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Abstract This chapter discusses concerning land use shifting influences to the soil 
microorganisms dynamic, especially in Indonesia where the biggest tropical rain 
forest established. Indonesia is among the region with largest tropical rain forest 
in the world. The country is also rich in plants biodiversity associated with the 
biophysical and the climate conditions forming the tropical rain forest. The high 
of plant diversity of Indonesia forest is illustrated by Malik et al. (Jurnal Ilmiah 
Pendidikan Sains 1:35–42, 2020), in Kalimantan in a hectar of forest can be identified 
more than 150 species. 

Introduction 

Kusmana and Hikmat [1] summarized, despite the fact large of terrestrial region 
of Indonesia is only about 1.3% from total of the earth, 25% of world seed plants 
(spermatophytes) species are distributed in Indonesia. Hence, Indonesia is positioned 
as the 7th world plant biodiversity with about 20,000 numbers of species. Among 
the 20,000 species, 40% are endemic species (origin) of Indonesia. The most abun-
dance family is belong to Orchidaceae that is reached 4,000 species, followed by 
Dipterocarpaceae with 386 species numbers (70% of dipterocarps population in 
the world), Myrtaceae and Moraceae (each 500 species numbers); Ericaceae (737 
species), involved Rhododendron and Naccinium with 287 and 239 species numbers,
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respectively. Malik et al. [2] noticed that Indonesia is the producer of 75% of world 
rattan. 

Malik et al. [2] reviewed forest of Indonesia colonized by the world highest palm 
family (Arecaceae), for instance there is 122 species numbers of bamboo. Kusmana 
and Hikmat [1] also reported that Indonesia has a high diversity of ferns about 
4,000 species numbers, rattan about 332 species numbers involved of big stems of 
Genera Calamus (204 species) and Genera of Daemonorops (86 species). On the other 
hand, Indonesia also noticed as the center of distribution of Vavilov (biodiversity of 
cultivated plants) such as Syzygium aromaticum, Nephelium spp., Musa spp., Durio 
spp., and Myristica fragrans (ref). 

However, along with the increase of population and development, lots of forests 
convert into many land utilization caused a deforestation phenomenon. Referring 
to [3], sometimes deforestation is planned for infrastructure development even it 
gave several negative impacts to the environment. It was reported, forest coverage of 
Indonesia during in 12 years (1985–1997) was drastically reduced from 119 million 
ha to 95 million ha [4]. Several activities such as intensive forest management, 
illegal logging, mining, agriculture, transmigration, forest fire, and land grabbing 
are indicated as the major reason for deforestation and forest degradation [5]. In 
addition, the excessive oilpalm plantation and mining activities in the forest area 
lead to enormously increase of forest vulnerability [4]. 

Plant is a sessile organism hence they need assistance from various microbes 
living around them for reaching nutrients, growth factors, and safeguard against 
pathogens. Plants actively initiate in assembling a favorable environment to invite 
beneficial microbes colonized around their root system. On the other hand, vegetation 
(species, stage of growth, etc.) determine structure and composition of soil microbes 
[6]. Various studies shown that many plant-microbes association have a remarkable 
impact on germination of seeds; vigor of seedlings; plant nutrition; plant disease; as 
well as plant growing, development and yield [7]. 

Berg and Smalla [8] have summarized from earlier studies, essentially every plant 
species requires a set of microorganism communities in its rhizosphere, both to 
support its growth (nutrient availability and growth factors) and its specific health 
(biocontrol and anti-pathogens). Therefore, it is crucial to consider knowledge on the 
plant-rhizosphere community interrelation in developing strategy for soil treatments, 
multi-species cropping, and crop rotations. The characteristic of plant species is vital 
for biological control applications. Moreover, it is also important to recognize the 
existing specific association among plants and microbes in correlation to issues of 
nature conservation. It means that once a plant species distinct, soil rhizosphere 
community will be disturbed. 

Pitman and Jorgensen [9] discovered approximately 22–47% of the world’s plants 
are threatened with extinction. Unknown microbial diversity may be impacted when 
plants become extinct. Improved understanding on specific interactions among plants 
with microorganisms in their rhizosphere is useful for reforestation activities that 
include replanting degraded forests and woodlands with native tree stock. It is also
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reported, the interactions among microorganism and plant are crucial issues influ-
encing the invasive species competition with the indigenous flora. Hence, the influ-
ence of climate-change on interaction among vegetations and microorganisms, i.e. 
on plant diseases, is also urgent to be calculated. 

