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Abstract. This work introduces a technique for the inference of dif-
ferential co-expression networks. The approach takes as input a matrix
of differential expression profiles, where each entry corresponds to the
Log Fold Change of a gene expression between control and stress con-
ditions for a specific sample. It outputs a matrix of coefficients, where
each non-zero entry represents a pairwise connection between genes. The
proposed approach builds on Lasso, and is applied to differential expres-
sion profiles of rice between control and salt-stress conditions. A total
of 25 genes were identified to respond to salt stress and as differentially
expressed. About half of these genes (11) were reported with a statis-
tically significant number of different GO annotations relevant to salt
stress response.
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1 Introduction

Gene regulatory networks specify how biological systems respond to perturba-
tions through the rewiring of molecular interactions. Co-expression networks
provide a framework to better understand molecular mechanisms and gene regu-
lation. Thanks to the increasingly high availability of transcriptomic data, robust
gene co-expression networks are becoming more widely available. A differential
co-expression network represents a particular type of network, which is used to
identify changes in response to external stimuli (e.g., changes in activity of gene
expression regulators or signaling [3,7,28]). Differential co-expression network
analysis is an approach for identifying modules of genes with meaningful vari-
ation between different experimental conditions (e.g., control and stress). Such
an analysis uses as input gene expression data, representing gene expression
between control and stress conditions, and output a set of genes that are likely
to be involved in the biological response to the specific stress.

Technically, differential co-expression analysis builds a network from the rela-
tionships between genes differential expression profiles, that is, the log fold
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change (LFC) between control and stress expression across multiple observa-
tions for each gene. LFC represents a logarithm of the ratio between the control
expression and the expression under stress and involves two key steps. First,
setting a correlation measure between the genes. Second, filtering the list of
pairs using a threshold value for the correlation score [29]. The Pearson corre-
lation coefficient is the most popular measure used for step 1. It assumes lin-
ear correlation, normally distributed values, and is sensitive to outliers [17]. A
major limitation of using this approach, for building a differential co-expression
network, is that it demands large enough sample sizes for statistically reliable
results [6,20,22]. However, large samples sizes are often prohibitive due to time
and computational constraints. For instance, a differential co-expression network
with N genes across M control samples and M stressed samples is built by first
building a matrix X ∈ R

N×M , where each entry X(n,m) corresponds to the
LFC value of gene n for sample m. Then, the Pearson’s coefficient is computed
for each pair of distinct genes n1 and n2 with the input vectors X(n1, ) and
X(n2, ), each of length M . That is, assuming as input X, building the differ-
ential co-expression network takes O

((
N
2

)
M

)
= O(N2M) time, where O(M) is

the usual time for computing the Pearson’s coefficient on M samples.
This paper introduces a method based on the penalized least absolute shrink-

age and selection operator (Lasso) [33] for building differential co-expression net-
works. It overcomes the above-mentioned computational limitation by computing
a regression of the differential expression profile of one gene against all others,
instead of using a correlation metric to identify significant edges between genes.
The resulting coefficients represent the strength of the relationship between the
corresponding pair of genes, where zero strength indicates no edge between them.
Additionally, Lasso has the advantage of yielding accurate parameter estimates
even with small sample sizes [13]. For N genes and M samples (both under
control and stress), building the differential co-expression network with Lasso
takes O(NM2) time. However, for the case where there are many more variables
than observations (i.e., N � M), as the usual biological expression datasets, it
takes O(NM) time [11]. While the proposed approach is used in this work for
building differential co-expression networks, it can also more generally be used
for building co-expression networks.

Lasso simultaneously performs variable selection and regularization by forc-
ing the least significant coefficients to be zero, which naturally favors the infer-
ence of a sparse network. It performs �1 regularization by forcing the sum of the
absolute value of the regression coefficients to be less than a fixed value. Lasso
iteratively searches for a degree of penalty λ that minimizes the mean square
error of the regression. At the optimal value of λ, it performs variable selec-
tion, which results in a reduced number of non-zero coefficients. The variables
with a zero value coefficient are excluded from impacting the regression, which
prevents the model from over-fitting. Lasso properties are particularly useful
in the construction of co-expression networks since these type of networks are
expected to be sparse [36]. Moreover, it avoids the need to define a threshold
for selecting meaningful edges from the pairwise relationships between genes.
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Finally, since Lasso supports small sample sizes, it is well suited for most typical
transcriptomic data sets.

