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Abstract. Multi-layer Complex networks are commonly used for modeling and
analysing biological entities. This paper presents a new computational frame-
work called COMBO (CombiningMulti Bio Omics) for generating and analyzing
heterogeneous multi-layer networks. Our model uses gene expression and DNA-
methylation data. The power of COMBO relies on its ability to join different omics
to study the complex interplay between various components in the disease. We
tested the reliability and versatility of COMBOon colon and lung adenocarcinoma
cancer data obtained from the TCGA database.
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1 Introduction

Understanding tumor phenotype is a challenging task. Indeed, independently investi-
gating each component is not enough to characterize its entire biology. In addition,
studying the interactions and relations between the different omics (i.e., genomics, tran-
scriptomics, and proteomics) in the cancer microenvironment is crucial to stratify case
subtypes or distinguish cases from controls. For example, the study of single gene pertur-
bations is insufficient to explain the cause of abnormal behavior in a tissue that triggers
the disease. The usage of Complex Networks to describe natural phenomena such as
biological systems has taken over [1]. This approach has been demonstrated to help
reveal unknown mechanisms behind the different diseases. Indeed, the interdependence
betweenmultiple biological elements is responsible for disease onset and progression [2,
3]. Here, the network represents a practical approach [4, 5]. The analysis of omics func-
tional interaction networks (e.g., genes, proteins, and ligands) is promising for unveiling
their regulatory mechanisms. However, due to the vast number of elements and infor-
mation provided by the biological components, using networks to highlight the main
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aspects of a condition is not straightforward. Nevertheless, it represents a significant
milestone for science [6]. However, in the biological field, simple networks (where
there is at most one edge between each pair of nodes) are not suitable to represent the
multiple types of relationships among various constituents [7–9]. On the other hand,
multi-layer networks (every node is assumed to belong to every layer, each layer rep-
resents a specific kind of relation, along with intralayer edges type for each layer) fit
nicely in real-world system interactions avoiding the loss of essential properties [8,
10, 11]. There are several examples of multi-layer network usage in Biology [12, 13].
As the integration of different sources of genetic data is still challenging, modeling a
multilayer network in which each layer represents specific omics can improve cancer
characterization [14–17]. However, state-of-art methods focus on visualization and anal-
ysis of multi-layer networks, leaving the pre-processing phase to the user [16, 18–21].
This study proposes a bioinformatics framework to infer important information about a
specific disease by integrating the transcriptional and epigenetic (methylation) features.
We propose a novel pipeline, COMBO (Combining Multi Bio Omics), for multi-layer
network inference and analysis to identify relevant pathways in the studied case. Tak-
ing advantage of the Boolean implication method, both transcriptomic and epigenomic
data were analyzed through StepMiner and BooleanNet systems [22, 23]. The goal was
to identify the implication between the different transcripts and methylated CpGs. The
obtained results were used to generate heterogeneous multi-layer graphs. Subsequently,
Neo4J was exploited to query the multi-layer network with properly defined Cypher
queries. The model has been tested on colon cancer samples (TCGA-COAD) having the
amplification of chromosome 20, also called GAIN, compared to colon tumoral samples
without that chromosomal alteration, identified as DISOMIC. Only the GAIN multi-
layer network exhibited interesting patterns when searching for all the paths that link the
expression layer with the methylation layer, including genes located on chromosome 20.
In addition, the enriched analysis of the genes composing the path shows the alteration
of pathways that play an essential role in cancer. To demonstrate the plasticity of the
pipeline to any human disease, we tested it in TCGA-LUAD samples. The comparison
focused on samples having upregulated IWS1 transcript (upIWS1) versus those with
downregulated IWS1 (downIWS1). As shown for COAD, the paths that involve IWS1
and upregulated genes are available only for the multi-layer generated for the upIWS1
condition. Furthermore, a Reactome enrichment analysis shows the alteration of crucial
genes in lung adenocarcinoma. Our bioinformatics approach is a flexible and easy-to-use
method in preliminary cancer studies to identify significant disease signatures.

2 Materials and Methods

2.1 Pipeline Design

The pipeline comprises five phases (Fig. 1). First, it generates multi-layer networks for
each condition under investigation. Next, networks are stored in Neo4j. Then, through
custom Cypher queries, the multi-layer is interrogated to generate sub-networks that can
be analyzed differently (i.e., enrichment pathway analysis).

