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Abstract. Nowadays, many social media platforms are centered around
content creators (CC). On these platforms, the tie formation process
depends on two factors: (a) the exposure of users to CCs (decided by, e.g.,
a recommender system), and (b) the following decision-making process
of users. Recent research studies underlined the importance of content
quality by showing that under exploratory recommendation strategies,
the network eventually converges to a state where the higher the quality
of the CC, the higher their expected number of followers. In this paper,
we extend prior work by (a) looking beyond averages to assess the fair-
ness of the process and (b) investigating the importance of exploratory
recommendations for achieving fair outcomes. Using an analytical app-
roach, we show that non-exploratory recommendations converge fast but
usually lead to unfair outcomes. Moreover, even with exploration, we are
only guaranteed fair outcomes for the highest (and lowest) quality CCs.

Keywords: Social network formation · Individual fairness · Markov
chains

1 Introduction

The past couple of decades brought a steep increase in the impact social media
platforms have on our lives, e.g., by shaping the information we receive [1] and
the opinions we form [2]. During this time, platforms previously designed to only
connect real-life friends slowly encouraged users to follow strangers based on their
content. Today, platforms such as YouTube, Twitter, Instagram, and TikTok are
heavily centred around User Generated Content (UGC) and use recommender
systems (RSs) to facilitate the exploration of content. In response to this change,
some users specialize in creating even semi-professional content that can attract
more and more followers to the point that they can make revenue based on their
audience. Similarly to the labour market [3], it is then natural to expect that
these online platforms guarantee fairness for the content creators (CCs) in a way
that equally good CCs should be rewarded similarly in terms of visibility and
audience, and ultimately of income. Since the network formation process is often
heavily mediated by the RSs, it is thus appropriate to ask whether they produce
fair outcomes for the CCs.
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To first understand the structure and the properties of these social media
platforms, [4] proposed a simple model in which (a) each CC has an intrinsic
and objective quality, (b) in each round, users receive a recommendation for a
CC (which could be drawn from the uniform distribution, or from a preferential
attachment (PA) process), and (c) users follow the recommended CC if this CC
has a higher quality than all the user’s current followees. By simulating this
model, Pagan et al. [4] showed that the expected number of followers (in-degree)
of the CCs follows a Zipf’s law [5]. In particular, the expected rankings of CCs
given by their quality and by the number of followers are the same.

While the findings of [4] suggest UGC-centered platforms are fair for the CCs,
some empirical evidence suggests differently. In cultural markets, for example, it
is often difficult to anticipate success [6]. The experimental study of [7] revealed
this is at least partially caused by the social influence. More precisely, as the
amount of information users receive about the prior choices of others increases,
the predictability of the items’ popularity decreases. This unpredictability can
be interpreted as a lack of fairness guarantees on some UGC-centered platforms.

We believe this apparent incongruity in previous work is mainly due to two
model limitations of [4]. First, the analysis is restricted to two exploratory recom-
mendation processes (i.e., processes which take risky actions in order to uncover
better options and are thus limited in the amount of social influence they exert).
However, in practice, not all RSs are as such. Recent literature in RSs argued
why and how we should encourage diversity by finding the right balance between
exploration and exploitation [8–11]. In practice, even pairs of popular items
might not be jointly accessible to users, i.e., if a user is recommended and fol-
lows one of the two, they will not be recommended the other [12]. This puts
real-world RSs in stark contrast with PA and uniform random (UR) recom-
mendations where every user can be recommended any CC. Second, the authors
only focus on the expected number of followers at convergence (i.e., after all users
were eventually recommended the best CC). However, such ex-ante fairness does
not imply ex-post fairness (i.e., even if in expectation CCs receive a number of
followers proportional to their quality, many of the actual outcomes that could
materialize are unfair) [13]. Moreover, as also noted by the authors [4], there
might be long times to convergence. This means that even if a fair outcome
would eventually be reached, this might not happen within reasonable time.

