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Preface

We live in a time of rapid development, high pace, and accelerated climate change. The
primary focus of everyday life is the short-term and not the long-term benefits of the
individual, where the exploitation of natural resources is at the forefront. At the same
time, there is increasing awareness of the importance and effectiveness of biological
systems that have thrived for billions of years. A good balance between exploitation
and exploration of resources is crucial for living organisms’ survival. The experiment of
survival and development of living organisms on earth has been carried out for billions
of years, with billions of participants in a dynamic and rapidly changing environment.
The result of this evolution is a rich set of survival mechanisms that have enabled the
survival of the most adapted species. Algorithms inspired by nature are those that try to
transfer these proven mechanisms and their “survival wisdom” to the field of computer
optimization while at the same time enabling a better understanding of it.

This volume contains recent theoretical and empirical contributions related to
bioinspired optimization and its connectionwithmachine learning presented at the Tenth
International Conference on Bioinspired Optimization Methods and Their Applications
(BIOMA 2022), held inMaribor, Slovenia, during 17–18 November, 2022. The BIOMA
conference has been organized since 2004, with the primary purpose of bringing together
a community for discussing recent advances in bioinspired optimization and existing
challenges in transferring academic knowledge into real-world applications.

BIOMA2022 received 23 submissions. The reviews were performed by 36members
of the international Program Committee. Each paper received three reviews. Based on
these 19paperswere accepted,which is 82%of the submissions. The proceedings contain
19 papers by 55 (co)authors from 17 countries.

The conference invited two contributions to be presented as keynote lectures. The
first keynote talk was provided by Carola Doerr from LIP6, Sorbonne Université and
CNRS, Paris, France. The second keynote talk was provided by Shih-Hsi Liu from
California State University, Fresno, USA.

The contributions presented at the conference covered genetic algorithms,
swarm algorithms, genetic programming, surrogate-based optimization, reinforcement
learning, improvements in differential evolution, sensitivity analysis for performance
assessment, and explainable machine learning techniques for explaining bioinspired
optimization algorithms’ behavior. The applications of algorithms came from domains
such as COVID-19 pandemic analysis and car rental problems.

Finally, we believe that the papers presented at BIOMA 2022 will provide readers
with recent advances in bioinspired optimization and their applications and highlight
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possible gaps for future research. We are grateful to the conference sponsors, mem-
bers of the Program and Organizing Committees, keynote speakers, authors, and other
participants for being part of the conference.

November 2022 Marjan Mernik
Tome Eftimov

Matej Črepinšek
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Elvis Popović, Nikola Ivković, and Matej Črepinšek
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An Agent-Based Model to Investigate
Different Behaviours in a Crowd

Simulation

Carolina Crespi , Georgia Fargetta , Mario Pavone(B) ,
and Rocco A. Scollo

Department of Mathematics and Computer Science, University of Catania,
Viale A. Doria 6, 95125 Catania, Italy

{carolina.crespi,georgia.fargetta,rocco.scollo}@phd.unict.it,
mpavone@dmi.unict.it

Abstract. This paper presents an agent-based model to evaluate the
effects of different behaviours in a crowd simulation. Two different
behaviours of agents were considered: collaborative, acting attentively
and collaboratively, and defector who, on the other hand, acts individ-
ually and recklessly. Many experimental simulations on different com-
plexity scenarios were performed and each outcome indicates how the
presence of a percentage of defector agents helps and motivates the col-
laborative ones to be better and more fruitful. This investigation was
carried out considering the (i) number of agents evacuated, (ii) exit
times and (iii) path costs as evaluation metrics.

Keywords: Metaheuristics · Ant colony optimization · Swam
intelligence · Optimization · Game theory

1 Introduction

Modeling and understanding a crowds’ behaviour has become one of the most
engaging and challenging topics of the last decades in different disciplines, such
as establishing evacuation plans after an emergency [15,19,29], optimal architec-
tural design [21–23], or even for entertainment purposes [12,28]. All these fields
are based on one key point: the comprehension of human behaviour. It is well
known that how people act and react to different situations may positively or
negatively affect the overall outcome, especially in emergencies and evacuations,
where understanding the human behaviour is a primary issue to optimize evac-
uation plans [24]. However, the common problem encountered in these studies is
the lack of human and social behavioural data [18]. For this reason, modeling and
studying human behaviour is became one of the main purposes for many research
areas [24]. Indeed, different models of crowd behaviour exist nowadays, each of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Mernik et al. (Eds.): BIOMA 2022, LNCS 13627, pp. 1–14, 2022.
https://doi.org/10.1007/978-3-031-21094-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21094-5_1&domain=pdf
http://orcid.org/0000-0003-1050-2453
http://orcid.org/0000-0002-6444-1564
http://orcid.org/0000-0003-3421-3293
http://orcid.org/0000-0002-6211-8675
https://doi.org/10.1007/978-3-031-21094-5_1
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which however focuses on different aspects of the problem depending on the
framework used. Evacuation models can be classified into three main categories:
(1) macroscopic models [4,6,9,10], which consider the crowd’s dynamics as a
flow; (2) microscopic models [8,14,17], which consider individual behaviour; and
(3) hybrid models [1,2,7], which are a combination of both. Macroscopic mod-
els are mostly used to evaluate evacuation flow but cannot describe emergent
crowd behaviour. Microscopic models, on the other hand, are used to investigate
how small changes in the individual’s characteristics affect the whole behaviour
but are inefficient in large scenarios due to their computational cost. The main
advantage in using hybrid models is that by combining macroscopic and micro-
scopic methods, or even methods from different areas, one can exploit the best
aspects of both or different approaches. Following the guidelines proposed in [24],
in this paper an agent-based model is presented to evaluate whether and how
different agent behaviours affect the collective behaviour of the whole group in
a crowd simulation. In particular, a hybrid model has been developed in which
agent-based models, which are one of the most powerful techniques to model
individual-decision making and social behaviour, are combined to the features
and dynamics of swarm intelligence methods. It consists of a set of agents that
must reach a specific location, named exit, starting from a chosen point, adopting
two different behavioural strategies: (i) the collaborative one, that is share infor-
mation about the paths and/or repair destroyed paths; and (ii) defector that, on
the other hand, doesn’t share any information, can destroy some paths and/or
nodes, but in any case exploits the help of the collaborative agents. Regardless
of their behaviour, the goal of each agent is to reach the exit point. In this
context, swarm intelligence algorithms, are useful not only for optimization pur-
poses [13] but also to model the dynamics of the crowd [3,11,25,30], since they
are capable to show the collective behaviours of the system under investiga-
tion. In the presented model, the Ant Colony Optimization (ACO) algorithm’s
principles and dynamics are considered to simulate the agents’ behaviour and
the environment setup. In particular, the agents are equipped with movement
and decision rules that take inspiration from the ones used in ACO. The aim is
to understand whether and how their behaviours, collaboratives, and defectors,
affect the whole behaviour of the crowd. The investigation has been conducted
by comparing simultaneously three evaluation metrics: (i) number of agents that
have reached the exit; (ii) exit times, and (iii) cost of the paths to reach the exit.
Using these metrics, the best expected performances are, therefore, the ones for
which the number of outgoing agents is the highest possible, while the exit time
and the path cost are the lowest possible.

2 The Mathematical Model

The idea of taking inspiration from the Ant Colony Optimization algorithm
(ACO) to model the agents’ behaviour comes from the observation that people
in a crowd and ants seem to share some characteristics. Both of them, indeed,
seem to behave following unwritten social rules. For instance, ants are able to
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find the shortest route from their anthill to a source of food and share it with
the rest of the colony using some chemical signs called pheromones. This kind
of communication is undirected because ants do not directly communicate with
each other but release their pheromones along their path, and these pheromones
act as roads to follow for the rest of the colony. The colony is able to find the
best route thanks to this kind of communication and the finding itself is an
example of emergent behaviour that is something indescribable if looking at
the colony as a sum of single elements, the ants. On the other hand, in some
contexts, for instance, in exiting and evacuation processes, people manifest the
same local interactions, like ants do, since they take decisions following what
their neighbours do, and they do it in absence of centralized decisions. Think
for instance about how many times in a social context people find the exit of a
place just by following the crowd. There is no one that guides the crowd, and
the success of the process depends on how people are able to share information,
directly by communicating with each other or indirectly by seeing what others do.
In our model, the agents’ behaviours take inspiration from the ones of the ants.
The agents may be able to find promising routes in an unknown environment
by communicating with each other in an indirect way. In addition, they may
adopt an alternative behaviour of not sharing information about the path and
destroying a part of it. The environment in which the agents move is represented
as a weighted undirected graph G = (V,E,w), where V is the set of vertices,
E ⊆ V × V is the set of edges and w : V × V → R

+ is a weighted function
that assigns to each edge of the graph a positive cost. The weighted function
highlights how hard is crossing an edge. Let define Ai = {j ∈ V : (i, j) ∈ E} as
the set of vertices adjacent to vertex i and πk(t) = (π1, π2, . . . , πt) as a non-empty
sequence of vertices, with repetitions, visited by an agent k at the timestep t,
where (πi, πi+1) ∈ E for i = 1, . . . , t − 1. Starting from a prefixed point, a
population of N agents explore the environment trying to reach a destination
point as quick as possible, through a path that has a lower cost. This population
of agents is divided in Γ groups, each of which begins its exploration at regular
intervals. For instance, it can be considered a simplified version of a delayed
evacuation strategy, as the authors in [24] mention in their survey. Indeed, it is
supposed that in some contexts, people do not evacuate all at the same time but
organize themselves to evacuate in the ordered possible manner, for instance, in
schools, public offices, and especially in recent pandemic plans to avoid Covid-19
diffusion. We have modeled this situation by establishing that each group starts
its tour after a fixed time. At a specific time t, an agent k placed on a vertex i
chooses as destination one of its neighbour vertices j, with a probability pk

ij(t)
defined as the proportional transition rule defined in [5]:

pk
ij(t) =

⎧
⎨

⎩

τij(t)
α·ηij(t)

β

∑
l∈Jk

i
τil(t)α·ηil(t)β if j ∈ Jk

i

0 otherwise,
(1)

where Jk
i = Ai \ {πk

t−1} are all the possible displacements of the agent k from
vertex i, τij(t) is the trace intensity on the edge (i, j) and ηij(t) is the desirability
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of the edge (i, j) at a given time t, while α and β are two parameters that
determine the importance of trace intensity with respect to the desirability of an
edge. The trace intensity τij on the edge (i, j) is a data that manifest how many
times an edge is crossed by the agents and can help new agents to make a decision
based on the actions of other agents. It is the equivalent of the pheromone in
ACO algorithm. This value is a passive information, because the agents leave
it unintentionally and after each movement the trace τij(t) is increased by a
constant quantity K, that is:

τij(t + 1) = τij(t) + K, (2)

where K is a user-defined parameter. Equation 2 is the equivalent of the rein-
forcement rule of the ACO algorithm. This rule is so called because at each step,
the amount of pheromone on a path (i, j) is augmented by the ants of a quantity
that may be constant or not. In other words, every agent leaves a constant trace
after crossing an edge (i, j). On the other hand, every T ticks1 the amount of
trace on the edges decays according to the global updating rule, which is also in
this case the same present in ACO procedure. In ACO the algorithm, the global
updating rule states that the amount of pheromone present in the environment
is not fixed but it decays in time:

τij(t + 1) = (1 − ρ)τij(t), (3)

where ρ is the evaporation decay parameter.
The desirability ηij(t) in Eq. 1, at a given time t, establish how much an

edge (i, j) is promising. This information is not known a priory and it is released
intentionally by an agent on a vertex after crossing an edge. In particular, ηij(t)
is related to the discovered information by the agent k after crossing the edge
(j, i). Its value depends on the inverse of the weight of the edge (i, j), that is:

ηij(t) = 1/w(i, j). (4)

It is important to note that the desirability is asymmetric because this informa-
tion is present on the vertices, that is ηij(t) ≤ ηji(t) at a given time t. Lower
the cost to cross an edge is, greater the desirability and the probability to follow
a promising path is; vice versa, higher is the cost to cross an edge, lower is the
desirability.

The agents are divided in two categories, each with its specific behaviour:

– collaborators C: they leave an information ηij(t) after crossing an edge
(j, i) to help other agents during the escape and may repair a destroyed edge
and/or a destroyed vertex before performing his movement, with a probability
PC

e and PC
v respectively.

– defectors D: they not leave any information after crossing an edge and
may destroy an edge and/or a vertex after performing his movement, with
probability PD

e and PD
v respectively. A node or an edge destroyed is one no

more traversable by other agents.
1 The time unit used that corresponds to a single movement of all agents.
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In other words, collaborators mainly perform actions that somehow help all the
other agents to reach the rescue point as quick as possible. We can assume
that they cross an edge or vertex in a cautious way, taking care not only to not
destroy it, but also engaging themselves to repairing it if destroyed by a defector.
Moreover, they leave an information ηij(t) about how hard is to cross a particular
edge, so that the other agents can exploit in their own strategies. This increases
the possibility to discover a more promising path toward the rescue point. To
focus on a real situation, one can imagine leaving information to the other agent
as, for example, a written message, a color mark, or a simple indication. On the
other hand, the defectors mainly act in a hasty way, carrying out actions that can
destroy the surrounding environment. Indeed, after crossing a node or an edge,
and with a certain probability, they may destroy it decreasing the possibility
of the other agents exploring the environment. This action may influence not
only the cooperatives but also themselves especially if the destroyed path is an
important one that is crucial to reach the location. The defectors’ behaviour can
be seen as a consequence of a stress and panic situation in which the agents like
real people, due to this, are unable to be aware of their actions. They only try
to find a good path by following the others and not informing the rest of the
group about what they have found.

Table 1. Table of the variables and constants used.

Variable Description

w(i, j) Weight of an edge

pk
ij(t) Transition probability of the agents

τij(t) Trace intensity on the edge

ηij(t) Desirability of an edge

Pe,v Destruction/repair probability of a node and/or edge

To evaluate how these two different behaviour strategies influence the per-
formance of all agents, the model takes into account as comparison metrics (i)
the path cost, (ii) the exit time, and (iii) the number of agents that successfully
reach the destination point. These three quantities have been considered together
because the action of destroying/repair of nodes and/or edges makes the envi-
ronment a dynamic environment. To clarify: once a simulation is launched, and
if the population of agents is mixed with both kinds of agents, it may happen
that one or more defectors cross an edge and/or a node and destroy it. Within
the same simulation, it may also happen that one or more collaborator, app-
roach the same nodes and/or edges destroyed by the defectors and may decide
to repair them. Since a destroyed node and/or edge is no more traversable, it
follows that these two actions change, from time to time, the structure of the
environment, making the scenario dynamic. For this reason, considering just
one of the three evaluation metrics mentioned above would have been incorrect
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because a promising path may not be the best in terms of cost, or just in terms
of the success rate of the agents, or just in terms of exit time. A good path is
one that minimizes its cost and exit time and, at the same time, maximizes the
number of agents exiting that path.

Mathematically, the cost of a generic path π(t) = (π1, π2, . . . , πt) is calculated
as:

t−1∑

i=1

w(πi, πi+1), (5)

where π1 and πt are the starting and destination points, respectively. Since every
tick all agents in the environment perform a single movement (from one vertex
to another one), the exit time is calculated as the number of moves that an
agent makes in its exploration and corresponds to the length of the path π(t).
All variables of interest are listed in Table 1.

3 NetLogo Model

The results are obtained using NetLogo [27], a multi-agent programmable mod-
eling environment. As said in Sect. 2, the environments have been modelled as
graphs with a topology similar to grid graphs, where each node can be con-
nected with its 8-neighbours. The connectivity of a node with its neighbours is
controlled by two parameters: 0 ≤ p1 ≤ 1, that represents the probability to
create horizontal and vertical edges, and 0 ≤ p2 ≤ 1, that represents the prob-
ability to create oblique edges. The weight of each edge is a real value assigned
with a uniform distribution in the range [1, 100]. Two different scenarios have
been considered for the experiments:

– scenario A with |V | = 100 and |E| = 213, generated with p1 = 0.6, p2 = 0.2;
– scenario B with |V | = 225 and |E| = 348, generated with p1 = 0.6, p2 = 0.0.

They are both represented in Fig. 1.

4 Experimental Results

As the first step of this investigation, in both scenarios, have been considered
N = 1000 agents divided into Γ = 10 groups. These values were chosen since
1000 agents represent a common number of people involved in a crowd, and 10
groups to better distribute the agents during the simulations. Depending on the
value of the parameter f ∈ [0, 1], user-defined and named collaborative factor, in
each group there will be f collaborative agents, and (1−f) defectors. Therefore,
in each group may be present both, or just one type of agent. In particular, if
f = 0.0 groups with only defectors are considered; if f = 0.5 (for instance) each
group is formed by half collaborative and half defectors; while for f = 1.0 only
collaborative groups are generated.

Each group begins its exploration at different times, and precisely after a
given time Te from the group that precedes it, excepts the first group that
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Fig. 1. Examples of networks used for the simulations in scenario A (Fig. 1a) and in
scenario B (Fig. 1b). The starting point is represented by the house-shaped red node on
the left of the network, while the exit point is the house-shaped green node on the right.
Red nodes and edges represent the destroyed nodes by the defectors. The defectors
themselves are represented by human-shaped blue agents, while the collaborators are
of the same shape but in orange.

obviously starts at the time 0. In general, then, the i-th group will begin its
exploration at the time (Te × (i − 1)). Note that the value to assign to Te is
related to the vertices number of the scenario considered (Te = |V |). Therefore,
at every Te ticks, a new group starts its journey, having however a maximum
time within which the agents must reach the exit. Let Tmax the overall maximum
time allowed to reach the exit, given by:

Tmax = 2 × Γ × Te, (6)

where Γ is the number of the groups, and 2 is a fixed parameter. It follows
therefore that the time window within which each agent must reach the exit is
from the begins of its exploration to the overall maximum time Tmax, that is:

Tmax − (Te × (i − 1)), (7)

where i is the agent belonging group.
Analysing the Eqs. 6 and 7 one can note that the first groups have more

time to explore the environment compared to the others. This is due because
the groups begin their exploration even if in the environment are still present
agents belonging to the previous groups. This means also that agents belonging
to the same group can exit at different times (always within their time window)
and those belonging to the first groups benefit more time to find the exit. It is
important to highlight that the trace left by the collaborators along their path
degrades over time with an evaporation interval fixed at Td = 50. This means,
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Fig. 2. The exit time for (a) scenario A and (b) scenario B.

then, that to every Td ticks the global updating rule defined in Eq. 3 is applied
with evaporation rate ρ = 0.10. Note that initially the trace on all edges is set to
τij(0) = 1.0. Moreover, the parameters that regulate the importance of the trace
and desirability in Eq. 1, i.e., α and β, are both set to 1.0. The destruction-repair
probabilities on a vertex and an edge are PC

e = PD
e = 0.02 and PC

v = PD
v = 0.02,

respectively and they are the same for both kinds of agents.
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Fig. 3. The path cost for (a) scenario A and (b) scenario B.

Finally, to evaluate the effects of the two behaviours, collaboratives, and
defectors, we have carried out experiments varying the collaborative factor f ,
that is the percentage of collaborators among the population of agents. For each
value of f , from 0.0 to 1.0 with step of 0.1, we have performed 100 independent
simulations. The exit time (Fig. 2) and path cost (Fig. 3) plots, have been nor-
malized with respect to the group success rate, that is the percentage of agents



10 C. Crespi et al.

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Collaborative Factor

G
ro
up

0.025

0.050

0.075

Agents
per Tick

Number of exited agents per tick - A

(a)

0

500

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Collaborative Factor

N
um

be
r
of

A
ge
nt
s

Number of exited agents - A

(b)

Fig. 4. The number of agents for the scenario A.
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Fig. 5. The number of agents for the scenario B.

in a group, which successfully reach the exit point. Lower these values are, the
better performances of the agents are. In both scenarios, the exit time decreases,
so gets better, with respect to the collaborative factor, indicating that the more
collaborative the agents are, faster their exit will be. This seems true except
for f = 1.0, i.e., when all agents are collaboratives, where the performances of
each group are worse than the previous values of f . The groups are indicated
by different colored lines, and it also seems that the exit time decreases with
respect to the group number, indicating that the groups that evacuate later,
even if they have less allowed time, in some way, exploit the information left
by those who have previously evacuated. In fact, looking for instance at group
1, in both scenarios, one can see how it has worse performances for low values
of f , and better performances for high values of f . It means that the agents of
this group can exploit better the information about the path especially when
the crowd is composed mainly of collaborative agents. Do not be confused by
the fact that the same group has good performance even for the lowest value of
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the collaborative factor f . Indeed, for that value, as it will be shown later, few
agents find the exit from the environment and so, considering both metrics (the
exit time and the number of agents exited) it can be concluded that it is not a
significant result. On the other hand, by looking at group 10, in both scenarios,
its performances improve with f , except for f = 1.0. This indicates that the
last group can exploit better the information about the path when the crowd is
composed mainly, but not totally, of collaborative agents. Same conclusions can
be drawn for the path cost in Fig. 3, that decreases with respect to the collabo-
rative factor and the group number. This is true for every value of f except for
f = 1.0. This indicates, as above, that the more collaborative the agents are,
the better path they will find, but if the collaboration is absolute, it seems to
not work.

The heat maps in Figs. 4a and 5a represent the number of agents that reached
the exit, and they are normalized with respect to the exit time available for each
group. They represent how many agents have been evacuated in one unit of
time (that is how many agents have been evacuated at each tick). The higher
this value is, the better the performances of the agents are. The same trend is
present, but opposite in value, observed for the exit time and the path cost: it
seems that the number of exited agents increases with the collaborative factor
except, also in this case, for f = 1.0, value for which few agents reach the exit.
The performances of the agents are not better when all of them are collaborative
but, oddly, when some of them act in a different way as defectors. The same
quantity seems to increase with respect to the group number, indicating that
the last groups benefit from the first ones, especially in scenario A.

Figures 4b and 5b represent the total number of exited agents for the A
scenario and for the B scenario. Even without considering the group number,
one can come to the same conclusions as above: the number of agents, that
reaches the exit, increases with respect to the collaborative factor and one can
better observe the collective behaviour of the simulated crowd. The maximum
number of exited agents is obtained for f = 0.7 for scenario A and for f = 0.9
for scenario B. Considering the overall trend of the metrics used (the number of
agents that reaches the exit, the path cost, and the exit time) it is possible to
observe that the best performances of the agents are not when the entire group is
composed only of collaborative agents, but when some of them are defectors. In
other words, the crowd seems to perform better when some agents act differently
and, in general, when there is a condition of mixed strategy among the agents.

5 Conclusions and Future Works

In this work, we proposed an agent-based model to evaluate the effects of two
different behaviours in a crowd simulation: a collaborative and a defector one.
Each strategy corresponds to different actions performed by the agents. The
metrics used to evaluate the strategies are the number of exited agents, the path
cost, and the exit time. From the results presented we can conclude that:
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– a completely collaborative crowd has, in general, bad performances because it
exits spending more time, by a more expensive path and does not maximize
the number of agents that reach the exit point. This is since the destroy
action performed by the defectors may help the rest of the group in pruning
undesirable paths;

– a mixed crowd, in which are present both behaviours, is more efficient not only
in obtaining the best values of the metrics used but also in the transmission
of the information from one group to another;

– the results are confirmed for two scenarios with different characteristics, indi-
cating that they may be generalized to more complex ones.

Since the agents’ behaviour and environment setup follow the ACO rules,
the results obtained can be used to improve the algorithm itself. In the liter-
ature, there exist several studies which demonstrate that a hybrid ant colony,
or an ant colony with hybrid strategies, has, in general, better performances in
solving different kinds of optimization problems [16,20,26]. However, it seems
that no or few studies have been made about how these performances vary with
respect to the composition of the colony with a user-defined parameter (in our
case, the collaborative factor f). This aspect may open interesting opportunities
in the optimization field because it can make it easier to make a step-by-step
study and control the percentage of heterogeneity within a colony. The pro-
posed model is still under investigation and surely needs more validation, both
qualitative and quantitative. However, the abstraction used for the agents’ com-
munications seems to be reasonable if compared to what common sense suggests.
In a situation in which we have to choose a direction, we mediate the informa-
tion by considering not only what other people do (if we see some people that
choose a path we are more confident in choosing the same path) but also what
we objectively know about that path (if we know that a path has been chosen by
a lot of people but we also know that it is not a good path, we may not choose
it). This behaviour, represented by the product between the trace parameter and
the desirability parameter, be adapted to different situations like, for instance
when we have to choose a new mobile phone, a new job position, or a new car.
We often mediate between what we see other people do and what we objectively
know is true or good for us.

Future works include simulations with more complex scenarios, more starting
points, and end points and, a sensitivity analysis of the parameters used.
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Abstract. Deep neural networks (DNNs) obtained remarkable achieve-
ments in remaining useful life (RUL) prediction of industrial components.
The architectures of these DNNs are usually determined empirically, usu-
ally with the goal of minimizing prediction error without considering
the time needed for training. However, such a design process is time-
consuming as it is essentially based on trial-and-error. Moreover, this
process may be inappropriate in those industrial applications where the
DNN model should take into account not only the prediction accuracy
but also the training computational cost. To address this challenge, we
present a neural architecture search (NAS) technique based on an evolu-
tionary algorithm (EA) that explores the combinatorial parameter space
of a one-dimensional convolutional neural network (1-D CNN) to search
for the best architectures in terms of a trade-off between RUL prediction
error and number of trainable parameters. In particular, a novel way to
accelerate the NAS is introduced in this paper. We successfully shorten
the lengthy training process by making use of two techniques, namely
architecture score without training and extrapolation of learning curves.
We test our method on a recent benchmark dataset, the N-CMAPSS, on
which we search for trade-off solutions (in terms of prediction error vs.
number of trainable parameters) using NAS. The results show that our
method considerably reduces the training time (and, as a consequence,
the total time of the evolutionary search), yet successfully discovers archi-
tectures compromising the two objectives.

Keywords: Evolutionary algorithm · Multi-objective optimization ·
Convolutional neural network · Remaining useful life · N-CMAPSS

1 Introduction

Predictive maintenance (PdM) is one of the key enabling technologies for Industry
4.0. It develops a maintenance policy using predictions of future failures of indus-
trial components. Considering that this can be realized by estimating remaining
useful life (RUL) of the target components, the RUL prediction has attracted con-
siderable research interest, and much attention also from industry stakeholders.
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Today, data-driven approaches using various deep learning (DL) models have
gained increasing attention for developing RUL prediction tools. However, these
models are usually handcrafted and their performance depends on the net-
work architecture, usually set empirically. Such a design process can be time-
consuming and computationally expensive because of the needed trial-and-error.
Neural architecture search (NAS), a technique that enables to design the archi-
tectures automatically, can be a reasonable solution for this problem. Particu-
larly, the realization of NAS through an evolutionary algorithm (EA), the so
called evolutionary NAS, has attracted considerable attention.

In the field of RUL prediction, a recent work [1] applied evolutionary NAS to
design the architecture of a data-driven DL model automatically. The authors
use a genetic algorithm (GA) to optimize the architecture of a complex DL
architecture that was manually designed in their previous work [2], aimed at
improving RUL prediction accuracy. Solving such an optimization problem for
better prediction accuracy can be formalized as follows:

w∗(a) = arg min
w

Ltrain(w, a) (1)

a∗ = arg min
a

Lval(w∗(a), a) (2)

where Eq. (1) describes an inner evaluation loop that aims to find the optimal
weights w∗ for a given architecture (described by its parameters a) w.r.t. the
training loss Ltrain, while the outer loop defined by Eq. (2) searches for the
optimal architecture (i.e., the one described by the parameters a∗) w.r.t. the
validation loss Lval.

There are two problems in the above optimization task. As shown in Eq. (2),
the algorithm searches for an optimal architecture w.r.t. the prediction accuracy,
regardless of the size of the network. Although this aspect has not been thor-
oughly discussed so far in the existing literature, limiting the size of the network
determined by the number of trainable parameters is an important objective in
industrial contexts that normally seek to save cost by minimizing access to expen-
sive computing infrastructures. To solve this problem, in this paper we propose to
evolve a one-dimensional convolutional neural network (1-D CNN) simultaneously
subject to the two objectives of reducing the RUL prediction error and minimizing
the number of trainable parameters. For this multi-objective optimization (MOO)
task, we use the well-known non-dominated sorting genetic algorithm II (NSGA-
II) [3], which has already been applied successfully to NAS tasks [4,5].

Another challenge of the aforementioned task is that it typically requires a
lengthy and rather expensive training process. As shown in Eq. (1), evolution-
ary NAS is computationally expensive because each individual (i.e., candidate
network architecture) should tune its parameters iteratively with gradient-based
computations until convergence, before being evaluated on the validation data.
To address this issue in our MOO approach, we propose a method for speeding
up the training formulated in Eq. (1) by combining two techniques: architecture
score without training [6] and extrapolation of learning curves.

The idea behind the architecture score is to predict the performance of
a trained network from its initial state. This score measures the overlap of



Accelerating Evolutionary NAS for RUL Prediction 17

activations in an untrained network between different inputs from a mini-batch of
data, so that a higher score at initialization implies better performance in terms
of prediction error after training. Based on our preliminary experiments (not
reported here for brevity), we found that this score is distinctive for networks
with less than a certain number of trainable parameters. For those networks, we
replace the expensive training step with the architecture score. For the networks
with a larger number of trainable parameters, we instead apply extrapolation of
learning curves. This technique prevents the need for full training (as done in the
existing literature, where training is typically continued until a given maximum
epoch, set large enough to allow convergence, before computing the validation
loss), by training the network for a smaller number epochs, and observing the
validation root mean square error (RMSE) after each training epoch. The obser-
vations are then used for estimating the validation RMSE at the maximum
epoch. Specifically, we derive a learning curve based on the observations, and
extrapolate it to take the predicted validation RMSE at the maximum epoch.

To test the proposed method, we have used the new commercial modular
aero-propulsion system simulation (N-CMAPSS) dataset provided by NASA [7],
which is a well-established benchmark in the area of RUL prediction. On this
dataset, we search for optimal CNN architectures compromising the RUL pre-
diction error and the number of trainable parameters. The experimental results
verify that speeding up the evolutionary search causes the reduction of the hyper-
volume (HV) of just around 3% (compared to the NAS without acceleration),
but the proposed method provides a considerable overall runtime reduction of
approximately 75% in terms of GPU hours.

To summarize, the main contributions of this work can be identified in the
following elements:

– The proposed method significantly shortens the evaluation time of the evolu-
tionary NAS process.

– The networks discovered by the architecture search process represent success-
ful trade-off between two conflicting objectives, namely the RUL prediction
error and the number of trainable parameters.

The rest of the paper is organized as follows: in the next section Sect. 2, the
general concepts on RUL prediction are introduced. The details of the proposed
methods are presented in Sect. 3. Then, Sect. 4 describes the specifications of
our experiments, while Sect. 5 presents the numerical results of the experiments.
Finally, Sect. 6 discusses the conclusions of this work.

2 Background

Recently, various RUL prediction methods have been proposed, which can be
mainly categorized into two approaches [8]: physics-based approaches and data-
driven approaches. The former require extensive knowledge to analytically model
the physical degradation process [9]. In practice, these implementations have
been limited because the physics underlying degradation is well-understood only
for relatively simple components, despite the huge amount of efforts [10]. On the
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other hand, data-driven approaches do not suffer from the above problems as
they assume that the information relevant to the health and lifetime of compo-
nents can be learned from past monitoring data [11].

Due to their ability to learn degradation patterns directly from historical data
without knowing the underlying physics, data-driven approaches have gained
increasing attention. Especially, black-box models based on deep learning have
been widely used for prediction [12]. Figure 1 illustrates the flowchart of a data-
driven RUL prediction task with a black-box model. The object of the RUL
prediction is a target component. The sensors installed on the target collect the
health monitoring data, usually recorded in the form of multivariate time series.
The data are then fed into a black-box model that derives a RUL prediction as
its output. This model is trained on historical data collected by run-to-failure
operations. The training loss is then defined based on the difference between
the predicted RUL and the actual RUL. After training, the model can directly
provide the predicted RUL w.r.t. current sensor measurements. However, deter-
mining an appropriate black-box model is a key issue for developing successful
data-driven RUL prediction tools.

Fig. 1. Flow chart of a data-driven RUL prediction task.

Over the past decade, extensive research on data-driven approaches for RUL
prediction using neural networks has been performed. One of the earliest works,
introduced in [13], propose to use a multi-layer perceptron (MLP) for predicting
the RUL of aircraft engines. The authors also propose to employ a convolutional
neural network (CNN). Instead, the authors of [14] propose to a recurrent neural
networks (RNN), in particular a long short term memory (LSTM), to recognize
the temporal patterns in the time series. Considering the advantages of both
CNNs and LSTMs, a combination of them has been used to predict RUL in [2].
As an alternative to use back propagation neural networks (BPNNs), Yang et al.
[15] employ an extreme learning machine (ELM), a model originally introduced
in [16], that achieves a much faster training compared to BPNNs. Recently, an
autoencoder (AE) has been combined with RNNs [17] to obtain unsupervised
learning. In [18], attention mechanism has been applied to a DL-based frame-
work. Finally, deeper CNNs have been proposed in [10,19], showing comparable
performances to the aforementioned combined architectures.

3 Method

We present now the details of the proposed method: Sect. 3.1 describes the indi-
vidual encoding and the optimization algorithm we used, while Sect. 3.2 explains
how we defined and applied the two techniques for speeding up the evaluation.
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3.1 Multi-objective Optimization

Individual Encoding. Deep CNN architectures have provided outstanding
performances on multivariate time series processing [20], also including RUL
prediction [10,19]. Therefore, we adopt a 1-D CNN as our backbone network,
whose architecture should be optimized. This network consists of a set of 1-
D convolution layers and one fully connected layer: the nl stacked convolution
layers aim to extract high-level feature representations, while the following fully
connected layer uses all the extracted features for regression.

Figure 2 visualizes a 1-D convolution layer in the network. Each of nf filters
of length lf slides over its input features to apply convolution in the temporal
direction. Each convolution layer is followed by an activation layer applying the
rectified linear unit (ReLU) activation function. The feature map of the last
convolution layer is flattened and fed into the fully connected layer comprising
nf.c. neurons to predict the RUL.

Fig. 2. Illustration of 1-D convolution layer with nf filters of length lf .

The number of convolution layers nl and the two hyper-parameters regard-
ing the convolution filter, nf and lf , contribute to the feature extraction. The
number of neurons in the fully connected layer, nf.c., works on the regression
task based on the extracted feature. All the four hyper-parameters largely affect
the prediction error and determine the total number of trainable parameters in
the network.

Based on the above description, we consider the optimization of the following
architecture parameters:

– nl, number of convolution layers;
– nf , number of filters in each convolution layer;
– lf , length of convolution filters;
– nf.c., number of neurons in the fully connected layer.

Considering that the architecture parameters are all integers, the encoding of
solutions consists of four integers. The lower and upper bounds for each param-
eter considered in our evolutionary search are set as follows: [3, 8] for nl, [5, 25]
for both nf and lf , and [5, 15] (multiplied by a fixed value of 10) for nf.c.. These
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values have been chosen empirically. In particular, the smaller networks, which
have too few trainable parameters, cannot decrease the training loss (i.e., they
underfit), while the larger networks, containing too many parameters, may over-
fit the training data. Taking these two aspects into account, we set the bounds so
to explore a parameter space of approximately 30,000 1-D CNN configurations.
One additional note is that nf is not valid for the last convolution layer. The
number of filters in the layer is set to 5, to prevent the fully connected layer from
receiving a too long flattened feature.

Optimization Algorithm. In order to optimize the architecture of the CNN
described in Sect. 3.1, we use the well-known NSGA-II algorithm [3], to look
explicitly for the best trade-off solutions in terms of RUL prediction error and
number of trainable parameters. In the evaluation step of our evolutionary
search, the fitness of each individual is calculated by generating a CNN (the
phenotype) associated to the corresponding genotype, i.e., a vector containing
the four parameters introduced in Sect. 3.1.

At the beginning of the evolutionary run, a population of npop individuals
is initialized at random. In the main loop of the GA, an offspring population
of the same size is generated by tournament selection, crossover and mutation.
The new individuals are then put together with the parents. The combined
population is then sorted according to non-domination. Finally, the best non-
dominated sets are inserted into the new population until no more sets can be
taken. For the next non-dominated set, which would make the size of the new
population larger than the fixed population size npop, only the individuals that
have the largest crowding distance values are inserted into the remaining slots
in the new population. Subsequently, the next generation starts with the new
population by creating its offspring population. We stop this loop after a fixed
number of generations ngen.

Regarding the genetic operators, we consider 1-point crossover with crossover
probability pcx set to 0.5 and uniform mutation with mutation probability pmut

set to 0.5. The probabilities have been chosen such that, in most cases, indi-
viduals are produced by either mutation or crossover (exclusively), so to avoid
disruptive effects due to the combination of mutation and crossover that may
lead to bad individuals. The expected number of mutations per individual is
determined by the probability pgene, set to 0.4. It indicates the probability of
applying the mutation operator to a single gene. This means that we have, on
average, 1.6 mutated genes out of 4, which allows us not only to have a relatively
faster architecture search process, but also to avoid disruptive mutations.

Finally, we set npop and ngen to 20 and 10 respectively. We have empirically
found that these values allow enough evaluations to observe an improvement on
the HV spanned by the discovered solutions. After 10 generations, the algorithm
returns a Pareto front, that is defined as the set of trade-off solutions at the top
dominance level.
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3.2 Speeding up Evaluation

Architecture Score Without Training. In almost all evolutionary NAS
methods, the evaluation is the most time-consuming stage, because these meth-
ods typically evaluate a number of candidate networks on the validation data
after the computationally expensive training [21]. In detail, a training set Dtrain

is set to include all the available training data. This set is split into training pur-
pose data, Etrain, and validation purpose data, Eval (i.e., Dtrain = Etrain∪Eval).
Then, Etrain is used for the training process defined in Eq. (1) while the archi-
tecture search process, defined in Eq. (2), is based on Eval.

To reduce the time needed for the evolutionary search, we employ a speed-up
technique called architecture score without training [6]. This method predicts the
performance of a trained network based on its ability to discriminate between
the different inputs of the network upon initialization, instead of training it.

Given that we use ReLU as the activation function in the networks, the
output activation of each unit can indicate whether the unit is active or inactive;
if the activation value is non-zero positive, the unit is active; otherwise, it is
inactive. This is encoded as a binary bit, representing the former case as 1 and
the latter as 0, i.e., we set the output activation of the non-zero positive case
to 1. Given a data mini-batch X = {xi}Mi=1, we feed an input sample xi into a
network containing NReLU activation units, and gather all the binary bits. Then,
we obtain a binary code ci ∈ {0, 1}NReLU for each sample xi, thus in total we
have M binary codes for the mini-batch.

The underlying intuition for the binary activation codes is that the similarity
of two binary codes from two different inputs reveals how difficult it is to separate
them for the network. For instance, if two different inputs have the same binary
code, they lie within the same linear region defined by the activation function
and therefore they are particularly difficult to distinguish [6].

The similarity between two different binary codes for xi and xj can be mea-
sured by the Hamming distance dH(ci, cj), and the correspondence between
binary codes for X can be computed by the kernel matrix KH :

KH =

⎡
⎢⎣
NReLU − dH(c1, c1) · · · NReLU − dH(c1, cM )

...
. . .

...
NReLU − dH(cM , c1) · · · NReLU − dH(cM , cM )f

⎤
⎥⎦ . (3)

Based on KH , the architecture score is then defined as:

s =
c

ln |KH | . (4)

Following Eq. (4), the determinant of the kernel matrix |KH | is higher for the
kernel closest to the diagonal, and large distances between two different codes
mean that those can be well-separated by the neural network. Thus, a lower score
for the same input batch at initialization implies a better prediction accuracy
after training. We set the value of the constant c to 104, so that the score values
in our work range approximately from 1 to 20.
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Extrapolation of Learning Curves. The evaluation step in evolutionary
NAS typically requires training each network for a given number of epochs, with
a relatively small learning rate. Following our previous work [1], we know that
using a large learning rate enables to reduce the number of epochs, but it makes
the validation curve fluctuate, thus providing unreliable evaluations caused by
overfitting. Early stopping policy has been widely used for saving a few epochs,
but its result is largely affected by how we define the performance improvement
and the amount of patience. Moreover, the early stopping policy can lead to
inaccurate performance estimations [21]. To mitigate this problem, we propose
an extrapolation of learning curves that allows to save half of the training time
w.r.t. a predetermined number of epochs. Note that here the learning curve is
based on the validation RMSE across epochs.

Our basic approach is to derive the learning curve based on a set of functions
f(x), which are combined after fitting each of them to the observations. Specifi-
cally, we terminate the training at nt epochs, that is half of the maximum epoch
nm planned for convergence, and collect all the validation RMSE for each of the
nt epochs. The observations are then used to fit each function defined in Table 1
by non-linear least squares minimization:

minimize
nt∑
j=1

(yoj − f(xj))2

where yoj indicates the observed validation RMSE at xj . The obtained function is
denoted by f∗. The algorithm to solve the least squares problem is the Levenberg-
Marquardt algorithm [22].

Table 1. Functions f(x) used for extrapolation of learning curves. We chose a set
of functions from the literature [23], whose shape coincides with our prior knowledge
about the trend of the validation RMSE.

Name Formula

MMF α − α−β

1+γxδ

Janoschek α − (α − β)e−γxδ

Weibull α − (α − β)e−(γx)δ

Gompertz α + (β − α)(1 − e−e−γ(x−δ)
)

Hill custom α + β−α

1+10(x−γ)δ

As shown in Fig. 3, each curve drawn by f∗ is close to the observation curve,
but no single function can sufficiently describe the learning curve. Therefore, we
combine all the obtained functions by solving a linear regression:

minimize ‖F ∗a − yo‖22
where F ∗ ∈ IRnt×k contains all the function values from k functions f∗ (in our
experiments, k = 5) for nt epochs, and yo ∈ IRnt is a vector of observations.
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Fig. 3. An example of how the learning curve is derived from the k = 5 functions and
the observations for 15 epochs. The red colored curve called “combined” represents the
obtained learning curve. We take its value at 30 epochs and use it as the predicted
validation RMSE. (Color figure online)

The optimal a ∈ IRk, obtained by solving the linear problem problem, can be
written as a∗ = [a∗

1, · · · , a∗
k]. Our target value is the predicted validation RMSE

at xnm
. For that, first we take the function value at xnm

for each function f∗,
i.e., f∗(xnm

) = [f∗
1 (xnm

), · · · , f∗
k (xnm

)]. The linear combination of these values
with the weights a∗ is then the target value ypnm

:

ypnm
= f∗(xnm

) · a∗. (5)

If the validation RMSE has not converged yet, then our defined curve sufficiently
decreases with x and the minimum observed value, min(yo), is greater than ypnm

.
This decay can be defined as d = min(yo)−ypnm

, where we take ypnm
as the fitness

value if the decay d is greater than 0.
During the evolutionary NAS process, many networks appear and each net-

work converges at a different speed. Based on preliminary observations, we found
that ypnm

cannot be directly used as the fitness for some networks for which
the learning curve decreases rapidly in the first few epochs and then reaches a
plateau. In this case, our derived curve does not decrease with x and the decay
d can be negative, while the actual validation RMSE may decrease even a little
if we keep training the network. We compensate for this scenario by subtracting
the absolute value of the decay to the minimum observed value. This way, we can
assign a lower fitness value to the network that shows a validation RMSE trend
that converges very quickly. Overall, the predicted fitness in terms of validation
RMSE is then defined as:

fitnessRMSE =

{
ypnm

, d > 0
min(yo) − |d|, d ≤ 0.

(6)

In our experiments, we set the maximum epoch nm to 30, based on our previous
works [1,2,5]. If we terminate the training too early (i.e., after less than half nm),
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then the predicted value may be too small because the learning curve shows no
sign of convergence. On the other hand, using too many training epochs (close
to nm) would reduce any benefit of this speed-up technique. For these reasons,
nt is set to half nm, i.e., 15.

4 Experimental Setup

4.1 Computational Setup and Benchmark Dataset

The 1-D CNNs are implemented using TensorFlow 2.4. All the experiments have
been conducted on the same workstation with an NVIDIA TITAN Xp GPU, so
that we can have a reliable comparison of the GA runtime in terms of GPU
hours. To get reproducible results, we use the tensorflow-determinism library1,
which allows the DNNs implemented by TensorFlow to provide deterministic
outputs when running on the GPU. The GA is implemented using the DEAP
library2. Our code is available online3.

To test the proposed method, we use the N-CMAPSS dataset [7] that con-
sists of the run-to-failure degradation trajectories of nine turbofan engines with
unknown and different initial conditions. The trajectories were generated with
the CMAPSS dynamic model implemented in MATLAB, employing real flight
conditions recorded on board of a commercial jet. Among the nine engines, we
use 6 units (u2, u5, u10, u16, u18 and u20) for the training set Dtrain, and the
remaining 3 units (u11, u14 and u15) for the test set Dtest. We select and use 20
condition monitoring signals following the setup in [10].

4.2 Data Preparation and Training Details

As shown in Fig. 2, the DNNs used in our work require time-windowed data as
an input to apply 1-D convolution in the temporal direction. To prepare the
input samples for the networks, first each time series is normalized to [−1, 1]
by min-max normalization. Then, we apply a time window of length 50 and
stride 50 so that the given multivariate time series consisting of the 20 signals
is divided into input samples, with each sample of size 50 × 20. After slicing the
time series into samples, we assign 80% randomly selected samples from Dtrain

to Etrain. The remaining samples in Dtrain are assigned to Eval, which is used
for the fitness evaluation.

For training, we use stochastic gradient descent (SGD). In particular, AMS-
grad [24] is used as optimizer after initializing weights with the Xavier initializer.
We set the initial learning rate to 10-4 and divide it by 10 after 20 epochs, fol-
lowing our previous observations on the effect of learning rate decay [1]. The size
of the mini-batch for the SGD is set to 512. This size is also used for defining
a mini-batch for the architecture score. We randomly choose 512 samples from

1 https://github.com/NVIDIA/framework-determinism.
2 https://github.com/DEAP/deap.
3 https://github.com/mohyunho/ACC NAS.

https://github.com/NVIDIA/framework-determinism
https://github.com/DEAP/deap
https://github.com/mohyunho/ACC_NAS
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Eval, and use it as the mini-batch X. On this regard, the ablation study in [6]
verified that the choice of the mini-batch has little impact on the score trend
over different network architectures.

5 Results

First, we generate 20 individuals (i.e., 1-D CNNs) randomly. Then, the multi-
objective evolutionary process starts from the initial population. To perform a
comparative analysis, we consider 5 different configurations w.r.t. the way of
defining the fitness, denoted by fitnessRMSE : 1) using the architecture score,
without training any networks; 2) using the validation RMSE, after training
for 30 epochs; 3) using the validation RMSE, but training only for 15 epochs;
4) using the predicted validation RMSE at 30 epochs based on learning curve
extrapolation, after training for 15 epochs; 5) using the architecture score if
the network contains less than 5 × 104 trainable parameters, and the predicted
validation RMSE with learning curve extrapolation otherwise.

The last configuration corresponds to our proposed method. We determine
the decision threshold value to be 5 × 104 by analyzing the correlation between
the number of trainable parameters and the architecture score. In Fig. 4, we can
observe a negative correlation below the decision threshold. The difference in
the architecture score for the range between 4 and 5 (×104) on the horizontal
axis is trivial, but we take a large threshold value so that we can apply the
architecture score based evaluation to as many networks as possible, because
our major concern is to speed up the evolutionary search.

Here, we should note that the two different proposed surrogate mechanisms,
i.e., the architecture score and the validation RMSE predicted by means of learn-
ing curve extrapolation, provide evaluation metrics that are obviously in different

Fig. 4. Architecture score vs. number of
trainable parameters on 100 randomly
generated networks (20 for each seed).
The dash-dotted line indicates the deci-
sion threshold.

Fig. 5. Normalized validation HV across
generations (mean ± standard deviation
across 5 independent runs) for the pro-
posed NAS approach.
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Fig. 6. Pareto front for 5 different NAS configurations w.r.t. fitnessRMSE : 30 training
epochs (“Tr.30ep”); the combination of the architecture score and the learning curve
extrapolation for (“A.score+extpl.”); the learning curve extrapolation after 15 train-
ing epochs (“Tr.15ep+extpl.”); 15 training epochs without extrapolation (“Tr.15ep”);
merely using the architecture score (“A.score”). Each HV is calculated on the space
shown in the figure which is defined by the test RMSE and the number of trainable
parameters, and its value indicates the size of the space covered by the solutions of
the corresponding configuration, with reference point (13, 13). Each figure shows the
solutions found in 5 independent runs. The results of the handcrafted CNN, used as
baseline, are taken from [10].
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Table 2. Summary of the comparative analysis for 5 different NAS configurations w.r.t.
fitnessRMSE . The HV is an avg.±std. of the values in Fig. 6 that are based on the test
RMSE and the number of trainable parameters. The boldface indicates the proposed
method, which includes both architecture score and learning curve extrapolation. It
gives the shortest GA runtime of all the methods that achieve better results than
randomly generated solutions.

Methods (w.r.t. fitnessRMSE) Test HV GA runtime

(Avg. ± Std.) (GPU hours)

Initial population (without GA) 71.28 ± 0.95 –

Architecture score 70.26 ± 0.70 0.03 ± 0.01

Training 30 epochs 75.40 ± 0.55 4.96 ± 0.51

Training 15 epochs 72.94 ± 1.20 2.59 ± 0.30

Training 15 epochs + Extrapolation 73.81 ± 0.89 2.53 ± 0.15

Architecture score + Extrapolation 73.11 ± 0.58 1.23 ± 0.09

ranges. In order to use the score as fitness value (from the GA perspective), we
proceed as follows. For all the individuals in the initial population, we calculate
both the architecture score and the actual validation RMSE value. Then, we
fit a cubic function to these values, by means of least squares minimization, as
explained in Sect. 3.2. This fitted curve is then used to convert, for any new
network, the architecture score to the corresponding best fit validation RMSE
value. This mechanism is meant to prevent any potential bias in the relative
comparison of architectures evaluated by means of different metrics.

We execute 5 independent runs with different random seeds to improve the
reliability of the results. While searching for the solutions, we consider the valida-
tion HV, which is calculated on the fitness space defined by the validation RMSE
and the number of trainable parameters; we collect the validation HV across 10
generations, and normalize it to [0, 1] by min-max normalization. The monotonic
increase of the mean of the normalized validation HV in Fig. 5 indicates that the
GA keeps finding new non-dominated solutions across the generations.

After finding the solutions, our result analysis is based on the test RMSE,
which is evaluated a posteriori. Therefore, the HV in the rest of this paper is
calculated on the space defined by the test RMSE and the number of trainable
parameters. Figure 6 shows the results of our experiments and Table 2 describes
the summary of the comparative analysis. In the result analysis, we assess how
the speed-up techniques affect the GA in terms of two metrics: 1) the quality of
the solutions, represented by the HV, and 2) the GA runtime, in GPU hours.

It is obvious that the solutions based on the full training NAS are always the
best in terms of HV, but it takes a rather long time (about 5 hours) to obtain
them. When we merely use the architecture score without training, the NAS
fails to find better solutions w.r.t. the initial population, because as said this
approach alone cannot discriminate complex networks with a larger number of
trainable parameters. If we terminate the training after 15 epochs, the obtained
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solutions are still better than the initial populations, but worse than the solutions
obtained by training for 30 epochs. This implies that the learning curves of most
of the networks appeared in our search converge later than 15 epochs. In this
case, our extrapolation technique helps find better solutions for the same 15
epochs training time, i.e., it improves the HV without significantly increasing the
GA runtime. Finally, the proposed method, which combines the two techniques,
further decreases the runtime while the HV slightly decreases. Its HV is not
comparable to the HV obtained when training for 30 epochs, but this method
allows to save a considerable amount of search time. Compared to the case of
training for 15 epochs, the proposed method not only achieves better HV, but
it saves more than 50% of GPU hours.

6 Conclusions

In this work, we presented a multi-objective evolutionary NAS approach that
uses a custom GA to optimize the architecture parameters of a 1-D CNN spe-
cialized to make RUL predictions. The multi-objective optimization is based on
NSGA-II and aims to achieve a trade-off between two competing objectives:
the RUL prediction error and the number of trainable parameters. To improve
the efficiency of evaluations in the NAS process, we introduced two acceleration
methods for evaluating networks with either training for a reduced number of
epochs or no training at all. The experimental results on the benchmark show
that the speed-up techniques save about 75% of the GA runtime, while the solu-
tions are slightly worse but still much better than randomly generated networks.

The most important limitation of this work is that the learning curve cannot
fully simulate the actual learning trend for some networks. In future work, we
can consider a variety functions (i.e., more than the 5 functions considered in
this work), to enforce the learning curve decay for all the networks.
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Abstract. The Traveling Car Renter Salesman (CaRS) is a combina-
torial optimization problem that is NP-hard and thus evolutionary and
swarm computation metaheuristics are natural choices for designing a
new practical algorithm. Considering that Ant Colony Optimization
(ACO) is well suited for other routing type of problems - in this paper we
propose ACOCaRS - an algorithm for solving CaRS based on ACO. The
proposed algorithm was investigated experimentally and compared with
other published algorithms for CaRS. The first results are encouraging
since the proposed algorithm was significantly better for smaller problem
instances than all the other published algorithms. However, for problem
instances of size 100 and larger, ACOCaRS was the second best algo-
rithm, and was outperformed significantly by a Transgenetic Algorithm.
These results are based on the average performance of the algorithm and
ranks, taking into account the number of wins and average ranks for the
algorithms. A Friedman test confirmed that the results are statistically
significant. In addition to average performance, data for assessing the
peak performance of ACOCaRS are reported, along with a few new best
known solutions for CaRS obtained in this research.

Keywords: Ant colony optimization · Algorithm · Combinatorial
optimization · Car rental

1 Introduction

The Traveling Car Renter Salesman (CaRS) is a combinatorial optimization
problem [1,2] that is related to the Traveling Salesmen problem and Vehicle
Routing Problem. The problem concerns finding the optimal closed tour with
the possibility of changing cars on route. Considering that CaRS is NP-hard [1],
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exact algorithms are viable only for solving small instances of the problem, and
hence evolutionary and swarm computation metaheuristics are a natural choice
for designing new practical algorithms. One extension of CaRS is the Traveling
Car Renter Salesman With Passengers (CaRSP) where, in addition to multiple
cars, there are a set of passengers who can share the traveling cost, and want to
travel from one city to another. Several methods of solving these problems are
published, such as evolutionary algorithms or optimization solvers. The motiva-
tion for implementing these optimizations can be found in the growing trends of
reducing pollution in cities, as well as in the reduction of traffic jams and parking
capacity problems. For such projects to come to life in practice, it is necessary
to make the price of renting a car accessible to a wide range of customers, which
ultimately means efficient use of the available cars for transporting passengers.
It is also important to enable informatics systems to find the optimal routes and
strategies for picking up cars on route quickly, so that the real situation can be
monitored and managed in such organized traffic [3].

In this paper, we propose a new method for solving the CaRS problem with
the Ant Colony Optimization (ACO) algorithm, labeled as ACOCaRS. In order
to evaluate ACOCaRS’ performance, a new method is compared experimen-
tally with other published algorithms on available problem instances. The result
suggests that ACOCaRS is currently the state-of-the-art for smaller problem
instances, while it was the second best algorithm for larger problem instances.

The rest of the paper is structured as follows. Section 2 lists papers dealing
with solving methods for CaRS problems and other publications that are relevant
to this research. In Sect. 3, we describe the combinatorial problem we want to solve
(CaRS), and we mention the symmetry of the problem concerning the starting
node. In Sect. 4 we present the proposed algorithm ACOCaRS, that is based on
Ant Colony Optimization metaheuristics with a theoretical background. Section 5
contains the experimental procedure, used benchmarks and method parameters.
There are also comparative Tables of results. In Sect. 6, we discuss the results
obtained and research limitations. In Sect. 7 we give a conclusion, and propose
further guidelines for the research and development of the algorithm, including
an upgrade to the Car Rental Salesman With Passengers (CaRSP) problem.

2 Related Work

The CaRS problem is defined by the authors of the article [1] as described in
the next section. Goldbarg et al. have published several similar papers, but it is
important that they define the problem and provide Tables with the results.
Unfortunately, the Tables give only the Mean and best values and not the
Standard Deviations, percentiles and other useful data needed to make a more
exhaustive statistical comparison. In the paper, the authors describe the applica-
tion of the Greedy Randomized Adaptive Search (GRASP) and Variable Neigh-
borhood Descent (VND) procedures.

Since CaRS and CaRSP are new problems that have not been addressed by
the ACO at all so far, we have compared a methodology applied to sufficiently
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similar problems, such as the classic Traveling Salesman Problem (TSP) [5]. On
the other hand, we consider solutions to the same problem where the authors
used methods different but comparable to ACO.

The proposal of Stützle and Hoos related to the MAX-MIN method of conver-
gence regulation had the greatest impact on the development of our algorithm.
The problems they solved were the classical Traveling Salesman Problem and the
Quadratic Assignment Problem [6]. According to the results of their research,
the authors confirm that the MAX-MIN ant system is among the best algorithms
for solving such problems.

In paper [7], the authors deal with the problem of waste collection vehicle
routing using the Ant Colony System (ACS) implemented in MATLAB
(http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95) [7]. The Capacitated
Vehicle Routing Problem (CVRP) and the Capacitated Arc Routing Problem
(CARP) have similarities with our CaRS problem. The authors use five stages
of problem-solving. In the first three parts, the authors solve the Fleet Size
Problem. Households from which waste needs to be collected are grouped into
zones and clusters. The ACO is then applied to find the optimal route among
the clusters. In the last step, the limits on the maximum permissible mass and
volume of waste taken over for a particular vehicle are taken into account.

A Distributed Multilevel Ant Colonies Approach proposed by Taškova, Koro-
šec, and šilc in their paper [8], uses artificial ants distributed in k colonies. The way
artificial ants look for food is represented by mapping the graph to a particular grid
in the first phase. The graph contraction procedure (coarsening) and the graph
expansion procedure (refinement) were applied in the second phase.

In paper [1], Goldbarg, Asconavieta et al. describe the CaRS problem and
give results for MA1 and MA2.

Another approach to solving CaRS problems is given in their next paper [2],
where they propose the Transgenetic Algorithm (TA), evolutionary comput-
ing techniques inspired on the mutualistic intracellular endosymbiotic evolution.
This algorithm surpassed all previous ones in terms of results.

In these papers, their authors have not given all the artifacts that would
serve us in elaborating our method (e.g. Standard Deviations, medians and per-
centiles), but they provide results as usual.

Two articles of Sabry, G., Goldbarg, M. et al. [9,10] deal with a CaRSP
problem. In the first paper, the authors propose a method of linearization as a
form or problem relaxation to apply existing solvers [9]. In the second paper, the
authors use an evolutionary approach to solve the same problem [10].

3 Problem Description

The CaRS problem is a generalization of the traveling salesman problem, in
such a way that the salesman drives rented cars that can be exchanged during
the route. In some problem variants one car can carry several passengers at the
same time who share the costs (CaRSP). If the car is replaced in a city where
it has not been rented, the car return cost is charged. In the CaRSP variant,

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
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the return cost is not shared between passengers, and is covered fully by the
traveling salesman. The goal is to find a route, i.e. a sequence of cities and a
sequence of rented cars that minimize the salesman’s travel costs. Once a car
is rented and returned, it cannot be rented again. In this way, the number of
possible rental cars is reduced while traveling on a particular route where the
vertices of the graph correspond to the problem nodes, i.e. cities.

C1

C2

C1C0

C0 C1

C2

C1

V0 V3V1 V5V2 V4
C0

Problem matrices - car transitions between graph vertices and car return rates

Problem solution - in-line alignment

C0 C2C1

Fig. 1. Example of a CaRS problem for 6 nodes i.e. cities and 3 cars. The problem
matrices, node transitions for a particular car, and car return rates are shown on the
top. In the bottom is the in-line arranged solution tour.

Solving the problem can be divided into two parts: Calculating the cost of
a closed path on a graph (tour) and finding a path for which the price will be
closest to the optimum. The costs of transitions between cities are different for
each car, as are the costs of returning cars. Therefore, there are two groups
of matrices: Transition rate matrices and car return rate matrices, as shown in
Fig. 1 and proposed in article [1]. When the car is returned to the same city where
it was rented, there is no charge for returning. It is also visible in the return rate
matrices, where we have zeros on their diagonals. The only possibility of such a
scenario is if one car covers the whole tour. If we move the starting city cyclically
to any city where the cars are changed, the tour cost remains the same. It is
the symmetry of the CaRS problem, so this is why we can have more than one
optimal tour. In the example in Fig. 2, the tour cost remains unchanged if we
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set V0 or V3 or V5 as the starting city, but it changes if we use any other node
as the starting point.

V0 V3

V1

V5

V2

V4

C0,57 C0,77
C1,119

C1,132

C1,95

C2,50

C0,9

C1,16
C2,14

START

Solution cost calculation - uses node transitions and car return rates

C0
C1

C
2

Fig. 2. Example of a CaRS problem for 6 nodes i.e. cities and 3 cars. Graphical presen-
tation of the procedure for calculating the cost of the solution tour and problem graph
with solution tour in red. The solution transitions, as well as the car return costs, are
marked with the appropriate colors. (Color figure online)

4 ACOCaRS Algorithm

To address the problem we propose the algorithm using the meta-heuristics
techniques of Ant Colony Optimization (ACO). “These are non-deterministic
techniques, meaning there is no guarantee that the result will be the same for
every run.” [11]. ACO is a general framework with two main procedures: the
solution construction procedure and the pheromone trails update procedure.
The pseudocode of the ACOCaRS algorithm is presented in Algorithm 1, and its
solution construction procedure in Algorithm 2. The entire source code written
in language C is available on https://github.com/ElvisPopovic1/FERI.

The ACO uses a constructive procedure to build solution, starting with an
empty solution to which solution components are added. In Algorithm 1 this
procedure is denoted as ConstructSolution() and explained in Algorithm 2.
Both procedures use the arguments Prob which denotes the data loaded from

https://github.com/ElvisPopovic1/FERI
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the problem file, and Param which denotes the algorithm’s parameters. The
starting node (labeled with 0) is defined by the problem, and the first car is
chosen according to the pheromone values in SelectCar() procedure. In each
step, we choose a new node to visit next in SelectNode() procedure and than
we choose the car in SelectCar() procedure from the set of available cars
(current car or any unused car) to travel to the next node (city). The probability
of choosing a particular car and the next city we travel to depends on the level
of the pheromone trail τ as well as the heuristic value η. The heuristic value may
depend on the distance for the nodes, the capacity, the return cost, and the like
for cars. Components are added by using random-proportional rule according to
expression (1), where pk

ij is the probability for choosing a particular neighbor j

from the set of available neighbors N k
i , and α and β are the parameters of the

algorithm.

pk
ij =

[τij ]α[ηij ]β∑
l∈Nk

i
[τil]α[ηil]β

, if j ∈ N k
i (1)

There is one set of pheromone trails for choosing cars and different set of
pheromone trails related for choosing next node with particular car, thus we
also use different parameters αc and βc in SelectCar() procedure and αn and
βn in SelectNode() procedure.

To speed up the algorithm for problems’ instances with a large number of
nodes, each node has a sorted array of neighboring nodes according to the tran-
sition cost criteria, which is common practice in ACO algorithms [6] for related
(Symmetrical) Travelling Salesmen Problem and Asymmetrical and Travelling
Salesmen Problem. Although speed is not the goal of the algorithm, this app-
roach is necessary so that larger problems can be solved in a reasonable amount
of time. When choosing the next node, we use only a limited set of nearest neigh-
bors N l

i , l < k and the cardinal number of this set as the algorithm parameter
l. In the case that all neighbors in that set have already been used, the set is
expanded.

The procedure is conducted until the solution is complete. The solution is
complete when all the directed edges connecting the cities on the closed path are
determined, and when the cars used to travel between cities are determined. It
is not necessary to use all available cars in the solution. The solution is invalid
if it does not connect all cities in one closed path.

More ants are searching for solutions independently, and the one whose solu-
tion is the best, leaves a pheromone trail for the components used in that solu-
tion. The contribution of the pheromone trail left by the elitist ant is inversely
proportional to the cost of the solution as described in expression (2),

Δτ (best)
c =

{ 1
f(sbest)

, if c ∈ sbest

0 else
(2)
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where sbest is the ”best solution” according to some trail reinforcement strategy.
In the iteration best strategy, the best obtained solution in the current iteration
is used, while, in the global best strategy, the best obtained solution is used from
the beginning of the algorithm [6]. More general strategies, like κ-best and max-
κ-best, can be used to fine tune the behavior of the algorithm [12]. The strategy
choice is a categorical (non-numerical) parameter. In addition to the deposition
of pheromones, here also occurs evaporation of the existing pheromone trails,
according to expressions (3) and (4) for arcs and cars, respectively.

τn
ij ← (1 − ρn)τn

ij ,∀(i, j) ∈ L (3)

τ c
ik ← (1 − ρc)τ c

ik,∀ik ∈ C (4)

where ρn and ρc are parameters of the algorithm, and L and C are sets of all
node arcs or node cars, respectively.

