
The Influence of Local Search on Genetic
Algorithms with Balanced

Representations

Luca Manzoni1 , Luca Mariot2(B) , and Eva Tuba3,4

1 Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via
Valerio 12/1, 34127 Trieste, Italy

lmanzoni@units.it
2 Digital Security Group, Radboud University, PO Bus 9010, 6500 GL Nijmegen,

The Netherlands
luca.mariot@ru.nl

3 Department of Computer Science, Trinity University, 1 Trinity Place, San Antonio,
TX 78212, USA
etuba@ieee.org

4 Faculty of Informatics and Computing, Singidunum University, Danijelova 32,

11000 Belgrade, Serbia

Abstract. Certain combinatorial optimization problems with binary
representation require the candidate solutions to satisfy a balancedness
constraint (e.g., being composed of the same number of 0s and 1s). A
common strategy when using Genetic Algorithms (GA) to solve these
problems is to use crossoveer and mutation operators that preserve bal-
ancedness in the offspring. However, it has been observed that the reduc-
tion of the search space size granted by such tailored variation operators
does not usually translate to a substantial improvement of the GA perfor-
mance. There is still no clear explanation of this phenomenon, although
it is suspected that a balanced representation might yield a more irreg-
ular fitness landscape, where it could be more difficult for GA to con-
verge to a global optimum. In this paper, we investigate this issue by
adding a local search step to a GA with balanced operators, and use it
to evolve highly nonlinear balanced Boolean functions. We organize our
experiments around two research questions, namely if local search (1)
improves the convergence speed of GA, and (2) decreases the population
diversity. Surprisingly, while our results answer affirmatively the first
question, they also show that adding local search actually increases the
diversity among the individuals. We link these findings to some recent
results on fitness landscape analysis for problems on Boolean functions.

Keywords: Genetic algorithms · Balanced crossover · Local search ·
Boolean functions · Nonlinearity

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Mernik et al. (Eds.): BIOMA 2022, LNCS 13627, pp. 232–246, 2022.
https://doi.org/10.1007/978-3-031-21094-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21094-5_17&domain=pdf
http://orcid.org/0000-0001-6312-7728
http://orcid.org/0000-0003-3089-6517
http://orcid.org/0000-0003-4866-9048
https://doi.org/10.1007/978-3-031-21094-5_17

The Influence of Local Search on Balanced GA 233

1 Introduction

There exist three common approaches for constraint handling in the literature
of Genetic Algorithms (GA): incorporate a penalty factor in the fitness function
that punishes deviations from the desired constraints, use ad-hoc representa-
tions and variation operators, or employ repair operators. Penalty factors are
fairly simple to implement and can be employed virtually in any optimization
problem, once a suitable notion of distance from the required constraints has
been defined. However, penalty factors can also be wasteful, since a GA may
spend a great amount of fitness evaluations to satisfy them, driving the search
effort away from the main optimization objective. The second approach requires
designing suitable crossover and mutation operators, so that feasible parents
produce feasible offspring. This makes the GA explore a smaller search space,
which in principle should lead to better performance, since the fitness budget is
entirely used to evolve feasible solutions only. Repair operators also make the
GA to explore only the feasible space, although their approach is to transform
invalid solutions into valid ones.

In this work, we focus on the second approach for handling balancedness
constraints, namely when the binary representation of the candidate solutions
must have a fixed number of ones. Such a constraint is relevant in several opti-
mization problems related to cryptography, coding theory and combinatorial
designs. To the best of our knowledge, Lucasius and Kateman [5] were the first
to investigate balancedness-preserving crossover operators in GA, applying them
to the subset selection problem. Millan et al. [12] used GA to evolve balanced
Boolean functions with good cryptographic properties such as high nonlinearity
and low deviation from correlation immunity. To this end, the authors devised
a counter-based crossover operator that preserved the balancedness of the par-
ent Boolean functions. Balanced crossover operators have also been designed for
other optimization problems such as portfolio optimization [2,3] and multiob-
jective k-subset selection [11]. Further extensions of this approach include the
design of balancedness-preserving operators for non-binary candidate solutions
with non-binary representations [8,9] or for matrix-based representations where
each column needs to be balanced [10].