The activities causing to forest coverage changing is presumed to give many 
alterations to the underground organisms, involved soil microorganisms. Further-
more, this chapter discussing review results on the dynamic and function of forest 
coverage related to development and planning from previous publications (journals, 
IOP proceedings, books, reports, etc.), especially focused on (1) the dynamic of 
soil microbe under forest harvesting/tree cutting; (2) the role of soil microbes to the 
succession of pioneer in the secondary forest, involved to the invasive alien species 
distribution, (3) the alteration of soil microbes population due to land use change 
from natural to monoculture plantation, (4) responsibility of soil microorganisms on 
the mining land and the limitations to reclamation achievement. 

The Dynamic of Soil Microbes Under Forest Harvesting/Tree 
Cutting 

Plants are the initiator in rhizosphere configuration and controlling the composition 
and structure of root-microbial communities by releasing diverse organic compounds 
from photosynthesis [10]. It is estimated at 10–30% of photo-synthate [11], collec-
tively labeled as root exudates [12] released to the root zone, for attracting soil 
microorganism and creating an unique environment known as the rhizosphere [13]. 

The rhizosphere recognized as the confine zone around and impacted by roots, 
is a hotspot for a variety of organisms and is the most dynamic ecosystems [14, 
15]. In the rhizosphere is colonized by nematodes, arthropods, protozoa, algae, 
archaea, bacteria, fungi, oomycetes, and viruses [16, 15]. Most of them compose 
the complexity of food web using the large proportion of nutrients supplied by the 
plant, involved root exudates, border cells, mucilage [7]. The root exudates is a major 
driving force, with functions to attract and deter soil microbes hence the structure, 
size, and array of rhizosphere colonization match with the types, growth, and the 
stage of plant development [17, 7, 6]. Berg and Smalla [8] concluded, the rhizo-
sphere is the important area for plant nutrition, health and productivity. Rhizosphere 
determine nutrient cycling in terrestrial ecosystems and ecosystem functioning. 

Therefore, tree harvesting is perhaps the most harmful to trees since it removes all 
plant portions that operate as photosynthetic patches. This is an important process 
in the manufacturing of root exudates. Kögel-Knabner [18] found a half portion 
of root exudates is released as sugars, the main source of carbon for soil microbes 
[19]. Furthermore, tree felling is thought to influence the rhizosphere’s interaction 
between plants and microbes. 

Earlier studies, on a larger scale, the practice of forest harvesting conducted by 
clear-cutting. It removes in excess of the tree bole, which remarkable decreasing the



54 E. Widyati et al.

total content of soil nitrogen and biomass of microbes (Johnson and Curtis 2001). 
This resulted a niche selecting some sensitive taxa and alter structure of soil commu-
nity [20], which can be considered as an environmental screening [21]. The loss of 
susceptible microbes due to tree harvesting may support the colonization of better-
adapted microbes, it shift the microbial community hence modify the process of 
decomposition [22, 23]. 

Specifically, the reset of soil community is due to forest harvesting contributes 
large amount of soil organic compound into soil. Referring to [24] huge of avail-
able organic C should facilitate copiotrophs microorganisms. Tate [25] divided soil 
microbes into two groups. Copiotrophs microbes group is opportunist, when resource 
conditions are plentiful, they prefer to ingest unstable soil organic C pools, then 
aggressively grow. In contrast, oligotrophic group have slower growth speed and are 
incapable to compete with the copiotrophs in poor nutrient circumstances [25]. 

Study on short rotation coppice monoculture plantation of Callyandra 
callothyrsus in Majalengka District, Indonesia by Widyati et al. [10] found cutting 
decreased the below ground sugars flux by 80% and lead to decrease the soil pH 
rapidly. The depletion of total soil sugar is hypothesized as the strategy for C. 
calothyrsus to survive and regenerate after being cut. Sugar deficiency causes major 
alteration in the size and composition of rhizosphere community. Another survival 
strategy for limiting adjacent competitor populations in the rhizosphere of callyandra 
is to increase soil acidity [10]. 