In general, the pheromone trail on the best ant path is updated by a combi-
nation of evaporation and deposition according to expression (5)

τc = (1 − ρ) · τc + Δτ (best)
c . (5)

Normally, after some iterations, the pheromone separation should occur
Because of pheromone update [13]. The pheromone trail of good components
from previous best solutions will be much larger then the pheromone trail of
other components. The pheromone values of components that are not part of
a best solution for many iterations decrease exponentially according to expres-
sion (3) and expression (4). This can lead to algorithmic stagnation, because the
probability of choosing some new component can become extremely small, or
even become zero because of the limited precision of floating point number rep-
resentation in computers. To avoid algorithmic stagnation the pheromone trails
are limited between τmax and τmin as in the MAX-MIN Ant System [6]. The
upper limit is determined by expression (6)

τmax =
1

ρ · f(s∗)
, (6)

where f(s∗) is the cost of the optimal solution s∗. For the lower limit there are
analytical expressions for the Traveling Salesmen Problem, the Asymmetrical
Traveling Salesmen Problem and the Quadratic assignment problem [13,14], but,
generally for each problem type and algorithm variant, this expression would be
different. For ACOCaRS, as with most other ACO algorithms, the analytical
expression is not known. In these situations the lower limit τmin is calculated by
multiplying the upper limit with algorithmic parameter ϑ, as in expression (7).
The value of parameter ϑ must be greater than 0 and less than 1. Generally,
the appropriate value for ϑ decreases with the problem size and increases with
parameter α [13,14].

τmin = ϑ · τmax (7)
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Algorithm 1. ACOCaRS
Input: (Problem, Param) � Param has all the parameters from Table 1
Output: (bestSolution)
1: (τ, η, sol, bestSolution) ←Init(Problem, Param)
2: for iteration = 0 to Param.nants do
3: for ant = 0 to Param.Miter do
4: sol[ant] ← ConstructSolution(Problem, Param, τ , η)
5: end for
6: τ ←UpdatePheromones(τ , Param, sol)
7: bestSolution ←FindBestSol(sol)
8: end for
9: return bestSolution

Algorithm 2. ConstructSolution for ACOCaRS
Input: (Prob, Param, τ, η)
Output: (AntSol)
1: AntSol ← Ø � AntSol starts as empty partial solution
2: currNode ← 0 � Each route start with node 0
3: currCar ← SelectCar(Prob, Param, currNode, currCar)
4: AntSol ←AddToSol(AntSol, 0, currentCar, currentNode)
5: for i = 1 to Prob.numOfNodes do
6: currtNode ← SelectNode(τ ,η, Prob, Param, currtNode, currCar)
7: currCar ← SelectCar(τ ,η, Prob, Param, currNode, currCar)
8: AntSol ←AddToSol(AntSol, i, currCar, currNode)
9: end for

10: return AntSol

5 Experiment

We based our experimental work on the following research hypothesis: The ACO
optimization approach, ACOCaRS is suitable for optimizing CaRS problems,
and it is comparable with the state-of-the-art algorithms.

5.1 Testbed

To test the hypothesis that the developed ACOCaRS algorithm is comparable
to the state-of-the-art algorithms in solving CaRS, we conducted experiments on
available test data and compared our results with known results [1]. We used a
group of non-Euclidean data since we prepared an appropriate parser for them.
Test problems can be divided into two groups: Those with up to 50 nodes (cities),
and those with 100 or more than 100 nodes. All problems have between 2 and 5
types of cars. To speed up the construction solution procedure of the algorithm
we used parameter limited lists of potential nodes for problem instances with
100 nodes or larger. To make this possible, the set of neighbor nodes must be an
n-tuple sorted by distance, from smallest to largest. We applied this technique
only for problems with 100 or more than 100 nodes (cities), while, for smaller
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problems, the total number of nodes was considered, which is equivalent to set-
ting it equal to the size of the problem. In the pheromone update procedure we
used upper and lower pheromone limits like in the MAX-MIN Ant System. The
upper pheromone limit was set according to the mathematical expression (6),
and the lower limit τmin was calculated by expression (7), where parameter ϑ
was obtained experimentally. For a pheromone reinforcement strategy we used
iteration best solution for all problem instances.

Before performing experimental research on problem instances, we adjusted
the algorithm parameters by using the R studio and iRace package, “an extension
of the Iterated F-race method for the automatic configuration of optimization
algorithms, that is, (offline) tuning their parameters by finding the most appro-
priate settings given a set of instances of an optimization problem” [15]. The
parameters of the algorithm were tuned for smaller problem instances and for
some larger instances. For other larger problem instances the parameters were set
manually to be similar to those tuned for other problems. The resulting param-
eter settings, as shown in Table 1, were used in the experimental research, aimed
to validate the algorithmic performance of ACOCaRS. We have used standard
symbols for algorithmic parameters and their role is specified in mathematical
expressions (1) to (7) for some and in the pseudocode of Algorithm 1 and 2 for
the others. The parameters with subscript ”c” are related to cars and parameters
with subscript ”n’ are related to nodes.

Table 1. Parameters for the calculated problems

Problem ρn αn βn ρc αc βc nants Miter ϑn ϑc nfv stall

BrasilRJ14n 0.15 0.7 1.2 0.17 0.7 1.2 550 10000 0.002 0.005 14 100

BrasilRN16n 0.15 1.6 2 0.17 1 2.2 900 10000 0.05 0.001 16 50

BrasilPR25n 0.1 1 2.5 0.07 1 1.2 850 10000 0.01 0.001 25 225

BrasilAM26n 0.1 1 2.5 0.07 1 1.2 850 10000 0.01 0.001 26 225

BrasilMG30n 0.16 0.68 3.3 0.12 0.73 1.19 1117 5000 0.0008 0.0003 30 206

BrasilRS32n 0.07 0.6 2.5 0.08 0.6 1.1 970 10000 0.006 0.004 32 60

BrasilSP32n 0.03 0.63 2.8 0.05 0.64 0.33 1242 5000 0.0009 0.0004 32 782

BrasilCO40n 0.07 0.62 3.29 0.12 0.63 1.93 1294 5000 0.0003 0.0002 40 800

BrasilNO45 0.03 0.7 2.37 0.14 0.64 1.85 1500 5000 0.0004 0.0004 45 600

BrasilNE50 0.05 0.7 2.5 0.12 0.7 2 800 6000 0.0001 0.0004 50 100

Londrina100n 0.05 1.05 2 0.1 1.05 2 500 10000 0.0002 0.0004 100 600

rd100nB 0.05 1.05 2 0.1 1.05 2 500 10000 0.00002 0.00005 65 600

kroB150n 0.12 1.14 1.46 0.067 1.92 2.07 952 7000 0.0005 0.0002 68 274

d198n 0.14 1.3 1.07 0.16 0.88 2.1 734 5000 0.0005 0.0004 68 277

Teresina200n 0.05 1.05 2 0.1 1.05 2 600 7000 0.00002 0.00004 68 1200

Curitiba300n 0.14 1.3 1.07 0.16 0.88 2.1 734 5000 0.0005 0.00004 68 277



40 E. Popović et al.

5.2 Results

While the conducted experiment aimed to evaluate the performance of ACO-
CaRS, for each problem instance, we ran the algorithm nexec = 51 times, and
reported the lowest price, 20th percentile, median, 80th percentile, the highest
price, mean price, and Standard Deviation. The ACOCaRS improved solutions
with the number of iterations, which can be attributed to the learning properties
of the algorithm stored in the pheromone trails. Figure 3 shows an example of
the observed behavior of ACOCaRS on the problem BrasilNO45n. The ordinate
axis measures the cost of the solution, while the abscissa measures the number of
iterations. The red discrete marks stand for the iteration costs obtained by one
particular execution of the algorithm, and the rest are statistically calculated
values for 51 executions. The graph is truncated so that the abscissa range from
0 to 1300 is reduced to the range from 540 to 940.

Fig. 3. An example of algorithm runs for the BrasilNO45n instance
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The region between the 20th and 80th percentiles is filled with light blue.
Obviously the median is in between the 20th and 80th percentiles, and the
arithmetic mean in this case is very close to the median. For some other prob-
lem instances the arithmetic mean and median have observably different curves.
Everything is contained between the lines that represent the minimum (best)
and the maximum (worst) cost solutions.

We compared the obtained values for each problem with the available results
of other algorithms from paper [1] and paper [2]. Exact stopping criteria for
GVND1, GVND2, MA1, MA2, and TA were not published, only running times
in range from 1 s to multiple hours for problems like Curitiba300n on personal
computer. ACOCaRS found solutions in much less time, even for Curitiba300n
it took less than 10 min on personal computer. Comparing our results with it, it
turns out that ACOCaRS managed to find better solutions to problems of less
than 100 nodes. For larger problems, the TA gave better results.

The results of the experiments are compared with other algorithms in Table 2
and Table 3. Table 2 shows the arithmetic mean solution obtained for a partic-
ular algorithm on each problem instance. Since the results for other published
algorithms were rounded to integers, we reported our results in the same manner.
Along with the arithmetic mean, in the brackets are reported ranks calculated
for the Friedman test. The best results for each problem instance are set to
bold font. It is observed that ACOCaRS had the best arithmetic mean for all
problems instances with up to 50 nodes. For all larger instances the TA had the
best arithmetic mean, while ACOCaRS was the second best, and sometimes the
third best algorithm. Similarly, ACOCaRS had the best average rank for smaller
instances, and the second best average rank, after TA, for larger instances. The
average ranks are reported in separate rows in Table 2 as r.j . Friedman test
confirmed statistically different performance with significance α = 0.05 for both
groups of problems. Since TA was already established as the best algorithm in
previous publications, we have compared newly proposed ACOCaRS with TA
and performed Wilcoxon signed-rank test. For instances with up to 50 nodes
ACOCaRS had smaller mean solution for 7 problem instances, 3 ties and it was
never worse than TA. This gives seven non-tie cases (N = 7) and statistic value
W = 0, so the Wilcoxon signed-rank test confirms that ACOCaRS obtained
better mean results with statistical significance α = 0.05 (critical value for W is
2). For instances with at least 100 nodes, TA obtained smaller mean solutions
than ACOCaRS in all six cases (N = 6) which gives value W = 0 and so the
Wilcoxon signed-rank test confirmed that TA was better than ACOCaRS with
statistical significance α = 0.05 (critical value for W is 0).

Additional data about the experiments are contained in Table 3, with the
best known solutions for particular problem instances and the algorithms that
obtained them. As is shown, the ACOCaRS obtained the new best known solu-
tions for some problem instances. The Table also contains other relevant statistics
for ACOCaRS: The best solution, 20th percentile, which is relevant for assessing
the peak performance of the algorithm, median, which is more suited for average
performance, and arithmetic mean with Standard Deviation.
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Table 2. Mean solutions with corresponding ranks of different algorithms on CaRS

Problem ACOCaRS GVND1 GVND2 MA1 MA2 TA

BrasilRJ14n 167 (2.5) 171 (5) 217 (6) 167 (2.5) 167 (2.5) 167 (2.5)

BrasilRN16n 188 (1) 203 (5) 260 (6) 195 (4) 191 (3) 189 (2)

BrasilPR25n 227 (1.5) 311 (5) 325 (6) 256 (4) 241 (3) 227 (1.5)

BrasilAM26n 202 (1.5) 242 (6) 236 (5) 212 (3) 213 (4) 202 (1.5)

BrasilMG30n 274 (1) 375 (6) 332 (5) 328 (4) 299 (3) 277 (2)

BrasilRS32n 269 (1) 372 (6) 346 (5) 340 (4) 311 (3) 271 (2)

BrasilSP32n 257 (1) 336 (6) 292 (4) 296 (5) 284 (3) 259 (2)

BrasilCO40n 580 (1) 826 (5) 845 (6) 743 (4) 660 (3) 583 (2)

BrasilNO45 557 (1) 889 (5) 922 (6) 764 (4) 667 (3) 561 (2)

BrasilNE50 618 (1) 1044 (5) 1071 (6) 861 (4) 736 (3) 629 (2)

r.j 1.25 5.4 5.5 3.85 3.05 1.95

Londrina100n 1410 (3) 1783 (5) 1785 (6) 1522 (4) 1369 (2) 1201 (1)

rd100nB 1789 (2) 2953 (6) 2844 (5) 2271 (4) 1832 (3) 1442 (1)

kroB150n 3738 (3) 5368 (6) 5300 (5) 4259 (4) 3675 (2) 3018 (1)

d198n 4518 (2) 7138 (5) 7289 (6) 5449 (4) 4665 (3) 3264 (1)

Teresina200n 1940 (2) 3793 (6) 3772 (5) 2551 (4) 2241 (3) 1467 (1)

Curitiba300n 3541 (2) 6125 (6) 6082 (5) 4076 (4) 3726 (3) 2272 (1)

r.j 2.33 5.67 5.33 4.00 2.67 1.00

Table 3. Best known solutions for CaRS and ACOCaRS statistics

Best known solution ACOCaRS

Problem Cost Found by algorithm Best 20th perc Median Mean SD

BrasilRJ14n 167 ACOCaRS, MA1&2, TA 167 167 167 167.00 0.00

BrasilRN16n 188 ACOCaRS,MA2,TA 188 188 188 188.00 0.00

BrasilPR25n 226 ACOCaRS,TA 226 226 228 227.35 0.91

BrasilAM26n 202 ACOCaRS,TA 202 202 202 202.14 0.35

BrasilMG30n 271 ACOCaRS 271 272 274 273.67 1.23

BrasilRS32n 269 ACOCaRS,TA 269 269 269 269.12 0.33

BrasilSP32n 254 TA 257 257 257 257.18 0.99

BrasilCO40n 574 ACOCaRS 574 579 580 579.80 1.82

BrasilNO45 542 ACOCaRS 542 553 557 556.59 4.89

BrasilNE50 611 ACOCaRS 611 617 617 617.53 1.78

Londrina100n 1186 TA 1264 1360 1402 1409.65 61.27

rd100nB 1412 TA 1635 1749 1789 1788.73 58.95

kroB150n 2966 TA 3622 3674 3732 3737.86 98.51

d198n 3188 TA 4128 4338 4499 4517.59 236.73

Teresina200n 1410 TA 1786 1868 1919 1939.61 100.09

Curitiba300n 2222 TA 3281 3418 3512 3540.78 141.63
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6 Discussion

In the process of creating a successful new algorithm for a combinatorial opti-
mization problem based on the Ant Colony Optimization framework, the key
factors are knowledge about the problem, experience with the ACO algorithm
for other problems, and intuition. Applications of this algorithm can be outside
of transport problems, such as telecommunications with different transmission
media or analysis of electronic circuits. The general framework like ACO, or
more specific variants, like MMAS that we used, provide only abstract ideas
that can be realized in many different ways. There are many design choices that
are critical, so the resulting performance must be evaluated experimentally. In
that process of creation we did change our algorithm more then a few times
until we got the ACOCarRS that we used in this research. Although ACO algo-
rithms often perform better when some sort of local optimization is used, like
2-opt, short runs of a tabu search, Lin-Kernighan [6,16]. In this study we first
wanted to explore basic ACO capabilities without local optimization (which is
optional in ACO). Like in the case of other evolutionary computation and swarm
intelligence algorithms, the behavior of ACOCaRS also depends on parameter
setting, so we did some partial parameter tuning. In our future work there are
different possibilities that could be explored. One research direction should be
about trying different local optimization techniques. Some other design choices
regarding basic ACO procedures might lead to a better ACO algorithm for this
problem. There are extended pheromone trail reinforcement strategies like κ-best
and max-κ-best that might provide finer control over algorithmic behavior [12].
Other ACO variants, like the Three Bound Ant System [4], showed some inter-
esting theoretical and practical properties, so we can try to improve performance
by adopting these techniques. To make parameter tuning easier we can try to
develop analytical expressions for appropriate lower pheromone trails.

In this paper we compared ACOCaRS with other published algorithms for
CaRS on non-Euclidean CaRS instances. Other papers use Euclidean and non-
Euclidean instances, but unfortunately we could not decode the file format in
which Euclidean instances were stored. We tried to contact the authors of these
instances about their file format but we did not receive any reply. This is an
obvious limitation of our research that we were unable to mitigate. In the future
work we might try to generate a new set of Euclidean instances that will be well
documented and available for public research.

Experimental research on other algorithms for CaRS published in the lit-
erature did not provide all the important information, but we did our best to
make a fair comparison. Taking into account all the limitations, our experimen-
tal results show that, with high statistical significance, ACOCaRS outperformed
the other algorithms for smaller problem instances, and went second best after
the TA algorithm for larger problem instances. Although one of a few exper-
imental studies are certainly not enough to (over)generalize conclusions about
the performance of the algorithms for all imaginable instances, this study sug-
gest that ACOCaRS is the state-of-the-art for small CarS instances, but not for
larger problem instances, where the TA reported significantly better results.
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In our results we have provided some additional information, like the 20th
percentile as a measure of peak performance, and median as an appropriate mea-
sure of average performance, so that other independent researchers can compare
their results with ours. Perhaps the 20th percentile is arguably the most inter-
esting measure of performance, since, with arbitrarily high probability, one can
obtain solutions of at least that quality if the algorithms is repeated more than
once, e.g. with at least 89% after 10 repetitions or 99% after 20 repetitions of
the algorithm [17].

7 Conclusion and Future Work

Solving CaRS and CaRSP classes of problems using ACO algorithms is a new
research area. These problems have significant practical applications, and there
is a lack of research on how to solve these problems with the Ant Colony Opti-
mization method. There are various methods of solving these problems, such
as the already mentioned MA1, MA2 and TA [1,2]. We built ACOCaRS - a
complete algorithm to solve this class of problems using the ant colony opti-
mization technique. As with other bioinspired optimization methods, the behav-
ior of ACOCaRS is parameter-dependent, therefore, we tuned the parameters
of the algorithm partially by the iRace framework. We compared our solutions
with known solutions in the literature, where the authors used algorithms such
as GVND, MA and TA. In the performed experiments, our algorithm outper-
formed GVNDs and the MA completely, while, at this point, it has outperformed
the TA significantly only for smaller problem instances. For instances with 100
or more cities and 3 to 5 types of cars the TA found significantly better mean
solutions than ACOCaRS.

In the future work we will try to improve ACOCaRS for larger problem
instances by using various methods already mentioned in the Discussion (by
adding local optimization, trying to adopt TBAS methods, using generalized
pheromone reinforcement strategies, and possibly changing other algorithmic
design choices). Our goal is also to develop an effective algorithm based on ACO
for Traveling Car Renter with Passengers.
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6. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Future Gener. Comput. Syst.
16(8), 889–914 (2000)

7. Reed, M., Evering, R.: An ant colony algorithm for recycling waste collection. In:
BIOMA, pp. 221–230 (2012)
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Abstract. Anomaly detection has gained great attention in complex
network analysis. Every unusual behavior in a complex system can be
viewed as an anomaly. In this article, we propose a new anomaly type in
dynamic graphs, an existing community-based anomaly detection prob-
lem combined with the heaviest k-subgraph problem. Searching the heav-
iest subgraphs in dynamic graphs viewed as an anomaly problem can give
new insights into the studied dynamic networks. An ant colony opti-
mization algorithm is proposed for the heaviest k-subgraph problem and
used for the community detection problem. Numerical experiments on
real-world dynamic networks are conducted, and the results show the
importance of the proposed problem and the potential of the solution
method.

Keywords: Anomaly detection · ACO · Heaviest k-subgraph ·
Community detection

1 Introduction

Anomaly detection is an essential task with applications in biology [9], fraud
detection [12], and social networks [16]. Since some problems can be represented
as graphs, anomaly detection in graphs plays a key role in computational network
problems. Generally, anomaly detection consists in finding an element of the
graph (e.g., edge or node) that differs significantly from the rest of the graph [2].

In [1], anomalies are categorized into three main classes: 1) point anomaly,
meaning that only one point deviates from the normal behavior, 2) contextual
anomaly, meaning that data behave unusually in a certain context, and 3) col-
lective anomaly, meaning that a group of data behave differently than the rest.

The survey [2] reviews the state of the art of anomaly detection in static
and dynamic networks. [13] identifies and analyzes the types of anomalies in
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dynamic networks: anomalous nodes, anomalous vertices, anomalous subgraphs,
and event and change detection.

Although studies and algorithms exist regarding various anomalies, new per-
spectives and formulations of anomalies can capture new insights in network
study. The goal of this paper is to propose a new anomaly type based on two
properties. The first is community-based anomaly detection, which considers the
different behaviors of the communities over time: splitting, shrinking, growing,
or emerging new communities. The second is the heaviest k-subgraph problem
[3], which consists in finding k connected nodes of a weighted graph, such that
the total edge weight is maximized.

The rest of the paper is organized as follows: Sect. 2 presents the new anomaly
detection problem in more detail, Sect. 3 presents the proposed ant colony-based
approach, and Sect. 4 describes the numerical experiments. The article ends with
a conclusion and further work possibilities.

2 Anomaly Detection Problem

In the next section, we introduce the two main problems, the community-based
anomaly detection problem and the heaviest subgraph problem, and formalize
the new anomaly type in dynamic graphs.

Although no formal definition for communities exists, we refer to them as
disjoint groups that are more connected among themselves than to the rest of
the graphs.

Definition 1. Given a graph G = (G1, G2, . . . ) which varies in time, detection
of communities in each step and observation if a change appears in the commu-
nity structures (e.g., splitting or growing) means the community based anomaly
detection.

Definition 2. The heaviest k-subgraph problem consists in finding G′ =
(V ′, E′), V ′ ⊂ V, |V ′| = k and E′ ⊂ E such that

∑
e∈E′ w(e) is maximal.

Definition 3. Given a graph G = (G1, G2, . . . ) which varies in time (Gi =
(Vi, Ei), i = 1, 2, . . . ), the dynamic heaviest k-subgraph problem consists in find-
ing G′

i = (V ′
i , E′

i), V
′
i ⊂ Vi, |V ′

i | = k and E′
i ⊂ Ei such that

∑
e∈E′

i
w(e) is

maximal, i = 1, 2, . . . .

The heaviest k-subgraph and community based anomaly detection in dynamic
graph can be defined as follows:

Definition 4. Given a graph G = (G1, G2, . . . ) varying in time, the combined
heaviest k-subgraph and community based anomaly consists in finding changes
in the following way: a subgraph G′

i = (V ′
i , E′

i), V ′
i ⊂ Vi, |V ′

i | = k,E′
i ⊂ Ei such

that
∑

e∈E′
i
w(e) is maximal and Gi differs from Gi+1, i = 1, 2, . . . (Gi is a part

of the community modification).
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3 Proposed Approach

Several studies exist concerning community detection methods (for a survey see
[5]). Ant colony optimization [4] seems to be a powerful optimization tool in
combinatorial optimization problems. As observed, ants communicate indirectly
with pheromones, and based on this information they can find possible food
sources.

The probability of choosing an edge between i and j is calculated with the
following formula:

p(i, j) =
(τij)α(ηij)β

∑
vq∈N i

(τiq)α(ηiq)β
, ifvj ∈ Ni, (1)

where τij is the pheromone level between nodes i and j, ηij is the a priori
knowledge, and Ni is the set of the neighbors of i.

The ant starts from a node and chooses a next node, based on the probabili-
ties. In one iteration, each ant generates a solution, for which the modularity of
the communities will be calculated [11]:

Q =
1

2m

∑

vi,vj∈V

[

Aij − kikj

2m

]

δ(ci, cj), (2)

where δ is the Kronecker delta function, m is the total number of edges, Aij is
1 if there is an edge between node i and node j otherwise 0, ki and kj are the
degrees and ci and cj is the communities of node i and node j, respectively.

The algorithm proposed in [6] uses Pearson correlation for the heuristic infor-
mation determination. We modified this to another function, which is based on
the common neighbors of the nodes:

C(i, j) =
|Ni ∩ Nj | + 1

n
(3)

The final heuristic function has the following form:

ηij =
1

1 + e−C(i,j)
. (4)

The pheromone update is based on the following formula:

τ
(t)
ij = (1 − ρ)τ̇ (t−1)

ij + Q(i, j), (5)

where τij is the pheromone level between nodes i and j at iteration t, ρ is the
evaporation coefficient and Q(i, j) is the quality of the solution. The pheromone
level is limited in the interval [τmin, τmax], where τmax = Q(sgb)/(1 − ρ) τmin =
ϑτ̇max.

The main steps of the algorithm are outlined in Algorithm 1.
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Algorithm 1. Modified ACO algorithm for community detection
Set parameters and initialize pheromone trails;
i=0
while i < itermax do

S ←− ∅
repeat

if i%3 < 2 then
Construct a new solution s according to Eq. 3;

else
Construct a new solution s according to Eq. 3, but forbidding cycles made out
of two points

end if
S ←− S ∪ s
i ←− i + 1

until |S| = ns

Calculate the iteration-best (sib), and the global-best (sgb)
Compute pheromone trail limits (τmin and τmax)
Update pheromone trail

end while
return sgb

For the heuristic information the following function is used to determine the
heaviest k-subgraph:

ηij =
{

wi + wij − minw + 1 if wi �= 0
0 if wi = 0 , (6)

where wi is the sum of the weights associated to node i.

Dealing with the Dynamic Environment. For each time step the algorithm is
applied. Firstly, ACO determines several types of community based anomalies:
separation and union of communities - a community can be divided several
smaller communities, and vice versa different communities can be unified to one
community, appearance of new communities - when new communities are born,
and unexpected change of communities - when a node changes the community
to which belongs. Secondly, ACO determines the k nodes, which are forming the
heaviest subgraph.

4 Numerical Experiments

4.1 Benchmarks

To test the parameters of the algorithm we used synthetic benchmarks. For the
community detection testing LFR benchmarks were used [7] with 128 nodes and
having different mixing parameters. For the heaviest k-subgraph problem we
generated graphs with 100 nodes, and for the edges between k nodes we set a
larger number than between the rest of the nodes (k = 10 in the parameter
setting tests).
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4.2 Parameter Setting

Different values for α, β and ρ values were tested. As performance measure in
the case of the community detection we used the NMI [8]. An NMI value of 1
indicates that a correct solution were found. For the heavies k-subgraph problem
the proportion of correctly detected nodes in the subgraph is reported. Table 1
presents the parameter tuning of the values α, β and ρ.

Table 1. Parameter testing of α, β and ρ for the community detection problem and for
the heaviest k-subgraph problem. Mean, standard deviation, minimum value and maxi-
mum value of the NMI over 20 independent runs is reported for a network with pin = 0.3
and for the k-heaviest graph problem the proportion of the correctly found components
over 20 independent runs is reported for a network with 100 nodes and k = 10.

α β ρ Community detection Heaviest k-subgraph

Mean ± St.dev. Min Max Mean ± St.dev. Min Max

1 1 0.1 0.7232 ± 0.0463 0.6580 0.8243 0.9200 ± 0.0092 0.9000 0.9400

1.5 1 0.1 0.7318 ± 0.0491 0.6554 0.8522 0.9220 ± 0.0128 0.9000 0.9400

2 1 0.1 0.7301 ± 0.0355 0.6807 0.8139 0.9200 ± 0.0130 0.9000 0.9400

1 1.5 0.1 0.8703 ± 0.0338 0.7776 0.9242 0.9340 ± 0.0131 0.9200 0.9600

1.5 1.5 0.1 0.8586 ± 0.0305 0.7902 0.9073 0.9360 ± 0.0105 0.9200 0.9600

2 1.5 0.1 0.8671 ± 0.0327 0.8134 0.9242 0.9370 ± 0.0117 0.9200 0.9600

1 2 0.1 0.9578 ± 0.0200 0.9245 1.0000 0.9490 ± 0.0102 0.9400 0.9600

1.5 2 0.1 0.9639 ± 0.0231 0.9248 1.0000 0.9550 ± 0.0089 0.9400 0.9600

2 2 0.1 0.9604 ± 0.0277 0.8825 1.0000 0.9550 ± 0.0089 0.9400 0.9600

1 1 0.2 0.7384 ± 0.0510 0.6718 0.8630 0.9280 ± 0.0120 0.9000 0.9400

1.5 1 0.2 0.7129 ± 0.0423 0.6355 0.7740 0.9220 ± 0.0182 0.9000 0.9600

2 1 0.2 0.7185 ± 0.0472 0.6155 0.8084 0.9230 ± 0.0117 0.9000 0.9600

1 1.5 0.2 0.8637 ± 0.0412 0.7986 0.9497 0.9380 ± 0.0111 0.9200 0.9600

1.5 1.5 0.2 0.8625 ± 0.0347 0.7755 0.9078 0.9380 ± 0.0128 0.9200 0.9600

2 1.5 0.2 0.8739 ± 0.0317 0.8084 0.9496 0.9390 ± 0.0121 0.9200 0.9600

1 2 0.2 0.9512 ± 0.0233 0.8996 1.0000 0.9500 ± 0.0103 0.9400 0.9600

1.5 2 0.2 0.9446 ± 0.0204 0.8998 0.9748 0.9560 ± 0.0082 0.9400 0.9600

2 2 0.2 0.9534 ± 0.0181 0.9245 0.9748 0.9570 ± 0.0073 0.9400 0.9600

1 1 0.3 0.7384 ± 0.0402 0.6757 0.8351 0.9250 ± 0.0110 0.9000 0.9400

1.5 1 0.3 0.7140 ± 0.0492 0.6270 0.8080 0.9230 ± 0.0134 0.9000 0.9400

2 1 0.3 0.7451 ± 0.0620 0.6371 0.9325 0.9220 ± 0.0111 0.9000 0.9400

1 1.5 0.3 0.8697 ± 0.0358 0.7851 0.9176 0.9380 ± 0.0111 0.9200 0.9600

1.5 1.5 0.3 0.8722 ± 0.0385 0.8130 0.9245 0.9370 ± 0.0134 0.9200 0.9600

2 1.5 0.3 0.8456 ± 0.0319 0.7728 0.8932 0.9380 ± 0.0111 0.9200 0.9600

1 2 0.3 0.9543 ± 0.0206 0.9072 1.0000 0.9480 ± 0.0101 0.9400 0.9600

1.5 2 0.3 0.9493 ± 0.0301 0.8824 1.0000 0.9540 ± 0.0094 0.9400 0.9600

2 2 0.3 0.9638 ± 0.0221 0.9247 1.0000 0.9590 ± 0.0045 0.9400 0.9600

1 1 0.4 0.7269 ± 0.0384 0.6614 0.8138 0.9220 ± 0.0144 0.9000 0.9400

1.5 1 0.4 0.7174 ± 0.0414 0.6510 0.7792 0.9200 ± 0.0145 0.9000 0.9400

2 1 0.4 0.7253 ± 0.0503 0.6457 0.8352 0.9160 ± 0.0167 0.9000 0.9600

1 1.5 0.4 0.8700 ± 0.0354 0.7700 0.9182 0.9340 ± 0.0114 0.9200 0.9600

1.5 1.5 0.4 0.8587 ± 0.0382 0.7938 0.9246 0.9390 ± 0.0102 0.9200 0.9600

2 1.5 0.4 0.8802 ± 0.0333 0.8078 0.9497 0.9330 ± 0.0117 0.9200 0.9600

1 2 0.4 0.9522 ± 0.0262 0.8905 1.0000 0.9540 ± 0.0094 0.9400 0.9600

1.5 2 0.4 0.9648 ± 0.0189 0.9246 1.0000 0.9560 ± 0.0082 0.9400 0.9600

2 2 0.4 0.9534 ± 0.0225 0.9245 1.0000 0.9580 ± 0.0062 0.9400 0.9600



A New Type of Anomaly Detection Problem in Dynamic Graphs 51

4.3 Anomaly Detection in Real-World Networks

To test the new anomaly type on dynamic networks three real-world weighted
dynamic networks are used [15]: insecta-ant-colony1 [10], an animal interaction
dataset with 113 nodes and 41 time steps, mammalia-raccoon proximity network
[14] (another animal interaction network) with 24 nodes and 52 time steps, and
ia-workplace-contacts network, a communication network with 92 nodes and 239
time steps.

Figure 1 presents a visualization of a run for mammalia-raccoon proximity
network in 4 time steps. The dynamics of the anomaly change is represented with
different colours. Figure 2 presents the changes detected in the same network
over the 41 time steps. It is obvious, that the combined new anomaly type
significantly reduces the observed changes, while we are seeking for nodes which
changes heaviest k-subgraph component and the communities as well at the same
time. For the other two real-world networks results are similar. This new type
of anomaly can be useful if we want to be less sensitive for all minor changes,
but to a more complex behavior of nodes and belonging edges.

(a) Time step 1 (b) Time step 2

(c) Time step 3 (d) Time step 4

Fig. 1. Visualization of the mammalia-raccoon proximity dynamic network in four time
steps. In the first figure detected communities are presented with different colors, red
contoured nodes are the detected 6-subgraphs. In next figures blue nodes illustrates
the community change, pink edges mean leaving the 6-heaviest subgraph, and yellow
edges are the new joining edges and associated nodes of the 6-heaviest subgraph (Color
figure online)
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Fig. 2. Heatmap for each time step for mammalia-raccoon proximity dynamic network.
Red color indicates change, black color indicates no change in the network. (Color figure
online)

5 Conclusion and Further Work

We proposed a new anomaly type for dynamic graphs, where in one step we
detect not only the modification of communities but the heaviest k-subgraphs as
well. Thereby we can observe other changes in the network, based on the change
in connected edge weights. An ant colony optimization approach is designed for
the heaviest k-subgraph problem. Numerical experiments conducted on three
real-world graphs show the potential of this new anomaly. In the same step,
two properties are examined, through which we can gain new insights into the
networks analyzed.
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Abstract. Due to the complex topology of the search space, expensive
multi-objective evolutionary algorithms (EMOEAs) emphasize enhanc-
ing the exploration capability. Many algorithms use ensembles of sur-
rogate models to boost the performance. Generally, the surrogate-based
model either works out the solution’s fitness by approximating the evalu-
ation function or selects the solution by weighting the uncertainty degree
of candidate solutions. This paper proposes a selection operator called
Cheap surrogate selection (CSS) for multi-objective problems by utiliz-
ing the density probability on a k-dimensional tree. As opposed to the
first type of surrogate models, which approximate the objective function,
the proposed CSS only estimates the uncertainty of the candidate solu-
tions. As a result, CSS does not require extensive sampling or training.
Besides, CSS makes use of neighbors’ density and builds the tree with low
computational complexity, resulting in an accelerated surrogate process.
Moreover, a new EMOEA is proposed by integrating spherical search
as the core optimizer with the proposed selection scheme. Over a wide
variety of benchmark problems, we show that the proposed method out-
performs several state-of-the-art EMOEAs.

Keywords: Multi-objective optimization · Evolutionary algorithm ·
Cheap surrogate selection · Spherical search

1 Introduction

Consider a bound-constrained multi-objective optimization problem (MOP)
F (x) with M objectives to be optimized, where F (x) is the vector of objec-
tive functions with F (x) = (f1(x), . . . , fM (x)) and x = (x1, . . . , xD) is a D-
dimensional variable vector in the decision space. Suppose min{f(x)} can be
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denoted as a minimization problem, and max{f(x)} can be the opposite one,
the maximization problem. In general, for the real number domain R

D, these two
kinds of problems can be correlated to each other as min{f(x)} ↔ max{−f(x)}
or min{−f(x)} ↔ max{f(x)}. Thus, without losing the generality, a MOP can
be defined using Eq (1).{

minimize F (x) = (f1(x), . . . , fM (x)),
subject to : x ∈ R

D |C(x) ≤ 0,
(1)

where, C(x) ≤ 0 represents the box-constraints, e.g. the upper and lower bounds
of the decision variables.

There are various kinds of development on MOEAs, such as 1 )
decomposition-based method [29], which decomposes a MOP into several scalar
optimization subproblems and collaboratively optimizes them, such as MOEA/D
[31] and NSGA-III [3]); 2 ) indicator-based methods that use performance indi-
cators as a secondary selection criterion, like AR-MOEA [26], R2-IBEA [22],
MaOEA/IGD [24], SMS-EMOA [7], and DLS-MOEA [11]; and 3 ) preference-
based methods (dominance-based) that use the rank of the population members,
which are determined by both the Pareto dominance and the preference informa-
tion from the decision-maker, such as SPEA2 [35] and PESA-II [2], AGE-MOEA
[21], NSGA-II [4] and Clustering-based adaptive MOEA (CA-MOEA) [12]. 4 )
Hybrid MOEAs combine multiple techniques to optimize the algorithms.

Except these, Surrogate-model-based methods [15] have become popular. Gen-
erally, there are two types of surrogates for problems, type 1) it approximates the
expensive objective function to reduce the needs of fitness calculation, such as
Kriging (Gaussian process regression), radial basis function, etc. type 2) it eval-
uates the uncertainty degree of candidate solutions by weighting them on the
distance to the known solutions, such as solution filter [34]. Here, the Surrogate-
assisted evolutionary algorithms (SAEAs) work as an approximated-objective
function, and also can be a solution classifier. The popular type 1 surrogate mod-
els are highly complex due to the prediction accuracy requirement. This accuracy
partly depends on the massive sampling data, such as KTA2 [20], OSPNSDE
[9], CSEA [20], etc., making those algorithms slow in the running process. The
above-mentioned fact limits the surrogate models’ application for non-expensive
optimization problems. Further, KRVEA [1] needs a complex process to model
function multiple times, which hinders its wide application. GMOEA [10] adopts
a generative adversarial network, and it needs GPU supporting device to work
efficiently.

The contribution of this work is summarized as follows.

1. A new cheap surrogate selection operator (CSS) is proposed based on the k-d
tree (short for the k-dimensional tree) and density probability estimation.
In the k-d tree, a tree node (leaf or internal node) represents a candidate
of the population. Unlike the ordinary k-d tree building, where each node
has M -dimensional fitness values, we first sort the solution set based on an
objective value in each dimension and get a sorted index. We then use the



56 L. Kong et al.

M -tuple sorted index of M objectives to denote the tree node. The role of
translation operation from objective values to sorted index is twofold. 1) The
sorted index is all in the interval of 1 to the population size of N , which
reduces the effect of numerical scale. And 2) the operation of the sorted data
guarantees O(kN log N) complexity to build a k-d tree, which simplifies the
tree building process.

2. We proposed the CSS-MOEA algorithm for multi-objective problems. In CSS-
MOEA, a parent produces multiple offspring in one iteration. Then we pick
one candidate among those offspring based on CSS.

3. We experiment with the proposed method on various test problems. Experi-
mental results show that our proposed algorithm has promising performance
on MOPs.

The rest of this paper is organized as follows. First, in Sect. 2 a brief intro-
duction about the Spherical Search (SS), projection matrix, and single-objective
cheap surrogate model is given. Then, the proposed CSS-MOEA algorithm is
described in Sect. 3. Next, the experimental environment and results are pre-
sented in Sect. 4. Finally, the conclusion is given in Sect. 5.

2 Background

In this section, we first present a brief description of the SS algorithm proposed
in [17]. Then the single-objective-specific surrogate model introduced in [8] based
on density probability is introduced.

2.1 Spherical Search

SS is a swarm-intelligence-based optimization method that is simple yet highly
effective for solving single-objective optimization problems [16,17]. On non-linear
bound-constrained global optimization problems with or without constraints,
this algorithm shows promising results compared to state-of-the-art algorithms.
SS uses the vector space as a representation of the search space where every
target’s location is represented by a vector based on its location in the search
space. In each iteration, a (D̂ = D − 1) spherical boundary is created for a D-
dimensional search space to produce candidate solutions for next iterations. The
main axis of the hyperspherical space points towards a search direction, greatly
influenced by either a random solution or the best solution ever found. Simulta-
neously, SS generates hyperspherical boundaries based on orthogonal projection
matrices, which are composed of a rotation matrix and diagonal matrices. Mean-
while, the radius of the hyperspherical boundaries (dependent on the step-size
parameter) is used to control the search range. Since the spherical boundary is
wide when an individual is far away from the target, the individual tends to
explore. On the other hand, when the spherical border is narrow, the exploita-
tion of search becomes more dominant. After that, SS randomly picks a point
on each hyperspherical boundary as a candidate solution.
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Compared to the particle swarm optimization (PSO) algorithm, the SS algo-
rithm adds an extra projection step where it puts a projection matrix to the
updated trail solution. This projection matrix comprises an orthogonal and diag-
onal matrix controlling the explorations. In the SS algorithm, the search step is
calculated using the following equation.

stept(i) = ctAtBt(At)T zt(i), (2)

where the leading direction zt generated by the targets (best solutions) and the
current solution, which will be detailed later in Sect. 3. t is the current iteration
index. ct is the step-size parameter, and AtBt(At)T = Pt represents a projection
matrix. Matrices A and B are random orthogonal and binary diagonal matrices,
respectively. stept is the final step vector of solution, which will be added to the
original position vector for constructing a new trial solution.

2.2 Cheap Surrogate Selection (CSS)

In some real-world applications, it is expensive to evaluate an individual. A major
problem involves balancing several fitness values computations and the quality
of a population. The surrogate model is a technique that models an approxi-
mate evaluation system that the system estimates the function values instead of
the actual function computation. The surrogate model is built based on some
of the obtained solutions (x, f(x)), and estimates some new solutions’ values
through this model. In this way, the original expensive computation is reduced.
A surrogate model can be used in all stages of an optimization process, such
as population initialization, and offspring selection. Some widely used models
include linear models, support vector machine [14], Kriging (Gaussian) process
regression [23,30].

A cheap surrogate model for solving single-objective optimization problem is
introduced by [8] inspired by [34]. In the model given by [8], an assumption is
made that the objective function f(x) is continuous and not constant in the fea-
sible region, which is reasonable for most cases. It is a type 2 surrogate model,
which estimates the quality of trial solutions by calculating their density value and
selects the solution with the biggest density value. A density function calculates
a trial solution’s density value (or density estimation). This function qualifies the
weighted Euclidean distance between this trial solution and reference solutions
whose actual fitness values are known. Moreover, this density function comprises
a kernel equation, which will be introduced in the next section.

3 Proposed Method

3.1 General Framework of CSS-MOEA

The proposed CSS-MOEA1 has basic processes including Offspring produc-
tion, Offspring pre-selection and Population updating, besides that SS and CSS
1 code link: https://drive.google.com/drive/folders/14uif4ozlZCrJ8EAi4FrlUUk9GKr

h72IR?usp=sharing.

https://drive.google.com/drive/folders/14uif4ozlZCrJ8EAi4FrlUUk9GKrh72IR?usp=sharing
https://drive.google.com/drive/folders/14uif4ozlZCrJ8EAi4FrlUUk9GKrh72IR?usp=sharing
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operators are adopted. In addition, we build a cheap, multi-objective surrogate
model for pre-selection offspring. CSS-MOEA starts with one population set and
an archive set. Then, there are two kinds of offspring sets; an M -size memory
set, which stores M offspring produced by one parent; an N -size memory set,
which contains the final selected candidates from the first offspring set. Finally,
an N -size k-d tree is built at each iteration, where a solution represents each
tree node. If there is no specific noting in this paper, N is the population size,
and M represents the objective size and also the generated offspring size by a
parent. A simple flowchart of CSS-MOEA is shown as in Fig. 1.

Algorithm 1: Main Framework of the proposed CSS-MOEA
Input: N , population size; the maximal number of iteration tmax, iteration

index, t = 0; M : problem objective number
Output: Archive Qtmax

1 P0 ← createInitialPopulation(N);
2 P0,Q0,H0 ← evaluatePopulation(P0);
3 Nadir, ideal ← P0;
4 while t < tmax do
5 Ot

NM ← offspring production(Pt,Qt,Ht) ;
6 Nadir, ideal ← Ot

NM ;

7 Ot+1
N ← CSS pre-selection(Ot

NM );

8 Ot+1
N ← PolynomialMutation ;

9 Pt+1 ← EnvironmentSelection(Ot+1
N ,Pt);

10 Ht+1,Qt+1 ← evaluatePopulation(Pt+1);
11 t ← t + 1 ;

12 end

We use P,Q,H to present the population, archive, and the history best
solution set. The solution i in population is denoted as P(i). Then the Qt(i) is
called a target which corresponds to P(i) and leads the searching direction. Ot

N

store the offspring. The subscript marks the size of this storage at the t iteration
in Ot

N . Ot
NM stores all generated offspring of N parent, and each parent produces

M offspring. Ot+1
N preserves the final pre-selected N offspring, which will pass

to the environment selection process with Pt.
Line 5 in Algorithm 1 is for producing offspring, where each solution produces

M offspring with its target solution (a target is a solution in Qt). Then a k-
d tree with a solution as a tree node is built, where the solution set is from
Qt. Each node has M -tuple indices where it presents the sorted solution ranks
instead of a solution’s objective values. Then a final offspring will be selected
from M offspring, where the selection follows the density estimation as in Line 7
of Algorithm 1. We use polynomial mutation (built-in function in jMetal) with
mutation distribution index 20 and mutation probability as 1

D , where D is the
problem variable size dimension.

The pre-selection of offspring has the following steps. First, find the number
of J nearest neighbors of a target Qt(i) as VQt(i). Second, calculate the density
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estimation for each offspring to VQt(i). Then compare the density values, select
the offspring with the largest value as the candidate of Ot+1(i).

The k-d tree builds once for one iteration by solution in Qt. The R is M × J
size matrix with the sorted index of neighbors at M objective dimension. Rkj is
an element of R, representing the sorted jth neighbor at k objective. The primary
purpose of using the k-d tree is to find stored data points (solutions) efficiently
and eliminate the various value scale effects of the Euclidean distance because
we need to find the nearest neighbors in multi-dimension space.

(a)
(b) The preparation for CSS-
MOEA

Fig. 1. The main flowchart of the proposed CSS-MOEA.

The density estimation function Θ(x) is defined as in Eq (3).

Θ(x) =
M∑
k=1

J∑
j=1

(
Rkj

J

1
ω

ψ

(‖x − V j
Qt(i)‖2

ω

))
, (3)

where ‖x‖2 =
√∑M

j=1 x2
j denotes the L2 norm; ψ(u) is the kernel function. In

this paper, we use the Epanechnikov Kernel [19] as in Eq (4) and ω is the window
width calculated by Eq (5).

ψ(u) =
3
4
(1 − u2), Support : (‖u‖ ≤ 1), (4)

ω =

√√√√ 1
M

M∑
j=1

(nadirj − idealj)2, (5)
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Fig. 2. The descriptive flowchart of sub-block ‘Offspring production’ (blue) and ‘Off-
spring preselection’ (green) of CSS-MOEA in Fig 1 (Color figure online).

where nadir is a virtual point which has the worst value in each objective dimen-
sion, the ideal is the opposite point which has the best value in each dimension
(In this paper, the nadir and ideal points are calculated and updated based on
population of the whole algorithm process, which is different with that updated
based on one iteration or some consecutive iterations). Whenever a new solution
is generated, these nadir and ideal points will be updated.

3.2 The Detailed Process of CSS-MOEA

Figure 2 shows the detailed process of CSS-MOEA. The inputs include the pop-
ulation size and problem size. step0 is the step size that is initialized as 0. The SS
algorithm updates a solution by the projection matrix, composed of an orthogo-
nal matrix A and diagonal matrix B. CSS-MOEA requires {A1, . . . , AM} of M
matrices for each objective to produce M direction offspring.

We built a k-d tree for finding the nearest neighbor fast. Moreover, the tree
nodes of this tree are from Archive Qt. Each tree node has a M -tuple ranked
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indices. The role of translation operation (from objective dimension values to
dimension sorted index) is twofold: 1 ) to guarantee the nearest neighbors cho-
sen are not from some Euclidean distance measure (a particular objective dimen-
sion all objectives values varied small). 2 ) the sorted index expressed tree node
reduced the computation cost of building the tree, which will simplify the pro-
cess. For the population with multi-objective problems, it is reasonable to con-
sider that most of the solutions are non-dominated by each other. Therefore, the
sorted index of the solution should proceed in each dimension since the candidate
solutions are highly towards non-dominated status even in the early stage.

During the number of M offspring production, the number of M diagonal
matrices B1, . . . , BM is randomly generated and used to update the current
solution. First, we generate the uniform z(i) for current solution Pt(i) as Eq (6).

z(i) ← r1step
t−1 + r2r3(Qt(i) − Pt(i)) + r4r5(Ht(i) − Pt(i)), (6)

where r1 to r5 are random numbers. In our experiemnt, we set r1 to 0.1, r2, r4,
and r3, r5 are random values in the range of [0, 1] and [1.5, 2.5], respectively.

O1 to OM denote number of M offspring generated by solution Pt(i), where
each offspring is calculated as Eq (7) and Eq (8).

stept(i) ← ctAjBjA
T
j z(i) as in Eq (2), (7)

O(j) ← Pt(i) + stept(i) (8)

Then we measure the density estimation value on all M offspring from one
parent and select the one with the largest one. At this step, the nearest neighbors
VQt(i) are repeatedly used for O1 to OM .

The CSS-MOEA will stop until the iteration t reach tmax.

4 Experiment Results

In this section, we first compare the proposed CSS-MOEA with several MOEAs,
namely CMOPSO [32], MPMMEA [28], OSPNSDE [9], NMPSO [18]. At last,
the contributions of proposed operator, namely multi-objective surrogate model
are tested.

Remark, we provided several recent surrogate-assisted MOEAs in the intro-
duction. The reason we did not compare many surrogate-assisted MOEAs is
that 1) our CSS-MOEA does not need large sampling data and model training
process, the complexity is low and computation speed is fast, however KTA2,
EDN-ARMOEA, and KRVEA, etc. are slow in running time without GPU sup-
port. We compared the OSPNSDE instead as a reference. OSPNSDE is also
a surrogate model-based method that has an acceptable running time cost. 2)
Meanwhile, we consider CSS as a general operator rather than a complex surro-
gate model due to its properties of calculation, hence we compared CSS-MOEA
with other MOEAs. The speed of running CSS-MOEA for one problem is as
fast as CMOPSO, as the k-d tree size is small, neighbor searching time is linear
function to the tree size.
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We implemented our method in jMetal 5.10 [6] by Java. An algorithm may
obtain different results (e.g., fitness values) with the Matlab, Python, and Java
codes. This is due to the precision threshold of the double-precision floating-
point format. Nevertheless, with the evaluation criteria tested on both jMetal
and PlatEMO, such difference does not influence the indicator comparison much
among the algorithms. The solution results of CMOPSO, NMPSO, MPMMEA,
and OSPNSDE are obtained by PlatEMO [27] source from website2. At the same
time, all compared MOEAs use the default setting in the PlatEMO. Then we cal-
culate the IGD values on all algorithms by jMetal. In this experiment, we utilize
widely used test suite WFG [13] and DTLZ [5], WFG1∼WFG9, DTLZ1∼DTLZ7
in their default settings. The population size is 100 and the number of fitness
evaluation is set to 20000 (on WFG, DTLZ problems). We employ Inverted Gen-
erational Distance (IGD) [33] performance metrics for comparison as papers in
CMOPSO [32], OSPNSDE [9] also used IGD.

We also test the proposed method on real-world application problems from
source [25], in which 4 bi-objective problems are solved by CSS-MOEA. The
detail of the application problem is as follows: RE22 is the Reinforced concrete
beam design problem; RE23 is the Pressure vessel design problem; RE24 is the
Hatch cover design problem, and RE25 is the Coil compression spring design
problem. The population size is 100 and the number of fitness evaluation is set
to 60000 (for RE problems) for all algorithms.

Wilcoxon’s signed-rank test provides the comparison results at a significance
level of 0.05. All cells of the tables with the symbol ‘+/ = /−’ indicate that the
compared algorithm provides better/equal/worse results than CSS-MOEA with
confidence. Each performance indicator value is calculated in mean & standard
deviation mode. To easily analyze metric value results, a grey-colored back-
ground is used to identify best-performed solutions.

We list the figure results on bi-objective and three-objective problems by
CSS-MOEA. Fig. 3 gives a visualization of the non-dominated solutions obtained
by the compared algorithms and CSS-MOEA on two objective problems. From
Fig. 3, it can be observed that MPMMEA performs worse on WFG7,8 and WFG9
problems, for the blue color nodes represented solutions are far away from the
Pareto front solutions in red. The figure’s illustration is consistent with table
results (Table 1) where the MPMMEA loses to others on WFG7,8 and WFG9
problems. CMOPSO performs worse on the DTLZ3 problem, in which the figure
(DTLZ3) shows the green nodes represented solutions locating positions away
from PF from Fig. 3 (a).

Table 1 gives the results of real-world problems at the bottom of this table.
The results are obtained by CSS-MOEA and compared algorithms. ‘NaN’ indi-
cates the algorithm can not solve the relevant problem repeatedly successively.
CMOPSO shows the competitive performance with CSS-MOEA on real-world
application problems. And other algorithms perform worse than the proposed
one, where NMPSO, MPMMEA, and OSPNSDE lose 3, 2, and 2 out of four
problems to CSS-MOEA, respectively.

2 https://github.com/BIMK/PlatEMO.

https://github.com/BIMK/PlatEMO
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Fig. 3. Visualization of the non-dominated solutions obtained by the compared algo-
rithms and CSS-MOEA on DTLZ3, DTLZ7, WFG3, WFG4, WFG7, WFG8 and WFG9
with two objectives. PF represents the Pareto front solutions.

Contributions of Proposed Operator. This section studies the contribu-
tions of the proposed components. As an example, we implement rand search as
a variant of CSS-MOEA without the surrogate model selection, which picks ran-
domly from multiple offspring. We consider 20000 maximum allowed fitness eval-
uation for each WFG on six to three objective problems. Based on the obtained
results in terms of IGD and HV values over 20 independent runs, their Wilcoxon
signed-rank test is summarized in Table 2 for all functions WFG1∼WFG9.
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Table 2. Wilcoxon test results on problems WFG1 WFG9 with 3, 4, 5 and 6 objectives
of IGD, and HV [36] performance.

M CSS-MOEA, IGD Vs.

6 Random search – � � – – � – – –

5 Random search – � � � – � � � �
4 Random search – � – – � � – – �
3 Random search � � � � � � � � �

CSS-MOEA, HV Vs.

Random search � � � � − � � � �
Random search � � � � − � � � �
Random search � � � � � � � � �
Random search � � � � � � � � �

�,–, � indicate the result is better, similar, worse than

the obtained by CSS-MOEA.

[win/tie/lose] Random search vs CSS-MOEA: 2/15/55

Therefore, we can conclude that the proposed CSS operator plays the main
role in density searching with better IGD performance. Additionally, the appro-
priate number of neighbors chosen in the surrogate model can slightly improve
the performance due to more selection pressure on better solutions.

5 Conclusion

In this paper, we propose a SS-based MOEA, namely CSS-MOEA, based on
the proposed cheap surrogate selection. In this algorithm, we can exploit multi-
ple potential optimal spaces, directed by projection matrices of different ranks
(different projected sub-space). In this algorithm, CSS is employed in the pre-
selection operation to assist in reducing the number of function evaluations
required for several candidate solutions which are generated in different pro-
jected sub-spaces. For this purpose, CSS employs a density probability algo-
rithm to select one candidate solution from a pool of candidates, which relies
on current neighbors’ information rather than extensive sampling data, in order
to select one candidate solution. Hence, the model does not require a training
process and maintenance. As a result, its computation cost is very low compared
to conventional surrogate models. Moreover, with the goal of reducing the com-
plexity necessary for finding neighbors, we construct a k-d tree with a sorted
index tuple as a node in the tree, which thus allows building the tree at a cost of
at most O(MN log N) and finding k neighbors at a cost of at most O(k log N).

The empirical results demonstrate that the proposed method produces good
results on popular problems, such as WFG and DTLZ in the comprehensive eval-
uation test. Nevertheless, the projection matrix dependence on its parameters
still needs to be explored further. This CSS estimates the density of solutions
and plays a role in candidate filtering, which does not offer accurate fitness eval-
uation to a candidate. The application of SS to other operators in different EAs
is still a worthwhile study that needs to be pursued further.
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Abstract. Metaheuristic Search is a successful strategy for solving opti-
mization problems, leading to over two hundred published metaheuristic
algorithms. Consequently, there is an interest in understanding the sim-
ilarities between metaheuristics. Previous studies have done theoretical
analyses based on components and search strategies, providing insights
into the relationship between different algorithms. In this paper, we argue
that it is also important to consider the classes of optimization problems
that the algorithms are capable of solving. To this end, we propose a
method to measure the similarity between metaheuristics based on their
performance on a set of optimization functions. We then use the proposed
method to analyze the similarity between different algorithms as well as
the similarity between the same algorithm but with different parameter
settings. Our method can show if parameter settings of the same algo-
rithm are more similar between themselves than to other algorithms and
suggest a clustering based on the performance profile.

Keywords: Metaheuristic search algorithms · Optimization
problems · Algorithm similarity

1 Introduction

Metaheuristic Search is a strategy for solving optimization problems. Generally,
it iterates through three steps: 1) Generate a set of candidate solutions to the
target optimization problem; 2) Evaluate the quality of those solutions; and 3)
Modify the solution set based on the evaluation. Representative Metaheuris-
tics include Genetic Algorithms, Particle Swarm Optimization, and Differential
Evolution.

In recent years, Metaheuristics have been useful for several hard optimiza-
tion problems, especially in cases where the problems are multimodal and non-
continuous. Because of this, many Metaheuritisc algorithms have been devel-
oped, aiming at specific optimization problem classes. Today, over two hundred
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Metaheuristic algorithms have been published in the literature [2], and there is
a concern in the community that a majority of those might be minor variations
of each other, providing little to no contribution to the field [10,15].

Consequently, there is an interest in understanding metaheuristic algorithms
in terms of how similar or different they are and what classes of optimization
problems they can solve. Some studies have proposed breaking down these algo-
rithms in terms of their components [1,9,10]. The analyses in these works have
provided insight into the relationship between different algorithms and indicate
the possibility of automatically generating variants for specific problems. On the
other hand, the manual analysis in these works is not scalable to a larger amount
of algorithms nor easily connected to automatic algorithm generation.

In this context, we propose a method to measure the similarity between
metaheuristics based on their performance on a set of optimization functions.
By choosing the optimization functions carefully so that they have different
fitness landscapes, we hope to find differences in the performance profiles of
the algorithms under analysis. This approach not only enables comparing the
algorithms on their performance in these specific classes of problems, but it may
also give insight into how close the algorithms are to each other by clustering
the performance results. This can aid in creating algorithm ensembles, creating
algorithm portfolios, and choosing a set of operators for automatic algorithm
design.

We validate our method by examining seven metaheuristics on 24 benchmark
functions. We register the performances of each algorithm under five different
parameter settings and use two different metrics to evaluate the performance
profiles of the algorithms.

The first metric is the silhouette score [14] used in clustering, which measures
how well a data point matches its own cluster compared to other clusters. Since
this metric depends on a clustering process, we propose a second metric called
performance similarity to compare two algorithm instances directly.

We use both metrics to answer the following questions: (1) how similar are
instances of the same algorithm with different parameter settings? (2) how simi-
lar are instances of different algorithms that were fine-tuned on the same bench-
mark function? (3) What can we learn from the cluster organizations of algo-
rithms, parameter instances, and problems?

We found that for some algorithms, their instances tend to cluster well, while
for others, most instances have different performance profiles. We also observed
that tuning the parameter of different algorithms on the same problem does not
result in similar performance profiles between the instances. Moreover, instances
of the same algorithm tend to cluster together while also having relatively good
similarity scores. Lastly, we observe low scores when comparing instances of
different algorithms.

The remainder of this paper is structured as follows. Section 2 presents related
works on metaheuristics comparison; Sect. 3 the necessary background to under-
stand our method to compare metaheuristic algorithms; Sect. 4 describes the
proposed method; Sect. 5 presents the results and discussion; Sect. 6 concludes
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this work. Finally, all code and data used in our experiments are freely available
online at our Github repository1.

2 Related Works

The continuous creation of metaheuristic algorithms has been harshly criticized.
The reason is that many recent algorithms share multiple similarities with older
ones and are often described in terms of metaphor, making it hard to understand
how they work.

After these issues were raised, research has been done to analyze metaheuris-
tics beyond the metaphor. As such, Lones [9] identifies the metaheuristic’s under-
lying strategies of well-known algorithms, which is an essential step in bringing
cohesion and unified language to the field. For example, the author categorizes
crossover as Intermediate Search, which explores the region between two or more
candidate solutions, and mutation as Neighbourhood Search, which explores the
nearby region of a candidate solution. Note that there are many ways to imple-
ment crossover and mutation, potentially changing these categories.

Those concepts are then used in the following work [10] to discuss common
characteristics between some recent metaheuristics to the Particle Swarm Opti-
mization (PSO). The author discusses that most recent algorithms have simi-
larities with PSO (mainly the directional search). However, they also have some
differences due to not having the same components and implementing other com-
ponents of their own. This paper also goes on that the PSO community explored
some ideas of the recent metaheuristics at an earlier or later date.

Furthermore, de Armas et al. [1] expand the analysis of search strategies,
focusing on swarm-based metaheuristics. They propose a Pool Template to mea-
sure the similarity between two metaheuristics. In their analysis of strategies, the
Directional Search, which identifies productive directions in the search space [9]
is now divided into how the direction is obtained (global best, its own best,
elite, and neighbor). Moreover, their Pool Template allows us to decompose and
compare metaheuristics based on their components/strategies and measure their
similarity. They concluded by acknowledging that novelty is indeed an issue, and
some studied algorithms are special cases of others.

Together, these works paved the way for metaheuristics description, decom-
position, and theoretical comparison. Expanding further, we argue that it is
also important to compare algorithms empirically. This is important because
two algorithms that implement similar components may have different perfor-
mance profiles across multiple problems. This difference can happen due to many
factors, for example, the order of the components, numerical parameters, and
interaction between components.

1 Code available at the following Github repository: https://github.com/jair-pereira/
mhcmp/tree/bioma2022.

https://github.com/jair-pereira/mhcmp/tree/bioma2022
https://github.com/jair-pereira/mhcmp/tree/bioma2022
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Algorithm 1. Metaheuristics General Template
1: X ← initialize a set of random candidate solutions
2: evaluate all candidate solutions in X
3: while termination criteria is false do
4: X ← update X
5: evaluate all candidate solutions in X
6: end while

3 Preliminaries

In this section, we introduce topics essential to understanding our proposed
method to empirically measure similarity between the metaheuristics.

3.1 Metaheuristic Algorithms

We test our method on seven metaheuristic algorithms. We chose 3 well-known
algorithms: Particle Swarm Optimization [8], Differential Evolution [5], and
population-based Simulated Annealing [16]. And four recent algorithms: Artifi-
cial Tribe Algorithm [3], Firefly Algorithm [17], Gravity Search Algorithm [13],
Roach Infestation Algorithm [7]. We chose these recent metaheuristics because
they have some common components with PSO. All metaheuristics were imple-
mented based on their base paper.

All metaheuristics follow the general structure shown in Algorithm 1, diverg-
ing on how they perform the update step. The search strategies of the meta-
heuristics in this work are summarized in Table 1 which is an adaptation of [1].
These strategies can result in different search behavior due to using or not ran-
dom numbers, numerical parameters, and interaction with other components.

Note that we are proposing a framework to compare metaheuristic algorithms
empirically. Thus, we use some algorithms to test this framework. This is not an
extensive analysis of the chosen metaheuristics.

3.2 Benchmark Functions

Our approach requires a benchmark containing several functions with different
characteristics. For this reason, we chose the BBOB testbed (numbbo/COCO
[6]). BBOB is a continuous numerical black-box optimization benchmark that
implements 24 noiseless functions divided into five groups. Functions within a
group have similar landscape characteristics. These groups are: (1) separable
functions, (2) functions with low or moderate conditioning, (3) functions with
high conditioning and unimodal, (4) multi-modal functions with adequate global
structure, and (5) multi-modal functions with weak global structure. All func-
tions are dimensionally scalable (2, 3, 5, 10, 20, and 40D) and have 15 instances
(artificial shift on the function space). In this benchmark, an algorithm solves
the problem when the error to the optimum is 1e-8 or lower. The BBOB testbed
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Table 1. Metaheuristic Algorithms: Search strategies of the chosen algorithms

Search strategy PSO ATA GSA RIO FFA DE SA

Follow the best x x

Follow its own best x x x

Follow elite x x x

Follow a random solution x

Random move x x

Guided move (previous solution) x x x x x

Guided move(previous direction) x x x

Replace fora random new solution x

Replace all x x x x x

Replace if better x x x x x

Changing behavior x

Intermediate search x

is a useful benchmark because the characteristics of every function are docu-
mented in [4], providing insights into how the algorithm behaves in different
search spaces. Table 2 shows all the functions and their main characteristics
summarized from [4].

3.3 Parameter Tuning

Parameter tuning is an essential aspect of metaheuristic algorithms because
parameters’ values highly impact the algorithms’ behavior and performance. A
standard approach to configuring algorithms is to explore the algorithm’s param-
eter space looking for values that perform best on the given problem instances.

iRace [12] is a tool that implements iterated racing to configure algorithms.
To briefly explain, iRace repeats the following procedures: samples new configu-
rations based on a particular distribution, discards the statistically worse ones,
and updates the sampling distribution [11].

