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Abstract. Colonoscopy is a routine outpatient procedure used to exam-
ine the colon and rectum for any abnormalities including polyps, diver-
ticula and narrowing of colon structures. A significant amount of the
clinician’s time is spent in post-processing snapshots taken during the
colonoscopy procedure, for maintaining medical records or further inves-
tigation. Automating this step can save time and improve the effi-
ciency of the process. In our work, we have collected a dataset of
120 colonoscopy videos and 2416 snapshots taken during the proce-
dure, that have been annotated by experts. Further, we have devel-
oped a novel, vision-transformer based landmark detection algorithm
that identifies key anatomical landmarks (the appendiceal orifice, ileo-
cecal valve/cecum landmark and rectum retroflexion) from snapshots
taken during colonoscopy. Our algorithm uses an adaptive gamma cor-
rection during preprocessing to maintain a consistent brightness for all
images.We then use a vision transformer as the feature extraction back-
bone and a fully connected network based classifier head to categorize
a given frame into four classes: the three landmarks or a non-landmark
frame. We compare the vision transformer (ViT-B/16) backbone with
ResNet-101 and ConvNext-B backbones that have been trained similarly.
We report an accuracy of 82% with the vision transformer backbone on
a test dataset of snapshots.
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1 Introduction

Colorectal cancer (CRC) is among the leading causes of death worldwide [4].
In the United States alone, 161,470 individuals are estimated to be diagnosed
with CRC and 54,250 individuals are estimated to die from CRC in 2022 [26].
Colorectal cancer incidence rates have been increasing among screening-age indi-
viduals aged 65 years and older by 1% per year [27]. Early onset CRC rates have
also been on the rise among the patients under the recommended screening age
(50 years). Early screening for colorectal abnormalities is associated with a 67%
reduction in mortality from CRC [9]. Colonoscopy being the gold standard for
CRC screening [13] plays a critical role in mitigating risk.
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Snapshots taken during the colonoscopy are a critical yet time-consuming
part of the post-procedural diagnosis and documentation. Physicians typically
take snapshots of key colon landmarks such as the Appendiceal Orifice (AO),
Ileocecal Valve (ICV), Cecum landmark (Cec) and certain findings such as
polyps, diverticula, or routine procedural steps such as a Rectum Retroflex-
ion (RecRF), as recommended by the American Gastroenterological Institute
[7]. The snapshots are useful in the post-procedural phase to serve as a medical
record of the highlights of the colonoscopy and the patient’s colonic health or for
assessing the extent of the procedure by capturing a snapshot of the appendiceal
orifice and ileocecal valve [21].

It has been reported in [19] that a significant amount of a clinician’s time
is spent maintaining Electronic Health Records. With the increase in demand
for colonoscopy procedures, there is a need for improving the efficiency to save
the colonoscopy clinician’s time. There have been multiple robust, highly accu-
rate and efficient approaches developed for polyp detection [18,23,24]. However,
there has been a limited amount of research on landmark detection. To the
best of our knowledge, the algorithms developed by [2,16] have been the only
attempts at detecting the appendiceal orifice (using classical and deep learning
techniques respectively). The deep-learning technique developed by [14] to detect
the hepatic and splenic flexure, is the only multi-landmark detection algorithm
for colons. We believe that this scarcity of available literature may be due to
a lack of availability of expert annotated datasets of colon landmarks and the
inherent difficulty of the task due to: 1) intra-colon (patient) similarity between
different regions, 2) inter-colon (patient) variability in the anatomical structures
of the same region of the colon and 8) non-ideal photometric conditions of the
snapshots (due to poor focus, blur, reflections on the colon walls, occlusions
by fluids, polyps etc.) Thus, there is a need for developing a robust technique
that can accurately identify anatomical landmarks in the colon across multiple
patients, that has been rigorously tested on a dataset containing colonoscopy
snapshots that are representative of the typical clinical setting. Further, it is
important to design a data-efficient training framework that can demonstrably
generalize across different anatomies.

We propose a vision transformer based training framework that enables a
model trained on videos (which are cheaper to annotate) to be adapted for
snapshots. In our work, we address the following problems pertaining our task:
1) adaptation to differences in data distribution from video-annotations to snap-
shots 2) extreme class imbalance, 3) poor photometric conditions and 4) incon-
sistent annotations from experts.