More recently, we carried out in [6] a rigorous statistical investigation of three
balanced crossover operators against different optimization problems related
to cryptography and combinatorial designs. We found that balanced operators
indeed give an advantage to GA over a classic one-point crossover coupled with a
penalty factor. Hence, these results seem to confirm the aforementioned principle
that reducing the search space by means of ad-hoc variation operators improves
the GA performance. Nonetheless, the improvement is not substantial and does
not scale well with respect to the problem size. This is especially evident when
comparing a GA based on balanced crossover operators with other metaheuris-
tics such as Genetic Programming (GP). In general, it has been observed that
GP converges more easily to an optimal solution than GA on problems where
balanced solutions are sought [9,10,14].

234 L. Manzoni et al.

Clearly, the particular encoding of the candidate solutions used for ad-hoc
operators can change the fitness landscape of a particular optimization prob-
lem. Indeed, one of the possible explanations for the meagre improvement of
GA when using balanced crossover operators is that the resulting fitness land-
scape becomes more irregular. Hence, although searching a smaller space of fea-
sible solutions, the GA could get stuck more easily on local optima. We started
to investigate this hypothesis in [7] by considering an adaptive bias strategy
where the counter-based crossover of [12] is allowed to produce partially unbal-
anced Boolean functions. The rationale is that, by slightly enlarging the search
space, the GA might escape more easily from local optima, thus improving its
explorability. Yet, the results showed that even this strategy provides only a
marginal improvement in the GA performance.

In this paper, we further investigate the scarce improvement of GA with
balanced crossover operators by augmenting them with a local search step. In
particular, we consider the evolution of highly nonlinear balanced Boolean func-
tions as an underlying optimization problem, for which an efficient local search
move has already been developed in [13]. We perform an experimental evaluation
of the three balanced crossover operators in [6] by combining them with three
variants of local search. The first variant is the baseline GA where no local search
is performed. The second variant applies only a single step of local search on a
new offspring individual created through balanced crossover and mutation. The
third variant, finally, is a steepest ascent strategy, which performs local search
on an offspring individual until a local optimum is reached. The experiments are
performed for Boolean functions of 6 ≤ n ≤ 9 variables.

To assess the influence that local search has on the GA performance, we con-
sider two research questions. The first one is whether local search improves the
convergence speed of GA to a local optimum. As expected, the answer given by
our experimental results is positive, especially for the third variant employing
the steepest ascent strategy. On the other hand, the second research question is
whether the use of local search decreases the diversity in the population, as mea-
sured by the pairwise Hamming distance. Indeed, a natural hypothesis for the
scarce improvement of GA performance when using balanced crossover oper-
ators is that the solutions in the population become too similar, determining
a premature convergence to a local optimum. Therefore, one would expect that
such a phenomenon is magnified by augmenting the GA with a local search step.
Surprisingly, our results indicate that the use of local search actually increases
the population diversity. We discuss this interesting finding by linking it to a
recent work on fitness landscape analysis for problems related to cryptographic
Boolean functions [4]. In particular, the fact that the individuals in the pop-
ulation tend to be quite different among each other seem to indicate that the
fitness landscape of balanced Boolean functions is characterized by many iso-
lated local optima. This in turn suggests that a possible way to improve the GA
performance is to use a different initialization strategy than the usual one where
candidate solutions are generated uniformly at random.

The Influence of Local Search on Balanced GA 235

The rest of this paper is organized as follows. Section 2 covers all background
definitions related to balanced crossover operators and Boolean functions that
the contributions of this paper are based upon. Section 3 defines the optimization
problem of evolving highly nonlinear balanced Boolean function, and describes
the local search algorithm used as a further optimization step after balanced
crossover and mutation. Section 4 presents the experimental evaluation of our
approach, discussing the experimental settings adopted and the obtained results.
Finally, Sect. 5 concludes the paper by summarizing the main findings and point-
ing out directions for further research on the topic.

2 Background

In this section, we first describe the three balanced crossover operators intro-
duced in [6], which we will use in our investigation. Next, we recall the basic
notions related to Boolean functions and their cryptographic properties, that
will be the basis of the underlying optimization problem for our experiments.