4 Proposed Comparison Method

Our goal is to measure similarity between metaheuristic algorithms based on
how well they solved a set of problems with diverse landscape characteristics.
To achieve this goal, we propose a three-steps method that includes (1) gener-
ating algorithm instances through parameter tuning, (2) performance profiling
all generated instances on benchmark problems with different landscape charac-
teristics, and (3) comparing the algorithm’s instances by using silhouette score
and performance similarity. Figure 1 presents an overview of our method, where
the details are in the subsections below.
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Table 2. Main characteristics of all functions in the BBOB testbed.

ID Name Modality Separable Conditioning Global structure

1 Sphere Uni Yes Low Highly symmetric

2 Ellipsoidal Uni Yes High Smooth, local irregularities

3 Rastrigin High Yes Low Regular

4 Buche-Rastrigin High Yes Low Asymmetric

5 Linear slope Uni Yes Linear

6 Attractive sector Uni No Low/Moderate Asymmetric

7 Step ellipsoidal Uni No Low Many plateaus

8 Rosenbrock, original Low No Low/Moderate

9 Rosenbrock, rotated Low No Low/Moderate

10 Ellipsoidal Uni No High Smooth local irregularities

11 Discus Uni No High Local irregularities

12 Bent Uni No High Smooth and narrow ridge

13 Sharp Uni No High Non-smooth ridge

14 Different powers Uni No High

15 Rastrigin Multi No Low Adequate

16 Weierstrass Multi No Adequate

17 Schaffers Multi No Low Adequate

18 Schaffers ill-conditioned Multi No Moderate Adequate

19 Composite Griewank-Rosenbrock Multi No Adequate

20 Schwefel Multi No Weak

21 Gallagher’s 101-me Multi No Low Weak

22 Gallagher’s 21-hi Multi No Moderate Weak

23 Katsuura Multi No Weak

24 Lunacek bi-Rastrigin Multi No Weak

4.1 Algorithm Instances

We first generate five algorithms instances through parameter tuning. The rea-
son is that the performance of metaheuristic algorithms depends on the choice
of numerical parameters. Suitable parameters for one problem may not work
well for another. For this reason, we want to generate instances of each chosen
metaheuristics by tuning its parameters on different problems.

Since BBOB divides its 24 functions into five categories based on the func-
tions’ characteristics, we picked exactly five functions for parameter tuning, one
from each group (functions 01, 06, 10, 16, and 23).

Then, we generate five instances of each metaheuristics using iRace. This
process is done one function at a time, resulting in five parameter settings per
algorithm. We run iRace with a budget of 2000 comparisons, and each com-
parison evaluates the target function a total of 1e+5 times. At the end of this
step, we have five instances in regards to parameter settings for all seven chosen
metaheuristics.

The parameter setting for each algorithm instance is omitted due to the page
limit; however, it is available in the Github repository with the experimental
code. Note that we may tune an algorithm on two different problems and obtain
similar parameter values. This may happen because the values may work well
enough for both problems or are local optima in the parameter space.
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Fig. 1. Proposed method to compare metaheuristics empirically. In the first step, algo-
rithm instances are generated through parameter tuning on functions with different
landscape characteristics. In the second step, the performance of all generated instances
on many benchmark functions is recorded (performance profile). In the last step, we
use the performance profile to measure similarity between metaheuristics.

4.2 Algorithm Profiling

We define the performance profile of an algorithm instance as the array of its per-
formances across all testing functions. To record the performance profile, we run
all algorithm instances on the remaining 19 BBOB functions with 1e+6 number
of functions evaluated, recording the average performance of five repetitions per
problem per algorithm instance. In other words, a performance profile is the 19
features that an algorithm instance has, where each feature is its performance
on a specific benchmark function. We use the performance to measure similarity
between algorithms instances because this can tell how similar two instances
are on a practical level. By comparing the performance profile, we can tell if
two instances solve problems with similar performances despite having different
components or parameter settings.
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4.3 Measuring Similarity

In this work, we use two metrics to measure similarity between algorithms. The
first one is the silhouette score [14] which is used in clustering to measure how
well a data point matches its cluster compared to the other clusters.

silhouette score =
(b − a)

max(a, b)
(1)

where a is the mean intra-cluster distance and b is the mean nearest-cluster
distance for each sample. Scores near +1 indicate high similarity, scores near
−1 generally indicate that a different cluster is more similar, and scores near 0
indicate overlapping clusters.

Since the silhouette score is cluster-dependent, we propose a second metric
that allows direct comparison between two algorithm instances. This metric is
defined based on the euclidean distance of their performance profile:

PS(A,B) =
1

1 +
√∑n

i=1(e
A
i − eBi )2

(2)

where PS is the Performance Similarity, A and B are two algorithm instances,
n is the number of tested functions, and e is the precision of an algorithm
instance on the function i. Values near 1 indicate high similarity with the same
performance profile, and values near 0 indicate high dissimilarity.

The precision value is the log10 of the average error to the optimum:

eAi = log10(fvaluei − fopti) (3)

where fvalue is the average of the best function value obtained across repetitions
by the algorithm A on problem i and fopt is the optimum value of function i.

5 Results

Our goal is to measure how similar algorithms are empirically. Before we start,
let us recall that the performance profile is the set of performances of an algo-
rithm instance across multiple problems. Silhouette score measures how well one
algorithm instance matches its cluster compared to the other clusters. Perfor-
mance similarity measures the similarity of two instances by comparing their
performance profile, where values near 1 indicate that the performance profiles
are similar, not necessarily that the algorithms use the same search strategies.

In this section, we present three analyses. First, we compare instances of the
same algorithm. Second, we compare instances of different algorithms tuned on
the same problem. Third, we use K-Means to cluster the algorithm instances
and the similarity metrics to evaluate the quality of the clusters.
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Table 3. Silhouette score: how similar an algorithm instance is to all other instances
of the same algorithm. Each row contain different instances of the same algorithm.
Ranges from +1 (high similarity) to -1 (high dissimilarity).

INSTANCES

1 2 3 4 5 Average

PSO –0.30 –0.18 –0.44 0.02 –0.38 –0.25

ATA –0.07 0.29 0.17 –0.11 0.26 0.11

GSA –0.33 –0.31 0.05 0.35 0.35 0.02

FFA 0.74 0.77 0.74 0.41 0.75 0.68

RIO 0.48 –0.33 0.17 0.53 0.53 0.28

DE –0.41 0.41 0.29 0.4 –0.06 0.12

SAA 0.36 0.35 0.44 0.44 0.36 0.39

5.1 Comparing Instances of the Same Algorithm

In this first analysis, we examine the similarity between instances of the same
algorithm. To do so, we use the silhouette score to measure how similar an
instance is to all other instances of the same algorithm. Scores near +1 indicate
high similarity, scores near −1 generally indicate that a different algorithm is
more similar, and scores near 0 indicate overlapping algorithms. Then, we do
the same analysis but use the performance similarity, which ranges from 0 (low
similarity) to 1 (identical performance profile).

Starting with the silhouette scores in Table 3, most instances have positive
scores, showing that instances of the same algorithm are more similar to them-
selves than to other algorithms. This may indicate that the algorithm’s operators
affect more their performance profile than the parameter values found during
tuning. Although most instances have positive scores, those are not near +1. A
not-perfect match is expected due to differences caused by the parameter values
and stochastic behavior.

Stochasticity seems to have a big effect since all SAA instances have
extremely similar parameter settings but an average silhouette score of 0.39.
On the other hand, FFA instances have very different settings with an average
silhouette score of 0.68, meaning that FFA instances are more strongly related
to each other than to other algorithms.

Interestingly, PSO is the only algorithm with an average negative score of
−0.25, meaning that different PSO instances could belong to clusters of other
algorithms. This shows that PSO’s parameter settings affect its performance
profile and may reinforce the argument that many recent metaheuristics are
special cases of PSO.

Moving to the performance similarity in Fig. 2, we observe that most
instances are not similar (≈0.1), despite being the same algorithm. This is true,
especially for the PSO instances with near 0.1 scores.

A few instances score 1.0, but all have identical parameter settings (GSA 4
and 5; SAA 3 and 4; and SAA 1 and 5). On the opposite way, instances with
similar parameter settings have scores in the lower range. One case is ATA 2 and
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Table 4. Silhouette score: similarity of instances of different algorithms tuned on the
same problem. Each row contain instances of different algorithms tuned on the same
function. Ranges from +1 (high similarity) to -1 (high dissimilarity).

Cluster PSO ATA GSA FFA RIO DE SAA Average

1 −0.04 +0.04 +0.13 +0.02 +0.06 −0.13 −0.01 +0.01

2 −0.05 −0.18 −0.24 −0.28 −0.18 −0.11 −0.25 −0.19

3 −0.15 −0.15 −0.21 −0.24 −0.33 −0.09 −0.16 −0.19

4 −0.08 −0.33 −0.18 −0.34 −0.33 −0.16 −0.19 −0.23

5 −0.00 −0.07 −0.10 −0.21 −0.27 −0.01 −0.26 −0.13

5 with a score of 0.3 while having the same population size (400), near values of
c (1.96 and 1.99), and tolerance (0.73 and 0.77). Another case is SAA 1 and 2,
scoring 0.4 with the same population size (25) and near alpha values (0.01 and
0.02).

In summary, these results indicate that instances of the same algorithm do
not always cluster well. This is observed in the low silhouette score of PSO
(−0.25), GSA (0.02), ATA (0.10), and DE (0.12). It is also observed low-
performance similarity between instances of these algorithms, being the excep-
tion ATA 1 and 4 (0.3), ATA 2 and 5 (0.3), and DE 2 and 4 (0.4). On the other
hand, FFA (silhouette score = 0.68) clustered well, where most of its instances
have performance similarity scores between 0.3 and 0.5. Lastly, SAA and RIO
are in the middle, with silhouette scores of 0.39 and 0.28, respectively. These
two algorithms have few instances with high-performance similarity.

5.2 Comparing Instances of the Same Tuning Function

In the second analysis, we compare instances of different algorithms tuned on
the same benchmark function. Here, we assess if using the same function to
parameter tune different algorithms would result in a similar performance profile.

The silhouette scores are shown in Table 4. Surprisingly, all instances have
negative or near 0 scores. Likewise, the similarity scores (data not shown)
between all instances are low (<0.2).

These results together indicate that using the same function to tune the
parameter of multiple algorithms does not result in a similar performance profile.

5.3 Clustering the Algorithms’ Instances Based on Similarity

In this third analysis, we check if the algorithm instances form other types of
clusters. To do so, we use the silhouette score to find the optimal number of
cluster k for K-Means (k = 13 with score = 0.49 or k = 15 with score = 0.50).
Then, we use K-Means with k = 15 to cluster all the algorithm instances and
compute the silhouette score for each sample.

All clusters have positive scores, as shown in Table 5, excluding the ones with
a single algorithm instance each (clusters 2, 5, 11, 12, and 14). Clusters 4 and 10
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Fig. 2. Performance Similarity: heatmap showing the similarity between instances of
the same algorithm. Values near 1 indicate high-performance profile similarity.
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Table 5. K-Means clusters and the silhouette score for each algorithm instance.

Cluster Alg Score

1 ffa2 0.71

1 ffa4 0.71

1 ffa3 0.20

1 ffa1 0.73

1 ffa0 0.65

2 de2 0.00

3 ata0 0.26

3 rio2 0.13

3 ata3 0.25

3 gsa0 0.12

4 saa2 1.00

4 saa3 1.00

Cluster Alg Score

5 de4 0.00

6 saa1 0.65

6 saa0 0.74

6 saa4 0.74

6 gsa2 0.22

6 gsa1 0.66

7 rio0 0.70

7 rio3 0.79

7 rio4 0.76

8 pso1 0.27

8 ata2 0.05

Cluster Alg Score

9 de1 0.86

9 de3 0.86

10 gsa3 1.00

10 gsa4 1.00

11 pso3 0.00

12 pso0 0.00

13 pso4 0.14

13 ata4 0.51

13 ata1 0.50

14 de0 0.00

15 rio1 0.58

15 pso2 0.58

can be considered single instances because both contain instances with the same
parameters, despite the maximum score. Excluding the previous clusters, there
are five clusters with an average score>0.5, indicating high similarity within
clusters. Cluster 1 contain exclusively all FFA instances (average score = 0.60)
and Cluster 7 contains exclusively three RIO instances (average score = 0.75).
These scores suggest that those instances were well clustered. The same could
be concluded for Cluster 6, which contains instances of SAA and GSA (average
score = 0.6), Cluster 15, which contains an instance of RIO and PSO (average
score = 0.58), and Cluster 9, which contains exclusively two DE instances with
the highest average score (0.86). As expected from the previous results, some
instances of the same algorithm tend to be clustered together, while all PSO
instances are in different clusters.

Moving to the performance similarity analysis in Fig. 3, we observe that clus-
ters with high silhouette scores still have a few instances with low similarity
scores (≈0.2). However, the scores are relatively high in most cases, ranging
from 0.3 to 0.6. The highest similarity scores are between instances of the same
algorithm, except for SAA and GSA.

5.4 Discussion

These findings show that our method can measure similarity between algorithm
instances. First, the silhouette score could indicate which algorithms’ instances
matched their own algorithm compared to the others. Second, it showed that
algorithms instances tuned on the same problem did not cluster well. Third, the
silhouette score together with K-Means showed which instances of all algorithms
clustered well. Moreover, the performance similarity score allows direct compar-
ison between two algorithms’ instances. It could show the algorithms with the
most diverse performance profiles and which instances are the most similar.

In the same way that we use the performance profile to compare algorithms,
we can use this same data to compare the similarity of benchmark functions. This
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Fig. 3. Performance Similarity: heatmap showing the similarity between instances for
each cluster created by K-Means. Values near 1 indicate high-performance profile sim-
ilarity.

paper considers that an algorithm instance has performance values on different
benchmark functions. Instead, we can consider that a benchmark function has
the performance of many algorithms. This analysis could give many insights
into the benchmark. To cite a few, we could evaluate if landscape characteristics
negatively impact the algorithm’s performances or the ones that do not impact
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so much. We could also evaluate predefined categories and potentially suggest
new ones. This could aid not only in curating and creating benchmark functions
but also in analyzing the landscape characteristics that an algorithm exploits
or fails. Although this is an interesting analysis, we chose to leave it for the
following work due to page limit and scope.

6 Conclusion

The purpose of the current study was to propose ways to compare metaheuris-
tics algorithms empirically. To do so, we proposed a method that includes gen-
erating instances of a metaheuristic through parameter tuning, collecting the
performance profile of all instances on a variety of benchmark problems, and
measuring similarity based on the performance profile using the silhouette score
and the performance similarity score.

We observed that for the same algorithms, their instances have relatively
good similarity scores between themselves, while for some others most instances
have dissimilar performance profiles. We also observed that tuning the parameter
of different algorithms on the same problem does not result in similar perfor-
mance profiles between the algorithms. Lastly, we observed that instances of
the same algorithm tend to cluster together while also having relatively good
similarity scores, while instances of different algorithms yield lower scores.

A limitation of this study is that the parameter tuning had a limited bud-
get, generating instances that failed most tested functions. Notwithstanding the
limitation, future research might use this method for the analysis of the search
behavior of similar algorithms. Another path is to analyze benchmark functions
as suggested in the previous section. Moreover, this study takes steps toward a
method that can aid in the creation of ensembles, algorithm portfolio, and set
of operators for automatic design.
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Abstract. When optimization is applied in real-world applications,
optimal solutions that do not take into account uncertainty are of lim-
ited value, since changes or disturbances in the input data may reduce
the quality of the solution. One way to find a robust solution and con-
sider uncertainty is to formulate the problem as a min-max optimization
problem. Min-max optimization aims to identify solutions which remain
feasible and of good quality under even the worst possible scenarios, i.e.,
realizations of the uncertain data, formulating a nested problem. Employ-
ing hierarchical evolutionary algorithms to solve the problem requires
numerous function evaluations. Nevertheless, Evolutionary Algorithms
can be easily parallelized. This work investigates a parallel model for dif-
ferential evolution using SciPy, to solve general unconstrained min-max
problems. A differential evolution is applied for both the design and sce-
nario space optimization. To reduce the computational cost, the design
level optimization is parallelized. The performance of the algorithm is
evaluated for a different number of cores and different dimensionality of
four benchmark test functions. The results show that, when the right
parameters of the algorithm are selected, the parallelization can be of
high benefit to a nested differential evolution.

Keywords: Min-max optimization · Parallelization · Differential
evolution

1 Introduction

Any kind of real-world optimization problem contains to a degree uncertainty
in its data, be it by inherent stochasticity or due to errors. One way to consider
this uncertainty and find a robust solution to the problem is to formulate it
as a min-max optimization problem [8]. This formulation aims to find the best
worst-case solution and hence the most robust.
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Numerous approaches have been developed to solve the min-max optimiza-
tion problem. Among the traditional ones -which require a specific mathematical
formulation- one can find branch-and-bound algorithms [16] or approximation
methods [2]. When such a formulation is not applicable, Evolutionary Algo-
rithms (EA) can be used. One of the first such EAs can be found in [6,7], where
a genetic algorithm is used in a coevolutionary fashion, successfully solving min-
max problems that hold specific conditions. Another EA approach is using the
inherent hierarchical formulation, leading to nested algorithms and such a nested
Particle Swarm Optimization algorithm can be found in [13]. What is common
knowledge about the EAs though, is that they require numerous iterations and
function evaluations, making the computational cost prohibitively high. A pop-
ular way to mitigate this problem is the use of surrogates, as suggested in [24],
with some cost in the accuracy though. A surrogate-assisted min-max multifac-
torial EA is proposed in [23] employing evolutionary multitasking optimization
and surrogate techniques. A min-max Differential Evolution (DE) is proposed in
[18] with many improvements to the original DE, designed specially for min-max
problems. Another nested approach was presented in [5], where a DE with an
estimation of distribution algorithm is proposed and a priori knowledge of the
previous generations is utilized to reduce the computational expense.

When dealing with populations, parallelism is inherent since each of the
individuals who make up the population is an independent component [14]. There
are numerous studies that deal with different parallelization of EAs [1,3,20].
More specifically for DE -a popular EA that we use in this study- parallel models
can be found in [12,17,21]. Most of them refer to EAs that deal with single level
or multiobjective problems. Two parallel models of bilevel DE are suggested
in [15], that reduced drastically the computational time in a number of test
functions. There is a study of a co-evolutionary DE algorithm in C-CUDA for
solving min-max problems in [10]. To the best of our knowledge, there is no
study that researches a parallel model for a purely hierarchical (nested) DE for
min-max problems.

One popular and user-friendly implementation of DE is in the SciPy python
package [22]. It gives the users the option to use different workers and evaluate
the population in parallel. Given its popularity and simplicity, it is a suitable
choice to use this framework for this work. We apply a DE algorithm for both
the design and scenario space, using the parallelization option for the design
space. In this way, the design space population is evaluated in parallel, meaning
that the second-level DE of the scenario space is run in parallel.

We then proceed to test the method in four benchmark test-functions with
different properties, known from the literature. To test the scalability of the
results, we scaled the test-functions up to 10 dimensions.

Our research questions are the following:

RQ 1: What kind of speedup do we achieve for different test-functions and
different dimensionality of the problem?

RQ 2: Does the population size of the design space affect the speedup and how?
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RQ 3: Does the DE mutation strategy of the design space affect the runtime?

In this study, we approach the first question and scratch the surface for the other
two.

The organization of this paper is as follows. Section 2 defines the min-max
optimization problem and Sect. 3 gives an overview of the Differential Evolu-
tion and its nested form for solving min-max problems and explains how it is
parallelized in this work. The experimental setup, the test functions used, along
with the performance of the method are described in Sect. 4. Finally, Sect. 5
summarizes the paper and gives some ideas for future work.

2 Definition of the Problem

The general unconstrained min-max problem can be described as:

min
x∈X

max
s∈S

f(x, s) (1)

where x is a solution selected from search space X and s a scenario chosen
from the scenario space S. The objective is to locate a solution x∗ ∈ X that
minimizes the worst-case objective maxs∈S f(x, s). The problem is considered
symmetrical when the following condition is true

min
x∈X

max
s∈S

f(x, s) = max
s∈S

min
x∈X

f(x, s)

Symmetrical problems have independent feasible regions of the search and sce-
nario space, making their solution more tractable.

3 Differential Evolution for MinMax Problems

3.1 Overview of Differential Evolution

The traditional definition of Differential Evolution can be found in [19]. Fol-
lowing the standard evolutionary algorithm schema, a population of candidate
solutions undergoes the operations of mutation, crossover, and selection. There
exist numerous strategies, that DE can apply to mutate the individuals through
a difference mechanism. The most regularly used variant is to select two ran-
dom individuals from the current population and add their scaled vector dif-
ference to the individual vector to be mutated (rand/1/bin). Another popular
variant is best/1/bin, where as base vector the best vector in the population
is used. The pseudocode of the DE algorithm can be seen in Algorithm 1.
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Algorithm 1: Pseudocode of DE.
Input : Population Size (NP), Max Generations (MaxGen), CR, F, Dimension D
Output: Optimal Solution
//Initialization
Generate NP individuals randomly
while budget condition do

for k = 1 to NP do
calculate fit(xk)

end
for k = 1 to NP do

//mutation
Generate three random indexes r1, r2 and r3, where r1 �= r2 �= r3 �= k
V G
k = XG

r1
+ F ∗ (XG

r2
− XG

r3
) /* rand/1/bin */

/* best/1/bin: V G
k = XG

best + F ∗ (XG
r1

− XG
r2

) */

//crossover
for i = 1 to n do

if rand(0,1)< CR then
U[i] = Vk[i]

else
U[i] = Xk[i]

end

end

end
//selection
if fit(UG

k ) ≤ fit(XG
k ) then

XG+1
k = UG

k

end

end

3.2 Hierarchical (Nested) Differential Evolution and Parallel Model

The main steps of the nested algorithm can be seen in Fig. 1. Each time a Design
Space individual has to be evaluated, the algorithm runs a nested DE in order
to find the optimal maximization solution in the scenario space. This can be
seen with red dotted lines in the figure, where in the sequential manner, the
algorithm has to wait till the nested DE is done to proceed and evaluate the
next individual.

The model implemented in this work makes use of the workers argument in
scipy.optimize.differential evolution of the optimization package. The population
is subdivided into workers sections and evaluated in parallel, by using Python
multiprocessing.Pool1. It should be noted, that only the objective function eval-
uations are carried out in parallel, after the new population has evolved.

The model focuses on parallelization of the design space population, and
it is similar to the parallel upper-level model for bilevel problems presented
in [15]2. The population is subdivided into workers sections and evaluated in
parallel. Denoting Npop the design space population size and nproc the number
of processes, each section handles Npop/nproc individuals. Each process handles

1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential ev
olution.html.

2 The specific model uses the traditional synchronous parallelization of the DE, where
also the operators are applied in parallel to produce the population.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
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Fig. 1. Flowchart of nested Differential Evolution Algorithm (DE).

a section of the evolved population and solves the scenario space problem with
DE in order to evaluate the new individuals. In Fig. 1, the procedure is shown
with green lines, where the population is divided into sections and evaluated in
parallel.

4 Experimental Setup and Results

All cases have been independently run 20 times for each test instance on an
Intel(R) Xeon(R) with 2 CPU E5-2680 v3 @ 2.50 GHz that have 12 cores each
and the Ubuntu 21.04 operating system. The algorithms are implemented in
Python 3.7 (Python SciPy library [22]), using the parallelization of differential
evolution for SciPy. The relevant code can be found in [4].

4.1 Benchmark Test Functions

The performance of the proposed algorithm is tested on 4 benchmark problems
of min-max optimization, as found in [11]. The functions are the following:

Test function f1 :

min
x∈X

max
s∈S

f1(x, s) = (x1 − 5)2 − (s1 − 5)2 (2)

with x ∈ [0, 10], s ∈ [0, 10]. The known solution is x∗ = 5 and s∗ = 5 with an
optimal value of f1(x∗, s∗) = 0. This test function is a saddle point function.
The function along with the known optimum is plotted in Fig. 2a and it serves
as an example of a symmetric function.
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Fig. 2. 3D mesh plots of the test functions. The black circle corresponds to the known
optimum.

Test function f2:

min
x∈X

max
s∈S

f2(x, s) = min
{
3 − 0.2x1 + 0.3s1, 3 + 0.2x1 − 0.1s1

}
(3)

with x ∈ [0, 10], s ∈ [0, 10]. The optimal points are x∗ = 0 and s∗ = 0 and the
optimal value is approximated at f2(x∗, s∗) = 3. It is a two-plane asymmetrical
function. The 3-D plot of this function, along with the known optima, are shown
in Fig. 2b.

Test function f3:

min
x∈X

max
s∈S

f3(x, s) =
sin (x1 − s1)√

x2
1 + s21

(4)

with x ∈ [0, 10], s ∈ [0, 10]. The known solution is x∗ = 10 and s∗ = 2.1257 with
an optimal value of f3(x∗, s∗) = 0.097794. It is a damped sinus asymmetrical
function, as shown in Fig. 2c.

Test function f4:

min
x∈X

max
s∈S

f4(x, s) =
cos (

√
x2
1 + s21)√

x2
1 + s21 + 10

(5)

with x ∈ [0, 10], s ∈ [0, 10]. The known optimal solutions are x∗ = 7.0441 and
s∗ = 10 or s∗ = 0 and the optimal value is f4(x∗, s∗) = 0.042488. It is a damped
cosine wave asymmetrical function, as shown in Fig. 2d.

To further evaluate the performance, the 4 test functions are modified to be
scalable as follows
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min
x∈X

max
s∈S

f1(x, s) =
D∑

n=1

(xn − 5)2 − (sn − 5)2 (6)

min
x∈X

max
s∈S

f2(x, s) = min
{ D∑

n=1

3 − 0.2xn + 0.3sn,
D∑

n=1

3 + 0.2xn − 0.1sn
}

(7)

min
x∈X

max
s∈S

f3(x, s) =
∑D

n=1 sin (xn − sn)
∑D

n=1

√
x2
n + s2n

(8)

min
x∈X

max
s∈S

f4(x, s) =
∑D

n=1 cos (
√
x2
n + s2n)

∑D
n=1

√
x2
n + s2n + 10

(9)

where D is the dimensionality of the problem and with x ∈ [0, 10]D, s ∈ [0, 10]D.
The first two problems can also be found in [18], while the other two are scaled
for the first time. For all the instances we test the following dimensionality: D =
[1, 2, 5, 10]. The dimensionality is scaled for both the design and scenario space.

4.2 Parameter Settings

The control parameter values used are reported in Table 1, unless stated other-
wise. We kept the default SciPy crossover, mutation, and strategy values. The
values of population and generation size are selected to be close to the ones
in similar experiments done in [9]. Note that to reach better accuracy for the
higher dimensionality, a larger number of population and/or generation sizes are
needed. Nevertheless, we kept the sizes the same for reasons of computational
budget and clear comparison in terms of running times. It is -in any case- not
in the scope of this paper to examine the accuracy.

Table 1. Selected control parameters.

Design space Scenario space

Crossover rate 0.7 0.7

Mutation rate U(0.5, 1) U(0.5, 1)

Population size 20 10

Number of generations 5 10

Strategy Best1bin Best1bin

4.3 Results and Discussion

4.3.1 Case Study 1: Evaluation of Different Test Functions
and Dimensionality
In Tables 2, 3, 4 and 5 the statistical results for the test-functions are reported.
More specifically, we report the median and standard deviation of the runtime in
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seconds and the speedup. The speedup measures the ratio between the sequential
and the parallel execution times (runtime).

In Fig. 3 the runtime and the speedup curve for each test function and instance
with respect to the different number of cores used are depicted. More specifi-
cally, the Figs. 3b, 3d, 3f and 3h show the speedup curve for the test functions
under analysis and the different dimensionality. It is noticed that for f1, f3 and f4
the speedup considering up to 16 processors is increasing for each dimensionality.
Same for f2, but only for 2/2D,5/5D, and 10/10D. A different behavior is spotted
for f2 and 1/1D, as already for 2 cores, the speedup is decreasing, only to start
improving again till we reach the 8 cores. For all test functions, for the 1 dimen-
sion case, the speedup decreases after the 16 processors. In general, the speedup
increases with the increase of the dimension as it is expected, since calculating the
objective function is more expensive. This can also be seen in Figs. 3a, 3c, 3e and
3g showing the running times in seconds for each function and each dimensional-
ity with respect to the number of cores used. It is clear the required running times
are also “scaled” to the dimension for all the test functions.

For the higher dimension of the problems, meaning 5/5D and 10/10D, the
speedup is always increasing, except for f4 and 10/10D, which decreases slightly
for 24 cores. It is worth noting that for 5/5D and 10/10D dimensionality, there is
almost a 10 times speedup when using 24 processors for f1. For example, in the
sequential case for f1 and 10/10D, the algorithm needs 111.7 s or almost 2 min
to run, while after the parallelization needs only 10 s. For the rest of the test
functions the speedup for 5/5D and 10/10D ranges around 4–5. As an example,
for f4 and 10/10D, the sequential algorithm needs around 260 s or almost 4 min
to run, while after the parallelization needs almost 1 min. This indicates the
positive effects of parallelization on the min-max problem especially when the
dimension is higher.

For f3 and f4, 5/5D shows greater improvement with respect to the number
of cores used than 10/10D. These results are very close though, and more experi-
ments and sample runs are needed to correct the accuracy. For lower dimensions,
especially for 1/1D, the performance drops and the speedup is worsening with
the number of cores.

To show that the parallelization has little effect on the accuracy of the results
found, in Tables 2, 3, 4 and 5 we report the median accuracy in % for all the
test functions and instances. We calculate the error rate as the absolute dif-
ferences between the best objective function values provided by the algorithm
and the known global optimal objective values of each test function. The accu-
racy formula provides accuracy as a difference of error rate from 100%. This is
expressed as

Acc% = 100 − |f ′ − f∗| ∗ 100/f∗ (10)

where f
′

and f∗ are the best found and the true optimal values, respectively.
As is expected, the accuracy achieved in all cases does not significantly fluc-
tuate among different cores. The accuracy for f4 and for 10/10D is in general
lower (almost half). Asymmetrical test functions constitute a more complicated
problem and a different parametrization of the DE might be needed (e.g. larger
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population size, more generations, etc.) Nevertheless, the algorithm yields to the
known global optima in the other cases, meaning the nested approach can solve
both symmetrical and asymmetrical problems.

(a) Median Runtime of the test function f1 (b) Speedup of the test function f1

(c) Median Runtime of the test function f2 (d) Speedup of the test function f2

(e) Median Runtime of the test function f3 (f) Speedup of the test function f3

(g) Median Runtime of the test function f4 (h) Speedup of the test function f4

Fig. 3. Runtime and speedup plots of the test-functions.
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Table 2. Running time results in seconds and median accuracy for the f1.

Dimension Cores Median Std.dev. Speedup Median Acc %

1 1 1.030820 0.104606 – 99.99

2 0.730346 0.124426 1.411412 99.99

4 0.592372 0.097924 1.740156 99.99

8 0.531529 0.116901 1.939347 99.99

16 0.412243 0.082602 2.500514 99.99

24 0.549554 0.104442 1.875738 99.99

2 1 3.876020 0.038887 – 100.0

2 2.277507 0.044546 1.701870 100.0

4 1.464805 0.048612 2.646099 100.0

8 0.962618 0.189352 4.026541 100.0

16 0.664449 0.039447 5.833436 100.0

24 0.706010 0.086775 5.490039 100.0

5 1 24.739887 0.136860 – 99.99

2 13.712247 0.146743 1.804218 99.99

4 8.226063 0.114659 3.007500 99.99

8 5.129729 0.109766 4.822844 100.0

16 3.207961 0.146968 7.712028 99.99

24 2.811062 0.128049 8.800903 99.99

10 1 111.715032 1.033029 – 99.99

2 59.729019 0.520408 1.870364 99.99

4 34.562721 0.520408 3.232241 99.99

8 20.576803 0.492896 5.429174 99.99

16 13.552745 0.520146 8.242982 99.99

24 10.929520 0.637464 10.221403 99.99

Table 3. Running time results in seconds and median accuracy for the f2.

Dimension Cores Median Std.dev. Speedup Median Acc %

1 1 1.596429 0.204669 – 100.0

2 1.584016 0.300120 1.007836 99.96

4 0.658811 0.278364 2.423197 100.0

8 0.441545 0.269987 3.615554 100.0

16 0.496514 0.329453 3.215277 99.99

24 0.450400 0.268212 3.544468 100.0

2 1 6.620913 1.047487 – 98.88

2 4.412415 0.717296 1.500519 98.90

4 3.308857 0.868970 2.000967 98.76

8 2.593604 0.842654 2.552785 98.76

16 2.137756 0.640007 3.097133 99.17

24 2.051248 0.961823 3.227749 99.21

5 1 38.835937 2.556689 – 85.28

2 23.445822 3.648188 1.656412 83.84

4 16.113869 1.323346 2.410094 85.42

8 12.053100 1.986224 3.222070 85.08

16 9.801519 1.462326 3.962236 85.07

24 9.129921 2.965911 4.253699 83.98

10 1 152.548321 3.390158 – 39.78

2 95.240152 9.687155 1.601723 42.61

4 64.895123 10.153455 2.350690 41.13

8 44.688494 5.504860 3.413593 44.40

16 36.344648 7.485144 4.197271 41.55

24 33.554359 5.100844 4.546304 45.15
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Table 4. Running time results in seconds and median accuracy for the f3.

Dimension Cores Median Std.dev. Speedup Median Acc %

1 1 1.066014 0.111083 – 99.99

2 0.751404 0.059305 1.418697 99.99

4 0.488195 0.061816 2.183584 99.99

8 0.385446 0.087810 2.765667 99.99

16 0.368403 0.063252 2.893611 99.99

24 0.423447 0.14840 2.517468 99.97

2 1 5.818274 0.672975 – 96.86

2 3.851147 0.495885 1.510790 98.08

4 2.861794 0.544807 2.033086 97.97

8 2.196644 0.623258 2.648710 97.12

16 1.784786 0.588991 3.259928 97.14

24 1.860299 0.584155 3.127601 97.00

5 1 39.398736 1.696303 – 98.20

2 25.141406 1.523187 1.567086 97.97

4 17.753222 1.242934 2.219244 97.68

8 12.665715 1.918927 3.110660 98.52

16 11.165424 1.870048 3.528638 97.44

24 9.216848 1.711269 4.274643 97.08

10 1 197.311041 12.023453 – 97.91

2 122.471174 8.766168 1.611081 97.60

4 78.167577 10.112983 2.524206 97.87

8 63.370734 5.421352 3.113599 97.41

16 56.940333 7.925534 3.465225 98.21

24 54.158177 7.496917 3.643236 97.64

Table 5. Running time results in seconds and median accuracy for the f4.

Dimension Cores Median Std.dev. Speedup Median Acc %

1 1 1.398317 0.171784 – 94.14

2 1.246892 0.255854 1.121442 93.94

4 0.913910 0.189214 1.530038 97.63

8 0.680622 0.194613 2.054470 97.19

16 0.659713 0.161889 2.119585 97.53

24 0.785280 0.204446 1.780661 97.86

2 1 6.071163 0.607564 – 96.89

2 4.111252 0.752849 1.476719 97.67

4 3.060104 0.416516 1.983972 97.57

8 2.269734 0.754214 2.674834 98.52

16 1.748137 0.437059 3.472932 97.68

24 1.926225 0.412750 3.151845 97.31

5 1 45.444606 2.641320 – 96.83

2 28.333389 3.517377 1.603924 98.03

4 20.544451 2.007804 2.212014 97.92

8 15.674804 2.192337 2.899214 97.79

16 12.987283 2.854605 3.499162 96.18

24 10.972779 2.310476 4.141577 97.86

10 1 260.356936 14.329717 – 94.35

2 157.981917 11.599310 1.648017 93.44

4 108.636768 14.879940 2.396582 95.48

8 80.369076 10.209701 3.239516 95.98

16 67.907552 7.578134 3.833991 94.72

24 64.801424 8.651000 4.017766 96.68
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4.3.2 Case Study 2: Influence of the Population Size
To evaluate the effect of the design space population size on the speedup of the
algorithm, test function f1 with 1/1D is run for different population sizes for 20
independent runs. The population size = 4, 8, 16, 24, 48 were selected to match
the number of cores, as the design space population is the one that is divided
into a number of processes and then calculated in parallel and might give some
insight. Also, the population sizes of 5, 10, 20, and 30 are tested, as they are
more commonly selected values.

In Fig. 4 the speedup is reported. Also, in Fig. 5 the stacked bar charts of
speedup for the different population sizes and the number of cores are shown.
In this graph, each value of the different population size speedup is placed after
the previous one and the total value of each bar is all the segment values added
together. As is expected, the higher the population size, the higher the speedup
achieved by adding cores. Moreover, in most cases, as the number of cores exceeds
the population size, the speedup is worsened. This can be specifically noted for
npop = 8 and the number of cores > 8, as well as for npop = 20 and the number
of cores > 16. The combination of the number of cores and the population size
of the design space is affecting the speedup of the parallel model. There is a
significant decrease in the speedup for npop = 48 and cores = 24, which might
be due to the communication costs. More experiments along with profiling tools
are needed to showcase the exact influence of selecting population size in analogy
to the available cores, especially to higher dimensionality and larger population
sizes, which are expected to show larger differences in the runtimes and are the
cases that will most benefit from parallelization.

Fig. 4. Speedup plots of the function f1 for dim = 1 and different design space popu-
lation size.

4.3.3 Case Study 3: Influence of the Strategy
Since the implementation of the parallelization is synchronous, it would be inter-
esting to see if there is any influence of the design space strategy. Therefore, we
tested the algorithm by changing the strategy to rand1bin - the most commonly
used. The runs refer to function f1 and 1/1D. In Fig. 6 the speedup bar chart is
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shown for the different strategies and dimensionality with respect to the number
of cores. In the cases that there is a difference, rand1bin shows a larger speedup.
There is an inherent sequential operation of finding the best individual of the
current generation, and this result agrees with what was noted also in [10]. More
experiments are needed to reach safe conclusions and are in our future steps.

Fig. 5. Speedup stacked bar charts of the function f1 for dim = 1 and different design
space population size (npop).

Fig. 6. Speedup bar charts of the function f1 for dim = 1 and different strategy.

5 Conclusion and Future Work

In this work, the parallel model for solving min-max optimization problems via
the user-friendly Python SciPy library was evaluated. The approach was tested
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for a nested DE and on four test functions from the literature. The four test
functions were symmetrical and asymmetrical to test the behavior of the model
on different min-max problems. Moreover, the problems were scaled to test the
effect of the model also on different dimensions of the problems. In addition, a
first insight was given about the effect of the population size and the strategy
used on the speedup. The results show that the model is drastically reducing the
computational time when the correct combination of the number of cores and
population size of the design space is selected. The results especially indicated
the large decrease of computational time on problems of higher dimensionality
and when a larger population size is needed. This can motivate research of large-
scale min-max problems via metaheuristics.

As noted above, the effect of the population size and the strategy on the
speedup is our ongoing research. Though SciPy is used in this work, other more
sophisticated parallel frameworks, such as CUDA with multi-CPU and multi-
GPU can be used to further take advantage of the natural parallelization of DE
of both levels. Finally, it would be interesting to test the current implementation
on engineering applications and real-world problems.
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Abstract. Providing comprehensive details on how and why a stochas-
tic optimization algorithm behaves in a particular way, on a single prob-
lem instance or a set of problem instances is a challenging task. For this
purpose, we propose a methodology based on problem landscape features
and explainable machine learning models, for automated algorithm per-
formance prediction. Performing this for ten different configurations of
the Differential evolution (DE) algorithm on the 24 COCO benchmark
problems, it can be estimated which set of landscape features contributes
the most to the correct performance prediction of each DE configura-
tion. From the results we concluded that different landscape features are
important when predicting the performance of the different DE config-
urations. However, for DE configurations with similar performance on
the benchmark problems, the regression models identify similar feature
portfolios as important for the performance prediction task. We pro-
vided explanations for the behaviour of the algorithms in this scenario,
by identifying the set of most important features and further using this
information to compare the different algorithms and find algorithms with
similar exploration and exploitation capabilities.

Keywords: Automated algorithm performance prediction ·
Exploratory landscape analysis · Algorithm behaviour

1 Introduction

Many real-world problems require optimisation, which is finding the most prof-
itable, least expensive solution or just improving the current practise. Very often
these problems are too complex to be mathematically modeled, where the ana-
lytic form or any properties of the problem are unknown. Under these circum-
stances one typically resorts to stochastic optimization, where iterative sampling-
based algorithms dominate the field. They guide the search towards the optimal
solution of a certain problem by sampling candidate solutions, evaluating them
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(assessing their quality) and using the gained information to select the new solu-
tions for the next iteration. The process proceeds in iterations until converging
to an estimated optimum. In the last decades, many iterative optimization algo-
rithms have been designed and improved upon [1–3].

The algorithms show very different performance on different problems, and
the main weakness that remains open is that they are treated as black-box
algorithms, without understanding their behaviour on a specific optimization
problem instance or a group of problem instances. Such behaviour is com-
pletely expected when taking into account the diversity of real world problems
in terms of their properties. If one possesses a good overview over the proper-
ties that make a problem instance easy or hard for a specific algorithm, one
may choose the “right” algorithm from a portfolio to solve it efficiently. This
task is known as Algorithm Selection (AS) [4]. Even more, sometimes different
hyper-parameters values of the same optimization algorithm can lead to different
performance. Therefore, it is also worth to investigate the behaviour of differ-
ent hyper-parameter settings of the algorithms to find the promising one. This
is another task known as Algorithm Configuration (AC). However to perform
both, linking the properties of the problem instances to the performance of the
algorithm achieved on them is needed.

In this direction, first the problem instance features need to be extracted so
that a problem instance can be characterised/represented by them. In continuous
single-objective optimization the properties/features of the problem instances are
derived based on analysis of its fitness landscape [5,6]. With the goal of under-
standing more about the characteristics of the fitness landscape of an unknown
continuous optimization problem, the Exploratory Landscape Analysis (ELA)
features were first introduced in [6]. These are numerical features that quantify
the properties of the optimization problem instances. The next step is to link
them to the algorithm’s performance. State-of-the-art studies preform the link-
ing by training a supervised machine learning model (i.e. classifier/regressor) on
a set of benchmark problem instances [7–10].

One algorithm that is well established for solving continuous single-
objective optimization problem instances is Differential Evolution (DE). DE is a
population-based metaheuristic that belongs to the family of Evolutionary Algo-
rithms. It was introduced by Storn et al. in [1] and has been so far extensively
studied in the field of continuous optimization. It uses the iterative improvement
technique where the solution candidate is changed based on an evolutionary pro-
cess. The algorithm is based on the idea of generating new offspring by applying
recombination operators on the scaled difference vectors of the existing solutions
in the population. There are many basic strategies which define how the offspring
is computed (based on scaling factor, F , and crossover rate, Cr). In the selection
phase the current solution is replaced if it is outperformed by the offspring.

Our Contribution and Results: To explore algorithm behaviour, we propose
a methodology based on explainable automated algorithm performance predic-
tion. The methodology is based on ML regression models for predicting the
performance and ML techniques that explain models’ predictions [11]. To show
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the utility of the methodology, a suite of benchmark problems and ten randomly
generated DE configurations is used. To link the benchmark problem instance
landscape features to the performance of the algorithm configuration achieved
on them, a Random Forest (RF) is utilized, as the underlying ML algorithm for
learning an regression model for performance prediction of each configuration
separately. The models were further analyzed with the SHAP method [12], to
provide explanations how the landscape features contribute the to the end pre-
dictions. Performing the analysis across all ten DE configurations we are able to
identify the most important landscape feature sets for each configuration. Fur-
ther, we represent the configurations with the feature importance and project
the representations in a new common embedded space, where the different con-
figurations can be compared and their behaviour analyzed.

Outline: The reminder of the paper is organized as follows: Section 2 presents
the related work. Section 3 presents the ML pipeline for identifying the most
important ELA features, the landscape and performance data involved in this
study, together with the hyper-parameters used for training of the regression
models. The results and discussion are presented in Sect. 4. Finally, the conclu-
sions are presented in Sect. 5.

2 Related Work

The importance of the ELA features for classifying continuous single-objective
optimization problems using ML models was investigated in [13]. In [14], auto-
mated algorithm performance prediction of several algorithms was analyzed
by random forest, extreme gradient boosting, recursive partitioning, regres-
sion trees, and kernel-based support vector machine as ML regression models.
This was done in combination with four classical feature selection techniques:
greedy forward-backward selection and backward-forward selection, and variants
of (10+5) genetic algorithm [15].

The ELA features are calculated from the trajectory data of the algorithm
(trajectory-based ELA) and prediction of the performance of the CMA-ES algo-
rithm is done in a fix-budget scenario, in [16]. It was shown that classical feature
selection techniques in combination with Random Forest as ML model, with
no hyper-parameter tuning does not lead to improvement in the performance
prediction task.

Recently, a study [17] tried to select the most important features that
contribute to an optimization algorithm performance prediction by using the
SHAP method to estimate feature importance. Performance regression model
was trained for each of 16 modular CMA-ES variants (i.e., one regression model
per each CMA-ES variant). The direction of impact of each feature to the end
prediction, for each configuration, was also presented. Further, these explana-
tions were used to find similar/dissimilar CMA-ES configurations. Inspired by
this study, here we focus on performing a study to investigate the behaviour of
DE configurations and see if/how the results generalize for a different algorithm
portfolio.
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3 Experimental Setup

Here, the experimental design is explained in more detail starting with the bench-
mark problem portfolio, landscape data, the algorithm portfolio and the perfor-
mance data. Next, the ML models are explained together with the evaluation
procedure used for the ML experiments. At the end, the method for feature
importance is presented.

3.1 Benchmark Problem Portfolio

The COCO benchmark suite [18] is used as the problem portfolio. It is avail-
able on the COCO platform [19]. The COCO benchmark suite consists of 24
continuous single-objective noiseless optimization problems. Different problem
instances can be defined by transforming the base problems with scaling and
translation in the objective space. The first five instances from each problem
are used, resulting in a total of 120 benchmark problem instances in this work.
Lastly, the problem dimension D was set to 10.

3.2 Landscape Data

ELA are numerical computer-generated features, based on sampling the solution
space rather than relying on expert designed features, to characterize a problem.
For calculating the features, the improved Latin Hypercube sampling technique
was used as sampling technique, with sample size 800×D (8000). The sampling
technique and the sample size was selected based on conclusions from previous
studies, so that they lead to robust calculation of the ELA features [20]. The
calculation was repeated 30 times, as it is a stochastic process and the median
value was taken as the final feature value. The R package “flacco” [21] was
utilized for calculation of the features.

In its original, the features were grouped into six so-called low-level prop-
erties (Convexity, Curvature, y-Distribution, Levelset, Local Search and Meta
Model). These (numerical features) were used to characterize (usually categor-
ical and expert-designed) high-level properties, such as the Global Structure,
Multi-modality or Variable Scaling. A detailed description of the features can
be found in [6]. Since then, a number of new features have been developed
with the aim of improving the strategy’s effectiveness. We selected all the ELA
features which are cheap to calculate with regard to sample size, and do not
require additional sampling as suggested in [14]. A total of 64 features were cal-
culated. The selected features are coming from the following groups: classical
ELA (y-distribution measures, level-set, meta-model) [6], Dispersion [22] Infor-
mation Content [23], Nearest Better Clustering [24] and Principal Component
Analysis [25].
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3.3 Algorithm Portfolio

As an algorithm portfolio ten different, randomly selected DE configurations
were tested, as presented in the Table 1. We indexed these configurations starting
from DE1 till DE10 for easier notation during the results.

Table 1. Selected Differential Evolution configurations.

Index strategy F Cr

DE1 Best/2/Bin 0.024 0.850

DE2 Best/3/Bin 0.533 0.810

DE3 Best/2/Bin 0.863 0.993

DE4 RandToBest/1/Exp 0.139 0.517

DE5 Best/2/Exp 0.626 0.996

DE6 Best/1/Bin 0.617 0.515

DE7 Rand/Rand/Bin 0.516 0.687

DE8 Rand/2/Exp 0.330 0.028

DE9 Rand/2/Bin 0.134 0.365

DE10 Best/1/Bin 0.451 0.173

3.4 Performance Data

We focus on the fixed-budget performance scenario, where the performance met-
ric for measuring the DE performance is the target precision of an algorithm (i.e.,
the distance between the best solution reached after a certain budget of function
evaluations and the estimated optimal solution). Further, we calculate the loga-
rithm of the precision, as suggested in [8]. The intuition behind doing so lies in
the fact that we want to make use of the information captured in the exponent
of the actual precision value, which can be interpreted as a distance level to
the optimum (for two algorithms with actual target precision of 10−2 and 108,
we can say that the latter is 6 distance levels closer to the optimum than the
former).

DE is an iterative population based meta-heuristic. The population size of
DE is set to equal D (10). In this way, a single iteration represents 10 function
evaluations and a single run contains multiple iterations. The stopping criteria of
a run was set to population size∗10, 000 (100,000) evaluations. For each run the
trace of the optimization was recorded by storing the population solutions from
all algorithm iterations. All the DE configurations were run 30 times, because
the algorithms are stochastic in nature, and by taking the median of the reached
precision over the multiple runs we can get better approximation of the algo-
rithms performance. The precision after 10D, 30D, 50D, 100D, 300D, and 500D
function evaluations was used as target variable to the ML regression models.
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3.5 Regression Models

The main idea behind using a regression model for automated performance pre-
diction is linking the landscape features of a set of problem instances, to the
algorithms’ performance achieved on them. Regression as supervised learning
technique have been studied in the context of landscape-aware algorithm, as
it predicts continuous numerical values, which is what the performance of the
optimization algorithms essentially is. For the learning process we have utilized
Random Forest (RF) [26]. The RF models have been trained with the follow-
ing hyper-parameters: number of estimators = 25, maximum depth = 25, and
criterion = “MAE” has been selected to measure the quality of the splits per-
formed by the ML model. The definition of MAE is provided in the next section.
Finding the best hyper-parameters for the RF models was not subject to this
study. The algorithms were implemented using the scikit − learn package in
Python.

The models are trained in a single-target regression (STR) model i.e., the
target data comes from a single optimization algorithm (i.e., in our case from
a single DE configuration). When performances of multiple algorithms are pre-
dicted, then a separate STR model is trained for predicting the performance on
each optimization algorithm. We train a model for each algorithm and budget
combination. As opposed to Multi-Target Regression (MTR), where the objec-
tive is to make predictions about two or more continuous variables at once (i.e.,
from multiple DE configuration), using the same feature set.

3.6 Leave-One Instance Out Validation

The RF regression models are evaluated in a stratified k-fold cross-validation
scenario [27]. Cross-validation is a statistical approach used to estimate the per-
formance of a ML model on unseen data and when the training data is limited.
The process involves randomly dividing the set of observations into k groups,
or folds, of approximately equal size. One of the folds is treated as a test set,
and the model is trained on the remaining k – 1 folds. The process is repeated
until every fold has been used as a test set. In this way, the model is trained on
slightly different data every time. Therefore, it can be evaluated how the perfor-
mance of the model changes with regard to this change. The final performance
of the model is reported as the average of the performances on the k test folds.
The approach generally results in a less biased or less optimistic estimate of the
model performance than other methods.

In this case, the evaluation of the algorithm performance prediction models
was done using leave-one-instance out cross-validation. This means that one
of the five instances available per problem was left out for testing, and the
remaining four were used for training of the models. The approach results in five
different folds. Leave-one-instance out cross-validation was implemented, since
recent studies showed that leave-one-problem out (i.e., including all its instances)
does not provide transferable results [28].
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In order to assess and compare the performance of the regression models,
the Mean Absolute Error (MAE) was used as model performance metric. The
Mean Absolute Error (MAE) is calculated as the sum of model prediction errors
divided by the total number of data instances, where the prediction errors are
the absolute difference between the predicted algorithm precision on a prob-
lem instance and the actual precision that the algorithm achieved on a problem
instance. We reported the performance of the models as the average Mean Abso-
lute Error(MAE) across all five test folds.

3.7 SHAP Explanations

To provide explanations how a regression model comes to the end prediction, a
common technique is to use Shapley values as feature importances, calculated
with the SHAP (SHapley Addictive exPlanations) method. This method comes
from the coalition game theory, where the feature values (i.e., ELA values) of
a data instance (i.e., problem instance) are considered as players in a coali-
tion. More details about SHAP can be found in [12]. By performing the SHAP
analysis, we can find the contribution of each ELA feature to the end predic-
tion of each DE configuration. With regard to the level on which explanations
are provided, we can distinguish between global and local explanations. Global
explanations provide the contribution of the ELA feature to the performance
prediction across all benchmark problem instances used as learning data, while
the local explanations provide the contribution of each ELA feature on a spe-
cific problem instance. In our analysis we use the global explanations as feature
importance, representing the behaviour of different DE configurations across the
set of benchmark problem instances.

4 Results and Discussion

Here, first we compare the performance of the algorithm portfolio on the BBOB
benchmark problems. Next, the results from the predictive performance of the
ML models are shown. At the end the conclusions from feature importance
analysis of each DE configuration are presented.

4.1 Optimization Algorithms Performance

We measure the performance as the logarithm of the precision of the reached tar-
get, after a fixed budget of function evaluations. Figure 1 shows the performance
of the algorithms averaged across all 24 problems, for the different budgets. From
these results, we can understand how the configurations behave overall and fur-
ther compare them in terms of performance. In general, the precision improves
as the number of function evaluations increases, for most of the algorithms. For
small budgets up to 50D, the performances are very similar. And then we can
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observe groups of configurations with similar performances e.g., DE4, DE7, DE9

and DE1. This indicates that for small budgets all the configurations are still
performing exploration (i.e., searching for regions with good solutions). While
for larger budgets, there is an indication that some configurations have better
exploitation power and manage to converge towards an estimated optimum.

Figures 2 and 3 present the precision obtained by each DE configuration,
on the 24 COCO benchmark problems separately. The log precision after 30D
and 500D function evaluations is displayed. From these results, we can under-
stand how the configurations behave on the different problems. Algorithm per-
formances are significantly worse for some problems such as 2, 10 and 12, for
all algorithms. In 30D going across problems the performance is not so diverse,
meaning that the DE configurations show similar performance. In 500D the best
performing configurations start to differentiate, such as DE7 and DE4.

Fig. 1. Log precision (across all 24 problems) obtained by the DE configurations for
budget of 30D, 50D, 100D, 300D, 500D function evaluations.

Fig. 2. Log precision obtained by the DE configurations on each of the COCO bench-
mark problems, for budget 30D

4.2 Performance Prediction

In Fig. 4, the Mean Absolute Error (MAE) obtained by the Random Forest
models when predicting the performance, is presented. MAE is averaged across
all 24 problems for all different budgets. From the figure, we can conclude that
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Fig. 3. Log precision obtained by the DE configurations on each of the COCO bench-
mark problems, for budget 500D

the RF models achieve the lower errors for smaller budgets. However, the errors
tend to increase noticeably with the budget for configurations DE4, DE7, DE9

and DE1.

Fig. 4. Mean Absolute Error (MAE) (across all 24 problems) obtained by the Random
Forest models in predicting the performance of each DE configuration, for the different
budgets

In Fig. 5, the boxplots show the distribution of the mean absolute error
(MAE) per benchmark problem, for each DE configuration. From the results,
we can see that the RF models are consistent when predicting across problems,
most of the MAEs are around 0.25–0.50. Another thing to point out here are the
outliers, which means that there are high errors when predicting the performance
only on some benchmark problems. RF achieves the lowest errors and there is
low deviation when predicting the performance for DE6 and DE8, for all budgets.

4.3 Linking ELA Features to DE Performance

To represent each DE configuration through the contribution of the ELA fea-
tures to its performance, we aggregated the Shapley values for each ELA feature
across all problem instances from each training fold. This means that each DE
configuration is represented with five different vectors, each one coming from the
five training folds. The analysis was repeated as described for different budgets.
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Fig. 5. The Mean Absolute Error (MAE) for each COCO benchmark problem obtained
by the Random Forest models for all algorithms and budgets.

Figure 6 presents t-SNE visualization [29] of each DE configuration in two-
dimensional space using their Shapley representation. We have used the scikit-
learn implementation of t-SNE in Python. From the t-SNE parameters we have
set perplexity to 10 (it is related to the number of nearest neighbors are taken into
consideration when projecting the points in 2D). Looking at the figure, we can
see that for budget 30D the folds from all the configurations are mixed together.
And how the budget increases the folds from the different configurations are
beginning to separate and group together. From Fig. 2 we saw that at 30D, the
algorithms are still exploring the problem instances and achieve similar perfor-
mance, so the ML models basically use the same ELA features and additionally
similar targets, so the resulting SHAP values (i.e., the most contributing ELA
features) are also similar for all configurations. At 500D the DE configuration
representations are consistent across different folds within the same configura-
tion, since their Shapley representations place them close together. This means
that to predict the performance of an DE configuration, the importance of the
ELA features utilized by the RF model is the same across the folds. This indi-
cates the most important ELA features for each DE configuration are consistent.
Further, we can spot two groups of configurations on the plot. We concluded that
algorithms with similar performance are put in the same group (see Fig. 1, for
budget 500D) and the ML models identify similar feature portfolios as useful
for them. The difference between the groups of configurations points that differ-
ent ELA features are utilized (i.e., their importance changes), which points to
the fact that they have different exploration and exploitation capabilities. Such
kind of representation can help further to analyze algorithms’ behaviour and
find more similar configurations.
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Fig. 6. t-SNE visualization of the RF models, trained per each fold, for budget 30D,
100D and 500D. The models are represented as vectors of 64 Shapley values (i.e., one
per each ELA feature).

To see how the most important features differentiate in the two groups we
have shown the most important features for two configurations, DE1 from the
upper group, and DE6 from the lower group. Figure 7 presents the impact each
feature has on the models prediction. A single dot in the plot represents the
ELA feature value for a corresponding data instance from the training data.
Red dots represent high values and blue dots represent low values of the fea-
tures. The location on the on the x-axis represents the magnitude of impact
that the value of the feature has on the prediction of the target variable. If we
average the impacts for all data instances we will get the final importance of a
feature. The features are ordered top-down by their importance averaged over all
data instances for a single fold. Because of the way we evaluated the models, we
can see the features importance for each fold, and also the last subplot presents
feature importance if we average the importance across all folds. We can see
that the results differ across folds. The results indicate that involving different
instances from the problems in the training data results in selecting some differ-
ent features. This means that some features are affected and are not invariant on
the transformations (i.e., shifting and scaling applied to generate the instances
from the same problem. The results confirm what has already been shown about
the invariance of the ELA features with regard to different transformations of
the problem instances [30]. However, we estimate the most important features,
on algorithm level, as averaged feature importance across all five folds. The final
portfolio of most important features is displayed in the last subplots in Figures 7
and 8). If then we compare them, we can see that they use different features.

In Fig. 9 we plot the percentage of overlap between the top 5 features of the
final feature portfolio for each pair of DE configurations for 30D and 500D func-
tion evaluations. Each differently colored line in the plot refers to a percentage
of overlapping of a specific DE configuration with all others. Using it, each con-
figuration has 100% overlapping with it self, since we have an intersection of the
same feature portfolio. It is also visible that the overlapping in 20D is high for
all configurations, while in 500D there is higher overlapping with configurations
from the same group, as indicated from the scatter plot earlier. This indicate that
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Fig. 7. Top 10 features as indicated by the SHAP value for DE6 and budget 500D

Fig. 8. Top 10 features as indicated by the SHAP value for DE1 and budget 500D

in 30D the configurations are still doing exploration and similar problem prop-
erties contribute to the prediction, while in 500D the problem characteristics
that contribute to the exploitation of the DE configuration make the difference
between better the two groups of algorithms behaviour.

Fig. 9. Intersection (%) of top 10 features as indicated from the Shapley values, between
the different algorithms, for budget 30D and 500D
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5 Conclusions

Understanding the behaviour of an stochastic optimization algorithm is still
an open question and in most cases the algorithm is treated as a black-box
system. Even more, it is also worth to explore the impact of different hyper-
parameters within the same algorithm to its end performance. To provide more
details about algorithm behaviour, we proposed an approach based on bench-
mark problem landscape features and supervised machine learning models for
automated algorithm performance prediction, which link the landscape prop-
erties of the problem instances to the algorithm performance. By additionally
explaining the predictions of the learned models using the SHAP method and we
were able to link algorithm performance to the most important landscape prop-
erties of the problem instances for this fixed experimental setup. We evaluated
the approach on the five instances from the 24 COCO benchmark problems in
combination with ten DE configurations by learning a Random Forest regression
model.

From the analysis we can conclude that different landscape features are
important for predicting the performance of the different algorithm configu-
rations. However, for configurations with achieve similar performance on the
benchmark problems, the regression models identify similar feature portfolios as
important for the performance prediction task, (i.e. for algorithms with similar
performance similar representation is discovered).

This kind of representation can lead to improved algorithm selection and
configuration. In the future, a more diverse algorithm portfolio can also be con-
sidered. The methodology can be applied to any set of configurations of the same
algorithm, or even further to a portfolio of different algorithms, to incorporate no
idea of “global” performance. We also now analysed different budgets for single
problem dimension, but extension of the analysis can be done to different prob-
lem dimensions, to analyze patterns that show how features importance behave
when the problem dimension increases.

References

1. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

2. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9(2), 159–195 (2001)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
(1995)

4. Rice, J.R.: The algorithm selection problem. In: Advances in Computers, vol. 15,
pp. 65–118. Elsevier (1976)

5. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

6. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation, pp. 829–836 (2011)



112 A. Nikolikj et al.

7. Derbel, B., Liefooghe, A., Vérel, S., Aguirre, H., Tanaka, K.: New features for
continuous exploratory landscape analysis based on the soo tree. In: Proceedings
of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, pp.
72–86 (2019)

8. Jankovic, A., Doerr, C.: Landscape-aware fixed-budget performance regression and
algorithm selection for modular CMA-ES variants. In: Proceedings of the 2020
Genetic and Evolutionary Computation Conference, pp. 841–849 (2020)

9. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm
selection: survey and perspectives. Evolut. Comput. 27(1), 3–45 (2019)

10. Eftimov, T., Jankovic, A., Popovski, G., Doerr, C., Korošec, P.: Personalizing per-
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landscape-aware optimization performance prediction. In: 2021 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 01–08. IEEE (2021)

18. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking 2010: experimental setup. Ph.D. thesis, INRIA (2010)

19. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO:
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23. Muñoz, M.A., Kirley, M., Halgamuge, S.K.: Exploratory landscape analysis of con-
tinuous space optimization problems using information content. IEEE Trans. Evol.
Comput. 19(1), 74–87 (2014)

https://doi.org/10.1007/978-3-030-72699-7_2
https://doi.org/10.1007/978-3-030-72699-7_38
https://doi.org/10.1007/978-3-030-72699-7_38


Explainable DE Performance 113

24. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures
by means of exploratory landscape analysis. In: Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pp. 265–272 (2015)

25. Kerschke, P., Trautmann, H.: Comprehensive feature-based landscape analysis of
continuous and constrained optimization problems using the R-Package Flacco.
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Abstract. The Transmission Control Protocol (TCP) protocol, i.e., one
of the most used protocols over networks, has a crucial role on the func-
tioning of the Internet. Its performance heavily relies on the management
of the congestion window, which regulates the amount of packets that
can be transmitted on the network. In this paper, we employ Genetic
Programming (GP) for evolving novel congestion policies, encoded as
C++ programs. We optimize the function that manages the size of the
congestion window in a point-to-point WiFi scenario, by using the NS3
simulator. The results show that, in the protocols discovered by GP,
the Additive-Increase-Multiplicative-Decrease principle is exploited dif-
ferently than in traditional protocols, by using a more aggressive win-
dow increasing policy. More importantly, the evolved protocols show an
improvement of the throughput of the network of about 5%.

Keywords: Genetic programming · NS3 · TCP · Network protocols

1 Introduction

In the era of the Internet of Things (IoT), networked systems have become a
crucial part of our everyday lives. Network protocols, which describe the interac-
tions that can occur in a networked system, are traditionally modeled by means
of automata, which require: a) complete knowledge about the environment, and
b) strict assumptions on the interactions that can occur. In this scenario, sev-
eral works proposed formal methods that, given a set of service specifications,
perform automatic synthesis of the network protocols [1–4].

As an alternative to this approach, bio-inspired techniques can be used to
evolve network protocols by simulating their behavior, i.e., without any need for
formalizing all the protocol requirements. So, even though the computational
budget required these approaches is higher than the one needed for formal meth-
ods, they have the advantage that there is no need for a complete knowledge
of the environment. Thus, bio-inspired techniques allow to evolve protocols for
scenarios that are hard to model analytically. Moreover, protocols discovered by
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means of bio-inspired approaches allow to perform continual learning and adap-
tation, which allows for: a) an improvement of the performance of the protocol
over time; and b) adaptation to changing domains.

Among the various protocols at the bases of modern Internet, of the most
important ones is the Transmission Control Protocol (TCP). The key element
of TCP is the so-called congestion avoidance mechanism, which makes use of
a congestion window to avoid overloading the link between the sender and the
receiver. The size of the congestion window is traditionally managed by means of
an Additive-Increase-Multiplicative-Decrease approach. However, it may be pos-
sible to adopt alternative, automatically generated congestion avoidance mech-
anisms.

