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ISGIE Preface

The First International on Imaging Systems for GI Endoscopy (ISGIE 2022) was
organized as a satellite event of the 25th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI 2022) in Singapore, and held
on September 18, 2022, as a half-day event.

This workshop was specific to the application of imaging systems in the
gastrointestinal (GI) tract. The objective of this event was to stimulate an interdisci-
plinary discussion on clinical applications focusing on unmet clinical needs as well as
on new technologies at the R&D stage, aiming for translation into clinical practice. Both
clinical and engineering communities benefit from these discussions, which fit with the
MICCAI mission.

This workshop focused on novel scientific contributions on vision systems, imaging
algorithms, and autonomous systems for endorobots for GI endoscopy, including lesion
and lumen detection as well as 3D reconstruction of the GI tract. Localizing interesting
features such as the lumen, lesions, or polyps to be removed, requires their detection in
the images of the video stream.Deep learning-based approaches of this task have become
very successful in recent years, with annotated datasets publicly available to train them.
Challenges remain, especially concerning the robustness of the illumination because of
the reflective surface. Potential solutions to these issues were discussed in this workshop.
Another important aspect in endoscopy, covered in this workshop, was the level of auton-
omy of a medical device to support the clinical workforce in performing the procedure.
This autonomous behavior can benefit from 3D information such as the localization of
the target, lumen, or lesion, and the position of a device with respect to the wall of the GI
tract. Traditionally this information could be obtained from a monocular video system
by using methods such as SLAM, shape-from-template, and non-rigid structure-from-
motion. More recently, methods based on deep learning monocular depth estimation
also have emerged. This workshop addressed progress made with those approaches and
limitations remaining to successfully move a device autonomously as well as achieving
autonomous surgical tasks.

The workshop consisted of the presentation of six selected papers and three invited
keynote talks covering both clinical and technical aspects. A technical talk was given
by Russell Taylor, Professor of Computer Science with joint appointments in Mechani-
cal Engineering, Otolaryngology Head-and-Neck Surgery, Radiology, and Surgery and
Director of the Laboratory for Computational Sensing and Robotics (LCSR) at Johns
Hopkins University. He provided an overview of current research and technologies
together with new trends and future technologies, including autonomy in medicine.

Another technical talk was also given by José María Martínez Montiel, Full Pro-
fessor in the Department of Computer Science Systems Engineering at the University
of Zaragoza, where he is in charge of perception and computer vision research grants
and courses. He presented EndoMapper, a dataset of complete calibrated endoscopy
procedures, which results from a funded European Union project, grant agreement No.
863146. He covered the important aspects of visual SLAM and the dataset provided by
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this project to simulate the colon environment and to provide synthetic data for training
purposes. The clinical talk was given by Lawrence Ho Khek-Yu, Full Professor in the
Department of Surgery at the National University of Singapore and the Director of the
Centre for Innovation in Healthcare, National University Health System. He presented
current solutions available in clinical practice, providing an in-depth view of unmet
clinical needs. His talk covered the patient perspective and the acceptance of new tech-
nologies, such as AI and robotics, as well as challenges on equality and diversity in
endoscopy.

The ISGIE 2022 proceedings contain six high-quality papers, selected from 9 sub-
missions through a rigorous double-blind peer-review process, with three reviewers for
each paper, all of them experts on the topic. Full authorship and domain conflicts were
disclosed in CMT, the manuscript submission system, in order to avoid conflict of inter-
est between authors and reviewers of the papers. The accepted manuscripts cover light
adaptation for classification of the upper GI sites, criss-cross attention for GI metaplasia
segmentation, landmark detection using vision transformers in colonoscopy, real-time
lumen detection for autonomous colonoscopy, SuperPoint features in colonoscopy, and
estimating coverage in 3D reconstruction of the colon from colonoscopy videos. We
would like to thank all the ISGIE 2022 authors for their submissions and participation,
the members of the organizing team, the reviewers, and the keynote speakers for their
valuable contributions and commitment to the workshop. We would like to thank our
sponsor Olympus for its support by funding an award of 1,000 USD for the best presen-
tation, which went to O. León Barbed from DIIS-i3A, University of Zaragoza, Spain,
for his talk on “SuperPoint Features in Endoscopy”.

The proceedings of our workshop are published as a joint LNCS volume alongside
the Fourth International Workshop on Graphs in Biomedical Image Analysis (GRAIL
2022), organized in conjunction with MICCAI. In addition to the papers, abstracts and
slides presented during the workshop will be made publicly available on the ISGIE
website (https://miccai2022-isgie.github.io/).

September 2022 Luigi Manfredi
Russell Taylor

Davide Lomanto
Alwyn Mathew

Ludovic Magerand
Emanuele Trucco

https://miccai2022-isgie.github.io/


Preface GRAIL 2022

The Fourth International Workshop on GRaphs in biomedicAl Image anaLysis (GRAIL
2022) was organized as a satellite event of the 25th International Conference onMedical
Image Computing and Computer Assisted Intervention (MICCAI 2022) in Singapore.
Following two years of entirely virtual conference events, we were excited to offer
our community a hybrid event, and finally meet some of our colleagues face-to-face
again. After the success and positive feedback obtained in previous years, GRAIL had
its fourth event at MICCAI 2022, in the spirit of strengthening the links between graphs
and biomedical imaging.

This workshop provides a unique opportunity to meet and discuss both theoreti-
cal advances in graphical methods and the practicality of such methods when applied
to complex biomedical imaging problems. Simultaneously, the workshop seeks to be
an interface to foster future interdisciplinary research, including signal processing and
machine learning on graphs.

Graphs and related graph-based modeling have attracted an exponentially grow-
ing research interest in recent years, as they enable us to represent complex data and
their interactions in a perceptually meaningful way. With the emergence of big data
in the medical imaging community, the relevance of graphs as a means to represent
data sampled from irregular and non-Euclidean domains is increasing, together with the
development of new inference and learning methods that operate on such structures.
There is a wide range of well-established and emerging biomedical imaging problems
that can benefit from these advances.We believe that the research presented at this work-
shop constitutes a clear example of that. Compared to our previous GRAIL events, we
specifically encouraged submissions in the areas of explainable GNNs, graph models
in computer-aided surgery/intervention, unstructured medical big data, and semantic
knowledge (scene/knowledge graphs).

The GRAIL 2022 proceedings contain six high-quality papers of 9–10 pages that
were pre-selected from 10 submissions in a rigorous peer-review process. All submis-
sions were peer-reviewed in a double-blind process by at least three members of the
reviewing board and Program Committee, comprising 20 experts on graphs in biomed-
ical image analysis, with each member undertaking at least one review. The accepted
manuscripts cover a wide set of graph-based medical image analysis methods and appli-
cations. As in previous years, one of the primary domains of imaging-related graph
methods are brain connectomics. Papers this year proposed brain connectome encod-
ing methods for anomaly detection and disease diagnosis; generation of post-surgical
connectomes in tumor patients; multimodal brain connectome fusion methods; and
transforming connectomes to arbitrary brain parcellations via graph matching. Out-
side of brain imaging, we saw an application of graphs for labeling of vasculature trees,
and improved annotation of whole slide images in digital pathology with hierarchical
cell-graphs.

In addition to the papers presented in this LNCS volume, the workshop event fea-
tured four outstanding keynote presentations from world-renowned experts: Marinka
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Zitnik from Harvard Medical School on “Trustworthy AI with GNN Explainers”, Mark
O’Donoghue from Astra Zeneca on “Knowledge Graphs for Drug Discovery”, Islem
Rekik from the Technical University of Istanbul on “Debunking the brain connectiv-
ity using predictive learning from limited data”, and Xavier Bresson from Sea AI Lab
(formerly from the National University of Singapore) on “GNN trends in 2022”.

Wewish to thank all theGRAIL 2022 authors for their submissions and participation,
the members of the Program Committee, the numerous reviewers, and of course the
keynote speakers for their valuable contributions and commitment to the workshop.
Finally, we are very grateful to our sponsor NVIDIA for their generous support, by
awarding a GPU to the best workshop presentation.

The proceedings of our workshop are published as a joint LNCS volume alongside
the First International Workshop on Imaging Systems for GI Endoscopy (ISGIE 2022),
organized in conjunction with MICCAI. In addition to the papers, abstracts and slides
presented during the workshop will be made publicly available on the GRAIL website
(http://grail-miccai.github.io/).

September 2022 Seyed-Ahmad Ahmadi
Anees Kazi

Bartlomiej Papiez
Kamilia Mullakaeva
Michael Bronstein

http://grail-miccai.github.io/
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Light Adaptation for Classification
of the Upper Gastrointestinal Sites

Xiaohan Hao, Xiao Xu, Daimin Jiang, and Guoyi Zhou(B)

SonoScape Medical Corp., Shanghai, China
hxh045@mail.ustc.edu.cn, zhougy@sonoscape.net

Abstract. Plenty of computer-aided blind-spot monitoring systems
based on the classification model of the upper gastrointestinal sites are
developed to enhance the quality of gastroscopy. However, the perfor-
mance of the white light (WL) based model drops deeply while changing
the light source to the special light (SL), a narrowed-spectrum technol-
ogy. A naive solution is to collect as much data from SL as from WL,
but it is hard and time-consuming. In this work, we propose a novel light
adaptive module that is only trained by common labeled WL images and
unlabeled SL images. Our proposed structure is a plug-in module includ-
ing a light classification head and a reconstruction decoder. The light
classification head is trained in an adversarial manner, which prevents the
backbone network to extract light-related features. The reconstruction
decoder facilitates the complete preservation of the extracted structural
features. The result showed that the original classification model added
with our proposed light adaptive module could significantly improve the
classification performance under SL and keep the original accuracy under
WL, which may help endoscopists achieve better gastroscopy.

Keywords: Domain adaptation · Endoscopic image · Disentanglement

1 Introduction

Gastroscopy is a crucial examination for the detection and diagnosis of gastroin-
testinal lesions [1], but the quality of the gastroscopy is dependent on the level
of endoscopists [2]. To improve the quality of gastroscopy, some computer-aided
systems have been developed for monitoring blind spots during gastroscopy to
ensure endoscopists do not neglect gastric cancers and precursor lesions [3,4].
One of the critical components of the system is a model for the classification
of sites of the upper gastrointestinal tract, which achieves satisfactory accuracy
under white light (WL). However, each endoscope manufacturer introduces its
own unique special light (SL) source based on narrowed-spectrum technology
to enhance images, such as narrow-band imaging, blue laser imaging, i-Scan
digital contrast, etc. [5]. When the endoscopists switch the light source during
endoscopy, the proportion of light waves with different penetration depths is
changed, which unveils different texture patterns on mucosal surfaces and vas-
cular structures. Hence the performance of the blind-spot monitoring system
which is trained on WL may drop heavily due to the domain shift.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Manfredi et al. (Eds.): ISGIE 2022/GRAIL 2022, LNCS 13754, pp. 3–12, 2022.
https://doi.org/10.1007/978-3-031-21083-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21083-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-21083-9_1
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To address the problem, a naive way is to collect as much data from SL
as from WL. However, it is rare and time-consuming since endoscopists do not
usually switch to SL mode except they need to clearly observe the tissues during
a gastroscopic examination. The development of domain adaptation methods
provides a new opportunity to improve the performance of monitoring blind
spots under SL without enough labeled training data of SL. Mahmood et al. [6]
proposed a framework that generates the synthetic images from real images to
train the network which addresses the lack of annotated data. The framework
was called reverse domain adaptation and successfully applied in-depth estima-
tion for monocular endoscopy. Zeng et al. [17] proposed an unsupervised domain
adaptation method based on intra- and cross-modality semantic consistency on
hip joint bone segmentation and cardiac substructure segmentation. Perone et al.
[18] extended the unsupervised domain adaptation method in a self-ensembling
way to enhance the generalization of a model to other domains and verified
the method in the gray matter segmentation task of magnetic resonance imag-
ing. Those excellent researches demonstrated that domain adaptation technology
could be successfully applied in various scenarios to address the lack of labeled
data or improve the generalization of the model. To the best of our knowledge,
it is the first time to apply domain adaptation methods for the classification of
upper gastrointestinal sites under SL.

In this work, we proposed a light adaptive module (LAM) that could be
plugged and played into a current existing convolutional neural network (CNN)
to improve the generalization of the WL-based model under the SL. Concretely
speaking, we added a light classification head and a reconstruction decoder to
the original classification model. The light classification head is adversarial to
the backbone network, which prevents the backbone network to extract the light-
related feature by a gradient reversal layer. The decoder generates the illumi-
nation normalized grayscale image to help the backbone network preserve the
structural feature which was useful for the classification of the upper gastroin-
testinal sites. During the inference phase, these additional modules do not need
to work, that is, they do not increase any costs of the original model. The
method works in a domain-agnostic manner, so no additional domain informa-
tion is required during inference. In the video stream with a mix of WL and
SL, the performance of the classification model trained by adding LAM hardly
decreased under WL, but the performance under SL was greatly improved.

2 Methods

LAM is shown in Fig. 1, which is made up of a light classification head and
a reconstruction decoder. LAM is a plug-and-play module that only adds to
the existing classification model in the training phase and does not work in the
inference phase, so LAM does not increase any costs to the original classification
model. In this section, we make a detailed description of the proposed LAM.
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2.1 Motivation

We define the light adaptation task as in the unsupervised homogeneous domain
adaptation setting [8], that is, there is sufficient labeled data of the source domain
(WL) but no labeled data of the target domain (SL) in the training dataset. We
assume that the feature spaces and dimensions between WL and SL are identical,
but the data distributions are different. In the homogeneous domain adaptation
setting, discrepancy-based methods [9,10], adversarial-based methods [11,12],
and reconstruction-based methods [13,14] are applied in general.

However, our task is a bit more complex than the abovementioned research
since the SL data is not only expensive to annotate but also hard to collect. In
this case, some methods like the generative model-based methods may not work
well. Moreover, the abovementioned methods also assume that the model applies
only in one domain, but in real clinic scenarios, the illumination can be changed
at any moment, so the classification model must work in a mixed domain. There-
fore, we designed LAM in a domain-agnostic manner [15]. We leverage the gradi-
ent reversal layer to remove the light-specific features extracted by the backbone
network in an adversarial manner. The reconstruction decoder is employed to
remain as complete light-invariant features as possible. The conventional classifi-
cation head for upper gastrointestinal sites is trained by WL data to extract the
class-relevant features based on the light-invariant features. Hence, no matter
WL or SL, the input images can be transformed into the same feature space so
as to avoid a domain shift.

2.2 Common Classification Model

Since a big success of Alex on Imagenet in 2012 [19], more and more excellent
convolutional neural networks for classification have been developed, such as
resnet [20], mobilenet [21], etc. Those networks are composed of a backbone
network and a classification head. The backbone network is characterized by
stacking many consecutive identical modules which are leveraged for feature
extraction. After inputting an image to the backbone network, a feature map that
is generally 32 times smaller than the original input is obtained. Subsequently,
the feature map is fed to a classification head which contains a global average
layer and a fully connected layer, and then the classification prediction result is
got.

2.3 Light Classification Head

As shown in Fig. 1, the light classification head consists of a gradient reversal
layer [7], a convolutional layer, a batch normalization layer, a rectified linear unit
(ReLU) layer, and a convolutional layer. The last convolutional layer outputs an
N×N×L prediction map where N×N is the size of the final feature map of
backbone network, and L is the number of light sources. We defined a light
adaptive loss based on the output of the light classification head, which is a
pixel-wise cross-entropy loss and written as
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Fig. 1. The architecture of LAM. LAM could be plugged into conventional CNNs. LAM
consists of a light classification head and a reconstruction decoder, which are trained
by both annotated standard images and unlabelled transition zone images. During the
inference phase, LAM is removed so no costs are increased.

Llc = −
∑

i,x,y

[
Li × log p(x,y)i + (1− Li)× log(1− p

(x,y)
i )

]
(1)

where p
(x,y)
i denotes the value of prediction map p generated by the light classi-

fication head of ith light source at location (x, y).
The gradient reversal layer is leveraged to make the backbone network adver-

sarial to the light classification head. In the forward phase, the layer just rep-
resents an identity operator, while in the backpropagation phase, the sign of
gradient is reversed. Hence, the network is trained in an adversarial manner,
that is the light classification head minimizes the cross-entropy loss but the
backbone network maximizes the loss at the same time.

2.4 Reconstruction Decoder

The reconstruction decoder is illustrated in Fig. 1. We define sequential layers
as an upsample block including a upsample layer, a convolutional layer, a batch
normalization layer, and an exponential linear unit (ELU) layer. Five upsample
blocks and a convolutional layer stack together so that the final feature map of
the backbone network can be zoomed to the original input size and the dimension
is also transformed as the same as the input image. The weighted sum of MSE
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loss and SSIM loss [23] is considered the loss function of reconstruction, where
the weight ratio of MSE loss to SSIM loss is 10:1.

It is obvious that there is a conflict between the light classification head and
the reconstruction decoder because the function of the light classification head
is to remove light-specific features whereas the function of the reconstruction
decoder head is to preserve the whole information. Thus, through min-max nor-
malization and grayscale transformation, we render the illumination normalized
grayscale image of the original input as the reconstruction decoder ground-truth.
Between WL images and SL images, the color, brightness, and texture pattern
are changed due to the change of spectrum, which is apparent in Fig. 2. We
assume that color-related and brightness-related features are not beneficial for
the classification of upper gastrointestinal sites, so reconstruction to the illu-
mination normalized grayscale image can alleviate the conflict between light
classification head and reconstruction decoder as much as possible in terms of
color-related and brightness-related features.

2.5 Implementation Details

During the training stage, each batch of the input images contains two parts.
One is the standard photograph from a gastroscopic examination with the anno-
tation of upper gastrointestinal sites. The other is the non-standard screenshots
from the gastroscopic examination videos which do not belong to any set cat-
egories and thereby only have domain labels. The standard photographs with
24 batch size are used for calculating the cross-entropy loss for the classification
of upper gastrointestinal sites. The non-standard screenshots with 16 batch size
are utilized to calculate the light adaptive loss. All of the inputs are used to
calculate reconstruction loss. Total loss is the sum of upper gastrointestinal sites
classification loss, light adaptive loss, and reconstruction loss.

Since the light adaptive loss is a pixel-wise loss, it is necessary to cut out the
black borders around the gastroscopic images to ensure every input pixel has the
light source information. After cropping, the images are resized to 224×224 and
augmented by a combination of procedures including the random horizontal flip,
random change of brightness, hue, saturation, and value, and random cutout.
The weight of the gradient reversal layer is 0.01. Adaptive moment estimation
(Adam) algorithm [25] is selected as the optimizer with an initial learning rate
of 0.0001. After consecutively training for 100 epochs, the checkpoint with max-
imum average accuracy in the validation cohort is considered the final model.
Models are trained on a single RTX 2080 GPU via PyTorch [16] framework.

3 Experiments

3.1 Dataset

To construct the datasets, we collected a total of 1202 patients data with gastro-
scopic examination videos and frozen images using the HD-550 Video Endoscopy
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Fig. 2. The illustration of different upper gastrointestinal sites. (a–g) are from frozen
images. (h) is from screenshots of the gastroscopic video

System by Sonoscape. All of the patients were examined by both WL and Ver-
satile Intelligent Staining Technology [24] which is defined as SL in this work.
Enrolled patients were randomly split into training, validation, and test cohort
in a ratio of 6:1:3, that is 720 patients in the training cohort, 121 patients in
the validation cohort, and 361 patients in the test cohort. Frozen images were
acquired by freezing operation when the endoscopist observe a clear and stan-
dard upper gastrointestinal site under WL or SL. An endoscopist with 5-year
endoscopy experience annotated frozen images to 7 upper gastrointestinal sites.
To train the LAM, we also captured 865 screenshots from examination videos
in the training cohort which belongs to transition zones between the upper gas-
trointestinal sites. Some samples of the datasets are illustrated in Fig. 2. The
frozen images were used for building the baseline model or models with LAM,
as well as the evaluation of models. The transition zone images were only used



Light Adaptation for Classification of the Upper Gastrointestinal Sites 9

to build the models with LAM. The specific image numbers of every upper gas-
trointestinal site are shown in Table 1.

Table 1. The numbers of upper gastrointestinal images in training and test cohort.

Dataset Esophagus SJ. Antrum Body Angulus Fundus duodenum Total

Training WL images
(for classification)

357 535 1204 2755 497 1550 1075 7973

SL images
(for LAM)

– – – – – – – 170

WL images
(for LAM)

– – – – – – – 695

Val WL images 55 84 219 536 76 275 173 1418

Test WL images 257 184 803 1964 363 1189 714 5474

SL images 168 129 16 21 12 16 8 370

SJ is the abbreviation of squamocolumnar junction.

3.2 Experiment Details

We used ResNet-18 and ResNet-50 as backbone networks to evaluate the validity
of the proposed LAM under WL and SL. Moreover, we performed an ablation
study based on ResNet-50 to explore the respective roles of different heads. All
of the models were trained in the same setting which was described in 2.5.

Table 2. The Accuracy of models under different light source.

Model Esophagus SJ. Antrum Body Angulus Fundus duodenum Mean

WL ResNet-18 0.969 0.989 0.993 0.976 0.988 0.979 0.994 0.984
ResNet-18+LAM 0.964 0.989 0.992 0.982 0.980 0.950 0.975 0.976

SL ResNet-18 0.071 0.078 0.187 0.952 0.833 0.625 0.750 0.500
ResNet-18+LAM 0.643 0.473 0.625 1.000 0.917 0.687 0.750 0.728

WL ResNet-50 0.974 0.993 0.993 0.981 0.977 0.967 0.992 0.982
ResNet-50+LAM 0.969 0.978 0.992 0.972 0.992 0.969 0.996 0.981

SL ResNet-50 0.071 0.000 0.125 0.952 0.333 0.625 0.500 0.372
ResNet-50+LAM 0.768 0.543 0.687 0.857 0.833 0.687 1.000 0.768

SJ is the abbreviation of squamocolumnar junction.

3.3 Results

The results are reported in Table 2. It is suggested that ResNet attached with
LAM can improve the predictive performance significantly without external
labeled data under SL. For the esophagus, squamocolumnar junction, antrum,
and angulus, the prediction accuracy of the subclass under SL are also higher
than that of the baseline model. In addition, the overall accuracy and the accu-
racy of a subclass under WL of the model with LAM are only slightly lower
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than the baseline model, which means adding LAM does not affect the original
performance of the model. The results of the ablation study are given in Table 3.
It indicates that introducing the light classification head and the reconstruc-
tion decoder can improve the classification performance of the model under SL,
respectively.

The results show that our proposed model has the ability to recognize various
upper gastrointestinal sites under both WL and SL, so it is capable of real clinic
scenarios where upper gastrointestinal images under WL or SL are mixed in one
video stream. Here we do not compare to other domain adaptation methods such
as cyclegan [12] or adaBN [22], because those methods need to obtain additional
domain information during the inference phase.

Table 3. Ablation study for LAM under SL.

Model Esophagus SJ Antrum Body Angulus Fundus duodenum Mean

ResNet-50 0.071 0.000 0.125 0.952 0.333 0.625 0.500 0.372
ResNet-50 + light
classification head

0.167 0.310 0.312 1.000 0.833 0.625 1.000 0.607

ResNet-50 + light
classification head +
reconstruction decoder

0.768 0.543 0.687 0.857 0.833 0.687 1.000 0.768

SJ is the abbreviation of squamocolumnar junction.

4 Conclusion

In this study, we proposed a plug-and-play LAM module that aims to enhance
the discriminating power for the classification of upper gastrointestinal sites
under SL. LAM can be trained without any labeled SL data and does not work
during the inference phase so that no cost is added. Our experimental results
indicated that by adding the LAM, the performance under WL is only slightly
decreased, but the accuracy under SL becomes significantly higher, which proves
that LAM can decouple the light-specific features and light-invariant features,
and facilitate the backbone network to extract class-related features. For future
work, we intend to expand the number of datasets and types of light sources to
more fully validate our proposed LAM and to develop more advanced modules
for finer decoupling of image representations.
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Abstract. In this paper, we propose a novel criss-cross attention based
multi-level fusion network to segment gastric intestinal metaplasia from
narrow-band endoscopic images. Our network is composed of two sub-
networks including criss-cross attention based feature fusion encoder and
feature activation map guided multi-level decoder. The former one learns
representative deep features by imposing attention on features of multi-
ple receptive fields. The latter one segments gastric intestinal metaplasia
regions by using the feature activation map scheme to enhance the impor-
tance of decoder features and avoid overfitting. As shown in the exper-
imental results, our method outperforms state-of-the-art semantic seg-
mentation methods on a novel challenging endoscopic image dataset. The
source code is available at https://github.com/nchucvml/CCA-MFNet.

Keywords: Intestinal metaplasia · Semantic segmentation · Attention

1 Introduction

Gastric intestinal metaplasia (IM) is the major gastric precancerous lesion, and
the incidence rate of gastric cancer of patients with IM averages 3.38 patients
per 1,000 person-years [1]. Patients with gastric IM have a 6.4 to 9.3-fold risk
of gastric cancer in East Asians [19] and have higher risk when observing severe
IM. Therefore, detecting the presence and assessing the severity of gastric IM
are important to select high-risk population and early detect gastric cancer. The
gold standard diagnosis of gastric IM is based on histology [8]. However, multiple
biopsies of different gastric sections are invasive and costly, and the procedure
could result in bleeding. The processing and histological interpretation of biopsies
are also time-consuming.

To reduce the burdens of the histologists and the risk of bleeding, endo-
scopic grading of gastric IM has been developed to stratify the gastric cancer
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
L. Manfredi et al. (Eds.): ISGIE 2022/GRAIL 2022, LNCS 13754, pp. 13–23, 2022.
https://doi.org/10.1007/978-3-031-21083-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21083-9_2&domain=pdf
http://orcid.org/0000-0003-2372-5429
https://github.com/nchucvml/CCA-MFNet
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Fig. 1. The overview of the proposed criss-cross attention based multi-level fusion
network (CCA-MFNet). The number of filters is 256 if it is not mentioned in the
convolutional layer.

risk by using narrow band imaging (NBI) endoscopic images [13,15]. During
the endoscopic exam, gastric IM could be missed because of subtle mucosal
changes, unclear boundaries and incomplete examination. Moreover, the view-
ing directions and positions of the endoscopic camera are hard to be consistent
for each patient. This situation leads to scale and appearance variations of the
captured gastric IM regions. Because of the peristalsis of the stomach, the cap-
tured appearances of the mucosa also deform with time. Thus, it is difficult to
diagnose gastric IM [2,12] accurately from endoscopic images, and the diagnostic
ability of gastric IM heavily depends on the experience of the endoscopists.

To solve the aforementioned problems, we propose a novel criss-cross atten-
tion based multi-level fusion network (CCA-MFNet) to achieve gastric IM seg-
mentation from NBI images. As shown in Fig. 1, our network is composed of the
criss-cross attention based feature fusion encoder and feature activation map
guided multi-level decoder. In the encoder, we propose the feature fusion (FF)
module to learn dilated features of different receptive fields. To capture con-
textual information of the dilated features, the recurrent criss-cross attention [9]
(RCCA) module is applied to effectively represent the appearances of the mucosa
under scale and deformation changes. In the decoder, we propose the multi-level
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feature activation map (FAM) module which applies the level context of the
layers in the encoder to provide the importance ability to enhance the decoder
features and prevent the overfitting. In the experiments, our method outperforms
the state-of-the-art methods on the novel challenging dataset.