As a general notation, in what follows we denote by F2 = {0, 1} the finite
field with two elements, and F

n
2 is the set of all n-bit strings, which is endowed

with a vector space structure. In particular, the sum of two vectors x, y ∈ F
n
2

corresponds to their bitwise XOR x ⊕ y, while multiplication of x ∈ F
n
2 by a

scalar a ∈ F2 amounts to computing the logical AND of a with each coordinate
of x. The scalar product of two vectors x, y ∈ F

n
2 is defined as

⊕n
i=1 xiyi, i.e. the

XOR of all bitwise AND of the two vectors. Given [n] = {1, · · · , n} for all n ∈ N,
the Hamming distance of x, y ∈ F

n
2 is defined as dH(x, y) = |{i ∈ [n] : xi �= yi}|,

i.e. the number of coordinates where x and y differ. The Hamming weight of a
vector x ∈ F

n
2 , denoted by wH(x), is the Hamming distance of x from the null

vector 0, or equivalently the number of ones in x. The number of binary strings
with a fixed Hamming weight k ∈ [n] is the binomial coefficient

(
n
k

)
, since it is

equivalent to the number of k-subsets of [n], when one interprets a vector x ∈ F
n
2

as the characteristic function of a subset.

2.1 Balanced Crossover Operators

We start by giving a brief description of the three balanced crossover operators
that we will use in our experiments. Further details about them and their pseu-
docode can be found in our previous paper [6]. In the remainder of this paper,
we assume that the Hamming weight that we want to preserve is exactly half of
the string length, i.e. the individuals in the population have an equal number of
zeros and ones in their representation.

Counter-Based Crossover. The first operator employs two counters cnt0 and
cnt1 to keep track respectively of how many zeros and ones the child individual
has during the crossover process. Specifically, given two parent bitstrings p1, p2 ∈
F
2m
2 such that wH(p1) = wH(p2) = m, a child chromosome c ∈ F

2m
2 is obtained

by randomly copying either the i-th bit of p1 or p2 with uniform probability, for

236 L. Manzoni et al.

each position i ∈ [2m]. Then, cnt0 or cnt1 is incremented depending on the value
copied in the child. When one of the two counters reaches the threshold weight
m, the remaining positions in the child are filled with the complementary value.

A natural question about this crossover operator is whether setting the last
bits to a fixed value to preserve balancedness does not introduce a bias towards
certain solutions in the search space. We considered this issue in our previous
work [6], by comparing the basic “left-to-right” version of the operator described
above with another one that randomly shuffles the order of the positions to be
copied in the child chromosome. Results showed that in most cases there is
no significant difference among the two variants, while in certain instances the
shuffling strategy fares even worse than the basic “left-to-right” version. Hence,
we used the latter for the experiments of this paper.

Zero-Length Crossover. The second crossover operator considered in our
investigation is based on a different representation of the candidate solutions,
namely their zero-length encoding. Formally, given a n-bit string x with n = 2m,
the zero-length encoding of x is a vector r of length m+1 where each coordinate
ri represents the number of consecutive zeros (or equivalently, the run length of
zeros) between two consecutive ones.

To correctly represent a balanced bitstring, the values in the zero-length
encoding vector must sum to m. Sticking to our previous example, the zero-
length encodings of p1 = (0, 1, 0, 1, 0, 1, 1, 0) and p2 = (1, 0, 0, 0, 1, 0, 1, 1) are
respectively r1 = (1, 1, 1, 0, 1) and r2 = (0, 3, 1, 0, 0). At each position the zero-
length crossover randomly copies the zero-length value of the first or second
parent with uniform probability. An accumulator variable is used to represent
the partial sums of the zeros’ run lengths in the offspring chromosome. If the
threshold value m is reached, the remaining positions of the offspring’s zero-
length vector are filled with zeros; thus, the bitstring representation will only
contain ones in the last positions. Otherwise, the last coordinate of the zero-
length vector is filled with the value that balances the sum to m; accordingly,
the bitstring representation of the offspring will contain only zeros in the last
positions.

Map-of-Ones Crossover. The third crossover considered in our experiments
leverages on an integer-based representation of the candidate solutions. In
particular, the map-of-ones is simply the vector that indicates the positions
of the ones in a bitstring. Using our examples above, the map of ones for
p1 = (0, 1, 0, 1, 0, 1, 1, 0) and p2 = (1, 0, 0, 0, 1, 0, 1, 1) are b1 = (2, 4, 6, 7) and
b2 = (1, 5, 7, 8), respectively. Similarly to the previous two operators, the map-
of-ones crossover works coordinate-wise by randomly copying either the value
of the first or second parent’s zero-length vector in the child chromosome. The
only constraint that is enforced is that the map of ones of the child chromosome
cannot have duplicate values, something that can occur if the bitstrings of the
two parents have value one in the same position. For this reason, the crossover
first computes a list of common positions between the two parents, and then

The Influence of Local Search on Balanced GA 237

checks whether the selected value has already been inserted before in the child
or not. If this is the case, then the value from the other parent is copied instead.