The Role of Soil Microbes to the Succession of Pioneer 
in the Secondary Forest, Involved to the Invasive Alien 
Species Distribution 

Once forested land opened due to harvesting, fire, or other catastrophes, this is the 
opportunity for a new plant to occupy this new habitat. Vegetation formation in the 
earth is started with seed dispersal and establishment of seedlings in soil. A seed reach 
the new habitat by seed dispersal vectors, such as animals, wind, water, or human 
being. Nelson [26] reported the impact of environment and microbial interactions 
in plant development take place initially in germination and early growth stages. 
The microbiome developing throughout seed sprouting and spreads to seedlings and 
diverse organs of full-grown plants after a long time may contain microbes that 
were picked up along the way [26]. Afterwards, an extensive range of biotic (plant 
traits) and abiotic (soil properties) variables determine the diversity of structure and 
function of the microbial communities in the new rhizosphere assemblage [8]. 

From the seed stage onward, interactions between plants and microorganisms 
have been documented, the interaction is known as seed microbiome [26]. Further-
more, [26] classified seed microbiome into endophytic and epiphytic microbiota. 
Endophytic microbiota are microbes living inside seed tissues and inherited to its 
descendant through progeny process during seedlings development, while epiphytic
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microbiota are microbes inhabiting outside seed and may or may not be adopted 
to inner tissues of seeds and transmitted either vertically to their seedlings or hori-
zontally to other plants [26]. Previous studies reported that seed-associated bacterial 
distinct due to species of plant [27], plant traits [28], stages of seed development [29], 
topographical locations [30], and the existence of plant pathogen [31]. Links et al. 
[27] explained seed endophytic bacteria deliver almost the entire species assemblage 
from where the seed microbiome recruited, it indicated that in some plant species 
the seed endophytic were substantially conserved. The seed endophytic microbiota 
is frequently dissimilar with the soil bacteria colonized the plants rhizosphere [32]. It 
is indicated that, the microbes colonizing the seed is predominantly brought from the 
parent plant environment [26], it carried away from the habitat where the origin of 
the host plants grow [33]. It is not clearly explained, either local site characteristics 
or host genotypes assembly the bacterial seed microbiome [33, 30]. 

Plants have an impact on soil microbial populations; every plant type is presumed 
to form a distinguish rhizosphere communities. Root exudates are the main force to 
carry out the selection process [8]. The type of vegetation determines the confor-
mation of substances released by roots, which determines the relative abundance 
of microorganisms surrounding the roots [34]. To shape their own rhizosphere, 
plants allocate nutrients for the desired microbes, in the contrary it deliver unique 
antimicrobial metabolites to get rid the unwanted microorganisms. 

The interested phenomenon on succession is invasive plant occupation, which 
has remarkable effects on the society of soil microorganisms [35]. The invasive plant 
species generally characterized by their capacity to grow rapidly, hence they will 
immediately replace the origin vegetation composition [36]. In the new ecosystem, 
these exotic plants will change the net primary productivity (NPP) and nutrient 
cycling processes [37]. Because there is an intently link among the plant aboveground 
and belowground subsystems, hence the alteration in species plant dominant in a 
community will simultaneously affect interactions among plants and microorganisms 
in the rhizosphere. Afterward, it determine the nutrient cycle processes [38]. It is due 
to, substances released by plant root facilitate the rhizosphere association, which in 
reciprocate they decompose organic matter to provide nutrients to the plants [39]. 
Zhang et al. [40] found more peculiar fixed carbon released in the rhizosphere of 
Spartina alterniflora Loisel., an invasive species, than it found in the native plants. In 
consequence, the carbon turnover effectiveness at the plant-soil boundary increase 
with the intention of achieving successful invasion. 

Significant modification on the assembly of soil microbial associations, biomass, 
and their activities due to plant infiltrations determine the fundamental ecosystem 
behaviors such as decomposition of soil organic matter and nutrient cycling [41]. 
Stefanowicz et al. [42] convinced that the invader plants change belowground micro-
bial performance significantly only in two growing seasons. The modification of soil 
environment is the effort of the invasive species to construct their proper niche to 
support the growth and successfully conquer the new habitat [42]. 

Stefanowicz et al. [42] summarized, the various alterations due to invasion of 
alien species can be classified into: impact on soil physic-chemicals (nutrients and
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pH), impact on soil communities (soil bacteri and fungy, ectomycorrhiza and endo-
mycorrhizal fungi), impact on microbial activities (enzymatic and respiration). Char-
acteristic of the plant invaders such as crown formation, rooting architecture, or 
chemical content of tissue define the distinction in the reactions of soil to plant inva-
sion [42]. Root exudate is a selection tool in a rhizosphere because a root exudate 
with a certain composition is only suitable for the structure of a particular microbial 
community, otherwise, that composition can be a killing machine for other microbial 
groups [43]. Thus, it can be understood that the introduction of new plant species 
into a habitat, massively, will lead to dramatic reformation of the community of 
underground microbes as consequences of the powerfull reciprocal influence. 

