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Abstract. Recent advances in information theory have provided several tools to
characterize high-order interactions (HOIs) in complex systems. Among them,
the so-called O-information is emerging as particularly useful in practical anal-
ysis thanks to its ability to capture the overall balance between redundant and
synergistic HOIs. While the O-information is computed for random variables, its
extension to random processes studied in the frequency domain is very impor-
tant to widen the applicability of this tool to networks whose node exhibit rich
oscillatory content, such as brain and physiological networks. This work presents
the O-information rate (OIR), a measure based on the vector autoregressive and
state space modelling of multivariate time series devised to assess the synergis-
tic and redundant HOIs among groups of series in specific bands of biological
interest. The new measure is illustrated in two paradigmatic examples of phys-
iological networks characterized by coupled oscillations across a wide range of
temporal scales, i.e. the network of cardiovascular and cerebrovascular interac-
tions where redundant synchronized activity emerges around the frequencies of
vasomotor and respiratory rhythms, and the network of scalp electroencephalo-
graphic signals where synergetic HOIs are detected among the alpha and beta
waves recorded over the primary sensorimotor cortex.

Keywords: Brain connectivity · Cardiovascular oscillations · Information
dynamics · Multivariate time series · Spectral analysis · Vector autoregressive
models

1 Introduction

The increasing availability of recordings of biomedical signals is nowadays boosting the
development of new methods for the data-driven modelling of complex biological sys-
tems. These methods typically describe the interactions between different systems (e.g.,
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cardiovascular, cardiorespiratory, cerebrovascular or brain interactions) using pairwise
measures of coupling or causality [19]. However, in spite of the widespread utiliza-
tion of pairwise measures to describe interactions in a network, there is evidence that
such measures cannot full capture the interplay among the multiple nodes of a com-
plex system [5]. In fact, brain and physiological networks exhibit collective behaviors
which are integrated at different hierarchical levels, thus displaying interactions that
involve more than two network nodes. These so-called high-order interactions (HOIs)
occur for instance when cardiovascular interactions are influenced by the effects of
the respiratory activity [9], and identify brain sub-networks with distinct neurocogni-
tive profiles [15]. HOIs have been analyzed in physiological and brain networks using
information decomposition methods that evidence the synergistic or redundant nature
of the interplay among multiplets of variability series [9]. One of such measures is the
O-information [20], a metric capable of revealing synergy- and redundancy-dominated
circuits in multivariate systems mapped by vector random variables. The concept under-
lying the definition of the O-information was applied to random processes quantifying,
in a network of N processes, the synergistic or redundant causal contribution brought
to the target by the remaining N− 1 processes [22]. While the dynamic O-information
[22] is an asymmetric (target-specific) measure of HOIs, a recent work defined a sym-
metric measure which generalizes the O-information to dynamic random processes [7];
this measure, denoted as O-information rate (OIR), was defined from the linear para-
metric representation of vector autoregressive (VAR) processes and was expanded in
the frequency domain exploiting the framework of state-space (SS) models [3].

The possibility to assess HOIs in the frequency domain offered by the spectral
expansion of the OIR [7] opens the way to the evaluation of redundant and/or syner-
gistic interactions within specific frequency bands with physiological meaning. In this
context, the present work applies the spectral OIR measures to networks of physiologi-
cal time series and brain signals, with the aim of investigating the nature of multivariate
interactions underlying the communication among different physiological systems, or
among spatially distributed units of the same physiological systems. To this end, we
focus first on multivariate physiological time series reflecting the dynamics of heart
period, arterial pressure, breathing volume and cerebral blood flow to investigate the
joint cardiovascular, cerebrovascular and respiratory regulation during postural stress
[8], and then on multichannel EEG recordings measured in different scalp locations
to assess brain connectivity during motor execution [1]. The two applications feature
physiological time series rich of oscillatory content, which thus lend themselves to the
spectral analysis of HOIs performed by the proposed tools.

2 O-Information Rate

The organizational structure of M stationary discrete-time stochastic processes XM =
{X1, ...,XM}, which map the states visited by a network of dynamic systems, is assessed
in the information-theoretic domain using the so-called O-information rate (OIR). The
OIR quantifies the net synergistic or redundant information shared per unit of time by a
subset of N processes taken from XM . The OIR is null for pairs of processes (ΩX2 = 0),
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while for multiplets (i.e., groups of N > 2 processes) it is defined recursively as [7]:

ΩXN = ΩXN− j
+ΔXN− j ;Xj

, (1)

where XN
− j is the subset without the process Xj, and where the OIR increment obtained

adding Xj to XN
− j is:

ΔXN− j ;Xj
= (2−N)IXN− j ;Xj

+
N

∑
m=1
m�= j

IXN−m j ;Xj
, (2)

with XN
−mj = XN\{Xm,Xj}. In (2), IA;B denotes the mutual information rate (MIR)

between the vector stochastic processes A and B; the MIR quantifies the information
shared by two processes per unit of time. The OIR can be either positive or negative
for multiplets of order N ≥ 3, with ΩXN > 0 and ΩXN < 0 denoting respectively redun-
dant or synergistic interactions, i.e. interactions which can or cannot be retrieved from
sub-groups of processes considered separately.