STEP 1: Input Pre-preprocessing. The input files for the analysis consist of the
expression and methylation matrices containing pre-processed counts and B-values,
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Fig. 1. The COMBO pipeline workflow.

respectively. The initial matrix contains all the samples representing the conditions to
compare. Two tables are needed for the differential expression and methylation analysis.
The first one contains the name of each sample and its group. The second table represents
the comparisons between groups. The number of columns in the comparison table equals
the number of multi-layer networks. The first step is processing the input matrices
(expression andmethylation) to identify differentially expressed genes and differentially
methylated CpGs. The differentially expressed genes and the methylated probes are
generated using the R package limma [24]. The user can choose the threshold for the
identification of differentially expressed genes (default = 1.0, corresponding to logFC
< −1 and logFC > 1) and differentially methylated probes (default = 0, equivalent to
logFC< 0 and logFC > 0) along with the adjusted p-value (default< 0.05). In addition,
the count and the B-value in the expression and methylation matrices are converted in
log2FPKMandM-value, respectively. These will be provided as input for the next phase.

STEP 2: Boolean Implication. The second step is the generation of boolean
implications with the StepMiner [22] and BooleanNet [23] algorithms. StepMiner
Algorithm was initially developed to extract binary patterns in time-series microarray
gene expression data. After sorting values in ascending order, StepMiner fits the data by
a step function to discretize the jump from low to high values. In this step, it finds the
best threshold t for each gene. Then, values above t+ 0.5 are classified as “High,” values
below t − 0.5 are classified as “low,” and values between t − 0.5 and t+ 0.5 are classified
as “intermediate.” Two different discretized matrix was generated for expression and
methylation data. log2FPKM for expression data andM-value for methylation data were
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used as input for StepMiner. TheM-value is calculated as the log2 ratio of the intensities
of themethylated probe versus the unmethylated probe, as reported in [25].TheBoolean
Values obtained from Step Miner are converted in the gene-pairs relationship using
BooleanNet. The Boolean implications between gene expression and methylation levels
are extracted as “if-then” relationships. All the potential pairs of values of genes in each
sample are plotted in a scatter plot which is divided into four quadrants “low-low”,
“low-high”, “high-low”, and “high-high.” For each pair of genes, the algorithm checks
which quadrant is significantly sparsely populated with points compared to the other
quadrants. In the scatter plot, each point represents the expression value of the pair of
genes for a specific sample. Based on the empty quadrant in the scatter plot, the algorithm
detects six types of Boolean implications. The Boolean relationships can be symmetric
or asymmetric. Symmetric relationships include the equivalent type, which corresponds
to highly positively correlated genes, or the opposite type, which corresponds to the
highly negatively correlated genes. The asymmetric ones correspond to every sparse
quadrant and are Divided into low—low, high—low, low—high, and high—high. An
implication between two genes is significant when one or more quadrants is sparsely
populated according to a statistical test, and there are enough high and low values for
each gene. Although both software packages are pretty old, recent papers confirm that
StepMiner and BooleanNet are the state-of-art methods to infer Boolean implications
between biological entities [26–29]. The user can select the delta threshold for Step-
Miner, the BooleanNet statistic parameter (s), and the p-value threshold. The statistical
parameters used for Boolean analysis in COAD samples were s= 4 for methylation data
and s = 2 for RNA-seq data. Whereas s = 2 was used for expression and methylation
data in LUAD samples. In the COMBO pipeline the user can choose the p-value (default
= 0.01) and the BooleanNet statistic (default = 6).

STEP 3: Multi-layer Network Synthesis. Networks (or graphs) are mathematical
tools to represent relationships between entities or objects. For example, interactions,
reactions, or structural relations are depicted as the links between the interacting ele-
ments (genes, proteins, metabolites) in a biological network. Multi-layer networks have
different layers containing a set of homogeneous nodes equal or not between the lay-
ers [30]. The edges between nodes in the same layer are indicated as intra-layer edges,
whereas the edges linking different layers are called inter-layer edges. When inter-layer
edges connect nodes in two different layers representing the same entity, the network is
classified as a multiplex network [31].