It is widely recognized that invasive plants brought negative impacts to the indige-
nous plant communities, even the invader often completely eliminate native species 
and change the habitat to a monodominant communities [44]. The shift in plant 
composition by exotic plant species interfere the linkage between above-ground 
communities [45], it modify soil chemical properties (pH, N content, N mineral-
ization processes) due to revolution in the structure of microbial communities that 
control the main biogeochemical cycles in the habitat. 

Every exotic species has a unique consequence to the physico-chemical charac-
teristics of the soil in its new habitat [46]. Study on invasive species showed, they 
caused alteration on soil physical attributes, especially the soil porosity, tempera-
ture, water-holding capacity, and moisture [47]. This is due to the changes in the 
vegetation type in the habitat which has different in tissue biomass characteristics, 
rooting depth, leaf area index, and transpiration rate [48]. Modification in soil mois-
ture and root exudate composition result in changes in the rhizospheric microbial 
flora to promotethe further invasiveness [49]. More over, the invasion also influence 
the chemical characteristics of soil due to the shifting of soil organic matter input, 
paterns of cycling of carbon and nitrogen, and soil pH. Invasive species also found 
to release of some allelopathic substances [50, 51, 52]. 

The belowground microbial community strongly determines the invasive capacity 
of exotic plant species [53]. Li et al. [53] reported one of most destructive invasive 
weeds in China, Ageratina adenophora, which formed a single species community 
rapidly. The existence of A. adenophora resulted in shifting of microbial compo-
sition either in the bulk soil or rhizosphere, for example Bradyrhizobium replace 
Aeromicrobium [53], the specific microbes rule in N-cycling processes. Li et al. [53] 
confirmed that A. adenophora change the soil pH of the rhizosphere environment 
to impose homogenous microbial communities. They selected appropriate microbial 
communities in providing their obligations in soils to encourage their invasiveness. 

In Indonesia there are several invasive species incidences that caused alteration on 
the habitat dramatically. In Batukahu National Park, there were 10 identified invasive 
plant species member of 10 genera and five families [54]; which were classified as 
40% herbs, and 30% each shrubs and grasses [54]. 

The most phenomenal invasive species in Indonesia is Vachellia nilotica (L.) P.J.H. 
Hurter & Mabb commonly known as thorny acacia, is notorious for its ability to 
conquer diverse environment, especially grassland (Fig. 4.1.) After being introduced 
for the first time in the 1969, to the Baluran National Park (BNP), Indonesia, the
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Fig. 4.1 Vachellia nilotica in The BNP (a) and  Merremia peltata (b) the most remarkable invasive 
species in Indonesia 

tree currently has invaded wild bull habitat of the national park more than half area 
[55]. BNP is the biggest Bull (Bos sondaicus) in Indonesia with 1500–2000 ha of 
savannah ecosystem [56]. The invasion of V. nilotica threatened the population of 
the bulls due to the invasive species eradicated the bulls feeding plants. 

Another terrific invasive plant in Indonesia is Merremia peltata causing serious 
hazards to the regeneration of indigenous plant [57]. Both the opened areas and the 
bared land, before planting for estate and agriculture, in entire regions of Indonesia 
are susceptible to be invaded by this species [57]. This species has a large underground 
tuber. They climb and cover all over crowns of the woody plants, hence it disturb 
the photosynthesis process [57]. Merremia is classified into a fast-growing plant that 
is regenerate by rooting their nodes, or by resprouting and rooting the broken stem 
fragments [58]. The species dispersal also occurred by seeds that is unconsciously 
carried away by human activities or as a result of soil displacements [59]. Yudaputra 
[57] estimated that currently, M. peltata have influenced or perhaps destroyed the 
habitat of 30.4% of total terrestrial ecosystem of Indonesia. 

Unfortunately, the study on the influents of invasive plant species in Indonesia on 
the microbial population and biogeochemical process in soil is lacking. Due to each 
plant species need a specific collective microbes forming their own microbiome, the 
gaps of the information is inspiration to conduct further studies. 