This paper aims to address these two challenges by bridging between the
network science, RS, and algorithmic fairness communities. More precisely, the
current work (a) defines both ex-ante and ex-post fairness metrics for CCs, (b)
extends the model with extreme PA (a non-exploratory RS, inspired by the popu-
larity RS[14], which only recommends the most followed CCs), (c) uses Markov
Chains to theoretically study the network formation process and its fairness
under extreme PA, and (d) compares the network formation processes and their
fairness under extreme PA with the ones under PA and UR recommendations
(either by referring to prior work, or by novel analytical and numerical results).
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2 Related Work

Networks. After the pioneering work on the random graph model [15], the com-
plex networks community started developing simple yet insightful mechanisms
that explain the formation of social networks (e.g., the small-world network
model [16], and the preferential attachment model -PA- [17]). In PA, newborns
form connections to existing nodes with a probability proportional to the degree.
This rich-get-richer phenomenon successfully reproduces the idea that popular
users experience higher visibility, which in turns brings them more popularity.
On the other hand, it gives little emphasis on the socio-economic microscopic
foundations that explain why individuals make certain connections. Focusing
on this alternative approach, one line of research in sociology (Stochastic Actor
Oriented Models [18]) and one in economics (strategic network formation models
[19]) take an utilitarian perspective: agents build their connections to maximize
some benefit e.g., their network centrality. The quality-based model of Pagan
et al. [4] combines these approaches by using a UR or PA-based RSs and a
utilitarian following decision-making function for users. To enhance our under-
standing on the coupling between RS and human network behavior, we add a
non-exploratory RS and investigate the fairness of the resulting outcomes.

Fairness. Researchers are not only concerned with the average performances of
processes, but also with the equity of these processes in impacting individuals.
This is reflected by the extensive work on developing fairness measures as well
as a methodology to choose the most suitable one depending on the applica-
tion domain [20–22]. From these various fairness metrics, we focus on individual
fairness which assesses the degree similarly qualified individuals receive simi-
larly quality outcomes (see [23] for an overview of its importance and apparent
incompatibility with other fairness metrics). An important phenomenon is the
timing effect, according to which it is not enough to specify a welfare function
but also when this should be measured (ex-ante or ex-post) [13]. Building on
these, we define and investigate both the ex-ante and ex-post individual fairness
for CCs.

Recommender Systems. Recently, the RS community argued for the importance
of looking beyond accuracy [8] in RS-evaluation. Design-wise, there is an ongoing
struggle to develop diverse RSs [9–11] which, moreover, ensure that any two
items could be recommended jointly to users [12]. This perhaps explains why
the popularity-based algorithms implemented within the RS community [14,24]
differ from PA [4,17] by not allowing for a complete exploration of alternatives.
Our motivation to analyse extreme PA is grounded in this prior work, although
our goal is to understand the network-formation process and its fairness. We
also depart from the experimental study of [7] as we (a) formally define fairness
metrics, (b) use theoretical tools to understand why social influence decreases
fairness, and (c) also look at network-specific metrics (the time to convergence).
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3 Model

As mentioned in the previous two sections, our work is based on the quality-
based model proposed by [4] and briefly presented below. As any model, this is
based on some simplifying assumptions, for which we refer the user back to the
original paper. Note that our notation occasionally differs from [4] in order to
allow for future extensions. The next two subsections contain our advancements
of the model: (a) a RS-based formulation of the network formation process (plus
the definition of the new RS, extreme PA), and (b) the fairness definitions.

We assume users can be partitioned into n ≥ 2 content creators (CCs) and
m (non-CC) users, with m � n. We refer to CCs as CC1, CC2, . . . , CCn and
assume they are ordered strictly by an existing objective quality. That is, CC1

is the absolute best CC, CC2 the next best CC, and so on. Every user can
follow any content creator thus leading to a bipartite, unweighted, and directed
network.1 We represent this network by its adjacency matrix A ∈ {0, 1}m×n,
such that (s.t.) au,i is 1 if user u follows CCi, and 0 otherwise.

The network formation is a sequential dynamic process where (a) the network
is initially empty, and (b) at each timestep, each user is recommended a CC which
they can follow or not. Formally, let At capture the state of the network at time
t. By assumption (a), a0

u,i = 0 for each user u ∈ m and CC i ∈ n.2 The next
subsection presents how recommendations are made and what are their effects.