The contribution of the paper is three-fold. First, to the best of our knowl-
edge, this is the first end-to-end trainable attention based method to achieve
gastric IM segmentation from NBI. Second, our method simultaneously aggre-
gates contextual information from different receptive fields based on criss-cross
attention to learn novel discriminative features and solve the scale and defor-
mation problems. Third, the novel feature activation map module successfully
guides the learning of decoder features to increase the segmentation performance
and avoid overfitting.

2 Related Work

Recently, artificial intelligence based methods [11,14,23] have been widely
applied to diagnose gastric cancer and polyps from endoscopic images. Com-
pared with these methods, gastric precancerous lesion classification methods
can further identify high risk gastric cancer patients [19] before gastric cancer
occurs. In white-light imaging (WLI) endoscopic images, Huang et al. [7] pro-
pose a refined feature selection based neural network to identify Helicobacter
pylori-induced gastric IM. Their results are further improved in [6]. Zheng et
al. [26] propose using ResNet-50 [5] to identify gastric IM and atrophic gastritis.
Instead of using WLI, Yan et al. [24] propose using three different convolutional
neural networks for IM classification based on NBI.

Nevertheless, these classification methods have difficulties locating the gas-
tric IM regions which are important to reveal the severity of gastric IM on
the mucosa. Wang et al. [21] propose W-Deeplab based on Deeplab-v3 [3] to
segment gastric IM regions from WLI. Low-level features of the encoder are con-
catenated with the features in the decoder without considering the importance
of the encoder features. Thus, their decoder features are hard to represent gastric
IM. Siripoppohn et al. [18] combine low-level edges and convolutional neural net-
work to achieve gastric IM segmentation. Although they claim the performance
is equivalent to Deeplab-v3, their method is not end-to-end trainable. Differ-
ent from these methods, our criss-cross attention based feature fusion scheme
can generate discriminative features in the encoder and our feature activation
map scheme can provide the importance for learning decoder features and avoid
overfitting in an end-to-end trainable manner from NBI as suggested in [15].

3 Method

3.1 Criss-cross Attention Based Feature Fusion Encoder

In the encoder, we firstly apply the pre-trained ResNet-50 [5] model as the back-
bone feature extractor. To learn deep features which can represent the appear-
ances of the gastric IM regions under variant scale and deformation changes, the



16 C.-M. Nien et al.

backbone feature fr is expanded by the feature fusion (FF) module which con-
tains 4 dilated convolutional layers [25] to represent different receptive fields. By
using dilated convolutions with different receptive fields, our method can access
the multi-scale contextual information of relevant gastric IM regions.

To extend the discriminability of each learned dilated feature, we concatenate
fr with the dilated feature and apply another dilated convolution with a larger
dilated rate to generate new dilated features of larger receptive fields. Let f1

r be
the dilated feature generated by the 3 × 3 dilated convolution with the dilated
rate 1 based on fr. It is concatenated with fr and the concatenated feature serves
as the input of the next dilated convolutional layer with the larger dilated rate 2
to obtain the dilated feature f2

r . The same process is repeated for generating the
dilated features f4

r and f8
r of the dilated rates 4 and 8, respectively, as shown

in Fig. 1. Such concatenation provides richer representation ability as shown in
the ablation study. By aggregating the dilated features of different receptive
fields, the fusion feature ff containing multiple receptive field information of
the mucosa is defined as:

ff = [f1
r f2

r f4
r f8

r ]. (1)

To further explore the contextual information of ff , we propose using the
recurrent criss-cross attention (RCCA) [9] module by repeating the criss-cross
attention (CCA) module twice as shown in Fig. 1. While a single CCA mod-
ule only captures the contextual information of pixels in horizontal and vertical
directions, the RCCA module can represent the contextual information of pix-
els based on full-image dependencies. To condense ff , a 3 × 3 convolutional
layer with a batch normalization layer is applied. Then, the first CCA module
learns the first attention feature of ff based on sparse connections of pixels in
the same row and the same column which can significantly reduce the number
of weights [9] compared with the non-local attention module [22]. To capture
the full-image dependencies, the second CCA attention module computes the
connections between any two spatial positions of the first attention feature and
generates the additional contextual information for all positions. The second
attention feature is condensed by using a 3× 3 convolutional layer with a batch
normalization layer. Finally, the encoder feature fe is obtained by the concate-
nation of ff and the second attention feature.

3.2 Feature Activation Map Guided Multi-level Decoder

To obtain better gastric IM segmentation results of the original resolution in the
decoder, a naive idea is to concatenate encoder features with decoder features
as U-Net [17] during upsampling. Because of the image scale and deformation
variations of captured appearances of the mucosa, the boundaries of the gastric
IM regions are hard to be clearly identified. Moreover, different severity of gastric
IM also affects the observed region sizes. The learned encoder features can easily
overfit the training data. Thus, concatenating encoder features with decoder
features is hard for correctly representing the variations of gastric IM.
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To solve the aforementioned problems, we propose a novel multi-level feature
activation map (FAM) module to improve feature learning during upsampling in
the decoder. The multi-level FAM module aims to prevent overfitting and provide
the importance of encoder features to enhance decoder features. As shown in [27],
the importance can be effectively obtained by using global average pooling on
the convolutional features of the encoder. Thus, for the encoder features of the
last layer of the residual block, the global average pooling is applied to obtain
the feature activation map to represent the importance of the encoder features.

Our decoder contains two level upsampling process as shown in Fig. 1. The
encoder feature fe is passed to a 3× 3 convolutional layer with a batch normal-
ization layer to obtain the first decoder feature f1

d in the first level. The first
feature activation map f1

a is obtained by using the global average pooling to the
feature of the second residual block in ResNet-50. It then serves as the impor-
tance weights and is pixel-wise multiplied to each pixel of f1

d of corresponding
channels to obtain the importance decoder feature f̂1

d which reserves key infor-
mation to avoid overfitting. f̂1

d is then pixel-wise added to f1
d to enhance f1

d by
considering the importance provided by the encoder. The first enhanced feature
is then upsampled and passed to another 3× 3 convolutional layer with a batch
normalization layer to obtain the second decoder feature f2

d in the second level.
The second feature activation map f2

a is obtained from the features of the first
residual block of ResNet-50 which provides feature importance based on low level
features for boundary representation. To reduce the number of channels of the
first residual block, a 1×1 convolutional layer is added before the global average
pooling to ensure the channel consistency. The same as the process in the first
level, f2

a is pixel-wise multiplied to f2
d and the importance decoder feature f̂2

d is
pixel-wise added to f2

d . In this way, the encoder features can be used to enhance
the decoder feature and avoid overfitting. Finally, a 3 × 3 convolutional layer,
a batch normalization layer, and a 3 × 3 convolutional layer with the softmax
function are applied to compute the cross entropy loss [9] with respect to the
gastric IM regions. Please note that the parameters of the ResNet-50 model will
also be updated based on the cross entropy loss to help generate better feature
activation maps for the decoder.

4 Experimental Results

4.1 Dataset

Patients who underwent gastroscopy (GIF-H290 Endoscope and GIF-H260
Endoscope, Olympus Medical Systems Co., Ltd, Japan) for indications of dys-
pepsia, acid reflux, melena, gastric intestinal metaplasia or ulcer follow-up and
consented to participate the study were enrolled. Patients who took antiplatelet
agents or anticoagulants were excluded. In addition, patients with bleeding ten-
dency or hematologic diseases were also excluded. Four endoscopists collected
NBI endoscopic images at the lesser and greater curvature of both antrum and
corpus, and incisura [16] in every gastroscopy. Invasive biopsies were taken from
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the above locations to assess gastric IM according to the Updated Sydney Sys-
tem [4]. Two expert gastrointestinal pathologists manually scored the histological
grade of gastric IM in each biopsy. The dataset contains NBI images of different
gastric sections with various scale changes and viewing directions. The numbers
of training and testing images were randomly partitioned to 317 (70%) and 137
(30%), respectively.

For evaluation, we applied mean intersection-over-union (mIoU), mean dice
(mDice), recall, precision, and accuracy metrics [9,21]. The NBI images of dif-
ferent gastric locations were extracted and resized to 224 × 224. Our method
was implemented in Pytorch 1.4 on an Intel i7 computer with the GTX 2080
Ti GPU. The batch size was 8 and the up-bound training epochs was 500. The
optimizer is the stochastic gradient decent with the learning rate of 0.006, the
momentum of 0.7, and the weight decay of 0.0001. The average inference time
of the testing images was 0.051 second and the average inference GPU memory
usage was 2.6 GB.

Table 1. Ablation study (%).

FAM FF RCCA mIoU mDice Recall Precision Accuracy

� � 66.93 76.54 73.45 80.79 95.75
� � 66.44 76.07 73.53 79.37 95.56

� � 65.97 75.54 71.93 80.91 95.69
� �� � 64.02 73.45 69.76 79.29 95.42
� � � 68.92 78.47 74.94 83.45 96.13

4.2 Ablation Study

Our encoder contains the feature fusion (FF) module and the recurrent criss-
cross attention (RCCA) module to generate attention features containing rich
contextual information from multiple receptive fields. In the decoder, the multi-
level feature activation map (FAM) module helps enhance the decoder features
and the upsampling process. Table 1 shows the results of the ablation study. Our
method achieves the best results when all of the modules are properly applied.
In addition, when only aggregating the dilated features in the FF module, the
performance will significantly decrease as shown in the fourth row of Table 1.
The results show the effectiveness and importance of concatenating the encoder
feature with dilated features in the FF module.

4.3 Quantitative Results

In the experiments, we compared the proposed method with the state-of-the-
art methods including U-Net [17], U-Net++ [28], nnU-Net [10], MedT [20],
W-Deeplab [21], and CCNet [9]. Table 2 shows the quantitative results of the
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Table 2. Comparisons with state-of-the-art methods (%).

Method Backbone mIoU mDice Recall Precision Accuracy

U-Net U-Net 57.61 65.60 61.40 77.18 94.94
U-Net++ U-Net 58.62 66.92 62.55 78.10 95.05
nnU-Net U-Net 60.33 69.05 64.29 80.47 95.30
MedT Transformer 53.31 59.44 56.62 71.03 94.46
W-Deeplab Deeplab-v3 62.19 71.22 65.66 85.17 95.69
CCNet ResNet-50 65.88 75.39 70.80 83.24 95.87
Proposed ResNet-50 68.92 78.47 74.94 83.45 96.13

competing methods and the proposed method with respect to different metrics.
Because the viewing directions of the endoscopic camera are not fixed, the dis-
tances between the mucosa and the camera will also be variant. Moreover, the
deformation of the mucosa also leads to the appearance changes and the gas-
tric IM regions usually do not contain clear boundaries. Thus, the competing
methods are hard to achieve good IM segmentation results as shown in Table 2.
To solve these problems, we propose attention based feature fusion of multiple
receptive fields in the encoder which can successfully represent the contextual
information of the gastric IM regions, and the multi-level feature activation maps
in the decoder which can enhance the learned features and reduce overfitting for
gastric IM segmentation. As a result, the proposed method outperforms all of
the competing methods.

4.4 Qualitative Results

Figure 2 shows the qualitative results of the competing methods and the proposed
method. The ground truths of gastric IM regions are marked by light green
polygons while the segmented gastric IM regions are marked by purple colors.
Fig. 2(a) shows the patient ID. The NBI images of patients P1 and P2 contain
normal mucosa, while the NBI images of patients P3, P4, P5 and P6 contain
gastric IM. As shown in Fig. 2(b) and (c), the false segmentation results of U-
Net and U-Net++ can be observed for P1 and P2. respectively. In contrast, the
results of nnU-Net for P1 and P2 are better as shown in Fig. 2(d). Due to the
lack of multiple receptive field information, these methods fail to segment gastric
IM regions of different scales and sizes for remaining patients. Fig. 2(e) shows
the segmentation results of MedT. Although MedT can correctly detect normal
regions of P1 and P2, miss-segmentation of IM regions can be observed for P4,
P5 and P6. When the patient has mild IM, the boundaries of the IM regions are
usually unclear which makes it hard to learn the relationship of relative positions
by using the transformer.

By imposing encoder features of different receptive fields, W-Deeplab achieves
better results but still contains false alarms for normal mucosa of P2, P3 and
P6 as shown in Fig. 2(f). It also better segments the IM regions of P4 compared
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with aforementioned methods. As shown in Fig. 2(g), CCNet achieves better
gastric IM segmentation results compared with W-Deeplab, because it extracts
representative features based on the attention scheme. Nevertheless, false alarms
and miss segmentation of IM regions of P2 and P4 can be observed, when the
camera moves close to the mucosa.

In contrast, the proposed method achieves the best qualitative results as
shown in Fig. 2(h). It can successfully segment the IM regions of patients with
much few false alarms compared with the competing methods. The results show
the effectiveness of the three proposed modules. Fig. 2(i) shows the attention
maps of the proposed method for each patient. The visualization shows that our
method can capture key contextual information to distinguish gastric IM regions
and normal regions.

Fig. 2. The qualitative results of the proposed method and the state-of-the-art meth-
ods. (a) Patient ID, (b) U-Net, (c) U-Net++, (d) nnU-Net, (e) MedT, (f) W-Deeplab,
(g) CCNet, (h) The proposed method, and (i) The attention maps of the proposed
method.
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5 Conclusions

We propose a novel deep learning network to solve the gastric IM segmentation
problem from NBI endoscopic images. By composing the criss-cross attention
based feature fusion encoder and the feature activation map guided multi-level
decoder, our method can successfully segment gastric IM regions compared with
the state-of-the-art methods. With the proposed method, the invasive biopsies
can be avoided and the time-consuming histological process can be saved for
gastric precancerous lesion diagnosis. In the future, we will append the proposed
method to real-time gastroscopy for online gastric IM diagnosis.
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Abstract. Colonoscopy is a routine outpatient procedure used to exam-
ine the colon and rectum for any abnormalities including polyps, diver-
ticula and narrowing of colon structures. A significant amount of the
clinician’s time is spent in post-processing snapshots taken during the
colonoscopy procedure, for maintaining medical records or further inves-
tigation. Automating this step can save time and improve the effi-
ciency of the process. In our work, we have collected a dataset of
120 colonoscopy videos and 2416 snapshots taken during the proce-
dure, that have been annotated by experts. Further, we have devel-
oped a novel, vision-transformer based landmark detection algorithm
that identifies key anatomical landmarks (the appendiceal orifice, ileo-
cecal valve/cecum landmark and rectum retroflexion) from snapshots
taken during colonoscopy. Our algorithm uses an adaptive gamma cor-
rection during preprocessing to maintain a consistent brightness for all
images.We then use a vision transformer as the feature extraction back-
bone and a fully connected network based classifier head to categorize
a given frame into four classes: the three landmarks or a non-landmark
frame. We compare the vision transformer (ViT-B/16) backbone with
ResNet-101 and ConvNext-B backbones that have been trained similarly.
We report an accuracy of 82% with the vision transformer backbone on
a test dataset of snapshots.

Keywords: Colonoscopy · Vision transformer · Landmark detection

1 Introduction

Colorectal cancer (CRC) is among the leading causes of death worldwide [4].
In the United States alone, 161,470 individuals are estimated to be diagnosed
with CRC and 54,250 individuals are estimated to die from CRC in 2022 [26].
Colorectal cancer incidence rates have been increasing among screening-age indi-
viduals aged 65 years and older by 1% per year [27]. Early onset CRC rates have
also been on the rise among the patients under the recommended screening age
(50 years). Early screening for colorectal abnormalities is associated with a 67%
reduction in mortality from CRC [9]. Colonoscopy being the gold standard for
CRC screening [13] plays a critical role in mitigating risk.
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Snapshots taken during the colonoscopy are a critical yet time-consuming
part of the post-procedural diagnosis and documentation. Physicians typically
take snapshots of key colon landmarks such as the Appendiceal Orifice (AO),
Ileocecal Valve (ICV), Cecum landmark (Cec) and certain findings such as
polyps, diverticula, or routine procedural steps such as a Rectum Retroflex-
ion (RecRF), as recommended by the American Gastroenterological Institute
[7]. The snapshots are useful in the post-procedural phase to serve as a medical
record of the highlights of the colonoscopy and the patient’s colonic health or for
assessing the extent of the procedure by capturing a snapshot of the appendiceal
orifice and ileocecal valve [21].

It has been reported in [19] that a significant amount of a clinician’s time
is spent maintaining Electronic Health Records. With the increase in demand
for colonoscopy procedures, there is a need for improving the efficiency to save
the colonoscopy clinician’s time. There have been multiple robust, highly accu-
rate and efficient approaches developed for polyp detection [18,23,24]. However,
there has been a limited amount of research on landmark detection. To the
best of our knowledge, the algorithms developed by [2,16] have been the only
attempts at detecting the appendiceal orifice (using classical and deep learning
techniques respectively). The deep-learning technique developed by [14] to detect
the hepatic and splenic flexure, is the only multi-landmark detection algorithm
for colons. We believe that this scarcity of available literature may be due to
a lack of availability of expert annotated datasets of colon landmarks and the
inherent difficulty of the task due to: 1) intra-colon (patient) similarity between
different regions, 2) inter-colon (patient) variability in the anatomical structures
of the same region of the colon and 3) non-ideal photometric conditions of the
snapshots (due to poor focus, blur, reflections on the colon walls, occlusions
by fluids, polyps etc.) Thus, there is a need for developing a robust technique
that can accurately identify anatomical landmarks in the colon across multiple
patients, that has been rigorously tested on a dataset containing colonoscopy
snapshots that are representative of the typical clinical setting. Further, it is
important to design a data-efficient training framework that can demonstrably
generalize across different anatomies.

We propose a vision transformer based training framework that enables a
model trained on videos (which are cheaper to annotate) to be adapted for
snapshots. In our work, we address the following problems pertaining our task:
1) adaptation to differences in data distribution from video-annotations to snap-
shots 2) extreme class imbalance, 3) poor photometric conditions and 4) incon-
sistent annotations from experts.

2 Related Work

A large body of work on the application of statistical, physics-based analysis
and machine-learning techniques on colonoscopy has accumulated over the years
primarily focusing on the detection of polyps and to a lesser extent, colon land-
marks. We review the following categories of scientific literature relevant to our
work:
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2.1 Landmark Detection

Fast, reliable techniques of detecting anatomical landmarks are crucial to med-
ical image analysis. Landmark detection in ultrasound and CT scans is a well
explored field, with research on detecting landmarks to utilizing them for organ
segmentation [6,11,30,31]. Detecting landmarks in endoscopy and colonoscopy
has a smaller yet broader research focusing on identifying different landmarks
and regions as a part of the endo-/colonoscopy process. In [2], a shape-based
feature extraction model combined with K-Means clustering was used to detect
the appendiceal orifice in colonoscopy videos. Since this method relies on edge-
based shape detection, there is a possibility of it not working on blurry images,
which are characteristic of typical colonoscopy snapshots. A deep-learning based
approach was proposed in [1] for detecting the anatomical regions (e.g. stom-
ach, oesophagus etc.) from capsule endoscope frames. This demonstrated the
efficacy of deep networks to correctly identify anatomical regions from a single
endoscopy frame. The first major attempt at identifying certain colon land-
marks from colonoscopy frames using deep neural networks was made by [3].
They trained a large 2D CNN based neural network to classify a given frame as
either one of splenic flexure, hepatic flexure or sigmoidal colon junction. Their
approach relies on removing blurred frames using a heuristic, and on testing the
model on non-overlapping frames from the videos common to the training set.

2.2 Visual Feature Backbones and Optimizers

Convolutional Neural Network based architectures such as the VGG-16 [28] and
ResNet101 [12] have traditionally been the most effective and widely used visual
feature extraction architectures. The ConvNext [17] is the latest state-of-the-art
CNN-based architecture. On the other hand, the transformer architecture [29],
which is the standard architecture in Natural Language Processing, has now
been adapted for vision-related tasks in [8] showing promising results. Due to
the fundamentally different mechanisms of transformer-based (attention) and
CNN-based architectures (learned filters), we decide to compare both types of
architectures for our task. For our primary model, we use a Vision Transformer
pre-trained on the ImageNet dataset as the visual feature extraction backbone.
We also independently train a ResNet-101 and a ConvNext based model for com-
parison. The choice of optimizer used directly affects the optimization landscape
impacting the accuracy and ability to generalize, as show in [5]. We use a Sharp-
ness Aware Minimization (SAM) [10] approach to optimizing neural networks
due to its positive impact on the accuracy as well as producing semantically
meaningful attention maps in case of transformers.

3 Data Collection

We have collected and annotated 120 colonoscopy videos and 2416 snapshots
that have been used for training and evaluating our algorithm respectively. We
describe the annotation process, training dataset and snapshots dataset in the
following subsections.
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3.1 Annotations and Cross-Validation

We have annotated the videos on a frame-level and have cross-validated the anno-
tations between the medical experts. This ensures a clinically accurate dataset
that has fine-grain annotations with fewer human errors. We have followed the
same procedure while annotating the training videos as well as the snapshots
dataset. Our annotation methodology is as follows: we separate videos for the
training data (which will be further split into validation and testing sets) and
the snapshots dataset. Separating the data on a video-level is critical to ensure
that the model generalizes well to all the anatomical variations found in colons.
Each of the videos in the training datasets is then labelled on a frame-level by
two medical students independently. Only the frames with a consensus between
the two annotators are chosen for training and the rest are discarded. On the
other hand, each of the videos in the snapshots dataset was examined by a senior
medical expert to extract snapshots, as they would in a clinical setting. Each of
these snapshots was then labelled independently by two senior medical experts,
and a similar consensus-based cross-validation heuristic was used to select the
snapshots with matching annotations from the two experts.

Table 1. Snapshots and test dataset label distribution

Label Number of frames
(Snapshot)

Number of frames
(test)

Appendiceal Orifice 518 776

Ileocecal Valve/Cecum Landmark 132 133

Rectum retroflexion 716 140

Other 1050 1488

3.2 Snapshots Dataset

Our snapshots dataset contains 2416 snapshots collected from over 500 videos
(separate from the training pool of 120 videos), identified and annotated by
clinicians as described in Subsect. 3.1. A snapshot is a video frame that contains
the anatomical/procedural feature of interest in reasonable focus, as identified
by a medical specialist in a clinical setting. Each of the snapshots have been
annotated according to the following labels: Appendiceal Orifice (AO), Ileocecal
Valve (ICV)/Cecum Landmark (Cec), Rectum Retroflexion (RecRF) and Other,
which are shown with examples in Fig. 1. Since the Ileocecal Valve and the Cecum
Landmark typically co-occur in snapshots due to their anatomical proximity, we
combine them into a single label. Both of the first two labels describes the
corresponding anatomical landmark. RecRF refers to the procedural action of
retroflexion in the rectum i.e. bending the colonoscope backwards to inspect the
rectum. Any other anatomical finding such as polyps, inflammation or general
anatomical markers have been labelled as “Other”. A breakdown of the number
of frames per class has been given in Table 1.
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Fig. 1. Sample snapshots with following annotations: Appendiceal Orifice (1a), Ileoce-
cal Valve (1b), Cecum Landmark (1c), Rectum Retroflexion (1d), Other (1e)

3.3 Training Dataset

Our training dataset has 120 videos constituting of 2,000,000 frames in all, that
were annotated and cross-validated as described in Subsect. 3.1. We face an
extreme label imbalance, with a majority of frames (>95%) belonging to a non-
landmark (Other) class, and the minority containing a landmark of interest. We
balance the dataset as part of our training and evaluation (to get a distribution
similar to the snapshots dataset) as described in Sect. 6.

4 Problem Definition

We define our problem as follows: identify a function f : C × H × W −→ J to
classify an image frame F as one of the landmark classes j ∈ {AO, ICV/Cec,
RecRF,Other} such that f(Fij) = j, ∀i ∈ S, j ∈ J . Here, S, J denote the set
of snapshots and class labels respectively. We approximate f using a deep neural
network due to their proven capacity for modeling image data. We thus reduce
our problem to finding the optimal weights θ∗ for the following empirical loss
(L) :

θ∗ = arg min
θ

∑

i,j

L(f(h(Fij)|θ), j) (1)

Here, h refers to a general data preprocessing function. Our framework supports
any loss function L that is a distance metric between the predicted probability
distribution and the true labels. Based on our experiments, we choose a Kullback-
Leibler Divergence [15] as the loss function L.
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Fig. 2. Landmark detection pipeline architecture

5 Architecture

Our algorithm consists of three primary parts: 1) image preprocessing, 2) visual
feature extraction and 3) classification head. The image preprocessing con-
sists of an auto-cropping step to remove dark edges that are an artifact of the
colonoscopy software itself, and auto-correct the brightness using gamma cor-
rection. Since the brightness varies considerably during a colonoscopy, we use
an adaptive gamma correction algorithm described in [25]. We use a pretrained
Vision Transformer (ViT-B/16) as the visual feature extraction backbone in
our primary model. We also experiment with other CNN based architectures
(ResNet101 and ConvNext-B) that were identically pretrained on the ImageNet
dataset and benchmark their performances. Finally, we a use a Fully Connected
Network (FCN) based classifier head to compute the label probabilities from the
feature vector generated by the backbone. A high-level overview of the architec-
ture is given in Fig. 2.

6 Training Pipeline

We design our framework to train a model on annotated videos so that it per-
forms well on clinically selected snapshots. Snapshots are different from video
frames because they are hand-picked by clinicians in the following regards: they
have a different distribution of landmarks and have a different photometric qual-
ity. We address this gap in the training and evaluation data using:
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1. Cross-validation: Cross-validating frames as explained in Sect. 3.1 reduces
the possibility of annotation error and inclusion of poor quality frames in the
training. This bridges the gap in data quality between snapshots and videos.

2. Domain-specific sampling : We artificially construct a training set that has a
label distribution similar to the snapshots dataset by randomly sub-sampling
the frames using a Bernoulli process, described in Eqs. 2, 3. Thus, a frame Fij

is included in the training set if Zij = 1. Here, S, T are the snapshots and
training sets respectively. |Γ | denotes the cardinality of any set Γ .

Zij ∼ Bernoulli(pj) (2)

pj = min

(
|
⋃

i∈S,k=j Fik |
|
⋃

i∈S,k Fik |

/
|
⋃

i∈T ,k=j Fik |
|
⋃

i∈T ,k Fik | , 1

)
(3)

We repeat the sampling (with replacement) at the beginning of every epoch
to maximally cover the downsampled frames.

3. Sharpness-Aware Minimization Optimizer : Learning anatomically relevant
features and ignoring features generated by varying photometric conditions,
specific clinical conditions etc. is critical to generalizability across multiple
patient anatomies. We observe that using a SAM optimization scheme as
described in [10] for training the neural networks helps learn such a robust
model.