Alteration of Soil Microbes Population Due to Land Use 
Shifting from Natural Forest to Monoculture Plantation 

In natural forests, the presence of various types of plants growing together in a 
site will complement each other so that nutrient absorption becomes more efficient 
[60]. Multispecies swards have shown a variety of diversity benefits on aboveground 
performance, including yield, nitrogen contents, and even soil-legacy effects on a 
subsequent crop [61]. Diverse plant functional attributes in multispecies vegetations
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resulted in complementarity of resource acquisition [62, 63], such as growing season 
[64], rooting depth [65], and N2 fixation capability [65]. Importantly, [61] explained 
that these plant species diversity beneficial impacts resulted from interactions across 
the plant species and are thus more than merely the comparative contribution of each 
species (their identity effect). 

The large-scale development of monoculture forest plantation will eventually 
replace the ecosystem’s community. Plantation species are typically chosen for their 
highly adaptable traits, which are comparable characteristics to those of invasive 
plants. Monoculture cultivation’s success in an ecosystem has replaced native plant 
dominance with exotic species. Due to changes in the content of plant root rhizode-
position into the rhizosphere, these alien species modify the network between above-
ground and belowground communities in new settings [45]. Because the root exudate 
generated by new plantations has a different composition than the original soil envi-
ronment, it alters the structure and function of the soil community of rhizosphere. 
Consequently, massive planting of new species as monoculture commonly drasti-
cally changes the important characteristic of soil such as pH, component of nitrogen 
and carbon, rate of mineralization and nitrification, and portion of essential elements 
such as potassium (K), calcium (Ca), and magnesium (Mg) (Table 4.1) [66]. 

The biotic and abiotic properties in soil can be modified by plant, and this will 
give impact to other plants that subsequently grow in this ecosystem. In multi-species 
plantation the effect of a plant type to the belowground ecosystem will be very 
complex [69]. It is depend on what it function and abundance in the ecosystem, it is 
also determined by species composition exist in the ecosystem and the characteristics 
of the soil [69]. Previous study carried out by Fox et al. [61] found that soil microbial 
community structures were highly driven by plant species identity. The difference 
physiology of plant species such as structures, differing root biomass, and symbiotic 
N2-fixation induced soil physicochemical change.

Table 4.1 Increase of deforestation from 4 important sectors during 2016–2017 (analyzed from 
[67, 68]) 

Land 
use 
change 

Year (ha) Forest 
conversion 
until 2020 
(%) 

2016 2017 2018 2019 2020 

IPF 10,842,974 11,178,601 11,439,445 11,258,485 11,141,179 9.092 

OPP 11,201,500 12,383,100 14,326,300 14,456,600 14,858,300 12.310 

RP 3,637,300 3,659,100 3,671,100 3,675,900 3,681,300 3.030 

MO 27,316.84 65,047.14 147,825.75 249,005.94 559,218.59 0.463 

IPF: industrial forest plantation 
OPP: oil palm plantation 
RP: rubber plantation 
MO: mining operation 
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Furthermore, poor species diversity on monoculture changes the rhizosphere 
microbial community [70]. Since, soil microbe abundance, composition, and diver-
sity are strongly affected by plant species [71], changes in plant composition from 
multi- to monoculture modify the rhizosphere properties. Intensive monoculture 
activities over a long period lead to nutrient depletion because plants with the same 
growth rate in even-age forests require large amounts of the same nutrients [72]. As a 
result, they will release the same root exudate to invite microbes for helping grow and 
improving fitness. This continuous process will give negative impacts on soil func-
tion and yield sustainability due to different performance of their new rhizosphere 
composition. 

Soil microbes have vital rule in a variety of ecological activities, including organic 
matter decomposition, nitrogen cycling, and plant productivity [73, 74]. The study 
of how different plant species and their configurations, such as forbs, grasses, and 
legumes, regulate their collaborated microbial association is receiving more consid-
eration (e.g., [75, 76]). Within a particular soil type, distinct plant species found to 
assemblage-distinguished configuration of microbial colonization [77]. The diverse 
physiologies and features of different species, such as root architectures and activi-
ties, root productivity and array of rhizodeposition, are fundamental determinants of 
such variations [61] (Fig. 4.2). 