In this work, the OIR is computed in time and frequency domains following a linear
parametric approach. The original vector XM is represented by the vector autoregressive
(VAR) model:

Xn =
p

∑
k=1

AkXn−k+Un, (3)

where p is the model order, defining the maximum lag used to quantify interactions,
Xn = [X1,n...XM,n]T is an M-dimensional vector collecting the present states of all pro-
cesses, Ak is the M ×M coefficient matrix describing the interaction from Xn−k to
Xn at lag k, and Un is a vector of zero-mean uncorrelated white noise processes with
M ×M positive definite covariance matrix ΣU . While the VAR model (3) provides a
global representation of the overall multivariate process, to describe the linear inter-
actions relevant to the subset of processes Z = {Z1,Z2}, with Z1 = Xj and Z2 = XN

−mj
(m varying as in (2)), there is the need to define reduced VAR models involving only
those processes. Hence, XM is represented as a VAR process in the framework of state-
space (SS) models, and the N submodels describing the joint dynamics of Z1 and Z2 are
derived [3]. Their frequency domain representation allows to obtain the power spectral
density (PSD) matrices describing the autonomous oscillatory content of Z1 and Z2 and
their cross-spectra. A logarithmic spectral measure of the total coupling between Z1 and
Z2 is then defined as [11]:

fZ1;Z2(ω) = log
|SZ1(ω)||SZ2(ω)|

|SZ(ω)| , (4)

where ω = 2π f
fs

, with frequency f ∈ [0, fs/2] and fs the sampling frequency, SZ1(ω)
and SZ2(ω) are the autospectra of the two processes Z1 and Z2 while SZ(ω) is the
PSD matrix of the joint process Z = [Z1Z2], and | · | is the matrix determinant. Given
that the integration over the whole frequency axis of the spectral measure (4) yields the
corresponding time-domain measure IZ1;Z2 in (2), the frequency-specific OIR increment
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can be then defined in analogy to (2) as [7]:

δXN− j ;Xj
(ω) = (2−N) fXj ;XN− j

(ω)+
N

∑
m=1
m�= j

fXN−m j ;Xj
(ω), (5)

and can be used to compute recursively a frequency-domain version of the OIR, in
analogy to (1), i.e. [7]:

νXN (ω) = νXN− j
(ω)+δXN− j;Xj

(ω). (6)

It is easy to show that the spectral OIR increment in (5) and the spectral OIR in
(6) satisfy the spectral integration property, i.e. the average over all frequencies of
each of these spectral functions yields the corresponding information-theoretic func-
tion (respectively, (2) and (1)).

In this work, the VAR model fitting the M series was identified through the ordi-
nary least squares method. Starting from the estimated VAR parameters (i.e., the VAR
coefficients Ak and the innovation covariance ΣU ) and exploting the SS representa-
tion, the spectral functions in (5) and (6) were computed for all multiplets of orders 3
to N. Each spectral distribution obtained as in (6) was then integrated within specific
frequency bands of the spectrum to retrieve information about high-order interactions
within those bands. This procedure allowed us to evaluate redundant and/or synergistic
interactions specific of band-limited stochastic oscillations with physiological meaning.

3 Application to Physiological Networks

3.1 Cardiovascular and Cerebrovascular Variability Series

We applied the framework to a database of physiological time series collected from 13
young healthy subjects during supine resting (REST) and passive standing in the 60◦
upright position reached after head-up tilt (TILT) [2]. For each subject and condition,
M= 5 stationary sequences of 250 beat-to-beat values of heart period (tachogram, series
T), systolic and diastolic arterial pressure (S, D), respiration (R), and mean cerebral
blood flow velocity (F), were considered for the analysis. A VAR model was fitted on
the time series measured for each subject and condition, with model order set according
to the Akaike Criterion. Then, the spectral OIR was computed for each multiplet of
order N = 3,4,5 and integrated within the low frequency (LF, 0.04–0.15 Hz) and high
frequency (HF, 0.15–0.4 Hz) bands of the spectrum.