7 Results

We have trained Vision Transformer (ViT-B/16), ResNet-101 and ConvNext-B
based models using our framework and evaluated the results on our snapshots
dataset. We tabulate the corresponding accuracy and the class-wise precision,
recall scores in Table 2. We also plot 2D U-MAP [20] embeddings of the vision
backbone representations for images from our balanced test dataset in Fig. 3. We
report the test dataset statistics in Table 1. We see that the vision transformer
based model outperforms the other two on most metrics reported in Table 2. This
is also corroborated by the comparatively well-separated clusters in Fig. 3. We
believe that the inherent shape bias of vision transformers, as reported in [22],
makes it more suitable than CNN-based architectures for landmark detection,
since landmarks are reliably identified by their shape regardless of texture.
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Table 2. Recall, precision scores and overall accuracy on snapshots dataset

Class Metric ViT-B/16 (Main) ResNet-101 ConvNext-B

Overall Accuracy 81.84% 73.06% 60.45%

AO Recall 68.15% 69.69% 75.09%

Precision 76.41% 55.36% 57.12%

ICV/Cec Recall 89.43% 75.33% 88.11%

Precision 51.26% 55.52% 24.84%

RecRF Recall 96.09% 86.31% 88.12%

Precision 98.29% 97.48% 95.03%

Other Recall 77.24% 65.05% 28.39%

Precision 85.10% 74.48% 82.55%

Fig. 3. U-MAP embeddings of vision backbone representations with the color scheme:
AO (Blue), ICV (Orange), Cec (Green), RecRF (Red), Purple (Other) (Color figure
online)

8 Inference and Future Work

We achieve an overall landmark classification accuracy of 81.84% on a snap-
shot dataset of clinically relevant colon landmarks using a vision transformer
backbone. We observe that a transformer based backbone outperforms other
state-of-the-art CNN-based backbones such as ResNet-101 and ConvNext-B. We
can visually see that well-separated representations on an independent, balanced
test set imply a higher accuracy in Fig. 3. This may be due to the transformer’s
inherently higher shape bias as reported by [22]. We hypothesize thus, since
the accuracy trend is not completely explained by the number of parameters,
with ViT-B/16 (86.6M) and ConvNext-B (89M) having a comparable number
of parameters.

Further, the Rectum Retroflexion class has the highest precision and recall
scores as well as the best separation on the U-MAP plots. This is because most
RecRF frames are characterized by the presence of a metallic/plastic tube indi-
cating the inversion of the colonoscope head. We further observe that the pre-
cision for AO and ICV classes is relatively lower. This is also evidenced by the
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poorer separation of the corresponding clusters in Fig. 3. This can be explained
by the visual similarity between these two landmarks and other parts of the colon
(labelled “Other”), making it a challenging task. Thus, we can conclude from our
results that detecting subtle anatomical features (such as a cecum landmark) as
opposed to specific shapes (such as the retroflexion tube) is challenging for the
vision backbone.

Finally, we believe incorporating temporal information in our future work
will help remove false positives for both these classes and improve precision. We
also believe that more complex training techniques such as active learning, self-
supervised pre-training can further improve the quality of features learned by
the vision backbone and improve accuracy. So, we plan on incorporating them
in our future pipeline. We also plan on including more landmark classes such as
polyps and diverticula in the future.
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Abstract. Lumen detection and tracking in the large bowel is a key pre-
requisite step for autonomous navigation of endorobots for colonoscopy.
Attempts at detecting and tracking the lumen so far have been made
using optical flow and shape-from-shading techniques. In general, these
methods are computationally expensive, and most are either not real-
time nor tested on real devices. To this end, we present a deep learning-
based approach for lumen localisation from colonoscopy videos. We avoid
the need for extensive, costly annotations with a semi-supervised learning
and a self-training scheme, whereby only a small subset of video frames is
annotated. We develop an end-to-end pseudo-labelling semi-supervised
approach incorporating a self-training scheme for colon lumen detection.
Our approach reveals a competitive performance to the supervised base-
line model with both objective and subjective evaluation metrics, while
saving heavy labelling costs in terms of clinicians’ time. Our method for
lumen detection runs at 60 ms per frame during the inference phase.
Our experiments demonstrate the potential of our system in real-time
environments, which contributes towards improving the automation of
robotics colonoscopy.

Keywords: Autonomous colonoscopy · Semi-supervised learning ·
Lumen detection · Self-training · Endorobots for colonoscopy · Bowel
cancer

1 Introduction

Colorectal cancer (CRC) is the third cause of cancer-related mortality worldwide,
after lung and breast cancer [1]. Colonoscopy is regarded as the main clinical
diagnostic technique for CRC, with regular screening being a significant step
in drastically reducing mortality rates. Optical colonoscopy (OC) is the gold
standard for optical screening and treatment of CRC since it enables biopsy,
pathological prediction and treatment [5]. However, the current generation of
colonoscopes has limitations, such as patient pain and discomfort, narrow field
of view, difficulties to detect lesions located behind colonic folds, time-consuming
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and complex procedure to learn [16]. Thus, developing low-risk, cost-effective,
and more efficient alternative solutions for colonoscopy is now necessary. Rapid
advancements in endorobotics have produced a new generation of systems that
have the potential to overcome the above limitations. For instance, real-time
visual feedback from a monocular camera can now be incorporated into the con-
trol loop to detect the region of haustral folds in the colon and determine the
centre of the lumen [14,15]. The deformable nature of the large bowel poses sens-
ing and navigation challenges untackled by traditional robotics. Current locali-
sation and navigation strategies for colonoscopy [8] generally depend on external
hardware (i.e. permanent on-board magnet linked to an external magnetic field).
Computer vision-based navigation and localisation, relying on feature recogni-
tion, can offer a solution, but, the deformable nature of the environment may
cause significant difficulties to traditional feature location methods [21].

Several approaches to designing autonomous visual navigation systems for
endoscopes using images have been reported [24]. Many are unsuitable for real-
time operation or fail to work when the lumen centre is hard to detect. Despite
these challenges, methods based on optical flow [11], shape from shading [6],
structure from motion [10] and segmentation [17] have been developed for auto-
matic navigation. The considerable variety in lumen feature appearance due to
the surfaces in view, lighting and acquisition techniques makes it challenging to
construct a universal model performing optimally in any environment and con-
dition. In addition, further factors like occlusion, deformation, off-centre lumen
can degrade performance. Deep learning (DL) algorithms offer great potential
in medical image analysis and interpretation, supported by rapid improvements
in GPU hardware. Endoscopists’ performance in the diagnosis of adenoma or
polyp [4] has also been shown to benefit from the assistance of deep learn-
ing systems. Ahmad et al. [2] reported a comprehensive review of studies that
exploited artificial intelligence, especially DL models, in colonoscopy computer-
aided diagnosis. Methods based on supervised learning (SL) typically require
large quantities of labelled data annotated by experts to achieve high diagnostic
accuracy. However, in the medical domain, only a limited amount of labelled data
and a considerably greater amount of unlabelled data is available. Contrary to
SL, semi-supervised learning (SSL) leverages both labelled and unlabelled data
to offer a low-cost alternative to the time-consuming massive data labelling task
[12,20,23,25,27,28].

Our work develops a vision-based system harnessing deep neural networks
to detect and track the lumen in real time, enabling reliable endorobot navi-
gation colonoscopy. Unlike existing lumen detection models developed to work
on specific video data, our model is developed to accommodate video data cap-
tured from a variety of environments, including synthetic, plastic phantom, and
real colonoscopy videos. We introduce a fast and accurate method that controls
the level of supervision needed, leveraging a semi-supervised scheme for lumen
localisation. By exploiting a few labelled frames and a large number of unla-
belled frames, we develop an end-to-end pseudo-labelling semi-supervised app-
roach incorporating a self-training scheme for colon lumen detection. To evalu-
ate robustness and reliability, we have conducted experiments on comprehensive
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video data. Results show promising recall and precision on lumen detection with
plastic phantom and simulated datasets and suggest an excellent generalisa-
tion ability on unseen real colonoscopy videos. The results also demonstrate the
benefits of the SSL strategy over the fully supervised scheme (baseline model),
without sacrificing the run-time advantage or prediction accuracy.

2 Methods

Inspired by Xu et al. [27], who achieved competitive detection performance on
natural image data, we propose to use a semi-supervised learning (SSL) scheme
incorporating a self-training framework for colon lumen detection, as shown in
Fig. 1. Our method exploits the mentor-student approach for a hybrid learning
strategy. Both mentor and student have the same architecture, the default Faster
R-CNN object detector model. First, the object detector model is trained with
a classical supervised scheme from 40% of the labelled data, of which 2% are
used for validation and hyper-parameters tuning. The object detector is then
used as a mentor to generate pseudo-labels, as a test-time inference, from 30%
of unlabelled data. The student is trained by mixing those pseudo-labelled data
with an additional 10% of the labelled data, which is augmented. The remaining
20% of labelled data are used for testing.

Baseline Supervised object Detector Model. A single-level feature detec-
tor, Faster Region Based Convolutional Neural Networks (Faster R-CNN) [19] is
harnessed to produce the baseline model used as mentor in our SSL scheme. We
trained it with a classical supervised scheme using 40% of the manually labelled

Fig. 1. Overview of mentor-student model training for lumen detection. Pseudo-labels
(bounding boxes and class labels) are generated from a pre-trained mentor model
with unlabelled data. Student unsupervised loss is computed with the pseudo-labels
above a specific threshold in a semi-supervised manner. 10% of the labelled data with
augmentation is also used to train the student model. GT: ground truth.
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frames. Faster R-CNN has two heads, one for object classification and the other
for bounding boxes regression. It also has a fully convolutional Region Proposal
Network (RPN) that takes the input features of frame and produces region pro-
posals with an objectness score (denoting the probability of object or not object
(background) for each proposal). The RPN predicts the offsets of region pro-
posals from established reference boxes, known as anchor boxes. Anchor boxes
are predetermined and fixed-size boxes distributed over the input frame with a
variety of sizes and aspect ratios. A non-maximum suppression (NMS) algorithm
[9] is then applied to filter out the predicted region proposals, depending on a
confidence threshold score, which is set to value of 0.7. The advantage of employ-
ing box predictions after NMS over raw predictions (before applying NMS) is
that it avoids duplicated and overlapped results. Once the region proposals are
selected, the lumen object classification and boundary box regression are then
measured in a supervised fashion. The supervised loss function used to learn the
baseline model is:

Ls =
1
Nl

Nl∑

i=1

(Lcls (pi, p∗
i ) + Lreg (ti, t∗i )) (1)

where i indexes a labelled frame, pi: predicted probability of proposal contains
a lumen object or not, p∗

i : the ground-truth value of proposal contains a lumen
object or not, ti is the coordinates of the predicted lumen proposal, t∗i is the
ground-truth coordinate associated with the bounding box of the lumen, Lcls is
the classification loss, Lreg is the bounding box regression loss, and Nl denotes
the number of labelled frames in batch.

Semi-supervised with Self-training Model. In our mentor-student learn-
ing scheme, the student is trained in a semi-supervised fashion integrating a
self-training strategy which has achieved considerable success including Noise-
Student [26], STAC [23], and SoftTeacher [27]. The phases of our SSL incorpo-
rated with self-training are:

1. Leverage the baseline pre-trained supervised detector model as a mentor
model to generate pseudo-labels and pseudo-bounding box annotations for
30% of unlabelled frames. This process includes a forward pass of the Res50
backbone model, RPN and classification network, followed by the NMS post-
processing. These predicted pseudo-labels and pseudo-bounding box annota-
tions are considered the ground truth to compare with the prediction from
the student model in an unsupervised loss function.

2. Train the student model using both those pseudo-labelled frames and 10% of
the manually labelled data not seen by the mentor on which data augmenta-
tion is applied. This requires establishing a loss function for the student that
sums the losses of both supervised and unsupervised models.

To compute the loss for pseudo-labelled frames when training the student, the
generated pseudo-labels are used as ground-truth to be compared to the student
prediction, producing an unsupervised loss function as follows:
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Lu =
1

Nu

Nu∑

i=1

(Lcls (ri, r∗
i ) + Lreg (si, s∗

i )) (2)

Here i indexes an unlabelled frame, u an unlabelled frame, ri refers to the pre-
dicted probability of proposal containing a lumen object, r∗

i represents the gen-
erated pseudo-label of proposal, si is the coordinates of predicted proposal for
lumen, s∗

i is the pseudo-boxes of lumen generated by the mentor, Nu denotes
the number of unlabelled frames. For the 10% labelled frames, the student cal-
culates the loss between the provided ground truth and the predicted labels, via
a supervised loss. The total loss of the student model is the weighted sum of the
unsupervised and supervised losses, i.e., using Eq. (1) and Eq. (2):

L = Ls + αLu (3)

where α denotes the weight of unsupervised loss, determined experimentally.

Inference and Refinement. Once the model is trained, it can be adopted for
the inference phase to produce the predictions of bounding boxes over the lumen
area on a frame basis. To maintain the temporal consistency among predicted
bounding boxes on a sequence of consecutive frames, we carefully designed a
simple yet effective strategy to choose the bounding box proposal that preserves
a minimum distance to the bounding box in the previous frame in a sequence
of frames. The application of refinement scheme assumes that the intersection
over the union between the bounding boxes of two consecutive frames is not null,
which typically results from an abrupt camera movement. This scheme is applied
by locating the centre points (xi,c, yi,c) of the predicted bounding boxes in frame
i, where c ≥ 1. The centre points are computed from the predicted bounding
boxes, represented by the value of top left corner (xmin, ymin) and bottom right
corner (xmax, ymax). The centre point (xc, yc) in frame i is defined as follows:

(xc, yc) = (round(xmin +
xmax − xmin

2
), round(ymin +

ymax − ymin

2
)) (4)

Euclidean distance is measured among the centre points in frame i and the centre
point in the previous frame, i − 1. The centre point that achieves the minimum
distance is then selected, and the bounding box accompanied by this point is
produced as the outcome of the model prediction.

3 Experimental Set-Up, Results and Discussion

Datasets. Public synthetic dataset [18] consisting of 16,016 RGB frames gener-
ated from the video is used in our study. The size of frames is 256 × 256 pixels.
The synthetic dataset is split into groups according to texture and lighting con-
ditions. The synthetic dataset collection setting is available in [18]. To obtain
the ground truth bounding boxes of the lumen, we used the ground truth depth
data provided the synthetic dataset. The depth map is clipped at 3/4 depth
from the nearest depth value to segment the lumen. The result is then converted
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to rectangular bounding boxes. The second set of videos used in our study was
acquired with a plastic phantom, an off-the-shelf full HD camera (MISUMI SYT,
1920 × 1080, 30 Hz, field of view of 140◦) and a colon model used for training
medical professionals. The model is made from plastic and mimicks 1-to-1 the
anatomy of the human colon, including internal diameter, and overall length
haustral folds (small, segmented pouches of the bowel) to yield accurately simu-
lated images from an optical colonoscope. Creating the haustral folds with this
model does not require inflation with air. The camera is connected to a shaft
used to navigate inside the plastic colon-rectum tube forward and backward.
The external diameter of the camera is 7 mm, including light illumination and
lens. The number of frames generated from plastic phantom video is 2,042. The
annotations of labelled frames in this dataset have been conducted manually
using LabelImg1 software by drawing the bounding boxes around the lumen.

DL Experimental Settings. We used Faster R-CNN [19] as a fully super-
vised baseline algorithm in our experiments. Our model and baseline model were
trained for 32,000 iterations on plastic phantom data, and for 52,000 iterations
on synthetic data as the size of video data varies. The size of the batch was set
to 8 with stochastic gradient descent SGD with an initial learning rate of 10−2

with momentum 0.9 and weight decay 10−3, which decays by dividing by 10
at iterations 36,000 and 48,000 on synthetic data and 18000 and 28,000 itera-
tions on plastic phantom frames. We also set the unsupervised weight to α = 2.
The confidence threshold score is set to 0.8 in the inference phase. The mod-
els are implemented using Pytorch and trained on an Nvidia RTX A6000 GPU
with a memory of 48 GB. The implementation of Faster R-CNN with Res50 and
hyper-parameter setting are based on the MMDetection library [3]. For data aug-
mentation, we follows the same augmentation schemes applied in FixMatch [22]
including colour transformations, translation with translation ratio of (0, 0.1),
rotation with angle (0, 30), shifting with angle (0, 30), cut-out [7] with ratio
(0.05, 0.2) and number of regions [1,5].

Results. We evaluated the lumen detection model using both quantitative and
qualitative measurements. In terms of qualitative evaluation, we summarise in
Fig. 2 a comparison of the semi-supervised model against the baseline model on
both video types. For quantitative analysis, shown in Table 1, we use the typi-
cal object detection metrics, including average precision (AP) and average recall
(AR) using various Intersection over Union (IoU) threshold scores. Although the
semi-supervised model was trained on only 10% of frames, it shows a compet-
itive performance without needing expensive manual annotations. Importantly,
our lumen detection runs in 60 ms including post-processing time, meeting
interventional time requirements.

Discussion. The non-learning based methods [6,10,11,17] have not reported
evaluation performance compared to ground truth in overlapping with the
bounding boxes. Recently, authors in [29] used off-the-shelf fully supervised

1 https://github.com/tzutalin/labelImg.

https://github.com/tzutalin/labelImg
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Fig. 2. The qualitative results of lumen detection on test data of synthetic dataset
and plastic phantom, respectively. It can be observed that semi-supervised (Semi-sup
in figure) prediction accuracy is par with the fully supervised (Sup in figure) model
prediction on both datasets. Success and failure cases of the proposed model on real
colonoscopy images. Light scattering and low illumination in very challenging condi-
tions are found to affect the prediction.

model Yolo3 to localise the lumen targeting to develop semi-automated naviga-
tion. They reported an AP of 0.835 with an IoU threshold score of 0.7 achieved
by a model trained on 7,147 fully labelled frames captured from plastic phan-
tom. In contrast, the size of our plastic phantom data was only 2,042 frames
in total. To further evaluate the generalisation ability, robustness and reliability
of the presented model, three colonoscopy videos taken from publicly available
dataset [13] that contain a variety of polyps and complex bowel environments
are tested on the developed semi-supervised model, pre-trained on the plastic
phantom video data. The obtained detection results shown in Fig. 2 (third row)
reveal superior performance on unseen real colonoscopy data. Due to the lack
of ground truth bounding boxes of these datasets, the lumen detection results
on the real colonoscopy videos have been examined by an anonymous survey
involving eight senior clinicians. Purpose of this study was to have a qualitative
evaluation on the accuracy of the lumen detection. We established a question-
naire showing a rating scale in range (1 - Extremely poor, 5 - Excellent). The
average accuracy reported by the clinicians was 4.37 out of 5. These findings
demonstrate that the proposed deep feature learning-based approach will be a
valuable automated navigation tool to be deployed in a challenging real-time
environment during robotics colonoscopy. Furthermore, the integration of auto-
mated systems based on large unlabelled data will also significantly reduce the
manual data annotations workload and thus reduce costs. Our proposed model
has limitations. The real scenario may be more challenging when a colon has an
abnormality, such as big polyps, cancer, and diverticula. We target in our future
work to systematically study all scenarios, investigate how the model could cope
with various conditions and include more ablation studies for experimental set-
tings. More experiments on both two-stage and one-stage detectors will be also
conducted to study the generalisation of this method.
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Table 1. Comparison of AP and AR for supervised and semi-supervised models on
synthetic and phantom data, at different IoU threshold scores. The performance of
the Res50 backbone model is also explored here. In addition to the 10% data splitting
scheme, the performance of the SSL model is examined in a 5% data splitting scenario.

Data Split Backbone IoU Semi-supervised Supervised

AP AR AP AR

Synthetic 10% Res50 0.5–0.95 0.637 0.633 0.621 0.674

0.5 0.989 0.688 0.978 0.674

0.75 0.763 0.688 0.713 0.674

Res101 0.5–0.95 0.668 0.718 0.624 0.691

0.5 0.989 0.715 0.978 0.681

0.75 0.807 0.700 0.728 0.689

5% Res50 0.5–0.95 0.601 0.662 0.602 0.655

0.5 0.977 0.667 0.977 0.649

0.75 0.703 0.669 0.700 0.660

Res101 0.5–0.95 0.634 0.691 0.616 0.680

0.5 0.988 0.680 0.976 0.682

0.75 0.753 0.694 0.700 0.689

Phantom 10% Res50 0.5–0.95 0.572 0.651 0.562 0.640

0.5 0.936 0.651 0.950 0.640

0.75 0.677 0.651 0.638 0.640

Res101 0.5–0.95 0.567 0.652 0.554 0.632

0.5 0.933 0.662 0.960 0.637

0.75 0.628 0.658 0.613 0.632

5% Res50 0.5–0.95 0.518 0.600 0.497 0.603

0.5 0.948 0.604 0.925 0.609

0.75 0.521 0.600 0.478 0.606

Res101 0.5–0.95 0.470 0.570 0.452 0.544

0.5 0.896 0.559 0.950 0.540

0.75 0.441 0.560 0.325 0.556

4 Conclusions

In this paper, a novel real-time lumen detection and tracking method has been
introduced and tested in a plastic phantom, synthetic and real colonoscopy
videos. We have introduced the SSL approach toward real-time bound boxes
detection of the lumen, allowing for autonomous navigation and thus providing
significant benefits in terms of reduced physical burden and demanding the min-
imum intervention from the operator. Our findings support our key claim that
a reliable medical AI-based solution could be established using a small quantity
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of labelled data combined with other unlabelled data. A paradigm shift like this
might pave the way for intelligent robot-assisted diagnosis and treatment.
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Abstract. There is often a significant gap between research results and
applicability in routine medical practice. This work studies the perfor-
mance of well-known local features on a medical dataset captured during
routine colonoscopy procedures. Local feature extraction and matching
is a key step for many computer vision applications, specially regard-
ing 3D modelling. In the medical domain, handcrafted local features
such as SIFT, with public pipelines such as COLMAP, are still a pre-
dominant tool for this kind of tasks. We explore the potential of the
well known self-supervised approach SuperPoint [4], present an adapted
variation for the endoscopic domain and propose a challenging evalu-
ation framework. SuperPoint based models achieve significantly higher
matching quality than commonly used local features in this domain. Our
adapted model avoids features within specularity regions, a frequent and
problematic artifact in endoscopic images, with consequent benefits for
matching and reconstruction results. Training code and models available
https://github.com/LeonBP/SuperPointEndoscopy.

Keywords: Deep learning · Self-supervision · Local features ·
Endoscopy

1 Introduction

Endoscopic procedures are a frequent medical practice. The endoscope guided
by the physician traverses hollow organs or body cavities, such as the colon.
Improvements in quality and efficiency of this kind of procedures can benefit
numerous patients and broaden screening campaigns reach. In endoscopy, as in
plenty other medical imaging tasks, computer vision has potential to help in
numerous aspects, such as assistance for diagnosis [33] or 3D modelling [13].
Unfortunately, there is still a significant gap between research results and appli-
cability into the clinic, as discussed for example in [3]. This study emphasizes
the need for unsupervised methods that can fully exploit in the wild medical
data, which is in itself an already scarce resource. To move forward, it is often
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Fig. 1. Feature extraction (red circle) and matching (green line) on endoscopy samples.
(Color figure online)

key to consider challenging and realistic evaluations of current techniques, to
determine where specific adaptations are needed.

Our work is motivated by the automated acquisition of 3D models of the
endoluminal scene, that can facilitate augmented reality applications or assis-
tance for navigation or patient monitoring. A core step in 3D reconstruction
techniques, such as structure from motion (SfM) or Simultaneous Localization
and Mapping (SLAM), is local feature detection and matching. Many broadly
used SfM or SLAM frameworks still rely on hand-crafted local feature computa-
tion [17], although deep learning based techniques are boosting the state of the
art. SuperPoint [4] is one of the seminal works in this topic and has inspired many
follow up works discussed next. This promising research stream of learning based
local features is recently being exploited in the endoscopic image domain [12],
since evaluations and benchmarks on local feature detection and matching are
typically focused on conventional images and mostly rigid scenes [10].

Endoscopic images captured during routine procedures present many chal-
lenges (such as challenging textures, frequent artifacts and scene deformation)
that hinder local feature extraction. Figure 1 shows matches on two pairs of 1 sec-
ond apart frames from a real colonoscopy where general purpose hand-crafted
features (SIFT) can not tackle scenarios that our learned model features do.
SIFT concentrates a lot on specularity artifacts, while our adapted SuperPoint
model achieves more and better distributed matches, key for good 3D recon-
structions. The main contributions of this work are: 1) A thorough study of
SuperPoint effectiveness on in the wild endoscopic images, compared to typically
used hand-crafted local features, including the proposed framework to evaluate
these aspects in endoscopic data captured during daily medical practice; 2) our
Superpoint adaptation to the endoscopic domain that improves its performance.

2 Related Work

Endoscopic Image Registration for 3D Reconstruction and Mapping in
Minimally-Invasive Surgery. Endoscopic image registration is an open prob-
lem essential to image-guided intervention. Current efforts are directed at devel-
oping benchmarks and techniques able to tackle this challenging domain [2].
Learning-based approaches have shown their efficiency for general image registra-
tion, but they remain difficult to adapt to minimally-invasive imaging constraints,
largely due to a lack of robust feature detection and matching in these scenarios.
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Most vision-based approaches for 3D reconstruction in medical domains still rely
on hand-crafted features [6,7]. Some works avoid the need for image registration
by directly estimating and fusing key frames depth map [21] or combining them
with camera pose estimates [16]. These pipelines get the input frames in a tem-
porally consistent way. Our work is focused on a more general problem of feature
extraction without any temporal information given to the model.

Local Feature Detection and Description for Image Registration. Image
registration in general settings is a long studied problem [15]. A key aspect in
this work is learning-based methods for image registration in endoscopy.

Early learning-based approaches solely focused on feature description.
Advanced training loss and strategies significantly improved feature descriptor
performances, e.g., by relying on triplet loss which aims at maximizing descriptor
discrepancy between close but negative pairs of matches [18]. Similar results have
been achieved by sampling more negative pairs as proposed in [29]. The learning-
based feature detection problem has been less investigated. Former approaches
learn to detect co-variant features and aim at reproducing and eventually improv-
ing hand-crafted feature detectors [5,11]. Unlike these approaches, [24] learns in
an unsupervised way to rank keypoints according to their repeatability. The
repeatability constraint is now generally combined with peakiness constraints
for improving the robustness of the detector [19,32].

State-of-the-art registration approaches directly integrate feature extraction
and description in a single framework. It has been shown that such approaches
significantly improve matching results over classical hand-crafted feature-based
registration methods [20]. Preliminary approaches such as LIFT [31] aim at
reproducing the different stages of classical image registration pipelines. The
need for Structure-from-Motion labels to train supervised methods makes these
approaches impractical for applications such as endoscopy. More recent unsu-
pervised approaches such as SuperPoint aim at jointly detecting and describing
image landmarks [4]. The training is an iterative process that starts by learning
from a synthetic dataset of random 2D shapes. The next iterations learn from
the problem-specific dataset generated by applying random homographies to
source images and using self-supervision from the previous iteration. It remains
among the most efficient feature detection and description methods, and is still
being considered in recent comparatives [10]. The R2D2 network [22], based
on the L2-Quad architecture, jointly estimates a reliability and repeatability
map together with a dense descriptor map. Despite their efficiency, methods
jointly detecting and describing features are difficult to train and do not gener-
alize well to different application domains [10]. To overcome these limitations,
[30] propose to rely on a describe-to-detect strategy which takes advantage of
the efficiency and performances of learning-based descriptor models. Recently,
[14] propose a descriptor training strategy based on the formulation of a novel
landmark tracking loss. While results demonstrate the efficacy of the proposed
method, its computational cost remains generally high. Recent image matching
trends propose dense matching as an intermediate step to local matching [34]
and incorporating attention for the matching stages [9,23,28]. However, these
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approaches rely on 3D reconstruction ground truth for training, which is often
not available for recordings acquired during routine medical practice.