The proposed approach is used in combination with a slightly modified ver-
sion of the workflow proposed in [26] (but with a different module detection
algorithm to identify genes that respond to salt stress, namely, the ANGEL
algorithm [27]). RNA-seq data was accessed from the GEO database [8], acces-
sion number GSE98455. It represents 57,845 gene expression profiles of shoot
tissues measured under control and stress conditions in 92 accessions of the Rice
Diversity Panel 1 [12]. A total of 25 genes are identified to respond to salt stress
and as differentially expressed genes (DEG). About half of these genes (11) are
reported with a statistically significant number of different GO annotations rel-
evant to salt stress response.

2 Methodology

This section presents a description of differential co-expression networks, intro-
duces the Lasso-based approach to build differential co-expression networks,
summarize the Angel algorithm to detect overlapping modules in the network,
and explains an enrichment technique to evaluate the biological significance of
the detected modules.

2.1 Differential Co-expression Network

A network is an undirected graph G = (V,E) where V = {v1, v2, . . . , vN} is
a set of N vertices (or nodes) and E = {e1, e2, . . . , eQ} is a set of Q edges
(or links) between vertices. G = (V,E) can be represented by an adjacency
matrix A ∈ {0, 1}N×N that is symmetric. A matrix entry in positions (vi, vj)
and (vj , vi) is equal to 1 whenever there is an edge connecting vertices vi and vj ,
and equal to 0 otherwise. Differential co-expression is the altered co-expression
patterns of genes between two particular conditions (e.g., control and stress). In
a differential co-expression network, each vertex corresponds to a gene. A link
indicates a common alteration in the expression pattern between two genes when
changing from one condition to the other. Differential co-expression networks are
of biological interest because adjacent nodes in the network represent genes that
jointly respond to similar stress conditions.

2.2 Co-expression Network Construction with Lasso

Lasso regressions [33] can be seen an advantageous approach for the Constructing
co-expression networks using Lasso [33] offers key advantages compared to other
methods that rely on the Pearson correlation coefficient (or any other correlation
metric). Several assumptions behind computing Pearson limit effectiveness [17]
and statistical significance especially if sample sizes are small [6]. Such condi-
tion is common across numerous efforts to build co-expression networks [20,22].
The majority of typical transcriptome datasets tend to be small in terms of the
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number of samples. Differential co-expression networks are built using differen-
tial expression profiles instead of the expression profiles themselves as in co-
expression networks. This section explains build differential co-expression net-
works using Lasso can lead to robust networks even in the presence of small
sample sizes.

Furthermore, note that building a network G = (V,E), that is, a repre-
sentation of pairwise relationships E over a set of vertices V , is equivalent to
inferring a neighborhood for each vertex (i.e., the set of vertices to which it is
connected). Given M observations on N genes (vertices) represented in a data
matrix X ∈ R

N×M , the set of neighbors of vertex vi ∈ V , denoted,

V (vi) := {vj : (vi, vj) ∈ E}
is inferred by regressing xi against all other variables

x\i := [x1, . . . , xi−1, xi+1, . . . , xN ]T ∈ R
N−1.

The result is a matrix B ∈ R
N×N whose diagonal is zero and the remaining N−1

entries of a row i correspond to the coefficients of the regression of xi against x\i.
Each entry B(i, j) represents the strength of the relationship between vertices
vi and vj , where zero strength indicates no connection.

For each variable xi the regression problem has the form:

minimize
βi

∥∥Xi − X\iβi

∥∥2

2
+ λ ‖βi‖1 , (1)

where Xi and X\i represent the observations on xi (i.e., the transpose of the
first row of X) and the rest of the variables, respectively. The vector βi ∈ R

N−1

is a vector of coefficients for xi. In Eq. 1, the first term can be interpreted as
a local log-likelihood of βi and the �1 penalty is added to enforce sparsity. The
regularization parameter λ balancing the two terms. Lasso is repeated for all
the variables leading to a set of N × N coefficients that are computed from
β1, . . . , βN . Note that there is no guarantee that B(i, j) �= 0 implies B(j, i) �= 0.
Therefore, the information in V (vi) and V (vj) is combined to enforce symmetry:
an edge (vi, vj) is meaningful, if B(i, j) and B(j, i) are both non-zero.