After plants were dead or harvested, these changes in the soil microbiome medi-
ated by plant left as “legacy” and determine the other plant species that grow subse-
quently (plant-soil feedbacks) [78]. The kind of soil-transferred legacy effects varies 
depending on different parameters, such as the prior plant, climate conditions, and 
soil type [79]. Rhizodeposits and litter attributes of plants determine soil microor-
ganism [78]. Legacy effect is strongly defined by the amount and type of transmitted-
persistance residue in the soil when the previous crop is removed [61]. The persistence 
best adapted decomposers to plant residues under the prevailing situations [80] may  
be assisted by the retaining of such plant excess in the soil environment, keeping this 
crucial macronutrient accessible in the habitat. 

These kinds of legacy effects are likely to have wider ecological consequences. 
Plant legacy effects on the microbiome may effect on competition among plants,

Fig. 4.2 Monoculture oil palm plantation (a) and natural forest (b). Source Google images 
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establishment and succession of plant, and the composition of the overlying plants 
[81]. Plants legacy can either negatively or positively effect succeeding plant species. 
Negatively effects occur when there are plant pathogens congregations in the soil and 
positively effect through the build-up of beneficial microbes [78]. So, that why one 
of negative effects of monoculture plantations is the occurrence of soil pathogens 
because its legacy may be the accumulation of pathogens. 

The same species of plant has the same root system so the area of competition 
in the absorption of nutrients and water will be stronger [82]. The root competition 
of the same species of plants occurs three to five times greater than if they compete 
with different species [83]. To conquer the neighboring plants, they will release 
allellochemical, the compounds released frequently have impact either increase the 
growth of soil-borne pathogens or prevent the growth of advantageous microbes 
[84]. Similar plants will release similar allellochemicals, and there will be more 
buildup over time with recurrent plantation. The formation of numerous diseases 
known as replanting disease has been linked to one of the important chemicals in 
the allelopathic system: phenolic acid [85]. The phenolic acid level in soil was 400 
percent higher in a continuous monoculture rye plantation than in a diverse cropping 
system, resulting in a decreased actinomycetes population [86]. Actinomycetes play 
a pivotal role in the rhizosphere, such as preventing plants from various soil-borne 
pathogens [87]. 

Role of Soil Microbes on Mining Land and the Limitations 
to Reclamation Achievement 

Indonesia has the biggest deposit of mineral in the world, such as second position 
for gold and third for nikkel of the global supply (ESDM 2016). Indonesia also 
has 34.8 billion tons of coal deposit (the 8th position) (ESDM 2021). In one hand, 
mining sectors are the enormous source for the country income. On the other hand, 
minning results significant ecological effects such as soil erosion, holes formation, 
and biodiversity loss. Soil and water on ex-mining sites contaminated due to the 
chemicals used in the ore purification processes. Ex-mining sites are characterized by 
poor in macronutrients but rich in heavy metals, acidic soil reaction and inappropriate 
soil texture and moisture. Nikkel, tin, and coal mining are among the harmful to the 
forest area, due to those are operated in opened pit mining (OPM) that remove all of 
soil layers above the ore deposits, included the vegetation. The removal of vegetation 
brings immense consequence to the elimination of the origin soil microbiome, the 
essential actors in soil functioning and biogeochemical cycling. 

The most tremendous consequence of OPM is the incident of acid mine drainage 
that is much more detrimental to the environment. The OPM systems reveal layers of 
rock containing sulfide compounds, expose to atmospheric oxygen hence it undergoes 
oxidation. This oxidation process will cause the previously inert rock to become 
reactive and release very strong sulfuric acid to the environment. Consequently, it
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will quickly acidify the surrounding waters and soil. The study conducted by Widyati 
[88] on ex-coal mining soil in South Sumatera, Indonesia, soil pH may decrease up to 
2.8. This condition may dissolves metals, immobilizes various macro elements hence 
they are not available to plants, which can result in the death of various aquatic biota, 
as well. 