2.2 Boolean Functions

We now describe the essential notions related to the optimization problem under-
lying our experiments on local search. A Boolean function of f : Fn

2 → F2 is a
mapping f : Fn

2 → F2, i.e. a function that associates to each n-bit vector a single
output bit, 0 or 1. The most common way to represent such a function is via its
truth table: assuming that the vectors of Fn

2 are lexicographically ordered, the
truth table of f is the 2n-bit vector

Ωf = (f(0, · · · , 0), f(0, · · · , 1), · · · , f(1, · · · , 1)) ,

i.e. the vector that specifies the output value f(x) for each possible input vector
x ∈ F

n
2 . A fundamental criterion for Boolean functions used in stream ciphers

is that the truth table must be a balanced string, i.e. wH(f) = 2n−1, to resist
basic statistical attacks.

Another way to uniquely represent a Boolean function commonly used in
cryptography is the Walsh transform. Formally, the Walsh transform of f : Fn

2 →
F2 is the map Wf : Fn

2 → Z defined as:

Wf (a) =
∑

x∈F
n
2

(−1)f(x)⊕a·x =
∑

x∈F
n
2

(−1)f(x) · (−1)a·x , (1)

for all a ∈ F
n
2 . The coefficient Wf (a) measures the correlation between f and

the linear function defined by the scalar product a ·x. A second important prop-
erty for Boolean functions used in symmetric cryptography is their nonlinearity,
which is defined as:

nl(f) = 2n−1 − 1
2

max
a∈F

n
2

{|Wf (a)|} . (2)

We refer the reader to [1] for further cryptographic implications and bounds
related to the nonlinearity property. Here, we just limit ourselves to specify that
the nonlinearity should be as high as possible. Taking into account also the bal-
ancedness property mentioned above, this gives rise to the following optimization
problem:

Problem 1. Let n ∈ N. Find a n-variable Boolean function f : Fn
2 → F2 that

is balanced and has maximum nonlinearity, as measured by the fitness function
fit(f) = nl(f).

Remark that it is still an open question to determine the maximum nonlin-
earity value attainable by a balanced Boolean function for n > 7 variables [1].
We will tackle Problem 1 in the experimental part of the paper using various
combinations of balanced GA and local search.

238 L. Manzoni et al.

3 Local Search of Boolean Functions

To perform local search, the first step is to define an elementary move between
two candidate solutions. This further subsumes the notion of a topology over the
search space, in order to give a precise meaning to the neighborhood of a solution.
In our case, since we are dealing with fixed-length binary strings to represent
the truth tables of Boolean functions, the most obvious choice is to adopt the
topology induced by the Hamming distance. Therefore, the neighborhood of a
candidate a solution f : F

n
2 → F2 represented by its truth table Ωf ∈ F

2n

2

would be the set of all truth tables at Hamming distance 1 from Ωf . Hence,
the elementary move from f to a neighboring solution f ′ would be obtained by
complementing a single bit in Ωf . However, such a move would break the bal-
ancedness constraint, since the Hamming weight would change by ±1. Hence,
similarly to the mutation operator employed in our previous paper [6], we con-
sider the swap between two different values in Ωf as an elementary move for our
local search procedure. In this way, the Hamming weight of the new candidate
solution will still be 2n−1.