3 SuperPoint in Endoscopy

Local feature matching is typically divided in four steps: feature detection,
descriptor computation, matching and, often, outlier filtering. Our goal is to eval-
uate and improve existing methods on the first two steps for in the wild endoscopy
imagery. The well-known SuperPoint, a seminal work regarding self-trained deep
learning solutions for feature detection and description, is the base for our study.
We next describe the Superpoint model variations used and the matching strategy
applied. More implementation details in the supplementary material.

3.1 SuperPoint Models Considered

SuperPoint Base. Original SuperPoint model [4]. For this and the following
model, we use the implementation by [8] , which allows us to use the original
model weights as well as training new models. SuperPoint follows the known
encoder-decoder architecture, but with two parallel decoders (detection and
description heads). SuperPoint processes a single image (I ∈ R

H×W . H and W
are the height and width, respectively) as input and produces two outputs: detec-
tion, image location of each keypoint extracted, and description, one descriptor
for each keypoint. The detection head maps I into a tensor X ∈ R

H/8×W/8×65.
The depth of 65 corresponds to a cell of 8 × 8 pixels in I plus an additional
channel called dustbin or “no interest point”. After performing a softmax over
the third dimension (we refer to it as softmd()), the dustbin is removed and the
rest is reshaped to recover I’s dimensions (d2s(X) : RH/8×W/8×64 → R

H×W ).
The result is interpreted as a probability heatmap of the keypoints in the image.
The description head maps I into a tensor D ∈ R

H/8×W/8×256. The depth of 256
is the descriptor size, associated with a whole cell of 8 × 8 pixels in I. Bi-cubic
interpolation is used to upsample D into having H and W as the first two dimen-
sions. The descriptors are L2-normalized. SuperPoint is trained by contrasting
the outputs of an image and a warped version of itself via a known homography
and pre-computed pseudo-labels of image keypoints. The loss function is

LSP (X ,X ′,D,D′;Y, Y ′, S) = Lp (X , Y ) + Lp (X ′, Y ′) + λLd (D,D′, S) , (1)

where X and X ′ are the raw detection head outputs for image I and warped
image I ′, respectively. Their associated detection pseudo-labels are Y and Y ′.
D and D′ are the raw description head outputs. S ∈ R

H/8×W/8×H/8×H/8 is the
homography-induced correspondence matrix. Lp is the detection loss, which mea-
sures the discrepancies between the detection outputs and the pseudo-labels. Ld

is the description loss, that forces descriptors that correspond to the same region
in the original image to be similar, and different to the rest. λ is a weighting
parameter.
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E-SuperPoint. Specularities are very frequent artifacts in endoscopic images [27],
and feature extractors often tend to detect features in the contour or within
these image specularities. Features on specularities are not well suited for rigid
model estimation, suffer from bad localization, and they turn out to be unreliable
in downstream tasks such as tracking and 3D reconstruction. Although they
can be masked out later, as we see in our experiments, they account for a too
large portion of the features and matches. Thus, we aim to prevent them from
happening in the first place, to encourage the detectors to focus on other regions.

We fine-tune the original model using endoscopic images (resized to 256
× 256) from routine medical practice recordings (dataset detailed in Sect. 4).
Pseudo-labels are obtained with the original SuperPoint model. The pseudo-label
is set to zero where the confidence value is lower than a threshold of 0.015. Non-
maximum suppression is applied over windows of 9 × 9 pixels, and only the top
600 points are finally saved. We fine-tune the model for 200000 iterations with
learning rate of 1e−5 and batch size of 2. We use sparse loss for more efficient
convergence [8], and the rest of parameters are the same as they describe. For
testing we set the detection threshold to 0.015 and non-maximum suppression
over 3 × 3 windows.

Our modification of the SuperPoint model adds a new term to the training
loss, our specularity loss Ls. The purpose of Ls is to account for all the keypoints
that are extracted on top of specularities, and is close to zero when there are no
keypoints on those locations. The final loss is:

LESP (I, I ′,X ,X ′,D,D′;Y, Y ′, S) = LSP (. . . ) + λsLs(X , I) + λsLs(X ′, I ′), (2)

where we add to the original LSP the value of our specularity loss Ls, once per
image, weighted by the scale factor λs. Ls is defined as

Ls (X , I) =

∑H,W
h,w=1 [m (I)hw · d2s (softmd (X ))hw]

ε +
∑H,W

h,w=1 m (I)hw
, (3)

where softmd() and d2s() are softmax and reshape functions from the original
SuperPoint, and ε = 10−10. The subscript Xhw refers to the value of X at row h
and column w. m(I) is a weighting mask: it is > 0 for pixels near a specularity
and 0 otherwise. The mask comes from post-processing I with three operations:
a binary threshold of Ihw > 0.7, a dilation of this binary output with a 3 × 3
kernel size, and a Gaussian blur of the mask with 9 × 9 kernel size and σ = 4.
The threshold of 0.7 was chosen empirically, after observing that higher values
missed too many specularities and lower values were discarding too many valid
regions. To balance the new loss component Ls, we set the weighting parameter
λs = 100 so the losses have similar magnitudes for better optimization. Testing
parameters remain the same.

3.2 SuperPoint Matching

SuperGlue [23] is a well-known matching strategy proposed for SuperPoint. How-
ever, it requires correspondence ground-truth for training so we can not easily
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adapt it to endoscopy imagery. We opt to use bi-directional brute force match-
ing, the originally recommended matching for SuperPoint. We also perform a
robust geometry estimation with RANSAC to remove outliers, assuming local
rigidity for short periods of time. Matching of frames too far apart along the
video would need to account for significant deformations, which is out of the
scope for this work.

4 Experiments

This section summarizes the main results and insights from our comparison of
different SuperPoint models and well-known local features applied in endoscopic
data. Implementation details are in the supplementary material, Table 1.

Datasets. A key aspect in this research is to evaluate local feature performance
on in the wild endoscopic recordings. The model is trained on a set of private
videos, and evaluated on two public benchmarks: EndoMapper [1] and Hyper-
Kvasir [2]. The supplementary material includes sample images from all sets.

• Train set. Endoscopy videos captured across several days of regular medi-
cal practice, each video corresponding to a routine procedure on a different
patient. We use 11 videos and extract 125000 training frames and another
7179 for validation.

• EndoMapper test set . 6 full endoscopies for testing (14191 frames).
Sequences 1, 2, 14, 16, 17 and 95. This dataset is similar to the videos used
for training.

• Hyper-Kvasir test set. 31 short test videos (total of 51925 frames). The
labeled videos in “lower-gi-tract/quality-of-mucosal-view/BBPS-2-3”.

Evaluation Framework Proposed. As often discussed in recent literature, common
matching quality metrics, such as repeatibility or homography estimation, are
not fully representative of local features behaviour in real world settings [10]. This
work also shows that hand-crafted features, particularly SIFT, can still surpass
more recent deep learning based features regarding accuracy in 3D vision tasks
such as image registration. For features and matches to be useful in posterior 3D
reconstruction tasks, known desired properties include: good amount of quality
matches (reliable and accurate) and matches covering all the scene to better
capture the 3D scene information. We propose the following for the evaluation:

• To use an existing SfM approach, COLMAP [25,26], to pre-compute
a pseudo-ground truth for the relative pose between each pair of frames.
COLMAP runs a final global bundle adjustment optimization to recover all
relative camera poses. This pseudo-ground truth is used to compute rotation
estimation errors and matching quality metrics detailed next.

• A set of matching quality metrics to account for: 1) matching quantity
and quality, with inliers obtained from Essential (when camera calibration is
available, E Inl.) or Fundamental (F Inl.) matrix RANSAC-based estimation,
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Table 1. Matching quality metrics for the two different test sets. E-SP trained on
Train set. pGT only available for (a) EndoMapper data.

Feat/Img E Inl. %Gr pGT Inl. %Gr

SIFT 2350.2 148.2 11.9 71.6 9.3

ORB 2163.0 153.0 8.5 80.9 6.0

SP Base 1333.7 96.4 11.4 57.1 8.2

E-SP 4500.9 278.9 13.2 172.0 9.8

(a) EndoMapper test set (1080x1080 resolution)

Feat/Img F Inl. %Gr

825.7 151.3 18.6

361.3 137.2 6.3

211.8 51.3 11.1

591.3 200.4 11.3

(b) Hyper-Kvasir (512x512)

and inliers according to the relative pose provided as pseudo-ground truth
(pGT Inl.); 2) scene coverage, with image cell % (out of a 16 × 16 grid) with
at least one inlier (%Gr).

Matching Quality Evaluation. The following experiments analyze how well each
feature can be matched along challenging endoscopic sequences. We extract and
match features across pairs of frames 1 second apart from each other from
sequences in EndoMapper (1 second = 40 frames for three videos, 1 s = 50
frames for the other three) and Hyper-Kvasir (1 second = 25 frames).

Table 1 shows the performance of different baselines and our adapted model.
The changes proposed have a noticeable effect, obtaining improvements in
amount of features extracted and inlier matches (both with RANSAC and with
the pseudo-GT) and spreading of these matches over the image in both scenar-
ios. This is remarkable because E-SP was not fine-tuned in (b) Hyper-Kvasir
data but it still mostly outperforms the rest.

Specularities. E-SuperPoint is designed to encourage feature extraction avoid-
ing specularities. This experiment evaluates this with the number of features and
inliers when features located in specularity pixels are discarded. We consider a
pixel part of a specularity if the intensity value is over 0.7. Table 2 summarizes
these results, showing that the baseline models lose a significant amount of fea-
tures and inliers if we ignore specularity features (w/o S ), confirming the suspi-
cion that they fire too much on specularities in this environment. In contrast, the
proposed E-SuperPoint effectively removes reliance in specularities and allows the
detector to focus on other image patterns which have higher chances of being sta-
ble. Figure 2 shows several matching examples. Higher resolution version of them
and additional examples can be found in the supplementary material.

Rotation Estimation from Matches. We compare the RANSAC-estimated essen-
tial matrix and the pseudo-ground truth essential matrix to compute the rota-
tion estimation error for every pair of images. These values are summarized in
Table 3, where we show the values of relevant percentiles of the errors obtained.
E-SuperPoint achieves lower rotation error than all the other methods. Addi-
tionally, when counting the percentage of the estimations that obtain an error
lower than 30 degrees, E-SuperPoint succeeds 71.6% of the time, while the sec-
ond best, SuperPoint Base, only 61.3%. Figure 2 shows some examples where we
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Table 2. Influence of specularities in the matching results (in EndoMapper test set).
all feat: total number; w/o S: number without features that fall into specularities.

Feat/Img E Inliers

All feat. w/o S All feat. w/o S

SIFT 2350.2 2006.2 (85.4%) 148.2 129.1 (87.1%)

ORB 2163.0 867.7 (40.1%) 153.0 61.8 (40.4%)

SP Base 1333.7 1035.2 (77.6%) 96.4 73.5 (76.2%)

E-SP 4500.9 4431.3 (98.5%) 278.9 274.7 (98.5%)

Fig. 2. Features (red circles) and inlier matches after RANSAC (green lines) obtained
for two pairs of 1 second apart frames using different features. (Color figure online)

Table 3. Rotation estimation error for pairs of frames 1 s apart. Percentile values of
the errors obtained by each method.

Percentile 10th 20th 30th 40th median

SIFT 3.2 5.5 8.4 12.4 20.1

ORB 3.7 7.3 13.4 27.4 45.8

SP Base 3.2 5.8 9.2 13.4 19.8

E-SP 2.6 4.8 7.5 10.5 14.5

can see that E-SuperPoint is more robust than other methods: Top row example
shows how E-SuperPoint ignores the specularities in the image completely (there
are no features extracted on top of it), and the bottom row example shows that
our model finds more matches and better spread over the image than the other
methods. The improvement is largely due to the adaptation we made to better
deal with specularities for feature extraction.

5 Conclusions

This work1 studies the performance of local features in in the wild endoscopic
environments, using data captured during routine medical practice. We compare
1 This project has been funded by the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 863146 and Aragon Government
FSE-T45 20R.
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the effectiveness of hand-crafted local features against deep learning-based ones,
in particular SIFT, ORB and SuperPoint. Although hand-crafted features are
still a dominant choice in this field, we show how deep learning based features
can surpass them in the considered challenging environments. Besides, we have
trained and adapted the general-purpose SuperPoint to better fit the challenges
of endoscopic imagery. Our evaluation, on endoscopies of different patients, is
focused on the quality of the recovered 3D camera motion. Our results show that
SuperPoint adaptation provides more numerous and non-specular features, and
more disperse correspondences, essential for accurate and robust 3D geometry
estimations.
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Abstract. Colonoscopy is the most common procedure for early detec-
tion and removal of polyps, a critical component of colorectal cancer
prevention. Insufficient visual coverage of the colon surface during the
procedure often results in missed polyps. To mitigate this issue, recon-
structing the 3D surfaces of the colon in order to visualize the missing
regions has been proposed. However, robustly estimating the local and
global coverage from such a reconstruction has not been thoroughly inves-
tigated until now. In this work, we present a new method to estimate
the coverage from a reconstructed colon pointcloud. Our method splits
a reconstructed colon into segments and estimates the coverage of each
segment by estimating the area of the missing surfaces. We achieve a
mean absolute coverage error of 3–6% on colon segments generated from
synthetic colonoscopy data and real colonography CT scans. In addition,
we show good qualitative results on colon segments reconstructed from
real colonoscopy videos.

1 Introduction

Colorectal cancer is the third most common cancer worldwide [1]. The early
detection and removal of polyps during routine colonoscopy is an essential com-
ponent of colorectal cancer prevention. The procedure is based on a visual exam-
ination of the colon using a single camera mounted on a flexible tube. During
this procedure, 22%-28% of polyps are missed [12,18], often because they never
appeared in the field of view of the camera [12].

In recent years, efforts were made [8,16,17,25] to estimate the colonoscopy
coverage, that is, the fraction of the colon surface examined during a colonoscopy
procedure. We define the coverage as the ratio: Sexamined

Stotal
where Sexamined is the

area of the surface examined during the procedure and Stotal the area of the
entire visible surface, including the missed regions. One possible approach to the
coverage estimation problem is to compute a 3D reconstruction of the colon from
the colonoscopy video [16,17,25]. The missed regions will appear as holes in the
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reconstructed mesh. In this paper, we focus on the computation of the coverage
given a 3d reconstruction of the colon. This has only briefly been addressed until
now, as most works tend to focus on the 3d reconstruction itself.

We assume a reconstruction of the colon with holes and devise a method
to estimate the coverage per segment, where a segment is defined based on the
colon centerline. Estimating the coverage per segment provides a more detailed
and useful information than a global colon coverage estimation. For instance, if
the coverage estimation is run during a colonoscopy procedure, an estimation of
the coverage per segment, rather than for the whole procedure, can allow the
physician to easily identify the regions where the coverage is deficient and revisit
the uninspected areas. We choose to base our method on the 3d completion of
the reconstructed colon surface, thus providing an estimation of the location and
shape of the missing surfaces, in addition to their area. Such an approach hasn’t
been explored yet, and makes our method easily interpretable, allowing us to
visually assess the reliability of our coverage estimation when ground truth is
unavailable. The central component of our method is a per segment coverage and
centerline estimation module, composed of 3 parts (see Fig. 1):

1. A point completion network, inspired by 3D-EPN [5]. It takes as input a
heatmap representing a partial colon segment (i.e with holes) and outputs a
heatmap of the completed segment together with its centerline.

2. A centerline extraction algorithm, to extract the centerline from the
estimated heatmap.

3. A mesh extraction algorithm, to extract the surface mesh from the esti-
mated heatmap.

Fig. 1. The coverage estimation per segment, composed of three parts: Pointcloud
completion, centerline extraction, mesh extraction.

2 Related Works

A number of works address the problem of constructing a 3d model of the colon
from colonoscopy videos. In [11], the colon surface is generated based on folds
detection and a depth from intensity model, but is limited to the reconstruction of
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single-frame segments. More recently, Ma et al. [16] used a SLAM backbone based
on DSO [7] together with a recurrent neural network for pose and depth estima-
tion, to successfully reconstruct colon surfaces from real colonoscopy videos. They
estimate the coverage on 12 real data segments, by mapping the surfaces onto a
2D rectangular frame, but no ground truth is available to measure the accuracy of
the method. Zhang et al. [25] use a non rigid registration between a mesh model
from a prior CT colonoscopy and a 3D reconstruction based on deep depth esti-
mation and classic sparse features. This method is not applicable to most real life
scenarios, where no CT scan is available. Posner et al. [17] use deep depth esti-
mation and deep features to reconstruct 3D surfaces from colonoscopy videos. In
contrast to other works, Freedman et al. [8] chose to avoid building a 3D recon-
struction and instead train a number of networks to directly estimate the coverage
from a sequence of images. This method provides an estimate of the coverage per
segment, but has a few drawbacks, such as lack of interpretability and the fact
that a segment is defined based on time (a fixed number of frames), and does not
represent a physical colon segment of a given length.

We choose to base our method on the 3d completion of reconstructed colon
pointclouds. The task of estimating complete 3D shapes from partial observa-
tions has many applications in computer vision and robotics. Recent solutions
to the pointcloud completion problem can be roughly classified according to the
type of deep architecture used. The earlier works are CNN based, and represent
the pointcloud as a voxel grid [5,10,20]. An important limitation of this app-
roach is the loss of resolution caused by the voxelization of the shape. Another
approach consists of using a PointNet [4] type of architecture [21,24], where a
decoder reconstructs the complete pointcloud from a global learned feature. This
process does not allow to clearly separate between the original points and the
filled-up regions. In the completed shape, regions corresponding to the original
pointcloud might have been distorted or lost details. To remedy this issue, [23]
add a skip attention mechanism to the encoder decoder architecture.

Our method also estimates the colon centerline, as an intermediate step. The
medial axis or skeleton of an object is the set of points having more than one
closest point on the object boundary [3]. In the medical context it is also often
called the centerline, and in the case of a tubular object, it should consist of a
single continuous line spanning the object. Some works [6,22] address the issue
of extracting the colon centerline from a CT scan of the colon with the purpose
of generating an optimal trajectory for CT colonography. In [6] minimal paths
are extracted from CT scans given 1 or 2 endpoints.

3 Coverage Estimation of 3D Colon Reconstructions

Our method estimates the coverage per segment of a 3D pointcloud representing
a colon with holes. For maximum generality, we assume that our input consists
only of a set of points P = {pi}, pi ∈ R

3 with no further information.
We define a segment using the centerline. The centerline is split into a number

of continuous segments of a given arc length (e.g. l = 7 cm). For each centerline
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segment, the corresponding colon segment is defined by two cross sections perpen-
dicular to the centerline (see Fig. 2).

3.1 Dataset

Fig. 2. (a) Colon from our CT scan dataset, together with a magnified cropped seg-
ment and its corresponding centerline and generated holes. (b) Distribution of holes
number, sizes and coverage in our dataset. The individual holes sizes are expressed as
a percentage of the segment surface.

Our training dataset is made of both CT and synthetic data. For the CT data,
we used 3 colon meshes manually segmented from a dataset of colonography CT
scans [19]. As the resulting pointclouds do not contain any holes, we generated
holes ourselves, by randomly cropping out spheres of various radii (see Fig. 2 (a)).
The generated distributions of coverage, holes numbers and holes sizes are dis-
played on the figure Fig. 2. The synthetic data consists of synthetic colonoscopy
videos from which a reconstructed mesh can be generated. The various holes
permutations were generated using a synthetic camera with random poses inside
the colon. Using these meshes, we generated a dataset of colon segments to train
and test our coverage estimation module. See Table 1. For each segment in our
train and validation set, 15 permutations corresponding to a different set of holes
were generated. Each segment in our dataset also has a corresponding center-
line. The centerlines were calculated on the full colon meshes using a classic
skeleton extraction algorithm, in which the parameters were manually tuned for
each mesh and the result was refined to obtain the desired properties (connectiv-
ity, centricity and singularity). These centerlines were used to split the original
colons into segments (arc length l ∈ [5, 6, 7]) and to provide a GT centerline for
our network training.

While the overall shape of a colon varies enormously between people, we
found that reducing our problem to segments (with scale, rotation, deformation
and noise augmentations added during training) allowed for the training on
one colon to generalize well to another, even when the overall shape differed
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Table 1. Dataset summary. A, B represent the colons of our synthetic dataset and a,
b, c the colons of our CT dataset.

Train Validation Test

Colon meshes [a, b, c] ∈ CT scans; [A, B] ∈ synthetic a, b, A a, b, A c, B

Number of segments 10200 3000 1200

greatly. We were able to generate a varied enough dataset with only a handful
of individual colon mesh instances. As shown below, our method continued to
work when our input was changed to a mesh reconstructed from real videos.

The CT scans used in our dataset did not include significant irregularities in
the colon shape, such as the ones caused by diverticula or extremely large polyps.
The robustness of our method to such cases was not tested and our dataset might
need to be augmented with these kind of irregularities in the future.

3.2 Method

Pointcloud Completion. Similarly to 3D-EPN [5], we used a 3DCNN to com-
plete a pointcloud represented by voxel grid. Although this type of approach suf-
fers from a loss of resolution due to the voxelization of the shape, it is mitigated
in our case by the following: (1) the full colon can consistently be split into small
enough segments to get a satisfying resolution, (2) our main goal being coverage
estimation, a loss of resolution is acceptable as long as it does not affect the cov-
erage. We replaced the 3D-EPN architecture by 3dUNet [26], having observed
that the fully connected layer of 3D-EPN [5] degraded the performance of our
network. It might be related to the fact that, in contrast to classic shape comple-
tion networks, no object class needed to be encoded here. Our dataset consists
of a single class of objects with a strongly constrained geometry.

We defined a customized input and target representation for our problem,
which is both easy to learn and from which a mesh and centerline with desired
properties can be easily extracted. Our input is a 3D heatmap representing the
partial colon segment (i.e. with holes). Our target is a 3D heatmap represent-
ing the centerline and completed segment. The heatmaps Hinput, Htarget, are
64 × 64 × 64 voxel grids and are defined in the following way, for a voxel v:

Hinput[v] = tanh(0.2 ∗ d(v,S0))

Htarget[v] =
tanh(0.2 ∗ d(v,S1))

tanh(0.2 ∗ d(v,S1)) + tanh(0.2 ∗ d(v,C))

where d(v,S0) is the euclidean distance between v and the voxelized partial seg-
ment S0, d(v,S1) is the euclidean distance between v and the voxelized complete
segment S1, and d(v,C) is the euclidean distance between v and the voxelized
centerline C. The input heatmap is zero at the position of the (partial) seg-
ment surface and increases rapidly towards 1 away from it. The target heatmap
is zero at the position of the (complete) segment surface, increases towards 1
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at the position of the centerline, and converges to 0.5 everywhere else. Both
heatmaps are illustrated in Fig. 1. We use an L2 loss to train the network.

Centerline Extraction. The centerline is a key component of our pipeline. It
allows us to split the colon into well defined segments and is also used for mesh
extraction. Our output heatmap contains high values at the center of the colon,
but simply thresholding the heatmap does not yield a singular and connected
path. We use instead a minimal path extraction technique, similar to [6]. We
add to it an initial step to calculate the start and end points of the centerline,
which we don’t know in general. To estimate the centerline start and end points,
we create a nearest neighbor graph from the voxels with values > 1 − δ in our
heatmap (which roughly correlates to the centerline). The shortest path between
all pairs is calculated and the longest path among them is selected. We use the
extremities of this path as our centerline start and end points. We then compute
the travel time from the starting point to each voxel in the volume, using the
fast marching algorithm [2] and our heatmap as speed map. The centerline is
extracted by backpropagating the travel time from the end point down to the
starting point. The different steps of our method are illustrated in Fig. 3.

Fig. 3. Centerline extraction steps

Coverage Estimation. Our estimation of the coverage includes 3 main steps:
(1) Extract the completed pointcloud or mesh from the voxel grid, (2) differen-
tiate between the filled up regions (the holes) and the rest of the pointcloud, (3)
Calculate the ratio of the partial surface to the complete surface.

The completed surface could be extracted by thresholding the predicted
heatmap and extracting voxels with values close to 0. We found that with such a
method, the extracted pointcloud can vary in thickness, making the calculation
of the coverage (step 3) difficult. We opt instead to extract the completed mesh
using marching cubes [14] in a neighborhood of the zeros-valued pixels. The sur-
face to extract corresponds to a heatmap minima rather than an isovalue (with
larger values on one side of the surface and smaller values on the other). We
solve this issue by replacing the value of each voxel v in the neighborhood of
the surface by vnew = d(s,C) − d(v,C), where s is the surface voxel closest to
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v, d(s,C) is euclidean distance between s and the centerline, and d(v,C) is the
euclidean distance between the v and the centerline. Once the completed mesh is
extracted, holes are identified by comparison to the original partial pointcloud.
We classify as belonging to a hole any vertex in the completed mesh with a
distance to the partial pointcloud larger than

√
3 voxel size. The coverage is

computed by dividing the partial mesh surface by the complete mesh surface.
This per segment coverage estimation module can then be integrated into a

broader pipeline, where the reconstructed colon is split into segments and the
coverage is estimated per segment.

4 Results

Fig. 4. Quantitative results on a benchmark of 1200 colon segments. Left: holes and
centerline metrics. Lower whiskers correspond to the q5 quantiles. Right: Comparison
of absolute coverage error for different methods and noises.

CT and Synthetic Segments. We tested the coverage extraction module
on 1200 segments from our test set. We used both regular noiseless data and
segments to which gaussian noise (σ = 0.5 mm) was added. We compared: (1) our
coverage estimation method with the mesh extraction replaced by thresholding,
(2) our full coverage estimation method and (3) the 2D unwrapping method
described in [16]. In [16], a straight line was used as centerline, which is not
possible in general on curved segments. We chose to use our learned centerline
instead. As shown on Fig. 4, we obtain the lowest absolute coverage error (3% and
6% MAE respectively on noiseless and noise augmented data) when using our
learned heatmap together with mesh extraction. We observed that all methods
tended to be biased towards underestimating the coverage, i.e. overestimating
the surface of the holes. In the case of ours + mesh extraction method, it seems
that the main reason for this bias is the detection of nonexistent holes at the
extremities of the segment (see Fig. 5). These errors are usually removed when
we have access to the surface of adjacent segments.

We evaluate our centerline and holes estimation using the metrics: precision =
meanpest

(minpgt
||pest−pgt|| < th), recall = meanpgt

(minpest
||pest−pgt|| < th),

where th ∈ [1min, 2mm] and pgt, pest are respectively GT and estimated 3d
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points. The choice of thresholds is both related to the resolution of our heatmap
(around 1mm for a 6cm segment voxelized into a 64× 64× 64 voxel grid) and
to the fact that 1mm corresponds to the lowest range of polyp sizes [13]. We
achieve very high precision and recall, in particular for the centerline, with a
median value of 1.0 for both precision and recall. We observed that most of our
outliers could be traced back to a wrong estimation of the centerline extremities.
Training our network with a stronger emphasis on the centerline might mitigate
this issue.