3.1 Recommendation Function

We view recommendations as functions which map users to items, i.e., the rec-
ommendations at time t are given by Rt : m → n.3 The recommender system is
the algorithm which produces such a recommender function based on the current
state of the network. In this paper, we look at three such algorithms which we
list below from the most to the least exploratory one:

– Uniform Random (UR). Each user can be recommended any CC with an
equal probability, i.e., Rt

UR(u) ∼ U(n).
– Preferential Attachment (PA). Each content creator can be recommended

with a chance proportional to their current number of followers. That is, if

1 Although, in principle, on influencer-centered platforms, e.g., YouTube, any user
could create content, reports show that only a small number of users do so [25]. This
also means that in practice CCs can also follow other CCs. However, since they are
relatively few compared to non-CCs, we can opt for simplicity and ignore such edges.
Our results can be generalised though when allowing for such edges and thus not
restricting the network to a bipartite structure. A more detailed discussion on this
issue can be found in [4].

2 Throughout the paper we use k to denote the set of non-zero natural numbers that
are at most equal to k, i.e. k := {1, 2, . . . k}.

3 Note that under full generality each user receives a list of recommendations. However,
allowing for a single recommendation per user makes our model comparable with
[4].
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a.,i :=
∑

u∈m au,i is the number of followers of CCi, then:

P(Rt
PA(u) = i) =

at
.,i + 1

∑
j∈n(at

.,j + 1)
.

– ExtremePA. An extreme version of preferential attachment which recom-
mends only (one of) the most popular items:

P(Rt
ext(u) = i) =

{
0 , if at

.,i < maxj at
.,j ,

1/|{i, s.t. i ∈ arg maxj at
.,j}| , otherwise.

After each user u receives their associated recommendation Rt(u) they decide
to follow Rt(u) iff Rt(u) is better (perhaps vacuously) than any followee of u:

at+1
u,i =

{
1 , if Rt(u) = i and i < j ∀j s.t. at

u,j = 1
at
u,i , otherwise.

3.2 Metrics of Interest

Since the network at time t+1 only depends on the network at time t, we can view
this network formation process as a Markov Chain (MC). More details will follow
in Sect. 4. With this interpretation, we first want to investigate (a) whether this
is an absorbing MC (i.e., whether there exist some networks - absorbing states -
which will eventually be reached and which will not change no matter how many
timesteps proceed), and, if so, (b) the expected number of steps until absorption
(i.e., until reaching such a state).

However, as mentioned in the introduction, we are also interested in the
fairness of the overall process, both ex-ante and ex-post. Thus we define:

– Ex-post individual fairness for CCs. We say that a network A is (individually)
fair if the number of followers of CCs have the same ranking as the CCs, i.e.,
if a.,1 ≥ a.,2 ≥ · · · ≥ a.,n. We also say that A is (individually) CCi-fair if CCi

is one of the top i ranked CCs, i.e. if |{j : a.,j > a.,i}| < i. In particular, this
means that a network is fair iff it is CCi-fair for all i ∈ n.4

– Ex-ante individual fairness for CCs. When this is an absorbing MC, we
can also look at the ex-ante fairness of the network formation process.
More precisely, we say that a process is ex-ante (individually) fair if the
expected number of followers of CCs at absorption is decreasing, i.e., if
E[a∞

.,1] ≥ E[a∞
.,2] ≥ · · · ≥ E[a∞

.,n]. Similarly, we say that a process is ex-ante
(individually) CCi-fair if |{j : E[a∞

.,i ] < E[a∞
.,j ]}| < i.

4 Note that this is a weak version of the fairness definition. Alternatively, we can say a
network A is fair if a.,1 > a.,2 > · · · > a.,n. However, as we will see later in the results
section, as the number of users goes to infinity the chance of achieving equality goes
to zero. So, in the limit, the two definitions are equivalent.
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4 Results

In our results section we investigate the metrics of interest introduced in Sect. 3.2.
As such, Sect. 4.1 shows how this process can be viewed as a MC and what are the
absorbing states. Section 4.2 looks at the expected time to absorption. Finally,
in Sect. 4.3, we build on the prior two and investigate fairness. Each of these
subsections starts with (a) a summary paragraph which gives an overview of the
results, and (b) a take-away paragraph which discusses the relevance of these
results. The reminder of each subsection is used for the results themselves. In
the interest of space, in a few of the later proofs we omit details and only provide
the proof’s outline and intuition.