Referring to Akcil and Koldas [89] mining of nickel, gold, and copper, is accom-
panied by acid drainage problems, that is in long-term destruct water bodies and 
life. When sulfide-containing rocks are exposed to oxygen and water, it resulted a 
phenomenon called acid-mine drainage (AMD) [89]; released sulfuric acid solution 
that will be polluted the surface water (rainwater, pond water) and shallow subsur-
face water. Once AMD is happened, extremely acidic water rich in heavy metals will 
be continually formed and transported follow the water movement [89]. The AMD 
phenomenon can be illustrated in the following reactions (Fig. 4.3) [89]: 

(1) 2FeS2 (S)  + 7O2 (g)  + 2H2O (l) →2Fe2+ (aq) + 4SO4 
2−

(aq) + 4H+ 
(aq) 

The initial reaction is the sulfide mineral such as pyrite (FeS2) reacts with 
atmospheric oxygen and in the moist condition will dissolve ferrous (Fe2+) 
ion. The ferrous will be immediately oxidized into ferric (Fe3+) ion (reaction 2). 
AMD formation will be rapider in the region with high rainfall, like in Indonesia. 

(2) 4Fe2+ (aq) + O2 (g)  + 4H+ 
(aq)→4Fe3+ (aq) + 2H2O (l) 

The rate of acid generation is strongly determined by the chemical, biolog-
ical and physical attributes of the rocks and environments. Waste rock dump 
permeability is particularly the important physical factors. High permeability 
of dumping rock facilitates excessive oxygen access, which is contributes to 
rapid chemical reaction rates [89]. The acid environment favor the colonization

Fig. 4.3 AMD is characterized by forming reddish color (a) or torquize (b). The picture taken at 
the ex-coal mining in South Sumatra (a) and at the ex-cement mining land in Sukabumi West Java 
(b)
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of bacteria Acidithiobacillus ferrooxidans and the bacteria will be most favorable 
when the water pH is less than 3.2 [89]. The bacteria is classified as lithotrophs 
(“litho” means “rock”) groups that are getting energy rock weathering. It is also 
classified as chemotroph organisms that get energy from oxidation of inorganic 
compound i.e. FeS2 [90]. Bacteria A. ferrooxidans rapidly release lead and zinc 
from the rocks [90]. Removing soil layers rich in soil organic matter (top soil 
and sub soil) due to mining excavation give advantages to the bacteria group, 
and rapidly colonize in the habitat. 

This reactions undergo either spontaneously or being catalyzed by A. ferroox-
idans. The cathion Fe3+ will oxydize much more pyrite and release more ion 
responsible in acidifying the environment.

(3) FeS2 (S)  + 14Fe3+ (aq) + 8H2O (l) → 15Fe2+ (aq) + 2SO4 
2-

(aq) + 16H+ 
(aq) 

Other problem inherited by mining operation is talling, that can be highly diverse 
in their physic-chemical characteristics, generally is described as sandy or silty 
soil, and toxic peculiarities. Tailings from ore-metal minings are constantly not 
only sulphidic but also rich in residual metals and metalloids (mainly Arsenic) 
[90]. In many places of the world, surface stabilization by revegetation (i.e. 
phytostabilization) is essential to decrease the negative effects of legacy tailings. 
However, phytostabilization of sulphidic-based metal tailings through phytore-
mediation is limited by the tailings’ incapacity to facilitate the growth of vege-
tations [90]. Phytoremediation is a technology employing plant activities to 
absorb and eliminate elemental contaminants or decline their concentration in 
soil [91]. Avoidance and tolerance are two defense schemes employed by plants 
to deal with heavy metals poisonous in soils [92]. It is highly recommended to 
apply phytoremediation in ex-opened pit mining area with unsteady structure 
and high soil erosion, or on tailing of metal extraction [93]. The application 
of phytoremediation needs heavy metal detoxification as precondition process 
[94]. 

Beneficial microbes found in association with plants playing as phytoremediation 
activities. Earlier studies showed alteration in community structure of roots of pioneer 
grown in tailing containing Pb and Zn and improvement on microbial biomass [90]. 
Soil microbes can be engaged to assist in improving ex-mining land, directly or indi-
rectly. Directly, microbial communities help in biogeochemical cycling of tailings. 
In the oxidized layer of neutralized base metal tailings can be colonized by microbial 
with significant biomass. However, the microbial diversity (mainly bacteria) is lower 
than it in the unpolluted soils [93]. The soil microbes population can be improved 
by inoculation. Introduction of sulphate-reducing bacteria inoculum to the ex-coal 
mining soils, have been improved the pH and soil nutrients [88], hence improve the 
seedlings planted as revegetation [95]. The bacteria reduced SO4 

2− into S2 that is 
immobile [88]. 