Concerning the Walsh transform, a single swap in the truth table of f induces
a change Δ(a) ∈ {−4, 0,+4} for each coefficient a ∈ F

n
2 , that can be computed

with the following result proved in [13]:

Lemma 1. Let f : Fn
2 → F2 be a n-variable Boolean function, and assume that

y, z ∈ F
n
2 are such that f(y) �= f(z). Define f∗ : F

n
2 → F2 as the function

obtained by swapping the values f(y) and f(z) in the truth table of f Then, for
each a ∈ F

n
2 , the difference of the Walsh coefficients Wf (a) and Wf∗(a) equals:

Δ(a) = [(−1)f(y) − (−1)f(z)][(−1)a·z − (−1)a·y] . (3)

Consequently, there is no need to recompute the Walsh transform from scratch
when swapping two values in the truth table of f . Using Lemma 1, each coeffi-
cient can be updated from the old one as Wf ′(a) = Wf (a) + Δ(a). This allows
one to efficiently explore the neighborhood of a given function, since in this way
the fitness of a single swap can be evaluated in linear time with respect to the
length of the function’s table. On the other hand, recomputation from scratch
would entail a quadratic complexity by using the fast Walsh transform algo-
rithm [1], which is the one employed by the GA to evaluate the fitness of a new
individual created through crossover and mutation.

In summary, a single iteration of the GA combined with a local search step
works as follows:

1. Select a pair of parents p1, p2 from the population.
2. Apply crossover and mutation to obtain a new balanced individual c.
3. Evaluate the fitness of c by computing the Walsh transform in Eq. 1 using

the fast algorithm [1].
4. Apply one or more steps of local search to c as follows:

(a) Generate the 2-Improvement set of c, i.e. find all swaps in c such that
the nonlinearity increases by 2. Use Eq. 3 to efficiently update the Walsh
transform for each swap.

The Influence of Local Search on Balanced GA 239

(b) Pick a swap in the 2-Improvement set and apply it to c, updating the
fitness value as Wc′(a) = Wc(a) + Δ(a) for all a ∈ F

n
2 .

Since each swap in the improvement set increases the nonlinearity by 2, there is
no ground to drive the selection. In our experiments, we pick the first generated
swap. This is similar to the strategy adopted in [4] where local search was used
to create the Local Optima Network of the search space of Boolean functions.

4 Experiments

As discussed in the Introduction, our aim is to assess the influence of local search
as a further optimization step in the loop of a GA with balanced crossover. To
this end, we consider the following two research questions:

– RQ1: does local search improve the convergence speed of GA, i.e. does it
allow to reach a local optimum in less fitness evaluations?

– RQ2: does local search decrease the diversity of the GA population?

Remark that we deliberately excluded any research question pertaining the
improvement of the best fitness. Indeed, it has already been remarked that bal-
anced GA usually have a lower performance than other metaheuristics on combi-
natorial optimization problems such as Problem 1. Moreover, in [7] we observed
that augmenting a balanced GA with a partially unbalanced crossover strategy
does not improve significantly the best fitness. Considering also the evidence
gathered in [12] where a balanced GA combined with hill climbing was used,
our hypothesis is that local search step does not make a significant difference as
well. As we will show in the next sections, this hypothesis was experimentally
confirmed.

Nevertheless, it is reasonable to expect that adding local search in the loop
may help GA to converge more quickly toward a local optimum, which motivates
RQ1. Furthermore, crossover tends to exploit the genetic information of the
current population, producing offspring individuals that resemble their parents,
and thus decreasing the population diversity. Therefore, one may also expect
that a local search step would magnify this effect, by tweaking the candidate
solutions toward the nearest local optimum. This argument motivates RQ2.

In what follows, we describe the experimental settings used to investigate our
research questions and the results obtained from our experiments.

4.1 Experimental Setting

For our experiments, we tested three variants of local search, namely:

– LS0: No local search, which corresponds to the basic balanced GA.
– LS1: Single-step local search, where only a single swap is performed on a new

individual.
– LS2: Steepest ascent local search, with swaps performed until a local optimum

is reached.

240 L. Manzoni et al.

We considered counter-based (CX1), zero-length (CX2) and map-of-ones
(CX3) crossover. As for mutation, we adopted the simple swap-based operator
used in [6]. Hence, we tested a total of 9 combinations of crossover operators
and local search variants. Concerning the problem instances, we performed our
experiments on Boolean functions of 6 ≤ n ≤ 9 variables. Notice that the number
of Boolean functions of n variables is 22

n

, which means that n = 6 is the smallest
problem instance from where it makes sense to apply metaheuristics, since it
is not amenable to exhaustive search. The same holds even if we restrict our
attention to the space of balanced Boolean functions, whose size is

(
2n

2n−1

)
: for

n = 6 variables, the total amount of candidate solutions to search exhaustively
would be approximately 1.83 · 1019.