4.1 An Absorbing Markov Chain

Summary. This subsection starts by proving that our process is an absorbing
MC (see Theorem 1). During the proof we also define the transition matrix.
Figure 1 illustrates this process for the small case of two CCs and two (non-CC)
users. The remaining results characterize the absorbing states. First, Theorem 2
shows that under exploratory recommendation processes (i.e., PA or UR) the
absorbing states are the ones where each user follows the best CC. Second,
Theorem 3 shows that, under ExtremePA, a state reachable from the 0 state
is absorbing if (a) there is a unique CC with the maximum number number of
followers and (b) no new user would like to follow this CC. For the latter, we use
Lemma 1, which states that any state reachable from 0 has, for each CCi with
the maximum number of followers, a user who does not follow any CC better
than CCi.

Take-away. The results of this subsection build a representation for the pro-
cess which facilitates its understanding. Importantly, by describing the transition
matrix we see the differences between the three RSs: (a) ExtremePA has more
absorbing states, (b) out of these, the states where CC1 is the most followed
CC (i.e., the CC1-fair ones) are the absorbing states under the exploratory RSs,
(c) PA situates itself between ExtremePA and UR in terms of exploration. By
the latter we mean that, when compared to UR, PA could remain for longer
times in transient states (which are fairness-wise similar to the states which are
absorbing only under ExtremePA).

Theorem 1. (At)t≥0 is an absorbing MC (for all three RSs).

Proof. First, (At)t≥0 is a MC, as At+1 depends only on the network configura-
tion at the previous step. More precisely, it is a MC where: (a) the state space is
{0, 1}m×n, (b) the initial distribution is λ where λA = 1 iff A is the zero matrix,
and (c) the transition matrix is given by pB,C := P(At+1 = C|At = B), where:

– from the zero matrix we can only transit to a matrix where each user follows

exactly one CC, i.e.: p0,C =
{

1/nm , if cu,. = 1 ∀ u ∈ m
0 , otherwise ;



168 S. Ionescu et al.

Fig. 1. An example of the MC representation for n = m = 2. The coloured node is
the starting state. We use (a) full edges for transitions that are the same under the
three RSs, and (b) dotted edges for transitions that differ (labeled with the respective
probabilities for (1) ExtremePA, (2) PA, (3) UR). Dots replace probabilities when the
starting state is not reachable from 0 under ExtremePA.

– from any other matrix we can only transit to a new matrix where each user
either (a) follows the same CCs as before, or (b) follows exactly one more
CC which is better than the best CC they followed so far; the probabilities
of such transitions depend on the recommendation process.

Moreover, from the shape of the transition matrix it follows that this process
is an absorbing MC. To see this, note that pB,C is non-zero iff C = B or there is
some user u who follows one more CC, i.e. cu,. > bu,.. So, any state B is either
absorbing, or can transit to a state of a strictly higher sum of elements. Since
the sum of elements of B is bounded by m · n, such a sequence of transitions
must be finite. Thus, in this latter case, an absorbing state will be eventually
reached through a sequence of transitions. �	
Theorem 2. Under PA and UR recommendations, a state B is absorbing iff all
users follow the best CC, i.e. iff bu,1 = 1 for all u ∈ m.

Proof. (⇒) Assume there exist some user u ∈ m s.t. bu,1 = 0. Under PA and
UR recommendations there is always a non-zero chance u is recommended CC1.
If this happens, then u follows CC1. So we can transit to a state C �= B where
cu,1 = 1 with a non-zero probability. Hence, B is not absorbing.

(⇐) The reverse is straightforward. If bu,1 = 1, then no recommendation will
change the followees of u. This holds for all users u, so B is absorbing. �	
Lemma 1. For any state B reachable from 0 and any i ∈ n s.t. b.,i = maxj b.,j
there exists some user u ∈ m s.t. bu,j = 0 for all j < i.

