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Abstract Heavy metal pollution is a serious threat to human health and the envi-
ronment. It is severely augmented by several industrial activities. The main causes of 
metal pollution include several industrial processes such as metal forging, smelting, 
mining, fossil fuel burning, and the use of sewage sludge on agricultural sites. Toxic 
heavy metals discharged from these sources adversely affect the population of soil 
microorganisms and the physicochemical properties of the soil, reducing soil fertility 
and crop productivity. These heavy metals are not biodegradable and remain in 
the environment. Several conventional methods are used for removal or detoxifi-
cation of heavy metals that have several drawbacks such as high cost, difficult to 
operate and toxic in nature. Therefore, bioremediation techniques have emerged as 
an alternative technique for remediation of heavy metals that have polluted soils. In 
metal-contaminated soil, the natural role of metal-tolerant plant growth-promoting 
rhizobacteria (PGPR) in maintaining soil fertility is fading with increasing use of 
pesticides. In addition to its role in detoxifying or removing toxic metals, rhizobac-
teria also promote plant growth via other mechanisms such as the production of 
growth promoting substances and siderophores. Phytoremediation is another new, 
low-cost in situ technology used to remove toxic pollutants from contaminated 
soil. The efficiency of phytoremediation can be enhanced by heavy-metal tolerant 
PGPR. In this book chapter, the significance of the PGPR for direct application to 
metal contaminated soil under a wide range of agro-ecological conditions has been 
discussed. The chapter also gives insight on re-establishment of metal contaminated 
soils and consequently, promotes crop productivity and their significance in phytore-
mediation. Thus, in the future bioremediation can be an effective technology for 
treatment of metal polluted environments.
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Introduction 

Some heavy metals are essential for living organisms at low concentrations but can 
be harmful at high concentrations [1, 2]. Toxic heavy metals are those which are not 
essential to life and are often toxic at lower concentrations [3]. Heavy metals have 
several physicochemical properties such as ubiquity, toxicity, accumulation, non-
biodegradability and persistence. Due to rapid urbanisation and several industrial 
activities a variety of toxic heavy metals are discharged into the soil environment 
[4, 5]. Heavy metals are constantly released into the environment through several 
human activities like mining, smelting, long-term use of mineral fertilizers, sewage 
sludge, pesticides, fuel and energy use, and wastewater [6, 7]. Most importantly, 
Cr, As, Cd, Ni, Cu, Pb, Co and Zn are commonly found in soil environment [8]. 
Heavy metal pollution has received special attention worldwide due to their negative 
impact on public health and the environment [6]. Heavy metals are accumulated in 
the human body through the food chain [2, 5, 9]. They have detrimental effects on 
various human body organs such as the digestive tract, kidneys, nervous system, skin, 
vascular muscles, and immune system. They can even cause congenital deficiencies 
and cancer [10]. The combined effects of several metals on humans can lead to 
complex stress regimes. Serious complications such as abdominal colitis, bloody 
diarrhoea, and renal failure due to high doses of heavy metals have been observed, 
but low dose exposure may be diagnosed as fatigue, anxiety, and neuropsychiatric 
disorders [11, 12]. Heavy metal soil pollution can reduce soil quality, soil fertility, 
microbial biodiversity, and plant productivity [13]. Accumulation of heavy metals 
in soil is a concern for the agricultural production sector, as increased uptake by 
plants can compromise food quality and quantity [14]. Management of heavy metal 
pollution is an important issue, as agricultural exports are sold internationally on the 
basis of environmental safety and sustainability [15]. 

Several methods have been used to remediate heavy metal-polluted soil and restore 
soil properties [6]. The suitable remediation techniques are selected based on the site 
characteristics, the nature of contaminants, the level of contamination, and the final 
use of the polluted soil. In general, physicochemical methods are widely used to 
remove heavy metals from polluted soil [6]. Traditional methods of heavy metal soil 
clean-up include extraction and immobilization of heavy metals, leading to exca-
vation of land [16]. The conventional physicochemical techniques used to remove 
heavy metals are simple, quick, and effective. However, these techniques are costly, 
consume large amounts of energy, produce toxic by-products, and are not eco-friendly 
[17, 18]. In addition, these methods affect the physicochemical properties of the soil, 
affect the microbial biodiversity and can make the soil unsuitable for agriculture. 