Indirectly, favorable microbes in the rhizosphere of revegetation plants facilitate 
the revegetation process in a variety of manners. For example, arbuscular mycorrhizas 
acting as a prohibiting barricade for heavy metal uptake by absorption, adsorption, 
or chelation process [96]. (2) Microorganisms promote immobilize the metal ions by
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adsorbing metals to their cell walls, creating chelators, and stimulating precipitation 
processes [97]. They can also help with phytostabilization by increasing root surface 
and depth, as well as acting as a separation barricade to protect shoots from ion 
translocation from roots [98]. (3) Microbes directly stimulate root multiplication, 
promote plant development, increase plant tolerance to heavy metal, and improve 
plant health. 

The group of plant growth-promoting rhizobacteria (PGPR) can be employed in 
ex-mining revegetation because their ability to enhance plant growth and fitness, 
improve plant nutrition, and the most important is their protection to plants from 
heavy metal uptake and translocation [97]. This is performed through producing 
organic acids, enzymes, siderophores, antibiotics, and phytohormones, among other 
chemicals [97]. 

Future Strategies 

As one of most populated country in the world (more than 270 millions), Indonesia, 
will encounter food, energy, and water security in the future. The situation may be 
aggravated by environment destruction and climate change. It is need tight collabo-
ration among all stakes in formulating smart strategies to deal with the challenges, 
included strengthen knowledge on importance of soil microbial to improve land 
productivity, to clean pollution, as well as to enhance land revegetation. 

a. Optimize land utilization in food, water and energy nexus to preserve defor-
estation. 
Cultivation of mixed crops that produce food, bioenergy and species that quickly 
increase water catchment needs to be developed to prevent expansion of defor-
estation and optimize land productivity. In addition, the use of local varieties 
needs to be expanded for restoring biodiversity, also reducing destruction of the 
microbiome due to “strange rhizophere assemblage” by invasive exotic species. 

b. Rhizosphere engineered for environment friendly agriculture. 
Plants rhizosphere can be engineered to produce substances for increasing 
nutrient availability, for defensing from biotic and abiotic pressures, or for 
promoting the growth of beneficial bacteria. Rhizosphere engineering can involve 
inoculation of beneficial microbial populations to the selected plants. Soil amend-
ment can be applied to enhance the fitness of root associated bacterial communi-
ties. Hence, the rhizosphere favor selected bacteria collaborative synergically in 
consortia appropriate for barricading roots from pathogens. Rhizosphere engi-
neering with various activities of PGPR improve the soil aggregation, soil health 
and fertility, hence facilitate plant growth better and increase the productivity. 

c. Ex-mining rehabilitation and revegetation employ beneficial microbes 
The crucial step in ex-mining reclamation process is soil amendment to 
provide favorable environment for revegetation planting. To improve revegetation 
succeed, both organic and inorganic ameliorants can be added to the contaminated
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soil. Inorganic amendment is aimed to modify metal toxicity, reduce heavy metal 
bioavailability through adjustment soil reaction [99]. While, organic amendment 
is intended to increase the organic matter content. Those soil organic improve-
ments add essential nutrients of the soil, improve physic, chemical and biological 
soil attributes, improve water-holding capacity which can benefit plant colo-
nization in ex-mining sites. Earlier study on augmentation the ex-coal mining 
with material consists of raw organic matter, such as paper mills sludge, in a 
huge dosage (50%) successfully depleted the population of bacteria Thiobacillus 
thiooxidans in the ex-mining soil [88], that is recognized as biocatalyzer of AMD. 

Another key method for maximizing the success of ex-mine land revegetation 
is species selection. The selected species should be tolerant to heavy metal envi-
ronments, have a dense roots system and have capability to preserve soil struc-
ture, and prevent soil erosion, [92]. Qualification of selected plants for ex-mining 
revegetation such as fast growing for building large canopy in in a short period 
of time. It will assist land to modify microclimates, rapidly. They also produce 
lots of biomass that can be supplied to soil as organic matter. On the other hand, 
the selected plant should be effortless to cultivate in the field [91, 100]. The most 
familiar pioneer is acacias which have the ability to rehabilitate soils by absorbing 
and storing heavy metals like zinc (Zn), lead (Pb), copper (Cu), cadmium (Cd), 
and chromium (Cr) in their leaves, shoots, and roots [93]. Including microbes in 
ex-mining revegetation activities for example microbes enabling nitrogen fixa-
tion [101] that will improve not only soil remediation, soil amendment, but also 
assist plant to grow better in the severe environment. 
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