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Abstract. Probabilistic Boolean Networks have been proposed for esti-
mating the behaviour of dynamical systems as they combine rule-based
modelling with uncertainty principles. Inferring PBNs directly from gene
data is challenging however, especially when data is costly to collect
and/or noisy, e.g., in the case of gene expression profile data. In this
paper, we present a reproducible method for inferring PBNs directly from
real gene expression data measurements taken when the system was at
a steady state. The steady-state dynamics of PBNs is of special interest
in the analysis of biological machinery. The proposed approach does not
rely on reconstructing the state evolution of the network, which is com-
putationally intractable for larger networks. We demonstrate the method
on samples of real gene expression profiling data from a well-known study
on metastatic melanoma. The pipeline is implemented using Python and
we make it publicly available.

Keywords: Steady-state data samples · Network structure ·
Dynamics · Discretisation · Predictor sets · Perceptron · Complex
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1 Introduction

Rapid progress in the development of next-generation sequencing technologies
for genomics has provided valuable insights into complex biological systems [12].
Modelling single-cell or gene networks is becoming increasingly important. The
question of modelling complex molecular regulatory networks is an important
one for bioinformatics. The goal of systems biology is to intervene on the state of
the cell, using the dynamics of the underlying regulatory network. A model that
could accurately represent such dynamics could be used for analysis, including
control [14,19,26,27,36], steady-state distribution [8,18,24,31], observability [28,
37,38]. Such analyses aid the development of genetic therapies [11].
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290 V. Šliogeris et al.

Boolean Networks (BNs) were introduced for this purpose by Kauffman [15].
In brief, a BN comprises a set of Boolean variables, each variable representing the
on/off state of a gene, while interactions between genes are expressed by Boolean
functions. It was found that even randomly generated BNs exhibit behaviour
reminiscent of gene regulatory networks, with naturally arising attractor states
which represent cell types or the phenotype [6,35]. This explains the popularity
of BNs for modelling gene interactions [2,10].

However, with few exceptions, gene expression data suggests a number of
possible successor states to any given state in a BN, thereby refuting the deter-
minism inherent in BNs. Thus, a probabilistic BN (PBN) was introduced by
Shmulevich et al. [30] in which the definition of a BN was adapted such that
for each gene, at each time point, a Boolean function (and predictor gene set) is
chosen with some conditional probability [29].

Inferring the PBN representation of a gene regulatory network (GRN) is quite
involved. First, the directed graph expressing interactions between genes needs
to be constructed; then, the Boolean functions need to be determined; followed
by determining the probabilities of selecting a Boolean function as well as the
number of candidate functions on each gene. Existing work (cf Sect. 2) tends to
focus on inference from time-series gene expression data as the temporal aspect
reveals the transition structure of the corresponding PBN. However, as already
pointed out in [4], there are concerns over the number of (typically expensive
to obtain) observations needed in such gene microarray data. Approaches based
on ODEs (e.g., [21]) require lots of observations to tune the large number of
parameters of the model, while in practice only a handful are available. More
such observations are available when the underlying gene network is at a steady
state [31], e.g, see gene expression profiles of melanoma by Bittner et al. [5].

In this paper, we propose a systematic method for inferring PBNs directly
from real gene expression data measurements, collected using microarray tech-
nology, when the system is at a steady-state. The steady-state (long-run)
behaviour of a PBN is of interest to system biology as it allows to determine the
long-term influence of a gene on another gene or determine the long-term joint
probabilistic behaviour of a few selected genes [31].

The key contribution of our paper is a reproducible pipeline for going from
gene (steady-state) data samples to the PBN representation of the long-run
behaviour of the underlying genetic network. We use a predictor gene set rather
than temporal data to infer the ”transition structure”. Unlike other proposals,
our method does not require the construction of the probability transition matrix,
whose size grows exponentially on the number of nodes, and hence becomes
computationally intractable for larger networks [1].

The remainder of the paper is structured as follows. Section 2 outlines related
work. Preliminary background knowledge is presented in Sect. 3. The main algo-
rithm for our inference method is in Sect. 4. PBNs are produced in Sect. 6 using
the process described in Sect. 5. Concluding remarks are in Sect. 7.
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2 Related Work

There have been various methods for PBN inference, focusing on causality, using
different types of gene data [13]. Previous work on PBN inference from time
series gene data includes [32], SCODE [21] with ODEs, and most recently the
Stochastic Conjunctive Normal Form (SCNF) -based method by Apostolopoulou
et al. [3] which can address larger networks.