Proof. We use an inductive argument. The claim is obviously true for any state
directly reachable from 0 (i.e., any network achievable in one timestep), as, in
such states, each user follows exactly one CC. Next, we assume the claim is true
for some state B. From this state, we either remain in B, or we transit to a state
C where a subset of these CCs have a higher maximum number of followers. As
each CCi in this subset increased their number of followers they needed to be
recommended to a user u that preferred them to any CC they previously followed.
As such, CCi is the best CC followed by u in C, i.e., i = min{j : cu,j = 1}. �	
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Theorem 3. Under Extreme PA, all absorbing states B reachable from 0 are
such that (a) there exists some i ∈ n s.t. b.,i > b.,j for all j ∈ n − {i}, and (b)
for all u ∈ m there exists some j ≤ i s.t. bu,j = 1. Moreover, every state which
satisfies (a) and (b) is absorbing.

Proof. For the first part, let B be an absorbing state reachable from 0. If (a)
is not the case then there are at least two CCs, say CCi and CCj with i < j,
that have the maximum number of followers. By Lemma 1, there exists some
user u who does not follow CCi yet. Therefore, if everybody is recommended
CCi, only the number of followers of CCi will increase by at least one (as u will
follow them). There is a non-zero probability of this happening, and, in such a
case, a new state is reached. Therefore, B is not an absorbing state if (a) does
not hold. Next, if (a) holds but (b) does not then in the next round (when the
unique most followed CCi is recommended to everybody) new users will follow
CCi. So, again, if (a) holds but (b) does not then B cannot be absorbing.

The second part is straightforward. If (a) holds then only the unique CC with
the highest number of followers can be recommended in the next round. Since
(b) holds, no new user will follow this CC. So, there is no chance of transiting
to a new state, i.e. the current state is absorbing. �	

4.2 Expected Time to Absorption

Summary. Theorem 4 shows that as the number of users goes to infinity, the
expected time to absorption under ExtremePA is less than 2. Two preliminary
results are needed to prove this statement: (a) the chance of having ties in the
number of followers after the first round of recommendations (Lemma 2) and (b)
the chance that in the second round no one new would follow the most followed
CCi (if i �= n, see Lemma 3) both go to 0 as the number of users goes to
infinity.5 These results are used for the annotations in Fig. 2, which summarizes
the process and provides the intuition for the proof of the theorem.
Take-away. This puts ExtremePA in sharp contrast with the exploratory RSs, as
prior work indicates that, under the UR and PA recommendation scenarios, the
convergence time increases logarithmically in the number of CCs and linearly (or
sub-linearly) in the number of users (see Figs. 2 and 7b of [4]). Importantly, it
indicates that, while for ExtremePA it could be sufficient to analyse the fairness
in the absorbing states alone, this might not be the case for PA and UR: as
these RSs could lead, in practice, to long convergence times the fairness in the
transient states should also be evaluated. This is particularly true for PA, which,
as discussed earlier, could remain in unfair states for longer than UR.

Lemma 2. For any i �= j ∈ n, P(a1
.,i = a1

.,j) → 0 as m → ∞.

5 Note that the two preliminary results are independent on the RS.
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Proof. First, let Yu be the following random variables depending on the recom-
mendations in the first round:

Yu =

⎧
⎨

⎩

0 , if user u is recommended some CCk with k �= i, j;
1 , if user u is recommended CCi;
−1 , if user u is recommended CCj .

Since the first recommendations are uniform random, (Yu)u∈m are i.i.d. (with
P(Yu = 0) = (n − 2)/n and P(Yu = c) = 1/n when c = ±1). Hence, E[Yu] = 0
and Var(Yu) = E[Y 2

u ] = 2/n. By the central limit theorem it follows that,
∑

u∈m Yu − m · 0
2/n · √m

→D N (0, 1).

In particular, this implies that limm→∞ P(a1
.,i = a1

.,j) = 0. �	
Lemma 3. For any i ∈ n − 1, P((a1

.,i > a1
.,j ∀j ∈ n) ∧ (∀u ∈ m, ∃j ∈

i s.t. a1
u,j = 1)) → 0 as m → ∞.

Proof. This follows as the latter part of the conjunction corresponds to the
scenario of all users being recommended one of the top i CCs in the first round.
So, P((a1

.,i > a1
.,j ∀j ∈ n) ∧ (∀u ∈ m, ∃j ∈ i a1

u,j = 1)) ≤ P(∀u ∈ m, ∃j ∈
i a1

u,j = 1) =
(
i
n

)m → 0 as m → ∞. �	

Fig. 2. A summary of the MC for ExtremePA as m → ∞. Rectangles represent sets of
states. Transition probabilities are annotated in the limit. Dotted lines correspond to
transitions who are negligible as m → ∞.