In this paper, we apply Genetic Programming (GP) [5] for the automatic
synthesis of a congestion window management protocol. We employ the NS3
simulator [6] to evaluate the effectiveness of the protocols evolved in a point-to-
point WiFi scenario. In our numerical experiments, we observe that the evolved
protocols are able to obtain approximately a 5% improvement in performance
with respect to the corresponding baseline protocols.

The rest of the paper is structured as follows. In the next section, we present
the background concepts on TCP. Then we make a brief overview of the related
works in Sect. 3. In Sect. 4, we describe our methods. In Sect. 5, we present our
experimental setup and numerical results. Finally, in Sect. 6 we conclude this
work.

2 Background

The TCP is one of the most used communication protocols together, with the
User Datagram Protocol (UDP) in the Transport Layer of the Internet Proto-
col Suite. TCP is well-known for its reliability rather than speed performance,
indeed it is able to detect the loss of data packets, request missing segments, and
guarantee that all the information is transmitted and delivered to the receiver.
This behavior, however, reduces the available bandwidth; in fact, a potential
issue that may arise by applying these reliability features is the congestion of
the network. Besides the protocol implementation, network congestion can be
caused by many factors, the most common being the low amount of bandwidth
available from the channel and a not properly designed network infrastructure.
TCP has the duty of preventing and mitigating network congestion by using
ad-hoc strategies.

In order to achieve a stable and reliable connection between two hosts, it is
required that the transmission is somewhat controlled at both ends. For instance,
propagation delays due to the network infrastructure could affect negatively the
overall throughput. Congestion control algorithms have been developed to avoid
and recover from this kind of network degradation.

A congested network can quickly result in very low performance. Traditional
congestion control algorithms can be divided into two categories: end-to-end and
network assisted. While in the former only information about the sender and the
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receiver is needed, in the latter metrics regarding the network infrastructure are
used to take decisions [7].

The challenge, for end-to-end algorithms, is to use implicit signals to infer the
congestion status of the network. For instance, for packet loss-based approaches,
the objective is to increase throughput by exploiting the bandwidth. In general,
if the sender does not receive back the acknowledgment from the receiver after
a certain amount of time, the sender may “infer” that the packet is lost. On the
other hand, delay-based approaches are better suited for networks that need high
speed and flexibility [7], but also in this case calculating the exact transmission
delay is tricky; other paths have been researched and some hybrid algorithms
have been proposed such as [8].

3 Related Works

Networks have now evolved into very complex systems, where one specific solu-
tion may be suitable for one network but ineffective in another one. For this
reason, research has focused in solutions that make use of various Artificial Intel-
ligence algorithms, including Evolutionary Computation and Machine Learning,
to improve flexibility and performance of protocols. We briefly discuss some of
these works below.

Two rather comprehensive surveys on the application of bio-inspired tech-
niques to the evolution of network protocols can be found in [9,10]. Most of
the existing approaches focus on offline optimization. For instance, in [11], the
authors employ the Particle Swarm Optimization algorithm for the routing path
selection. In [12], the authors propose the ant routing method for optimizing
routing models. In [13], the authors propose for the first time an EA to evolve
protocols. After this work, several papers have tried to use an EA to evolve a
variety of network protocols: MAC access protocols [14,15], e.g. through Finite
State Machines (FSMs) [16–18]; wireless protocols [19]; aggregation protocols
[20–22]; and protocol adaptors [23].

Another line of work consists in using distributed EAs (including GP) to
evolve some elements of the network, e.g. through distributed GP [24,25] to
evolve the nodes’ parameters and functioning logics of WSNs, or through dis-
tributed optimization algorithms, including EAs and single-solution algorithms,
such as simulated annealing, as in [26], and other optimization paradigms [27–
29].

Finally, online learning approaches have been proposed, which allow the net-
work elements to reconfigure at runtime. Su and Van Der Schaar, in [30], propose
a learning approach in which each node, by observing the others’ behavior, tries
to predict the other nodes’ reaction to its actions. STEM-Net [31] is a method
that equips each node with an EA, that allows to reconfigure each layer of the
node, depending on the current state. In [32], the authors propose an approach
where protocols are formed as a combination of “fraglets”. This concept is sim-
ilar to those presented in [33,34]. Another recent work on online optimization
over networks has been presented in [35].
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Other works have applied Machine Learning to predict congestion signals by
available data. For instance, the Biaz algorithm is able to distinguish a wireless
loss from a congestion loss [36]. Another algorithm is ZigZag [37], which is able
to work with different networks infrastructures. The key advantage over common
congestion control algorithms for wireless networks is the ability to take into con-
sideration multiple parameters. In [38] a Bayesian detector has been developed
and implemented by modifying the TCP New Reno algorithm; the experimental
results reported that the model was able to infer the distribution of the round-
trip time degradation caused by packet reordering and congestion. A critical
point of these models is the difficulty in finding a suitable trade-off between
network performance improvements and network resources consumption.

4 Method

In this work, we employ Genetic Programming (GP) [5] to evolve congestion
control policies in the form of C++ programs. The function set is shown in
Table 1, while the terminal set is shown in Table 2. The parameters used for the
GP algorithm are shown in Table 3.

Note that, besides the selection, crossover, and mutation operators, another
evolutionary operator is introduced: the Stagnation-Driven Extinction Protocol
(SDEP) [39], which controls the extinction of the individuals in the evolutionary
process. It makes use of the following hyperparameters:

– psdep: the extinction probability
– tsdep: threshold used to control the individuals affected by extinction
– ksdep: the number of stagnating generations that, once reached, triggers the

operator

In this work, we employ a modified version of the Targeted extinction approach
proposed in [39], where psdep is modified over time:

pksdep = p0sdep + fsdep(k) (1)

where fsdep(k) is defined as:

fsdep(k) =
10

√
k

1 + e−k
(2)

Moreover, instead of sorting the individuals by fitness, as done in [39], we
employ a threshold-based approach to control the individuals affected by extinc-
tion. This allows us to reduce the computational complexity of the extinction
protocol to a linear complexity. For this purpose, we make use of a threshold
computed as follows:

τ = Felite(1 − tsdep) (3)

where Felite is the fitness of the elite individual, and all the individuals that have
fitness below τ are affected by extinction.



118 A. Carbognin et al.

Table 1. Non-terminals used, their corresponding C++ code, argument types and
return types.

Non-terminal C++ code Argument types Return type

assignment arg1 = arg2; variable, exp body

IfThenElse if ( arg1 ){ arg2 }; condition, body body

lt ( arg1 < arg2 ) condition, condition condition

lte ( arg1 <= arg2 ) condition, condition condition

gt ( arg1 > arg2 ) condition, condition condition

gte ( arg1 > = arg2 ) condition, condition condition

eq ( arg1 == arg2 ) condition, condition condition

neq ( arg1 != arg2 ) condition, condition condition

expression arg1 body body

mul arg 1, ..., arg n body body

sum arg 1, ..., arg n body body

sub arg 1, ..., arg n body body

div arg 1, ..., arg n body body

ReduceCwnd ReduceCwnd(arg 1) body body

CongestionAvoidance TcpLinuxCongestionAvoidance(arg 1, arg 2) body body

Table 2. Terminals used, their corresponding C++ code and type.

Terminal C++ code Type

cnt arg1 body

segmentsAcked arg1 body

tcb->m cWnd arg1 body

tcb->m segmentSize arg1 body

tcb->m ssThresh arg1 body

Table 3. Parameter setting (Koza-style tableau) of the Genetic Programming algo-
rithm.

Parameter Value

Objective Throughput

Function set See Table 1

Terminal set See Table 2

Population size 30

Number of generations 50

Max lines of code 100

Mutation Operator flip, prob: 0.6

Switch branches, prob: 0.3

Switch expression, prob: 0.7

Truncate node, prob: 0.25

Max mutations: 10 mutations

4.1 Code Simplification Procedure

To simplify the evolved trees, we created a procedure that parses the rendered
code and generates a more compact version of it. The procedure performs mul-
tiple tasks that can be summarized as follows:
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– remove empty lines: loops through the code lines and removes the empty one
after applying the function .strip;

– gathering variable names: loop through code lines and detects the declaration
of variable int and float1;

– remove if unused: creates an empty list of used variables, loops through the
code lines to check if they are used in expression or IfThenElse condition
blocks, delete the variables that are not inside the list of the used ones;

– clean empty “IfThenElse”: loop through code lines and removes branches that
are empty;

– simplify expression: loops through the code lines and detects the expression,
if they only contains constant values they are simplified;

– compressing to “for” loop: loops through the code lines and detects the equal
code lines, it then compress them inside a for loop.

5 Experimental Results

To evaluate our method, we employ the NS3 simulator [40,41]. The Network
topology used in our experiments consists of two hosts connected through WiFi
with an application data rate of 100 Mbps, a payload size of 1500 bytes and
simulation time of 5 s. The position of the hosts is assumed to be fixed during
the network simulation. The code we used for our experiments is available at
https://carbogninalberto.github.io/pyGENP/.

Fig. 1. Fitness trend (mean ± std. dev. across 10 runs) of the protocols evolved from
TCP New Reno (blue) vs. the baseline throughput of TCP New Reno (red). (Color
figure online)

1 The variables inside the expression are not detected.

https://carbogninalberto.github.io/pyGENP/
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Fig. 2. Fitness trend (mean ± std. dev. across 10 runs) of the protocols evolved from
TCP Bic (blue) vs. the baseline throughput of TCP Bic (red). (Color figure online)

First of all, from Figs. 1 and 2 we can see that, for both TCP New Reno and
Bic, the evolutionary process quickly outperforms the corresponding baseline
values of throughput. On average, we can see that the evolved protocols achieve
a 5% improvement on the baseline value of throughput in 50 generations. More-
over, we observe that the evolutionary process seems to stabilize faster (and
more robustly across runs) in the case of TCP New Reno with respect to the
case of TCP Bic.

Table 4. Throughput of the best evolved TCP protocols in comparison with different
congestion control algorithms from the literature (average across 10 runs), for different
values of payload size.

Algorithm Payload size (bytes)

250 1500 3000 7500 15000

TcpNewReno (ours) 14.05 ± 0.02 55.24 ± 0.04 53.73 ± 0.49 54.45 ± 0.50 55.30 ± 0.51

TcpNewReno 35.17 ± 0.26 52.38 ± 0.44 53.44 ± 0.46 54.70 ± 0.41 55.20 ± 0.41

TcpBic (ours) 35.44 ± 0.27 54.57 ± 0.02 55.39 ± 0.02 56.58 ± 0.02 57.74 ± 0.03

TcpBic 35.36 ± 0.25 52.54 ± 0.62 53.39 ± 0.54 54.86 ± 0.54 55.25 ± 0.56

TcpHybla 35.28 ± 0.21 52.58 ± 0.97 53.65 ± 0.53 54.65 ± 0.24 55.08 ± 0.30

TcpHighSpeed 35.30 ± 0.16 52.71 ± 0.60 53.45 ± 0.35 54.99 ± 0.67 55.02 ± 0.32

TcpHtcp 35.06 ± 0.26 52.53 ± 0.46 53.67 ± 0.61 55.13 ± 0.52 55.43 ± 0.43

TcpVegas 30.49 ± 3.06 53.89 ± 1.50 55.68 ± 0.17 55.96 ± 0.68 55.36 ± 0.62

TcpScalable 35.22 ± 0.34 52.27 ± 0.46 53.71 ± 0.66 54.69 ± 0.54 55.21 ± 0.45

TcpVeno 35.37 ± 0.24 52.53 ± 0.54 53.68 ± 0.38 54.67 ± 0.66 55.14 ± 0.46

TcpYeah 35.47 ± 0.23 52.58 ± 0.31 53.39 ± 0.82 54.72 ± 0.32 54.88 ± 0.39

TcpIllinois 35.16 ± 0.13 52.50 ± 0.48 53.79 ± 0.77 54.61 ± 0.47 55.08 ± 0.22

TcpWestwood 35.12 ± 0.27 52.77 ± 0.33 53.70 ± 0.50 54.74 ± 0.37 55.18 ± 0.52

TcpWestwoodPlus 35.17 ± 0.18 52.59 ± 0.38 53.78 ± 0.68 54.82 ± 0.37 55.30 ± 0.37

TcpLedbat 35.13 ± 0.16 52.45 ± 0.46 53.81 ± 0.48 54.78 ± 0.50 55.15 ± 0.46
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In Table 4, we report the performance metrics for each algorithm available
in the NS3 simulator. While our protocols have been evolved on a payload of
1500 bytes, we test them with different payload sizes, to understand whether the
resulting protocols are biased towards the payload size used for the evolutionary
process. We set as maximum payload size 15000 bytes, which is approximately
1/4 of the maximum theoretical payload size allowed by TCP (65535 bytes). By
analyzing the results in the table, it seems reasonable to say that the evolved
TCP New Reno protocol appears biased on the payload size used during the
evolutionary process (1500 bytes); indeed, it performs comparably or worse than
the original TCP New Reno for all the other payload sizes. On the other hand,
while the evolved TCP Bic has less performance gain with respect to the original
TCP Bic protocol, on average it performs better for all the payload sizes above
1500 bytes. Of note, the throughput reached by the evolved TCP Bic with a pay-
load size of 15000 bytes is the highest among all the other compared congestion
control protocols.

Listing 1.1 reports the code of one of the best evolved individuals obtained
in the case of TCP New Reno; the solution sets the segmentsAcked variable to
a fixed value of 175. It then calls the ReduceCwnd function that is updating the
CWND as CWND = max(CWND

2 , segmentSize) and then calls the “TcpLin-
uxCongestionAvoidance” function. The interesting part of this protocol is the
fact that this solution always sets the segmentAcked variable to a fixed value,
thus removing the loss feedback that should be used by the TCP New Reno to
signal possible congestion of the network. Moreover, it always reduces the con-
gestion window before executing the congestion avoidance. The logic of this last
code is to increase the congestion window by the segment size if the congestion
window counter is equal or bigger than the number of segment sizes contained
in the CWND, the variable w. Moreover, it always updates the counter by the
segmentsAcked which is a static value. Then, it further updates the CWND if
the congestion window counter is bigger than the variable w. Further investi-
gations must be done to understand if in this case the static segmentsAcked is
behaving if the network is congested; in the evolution environment, the simple
network packets are lost according to the Friis propagation loss model [42,43].
The algorithm may have exploited some specific properties of the simulated sce-
nario; for this reason, future work should also include an analysis of the packet
loss rates.

The solutions obtained were also very different from each other across runs.
For instance, the one reported in Listing 1.2 shows a more complex logic even
though, in terms of throughput, it achieves the same result as the one showed in
Listing 1.1. This might indicate that the metric used to optimized the protocol
may not be able to correctly discriminate solutions of different complexities.

In Listing 1.3, we report one of the best solutions obtained in the case of the
TCP Bic protocol; the evolved logic in this case is a bit more complicated than
the ones found in the case of TCP New Reno.
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1 segmentsAcked = (int)175.271;

2 ReduceCwnd(tcb);

3 TcpLinuxCongestionAvoidance(tcb , segmentsAcked);

Listing 1.1. Best evolved individual for TCP New Reno with payload size
1500 bytes.

1 if (tcb ->m_segmentSize > tcb ->m_ssThresh) {

2 tcb ->m_ssThresh = (int)1.0;

3 ReduceCwnd(tcb);

4 } else {

5 tcb ->m_ssThresh = (int)35.63;

6 tcb ->m_ssThresh = (int)2706.002;

7 }

8 tcb ->m_segmentSize = (int)(85.733 - (56.436) - (tcb ->

m_ssThresh) - (92.142) - (70.956) - (6.654));

9 float hnPsxuBCtPVMMYBm = (float)(36.2 - (8.073) -

(16.935) - (78.417) - (21.996) - (tcb ->

m_segmentSize));

10 if (tcb ->m_segmentSize >= segmentsAcked) {

11 segmentsAcked = (int)(hnPsxuBCtPVMMYBm * (68.195) *

(tcb ->m_cWnd) * (tcb ->m_ssThresh) * (9.219) *

(96.226) * (85.611) * (31.971) * (18.886));

12 ReduceCwnd(tcb);

13 } else {

14 segmentsAcked = (int)(72.07 - (tcb ->m_ssThresh) - (

segmentsAcked));

15 }

16 TcpLinuxCongestionAvoidance(tcb , segmentsAcked);

17 if (tcb ->m_cWnd <= hnPsxuBCtPVMMYBm ) {

18 hnPsxuBCtPVMMYBm = (float)(92.554 - (74.251) -

(81.969) - (27.667) - (segmentsAcked) - (54.344) -

(64.616) - (12.799));

19 segmentsAcked = SlowStart(tcb , segmentsAcked);

20 tcb ->m_cWnd = (int)(41.965 + (69.396) + (26.746) +

(30.182) + (tcb ->m_ssThresh) + (12.114) + (tcb ->

m_ssThresh));

21 } else {

22 hnPsxuBCtPVMMYBm = (float)(tcb ->m_segmentSize *

3643.109);

23 tcb ->m_cWnd = (int) -34.453;

24 }

25

26 for (int i = 0; i < 2; i++) {

27 TcpLinuxCongestionAvoidance(tcb , segmentsAcked);

28 }

Listing 1.2. Another best evolved individual for TCP New Reno with
payload size 1500 bytes.
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1 if (cnt != segmentsAcked) {

2 tcb ->m_segmentSize = (int)(13.704 * (53.117) *

(74.527) * (segmentsAcked) * (61.69) * (17.898));

3 if (m_cWndCnt > cnt) {

4 tcb ->m_cWnd += tcb ->m_segmentSize;

5 m_cWndCnt = 0;

6 }

7 } else {

8 tcb ->m_segmentSize = (int) -352.836;

9 tcb ->m_ssThresh = (int)1.133;

10 }

11 int MkycqeZLOKenojJc = (int)1.549;

12 cnt = (int)(94.326 * (89.844) * (7.283) * (47.081) * (

tcb ->m_ssThresh) * (94.293) * (segmentsAcked) *

(72.366) * (25.407));

13 ReduceCwnd(tcb);

14 if (tcb ->m_ssThresh > cnt) {

15 tcb ->m_cWnd = (int)(segmentsAcked + (68.779) +

(83.102) + (85.846) + (cnt) + (9.069));

16 if (m_cWndCnt > cnt) {

17 tcb ->m_cWnd += tcb ->m_segmentSize;

18 m_cWndCnt = 0;

19 }

20 MkycqeZLOKenojJc = (int)(23.82 - (79.771) -

(14.523) - (27.086) - (65.009) - (0.513) - (49.232)

- (tcb ->m_ssThresh));

21 } else {

22 tcb ->m_cWnd = (int)(52.023 - (70.074) - (19.636) -

(tcb ->m_ssThresh) - (47.417) - (55.579) - (

MkycqeZLOKenojJc ));

23 }

24 ReduceCwnd(tcb);

Listing 1.3. Best evolved individual for TCP Bic with payload size 1500
bytes.

6 Conclusions and Future Work

Networks have become ubiquitous in our everyday lives. To increase the effi-
ciency of such networks, it is crucial to efficiently manage the size of the TCP
congestion window depending on the scenario at hand. In this paper, we propose
a bio-inspired approach to the optimization of congestion control algorithms for
a point-to-point WiFi scenario. As shown in Sect. 5, we were able to evolve pro-
tocols that increase the performance up to about 5% with respect to the baseline
protocols from the literature. This result indicates that the proposed approach
is a promising alternative for optimal protocol design.

Future work may focus, among the other things, on: the modification of
the fitness evaluation process, to take into account different payload sizes; the
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evolution of protocols that are able to work well with different packet loss models;
the extension of the function set used in GP, in order to include loops and
operators with arity greater than 2; the study of the GP parameter effect on the
resulting protocols, e.g. through the irace [44] or the ParamILS [45] packages.
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Abstract. Parallel Surrogate-Assisted Evolutionary Algorithms (P-
SAEAs) are based on surrogate-informed reproduction operators to pro-
pose new candidates to solve computationally expensive optimization
problems. Differently, Parallel Surrogate-Driven Algorithms (P-SDAs)
rely on the optimization of a surrogate-informed metric of promising-
ness to acquire new solutions. The former are promoted to deal with
moderately computationally expensive problems while the latter are put
forward on very costly problems. This paper investigates the design of
hybrid strategies combining the acquisition processes of both P-SAEAs
and P-SDAs to retain the best of both categories of methods. The objec-
tive is to reach robustness with respect to the computational budgets
and parallel scalability.

1 Introduction

To solve black-box expensive optimization problems where the objective function
is computationally costly to evaluate, Parallel Surrogate-Based Optimization
Algorithms (P-SBOAs) are built by leveraging parallel computing and machine
learning. Two categories of P-SBOAs arise: Parallel Surrogate-Assisted Evolu-
tionary Algorithms (P-SAEAs) and Parallel Surrogate-Driven Algorithms (P-
SDAs). Both families of algorithms differ by their Acquisition Process (AP), the
mechanism in charge of suggesting new promising candidate solutions. On the
one hand, the AP from P-SDAs aims at quickly reaching good solutions, conse-
quently providing a strong improvement that faints after few cycles. On the other
hand, the AP from P-SAEAs is more exploratory, thus making the improvement
slighter but more durable. In a previous study, we observed that P-SAEAs are
generally recommended in the context of moderately expensive problems and
that P-SDAs are usually preferred to deal with very expensive problems [1].
Moderately expensive problems are characterized by a budget greater than 1000
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Mernik et al. (Eds.): BIOMA 2022, LNCS 13627, pp. 127–141, 2022.
https://doi.org/10.1007/978-3-031-21094-5_10
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simulations or a simulation lasting less than 5 min. In this article, we present
a hybrid method retaining the best of both P-SAEAs and P-SDAs. A strategy
previously proposed in [2] already relies on hybridization of APs but shows a
serious limitation regarding parallel scalability. The challenge we address in this
study is to come up with a strategy that is robust with respect to the compu-
tational budget allocated to the search and that scales with multiple computing
cores.

For a moderately expensive objective function, the computational budget
may allow a meaningful number of expensive evaluations. Consequently, the
database of exactly evaluated solutions may grow significantly enough for the
surrogate training to become non-negligible in terms of computations. In this
situation, it is not convenient to express the computational budget only as a
limited number of objective function evaluations as it is commonly done in the
field of surrogate-based optimization [3–7]. Indeed, the cost related to surrogate
training would be hidden. Instead, we chose to define the budget as a limited
duration on a limited number of computing cores.

Benefiting from numerous computing cores raises concerns to the perfor-
mance of P-SBOAs. The AP emphasized in [8] outputs q = 4 new candidates
per iteration, consequently triggering q = 4 parallel evaluations. The low value
attributed to q points the difficulty of conserving a relevant degree of diversity
when numerous new candidates are sampled at once, thus preventing to effi-
ciently leverage more computing cores. In [2], the proposed Surrogate Model
Based Optimization + Evolutionary Algorithm (SMBO+EA) demonstrates a
superiority compared to state-of-the-art P-SDAs for a number of computing cores
ncores < 10. However, this hybrid method performs similarly to a surrogate-free
parallel evolutionary algorithm for ncores � 10.

The main contribution of this paper is the HSAP strategy (Hybrid Successive
Acquisition Processes) that employs successively two APs during the search, thus
providing robustness with respect to the computational budgets and efficient use
of multiple computing cores. The numerical experiments consider an objective
function based on a black-box simulator of Covid-19 transmission. The related
moderately expensive real-world optimization problem consists in finding the
best contact reduction strategy to minimize the number of deaths while attaining
herd immunity.

The paper is organized as follows. In Sect. 2 a background on surrogate-
based optimization is proposed and the Covid-19-related problem is presented
in Sect. 3. The new algorithms based on hybrid APs are dissected in Sect. 4
and are compared with state-of-the-art methods through numerical experiments
whose outcomes are reported in Sect. 5. Finally, conclusions and future research
directions are pointed out in Sect. 6.

2 Background on Surrogate-Based Optimization

The surrogate-model is based on a machine learning algorithm for interpolation
or regression in order to imitate the expensive objective function. The two models



Hybrid Acquisition Processes in Surrogate-Based Optimization 129

considered in this study are a Gaussian Process with a Radial Basis Function
kernel (GP RBF) and a Bayesian Neural Network approximated by Monte-Carlo
Dropout (BNN MCD).

The general idea of the GP RBF is to model the influence of one point x on
the prediction at another point x′ by the kernel function defined by:

k(x,x′) = σ exp
(

−||x − x′||2
2s2

)
(1)

where σ and s are hyper-parameters called the scale and the length scale respec-
tively. By considering the observations as random variables and by applying the
Bayes theorem, the GP RBF provides a prediction f̂(x′) and a predictive stan-
dard deviation ŝ(x′) at an unknown point x′. The operation of training a GP is
cubic to the number of training samples. More thorough details about GPs are
given in [9].

The main principle behind BNN MCD is to sample nsub sub-networks f̂i from
a global artificial neural network and to use the nsub predictions to compute an
average prediction and a standard deviation:

f̂(x′) =
1

nsub

nsub∑
i=1

f̂i(x′) ŝ(x′) =

√√√√ 1
nsub

nsub∑
i=1

(f̂i(x′) − f̂(x′))2 (2)

The sub-networks are sampled by randomly deactivating neurons in the global
network. It has been proven in [10] that this technique amounts to perform an
approximated Bayesian training. The operation of training a BNN MCD is linear
to the number of training samples.

The two categories of P-SBOAs, namely P-SAEAs and P-SDAs, differ by the
coupling between the surrogate-model and the optimizer [1]. In P-SAEAs, the
surrogate is attached to the Evolutionary Algorithm (EA) by means of an Evo-
lution Control (EC) that defines the promisingness of new candidate solutions.
The EA carries out the search by evolving a population of candidates through
the stages of selection, reproduction and replacement. The surrogate is intro-
duced at any stage to replace the expensive objective function [11]. In P-SDAs,
a metric of promisingness called the Infill Criterion (IC) is optimized to locate
new potential candidates [12]. The IC and the EC are based on the predictive
objective value (f̂) and/or predictive standard deviation (ŝ) delivered by the
surrogate. The difference between the two concepts of IC and EC is thin. The
EC is defined as a comparison operator while the IC is a real-valued metric. It
is straightforward to convert an IC into an EC and a dedicated EA can be set
up to optimize an IC corresponding to a given EC (by basing the selection and
replacement on the EC) [13].

To build the new hybrid acquisition processes, we rely on two actual
surrogate-optimizer couplings. The first one is denoted SaaF (Surrogate as a
Filter) and comes from a P-SAEA [11]. The corresponding AP consists in gener-
ating multiple new solutions by reproduction and to filter them through the EC
to retain the q most promising candidates. The second coupling is derived from
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a P-SDA and is denoted cl-mean (Constant Liar with Mean) [14]. In cl-mean, to
generate q new candidates, the IC is optimized q times and the surrogate model
is updated between each optimization. The surrogate update is based on the new
proposed candidates associated to the mean of the objective values observed in
the database of already simulated points. As soon as the q new candidates are
available, they are simulated in parallel.

The question of what is a promising solution is answered by defining the
promisingness. In this work, we focus on two ensembles of ECs: the voting com-
mittee of ECs and the dynamic inclusive ensemble of ECs. The voting committee
already presented in [15], consists in making the ECs vote for the candidates. A
solution receives one vote if one EC considers it as promising and the candidates
gathering the more votes are the most promising ones. The actual committee
highlighted here is denoted com-spf and embeds three ECs, the minimization
of f̂ (favoring exploitation), the maximization of ŝ (promoting exploration) and
a third EC based on the Pareto dominance between exploitation and explo-
ration similar to the one exhibited in [16]. The dynamic inclusive ensemble of
EC denoted dyn-df-incl comprises two ECs, the maximization of the distance d
to the database of known solutions (favoring exploration) and the minimization
of f̂ . The contribution of each EC to constitute the batch of the q new candidates
varies during the search. Indeed, the search is decomposed into 5 equal periods
and the proportions of the contribution for (max d, min f̂) are consecutively
(100%, 0%), (75%, 25%), (50%, 50%), (25%, 75%) and (0%, 100%). In other
terms, exploration is favored at the beginning of the search and exploitation is
reinforced at latter stages.

3 COVID-19 Contact Reduction Problem

At the beginning of the Covid-19 crisis, when no vaccines were available, govern-
ments of the affected countries adopted different strategies to contain the spread
of the virus. While some countries imposed lockdown and physical distancing,
others, bet on reaching herd immunity by natural transmission. This approach
has not proven to be effective during the first two years of the epidemic [17].
However, at the time, studying the possible consequences of this strategy was
of importance. Recently, the new Omicron variant of the coronavirus and the
deployment of vaccines revive the debate about herd immunity [18].

The problem consists in optimizing the contact reduction strategy to mini-
mize the number of Covid-19-related deaths in Spain while reaching herd immu-
nity. The Spanish population is divided into 16 age-categories and the decision
variables represent the contact mitigation factors to apply to each category. For
a decision vector x ∈ [0, 1]16, f1(x) represents the simulated number of deaths
after the considered period and f2(x) ∈ {0, 1} is a simulated boolean variable
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indicating whether herd immunity has been reached. The optimization problem
consists in finding x∗ such that:

x∗ = arg min
x∈[0,1]16 s.t. f2(x)=1

f1(x) (3)

According to [19], handling constrained problems with EAs can be realized
by different means. For our problem, it is not known how to generate feasible
candidates so designing repairing operators or specific reproduction operators
is impossible. Rejecting infeasible individuals would prevent to keep knowledge
about the infeasible region location, besides, this technique works only if the
search space is convex, that is probably not the case. Adding the amount of infea-
sibility as an additional objective would increase the complexity of the problem
because the new objective would be boolean. Finally, we opt for the penaliza-
tion of the infeasible candidates to handle the constraint of the Covid-19 contact
reduction problem. The penalty value is set to the approximate Spanish popu-
lation size (46,000,000) as it is the only a priori known upper bound for f1. A
higher value would more likely prevent the search to visit the boundary region
between the feasible and infeasible search spaces.

Therefore, the problem is re-formulated as an unconstrained optimization
problem by applying a penalty to the objective f1 when herd immunity is not
reached. The re-formulated problem consists thus in finding x∗ such that:

x∗ = arg min
x∈[0,1]16

f̃(x) (4)

where:

f̃(x) =

{
f1(x) if f2(x) = 1
f1(x) + 46, 000, 000 if f2(x) = 0

(5)

The impact of the contact reduction strategy is simulated thanks to the
AuTuMN simulator available at https://github.com/monash-emu/AuTuMN/
[20]. This simulator is developed by the Department of Public Health and Preven-
tive Medicine at Monash University in Melbourne, Australia, to study epidemic
transmission. Both quantities f1 and f2 are obtained via resolution of differen-
tial equations governing the flow of individuals in a compartmental model where
the population is divided according to the disease state (Susceptible, Exposed,
Infectious, Recovered) [21]. The graph of f1 is expected to be multi-modal
with flat regions according to the prior knowledge issued by the developers of
AuTuMN. The simulation takes place in three phases. First, the past dynamic of
the epidemic is analysed by calibrating uncertain parameters according to past
information. Second, the contact reduction strategy is applied during a period of
12 months. After the 12-month period, mobility restrictions are lifted and herd
immunity is recognized if incidence still decreases after two weeks while assum-
ing persistent immunity for recovered individuals [22]. The degrees of contact

https://github.com/monash-emu/AuTuMN/
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between individuals are integrated into the model through the contact matrix
C provided by [23] where the populations are divided into 16 age-categories.
Ci,j is the average number of contacts per day that an individual of age-group
j makes with individuals of age-group i. The decision variables representing
the mitigation factors are applied to matrix C such that Ci,j is replaced by
xi.xj .Ci,j . A decision variable xi = 0 impedes any contact to individuals from
age-category i while setting xi = 1 lets the contact rates unchanged compared
to the pre-Covid-19 era.

4 Hybrid Acquisition Processes

The two categories of P-SBOAs, namely P-SAEAs and P-SDAs, are attractive
for different budgets or landscapes as shown in [1]. In this section, we attempt
to retain the best of both categories by investigating the design of hybrid APs.
The generation of new candidates is envisioned via both IC optimization and
reproduction operators.

Two APs are combined into two novel optimization algorithms. The first AP
is a cl-mean with the voting committee EC com-spf and the GP RBF surrogate
model. The second AP is inspired by P-SAEA, where a BNN MCD surrogate is
only used as a filter to discard unpromising candidates (SaaF). Both APs are
the most adequate for each framework on the Covid-19 problem as identified
by a preliminary grid-search considering multiple surrogate models (Kriging,
Bayesian Linear Regressor, GP RBF, BNN MCD), definitions of promisingness
(Expected Improvement, Lower Confidence Bound etc.) and surrogate-optimizer
couplings (notably Kriging Believer, cl-max and cl-min) [13].

The first new hybrid method is named HCAP for “Hybrid Concurrent Acqui-
sition Process” and is presented in Algorithm 1. The two aforementioned APs
are executed concurrently at each cycle to propose new candidates that are sub-
sequently simulated in parallel. The algorithm starts by a search space sampling
via LHS and the evaluation of the initial candidates (line 1). The surrogates are
created and the population is initialized (lines 2 to 4). At the beginning of a
cycle, the first AP generates q1 = 9 new promising candidates (line 6). Thence,
parents are selected from the population and reproduced to create a batch Pc

of nchld = 288 children (lines 7 and 8). From Pc, the q2 = 63 more promising
candidates are retained and the remaining ndisc = 225 candidates are discarded
(line 9). A total of q1 + q2 = 72 new candidates are simulated in parallel at each
cycle (lines 10 and 11). Thereafter, the surrogates are updated (lines 13 and 14)
and a new population is formed by elitist replacement (line 15).
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The analysis led in [1] indicates that P-SDAs are relevant for few objective
function evaluations and P-SAEAs to deal with moderately expensive problems.
This conclusion appeals to design another hybrid method that would execute
successively an AP based on IC optimization and an AP relying on evolutionary
computations. The novel method is referred to as HSAP for “Hybrid Successive
Acquisition Processes” and is detailed in Algorithm 2. The first stage consists
of running 6 cycles of q-EGO cl-mean with GP RBF and com-spf for q = 18
thus corresponding to 108 simulations (lines 2 to 11). Afterwards, P-SAEA is run
with reproduction operators informed by BNN MCD through the dyn-df-incl EC
until the budget is totally consumed (lines 12 to 24). The population is initialized
by taking a special care of balancing between exploration and exploitation. To
foster exploitation, the 10 best candidates identified so far are included in the
initial population (line 12). To boost exploration, a K-Means algorithm [24,
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25] partitions the set of decision vectors from the database into 62 groups and
one randomly-selected solution per cluster is added to the initial population
(line 13).

To test the new HCAP and HSAP, the SMBO+EA from [2] is reproduced
by considering ncores = 18 as allowed by the computational budget further
described in the next section. Moreover, the GP RBF surrogate model replaces
the Kriging model originally employed in [2] as this latter has not been relevant
in the preliminary grid search. In SMBO+EA, a cycle consists in running three
APs in parallel. The first AP, executed on one computing core, maximizes the
Expected Improvement IC [12] to produce a new candidate. The second AP,
also running on one computing core, minimizes f̂ to output one new solution.
The third AP generates q = 16 new candidates via reproduction of 16 parents
extracted from the current population. The 18 new candidates are simulated in
parallel on the 18 cores. After the simulation step, the database, the surrogate
and the population are updated and the cycle is repeated until the computational
budget is wasted.

In SMBO+EA, no EC is used in the AP based on the reproduction operators
whereas a dynamic ensemble of ECs helps to discard unpromising candidates in
HCAP and HSAP. Relying on an EC at this step gives more opportunity to
the reproduction operators to generate good candidates. The objective pointed
out in [2] for future works is to improve the performance of the method when
ncores increases. Indeed, in the experiments reported in [2], SMBO+EA performs
similarly to P-EA (without surrogate) for ncores � 15. In HCAP and HSAP, the
use of two surrogates from different types aims at enhancing diversification in
the batch of new samples and improving the overall performance of the hybrid
methods. In SMBO+EA, the three APs are performed in parallel while the two
APs from HCAP are performed sequentially thus giving a slight advantage to
SMBO+EA regarding idleness of computing cores.

5 Experiments

The experimental protocol consists in repeating the execution of the algorithms
ten independent times to compute the statistics reflecting the performance of
the stochastic methods. The ten initial databases are constituted via LHS. The
experiments are supported by a parallel machine made of 18 computing cores
provided in an Intel Xeon Gold 5220 CPU. The parallel machine is part of the
Grid5000, a French infrastructure dedicated to parallel and distributed comput-
ing and enabled by several universities [26]. A computational budget of 30 min
on 18 computing cores is granted for each search.
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The GP RBF, implemented through GPyTorch [27], is trained on a
controlled-size set in HCAP whereas the whole database is used in HSAP and
SMBO+EA. The BNN MCD is built using the Keras library [28] and is always
updated thanks to all the simulations performed so far. Training BNN MCD lasts
around 7 s on sets of 72 or 256 samples while the GP RBF training varies from
40 to 100 s on non-normalized data. Normalizing the data limits the training of
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GP RBF to 1 s due to an early stopping mechanism implemented in GPyTorch.
In addition to the three hybrid methods presented in the previous section, the
parallel evolutionary algorithm (P-EA) without surrogate is considered. Besides,
SaaF with BNN MCD as surrogate and dyn-df-incl as EC, and cl-mean with
GP RBF as surrogate and com-spf as IC are also included into the comparison.
The pySBO platform is used as the software framework for implementation and
experimentation [29]. The calibration of the algorithms is given in Table 1. Two
versions of cl-mean are considered: the one where the surrogate is trained on the
complete training set (CTS) made of all the solutions already simulated during
the search, and the other one on the restricted training set (RTS) of the last
72 simulations. In cl-mean, q = 18 simulations are performed per cycle and the
optimizer is an EA where both the selection and replacement are based on the
criterion defined by com-spf. For this specific EA, the population size and the
number of generations are set by grid-search to 50 and 100 respectively and the
remaining parameters are set as in Table 1 for P-EA.

Figure 1 shows the distribution of the 10 best objective values obtained at
the end of the search for each strategies. The corresponding ranking according
to the average final objective value is displayed in Table 2. It can be observed
that the new hybrid method HSAP significantly outperforms all its competi-
tors. The average, median and variance of the results are all improved when
employing HSAP as shown in Fig. 1. The concurrent combination of APs pro-
posed by HCAP is also a reliable strategy as, it outperforms all the non-hybrid
methods and SMBO+EA as displayed in Fig. 1 and Table 2. It can be noticed
that SMBO+EA behaves as expected as it produces results similar to the P-EA
without surrogate.

The convergence profiles are displayed in Fig. 2. Expectedly, HSAP and the
P-SDAs exhibit a similar very steep curve for less than 108 simulations. After
the AP switch in HSAP, the improvement is slowed down but a continuous
progress is noted until around 600 simulations where the convergence is almost
reached. Figure 3 displays a zoom that highlights the benefit from using HSAP
over cl-mean with GP RBF trained on a reduced training set (RTS) from 300
simulations. Firstly, HSAP allows one to perform more simulations than cl-mean
as indicates the length of the curves in Fig. 2. Secondly, the use of the surrogate
to inform the reproduction operators enables a continuous improvement as soon
as the IC-based AP has reached steady state. An attractive enhancement of
HSAP would be to automatically detect the flatness in the convergence curve
and trigger the AP switch. Such a mechanism is not trivial to design, partic-
ularly because user-defined parameters must be avoided. However, exploiting
the gradient of the curve is a potential lead that we plan to investigate in the
future. HCAP outperforms SMBO+EA and SaaF in Fig. 2 while SaaF overtakes
SMBO+EA from 260 simulations. The bad performances of P-EA stressed by
Fig. 2 demonstrate again the profit brought by surrogate models for both mod-
erately and very expensive problems.
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Table 1. Calibration of the algorithms.

Symbol Name Value Calibration method

Calibration of BNN MCD

nsub Number of sub-networks 5 Grid search

nhl Number of fully-connected 1 Grid search

Hidden layers

mu Number of units per layer 1024 Grid search

λdecay Weight decay coefficient 10−1 Grid search

l Normal standard deviation 10−2 Grid search

For weights initialization

pdrop Dropout probability 0.1 Grid search

h() Activation function Relu [30]

ξ Adam initial learning rate 0.001 [30]

Calibration of P-EA

npop Population size 72 Grid search

pc Cross-over probability 0.9 Grid search

ηc Cross-over distribution index 10 Set from [5]

pm Mutation probability 1
d Set from [31]

ηm Mutation distribution index 50 Set from [5]

nt Tournament size 2 Set from [32]

Calibration of SaaF

nchld Children per cycle 288 Grid search

q Simulations per cycle 72 = 0.25 ∗ nchld [33,34]

ndisc Discardings per cycle 216 nchld − q

(δES , nES) BNN MCD early stopping (10−8, 32) Grid search

2-fold cross-validation Yes Grid search

Fig. 1. Distribution of the best objective values from the 10 runs of the experiment.
Averaged values are depicted by red squares, median values by red dashes and variance
information is given by the length of the boxes. (Color figure online)
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Table 2. Ranking of the best strategies according to the final objective value averaged
over 10 runs. Ordering according to ascending average from top to bottom.

Strategy Average

HSAP 4,178

HCAP 6,487

SaaF 6,854

cl-mean (RTS) 7,824

cl-mean (CTS) 8,897

P-EA 21,483

SMBO+EA 24,262

The length of the curves in Fig. 2 yields indications about the computa-
tional cost of the methods. Among the hybrid methods, SMBO+EA is the more
computationally costly as the surrogate is trained on the entire database and
IC optimizations are run at each cycle. By reducing the training set size as in
HCAP, more simulations are enabled and by reducing the computational effort
dedicated to IC optimization as in HSAP, the number of simulations gets closer
to the one of SaaF. A possible way to relieve the computational cost of HCAP
would be to execute both APs in parallel.

Fig. 2. Convergence profile in terms of best objective values averaged over the 10
repetitions of the experiment.
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Fig. 3. Convergence profile in terms of best objective values averaged over the 10 runs
of the experiment.

6 Conclusion

In this paper, the hybridization of IC optimization and informed reproduction
operators is investigated to propose new candidate solutions in P-SBOAs with
the aim of bringing robustness with respect to the computational budgets. The
Hybrid Successive Acquisition Processes (HSAP) we propose outperforms state-
of-the-art methods on a simulation-based problem of Covid-19 contact reduction
with a significant number of computing cores. The new strategy consists in
relying on IC optimizations during the early stages of the search and in employing
informed reproduction operators at the latter stages. For tight computational
budgets, only the AP inherited from P-SDAs is employed thus providing fast
improvement. For larger budgets, the AP extracted from P-SAEAs is added,
therefore further enhancing the search quality. The use of ensembles of ECs favors
diversification in the set of newly proposed candidates consequently allowing the
efficient use of multiple computing cores. Future works will consider to extend
the numerical comparisons by further increasing the number of computing cores
and by tackling a larger amount of benchmark problems. Moreover, the HSAP
will be improved by designing a mechanism to automatically switch from one
AP to another.
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Abstract. Achieving at least some level of explainability requires com-
plex analyses for many machine learning systems, such as common black-
box models. We recently proposed a new rule-based learning system,
SupRB, to construct compact, interpretable and transparent models by
utilizing separate optimizers for the model selection tasks concerning rule
discovery and rule set composition. This allows users to specifically tai-
lor their model structure to fulfil use-case specific explainability require-
ments. From an optimization perspective, this allows us to define clearer
goals and we find that—in contrast to many state of the art systems—this
allows us to keep rule fitnesses independent. In this paper we investigate
this system’s performance thoroughly on a set of regression problems
and compare it against XCSF, a prominent rule-based learning system.
We find the overall results of SupRB’s evaluation comparable to XCSF’s
while allowing easier control of model structure and showing a substan-
tially smaller sensitivity to random seeds and data splits. This increased
control can aid in subsequently providing explanations for both training
and final structure of the model.

Keywords: Rule-based learning · Learning classifier systems ·
Evolutionary machine learning · Interpretable models · Explainable AI

1 Introduction

The applicability of decision making agents utilizing machine learning methods
in real-world scenarios depends not only on the accuracy of the models, but
equally on the degree to which explanations of the decisions can be provided
to the human stakeholders. For example, in an industrial setting, experienced
machine operators often rather rely on their own knowledge instead of on—in
their eyes—unsubstantiated recommendations of the model going against that
knowledge. This problem is exacerbated as it is inevitable that the model is not
perfect in every detail, especially when the learning task is complex and the
available training data limited.
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To still make use of the advantages of recommendations made by digital
agents, increasing the trust of stakeholders in the predictions is essential. It
includes providing explanations of the processes involved to produce these, as
well as of the entire model. This can get to a point where easily explainable
models are preferred over better performance with higher complexity. Rule-based
learners such as Learning Classifier Systems (LCSs) are well suited in these
settings as they facilitate extensive explanations [10].

LCSs [25] are inherently transparent and interpretable rule-based learners
that make use of a finite set of if-then rules to compose their models. Each rule
contains a simpler, more comprehensible submodel, related to specific areas of
the feature space. The conditions under which rules apply are optimized during
the training process, commonly by an evolutionary algorithm. There are two
main styles of LCSs: Pittsburgh-style systems, which evolve a population of
sets of rules with combined fitnesses (one per set), and Michigan-style systems,
which adapt a single set of rules over time with individual fitnesses (one per rule).
Therefore, optimization by the evolutionary algorithm is performed differently in
the two styles, but always aimed at finding an “accurate and maximally general”
[23] set of rules. Explainability requisites are commonly not directly included as
optimization targets for the much more frequent Michigan-style systems, though
it is to some extent represented under the concept of generality. In Pittsburgh-
style systems, the evolutionary algorithm does typically include error and rule
set size as targets but it has to optimize the positioning and also the selection
of rules. Therefore, each iteration is comprised of several changes to rules in
the set which leads to common situations where beneficial changes to a rule
are not reflected in a corresponding change to the fitness of the set and might
therefore be discarded for the next generation. While the suboptimal positioning
of rules might not even decrease the system’s performance, it is, however, a
problem when explanations concerning the rule conditions or the training process
should be given. Michigan-style systems, on the other hand, often generate and
keep a large set of both good and suboptimal rules, in total, far more than
required for the given problem. Therefore, they need additional procedures after
training, especially compaction techniques, to reduce the population to the most
important rules and therefore to enhance explainability [16,20].

The first description of a new LCS algorithm, in which the optimization
of rule conditions is separated from the composition of rules to form a problem
solution, was provided in [11]. This way, rule fitnesses are kept independent from
other influences than their direct changes, increasing the locality. It also improves
the explainability of these quality parameters. Additionally, explainability is
improved through the direct control over population sizes and whether good rules
should be optimized to be more specific or more general. In this paper, we extend
the initial examinations of SupRB, as described in Sect. 3, by evaluating against
a modern version of XCSF [19,27], one of the most developed and advanced
LCSs, on a variety of different regression datasets (cf. Sect. 4). We find that, as
intended, SupRB performs competitively based on hypothesis testing on error
distributions as well as Bayesian comparison [4] across datasets, while producing
more compact models directly.
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2 Related Work

The XCS Classifier System (XCS) is a prominent representative of LCSs. Its
many derivatives and extensions are capable of solving all three major learning
tasks [25]. In the context of this paper, the most notable extensions are those
concerned with applicability to real-valued problem domains and supervised
function approximation. In terms of real-valued problem domains, this means
replacing binary matching function with interval-based ones [26]. For supervised
function approximation, XCSF was designed [27]. It replaces the constant pre-
dicted payoff with a linear function. To further enhance the performance, more
complex variants were introduced to replace linear models and interval-based
matching functions [6,13], however, at the cost of overall model transparency.

LCSs are commonly considered as transparent or interpretable by design, as
are other rule-based learning systems, and naturally relate to human behaviour.
In contrast, other systems require extensive post-hoc methods, such as visuali-
sation or model transformation, to reach explainability. Even though LCS can
be seen as inherently transparent, there can be factors that reduce these capa-
bilities. They may arise through the encodings used, the number of rules in
general and the complexity introduced by using complex matching functions or
submodels in the individual rules [3].

Controlling these limitations in LCSs is typically done by design but can
incorporate designated post-hoc methods. Post-hoc methods, especially visual-
isation techniques for classifiers, can improve the interpretability of the model
[15,17,24]. However, they have to be devised or adapted to the specific needs
of the problem at hand and the model itself, which requires time and expertise.
Controlling transparency by design can therefore be beneficial in some cases.
While some factors, for example problem-dependent complex variables/features,
restrict interpretability and can hardly be influenced, other factors can com-
pensate for these issues. This means the design must consider understandable
matching functions and predictive submodels, without foregoing an adequate
predictive power.

Another aspect strongly related to the interpretability of LCS models is the
size of the resulting rule sets, e.g. smaller sets facilitate direct visual inspection
and require less subsequent analysis. Controlling this size is handled differently in
Pittsburgh-style and Michigan-style systems. Pittsburgh-style LCSs utilize the
fitness function of the optimization algorithm, which often incorporates different
objectives, i.e. accuracy and number of rules. A prominent example is GAssist
[2], where accuracy and minimum description length form a combined objective
and an additional penalty is given if the rule set size gets too small. Michigan-
style systems, on the other hand, do not control the rule set size by means of the
fitness function, as large populations are often beneficial for the training process.
During the training, subsumption can be performed to merge two rules where
one fully encompasses the other. Compaction is a post-hoc method to reduce the
size of the rule set after training by removing redundant rules without decreasing
the prediction accuracy [16,28]. However, most compaction methods are purely
designed for classification.
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3 The Supervised Rule-Based Learning System

We recently proposed [11] a new type of LCS with interchanging phases of rule
discovery and solution composition, the Supervised Rule-based Learning System
(SupRB). The first phase optimizes rule conditions independently of other rules,
discovering a diverse pool of well proportioned rules. Subsequently, in the sec-
ond phase, another optimization process selects a subset of all available rules to
compose a good (accurate yet small) solution to the learning task. In contrast
to other LCSs, we thus separate the model selection objectives of finding mul-
tiple well positioned rules (with a tradeoff between local prediction error and
matched volume) and selecting a set of these rules for our final model. That
allows us to predict arbitrary inputs with minimal error while the set of rules
is as small as possible to keep transparency and interpretability high. As it can
be difficult to determine how many rules would need to be generated before a
good solution can be composed from them, the two phases are alternated until
some termination criterion, e.g. a certain number of iterations, is reached (cf.
Algorithm 1). Note that, in contrast to Pittsburgh-style systems, rules added
to the pool remain unchanged and will not be removed throughout the training
process. An advantage of alternating phases is the ability to steer subsequent
rule discoveries towards exploring regions where no or ill-placed rules are found,
based on information from the solution composition phase.

Algorithm 1. SupRB’s main loop
1: pool ← ∅
2: elitist ← ∅
3: for i ← 1, n iter do
4: pool ← pool ∪ discover rules(elitist)
5: elitist ← compose solution(pool, elitist)
6: end for
7: return elitist

Insights into decisions are a central aspect of SupRB, therefore, its model is
kept as simple and interpretable as possible [11]:

1. Rules’ conditions use an interval based matching: A rule k applies for example
x iff xi ∈ [lk,i, uk,i]∀i with l being the lower and u the upper bounds.

2. Rules’ submodels fk(x) are linear. They are fit using linear least squares with
a l2-norm regularization (Ridge Regression) on the subsample matched by
the respective rule.

3. When mixing multiple rules to make a prediction, a rule’s experience (the
number of examples matched during training and therefore included in fitting
the submodel) and in-sample error are used in a weighted sum.

In general, a large variety of methods can be used to discover new rules,
but for this paper, we utilize an evolution strategy (ES). The overall process
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Algorithm 2. SupRB’s Rule Discovery
1: procedure discover rules(elitist)
2: rules ← ∅
3: for i ← 1, n rules do � (1, λ)-ES for each new rule
4: candidate, proponent ← init rule(elitist)
5: repeat
6: children ← ∅
7: for k ← 1, λ do
8: children ← children ∪mutate(proponent)
9: end for

10: proponent ← child with highest fitness
11: if candidate’s fitness < proponent’s fitness then
12: candidate ← proponent
13: j ← 0
14: else
15: j ← j + 1
16: end if
17: until j = δ
18: rules ← rules ∪ candidate
19: end for
20: return rules
21: end procedure

is displayed in Algorithm 2. While during a rule discovery phase typically mul-
tiple rules are discovered and added, this happens independently (and can be
parallelized) in multiple (1, λ)-ES runs. The initial candidate and parent rule
is placed around a roulette-wheel selected training example, assigning higher
probabilities to examples whose prediction showed a high in-sample error in the
current (intermediate) solution (or elitist). The non-adaptive mutation opera-
tor samples a halfnormal distribution twice per dimension to move the parent’s
upper and lower bounds further from the center by the respective values. This is
repeated to create λ children. From these, the fittest individual is selected based
on its in-sample error and the matched feature space volume as the new parent.
If it displays a higher fitness than the candidate it becomes the new candidate.
Specifically, the fitness is calculated as

F (o1, o2) =
(1 + α2) · o1 · o2

α2 · o1 + o2
, (1)

with
o1 = PACC = exp(−MSE · β) , (2)

and
o2 = V =

∏

i

ui − li
minx∈X xi − maxx∈X xi

. (3)

The base form (cf. Eq. (1)) was adapted from [29], where it was combining two
objectives in a feature selection context. The Pseudo-Accuracy (PACC), Eq. (2),
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squashes the Mean Squared Error (MSE) of a rule’s prediction into a (0, 1] range,
while the volume share V ∈ [0, 1] (cf. Eq. 3) of its bounds is used as a generality
measure. The parameter β controls the slope of the PACC and α weighs the
importance of o1 against o2. We tested multiple values for β and found β = 2 to
be a suitable default. For α, 0.05 can be used in many problems (hyperparameter
tuning for the datasets in this paper selected it in 3 out of 4 cases) but, ultimately,
the value should always depend on the model size requirements, which are task
dependent. If the candidate has not changed for δ generations, the optimization
process is stopped and this specific elitist is added to the pool. This process of
discovering a new rule and adding it to the pool of rules is repeated until the
set number of rules has been found. We want to stress that this optimizer is not
meant to find a single globally optimal rule as in typical optimization problems,
but rather find optimally placed rules so that for all inputs a prediction can be
made that is more accurate than a trivial model, i.e. simply returning the mean
of all data. Therefore, independent evolution is advantageous.

Algorithm 3. SupRB’s Solution Composition
1: procedure compose solution(pool, elitist)
2: population ← elitist
3: for i ← 1, pop size do
4: population ← population ∪ init solution()
5: end for
6: for i ← 1, generations do
7: elitists ← select elitists(population)
8: parents ← tournament selection(population)
9: children ← crossover(parents) � 90% probability n-point

10: population ← mutate(children) � probabilistic bitflip
11: population ← population ∪ elitists
12: end for
13: return best solution from population
14: end procedure

In the solution composition phase, a genetic algorithm (GA) selects a subset
of rules from the pool to form a new solution. As with the rule discovery, many
optimizers could be used and a few have already been tested in [30], finding that
the GA is a suitable choice. Solutions are represented as bit strings, signalling
whether a rule from the pool is part of the solution. The GA uses tournament
selection to select groups of two solutions and combines two parents by using
n-point crossover with a default crossover probability of 90%. Then, mutation is
applied to the children, flipping each bit with a probability determined by the
mutation rate. The children and some of the fittest parents (elitism) form the
new population. The number of elitists depends on the population size of the
GA, but in our experiments, we found 5 or 6 to work best with a population
size of 32. Solution fitness is also based on Eq. (1). Here, the solution’s in-sample
mean squared error and its complexity, i.e. the number of rules selected, are used
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as first and second objective, respectively. Note that each individual in the GA
always corresponds to a subset of the pool. Rules that are not part of the pool
can not be part of a solution candidate and rules remain unchanged by the GA’s
operations.

SupRB is conceptualised and designed as a regressor. This is reflected in
both the description above and the evaluation in the following section. However,
we want to propose how the system could be adapted easily towards solving
classification problems: The linear submodels would need to be replaced with
an appropriate classifier, either simply a constant model, logistic regression or a
more complex model if the explainability requirements allowed that. Addition-
ally, the fitness functions would need to use accuracy (or an appropriate scoring
for imbalanced data) instead of PACC and MSE.

4 Evaluation

For our evaluation of the proposed system, we compare SupRB to a recent
XCSF1 [19,27] with hyperrectangular conditions and linear submodels (with
recursive least squares updates [14]), as they closely correspond to the conditions
and submodels used in SupRB. We acknowledge that some better performing
conditions, e.g. hyperellipsoids [7], have been proposed for XCSF, however, we
consider them less interpretable in high dimensional space for the average user.

4.1 Experiment Design

SupRB is implemented2 in Python 3.9, adhering to scikit-learn [18] conven-
tions. Input features are transformed into the range [−1, 1], while the target is
standardized. Both transformations are reversible but improve SupRB’s training
process as they help preventing rules to be placed in regions where no sample
could be matched and remove the need to tune error coefficients in fitness cal-
culations, respectively. Based on our assumptions about the number of rules
needed, 32 cycles of alternating rule discovery and solution composition are per-
formed, generating four rules in each cycle for a total of 128 rules. For the ES we
selected a λ of 20. Additionally, the GA is configured to perform 32 iterations
with a population size of 32. To tune some of the more sensitive parameters, we
performed a hyperparameter search using a Tree-structured Parzen Estimator in
the Optuna framework [1] that optimizes average solution fitness on 4-fold cross
validation. We tuned datasets independently for 256 iterations per tuning pro-
cess. For XCSF we followed the same process, selecting typical default values3

[19] and tuning the remaining parameters independently on the four datasets
using the same setup as before. The final evaluation, for which we report results
in Sect. 4.2, uses 8-split Monte Carlo cross-validation, each with 25 % of samples

1 https://github.com/rpreen/xcsf, https://doi.org/10.5281/zenodo.5806708.
2 https://github.com/heidmic/suprb, https://doi.org/10.5281/zenodo.6460701.
3 https://github.com/rpreen/xcsf/wiki/Python-Library-Usage.

https://github.com/rpreen/xcsf
https://doi.org/10.5281/zenodo.5806708
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https://doi.org/10.5281/zenodo.6460701
https://github.com/rpreen/xcsf/wiki/Python-Library-Usage
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reserved as a validation set. Each learning algorithm is evaluated with 8 different
random seeds for each 8-split cross-validation, resulting in a total of 64 runs.

We evaluate on four datasets part of the UCI Machine Learning Reposi-
tory [9]. The Combined Cycle Power Plant (CCPP) [12,22] dataset shows an
almost linear relation between features and targets and can be acceptably accu-
rately predicted using a single rule. Airfoil Self-Noise (ASN) [5] and Concrete
Strength (CS) [31] are both highly non-linear and will likely need more rules
to predict the target sufficiently. The CS dataset has more input features than
ASN but is easier to predict overall. Energy Efficiency Cooling (EEC) [21] is
another rather linear dataset, but has a much higher input features to samples
ratio compared to CCPP. It should similarly be possible to model it using only
few rules.

4.2 Results

In our experiments we find that XCSF and SupRB achieve comparable results.
Table 1 presents the dataset-specific performance in detail. All entries are cal-
culated on 64 runs per dataset (cf. Sect. 4.1). As both systems were trained for
standardized targets, we denote the results for the mean (across runs) mean
squared errors (MSE) and their standard deviation (STD) as MSEσ and STDσ,
respectively. Standardized targets allow better comparison between the datasets
as results are on a more similar scale. Additionally, as many real world datasets
are normally distributed, this should lighten the need to carefully hand tune the
balance between solution complexity and error. Note that predictions of both
models can always be retransformed into the original domain. Subsequently,
MSEorig references the mean MSE in units of the original dataset-specific tar-
get domain. Although this column is less helpful for cross dataset performance
interpretations, it allows comparison to other works on the same data. We found
that, on two datasets (CCPP and ASN), XCSF shows a better performance,
albeit only slightly for CCPP, that can be confirmed through hypothesis testing
(Wilcoxon signed-rank test using a confidence level of 5%). Contrastingly, for
the CS dataset, the hypothesis could not be rejected. Thus, although SupRB
shows a slightly lower mean MSE, this is not statistically significant. For the
EEC dataset SupRB outperforms XCSF.

We found that SupRB’s runs had a similar (to each other) performance much
more consistently than XCSF’s. This is shown by STDσ (cf. Table 1) and specif-
ically illustrated in Fig. 1, which shows the distribution of test errors across all
64 runs. For three of the four datasets, XCSF shows some strong outliers that
go against its remaining performances. Additionally, the majority of runs is also
further distributed around the mean and median values. We assume that this is
largely due to the stochastic iterative nature of training in XCSF. For the CCPP
dataset (Fig. 1a) no outliers were produced by XCSF and overall performance
is quite similar across runs. This is especially noticeable when comparing the
distribution to those on the other datasets. In fact, the runs are so similar (even
across models) that it is hard to make any analysis on this scale. Although, XCSF
slightly outperformed SupRB on average on CCPP, as confirmed by statistical
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Fig. 1. Distribution of runs’ errors on an equal scale.

testing, we can assume that this advantage is likely not practically significant.
From a graphical perspective (cf. Fig. 1c), SupRB seems to produce more desir-
able models on CS, even if the hypothesis testing remained ambiguous. On EEC,
XCSF achieves a slightly better median MSE performance (MedianXCSF: 0.014;
MedianSupRB: 0.026), however, its mean MSE is poorer due to badly performing
runs. Regardless, the overall performance can be viewed as rather close, although
both sets of runs are clearly not following the same distribution. As SupRB’s
and XCSF’s models were trained on the same random seeds and cross-validation
splits, we can conclude that SupRB is overall more reliable even if not necessarily
better.

For SupRB we directly control the size (number of rules; complexity) of the
global solution via the corresponding fitness function used in the GA. Table 2
shows the complexities of the 64 runs per dataset. Note that the highest theo-
retical complexity is 128, as we did only add 128 rules to the pool. We find that,
although theoretically a single rule is able to predict CCPP well, the optimizer
prefers to use at least two but at most four rules, achieving slightly better errors
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Table 1. Overview of the experimental test data results of 64 runs per
dataset rounded to four decimals. MSEorig and MSEσ give the means of the
mean squared errors (MSE) in the dataset’s original or a standardised target space,
respectively. Similarly, STDσ displays the standard deviation of MSEs in standardised
space. Highlighted in bold are the models where a 5% significance Wilcoxon signed-
rank test rejected the null hypothesis of equivalent distributions and the mean was
better.

CCPP ASN

MSEorig MSEσ STDσ MSEorig MSEσ STDσ

XCSF 0.8745 0.0512 0.0028 0.7930 0.1150 0.1195

SupRB 1.1433 0.0669 0.0027 1.3079 0.1896 0.0199

CS EEC

MSEorig MSEσ STDσ MSEorig MSEσ STDσ

XCSF 2.8291 0.1694 0.1043 0.3660 0.0385 0.1032

SupRB 2.3779 0.1424 0.0199 0.2776 0.0292 0.0107

Table 2. Overview of the solution complexities (number of rules in the solu-
tion proposed by SupRB or the final macro-classifier count in an XCSF population,
respectively) across 64 runs per dataset.

SupRB XCSF

CCPP ASN CS EEC CCPP ASN CS EEC

Mean 2.65 26.42 22.31 12.81 2253.28 962.03 562.81 1028.78

St. dev 0.62 2.47 2.60 1.71 24.70 9.17 11.73 14.90

Median 3 27 22 13 2250 962 562 1026

Min 2 19 17 9 2202 934 530 994

Max 4 30 30 17 2301 980 593 1068

than with a singular linear model. As expected, the solutions to the two highly
non-linear datasets (ASN and CS) do feature considerably more rules. EEC
again was solved with fewer rules, speaking to its more linear nature, although
with more than CCPP, for which a linear solution exists. Standard deviations
of complexities increase as the mean increases and the median stays close to the
mean.

XCSF seems to have fallen into a cover-delete-cycle where rules did not stay
part of the population for long. Covering is a rule generation mechanism that
creates a new rule whenever there were too few matching rules. The deletion
mechanism removes rules when the population is too full, as there exists a
hyperparameter-imposed maximum population size. In our tuning, we did tune
both the number of training steps and the maximum population size (among
the many other parameters of XCSF) and find that post-training populations
are at or around the maximum population size. XCSF’s hyperparameter tuning
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opted for much larger populations than the typical rule of thumb of using ten
times as many rules as would be expected (from domain knowledge or prior mod-
elling experience) for a good problem solution [23]. Additionally, upon deeper
inspection, we found that the rules were typically introduced late in the training
process, however, the system error did not change in a meaningful manner long
before that point. Note that we did utilize subsumption in the EA. This mecha-
nism prevents the addition of a newly produced rule to the population when it
is fully engulfed by a parent rule and instead increases the parents numerosity
parameter. A rule with numerosity n counts as n rules with numerosity 1 towards
the maximum population size limit. Subsumption thus theoretically decreases
the actual number of classifiers in our population. However, in our experiments
the cover-delete-cycle seems to have rendered this mechanism useless.