The results collected in Fig. 1 show that the OIR integrated in both LF and HF
bands was positive in the large majority of subjects in both the analyzed conditions, and
showed a tendency to increase with the number of series in the analyzed multiplets. This
finding suggests that physiological networks probed by beat-to-beat variability series
are dominated by redundancy. The result confirms similar findings observed in cardio-
vascular and cardiorespiratory networks [8,18], and extends them to cerebrovascular
and integrated physiological networks.

Multivariate interactions were found to be stronger for HF oscillations than in the
LF band, suggesting a main role of respiration, whose oscillations are typically mostly
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confined within the HF band [9], in driving redundant interactions in the cardiovascular
and cerebrovascular networks. This result is confirmed by the observation that in the
LF band the highest redundancy was displayed by multiplets including the series T,
S, D and F, while significantly lower values were found in multiplets including the
series R, in both experimental conditions. For these multiplets, a tendency towards an
increase in the redundancy (though not statistically significant) was observed moving
from REST to TILT, suggesting a possible role of sympathetic activation in driving the
redundancy of LF oscillations in cardiovascular and cerebral blood flow variables [18].
Conversely, results in the HF band showed some statistically significant differences
between multiplets only during TILT; specifically, the multiplets containing the series
R, S and F displayed the highest redundancy.

Overall, these results confirm for HOIs the redundant nature of cardiovascular and
cerebrovascular interactions previously reported for triplets of physiological processes
[7,9,18], and document the relevance of separating LF and HF contributions to elicit
the role of respiration on cardiovascular and cerebrovascular interactions. Moreover,
the tendency of the OIR to increase with tilt was not statistically significant, suggesting
that these redundant effects are preserved during postural stress.

The understanding of the different and complex ways of dynamic integration of
organ systems as a complex network remains one of the biggest problems in field
of Network Physiology. Physiological systems exhibit complex dynamics, operate at
different time scales and are regulated by multi-component mechanisms, which has
been known to challenge the study of physiologic coupling and causality [4,13]. These
aspects, together with the evidence that cardiovascular and cerebrovascular interactions
occur through the coupling of rhythms in different frequency bands with different phys-
iological meaning [19], make our spectral approach eligible to probe HOIs in these net-
works. [8]. Our results document that respiration acts as a major driver of multivariate
redundant interactions in physiological networks, confirming that HOIs can have differ-
ent nature for different rhythms because synergistic and redundant behaviors generally
alternate in different bands of the frequency spectrum [1,8].

3.2 EEG Recordings

The analyzed dataset refers to EEG signals relevant to 20 healthy subjects randomly
chosen from a database of 109 participants (https://physionet.org/content/eegmmidb),
recorded for each subject from 64 electrodes referenced to both mastoids (international
10–20 system, fs = 160 Hz) [12,21]. We analyzed a resting state condition in which
the participants were relaxed (REST) and a condition in which they were asked to open
and close the right fist cyclically (RIGHT). The raw signals were firstly detrended, then
filtered (band-pass, 2–35 Hz; notch, 59–61 Hz) and finally epoched to extract 15 trials
of 4 s each for each participant and condition. We performed the analysis on the signals
recorded by the four electrodes depicted in Fig.2(a), i.e. X1 =C3,X2 =Cz,X3 =C4,X4 =
Fz. For each subject and trial, a VAR model was identified from the four selected time
series setting the model order according to the Bayesian Information criterion. Then, the
estimated VAR parameters were used to compute the spectral OIR for each multiplet
of order N = 3,4. Finally, values indicative of HOIs occurring for the α and β brain

https://physionet.org/content/eegmmidb/1.0.0/
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Fig. 1. Distribution across subjects and individual values of the OIR (top panels: spectral OIR
integrated in the LF band, 0.04–0.15 Hz; bottom panels: spectral OIR integrated in the HF band,
0.15–0.4 Hz) computed at REST (gray) and during TILT (violet) for all possible multiplets of
order 3,4,5 obtained grouping the time series of heart period (T), systolic pressure (S), diastolic
pressure (D), respiration (R) and mean cerebral blood flow velocity (F). Numbers in the OIR(3)
and OIR(4) panels indicate pairs of distributions for which the mean OIR differed significantly in
a given condition (Student t-test for paired data, p< 0.05). No statistically significant differences
between REST and TILT were detected.

rhythms were obtained by integrating the measures over the relevant frequency ranges
(i.e., α = [8−12] Hz, β = [16−26] Hz).