Previous work on inference from steady-state data samples is relatively lim-
ited and goes back to Shmulevich et al. [31]. A tool for computing the steady-
state distribution (ssd) probabilities has been proposed in [23]. Melkman et al.
[22] infer threshold PBNs, a particular version of PBNs where every input thresh-
old function of a node must have the same number of parameters and also satisfy
certain stringent conditions. Kobayashi et al. [18] construct PBNs from BNs by
casting inference as an integer linear programming problem and construct a PBN
that fits the given steady-state distribution.

Kim et al. [17] use steady-state gene data samples from the study on
metastatic melanoma by Bittner et al. [5] (we use the same data here). They
choose the genes for their PBN using a combination of Coefficient of Determi-
nation (COD) analysis and biological background knowledge (we do not assume
any prior knowledge). For the functions, they ternarise their data, and construct
Lookup Tables in place of the functions for each gene. They also analyse the
PBNs produced by analysing the steady-state distribution (ssd) of the resulting
network.

Shmulevich et al. [30], who introduced PBNs, describe a method for deter-
mining functions for nodes in a PBN. This requires finding sets of input genes
which have high COD with the target gene, and using the predictive model used
for the calculation of the COD as the function for the particular set of input
genes. The probability for choosing the particular input gene set is proportional
to the COD of the input gene set.

Discretisation of gene data is an important factor for inference. Chen et al. [7]
describe a method for quantising gene data using the expressions of housekeeping
genes within the dataset. Housekeeping genes are genes which keep a constant
expression, as they perform important functions within the cell. Since they have
a constant expression, they can be used to estimate the probability distribution
function (PDF) of the gene expressions within a microarray. The constructed
PDF can be used for using a hypothesis test to determine whether or not a gene
is over- or under-expressed. However, this method hinges on knowledge of which
of the genes are housekeeping genes and this typically is not readily available.

As discussed in the introductory section, we focus on constructing PBNs from
real, microarray gene data samples, collected while the system is in a steady-
state, instead of simulated, time-series data or starting from BNs. We present a
reproducible method to perform such a task.
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3 Preliminaries

3.1 Boolean Networks

A BN [15] is a directed graph, G = {V,E}, comprised of vertices V and edges E.
The vertices v ∈ V represent the Boolean variables, which in this case represent
genes in a gene regulatory network. The directed edges {vi, vj} = ei,j ∈ E
represent that one variable, vi, influences another, vj . Each vertex is associated
with a Boolean function fi given by fi : {0, 1}nin �→ {0, 1}. The input for fi is
a Boolean vector of length nin, which represents the states of all of the input
vertices, and the output is a single Boolean value, which is then used as the next
state of the variable vi. For a vertex i, the input vertices are the vertices from
which all incoming edges originate, given by {vj |∃{vj , vi}} = ej,i ∈ E.

3.2 Probabilistic Boolean Networks

Probabilistic Boolean networks are an extension of Boolean networks. They are
directed graphs G, as in Boolean networks, except each function fi for each
node i in the case of Boolean networks is replaced by a set of Boolean functions
Fi = {f1

i , f2
i , . . . , f li

i }, and probabilities ci = {c1i , c
2
i , . . . , c

li
i }. Hence, the logical

function fi has li possibilities, each with a corresponding conditional probability
of being selected at every time step.

More formally, during run time, a function f j
i for the node vi is chosen with

probability cji , j ∈ [1, li]. PBNs are an extension to BNs in the sense that if each
node within a PBN has a single function, it becomes identical to the BN.

3.3 State Transition Graphs

For each PBN there exists a state transition graph (STG). An STG is a directed
graph G = {V,E}, where the vertices vi ∈ V represent the possible states of the
PBN, and the edges {vi, vj} = ei,j ∈ E represent the possibility of a transition
from state vi to vj . Since the probability of getting to another state vj only
depends on the current state vi, we can say that the STG is a Markov chain.