It is reasonably possible that SupRB’s performance would improve in some
cases if the pressure to evolve smaller rule sets was lower. However, as explain-
ability suffers with large rule sets, we think that the presented solutions strike
an acceptable balance. Afterall, XCSF’s solutions were substantially larger even
after applying a simple compaction technique of removing rules with an experi-
ence of 0 from the final population. This compaction method removed on average
about 10% of rules from the run’s populations. Table 2 reports the complexity
results after compaction. However, we acknowledge that a variety of compaction
techniques exists for classification problems [16] that could in some cases poten-
tially be adjusted for the use within regression tasks. Likely, SupRB and XCSF
find themselves at different points on the Pareto front between error and com-
plexity. However, in SupRB we do not need to rely on additional post-processing
but can solve this optimization problem directly and, importantly, balance the
tradeoff of prediction error and rule set complexity against user needs, whereas
compaction mechanisms are typically designed to decrease complexity only in a
way as to not increase the LCS’s system error [16].

Beyond dataset-specific performances, we would like to find a more general
answer to the question whether the newly proposed SupRB does perform simi-
larly to the well established XCSF. This would indicate that we can find a good
LCS model even without the niching mechanisms employed by XCSF’s rule fit-
ness assignment. To find an initial answer based on the performed experiments
we use a Bayesian model comparison approach [4] using a hierarchical model [8]
that jointly analyses the cross-validation results across multiple random seeds
and all four datasets. We assume a region of practical equivalence of 0.01·σdataset.

p(SupRB � XCSF) ≈ 63.4%
p(SupRB ≡ XCSF) ≈ 8.5%
p(SupRB � XCSF) ≈ 28.1%

where:

– p(SupRB � XCSF) denotes the probability that SupRB performs worse
(achieving a higher MSE on test data),

– p(SupRB ≡ XCSF) denotes the probability that both systems achieve prac-
tically equivalent results and
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– p(SupRB � XCSF) denotes the probability that SupRB performs better
(achieving a lower MSE on test data).

From these results we clearly can not make definitive assessments that XCSF
is stronger than SupRB. While it might outperform SupRB in less than two
thirds of cases, it also will be outperformed in almost a third of cases. [4] suggest
thresholds of 0.95, 0.9 or 0.8 for probabilities to make automated decisions. The
specific value needs to be chosen according to the given context. We did not
perform the same analysis for the rule set sizes as the results are quite clear with
SupRB being the system very likely producing much smaller rule sets. Overall,
we can conclude that no clear decision can be made and that the newly developed
(and to be improved in the future) SupRB should be considered an equal to the
well established XCSF.

Table 3. Exemplary rule generated by SupRB on CS dataset. The target is the
concrete compressive strength. The original space intervals denote the area matched by
the rule in terms of the original variable scales, while the intervals in feature spaces are
scaled into [−1, 1] and help perceiving rule generality at a glance. Coefficients denote
the weight vector used for the linear model.

Original Space Feature Space σ

Input variable Interval Interval Coefficient

Cement [kg/m3] [104.72, 516.78] [−0.99, 0.89] 2.38

Blast Furnace Slag [kg/m3] [0, 359.40] [−1.00, 1.00] 2.29

Fly Ash [kg/m3] [13.45, 200] [−0.87, 1.00] 0.68

Water [kg/m3] [122.64, 244.80] [−0.99, 0.96] −1.26

Superplasticizer [kg/m3] [6.02, 24.80] [−0.63, 0.54] −0.67

Coarse Aggregate [kg/m3] [950.16, 1145] [−0.13, 1.00] 0.71

Fine Aggregate [kg/m3] [756.14, 992.60] [−0.19, 1.00] 0.60

Age [days] [18.36, 365] [−0.90, 1.00] 2.07

interceptσ = 3.9160

In-sample MSEorig 1.5310 In-sample MSEσ 0.0917 Experience 84

Table 3 presents a rule trained for the CS dataset. It has an experience (num-
ber of matched examples during training) of 84 and matched another 31 examples
during testing. It is part of a model consisting of 23 rules with experiences of
7 to 240 with a mean experience of 54.17 ± 55.63. The rules were, thus, either
rather general or rather specific with this rule being on the more general side.
Upon closer inspection, for 5 of the 8 dimensions of CS the rule matches most
of the available inputs (being maximally general on the “Blast Furnace Slag”
input variable). For the transformed input space (feature space) that is scaled
to an interval of [−1, 1] this can easily be seen without any knowledge about
the datasets structure, although it is likely that users of the model will have
enough domain knowledge to be able to derive this directly from the intervals
in the original space. It can also be assumed that these users will generally pre-
fer to inspect the rule in that representation. High concentrations of “Water”
and “Superplasticizer” have negative effects on the compressive strength of the
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concrete for the aforementioned value ranges, while higher concentrations of
“Cement”, “Blash Furnace Slag” and “Age” of the mixture positively influence
its compressive strength. The other three input variables have positive but less
pronounced effects. Overall, rule inspection offers some critical insights into the
decision making process and can be done fairly easily based on the rule design
and the low number of rules per solution.

5 Conclusion

In this paper, we expanded the view on the Supervised Rule-based Learning Sys-
tem (SupRB) with an optimization perspective. We highlighted the advantages
of individual rule fitnesses compared to the fitness-sharing approaches typical for
other Learning Classifier Systems (LCSs) and discussed our approach to perform
LCS model selection using two separated optimizers from that perspective.

To evaluate the system we compared it to XCSF, a well known LCS with
a long research history, on four real world regression datasets with different
dimensionalities and problem complexities. As one of the greatest advantages of
LCS compared to other learning systems is their inherent interpretability and
transparency, we limited our study to the use of hyperrectangular conditions
and linear models for both systems. After hyperparameter searches for the more
sensitive parameters (256 evaluations with 4-fold cross validation), we performed
a total of 64 (8 random seeds and 8-fold cross validation with 25% test data)
runs of each system on every dataset. We found that, in general, performance
is relatively similar. While XCSF showed a statistically better mean test error
on two datasets, it was outperformed on one and no statistically significant
decision could be made on the fourth dataset. We performed a Bayesian model
comparison approach using a hierarchical model and found that no clearly better
model can be determined on errors. Solution sizes of SupRB were better than
XCSF’s even when applying some form of compaction. Additionally, SupRB was
more consistent in its performance across runs. Thus, we conclude that, for now
and with future research pending, both systems produce similarly performing
models.
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Abstract. Test Task Scheduling Problems (TTSPs) are a type of scheduling prob-
lems that are very important in many big and complicated test systems in automo-
tive industries where the reliability of the final product is fundamentally dependent
on those tests while the time, workload, and agility of the production is dependent
on the optimal scheduling. Scheduling problems are highly multimodal problems
with high number of local and global optimum solutions. Availability of different
promising solutions provide more freedom for engineering and management deci-
sions based on other criteria which cannot be modeled easily in a design software.
In this studywe reviewed important researches in the field ofmultimodal optimiza-
tion in general and specifically for scheduling problems and then proposed amajor
modification on Football GameAlgorithm (FGA). Thenwe appliedmodified FGA
for solving some practical TTSPs using a new proposed encoding scheme called
Normalized Factor Random Key (NF-RK). The experimental study shows that
the modified FGA in combination with NF-RK is promising in solving continu-
ous multimodal TTSPs and shows a notable outperformance in comparison to the
best-known reported results in the literature.

Keywords: Test task scheduling problem · Multimodal optimization · Niching
algorithm · Encoding scheme

1 Introduction

The Test Task Scheduling Problem (TTSP) is a type of combinatorial problems that are
very important in many big and complicated test systems such as automotive industries
where the reliability of the final product is fundamentally dependent on those tests
while the time, workload, and agility of the production is dependent on the optimal
scheduling. In TTSP not only the permutation of the taskmatters but there are potentially
one or more schemes of allocation of the tasks on the available instruments. In TTSPs
when a particular scheme of a given task requires the employment of more than one
instruments, those instruments must be applied on the task concurrently. Obviously
when an instrument is assigned to a task for a period of time it cannot be used for
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any other tasks simultaneously. These characteristics of the TTSPs could be considered
as a constraint on other general form of scheduling problems like Flexible Job Shop
Scheduling Problems (FJSPs) and Unrelated Parallel Machines Scheduling Problems
(UPMSPs). The most common objectives in the TTSPs are maximum test completion
time (makespan) and the mean workload of the instruments [1, 2].

The number of the researches on the optimization of the TTSPs are growing but still
not that diverse, especially when it comes to the multimodal optimization of the TTSPs
it is even less. But as it is mentioned before there are other scheduling problems in the
literature that share some similarities with TTSPs like JSSPs and PMSPs [2, 3], so the
methos and strategies in those studies can be exchanged with minor modifications [3].
Therefore, we briefly review some of those studies other than TTSP as well, specially
wherever multimodal optimization is the target.

Perez et al. [4, 5] represents one of the very few studies on JSSP with a focus on
identifying multiple solutions. JSSPs are typically multi-modal, presenting an ideal case
for applying niching methods. Their studies suggest that not only do niching methods
help to locate multiple good solutions, but also to preserve the diversity more effec-
tively than employing a standard single-optimum seeking genetic algorithm. In another
recent study Pan Zou et al. [6] proposed a new algorithm by combining the k-means
clustering algorithm and genetic algorithm (GA) for multimodal optimization of JSSPs.
In the proposed algorithm, the k-means clustering algorithm is first utilized to cluster the
individuals of every generation into different clusters based on some machine sequence-
related features under the assumption that different global optima will have different
features. Next, the adapted genetic operators are applied to the individuals belonging
within the same cluster with the aim of independently searching for global optima within
each cluster.

In Resource constrained multi-project scheduling problems (RCMPSP), multiple
projects must be carried out and completed using a common pool of scarce resources.
The difficulty is that one has to prioritize each project’s tasks to optimize an objective
function without violating both intra-project precedence constraints and inter-project
resource constraints. A decision maker can benefit from choosing between different
good scheduling solutions, instead of being limited to only one. In addition, it is also
much faster than rescheduling. The deterministic crowding and clearing methods were
adopted in [7] to find multiple optimal scheduling solutions for this problem.

One of the latest studies in this field carried out by Lu Hui et al. [8], in which they
proposed a new strategy called Multi Center Variable Scale (MCVS) search algorithm
based on the analysis and summary of the characteristics of Combinatorial problems to
solve single andmulti-objective problems. It is also noted thatMCVS is not an algorithm
for solving particular multimodal problems; it only utilizes the multimodal property to
design an optimization strategy. MCVS mainly focuses on the searching center and
the searching neighborhood. The multimodality of the scheduling problems also has
been discussed and shown statistically [8]. In another study it is suggested that using
local search algorithms which are functionally dependent on the relative smoothness
of the search landscape are not suitable to be employed for the scheduling problems
[9]. In order to estimate the continuity or the simplicity of the search landscape of the
scheduling problems Fitness Distance Coefficient (FDC) has been adopted in [1]. FDC
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seems a good measure in continuous problems but for combinatorial problems it can
also be used by employing Hamming or Edit distances. Also in the same study, a vector
group encoding technique based on the characteristic of the problem is presented [1]. A
Multi-strategy Fusion niching method has been proposed and used for solving several
scheduling problems including Test Task Scheduling Problems (TTSP), Flexible Job-
Shop Scheduling Problems (FJSP), and Parallel Machine Scheduling Problem (PMSP)
[10].

In the rest of the paper and in Sect. 2, TTSP is mathematically described. The classic
and modified FGA are reviewed in Sect. 3. The new proposed encoding scheme called
normalized factor random key is explained in Sect. 4. In Sect. 5 the algorithm has been
applied to solve 4 instances of TTSPs followed by a comparison discussion in Sect. 6.
Finally, some of the possible future research directions are drawn in Sect. 7.

2 Problem Description and Mathematical Modeling

Themathematical representationof theTTSP is adopted from the research [2, 11] andwill
be as the following. For TTSP there is a set of n tasks T = {

tj
}n
j=1 that has to be tested by

some instruments from the set of m resources R = {ri}mi=1. The start time, the finish time
and spend time of the task tj on the instrument ri are respectively represented by Sij , C

i
j ,

andPi
j , whereC

i
j = Sij +Pi

j . A taskmay havemultiple available schemesWj =
{
wk
j

}kj
k=1

,

where kj is the number of available schemes for task tj. Therefore, K = {
kj

}n
j=1 is the

set of the number of the schemes for all the tasks. Pk
j = maxPi

j ,where ri ∈ wk
j represent

the test time of tj when adopting the scheme wk
j . A sample information of a TTSP is

given in Table 1 with 4 tasks and 4 resources [3].

Table 1. 4 tasks and 4 instruments TTSP sample.

T Wj wk
j Pkj T Wj wk

j Pkj

t1 w1
1 r1r2 5 t3 w1

3 r4 2

w2
1 r2r4 3 t4 w1

4 r1r3 4

t2 w1
2 r1 4 w2

4 r2r4 3

w2
1 r3 1 w3

4 r2r3 7

As it is mentioned in the introduction, the most popular objectives for TTSPs are the
makespan and the mean workload of the instruments. For single objective optimization
we use the makespan function which equals the maximum completion time of all tasks.
Ck
j = maxri∈wk

j
Ci
j represents the completion time of task tj when adopting the scheme

wk
j . Therefore, the makespan of all tasks is defined as the following.

f (x) = maxCk
j for1 ≤ k ≤ kj, 1 ≤ j ≤ n (1)
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3 The Proposed Modified Football Game Algorithm (mFGA)

FGA is a population based global optimization algorithm capable to spot and converge to
multiple global optimums simultaneously. Imitating a football team’s teamwork during
a game for finding the best positions to score goals under team’s coach supervision
makes the FGA able to balance diversification in a way that not only satisfies a better
coverage over the search space but to maintain equally good distant positions and exhibit
a final distributed convergence to multiple global solutions [12]. After its introduction
in 2016, FGA has been applied into different studies. Researchers in [13] have adapted
FGA for an asymmetric traveling salesman problem. FGA has also been implemented
in capacitated vehicle routing problems [14]. A modified version of FGA has also been
proposed and applied to the static state estimation problem of real-time measurement
of power systems along with the design of an optimal hybrid active power filters [15].
Moreover, FGA has been classified and its performance has been studied alongside other
algorithms as socialmimic optimization algorithms [16], sports inspired algorithms [17],
and soccer-inspired metaheuristics [18, 19]. So, first a brief review of the classic FGA
is presented and then the details of modification on this algorithm are explained.

3.1 Classic FGA

After initial formation of the players in the pitch (initialization), every player moves
around their last position biased toward the ball owner. Ball is passed between the
players. Players in better position have more chance to take the ball. The new positions
of the players depend on the simple randomwalks and a movement toward the ball when
coaching effect is not applied is computed in Eq. 2.

xi(t) = xi(t − 1) + α(t)ε + β(xball(t) − xi(t − 1)) (2)

where ε ∈ [−1, 1] andβ ∈ [0, 1] are randomnumbers drawn from a uniform distribution
and α(t) > 0 is the decreasing step size which should be relative to the scales of the
problem of interest.

Except from general movements of the players, there are two specific positioning
strategies that can be applied by the coach to increase the chance of finding global
optimumusing local search. First attacking strategy inwhich the team’s coachmemorizes
the best positions during the game and uses them to guide players and pushing them
forward. Secondly, in the substitution strategy, coach can change adefender in lowquality
position with a fresh striker in the best position to increase the chance of scoring.Weaker
players will be replaced with other players around the nearest best position according to
the coach’s memory. After applying these strategies, the new position of the players who
are located beyond the limits of the distance and fitness will be determined by using a
random walk around the nearest best elite solutions in the coach’s memory with current
step size α(t) according to Eq. 4.

xnew = xnearest−elite + α(t)ε (3)

where ε ∈ [−1, 1]. .. The coach’s memory (CM) is actually the memory of the algorithm
to save the best positions (elites) and their corresponding fitness values. These positions
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will later be used as the base vectors (Xnearest−elite) to locate fresh substitutes or attackers.
The size of the coach memory will be chosen as a fraction of population size as an
algorithm’s parameters. The following table shows the analogy between a real football
game and the simulated FGA. The pseudo-code of the algorithm can be found in [12].

Table 2. Terminology in FGA

Football Game Football Game Algorithm

1 Football Players Population members

2 Football pitch Search space

3 Positioning Random walk

4 Attacking Hyper radius penalty

5 Substitution Fitness value penalty

6 Scoring a goal Convergence

7 Coach supervision Elitism and the memory of the algorithm

8 Ball position Randomness enhancement

3.2 Modified FGA

In the modified version of FGA (mFGA), the main focus is on the improvement of the
algorithm’s multimodal search capability by addressing basic challenges in MMOPs. In
classic FGA, Coach’s Memory (CM) is used as the memory of the algorithm to save
the locations of the best positions during the search process. This actually comprises
the algorithm’s elitism in which by a greedy approach the best CM-size (a fraction of
the whole population) positions found during the search process would be stored. This
memory also saves the CM-size best solutions found after the termination criteria is met.
So, the final result may consist of a number of distinct solutions less than or equal to the
size of CM (CM-size).

In the modified FGA on the other hand, a distant CM strategy has been used to
increase the stability of the found solutions up to the end of the run. For this purpose, a
decreasing pairwise Euclidean distance metric between the CM positions is considered.
It simply means that there would be a decreasing limitation for the distance between
every 2 positions in theCM list. Using evolutionary algorithm analogy and in comparison
to the greedy elitism in classic FGA we call this mechanism the Phenotypic Distributed
Elitism (PDE). It helps the algorithm to have a better coverage over the search space in
the exploration phase and consequently demonstrates an effective implicit basin identifi-
cation in terms of the performance of the algorithm. This distance limit resembles niche
radius in other methods however its functionality is different. For example in species
conserving genetic algorithm (SCGA) [20] a constant niche radius is employed which
distinguish species seeds in the population and allocate other individuals to each seed
based on the same niche radius. But in the PDE the niche radius is decreasing and it
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does not have any effect on the population distribution in the next iteration. Also, Fig. 1
illustrates the difference between PDE and dynamic archive elitism in dADE [21]. For
the one-dimensional Equal Maxima problem, considering the niche radius R and ε fit-
ness threshold, dADE would accept only sample “A” into the archive and rejects all the
other samples while in PDE if CM-size is at least 4 then samples “A”, “B”, “C”, and
D"” will be recorded in the CM as the elite samples. However, sample “E” is rejected
by both methods.

Fig. 1. Initial population for 1-D Equal Maxima problem, with R as niche radius for both dADE
and PDE and ε fitness threshold for dADE

Using this mechanism allows the population to spend more searching budget on the
search of promising basins with smaller size or irregular shape that are harder to be
discovered in comparison to big size and smooth shape basins. Moreover, we eliminate
both ball owner effect that increases instability in maintaining the found solutions and
attacking strategy which elevate local search capability of FGA. Hence, the next position
of the players will be reduced to a Brownian motion around their last position for general
movement or around a randomly chosen CM position for fresh substitutes.

General Movement:

xi(t) = xi(t − 1) + α(t)N (0, ID); ∀i = 1, 2, . . . ,Np − Ns (4)

Substitute Players:

xi(t) = CM j
position + α(t)N (0, ID); j∈R[1,Nt],∀i = (Np − Ns) + 1, . . . ,Np (5)

where Np is the number of the population, D is the problem’s dimension, Nt is the
number of tactics or CMsizewhileNs is the number of substitutions in each iteration, and
N (0, ID) is a D dimensional random vector drawn from the standard normal distribution.
Also, j is a random index drawn from the set of Nt CM samples by fitness proportionate
selection method.
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Although modified FGA uses a distance metric in the way of modifying the simple
FGA, this parameter is set to be a multiple of the step-size and is adaptively reduced
with the step-size reduction rate as the optimization iterations go on. Therefore, for the
initialization of the search process after uniform sampling of initial population using
rejection sampling, the step-size for both general movement and substitution of the
players will be determined by Eq. 7.

α0 =
(
D

2

�(D/2)

π
D
2

Va

Np

) 1
D

/
√
D (6)

α(t) = α0(θ)t (7)

where α0 is the initial step-size, resulted from dividing the available volume Va by the
population size Np, considering the hyper-sphere volume formula [22] due to the fact
that the local distribution of the samples follows the multivariate normal distribution,
whereas the available volume Va, without any restriction, can be found using following
formula:

Va =
∏D

i=1
(UBi − LBi) (8)

where UB and LB representing upper and lower bound of each dimension respectively.
As is can be seen in the Eq. 5, the players’ positions are sampled using a multivariate
normal distribution with mean CM j

position and covariance matrix �= α(t)2ID.

We can summarize the main modifications on FGA in the following features.

– Initialization using uniform rejection sampling
– Eliminating attacking strategy and the ball owner attraction vector
– Phenotypic Distributed Elitism (PDE) for CM
– Substitution using fitness proportionate selection of the base vector from CM

4 Normalized Factor Random Key Encoding Scheme

In order to adopt real parameter optimization algorithms researcher will choose between
2 general approaches. First those algorithms that are modified based on the discrete
nature of the solution vectors as discrete version of algorithms [23, 24], and second those
strategies that are equipped with a proper encoding scheme to make it possible to use
the original algorithm directly in the encoded continuous domain. The disadvantages of
the first group roots back to the change in the well-established mutation or random walk
operators by discrete operators. Hence, the same performance as the original algorithm is
not expected from themodifiedversionof the algorithms. It is also reported in [25] that the
computational overhead is often higher too. In the second approach however, employing
a proper encoding scheme can resolve many existing issues with the other methods
such as complexity, degradation of the original efficiency, computational overhead and
generation of infeasible solutions [25, 26]. One of the most popular and simple but
efficient encoding schemes that has been employed by many real-valued metaheuristic
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algorithms to solve permutation problems is called RandomKey encoding scheme (RK)
[27, 28]. In this study we take the second approach and introduce Normalized Factor
Random Key (NF-RK) encoding scheme to apply modified FGA for solving the TTSPs.

In the RK encoding scheme a vector of n random values, usually between [0,1], are
drown representing a permutation of n elements. Therefore, decoding of a RK vector
with n elements is a mapping from the n-dimensional continues search space, Rn, to
Dn, the space of all permutations of {1, . . . , n}. So, this mapping can be shown as RK:
[0, 1]n → Dn. An example of this decoding process from a random vector x from R

n to
a permutation array π from Dn would be as follows:

index 1 2 3 4 5 6 7 8 9 10

x 0.32 0.83 0.17 0.22 0.95 0.41 0.63 0.34 0.55 0.75

π 3 4 1 8 6 9 7 10 2 5

sort(x) 0.17 0.22 0.32 0.34 0.41 0.55 0.63 0.75 0.83 0.95

As it can be seen RK encoding scheme can successfully resolve feasibility and
mapping challenges for the direct employment of real-valued optimization algorithms.
However, in its standard version it can be used just for the permutation problems like
traveling salesman problem (TSP) but not for other scheduling problems like TTSPs,
FJSPs, and PMSPs because in these problems in addition to job/operation sequence
determination the scheme or machine allocation is also needed to be encoded.

In order to capitalize the benefits of RK encoding scheme for TTSPs, Lu et al.
proposed a new encoding scheme based on RK encoding, called Integrated Encoding
Scheme (IES) [3]. The first step in IES is the same as RK encoding where the sequence
of the jobs will be determined. In the second step of IES the values of the n-dimensional
vector will be used to determine the scheme assignment to each job by the following
equation.

k = mod
([
xij × 10

]
, kj

) + 1 (9)

where, xij is the decision variable of task tj and kj is the number of schemes for task tj.
The advantage of the IES is that it does not need to increase the size of the problem to
more than the size of the tasks unlike other encoding schemes such as permutation with
repetition [5] or 2-vector encoding [29]. So, it keeps the size of the problem as low as
possible in the continuous domain. But the problem with IES is in the creation of fake
multimodality in the continuous search domain.

But in this study a new encoding scheme is introduced which like the IES capitalize
the benefits of the RK encoding and in addition resolve the mentioned issues with the
IES. The new proposed encoding scheme is called Normalized Factor RandomKey (NF-
RK) encoding scheme. In the first step of NF-RK encoding, a standard RK is generated
with the size of the number of tasks n. After sorting the n-dimensional vector we will
have the task sequence similar to the example for the random key. In the second step in
order to decide about the scheme for every task the relative position of each value in the
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range of its immediate higher and lower value in the sorted vector is calculated. Then
this normalized factor multiplies the number of task’s schemes and produces the decided
scheme for the corresponding task based on the following equation. In the following a
numerical example of NF-RK for a sample TTSP is provided.

ki =
[(

si − si−1

si+1 − si−1

)
.mi

]
+ 1∀i ∈ {1, . . . , 10} (10)

where si is the sorted x value at sequence i while mi is representing available number
of schemes for each task and ki is the allocated scheme number to each task based on
Eq. 10.

Task index 1 2 3 4 5 6 7 8 9 10
3 4 1 2 1 3 2 5 3 4
0.32 0.83 0.17 0.22 0.95 0.41 0.63 0.34 0.55 0.75

0 1 2 3 4 5 6 7 8 9 10 11
Task index - 3 4 1 8 6 9 7 10 2 5 -

- 1 2 3 5 3 3 2 4 4 1 -
0 0.17 0.22 0.32 0.34 0.41 0.55 0.63 0.75 0.83 0.95 1
- 1 2 3 2 2 2 1 3 2 1 -

So, as a result, NF-RK encoding scheme preserve the benefits of the standard RK
encoding while by providing extra information exploitation from the random vector
relative values enhance it for the use in the TTSPs without increasing the dimension of
the problem for the scheme allocation to each task.

5 Multimodal Single-Objective Optimization of TTSP

We use modified FGA in combination with NF-RK encoding scheme in order to solve
four practical TTSPs.

Four different instances of practical TTSPs are selected for the experimental study.
Apart from being practical, these problems are chosen because the existing multimodal
optimization results in the literature are about these problems [10] which makes the
comparison study possible as well. More detailed information about these problems
can be found in [2]. The other multimodal optimization algorithms in the comparison
study include the multi-strategy fusion hybrids of genetic algorithm (MFGA) and multi-
strategy fusion hybrids of particle swarm optimization (MFPSO) [10].

Each one of these scheduling problems are from different scales in terms of the
number of the jobs (n) and the number of the machines (m). Based on the considerations
in [10] the objective is to minimize the completion time of the jobs on the set of available
machines. Other parameters that have to be set accordingly are the population size with
100 individuals and 100 numbers of generations. In order to have a better estimation
of the overall performance of the algorithms the experiment is done 500 times for each
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problem. The performance and the comparisonmetrics based on the reference paper [10]
include the Best Fitness (BF) value, the Mean Fitness (MF) value and the Mean Number
(MN) of the number of found solutions in each run out of 500 runs. The statistical results
are shown in Table 3.

Table 3. The performance of 3 multimodal algorithms on the TTSPs based on BF, MF, and MN
measures

TTSP

Instance 20 × 8 Instance 30 × 12

BF MF MN BF MF MN

MFGA 29 31.91 2.83 35 37.97 2.69

MFPSO 29 31.68 2.89 36 38.53 2.86

Modified FGA 28 30.99 6.06 31 35.37 6.52

Instance 40 × 12 Instance 50 × 15

BF MF MN BF MF MN

MFGA 43 48.14 2.85 62 67.41 2.62

MFPSO 43 47.68 2.91 59 66.18 2.89

Modified FGA 39 44.45 6.02 54 61.48 6.05

6 Comparison and Discussion

Based on the presented results in Table 2, Modified FGA with NF-RK encoding scheme
performs significantly better than other twomultimodal algorithms.MFGA andMFPSO
are the multi-strategy fusion hybrids of genetic algorithm (GA) and particle swarm
optimization (PSO) respectively [10]. In the multi-strategy fusion the change in the
fitness value as a measure of convergence is replaced by a more complex approach based
on the fitness entropy. In terms of increasing the diversity of the population though, a
distribution radius has been proposed that acts like niche radius and will be calculated
by the pairwise distance between the found global solutions and the saved solution in
the static archive. The algorithm also uses another measure called utility-fitness based
on utility theory to manipulate the effective fitness values in the search process similar
to those in fitness sharing. The proposed niching method in this work is called multi-
strategy fusion that can be attached to any global search algorithms like PSO, DE, BSO,
GA, and etc. [10]. In terms of the best fitness values (BF), modified FGA outperforms
the other algorithms in all 4 instances and the difference gets bigger for the instances
with higher number of tasks.

The average number of found solutions (MN) for modified FGA dominates the
existing results in all cases with a considerable margin. When it comes to MF measure
the superiority of the results for the modified FGA becomes even more clear for it
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Instance 20×8 Instance 30×12 

Instance 40×12 Instance 50×15

Fig. 2. Gantt Chart of sample best TTSP solutions

to be called a multimodal optimization algorithm. It easily can be concluded that the
modified FGA in combination with NF-RK would have produced way better results for
MN measure if reaching to the same level of MF value with other existing algorithms
were desired.

Figure 2 presents the sampleGanttCharts for the best results achievedby themodified
FGA for TTSP instances.

7 Conclusion and Future Works

In this study we proposed a modification on the football game algorithm (mFGA) as a
dynamic niching algorithm for multimodal optimization. Also, a new encoding scheme
calledNormalized FactorRandomKey (NF-RK) is proposed to be used as amapping tool
for mFGA to solve Test Task Scheduling Problems (TTSPs). Four instances of practical
TTSPs have been solved and the results have been compared to other algorithms that
solved the same problems. The statistical result shows that mFGA using NF-RK can
dramatically improve the results of solving TTSPs in comparison to existing solutions
in the literature. In the future studies, more diverse problems including FJSP, UMSP, and
JJSP, should be solved using the current proposed methods to investigate the potential
of these methods further.
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Abstract. This paper analyses and compares four recently published
state-of-the-art evolutionary algorithms on three different sets of bench-
mark functions. The main intention was to show the shortcomings of the
established metrics, which focus only on one variable: the obtained qual-
ity of solutions under a predetermined stopping criteria, while neglecting
the runtime and the speed of a solver. Through a statistical analysis, it
was established that there is no single solver which ranks as the best
for each benchmark function. It is even harder to choose a solver for a
specific optimization problem considering the computational complexity
of the solver and the problem.

Keywords: Benchmark · Comparison · Computational complexity

1 Introduction

A thorough analysis of an algorithm’s performance is helpful in designing and
improving the algorithm when tackling different sets of benchmark functions. A
specific optimization problem requires an algorithm, which will be able to reach
the best/optimal solution in a reasonable time while spending a low number
of function evaluations. However, it is difficult to deduce the criteria by which
the algorithm should be evaluated while dealing with a specific problem. If the
algorithm is slow (it performs a small number of function evaluations per sec-
ond) and has a good convergence rate, it might be more appropriate for solving
a time-consuming optimization problem than a faster algorithm with a slower
convergence rate. How to deduce which algorithm is the best for a given opti-
mization problem?

Each year, a new or an updated version of benchmark functions on the
Congress of Evolutionary Computation (CEC) are proposed with the inten-
tion of comparing the newest state-of-the-art algorithms and evaluating their
performance based on the solution quality they reach, while limiting the runs
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with a maximum number of function evaluations (maxFEs). This is so-called the
“fixed-budget” approach [15]. The benchmark functions are treated as black-box
problems and serve as a tool in comparison of the state-of-the-art evolutionary
algorithms. However, there are some disadvantages to them. It is not necessary
that the best algorithm reaches the best solutions on a given metric. The algo-
rithm which is ranked as the best on one benchmark may not perform so well
on other benchmark functions. Based on only one benchmark it is difficult to
ascertain, how a given state-of-the-art algorithm will perform on any other types
of the optimization problems or benchmark functions. Also, some aspects of the
algorithm’s performance are forgotten, such as the speed, defined as the num-
ber of function evaluations per second, or runtime of a solver in reaching the
wanted quality of solution. The information about algorithm’s speed and run-
time is valuable when planning and performing an experiment or when dealing
with real-world problems, which are time limited.

When comparing different evolutionary algorithms on benchmarks, the exe-
cution of the experiment plays a crucial role. Often, the results are re-used from
published papers due to convenience. The role of a programming language is
neglected, but for a fair comparison, the chosen algorithms should be imple-
mented in the same programming language. The implementation in a specific
programming language affects the speed of the algorithm, which is important in
the runtime analysis [19]. When choosing a proper programming language, one
has to keep in mind that it is better to use the language which provides compilers
in contrast to languages that use interpreters. To analyze and compare the sev-
eral aspects of the solvers’ performances, we chose three single objective bound
constrained benchmarks: CEC 2022 [1], CEC 2021 [2] and CEC 2017 [3], and
four state-of-the-art solvers MadDE [5], L-SHADE [22], CS-DE [18] and j2020 [8].
The evolutionary algorithms MadDE, L-SHADE and CS-DE are implemented
in Matlab, while j2020 is implemented in C++.

The main aim of this paper was to show that there is no single solver appropri-
ate for each benchmark function or problem. The question explored was whether
the state-of-the-art solvers are overfitted to a certain benchmark, which leads to
a worse performance on other benchmark functions. We observed the quality of
solutions reached on each benchmark function and compared the solvers based
on them. The paper is structured as follows. In Sect. 2, related work is described.
In Sect. 3, the experiment and analysis are provided. In Sect. 4, we summarize
the results of our experiment. The Sect. 5 concludes our paper.

2 Related Work

A detailed analysis and comparison of the solvers leads to the improvement of
their performance while tackling different optimization problems. Researchers
focus on various aspects of the algorithm’s analysis; observing the number of
function evaluations, the runtime and the convergence [24]. Different perfor-
mance metrics have been used for comparing the algortihms. CEC 2005 bench-
mark function suite [21] proposed using success rate and success performance
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(SP1) to measure the runtime in terms of the number of function evaluations.
The performance measures should be quantitative, well-interpretable and simple
as possible, while still providing thorough knowledge about the algorithm. Con-
sidering this, the authors proposed using “the expected running time” (ERT).
ERT is computed based on the expected number of function evaluations to reach
the target value for the first time [16].

The analysis has evolved past this point with new approaches and methods,
such as linking the performance of the algorithms with the landscape character-
istics of the problem instances [17]. Recently, the studies no longer focus on using
one particular algorithm on a single benchmark, but they focus on selecting the
best algorithm for each problem instance. This is known as the automated algo-
rithm selection [20]. A fair evaluation of the algorithms is no longer only depen-
dent on the selection of the algorithms, but also on the selection of a representative
benchmark [10]. Nevertheless, for the purpose of the correct analysis, one needs
to apply the knowledge of statistics. In the last few years, the researchers followed
statistical tests when it comes to the comparison of the solvers [11]. The statisti-
cal tests are divided into two groups, parametric and non-parametric. Parametric
statistical tests are robust and quite restrictive, because the distribution of data is
required. Beforehand the assumptions about the normality, homoscedasticity of
variance and independence need to be checked. The non-parametric tests are less
restrictive and they do not rely on the statistical distribution of the variables. For
pairwise comparison of the solvers, Wilcoxon Rank Sum test is recommended, but
for the comparison and ranking of several solvers, Friedman test is used [9]. Using a
statistical test when comparing solvers is a common practice, but often a misuse of
them can occur. Since their pitfalls, the reseachers took interest in the Bayesian
trend [4]. Here, not a single probability is calculated, but a distribution of the
parameter of the interest itself. The disadvantage is that this approach requires a
deeper understanding of the statistics [4,9]. To gain deeper knowledge and insight
into the algorithm’s performance, a deep statistical approach [13] was proposed.
The main contribution of this approach is that the ranking scheme is based on the
whole distribution rather on only one statistic, such as mean or median. With the
intention of making a more robust performance statistics and also investigating
exploration and exploitation of the optimization algorithms, a DSCTool has been
proposed [12,14]. An alternative approach for comparing and ranking the stochas-
tic algorithms is the chess ranking system [23], which treats algorithms as chess
players during a tournament.

3 Experiment

In this section, we present the experimental part and the comparison of four
solvers applied to three sets of benchmark functions. The chosen benchmark
functions are CEC 2022, CEC 2021 and CEC 2017. The chosen four state-of-
the-art solvers, implementing the algorithms MadDE [5], which uses a multiple
adaptation strategy for adapting the control parameters and an optimizer named
SUBHO, L-SHADE [22], a well-known state-of-the-art solver with a linear size
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Table 1. Results for CEC 2022 Benchmark for the solver MadDE.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 4.2e+5

2 0.00 0.00 0.00 0.00 0.00 5.4e+5

3 0.00 0.00 0.00 0.00 0.00 3.9e+5

4 3.97 9.95 6.96 6.86 1.82 4.8e+5

5 0.00 0.00 0.00 0.00 0.00 4.4e+5

6 0.022 0.49 0.35 0.35 0.13 4.7e+5

7 0.00 0.01 4.3e-6 0.001 0.003 3.0e+5

8 0.02 8.34 0.69 1.31 2.11 2.8e+5

9 229.28 229.28 229.28 229.28 0.00 3.2e+5

10 100.21 100.34 100.29 100.29 0.03 3.4e+5

11 0.00 0.00 0.00 0.00 0.00 2.9e+5

12 158.61 162.70 159.37 159.73 1.02 2.6e+5

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 2.9e+5

2 49.08 49.08 49.08 49.08 0.00 3.3e+5

3 0.00 0.00 0.00 0.00 0.00 1.9e+5

4 9.95 35.82 27.86 28.19 5.13 2.9e+5

5 0.00 0.00 0.00 0.00 0.00 2.2e+5

6 0.23 0.49 0.46 0.43 0.08 3.1e+5

7 0.02 21.06 3.31 5.86 6.13 1.3e+5

8 17.18 20.68 20.29 20.17 0.66 1.1e+5

9 180.78 180.78 180.78 180.78 0.00 1.3e+5

10 100.27 100.42 100.36 100.35 0.03 1.5e+5

11 300.00 300.00 300.00 300.00 0.00 1.8e+5

12 228.86 232.00 231.18 231.09 0.830 9.8e+4

(b) Results for 20D.

Table 2. Results for CEC 2022 Benchmark for the solver L-SHADE.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 6.9e+5

2 0.01 8.91 3.98 5.33 2.49 8.6e+5

3 0.00 0.00 0.00 0.00 0.00 5.9e+5

4 0.002 3.98 2.48 2.28 0.98 6.6e+5

5 0.00 0.00 0.00 0.00 0.00 6.3e+5

6 0.058 0.49 0.39 0.33 0.14 7.5e+5

7 0.00 0.09 2.1e-5 0.01 0.02 4.1e+5

8 0.25 5.43 0.65 1.19 1.34 3.6e+5

9 229.28 248.07 248.07 248.07 0.00 4.2e+5

10 100.18 203.72 100.22 103.67 18.89 4.6e+5

11 0.00 0.00 0.00 0.00 0.00 3.9e+5

12 158.61 164.93 161.21 161.21 169.93 3.5e+5

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 4.2e+5

2 44.89 49.08 49.08 48.95 0.77 4.8e+5

3 0.00 0.00 0.00 0.00 0.00 4.8e+5

4 0.99 6.96 3.98 4.25 1.22 4.2e+5

5 0.00 0.00 0.00 0.00 0.00 2.4e+5

6 0.16 1.49 0.49 0.53 0.32 4.6e+5

7 0.25 19.25 3.44 4.23 3.47 3.6e+5

8 7.81 20.44 20.19 18.38 3.21 4.1e+5

9 180.78 180.78 180.78 180.78 0.00 4.1e+5

10 100.22 100.36 100.27 100.27 0.03 3.4e+5

11 300.00 300.00 300.00 300.00 0.00 8.1e+4

12 230.87 240.76 232.85 233.37 1.99 2.8e+4

(b) Results for 20D.

reduction, CS-DE [18] with an ensemble of mutation strategies and population
diversity and j2020 with two populations and a crowding mechanism [6–8]. The
experiment was carried out in Matlab 2021a on Windows 11, with 16GB RAM for
solvers MadDE, CSDE and L-SHADE. For the solver j2020, we used a personal
computer with GNU C++ compiler version 9.3.0, Intel(R) Core(TM) i5-9400
with 3.2 GHz CPU and 6 cores under Linux Ubuntu 20.04. This section is divided
into three subsections, each for the chosen benchmark. The chosen solvers are
compared based on the quality of solutions (fitness value) they reach on each set
of benchmark functions and analyzed with the help of statistical tests, such as
Friedman test. Friedman test can detect significant differences among all solvers,
but does not tell between which solvers there is a significant difference. Therefore,
a post-hoc test needs to be applied, such as the Dunn’s pairwise post-hoc test
with Bonferroni correction [11].
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3.1 CEC 2022 Single Objective Bound Constrained Numerical
Optimization

For the purpose of this experiment we used CEC 2022 [1] benchmark functions
which consist of 12 functions: f1 Shifted and full Rotated Zahkarov Function,
f2 Shifted and full Rotated Rosenbrock’s Function, f3 Shifted and full Rotated
Expanded Schaffer’s f6 Function, f4 Shifted and full Rotated Non-Continuous
Rastrigin’s Function, f5 Shifted and full Rotated Levy Function, f6 – f8 Hybrid
Functions and f9 – f12 Composition Functions. For two dimensions D = 10 and
D = 20, 30 runs were made for each function with each solver. The stopping cri-
teria (maxFEs) were set to 200,000 and 1,000,000 for D = 10 and D = 20, respec-
tively. We reported the best, worst, median, mean value and standard deviation
for each function, while the speed is also displayed in Tables 1–4. Friedman test

Table 3. Results for CEC 2022 Benchmark for the solver CS-DE.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 4.2e+5

2 0.00 8.92 0.00 0.83 2.05 5.3e+5

3 0.003 0.005 0.008 0.001 0.001 3.9e+5

4 1.25 11.94 4.95 5.48 2.52 4.7e+5

5 0.00 0.00 0.00 0.00 0.00 4.3e+5

6 0.07 1.42 0.35 0.45 0.38 4.7e+5

7 0.64 8.30 4.59 4.32 2.19 3.0e+5

8 0.24 21.78 6.99 8.49 6.79 2.8e+5

9 229.28 229.28 229.28 229.28 0.00 4.1e+5

10 100.21 100.41 100.27 100.29 0.06 3.2e+5

11 0.00 0.00 0.00 0.00 0.00 8.1e+4

12 162.70 164.93 164.92 164.85 0.41 8.4e+4

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 6.5e+4

2 44.89 49.08 49.08 48.94 0.76 6.8e+4

3 0.00 0.00 0.00 0.00 0.00 2.7e+4

4 0.99 2.98 1.99 2.28 0.75 3.0e+4

5 0.00 0.00 0.00 0.00 0.00 4.6e+4

6 0.24 0.50 0.41 0.41 0.07 3.5e+4

7 0.64 20.97 5.473 7.19 5.05 2.2e+4

8 16.55 20.49 20.28 19.71 1.09 2.6e+4

9 180.78 180.78 180.78 180.78 0.00 3.2e+4

10 100.29 100.41 100.35 100.35 0.03 3.2e+4

11 300.00 300.00 300.00 300.00 0.00 4.8e+4

12 231.19 239.24 232.56 232.58 1.51 4.2e+4

(b) Results for 20D.

Table 4. Results for CEC 2022 Benchmark for the solver j2020.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 1.6e+7

2 0.00 0.00 0.00 0.00 0.00 3.3e+6

3 0.00 0.00 0.00 0.00 0.00 9.0e+6

4 2.98 12.93 5.98 6.58 2.35 1.9e+6

5 0.00 0.08 0.00 0.00 0.02 5.5e+6

6 0.12 1.35 0.43 0.63 0.41 2.6e+6

7 0.00 0.00 0.00 0.00 0.00 3.5e+6

8 0.00 0.81 0.62 0.43 0.32 1.3e+6

9 229.28 229.28 229.28 229.28 0.00 1.3e+6

10 0.00 0.25 0.12 0.09 0.07 1.0e+6

11 0.00 0.00 0.00 0.00 0.00 4.1e+6

12 158.62 164.70 161.43 161.31 1.83 6.6e+5

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 5.4e+6

2 0.01 28.94 0.52 2.65 6.55 1.1e+6

3 0.00 0.00 0.00 0.00 0.00 1.0e+7

4 9.95 30.02 19.11 19.59 5.33 8.4e+5

5 0.00 0.00 0.00 0.00 0.00 1.0e+7

6 3.67 56.74 19.63 22.91 14.00 1.1e+6

7 0.97 22.28 5.23 6.02 5.09 4.3e+5

8 9.92 22.17 21.69 21.06 2.21 3.6e+5

9 180.78 180.78 180.78 180.78 0.00 5.0e+5

10 0.00 0.16 0.06 0.06 0.03 4.9e+5

11 300.00 300.00 300.00 300.00 0.00 2.8e+5

12 228.86 245.35 232.84 233.74 3.48 2.6e+5

(b) Results for 20D.
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Table 5. Results for CEC 2021 Benchmark for the solver MadDE.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 1.5e+5

2 0.38 129.07 10.24 21.64 32.06 1.5e+5

3 11.25 15.60 14.15 13.99 1.13 1.3e+5

4 0.11 0.58 0.38 0.37 0.37 1.8e+5

5 0.00 3.40 0.42 0.96 0.85 1.9e+5

6 0.05 0.55 0.30 0.30 0.12 2.0e+5

7 0.01 0.87 0.06 0.17 0.21 1.9e+5

8 0.00 100.29 100.00 91.34 26.30 1.9e+5

9 0.00 100.00 100.00 90.00 30.00 1.5e+5

10 397.70 397.70 397.70 397.70 0.00 1.4e+5

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 1.8e+5

2 0.06 9.26 1.84 2.55 1.94 2.0e+5

3 20.38 21.78 20.92 20.94 0.41 2.6e+5

4 0.48 0.78 0.61 0.62 0.07 2.4e+5

5 3.45 36.43 16.94 17.63 8.80 1.9e+5

6 0.11 0.65 0.33 0.36 0.13 3.1e+5

7 0.11 9.27 1.26 1.97 2.48 1.3e+5

8 100.00 100.00 100.00 100.00 0.00 1.1e+5

9 100.00 413.26 409.70 327.27 137.08 1.3e+5

10 413.66 413.66 413.66 413.66 0.00 1.0e+5

(b) Results for 20D.

Table 6. Results for CEC 2021 Benchmark for the solver L-SHADE.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 2.9e+5

2 0.26 22.01 6.90 7.29 4.77 2.7e+5

3 10.93 13.94 11.83 11.94 0.65 2.3e+5

4 0.21 0.44 0.36 0.35 0.05 2.3e+5

5 0.00 2.61 0.21 0.55 0.64 2.3e+5

6 0.03 0.71 0.27 0.31 0.20 2.5e+5

7 3.3e-6 0.81 0.22 0.27 0.29 2.0e+5

8 100.00 100.00 100.00 100.00 0.00 1.8e+5

9 100.00 335.77 330.31 295.88 81.57 1.6e+5

10 397.74 443.36 398.01 410.05 20.42 1.5e+5

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 3.9e+5

2 0.011 6.85 6.90 1.85 1.70 4.9e+5

3 20.68 22.52 21.52 21.48 0.47 2.6e+5

4 0.37 0.71 0.58 0.57 0.07 3.9e+5

5 0.10 240.27 4.14 39.79 0.64 2.9e+5

6 0.24 0.69 0.52 0.49 0.12 4.5e+5

7 0.053 9.19 0.81 1.36 2.11 1.5e+5

8 100.00 100.00 100.00 100.00 0.00 1.2e+5

9 398.54 403.62 401.35 401.44 1.24 1.5e+5

10 413.66 413.68 413.66 413.66 0.007 1.8e+5

(b) Results for 20D.

(level of significance α = 0.05) was applied, since we are dealing with multiple
comparisons among all methods. The analysis of their runtime and speed follows.

We applied the Friedman test, which ranks the solvers based on their mean
values. The best performing solver should have the lowest rank, while the worst
performing solver should have the highest rank. Note that this is correct in
the case of minimization problems. As shown in Table 13, MadDE has the best
rank. Friedman test indicates there is no significant difference between solvers
(p = 0.227) for D = 10.

We are aware of the fact that the solvers are implemented in different pro-
gramming languages which may affect their performance, however we can still
statistically compare their performance. The Friedman test was also carried out
to rank the four solvers according to the speed. There was found to be a signif-
icant difference between the results. When analyzing the speed of the solvers,
the bigger number means that the solver is faster. The highest rank means the
fastest solver. In this case, j2020 is the fastest solver.

The Dunn-Bonferroni post hoc test indicated that there were significant
differences between MadDE and L-SHADE (p = 0.027), MadDE and j2020
(p = 0.00), CS-DE and L-SHADE (p = 0.027) and CS-DE and j2020 (p = 0.00).
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Table 7. Results for CEC 2021 Benchmark for the solver CS-DE.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 4.0e+4

2 0.30 26.95 6.89 8.76 8.17 4.6e+4

3 11.14 13.95 12.05 12.11 0.82 4.8e+4

4 0.28 0.43 0.33 0.35 0.05 4.9e+4

5 0.42 2.61 1.20 1.37 0.69 4.5e+4

6 0.09 0.56 0.36 0.33 0.17 4.6e+4

7 0.01 0.35 0.18 0.17 0.13 5.0e+4

8 100.00 100.00 100.00 100.00 0.00 4.1e+4

9 100.00 328.16 326.95 281.58 95.69 4.3e+4

10 397.74 443.33 397.88 402.41 14.38 3.9e+4

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 4.2e+5

2 0.08 3.61 2.63 2.16 1.53 5.4e+5

3 21.51 22.53 22.00 22.04 0.35 3.9e+5

4 0.40 0.68 0.55 0.55 0.07 4.8e+5

5 0.00 34.65 12.19 15.59 11.16 4.4e+5

6 0.39 0.65 0.57 0.55 0.09 4.7e+5

7 0.40 8.97 5.36 4.51 2.96 3.0e+5

8 100.00 100.00 100.00 100.00 0.00 2.8e+5

9 392.70 399.78 396.23 396.37 2.64 3.2e+5

10 413.66 413.66 413.66 413.66 0.006 3.4e+5

(b) Results for 20D.

Table 8. Results for CEC 2021 Benchmark for the solver j2020.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 4.9e+7

2 0.25 75.59 18.59 23.06 21.19 3.7e+6

3 5.69 16.53 12.38 12.23 2.16 3.4e+6

4 0.01 2.04 0.75 0.66 0.43 1.7e+6

5 0.21 22.55 1.90 5.04 5.74 9.3e+6

6 0.05 1.47 0.57 0.68 0.36 1.9e+6

7 0.002 0.70 0.32 0.31 0.22 1.9e+6

8 0.00 100.55 11.56 17.48 25.47 7.1e+6

9 0.00 100.00 100.00 96.67 18.26 9.0e+6

10 100.02 398.16 397.74 269.13 142.87 9.1e+5

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 3.8e+5

2 0.06 5.36 2.07 2.05 1.59 1.4e+7

3 20.39 21.39 20.80 20.75 0.32 7.0e+6

4 0.75 1.52 1.24 1.22 0.17 6.3e+5

5 113.51 507.41 235.21 241.76 87.12 8.7e+5

6 0.18 0.82 0.41 0.39 0.15 7.2e+5

7 0.80 201.69 39.04 48.11 46.07 7.4e+5

8 100.00 100.00 100.00 100.00 0.00 9.0e+5

9 100.00 421.87 411.53 357.87 115.52 7.7e+5

10 399.05 413.66 400.00 403.44 5.47 3.1e+5

(b) Results for 20D.

There were no significant differences between MadDE and CS-DE, and L-
SHADE and j2020.

We also repeated the procedure for D = 20. Rankings of the Friedman test
(α = 0.05) are shown in Table 13. There is small difference between ranks and
this indicates that there is no significant difference, which is proved by the
p = 0.227 > 0.05. We also compared the solvers for D = 20 based on their
speed shown in Table 13. The Dunn-Bonferoni post hoc test were carried out
and there were significant differences between CS-DE and MadDE (p = 0.009),
CS-DE and j2020 (p = 0.00), MadDE and j2020 (p = 0.009).

3.2 CEC 2021 Single Objective Bound Constrained Optimization

This experiment was carried out on CEC 2021 Single Objective Bound Con-
strained benchmark functions [2]. The benchmark contains 10 functions: f1
Shifted and Rotated Bent Cigar Function, f2 Shifted and Rotated Schwefel’s
Function, f3 Shifted and Rotated Lunacek bi-Rastrigin Function, f4 Expanded
Rosenbrock’s plus Griewangks’s Function, Hybrid Functions from f5 to f7, and
Composition Functions from f8 to f10. Each functions undergoes 5 configura-
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Table 9. Results for CEC 2017 Benchmark for the solver MadDE.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 1.5e+5

3 0.00 0.00 0.00 0.00 0.00 1.5e+5

4 0.00 0.00 0.00 0.00 0.00 1.9e+5

5 1.99 5.97 3.98 3.81 1.05 1.6e+5

6 0.00 0.00 20.00 0.00 0.00 1.4e+5

7 11.73 16.72 14.43 14.42 1.24 1.1e+5

8 1.99 7.96 4.97 4.99 1.34 4.9e+4

9 0.00 0.00 0.00 0.00 0.00 2.4e+4

10 0.37 237.77 125.46 100.35 67.29 1.3e+5

11 0.33 3.055 1.42 1.42 0.662 1.5e+5

12 0.21 119.95 0.42 21.83 45.65 1.4e+5

13 2.46e-5 6.78 2.39 2.95 2.31 1.3e+5

14 0.001 1.99 0.53 0.59 0.53 1.4e+5

15 0.036 1.18 0.00 0.28 0.22 1.4e+5

16 0.03 0.88 0.49 0.49 0.19 1.6e+5

17 0.010 1.08 0.32 0.27 0.25 1.5e+5

18 0.001 1.01 0.26 0.26 0.22 1.8e+5

19 2.5e-5 0.063 0.025 0.03 0.01 7.9e+4

20 0.00 0.00 0.00 0.00 0.00 1.5e+5

21 0.00 101.81 100.00 98.14 14.02 1.3e+5

22 27.96 100.34 100.00 889.25 22.54 1.2e+5

23 2.5e-9 308.118 304.96 2.81 82.93 1.2e+5

24 6.3e-10 100.00 100.00 98.03 14.00 1.2e+5

25 397.74 398.04 397.74 397.75 0.04 1.4e+5

26 0.00 300.00 200.00 154.90 1.49 1.2e+5

27 386.89 389.01 389.01 388.53 0.73 1.1e+5

28 0.00 300.00 300.00 282.35 71.29 1.2e+5

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 1175.99 3446.06 1963.12 2008.49 446.86 1.7e+5

3 510.22 48442.9 33029.3 3098.7 1022.5 1.8e+5

4 73.18 112.96 87.72 89.96 14.55 1.6e+5

5 55.35 108.78 78.92 78.47 9.61 1.8e+5

6 0.05 0.19 0.10 0.109 0.04 1.5e+5

7 79.46 130.05 109.04 107.20 12.09 1.0e+5

8 42.71 86.23 72.47 72.19 8.49 1.5e+5

9 3.39 88.78 16.23 21.76 14.95 1.6e+5

10 1924.60 3489.36 2829.21 2856.18 333.59 1.6e+5

11 37.71 102.87 77.22 73.98 16.71 1.3e+5

12 66327.3 6.8e+5 3.7e+5 3.7e+5 1.4e+5 1.6e+5

13 2637.0 22499.9 13253.2 13547.6 4271.9 1.5e+5

14 54.11 133.35 83.64 84.83 17.56 1.7e+5

15 106.89 1126.97 220.81 303.59 223.97 1.4e+5

16 126.28 741.99 450.74 468.73 132.35 1.7e+5

17 45.78 127.27 73.63 74.36 14.80 1.5e+5

18 1123.7 1.4e+5 5.73e+4 6.3e+4 2.9e+4 1.2e+5

19 27.16 1600.57 103.08 237.81 338.68 1.6e+5

20 38.44 200.29 78.17 99.49 49.076 4.4e+4

21 113.53 284.48 151.81 193.16 68.23 1.1e+5

22 100.00 100.00 100.00 100.00 1.71e-4 9.0e+4

23 390.85 434.15 415.22 413.89 10.75 8.2e+4

24 461.42 508.73 486.86 486.37 9.36 7.3e+4

25 383.40 387.13 386.95 383.40 0.83 6.8e+4

26 200.00 300.01 300.00 268.63 46.86 7.3e+4

27 503.21 520.84 514.27 513.49 3.63 6.0e+4

28 392.09 407.56 397.25 397.97 3.55 5.3e+4

(b) Results for 30D.

tions (000, 010, 110, 011 and 111) [2], but we analyzed the configuration (111 –
Shift, Rotation, Translation). For each function, 30 independent runs were done.
We observed the quality of solutions reached and the speed of the solvers as
shown in Tables 5–8.

The Friedman test, as shown in Table 14, did not detect a significant differ-
ence between the quality of solutions of solvers for D = 10 and D = 20, but
it detected a significant difference between the solvers’ speed for both dimen-
sions. We applied Dunn-Bonferroni test to show that the significant difference
was detected between CS-DE and L-SHADE (p = 0.006), CS-DE and j2020
(p = 0.000), MadDE and j2020 (p = 0.006) for D = 10. For D = 20, the signifi-
cant difference was detected between CS-DE and L-SHADE (p = 0.002), CS-DE
and j2020 (p = 0.000), MadDE and j2020 (p = 0.006) as shown in Table 14.

3.3 CEC 2017 Single Objective Bound Constrained Optimization

The experiment was carried out on the CEC 2017 [3] test suite, which consists
of 29 functions: f1 Shifted and Rotated Bent Cigar Function, f2 Shifted and
Rotated Zakharov Function, f3 Shifted and Rotated Rosenbrock’s Function, f4
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Table 10. Results for CEC 2017 Benchmark for the solver L-SHADE.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 1.7e+5

3 0.00 0.00 0.00 0.00 0.00 2.1e+5

4 0.00 0.00 0.00 0.00 0.00 1.9e+5

5 0.99 4.98 2.98 2.48 0.89 1.2e+5

6 0.00 0.00 0.00 0.00 0.00 1.3e+5

7 10.44 14.65 12.15 12.13 0.73 1.2e+5

8 0.99 3.98 2.98 2.46 0.85 1.1e+5

9 0.00 0.00 0.00 0.00 0.00 1.8e+5

10 0.34 131.88 10.49 23.32 35.36 1.2e+5

11 0.00 1.72 0.00 0.31 0.61 1.3e+5

12 0.00 130.91 0.21 19.40 44.32 1.5e+5

13 0.00 5.39 4.84 4.079 1.92 1.5e+5

14 0.00 1.99 0.011 0.35 0.57 1.2e+5

15 4.9e-7 0.49 0.019 0.14 0.19 1.1e+5

16 0.04 0.894 0.31 0.34 0.19 1.5e+5

17 0.0075 1.016 0.04 0.14 0.19 1.7e+5

18 5.7e-5 0.50 0.26 0.26 0.22 5.5e+4

19 0.00 0.04 0.002 0.009 0.02 1.7e+5

20 0.00 0.044 0.00 0.006 0.04 1.5e+5

21 100.00 205.52 109.52 146.43 50.59 1.3e+5

22 0.00 100.29 100.00 97.09 15.47 1.5e+5

23 300.00 3054.14 303.25 3.30 1.62 1.7e+5

24 100.00 332.97 329.83 312.22 62.54 1.0e+5

25 397.74 443.37 398.01 409.54 19.97 1.6e+5

26 300.00 300.00 300.00 300.00 0.00 1.7e+5

27 389.01 389.52 389.52 389.46 0.17 1.5e+5

28 0.00 611.82 300.00 330.30 110.45 1.8e+5

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 6.3e+4

3 0.00 0.00 0.00 0.00 0.00 1.7e+5

4 58.56 58.56 58.56 58.56 0.00 1.9e+5

5 2.36 9.06 6.18 6.32 1.32 1.6e+5

6 0.00 0.00 0.00 0.00 0.00 9.8e+4

7 34.77 41.52 37.17 37.35 1.34 1.6e+5

8 3.08 10.14 7.04 6.89 1.62 1.6e+5

9 0.00 0.00 0.00 0.00 0.00 1.7e+5

10 576.95 1845.45 1504.99 1456.39 226.88 1.3e+5

11 0.99 68.58 7.97 21.11 25.48 1.9e+5

12 168.49 1886.34 997.51 1028.16 363.30 1.7e+5

13 1.01 29.90 16.92 1.47 6.99 1.9e+7

14 20.00 25.99 21.94 21.87 1.21 1.5e+5

15 0.29 9.28 2.95 2.94 1.73 2.0e+5

16 16.42 252.88 35.29 50.42 5.0.15 1.7e+5

17 17.52 44.74 33.06 32.67 5.96 1.1e+5

18 20.41 23.49 0.26 0.26 0.86 1.7e+5

19 2.67 9.94 5.088 5.35 1.66 3.6e+4

20 11.49 43.99 31.87 30.89 6.05 1.0e+5

21 203.81 209.85 207.38 207.19 1.23 8.2e+4

22 100.00 100.00 100.00 100.00 0.00 7.4e+4

23 342.95 356.26 349.76 350.12 314.85 6.2e+4

24 421.12 430.35 425.81 425.78 1.39 5.7e+4

25 386.69 386.79 386.74 386.74 0.02 6.9e+4

26 837.21 1030.94 925.11 930.09 40.27 5.3e+4

27 493.28 512.02 503.05 503.16 4.22 4.6e+4

28 300.00 413.98 300.00 325.77 46.99 5.3e+4

(b) Results for 30D.

Shifted and Rotated Rastrigin’s Function, f5 Shifted and Rotated Expanded
Scaffer’s f6 Function, f6 Shifted and Rotated Lunacek bi-Rastrigin Function,
f7 Shifted and Rotated Non-Continuous Rastrigin’s Function, f8 Shifted and
Rotated Levy Function, f9 Shifted and Rotated Schwefel’s Function, Hybrid
Functions from f10 to f19 and Composition Functions from f20 to f29. 30 inde-
pendent runs were made for each function with each chosen solver. The stopping
criteria (maxFEs) was set as 100,000 for D = 10 and 300,000 for D = 30. We
observed the solvers based on the quality of solutions they reached and their
average speed for each run on each function as shown in Tables 9 to 12.

By using the Friedman test, we see that there is no significant difference
between the solvers (p = 0.145) for the D = 10 as shown in Table 15. We
compared them based on the speed. It was established that there was significant
difference between solvers (p < 0.05) with the Friedman test. Dunn-Bonferroni
post-hoc test shows there is a significant difference between CS-DE and MadDE
(p = 0.007), L-SHADE and j2020 (p = 0.000), and L-SHADE and MadDE
(p = 0.000).
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Table 11. Results for CEC 2017 Benchmark for the solver CS-DE.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 4.7e+4

3 0.00 0.00 0.00 0.00 0.00 5.2e+4

4 0.00 0.00 0.00 0.00 0.00 4.9e+4

5 0.99 3.98 1.99 2.36 0.77 3.3e+4

6 0.00 0.00 0.00 0.00 0.00 4.8e+4

7 10.668 13.79 12.25 12.19 0.65 3.5e+4

8 0.99 3.98 1.99 2.36 0.82 3.9e+4

9 0.00 0.00 0.00 0.00 0.00 5.0e+4

10 0.28 241.29 13.72 60.36 67.20 3.3e+4

11 0.00 2.56 1.66 1.45 0.75 3.3e+4

12 0.00 120.15 0.21 9.63 32.41 4.4e+4

13 0.00 6.69 0.00 1.42 2.24 5.0e+4

14 0.00 2.29 0.00 0.33 0.51 3.3e+4

15 0.008 0.50 0.04 0.13 0.18 5.0e+4

16 0.06 0.94 0.56 0.52 0.23 3.3e+4

17 0.0051 1.069 0.09 0.23 0.29 3.3e+4

18 0.0010 0.50 0.22 0.22 0.20 5.0e+4

19 0.00 0.12 0.02 0.018 0.019 3.3e+4

20 0.00 0.00 0.00 0.00 0.00 3.3e+4

21 100.00 205.16 107.38 141.03 49.18 3.3e+4

22 100.00 100.00 100.00 100.00 0.00 5.0e+4

23 300.00 305.05 302.89 302.11 1.69 1.0e+5

24 96.58 331.99 327.16 282.45 90.67 1.0e+5

25 397.74 443.37 398.01 407.73 18.86 5.0e+4

26 300.00 300.00 300.00 300.00 0.00 5.0e+4

27 389.24 394.23 393.82 393.19 1.50 5.0e+4

28 300.00 396.57 300.00 301.89 13.52 5.0e+4

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 5.4+4

3 0.00 0.00 0.00 0.00 0.00 5.2e+4

4 0.00 64.12 58.56 54.16 15.69 5.6e+4

5 0.00 0.00 0.00 0.00 0.00 4.1e+4

6 0.00 0.00 0.00 0.00 0.00 6.6e+4

7 0.00 0.00 0.00 0.00 0.00 5.6e+4

8 7.05 15.019 11.45 11.31 1.88 2.9e+4

9 0.00 0.00 0.00 0.00 0.00 2.0e+4

10 1073.8 2003.8 1620.6 1617.1 207.4 4.2e+4

11 1.51 67.66 4.03 7.18 12.19 3.3e+4

12 307.49 1269.18 792.26 794.52 247.88 2.8e+4

13 0.99 20.43 15.44 12.63 6.11 2.8e+4

14 20.03 25.98 23.19 23.24 1.35 2.8e+4

15 0.27 5.48 2.41 2.668 1.29 2.4e+4

16 10.11 373.51 240.782 201.79 91.12 3.3e+4

17 17.73 47.74 34.06 33.80 5.80 3.0e+4

18 20.29 24.40 21.39 21.48 0.93 2.9e+4

19 1.81 11.88 6.21 6.11 1.84 2.0e+4

20 28.99 59.62 41.29 41.44 7.45 3.4e+4

21 206.69 215.50 210.99 211.18 1.82 1.4e+4

22 100.00 100.00 100.00 100.00 0.00 3.8e+4

23 341.47 353.72 347.55 347.63 3.15 3.6e+4

24 413.19 425.83 422.08 421.79 2.79 3.6e+4

25 386.69 386.79 386.75 386.75 0.016 3.6e+4

26 794.15 1023.96 939.29 933.23 51.84 3.4e+4

27 483.71 510.24 501.99 501.31 5.99 3.1e+4

28 300.00 413.98 300.00 317.04 39.96 3.2e+4

(b) Results for 30D.