Theorem 4. Under ExtremePA, the expected time to absorption goes to 2−1/n
as m goes to infinity.

Proof. Based on Theorems 1 and 3, we can group states in subsets, as shown
in Fig. 2. Let μB be the expected time from the state B to absorption. Then
μB:B∈S∗ = 0 (as all states in S∗ are absorbing) and μB:B∈S = 1 (as all states in
S lead in one timestep to a state in S∗). Therefore,

μ0 = 1 · p0,S∗
n

+ 1 · p0,S−S∗
n

+ 2 · p0,S +
∑

B∈E

(1 + μB) · p0,B
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We can use Lemmas 2 and 3 to find the transition probabilities between the
sets of states as m → ∞: (a) p0,S∗

n
→ 1

n , (b) p0,S∗−S∗
n

→ 0, (c) p0,S → n−1
n , and

(d) p0,E → 0. Since, in addition,
∑

B∈E p0,B · (1+μB) ≤ p0,E · (1+μB∗) (where
B∗ = arg maxB∈E μB) and μB∗ ≤ c (c constant),6 the result follows. �	

4.3 Fairness for Content Creators

Summary. Building on previous results, we show that the exploratory RSs are
both ex-ante and ex-post CC1-fair (Corollary 1), while ExtremePA is only ex-
ante fair (Theorem 5). In fact, Corollary 2 shows the probability of achieving
a CC1-fair absorbing state under ExtremePA goes to 1/n as the number of
users goes to infinity, while Corollary 3 shows that the probability of achieving
a fair outcome for all CCs goes to 1/n!. Finally, Fig. 3 depicts the probability of
achieving a CCi fair outcome for each CC under any of the three RSs.

Take-away. This analysis carries several important messages. First, it shows
that exploration is key in achieving CC1-fair outcomes. Second, although
ExtremePA is ex-ante fair it is rarely ex-post fair, thus underlying the impor-
tance of looking beyond the number of followers in expectation. This finding
is congruent with the experimental results of [7],7 thus it confirms that real-life
RSs share important similarities with ExtremePA. Third, our numerical analysis
reveals that although exploration always leads to a CC1-fair outcome, the fair-
ness for the other CCs is not guaranteed. However, it suggests that exploratory
RSs distribute fairness more homogeneously compared to ExtremePA.

Corollary 1. Under UR and PA recommendations, (At)t is both ex-post and
ex-ante CC1-fair.

Proof. This is an immediate consequence of Theorem 2. Since B is absorbing
iff b.,1 = m, all absorbing states are CC1 fair (i.e., we have ex-post fairness) and
E[b.,1] = m ≥ E[b.,i] (i.e., ex-ante CC1-fairness). �	
Corollary 2. Under ExtremePA, the probability the outcome is ex-post CC1-
fair goes to 1/n as m → ∞.

Proof. The final outcome (a) is always CC1-fair if CC1 is the unique most
followed CC after the first round, and (b) is CC1-fair only if CC1 is one of the
CCs with a maximum number of followers after the first round. So, using the
notation from Fig. 2: p0,S1∪S∗

1
≤ P(CC1 − fair) ≤ p0,S1∪S∗

1
+ p0,E . The claim

follows, since, as shown previously, p0,S1∪S∗
1

→ 1/n and p0,E → 0. �	
Corollary 3. Under ExtremePA, the probability the outcome is ex-post fair goes
to 1/n! as m → ∞.

6 This can be easily shown for c = 4n/(n − 1) by using Lemma 1 to prove that
pB∗,S∪S∗ ≥ 1/2n (although better bounds can be obtained).