For the GA, we carried out a preliminary sensitivity analysis by performing
small perturbations on the parameters that we adopted in our previous paper [6],
to assess if significantly different results would arise. As this did not happen, we
sticked to the same GA parameters. In particular, we used a population of 50
individuals, evolved for a budget of 500 000 evaluations, using a steady-state
breeding policy with tournament selection of size t = 3: upon drawing 3 random
individuals, the best two are crossed over, and the newly created offspring under-
goes mutation with probability 0.7. After calculating the fitness, local search is
performed according to the chosen variant, and then the obtained individual
replaces the worst one in the tournament. Finally, each experiment (i.e. com-
bination of problem instance, crossover operator and local search policy) was
repeated for 30 independent runs to obtain statistically sound results. To com-
pare two combinations of crossover operator and local search, we adopted the
Mann-Whitney-Wilcoxon test, with the alternative hypothesis that the corre-
sponding two distributions are not equal, with a significance value α = 0.05.

4.2 Results

As expected, the use of local search did not improve significantly the performance
of the GA, independently of the underlying combination of crossover and local
search policy. The only significant differences arose with the largest instance of
n = 9 variables, where the steepest ascent policy combined with the counter-
based and the map-of-ones crossover consistently found functions with a slightly
higher nonlinearity of 232 instead of 230 from the other combinations. Since the
improvement is anyway too small, we avoid to report the distributions of the
best fitness for this case as well.

Figure 1 depicts the boxplots for the distributions of the number of fitness
evaluations required to reach the best fitness value obtained in each run. In gen-
eral, it can be observed that the use of local search does have a substantial effect
on the convergence speed of the GA towards a local optimum. This is particu-
larly evident in the case of n = 6 variables for all three crossover operators. For
n = 7 and n = 8, one can still see from the boxplot that the steepest ascent
strategy gives the fastest convergence under all three crossovers, while the situa-
tion is less clear for the single-step variant. Looking at the p-values heatmaps in
Fig. 2, one can indeed see that there are no significant differences between LS1

The Influence of Local Search on Balanced GA 241

(a) n = 6 (b) n = 7

(c) n = 8 (d) n = 9

Fig. 1. Boxplots for the distributions of fitness evaluations.

and LS0 for all three crossover operators. The situation seems to be reversed
for n = 9 variables, with the number of fitness evaluations required by the com-
binations that use the steepest ascent being higher than the variant where no
local search is used. Although this finding seems odd at a first glance, it can
be easily explained by the remark above on the best fitness. Since for n = 9
variables the steepest ascent strategy consistently finds Boolean functions with
higher nonlinearity than in the basic case, it is reasonable to assume that more
fitness evaluations are required to achieve them.

To investigate the solutions’ diversity, at the end of each run we computed
the Hamming distance of each pair of individuals in the population. Figure 3
reports the boxplots of the distributions for the median pairwise distance, while
Fig. 4 gives the corresponding p-value heatmaps.

The conclusions that one can draw from these results seem counterintuitive:
instead of decreasing the population diversity, the use of local search either does
not affect the diversity, or it even increases it in certain cases. For example,
one may see that for n = 6 there is no difference between the boxplots for
each considered crossover, except maybe for CX2 where the diversity slightly
drops with the steepest ascent policy. This is however not confirmed by the
statistical tests, in that no significant differences were observed. By considering
bigger instances, one can see that the local search actually starts to play a role

242 L. Manzoni et al.

Fig. 2. Heatmap of the p-values of the fitness evaluations.

in increasing the median distance. This is particularly evident from the boxplots
for n = 8 with the combination of counter-based crossover and steepest ascent,
but also for the map-of-ones. The difference becomes even more pronounced for
n = 9 variables, with the steepest ascent obtaining the boxplots with highest
median and smallest interquartile range for all three crossovers. This is confirmed
by significant differences in the corresponding heatmap. Moreover, in general
one can also observe that the zero-length crossover achieves the highest median
diversity for all problem instances, independently of the underlying local search
policy. Indeed, one can see that the central 3×3 square in each heatmap reports
non-significant differences in these cases.

4.3 Discussion

We now attempt to answer the two research questions formulated at the begin-
ning of Sect. 4 in the light of the obtained results.