There was a significant difference between solvers for the D = 30 as shown
in Table 15. The p-value was 0.001. Dunn’s Bonferroni test showed that the
significant difference was between MadDE and L-SHADE (p = 0.00), CS-DE and
MadDE (p = 0.007), j2020 and MadDE (p = 0.007). There was no significant
difference detected between other pairs.

Note that, when analyzing speed of the solvers (see Table 15), the highest rank
means the fastest solver. There was a significant difference detected between the
solvers by the Friedman’s test. It was deduced that the significant difference is
between CS-DE and MadDE (p = 0.000), CS-DE and L-SHADE (p = 0.000),
CS-DE and j2020 (p = 0.000), L-SHADE and j2020 (p = 0.000) and MadDE
and j2020 (p = 0.001).

4 Discussion

In this section, we will summarize the results of the experiment. On the CEC
2022 benchmark functions, the best performance according to the quality of
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Table 12. Results for CEC 2017 Benchmark for the solver j2020.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 5.6e+6

3 0.00 0.00 0.00 0.00 0.00 1.8e+6

4 0.00 0.46 0.020 0.049 0.08 7.3e+6

5 0.00 7.96 2.62 2.57 1.54 2.5e+6

6 0.00 0.00 0.00 0.00 0.00 1.8e+6

7 9.68 23.25 14.65 15.02 2.6 3.6e+6

8 0.00 7.96 3.02 3.47 1.73 2.0e+6

9 0.00 0.00 0.00 0.00 0.00 1.7e+6

10 6.83 375.37 104.15 119.18 102.36 6.5e+6

11 0.00 4.98 1.22 1.83 1.39 1.3e+6

12 0.03 158.0 11.72 43.40 56.84 2.2e+6

13 0.00 11.57 6.07 5.57 2.88 1.8e+6

14 0.00 1.99 0.00 0.44 0.60 2.0e+6

15 0.00 3.12 0.99 0.72 0.69 1.9e+6

16 0.02 11.93 0.53 1.63 3.36 1.9e+6

17 0.00 1.31 0.31 0.29 0.27 1.7e+6

18 0.001 2.20 1.00 0.78 0.63 1.2e+6

19 0.00 0.059 0.019 0.02 0.01 1.9e+6

20 0.00 0.31 0.00 0.01 0.06 3.3e+5

21 100.00 109.92 100.00 100.63 1.68 2.7e+6

22 0.00 100.39 32.83 38.19 28.88 1.1e+6

23 302.80 313.50 307.15 307.05 2.64 7.4e+5

24 0.00 200.90 100.00 98.64 22.37 7.5e+5

25 100.02 399.59 397.74 310.49 129.20 7.9e+5

26 0.00 300.00 0.00 84.17 110.15 9.3e+5

27 386.89 400.93 390.76 391.69 3.05 7.1e+5

28 0.00 300.00 300.00 203.35 138.89 5.9e+5

(a) Results for 10D.

F Best Worst Median Mean Std Speed

1 0.00 0.00 0.00 0.00 0.00 7.5e+5

3 27.69 15775.6 315.7 1512.3 2919.7 5.7e+5

4 0.01 114.90 79.67 72.14 35.12 5.5e+5

5 39.90 83.66 56.85 58.12 10.06 3.9e+5

6 0.00 0.00 0.00 0.00 0.00 9.3e+5

7 74.11 123.96 94.82 96.08 13.14 4.9e+5

8 36.84 84.22 60.03 58.21 10.39 4.4e+5

9 0.00 0.00 0.00 0.00 0.00 1.7e+6

10 2635.4 4835.3 3590.5 3582.1 440.3 3.5e+5

11 7.46 89.25 38.88 44.36 26.09 5.5e+5

12 4213.16 45935 13616 15374 8945.1 4.6e+5

13 152.88 10278.0 734.7 1394.8 2011.9 5.4e+5

14 38.02 75.03 52.19 53.28 7.93 4.3e+5

15 18.45 109.03 33.85 43.48 22.90 5.4e+5

16 205.33 708.77 458.09 449.96 122.56 4.5e+5

17 53.95 148.09 99.29 99.09 22.07 3.1e+5

18 50.76 1096.41 86.40 135.69 160.43 5.1e+5

19 14.85 36.59 24.03 24.91 4.67 9.4e+4

20 36.75 227.75 93.44 104.77 56.58 3.1e+5

21 172.06 282.27 262.66 260.66 16.29 2.6e+5

22 100.00 100.00 100.00 100.00 0.00 1.9e+5

23 379.73 434.24 410.21 409.94 12.53 1.7e+5

24 455.23 513.31 481.66 481.18 10.99 1.6e+5

25 383.41 387.34 386.91 386.79 0.70 1.7e+5

26 906.40 1824.4 1562.8 1529.3 190.44 1.1e+5

27 492.80 522.58 511.52 510.96 5.76 1.1e+5

28 300.00 453.96 387.89 362.53 57.22 1.3e+5

(b) Results for 30D.

solutions was reached by the solver MadDE (rank = 2.13) for D = 10 and by
L-SHADE (rank = 2.25) for D = 20. But according to the speed, the best
performance was obtained by j2020 (rank = 4.00) for both dimensions.

On the CEC 2021 benchmark functions, the best performance according
to the quality of the solutions was reached by MadDE (rank = 2.35 and

Table 13. Rankings of the solvers according to mean values and speed values for
dimensions 10 and 20 for the CEC 2022 benchmark functions.

Solver Quality of Solutions Speed

D = 10 D = 20 D = 10 D = 20

MadDE 2.13 2.58 1.50 2.33

L-SHADE 2.58 2.25 3.00 2.67

j2020 2.29 2.75 4.00 4.00

CS-DE 3.00 2.42 1.50 1.00
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Table 14. Rankings of the solvers according to mean values and speed values for
dimensions 10 and 20 for the CEC 2021 benchmark functions for the configuration
111.

Solver Quality of Solutions Speed

D = 10 D = 20 D = 10 D = 20

MadDE 2.35 2.15 2.10 2.00

L-SHADE 2.50 2.90 2.90 3.10

j2020 2.55 2.50 4.00 3.90

CS-DE 2.60 2.45 1.00 1.00

Table 15. Rankings of the solvers and their speed for dimensions 10 and 30 for the
CEC 2017 benchmark functions.

Solver Quality of Solutions Speed

D = 10 D = 30 D = 10 D = 30

MadDE 2.50 3.39 2.32 2.61

L-SHADE 2.46 1.48 2.64 2.43

j2020 2.89 2.91 4.00 3.96

CS-DE 2.15 2.22 1.04 1.00

rank = 2.15) for both dimensions. But according to the speed of the solvers,
j2020 (rank = 4.00) was the fastest for both dimensions.

Finally, on the CEC 2017 benchmark functions, CS-DE ranked the highest
for D = 10 (rank = 2.15) and L-SHADE for D = 30 (rank = 1.48). The solver
j2020 was ranked as the first according to the speed.

Some algorithms obtain good ranks on a specific benchmark, but they do
not show this trend on the other benchmarks. The reason for this might be
overfitting of an algorithm to a specific benchmark. Therefore, to mitigate this
problem, we compare the four solvers on all benchmark functions, considering
all dimensions, shown in Table 16, L-SHADE is ranked as the best according to
the quality of solutions (rank = 2.20), but according to the speed, j2020 is the
fastest (rank = 3.96). From the observed results, we can conclude that there is

Table 16. Rankings of the solvers based on the quality of solutions and their speed
for all dimensions on all benchmark functions.

Solver Quality of Solutions Speed

MadDE 2.72 2.15

L-SHADE 2.20 2.64

j2020 2.64 3.96

CS-DE 2.44 1.29



182 J. Herzog et al.

no solver which prevails on every chosen benchmark. The reason for the success
of j2020 according to speed is also the programming language in which the solver
was implemented (C++). In contrast to j2020, all other solvers are implemented
in Matlab. It is difficult to choose the best solver for all benchmarks. It is even
harder, when the speed of the solvers is taken into the account as shown in
Table 16.

5 Conclusion

This paper explores the analysis and comparison of different state-of-the-art
evolutionary algorithms applied to three sets of benchmark functions with the
intention of showing that the established comparison metrics have some short-
comings. The observed variables in each run were the quality of solutions reached
under a predetermined stopping criteria and the speed, defined as the number of
function evaluations per second of each solver for a chosen benchmark. The main
aim was to compare the state-of-the-art solvers based on both variables. Often
happens that the runtime and the speed of the solver get neglected in favor of
analyzing the quality of solutions and establishing the best solver only based on
that. We show that observing only the quality of the solutions is not enough.
Depending on the type of an optimization problem, an information about the
runtime and the speed of the solver can be helpful, either in planning an exper-
iment or while dealing with optimization problems. Through statistical analysis
with post-hoc tests, we showed that it is not enough to observe only the quality
of solutions, but it is also necessary to consider the speed of the solver. By com-
paring the state-of-the-art solvers on different benchmarks, we show that there
is no solver which is appropriate for all benchmarks. We also show that the
choice of a programming language might be important for the solver’s perfor-
mance. The comparison of the solvers should include the analysis of the number
of function evaluations, runtime and speed of the solvers, while considering the
computational complexity of an optimization problem.
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Abstract. In this work, we improve upon two frequently used mutation
algorithms and therefore introduce three refined mutation strategies for
Cartesian Genetic Programming. At first, we take the probabilistic con-
cept of a mutation rate and split it into two mutation rates, one for active
and inactive nodes respectively. Afterwards, the mutation method Single
is taken and extended. Single mutates nodes until an active node is hit.
Here, our extension mutates nodes until more than one but still prede-
fined number n of active nodes are hit. At last, this concept is taken and
a decay rate for n is introduced. Thus, we decrease the required number
of active nodes hit per mutation step during CGP’s training process.
We show empirically on different classification, regression and boolean
regression benchmarks that all methods lead to better fitness values. This
is then further supported by probabilistic comparison methods such as
the Bayesian comparison of classifiers and the Mann-Whitney-U-Test.
However, these improvements come with the cost of more mutation steps
needed which in turn lengthens the training time. The third variant, in
which n is decreased, does not differ from the second mutation strategy
listed.

Keywords: Cartesian genetic programming · Genetic programming ·
Evolutionary algorithm · Mutation strategy

1 Introduction

Cartesian genetic programming (CGP) is a form of genetic programming and
a nature inspired search heuristic. It can be used to automatically generate
programs and was first introduced by Miller [20] in 1999. Since its introduction it
has been used for a multitude of applications like evolving electronic circuits [19],
image processing [16] or evaluation of sensor data [3]. CGP employs a directed,
acyclic graph-based representation. This means that these graphs consists of
nodes which are arranged in a two-dimensional grid. These nodes can in turn
be active or inactive, meaning that they do or do not contribute to an output.
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While some versions of CGP utilize or suggest the usage of a crossover operator,
as is seen in Kalkreuth et al. [13] or Wilson et al. [25], they remain unused in
standard CGP as it does not universally profit from this operation [11,18]. Thus,
mutation is oftentimes the only genetic operation used. In the literature, there
are two different mutation strategies which protrude and are frequently applied:
a probabilistic approach or the Single mutation by Goldman and Punch [6]. As
for the first one, every node has a chance of mutation while in the latter one,
nodes are mutated until an active one is hit.

While the mutation function and the mutation rate, if needed, are very impor-
tant for the success of CGP, there is little research performed trying to improve
upon these two operations. Because of that, this work focuses on improving the
probabilistic and Single mutation approach. At first, the probabilistic approach
is further discussed. Normally, only a single mutation rate is used. However, we
hypothesize that utilizing a different mutation rate for both active and inactive
genes may lead to faster convergence. As for one Single mutation step, nodes are
mutated until one active node is altered. This notion is suspended now and we
allow the mutation of nodes to take place until n active nodes are mutated. To
evaluate this concept, we experiment with different n values. We also investigate
the effect of decreasing the mutation rate and number of active nodes changed
over time.

We show on multiple datasets that our extensions achieve statistically sig-
nificantly better fitness values on these datasets compared to the standard ones
for the cost of a slower convergence rate.

We follow this introduction with Sect. 2, which gives a brief overview of
related work. Afterwards, we present an introduction into CGP in Sect. 3. In
Sect. 4, the refined mutation concepts are introduced. Furthermore, a short the-
oretical explanation is given as to why these concepts should lead to better fitness
values. Afterwards, the experimental design is introduced in Sect. 5 and Sect. 6
presents and discusses our experimental results. Finally, we conclude our work
in Sect. 7.

2 Related Work

In this work, the focus lies on extending the probabilistic mutation strategy as
well as Single.

Previously, there has been other mutation strategies employed as well. Gold-
man and Punch [6] created other mutation algorithms alongside Single. Both
algorithm extends the probabilistc mutation and the first one skips redundant
evaluations, which leads to less computational time needed. The second algo-
rithm is more complex and not recommended by the authors, as it does not
improve upon existing strategies.

Another work done by Kalkreuth [12] introduced two different mutation oper-
ators. He directly altered the type of a node and changed it from active to inactive
or vice versa. As a consequence thereof, the whole phenotype might be changed to
maintain CGP’s restrictions and rules. In his experiments, these two operators
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lead to improvements in the search performance regarding boolean regression
benchmarks. However, more tests should be conducted before a definite state-
ment can be made.

The authors of [10] focused on a new mutation operator for the evolutionary
design of combinational circuits. They propose a semantically-oriented muta-
tion algorithm, which reduces the computational complexity as well as improves
search performance for this problem domain.

There is also the possibility to ulitze concepts from reinforcement learning
to extend the mutation algorithm, as is done in [22]. They applied their new
operator to multiple logic circuit benchmarks and show improved performances
for selected problems.

In other studies, there has been some other work done investigating the
effect of mutating inactive genes. The authors Turner and Miller [23] did an in
depth investigation about genetic drift and genetic redundancy. Their findings,
included but are not limited to, are that performance significantly worsens when
there is no mutation of inactive genes. Furthermore, they hypothesized that a
single mutation rate may be inferior to utilizing two mutation rates, for active
and inactive genes respectively. By utilizing a mutation rate for inactive genes
of up to 100%, they believe that this may enhance genetic drift and therefore
CGP’s performance.

Kaufmann and Kalkreuth [14] examined, among other things, the effects
of Single mutation but mutated every inactive node while doing one mutation
step. By doing so, they found an improvement and other, better suited mutation
methods as well. One of these improvements would be to turn off the mutation
of function genes when boolean regression benchmarks are used. Thus, they laid
out the first steps for this work.

3 Cartesian Genetic Programming

This section gives a brief overview of CGP and its mutation algorithm.

3.1 Introduction to Cartesian Genetic Programming

CGP is traditionally represented as a directed, acyclic and feed-forward graph.
It consists of nodes which are arranged in a nc ×nr grid, wherein nc declares the
grid’s number of columns and nr indicates its number of rows. It takes one or
multiple program inputs and feeds it forward through partially connected nodes
before writing final values to output nodes.

Each node consists of a number of genes, namely a function gene, two con-
nection genes and a parameter gene. The function gene addresses the encoded
computational function of the node. If this function depends on a parameter,
its value is taken from the parameter gene. The required input is taken from
its connection genes, as they indicate where the node gets its data from. This
can either be a program input or the output of a previous node. However, a
node cannot get its input from an arbitrary former node, as the hyperparameter
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levels-back l restricts the connectivity of a node. Furthermore, the nodes are
partitioned into two groups: active and inactive nodes. Active nodes contribute
to a program output, while inactive nodes do not. The parameter l defines the
number of columns to the nodes left it can receive its input from. Oftentimes, l
is equal to nc meaning that every node receives its input from every prior node.

In our work, a slightly modified version of CGP inspired by Harding et al. [8]
and Leitner et al. [15] is used. Here, the handling of input and output are different
from regular CGP and are adopted from Self-Modifying CGP [9]. Traditionally,
if a program has ni many inputs and requires no outputs, CGP contains ni+no

additional genes. Each additional gene represents an address to its respective
program input or output node. In our work though, no further input and output
genes are used. The function set used is extended by four special functions taken
from Harding et al. [9], indicating which node serves as an input or output.

An illustrative example of a genotype can be seen in Fig. 1 as it shows a
graph with nr = 1 and nc = 7. The function of the first two nodes are ‘INPUT‘,
indicating that the next program input is to be read. Afterwards, both input
values are added in the third node. However, it does not link to a node with an
output function, rendering it inactive. In the fourth node, the same inputs are
subtracted and then added in node six with an additional program input taken
from node five. At last, node seven indicates a program output.

INPUT INPUT ADD SUB INPUT ADD OUTPUT

Fig. 1. An example genotype of CGP.

As is the case for many CGP algorithms, the standard (1 + λ) Evolutionary
Algorithm (EA) is used where the individual with the highest fitness is chosen
as the next parent. This parent individual is taken to evolve λ offsprings. Addi-
tionally, neutral search is performed. This means that, when an offspring and
the parent have the same fitness score, the offspring is always chosen as the next
parent, even in the rare case that both offspring and parent are identical. This
allows to generate better offsprings [23,26].

As is described by Miller [21], inactive nodes are part of non coding genes
which are not used to provide an output. Such nodes can be exemplified by the
third node in Fig. 1 as it is part of the genotype but not contributing to the
genotypes output.

By having non coding genes, genetic drift is allowed to occur as mutating
them does not affect the fitness of the phenotype. These inactive nodes have
the possibility to later be changed to active nodes when connection genes are
mutated [7]. The works of Turner and Miller [23] and Yu and Miller [26] show
that such neutral genes are highly beneficial for the evolutionary process of
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Evolutionary Algorithms and CGP as they help escape local optima and the
evolutionary search of CGP. Albeit this theory is doubted by Goldman and
Punch [5].

3.2 Mutation Algorithm

The most common mutation algorithms are of probabilistic nature [21] and Single
[6].

As for the first one, the nodes are mutated according to a predefined muta-
tion probability p. Furthermore, there is a distinction between point mutation
and probabilistic mutation. For the point mutation, p percent of all nodes are
randomly chosen and mutated. Concerning the probabilistic mutation, we iter-
ate through every node with each node mutating with a probability p. However,
with a probabilistic mutation strategy, it is possible that only inactive genes are
mutated. Thus, it does not change the fitness value and nothing can be said
about the quality of the changes.

Single, on the other hand, takes random nodes and mutates them until an
active node is mutated. This offers the benefit to generate good results without
setting a mutation rate. Goldman and Punch [6] evaluated Single on four boolean
benchmarks and found that Single is preferred when the optimal mutation rate is
unknown. Another benefit is that there is a guaranteed change in the phenotype.
This avoids wasted evolutions where the phenotype stays the same. However,
When the mutation rate can be optimized, a probabilistic mutation method is
able to outperform Single.

4 Further Changes in the Mutation Algorithm

The following section gives an overview about the refined mutation strategies
utilized in this work. Afterwards, a short theoretical explanation is given to
motivate and reason their respective effectiveness.

4.1 Probabilistic Mutation

A caveat of the probabilistic mutation is that it does not differentiate between
active and inactive nodes. We hypothesize that this could lead to a slower conver-
gence and/or worse fitness. The main motivation is established by the findings of
Turner and Miller [23]. This work addresses neutral drift in the context of CGP.
They found that, among other things, not mutating inactive genes leads to a
worse evolutionary search and in turn worse results overall. The authors Miller
and Turner [23] also hypothesize that it could be favorable to explicitly use a
higher mutation rate for inactive genes; and perhaps change it as high as up to
100%, meaning that every inactive node in the genotype is mutated after a single
evaluation step. As having neutral drift is highly beneficial for the evolution of
the CGP phenotype, such high mutation rates for inactive genes could lead to
lower convergence rates.
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To test this hypothesis, we split the mutation rate into two. A user defined
probability pi for the mutation of inactive nodes is introduced as well as a muta-
tion rate pa for active nodes. We compare different combinations of pi and pa for
different classification and regression datasets as well as some selected boolean
regression benchmarks.

4.2 Single and Multiple Mutation

INPUT INPUT ADD SUB INPUT ADD OUTPUT

Fig. 2. An example of a changed phenotype as compared by Fig. 1. By changing the
connection gene of the sixth node, it is possible to alter the phenotype greatly. The
computation does not rely on the second and fourth node anymore.

Single randomly changes inactive genes until one active gene is hit. Thus, only
incremental changes are possible. However, these changes may affect the phe-
notype greatly by changing a connection gene as is exemplified in Fig. 2. The
connection gene of the sixth node is mutated and now merely depends on the
first and third input. Compared to the previous phenotype version in Fig 1, the
computation of the program output does not rely on the second and fourth node
anymore. Nevertheless, the single incremental change may, on the other hand,
not affect the phenotype at all or only slightly. As is shown by Kaufmann and
Kalkreuth [14], changing connection genes can improve the fitness at most and
is the most meaningful mutation according to their estimation. Looking at the
CGP implementation used in this work, every node has four possible genes which
can be mutated: two connection genes, one function and one parameter gene.
However, only the first connection gene guarantees a change in the phenotype.
The second connection gene is only used if the corresponding function requires
two inputs, which is needed by 6 out of 30 functions in our case. This leads to
a chance of mutating a meaningful connection gene at about 29%. Albeit one
could argue to exclusively mutate connection genes, only selected problems ben-
efit from solely changing the in-going connections rendering this procedure not
viable for every problem [14].

As is hypothesized by Goldman et al. [6], the incremental change of Single
may perform worse on problems where larger changes per evaluation step are
necessary. Thus, we introduce a modified version of Single: Multi-n and Decreas-
ing Multi-n (DMulti-n).

Multi-n takes the concept of Single but mutates the genotype until n active
nodes are mutated. It should be noted that, when an active node is hit, it is
possible that the phenotype is completely changed. Thus, the list of active nodes
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may not stay the same during mutation and it is important to update the new
active nodes before mutation is continued.

We speculate that Multi-n could lead to faster convergence due to several
reasons. At first, more inactive genes are mutated per evolution step which leads
to more genetic drift. The original authors of Single report an average of t−a

a+1 +
1 expected mutations, where t is the number of total genes and a being the
number of active parent genes. With Multi-n, we should expect an average of
∏n

i=1

(
t−ai

ai+1 + 1
)

mutations with ai being the number of active nodes after i

active nodes have been hit. As is shown by Miller and Smith [17], typically there
are more inactive genes than active ones. Considering Multi-n, this leads to even
more mutated inactive genes per evolution cycle which should also introduce
more genetic drift. Another reasoning in favor of Multi-n is a higher chance of a
more impactful mutation in the phenotype, as more active nodes are mutated.
A higher n leads to a higher probability of mutating a meaningful connection
gene while also maintaining the chance to mutate function or parameter genes.
With n = 2, the probability rises to 49% or even 74% for n = 4.

While Multi-n could lead to a faster convergence to possible solution spaces
and local optima, it may also introduce a lot of changes per evolution step. It
looses the ability to make small and incremental changes. DMulti-n introduces
a slight modification to Multi-n. It can be imagined as Multi-n, but n decreases
over time. Here, we employ a simple stepped decay rate:

ncurrent = nstart −
⌊

icurrent · nstart

itotal

⌋

(1)

with ncurrent being the current n value, nstart the initial n value, icurrent the
current evaluation step and itotal the total evaluation steps to perform. We have,
for example, the following two starting values: itotal = 100 and nstart = 5. This
means that, in the beginning, we start mutating nodes until five active nodes are
hit for each mutation step. After the 20th evaluation step, ncurrent reduces to
4. Now the nodes are mutated until only four active ones are hit per mutation
step. This repeats until a lower limit of ncurrent = 1 is reached and the training
is finished with the equivalent of Single mutation.

5 Preliminaries

This section is now dedicated to the experiments conducted to explore the pre-
viously defined mutation concepts.

5.1 Experiment Description

As far as hyperparameters are concerned, default values found in the literature
[21] are used. This means that nr = 1 and l = nc are adopted. For the genotype,
a length of nc = 100 is employed. The number of maximum evaluations are
100, 000. If the parameter gene is needed, its value is randomly changed to a value
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in the range of [−10, 10]. Each experiment is repeated for a total of 15 times.
The program inputs of the real-world datasets are standardized and standard
k-fold cross validation with k = 5 is used when no train/test split is defined by
the dataset.

For classification problems, the fitness function used in this work is subject
to the Matthews Correlation Coefficient (MCC) [1]. Its score is in range [−1, 1],
with 1 and −1 indicating that every sample is correctly classified (but inverted,
in case of −1). A value of 0 indicates only falsely classified samples. Thus, the
fitness value is defined as:

fitness = 1 − |MCC| (2)

For regression problems, the mean squared error is used.
As optimization algorithm, a (1 + λ) with λ = 4 selection algorithm as

mentioned in Sect. 3.1 is utilized.
Furthermore as is discussed in the later Sect. 5.2, two different kinds of

datasets are used to evaluate the mutation operators. We employed real-world
classification and regression datasets as well as symbolic regression benchmarks.
Both utilize different function sets to accommodate to their respective problem.
The function sets are specified in Table 1.

Table 1. Functions used in this work. The number of required inputs is given by arity.

Function Name Arity Description
Functions for Real-World Datasets

INP, INPP, SKIP 0 Special input functions taken from [9]
OUTPUT 1 Special output functions taken from [9]
Add, Sub, Mul, Div 2 Standard mathematical functions

Addc, Subc, Mulc, Divc 1
Mathematical function, the operation takes one
input i and the nodes’ parameter as a constant
c to calculate i ◦ c

Sin, Cos, Tan, Tanh, Log,
Log1p, Sqrt, Abs, Ceil, Floor

1 Standard mathematical functions

Max, Min 1
Compares the input with the nodes’ parameter.
Returns the bigger / lower value

Const 0 Returns the nodes’ parameter
Negate 1 Returns the negated value

Functions for Symbolic regression datasets
INP, INPP, SKIP 0 Special input functions taken from [9]
OUTPUT 1 Special output functions taken from [9]
Add, Sub, Mul, Div 2 Standard mathematical functions
Sin, Cos, Log 1 Standard mathematical functions
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5.2 Datasets

We used a mixture of classification, regression and symbolic regression bench-
marks to assess our mutation algorithms for multiple problem definitions. These
datasets are chosen according to White et al. [24] as they surveyed and recom-
mended multiple benchmarks for genetic programming. For classification and
regression, we use Abalone, Breast Cancer, Credit, Forest Fire, Page Block and
Spect, downloaded from the UCI repository [4]. We also employ symbolic regres-
sion benchmarks, namely Nguyen-7, Pagie-1 and Vlad-4 [24].

6 Experiments

In this work, several experiments are conducted to empirically test the different
mutation strategies. We state the average fitness value as well as the average
number of evaluations it takes until CGP converges, i.e. the number of evalua-
tions until the best fitness result is achieved. Both values are then compared to
their standard equivalent mutation strategy1.

Furthermore, we utilize the Bayesian comparison of classifiers introduced
by Benavoli et al. [2] to compare our models trained on classification datasets.
The advantage here is that no null hypothesis is needed. Hence the results are
presented as a triplet (pdefault, pequal, pextend). These values indicate different
probability values with pdefault stating the probability that the standard clas-
sifier is better; pequal expresses the probability that the differences are within
the region of practical equivalence and pextend presents the probability that the
modified mutation strategy is better. However, if the Bayesian comparison is not
applicable since this only works for classification models, we utilize the Mann-
Whitney-U-Test at α = 0.05 between the default and the extended model. Again,
we report our results as a triplet (U,Z, p) with U being the Mann-Whitney-U
value, Z the z-statistic and p the p-value.

6.1 Impact of Different Probabilistic Mutation Strategies

To test the impact of splitting a single mutation rate p into two mutation rates
pa and pi for the respective active and inactive nodes, we ran multiple experi-
ments with different mutation rates and combinations thereof. For comparison,
we utilize p ∈ {0.03, 0.1, 0.15, 0.2, 0.25}. As for utilizing two mutation rates,
we ran experiments for every combination of the following probability values:
pi ∈ {0.1, 0.25, 0.5, 0.75, 1.0} and pa ∈ {0.03, 0.1, 0.15, 0.2, 0.25}. These mutation
rates should cover a wide range of varieties while not being too finegrained or
too fuzzy. For space-savings sake, the p and pa values are averaged into pavg or
pa,avg respectively.

The averaged fitness values can be seen in Table 2. Here, even with averaged
values there is a clear trend noticeable towards utilizing two different mutation
1 The code as well as its datasets preprocessing can be found in the following GitHub

repository: https://github.com/CuiHen/Refining-Mutation-in-CGP.git.

https://github.com/CuiHen/Refining-Mutation-in-CGP.git
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rates instead of one as a split mutation rate almost always yields higher fitness
values. Additionally, a higher mutation rate for inactive nodes oftentimes gen-
erate better results. This is in accordance to the same findings of other works,
such as Kaufmann and Kalkreuth [14] who tested the influence of mutating
every inactive node per mutation step. Still, it is not recommended to always
set pi = 1.0 as a more optimal pi value is oftentimes lower than 1.0.

This finding is supported by the probabilistic evaluation in Table 3. Often-
times, the comparison lies in favor of a split mutation rate or both methods being
equal. However, only Page Block shows a trend towards the single mutation rate
when a higher pi value is used. Additionally, the p-values for Forest Fire are
higher than 0.05, which means that those are not statistically significant.

Table 4 shows the convergence speed. Here, the results are averaged as is seen
in Table 2. Interestingly, two different mutation rates oftentimes leads to more
mutation steps needed for the model to converge. Moreover, the convergence
speed for the best fitness results is oftentimes the lowest, too.

Table 2. The average fitness value achieved with a single and two mutation rates. The
p and pa values are averaged into pavg or pa,avg respectively. Lower values are better.
Bold symbols indicate the best values in the current row.

Dataset pavg
pa,avg ,
pi = 0.1

pa,avg ,
pi = 0.25

pa,avg ,
pi = 0.50

pa,avg ,
pi = 0.75

pa,avg ,
pi = 1.0

Abalone 6.59 5.96 5.84 5.99 5.84 5.77

Breast Cancer 0.074 0.054 0.049 0.042 0.049 0.048

Credit 0.229 0.230 0.241 0.223 0.223 0.229

Forest Fire 1.78 1.79 1.75 1.72 1.73 1.72

Heart Disease 0.763 0.743 0.744 0.736 0.734 0.742

Page Block 0.253 0.212 0.298 0.246 0.310 0.274

Spect 0.445 0.423 0.423 0.408 0.414 0.406

Nguyen-7 1.42 · 10−2 5.44 · 10−3 6.16 · 10−3 5.94 · 10−3 5.30 · 10−3 6.67 · 10−3

Pagie-1 0.175 0.093 0.103 0.100 0.109 0.115

Vlad-4 0.037 0.034 0.034 0.034 0.035 0.035

6.2 Impact of Multi-n and DMulti-n

As for the other mutation strategy tested in this work, Single is compared to
our Multi-n mutation strategy with n ∈ {2, 3, 4, 5} at first.

Our results are shown in Table 5, 7 and 6. Here, we can see a clear trend
towards higher n values, as they generally deliver better results. Interestingly,
the highest n value of 5 seldom leads to the best results. It is possible that
there are too many changes in the phenotype per mutation step so it becomes
impossible to grasp more optimal results.

As the probability values in Table 6 suggest, the trend towards higher n
values lead to better results, too. This reinforces the hypothesis that Multi-n
can be better than Single. However, a caveat is that the datasets evaluated on
the Mann-Whitney-U-Test oftentimes only significantly differ for n > 3.
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Table 3. The probability of one classifier being better than the other, evaluated on a
single mutation rate compared to a split one. The p and pa values are averaged into
pavg or pa,avg respectively. Datasets where the Bayesian comparison is used are marked
with (B); the Mann-Whitney-U-Tests are marked with (MW). Every (pa,avg, pi) value
is compared to pavg.

Dataset
pa,avg ,
pi = 0.1

pa,avg ,
pi = 0.25

pa,avg ,
pi = 0.50

pa,avg ,
pi = 0.75

pa,avg ,
pi = 1.0

Abalone
(MW)

(450,−2.6, 0.01) (460,−2.9, 0.00) (470,−3.0, 0.00) (460,−2.9, 0.00) (500,−3.6, 0.00)

Breast Can-
cer (B)

(0.00, 0.12, 0.88) (0.00, 0.03, 0.97) (0.00, 0.00, 1.0) (0.00, 0.05, 0.95) (0.00, 0.02, 0.98)

Credit (B) (0.21, 0.63, 0.16) (0.54, 0.26, 0.2) (0.14, 0.49, 0.37) (0.08, 0.61, 0.31) (0.22, 0.58, 0.2)

Forest Fire
(MW)

(310,−0.02, 0.98) (370,−1.1, 0.25) (370,−1.0, 0.30) (360,−0.81, 0.42) (390,−1.5, 0.14)

Heart Dis-
ease (B)

(0.00, 0.17, 0.83) (0.00, 0.13, 0.87) (0.00, 0.04, 0.96) (0.00, 0.04, 0.96) (0.00, 0.07, 0.93)

Page Block
(B)

(0.08, 0.11, 0.81) (0.87, 0.09, 0.04) (0.32, 0.21, 0.47) (0.82, 0.09, 0.09) (0.59, 0.14, 0.27)

Spect (B) (0.10, 0.21, 0.69) (0.08, 0.22, 0.70) (0.00, 0.02, 0.98) (0.00, 0.05, 0.95) (0.00, 0.03, 0.97)

Nguyen-7
(MW)

(490,−3.5, 0.00) (470,−3.1, 0.00) (480,−3.2, 0.00) (470,−3.0, 0.00) (460,−2.9, 0.00)

Pagie-1
(MW)

(510,−3.7, 0.00) (490,−3.5, 0.00) (510,−3.8, 0.00) (480,−3.2, 0.00) (510,−3.8, 0.00)

Vlad-4
(MW)

(520,−4.1, 0.00) (500,−3.7, 0.00) (500,−3.6, 0.00) (510,−3.8, 0.00) (500,−3.5, 0.00)

Table 4. The average number of evaluations until convergence is achieved; given for
a single and two mutation rates. The p and pa values are averaged into pavg or pa,avg
respectively. Lower values are better. The number of evaluations for the best model
(i.e. the best fitness, cf. Table 2) is underlined; the lowest number indicates the fastest
convergence is in bold.

Dataset pavg
pa,avg ,
pi = 0.1

pa,avg ,
pi = 0.25

pa,avg ,
pi = 0.50

pa,avg ,
pi = 0.75

pa,avg ,
pi = 1.0

Abalone 663 2034 2531 2280 2352 2654

Breast Cancer 962 1406 1275 1412 1286 1724

Credit 759 1086 1108 1412 1653 847

Forest Fire 866 2077 1978 1826 2473 2490

Heart Disease 759 1440 1426 1702 2185 1364

Page Block 2142 2549 2210 2787 1871 2818

Spect 834 1244 1461 1398 1007 1689

Nguyen-7 276 316 282 300 468 266

Pagie-1 700 2330 2002 2021 1901 2433

Vlad-4 819 1553 1616 2213 2094 1959
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Table 5. The average fitness value for Single and Multi-n. Lower values are better.
Bold symbols indicate the best values in the current row.

Dataset Single n = 2 n = 3 n = 4 n = 5

Abalone 6.07 5.84 5.71 5.60 5.64

Breast Cancer 0.059 0.042 0.039 0.035 0.034

Credit 0.389 0.258 0.222 0.239 0.228

Forest Fire 1.75 1.72 1.71 1.67 1.69

Heart Disease 0.756 0.752 0.736 0.739 0.742

Page Block 0.273 0.282 0.255 0.238 0.239

Spect 0.489 0.433 0.445 0.391 0.408

Nguyen-7 5.60 · 10−3 4.15 · 10−3 5.19 · 10−3 6.15 · 10−3 7.04 · 10−3

Pagie-1 0.075 0.056 0.044 0.042 0.036

Vlad-4 0.034 0.035 0.034 0.031 0.032

Table 6. The probability of one classifier being better than the other, evaluated on Sin-
gle compared to Multi-n. Datasets where the Bayesian comparison is used are marked
with (B); the Mann-Whitney-U-Tests are marked with (MW). Every n value is com-
pared to Single.

Dataset n = 2 n = 3 n = 4 n = 5

Abalone (MW) (130,−0.54, 0.59) (150,−1.6, 0.11) (170,−2.3, 0.02) (170,−2.3, 0.02)

Breast Cancer (B) (0.01, 0.25, 0.73) (0.01, 0.20, 0.78) (0.00, 0.08, 0.92) (0.01, 0.11, 0.88)

Credit (B) (0.04, 0.02, 0.94) (0.01, 0.01, 0.99) (0.02, 0.02, 0.96) (0.01, 0.01, 0.98)

Forest Fire (MW) (130,−0.58, 0.56) (140,−1.2, 0.21) (150,−1.6, 0.11) (120,−0.41, 0.68)

Heart Disease (B) (0.23, 0.41, 0.36) (0.02, 0.22, 0.76) (0.04, 0.29, 0.67) (0.06, 0.35, 0.59)

Page Block (B) (0.49, 0.19, 0.32) (0.26, 0.17, 0.57) (0.25, 0.10, 0.64) (0.12, 0.14, 0.74)

Spect (B) (0.01, 0.04, 0.95) (0.02, 0.07, 0.91) (0.00, 0.00, 1.00) (0.00, 0.00, 1.00)

Nguyen-7 (MW) (150,−1.50, 0.15) (120,−0.37, 0.71) (99,−0.54, 0.59) (79,−1.4, 0.17)

Pagie-1 (MW) (140,−1.10, 0.28) (160,−1.80, 0.07) (160,−1.9, 0.06) (170,−2.4, 0.02)

Vlad-4 (MW) (120,−0.25, 0.80) (110, 0.00, 1.00) (210,−3.9, 0.00) (170,−2.4, 0.02)

Table 7. The average number of evaluations until CGP converges for Single and Multi-
n. The lower the better. The number of evaluations for the best model (i.e. the best
fitness, cf. Table 5) is underlined; the lowest number indicates the fastest convergence
is in bold.

Dataset Single n = 2 n = 3 n = 4 n = 5

Abalone 2084 2043 2244 2239 2230

Breast Cancer 1497 1319 1632 2085 1561

Credit 1553 2113 1734 2175 1440

Forest Fire 1816 1946 2437 2462 2264

Heart Disease 2174 2042 2802 3048 2805

Page Block 846 957 1044 1194 1041

Spect 461 891 724 1353 1508

Nguyen-7 108 21 64 38 20

Pagie-1 1866 2141 1849 2481 1997

Vlad-4 2149 2052 2494 3309 2527
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Nonetheless, the convergence speed shows the same behavior as for the prob-
abilistic approaches. This performance boost comes with a higher training time
as most often CGP converges faster with a lower n value.

DMulti-n Afterwards, DMulti-n is utilized and n is decreased over time until
n = 1. Interestingly, this does in fact not lead to better results because its
fitness values and training times are very identical to the results in Table 5. This
is why we did not list the results separately. Moreover, this implies that the later
decreases of n do not improve the fitness values as all models converge before
n is decreased. Hence it can be said that there is no need for smaller and more
incremental changes in this setting. This leads to the assumption that there is
no gain derived from decreasing n over time.

However, these findings are highly counter intuitive to the findings of Multi-
n and its slight decrease in performance between n = 4 and n = 5 or n = 3
and n = 5. One may assume that, by decreasing n, CGP should be able to
counter balance the negative effects of a starting value of n = 5. The reason is
that there is a big portion of mutation steps utilizing lower n values. Thus, it
should be able to balance the best results of Multi-n seen in Table 5. This may,
in theory, come with the cost of having a lower convergence rate. Nevertheless,
this is not the case here. Our theory is that CGP seems to get stuck in a local
optimum after the first iterations. In later stages of training, decreasing the
hyperparameter n apparently cannot significantly help to increase performance.
Further research should be done in this direction to explore the reasoning behind
this phenomenon.

7 Conclusion

In this work, we empirically evaluated the fitness values as well as the conver-
gence speed for three new mutation algorithms. The mutation based on probabil-
ity as well as Single was extended. At first, two different mutation rates for active
and inactive nodes respectively were employed. On the utilized datasets, we
found that it is favorable to utilize two mutation rates. However, while a higher
rate for inactive genes is encouraged, the optimal probability differs between the
problems. Albeit most of the times, it is better to utilize a mutation rate of 50%
or higher.

Afterwards, we extended the Single Algorithm to Multi-n and DMulti-n.
We found that, in these datasets, Multi-n always outperforms Single but its
improvements decline for high values of n.

However, there is the caveat that all of these improvements in fitness value
oftentimes comes with the downside of longer training time. Most of the time,
a single mutation rate or Single need less evaluation steps until a solution was
found.
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As for future work, the introduced concepts could be merged and used inter-
changeably. As Goldman et al. [6] found, Single performs better than the prob-
abilistic approach when the best mutation rate is unknown. Both of these muta-
tion strategies could be changed depending on the current training status and
or fitness value.

Another possibility is to keep two mutation rates for active and inactive
genes. In addition, these mutation rates could change with their position in the
grid. In the work of Goldman and Punch [5], they found a high positional bias
in CGP as well as challenged the status quo in terms of neutral search, bloat
and the importance of genetic drift. By applying higher mutation rates for genes
positioned in the back, a partial success could be achieved to reduce CGP’s
positional bias.

At last, it is unclear as to why DMulti-n does not show an advantage over
Multi-n as well as why it does not improve when n is lowered. Further works
might investigate into this phenomena, possibly leading into deeper understand-
ing of CGP.
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Abstract. In this paper, the performance of the slime mould algorithms
(SMA) is studied. The original SMA algorithm is enhanced by several
mechanisms to achieve better results in various problems. The Eigen
transformation, linear reduction of population size, and perturbation of
the solution are proposed and combined together with various settings
of control parameters. All 16 newly proposed variants of SMA are com-
pared with the original SMA and 16 various nature-inspired methods. All
the algorithms are applied to 22 real-world problems called CEC 2011.
Achieved results illustrate the good performance of the newly proposed
SMA variants, especially compared with the original SMA algorithm.

Keywords: Global optimisation · Slime mould algorithm ·
Swarm-intelligence · Experiment · Real-world problems

1 Introduction

Optimisation techniques are divided into several groups based on the principle
of how to evaluate individuals. One of the most frequently used groups of these
methods is called swarm-intelligence (SI) algorithms inspired by the behaviour
of the swarm-individuals in nature. These methods use stochastic or learning
approaches, which bring a successful solution to even hard tasks in an acceptable
time. There have been many representatives of SI algorithms presented over
two past decades – particle swarm optimisation [9], bat-inspired algorithm [26],
firefly algorithm [27], grey wolf optimiser [15], etc. Many of these techniques are
successfully applied to real-world problems to optimise various systems of the
human environment.

Generally, each optimisation problem is represented by the objective func-
tion f(x), x = (x1, x2, . . . , xD) ∈ IRD which is defined on the search space Ω

bounded by Ω =
∏D

j=1[aj , bj ], aj < bj , j = 1, 2, . . . , D. Then the point x∗ is
called a global minimum if it satisfies f(x∗) ≤ f(x),∀x ∈ Ω.

The goal of the paper is to enhance the slime mould algorithm by several
various approaches and settings of the control parameters. The original variant
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of the algorithm provides interesting results on several test problems and the
application of the algorithm to several real-world problems also illustrates its
efficiency. Newly proposed variants of the slime mould algorithm are applied to
a set of 22 real-world problems called CEC 2011 to show how the enhancing
elements truly help the algorithm in practice.

The rest of the paper is organised as follows. A short description of the slime
mould algorithm is in Sect. 1.1. Newly proposed variants of the slime mould
algorithm are introduced in Sects. 2.1–2.4. Other optimisation methods used in
the comparison are briefly assumed in Sect. 3. Settings of the experiment and
results of the comparison are discussed in Sects. 4 and 5. The conclusions are
made in Sect. 6.

1.1 Slime Mould Algorithm

In 2020, Li et al. proposed a new method for stochastic optimisation called the
Slime Mould Algorithm (SMA) [12]. The authors modelled the behaviour and
morphological changes of slime mould when collecting food. The model does
not focus on other parts of the slime mould’s life cycle. More precisely, the
SMA represents the model of Physarum polycephalum which was first classified
as slime mould [8]. The authors of MSA comprehensively described the slime
mould behaviour when living and especially foraging. A previous analysis clearly
shows that faster decision of slime mould about the food source means lower
probability to achieve a prime source [12]. In other words, slime mould needs
more appropriate settings of speed and accuracy when leaving one area and
finding another food area.

The slime mould individuals allocated the food sources based on the smell
in the air. The process of approaching the food of slime mould is modelled by:

xi =
{
xb + vb · (W · xA − xB), if r < p
vc · xi if r ≥ p.

(1)

where elements of the tuning vector vb randomly oscillate in [−aa, aa] (3),
vc is linearly decreasing from 1 to 0, vb,vc are used for the tuning process
during iterations. Further, xb is the best individual, which is the location with
the current highest concentration of the food. Position of xi is for the current
individual, W is the slime mould weight, xA and xB represent two randomly
selected slime mould individuals, r is a uniformly sampled random number from
[0, 1], and the parameter p is updated by:

p = tanh|Si − DF| (2)

where Si is the function value of ith slime mould and DF the function value of
the best slime mould in the algorithm’s history.

aa = arctanh(−(
FES

maxFES
) + 1) (3)
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FES and maxFES denote the current and the total function evaluations for the
run. The weight of slime mould is updated by:

W (SmellIndex(i)) =

{
1 + r · log( bF−S(i)

bF−wF + 1), condition
1 − r · log( bF−S(i)

bF−wF + 1) others.
(4)

where SmellIndex = sort(S) is the sequence of the population function eval-
uations sorted in ascending, the condition determines that S(i) is in the first
half of the sorted population and bF is the best and wF is the worst function
evaluation of the population.

After approaching the food, the contracting mode is performed using:

X∗ =

⎧
⎨

⎩

rand · (b − a) + a, if rand < z
xb + vb · (W · xA − xB), if r < p
vc · xi if r ≥ p.

(5)

W oscillates with respect to the quality of the food-smell. When the smell
is higher, W is increased, otherwise decreased. It means that slime mould
approaches the food faster in case the quality of food is higher and if the quality
of food is smaller, slime mould approaches the food more slowly. Where r is
a randomly selected number from uniform interval [0, 1]. The parameters of z
and p enable us to reach better adaptability of SMA in different search phases.
The parameter z is the only input of the SMA (besides population size). The
pseudo-code of the SMA algorithm is in Algorithm 1.

Algorithm 1. Pseudo-code of the SMA
initialise population X = {x1,x2, . . . ,xN}
while stopping condition not reached do

update p, vb, vc
update W by (4)
for i = 1, 2, . . . , N do

update positions xi by (5)
evaluate f(y)

end for
increase FES
update xb

end while

1.2 Previous Works

The SMA algorithm was proposed in 2020, and many scientists proposed some
real applications or enhanced variants of this optimisation method. In 2020,
Kumar et al. applied the SMA to parameters of a photovoltaic system [11]. In
2021, Rizk-Allah et al. proposed a chaos-opposition-based variant of the SMA



204 P. Bujok and M. Lacko

algorithm to achieve optimal energy cost for a wind turbine [19]. In 2020, Zubaidi
et al. proposed hybridised neural network that cooperated with the SMA algo-
rithm to optimise the urban water demand [31]. In 2020, Abdel-Basset et al.
proposed a hybrid SMA algorithm that cooperated with the whale optimisation
algorithm applied to chest x-ray image segmentation [1]. In 2021, Liang et al.
proposed an enhanced variant of the SMA algorithm for the design of the IIR
filter [13]. In 2022, Ornek et al. proposed a novel SMA for real-world engineer-
ing problems [16]. Here, a sine and cosine oscillation mode help to perturb the
individuals’ positions. The proposed ESMA provides the best results compared
to the original SMA and several evolution algorithms. In 2022, Yin et al. pro-
posed Equilibrium Optimiser SMA (EOSMA) [28]. This approach was used to
solve benchmark and also engineering problems, where EOSMA achieved very
promising results (regarding quality and time-complexity) compared with the
original SMA and various evolutionary algorithms. In 2022, Zhu proposed SMA
for modelling the load dispatch issue in an electric power system [30]. The pro-
posed SMA with proposed changeable weights provided the best results out of
five various optimisation methods. The table below lists the mentioned variants
of SMA and their application.

Table 1. Review of SMA variants and application area.

SMA variants Application area Method

Boosting SMA [9] For the proposal of parameters

of a photovoltaic system

Nelder-Mead Simplex strategy,

Chaotic map

Chaos-opposition-based [16] For achieving optimal energy

cost for a wind turbine

Chaotic mapping

Neural network model with

SMA [26]

For prediction of urban

stochastic water demand

Using SMA for update

neuron-network model

HSMA WOA [1] To chest x-ray image

segmentation

Whale optimisation

Enhanced SMA [11] For the design of the IIRfilter Learning strategy, Chaotic

initialisation strategy,

ESMA [16] Four engineering problems Oscillation of SMA position

EOSMA [28] Nine engineering problems Equilibrium strategy

SMA [30] Load dispatch issue in an

electric power system

Changeable weights

2 Newly Proposed Variants of SMA

In this paper, 16 newly proposed variants of the SMA algorithm are proposed
using several settings of control parameters and enhancing mechanisms. These
settings and mechanisms are used separately or combined with another mecha-
nism to achieve better results.
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2.1 Linear Reduction of the Population Size

A well-known mechanism to reduce the population size linearly was proposed for
successful L-SHADE [21]. At the end of each generation, the proper population
size is computed (6), and in the case of a lower value compared to N it is reduced:

N = round[(
Nmin − Ninit

maxFES
)FES + Ninit], (6)

where FES indicates the current number of function evaluations, Ninit is the
initial population size, Nmin represents the final population size at the end of
the search process (allowed by number of maxFES function evaluations). The
SMA variants using this enhancing mechanism are denoted by the letter ‘L’
(linear). This approach enables reducing the population size by one. To achieve
faster reduction to the proper population size, all excess individuals are removed
from the population. This approach is labelled as ‘LF’ (linear fast).

2.2 Eigen Transformation

In 2014, Wang et al. introduced the Eigen transformation approach introduced
for CoBiDE [25]. In the beginning of each generation, Eigenvalues (matrix D)
and Eigenvectors (matrix B) are computed from the covariance matrix (C)
computed from a ps part of a better individuals of population:

C = BD2BT . (7)

After applying the Eigen transformation, a new solution is produced in an
Eigen coordinate system for several elements:

x‘
b = B−1xb = BTxb, (8)

where the same approach is applied to vb, xA, and xB . A new position is allo-
cated using (5), x‘

i which is transformed back into a standard coordinate system:

xi = Bx‘
i. (9)

This approach is used for the whole generation if the randomly generated number
is lower than the control parameter peig, which controls the frequency of the
Eigen transformation. The SMA variants using this approach use label ‘E’ with
four numbers denoting settings of ps and peig (for example SMAE0504 for ps= 0.5
and peig= 0.4).

2.3 Perturbation

Random perturbation of several elements of an individual before evaluation is
proposed. When a new position is achieved, one or two randomly selected posi-
tions in the vector of solution are selected and replaced by reinitialised values
from the search space. The SMA variant using this approach only in one coor-
dinate is denoted by ‘R1’ (one random element), and the variant using one or
two (in the case of one-dimensional problems) dimensions are labelled ‘R1-2’.
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2.4 Adaptation of Parameter z

The last enhancing approach uses a simple adaptation of the main control param-
eter used in SMA - z. The value of this parameter is set based on the cosine
function from 0.05 at the beginning, then 0.01 in the middle of the run, and 0.05
at the end of the SMA run.

3 Methods Used in Experiments

In this paper, 16 various nature-inspired optimisation methods were selected
to be compared with 17 variants of the SMA algorithm (including the original
variant). A brief list of the involved algorithms follows.

Particle swarm optimisation (PSO) is the most popular swarm-intelligence-
inspired optimiser proposed in 1995. Here, the value of the parameter balancing
between the local and the global part of the updated velocity is set c = 1.05,
and for next-generation, Velocity is computed as vi,G+1 = wG+1 × vi,G +
c U(0, 1) (pbest − xi) + c U(0, 1) (gbest − xi). Moreover, an advanced coop-
erative variant of PSO with the Firefly algorithm (called HFPSO) is used [2].
The parameters of HFPSO are set to the recommended values at α = 0.2, β0 = 2,
γ = 1, and c1 = c2 = 1.49445.

The self-organising migration algorithm (SOMA) is a model of a pack of
predators hunting the prey [29]. The parameters are set to PathLenght = 2,
Step = 0.11, and Prt = 0.1. The strategy all-to-one is used in the comparison.

In 2014, the dispersive flies optimisation algorithm (DFO hereafter) was pro-
posed [18]. The only control parameter is the disturbance threshold dt = 1×10−3.

The firefly algorithm (FFL) models the real fireflies [27]. The control param-
eters are set to α = 0.5, γ = 1, and β0 = 1, βmin = 0.2.

The grey wolf optimiser (GWO) represents the hunting and hierarchic
behaviour of grey wolves [15]. The only control parameter of GWO is component
a, and it decreases linearly from 2 to 0.

Monarch butterflies optimisation (MBO) [23] is applied with settings at
keep = 2, MaxStepSize = 1, period = 1.2, and part = 5/12.

The tree-seed algorithm (TSA) models the relationship between the seeds
and the trees in nature [10]. The only control parameter of this algorithm is set
recommended value TS = 0.1.

The elephant herd optimisation algorithm (EHO) inspired by the hierarchical
behaviour of elephants in an elephant herd [24] is used with values - elitism
parameter is 2, the number of clans is 5, and α = 0.5 and β = 0.1.

The bacterial foraging optimisation algorithm (BFO) [6] is inspired by the
chemotaxis of E. coli bacteria. The recommended settings are used - number of
chemotactic steps Nc = 20, swim steps Ns = 10, reproductive steps Nr = 20,
probability of elimination Ped = 0.9, and step-size C = 0.01.

The bat algorithm (BAT) [26] uses settings - fmax = 2, fmin = 0, Ai = 1.2
α = 0.9, ri = 0.1, and γ = 0.9.
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The invasive weed optimisation algorithm (IWO) models the spreading tech-
nique of weeds [14]. The recommended settings are used - smax = 5, smin = 0,
σinit = 0.5, σfin = 0.001, and η = 2.

The biogeography-based optimisation algorithm (BGO) is inspired by the
geographical distribution of biological organisms [20]. The control parameters of
BGO were set to the recommended values - KeepRate= 0.2, emigration rate is
a vector of length N (population size) with linearly decreasing values from 1 to
0, immigration rate is a vector of length N with linearly increasing values from
0 to 1, and the probability of mutation is 0.1.

The Vortex Search Algorithm (VSA) is inspired by the vortex flow during
the stirring of the fluids [7]. The initial radius circle r is based on an inverse
incomplete gamma function controlled by the recommended value x = 0.1.

The Sonar Inspired Optimisation algorithm (SIO) employs acoustics to
allocate the solution [22]. The only input parameter of the SIO algorithm is
I0 = 1 × 10−12. The simplest stochastic optimisation method is random blind
search (RS) [17]. This method has no control parameters.

4 Experimental Settings

In this comparison, a test suite of 22 real-world problems of the CEC 2011
competition in the Special Session on Real-Parameter Numerical optimisation is
used [5]. The functions differ in complexity and dimensionality (from D = 1 to
D = 240). For each algorithm and problem, 25 independent runs were performed
to achieve statistical significance. The run of the algorithm is stopped when
it achieves the prescribed number of function evaluations MaxFES= 150000.
Moreover, partial results after one-third and two-thirds of MaxFES are also
analysed.

Each of the algorithms (except for RS ) employs the parameter of the popu-
lation size. The parameter for each algorithm was set to the best possible values
recommended by the authors or achieved in previous experiments [3,4]. There-
fore, N = 50 is for TSA, VSA, MBO, EHO, and IWO. N = 30 is for GWO,
HFPSO, BFO, and SIO. N = 90 is for SOMA and FFL. N = 40 is for BAT,
FFL, PSO, BGO, and DFO. The original SMA algorithm uses N = 30. In this
experiment, two bigger population size values are used N = 90 and N = 180.
The variants of SMA using the population size reduction mechanism starts with
a population of size Ninit = 18 × D. This causes population size 18 for the
problems with D = 1. Therefore, the initial population size was also increased
by a simple mechanism to values from 18 × 10 for the problems with dimension
D < 10 (these variants are denoted ‘B’ as bigger initial population size).

Moreover, the SMA uses the control parameter of z = 0.03. In this study,
the value is also set to z = 0.1, z = 0.3, and z = 0.9. These variants of SMA
are labelled by a combination of the population size and the value of z (with a
dash, the original setting is SMA30−003).

Parameters of the Eigen transformation used in the SMA algorithms are set
to ps = 0.5 and peig = 0.4 or peig = 0.1.
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Table 2. Overview of the SMA variants in comparison.

Algorithm Description

SMA30−003 Original SMA, N = 30, z = 0.03

SMA30−01 Original SMA, N = 30, z = 0.1

SMA30−03 Original SMA, N = 30, z = 0.3

SMA30−09 Original SMA, N = 30, z = 0.9

SMA90−01 Original SMA, N = 90, z = 0.1

SMAL Linear population size mechanism (L)

SMAE0504 Eigen transformation (E), ps = 0.5, peig = 0.4

SMAE0501 Eigen transformation, ps = 0.5, peig = 0.1

SMAEL0501 L, E, ps = 0.5, peig = 0.1

SMAELF0501 L, faster decreation (F ), E, ps = 0.5, peig = 0.1

SMAELBF0501 L, F, bigger initial pop.size, E, ps = 0.5, peig = 0.1

SMAELBF0504 L, F, bigger initial pop.size, E, ps = 0.5, peig = 0.4

SMAR1 One element in the SMA position is changed (R)

SMAR1−2 One or two elements in the SMA position are changed

SMARELF0501 R, L, F, E, ps = 0.5, peig = 0.1

SMAZ Value of z is adapted by cosine function

The remaining parameters of the algorithms are set to the values recom-
mended by the authors. All the algorithms are implemented in Matlab 2020b,
where the statistical analysis is assessed as well. All computations were carried
out on a standard PC with Windows 7, Intel(R) Core(TM)i7-4700 CPU 3.0 GHz,
16 GB RAM.

5 Results

In this comparison, 17 variants of the SMA algorithm are proposed and com-
pared with 16 various nature-inspired methods. All 33 algorithms are applied
to a set of 22 CEC 2011 test problems and the results are statistically analysed
using the significance level α = 0.05. To produce a good insight into the algo-
rithm’s performance, first, the Friedman test is applied. The test is applied on
medians achieved from minimum values at three stages of the search (FES =
50,000, 100,000, and 150,000). The results are presented in Table 3 where also the
absolute ranks are depicted in brackets (the heading of the table is only on the
left side). The null hypothesis on the equivalent performance of the algorithms
is rejected with p < 5 × 10−10. The algorithms are ordered in the tables based
on the mean ranks from the Friedman test at the end of the search (column
‘stage3’) and on the average ranks of the overall dimensions.

The newly proposed SMAELBF0504 achieves the best overall performance in
the experiment regarding all 22 problems. This variant of the SMA uses the
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Table 3. Mean ranks and absolute ranks of all algorithms from the Friedman tests.

Alg. Stage1 Stage2 Stage3 SMA180−003 10.5 (10) 12.4 (13) 13.8 (17)

SMAELBF0504 9.4 (7) 8.7 (2) 7.0 (1) VSA 22.4 (24) 12.9 (16) 14.1 (18)

SMAELF0501 8.7 (4) 9.5 (6) 8.2 (2) SOMA 7.7 (3) 12.5 (14) 15.5 (19)

SMARELF0501 14.5 (15) 11.6 (11) 8.4 (3) SMA30−03 21.6 (23) 19.6 (23) 15.6 (20)

SMAE0504 11.0 (11) 8.9 (3) 8.9 (4) PSO 14.8 (16) 15.9 (19) 18.5 (21)

SMAELBF0501 9.5 (8) 10.4 (8) 9.9 (5) BGO 9.5 (9) 14.5 (17) 18.8 (22)

SMAE0501 8.8 (5) 9.2 (4) 10.0 (6) TSA 18.1 (19) 19.0 (21) 19.4 (23)

SMAR1−2 16.2 (17) 12.2 (12) 10.1 (7) SMA30−09 25.4 (26) 24.3 (25) 21.9 (24)

SMAZ 6.9 (2) 7.0 (1) 10.4 (8) MBO 20.6 (22) 23.9 (24) 24.7 (25)

SMAEL0501 12.0 (12) 11.3 (10) 11.6 (9) EHO 23.6 (25) 25.1 (26) 25.2 (26)

SMAR1 14.2 (14) 10.9 (9) 11.6 (10) RS 28.4 (32) 28.5 (31) 27.3 (27)

SMAL 12.9 (13) 12.6 (15) 12.3 (11) DFO 26.9 (29) 27.1 (27) 27.5 (28)

SMA30−003 9.2 (6) 10.1 (7) 12.7 (12) SIO 27.3 (30) 27.5 (28) 27.5 (29)

SMA90−01 18.4 (20) 15.9 (20) 13.0 (13) BAT 26.7 (28) 28.5 (30) 28.8 (30)

HFPSO 6.5 (1) 9.4 (5) 13.0 (14) FFL 25.8 (27) 28.2 (29) 29.0 (31)

SMA30−01 16.2 (18) 14.7 (18) 13.1 (15) BFO 28.3 (31) 29.1 (32) 29.4 (32)

GWO 19.1 (21) 19.1 (22) 13.6 (16) IWO 30.0 (33) 30.3 (33) 30.3 (33)

Eigen transformation with ps = 0.5 and peig = 0.4, linearly reducing population
size from a bigger initial value (from 180 to 18×D), and it uses a faster reduction
of the population size to achieve the proper size (not only by one individual).

Moreover, it is obvious that the first 11 positions in the ordered table are
occupied by the proposed variants of SMA (the 12th position is for the original
SMA).

The best results after one-third of the run are provided by the SOMA algo-
rithm, whereas after two-thirds, it is the proposed SMA variant with an adap-
tation of z (SMAz).

More details of the algorithm’s comparison of each real-world problem inde-
pendently are provided by the Kruskal-Wallis test. The null hypothesis is rejected
on the significance level 1 × 10−10. The median values of the methods are pro-
vided in Tables 4 and 5. In these tables, the best achieved median value for each
problem is printed in bold. In the case of problems T03 and T08, there is no
best-performing method.

For a better overview, there are numbers of the first, second, third, and last
positions for each algorithm (delimited by a slash), based on the mean ranks.
We can see that the best algorithm in the comparison is HFPSO which achieves
the best rank in four problems, and the second is SOMA with the two best mean
ranks. SMAE0504, SMAL, and SMAR1 provide potentially good performance. It
is obvious that the number of the best mean ranks is not the same as the number
of the least median values of the algorithms.

Having compared all 33 algorithms, the 16 proposed SMA variants are com-
pared with the original SMA30−003 using the Wilcoxon rank-sum test. This com-
parison is performed in order to show how the enhancing mechanisms increase
the performance of the SMA algorithm. Because of space, the results are assumed
in Table 7. In this table, the numbers of better (B), similar (S), and worse (W)
results achieved for each problem independently are illustrated. Moreover, a
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Table 4. Medians and numbers of the first, second, third, and last positions from the
Kruskal-Wallis tests.