7 “Although, on average, quality is positively related to success, songs of any given
quality can experience a wide range of outcomes” (from [7], p. 855).
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Proof. By Lemma 2, when m → ∞ the probability of achieving a tie in the
number of followers after the first round goes to zero. After ignoring ties, only
outcomes with a1

.,1 > · · · > a1
.,n lead to a fair outcome. By symmetry, all strict

orderings of (a1
.,i)i have an equal probability. Since there are n! such orderings,

P(a1
.,1 > · · · > a1

.,n) → 1/n! as m → ∞. The conclusion follows. �	

Fig. 3. Sampling probability of ex-post CCi-fairness, under the three RSs: ExtremePA
(blue), PA (purple), and UR (orange). For each RS, we run 10,000 simulations until
convergence with n = 100 and m =10,000. The dashed line denotes a reference value
of 0.5. Fairness under ExtremePA increases from best- to lowest-quality CCs. PA and
UR achieve higher fairness for the best CCs.

The behavior depicted in Fig. 3 is consistent with the theoretical results on
ex-post fairness. In particular, while UR and PA guarantee CC1-fairness at con-
vergence, ExtremePA only achieves it with a low probability (about 1%). More
precisely, the probability of ex-post CCi-fairness grows linearly from 1/n to 1
with the quality index i. In contrast, UR and PA generally achieve more (less) fair
outcomes for the top (lowest) half of CCs. Between the two, the most exploratory
recommendation strategy (UR) is more fair for most high-quality CCs, while PA
is fair only for a small number of top (and bottom) quality CCs.

Theorem 5. Under ExtremePA, the final outcome is ex-ante fair.

Proof. The proof is based on the following observation: when CCi becomes
the most followed CC, they will be eventually followed by all CCs who did not
follow a better-quality CC before. For example, if CC2 is the most followed after
the first round, all users (except those who were recommended CC1) will follow
CC2 after round 2. Differently, if CC1 was the most followed, then everybody will
end up following CC1 next, while if CC3 was the most followed, then everybody
except those who originally followed CC1 or CC2 will follow CC3. This intuitively
leads to CC2 having more followers in expectation than CC3 and fewer than CC1.
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For simplicity, we will only formalize this intuition for n = 2:

E[a∞
.,1] =

m∑

k=0

P(a1
.,1 = k) · E[a∞

.,1|a1
.,1 = k] =

[m−1
2 ]∑

k=0

(
k
m

)

nm
· k +

m∑

k=[m−1
2 ]+1

(
k
m

)

nm
· m.

As the sum is larger than E[a∞
.,2] =

∑m
k=0

(k
m)
nm · k, ExtremePA is ex-ante fair. �	

5 Conclusion

In this work we analyzed the role recommendations play in UGC-based social
networks with respect to the individual fairness for CCs. To do so, we (a)
extended prior models with a RS-framework, (b) introduced a non-exploratory
RS, and (c) defined ex-ante and ex-post measures of fairness. Our results showed
that the network formation process is an absorbing Markov Chain with differ-
ent absorbing states, expected times, and fairness guarantees depending on the
RS. In particular, the expected absorbing time under ExtremePA is bounded by
2, i.e., much faster than the ones under UR or PA (which are linearly or sub-
linearly increasing in m). Furthermore, while all studied RSs guarantee ex-ante
fairness, ex-post fairness is rarely attainable: without exploration (i.e., under
ExtremePA), ex-post fairness is achieved with probability 1/n!, and even with
exploration (i.e., under UR or PA), ex-post fairness is guaranteed only for the
best (and lowest) CCs. In essence, exploration in RSs trades faster absorption
times for higher probabilities of achieving fair outcomes for the best CCs.

A key feature of our model is its simplicity. On the one hand, some level of
model simplicity is both inevitable for a feasible theoretical analysis and useful
for its clarity. On the other hand, the assumptions about both users and the
RS are not always fulfilled by real-world systems. For example, here we reduced
both the interests of users and the performance of CCs to one ordinal dimension:
quality. Subsequent iterations of this model, which include multiple and different
types of attributes, would automatically go beyond a uniform preference of users.
Therefore, they could investigate the effect of personalized RSs (e.g., collabora-
tive filtering), look beyond individual fairness (e.g., group fairness), and capture
the evolution of users (e.g., changes in the taste of users). In short, UGC-centered
platforms are complex sociotechnical systems, and our work is just one piece of
this elaborate puzzle. Although there are still many unanswered questions, we
believe this mathematical analysis carries one cornerstone message: if we want
a fair community, one which rewards its creators based on the quality of their
work, then we must encourage exploration.
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