By saying that the PBN has a steady state distribution (ssd), we mean that
the STG of the PBN has a steady state distribution. For an STG to have an
SSD, it needs to be ergodic - that is, every state can be reached from every other
state. To guarantee that the STG is ergodic, random perturbations with low
probability are introduced to the PBN.

3.4 Microarray Gene Data Samples

The data used to infer a PBN in our work was taken from the study of metastatic
melanoma found in Bittner et al. [5], which has been extensively studied in the
literature [17,25,27,33]. The study extracts and analyses the gene expression
profiles of 31 melanoma cells using microarray technology. To make sure that
the gene expression levels used in inferring the corresponding PBN are those
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of genes when the network is at a steady state, the Kolmogorov-Smirnov (KS)
statistic is applied, as discussed in more detail in Sect. 5.

To utilise a particular gene in DNA, see [7], assuming the cell is at a steady-
state, the relevant segment of the molecule must first be transcribed, producing
messenger RNA (mRNA) which is accessible to the rest of the proteins. The
quantity of mRNA in a cell signifies the degree of protein production associated
with a particular gene.

DNA microarrays measure the presence of mRNA within a cell. The microar-
rays consist of a surface with an array of robotically placed complementary DNA
for the genes to be analysed. mRNA tightly bonds with complementary DNA,
hence the microarray can be used to isolate different mRNA molecules. The
process is known as hybridisation.

The quantity of mRNA within a cell is measured by tagging the mRNA
with fluorescent molecules, hybridising them with a microarray, and exciting the
fluorescent molecules. The emitted brightness is proportional to the amount of
mRNA present.

Since the amount of mRNA differs depending on the gene, the data is nor-
malised by dividing the values recorded by the values recorded from a reference
probe. Since values recorded are non-negative, the ratio values are in the range
of [0,∞). Furthermore, since we would expect the values of within the reference
probe and the sample to not be different, the median for the ratio values is
expected to be 1. These are the values provided by Bittner et al. [5] in the form
of a matrix of size 8,150 (number of genes) by 31 (number of samples). A small
sample of the raw data is shown later in Fig. 1(a).

For demonstrating our method of inferring a PBN, we work with the subset
of melanoma genes analysed by Datta et al. [9], which are extensively studied in
the literature [17,18,25,27,33], namely WNT5A, pirin, S100P, RET1, MART1,
HADHB and STC2. This offers straightforward validation for our approach since
it produces the same PBN.

It is worth noting that larger PBNs may be constructed following the pipeline
described in this paper, and we have constructed the 28 node PBN given in
[33] as well as a 70 node PBN, which includes the 28 nodes already studied
in [33] padded with the 42 nodes with the highest weighting of importance,
using discriminative weights [5], which determine how a gene changes during the
experiment compared to the control cells.

3.5 Coefficient of Determination

Coefficients of Determination (CODs) were described by Kim et al. [16] as a
method to determine which gene determines the state of which other gene. A
COD of a target variable, Y , with regards to an input variable, X, is a measure
on how well the target variable can be predicted using the input variable. A
predictive model f is used to predict the value of the target variable with and
without the input variable, and compute the errors ē and e respectively. The
relative change of error of the predictive model is the COD θ, given by Eq. 1:
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θ =
ē − e

ē
(1)

There are no constraints on what can be used as a predictive model. We
opted for a perceptron. This is because there exists a closed-form solution for
linear regression of the perceptron, described by Kim et al. [16], which can be
used instead of training. This aids in lowering the computation time.

The weights of a perceptron, A, can be computed using the closed form
solution:

A = R+ · C

R = X · XT

C = X · Y

(2)

3.6 Discretisation

Since PBNs use discrete values, the gene data which consists of real values has
to be discretised. Discretisation is a process where values get mapped from the
real value domain to the integer domain. For the problem at hand, since genes
can be in one of two states, the range of the function should be either 0 or 1.
Hence the function should take the form of:

f : G → Gd, x ≥ 0,∀x ∈ G, y ∈ {0, 1}∀y ∈ Gd (3)

Such a method is described in detail in [34]. It consists of deciding upon a
threshold value t with which all real values are compared. Each value then gets
mapped to 0 if it is below the threshold, and to 1 otherwise, as given by Eq. 4.