F BAT BFO BGO DFO EHO FFL GWO

T01 29.9997 23.0459 19.5091 27.3572 25.3804 28.4112 11.6669

T02 −2.46801 −3.13836 −15.6066 −6.55608 −12.7726 −12.6795 −23.807

T03 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05

T04 13.9343 21.0146 20.9722 14.6533 14.3221 19.2793 13.8308

T05 −11.4317 −20.2997 −31.7313 −9.82837 −18.9533 −18.2279 −34.1542

T06 −7.51923 −16.4406 −19.5118 −7.03242 −10.2898 −14.7311 −23.0059

T07 2.52058 1.48588 1.13308 2.57839 1.82214 2.37051 0.772

T08 310.916 1444.23 230 282 220 350.555 220

T09 997647 1.67E+06 8452.52 464478 1.27E+06 3.18E+06 24326.4

T10 −7.78773 −10.2486 −15.8281 −8.83998 −8.35503 −7.59723 −12.9574

T11.1 1.91E+06 1.10E+07 65577 9.73E+07 8.56E+06 2.50E+06 474417

T11.2 1.34E+07 1.59E+07 1.11E+06 5.75E+06 5.94E+06 7.33E+06 1.12E+06

T11.3 97335.1 146284 15459.4 18083.8 15492.6 52975.7 15463.6

T11.4 19385.8 19443 19389.7 19161.6 19138.9 19243 19210.7

T11.5 2.25E+06 8.59E+06 33095.2 251810 164692 495711 32993

T11.6 150956 9.61E+07 140684 164780 1.30E+07 7.78E+07 136626

T11.7 1.05E+10 2.32E+10 1.96E+06 1.28E+10 4.68E+09 1.48E+10 2.49E+06

T11.8 7.16E+07 1.23E+08 1018940 8366530 64553100 1.47E+08 956785

T11.9 5.93E+07 1.36E+08 1.35E+06 1.25E+07 6.57E+07 1.58E+08 1.30E+07

T11.10 6.72E+07 1.24E+08 998405 1.14E+07 6.48E+07 1.48E+08 957703

T12 70.1237 59.1886 18.7061 75.8614 41.1322 46.1224 24.3415

T13 70.2957 53.7055 24.5615 58.8164 39.6229 39.8236 21.7653

#ranks 0/0/0/3 0/0/0/4 0/0/0/0 0/0/0/4 0/0/1/0 0/0/0/1 1/1/2/0

F HFPSO IWO MBO PSO RS SIO SMA180−003

T01 14.5269 24.7506 15.5475 12.8765 21.9619 23.9607 12.3061

T02 −26.1267 −3.02094 −13.176 −15.3444 −4.00667 −5.63485 −17.5827

T03 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05

T04 14.3291 14.2251 14.3291 14.3291 14.0724 14.2853 14.3291

T05 −33.6333 −18.1002 −21.5977 −31.2519 −18.4336 −18.205 −34.107

T06 −23.0059 −15.5533 −15.9741 −22.8628 −12.8843 −12.307 −23.0059

T07 0.87531 1.77031 1.80721 1.45337 1.75981 1.51637 0.97916

T08 220 262 220 220 220 238 220

T09 18356.8 2.02E+06 1.90E+06 429738 2.57E+06 2.52E+06 3272.39

T10 −20.4544 −3.18672 −11.6599 −15.917 −8.61655 −8.05445 −20.9435

T11.1 52296.4 3.50E+08 8.38E+06 1.47E+06 2.12E+08 2.67E+06 53243.3

T11.2 1.08E+06 1.55E+07 1.10E+07 4.78E+06 1.24E+07 7.93E+06 1.08E+06

T11.3 15480 229271 15463.4 15457.2 15744.8 15660.7 15464

T11.4 19236 826388 19346.3 18860.7 19409 19574.6 19222.9

T11.5 33003 1.02E+07 33220 33134.5 178465 171324 33066.3

T11.6 144160 9.51E+07 1.03E+07 140281 3.25E+06 699476 141240

T11.7 1.95E+06 2.50E+10 7.32E+09 2.28E+06 7.37E+09 5.52E+09 1.97E+06

T11.8 955539 1.50E+08 4.63E+07 955368 9.00E+07 8.84E+07 950468

T11.9 1.17E+06 1.65E+08 5.02E+07 1.44E+06 9.37E+07 9.40E+07 1.48E+06

T11.10 951985 1.67E+08 4.93E+07 1.04E+06 9.28E+07 8.76E+07 951090

T12 14.9149 54.4457 29.212 21.1637 40.235 37.9648 16.437

T13 24.5003 43.3834 37.7085 25.3219 39.9143 42.0761 20.3451

#ranks 4/0/1/0 0/0/0/9 0/0/0/0 1/0/0/0 0/0/0/0 0/0/0/0 1/0/0/0
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Table 5. Medians and numbers of the first, second, third, and last positions from the
Kruskal-Wallis tests.

F SMA30−003 SMA30−01 SMA30−03 SMA30−09 SMA90−01 SMAELBF0501

T01 11.8063 11.7076 11.7077 15.8266 11.7076 12.5458

T02 −21.5109 −21.2454 −16.513 −9.23923 −20.86 −20.0322

T03 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05

T04 13.7715 13.7721 13.7743 13.9269 13.7723 13.7709

T05 −34.1075 −31.6959 −31.5647 −26.2346 −34.1071 −31.8164

T06 −26.5001 −23.0059 −23.0058 −19.5105 −26.5 −27.4297

T07 0.9595 0.95364 0.93268 1.09094 0.93718 0.898908

T08 220 220 220 220 220 220

T09 5308.43 17890.4 78319.7 242346 18738.2 3800.93

T10 −21.0726 −20.7995 −21.1297 −17.6703 −20.844 −21.1787

T11.1 53090.2 53672.6 56177.5 4.42E+06 54509.5 52771

T11.2 1.10E+06 1.12E+06 1.11E+06 1.46E+06 1.08E+06 1114470

T11.3 15465.3 15465.9 15466.8 15482.1 15464.5 15459.8

T11.4 19176.7 19136 19127.3 19339.3 19152.1 19238.5

T11.5 33007.5 32982.2 33052.1 33131.5 33026.3 33006.1

T11.6 142094 141092 141602 144746 138739 138871

T11.7 2.00E+06 1.97E+06 1.97E+06 2.80E+06 1.98E+06 1963690

T11.8 952147 950708 955232 1.04E+06 956158 947945

T11.9 1.48E+06 1.55E+06 1.52E+06 1.76E+06 1.49E+06 1438560

T11.10 950990 951167 954447 1002460 954262 948665

T12 16.5118 16.5185 17.6693 21.304 15.392 16.0985

T13 20.6651 19.4512 22.4152 22.8457 21.3559 20.6505

#ranks 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/1/0 0/0/0/0

SMAE0501 SMAE0504 SMAEL0501 SMAELF0501 SMAL SMAR1 SMAELBF0504

11.7567 11.3342 11.2072 11.2072 12.3061 0.00069 11.3805

−24.1084 −20.9548 −20.1813 −22.9585 −21.046 −23.0163 −22.1525

1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05

13.7719 13.7714 13.7709 13.7708 13.7709 13.7749 13.771

−34.1064 −34.107 −34.1076 −34.1075 −34.1076 −34.1067 −34.1075

−27.4294 −23.0059 −27.4297 −27.4297 −27.4297 −27.4293 −23.0059

0.93762 0.92161 0.958043 0.995723 0.967852 0.985047 0.868851

220 220 220 220 220 220 220

3599.94 3400.98 35172.9 3463.97 49825 2791.99 3240.45

−21.0732 −21.1498 −21.169 −21.2479 −21.1566 −20.8572 −21.1738

53374.7 53072.9 681414 52727.6 510737 53841.2 53015.2

1.08E+06 1.08E+06 2501720 1122970 2512590 1080630 1157170

15459.3 15451.2 15459.8 15461.5 15469.5 15459.9 15457.8

19179.7 19202.6 19202.2 19204.2 19240.9 19257.9 19113.2

32985.4 32929.9 32991.2 32964.8 33039.7 32958.4 32987

140977 139251 140698 139627 141530 139240 138292

1.97E+06 1.96E+06 1959870 1955450 1961640 2005940 1954530

950450 950903 951100 948097 948755 950669 949000

1.54E+06 1.59E+06 1493920 1486720 1418850 1600570 1453950

948903 951417 953066 949195 949036 951877 949066

15.6797 15.3917 15.6844 16.0799 16.3311 15.1139 15.384

20.2318 19.8552 20.7516 18.7242 19.3124 21.6121 19.1586

0/1/1/0 1/3/1/0 0/1/0/0 0/0/0/0 1/0/3/0 1/1/0/0 0/0/0/0
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number of problems where the proposed variant performs significantly better
(row denoted ‘sig.’), similar, and worse (based on the Wilcoxon tests) are pro-
vided, too. For a better overview, the algorithms are ordered from the top left
(best algorithm) to the bottom right (worst algorithm).

We can see that the best performing method (compared with the original
SMA30−003) is SMARELF0501 which outperforms the original algorithm in 16
problems, and significantly in six problems (it is worse in four, and one signifi-
cantly). Very similar performance is provided by SMAELF0501 (the only differ-
ence is the missing perturbation mechanism) and SMAE0504. All newly proposed
methods using some of the enhanced mechanisms perform rather better com-
pared with the original SMA algorithm. Two variants performing rather worse
are SMAEL0501 and SMAL.

Table 6. Medians and numbers of the first, second, third, and last positions from the
Kruskal-Wallis tests.

F SMAR12 SMARELF0501 SMAZ SOMA TSA VSA

T01 11.2089 11.3343 11.3812 11.7076 1.53821 17.9793

T02 −22.6416 −22.006 −25.4959 −18.7298 −−5.16811 −10.1061

T03 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05 1.15E−05

T04 13.7721 13.8154 13.7726 14.3291 13.9016 13.7708

T05 −34.107 −34.1076 −34.1073 −32.3813 −20.8928 −26.5547

T06 −27.4293 −29.1658 −27.4294 −27.4297 −17.6841 −21.2481

T07 0.986185 0.953269 0.978724 1.11902 1.69353 0.848128

T08 220 220 220 220 220 220

T09 2839.38 2771.84 3545.74 221914 142246 26221.8

T10 −21.0291 −21.0599 −21.1223 −16.8617 −18.6144 −12.3067

T11.1 54634.5 53070.4 53347.6 1273590 84746800 53998.3

T11.2 1079220 1133150 1077930 3644920 5636820 1090110

T11.3 15456.3 15456.8 15463.1 15461.2 15460.2 15462.2

T11.4 19199.2 19192.3 19253.4 19219.6 19214.7 19134.2

T11.5 32996.3 32936.9 33017.1 32863.6 32947 33033.7

T11.6 138085 139193 140742 133372 136988 136941

T11.7 1969490 1986960 1957730 1978580 3118680 1955100

T11.8 953259 949153 951727 980383 2659120 948646

T11.9 1393940 1468450 1439210 1318600 3433670 1350050

T11.10 952516 949249 949768 988279 2645350 951881

T12 15.5863 14.5627 15.641 18.0423 28.3102 21.2392

T13 20.3867 19.4555 19.2042 22.8158 26.1825 30.3203

#ranks 0/0/0/0 0/0/0/0 0/2/2/0 2/0/1/0 1/1/0/0 1/1/0/0
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These results enable us to state that a simple linear reduction of the popu-
lation size (by one individual) provides a rather worse performance.

Table 7. Number of wins, equalities, and losses from the Wilcoxon tests.

SMA30−003 vs SMARELF0501 SMAELF0501 SMAE0504 SMAR1

B/S/W 16/2/4 15/3/4 14/2/6 10/2/10

B/S/W (sig.) 6/15/1 5/17/0 5/17/0 3/17/2

SMA30−003 vs SMAE0501 SMAR1−2 SMAELBF0501 SMAZ

B/S/W 15/2/5 12/2/8 15/2/5 14/2/6

B/S/W (sig.) 3/18/1 3/18/1 3/19/0 2/20/0

SMA30−003 vs SMAELBF0504 SMA180−003 SMAEL0501 SMAL

B/S/W 17/3/2 9/2/11 12/2/8 11/2/9

B/S/W (sig.) 2/19/1 2/19/1 1/18/3 1/18/3

SMA30−003 vs SMA90−01 SMA30−01 SMA30−03 SMA30−09

B/S/W 8/2/12 8/2/12 6/2/14 0/2/20

B/S/W (sig.) 1/18/3 0/19/3 0/17/5 0/2/20

6 Conclusion

In this paper, 17 variants of the SMA algorithm are compared with 16 nature-
inspired optimisers. All the methods are applied to 22 real-world problems to
provide a real performance for the real application. The results were statistically
compared by various methods. We can clearly state that most of the proposed
SMA variants enable solving some of the real-world problems in the best way.
Regarding the overall comparison of all the problems, all proposed SMA variants
achieved the first 11 positions based on the mean ranks. SMA variants on the first
three positions employed the linear reduction of the population size removing
more than one individual.

Concerning each problem separately, variants SMAELF0501, SMAELBF0501,
and SMARELF0501 provided the best median values in two or three problems. It
means that the linear population size reduction with more than one individual
removed and the Eigen transformation with ps = 0.5 and peig = 0.1 seem to be
a good choice.

Most of the newly proposed enhanced SMA variants perform significantly
better compared with the original SMA30−003. More enhancing approaches will
be studied in future work to achieve more promising results.
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Abstract. Although differential evolution (DE) is a well-established
optimisation method, proven on a wide variety of problems, modifica-
tions are proposed on a regular basis attempting to ever more improve its
performance. Typical avenues for improvement include the introduction
of new (mutation) operators or parameter control schemes. Another, less
common approach, is the incorporation of additional, complementary,
search mechanisms. This paper proposes one such mechanism, based on
the idea of producing new solutions akin to the manner of the SMOTE
algorithm producing synthetic minority instances in supervised machine
learning. The conducted experimental analysis showed it to be highly
competitive against comparable mechanisms on the CEC2014 benchmark
suite when incorporated into standard DE, whilst being especially ben-
eficial on simpler multimodal problems. Its incorporation into improved
DE variants, although still undoubtedly bringing value on these prob-
lems, does hint at complex interactions with already integrated enhance-
ments, suggesting that extending already enhanced algorithm variants is
not simple, to say the least.

Keywords: Auxiliary search mechanism · Differential evolution ·
Oversampling · SMOTE

1 Introduction

Differential evolution (DE) [22] is a stochastic population-based optimisation
method. It is one of the best-performing evolutionary algorithms (EAs) for
numerical optimisation, but also proved an effective tool for discrete and com-
binatorial optimisation problems. Like other common EAs, DE uses variation
operators, i.e. mutation and crossover, to sample the search space and selec-
tion to steer the search towards areas containing promising solutions. Due to
the notable performance demonstrated at its inception, a myriad of modifica-
tions and improvements were proposed. Most of these are related to the muta-
tion operation, which is the prominent distinguishing factor of DE [1], whereby
scaled differences between population members are used to attain perturbations
(hence the name). Accordingly, a wide range of mutation operators/strategies
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are available for the algorithm that differ not only in their complexity, but also
in their capability to promote exploration and exploitation (see, e.g., [1,17,25]).
Further, due to the sensitivity to used parameter configurations (common to
virtually all bio-inspired optimisation algorithms) and inherent limitations of
(offline) parameter tuning, various types of parameter control are typically inte-
grated to facilitate the search process throughout its different phases. Diverse
parameter control schemes were devised for DE that adjust the parameter val-
ues by different principles (see, e.g., [5,16]). Naturally, many high-performing DE
variants incorporate both of the aforementioned modifications (see, e.g., [17,25])
since different modifications affect the algorithm behaviour in different manners.

Modifications or enhancements of the mutation strategy do not alter the
search process in a groundbreaking way since these are still represented by linear
combinations of population members. Additionally, as the population converges,
exploration via mutation (and crossover) becomes limited [15], whilst there is
only so much parameter control can achieve to compensate for this. Thus, auxil-
iary or complementary search mechanisms are sometimes incorporated into the
algorithm. However, these are notably less common than the above-mentioned
improvements to the DE algorithm. Nevertheless, several such mechanisms can
be found in the literature (see, e.g., [6,15,19]) that attempt to complement the
search performed by the variation operators, and hence, achieve a synergistic
effect. Yet, not all are made equal and some are more successful in this endeav-
our than others. Ideally, such a mechanism should contribute both to explo-
ration and exploitation since a balance is paramount [23], but this is difficult to
achieve and focus on one or the other is usually inherent to such mechanisms.
In the extremes, too much focus on exploration hinders convergence, whilst too
much focus on exploitation leads to premature convergence or search stagna-
tion. Accordingly, the incorporation of such mechanisms must take into account
the nature of the employed variation operators i.e. whether they are aimed at
exploration or exploitation in order to gain a synergistic effect. In DE, this
relates mainly to the employed mutation strategy. The extent of the utilisation
of such mechanisms must also be considered. From this perspective, it should
always be viewed as an auxiliary search operator. This is to say the search must
be primarily conducted by the variation operators and guided by the selection
operator. Based on the aforementioned, the incorporation of such mechanisms
into the algorithm is not a straightforward task, let alone its design. This paper
represents an attempt to devise such a (complementary) search mechanism for
DE by taking into account the above-mentioned issues. The proposed mech-
anism takes inspiration from the SMOTE (Synthetic Minority Oversampling
Technique) algorithm [7] used in machine learning to handle the class imbal-
ance problem by producing synthetic data as convex combinations of available
minority samples. The proposal utilises essentially the same method for generat-
ing a new population of candidate solutions. The viability and efficiency of the
proposed mechanism was assessed in comparison with several DE variants incor-
porating different auxiliary mechanisms for enhancing the search process. Highly
competitive performance was observed on the CEC2014 benchmark functions.
The merit of the proposal was additionally demonstrated by incorporation into
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DE variants already enhanced by parameter control schemes and/or improved
mutation strategies. However, mixed results were obtained, suggesting that inter-
actions between different enhancements may be detrimental in some instances.

The rest of the paper is organised as follows. A concise outline of the DE
and SMOTE algorithms is given in Sect. 2 as well as a literature overview of
complementary search mechanisms that have been presented to enhance the per-
formance of DE. Section 3 presents the proposed search mechanism inspired by
SMOTE systematically and in detail. Section 4 describes the conducted experi-
mental analysis and provides an overview of the obtained results alongside dis-
cussions. The drawn conclusions and possible directions for future work are pre-
sented in Sect. 5

2 Background

Generally, a numerical optimisation problem can be defined by the pair (f, S),
where f : S → R is an objective function, and S = [smin, smax] ⊆ R

d the search
space. The optimal solution is represented by a point x� ∈ S such that ∀x ∈
S : f(x�) ≤ f(x).

2.1 Differential Evolution

Developed for numerical optimisation, DE proved itself in numerous occasions
and on diverse problems [8,18]. The structure of DE, as can be observed from the
outline in Algorithm 1, is in line with the general structure of other typical EAs.
Correspondingly, a population of candidate solutions (referred to as vectors) is
subjected to the application of mutation and crossover to create new solutions
that compete through selection for survival (due to the constant size of the
population). This is iteratively repeated until a termination criterion is met.

The population P (t) =
(
v1,t, . . . ,vNP,t

)
, where vj,t = (vj,t

1 , . . . , vj,t
d ) ∈ R

d

for j = 1, . . . , NP , of size NP is usually initialised uniformly at random at t = 0
inside the search space [2]. Each iteration/generation t > 0, and for each target
vector vj,t a donor/mutant is created as the linear combination

wj,t = vr1,t + F · (vr2,t − vr3,t), (1)

where F ∈ 〈0, 1] is the scale factor and r1, r2, and r3 are randomly chosen
indices such that j �= r1 �= r2 �= r3. The donor and target vector are crossed
over to produce the trial vector

yj,t
i =

{
wj,t

i if Uj,i ≤ CR or i = rj

vj,t
i else

, i = 1, . . . , d, (2)

where Uj,i is a uniform random number in [0, 1], CR ∈ [0, 1] is the crossover-
rate, and rj is chosen randomly from {1, . . . , d}. Eventually, the target and trial
vector compete (in terms of quality) for survival into the next generation t+1
i.e. selection is performed as
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vj,t+1 =

{
yj,t if f(yj,t) ≤ f(vj,t)
vj,t else

. (3)

It must be noted that linear combination given by Eq. (1) is not the only
mutation strategy available for DE, yet is rather often used. Unsurprisingly, due
to the importance of mutation, numerous other schemes exist (see, e.g., [8]). Also,
mutant vectors outside S may be created, which implies that bound constraint
handling is required (see, e.g., [4]). Rarely, instead of Eq. (2) a different crossover
operation is applied. Also worth noting is the necessity to appropriately set
the parameters NP , F , and CR to attain acceptable performance. Finally, the
described algorithm represents the standard or canonical DE algorithm, typically
denoted by DE/rand/1/bin.

Algorithm 1. Outline of the general DE structure
1: Set the population size NP , scale factor F , and crossover-rate CR;
2: Initialise the population P (0), t := 0;
3: while termination criterion not met do
4: for j := 1, . . . , NP do
5: create mutant/donor vector wj,t; % e.g. as per (1)
6: create trial vector yj,t; % e.g. as per (2)
7: select between vj,t and yj,t; % as per (3)
8: end for
9: t := t+ 1;

10: end while

2.2 Synthetic Minority Oversampling Technique (SMOTE)

The class imbalance problem is a well-known issue encountered in supervised
learning. Simply put, it refers to situations in which one class is substantially less
represented than the others. A frequent approach to this problem is oversampling
for which various algorithms exist with SMOTE being the best-known. Although
relatively simple, it proved its effectiveness on countless problems [12]. An outline
of the SMOTE algorithm is provided in Algorithm 2. It generates a given number
of synthetic instances from each available minority sample based on its nearest
neighbours (in terms of Euclidean distance) as an attempt to better represent
the minority class, and thus, make learning from the dataset easier.

For each sample of the minority class xj ∈ M ⊂ X ⊆ R
d, a set number q of

synthetic instances is generated as the convex combination

zj,i = xj + Uj,i · (xn(j,i) − xj), i = 1, . . . , q, (4)

where Uj,i is a uniform random number in [0, 1], and xn(j,i) is randomly chosen
from the k-neighbourhood of xj (comprised of the k nearest samples in M).
Notably, the algorithm takes only the minority class into account, which may
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become an issue when the dataset has certain unfavourable intrinsic character-
istics, like overlap or small disjuncts [10]. Hence, an appropriate choice of the
parameters k and q may be crucial as these control the oversampling process.

Algorithm 2. Outline of the SMOTE algorithm
1: Extract minority class samples M ⊂ X;
2: Set the neighbourhood size k, and oversampling-rate q;
3: for all xj ∈ M do
4: determine k-neighbourhood;
5: for i := 1 → q do
6: create synthetic instance zj,i; % as per (4)
7: end for
8: end for

2.3 Literature Overview

As mentioned earlier, several works in the literature devised auxiliary search
mechanisms for DE to complement its search behaviour and, thereby, improve its
performance. Essentially, their aim is to enable the discovery of better solutions
or at least to reduce the computations required to find solutions of satisfactory
quality. Many of these mechanisms are represented by various other techniques
that are more or less related to optimisation, like data clustering, various types
of random walks, and opposition-based learning (OBL).

Rahnamayan et al. [19] introduced opposition-based learning into DE. The
proposed algorithm (ODE) uses opposite numbers during population initialisa-
tion and also to generate new populations during the search (termed “generation
jumping”). In particular, the initial population of ODE consists of NP best
solutions from the union of a randomly generated population and its opposite
population. Generation jumping is performed probabilistically, where the NP
fittest individuals are selected into the new population from the union of the
current one and its opposite. The notion of utilising opposite numbers to accel-
erate the optimisation process was later used in many other algorithms (see,
e.g., [14]). Additionally, Rahnamayan et al. [20] proposed a quasi-oppositional
DE algorithm (QODE) that is conceptually the same as ODE, but creates quasi-
oppositional points i.e. solutions instead of opposite ones. However, it was noted
that population diversity is affected more since quasi-oppositional solutions are,
generally, closer to current solutions than (true) opposite ones.

Further, Cai et al. [6] incorporated the k-means algorithm for data clustering
into DE (CDE) that acts as several multi-parent crossover operations. It period-
ically performs clustering of all solutions using only one iteration of the k-means
algorithm, whereby the found cluster centres represent new solutions competing
to enter the population. The population is updated by selecting the k best solu-
tions amongst the obtained cluster centres and k solutions that are randomly
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selected from the population itself. This clustering step is applied periodically as
to avoid rapid loss in population diversity and thereby premature convergence.

Zhan and Zhang [24] proposed a DE algorithm (DERW) that incorporates
a simple random walk (although, technically, not representing a true random
walk). It is built into the binomial crossover operator [see, Eq. (2)] so that a
trial vector component is set to a random value with a small given probability,
instead of representing the usual recombination of target and mutant vector
components. The probability is dynamically adjusted, so that this mechanism is
applied more often at earlier stages of the search, and less so later on. On the
other hand, in [15] a DE algorithm that incorporates macromutations (DEMM)
was proposed. Since they represent crossover of a given population vector with a
randomly generated vector, macromutations allow for more extensive exploration
of search space. In DEMM, they are performed instead of the standard mutation
and crossover operators with a dynamically adjusted probability.

There are significant distinctions amongst the aforementioned mechanisms,
which are mostly reflected in the way new solutions are created. Given their
differences and the lack of experimental comparisons between them in the lit-
erature, it is difficult to assess the most suitable one for a particular problem
(class). It should also be kept in mind that all those mechanisms introduce one
or more additional parameters that control their behaviour and, thereby, impact
the search process. Presumably, these need to be tuned to attain the best possi-
ble performance. In some cases, the associated parameters are adjusted, mostly
dynamically, to alleviate this issue. Although embedded into DE, the majority of
the reviewed mechanisms are performed independent of the standard variation
operators and can therefore be considered as auxiliary search operators. Hence,
they may be embedded into other, improved, variants of the DE algorithm as
needed, or even into other bio-inspired algorithms. It is therefore unsurprising
that some of these mechanisms are popular, like OBL, and have been applied to
a myriad of optimisation problems (see, e.g., [3,21]).

3 Proposed Mechanism for Differential Evolution

The proposed auxiliary search mechanism for DE takes inspiration in the
SMOTE algorithm. Simply put, a small number of solutions in the population
of the DE algorithm are oversampled to generate new ones. From a high-level
viewpoint this may seem straightforward since the convex combination (4) can
be directly applied to the population of DE.

Remark 1. The convex combination (4) resembles whole arithmetic crossover
[11], but with two important distinctions: (a) the weight is a random number
and (b) the second parent is always chosen randomly from the k-neighbourhood
of the first.

Although perhaps simple at first glance, several critical questions need to be
answered before the incorporation of the mechanism is even attempted. These
questions are as follows:
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– When and how often should the oversampling be performed?
– Which solutions should be oversampled?
– How should new solutions enter the population?
– How should the parameters k and q be set?

For potential answers, at least to some of the above-mentioned questions, the
previous works, like [6,19,20], can be consulted. The auxiliary mechanisms in
these are employed at the end of each iteration of the DE algorithm either
probabilistically [19,20] or periodically [6]. Such an implementation does not
intervene with the standard algorithm elements, like e.g. the mechanism in [24]
does, since there is a clear line separating them from the auxiliary mechanism.
This also keeps the incorporation of the mechanism as simple as possible. The
whole population is used in these mechanisms to generate new solutions, but
this may be considered mechanism-specific. More important, in a general sense,
is the number of newly created solutions, which is equal to the population size
in [19,20], but is substantially smaller in [6]. On the one hand, a large number,
especially in conjunction with a high selection pressure during the replacement
may excessively bias the search. On the other hand, a small number may be
insufficient in that regard. Coincidentally, the same selection procedure is used
in all three mechanisms to determine which solutions enter the population and
survive into the next iteration (replacement). It exhibits a high selection pressure,
which is, however, not inherent to the procedure employed in DE, that exhibits
a mild selection pressure and is, thus, beneficial for maintaining diversity [18].

The aforementioned considerations have been taken into account in the design
of the proposed mechanism, which is outlined in Algorithm 3 as incorporated
into the standard DE algorithm. It is applied at the end of each iteration with a
small probability p. However, instead of the whole population, a relatively small
subset is selected randomly for oversampling. The subset comprises 25% of the
population and always includes the best-so-far solution as an attempt to balance
exploration and exploitation to some extent. A number of new solutions equal
to the population size is generated, which implies a oversampling-rate of q = 4.
Also essential to the oversampling is the neighbourhood size that is defined across
the whole population (not only to the selected solutions) and is determined as
k = 3. Newly generated solutions compete only with the one oversampled to
obtain them, which is in line with the common DE selection procedure.

Remark 2. From an evolutionary computation point of view, the proposal may
be considered a simple (μ + λ)-EA. Specifically, based on μ parents (solu-
tions selected for oversampling), λ offspring (new solutions) are created through
crossover (see Remark 1).

4 Experimental Analysis

A comprehensive experimental analysis was conducted to evaluate the proposed
mechanism in terms of potential to enhance the performance of DE. The anal-
ysis is divided into two parts. The first compares the proposal with different
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Algorithm 3. Outline of DE incorporating the proposed mechanism
1: Set parameters and initialise the population P (0), t := 0;
2: k = 3, q = 4;
3: while termination criterion not met do
4: for j := 1, . . . , NP do
5: perform mutation [Eq. (1)], crossover [Eq. (2)], and selection [Eq. (3)];
6: end for
7: t := t+ 1;

{Proposed search mechanism}
8: if Ut < p then
9: extract M = {vbest} ∪ {vr1, . . . ,vrn} from P (t), |M | = NP

4
;

10: for all vj ∈ M do
11: determine k-neighbourhood of vj in P (t);
12: for i := 1, . . . , q do
13: create new solution zj,i; % as per (4)
14: if f(zj,i) < f(vj) then
15: vj := zj,i;
16: end if
17: end for
18: end for
19: end if
20: return M into P (t);
21: end while

Table 1. Types of functions comprising the CEC2014 benchmark suite

Functions Type Search space

f1 ∼ f3 Unimodal S = [−100, 100]d

f4 ∼ f16 Simple multimodal
f17 ∼ f22 Hybrid
f23 ∼ f30 Composition

complementary/auxiliary search mechanisms. The second investigates the bene-
fit of incorporating the proposal into already improved algorithm variants. The
CEC2014 benchmark suite [13] for d = 10, and 30 was used in both parts. The
30 functions comprising the suite are categorised into four types as is concisely
shown in Table 1.

4.1 Setup

The experiments were conducted as defined in [13]. Accordingly, 51 independent
runs were performed, where each run was terminated after d ·104 function evalu-
ations (FEs) or earlier if an optimisation error below 10−8 was reached. In each
run, the population was initialised uniformly at random inside the search space
(S). The same parameter configuration i.e. NP = 100, F = 0.5, and CR = 0.9
was used for each algorithm. This configuration coincides with those used in the
respective papers on the competing algorithms.
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Table 2. Algorithms used with auxiliary search mechanisms

Algorithm Mechanism params. Note

DE – DE/rand/1/bin; Represents the standard/canonical DE
algorithm

ODE [19] Jr = 0.3 DE/rand/1/bin; OBL employed for population initialisa-
tion and the occasional creation of new solutions

QODE [20] Jr = 0.05 DE/rand/1/bin; QOBL employed for population initialisa-
tion and the occasional creation of new solutions

DERW [24] RW = 0.1 → 0.099 DE/rand/1/bin; Modified binomial crossover operator

DEMM [15] pc = 0.5 → 0.005,
pMM = 0.05 → 0.9

DE/rand/1/bin; Macromutations are occasionally per-
formed instead of common mutation and crossover

CDE [6] m = 10, k = U [2,
√

NP ] DE/rand/1/exp; Periodical clustering of the population
using one-step of the k-means algorithm to create new solu-
tions

DESOX p = 0.1 DE/rand/1/bin; Proposed search mechanism

Table 3. Results of the comparison of DE algorithms with auxiliary search mechanisms
on the CEC2014 functions for d = 10

Func. DE ODE QODE DERW DEMM CDE DESOX

↓ / ◦ / ↑ ↓ / ◦ / ↑ ↓ / ◦ / ↑ ↓ / ◦ / ↑ ↓ / ◦ / ↑ ↓ / ◦ / ↑ ¬
f1 ∼ f3 0/3/0 1/2/0 2/1/0 0/3/0 2/1/0 0/3/0 –

f4 ∼ f16 11/2/0 9/4/0 10/3/0 11/2/0 11/2/0 7/4/2 –

f17 ∼ f22 1/3/2 5/1/0 3/3/0 2/2/2 5/1/0 1/5/0 –

f23 ∼ f30 2/5/1 4/4/0 5/3/0 2/5/1 2/3/3 2/5/1 –

Total 14/13/3 19/11/0 20/10/0 15/12/3 20/7/3 10/17/3 –

SR 0.15 0.11 0.13 0.15 0.05 0.20 0.19

R 4.08 4.53 4.97 4.37 4.42 3.03 2.60

4.2 Comparison Against Other Mechanisms

A number of algorithms with various auxiliary search mechanisms have been
proposed in the literature. The mechanisms they incorporate differ in both com-
plexity and working principles. Hence, to put the benefit of the proposed mech-
anism into perspective, a comparison with some of these was performed. The
competing algorithms are briefly summarised in Table 2, whilst all have been
described earlier in the literature overview in more detail. The standard DE
algorithm is included as well to serve as baseline.

The results obtained in the experiments are concisely reported in Table 3
and 4. A summary of the differences in attained average optimisation errors
between the algorithm incorporating the proposal (DESOX) and the others is
shown per function category. More precisely, a summary of the applications of
the Wilcoxon signed-rank test [9] is shown, given a confidence interval of 95%.
Accordingly, statistically significant differences in favour of DESOX are denoted
by ↓, absences of such differences are denoted by ◦, whilst those favouring the
competition are denoted by ↑. Additionally, the average success-rate (SR) in
reaching the targeted optimisation error (< 10−8) and the average ranks (R)
obtained from the Friedman test [9] are given at the bottom of each table.
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Table 4. Results of the comparison of DE algorithms with auxiliary search mechanisms
on the CEC2014 functions for d = 30

Func. DE ODE QODE DERW DEMM CDE DESOX

↓ / ◦ / ↑ ↓ / ◦ / ↑ ↓ / ◦ / ↑ ↓ / ◦ / ↑ ↓ / ◦ / ↑ ↓ / ◦ / ↑ ¬
f1 ∼ f3 0/2/1 3/0/0 3/0/0 0/3/0 2/1/0 1/2/0 –

f4 ∼ f16 9/1/3 10/2/1 11/2/0 10/0/3 7/3/3 7/1/5 –

f17 ∼ f22 5/0/1 6/0/0 5/0/1 5/0/1 4/1/1 5/1/0 –

f23 ∼ f30 0/1/7 7/1/0 5/2/1 0/2/6 0/3/5 2/3/3 –

Total 14/4/12 26/3/1 24/4/2 15/5/10 13/8/9 15/7/8 –

SR 0.12 0.00 0.02 0.10 0.07 0.15 0.10

R 3.72 5.52 5.47 3.92 3.03 3.43 2.92

A brief glance at the average ranks reveals an overall advantage of DESOX

(lowest R). Surprisingly, the overall worst performance amongst the compet-
ing algorithms (indicated by the highest R) was not attained by the standard
algorithm, but by QODE which is closely followed by its conceptual predecessor
ODE. Although both were shown to be highly competitive on classical bench-
mark functions (see [19,20]), this is far from that case on the much more chal-
lenging functions considered here. This is also evident when viewed from a lower
level, where statistically significant differences on the vast majority of functions
are in favour of DESOX regardless of dimensionality. The closest competitor to
DESOX on the problem instances for d = 10 was CDE, which however, lost
its position to DEMM with the increase of problem dimensionality. Further, a
more detailed inspection of the reported results reveals that proposed mecha-
nism is especially suitable for simple multimodal functions (f4 ∼ f16) and in
most cases beneficial on hybrid functions (f17 ∼ f22). Although there are mostly
no meaningful differences on unimodal functions (f1 ∼ f3) amongst the compet-
ing algorithms, it is apparent that the proposal is not beneficial on composition
functions (f23 ∼ f30), which is most notable on the problem instances for d = 30.
Nevertheless, this does not reduce its viability and utility, given the favourable
effect achieved on the simple multimodal and hybrid functions. The competitive
performance of DESOX is also supported by the convergence graphs in Fig. 1,
which provide insight into the behaviour of the various algorithms. Shown are
the median optimisation errors in relationship to the performed FEs. As can be
observed, virtually all algorithms demonstrate a similar convergence behaviour
early into the search process. However, the algorithm incorporating the proposal
is typically able to take and maintain a considerable lead in the second half of
this process in many instances, again, most notably in the case of the simple
multimodal and hybrid functions.

4.3 Incorporation into Improved Algorithm Variants

It should be noted that the considerations about the incorporation or design of
auxiliary search mechanisms stated earlier do not take into account improve-
ments that are possibly already incorporated into the algorithm. Presumably,
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Fig. 1. Convergence graphs for DE algorithms with auxiliary search mechanisms on
several CEC2014 functions of different dimensionality

Table 5. Improved DE variants used for incorporating the proposed mechanism

Algorithm Improvement
params.

Note

JADE [25] p= 0.05 DE/current-topbest/1/bin; Adaptation of F and CR;
extended current-to-best/1 mutation strategy

jDE [5] τ1 = τ2 = 0.1 DE/rand/1/bin; Self-adaptation of F and CR

RNDE [17] Nlb = 3, Nub = 10 Asynchronous DE/neighbour/1/bin; adaptive neighbour-
based mutation scheme; Adaptation of CR

aDE [16] – DE/rand/1/exp; Self-adaptation of F and CR
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Table 6. Results on the impact of amending improved DE variants with the proposed
mechanism on the CEC2014 functions for d = 10

Func. JADE �SOX jDE �SOX RNDE �SOX aDE �SOX

↓ / ◦ / ↑ ¬ ↓ / ◦ / ↑ ¬ ↓ / ◦ / ↑ ¬ ↓ / ◦ / ↑ ¬
f1 ∼ f3 0/3/0 – 0/3/0 – 0/3/0 – 0/3/0 –

f4 ∼ f16 8/5/0 – 8/5/0 – 8/4/1 – 7/5/1 –

f17 ∼ f22 3/1/2 – 6/0/0 – 1/3/2 – 5/1/0 –

f23 ∼ f30 1/6/1 – 2/5/1 – 2/5/1 – 2/5/1 –

Total 12/15/3 – 16/13/1 – 11/15/4 – 14/14/2 –

SR 0.18 0.18 0.17 0.21 0.21 0.22 0.19 0.22

R+/R− 193.0/272.0 ¬ 42.5/392.5 ¬ 158.5/276.5 ¬ 102.5/362.5 ¬

Table 7. Results on the impact of amending improved DE variants with the proposed
mechanism on the CEC2014 functions for d = 30

Func. JADE �SOX jDE �SOX RNDE �SOX aDE �SOX

↓ / ◦ / ↑ ¬ ↓ / ◦ / ↑ ¬ ↓ / ◦ / ↑ ¬ ↓ / ◦ / ↑ ¬
f1 ∼ f3 0/2/1 – 0/3/0 – 1/2/0 – 0/2/1 –

f4 ∼ f16 6/6/1 – 7/5/1 – 9/3/1 – 8/4/1 –

f17 ∼ f22 1/5/0 – 1/1/4 – 4/0/2 – 1/0/5 –

f23 ∼ f30 0/3/5 – 2/2/4 – 0/2/6 – 1/2/5 –

Total 7/16/7 – 10/11/9 – 14/7/9 – 10/8/12 –

SR 0.19 0.17 0.14 0.13 0.14 0.14 0.16 0.15

R+/R− 203.0/262.0 ¬ 267.5/197.5 ¬ 194.0/241.0 ¬ 287.5/147.5 ¬

this could represent an additional obstacle due to unpredictable interactions
between the already present improvement(s) and the search mechanism to be
introduced. Thus, with the aim of providing insight into possible issues related
to this, a number of improved DE variants were used for the additional incorpo-
ration of the proposal. The selected DE variants, summarised in Table 5, include
various improvements and thus represent a diverse testbed.

The results obtained in the pair-wise comparisons are reported in Table 6
and 7, where the algorithm variants amended with the proposed mechanisms are
given to the right of the original and are denoted by �SOX . The same presentation
of the results is employed as previously. However, instead of the results of the
Friedman test for multiple comparisons, the results of Wilcoxon test for pair-wise
comparisons are shown at the bottom of these tables (R+/R−).

As may be observed, the presented results are not clear cut. Specifically, there
is a discrepancy between the results obtained on problem instances for d = 10
and those obtained on the same for d = 30. Although the amended JADE and
RNDE show favourable performance compared to their “unamended” counter-
parts (R+ < R−), this is not the case for jDE and aDE. The clear advantage of
the amended versions of the latter on problems for d = 10 is turned into a dis-
advantage with the increase of problem dimensionality. The disadvantage on the
problem instances for d = 30 is mainly reflected in a detrimental effect of the pro-
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Fig. 2. Convergence graphs for improved DE variants and their amended counterparts
on several CEC2014 functions of different dimensionality

posal on the hybrid and composition functions. On the upside, a positive impact
on the simple multimodal functions is still maintained, which corroborates the
utility of the proposal on this type of problems. The results support the presump-
tion that the extension of already improved algorithm variants is not straightfor-
ward and shed some light on the unpredictability of interactions between algo-
rithm extensions. Both jDE and aDE integrate only parameter control schemes.
Yet, besides parameter control, JADE and RNDE, include enhanced mutation
strategies, but the incorporation of the proposal was still beneficial. An answer
as to why this is the case is difficult to obtain, to say the least. Nonetheless,
this suggests that synergistic effects from such extensions/amendments should
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not be assumed a priori. Also, a similar observation was made in [1] with regard
to the incorporation of an enhanced mutation scheme. Further insight into the
effect of incorporating the proposal into the improved DE variants is provided
by the convergence graphs in Fig. 2. In many cases, an impact on the behaviour
of the algorithms in terms of increased convergence-rate is noticeable, mostly in
the later phases of the optimisation process. This agrees with the observations
made in the previous comparison.

5 Conclusion

Extending a well-established optimisation algorithm is by no means an easy task,
as it requires careful consideration regarding any modification. Search mecha-
nisms which do not alter the structure of the original algorithm but attempt to
complement its search behaviour lend themselves reasonably well to achieving
this task. One such mechanism for DE is proposed in this paper. The proposal
utilises the principle of synthetic minority instance creation from the SMOTE
algorithm. In this application context, a small number of population members
acts as the minority and is oversampled to create new solutions competing for
survival. The results showed its effectiveness when compared to various other
auxiliary mechanisms from the literature on the CEC2014 benchmark functions
of different dimensionality. It notably outperformed the competition on the sim-
ple multimodal and exhibited beneficial behaviour on the hybrid functions in
most cases, whilst lacklustre behaviour, to some extent, could be observed on
the composition functions. When incorporated into already improved DE vari-
ants, its beneficial effects on the simple multimodal problems did not subside.
However, for some of the improved DE variants and types of problems a detri-
mental effect was observed with increasing problem dimensionality, which implies
that extending already improved (DE) algorithm variants brings further chal-
lenges, since the introduction of any auxiliary search mechanisms could cause
unpredictable interactions with already present enhancements.

In the end, the presented mechanism is only a single possible interpretation
of SMOTE ideas in the context of optimisation algorithms. Different interpreta-
tions, e.g. considering which population members are oversampled (the meaning
of minority), how new solutions are introduced into the population or even the
meaning of the neighbourhood, could influence the behaviour of this mechanism
considerably and are certainly worth exploring further. As stated earlier, the
proposal is beneficial for certain types of functions/problems. It would be inter-
esting to see whether the changes to the mechanism render it more suitable to
other types of problems as well. On the other hand, applying the proposed algo-
rithm on real-world problems stemming from machine learning, such as feature
selection or RBFN model design could be interesting, as they represent various
types of multimodal problems. Delving deeper into population diversity or esti-
mating the usefulness of the mechanism in terms of the number of solutions that
are introduced into the population could shed further light into its behaviour
and, perhaps, provide some more explanations to its advantages and drawbacks.
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Abstract. Certain combinatorial optimization problems with binary
representation require the candidate solutions to satisfy a balancedness
constraint (e.g., being composed of the same number of 0s and 1s). A
common strategy when using Genetic Algorithms (GA) to solve these
problems is to use crossoveer and mutation operators that preserve bal-
ancedness in the offspring. However, it has been observed that the reduc-
tion of the search space size granted by such tailored variation operators
does not usually translate to a substantial improvement of the GA perfor-
mance. There is still no clear explanation of this phenomenon, although
it is suspected that a balanced representation might yield a more irreg-
ular fitness landscape, where it could be more difficult for GA to con-
verge to a global optimum. In this paper, we investigate this issue by
adding a local search step to a GA with balanced operators, and use it
to evolve highly nonlinear balanced Boolean functions. We organize our
experiments around two research questions, namely if local search (1)
improves the convergence speed of GA, and (2) decreases the population
diversity. Surprisingly, while our results answer affirmatively the first
question, they also show that adding local search actually increases the
diversity among the individuals. We link these findings to some recent
results on fitness landscape analysis for problems on Boolean functions.
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1 Introduction

There exist three common approaches for constraint handling in the literature
of Genetic Algorithms (GA): incorporate a penalty factor in the fitness function
that punishes deviations from the desired constraints, use ad-hoc representa-
tions and variation operators, or employ repair operators. Penalty factors are
fairly simple to implement and can be employed virtually in any optimization
problem, once a suitable notion of distance from the required constraints has
been defined. However, penalty factors can also be wasteful, since a GA may
spend a great amount of fitness evaluations to satisfy them, driving the search
effort away from the main optimization objective. The second approach requires
designing suitable crossover and mutation operators, so that feasible parents
produce feasible offspring. This makes the GA explore a smaller search space,
which in principle should lead to better performance, since the fitness budget is
entirely used to evolve feasible solutions only. Repair operators also make the
GA to explore only the feasible space, although their approach is to transform
invalid solutions into valid ones.

In this work, we focus on the second approach for handling balancedness
constraints, namely when the binary representation of the candidate solutions
must have a fixed number of ones. Such a constraint is relevant in several opti-
mization problems related to cryptography, coding theory and combinatorial
designs. To the best of our knowledge, Lucasius and Kateman [5] were the first
to investigate balancedness-preserving crossover operators in GA, applying them
to the subset selection problem. Millan et al. [12] used GA to evolve balanced
Boolean functions with good cryptographic properties such as high nonlinearity
and low deviation from correlation immunity. To this end, the authors devised
a counter-based crossover operator that preserved the balancedness of the par-
ent Boolean functions. Balanced crossover operators have also been designed for
other optimization problems such as portfolio optimization [2,3] and multiob-
jective k-subset selection [11]. Further extensions of this approach include the
design of balancedness-preserving operators for non-binary candidate solutions
with non-binary representations [8,9] or for matrix-based representations where
each column needs to be balanced [10].

More recently, we carried out in [6] a rigorous statistical investigation of three
balanced crossover operators against different optimization problems related
to cryptography and combinatorial designs. We found that balanced operators
indeed give an advantage to GA over a classic one-point crossover coupled with a
penalty factor. Hence, these results seem to confirm the aforementioned principle
that reducing the search space by means of ad-hoc variation operators improves
the GA performance. Nonetheless, the improvement is not substantial and does
not scale well with respect to the problem size. This is especially evident when
comparing a GA based on balanced crossover operators with other metaheuris-
tics such as Genetic Programming (GP). In general, it has been observed that
GP converges more easily to an optimal solution than GA on problems where
balanced solutions are sought [9,10,14].
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Clearly, the particular encoding of the candidate solutions used for ad-hoc
operators can change the fitness landscape of a particular optimization prob-
lem. Indeed, one of the possible explanations for the meagre improvement of
GA when using balanced crossover operators is that the resulting fitness land-
scape becomes more irregular. Hence, although searching a smaller space of fea-
sible solutions, the GA could get stuck more easily on local optima. We started
to investigate this hypothesis in [7] by considering an adaptive bias strategy
where the counter-based crossover of [12] is allowed to produce partially unbal-
anced Boolean functions. The rationale is that, by slightly enlarging the search
space, the GA might escape more easily from local optima, thus improving its
explorability. Yet, the results showed that even this strategy provides only a
marginal improvement in the GA performance.

In this paper, we further investigate the scarce improvement of GA with
balanced crossover operators by augmenting them with a local search step. In
particular, we consider the evolution of highly nonlinear balanced Boolean func-
tions as an underlying optimization problem, for which an efficient local search
move has already been developed in [13]. We perform an experimental evaluation
of the three balanced crossover operators in [6] by combining them with three
variants of local search. The first variant is the baseline GA where no local search
is performed. The second variant applies only a single step of local search on a
new offspring individual created through balanced crossover and mutation. The
third variant, finally, is a steepest ascent strategy, which performs local search
on an offspring individual until a local optimum is reached. The experiments are
performed for Boolean functions of 6 ≤ n ≤ 9 variables.

To assess the influence that local search has on the GA performance, we con-
sider two research questions. The first one is whether local search improves the
convergence speed of GA to a local optimum. As expected, the answer given by
our experimental results is positive, especially for the third variant employing
the steepest ascent strategy. On the other hand, the second research question is
whether the use of local search decreases the diversity in the population, as mea-
sured by the pairwise Hamming distance. Indeed, a natural hypothesis for the
scarce improvement of GA performance when using balanced crossover oper-
ators is that the solutions in the population become too similar, determining
a premature convergence to a local optimum. Therefore, one would expect that
such a phenomenon is magnified by augmenting the GA with a local search step.
Surprisingly, our results indicate that the use of local search actually increases
the population diversity. We discuss this interesting finding by linking it to a
recent work on fitness landscape analysis for problems related to cryptographic
Boolean functions [4]. In particular, the fact that the individuals in the pop-
ulation tend to be quite different among each other seem to indicate that the
fitness landscape of balanced Boolean functions is characterized by many iso-
lated local optima. This in turn suggests that a possible way to improve the GA
performance is to use a different initialization strategy than the usual one where
candidate solutions are generated uniformly at random.
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The rest of this paper is organized as follows. Section 2 covers all background
definitions related to balanced crossover operators and Boolean functions that
the contributions of this paper are based upon. Section 3 defines the optimization
problem of evolving highly nonlinear balanced Boolean function, and describes
the local search algorithm used as a further optimization step after balanced
crossover and mutation. Section 4 presents the experimental evaluation of our
approach, discussing the experimental settings adopted and the obtained results.
Finally, Sect. 5 concludes the paper by summarizing the main findings and point-
ing out directions for further research on the topic.

2 Background

In this section, we first describe the three balanced crossover operators intro-
duced in [6], which we will use in our investigation. Next, we recall the basic
notions related to Boolean functions and their cryptographic properties, that
will be the basis of the underlying optimization problem for our experiments.

As a general notation, in what follows we denote by F2 = {0, 1} the finite
field with two elements, and F

n
2 is the set of all n-bit strings, which is endowed

with a vector space structure. In particular, the sum of two vectors x, y ∈ F
n
2

corresponds to their bitwise XOR x ⊕ y, while multiplication of x ∈ F
n
2 by a

scalar a ∈ F2 amounts to computing the logical AND of a with each coordinate
of x. The scalar product of two vectors x, y ∈ F

n
2 is defined as

⊕n
i=1 xiyi, i.e. the

XOR of all bitwise AND of the two vectors. Given [n] = {1, · · · , n} for all n ∈ N,
the Hamming distance of x, y ∈ F

n
2 is defined as dH(x, y) = |{i ∈ [n] : xi �= yi}|,

i.e. the number of coordinates where x and y differ. The Hamming weight of a
vector x ∈ F

n
2 , denoted by wH(x), is the Hamming distance of x from the null

vector 0, or equivalently the number of ones in x. The number of binary strings
with a fixed Hamming weight k ∈ [n] is the binomial coefficient

(
n
k

)
, since it is

equivalent to the number of k-subsets of [n], when one interprets a vector x ∈ F
n
2

as the characteristic function of a subset.

2.1 Balanced Crossover Operators

We start by giving a brief description of the three balanced crossover operators
that we will use in our experiments. Further details about them and their pseu-
docode can be found in our previous paper [6]. In the remainder of this paper,
we assume that the Hamming weight that we want to preserve is exactly half of
the string length, i.e. the individuals in the population have an equal number of
zeros and ones in their representation.

Counter-Based Crossover. The first operator employs two counters cnt0 and
cnt1 to keep track respectively of how many zeros and ones the child individual
has during the crossover process. Specifically, given two parent bitstrings p1, p2 ∈
F
2m
2 such that wH(p1) = wH(p2) = m, a child chromosome c ∈ F

2m
2 is obtained

by randomly copying either the i-th bit of p1 or p2 with uniform probability, for
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each position i ∈ [2m]. Then, cnt0 or cnt1 is incremented depending on the value
copied in the child. When one of the two counters reaches the threshold weight
m, the remaining positions in the child are filled with the complementary value.

A natural question about this crossover operator is whether setting the last
bits to a fixed value to preserve balancedness does not introduce a bias towards
certain solutions in the search space. We considered this issue in our previous
work [6], by comparing the basic “left-to-right” version of the operator described
above with another one that randomly shuffles the order of the positions to be
copied in the child chromosome. Results showed that in most cases there is
no significant difference among the two variants, while in certain instances the
shuffling strategy fares even worse than the basic “left-to-right” version. Hence,
we used the latter for the experiments of this paper.

Zero-Length Crossover. The second crossover operator considered in our
investigation is based on a different representation of the candidate solutions,
namely their zero-length encoding. Formally, given a n-bit string x with n = 2m,
the zero-length encoding of x is a vector r of length m+1 where each coordinate
ri represents the number of consecutive zeros (or equivalently, the run length of
zeros) between two consecutive ones.

To correctly represent a balanced bitstring, the values in the zero-length
encoding vector must sum to m. Sticking to our previous example, the zero-
length encodings of p1 = (0, 1, 0, 1, 0, 1, 1, 0) and p2 = (1, 0, 0, 0, 1, 0, 1, 1) are
respectively r1 = (1, 1, 1, 0, 1) and r2 = (0, 3, 1, 0, 0). At each position the zero-
length crossover randomly copies the zero-length value of the first or second
parent with uniform probability. An accumulator variable is used to represent
the partial sums of the zeros’ run lengths in the offspring chromosome. If the
threshold value m is reached, the remaining positions of the offspring’s zero-
length vector are filled with zeros; thus, the bitstring representation will only
contain ones in the last positions. Otherwise, the last coordinate of the zero-
length vector is filled with the value that balances the sum to m; accordingly,
the bitstring representation of the offspring will contain only zeros in the last
positions.

Map-of-Ones Crossover. The third crossover considered in our experiments
leverages on an integer-based representation of the candidate solutions. In
particular, the map-of-ones is simply the vector that indicates the positions
of the ones in a bitstring. Using our examples above, the map of ones for
p1 = (0, 1, 0, 1, 0, 1, 1, 0) and p2 = (1, 0, 0, 0, 1, 0, 1, 1) are b1 = (2, 4, 6, 7) and
b2 = (1, 5, 7, 8), respectively. Similarly to the previous two operators, the map-
of-ones crossover works coordinate-wise by randomly copying either the value
of the first or second parent’s zero-length vector in the child chromosome. The
only constraint that is enforced is that the map of ones of the child chromosome
cannot have duplicate values, something that can occur if the bitstrings of the
two parents have value one in the same position. For this reason, the crossover
first computes a list of common positions between the two parents, and then
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checks whether the selected value has already been inserted before in the child
or not. If this is the case, then the value from the other parent is copied instead.

2.2 Boolean Functions

We now describe the essential notions related to the optimization problem under-
lying our experiments on local search. A Boolean function of f : Fn

2 → F2 is a
mapping f : Fn

2 → F2, i.e. a function that associates to each n-bit vector a single
output bit, 0 or 1. The most common way to represent such a function is via its
truth table: assuming that the vectors of Fn

2 are lexicographically ordered, the
truth table of f is the 2n-bit vector

Ωf = (f(0, · · · , 0), f(0, · · · , 1), · · · , f(1, · · · , 1)) ,

i.e. the vector that specifies the output value f(x) for each possible input vector
x ∈ F

n
2 . A fundamental criterion for Boolean functions used in stream ciphers

is that the truth table must be a balanced string, i.e. wH(f) = 2n−1, to resist
basic statistical attacks.

Another way to uniquely represent a Boolean function commonly used in
cryptography is the Walsh transform. Formally, the Walsh transform of f : Fn

2 →
F2 is the map Wf : Fn

2 → Z defined as:

Wf (a) =
∑

x∈F
n
2

(−1)f(x)⊕a·x =
∑

x∈F
n
2

(−1)f(x) · (−1)a·x , (1)

for all a ∈ F
n
2 . The coefficient Wf (a) measures the correlation between f and

the linear function defined by the scalar product a ·x. A second important prop-
erty for Boolean functions used in symmetric cryptography is their nonlinearity,
which is defined as:

nl(f) = 2n−1 − 1
2

max
a∈F

n
2

{|Wf (a)|} . (2)

We refer the reader to [1] for further cryptographic implications and bounds
related to the nonlinearity property. Here, we just limit ourselves to specify that
the nonlinearity should be as high as possible. Taking into account also the bal-
ancedness property mentioned above, this gives rise to the following optimization
problem:

Problem 1. Let n ∈ N. Find a n-variable Boolean function f : Fn
2 → F2 that

is balanced and has maximum nonlinearity, as measured by the fitness function
fit(f) = nl(f).

Remark that it is still an open question to determine the maximum nonlin-
earity value attainable by a balanced Boolean function for n > 7 variables [1].
We will tackle Problem 1 in the experimental part of the paper using various
combinations of balanced GA and local search.
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3 Local Search of Boolean Functions

To perform local search, the first step is to define an elementary move between
two candidate solutions. This further subsumes the notion of a topology over the
search space, in order to give a precise meaning to the neighborhood of a solution.
In our case, since we are dealing with fixed-length binary strings to represent
the truth tables of Boolean functions, the most obvious choice is to adopt the
topology induced by the Hamming distance. Therefore, the neighborhood of a
candidate a solution f : F

n
2 → F2 represented by its truth table Ωf ∈ F

2n

2

would be the set of all truth tables at Hamming distance 1 from Ωf . Hence,
the elementary move from f to a neighboring solution f ′ would be obtained by
complementing a single bit in Ωf . However, such a move would break the bal-
ancedness constraint, since the Hamming weight would change by ±1. Hence,
similarly to the mutation operator employed in our previous paper [6], we con-
sider the swap between two different values in Ωf as an elementary move for our
local search procedure. In this way, the Hamming weight of the new candidate
solution will still be 2n−1.

Concerning the Walsh transform, a single swap in the truth table of f induces
a change Δ(a) ∈ {−4, 0,+4} for each coefficient a ∈ F

n
2 , that can be computed

with the following result proved in [13]:

Lemma 1. Let f : Fn
2 → F2 be a n-variable Boolean function, and assume that

y, z ∈ F
n
2 are such that f(y) �= f(z). Define f∗ : F

n
2 → F2 as the function

obtained by swapping the values f(y) and f(z) in the truth table of f Then, for
each a ∈ F

n
2 , the difference of the Walsh coefficients Wf (a) and Wf∗(a) equals:

Δ(a) = [(−1)f(y) − (−1)f(z)][(−1)a·z − (−1)a·y] . (3)

Consequently, there is no need to recompute the Walsh transform from scratch
when swapping two values in the truth table of f . Using Lemma 1, each coeffi-
cient can be updated from the old one as Wf ′(a) = Wf (a) + Δ(a). This allows
one to efficiently explore the neighborhood of a given function, since in this way
the fitness of a single swap can be evaluated in linear time with respect to the
length of the function’s table. On the other hand, recomputation from scratch
would entail a quadratic complexity by using the fast Walsh transform algo-
rithm [1], which is the one employed by the GA to evaluate the fitness of a new
individual created through crossover and mutation.

In summary, a single iteration of the GA combined with a local search step
works as follows:

1. Select a pair of parents p1, p2 from the population.
2. Apply crossover and mutation to obtain a new balanced individual c.
3. Evaluate the fitness of c by computing the Walsh transform in Eq. 1 using

the fast algorithm [1].
4. Apply one or more steps of local search to c as follows:

(a) Generate the 2-Improvement set of c, i.e. find all swaps in c such that
the nonlinearity increases by 2. Use Eq. 3 to efficiently update the Walsh
transform for each swap.
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(b) Pick a swap in the 2-Improvement set and apply it to c, updating the
fitness value as Wc′(a) = Wc(a) + Δ(a) for all a ∈ F

n
2 .

Since each swap in the improvement set increases the nonlinearity by 2, there is
no ground to drive the selection. In our experiments, we pick the first generated
swap. This is similar to the strategy adopted in [4] where local search was used
to create the Local Optima Network of the search space of Boolean functions.

4 Experiments

As discussed in the Introduction, our aim is to assess the influence of local search
as a further optimization step in the loop of a GA with balanced crossover. To
this end, we consider the following two research questions:

– RQ1: does local search improve the convergence speed of GA, i.e. does it
allow to reach a local optimum in less fitness evaluations?

– RQ2: does local search decrease the diversity of the GA population?

Remark that we deliberately excluded any research question pertaining the
improvement of the best fitness. Indeed, it has already been remarked that bal-
anced GA usually have a lower performance than other metaheuristics on combi-
natorial optimization problems such as Problem 1. Moreover, in [7] we observed
that augmenting a balanced GA with a partially unbalanced crossover strategy
does not improve significantly the best fitness. Considering also the evidence
gathered in [12] where a balanced GA combined with hill climbing was used,
our hypothesis is that local search step does not make a significant difference as
well. As we will show in the next sections, this hypothesis was experimentally
confirmed.

Nevertheless, it is reasonable to expect that adding local search in the loop
may help GA to converge more quickly toward a local optimum, which motivates
RQ1. Furthermore, crossover tends to exploit the genetic information of the
current population, producing offspring individuals that resemble their parents,
and thus decreasing the population diversity. Therefore, one may also expect
that a local search step would magnify this effect, by tweaking the candidate
solutions toward the nearest local optimum. This argument motivates RQ2.

In what follows, we describe the experimental settings used to investigate our
research questions and the results obtained from our experiments.

4.1 Experimental Setting

For our experiments, we tested three variants of local search, namely:

– LS0: No local search, which corresponds to the basic balanced GA.
– LS1: Single-step local search, where only a single swap is performed on a new

individual.
– LS2: Steepest ascent local search, with swaps performed until a local optimum

is reached.
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We considered counter-based (CX1), zero-length (CX2) and map-of-ones
(CX3) crossover. As for mutation, we adopted the simple swap-based operator
used in [6]. Hence, we tested a total of 9 combinations of crossover operators
and local search variants. Concerning the problem instances, we performed our
experiments on Boolean functions of 6 ≤ n ≤ 9 variables. Notice that the number
of Boolean functions of n variables is 22

n

, which means that n = 6 is the smallest
problem instance from where it makes sense to apply metaheuristics, since it
is not amenable to exhaustive search. The same holds even if we restrict our
attention to the space of balanced Boolean functions, whose size is

(
2n

2n−1

)
: for

n = 6 variables, the total amount of candidate solutions to search exhaustively
would be approximately 1.83 · 1019.

For the GA, we carried out a preliminary sensitivity analysis by performing
small perturbations on the parameters that we adopted in our previous paper [6],
to assess if significantly different results would arise. As this did not happen, we
sticked to the same GA parameters. In particular, we used a population of 50
individuals, evolved for a budget of 500 000 evaluations, using a steady-state
breeding policy with tournament selection of size t = 3: upon drawing 3 random
individuals, the best two are crossed over, and the newly created offspring under-
goes mutation with probability 0.7. After calculating the fitness, local search is
performed according to the chosen variant, and then the obtained individual
replaces the worst one in the tournament. Finally, each experiment (i.e. com-
bination of problem instance, crossover operator and local search policy) was
repeated for 30 independent runs to obtain statistically sound results. To com-
pare two combinations of crossover operator and local search, we adopted the
Mann-Whitney-Wilcoxon test, with the alternative hypothesis that the corre-
sponding two distributions are not equal, with a significance value α = 0.05.

4.2 Results

As expected, the use of local search did not improve significantly the performance
of the GA, independently of the underlying combination of crossover and local
search policy. The only significant differences arose with the largest instance of
n = 9 variables, where the steepest ascent policy combined with the counter-
based and the map-of-ones crossover consistently found functions with a slightly
higher nonlinearity of 232 instead of 230 from the other combinations. Since the
improvement is anyway too small, we avoid to report the distributions of the
best fitness for this case as well.

Figure 1 depicts the boxplots for the distributions of the number of fitness
evaluations required to reach the best fitness value obtained in each run. In gen-
eral, it can be observed that the use of local search does have a substantial effect
on the convergence speed of the GA towards a local optimum. This is particu-
larly evident in the case of n = 6 variables for all three crossover operators. For
n = 7 and n = 8, one can still see from the boxplot that the steepest ascent
strategy gives the fastest convergence under all three crossovers, while the situa-
tion is less clear for the single-step variant. Looking at the p-values heatmaps in
Fig. 2, one can indeed see that there are no significant differences between LS1
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(a) n = 6 (b) n = 7

(c) n = 8 (d) n = 9

Fig. 1. Boxplots for the distributions of fitness evaluations.

and LS0 for all three crossover operators. The situation seems to be reversed
for n = 9 variables, with the number of fitness evaluations required by the com-
binations that use the steepest ascent being higher than the variant where no
local search is used. Although this finding seems odd at a first glance, it can
be easily explained by the remark above on the best fitness. Since for n = 9
variables the steepest ascent strategy consistently finds Boolean functions with
higher nonlinearity than in the basic case, it is reasonable to assume that more
fitness evaluations are required to achieve them.

To investigate the solutions’ diversity, at the end of each run we computed
the Hamming distance of each pair of individuals in the population. Figure 3
reports the boxplots of the distributions for the median pairwise distance, while
Fig. 4 gives the corresponding p-value heatmaps.

The conclusions that one can draw from these results seem counterintuitive:
instead of decreasing the population diversity, the use of local search either does
not affect the diversity, or it even increases it in certain cases. For example,
one may see that for n = 6 there is no difference between the boxplots for
each considered crossover, except maybe for CX2 where the diversity slightly
drops with the steepest ascent policy. This is however not confirmed by the
statistical tests, in that no significant differences were observed. By considering
bigger instances, one can see that the local search actually starts to play a role
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Fig. 2. Heatmap of the p-values of the fitness evaluations.

in increasing the median distance. This is particularly evident from the boxplots
for n = 8 with the combination of counter-based crossover and steepest ascent,
but also for the map-of-ones. The difference becomes even more pronounced for
n = 9 variables, with the steepest ascent obtaining the boxplots with highest
median and smallest interquartile range for all three crossovers. This is confirmed
by significant differences in the corresponding heatmap. Moreover, in general
one can also observe that the zero-length crossover achieves the highest median
diversity for all problem instances, independently of the underlying local search
policy. Indeed, one can see that the central 3×3 square in each heatmap reports
non-significant differences in these cases.