Concerning RQ1, the answer seems to be positive: as our initial intuition
predicted, the use of local search in general increases the convergence speed
of a balanced GA towards a local optimum, independently of the underlying
crossover operator. Therefore, although there is no significant improvement in
the best fitness (except a slight one for n = 9 variables), local search allows to
reach the current best local optimum more quickly. This is somewhat expected,
especially when using a local search step with steepest ascent policy: as each

The Influence of Local Search on Balanced GA 243

(a) n = 6 (b) n = 7

(c) n = 8 (d) n = 9

Fig. 3. Boxplots for the distributions of the median pairwise distance between solutions
in the final population.

new individual created by GA undergoes local search until a local optimum
is reached, the population is quickly filled by candidates that represent local
optima, or candidate solutions close to them. Therefore, finding even better
local optima by crossing over highly fit individuals in the population might
become very unlikely already in the early stages of the optimization process.
However, this finding could also indicate that by increasing substantially the
fitness budget and the population size of the GA, maybe the best fitness could
also improve by employing the steepest ascent local search variant. The rationale
is that crossover and mutation could find something better in a large population
composed of many local optima obtained through steepest ascent.

The most interesting finding concerns instead RQ2. Contrary to our expecta-
tions, the use of local search has either little influence on the population diversity,
or it even contributes to increase the median Hamming distance among pairs of
individuals. This is surprising, as the most natural explanation for the poor
performance of balanced GA when compared to other metaheuristics was that
the population would converge quickly around a single local optimum, there-
fore decreasing the population diversity. On the other hand, our experiments

244 L. Manzoni et al.

Fig. 4. Heatmap of the p-values of the median pairwise distance between solutions in
the final population.

confirm that this is not the case, i.e. the final population is composed of many
different local optima that are far apart from each other in the search space. A
possible explanation of this phenomenon might be related to the shape of the
fitness landscape for this particular problem. Indeed, Jakobovic et al. [4] already
noticed that the Local Optima Networks (LONs) of generic Boolean functions
(i.e., without balancedness constraints) are characterized by a huge number of
isolated local optima. Although here we consider a restricted search space, it
might still be the case that the resulting fitness landscape has a similar prop-
erty, since it is a subset of the space of all Boolean functions. In particular, the
authors in [4] explained that, to construct a meaningful LON, they had to change
the initialization step of their hill climber, so that they could avoid ending up
with many isolated local optima. Instead of starting each search trajectory from
a completely random point, they employed a lexicographic sampling, where each
subsequent starting point would be generated in lexicographic order from the
first one, which was drawn at random.

Therefore, a possible insight from the discussion above is that the poor per-
formance of GA in evolving highly nonlinear balanced Boolean functions is not
only related to the underlying crossover operators, but also to the method used
to initialize the population. Indeed, in our experiments we used a basic initializa-
tion step where each individual is generated at random with uniform probability.
However, this is exactly what might contribute to cause a high median distance

The Influence of Local Search on Balanced GA 245

also in the final population, exacerbated by the use of local search, especially in
its steepest-ascent version. In future experiments, it would be interesting to test
different initialization method, such as the lexicographic sampling mentioned
above of [4], or other methods where the population is created by small random
tweaks from a single initial individual.

5 Conclusions

In this work, we investigated the effect of a local search step combined with
balanced GA to evolve highly nonlinear balanced Boolean functions. The moti-
vation was to analyze the possible causes of the poor performance of balanced
GA on this particular optimization problem, when compared to other meta-
heuristics such as GP. To this end, we set up our investigation by adding to the
GA with balanced crossovers proposed in our previous paper [6] a local search
strategy originally devised by Millan et al. [13]. We investigated three variants,
namely no local search, single-step local search, and steepest-ascent local search,
and applied it to the optimization of Boolean functions of 6 ≤ n ≤ 9 variables.
The investigation was centered around two main research questions: the first one
concerned whether the use of local search increased the convergence speed of a
balanced GA toward a local optimum. The second question asked if local search
decreases the population diversity, as measured by the median pairwise Ham-
ming distance between individuals. While our results answered affirmatively the
first question as expected, the answer to the second question surprisingly turned
out to be negative. In particular, local search either does not affect or even
increases the median distance in the population. We discussed this finding by
referring to a recent work on the fitness landscapes of Boolean functions [4], in
the form of Local Optima Networks. In particular, the main insight gained from
this discussion is that the poor performance of balanced GA might be connected
to the initialization method of the population, which right now generates each
individual independently with uniform probability.