Gd[x, y] =
{

0 G[x, y] < t
1 G[x, y] ≥ t

(4)

The threshold may be any metric. Common metrics are means or medians. The
threshold may also be the boundary between the top x% of entries and the rest.

Shmulevich et al. [29] describe a process of using k-means clustering to cluster
the data, and assigning values to the data points depending on the cluster they
belong to. However, since half of the data points lie in the range (0, 1), and the
other half is in the range (1,∞), the lower cluster ends up larger, resulting in a
larger threshold that produces more zeros. This can be remedied by performing
k-means clustering on the logarithms of the data points. This makes the ranges
of both halves the same, producing more representative clusters.

4 Inference of PBNs

In this section we describe the inference method and how it can be implemented.
Our approach to inferring a PBN starts with the real gene expression data in
the form of a matrix G as input (see Fig. 1(a)), and produces a PBN (see Fig.
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1(b)). The input matrix is of size m × n, where m is the number of genes and n
is the number of samples.

The method we apply for inferring PBNs draws upon work done by Shmule-
vich et al. [30]. First, it requires the dataset to be discretised (recall Section 3.6).
This process is performed in Algorithm 1.

Data: Input array G, discretisation axis, calculation method
Result: Discretised array G
for row g in G over axis do

t = method(G);
for element in g do

if element ¡ t then
element = 0;

else
element = 1;

end
end
return G ;

end
Algorithm 1: Discretisation algorithm

Given a target gene, np sets of genes with the highest CODs are found. This
is down following Algorithm 2.

Data: Input array G, number of input genes per tuple k, number of input
tuples n

Result: List of predictor-COD-input tuples
tuples = [];
for targetIndex in 1 . . . G.geneAxisSize do

indexCombinations =
generateAllCombinations(1 . . . G.geneAxisSize \ targetIndex, k);
// Would return triplets of all possible k-combinations of

the gene indexes within the array.
buffer.init(n);
for inputCombo in indexCombinations do

COD, weights = calcCOD(G[targetIndex],G[inputCombo]);
if COD > min(buffer.COD) then

buffer.add(COD, weights, inputCombo);
buffer.removeSmallestCOD() ;

end
end
tuples[targetIndex] ← buffer;

end
return buffer;

Algorithm 2: Tuple list generator
A buffer of size np is initialised, and each possible combination of input genes

have their CODs calculated. If a combination of inputs has a COD higher than
at least one saved in the buffer, the buffer entry with the lowest COD gets
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replaced by the new combination of inputs. This results in a buffer full of input
combinations with the highest CODs. One such buffer is initialised per target
gene, resulting in np input combinations per target gene.

During run-time, a set of input genes is chosen with probability proportional
to the COD of the set, and the next state is governed by the state of those input
genes in conjunction with the predictive model that was saved. For all intents
and purposes, the list with input gene, perceptron weights and probabilities are
enough to construct a PBN, as the input genes convey the connectivity, and the
perceptron weights convey the logic for that set of input genes. The process is
summarised in Algorithm 3.

Data: Input array G, discretisation axis, threshold calculation method,
number of input genes per tuple k, number of input tuples n

Result: List of predictor-probability-input tuples
Ĝ = discretise(G, axis, method);
predictorList = genPredictorList(Ĝ, k, n);
CODsum = 0 ;
for tuple in predictor list do

CODsum ← CODsum + tuple[COD] ;
end
for tuple in predictor list do

tuple[probability] ← tuple[COD]
CODsum ;

end
return predictor list;

Algorithm 3: General algorithm for generating predictor lists

(a) The input, gene expression values for 31
samples taken at a steady-state, given in the
form of a matrix

(b) The output is a PBN

Fig. 1. Input and output for the inference method

5 Analysis

The analysis of the generated PBNs in our approach are based on steady-state
distribution, which is fairly standard, e.g., see [17]. The PBN is run for T steps
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in order to get it within a steady state. Then it is run for the next N steps,
recording the state it is at. To confirm whether or not the PBN is in a steady
state after T steps, the Kolmogorov-Smirnov (KS) statistic is calculated for the
two halves of N .