4.3 Discussion

We now attempt to answer the two research questions formulated at the begin-
ning of Sect. 4 in the light of the obtained results.

Concerning RQ1, the answer seems to be positive: as our initial intuition
predicted, the use of local search in general increases the convergence speed
of a balanced GA towards a local optimum, independently of the underlying
crossover operator. Therefore, although there is no significant improvement in
the best fitness (except a slight one for n = 9 variables), local search allows to
reach the current best local optimum more quickly. This is somewhat expected,
especially when using a local search step with steepest ascent policy: as each
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(a) n = 6 (b) n = 7

(c) n = 8 (d) n = 9

Fig. 3. Boxplots for the distributions of the median pairwise distance between solutions
in the final population.

new individual created by GA undergoes local search until a local optimum
is reached, the population is quickly filled by candidates that represent local
optima, or candidate solutions close to them. Therefore, finding even better
local optima by crossing over highly fit individuals in the population might
become very unlikely already in the early stages of the optimization process.
However, this finding could also indicate that by increasing substantially the
fitness budget and the population size of the GA, maybe the best fitness could
also improve by employing the steepest ascent local search variant. The rationale
is that crossover and mutation could find something better in a large population
composed of many local optima obtained through steepest ascent.

The most interesting finding concerns instead RQ2. Contrary to our expecta-
tions, the use of local search has either little influence on the population diversity,
or it even contributes to increase the median Hamming distance among pairs of
individuals. This is surprising, as the most natural explanation for the poor
performance of balanced GA when compared to other metaheuristics was that
the population would converge quickly around a single local optimum, there-
fore decreasing the population diversity. On the other hand, our experiments
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Fig. 4. Heatmap of the p-values of the median pairwise distance between solutions in
the final population.

confirm that this is not the case, i.e. the final population is composed of many
different local optima that are far apart from each other in the search space. A
possible explanation of this phenomenon might be related to the shape of the
fitness landscape for this particular problem. Indeed, Jakobovic et al. [4] already
noticed that the Local Optima Networks (LONs) of generic Boolean functions
(i.e., without balancedness constraints) are characterized by a huge number of
isolated local optima. Although here we consider a restricted search space, it
might still be the case that the resulting fitness landscape has a similar prop-
erty, since it is a subset of the space of all Boolean functions. In particular, the
authors in [4] explained that, to construct a meaningful LON, they had to change
the initialization step of their hill climber, so that they could avoid ending up
with many isolated local optima. Instead of starting each search trajectory from
a completely random point, they employed a lexicographic sampling, where each
subsequent starting point would be generated in lexicographic order from the
first one, which was drawn at random.

Therefore, a possible insight from the discussion above is that the poor per-
formance of GA in evolving highly nonlinear balanced Boolean functions is not
only related to the underlying crossover operators, but also to the method used
to initialize the population. Indeed, in our experiments we used a basic initializa-
tion step where each individual is generated at random with uniform probability.
However, this is exactly what might contribute to cause a high median distance
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also in the final population, exacerbated by the use of local search, especially in
its steepest-ascent version. In future experiments, it would be interesting to test
different initialization method, such as the lexicographic sampling mentioned
above of [4], or other methods where the population is created by small random
tweaks from a single initial individual.

5 Conclusions

In this work, we investigated the effect of a local search step combined with
balanced GA to evolve highly nonlinear balanced Boolean functions. The moti-
vation was to analyze the possible causes of the poor performance of balanced
GA on this particular optimization problem, when compared to other meta-
heuristics such as GP. To this end, we set up our investigation by adding to the
GA with balanced crossovers proposed in our previous paper [6] a local search
strategy originally devised by Millan et al. [13]. We investigated three variants,
namely no local search, single-step local search, and steepest-ascent local search,
and applied it to the optimization of Boolean functions of 6 ≤ n ≤ 9 variables.
The investigation was centered around two main research questions: the first one
concerned whether the use of local search increased the convergence speed of a
balanced GA toward a local optimum. The second question asked if local search
decreases the population diversity, as measured by the median pairwise Ham-
ming distance between individuals. While our results answered affirmatively the
first question as expected, the answer to the second question surprisingly turned
out to be negative. In particular, local search either does not affect or even
increases the median distance in the population. We discussed this finding by
referring to a recent work on the fitness landscapes of Boolean functions [4], in
the form of Local Optima Networks. In particular, the main insight gained from
this discussion is that the poor performance of balanced GA might be connected
to the initialization method of the population, which right now generates each
individual independently with uniform probability.

Future experiments should consider other types of initialization, such as ran-
dom walk from a single initial individual, or lexicographic generation. A more
thorough tuning phase of the GA is also in order, to assess its sensitivity toward
the population size and mutation rate. Beside this, several other directions for
future research remained to be explored on the subject. Perhaps the most inter-
esting one, after the finding of this paper, involves the analysis of the fitness
landscape for the particular search space of balanced Boolean functions. Indeed,
the analysis of Local Optima Networks in [4] considered the space of all Boolean
functions, with no balancedness constraints. Therefore, it would be interesting to
repeat the analysis for balanced functions, to see if similar properties like many
isolated local optima still emerge. Further, we believe that it would be interest-
ing to augment GA with local search also for other optimization problems that
require balanced representations, such as the construction of bent functions and
orthogonal arrays already considered in our previous paper [6].
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Abstract. This study proposes a method for constructing networks with a small
total weighted length and total detour rate by mimicking human walking track
superposition. The present study aims to contribute to the scarce literature on mul-
tiple objectives, the total weighted length and the total detour rate, by allowing
branching vertices on weighted space. The weight on space represents the spatial
difference in the implementation cost, such as buildings, terrains, and land price. In
modern society, we need to design a new transportation networkwhile considering
these constraints so that the network has a low total weighted length that enables
a low implementation cost and a low total detour rate that leads to high efficiency.
This study contributes to this requirement. The proposedmethod outputs solutions
with various combinations of the total weighted length and the total detour rate. It
approximates the Pareto frontier by connecting inherent non-dominated solutions.
This approximation enables the analysis of the relationship between the weighted
space and the limit of effective networks the space can generate quantitatively.
Several experiments are carried out, and the result infers that the area with a huge
weight significantly affects the trade-off relationship between the total weighted
length and the total detour rate. Quantitatively revealing the trade-off relationship
between the total weighted length and the total detour rate is helpful in manage-
rial situations under certain constraints, including the budget, needed operational
performance, and so on.

Keywords: Network design · Self-organize · Pareto frontier · Weighted space ·
Random Delaunay network

1 Introduction and Related Work

Transportation networks play a key role in modern society. Typical networks, such as
highways, railways, and electric wires, make urban transportation efficient. Moreover,
there is a possible requirement of new networks, including hydrogen fuel pipelines and
quantum internet networks. These infrastructures should be designed from the view-
point of construction feasibility and transportation sustainability. Transportation net-
works require an enormous implementation cost consisting of construction cost, land
expropriation expenses, land compensation, and so on. The reduction of implementation
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cost makes the design more feasible. Simultaneously, the high efficiency of networks
makes transportation sustainable because of the decrease in the transportation cost based
on time or energy for conveying people or goods. Hence, a network developed in the
city is desired to have low implementation and transportation costs.

Designing a network in existing cities has to consider the spatial difference in imple-
mentation cost. Buildings are obstacles whereon links are forbidden to be made. Con-
struction cost escalate on steep terrain because of the construction difficulty. More-
over, the influence on the implementation cost is not only physical. Land expropriation
expenses and compensation differ due to land price, and the implementation cost changes
depending on the place. This study aims to develop a network design method that can
be used in this situation.

Herein, we measure two network indices. One is a total weighted length, which
we consider proportional to the implementation cost. The other is a total detour rate
proportional to the transportation cost. This study calls the implementation cost of the
unit length of a link the weight at a certain location. We define the function μ : R2 �→ R

as weight of points (x, y) ∈ R
2.We assume that the link construction cost is positive, that

is,μ(x, y) ≥ 0.Moreover, normalized by theminimumweight,μ(x, y) ≥ 1.Considering
a network G(V ,E) connecting D, where V is the set of vertices, E is the set of links,
and D ∈ V is the set of demand vertices that G must connect, we can define the total
weighted length Ltotal(G) and the total detour rate Dtotal(G) as the following Eqs. (1)
and (2):

Ltotal(G) =
∑

e∈E ∫
e
μ(x, y)dl. (1)

Dtotal(G) =
∑

u,v∈D ND(u, v|G)/
∑

v,u∈D ED(u, v). (2)

Here, dl denotes the infinitesimal length of link e on (x, y), ND(u, v|G) denotes the
shortest distance between u and v on G, and ED(u, v) denotes the Euclidean distance
between u and v. We assume that moving demands occur uniformly between demand
vertices, giving Eq. (2).

The network with the minimum total weighted length is the weighted Euclidean
Steiner minimum tree (weighted ESMT) [1, 2], and that with the minimum total detour
rate is the complete graph (CG), connecting each pair of D by a straight line. The
weighted ESMT has a higher total detour rate, and the CG has a higher total weighted
length. Hence, there is a trade-off relationship between Ltotal(G) and Dtotal(G). To build
a feasible and sustainable transportation network, we need to obtain a non-dominated
network of the two indices.

Some heuristic studies are tackling the problem without weight, based on inspira-
tion from natural network generation mechanisms. Among them is the self-organized
network on a green space denuded by human walking, referred to as the walking track
superposition network (WTSN). Some studies pay attention to the effectiveness of the
WTSN, and the simulation models are developed [3–6]. Notably, WTSNs are effective
in a magnitude similar to or greater than proximity graphs [6], conventionally consid-
ered ideal networks in terms of the total length and the total detour rate [7]. Moreover,
the network of amoeba connecting food sources is focused on in this context [8–10].
The mechanism of amoeba connecting food sources is modeled mathematically, and it
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can connect demand points by an effective network [11]. Another research analyzes the
effectiveness of the network of strings loosely connecting demand points and gathering
together when they contain water [12]. Considering the difficulty of obtaining the exact
solution, the heuristic methods inspired by natural phenomena generating an effective
network can be helpful.

The problem of obtaining the non-dominated network connecting demand points
on a weighted plane space has not been considered. Mathematical studies have been
conducted to prove the existence of a network with a certain total length and maximum
detour rate [13–15]. Moreover, several methods to obtain a non-dominated network have
been developed [16–18], and numerous studies have dealt with network optimization
concepts, such as transit networks [19], electric power distribution networks [20], and
supply chain networks [21]. These methods choose the given links. However, to the best
of our knowledge, the method to construct the effective network of the total weighted
length and the total detour rate forgiving additional vertices from zero links has not been
developed. This study proposes amethod inspired byWTSN extended to weighted space
and discusses the influence of weighted space on network effectiveness.

This study aims to enable a quantitative analysis of the trade-off relationship between
Ltotal(G) and Dtotal(G). The most relevant contributions are (i) the development of a
method for constructing networks with small total weighted length and small total detour
rate on weighted space mimicking WTSN, (ii) the approximation of the Pareto frontier
by using the proposed method, and (iii) the quantitative analysis of the relationship
between theweighted space and the limit of effective networks. In amanagerial situation,
the quantitatively revealed trade-off relationship between Ltotal(G) and Dtotal(G) helps
the decision-makers select the network under certain constraints, including the budget,
needed operational performance, and so on.

The remainder of this study is organized as follows: Sect. 2 presents the simulation
method forWTSN on weighted planar space. Section 3 shows the result for four abstract
spaces. Section 4 discusses the function of the method and the influence of the weighted
space on network effectiveness. Finally, the conclusions are presented in Sect. 5.

2 Simulation Model of WTSN on Weighted Space

2.1 Generation Process of WTSN on a Mixture of Different Ground Conditions

Walking environment physically and psychologically creates walking resistance, and
Pedestrians walk along the path with the shortest length weighted by walking resistance
[26]. Walking resistance varies based on ground conditions, such as green space, muddy
land, and forest, and depends on the small-detour preference of pedestrians. Pedestri-
ans are less likely to walk where walking load is high; however, if pedestrians have a
high small-detour preference, they walk even in areas that are difficult to walk. This
way, pedestrians walk with less walking load and detours. We can expect that the track
becomes Pareto-optimal for the weighted length and detour rate.

The proposed algorithm mimics the generation process of WTSN on the ground
under a mixture of different conditions. Highly walked locations become more walkable
as vegetation is eroded, the land trodden, and so on. So, the walking load decrease
and other pedestrians will walk into those places. However, ground conditions recover,
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and walking load increases when pedestrians do not walk. Therefore, pedestrian tracks
interact with each other through the ground condition, and the ground is divided into two
parts: with low and high walking load. This form a WTSN. As we expect each track to
be the Pareto-optimal path of the weighted length and detour rate, we expect a WTSN,
as the result of the superposition and aggregation of pedestrian tracks between demand
vertices, to achieve a good performance of the total weighted length and total detour
rate.

2.2 Pareto-Optimal Path Between Two Demand Vertices

We obtain agents’ path as the Pareto-optimal path of weighted length and detour rate.
The Pareto-optimal path is evidently one curve connecting two demand vertices. Let s
and t be the demand vertices and P be the curve connecting s and t. We define the total
weighted length and the total detour rate of P as follows:

Ltotal(P) = ∫ts μ(x, y)dl = ∫ts μ(x, y)

√

1 +
(
dy

dx

)2

dx. (3)

Dtotal(P) = ∫ts dl/ED(s, t) = ∫ts
√

1 +
(
dy

dx

)2

dx/ED(s, t). (4)

From Eqs. (3) and (4), we obtain the Pareto-optimal path by solving below:

Min. f (P) = (
1 − κ ′)Ltotal(P) + κ ′Dtotal(P)

(
0 ≤ κ ′ ≤ 1

)

= ∫ts
((
1 − κ ′)μ(x, y) + κ ′

ED(s,t)

)√
1 +

(
dy
dx

)2
dx

⇔ Min. f (P) = ∫ts((1 − κ)μ(x, y) + κ)

√
1 +

(
dy
dx

)2
dx (0 ≤ κ ≤ 1)

(5)

Here, κ ′ and κ are parameters controlling the trade-off between Ltotal(P) and
Dtotal(P). The equivalence deformation depends on the variable transformation κ =
κ ′/

(
ED(s, t)

(
1 − κ ′) + κ ′). Equation (5) shows that the Pareto-optimal path is the

shortest with walking resistance (1 − κ)μ(x, y) + κ .
To approximate the Pareto-optimal path, we use a random Delaunay network, rDn

for short (also known as Poisson Delaunay tessellation [22]). The rDn is generated by
the Delaunay tessellation of numerous randomly distributed nodes (Fig. 1). The shortest
path length on the rDn is approximately 1.04 times longer than the Euclidean distance
isotropically [23, 24]. Because of this feature, the rDn can approximate the shortest path
with uniformly weighted regions [25, 26]. We weight the edge e of the rDn with 100,000
nodes by max(μ(x1, y1), μ(x2, y2)), where (x1, y1) and (x2, y2) are the end nodes of
e, and conduct the following experiments to confirm the shortest path approximation
performance of rDn on weighted space.
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Fig. 1. Random Delaunay network.

On Space with a Uniformly Weighted Region
Figure 2 shows the setting of the space and the result of the shortest path approximation
by rDn. We can determine the Pareto-optimal path giving the angle θ between the path
and the gray area as the Pareto-optimal path is point-symmetric for (x, y) = (90, 52.5)
and does not go backward. Therefore, we can calculate κ corresponding to θ such that
f (P) is minimized. In this way, the Pareto frontier shown in Fig. 2(b) is obtained by
changing θ by 1°. The scatter plot in Fig. 2(b) shows Ltotal/1.04 and Dtotal/1.04 of the
approximated shortest path by the rDn (because the length expands 1.04 times on the rDn
to the Euclidean distance). The approximation was conducted by changing κ from 0.00
to 1.00 by 0.01 for five rDns. The locations and colors of the scatter plots are consistent
with the exact Pareto frontier; an rDn can approximate the Pareto frontier of Ltotal(P)

and Dtotal(P).

Fig. 2. Experiment on space with a uniformly weighted region. (a) Setting of space. (b) Result of
the approximation by the rDn. Plot colors show κ , and plot shapes show the rDn types. The solid
line is the exact Pareto frontier.

On Space with Weight Linearly Increasing Toward the Center
Figure 3 shows the setting of the space and the results in this case. μ(x, y) is conical,
taking a value of 10 at the apex and 1 at the base and outside.We approximate the Pareto-
optimal path as described below, and compare the rDn approximation with the outcome.
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Approximate solutions are obtained by solving the following optimization problems.

Min.
∑n−1

i=1

((
(1−κ)(μ(xi,yi)+μ(xi+1,yi+1))

2 + κ
)√

(xi+1 − xi)2 + (yi+1 − yi)2
)

,

s.t. xi = −100 + 200i
n (0 ≤ i ≤ n),

y0 = 0, yn = 0.

(6)

Equation (6) separates theweighted space into n partswith the samewidth in the direction
of the x-axis and gets the polyline uniting straight-line segments in each part such that
the objective function is minimized. We set n = 100 and solve the problem changing
κ from 0 to 1 by 0.05 using the quasi-Newton method. Figure 3 shows the setting of
space and the result of the shortest path approximation by the rDn. The Pareto frontier
has a gentle s-shape. Ltotal(P) and Dtotal(P) become more sensitive to changes in κ and
change their value significantly. The rDn approximation could not obtain the solutions
in the middle of the frontier.

Fig. 3. Experiment on space with weight linearly increasing toward the center. (a) Setting of
space. (b) Result of the approximation by the rDn. Empty circles are generated by solving Eq. (6),
and filled circles are generated by the rDn. Plot colors show κ.

On Space with Weight Inversely Proportional to the Distance from the Center
Figure 4 shows the setting of the space and the results in this case. μ(x, y) is 1 outside
a circle of radius 100 and is inversely proportional to the distance from the center. The
Pareto frontier is approximated by solving Eq. (6), and we compare the result of the rDn
with the outcome. Figure 4 shows the setting of space and the result of the shortest path
approximation by the rDn. The Pareto frontier is the steep curve1. The locations and
colors of the scatter plots are consistent with each other; an rDn can approximate the
Pareto frontier of Ltotal(P) and Dtotal(P).

In summary, the approximation performance of the rDn for the Pareto frontier of
Ltotal(P) and Dtotal(P) performed best on the space with a uniformly weighted region
or the weight that is inversely proportional to the distance from a certain point. We can
consider the space, similar to the former, as the construction difficulty affected by the
terrain condition and the space, similar to the latter, as the land exploitation expenses
or compensation expressed by a function inversely proportional to the distance from the
city center. Thus, rDn can be useful when dealing with urban-scale issues.
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Fig. 4. Experiment on space with weight inversely proportional to the distance from the center.
(a) Setting of space. (b) Result of the approximation by the rDn. Empty circles are generated by
solving Eq. (6), and filled circles are generated by the rDn. Plot colors show κ.

2.3 Algorithm for WTSN on Weighted Space

Against the background of Sect. 2.1, we develop an algorithm for WTSN in weighted
space (Algorithm 1). Algorithm 1 has five main parameters.

1. Decreasing speed of walking resistance N−
2. Increasing speed of walking resistance N+
3. Initial walking resistance winit
4. Convergence walking resistance wconv
5. Agent’s small-detour preference degree κ

The weighted space W ⊂ R
2 and set of demand vertices D are given. Table 1. shows

the interpretation of the parameters and μ(x, y) in the context of pedestrian behavior.

Table 1. Interpretations of parameters in the context of pedestrian behavior.

Interpretation in the context of a pedestrian

N− Speed of the ground becoming walkable by pedestrians trampling

N+ Speed of the ground recovering while pedestrians do not walk

winit Walking load on a green space where the vegetation is complete

wconv Walking load on a space that pedestrians have trampled completely

κ Pedestrian’s small detour preference/inessential degree of the walking load on the
walking resistance that agents feel

μ(x, y) Ratio of the walking load at (x, y) to that of green space

In Algorithm 1, W is discretized by an rDn (line 1), and we obtain D′, the set of
nearest nodes on rDn to D (line 2). Before starting the procedure, we provide the edges
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of rDn with the initial walking resistance (lines 3 and 4) as follows:

winit(e) = max(winit((1 − κ)μ(x1, y1) + κ),winit((1 − κ)μ(x2, y2) + κ)). (7)

Equation (7) makes agents walk on the Pareto-optimal path between two demand
vertices ds and dt at the beginning of the simulation, as seen in Sect. 2.2. At each
step t, an agent randomly walks between two chosen demand vertices (line 8). The
agent’s path P(t) is given by the shortest path between ds and dt on rDn, weighted by
(λ(w(e, t) − wconv) + wconv)|e| on e (line 10). λ is a random number generated by the
logarithmic normal distribution (line 9), |e| is the length of e, and w(e, t) is the walking
resistance on e at step t.

λ represents the variation in the walking resistance perceived by pedestrians. We
consider that λ relaxes the dependence of the outputs on the order of the two chosen
vertices. λ > 1 indicates that pedestrians are sensitive to walking resistance and likely
to walk along a path where the walking resistance is small. By contrast, λ < 1 implies
that pedestrians are insensitive to walking resistance and tend to walk straight. Since
(λ(w(e, t) − wconv) + wconv)|e|must exceed zero,we letλ follow the logarithmic normal
distribution and empirically set the mean and variance of ln λ 0 and 0.5, respectively.

We then update the walking resistance for each edge on rDn (line 11). In line 14, we
provide the walking resistance on e at step t as the following sigmoid function:

w(e, t) = winit(e) − wconv

1 + exp
(

1
αN−

(
c(e, t) − N−

2

)) + wconv. (8)

Here, c(e, t) is the parameter denoting howmuch e has been walked on until step t, and α

is the parameter controlling the steepness of the sigmoid curve (empirically, α = 0.05).
We update c(e, t) to c(e, t + 1) as follow (line 13):

c(e, t + 1) =
⎧
⎨

⎩

0 if η < 0,
η if 0 ≤ η ≤ N−,

N− if η > N−.

(9)

Here,

η =
{
c(e, t) − N−/N+

|D|(|D|−1) + 1 if e ∈ P(t),

c(e, t) − N−/N+
|D|(|D|−1) if e /∈ P(t),

(10)

where |D| is the number of demand vertices (line 12). In Eq. (10), the second term
leads to an increase in the walking resistance, whereas the third term decreases it. The
probability that do, dd ∈ D′ are chosen is 1/|D|(|D| − 1). Therefore, we standardized
the second term as 1/|D|(|D| − 1).

Based on Eqs. (7)–(10), the relationship between w(e, t) and c(e, t) depending on
κ is shown in Fig. 5. Edges where μ = max(μ(x1, y1), μ(x2, y2)) > 1 have winit(e) =
w(e, 0) > winit. The walking resistance decreases asymptotically to wconv as an agent
walks, and increases asymptotically to winit(e) when the agent does not. The speed of
the decrease (increase) was controlled by N− (N+).
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The output network consists of Eacti, a set of edges satisfying w(e, t) ≤
(winit(e) − wconv)/2 (lines 5 and 16). The convergence condition is that Eacti connects
D′ and |Eacti| does not increase for |D|(|D| − 1) steps (lines 5, 7, and 17–20). After the
convergence, Algorithm 1 outputs the network by removing the nodes whose degrees
are 1 from Eacti using the function Reconstitution(Eacti) (lines 21 and 22). The network
dynamics of the simulation model are illustrated in Fig. 6.

Fig. 5. Relationship between w(e, t) and c(e, t).

Fig. 6. Network dynamics for the simulation model. Gray areas are the weighted regions (with
weight equal to 2), the black dots are the demand vertices. Orange lines are rDn edges that agents
havewalked on, and their width depends on thewalking resistance. The less thewalking resistance,
the thicker the width.



256 S. Tabata

Algorithm 1. WTSN on weighted space.
Input: Weighted space , 

set of demand vertices , 
decreasing speed of walking resistance , 
increasing speed of walking resistance , 
initial walking resistance , 
convergence walking resistance , 
agent’s small-detour preference degree . 

Output: Network . 
 1 Generate rDn on . 
 2 . 
 3 . 
 4 for , , and . 
 5 ,
 6 while  or does not connect , 
 7  . 
 8   , two demand vertices randomly chosen from  ( ). 
 9  random number generated by the logarithmic normal distribution.
10  the shortest path between  and on rDn

weighted by  on . 
11  for , 
12   Get . 
13   Update 
14   Update to . 
15  
16 . 
17  if , 
18   . 
19  else, 
20   . 
21 . 
22 return . 

3 Analysis of Differences in Pareto Frontier by Weighted Space

3.1 Experimental Spaces Setting

We prepare several experimental spaces that assume real spaces, as shown in Fig. 7.
Cases 1–1 and 1–2 have convex regions, considered as difficult construction areas, such
as lakes, wetlands, forests, and other topographical barriers (Fig. 7(a)). Cases 2–1 and
2–2 have jagged regions (Fig. 7(b)). We can regard the concave parts as valleys and
the sharp parts as mountains in these spaces. The weight of weighted regions is 2 in
Cases 1–1 and 2–1, and 5 in Cases 1–2 and 2–2. The harder the construction is in such
regions, the higher the unit implementation cost, as shown in the weight. Hence, in Cases
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1–1, 1–2, 2–1, and 2–2, the weight shows the immaturity of the construction technique
(the maturity of the construction technique leads the less difference in the weight).
Cases 3 and 4 have a weight distribution inversely proportional to the distance from
certain points, representing the land price in urban areas. In these cases, we consider the
land expropriation or the land compensation proportional to the land price. Case 3 has

one center (Fig. 7(c)), as defined by μ(x, y) = max
(√

100/
(
x2 + y2

)
, 1

)
, and Case 4

has two (Fig. 7(d)), as defined by μ(x, y) = max(

(√
75/

(
(x − 25)2 + (y − 25)2

))1/2

,

(√
75/

(
(x + 25)2 + (y + 25)2

))1/4

, 1).

Fig. 7. Experimental weighted spaces.

3.2 Result of Pareto Frontier Approximation

We applied Algorithm 1 to the experimental spaces with each combination of
winit = 1.1, 1.2, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 5.0, N+/N− = 1.0, 1.5 (N− = 15) and
κ = 0.0, 0.1, 0.25, 0.5, 0.75, 0.999. Using a large number of non-dominated solutions
obtained through this procedure, we infer the form of the inherent Pareto frontier. We
further approximated the Pareto frontier connecting many non-dominated solutions, the
minimum spanning tree (MST), and the CG approximated by rDn. We ran the experi-
ment 30 times by randomly changing the rDn of 100,000 nodes and the location of the
demand vertices. Figure 8 shows the Pareto frontiers for the 30 runs. Ltotal is normalized
by the Ltotal of MST2.

We evaluate the effectiveness of the networks generable by the space using the
approximated Pareto frontier. We cannot generate networks below and to the left of the
Pareto frontier (with small Ltotal and Dtotal). Therefore, the upper and more right-sided
the Pareto frontier is, the less effective networks the space can generate. The area on
the Ltotal–Dtotal space where we cannot generate networks is the area surrounded by
Ltotal = 1, Dtotal = 1, and the Pareto frontier. We call this value the complementary
index c. The characteristics of c for each case are presented in Table 2..
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Wecan infer that the spacewith regionswith largerweights tends to generate effective
networks with difficulty. The statistical characteristics of the c of Case 1–1 are smaller
than those of Case 1–2. This trend can be observed in Cases 2–1 and Case 2–2. We can
consider that this is because it takes a large Ltotal to make small detour links in the region
with a large weight.

We can infer that the standard deviation of c describes the distance between the
Pareto frontiers corresponding to the 30 locations of the demand vertices. The mean and
standard deviation of c are denoted as E(c) and σ(c), respectively. In Cases 1–2 and
2–2, having weighted regions with a weight of 5, the E(c) ratio is 0.99, whereas the σ(c)
ratio is 1.68. σ(c) is significantly different in comparison to E(c) between Cases 1–2
and 2–2. This difference is due to the positions of the weighted regions. In Case 2–2,
the weighted region is centered onW , and links tend to be generated around the region.
Thus, the output networks are likely to be similar, even if the locations of the demand
vertices are different. However, in Case 1–2, where links can be generated, depends on
the location of vertices, and c varies accordingly.

The shapes of the Pareto frontiers of Cases 3 and 4 (Fig. 8(e) and Fig. 8(f), respec-
tively) and their statistical characteristics are not significantly different from each other.
This similarity is because the area where the weight is considerable is so small that the
influence of the weight on the Pareto frontier is minimal. As discussed above, the Pareto
frontier is likely to be affected by the weighted area if the weight is large. The area with a
weight of more than 2 is 4.9% in Case 3 and 2.9% in Case 4. The weight distributions of
Cases 3 and 4 differ so slightly that there is little difference in the trade-off relationship
between them.

Fig. 8. Pareto frontier approximation by WTSN on weighted spaces. (a)–(f) correspond to the
results of Cases 1–1, 1–2, 2–1, 2–2, 3, and 4, respectively.
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Table 2. The characteristics of the complementary index.

Case 1–1 Case 1–2 Case 2–1 Case 2–2 Case 3 Case 4

Count 30

Mean 24.6 38.1 25.0 38.6 24.2 22.9

Std 2.2 4.2 1.5 2.5 2.0 2.0

Max 28.2 45.7 28.3 43.6 28.1 26.3

Median 25.1 37.4 24.8 38.5 24.2 22.7

Min 20.3 30.3 21.9 33.6 20.4 18.2

4 Discussion

In Algorithm 1, agents walk straight with no weighted region between the demand ver-
tices at the beginning (Fig. 6(b)). As the process continues, the agents’ paths superimpose
each other and aggregate into a network (Fig. 6(c)–(g)). This behavior is consistent with
previous studies [3–6]. Different from [3–6], the initial walking resistance is not homo-
geneous. At the start of the simulation, the agentswalked onweighted regions (Fig. 6(b)).
However, commonly used places are often passed on and become parts of the WTSN,
whereas redundant links disappear (Fig. 6(g)). This agent’s behavior is based on the set-
ting of the initial walking resistance (Eq. (7)), and the agent’s path is the Pareto-optimal
path of the weighted length and detour rate, as mentioned in Sect. 2.2. The major dif-
ference from [6] is the applicability of the method to the weighted space, even though
Algorithm 1 has similarities with [6].

The initial walking resistance includes space attribute μ(x, y) and personal attribute
κ , although [26, 27] denotes the walking resistance as a single integrated value for
predicting pedestrian paths. Equation (7) represents walking resistance in detail and can
be helpful in the prediction of walking paths.

Our result indicates that technological maturity stabilizes the network design. As
the technology matures, the weight, defined as the implementation cost of the unit link
length on the place, decreases. Table 2. implies thatwith smallerweight, (i) we can design
more functional networks (the complementary index is smaller) and (ii) the functional
variance by the location of the demand vertices decreases (the standard deviation is
small). However, an exact or approximate way to evaluate and discuss the accuracy of
our proposed method still needs to be developed.

5 Conclusion and Further Work

In modern society, newly laid networks require to be designed in consideration of build-
ings, terrains, and land price, which lead to the spatial difference in implementation cost.
This study’s contributions to the literature are as follows: (i) we confirmed that an rDn
could approximate the Pareto-optimal path of the weighted length and the detour rate
between two demand vertices and have developed the method for constructing networks
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with small total weighted length and small total detour rate on weighted space mim-
icking human walking track superposition, (ii) we approximated the Pareto frontier by
using the proposedmethod, and (iii) we quantitatively analyzed the relationship between
the weighted space and the limit of effective networks. This study is novel vis-à-vis the
conceptualization of a method for designing efficient networks by allowing branching
vertices on weighted space.

As previously mentioned, a method to obtain the exact non-dominated network of
the total weighted length and the total detour rate needs to be developed. Moreover, we
assume that the moving demands are homogeneous. However, network design needs to
consider themoving demand deviation.We have to extend the proposedmethod to output
the effective networks of the total weighted length and the total detour rate weighted by
moving demands for further developments.

Notes

1. The weight at the center is infinite; therefore, the base of Ltotal(P) expands to infinity.
2. The network with the minimum Ltotal is the weighted ESMT. Therefore, Ltotal should

be normalized by the weighted ESMT. However, MST is the network connecting the
demand vertices with the minimum total weighted length using links between two
demand vertices. In this study, we used MST instead of weighted ESMT because of
the difficulty in obtaining weighted ESMT.

Acknowledgements. We would like to thank Editage (www.editage.com) for English language
editing.
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Abstract. Deep Learning (DL) allowed the field of Multi-Agent Rein-
forcement Learning (MARL) to make significant advances, speeding-up
the progress in the field. However, agents trained by means of DL in
MARL settings have an important drawback: their policies are extremely
hard to interpret, not only at the individual agent level, but also (and
especially) considering the fact that one has to take into account the
interactions across the whole set of agents. In this work, we make a
step towards achieving interpretability in MARL tasks. To do that, we
present an approach that combines evolutionary computation (i.e., gram-
matical evolution) and reinforcement learning (Q-learning), which allows
us to produce agents that are, at least to some extent, understandable.
Moreover, differently from the typically centralized DL-based approaches
(and because of the possibility to use a replay buffer), in our method we
can easily employ Independent Q-learning to train a team of agents,
which facilitates robustness and scalability. By evaluating our approach
on the Battlefield task from the MAgent implementation in the Pet-
tingZoo library, we observe that the evolved team of agents is able to
coordinate its actions in a distributed fashion, solving the task in an
effective way.

Keywords: Reinforcement learning · Multi-agent systems ·
Grammatical evolution · Interpretability

1 Introduction

In recent years, the application of Deep Learning (DL) to the field of Multi-Agent
Reinforcement Learning (MARL) led to the achievement of significant results in
the field. While DL allows to train powerful multi-agent systems (MASs), it
has some drawbacks. First of all, to exploit state-of-the-art deep reinforcement
learning (RL) algorithms, one often has to employ centralized approaches for
training [1], which limits the scalability of the system, i.e., no agents can be
added after the MAS has been trained. Moreover, deep RL methods suffer from
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an even worse drawback: the lack of interpretability1. In fact, in safety-critical
or high-stakes contexts, DL approaches cannot be employed as they are not
fully predictable [3–5] and, thus, they may exhibit unexpected behaviors in edge
cases. While interpretability in RL is an important concern, in MARL it is even
more important. In fact, in contrast to traditional RL setups where safety can
be assessed by inspecting the trained agent, in MARL not only do we need to
analyze each agent, but we also need to understand their collective behavior.

In this paper, we employ a recently proposed methodology [6] (originally
designed for single-agent tasks) for training an interpretable MAS. More specifi-
cally, we extend the setup proposed in [6] by creating a cooperative co-evolutionary
algorithm [7] in which each evolutionary process addresses the evolution of an
agent of the MAS. As a baseline, we also provide the results obtained when a sin-
gle policy is trained for all the agents in the MAS. We evaluate our approach on
the Battlefield task from MAgent [8] (implemented in the PettingZoo library [9]).
The teams evolved with our approach are able to obtain promising performances,
eliminating the whole opponent team in up to 98% of the cases.

So, the main contribution of this paper are: 1) the extension of the approach
presented in [6] to multi-agent reinforcement learning settings; 2) the introduc-
tion of two approaches, a co-evolutionary one and single-policy one; 3) a valida-
tion of the proposed methods on the Battlefield task.

The rest of the paper is structured as follows. In the next section, we briefly
overview the related work. In Sect. 3, we describe the proposed method. Then,
in Sect. 4 and 5 we present the experimental setup and the numerical results,
respectively. Finally, we draw the conclusions in Sect. 6.

2 Related Work

In the following, we make a summary of the state-of-the-art in the field of MARL.
For a more complete review, we refer the reader to [1,2,10–12].

In a preliminary work [11], the authors explained the advantages of adopting
a multi-agent approach instead of a single, complex agent approach. Several
approaches have then been proposed for MARL. In [13] the authors compared
two function approximators in the iterated prisoner’s dilemma: a table-based
approach and a recurrent neural network (RNN). The experiments showed that
the agents based on the tabular approach were more prone to cooperate than
the ones trained using the RNN, indicating that the agents trained by using
the tabular approach had learned a better approximation of the Q function.
Littman [14] presented a novel algorithm based on Q-learning and minimax,
named “minimax Q”. This algorithm, in the experimental results, proved to be
able to learn policies that were more robust than the policies learned by Q-
learning. In [15] the authors made use of cooperative co-evolution with strongly-
typed genetic programming (GP) to evolve agents for a predator-prey game. The
evolved strategies were more effective than handcrafted policies.
1 In the rest of this paper, we will define as an interpretable system one that can be
understood and inspected by humans [2].
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Independent Q-learning (IQL) [16] is another convenient approach to MARL,
as it is scalable and decentralized. However, when using neural networks as func-
tion approximators for reinforcement learning, this method cannot be applied.
In fact, the need for a replay buffer does not make this method suitable in set-
tings with neural networks. To mitigate this issue, several approaches have been
proposed [17–21]. Other approaches circumvent this problem by using instead
the actor-critic model [22–26].

Recently, some approaches have been proposed to measure the interpretabil-
ity of a machine learning model. For instance, Virgolin et al., [27], propose a
metric of interpretability based on the elements contained in the mathematical
formula described by the model. In [28], the authors suggest that the computa-
tional complexity of the model can be used as a measure of interpretability. In
this paper we follow this approach, assuming that less complex models are easier
to interpret, see Sect. 5.1.

3 Method

The goal of our work is to produce interpretable agents that are capable of
cooperate to solve a given task. To do that, we evolve populations of inter-
pretable agents in the form of decision trees. To evolve these decision trees, we
use the same approach that was recently proposed in [6,29]. In particular, we
use the Grammatical Evolution (GE) algorithm [30] to evolve a genotype made
of integers that, by using a grammar translator, is converted into a decision tree.
However, we do not build the full decision tree. Instead, we only build the inner
structure (i.e., the tree without leaves). The reason behind this choice relies on
the fact that we want to exploit at their best the rewards given by the envi-
ronment, using them to train the state-action function embedded in the leaves.
Moreover, using Q-learning allows the agents to refine (and modify) their behav-
ior in real-time, without having to wait for the next generation to improve the
performance, which is particularly useful in multi-agent settings.

Finally, it is important to note that our method employs a cooperative co-
evolutionary process [7], where each population optimizes the structure of the
tree for a particular agent of the environment.

3.1 Creation of the Teams

To evaluate a genotype, we have to assess the quality of the corresponding phe-
notype when placed inside a team. Each agent (i.e., a member of the team) has
its own evolutionary process (i.e., there is a separate population for each agent in
the task). Thus, we assemble teams composed of one phenotype (i.e., a genotype
transformed into a decision tree) taken from each agent-local population.

Each agent-local population has Nind individuals, such that Nind different
teams are created. Each i-th team is formed by the corresponding i-th individuals
(one per each agent-local population), where i is an index ∈ [0, Nind − 1]. This
approach guarantees that each individual from each agent-local population is
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evaluated exactly once. Note that the selection operator, when applied, shuffles
the array of the individuals. This means that an individual from an agent-local
population is generally not always evaluated with the same individuals taken
from the other agent-local populations.

At the end of the evolutionary process, we form the final team by combining
the best individuals from all the agent-local populations. Moreover, by using an
adoption mechanism (described in Sect. 3.4), the structure of the best agents
may be shared between different agent-local populations.

3.2 Fitness Evaluation

Once a team is created, it undergoes Nep episodes of simulation of the task. In the
simulation phase, the agents perform IQL (with a dynamic ε-greedy exploration
approach) to learn the function that maps the leaves to actions. By using IQL,
each agent does not have to take into account the choices made by the other
agents, as these are modeled as part of the environment. Moreover, given a
sufficient number of episodes for the evaluation, the continuous learning of all
the agents results in a co-adaptation. After the simulation phase, the seventh
decile of the returns (i.e., the cumulative reward for each episode) received by
an agent is used as fitness. The choice of the seventh decile lies on the fact that
our fitness function is meant to describe the quality of a genotype as the quality
of the state-space decomposition function [6], which can only be measured when
the performance of the agent converges. While also the mean, the maximum,
and the median have been considered as aggregation functions to compute the
fitness, they have been discarded for the following reasons. Since the agents
initially use a high ε for the exploration, the initial returns have a significant
impact on the mean, thus they do not reflect the true quality of the genotype.
Using the median would also present problems: on the one hand, the median
would discard all the episodes in which the co-operation between the agents
was fruitful enough to receive high returns; on the other hand, since we expect
the returns to grow towards the end of the simulation phase, using the median
would mean that we take into account the performance of a not-fully-trained
agent. Finally, if we used the maximum to aggregate the returns, we would
give too much importance to spurious good performance that may occur in the
simulation (e.g., returns obtained just by randomly effective behaviors), without
taking into account the performance of the trained version of the agent. In a
preliminary experimental phase, the seventh decile represented a good trade-off
between the median and the maximum, reflecting more closely the performance
of the agents. The fitness evaluation process is described in Fig. 1.

3.3 Individual Encoding

Each individual is represented as a list of integers, where each integer indicates
the production to choose for the current rule (modulo the number of produc-
tions). Unlike the original version of GE, we do not use variable-length genotypes.
Instead, the genotype is a list that has fixed length. The process used to create
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Fig. 1. Block diagram of the fitness evaluation process.

decision trees from genotypes (i.e., lists of integers) is the following. Starting
from the first integer of the list, we apply the first (i.e., leftmost) non-expanded
rule from the current phenotype by using the production rule indicated by the
current integer (modulo the number of productions). The start symbol for the
grammar is called “dt”. The process can terminate in two different ways, depend-
ing on the case: (a) The phenotype does not contain any non-expanded rule: in
this case, the phenotype is simply returned; or (b) all the parameters from the
genotype have been converted into productions, but there are still non-expanded
rules: in this case, the missing branches of the trees are linked to novel leaves.

3.4 Operators

Mutation. The mutation operator used in this work is the uniform mutation.
This operator mutates each gene of the genotype with a probability pgene. When
a gene of the genotype is selected for mutation, its next value is selected uniformly
∈ [0,M ], where M is a number significantly bigger than the maximum number
of choices in the grammar, to ensure that the productions are approximately
uniformly distributed.

Crossover. The crossover operator used in this work is the one-point crossover
operator. This operator simply chooses a random splitting point for the two
fixed-length genotypes. Then, it produces two offspring by mixing the two sub-
strings of the genotypes.

Selection. The individuals are selected by means of a tournament selection.
This operator creates Nind “tournaments” (i.e., random groups of st individuals
taken from an agent-local population). Then, for each tournament, the best
individual is selected to create the population for the next generation.
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Replacement. Individuals in each population are replaced by their offspring,
(obtained through mutation or crossover) when the new individuals perform
better than their parents. If an individual is obtained through mutation, it will
replace its parent only if it reaches a better fitness. In case of crossover (which
involves two individuals and two parents) the individual of the offspring with
the best fitness replaces the parent with the worst fitness. This mechanism also
allows to systematically discard “adopted” individuals (see the next paragraph)
that perform worse than their parents in the new population.

Adoption. The adoption of an individual happens at the end of each genera-
tion. An agent-local population is randomly chosen and its individual with the
highest fitness is selected. At this point, the selected individual is copied into
the other agent-local populations, replacing a randomly selected individual from
the offspring. The adopted individual’s parents are then assigned to the replaced
individual’s parents. The reason why we use this adoption mechanism lies in the
reward system of the specific BattleField environment (see Sect. 4.1). As men-
tioned by the authors of PettingZoo: “Agents are rewarded for their individual
performance, and not for the performance of their neighbors, so coordination is
difficult”2. This means that only agents capable of hitting or killing enemies (this
will become clearer in the next section) obtain a high fitness and the adoption
mechanism allows sharing “knowledge” across agent-local populations.

4 Experimental Setup

4.1 Environment

We simulate a multi-agent environment by using the PettingZoo library [9].
More specifically, we use the Battlefield environment from the MAgent [8] suite.
A screenshot of the environment is shown in Fig. 2.

In this task, there are two teams: the red team and the blue team. As the
name of the environment suggests, the goal of each team is to defeat the other
team by killing all of its members. The environment is an 80×80 grid. To win
the battle, the agents have to learn to collaborate with their team in order to
eliminate the enemies, and to move through the map to overcome walls and
obstacles.

Each agent has a perceptive field of 13×13 squares and can either move
or attack at each turn. The agents’ perception is composed of: local pres-
ence/absence of an obstacle in a square; local presence/absence of a team-
mate/enemy in a square; health points (hp) of the teammate/enemy in a square;
global density of teammates/enemies. A square represents a 7×7 quadrant of
the environment. Note that each agent’s local perception area corresponds to a
circle with a radius of six squares around that agent. Moreover, to simplify
the learning phase (and the interpretability of the agents evolved), we per-
form a pre-processing of these features, based on domain knowledge, in order to
2 https://www.pettingzoo.ml/magent/battlefield (accessed on 02/02/2022).

https://www.pettingzoo.ml/magent/battlefield
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Fig. 2. A screenshot from the Bat-
tlefield environment.

Fig. 3. Maximum return (average ± std. dev.
across 10 runs of the proposed co-evolutionary
approach) at each generation.

obtain higher-level features that are then fed as inputs to the decision tree. The
selected features, extracted from the raw observations, are reported in Table 1.
The “Abbreviation” column shows the abbreviation that we will use throughout
the text to refer to a specific feature.

Both local and global density are calculated based on the active agents in
the environment, i.e., killed agents are not taken into account.

Each agent initially has 10 hp. When an agent attacks another agent (called
target), the target’s hp are decreased by 2 hp. Moreover, each turn increases the
agents’ health points by 0.1 hp (unless the agent already has already 10 hp).

An agent, at each step, can perform 21 discrete actions: no action; move to
any of the 8 adjacent squares; move to two squares on either left, right, up, down;
attack any of the 8 adjacent squares.

Table 2 shows the action that can be performed by the agent. As in Table 1,
the “Abbreviation” column shows how we refer to the actions in the remainder of
the text. The rewards obtained by the environment are the following: 5 points if
the agent kills an opponent; -0.005 points for each timestep (a time penalty, thus
the quicker the team wins, the higher the reward); –0.1 for attacking (to make
the agent attack only when necessary); 0.9 when the agent hits an opponent
(to give a quicker feedback to the agent, without having to wait for killing an
agent to obtain a positive reward that encourages hitting enemies); –0.1 if the
agent dies. At each timestep, the agent receives a combination of these rewards
based on the events that happened in the last timestep. For instance, if an agent
attacks and hits an enemy, it obtains a total reward of r = 0.9 − −0.1 − −0.005.

While there is no reward for collaboration, we decided to not alter the reward
function to encourage it, to preserve the original configuration of the environ-
ment. Note that we evolve only one of the two teams (the blue one), while the
other team (the red one) uses a random behavior for all the agents. This choice
has been made in order to provide a non-biased baseline policy, i.e., to prevent
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Table 1. Extracted features, their abbreviation
and their domain.

Feature Abbreviation Domain

Obstacle 2 squares above o2a {0, 1}
Obstacle 2 squares left o2l {0, 1}
Obstacle 2 squares right o2r {0, 1}
Obstacle 2 squares below o2b {0, 1}
Obstacle 1 square above-left o1al {0, 1}
Obstacle 1 square above o1a {0, 1}
Obstacle 1 square above-right o1ar {0, 1}
Obstacle 1 square left o1l {0, 1}
Obstacle 1 squares right o1r {0, 1}
Obstacle 1 square below-left o1bl {0, 1}
Obstacle 1 squares below o1b {0, 1}
Obstacle 1 squares below-right o1br {0, 1}
Allied global density above aga [0, 1]

Allied global density left agl [0, 1]

Allied global density same quadrant ags [0, 1]

Allied global density right agr [0, 1]

Allied global density below agb [0, 1]

Enemies global density above ega [0, 1]

Enemies global density left egl [0, 1]

Enemies global density same quadrant egs [0, 1]

Enemies global density right egr [0, 1]

Enemies global density below egb [0, 1]

Enemies local density above ela [0, 1]

Enemies local density left ell [0, 1]

Enemies local density right elr [0, 1]

Enemies local density below elb [0, 1]

Enemy presence above-left eal {0, 1}
Enemy presence above ea {0, 1}
Enemy presence above-right ear {0, 1}
Enemy presence left el {0, 1}
Enemy presence right er {0, 1}
Enemy presence below-left ebl {0, 1}
Enemy presence below eb {0, 1}
Enemy presence below-right ebr {0, 1}

Table 2. Actions that the agent
can perform.

Action Abbreviation

Move 2 squares above m2a

Move 1 square above-left m1al

Move 1 square above m1a

Move 1 square above-right m1ar

Move 2 squares left m2l

Move 1 square left m1l

No action mn

Move 1 squares right m1r

Move 2 squares right m2r

Move 1 square below-left m1bl

Move 1 squares below m1b

Move 1 squares below-right m1br

Move 2 squares below m2b

Attack above-left aal

Attack above aa

Attack above-right aar

Attack left al

Attack right ar

Attack below-left abl

Attack below ab

Attack below-right abr

the evolved policies from overfitting to a specific handmade policy for the red
team. Furthermore, we decided not to competitively co-evolve the policies for
both teams (blue and red) to reduce the complexity of the evolutionary process,
and focus on the interpretability of the evolved policy for the blue team. We
reserve this kind of investigations for future works. For each fitness evaluation,
Nep episodes are simulated, each of 500 timesteps.

4.2 Parameters

The parameters used for GE and Q-learning are shown in Table 3. To ensure that
the Q function tends to the optimal one, we employ a learning rate of α = 1

v ,
where v is the number of visits made to the state-action pair [31]. The grammar
for the GE algorithm is shown in Table 4. Note that we constrain the grammar
to evolve orthogonal decision trees, i.e., decision trees whose conditions are in
the form x <c, where x is a variable and c is a constant.
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Table 3. Parameters used for the two
algorithms (Grammatical Evolution and
Q-learning) used in the experimentation.

Algorithm Parameter Value

Grammatical

Evolution

Nind 60

Ngen 40

pxover 0.4

pmut 0.8

pgene 0.05

Genotype length 500

Selection Tournament

st 3

Q-learning α 1/v

ε 1

Nep 400

decayε 0.99

Table 4. Grammar used to evolve the
decision trees. “|” denotes the possibility
to choose between different productions;
“dt” indicates the start symbol.

Rule Production

Dt 〈root〉
Root 〈condition〉 | leaf

Condition if 〈input index〉 < 〈float〉
then 〈root〉 else 〈root〉

Input index [0, 33], step 1

Float [0.1, 0.9], step 0.1

5 Experimental Results

We perform 10 independent evolutionary runs to evolve the policy of each agent
in the blue team. Figure 3 shows the average maximum return (across the 10
runs) during the evolutionary process generation. The shaded area indicates the
standard deviation across runs. We should note that while the average trend did
not reach yet a plateau after the considered number of generations, we had to
limit the total duration of our runs due to constraints on the available computa-
tional resources. On average, one full run of our approach takes approximately
30 h on a 16-core machine with parallelization at the level of the individual eval-
uation.

Since the goal of the task is the elimination of the opponent team, we use two
metrics to analyze the results in a post-hoc test phase (i.e., after the evolution-
ary process): the number of opponents killed, and the agents’ returns over 100
unseen episodes. Table 5 shows the results of this test phase. For each of the 10
evolutionary runs, we report the statistics obtained with a team composed of the
best agents (one for each population) evolved in that run over unseen episodes.
The “Team kills” row shows the descriptive statistics of the number of enemies
killed in each episode. Note that a team is formed by 12 agents therefore in a
single episode the number of enemies killed is limited between 0 and 12. The
“Agents’ returns” row shows the descriptive statistics of the average returns of
all the agents in the team. The “Completed” column shows the percentage of
episodes in which the team was able to eliminate the entire opponent team.

We observe that, for most runs, the obtained teams are able to complete
the task (i.e., kill all the enemies) in most cases. In fact, the average number of
kills is very close to the maximum achievable value and the standard deviation
confirms that the behaviour of the teams is quite consistent.
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Table 5. Summary of the test results (co-evolutionary approach).

Run Type Mean Std Best Worst Completed

1 Team kills 11.96 0.20 12 11 96.0%

Agents’ returns 7.92 0.93 9.08 4.01

2 Team kills 11.85 0.62 12 8 94.0%

Agents’ returns 8.06 0.93 8.96 3.33

3 Team kills 11.98 0.14 12 11 98.0%

Agents’ returns 8.20 0.56 9.09 5.10

4 Team kills 11.97 0.22 12 10 98.0%

Agents’ returns 7.85 0.94 9.00 2.16

5 Team kills 11.81 0.73 12 7 91.0%

Agents’ returns 8.09 1.09 9.21 3.10

6 Team kills 11.91 0.71 12 5 97.0%

Agents’ returns 8.17 0.82 8.94 1.92

7 Team kills 8.98 1.60 12 4 1.0%

Agents’ returns 4.43 1.19 8.22 1.02

8 Team kills 11.65 0.77 12 9 79.0%

Agents’ returns 6.83 2.13 9.20 0.07

9 Team kills 11.15 1.46 12 5 63.0%

Agents’ returns 7.00 1.60 9.38 2.29

10 Team kills 11.9 0.46 12 8 93.0%

Agents’ returns 8.22 0.95 8.95 3.14

5.1 Interpretation

In this section we practically demonstrate the interpretability of the obtained
agents.

Figure 4 shows the decision tree of one of the agents evolved in one of the
evolutionary runs presented before. For space reasons, we cannot present all the
evolved agents from each run. However, similar considerations apply also to the
other evolved agents in the various runs.

By reading the decision tree in the figure, we can describe how the agent
moves in the environment. In the following, please remember that we evolve
only the blue agents’ behavior, and that these agents always start on the right
side of the environment (see Fig. 2). To facilitate the description of the evolved
policy, we added an id to each node in the decision tree.

The selected agent moves up to the left (id 24) until the local density of
enemies below (id 6) or to the right (id 18) reaches a certain threshold. In both
cases the agent changes the direction and moves towards the enemies (ids 11 and
21). It also moves to the right (id 25) if there is a high global density of enemies
on its right (id 22). This means that this agent moves to the top left of the map
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and intercepts the enemies it finds in that area. Another interesting behaviour
of this agent relies in the fact that it tries not to be on the front lines, in fact if
there is a high density of allies in the same quadrant (id 14) it tends to move to
the right (id 17), therefore from the direction from which its team started. This
agent appears to behave like a “wing”: it moves above the enemies and tries to
eliminate the ones that try to move in the space between it and the allies below.

The attack actions are easy to understand: if an enemy is located in a certain
square, the agent simply attacks that square. There are two particular cases. One
is caused by the few visits of the leaf (id 9). The other one happens when there
is an enemy above the agent (id 16): in this case, the agent tries to escape to
the right (id 26), unless there is an obstacle in the above right square (id 19), in
which case it attacks the enemy (id 27). Since an obstacle can be either a wall or
an ally, this particular condition leads to two different behaviors. If the obstacle
is an ally, the agent helps to kill the opponent, otherwise it tries to escape on the
right. If the obstacle is present and is a wall, this means that the agent is located
on the left side of that wall, since there is no possibility to have an opponent
above while the agent is located next to a wall. This means that if there is a wall
on the right the agent cannot escape and has to fight. According to the role that
this agent appears to have, this behavior tells us that the agent tries to support
other allies in the area, while it retreats if enemies are trying to surround them.

This behavior is quite common, in fact in every run agents can be seen that
move to the top left of the environment and capture the enemies in that area.

Other interesting behaviours emerge from the observation of the teams in the
environment. A common behavior of the agents starting closer to the opponent
team is to go through the gap in the walls to reach the enemies. There are also
more complex behaviors. In some runs it is possible to see some agents moving to
the top of the environment, passing the walls from above and then descending
to hit the enemies they encounter. Much rarer is the reverse behavior, where
agents pass the walls from below and then move up.

5.2 Comparison with a Non Co-Evolutionary Approach

To provide a baseline for the proposed co-evolutionary approach, we also per-
formed experiments in the same environment using a single phenotype for the
entire team, i.e., by cloning the phenotype and assigning it to each member
of the team. The parameters used in these experiments are the same shown in
Table 3. Note that in this case each agent in the team shares the same decision
tree structure, but each one develops its own leaf by using IQL.

In this case, the fitness evaluation is realized using the average of the seventh
decile of the returns obtained by each agent over the training episodes. This
choice is motivated by the following rationale. Since the structure of the agents
is shared, we must favor the phenotype that, besides guaranteeing a high number
of kills, also gives high importance to agents that do not kill any enemy.

Table 6 shows the test results obtained by the agents evolved in each of 10
runs over 100 unseen episodes. We can compare these results with the ones
obtained in the co-evolutionary setup (shown in Table 5) by using the number
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Fig. 4. Decision tree of the selected agent. The “(*)” notation indicates that the leaf
has been visited a number of times that is not sufficient to train it, thus it can be seen
as a random action. The numbers in parentheses are the identifiers of the nodes.

of kills at test time. In this regard, we observe that there is a large difference in
performance between the two setups, being the co-evolutionary clearly superior.
This indicates that, even though the agents have similar goals in both setups, the
co-evolutionary setup can indeed find much better solutions. This may be due
to the fact that the adoption mechanism used in the co-evolutionary approach
allows for a quicker spreading of high-performing genotypes in the populations.

Another observation concerns the completion percentage: by looking at it,
it appears that the performance of the non co-evolutionary is much less robust
across runs. This suggests that the performance of this setup is heavily impacted
by the initialization, with only a few occasional runs achieving a satisfactory
completion percentage. A possible improvement of the non co-evolutionary setup
would be to include an ad hoc method, e.g. based on domain knowledge, to
provide a smarter initialization. We will consider this possibility in future works.
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Table 6. Summary of the test results (non co-evolutionary approach).

Run Type Mean Std Best Worst Completed

1 Team kills 0.51 0.74 3 0 0.0%

Agents’ returns -2.60 0.72 0.13 -3.47

2 Team kills 1.87 2.23 10 0 0.0%

Agents’ returns -1.15 1.66 4.27 -3.42

3 Team kills 11.03 1.20 12 6 45.0%

Agents’ returns 6.59 1.45 9.45 2.60

4 Team kills 11.55 1.33 12 5 87.0%

Agents’ returns 7.90 1.48 9.88 1.96

5 Team kills 8.08 2.81 12 1 14%

Agents’ returns 3.71 2.27 8.13 -2.23

6 Team kills 9.99 2.27 12 4 41.0%

Agents’ returns 6.00 1.95 9.22 0.81

7 Team kills 4.24 1.93 10 0 0.0%

Agents’ returns 1.50 1.44 5.46 -1.99

8 Team kills 11.16 2.01 12 2 81.0%

Agents’ returns 7.30 190 10.02 -0.25

9 Team kills 0.20 0.57 2 0 0.0%

Agents’ returns -3.08 0.48 -1.32 -3.56

10 Team kills 6.8 2.33 12 3 3.0%

Agents’ returns 3.00 1.74 7.29 -0.50

6 Conclusions and Future Works

Interpretability in AI is becoming a matter of concern for its applications in
safety-critical and high-stakes scenarios. In MAS, this need is even stronger,
and achieving it is even more challenging. In fact, in MAS, besides the need for
the interpretability of the agents, also the interpretability of their interactions
is important. In this paper, we proposed a co-evolutionary approach to inter-
pretable RL in MARL settings. We evaluated our approach on the Battlefield
environment from MAgent, obtaining promising results in most of the runs. In
contrast, a non co-evolutionary approach obtained poorer performance.

Future work includes: 1) evaluating the proposed approach on different tasks;
2) introducing the possibility of communication between agents (both symbolic
[32] and sub-symbolic [33]); 3) designing more efficient methodologies for training
interpretable MARL systems, including for instance using other RL algorithms
(different from Q-learning), and comparing them with existing methods, as well
as handmade problem-specific policies; and 4) performing a sensitivity analysis
for the proposed method.

References

1. OroojlooyJadid, A., Hajinezhad, D.: A review of cooperative multi-agent deep
reinforcement learning (2020) . arXiv:1908.03963

2. Barredo Arrieta, A., et al.: Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI. Inf. Fus. 58, 82–
115 (2020)

http://arxiv.org/abs/1908.03963


Towards Interpretable Policies in Multi-agent Reinforcement Learning Tasks 275

3. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019)

4. Rudin, C., Radin, J.: Why are we using black box models in AI when we don’t
need To? A lesson from an explainable ai competition. Harvard Data Sci. Rev .1(2)
(November 2019)

5. Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., Zhong, C.: Interpretable
machine learning: fundamental principles and 10 grand challenges, July 2021.
arXiv:2103.11251

6. Custode, L.L., Iacca, G.: Evolutionary learning of interpretable decision trees
(2020)

7. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58484-6 269

8. Zheng, L., et al.: MAgent: a many-agent reinforcement learning platform for arti-
ficial collective intelligence. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, pp. 8222–8223 (2018)

9. Terry, J.K., et al.: Pettingzoo: gym for multi-agent reinforcement learning (2020).
arXiv:2009.14471

10. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybernet. Part C (Applications
and Reviews) 38(2) 156–172 (2008)

11. Stone, P., Veloso, M.: Multiagent Systems: A Survey from a Machine Learning
Perspective: Technical report. Defense Technical Information Center, Fort Belvoir,
VA, December 1997

12. Yu, C., Liu, J., Nemati, S.: Reinforcement Learning in Healthcare: a survey, April
2020. arXiv:1908.08796

13. Sandholm, T.W., Crites, R.H.: On multiagent Q-learning in a semi-competitive
domain. In: Weiß, G., Sen, S. (eds.) IJCAI 1995. LNCS, vol. 1042, pp. 191–205.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60923-7 28

14. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Machine Learning Proceedings 1994. Morgan Kaufmann, San Francisco
(CA), pp. 157–163 (1994)

15. Haynes, T., Wainwright, R.L., Sen, S., Schoenefeld, D.A.: Strongly typed genetic
programming in evolving cooperation strategies. In: International Conference on
Genetic Algorithms, San Francisco, CA, USA, pp. 271–278. Morgan Kaufmann
Publishers Inc. (July 1995)

16. Tan, M.: In: Multi-agent Reinforcement Learning: Independent vs, pp. 487–494.
Cooperative Agents. Morgan Kaufmann Publishers Inc., San Francisco (1997)

17. Lauer, M., Riedmiller, M.A.: An algorithm for distributed reinforcement learn-
ing in cooperative multi-agent systems. In: International Conference on Machine
Learning, San Francisco, CA, USA, pp. 535–542. Morgan Kaufmann Publishers
Inc. (2000)

18. Fuji, T., Ito, K., Matsumoto, K., Yano, K.: Deep multi-agent reinforcement learning
using DNN-weight evolution to optimize supply chain performance. In: Hawaii
International Conference on System Sciences, pp. 1278–1287. Honolulu, HI, USA,
HICSS, (2018)

http://arxiv.org/abs/2103.11251
https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-58484-6_269
http://arxiv.org/abs/2009.14471
http://arxiv.org/abs/1908.08796
https://doi.org/10.1007/3-540-60923-7_28


276 M. Crespi et al.

19. Omidshafiei, S., Pazis, J., Amato, C., How, J.P., Vian, J.: Deep decentralized multi-
task multi-agent reinforcement learning under partial observability. In: Interna-
tional Conference on Machine Learning, pp. 2681–2690. Sydney, NSW, Australia,
JMLR.org, August 2017

20. Matignon, L., Laurent, G.J., Le Fort-Piat, N.: Hysteretic q-learning: an algorithm
for decentralized reinforcement learning in cooperative multi-agent teams. In: Inter-
national Conference on Intelligent Robots and Systems, pp. 64–69. New York, NY,
USA, IEEE/RSJ (2007)

21. Tampuu, A., et al.: Multiagent cooperation and competition with deep reinforce-
ment learning, November 2015. arXiv:1511.08779

22. Chu, X., Ye, H.: Parameter sharing deep deterministic policy gradient for cooper-
ative multi-agent reinforcement learning, October 2017. arXiv:1710.00336

23. Singh, A., Jain, T., Sukhbaatar, S.: Learning when to communicate at scale in
multiagent cooperative and competitive tasks (2018). arXiv:1812.09755

24. Macua, S.V., et al.: Diff-DAC: distributed actor-critic for average multitask deep
reinforcement learning (2019). arXiv:1710.10363

25. Sunehag, P., et al.: Value-decomposition networks for cooperativae multi-agent
learning based on team reward. In: International Conference on Autonomous
Agents and MultiAgent Systems, Stockholm, Sweden, International Foundation
for Autonomous Agents and Multiagent Systems, pp. 2085–2087, July 2018

26. Yang, J., Nakhaei, A., Isele, D., Fujimura, K., Zha, H.: CM3: cooperative multi-goal
multi-stage multi-agent reinforcement learning, January 2020. arXiv:1809.05188

27. Virgolin, M., De Lorenzo, A., Medvet, E., Randone, F.: Learning a formula of
interpretability to learn interpretable formulas. In: Bäck, T., et al. (eds.) Parallel
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