Figure 2(b,c,d,e,f) reports the grand-average over participants and trials of the fre-
quency profiles obtained for each multiplet separately for the REST and RIGHT con-
ditions in the frequency range 2–35 Hz. The trends reveal the prevalence of positive
values of the OIR, denoting redundant interactions, for the triplets including the sig-
nal recorded at the electrode Fz (panels b,c,d), while the triplet [C3 −Cz −C4] displays
negative OIR values related to synergy within the α and β bands (panel e); synergistic
interactions are detected, although weaker, also for the multiplet of order 4 including
all the analyzed electrodes.

Fig. 2(g,h) depicts the distributions across participants and trials of the spectral OIR
integrated over the α and β frequency bands, computed for each multiplet separately
for the REST and RIGHT conditions. The execution of the motor task is generally asso-
ciated with an increase of the OIR denoting higher redundancy for multiplets including
the EEGs recorded at the central electrodes Fz and Cz, together with C3, C4, or both
C3 and C4; the increase is observed particularly in the β band, and is statistically sig-
nificant, according to a Wilcoxon paired test performed with 5% significance, for the
multiplet of order 4 including the central electrodes Fz and Cz and both the lateral elec-
trodesC3 andC4 (panel h). On the contrary, the OIR profiles exhibit a decrease in the α
band when computed for the triplet [C3 −Cz−C4] (panel g); such a decrease, though not
statistically significant, denoties a tendency to higher synergy during task execution.
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Fig. 2. (a) EEG electrodes montage highlighting the positions of the four selected electrodes. (b–
f) Spectral profiles (mean (bold line) and 25th–75th percentiles (shades) over 20 subjects and 15
trials per subject) of the OIR computed for each multiplet during relaxation (REST, green lines)
and while opening and closing the right fist (RIGHT, orange lines). (g–h) Violin plots of the
distribution across participants and trials of the OIR values computed by integrating the spectral
OIR within the α band (8−12 Hz (g)) and within the β band (16−26 Hz) during relaxation
(REST) and opening/closure of the right fist (RIGHT). ∗, p< 0.05 Wilcoxon test.

The study of human brain activity during motor execution is very important in clin-
ical contexts and in neuroscience. In fact, motor actions commonly derive from the
involvement of several areas in the brain causing excitatory and inhibitory coupling
among different regions in the two hemispheres [10]. To investigate the joint EEG activ-
ity of specific brain areas designated to the planning and execution of hand motor task
[16], we selected four EEG signals recorded from channels located on the central line
(Fz,CZ) and on scalp areas contralateral and ipsilateral to the right-hand motor execu-
tion task (respectively, C3 and C4). In agreement with our previous work showing a
widespread redundant behavior for this network of EEG interactions [1], we document
the prevalence of redundancy for HOIs. However, we also show that combinations of
signals measured from both central electrodes and electrodes located in ipsi- and contra-
lateral locations give rise to synergistic HOIs that reflect the emergence of interaction
mechanisms not retrievable from a pairwise analysis. From a physiological point of
view, these functional mechanisms involve spatial locations (C3 and C4) and emerge in
frequency bands (α and especially β ) which are linked to the well-known phenomenon
of event-related desynchronisation occurring during motor execution and imagery [17].

Nevertheless, we stress the preliminary nature of our results, which need confirma-
tion on larger datasets [12], also after adopting methodological improvements (e.g., the
consideration of the statistical significant of the detected OIR values and increments
[22]) and addressing common issues of brain connectivity analyses (e.g., those related
to the effects of volume conduction on pairwise and higher-order connectivity measures
[14,23]).
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4 Conclusions

Brain and physiological networks are not only composed by several functionally inter-
connected nodes, but are also endowed with oscillatory dynamics deployed across a
wide range of temporal scales, which vary from the 20 s period of slow sympathetic
and vasomotor rhythms up to a frequency of almost 100 Hz for the faster EEG waves.
The spectral expansion of the O-information presented in this work allows to deal at
the same time with the multivariate and multiscale nature of physiological dynamics,
characterizing them by means of HOIs measures assessed within specific frequency
bands.

Our results indicate that different networks whose collective dynamics are studied
in different frequency bands display distinct peculiar patterns of HOIs. The physiolog-
ical network probed by heart rate, arterial pressure and cerebral blood flow variability
displays slower oscillations entrained by mechanical and autonomic influences, as well
as faster rhythms driven by respiration [6], which give rise to mostly redundant inter-
actions at different orders. On the other hand, a growing body of work is documenting
how brain networks can display synergy as an emergent behavior, suggesting that syn-
ergistic interactions may serve to integrate and complement redundant sub-networks
[15,24]. The results here obtained, albeit in a preliminary fashion, support this hypoth-
esis, thus opening the way to the use of the frequency-specific O-information measures
as a tool to uncover higher-order effects which otherwise, with current pairwise and
time-domain approaches, would remain hidden.
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