model to determine when
all variables in our artificial environment have reached stability. In other words,
they have no fluctuations and move in a finite interval. When all variables exhibit
this behaviour, the system is considered stable and the current time point cor-
responds to our initial time.

Although the environment state is calculated as usual using Eqs. 2, 8 used to
determine the state of the environment at the transition time is slightly different.
Indeed, in this case, the i-th component of the state must be set to a constant
Vi.

s(t−1) =
[
f1

(
s(t−2)

)
, f2

(
s(t−2)

)
, . . . , fi

(
s(t−2)

)
, . . . , fk

(
s(t−2)

)]
, (7)

s(t) =
[
f1

(
s(t−1)

)
, f2

(
s(t−1)

)
, . . . , Vi, . . . , fk

(
s(t−1)

)]
, (8)

s(t+1) =
[
f1

(
s(t)

)
, f2

(
s(t)

)
, . . . , fi

(
s(t)

)
, . . . , fk

(
s(t)

)]
. (9)

By comparing the expression levels at the initial and at the final time, it
is possible to determine which genes have been affected by the perturbation
(Fig. 5).

Fig. 5. Example of calculating the regulatory value of two genes Gj and Gh using Gi

as their regulatory gene. Δi,j and Δi,j represent the variation between the expression
level of genes at the final time and at the initial time. Vi is the value used to determine
which genes are regulated by the i-th gene.

We define the regulatory value ri,j as the offset between the expression level
of the gene Gj at the final time and at the initial time, taking into account a
perturbation of the gene Gi at the transition time (line 10). The regulatory value
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Fig. 6. Method for creating a gene regulatory network starting from the corresponding
regulatory matrix with a threshold value of 0.1.

thus obtained is normalized using the maximum value Mj observed for the i-th
gene during all the observation time.

ri,j =
∣∣∣∣
Δi,j

Mj

∣∣∣∣ =
∣∣∣∣∣
s
(t+1)
j − s

(t−1)
j

Mj

∣∣∣∣∣ . (10)

The comparison between the expression levels of the Gj at the final and at the
initial time could provide us with important information about which genes are
correlated with each other. Accordingly, Gi is a gene regulator of Gj if and only
if the regulatory value ri,j is much larger quantity of a threshold value (> 0).
A regulatory matrix R ∈ R

k×k contains all regulatory values discovered for each
gene pair. A gene regulatory network can be extracted using a regulatory matrix.
Given a threshold value, it is possible to determine which genes are essentially
the regulators of each gene. Figure 6 shows, as an example, how a regulatory
matrix with only three genes is transformed into a gene regulatory network using
as threshold value of 0.1.

4 Results

In this section, we discuss the results obtained considering ten datasets from
DREAM4 Challenge, available in [23]. Each dataset consists of five or ten exper-
iments, each with 21 observations of ten or one hundred genes recorded every
fifty minutes. Since each dataset contains multiple experiments, the first half of
the experiments were considered as a training set, while the second half served
as a validation and testing set.

The obtained results are shown in Table 2. To examine the effectiveness of our
methodology, two different groups of metrics were used. The similarity index was
used to measure the reliability of the artificial environment. Performance metrics
(such as accuracy, precision, sensitivity and specificity) were used to compare the
predicted gene regulatory network with the target network. In the field of gene
regulation, the typical elements of the confusion matrix also have a biological
significance, as reported in [23].



A Novel Reverse Engineering Approach for Gene 319

Table 2. The results table shows the metrics used to validate our methodology. Q% is
the similarity index, Thr. stands for threshold, Acc. for accuracy, Prec. for precision,
Sens. for sensitivity, and Spec. for specificity.

Dataset name Q% Thr. TP TN FP FN Acc. Prec. Sens. Spec.

insilico_size10_1 0.97856 0.17 13 72 3 2 0.9444 0.8125 0.8667 0.9600
insilico_size10_2 0.9614 0.25 11 72 2 5 0.9222 0.8462 0.6875 0.9730
insilico_size10_3 0.9794 0.1 12 73 2 3 0.9444 0.8571 0.8000 0.9733
insilico_size10_4 0.9705 0.09 10 75 2 3 0.9444 0.8333 0.7692 0.9740
insilico_size10_5 0.7287 0.17 4 73 5 8 0.8556 0.4444 0.3333 0.9359
insilico_size100_1 0.8990 0.11 146 9621 103 30 0.9866 0.5863 0.8295 0.9894
insilico_size100_2 0.9361 0.08 157 9631 20 92 0.9887 0.8870 0.6305 0.9979
insilico_size100_3 0.9295 0.32 112 9675 30 83 0.9886 0.7887 0.5744 0.9969
insilico_size100_4 0.9239 0.03 118 9599 90 93 0.9815 0.5673 0.5592 0.9907
insilico_size100_5 0.9520 0.07 113 9677 30 80 0.9889 0.7902 0.5855 0.9969

– True Positive (TP) denotes the number of regulatory mechanisms correctly
predicted by our approach.

– True Negative (TN) represents the number of arcs that are not present in
both the predicted GRN and the target GRN.

– False Positive (FP) denotes the number of regulatory mechanisms predicted
by our approach that are incorrect.

– False Negative (FN) denotes the number of regulatory mechanisms not
detected by our approach.

As mentioned in the previous section, a threshold needs to be defined to
generate a gene regulator from the regulatory matrix. In our experiments, we
tested several threshold values ranging from 0 to 1 with a resolution of 0.01.
However, due to space limitations, we have only listed the experiments with the
highest accuracy and precision for each dataset in the results table.

As it can be observed, the higher the similarity index, the better the accu-
racy and precision of the generated gene regulatory network. Conversely, the
precision decreases when the similarity index is lower, although the accuracy of
the predicted gene regulatory network is still quite good. Another aspect that
needs to be examined is the number of false negatives. When the number of
genes increases, the number of regulatory mechanisms discovered is lower than
expected. Conversely, when the number of genes is lower, the number of false
negatives is acceptable and the overall sensitivity is higher than when the num-
ber of genes is higher. Similarly, false positives are the number of regulatory
mechanisms added by our method but not included in the target regulatory net-
work. The resulting gene regulatory network will therefore have more arcs than
expected if false positives are high and that will affects the specificity.
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5 Conclusions

In this paper, we presented a new method for genetic inference problem. Unlike
other methods already present in literature such as Boolean Network [18], our
technique allows us not only to perform experiments with our artificial environ-
ment, but also to determine the actual interaction between genes with a good
accuracy and precision.

In fact, the ability to simulate how the expression levels of a collection of
genes change over time is one of the most interesting features of our approach.
However, as mentioned above, we are currently unable to demonstrate this part
of the work, as all our experiments require to be validated in the laboratory.

Other interesting future work is to compare our method, which is based on
an artificial environment, with other existing techniques that use instances with
more than a thousand genes.

We are also aware that the threshold defined in Sect. 3.2 was not computed
by any method and, therefore, this could be an obstacle. However, we are already
working on a solution that consists of using a probabilistic algorithm to define
the threshold directly.

Finally, we would like to thank the anonymous reviewers for their careful
reading of our manuscript and their insightful comments and suggestions.
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