Note also that including the �1 penalty allows Lasso to identify the vari-
ables that are strongly associated with the response variable (i.e., variable selec-
tion). Since the value of the regularization parameter λ determines the degree
of penalty and the accuracy of the model, cross-validation is used to select a
regularization parameter that minimizes the mean-squared error. If the degree
of penalty λ is equal to zero, the solution is the same as least-squares (LS) linear
regression [5]. For larger values of λ, larger number of coefficients are shrunk
towards zero. Compared to LS, Lasso offers the following advantage. Unlike LS,
Lasso does not yield non-zero estimates, which would results in a fully connected
network, and giving rise to the problem of setting a threshold above which and
edge is considered significant. Lasso avoids this additional step as it simultane-
ously performs parameter estimation and variable selection by forcing the least
significant coefficients to zero through the �1 penalty.
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2.3 Overlapping Clustering with ANGEL

ANGEL [27] is a static node-centric algorithm for detecting potentially overlap-
ping modules in networks. It takes as input a graph G, a merging threshold φ,
and an empty set of communities C. The algorithm’s main loop cycles over each
node, extracts the corresponding ego-minus-ego network, and computes the local
communities it contains using Label Propagation (LP) [23]. During LP, every
node is initialized with a unique label. In following steps, each node adopts the
current label of the majority of its neighbors. In case of bow-tie situations, the
classic LP formulation randomly selects a single label for the contended node.
Here however soft community memberships are allowed, that is, each node can
belong to multiple communities for the case of a bow-tie configuration. Once
the outer loop on the network nodes is completed, the algorithm compacts the
community set to avoid the presence of fully contained communities.

Finally, note that compared to HLC [1], the computational cost of ANGEL
is significant less and can be approximated by O(|V |).

2.4 Functional Enrichment

Our analysis of differential co-expression networks relies on the detection of gene
modules. Such modules are used to investigate relationships occurring between
genes performing similar biological functions [34]. Functional enrichment of each
module is a critical step to understand the underlying processes contributing
to phenotype or stress responses. This section describes how to evaluates the
quality of the modules using Gene Ontology (GO) [2,9] enrichment.

Given a gene module, an enrichment analysis finds which GO terms are
over-represented or under-represented by using annotations for that gene set.
Gene module enrichment analysis is performed using the Fisher’s Exact Test [32]
in combination with a robust False Discovery Rate (FDR) [19] correction for
multiple testing. Fisher’s exact test is a statistical significance test used in the
analysis of contingency tables. The FDR control is a statistical method used
in multiple hypothesis testing to correct for multiple comparisons. In a list of
statistically significant findings, FDR is used to control the expected proportion
of incorrectly rejected null hypotheses (“false discoveries”). Here, a Benjamini-
Hochberg correction is used [4]. The result for each module is a list of statistically
significant GO terms ranked by their adjusted p-values.

For each GO term in each module, a contingency table is built (see Table 1).
The hypothesis statement is the following for each module:

H0: The module is a random sample from network.
H1: The module has more genes with the GO term than expected by chance.

Following the configuration in Table 1, the p-value is calculated:

p =

(
a + b

a

)(
c + d

c

)

(
N

a + c

) =

(
a + b

b

)(
c + d

d

)

(
N

b + d

) (2)
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Table 1. Contingency table configuration for each module.

Genes in module Genes out the module Total

Annotated genes a b a + b

Not annotated genes c d c + d

Total a + c b + d N

The p-value represents the probability (or chance) of seeing at least a genes out
of the total a+c genes in the module annotated with a particular GO term, given
the proportion (a + b)/N of genes in the whole genome that are annotated with
that GO term. That is, the GO terms shared by the genes in each module are
compared to the background distribution of the annotations. The closer the p-
value is to zero, the more significant is the association of the particular GO term
with the module of genes (i.e., the less likely that the observed annotation of the
GO term to the module occurs by chance). In other words, if all of the genes in
a module were associated with, say “DNA repair”, this term would be optimally
significant. However, since all genes in the genome (with GO annotations) are
indirectly associated with the top level term “biological process”, this would not
be significant if all the genes in a module were associated with this high-level
term.

If a module has at least one GO term with a significant p-value, the module is
said to be enriched. This binary classification of a module between enriched and
non-enriched allows us to evaluate, in a general way, the biological significance of
the modules. The higher the proportion of enriched modules in a differential co-
expression network, the better they capture the biological interactions of genes
that jointly respond to a specific stress condition.