2 Related Work

A large body of work on the application of statistical, physics-based analysis
and machine-learning techniques on colonoscopy has accumulated over the years
primarily focusing on the detection of polyps and to a lesser extent, colon land-
marks. We review the following categories of scientific literature relevant to our
work:
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2.1 Landmark Detection

Fast, reliable techniques of detecting anatomical landmarks are crucial to med-
ical image analysis. Landmark detection in ultrasound and CT scans is a well
explored field, with research on detecting landmarks to utilizing them for organ
segmentation [6,11,30,31]. Detecting landmarks in endoscopy and colonoscopy
has a smaller yet broader research focusing on identifying different landmarks
and regions as a part of the endo-/colonoscopy process. In [2], a shape-based
feature extraction model combined with K-Means clustering was used to detect
the appendiceal orifice in colonoscopy videos. Since this method relies on edge-
based shape detection, there is a possibility of it not working on blurry images,
which are characteristic of typical colonoscopy snapshots. A deep-learning based
approach was proposed in [1] for detecting the anatomical regions (e.g. stom-
ach, oesophagus etc.) from capsule endoscope frames. This demonstrated the
efficacy of deep networks to correctly identify anatomical regions from a single
endoscopy frame. The first major attempt at identifying certain colon land-
marks from colonoscopy frames using deep neural networks was made by [3].
They trained a large 2D CNN based neural network to classify a given frame as
either one of splenic flexure, hepatic flexure or sigmoidal colon junction. Their
approach relies on removing blurred frames using a heuristic, and on testing the
model on non-overlapping frames from the videos common to the training set.

2.2 Visual Feature Backbones and Optimizers

Convolutional Neural Network based architectures such as the VGG-16 [28] and
ResNet101 [12] have traditionally been the most effective and widely used visual
feature extraction architectures. The ConvNext [17] is the latest state-of-the-art
CNN-based architecture. On the other hand, the transformer architecture [29],
which is the standard architecture in Natural Language Processing, has now
been adapted for vision-related tasks in [8] showing promising results. Due to
the fundamentally different mechanisms of transformer-based (attention) and
CNN-based architectures (learned filters), we decide to compare both types of
architectures for our task. For our primary model, we use a Vision Transformer
pre-trained on the ImageNet dataset as the visual feature extraction backbone.
We also independently train a ResNet-101 and a ConvNext based model for com-
parison. The choice of optimizer used directly affects the optimization landscape
impacting the accuracy and ability to generalize, as show in [5]. We use a Sharp-
ness Aware Minimization (SAM) [10] approach to optimizing neural networks
due to its positive impact on the accuracy as well as producing semantically
meaningful attention maps in case of transformers.

3 Data Collection

We have collected and annotated 120 colonoscopy videos and 2416 snapshots
that have been used for training and evaluating our algorithm respectively. We
describe the annotation process, training dataset and snapshots dataset in the
following subsections.
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3.1 Annotations and Cross-Validation

We have annotated the videos on a frame-level and have cross-validated the anno-
tations between the medical experts. This ensures a clinically accurate dataset
that has fine-grain annotations with fewer human errors. We have followed the
same procedure while annotating the training videos as well as the snapshots
dataset. Our annotation methodology is as follows: we separate videos for the
training data (which will be further split into validation and testing sets) and
the snapshots dataset. Separating the data on a video-level is critical to ensure
that the model generalizes well to all the anatomical variations found in colons.
Each of the videos in the training datasets is then labelled on a frame-level by
two medical students independently. Only the frames with a consensus between
the two annotators are chosen for training and the rest are discarded. On the
other hand, each of the videos in the snapshots dataset was examined by a senior
medical expert to extract snapshots, as they would in a clinical setting. Each of
these snapshots was then labelled independently by two senior medical experts,
and a similar consensus-based cross-validation heuristic was used to select the
snapshots with matching annotations from the two experts.