Fig. 5. Holes and centerline estimation on (a) CT scans segments, (b) 3d rigid colon
print reconstruction, (c) colon 10K reconstruction. Each triplet represents: the input
segment, the completed mesh with holes in red, the completed mesh with centerline in
red. Additional examples are available in the supplementary material

Rigid Colon Print and Real Data. We additionally tested our method on
surfaces reconstructed from (1) a video recorded using a colonoscope of a colon 3d
rigid print [17], (2) a real optical colonoscopy video from the Colon10K dataset
[15]. In both cases, the reconstruction was obtained using the method described
in [17]. We obtained good qualitative results (see Fig. 5). The segments obtained
by running the reconstruction [17] on the real colonoscopy sequences [15] didn’t
exhibit any holes. This is due to both the data and the reconstruction algorithm.
On the data side, the colon segments of [15] tended to be particularly smooth,
with very small haustral folds. On the reconstruction side, the deep monocular
depth estimation tended to smooth out discontinuities, a known phenomena [9].
To obtain reconstructions with enough holes to test our method, we used 3 dif-
ferent subsets of the original frame sequences. We generated this way 3 sets of
mesh with holes. Using the complete sequence reconstruction as ground truth for
the full mesh (without holes), we obtained the following absolute coverage errors
of: 5.2%, 3.8% and 7.6%. We found our method slightly more prone to errors
when applied to this data, especially in cases where the reconstruction is noisy or
contains errors. Training our network using more realistic noise augmentations
and/or some actual reconstruction data (e.g. reconstruction from synthetic data
colonoscopy) might help making our method more robust to these kind of fail-
ures.
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5 Conclusion

We presented a novel method for estimating coverage given a 3d reconstruction
of a colonoscopy procedure. Our method can be used to provide robust and
interpretable local coverage feedback during a colonoscopy procedure, with 3D
visualization of the missed surfaces.
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Abstract. The functional brain network, estimated from functional
magnetic resonance imaging (fMRI), have been widely used to capture
subtle brain function abnormality and perform diagnosis of brain dis-
eases, such as early mild cognitive impairment (eMCI), i.e., with Graph
Convolutional Network (GCN). However, there are at least two issues
with GCN-based diagnosis methods, i.e., (1) over-smoothed representa-
tion of nodal features after using general convolutional kernels, and (2)
simple blind readout of graph features without considering hierarchical
organizations of brain functions. To address these two issues, we pro-
pose a GCN-based architecture (HFBN-GCN), based on the hierarchical
functional brain network (defined with priors from brain atlases). Specifi-
cally, first, we design a “topology-focused brain encoder” to enhance nodal
features by using (1) one branch of GCNs to focus on limited message
passing among functional modules of each hierarchical level for alleviat-
ing over-smoothing issue and (2) another branch of GCNs to processes
whole brain network for retaining original communication of information.
Second, we design a “hierarchical brain readout” to utilize pre-defined
hierarchical information to guide the coarse-to-fine readout process. We
evaluate our proposed HFBN-GCN on the ADNI dataset with 910 fMRI
data. Our proposed method achieves 73.4% accuracy (with 77.1% sen-
sitivity and 71.1% specificity) in eMCI diagnosis, where both proposed
strategies help boost performance compared to simply-stacked GCNs.
In addition, our method suggests the dorsal attention network, saliency
network and default mode network as the most crucial functional sub-
networks for eMCI identifications. Our method thus is potentially bene-
ficial for both clinical applications and neurological studies.

Keywords: fMRI · Graph convolutional network · Early mild
cognitive impairment
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1 Introduction

Mild cognitive impairment (MCI) manifests as a prodromal status of various
types of dementia, induced by such as Alzheimer’s disease (AD). During the
MCI state, timely diagnoses and interventions can slow down or even reverse
the progression to the serious cognitive inability. However, in an even earlier
stage, i.e., early-stage MCI (eMCI), conventional methods based on behavior
assessment and brain anatomical alternation are not sensitive enough to capture
the subtle brain abnormality [10].

Recent studies suggest that the altered brain dynamics revealed by fMRI
hold great potential for eMCI identification [7,19]. The fMRI-based brain studies
have been growing increasingly in the last decades [12], where the functional con-
nectivity (FC) is a representative measurement calculated from blood-oxygen-
level-dependent (BOLD) signals. He FC characterizes the strength of informa-
tion exchange between brain regions of interest (ROIs) as the level of temporal
synchronization, which can typically be quantified as the correlation of BOLD
signals between ROIs with the entire time series [21]. The functional brain net-
work is a graph representation of the brain organization, where ROIs are defined
as nodes and the FCs as edges. In the literature, the conventional methods use
the graph-theory based metrics to extract and select distinguishing features to
identify eMCIs [1,5]. More recently, studies based on deep learning increasingly
tend to use graph neural networks (GNNs), which shows great power in process-
ing non-Euclidean spatial data [18]. Despite the advancement compared to those
traditional methods, two issues of the current GNN-based diagnostic methods
remain unsolved.

First, the classical GNNs, such as graph convolutional network (GCN), suffer
globally over-smoothed graph encoding after several layers of processing, result-
ing in homogeneous encoded features across nodes (region of interest, ROIs)
[9,13]. This issue roots deeply in GCN’s unlimited message passing within the
graph, which diminishes the uniqueness of some important nodes in brain net-
work [15]. Recent development has been made by the graph attention network
(GAT) [16] and frequency adaptation graph convolutional networks (FAGCN)
[3], both attempting to learn an extra weight between nodes to alleviate the over-
smoothing problem. But these data-driven methods can still sensitive to noise
and could identify so-called important nodes not aligning to the neuroscience
prior. Second, after the encoding, when generating diagnosis results based on
the encoded features via a readout process, many studies blindly pool the fea-
tures using global averaging or the global maximum [22]. This again diminishes
rich brain structure information, such as functional modules, which are shown to
be crucial for brain information processing and thus should be considered under
detecting brain disorders [2].

The latest advance from neuroscience provides a set of atlases to characterize
the hierarchy of brain [14,20], which provides a layered and structured mapping
from small brain regions to large brain sub-systems. Based on this prior knowl-
edge, in this paper, we propose a GCN-based architecture guided by hierarchical
functional brain network (HFBN-GCN), aiming to simultaneously address the
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over-smoothing and the blind readout problems, by incorporating the prior of
the brain network hierarchy into GCN framework. Specifically, the novelty of
our method includes two aspects: (1) A topology-focused GCN-based encoder to
retain the particularity of regions. Asides from a series of stocked GCNs working
on the whole network, another branch of GCNs is introduced to process limited
sub-graphs defined at different scales of the brain hierarchy; (2) A hierarchical
pooling module, which performs a step-by-step readout along the hierarchy of
brain network informed by the brain atlas.

2 Method

An overview of our proposed HFBN-GCN is shown in Fig. 1. The whole archi-
tecture includes brain network construction, a topology-focused brain encoder,
a hierarchical pooling module, and a multi-layer perceptron (MLP) to produce
the final diagnosis.

2.1 Brain Functional Network Construction

The functional brain network is constructed from individual fMRI data. In the
brain network with N nodes, each node represents an ROI, pre-defined by the
Schaefer’s atlas [14]. The connectivity matrix is denoted as A, with elements
aij defining the FC between the i-th and the j-th ROIs. Following conventional
studies, denote the si and sj as the ROI-wise averaged BOLD signals from the
i-th and the j-th ROIs, and corr(si, sj) as their Pearson correlation defines the
FC (aij).

2.2 Graph Convolutional Network

Graph Convolutional Network (GCN) is a popular implementation of Graph
Neural Network (GNN), which generates the graph representation by integrat-
ing nodal features via the graph topology [9]. Besides the connectivity matrix,
nodal features X are often required by GCN. In this study, we use the princi-
pal components yielded from FC matrix, by performing principal components
analysis (PCA), as nodal features. The operation of GCN is defined as

X(l+1) = D̃− 1
2 ÃD̃

1
2X(l)W (1)

where X(l) denotes the feature map at the l-th layer, W is a matrix of learnable
filter parameters and Ã = A+ I, D̃ii =

∑
j Ãij .

It is worth noting that different GCN layers usually use the same topology
of the graph, and generate node-level representations. So, in the tasks of graph-
level classification, a readout function is necessary to generate whole-graph-level
representation from all nodal level representations all at once [6] (Fig. 2).
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Fig. 1. The framework of HFBN-GCN. (a) The pipeline of the whole work. The func-
tional brain network is constructed as an input to the encoder for extracting high-order
graph feature representation. Then, a readout function is applied to aggregate features
on all nodes. Finally, an MLP is used to produce the classification result. (b) fMRI data
with an atlas produces ROI-wise averaged BOLD signals, used to construct functional
brain network. (c) The nodal features will go through several GCN layers, in two paths,
with the first path employing hierarchical topology and the second path utilizing the
entire topology. (d) Features on all nodes are aggregated by several pooling layers, and
the number of nodes is reduced step by step and finally integrated as an overall feature
representation for the entire graph.

Fig. 2. The overview of our proposed topology-focused brain encoder.

2.3 Topology-Focused Brain Encoder

In general, in Eq. 1, D̃− 1
2 ÃD̃

1
2X(l) denotes the progress of updating nodal fea-

tures by averaging features from neighboring nodes.This message passing is
overly simple, inevitably smoothing out nodal features after a few GCN lay-
ers [13]. It will also diminish the original heterogeneity of the nodes, such as hub
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vs. non-hub nodes, which may be crucial for brain disease diagnosis [15]. To alle-
viate this over-smoothing problem, we design message passing in our proposed
hierarchical encoder to focus on sub-graphs defined by the brain hierarchy.

In this paper, we define 4 different levels of hierarchy, i.e., node level,
hemispherical-7-network level, 7-network level [20], and whole brain level. At
each level, we remove the FCs outside the sub-graphs, which leads to 4 adjacent
matrices, H(l), l = 1, 2, 3, 4, with elements computed as

h
(1)
ij = 0 if i �= j, (2)

h
(2)
ij = 0 if nodes i, j not belonging to a same half-sub-network, (3)

h
(3)
ij = 0 if nodes i, j not belonging to a same sub-network, (4)

h
(4)
ij = aij , (5)

where H(l) = A before above operations. In this way, the message passing is thus
restricted to the brain regions defined by each level.

However, the above defined operations diminish the long-range connections
between regions/systems, which also causes information loss and the inappro-
priate graph encoding. To this end, we add another branch of GCNs to work
on the original functional brain network, with the same number of layers as
the branch that process the restricted functional brain network. The two fea-
ture maps generated by these two branches of GCNs are aggregated as the final
features.

2.4 Hierarchical Brain Readout

In the graph-level classification task, the readout function, i.e., global pooling
and reshaping [22], is usually applied to aggregate all node-level representations.
However, such a global aggregation ignores the potential hierarchical nature of
the graph. Weighted pooling method learns weights to aggregate nodes in an
adaptive way, however, in common practice, the noise and bias in small data
could yield an unreasonable pooling with the data-driven manner. Learning
blindly without proper guidance is then not a solution.

To use the hierarchical pooling method and the prior from the atlas. We use a
direct learnable assignment matrix P to cluster nodes. The process of clustering
nodes can be given as

A(i+1) = PTA(i)P, (6)

X(i+1) = PTX(i) (7)

Also, to make the mapping relation follow biological-meaningful brain hierarchy,
we further introduce a mask matrix M ∈ RN×N ′

to limit the clustering matrix,
by

P ← M ◦ P, (8)
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where ◦ denotes element-wise product, and Mij = 1 means the i-th node will
contribute to the j-th new node, otherwise Mij = 0. Thus, the nodes belonging
to one sub-network will not contribute to other sub-networks.

Consistently to the encoding process, we conducted the same 3 levels of
pooling, but in a reversed order. Specifically, ROIs in the same sub-network
of the same hemisphere are clustered together first, which means the shape of
M in this pooling layer is 100× 14 and Mij = 1 if ROI i belong to half-sub-
network j. Then the same sub-networks of both hemispheres are combined into
an entire sub-network, and all sub-networks are finally grouped into a whole
brain network.

3 Experiments

3.1 Dataset

We use a total of 910 fMRI data from 483 subjects in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI2 and ADNIgo) [8].

Each fMRI scan includes 140 frames with temporal resolution of 3 s. The
first 10 unstable frames are removed, and then fMRI data are pre-processed
with a standard pipeline called AFNI [4], including slice timing correction,
head motion correction, covariate removal, registration, band-pass temporal fil-
tering (0.01–0.1Hz), and spatial smoothing. In our experiments, we split the
data randomly into a training set (NNC = 341, NeMCI = 204), a validation set
(NNC = 110, NeMCI = 71), and a testing set (NNC = 114, NeMCI = 70). Note
that all scans from the same subject are assigned to the same set.

3.2 Implementation

At the stage of brain functional network construction, one set of initial nodal
features are 64 principal components yielded from its functional connectivity
with other nodes. Eigenvectors are calculated in training data and applied to all
data. All neural networks are implemented based on Pytorch, and trained with
learning rate = 0.00005, epoch = 500, and batch size = 64. We use Adam as
the optimizer. The loss function is set to a weighted cross entropy loss, and the
class-specific weight are configured as 1 for HC and 1.5 for eMCI to ease the
issue of sample unbalance between the two classes.

Encoder Module. GCN : The base network architecture is made up of an 8-
layer GCN, a following max pooling layer for the readout, and a 2-layer MLP for
generating the final prediction. The dimension of hidden layers are all 64. GAT
& FAGCN : Graph Attention Networks (GAT) [16] and Frequency Adaptation
Graph Convolutional Networks (FAGCN) [3] are two novel implementations of
GNN, which introduce a learnable weight on the edge for modifying the mes-
sage passing to alleviate the over-smoothing problem. In these two methods, we
replace each GCN layer with a GAT or FAGCN layer in the baseline. GCN with
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topology-focused brain encoder : Compared to the baseline, an additional path
using hierarchical topology is applied. The 4 different levels of hierarchy are
defined in Eq. 5 and each of them contributes to 2 continuous GCN layers.

Readout Module. In this experiment, we keep the 8-layer GCN as an encoder
and replace the readout functions from different methods. GCN with weighted
pooling : Weighted summation on the whole-graph representation is used for read-
out. GCN with hierarchal brain readout : Our proposed readout processing is
introduced above.

Effect of Choice of the Atlases. Yeo et al. [20] also provided a different
atlas where the whole brain network is parcellated into 17 subnetworks. We thus
implement a model with the 17-subnetwork atlas to investigate the effect of the
choice of atlases. In this experiment, we use both proposed topology-focused
brain encoder and hierarchical pooling.

3.3 Comparison of Methods

We perform the following comparisons to demonstrate the effectiveness of our
proposed method. Classification accuracy, sensitivity, and specificity are com-
puted to evaluate the performance of each method Table 1.

Table 1. Classification results of all competing methods (metrics reported in percent-
age). The underline indicates the highest metrics within same experiment, and the bold
highlights the highest metrics among all methods.

Method Accuracy Sensitivity Specificity

GCN 66.85 60.00 71.05
GAT 69.02 62.86 72.81
FAGCN 69.02 65.71 71.05
GCN w/ topology-focused Brain Encoder 70.65 68.57 71.93
GCN w/ Weighted Pooling 68.48 65.71 70.18
GCN w/ Hierarchical Pooling 71.74 72.86 71.05
HFBN-GCN (17-sub-network) 72.28 71.43 72.81
HFBN-GCN (7-sub-network) 73.37 77.14 71.05

Encoder Comparisons. Since GAT, FAGCN, and our topology-focused brain
encoder focus on dealing with the over-smoothing problem, they all make an
effort to keep the difference of nodes, and provide higher accuracy than the
baseline. Additionally, our topology-focused brain encoder is slightly better than
the other two methods, attributing to the utilization of prior knowledge.
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Fig. 3. Contributions of the functional sub-networks in the eMCI identifications. The
full name of the 7 sub-networks: Visual (VIS), Somatomotor (SM), Dorsal Attention
(DA), Ventral Attention (VA), Limbic (LIM), Frontoparietal (FP), and Default Mode
Network (DMN).

Readout Comparisons. Then, we evaluate our proposed hierarchical brain
readout. Compared to max pooling and weighted pooling, our method provides
the best results in all metrics. Weighted pooling only blindly learns a hierarchy
on the whole brain level and gives a medium level of accuracy, suggesting that
priori knowledge can guide our hierarchical pooling module to cluster nodes in
an effective way.

Fully Model and Effects of Atlas Setting. Finally, our proposed method,
HFBN-GCN (7-sub-network), uses both topology-focused brain encoder and
hierarchical pooling, leading to the best classification accuracy of 73.37%. In
addition, we expect performance of the proposed method can rely on the prior
hierarchy of brain network. Thus, we also investigate a model using the hierarchy
of 17-sub-network [14]. It achieves an accuracy of 72.28%, slightly lower than our
case of using the hierarchy of the 7-sub-network, but still shows the efficiency of
our method in terms of accuracy when compared to other methods.

Predictive Contributions of Functional Sub-networks. Additionally, we
extract weights on each functional sub-network from the final pooling layers of
the best model (HFBN-GCN with 7-sub-network), which suggests contributions
of each sub-network on eMCI identification tasks. Figure 3 shows that our net-
work regards Dorsal Attention, Ventral Attention and Default Mode networks as
the top 3 contributing sub-networks, where the first two are related to attention
ability and the later one is associated with executive functions. This observa-
tion is in line with the findings in eMCI studies [11,17], which supports the
interpretability of our proposed method.

4 Conclusion

We propose HFBN-GCN, a GCN-based architecture based on the hierarchical
functional brain network for eMCI diagnosis. We design a topology-focused brain
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encoder to enhance nodal features from hierarchical functional network to alle-
viate the over-smoothing issue. Then we design a hierarchical brain readout to
utilize pre-defined hierarchical information to guide the coarse-to-fine readout
process. Experimental results on the ADNI dataset demonstrate the effective-
ness of our proposed framework. Additionally, our method suggests the decisive
functional sub-networks for eMCI identifications, which is in line with other
eMCI studies.
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Abstract. Graph representation learning methods have recently been
applied to predict how brain functional and structural networks will evolve
in time. However, to obtain minimally coherent predictions, these methods
require large datasets that are rarely available in sensitive settings such
as brain tumors. Because of this, the problem of plasticity reorganization
after tumor resection has been largely neglected in the machine learning
community despite having an enormous potential for surgical planning.
We present a machine learning model able to predict brain graphs fol-
lowing brain surgery, which can provide valuable information to surgeons
planning better surgery. We rely on the idea that surgical outcomes share
network similarities with healthy subjects and combine them in a Bayesian
approach. We show how our method significantly outperforms simpler
models even when taking advantage of the same prior. Furthermore, gen-
erated brain graphs share topological features with the real brain graphs.
Overall, we present the problem of plasticity reorganization after brain
surgery in a normative manner while still achieving competitive results.

Keywords: Graph generation · Surgical planning · Brain tumor

1 Introduction

Structural connections might be the source upon which functional activity and
behavior rely on [27], but the relationship between structural and functional
connections remains, not surprisingly, an open problem [7]. The problem of
structural plasticity evolution is therefore a key step towards understanding the
impact of disruptions and recovery in both the structural and functional con-
nectomes in a variety of scenarios. In the present work, we tackle the problem
of longitudinal structural connectivity prediction in brain networks recovering
from surgical tumor resections using a cohort of healthy connectomes as a prior.
Providing a prediction of how a human connectome will look like after tumor
resection and recovery can provide insights to surgeons for better planning.

Remarkably, a great deal of effort has been put into the design of generative
models of functional networks; however, the same cannot be said about structural
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connectomes. In this direction, a first approach considered an average of healthy
networks at different time points to guide which connections should evolve [11].
Later, some studies [13,21] were able to use an adversarial generative model to
improve the results using a large cohort of healthy connectomes.

The sensitivity of the pathologies in this study makes complicated the avail-
ability of sufficiently large and longitudinal datasets needed to train the data-
hungry models discussed before. On top of that, we are not interested in predict-
ing the temporal evolution of a healthy network which, presumably, is expected to
have smooth and slow changes in plasticity, but rather address the reorganization
of the connections after the abrupt change that any surgery causes. Finally, a brain
tumor as well as its removal, critically affect parts of the network which might
be far away from the damaged region itself [31], making the use of sufficiently
detailed whole-brain networks necessary. In this regard, previous work relied on
networks made of only 35 cortical ROIs making transfer learning an unfeasible
approach while disregarding non-cortical lesions [8]. Altogether, and to best of
our knowledge, these issues make our problem essentially un-studied. Neverthe-
less, we build on the idea that healthy networks should be used to inform and guide
predictions. We propose to use them in a Bayesian framework in combination with
simple yet robust machine learning models to produce detailed graphs that share
both visual similarities and network measures with the ground truth.

2 Methods

Acquisition of MRIs. A detailed explanation of the participants as well as
the acquisition of the data is already available [1,2]; nonetheless, for the sake
of transparency we briefly present some crucial aspects. Subjects were asked to
undergo MR scans both in pre- and post-surgery sessions. Out of the 36 subjects
that agreed to take part in the pre-surgery session (11 healthy [58.6 ± 10.6
years], 14 meningioma [60.4± 12.3 years] and 11 glioma [47.5± 11.3 years]), 28
were scanned after a period spanning from 6 to 12 months in the post-surgery
session (10 healthy [59.6 ± 10.3 years], 12 meningioma [57.9 ± 11.0 years] and
7 glioma [50.7 ± 11.7 years]). As a result, 19 pre- and post-surgery pairs of
structural connectomes were usable as training and testing data. The majority
of brain tumors were classified as grade I and II according to the World Health
Organization. The healthy subjects were the partners of the patients matched
by age, and with similar lifestyle [1,2].

Each MR session consisted of a T1-MPRAGE (voxel size of 1 mm3) anatom-
ical scan followed by a multi-shell (b = 0, 700, 1200, 2800 s/mm2) HARDI
acquisition together with two reversed phase-encoding b = 0 s/mm2 blips for
the purpose of correcting susceptibility-induced distortions [4].

Processing of MRIs and Network Reconstruction. High resolution
anatomical T1 weighted images were skull-stripped [16], corrected for bias field
inhomogeneities [29], registered to MNI space [15] and segmented into 5 tissue-
type images [24]. Diffusion weighted images suffer from many artifacts all of which
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were appropriately corrected. Images were also skull-stripped [16], corrected for
susceptibility-induced distortions [4], denoised [30], freed from Gibbs ringing arti-
facts [18] and corrected for eddy-currents and motion artifacts [5]. The prepro-
cessed images were then co-registered to its corresponding anatomical template
(already in MNI space) [15], resampled to a 1.5 mm3 voxel size and eventually
corrected for bias field inhomogeneities [29]. After motion correction as well as
registration to the MNI template, the B-matrix was appropriately rotated [19].

To ensure a detailed subject-specific network, we used a state-of-the-art
pipeline to obtain the brain graphs. For each b-value shell and tissue type
(white matter, gray matter and cerebrospinal fluid) a response function was esti-
mated [10]. The fiber orientation distribution functions were built and intensity
normalized using a multi-shell multi-tissue constrained spherical deconvolution
approach [17]. Anatomically constrained probabilistic tractography (with 10M
seeds and 3M streamlines) was performed using dynamic seeding [24]. To further
improve correspondence between the tractograms and the preprocessed DWIs,
we used spherical-deconvolution informed filtering [25]. The resulting tractogra-
phies were then compared to the third version of the Automated Anatomical
Labeled atlas [22] to obtain a symmetric connectivity matrix between 166 brain
regions for each subject.

Generation of Post-surgery Graphs with Artificial Neural Networks.
We defined a connectome for the n-th subject at a particular time point t which,
in our case, was mapped to control, pre- and post-surgery stages tc, tpre and tpost.
Only the lower triangular part of the connectomes were flattened into a vector
xn (t) of E components, given that structural connections are always symmetric
and no self-loops were considered. Each one of these components xnk (t) with
k = 1, . . . , E represents a link of strength ε between two brain regions. We
simplify the notation and refer to pre-surgery connectomes as xn, to post-surgery
connectomes as yn and to healthy connectomes as zn. We defined a distribution
of binary links based on connectomes from NC healthy subjects. For the k-th
edge, λk = 0, 1 is a Bernoulli distributed binary variable with probability

P (λk = 1) =
1

NC

NC∑

n=1

Θ(znk − θ) (1)

where Θ (·) is the Heaviside step function and θ = 0.2 is a threshold that fil-
ters links with insufficient strength and therefore minimizing the false positive
rate [9]. Lower thresholds allow more variability in the generated prior since
more spurious connections can be considered. For each patient and edge, the
post-surgery probability of having a meaningful link λk = 1 with strength ε is
conditioned on the pre-operative graph. We exploit this fact with the well-known
Bayes’ theorem

P (ynk = ε, λk = 1|xn) = L(ynk = ε|xn)P (λk = 1) (2)

where L (ynk = ε | xn) is the likelihood of having a post-surgery ε-strengthened
connection conditioned on the pre-surgery connectome. For Eq. (2) to hold,
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P (λk = 1) must be independent on the pre-surgery graph xn. This assumption
is reasonable since the anatomical prior was built using only healthy controls,
therefore, not considering lesioned connections. We sampled each k-th connec-
tion using the Maximum A Posteriori criterion to generate the post-surgery
graphs. To train the network, the sampled connections were then compared to
the ground truth using the Mean Squared Error (MSE). Although many possi-
bilities emerge for estimating the likelihood in Eq. (2), we used a fully connected
network with one hidden layer. Several options were considered here, but we
found that adding more layers or even considering 1D convolutions did not add
significant improvements to the model.

Training and Testing. The high number of reconstructed fibers yielded high
values for the connectivity between ROIs (103). To prevent numerical overflow
as well as to enhance differences in lower connections, all weights ω were normal-
ized by computing log (1 + ω) before feeding them into the artificial deep neural
network.

The model consisted of a 1 hidden layer deep neural network which was
trained minimizing the Mean Squared Error (MSE) between the output and the
ground truth determined from the MRIs. Weights were optimized using stochas-
tic gradient descent with a learning rate of 0.01 and 100 epochs to avoid overfit-
ting. Evaluation metrics included the Mean Absolut Error (MAE), Pearson Cor-
relation Coefficient (PCC) and the Cosine Similarity (CS) between the flattened
predicted and ground truth graphs. The topology of the generated networks was
evaluated computing the Kullback-Leiber as well as the Jensen-Shannon diver-
gences between the weight probability distributions of the generated and real
graphs.

Leave One Out cross validation was done using 18 connectomes to train each
one of the 19 models. For each model, the training data was randomly split into
train (80%) and validation (20%) sets to prevent overfitting. Validation steps
were run every 20 training epochs. For each fold, the testing of each model was
done in the left-out connectome. Statistical tests were done with Scipy’s stats
module. Topological metrics were computed using the Networkx python library
[14]; averaged results are reported.

3 Results

Structural Predictions After Tumor Resection. Unfortunately, bench-
marking against the models mentioned in the introduction [11,13,21], or similar
ones, was not possible because they were not trainable with this small dataset.
Previous work showed that linear models could capture essential properties of
structural graphs [3]. Consequently, we proposed to evaluate a Fully Connected
NETwork (FCNET) against a Huber Regressor and a null model. A Huber
Regressor relies on a robust to outliers training scheme making it appealing when
dealing with highly heterogenous data. Null models provide a way to avoid circu-
lar analysis in neuroscience [23]. As such, we also benchmarked FCNET against
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an untrained linear generator. For reproducibility, both the outputs of the Huber
and ER generators were weighted by the same anatomical prior as the FCNET.
For each model and fold, we tested the left-out network with 6 different metrics.
The results for each score are in Table 1 for the mean and standard deviation.