3 Case Study

This section presents a case study in the identification of genes that respond
to saline stress in rice. The differential co-expression network is built using the
approach presented in Section 2.2 and the framework in [26], with the ANGEL
module detecting algorithm. The goal of this case study is to evaluate whether
the proposed approach, in addition to being less computationally costly, finds a
number of differentially expressed genes (DEG) and genes with GO annotations
relevant to salt stress that is statistically significant.

3.1 Association Network Construction with Lasso

Consider the input data X ∈ R
N×M , which represents the matrix of differential

expression profiles (corresponds to L1 in [26]). The matrix X results from pre-
processing RNA-seq data of rice both under control and salt stress conditions
(GEO database [8] accession number GSE98455). Therefore, X contains the LFC
of N = 8, 929 genes under control and salt stress conditions in M = 92 samples.
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The differential co-expression network, inferred using Lasso regressions, is
composed of |V | = 7, 474 vertices and |E| = 67, 061 edges. All the genes in this
network are part of the network previously constructed in [26] and preserves
21,123 out of 39,850,128 of the original connections. IN other words, the resulting
network is a subnetwork of the one constructed in [26].

3.2 Identification of Co-expression Modules

In [26], the approach for module detection requires finding a threshold for Pear-
son correlations to define the adjacency matrix. Here the proposed Lasso-based
approach bypasses this step since it is able to directly infer network connections
without additional parameters.

The ANGEL algorithm distributes a total of 5,577 genes across 1,462 modules
with at least 3 genes each. Using the module enrichment technique described in
Section 2, a total of 65% of all modules are identified as enriched, meaning that
they have some over-represented GO annotations. In other words, the modules
identified by ANGEL are biologically relevant. Figure 1 compares the threshold
Pearson network (thP) in [26] with Lasso-based network (nbL), both in terms
of the proportion of enriched modules and gene overlaps. Regarding module
enrichment, note that the proposed approach surpasses the approach of [26].

Fig. 1. Modules enrichment proportion and overlapping proportion of genes for thP
and nbL networks.

Regarding the overlapping modules of genes for the nbL network, notice that
the amount of transcription factors (TF) in the gene set belonging to multiple
modules is statistically significant (p-value less than 0.05 for the Fisher’s Exact
Test). This supports the biological relevance of the overlapping modules. TFs
regulate the expression of multiple genes and hence affect multiple pathways of
varying functions [25]. Since TFs control different functions, they are expected to
be found in overlapping modules. Another interesting finding is that, according
to an enrichment analysis in ShynyGO [14], one of the pathways with the highest
over-representation in the set of overlapping genes that corresponds to “response
to stress” (GO:0006950).
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3.3 Gene Selection

Based on the modules detected with ANGEL in the nbL network (following
the workflow proposed in [26]), a total of 25 genes are identified as responsive
to salt stress. All 25 genes are also identified as DEG. Genes LOC Os07g39390,
LOC Os04g35010, and LOC Os01g33450 are selected by both approaches, in the
thP and nbL network.

From the 25 identified genes, after individual gene enrichment with the
RGAP [18] and UniProt [10] databases, 11 genes report 17 different GO annota-
tions relevant to salt stress response (which is statistically significant based on
Fisher’s exact test, p-value< 0.05). Table 2 lists these genes and the correspond-
ing GO annotations relevant to salt stress response. The remaining 14 selected
genes are:

– LOC Os01g25920,
– LOC Os01g33450,
– LOC Os01g35789,
– LOC Os01g35930,
– LOC Os02g05790,

– LOC Os05g36994,
– LOC Os06g16050,
– LOC Os06g22394,
– LOC Os06g38210,
– LOC Os07g22494,

– LOC Os07g39390,
– LOC Os09g06634,
– LOC Os10g04050,
– LOC Os10g24094.

The apoplast (GO:0048046) is the first subcellular compartment confronted
with stress conditions when plants are subjected to salt stress [31]. Stress is
first sensed by the receptors in membranes (GO:0016020), which then gener-
ates secondary signal messengers like calcium, reactive oxygen species, kinases
(GO:0004672, GO:0016301, GO:0016740), and phosphates followed by the acti-
vation of transcription factor genes (GO:0003700) that eventually coordinates
the plant’s adaptive biochemical and physiological responses [16] (GO:0006950,
GO:0009628, GO:0006952). Protein kinases regulate the phosphorylation and
dephosphorylation of other proteins, and play a crucial role in stress signal trans-
duction. In addition, serine/threonine protein kinases (GO:0004674) have also
been known to be involved in multi-stress tolerance in plants [16].