The third step is the multi-layer generation. We show an example in Fig. 2. In
the example, we include three layers: expression, meta-pathway, and methylation. The
expression level contains nodes and directed intra-layer edges selected from Boolean-
Net [23] analysis conducted with RNA-seq data. Similarly, the nodes and directed
intra-layer edges that participate in the methylation level are selected from Boolean-
Net methylation output. The meta-pathway layer was added to connect the other two
layers. The meta-pathway is a network obtained by merging all KEGG pathways
through their common nodes, annotated with experimentally validated miRNA-target
and Transcription Factor-miRNA interactions [32–34]. Consequently, the meta-pathway
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Fig. 2. (A) A heterogeneous multi-layer network example (generated with pymnet python library
http://www.mkivela.com/pymnet/). The interlayer edges are depicted with different colors. (B)
Example of the structure of the single layer. The table shows the edges attribute for each layer.

layer includes genes, miRNAs, and metabolites linked with several edges, which rep-
resent a validated biological interaction (i.e., activation, repression, binding associa-
tion, compound, dissociation, expression, indirect effect, inhibition, miRNA inhibition,
phosphorylation, reaction product, reaction substrate, state change, transcription fac-
tor—miRNAactivation, ubiquitination).We followed the procedure described inAlaimo
et al. [32, 33] for the KEGG meta-pathway and the one described in Alaimo et al. [34]
for the Reactome-KEGGmeta-pathway, which integrates REACTOME pathways to the
meta-pathway environment, yielding a richer and more comprehensive model. A unique
nodeID is generated for each node in the three layers. If a node is present in two or more
layers, the ID will differ because each layer reports different aspects of the same gene.
In addition, directed inter-layer edges are inserted between two nodes representing the
same gene to connect the other layers. Each node has an annotation that the users will
employ for querying the network. The default annotations are divided into four cate-
gories: (i) nodes details: nodeID, layer, entrezId, symbol, and chromosomal localization
of the gene; (ii) expression of the genes generated in the first step: using the param-
eters defined by the user, the upregulated genes are indicated as “UP_REG,” whereas

http://www.mkivela.com/pymnet/
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the downregulated genes are annotated as “DOWN_REG.” The remaining genes do not
have any annotation; (iii) methylation information: two columns are included in this
section, one for the hypomethylated probes and the other for the hypermethylated one.
In addition, for each hyper- or hypo-methylated CpG site, we also report the location
(Body, Exon, 3’UTR, 5’UTR, Promoter); (iv) custom annotation: the user can choose
to add custom annotations for each node, loading a table for each annotation reporting
the name of the genes with the respective annotation in the different conditions.

STEP 4–5: Multi-layer Network Querying. The last two steps involve using Neo4j
to store the multi-layers network and query its content. Neo4j (https://neo4j.com/) is a
native graph database that implements a true graph model down to the storage level.
Once the multi-layer is stored on Neo4J, the user can query the network using Cypher
language to find a correlation between the nodes in the transcription and methylation
layers. Cypher is Neo4j’s query language to retrieve data from the graph andwas inspired
by SQL. Based on specific node annotation, the user can choose custom Cypher queries.

2.2 Colon Cancer Case Study

The Gene expression and methylation data of tumor samples and normal mucosa
were obtained from The Cancer Genome Atlas (TCGA; https://www.cancer.gov/tcga)
database. The samples were grouped into three classes, the “GAIN-chr20” with the
amplification of chromosome 20, the “DIS-chr20” without amplification in that chro-
mosome, and the mucosae group (“MU”). The corresponding clinical annotations and
chromosomal assets were obtained from the cBioPortal database. The samples having
both the RNA-seq andmethylation data were selected: DIS-chr20 (n= 68), GAIN-chr20
(n = 89), MU (n = 19). Samples presenting microsatellite instability were inserted in
this analysis to have a significant comparison.

2.3 Lung Cancer Case Study

TCGA-LUAD project samples were downloaded from The Cancer Genome Atlas
(TCGA; https://www.cancer.gov/tcga) databases. We divided the samples into
“upIWS1” and “downIWS1,” identifying the distribution of IWS1 transcript across the
samples. Since the distribution is normal (Kolmogorov-Smirnov test, p-value= 0.1309),
we selected the samples using the threshold calculated as follows: averageFPKM ±
σ(standarddeviation) (mean = 0.8, σ = 0.2). Gene expression and methylation data
of tumor samples and normal tissue were downloaded. The samples having both the
RNA-seq and methylation data were selected: upIWS1 (n = 95), downIWS1 (n = 47),
normal tissues (n = 21).