Table 1. Snapshots and test dataset label distribution

Label Number of frames | Number of frames
(Snapshot) (test)

Appendiceal Orifice 518 776

Ileocecal Valve/Cecum Landmark | 132 133

Rectum retroflexion 716 140

Other 1050 1488

3.2 Snapshots Dataset

Our snapshots dataset contains 2416 snapshots collected from over 500 videos
(separate from the training pool of 120 videos), identified and annotated by
clinicians as described in Subsect. 3.1. A snapshot is a video frame that contains
the anatomical/procedural feature of interest in reasonable focus, as identified
by a medical specialist in a clinical setting. Each of the snapshots have been
annotated according to the following labels: Appendiceal Orifice (AO), Ileocecal
Valve (ICV)/Cecum Landmark (Cec), Rectum Retroflexion (RecRF) and Other,
which are shown with examples in Fig. 1. Since the Ileocecal Valve and the Cecum
Landmark typically co-occur in snapshots due to their anatomical proximity, we
combine them into a single label. Both of the first two labels describes the
corresponding anatomical landmark. RecRF refers to the procedural action of
retroflexion in the rectum i.e. bending the colonoscope backwards to inspect the
rectum. Any other anatomical finding such as polyps, inflammation or general
anatomical markers have been labelled as “Other”. A breakdown of the number
of frames per class has been given in Table 1.
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Fig. 1. Sample snapshots with following annotations: Appendiceal Orifice (1a), Ileoce-
cal Valve (1b), Cecum Landmark (1c), Rectum Retroflexion (1d), Other (1e)

3.3 Training Dataset

Our training dataset has 120 videos constituting of 2,000,000 frames in all, that
were annotated and cross-validated as described in Subsect. 3.1. We face an
extreme label imbalance, with a majority of frames (>95%) belonging to a non-
landmark (Other) class, and the minority containing a landmark of interest. We
balance the dataset as part of our training and evaluation (to get a distribution
similar to the snapshots dataset) as described in Sect. 6.

4 Problem Definition

We define our problem as follows: identify a function f : C x H x W — J to
classify an image frame F' as one of the landmark classes j € {AO,ICV/Cec,
RecRF, Other} such that f(F;;) =j, Vi€ S,j € J. Here, §,J denote the set
of snapshots and class labels respectively. We approximate f using a deep neural
network due to their proven capacity for modeling image data. We thus reduce
our problem to finding the optimal weights 6* for the following empirical loss

(L) :
0" = argrrgnzﬁ(f(h(Fij)I(?),j) (1)

Here, h refers to a general data preprocessing function. Our framework supports
any loss function £ that is a distance metric between the predicted probability
distribution and the true labels. Based on our experiments, we choose a Kullback-
Leibler Divergence [15] as the loss function L.
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Fig. 2. Landmark detection pipeline architecture

5 Architecture

Our algorithm consists of three primary parts: 1) image preprocessing, 2) visual
feature extraction and 3) classification head. The image preprocessing con-
sists of an auto-cropping step to remove dark edges that are an artifact of the
colonoscopy software itself, and auto-correct the brightness using gamma cor-
rection. Since the brightness varies considerably during a colonoscopy, we use
an adaptive gamma correction algorithm described in [25]. We use a pretrained
Vision Transformer (ViT-B/16) as the visual feature extraction backbone in
our primary model. We also experiment with other CNN based architectures
(ResNet101 and ConvNext-B) that were identically pretrained on the ImageNet
dataset and benchmark their performances. Finally, we a use a Fully Connected
Network (FCN) based classifier head to compute the label probabilities from the
feature vector generated by the backbone. A high-level overview of the architec-
ture is given in Fig. 2.

6 Training Pipeline

We design our framework to train a model on annotated videos so that it per-
forms well on clinically selected snapshots. Snapshots are different from video
frames because they are hand-picked by clinicians in the following regards: they
have a different distribution of landmarks and have a different photometric qual-
ity. We address this gap in the training and evaluation data using:
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Cross-validation: Cross-validating frames as explained in Sect.3.1 reduces
the possibility of annotation error and inclusion of poor quality frames in the
training. This bridges the gap in data quality between snapshots and videos.
Domain-specific sampling: We artificially construct a training set that has a
label distribution similar to the snapshots dataset by randomly sub-sampling
the frames using a Bernoulli process, described in Egs. 2, 3. Thus, a frame F};
is included in the training set if Z;; = 1. Here, S, T are the snapshots and
training sets respectively. |I'| denotes the cardinality of any set I

Z;j ~ Bernoulli(p,) (2)
p; = min | U €S, k=j | ‘ U €T k=5 +1 |’1 (3)
| Uies,k Fir | | Uik Fik |

We repeat the sampling (with replacement) at the beginning of every epoch
to maximally cover the downsampled frames.