FCNET significantly outperforms the null model in all evaluation metrics
(p < 0.001, one sided t-test; p < 0.001 one sided U-test). When tested against
the Huber regressor, FCNET significantly outperformed it in all the metrics
assessing numerical similarities (p < 0.05, one sided t-test; p < 0.05 one sided
U-test). However, when tested for topological accuracy, FCNET did not achieve
any improvement with respect to the Huber regressor measured by the Kullback-
Leiber (KL) and Jensen-Shanon (JS) divergences (p > 0.31, one sided t-test; p =
0.24, one sided U-test). Despite not being trained on preserving topological fea-
tures, both FCNET and Huber captured structural properties since both models
significantly decreased the KL (p < 0.001, one way ANOVA; p < 0.001 Kruskal-
Wallis test) and JS (p < 0.001, one way ANOVA; p < 0.001 Kruskal-Wallis
test) Divergences of the weight probability distributions between predicted and
ground truth networks.

The training did not include a regularization method to prevent negative
connections. However, FCNET generated negative connections accounted for
less than 25% and they were all between 0 and −0.5. Since these values are in
logscale they would account for a connection of less than 1 probably getting
filtrated by the anatomical threshold. The generated post-surgery networks and
residuals of two randomly selected subjects in Fig. 1.

Specific Subject Tunned Predictions. Brain networks are notoriously het-
erogeneous specially when it comes to brain tumors. The imposed anatomi-
cal prior, acted as a regularization method. However, a highly restrictive prior
resulted in a complete loss of subject specificity despite FCNET achieving lower
reconstruction errors. After some trial an error we found that an optimal (or
nearly optimal) prior was able to discard enough connections while still captur-
ing some inter-subject variability of the networks (Fig. 1 red squares). However,
the model generalization does not allow for a perfect fit to the data, therefore a
systematic error was present and observable in the residuals between the gener-
ated and ground truth networks (Fig. 1 right column).

Next, we asked whether FCNET was simply overfitting a small subset of
similar subjects. We calculated the zscore of each metric with respect to the 19
folds cross validated subjects. For all metrics, we found that approximately 70%

Table 1. Model results (mean ± SEM). The Fully Connected NETwork (FCNET) was
tested using a Leave One Out cross validation scheme in 6 metrics.

Model MSE MAE PCC CS KL JS

FCNET 0.61 ± 0.02 0.49 ± 0.01 0.892 ± 0.004 0.922 ± 0.003 8.19 ± 0.14 0.66 ± 0.01

HUBER 0.66 ± 0.03 0.52 ± 0.01 0.878 ± 0.005 0.914 ± 0.004 8.09 ± 0.11 0.65 ± 0.01
NULL 4.59 ± 0.07 1.22 ± 0.02 −0.00 ± 0.01 −0.00 ± 0.01 13.42 ± 0.04 0.82 ± 0.02
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Fig. 1. FCNET’s network generation. Two subjects were randomly selected to be dis-
played as a visual proof that FCNET captures essential properties of the post-surgery
graphs. The residuals show the absolute difference between the predicted and ground
truth networks. Negative connections were dropped for visualization purposes since
they crucially affected the color scale but not the structure. FCNET can capture some
specific inter-subject variabilities (augmented red squares) despite being trained on
highly heterogeneous data. Connection strength is measured as log (1 + ω) where ω is
the native connectivity derived from the tractograms (Color figure online).

of all zscores lied in the ±σ range and approximately 95% fell in the ±2σ. Even
more, when repeating the training with different starting weights, all subjects
but 2 showed different scores. These two subjects, however, had very different
tumor morphologies pointing to the existence of confounding factors.

Topological Accuracy. We tested the topology of the generated networks by
computing the weight probability distribution. The loss function used to train all
models did not have any topological term, but generated networks shared global
properties with the ground truth as measured by the KL and JS divergences
in Table 1. The generated graphs showed a biological weight distribution with a
small number of highly connected nodes (Fig. 2).
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4 Discussion

In this work we presented a Fully Connected NETwork (FCNET) model to pre-
dict how brain connectomes will (or most probably) reorganize after the resec-
tion of the tumor. Our dataset consisted of 19 pairs of pre-/post-surgery graphs
with 166 nodes. For each network, a total 13695 normalized edges needed to be
reconstructed, thus making the problem ill-posed. Nonetheless, we hypothesized
that a fully connected network adequately guided with anatomical information
could capture some essential properties (both numerical and topological). We
evaluated the model using Leave One Out Cross Validation therefore training
and testing a total of 19 models or 19 folds. When tested against an alterna-
tive and null models, FCNET significantly outperformed them in all numerical
scores, while still improving in the topological similarities with respect to the
null model.

Anatomically Guided Network Generation. Brain tumors display high
heterogeneity including size, location, histology, grade and infiltration in gray
matter areas amongst others. As such, brain networks suffering from them also
show great variability (Fig. 1). Furthermore, when undergoing surgery, there
is no guarantee that all patients will react in the same way, therefore adding
another source of complexity when understanding and predicting brain networks
in unhealthy settings.

Fig. 2. Topological Accuracy. Black thick lines show the mean weight probability distri-
bution predicted by FCNET (LEFT) and the HUBER regressor (RIGHT). Dashed red
line shows the mean weight probability distribution of the real post-surgery graphs.
Shaded background bars show the predicted distributions for each subject in the
dataset. (Color figure online)

Previous work [11,13,21] suggested that guiding predictions with networks
from healthy subjects achieved good results. As such, we designed a flexible
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anatomical prior that was used to filter unplausible connections. Brain graphs
are notoriously heterogeneous when considering age related differences. To take
this into account, we selected healthy subjects with significant age overlapping
with patients in both tumor types. However, we did not consider gender segre-
gation since structural differences are rather unclear [20]. Since this age-specific
prior was backpropagated during the training phase, highly plausible connec-
tions were given more important when minimizing the loss function while, at
the same time, successfully discarding improvable edges. Furthermore, earlier,
studies on network topology found slight structural differences between healthy
and lesioned subjects [2,31], but these differences completely disappeared after
tumor resection [1], suggesting that self-organization naturally increases the sim-
ilarity with healthy connections. In fact, surgical procedures aim to remove the
brain tumor without compromising in excess the rest of the tissue, therefore
justifying the use of healthy networks as a prior distribution for the model.

FCNET Surgical Outcomes. We used Leave One Out cross validation to test
FCNET’s prediction against an alternative [3] and null models. FCNET signif-
icantly outperformed both when assessing numerical similarities. In contrast to
the alternative model, FCNET was able to both generalize and still capture some
inter-subject specificity (Fig. 1).

Limitations and Future Directions. The small size of the dataset allows and
invites for further repetitions of the results showed. Moreover, due to the afore
mentioned small sample size, we were limited as to which Deep Learning methods
were usable. Recent progress in Geometric Deep Learning and Graph Genera-
tion [12] has yielded very promising results which are already showing great
potential in medical imaging applications. Furthermore, it has been showed that
topological guidance of neural networks (i.e., GNNs) drastically increases accu-
racy [8]. However, all these methods require huge datasets which may not be
available in medically sensitive problems such as the one studied here. Nonethe-
less, further work should find an optimal compromise to exploit these useful
features in smaller datasets as well as enhancing collaborative projects to enrich
the datasets available in brain tumor surgerical interventions. An interesting
study that might provide further support to our model, would be to test the
proposed method with functional graphs. Functional and structural patterns,
however, do not share much in common so it’s difficult to speculate on whether
the anatomical constraints would be beneficial or the opposite.

Dataset and Code. Data is publicly available at OpenNeuro (’BTC_preop’,
’BTC_postop’). Processing of MRIs used several softwares [6,26,28]. Computa-
tions took 15min in a NVIDIA GeForce GTX 3080 Ti GPU. GitHub
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Abstract. The connectional brain template (CBT) captures the shared traits
across all individuals of a given population of brain connectomes, thereby act-
ing as a fingerprint. Estimating a CBT from a population where brain graphs
are derived from diverse neuroimaging modalities (e.g., functional and struc-
tural) and at different resolutions (i.e., number of nodes) remains a formidable
challenge to solve. Such network integration task allows for learning a rich and
universal representation of the brain connectivity across varying modalities and
resolutions. The resulting CBT can be substantially used to generate entirely new
multimodal brain connectomes, which can boost the learning of the downs-stream
tasks such as brain state classification. Here, we propose the Multimodal Mul-
tiresolution Brain Graph Integrator Network (i.e., M2GraphIntegrator), the first
multimodal multiresolution graph integration framework that maps a given con-
nectomic population into a well-centered CBT. M2GraphIntegrator first unifies
brain graph resolutions by utilizing resolution-specific graph autoencoders. Next,
it integrates the resulting fixed-size brain graphs into a universal CBT lying at the
center of its population. To preserve the population diversity, we further design
a novel clustering-based training sample selection strategy which leverages the
most heterogeneous training samples. To ensure the biological soundness of the
learned CBT, we propose a topological loss that minimizes the topological gap
between the ground-truth brain graphs and the learned CBT. Our experiments
show that from a single CBT, one can generate realistic connectomic datasets
including brain graphs of varying resolutions and modalities. We further demon-
strate that our framework significantly outperforms benchmarks in reconstruction
quality, augmentation task, centeredness and topological soundness.

Keywords: Connectional brain templates · Multi-modal multi-resolution
integration · Data augmentation · Graph neural network

1 Introduction

Modern network science opens new frontiers of representing the complex function-
ality and structure of biological systems by analyzing the intercommunication within
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their fundamentals [1]. The wealth of technological advances in the field of neuro-
science paves the way for gathering massive and high-quality biological datasets such
as Human Connectome Project [2], Southwest University Longitudinal Imaging Multi-
modal (SLIM) Brain Data Repository [3] and UK Biobank [4] using different magnetic
resonance imaging (MRI) modalities including functional, structural T1-weighted and
diffusion MRI. Representing such connectomic datasets using graphs (i.e., networks)
aims to reveal the complex interconnections between brain regions. More specifically,
each brain graph allows to investigate particular connectivity patterns and functional-
ities of the brain elements, where each anatomical brain region of interest (i.e., ROI)
is represented with a node and the biological connectivity between two ROIs is rep-
resented by weighted edges [5–7]. Using graphs that are derived from such rich mul-
timodal datasets serves as an exemplary tool for examining the human brain structure
and state [8,9] by mapping the brain wiring at the individual level.

In addition to fingerprinting the brain of an individual, graph representations allow
for mapping brain connectivity at the population level, thereby distinguishing between
contrasting states (e.g., healthy versus unhealthy) of different populations. Emerging
studies focused on learning how to integrate a set of unimodal single-resolution brain
graphs into a single connectome (i.e., connectional brain template) that encodes the
shared traits across the individuals of the population [10–12]. Despite their overwhelm-
ing success, existing methods [13] are not particularly designed to handle multimodal
multiresolution connectomic datasets, which, if solved, can pave the way for holisti-
cally detecting anomalies and abnormalities across varying brain networks. Specifically,
generating a universal connectional brain template (i.e., CBT) from a multimodal mul-
tiresolution connectomic population remains an uncharted territory [13]. By mitigating
such a challenging issue, a single compact representation, from which one can span
new multimodal multiresolution brain graph populations for data augmentation [14,15],
can be learned to reveal typical and atypical alterations in the brain connectome across
modalities and various individuals. One can also leverage the universal CBT for graph
augmention to alleviate clinical data scarcity [14,16–18] in classification and regression
tasks [19–23].

Related Work. Existing works tailored for graph integration or fusion in general are
limited to training on unimodal, single-resolution brain networks [10–12,24]. For exam-
ple, based on message passing between the neighbors of a particular node, similarity
network fusion (SNF) [24] learns how to integrate a set of biological graphs by dif-
fusing the local connectivity of each individual graph across the global connectivity of
all samples in the population in an iterative manner. Still, such method cannot handle
multiresolution graphs as well as heterogeneous samples drawn from multimodal dis-
tributions. Later on, [10] proposed a novel method for estimating a CBT (also termed
with brain network atlas) over a population of brain networks which are derived from
the same modality by exploiting diffusive-shrinking and fusing graph techniques. How-
ever, the mathematical formalization of the proposed graph diffusion and fusion method
is not capable of handling multigraph population, where each sample is represented by
a set of graphs. To remedy the lack of methods for multigraph data integration, where
a multigraph allows for multiple edges connecting two nodes, [11] introduced a novel
approach for multi-view graph construction. However, such method utilizes disparate
learning modules that learn independently without any feedback mechanism between
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them; as such the errors accumulate throughout the dichotomized learning pipeline. To
address this issue, [12] introduced Deep Graph Normalizer (DGN) framework, the first
graph neural network that integrates a population of fixed-size multigraphs in an end-
to-end learnable way. Although compelling, DGN is limited to aggregating the infor-
mation only across multi-view brain graphs with a fixed resolution. Besides, it relies
on a random sampling technique to generate CBTs, which is agnostic to data hetero-
geneity. Moreover, DGN uses edge-conditioned convolution, which is not fundamen-
tally tailored for easing the memory consumption, thereby undermining the population
representative CBT estimation for large-scale graph populations. Other related works
[25,26] focused only on integrating single-resolution brain network populations for dis-
order profiling and CBT learning. We note a few works that were also dedicated to brain
graph super-resolution [27–29], which primarily aimed to generate brain graphs across
different resolutions rather then integrating them.

To address all these limitations, we propose Multimodal Multiresolution Graph Inte-
grator (M2GraphIntegrator) Network, the first framework for integrating a population
of multimodal multi-resolution brain networks into a centered and representative CBT.
Tapping into the nascent field of GNNs, we design a set of resolution-specific autoen-
coders to map a given population of brain networks of different resolutions derived
from multiple modalities to a shared embedding space. Next, given the learned embed-
dings, we generate the CBT through the integrator network, which is an architecture
specialized in learnable embedding integration. To train our framework, we design a
novel CBT centeredness loss that ensures the heterogeneity of training samples via
clustering. As such, the selected training samples from different clusters represent each
and every distribution present in the input graph population. In that way, our estimated
CBT can capture the connectivity patterns across all subjects in a diverse population.
Furthermore, to preserve the brain graph topology in the integration process, we pro-
pose a novel topology loss which aims to minimize the topological gap between the
ground-truth and the reconstructed brain graphs in terms of node strength, a measure
quantifying the local hubness of each brain node (i.e., anatomical region of interest).

2 Proposed Method

In this section, we present the main steps of our CBT estimation framework from mul-
timodal multi-resolution brain networks. Figure 1 provides an overview of the key three
steps of the proposed framework: A) representation of multimodal and multi-resolution
brain networks in a population, B) generation of subject-based CBT, C) subject-specific
loss calculation, and D) estimation of the universal CBT.

A- Multi-modal Multi-resolution Brain networks Representation. Given a connec-
tomic population, each subject is represented by multiple brain networks of differ-
ent resolutions derived from different neuroimaging modalities such as functional and
structural MRI (Fig. 1-A). Such brain networks do not necessarily belong to the same
resolution set (i.e., they might have different number of nodes thus different number of
edges). Therefore, we represent each subject s in the population as follows:

Xs = {Xm
s }Mm=1, Xm

s = {Xm,rk
s }Km

k=1, where r1 < · · · < rk < · · · < rKm
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Fig. 1. Overview of the proposed Multi-modal Multi-resolution Graph Integrator
(M2GraphIntegrator) architecture for estimating a centered connectional brain template
from a given population. (A) Multi-modal multi-resolution brain network representation.
We represent each subject in the population by multiple connectivity matrices, each denoted
by X

m,rk
s ∈ R

rk×rk . (B) Subject-based CBT generation. Our framework consists of 3 co-
learning modules: the resolution-specific graph autoencoders, the self-mapper and the integrator.
We generate the subject-based CBT by integrating the feature vector embeddings Zm,rk

s of
each encoder and the self-mapper. (C) Subject-specific loss calculation. For each subject s, we
calculate both reconstruction and topological losses using the whole training set. As for the CBT
centeredness loss, using clustering we select a heterogeneous subset of training samples against
which we evaluate the centeredness of the learned subject-specific CBT. (D) Universal CBT
generation. To capture the most centered connectional patterns across all subjects, we feed each
brain multigraph through our trained model to generate subject-based CBTs. Next, we perform
element-wise median operation to estimate the universal CBT. To simplify the illustration, we

denote the encoder ErMK by ErK and DrMK by DrK .

Xm
s denotes the modality-specific brain networks set derived from modality m and

Xs stands for the overall set encapsulating each and every modality-specific brain net-
works set of subject s. Xm,rk

s ∈ R
rk×rk represents a connectivity matrix (i.e. adjacency

matrix) of resolution rk belonging to Xm
s . We represent the total number of resolutions

derived from modality m by Km and further denote by K the total number of resolu-
tions across all modalities. Since each connectivity matrix is symmetric, we vectorize
it into a feature vector by taking the elements in its lower triangular part. Specifically,
for each subject, we represent each brain graph with a feature vector Vm,rk

s ∈ R
1×r′

k ,
where r′

k = rk×(rk−1)
2 . We note in what follows that our GCN is trained in a subject-

based fashion where each subject is represented by a single-node brain graph.
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B-Subject-Based CBT Generation. To estimate a subject-based CBT Cs, we design
3 GCN-based modules that co-learn during the training process: the resolution-specific
graph autoencoders, the self-mapper and the integrator (Fig. 1-B).

Resolution-Specific Graph Encoder. In order to generate a subject-based CBT, we first
propose to reduce the resolution of differently scaled brain networks. To do so, we intro-
duce a set of resolution-specific graph encoders {Erk}Kk=2, where each Erk maps the
feature vectors of a network at resolution rk into a shared lower embedding space at
the lowest existing graph resolution r1. Our encoders learn to capture the shared-traits
across multi-resolution brain networks. We build the encoders by stacking three GCN
blocks each including a GCN layer followed by sigmoid non-linearity and a dropout
function. Each GCN layer performs the graph convolution operation [30] defined as
follows: Vl = D̂−1/2ÂD̂−1/2Vl−1Θl, where Vl denotes the feature vector embed-
ding at layer l, D̂ denotes the diagonal degree matrix, Â denotes the adjacency matrix
including self-connectivities and Θl denotes the learnable parameter for each layer l.
For simplicity, we choose V as a representation of Vm,rk

s which is the feature vector of
a subject s with a resolution rk and modality m. We note that feature vector embedding
of the last layer (i.e., third layer of Erk ) is denoted by Z where Z = VL (i.e., feature
vector embedding at layer L, where L = 3 in our case).

As the first step of estimating Cs, we pass the feature vectors of subject s each
denoted by Vm,rk

s through their corresponding resolution-specific graph encoders in
order to map them to the shared embedding space of size r′

1. We represent the low-
dimensional embedding of each feature vector by Zm,rk

s ∈ R
1×r′

1 . We note that the
minimal resolution brain graphs of subject s are passed to another architecture called
the self-mapper, which we will detail in the following section.

Self-mapper. The self-mapper is an architecture aiming to generate feature vector
embeddings which capture the shared-traits across subjects of a given population. It
maps minimal-resolution feature vectors into the embedding space shared among the
resolution-specific graph encoders. Since the self-mapper does not alter the resolution
of its input feature vectors, it cannot be identified as an encoder. However, the self-
mapper and resolution-specific graph encoders resemble each other in terms of gener-
ating population-representative feature vector embeddings. The self-mapper consists of
a single GCN block built by stacking a GCN layer, sigmoid non-linearity and dropout
function and is denoted by S throughout our framework (Fig. 1-B). In line with the
purpose of estimating Cs, we pass each minimal-resolution feature vector Vm,r1

s of
subject s through the self-mapper and denote their embeddings by Zm,r1

s .

Integrator. We introduce an integrator module I to integrate the feature embeddings
Zm,rk

s generated by the different resolution-specific graph encoders {Erk}Kk=2 and the
self-mapper S into a single representation –i.e., the subject-based CBT. It mainly encap-
sulates multiple integration blocks, each composed of a linear layer followed by sig-
moid non-linearity. Mainly, to estimate Cs we first pass feature embeddings of subject
s through their corresponding integration blocks. Second, we average the integration
block outputs and generate the subject-based CBT Cs in its vectorized version (Fig. 1-
B). Finally, we derive the matrix representation of Cs by simple antivectorization.
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Resolution-Specific Graph Decoder. We design our M2GraphIntegrator framework in
a way that each resolution-specific graph encoder Erk has a corresponding resolution-
specific graph decoder denoted by Drk . These encoder-decoder pairs are symmetric
since both architectures consist of identical graph convolutional blocks in a reversed
order. Even though decoders are not directly involved in the subject-based CBT esti-
mation process, they play a substantial role in the overall framework by forcing the
encoders, the self-mapper and the integrator to better learn the population graph repre-
sentation. To achieve this, we propose two losses: the reconstruction loss and the topol-
ogy loss which we will address in the following sections. Specifically, each decoder Drk

maps the learned Cs into a higher embedding space of size rk in order to reconstruct the
initial feature vector of subject s, which is antivectorized into the reconstructed brain
connectivity matrix X̂m,rk

s . We note that our resolution-specific graph decoders can be
further leveraged for multimodal brain network data augmentation by perturbing
the learned population CBT.

C- Subject-Specific Loss Calculation. Once we generate Cs from the integrator, we
calculate a centeredness loss inspired by the subject normalization loss (SNL) proposed
in [12]. However, SNL cannot preserve the data heterogeneity of the population which
might result in a limited representation that fails to fully capture the spectrum of brain
connectivity variability across subjects. To solve this problem, we propose a different
method for selecting a subset DS of our training dataset D. Specifically, we employ a
clustering-based sampling method (e.g., K-means or hierarchical clustering) rather than
solely using random sampling. For centeredness loss calculation, we first vectorize the
input connectivity matrices and stack the resulting feature vector embeddings. Next,
to select a DS , we employ a clustering step to sample subjects from different clusters
and produce their embedding vectors Zm,rk

s using the encoder Erk . Finally, we obtain
Zm,rk

s by antivectorizing Zm,rk
s for each sample in DS and calculate the mean Frobe-

nius distance (MFD) with respect to Cs: Ls
P =

∑M
m=1

∑Km

k=1

∑NS

n=1||Cs − Zm,rk
s ||22.

To ensure that the decoded network preserves the initial traits present in the ground-
truth graphs, we introduce a reconstruction loss which computes the MFD between
the ground-truth connectivity matrices Xm,rk

s and their reconstructed matrices X̂m,rk
s

for each subject s. We define it as follows: Ls
R =

∑M
m=1

∑Km

k=1||Xm,rk
s − X̂m,rk

s ||22.
We further propose a new topology loss to enforce the connectivity strength of the
brain regions in the reconstructed brain graphs X̂m,rk

s to be similar to those of the
ground-truth networks Xm,rk

s . More specifically, we generate for each subject in the
population X̂m,rk

s by passing the vectorized Cs through the decoder Drk . Next, we
calculate the node strength vectors Pm,rk

s and P̂m,rk
s by summing up then normaliz-

ing over the rows of Xm,rk
s and X̂m,rk

s , respectively. Hence, we define it as follows:
Ls
T =

∑M
m=1

∑Km

k=1||Pm,rk
s − P̂m,rk

s ||1. By combining the three sub-losses (Fig. 1-
C), we define the total subject-specific loss for a training subject s as follows:

Ls
J =

M∑

m=1

Km∑

k=1

(
||Xm,rk

s − X̂
m,rk
s ||22︸ ︷︷ ︸

Reconstruction loss

+λ1 ||Pm,rk
s − P̂

m,rk
s ||1︸ ︷︷ ︸

Topology loss

+λ2
∑NS

n=1 ||Cs − Z
m,rk
n ||22︸ ︷︷ ︸

Centeredness loss

)

In that way, our proposed loss not only captures the topological structure and infor-
mation of different networks, but also the shared traits across subjects of the population.
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D- Universal CBTGeneration. Since our ultimate goal is to generate a population rep-
resentative CBT rather than a subject-based CBT, we further propose an additional step
in our framework. Since each Cs generated in the previous step is biased by a particular
subject, we need to acquire a centered CBT that represents the heterogeneous popula-
tion. To mitigate this issue, we perform element-wise median operation on all gener-
ated subject-based CBTs (i.e., Cs) as follows: C = median[C1,C2, ...,CN ], where
N represents the number of training subjects (Fig. 1-D). As a result, we estimate C the
integral CBT that represents each and every subject in a multimodal multi-resolution
brain graph population.

3 Results and Discussion

Connectomic Dataset and Hyperparameter Setting. We trained and tested our frame-
work on a connectomic dataset derived from the Southwest University Longitudinal
Imaging Multimodal (SLIM) Brain Data Repository [3]. The dataset consists of 279
young healthy subjects, each represented by two brain networks of resolutions (i.e.,
ROIs) 35 and 160 derived from T1-weighted (morphological network) and resting-
state functional MRI (functional network). We benchmarked our M2GraphIntegrator
including the topological loss (T) with its two (K) K-means and (H) hierarchical clus-
tering variants against four ablated versions: Ablated (K) and Ablated (H) employ K-
means and hierarchical clustering without integrating the topology loss while Ablated
(R+T) and Ablated (R) employ random sampling with and without including the topol-
ogy loss, respectively. We initialized two clusters for each clustering-based sampling
method and selected 10 training subjects at each epoch. Prior to calculating the popula-
tion centeredness loss, we provided an extra training of 100 epochs for the resolution-
specific graph autoencoder architecture to achieve more reliable and steady results in
the graph reconstruction block. We used grid search to tune the hyperparameters λ1

and λ2 of our loss function Ls
J and set them to 2 and 0.5, respectively. We used Adam

optimizer and set the learning rate to 0.0001.

Evaluation of Universal CBT Centeredness and Topological Soundness. A repre-
sentative CBT lies at the center of its population, hence it needs to achieve the minimal
distance to all subjects in the population. We first use 5-fold cross-validation to split the
data into training and testing folds where the CBT is learned from the training set and
evaluated against the unseen test set. To evaluate the centeredness of the universal CBT,
we first encode the testing functional graphs with 160 × 160 resolution by the trained
E160. Next, we compute the mean Frobenius distance between the CBT matrix learned
from the training set and each morphological and encoded functional matrix of testing
subjects. Next, to assess the topological soundness of the estimated CBT, we com-
pute the Euclidean distance between their corresponding node strength representations.
Lower values of the centeredness and topological soundness measures demonstrate that
the generated CBT is more representative and topology-aware. Table 1 shows the sig-
nificant outperformance of our M2GraphIntegrator across all evaluation measures using
both K-means and hierarchical clustering methods. Notably, these results show that
our model learned using the proposed topology loss function significantly outperforms
(p < 0.01) the comparison methods in preserving the topological properties of the
ground-truth networks.
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Table 1. CBT evaluation results using different measures. Centeredness and topological sound-
ness evaluate the quality of the generated CBT. KL divergence and pairwise distance evaluate
the ability of the learned CBT in generating sound multimodal brain networks at different resolu-
tions for data augmentation. For each metric, we highlight in bold the best performing method and
underline the second best. Both M2GraphIntegrator (K+T) and (H+T) significantly outperformed
ablated comparison methods (p − value < 0.01 using two-tailed paired t-test). K: K-means
clustering. H: hierarchical clustering. R: random sampling. T: topological loss.