Salt-induced toxicity negatively affects CO2 fixation and thylakoid reactions
of photosynthesis, which take place in thylakoids (GO:0009579) and the stroma
of the chloroplast, resulting in poor plant growth and reduction in yield [15].
An essential process for growth, development, and homeostasis of organisms is
the dynamic balance between ubiquitination and deubiquitination (GO:0071108,
GO:1990380, GO:0004843, GO:1990380) [30]. In particular, inhibition of shoot
and root development (GO:2000280) is the primary response to salt stress [35].
Other, independent studies confirm that the enhanced catalytic and transferase
activities (GO:0016740) in salt-stressed rice plants, as well as the transport
(GO:0006810) of salt and all related ions through the plant, reinforce salt
stress tolerance [24].
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Table 2. Selected genes with associated GO terms relevant to salt stress response.

LOC ID GO term GO name

LOC Os03g44880 GO:2000280 Regulation of root development

LOC Os03g63870 GO:0006950 Response to stress

GO:0009628 Response to abiotic stimulus

LOC Os04g35010 GO:0003700 DNA-binding transcription factor activity

LOC Os06g09688 GO:0016020 Membrane

GO:0009579 Thylakoid

LOC Os07g15440 GO:0071108 Protein K48-linked deubiquitination

GO:1990380 Lys48-specific deubiquitinase activity

GO:0004843 Cysteine-type deubiquitinase activity

GO:1990380 Lys48-specific deubiquitinase activity

LOC Os07g37385 GO:0006810 Transport

LOC Os07g43570 GO:0004674 Protein serine/threonine kinase activity

GO:0004672 Protein kinase activity

GO:0016301 Kinase activity

GO:0016740 Transferase activity

GO:0016020 Membrane

LOC Os10g40520 GO:0006810 Transport

LOC Os12g01290 GO:0006952 Defense response

LOC Os12g14440 GO:0048046 Apoplast

LOC Os12g27220 GO:0016740 Transferase activity

4 Concluding Remarks

This work proposes a novel approach for constructing co-expression net-
works based on the penalized least absolute shrinkage and selection operator
(Lasso) [33]. Edges between genes are stablished based on the Lasso regres-
sion coefficients between the differential expression profile of one gene against
all others. The approach extends the workflow described in [26] for identify-
ing genes related to salt stress in rice. In particular, it uses the ANGEL algo-
rithm, a static node-centric algorithm for detecting modules with overlaps, which
improves effectiveness and time complexity. Note that the proposed approach can
be used for building differential and non-differential co-expression networks.

The Lasso-based approach is computationally appealing as each of the N
Lasso problems can be solved independently. This makes the proposed approach
a good candidate to exploit parallelization [21]. Moreover, this method avoids
the additional problem that often arises in constructing co-expression networks
based on correlations: the definition of a threshold to identify the strongest con-
nections that define the edges of the network. Using Lasso is especially convenient
in inferring differential co-expression networks because it yields accurate param-
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eter estimates even with small sample sizes [13], a common condition studying
expression data under control and stress conditions.

The modified workflow was applied to a case study of rice under salt stress.
The resulting network, inferred with the Lasso approach contained 7,474 vertices
and 67,061 edges. 65% of the identified modules were enriched. The amount of
transcription factors in the set of genes belonging to multiple modules (overlap-
ping genes) was statistically significant. Finally, a total of 25 genes were selected
as genes that respond to salt stress in rice. All 25 genes were also identified as
DEG. Of these identified genes, 11 reported a statistically significant number of
different GO annotations relevant to the salt stress response.

As future work, the proposed Lasso-based approach can be applied to infer
co-expression networks of other organisms and other types of stresses. More-
over, the inferred networks can be used in comparisons and downstream analysis
of co-expression networks. Developing a parallel implementation of the current
workflow is an important research direction to further reduce time complexity.
Further exploration of co-expression networks should provide valuable insights
into the gene interactions and their joint response to stresses.
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