Sharpness-Aware Minimization Optimizer: Learning anatomically relevant
features and ignoring features generated by varying photometric conditions,
specific clinical conditions etc. is critical to generalizability across multiple
patient anatomies. We observe that using a SAM optimization scheme as
described in [10] for training the neural networks helps learn such a robust
model.

Results

We have trained Vision Transformer (ViT-B/16), ResNet-101 and ConvNext-B
based models using our framework and evaluated the results on our snapshots
dataset. We tabulate the corresponding accuracy and the class-wise precision,
recall scores in Table2. We also plot 2D U-MAP [20] embeddings of the vision
backbone representations for images from our balanced test dataset in Fig. 3. We
report the test dataset statistics in Table 1. We see that the vision transformer
based model outperforms the other two on most metrics reported in Table 2. This
is also corroborated by the comparatively well-separated clusters in Fig.3. We
believe that the inherent shape bias of vision transformers, as reported in [22],
makes it more suitable than CNN-based architectures for landmark detection,
since landmarks are reliably identified by their shape regardless of texture.
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Table 2. Recall, precision scores and overall accuracy on snapshots dataset

Class Metric | ViT-B/16 (Main) | ResNet-101 | ConvNext-B

Overall | Accuracy | 81.84% 73.06% 60.45%

AO Recall 68.15% 69.69% 75.09%
Precision | 76.41% 55.36% 57.12%

ICV/Cec | Recall 89.43% 75.33% 88.11%
Precision | 51.26% 55.52% 24.84%

RecRF | Recall 96.09% 86.31% 88.12%
Precision | 98.29% 97.48% 95.03%

Other Recall 77.24% 65.05% 28.39%
Precision | 85.10% 74.48% 82.55%

(a) ViT-B/16 (b) ConvNext-B (c) ResNet-101

Fig. 3. U-MAP embeddings of vision backbone representations with the color scheme:
AO (Blue), ICV (Orange), Cec (Green), RecRF (Red), Purple (Other) (Color figure
online)

8 Inference and Future Work

We achieve an overall landmark classification accuracy of 81.84% on a snap-
shot dataset of clinically relevant colon landmarks using a vision transformer
backbone. We observe that a transformer based backbone outperforms other
state-of-the-art CNN-based backbones such as ResNet-101 and ConvNext-B. We
can visually see that well-separated representations on an independent, balanced
test set imply a higher accuracy in Fig. 3. This may be due to the transformer’s
inherently higher shape bias as reported by [22]. We hypothesize thus, since
the accuracy trend is not completely explained by the number of parameters,
with ViT-B/16 (86.6M) and ConvNext-B (89M) having a comparable number
of parameters.

Further, the Rectum Retroflexion class has the highest precision and recall
scores as well as the best separation on the U-MAP plots. This is because most
RecRF frames are characterized by the presence of a metallic/plastic tube indi-
cating the inversion of the colonoscope head. We further observe that the pre-
cision for AO and ICV classes is relatively lower. This is also evidenced by the
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poorer separation of the corresponding clusters in Fig. 3. This can be explained
by the visual similarity between these two landmarks and other parts of the colon
(labelled “Other”), making it a challenging task. Thus, we can conclude from our
results that detecting subtle anatomical features (such as a cecum landmark) as
opposed to specific shapes (such as the retroflexion tube) is challenging for the
vision backbone.

Finally, we believe incorporating temporal information in our future work
will help remove false positives for both these classes and improve precision. We
also believe that more complex training techniques such as active learning, self-
supervised pre-training can further improve the quality of features learned by
the vision backbone and improve accuracy. So, we plan on incorporating them
in our future pipeline. We also plan on including more landmark classes such as
polyps and diverticula in the future.
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