2.4 Data Analysis

The raw counts and B-values were downloaded and pre-processed using the TCGAbi-
olinks [35] package. The statistical parameters used for the Boolean analysis in COAD
samples were s = 4 for methylation data and s = 2 for RNA-seq data. Whereas s = 2
was used for expression and methylation data in LUAD samples. We used the default

https://neo4j.com/
https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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parameters for the analysis. For each node, we added some custom attributes to query the
network. For example, we added the results of the DEG analysis of GAIN-chr20vsDIS-
chr20 and upIWS1vsDownIWS1 in the two case studies, respectively. The genes are
indicated as “OVER_T” or “DOWN_T.” In addition, the protein expression, mutation
status, and the transcription factor annotation for each node were also inserted. The
protein expression data were retrieved from The Cancer Protein Atlas—TCPA https://
tcpaportal.org/tcpa/) for the selected TCGA-COAD samples. The expression was deter-
mined by calculating the unpaired two-sample t-test and the mean between the sample
in the same group. The mutation data were collected in cBioPortal (https://www.cbi
oportal.org/) for each condition. The complete list of transcription factors was retrieved
from the Human Transcription Factor database (http://humantfs.ccbr.utoronto.ca/) [36].
The insertion of custom information allowed us to query the multi-layer networks more
comprehensively. The multi-layer networks were generated using Neo4J (https://neo4j.
com/). The query results from the two conditions were compared to maintain only the
exclusive nodes and edges. Then, the remaining nodes were subjected to Reactome
enrichment analysis using the ReactomePA R package [37].

3 Results and Discussion

Our multi-layer approach is an easy-to-use bioinformatics pipeline to generate and ana-
lyze multi-layer networks combining multi-omics data. To show the capability of this
method, we performed two case studies with colon and lung adenocarcinoma cancers
data retrieved from TCGA. The user can use this method for a preliminary study to
identify critical genes in a specific disease and evaluate the interplay between DNA
methylation and transcription. Finally, the multi-layer approach is also helpful for the
biomedical and research lab to filter the vast amount of RNA-seq and methylation data.

3.1 TCGA-COAD Results

The chromosome-20 amplification is a hallmark of colorectal cancer, along with the
amplification of chromosome 13, chromosome 8, and chromosome 7 [38, 39]. In recent
years, scientists have identified the importance of chr-20 amplification in colon can-
cer, mainly since it is the location of multiple oncogenes such as BCL2L1, AURKA,
TPX2, and SRC [40–44]. However, despite numerous functional studies of various
genes located in chromosome 20, the amplification of this chromosome in colon cancer
remains under-investigated, among other critical molecular features [45]. By construct-
ing a multi-layer network, we could identify remarkable pathways in COAD having the
chr20 amplification.

Initially, we selected the COAD samples deposited on TCGA, distinguishing the
samples having the amplification of chromosome 20 “GAIN-chr20” (Fig. 3A) and “DIS-
chr20” (Fig. 3B), which do not show aberration in that chromosome. In the GAIN-chr20
group, chromosome 13 amplification appears in 72% of samples because of the corre-
lation between the two chromosomal abnormalities [38, 39]. In addition, normal tissues
were also analyzed as a control. To demonstrate how the usage of Boolean implication
to generate the layer and, in general, how our approach is representative of disease

https://tcpaportal.org/tcpa/
https://www.cbioportal.org/
http://humantfs.ccbr.utoronto.ca/
https://neo4j.com/
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Fig. 3. (A) Chromosomal aberration distribution on TCGA GAIN-chr20 COAD samples (n =
89). 100% of samples show the amplification of chromosome 20. A small group also includes the
amplification of chromosome 13. (B) Chromosomal aberration distribution on TCGA DIS-chr20
COAD samples (n = 69). The samples were selected without the amplification of chromosome
20.

profile,we compared theOver-UpTgenes located on chromosome20 listed inCondorelli
et al. [38] with the nodes included in the RNAlayer of both multi-layers (GAIN-chr20
and DIS-chr20). A gene located on chromosome 20 is defined as Over-UpT if it is
upregulated in cancer and further overexpressed by gene dosage (“positive caricature
transcriptomic effect”) [38, 39]. Firstly, all the nodes on chromosome 20 selected using
the Boolean implicationwere comparedwith the Over-UpT genes reported inCondorelli
et al.. 11 nodes are shared between the GAIN-chr20 RNAlayer and the Over-UpT list.
These genes are absent in the DIS-chr20 RNAlayer. Then, more accurate research
was conducted, selecting all the nodes with annotations “UP_REG” and “OVER_T.”
Although Over-UpT genes were detected using a different methodology (microarray in
Condorelli et al. andRNA-seq in our approach) and a different logFC cutoff, 9Over-UpT
genes are in common (Fig. 4A). The list of shared genes, reported in Fig. 4B, shows
bona fide cancer driver genes, already implicated in cancer pathogenesis [46–54]. The
enrichment analysis of the common Over-UpT genes is reported in Fig. 4C. These genes
are involved in cancer-critical pathways.