Model Variation
Evaluation Measure

Centeredness Top. Soundness KL Divergence Pairwise Dist.

Ablated (R) 19.0727 5.9825 0.9764 0.1495000

Ablated (K) 19.0702 5.9767 0.9766 0.1495006

Ablated (H) 19.0755 5.9831 0.9765 0.1495009

Ablated (R+T) 17.9822 5.8448 0.7245 0.1421824

M2GraphIntegrator (K+T) 17.9819 5.8439 0.7241 0.1421812

M2GraphIntegrator (H+T) 17.9783 5.8434 0.7243 0.142180

Evaluation of Multimodal Network Augmentation from the Learned Universal
CBT. Assuming that the universal CBT spans all domains across modalities and res-
olutions, it can be easily utilized to generate new brain networks for potential down-
stream learning tasks (e.g., connectome regression [31]). First, we simulate 279 ran-
dom networks of the same CBT size and distribution. Next, we regularize each ran-
dom network by averaging it with the universal CBT. Next, we feed each average
network to our resolution-specific graph decoders to generate multimodal networks.
To assess the realness of the generated networks, we compute the Kullback-Leibler
divergence [32] between the ground-truth and the augmented brain networks as well
as their average pairwise Euclidean distance (Table 1). Hence, a lower result in both
metrics represents higher similarity between the ground-truth and the networks gener-
ated from our universal CBT (Table 1). Remarkably, the universal CBT by our methods
M2GraphIntegrator (K+T) and M2GraphIntegrator (H+T) generates more signifi-
cantly (p < 0.01) realistic multimodal brain graphs compared to the benchmarks.

4 Conclusion

In this paper, we proposed Multi-modal Multi-resolution Graph Integrator which is the
first graph neural network framework that estimates a connectome population finger-
print given multimodal multi-resolution brain networks. Our method has three com-
pelling strengths: (i) the autoencoder learning task with joint multi-resolution GCN-
based autoencoders, facilitating its customizability to any graph resolution, (ii) the
design of the clustering-based training sampling in the centeredness loss computation
to learn a well-representative CBT of the population heterogeneity and (iii) the pro-
posal of the topology loss to estimate a topologically sound CBT. Our estimated CBTs
will not only pave the way for easier brain disorder diagnosis by revealing deviations
from the healthy population but also remedy data scarcity by augmenting new brain
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networks. In our future work, we will use our model to learn universal CBTs of various
healthy and disordered brain connectivity datasets including functional, morphological,
and structural connectomes. Besides, we will refine our architecture by integrating a
novel graph new edge-convolution that operates on large-scale graphs without memory
overloading.
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Abstract. Graphs are useful in analysing histopathological images as they are
able to represent neighbourhood interactions and spatial relationships. Typically
graph nodes represent cells and the vertices are constructed by applying a nearest
neighbor algorithm to cell’s locations. When passing these graphs through one
graph neural network (GNN) message passing step, each node can only utilise
features from nodes within its immediate neighbourhood to make a classification.
To overcome this, we introduce two levels of hierarchically connected nodes that
we term “supernodes”. These supernodes, used in conjunction with at least four
GNN message passing steps, allow for cell node classifications to be influenced
by a wider area, enabling the entire graph to learn tissue-level structures. The
method is evaluated on a supervised task to classify individual cells as belonging
to a specific tissue class. Results demonstrate that the inclusion of supernodes with
multiple GNN message passing steps increases model accuracy.

Keywords: Graph neural network · Node classification · Digital pathology

1 Introduction

The phenotype and topological distribution of tissue components may influence cancer
progression as well as patient prognosis and response to therapy [1, 2]. Convolutional
neural networks (CNNs) have demonstrated to be effective at common computer vision
tasks such as image classification and segmentation [3]. However, traditional CNNs only
model local relations and are applied to data in a grid structure with fixed connectivity.
When applying CNNs to patches from multi-gigabyte whole slide images (WSIs) this
limits the model from learning wider representations and doesn’t consider the inter-
actions between entities within the tumour microenvironment. This paper tackles this
issue by representing tissue as a graph structure which conserves spatial relations. We
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augment the graphs with multiple levels of hierarchy to increase the radius of spatial
context that each node can utilise.

Graphs inherently capture relationships between entities making them appropriate
for representing the tumour microenvironment. Graph neural networks (GNNs) are a
variation of deep learning that accept graphs as input. These GNNs are able to capture
different neighbourhood relations and accept irregular sized inputs. Furthermore, they
have shown comparable accuracies to CNNs when performing disease classification [4,
5], and tissue segmentation [6]. One subclass of GNNs is a graph attention network
(GAT) [7] which leverages masked self-attention layers to learn different weights for
specific nodes within a neighbourhood of arbitrary size.

Propagating a graph through a GNN once is often referred to as one message passing
step. In one GNNmessage passing step, information from nodes one hop away influence
the learnt node embeddings. With every additional T GNN message passing step, infor-
mation from nodes T hops away influence the learnt node embeddings [8]. However,
there is currently no guidance regarding the number of message passing steps required
for ‘optimal’ learning of node representations, specifically when applied to hierarchical
graphs.

Several approaches have beenmade to develop adequate tissue-representations using
graphs and GNNs. Zhou, Y., et al. [4] captured the tumour cell microenvironment using
cell-graphs (graphs whose nodes represent cells), while others have used a number of
clustering methods to represent tissue-level structures [1, 5, 6]. However, independent
of the graph formation method, whilst only using one GNNmessage passing step, learnt
node embeddings will be limited to the influence of its immediate neighbours. P. Pati,
et al. [1] suggested a hierarchical graph structure which introduced connectivity between
cells and larger, non-overlapping tissue regions. Although this method was successful
at increasing context and capturing multi-scale information, the number of nodes repre-
senting the tissue level structures in conjunction with only two GNN message passing
steps, limits the context that can be learnt. Furthermore, there was no suggested method
for introducing additional layers of hierarchical connections.

In P. Pati, et al. [1] and Anklin, V., et al. [6] node features were obtained by passing
forward image patches through a pre-trained CNN to produce features that are abstract
and exposed to bias arising from variability in colour and scanner-specific attributes
across pathology slides [9]. Whereas, Zhou, Y., et al. [4] extracted morphological cell
features which are independent of these biases.

In this paper, we propose a method that applies the concept of hierarchical graph
formation to cell-graphs to increase the contextual information when learning tissue-
level representations. We introduce two sets of sparsely distributed, regularly spaced
nodes termed “supernodes” which form edge connections in a hierarchical manner. To
produce an optimal result from these nodes, we can demonstrate that a GNN model’s
architecture should be composed of multiple (at least four) GNNmessage passing steps.
The main contributions of this paper are:

• A novel method for creating hierarchical graphs that increases contextual information
without being limited by the size of tissue regions or exposed to bias arising from
variation across histopathology slides;
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• The use of multiple, (at least four) independently-weighted GNN message passing
steps to utilise the hierarchically connected supernodes within the graph;

• An evaluation of the proposed methods in a node classification task to segment tissue
regions in 54 HE-stained cores containing tumour regions from patients with stage
II/IIIb gastric cancer.

2 Method

2.1 Data

The dataset used in this paper was composed of 2 haematoxylin-eosin (HE) stained
tissue-microarrays (TMAs) containing 54 3 mm diameter tissue cores sampled from
tumour regions from patients with stage II/IIIb gastric cancer. Using the HeteroGenius
MIM Cell-Analysis Add-On (HeteroGenius, Leeds, UK) which is a U-NET-based cell
detector and classifier trained on over 50,000 annotated cells, the centroid position of
every cell nucleus within the cores were detected along with 14 other features. These
included size (µm), elongation, mean intensity, standard deviation of intensity, angle
and the cell’s probability of being one of the following cell types: tumour, lympho-
cyte, granulocyte, plasma cell, fibroblast, muscle, endothelium, normal epithelium, and
other. Within the two TMAs this resulted in ~2.6 million cells detected with their 14
corresponding features.

The specific task this method was applied to was node classification to identify
large tissue structures. Four output classes were identified with a pathologist. These
classes were: cancer, muscle, stroma and follicle (aggregates of lymphocytes). Regions
were manually annotated by a pathologist to define the ground truths. Roughly ~2.5%
(~67,000) of the total cells were labelled. For each core, the cells were randomly assigned
to a train-test split of 80% and 20%, respectively.

2.2 Cell-Graph Formation

A graph is defined asG= (V, E)where V are a set of nodes (vertices) with corresponding
features and E are the edges connecting two nodes. These have corresponding features
that represent their interaction. To form the cell-graph, each cell was represented as a
node. Assuming that cell interactions occur between adjacent cells, edge connections
were formed by applying the k-d tree nearest-neighbor algorithm to all cell coordinates
in the individual TMA cores, with k-neighbours = 5 and the number of leaf nodes set
to n = 3.

2.3 Supernodes

To increase the context of a cell node’s learnt embedding, we introduce two levels of
hierarchically connected supernodes. To define the first level of supernodes (L1), a square
grid of edge length 200 µm is superimposed onto the TMA core. The locations of the
grid’s vertices define the locations of the L1 supernodes. Edges are formed with every
cell node and other L1 supernodes within a 200µm radius. The L1 supernode features
are calculated as the average of the cell node features whom it shares an edge with.
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For the second level of supernodes (L2), a square grid of edge length 400µm, aligned
with the same coordinate space as the L1 grid, is superimposed onto the TMA core.
The locations of this grid’s vertices define the locations of the L2 supernodes. Edges are
formedwith everyL1 supernodewithin a 200µmradius. Figure 1 provides a visualization
of the locations of the two levels of supernodes and one set of hierarchically connected
nodes.

Fig. 1. A visualization of the supernodes’ positions and an example of one L2 supernode and its
hierarchical connections (connected nodes shown in red). The HE-stained slide is included for
reference.

Introducing the supernodes significantly increases the number of edge connections.
Across the 54 TMA cores, Table 1 shows the average number of cells, L1 supernodes,
and L2 supernodes, as well as the number of cumulative edges as the supernodes are
introduced. The number of edges includes shown in Table 1 includes self-loops.

Table 1. For each node type, the number of nodes and edges are the average over the 54 TMA
cores. The number of edges include self-loops.

Node type Number of nodes Number of edges

Cell Nodes Only 30,205 85,899

Cell Nodes + L1 30,373 175,888

Cell Nodes + L1 + L2 30,416 176,224

2.4 Model Architecture

The method in this work uses a GAT with one attention head that contains a 2-layer
feed forward neural network within one GNN message passing step. The feed forward
network is shown in Eq. (1) where hi is the set of input node features for the i-th node,
hi’ is the corresponding transformed output,Wk are learnable sets of weights, and tanh
is the hyperbolic tangent activation function. The activation function tanhwas used over
LeakyReLU due to its superior performance during experimentation.
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The input node features had size 17 which consisted of the 14 output features from
the HeteroGenius MIM cell-analysis tool along with a one-hot encoding of the node’s
supernode status. Cell nodes were encoded as [1,0,0], L1 supernodes as [0,1,0], and L2
supernodes as [0,0,1].

�h′
i = tanh

(
W3tanh

(
W2tanh

(
W1�hi

)))
(1)

The input also included 3 edge features. These were: the difference in x-coordinates;
the difference in y-coordinates; and the Euclidean distance between the source and target
node. For all nodes, self-loops were included with edge features equal to 0.

The attention mechanism within the network was modified to account for edge
features. In Eq. (2), the edge features eij corresponding to the edge connecting the i-
th node and its j-th neighbor are concatenated with the transformed node features [10],
where a is the attention weight vector and αij is the multi-head attention coefficient.

αij =
exp

(
LeakyRelu

(
�aT

[�hi ′‖�hj ′‖�eij
]))

∑
k∈Ni

(
exp

(
LeakyRelu

(
�aT

[�hi ′‖�hj ′‖�eij
]))) (2)

Mentioned in Xu, K., et al. [11] and evident in Eq. (2), one GNN message passing
step allows information from immediately connected neighbours (one hop away) to
influence the i-th node’s representation. To embed information from nodes T hops away,
information would have to pass sequentially through T GNN message passing steps,
where each message passing step is comprised of a new set of weights. This makes
it unfeasible to embed distant information by stacking tens of message passing steps
end-to-end as the number of parameters would either be too large to train, making
it subject to computational limits or be subject to vanishing and exploding gradients.
Furthermore, nodes that are tens of hops away would have negligible influence on node’s
learnt representations compared with nodes fewer hops away. However, by using two
levels of supernodes in conjunction with multiple (four) GNN message passing steps,
information is able to travel from one cell node up to a L2 supernode and back down to
another cell node that exists a maximum distance of 800µmaway. Figure 2 demonstrates
this concept of information travelling from one cell node to a L1 and L2 supernode, then
travelling back down to a separate L1 supernode and cell node, using four GNNmessage
passing steps.

Fig. 2. Above shows how information from Cell Node 1 can be influence the learnt node
embedding of Cell Node 2 by being passing information through 4 GNN message passing steps.

Although the GAT model allows for the implementation of multiple attention heads
and the inclusion of a multi-layer feed forward network, both of which can increase
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the accuracy of the learnt representation, this would not achieve the same function as
multiple GNN message passing steps. Increasing the number of attention heads and
layers in the feed forward network would continue to aggregate information one hop
away and not allow for the influence of nodes multiple hops away.

2.5 Experiential Evaluation

To assess the influence of supernodes on the learnt node representations and evaluate
the effect of using multiple GNN message passing steps, two experiments were carried
out. One was to assess how the addition of L1 supernodes and L2 supernodes influence
the overall accuracy. The other was to assess how the number of GNN message passing
steps influence the accuracy of the model when using two levels of supernodes. During
training the loss function used was a masked, weighted MSE loss. Each model was
trained for 10,000 epochs with a learning rate of 1e-3.

3 Results

3.1 The Inclusion of Supernodes

Firstly, all models used in this experiment had 4 GNN message passing steps. The node
feature sizes from the input (17) to output (4) were 17, 64, 64, 64 and 4. For comparison,
three models were trained and tested on the data containing different levels of hierarchy.
Specifically the three sets of data were: cell nodeswith no supernodes; cell nodeswith L1
supernodes; and cell nodes with both L1 and L2 supernodes. No further cross validation
was carried out. Table 2 shows the accuracy of the three models on the train and test
sets.

Table 2. The model accuracy when trained and tested with and without the existence of
supernodes. ‘Node Type’ represents the additional presence of the L1 and L2 supernodes.

Node type Train accuracy Test accuracy

Cell Nodes Only 73.66 73.15

Cell Nodes + L1 90.69 90.50

Cell Nodes + L1 + L2 93.80 93.40

It is clear in Table 2 that with the addition of supernodes, there was a significant
increase in accuracy. Figure 3 provides a visual demonstration of how themodel’s output
was affected when including the different levels of supernodes. Figure 3a) shows a clear
presence of localized noise, and the classifications appear to be more locally clustered.
Whereas, in Fig. 3c) larger scale structures such as tissue regions are evident, showing
an increase in context in the learnt node embeddings.
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Fig. 3. An example of the model’s outputs when trained on a) only the cell-graph, b) the cell-
graphs with the inclusion of L1 supernodes, and c) the cell-graph with the inclusion of L1 and L2
supernodes

3.2 Multiple GNN Message Passing Steps

The second experiment was to determine how the number of GNN message passing
steps influences the model’s performance when used in conjunction with 2 levels of
supernodes. Four models were trained for comparison. For each model, the number
of input features were 17 and output features were 4. For models composed of >1
GNNmessage passing step, the intermediate node features were 64. These are shown in
Table 3.

Table 3. The accuracy of the model composed of n message passing steps where n = 1, 2, 3, 4

Number of Message Passing Steps Node Features Train Accuracy Test Accuracy

1 17, 4 72.77 73.15

2 17, 64, 4 89.38 88.12

3 17, 64, 64, 4 90.31 90.50

4 17, 64, 64, 64, 4 93.80 93.40

The results in Table 3 suggest that increasing the number of GNN message passing
steps increases the accuracy when applied to hierarchical graphs containing two levels
of supernodes.

4 Discussion

P. Pati, et al. [1] introduced applying hierarchically connected nodes to histopathology
slides. They determined nodes as the centres of tissue regions that were connected to cells
lying within those tissue regions. This was demonstrated to be effective at increasing
context in a graph classification task. However, no method was proposed for further
increasing the context through more hierarchical connections. As a result, the learnt
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node representations were limited by the size of tissue regions and the number of GNN
message passing steps (two). Furthermore, the node featureswere extracted frompassing
patches of HE-stained slides through a pretrained network. These features were abstract
and uninterpretable with no clinical context.

W. Lu, et al. [5] defined nodes as the centres of cell clusters. Similarly to the methods
presented in this work, the features of these nodes were an average of the cell node
features within the cluster. This allowed for tissue-level structures to be represented
but could not capture higher resolution information from a cellular level. Whilst this
presented an efficient method of learning graph representations, there was no proposed
method for developing hierarchical connections nor was there a suggested number of
GNN message passing steps to optimize the potentially learnt node embeddings.

The method proposed in this paper allows for the representation of granular informa-
tion from the cells and provides a method for creating indefinite levels of hierarchically
connected nodes that we termed “supernodes”. These supernodes have shown to increase
context in a node classification task, allowing for tissue-level structures to be learnt on
a cellular level. We demonstrate that to optimize the outcomes from using two levels of
supernodes, multiple (at least four) GNN message passing steps are required.

When comparing the number of message passing steps, it is likely that the increase
in performance seen in Table 2 was a result of including more learnable parameters.
However, we demonstrated that with the inclusion of 2 levels of hierarchically connected
supernodes, this number of GNNmessage passing steps enabled the graph to learn from
an increased context. In addition, themodel accuracy is high (>90%) andonly considered
17 input node features, all of which held clinical relevance.

One limitation of this work lies in the labelled output classes. With the tumour-
microenvironment being complex and heterogeneous [8, 12], inmany scenarios there are
more than four tissue classes. Likewise, these tissue regions don’t consistently maintain
hard boundarieswhichmakes the assignment of a single class subjective and inconsistent.
However, this was not inherent to the model but to the labelling system. A further
limitation lies within the quantity of annotated data (~2.5% of all cell nodes). This is
significantly lower than that proposed in Gao, J.P., et al. [8] who demonstrated the effect
of incomplete labels on a graph-based segmentation task, with the lowest percentage of
annotated data covering 5% of the total pixels within the tissue.

5 Conclusion

In this paper, we have presented a novel method for increasing the contextual informa-
tion when performing node classification on cell-graphs containing tumour regions. We
introduced the concept of supernodes that can be connected hierarchically. From com-
paring the accuracy of models trained on cell nodes alone, cell nodes with one level of
supernodes, and cell nodeswith two levels of supernodes, we can conclude that the inclu-
sion of supernodes increases the contextual information learnt by cell nodes. Through a
separate comparison, the accuracy was compared between four models composed of 1–4
GNN message passing steps. The model with 4 GNN message passing steps achieved
the highest performance implying that this architecture is required to utilise two levels
of supernodes.
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7. Veličković, P., et al.: Graph attention networks (2017). arXiv:1710.10903
8. Gao, J.P., et al.: Tumor heterogeneity of gastric cancer: from the perspective of tumor-initiating

cell. World J. Gastroenterol. 24(24), 2567–2581 (2018)
9. Anghel, A., et al.: A high-performance system for robust stain normalization of whole-slide

images in histopathology. Front. Med. (Lausanne) 6, 193 (2019)
10. Chen, J., Chen, H.: Edge-featured graph attention network (2021). arXiv:2101.07671
11. Xu, K., et al.: Representation learning on graphs with jumping knowledge networks (2018).

arXiv:1806.03536
12. Junttila, M.R., de Sauvage, F.J.: Influence of tumour micro-environment heterogeneity on

therapeutic response. Nature 501(7467), 346–354 (2013)

http://arxiv.org/abs/2103.03129
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2101.07671
http://arxiv.org/abs/1806.03536


TaG-Net: Topology-Aware Graph
Network for Vessel Labeling

Linlin Yao1,2, Zhong Xue1, Yiqiang Zhan1, Lizhou Chen4, Yuntian Chen4,
Bin Song4, Qian Wang3(B), Feng Shi1, and Dinggang Shen1,3

1 Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
2 Institute for Medical Imaging Technology, School of Biomedical Engineering,

Shanghai Jiao Tong University, Shanghai, China
3 School of Biomedical Engineering, ShanghaiTech University, Shanghai, China

wangqian2@shanghaitech.edu.cn
4 Department of Radiology, West China Hospital, Sichuan University,

Chengdu, China

Abstract. Anatomical labeling of head and neck vessels is a vital step
for cerebrovascular disease diagnosis. However, it remains challenging
to automatically and accurately label vessels in computed tomography
angiography (CTA), since head and neck vessels are tortuous, branched,
and often close to nearby tubular-like vasculatures. To address these
challenges, we transform the voxel labeling problem into the centerline
labeling task and propose a novel method of topology-aware graph net-
work (TaG-Net) for vessel labeling of 18 segments covering both head
and neck, in which the efficiency of centerline’ sparse representation using
the point cloud is exploited and vessel’s topological structure can be bet-
ter represented using the topology-aware graph. First, a topology-aware
graph is constructed from the extracted vessel centerlines. Second, we
design topology-preserving sampling and topology-aware feature group-
ing so that the network’s sampling and grouping layers preserve the vas-
cular structures. Third, the vascular features extracted from the point
processing layer and the GCN layer are aggregated for centerline label-
ing. Finally, the labeling task is accomplished by assigning the closet
label from each point of the centerline to the mask voxels. Using head
and neck CTA of 401 subjects and a five-fold-cross-validation strategy,
experiments show that TaG-Net yields an average recall of 0.977 and an
average precision of 0.977, with mean F1 as 0.977 for centerline labeling.
After back-propagating labels onto vessel masks, TaG-Net achieves an
average Dice coefficient of 0.991 for 18 vessel segments compared to that
of 0.980 by the V-Net. The results indicate that the proposed network
could facilitate head and neck vessel analysis by providing automatic and
accurate vessel labeling.
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Topology-aware graph
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1 Introduction

Vascular diseases are the leading cause of death globally and are often associated
with high morbidity and medical risks [5]. Computed Tomography Angiography
(CTA) is the major imaging modality in diagnosing vascular diseases, and CTA
in head and neck is usually used for examining carotid and vertebral arteries and
blood vessels within the brain. In automated vessel analysis, after segmenting
the vessel masks, it is of great interest to label each anatomical segment so that
abnormalities can be localized and visualized along with a selected pathway for
convenient reading and diagnosis. For example, centerlines with proper labels not
only provide an intuitive visualizing region of a segment’s straightened lumen
for radiologists but also facilitate localization and quantification of stenosis and
calcification within the blood vessels. Automated labeling is also a prerequisite
step for generating reports in a computer-aided diagnosis (CAD) system.

In the literature, a number of works have been proposed for labeling coro-
nary arteries [2,14,16,18], brain arteries [1,3,4,12,13], and head and neck arter-
ies [17]. In [14], Wu et al. utilizes a registration-based method so that the vessel
structure from the atlas can be used as prior knowledge for labeling new data.
A logic rule-based refinement is needed for this no-data-driven method. Other
registration-based methods include [1,13] for brain arteries, which may not adapt
to large shape variability among individuals and the tortuous structures of arter-
ies. TreeLab-Net [14] uses the topological structures such as position features
extracted from a centerline as the input for labeling each vessel segment. How-
ever, the algorithm neglects the graph property of the vessel tree. CPR-GCN
[16] combines the features extracted from the TreeLab-Net and the graph infor-
mation learned from a graph convolutional network (GCN), while considering
three-dimensional image features. However, the graph down-sampling method
used in GCN does not preserve graph topology. Chen et al. developed a GNN
approach to label ICA with hierarchical refinement (HR) on the Intracranial
artery. HR was conducted to address the problem of global structures and rela-
tions learning existing in the GNN. In [4], Hampe et al. constructed a coronary
artery tree graph based on the connectivity between the centerlines. Then this
tree graph was transformed into a linegraph. At last, a graph attention network
was applied on the linegraph to label the segments. On the other hand, point
cloud networks are used for learning the anatomical structures [17,18], however,
the vessel graphs in [17] are built based on Euclidean distances among the points
within the vessels, which may not reflect point neighborhood along with vascular
structures and could lead to wrong connections for two vessels close by. Similarly,
convolutional neural network (CNN) methods such as V-Net [9] may suffer from
the same problem due to Euclidean-based convolutions.

To tackle these problems, we propose a topology-aware graph network (TaG-
Net) for centerline-based vessel anatomical labeling in this paper, which trans-
forms the mask labeling problem into centerline labeling. We utilize the graph
property of vessel centerlines instead of vessel masks, which is more efficient
and blends the advantages of GCN and point cloud network. Prior knowledge
of the vessel’s tree tubular structure and anatomical information are taken
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into consideration. Hence, in TaG-Net, the vessel graph is constructed from
the extracted centerlines, and the network’s resampling and pooling layers are
formed by topology-preserving sampling and topology-aware feature grouping,
respectively, to preserve the graph structure during network propagation. Cou-
pled with a point processing layer and a GCN layer, TaG-Net achieves labeling
for centerlines as well as vessel masks (with back-propagation). Comparative
experiments using CTA images of 401 subjects show that better labeling results
can be obtained compared to state-of-the-art methods.

Fig. 1. Overview of our proposed TaG-Net. SA: set abstraction module; FP: feature
propagation module.

2 Method

Figure 1 illustrates the pipeline for vessel labeling using the proposed TaG-Net.
First, given a vessel mask Y , the centerline cl is extracted, from which the
topology-aware graph clg is constructed. The nodes of the graph are sampled
from the centerline, and the edges represent point affinity along the vessel topol-
ogy. TaG-Net then takes the graph as its input, also including the coordinates
and corresponding neighborhood size of each graph node/point. The output of
TaG-Net is the label of each node/point of the topology-aware graph clg. Finally,
labeled mask Yl can be computed by back-propagating the labeled centerline cll
onto the vessel mask Y based on directional distance maps.
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2.1 Vessel Centerline Extraction

Vessel centerline can better represent the topological structure of the arteries of
the head and neck, and herein we focus on labeling vessel centerline rather than
processing vessel masks or original CTA images. It also reduces the complexity
of the model. We start from the vessel masks obtained from the CTA images
annotated by two experts for training the proposed network. In the testing stage,
the vessel masks are obtained by applying a segmentation network. For both
cases, a classic and efficient three-dimensional thinning algorithm [7] is performed
to extract the centerlines cl from the mask Y , as shown in Fig. 1. Then, an octree
data structure of 3 lattice points are constructed to refine the local connectivity
of the vessel structures. The process sweeps through the octree to clean up
the centerlines iteratively until desirable skeletons cl can be obtained, which
preserves the topological and geometrical conditions.