The entries recorded in N are split in to two halves - one containing states
[0, N

2 ], the other containing [N2 + 1, N ]. The entries are subsampled with the
interval G. The histograms are converted to cumulative distribution functions
(CDFs), and the maximum vertical distance between them is found, which is
the KS statistic.

The significance test shows the probability of the two CDFs being drawn
from the same distribution. If the PBN had not reached a steady state after
T steps, the halves of N would be drawn from different distributions, which
would be indicated by the KS test. The recorded states are a string of binary
values. Therefore, for ease of analysis, they are used as gray-coded integers, and
displayed on a histogram (cf. Fig. 2). This makes the horizontal distance on the
histogram proportional to the Hamming distance between two network states.

6 Evaluation

We have implemented the pipeline using Python 3 and make it publicly available
on https://github.com/UoS-PLCCN/pbn-inference.

We have constructed PBNs of size 7 from data produced by Bittner et al. [5]
using different thresholds for the quantisation methods. The thresholds were (a)
average of a gene expression; (b) median of a gene expression, and (c) k-means
clustering of a gene expression. The data was quantised on a per-gene basis, with
each gene having 10 triplets of input genes.

For the construction and validation of the histograms representing the steady-
state distribution, we have chosen the parameters to be T = 106, N = 4 · 106,
G = 10 and R = 100. On a laptop with 32 GB of RAM and an Intel R© CoreTM i7-
7700HQ Processor, each histogram took around 9 hours to produce. The results
are shown in Fig. 2.

(a) Mean (b) Median (c) K-Means clustering

Fig. 2. SSDs of PBNs generated using different quantisation methods. States on the
x-axis; SSD probability on the y-axis

It can be seen that the average and the median quantisation methods produce
very similar histograms, with three peaks each, and the latter two peaks being

https://github.com/UoS-PLCCN/pbn-inference
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in similar positions. The histogram generated using the PBN constructed from
k-means clustering only has one prominent state, which can also be observed in
the other two PBNs. It may be constructive to note that the few very prominent
states in the histograms shown in Fig. 2 agrees with the assumption claimed
by Kim et al. [17] that gene regulatory networks found in nature only occupy a
small fraction of the possible state space.

For the purposes of direct comparison, we have trialled the proposed method
in the DREAM (Dialogue on Reverse Engineering Assessment and Methods)
challenge1 which offers a benchmark for network inference (DREAM 3) [20] and
scored 8th (out of 29).

7 Conclusion

In this work we described the inference a PBN directly from real gene data,
collected using microrarray technology, which were taken when the system was
at a steady-state. This kind of gene profiling is typically less costly to obtain than
time series data, and includes more data points. Using the evaluation methods
described in the literature, e.g., by Kim et al. [17], we have concluded that the
pipeline works well for the examples provided. However, it is subject to fine-
tuning the parameters. We have provided the method in a systematic pipeline
which can be reproduced. We made it publicly available on github https://
github.com/UoS-PLCCN/pbn-inference.

We note that the method scored 8th (out of 29) in the DREAM challenge
and has been used to infer large PBNs (N = 200).

It is worth noting that the proposed method does not require a state tran-
sition probability matrix to be produced. It can be extracted from the PBN,
however, the time required grows exponentially with the size of the PBN. This
means that conventional mathematical methods in the literature that make use
of the transition probability matrix may not always be applicable.

One concern is that the transitions get fitted to the quantised dataset. It is
widely accepted that the states observed in the dataset are steady states of the
cells. Since the transition rules get fitted to the steady states of the cells, the
resulting PBN will be driven towards the steady states observed within the data.
However, while it is certain that the method captures the long-run behaviour
(steady-state) of the underlying gene regulatory network, there is little certainty
that the PBN will behave with biological accuracy between the observed steady
states. This concern could possibly be addressed by using time-series gene data
to augment the method presented here, as this type of data captures the change
of gene expression levels with respect to time. This promises to capture the
behaviour at and between steady states, without reconstruction of the state
evolution of the PBN, and is certainly worth exploring further in future work.

1 https://dreamchallenges.org/project/dream-3-in-silico-network-challenge/.

https://github.com/UoS-PLCCN/pbn-inference
https://github.com/UoS-PLCCN/pbn-inference
https://dreamchallenges.org/project/dream-3-in-silico-network-challenge/
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