Using the proper Neo4j queries, it is possible to extrapolate detailed information
about the phenotype studied.

Since the molecular signature that distinguishes the GAIN-chr20 from the DIS-
chr20 samples is the amplification of chromosome 20, we searched in the two multi-
layers for all the paths that involve nodes located on chromosome 20 (Fig. 5A). The
DIS-chr20 network did not show any path. This result demonstrates how the multi-
layer network method reproduces perfectly the condition studied. Figure 5 shows the
sub-network structure resulting from the query (B) and the enriched pathways heat
plot (C). For each pathway, the gene involved is indicated colored based on logFC
generated from the comparison between GAIN-chr20 and DIS-chr20. One of the main
pathways influenced is the “Signal Regulatory family interaction,” in which the SRC
transcript seems upregulated while the SIRP protein family results downregulated. The
Src family kinase has been studied as a therapeutic target in colon cancer since it is
usually overexpressed and associated with a worse prognosis [55, 56]. The multi-layer
nodes annotation shows that the SRC protein is overexpressed in the analyzed data. In
contrast, the downregulation of the SIRP family has been demonstrated fundamental for
inhibiting cell apoptosis in prostate cancer [57].
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Fig. 4. (A)Venn diagram showing the common Over-UpT genes located on chromosome 20
between DIS-chr20 RNAlayer (RL) (orange circle),GAIN-chr20 RL (green circle) and Condorelli
et al. list (purple circle). (B) List of Over-UpT common genes with the logFC comparing GAIN
andMucosae samples (logFC GAINvsMu) and GAIN and DIS samples (logFC GAINvsDIS). (C)
Bar plot of enriched terms.

Fig. 5. (A) Cypher query pattern includes all the paths connecting nodes located on chromosome
20. (B) Schematic Cytoscape representation of paths selected by a custom query. The node colors
depict the belonging layers: blue for the RNA layer, red for the CH3 layer, and grey for the MP
layer (C). The Heatmap reports the enrichment analysis starting from the nodes included in the
sub-network. The logFC is generated from the difference between GAIN-chr20 and DIS-chr20.

3.2 TCGA-LUNG Results

IWS1 is one of the critical elements in lung adenocarcinoma since its phosphorylation
influences the splicing and, consequently, the transcription of genes involved in cell
proliferation [58]. Usually, the tumoral cells regulate the gene’s transcription, promoting
the alternative splicing to generate multiple transcripts and control cancer pathobiology
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[59, 60]. Therefore, studying the multi-layer, we compared samples having upregulated
IWS1 versus downregulated samples.

Fig. 6. (A) Custom query representation which retrieves the connection between the source node
IWS1 in the CH3 layer (red) and any target node annotated as “UP_REG” in the RNA layer (blue).
Sub-network UpIWS1 obtained by Cypher query is depicted using Cytoscape in (B) No nodes lay
in MP layer. (C) Heatmap reports the enrichment analysis starting from the nodes included in the
sub-network. The logFC is generated from the difference between UpIWS1 and Normal tissue.

Fig. 7. (A) Designed Cypher query, which combines IWS1 node on CH3 layer (red) with
down-regulated RNA layer (blue) genes. (B) Schematic representation of the subnetwork resulting
from the before cited query. (C) The enrichment analysis result for the selected nodes is reported
as Heatmap. The logFC is generated from the difference between UpIWS1 and Normal tissue.

To identify the influence of IWS1 over other genes, the multi-layers were queried,
looking for all the paths that connect IWS1 in the methylation layer with the upregulated
genes (Fig. 6A) or the downregulated genes (Fig. 7A) in the expression layer. The query
retrieved a result only for the upIWS1 multi-layer and not for the downIWS1 condition.
The enrichment analysis (Fig. 6C) of the genes involved in the paths that connect IWS1
with upregulated genes shows an alteration of CCNA2, COL1A1 andMUC21 identified
as key molecules in the lung adenocarcinoma progression [61–63]. On the other hand,
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evaluating the enrichment analysis (Fig. 7C) on the genes obtained by Cypher query
looking for the connection between IWS1 and downregulated genes, AGER and SFTPA1
are highlighted. Both genes are usually downregulated in lung cancer and are validated
as risk factors in LUAD [64–66].

4 Conclusions

In conclusion, the COMBOmulti-layer approach is a new pipeline to query epigenomic
and transcriptomic data to identify relevant signatures in a specific disease. Furthermore,
themethod’s versatility allows the user to analyze several conditions focusingondifferent
aspects of the pathology.
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