2.2 Topology-Aware Graph Construction

After getting the vessel centerline cl, a topology-aware graph clg can be con-
structed by defining the nodes and edges. The topology-aware graph is the one
that reflects the anatomically and topologically connected blood flows. Suppose
a node can be represented by a point on the vessel centerline, it can have one
edge if it is at the end of the branch, two edges in most common situations, i.e.,
within a blood vessel, or have three or more edges at the bifurcation or junction
points. Here, the classic nearest neighbor searching method KDTree [8] is uti-
lized to construct the tree data structure from the centerline. Each node of the
KDTree represents an axis-aligned hyperrectangle. The set of points can be split
by sliding the midpoint. Given any point, its r closest neighbors can be queried
to construct the initial vessel graph. Post-processing of removing the redundant
edges such as triangles is employed on the initial graph.

2.3 Topology-Aware Graph Network for Centerline Labeling

Once the vessel graph is constructed, a topology-aware graph network (TaG-Net)
is proposed for centerline labeling by combining the idea of point cloud represen-
tation learning and GCN learning. Figure 1 shows the framework of TaG-Net.
Basically, features of centerline points are extracted through the point cloud
analysis block, and graph convolution is performed by offering the topological
connections of nodes. The basic structure of the network is adapted from Point-
Net++ [11], which consists of a hierarchical encoder and decoder architecture
to achieve point cloud analysis. The encoder is composed of a number of set
abstraction (SA) modules, while the decoder is formed by a series of feature
propagation (FP) modules.

The SA module consists of four types of operators: sampling, grouping,
pointnet, and GCN . As illustrated in Fig. 1, SA takes an N × (d + C) matrix
and the graph adjacency matrix A as the input, where N is the number of points,
d represents the d-dimensional point information including the coordinates and
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radius, which is computed from the mask, and C is the number of features. The
output of the SA module is an N1 × (d + C1 + G1) matrix and an new graph
adjacency matrix A1. It can be seen that SA reconstructs the input N -point
graph A into an output graph A1 with N1 points, where the N1 subsampled
points are with d-dimensional point information and C1-dimensional features.
The four operators are described in detail as follows.

Topology-Preserving Sampling (TPS). TPS is designed for preserving the
topological structures and the graph adjacency. It is the basic operation wherever
the graph needs to be resampled. For this purpose, the sampling layer chooses
a set of points from input points, which are considered the centroids of the
feature grouping regions. Take an example in the set abstraction module, a
graph with N1 nodes can be sampled from the graph with N nodes without
changing the topology of the original centerline structures. Specifically, nodes
whose degree (number of edges) is not two are considered special nodes, which
represent bifurcations, start points or endpoints. They make a great contribution
to the topology of the vessel structure and are anatomical landmarks for vessel
labeling, thus should remain after graph resampling. Since the average number
of special points from the topology-aware graphs is about 350 in our dataset,
the minimal number of points sampled is set to 512, which can preserve the
topology of the whole vascular structure. The rest of the points are those along
with the blood flow and can be sampled using iterative farthest point sampling
(FPS) [11]. FPS samples the most distant points so that they spread through
the centerlines and better cover the entire artery structure. To sum up, mixed
TPS and FPS are utilized in the sampling layer.

Topology-Aware Grouping. As illustrated in set abstraction part of Fig. 1,
instead of grouping points in the ball query region like [11], we propose a
topology-aware grouping method to only group points with direct or indirect
connection in the ball query region. The grouping layer takes the N × (d+C)
matrix and graph adjacency matrix A as the input, and the output includes
groups of points of size N1 × K × (d + C) where K is the number of points in
the topology-aware neighborhood of the centroid points. As shown in Fig. 1, pur-
ple points along the vascular structure in the purple ball are grouped instead of
all the points in the ball. This makes sure that the message only passes between
the inter-label or intra-label with anatomical junction and prevents the influ-
ence of closer Euclidean-distance but farther graph-path points, which can help
to handle the gaps in the computed centerlines.

The Pointnet and GCN Layer. This layer is used to process features of
points. It uses a mini-PointNet [10] to encode local topological patterns within
the graph. The GCN layer is one layer of GCN module [6]. The pointnet layer
takes the N1 × K × (d+C) matrix and graph adjacency matrix A as the input,
and the output has a size of N1 × (d + C1). The input of GCN layer is graph
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adjacency matrix A and N nodes with features from the pointnet layer. The
output has size of N1 × G1. Features of the point layer and the GCN layer are
concatenated, whose size is N1 × (d+C1 +G1), to be the input of the next SA
module or the decoder.

Point Feature Propagation (FP). While SA can down-sample graphs, the
FP module needs to achieve up-sampling. The FP module is built up with two
layers: the interpolating layer and the unit pointnet layer. As displayed in
Fig. 1, the interpolating layer propagates feature to the up-sampled points with
size N × (d+C) by interpolating features of N1 × (d+C2) using inverse distance
weighted average based on topological neighbors. The interpolated features of N
points are then concatenated with skip-linked features from the corresponding
SA module. Then, the concatenated features with N × (d + C2 + C) are sent
to the unit pointnet layer. The function of this layer is like 1×1 convolution in
CNN. This process is repeated until the features are propagated to the original
set of points. After the last FP module, the fully connected layer is utilized to
label each point.

2.4 Vessel Mask Labeling

After centerline labeling, the vessel mask’s label can be computed by back-
propagating the centerline labels onto the vessel mask Y based on directional
distance maps. Distance maps of each labeled centerline can be computed so each
point on the vessel mask Y has 18 distances corresponding to 18 labels, and the
label of vessel mask point can be simply assigned the label that has the smallest
distance. However, the radius of different head and neck vessel segments varies,
which leads to some labels of segments with smaller radii can be infected by the
nearby segments with larger radii. So directional distance map is used here. The
vessel mask is taken into consideration to add a large value on the distance map
where the points belong to the background, and the vessel orientation is also
taken into account, similar to the gradient vector flow in [15].

3 Experiments

Dataset. Experiments are conducted using our in-house head and neck CTA
dataset. A total of 401 volumes of different patients are included, with in-plane
image size 512 × 512 and slice spacing varyng from 0.361 mm to 0.707 mm. The
number of slices ranges from 400 to 900, and the slice distance is 0.4–0.7 mm.
Head and neck arteries were manually marked with different labels for different
segments by a radiologist, and reviewed by a senior radiologist. After extracting
the centerline, the label of each centerline point is determined by the same
overlapping label. A five-fold cross-validation strategy is used to evaluate all
subjects in the dataset.
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Fig. 2. Results of centerline labeling (left panel) and vessel labeling (right panel) for
four samples. Each line represents one patient, the viewpoint and zoom-in regions for
centerlines and vessel masks may vary.

Experiment Setup. The network architectures of TaG-Net are formed by four
SA modules and four FP modules. The distance r to find the closest neigh-
bors was set as 1.75 voxel in Sect. 2.2, in which the points and radius were in
the original. In Sect. 2.3, the numbers of sampled points for constructing the
topology-aware graph were 4096, 2048, 1024, and 512 for different SA blocks.
In the training and testing, point coordinates and corresponding radii were nor-
malized. In grouping layers, multi-resolution grouping is utilized as [11] and the
radii of ball querying were set as 0.1, 0.2, 0.4, and 0.8. V-Net used to train
the labeling model took the vessel mask as the input, the labeled mask as the
supervision information, and Dice as the loss.

Qualitative Results. Qualitative results for centerline labeling and vessel
labeling of four patients are demonstrated in Fig. 2. Each row shows the results
of the same subject. The left part includes centerline labeling results of Point-
Net++ [11], TaG-Net, and ground truth. The right part shows vessel labeling
results of V-Net [9], TaG-Net, and ground truth. The rectangles on the images
stand for some comparative results. As shown in a and b, centerlines have wrong
connections in a3 and b3 because of the adhesion in the vessel binary mask.
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Table 1. The quantitative results of centerline labeling and vessel labeling.TaG-Net
w/o represents the proposed TaG-Net without using the GCN layer.

Label Centerline Vessel

PointNet++ [11] TaG-Net w/o TaG-Net V-Net [9] TaG-Net

Recall Precision F1 Recall Precision F1 Recall Precision F1 Dice Dice

AOAR 0.934 0.981 0.957 0.971 0.976 0.973 0.986 0.973 0.979 0.995 0.998

BCT 0.937 0.976 0.956 0.921 0.934 0.927 0.917 0.915 0.916 0.959 0.982

R-CCA 0.935 0.969 0.95 0.969 0.971 0.969 0.964 0.984 0.974 0.983 0.991

L-CCA 0.927 0.954 0.940 0.964 0.968 0.965 0.976 0.977 0.977 0.98 0.988

R-ICA 0.919 0.960 0.939 0.957 0.964 0.960 0.979 0.975 0.977 0.987 0.993

L-ICA 0.912 0.969 0.939 0.968 0.971 0.969 0.973 0.984 0.978 0.971 0.987

R-VA 0.955 0.979 0.967 0.974 0.981 0.967 0.977 0.989 0.990 0.991 0.995

L-VA 0.951 0.973 0.962 0.982 0.985 0.967 0.983 0.992 0.991 0.990 0.996

BA 0.662 0.744 0.700 0.796 0.811 0.803 0.888 0.900 0.894 0.947 0.986

R-SA 0.960 0.980 0.970 0.979 0.981 0.970 0.979 0.992 0.986 0.985 0.994

L-SA 0.939 0.975 0.956 0.971 0.980 0.975 0.975 0.989 0.982 0.984 0.993

R-ECA 0.943 0.963 0.953 0.981 0.979 0.980 0.992 0.983 0.987 0.976 0.991

L-ECA 0.932 0.960 0.946 0.984 0.978 0.981 0.995 0.971 0.983 0.973 0.991

Average-neck 0.916 0.953 0.933 0.955 0.960 0.957 0.970 0.971 0.970 0.979 0.991

R-PCA 0.934 0.981 0.957 0.987 0.984 0.985 0.994 0.988 0.991 0.989 0.994

L-PCA 0.938 0.965 0.951 0.989 0.983 0.986 0.994 0.988 0.991 0.951 0.981

ACA 0.984 0.990 0.987 0.988 0.992 0.990 0.996 0.998 0.991 0.984 0.992

R-MCA 0.992 0.996 0.993 0.994 0.997 0.995 0.997 0.999 0.998 0.992 0.998

L-MCA 0.987 0.989 0.988 0.992 0.994 0.993 0.999 0.998 0.999 0.994 0.997

Average-head 0.967 0.984 0.975 0.990 0.990 0.990 0.996 0.994 0.994 0.982 0.993

Average 0.930 0.961 0.945 0.966 0.969 0.968 0.977 0.977 0.977 0.980 0.991

These wrong connections result in wrong label prediction as shown in a1, a4
and b1 and b4. However, our TaG-Net can label the adhesion region accurately
as shown in a2, a5 and b2, b5. In additional, labeling results can be wrong even
there is no adhesion as shown in c1, c4 and d1, d4. This may suffer from the small
interval distance of the two regions. Compared with the results of TaG-Net in
c2, c5 and d2, d5, It proves that TaG-Net can achieve good performance both on
centerline labeling and vessel labeling. Note that, unlike previous works which
use expensive vessel volume labels, we only use centerline labels to deal with
the vessel volume labeling task, which is much cheaper on labeling and more
computation efficient.

Quantitative Results. Table 1 reports the detailed performance of our dataset.
It can be seen that TaG-Net improved average recall, precision, and F1 values for
4.7%, 1.6%, and 3.2% compared to PointNet++ [11] in centerline labeling. The
results indicate that our TaG-Net performs well on centerline labeling, and the
proposed strategies are effective. For vessel mask labeling, compared to V-Net
which directly labels masks, the average Dice coefficient of TaG-Net increased
by 1.1% and improved in all 18 segments. It is worth noting that the high
Dice might be because most voxels in the masks are corrected labeled or the
proportion of incorrectly labeled voxels is smaller compared to the size of the
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vessel mask. Moreover, we used manual masks to generate centerlines for testing
the performance of centerline labeling so that the effects of segmentation errors
can be eliminated. Our future work will focus on evaluating the performance of
the entire segmentation and labeling pipeline as shown in Fig. 1. Regarding to
efficiency, the training time is about 9 h until convergence. The test time of one
case spends about 28 s. While the training time using V-Net takes about 3 days
and one case testing spends about 47 s. It proves that our proposed method is
more efficient than the V-Net.

4 Conclusion

This paper proposed a topology-aware graph network for centerline-based vessel
labeling of 18 segments in head and neck vessels. Instead of processing the mask
labeling using CNNs, we label the points of the centerline and vessel labels can be
obtained by back-propagating centerline labels to vessel masks. The construction
of topology-aware graph, topology-preserving sampling, topology-aware group-
ing, and point cloud learning combined with the GCN learning contribute impor-
tant steps in the anatomical labeling of vessel centerlines. Experiments showed
that compared with the centerline labeling methods using our proposed method
and vessel mask labeling with V-Net, our approach achieved better accuracy.
Thus, it is feasible for automatic and accurate analysis of head and neck CTA.
Future work will focus on segmentation and extraction of centerlines from head
and neck CTA images.

Acknowledgements. This work was supported in part by the National Key Research
and Development Program of China under Grant 2018YFC0116400.

References
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Abstract. Brain connectomes—the structural or functional connections
between distinct brain regions—are widely used for neuroimaging stud-
ies. However, different ways of brain parcellation are proposed and used
by different research groups without any consensus of their superior-
ity. The variety of choices in brain parcellation makes data sharing and
result comparison between studies difficult. Here, we propose a frame-
work for transforming connectomes from one parcellation to another to
address this problem. The optimal transport between nodes of two par-
cellations is learned in a data-driven way using graph matching methods.
Spectral embedding is applied to the source connectomes to obtain node
embeddings. These node embeddings are then transformed into the tar-
get space using the optimal transport. The target connectomes are esti-
mated using the transformed node embeddings. We test the effectiveness
of the proposed framework by learning the optimal transport based on
data from the Human Connectome Project Young Adult, and applying
it to structural connectomes data from the Lifespan Human Connec-
tome Project Development. The efficacy of our approach is validated by
comparing the estimated connectomes against their counterparts (con-
nectomes generated directly from the target parcellation) and testing the
pre-trained predictive models on estimated connectomes. We show that
the estimated connectomes are highly correlated with the actual data,
and predictive models for age achieve high accuracies. Overall, our pro-
posed framework holds great promises in facilitating the generalization
of connectome-based models across different parcellations.
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1 Introduction

Recently, there has been significant interest in defining the human connectome, a
comprehensive graph representation of the functional and structural connections
among brain regions [2,3,12]. Yet, no consensuses exist on how to parcellate the
brain into distinct regions (or the nodes in the graph) [1], resulting in connec-
tomes of various sizes and topologies. Combining and comparing connectomes
from different parcellations (and associated downstream results) is difficult given
these differences in size and topology. A putative solution to this issue is to find
a mapping between connectomes constructed from different parcellations. With
such a mapping, a connectome based on one parcellation could be transformed
to a connectome based on another parcellation, facilitating the connectomes to
be combined for further analyses or comparisons between published results. In a
previous study [5], a mapping between functional connectomes was proposed by
learning the optimal transport between nodes using their underlying timeseries
data. However, as this previous approach relied on timeseries data, rather than
a connectome itself, it is not directly applicable to structural connectomes.

As connectomes can be mathematically described as weighted graphs, the
connectomes transformation problem is closely related to the graph match-
ing problem. Graph matching has been studied extensively, with applications
in bioinformatics [9], computer vision [8,15], and social network analysis [16].
Indeed, the previous solution for the connectomes transformation problem [5]
can be viewed as a special case of graph matching using only node information.

Inspired by [5,14], we propose Connectome to Connectome (C2C) mapping,
a method to transform connectomes between two different parcellations with-
out needing the raw data which is applicable to both functional and structural
connectomes. Briefly, C2C works by, first, estimating a node representation of
the connectome using a spectral embedding, then, transforming these node rep-
resentations to node representations from different parcellations, and, finally,
combining the transformed node representations into a symmetric functional or
structural connectome. We validate C2C in two ways. First, we compare con-
nectomes estimated from C2C against connectomes generated directly from the
parcellation. We show that C2C could achieve high accuracy of estimating the
target connectomes. Second, we demonstrate the utility of the reconstructed
structural connectomes by using these connectomes to predict age in a develop-
mental sample. This study extends the literature by developing a connectome
mapping algorithm that is general to any type of connectome.

2 Connectome-to-Connectome (C2C) Mapping

2.1 Overview of C2C

The proposed C2C approach includes the following steps: 1) A spectral embed-
ding of the connectomes to obtain a node representation of the connectome; 2)
Node representations transformation using the optimal transport T; and 3) Con-
nectome reconstruction using the transformed node representations. Notably, the
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Fig. 1. Schematic of Connectome-to-Connectome (C2C) Mapping: The node repre-
sentation Xs of the input connectome (parcellation α) is first obtained using spectral
embedding. The optimal transport T learned on an independent dataset by graph
matching is used to map Xs to the node representation Xe of the output connectome
(parcellation β). The output connectome is estimated using Xe.

optimal transport can be learned on an independent dataset for increased gen-
eralizability. The whole procedure of this algorithm is shown in schemetic form
in the Fig. 1 and as an algorithm in Algorithm 1.

Algorithm 1: Connectome-to-Connectome (C2C)
1 Input: Cs ∈ R

n×n - input connectome, d - the dimension of the embedding
subspace, T ∈ R

m×n - optimal transport
2 Compute the spectral embedding X̂s ∈ R

n×d of Cs

3 Compute the transformed embedding X̂e = TX̂s, X̂e ∈ R
m×d

4 Reconstruct the connectome Ĉe ∈ R
m×m using equations in 2.5.

5 Output: Ĉe ∈ R
m×m - estimated connectome

2.2 Spectral Embedding (Algorithm 2)

C2C obtains vector representations of the nodes of a graph through spectral
decomposition [7]. A weighted undirected graph is represented by a symmetric
matrix A ∈ R

n×n. Let Ŝ be the d × d diagonal matrix containing the d largest
eigenvalues of A in magnitude on its diagonal, arranged in decreasing order
(based on their actual, signed value), and let Û ∈ R

n×d be a matrix containing,
as columns, corresponding orthonormal eigenvectors arranged in the same order.
The spectral embedding of the graph into R

d is defined as:

X̂ = [X̂1, ..., X̂n]T = Û |Ŝ|1/2 ∈ R
n×d. (1)
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For the application to structural connectomes Cs, Cs is decomposed into two
parts Cs = C+

s +C−
s . C+

s contains the positive eigenvalues of Cs and its spectral
embedding is Û+|Ŝ+|1/2 ∈ R

n×d1 . C−
s contains the negative eigenvalues of Cs

and the spectral embedding of −C−
s is Û−|Ŝ−|1/2 ∈ R

n×d2 . Both C+
s and C−

s are
used. For functional connectomes (which are positive semi-definite, correlation
matrices), the spectral embedding is directly used.

Algorithm 2: Spectral Embedding
1 Input: A ∈ R

n×n - symmetrical matrix, d - the dimension of the embedding
subspace

2 U, S = eig(A), U is the eigenvectors and S is the eigenvalues
3 Select the largest d eigenvalues in magnitude and sorted them using original

values to get Ŝ. Û is the corresponding eigenvectors.
4 Compute X̂ = Û |Ŝ|1/2 ∈ R

n×d

5 Output: X̂ - d-dimensional embedding

2.3 Gromov-Wasserstein Discrepancy

Gromov-Wasserstein Discrepancy compares graphs in a relational way, measur-
ing how the edges in a graph compare to those in the other graph [14]. It is a nat-
ural extension of the Gromov-Wasserstein distance defined for metric-measure
spaces [10]. In graph matching, a metric-measure space corresponds to the pair
(D,u) of a graph G(V ,E ), where D = [dij ] ∈ R

n×n represents a distance matrix
derived from edge set E , u ∈ Σn is a Borel probability measure defined on node
set V . In our case, the distance matrix is calculated using dij = 1/(1+ cij) from
structural connectome C and u is calculated based on the normalized degree
of graph. Given two graphs G(Vs,Es) and G(Vt,Et), the Gromov-Wasserstein
discrepancy between (Ds,us) and (Dt,ut) is defined as

dGW := min
T

∑

i,j,i′,j′
L(ds

ij , d
t
i′j′)Tii′Tjj′ (2)

L(·, ·) is the square loss L(a, b) = (a−b)2 and T is the optimal transport between
the nodes of two graphs. Its elements Tij represents the probability that vi ∈ Vs

matches vj ∈ Vt. The optimal transport achieves an assignment of the source
nodes to the target ones. The problem could be solved through a proximal gra-
dient method (see Algorithm 3), which decomposes a complicated non-convex
optimization problem into a series of convex sub-problems.

2.4 Node-Based Mapping via Optimal Transport (Algorithm 4)

Given the corresponding node information U = [uT
1 , ..., uT

d ] ∈ R
ns×d of parcella-

tion α and V = [vT
1 , ..., vT

d ] ∈ R
nt×d of parcellation as β, the optimal transport

T is learned by solving the following equation:

min
T

{ ∑

i

C(vi,T(ui)) : T�U = V
}

(3)
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Algorithm 3: Gromov-Wasserstein Discrepancy
1 Input: Ds ∈ R

ns×ns ,us ∈ R
ns - distance matrix and node distribution of

source graph, Dt ∈ R
nt×nt ,ut ∈ R

nt - distance matrix and node distribution of
target graph

2 Compute Cnode ∈ R
ns×nt , Cij = |us

i − ut
j |

3 Initialize T(n) = usu
�
t

4 while not converge do

5 G = e−(Cnode+L(Cs,Ct,T
(n))/γ � T(n)

6 b = ut/(G�a),and a = us/(Gb)

7 T(n+1) = diag(a)Gdiag(b)
8 n = n + 1

9 Output: T(n) ∈ R
ns×nt

The cost matrix C ∈ R
ns×nt , Cij = ρ(ui − vj) measures the pairwise distance

between nodes in the two parcellations, where ρ is the pearson correlation. Once
estimated, T can be applied to u to estimate v.

Algorithm 4: Node-based Mapping via Optimal Transport
1 Input: U = [uT

1 , ..., uT
d ] ∈ R

ns×d, V = [vT
1 , ..., vT

d ] ∈ R
nt×d

2 Compute the cost matrix C ∈ R
ns×nt , Cij = ρ(ui − vj)

3 for i ← 1 to d do
4 Compute Ti by solving Eq. (3) using Sinkhorn algorithm [5]

5 T =
∑d

i=1 Ti/d
6 Output: T ∈ R

ns×nt

2.5 Connetomes Estimation

The connetomes are reconstructed from the transformed node representation.
Structural connectomes are estimated using: Ĉe = Ĉ

+

e + Ĉ
−
e = X̂+X̂

T

+ − X̂−X̂
T

−
and functional connectomes are estimated using: Ĉe = X̂X̂

T
.

3 Results

3.1 Datasets

The optimal transports used in the experiment were learned using the functional
and structural data from the Human Connectome Project (HCP) [13]. The C2C
framework was validated using the optimal transports on the Lifespan Human
Connectome Project Development (HCP-D). Structural connectomes were cre-
ated from the Shen (268 nodes) [11], Craddock (200 nodes) [4] and Brainnetome
(246 nodes) [6] parcellations.
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HCP Dataset: 1) fMRI Data: We used the resting-state data from the
HCP to create functional connectomes. Data with a maximum frame-to-frame
displacement of 0.15 mm or greater were excluded, resulting in a sample of
876 resting-state scans. Analyses were restricted only to the LR phase encod-
ing, which consisted of 1200 individual time points. Additional preprocessing
included regressing 24 motion parameters, regressing the mean white matter,
CSF, and grey matter timeseries, removing the linear trend, and low-pass fil-
tering. For each scan, the average time series within each region was obtained.
2) DTI Data: We used the diffusion tensor data of 1065 subjects to create
structural connectomes. After correcting for susceptibility artifacts, we applied
DSI-studio to reconstruct the diffusion data using generalized q-sampling imag-
ing and create structural connectomes with automatic fiber tracking for the six
parcellations listed above.

HCP-D Dataset: The same procedure as described above was applied to
the DTI data of 636 subjects to calculate structural connectomes.

3.2 Graph Matching Methods

We used three graph matching approaches to estimate the optimal transport:
1) Gromov-Wasserstein Discrepancy(GWD): The optimal transport was
estimated by calculating the Gromov-Wasserstein Discrepancy between each pair
of structural connectomes in HCP dataset. The optimal transports were aver-
aged across all 1065 DTI subjects to get a more robust estimation. 2) Node-
based Mapping using fMRI timeseries data (NBM time): The fMRI
timeseries data of each node were used as node information in Algorithm 4
as in [5]. The optimal transports were averaged across all 876 fMRI subjects.
3) Node-based Mapping using the spectral embedding of structural
connectomes (NBM emb): The spectral embedding of the connectomes were
used as node information in Algorithm 4. The optimal transports were averaged
across all 1065 DTI subjects.

3.3 Evaluating C2C on HCP-D Structural Connectomes

We evaluated the estimation accuracy of our C2C framework on structural con-
nectomes in HCP-D dataset. The Pearson’s correlation between the estimated
connectomes and the “ground-truth” structural connectomes was calculated as
the metric of estimation accuracy. All three approaches achieved significant cor-
relations between different parcellation pairs (Fig. 2; p < 0.05). However, the
accuracy of NBM emb was significantly lower than NBM time and GWD
in all cases, suggesting that the optimal transport learned on node embeddings
of structural connectomes may not be reliable.
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Fig. 2. The correlation between the target structural connectomes and estimated
connectomes using optimal transports learned using three different graph matching
approaches. Error bars are standard deviation of the correlation across all 636 sub-
jects.

3.4 Age Prediction Using Estimated Connectomes

To further evaluated the quality of estimated structural connectomes, we showed
that the predictive models of age built on original target connectomes could
be generalized to connectomes estimated by C2C. In each train/test split, a
ridge regression model was trained using the target connectomes to predict the
age of each subject. This model was then tested on connectomes estimated
using C2C. The whole process was repeated 100 times. Pearson’s correlation
between the true age and predicted age was used as the measurement of pre-
dictive performance. Results showed significant (p < 0.001) prediction accuracy
using estimated connectomes (Fig. 3). Connectomes estimated using GWD and
NBM time retained 75% of the model performance on the original connec-
tomes (the dash line), suggesting useful brain information of the connectomes
were successfully preserved.
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Fig. 3. Prediction results of age based on structural connectomes estimated from our
proposed C2C framework. The bar plots show the Pearson’s correlation r between the
predicted age and true age in testing set as the measure of predictive performance. The
dash line is the predictive performance using original target connectomes. Error bars
are generated through 100 iterations.

4 Discussion and Conclusions

We propose a framework to transform connectomes between different parcela-
tions without needing the raw imaging data. Using graph matching methods,
an optimal transport between nodes is estimated and can be used to map node
information across parcelations. The utility of our method is validated on struc-
tural connectomes in terms of estimation accuracy and downstream predictive
modelling performance.

It is worth noticing that although learned through a data-driven approach,
the optimal transport captures the topology structure of a parcellation and it
is generalizable across datasets and imaging modalities. The optimal transports
estimated by Gromov-Wasserstein discrepancy using structural connectomes and
node-based mapping using fMRI timeseries data achieve consistent performance
on the dataset testing.

Future work includes incorporating parcelations information into graph
matching and evaluating other node embedding methods. Overall, our frame-
work provides a novel tool for transforming connectomes of different imaging
modalities.
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