Future experiments should consider other types of initialization, such as ran-
dom walk from a single initial individual, or lexicographic generation. A more
thorough tuning phase of the GA is also in order, to assess its sensitivity toward
the population size and mutation rate. Beside this, several other directions for
future research remained to be explored on the subject. Perhaps the most inter-
esting one, after the finding of this paper, involves the analysis of the fitness
landscape for the particular search space of balanced Boolean functions. Indeed,
the analysis of Local Optima Networks in [4] considered the space of all Boolean
functions, with no balancedness constraints. Therefore, it would be interesting to
repeat the analysis for balanced functions, to see if similar properties like many
isolated local optima still emerge. Further, we believe that it would be interest-
ing to augment GA with local search also for other optimization problems that
require balanced representations, such as the construction of bent functions and
orthogonal arrays already considered in our previous paper [6].

246 L. Manzoni et al.

References

1. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press, Cambridge (2021)

2. Chen, J., Hou, J.: A combination genetic algorithm with applications on portfolio
optimization. In: IEA/AIE 2006, Proceedings, pp. 197–206 (2006)

3. Chen, J., Hou, J., Wu, S., Chang-Chien, Y.: Constructing investment strategy
portfolios by combination genetic algorithms. Expert Syst. Appl. 36(2), 3824–3828
(2009)

4. Jakobovic, D., Picek, S., Martins, M.S.R., Wagner, M.: Toward more efficient
heuristic construction of Boolean functions. Appl. Soft Comput. 107, 107327 (2021)

5. Lucasius, C.B., Kateman, G.: Towards solving subset selection problems with the
aid of the genetic algorithm. In: Männer, R., Manderick, B. (eds.) Parallel Problem
Solving from Nature 2, PPSN-II, Brussels, Belgium, 28–30 September 1992, pp.
241–250. Elsevier (1992)

6. Manzoni, L., Mariot, L., Tuba, E.: Balanced crossover operators in genetic algo-
rithms. Swarm Evol. Comput. 54, 100646 (2020)

7. Manzoni, L., Mariot, L., Tuba, E.: Tip the balance: improving exploration of bal-
anced crossover operators by adaptive bias. In: CANDAR 2021 - Workshops, Pro-
ceedings, pp. 234–240. IEEE (2021)

8. Mariot, L., Leporati, A.: A genetic algorithm for evolving plateaued cryptographic
Boolean functions. In: Dediu, A.-H., Magdalena, L., Mart́ın-Vide, C. (eds.) TPNC
2015. LNCS, vol. 9477, pp. 33–45. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-26841-5 3

9. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary algorithms for the
design of orthogonal Latin squares based on cellular automata. In: Bosman, P.A.N.
(ed.) GECCO 2017, Proceedings, pp. 306–313. ACM (2017)

10. Mariot, L., Picek, S., Jakobovic, D., Leporati, A.: Evolutionary search of binary
orthogonal arrays. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P.,
Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 121–133.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2 10

11. Meinl, T., Berthold, M.R.: Crossover operators for multiobjective k-subset selec-
tion. In: GECCO 2009, Proceedings, pp. 1809–1810 (2009)

12. Millan, W., Clark, A., Dawson, E.: Heuristic design of cryptographically strong
balanced Boolean functions. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 489–499. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054148

13. Millan, W., Clark, A., Dawson, E.: Boolean function design using hill climbing
methods. In: Pieprzyk, J., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS,
vol. 1587, pp. 1–11. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48970-3 1

14. Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic Boolean
functions: one output, many design criteria. Appl. Soft Comput. 40, 635–653 (2016)

https://doi.org/10.1007/978-3-319-26841-5_3
https://doi.org/10.1007/978-3-319-26841-5_3
https://doi.org/10.1007/978-3-319-99253-2_10
https://doi.org/10.1007/BFb0054148
https://doi.org/10.1007/BFb0054148
https://doi.org/10.1007/3-540-48970-3_1
https://doi.org/10.1007/3-540-48970-3_1

	The Influence of Local Search on Genetic Algorithms with Balanced Representations
	1 Introduction
	2 Background
	2.1 Balanced Crossover Operators
	2.2 Boolean Functions

	3 Local Search of Boolean Functions
	4 Experiments
	4.1 Experimental Setting
	4.2 Results
	4.3 Discussion

	5 Conclusions
	References