Therefore, to effectively manage heavy metal soil pollution, scientists have devel-
oped alternative biological approaches by using microorganisms [6, 17]. These 
microorganisms have some morphological, physiological, metabolic, and molecular 
characteristics to combat heavy metal toxicity. These properties can be used to remove 
heavy metals from polluted soil [17, 18]. Microbial remediation involves several 
microorganisms such as bacteria, microalgae, yeast and fungi to remove, transform,
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and detoxify heavy metals that remain in the environment [19–21]. Endogenous and 
exogenous microorganisms have several mechanisms to combat heavy metal toxi-
city. Microbial mechanisms such as extracellular or intracellular sequestration, metal 
chelating agent production, precipitation, enzymatic detoxification, and volatilization 
play important roles in bioremediation of heavy metal-polluted soils [20–24]. These 
biological approaches are chosen over physicochemical methods because they are 
simple, easy to implement, widely applicable, reliable, inexpensive, non-destructive, 
and eco-friendly [25]. Biological-based approaches are dependent on the type of 
microorganisms, the ability to resist metals, the degree of pollution, and the physic-
ochemical properties of the soil. However, these limitations can be overcome by 
developing new microbial species that express specific genes of interest [6, 17, 26]. 

Significance of Heavy Metal Tolerance Mechanisms in PGPR 

PGPR are soil bacteria that grow in the rhizosphere of plants and promote plant 
growth through several mechanisms. Plant roots interact with a number of different 
microorganisms, which affect the plant growth as well as soil conditions. Rhizosphere 
bacterial colonization is known to be beneficial to bacteria, but their presence may 
also be useful to plants. PGPR are found beneficial for several agricultural systems 
to enhance crop yield and quality [27, 28]. Heavy metal stress has been reduced by 
PGPR because they have various mechanisms to tolerate and allow the uptake of 
heavy metal ions inside cells. Such mechanisms include (1) metal transport through 
the plasma membrane (2) intracellular metal ion accumulation and sequestration (3) 
heavy metal precipitation (4) detoxification of heavy metals and (5) adsorption or 
desorption of metals as shown in Fig. 18.1 and metal tolerating PGPRs are listed in 
Table 18.1 [29–31].

The minimum inhibitory concentrations (MIC) of Cu, Cr, Ni, and Cd were 186.9± 
29.60, 88.0 ± 12.36, 153.81 ± 34.38, and 130.54 ± 28.21 µg/mL for P. aeruginosa, 
respectively [32]. It was reported that 32 bacterial isolates were obtained from metal-
contaminated soil samples. Among these bacterial isolates, C. oceanosedimentum 
showed high resistance to cadmium (18 mM) [34]. Similarly, Stenotrophomonas 
rhizophila was highly resistant to Cr (VI). This bacterial isolate completely reduced 
50 mg/L Cr (VI) within 48 h [33]. It was found that 27 rhizobacterial isolates were 
tested against Cr (VI). NT 15, NT19, NT20, and NT27 isolates were found to exhibit 
high Cr (VI) resistance in the presence of Cr (VI) at concentrations of 100–200 mg/L 
without loss of PGPR trait [36]. Six strains of rhizobacteria were isolated from heavy 
metal-contaminated soil in abandoned mines. These strains used were multi-tolerant 
to heavy metals and had some plant growth-promoting properties [46]. The PGPR 
have been used as seed inoculants to intentionally metal-treated or modified soils or 
already contaminated soils. The obtained results have shown a significant reduction 
in metal toxicity [47]. The PGPR are known to protect plants from metal toxicity, as 
well as to improve soil fertility and promote plant productivity by providing essential 
nutrients and growth regulators [48–50].
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Fig. 18.1 Possible metal tolerance mechanisms in PGPR [29–31] 

Table 18.1 List of heavy metal tolerating PGPR 

PGPR Metal tolerated Reference 

P. aeruginosa Cu, Cr, Ni, and Cd [32] 

Stenotrophomonas rhizophila Cr (VI) [33] 

C. oceanosedimentum Cd [34] 

P. aeruginosa and B. gladioli Cd [35] 

Pseudomonas sp Cr (VI) [36] 

Bacillus spp Cr [37] 

B. subtilis SJ101 Ni [38] 

B. licheniformis, M. luteus, and  P. fluorescens As [39] 

Pseudomonas Sp, Bacillus Sp, Cupriavidus Sp, and  
Acinetobacter Sp 

Pb, Cd, and Cu [40, 41] 

P. fluorescens Cd and Pb [42] 

Rhizobium sp. RP5 Zn and Ni [43] 

Rhizobacterium sp. D14 As [44] 

Sinorhizobium sp. Pb002 Pb [45]
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Heavy metals adhere to extracellular polymeric substances (EPSs) that are natu-
rally secreted by several bacterial cells, such as proteins, nucleic acids, fatty acids, 
polysaccharides, and humic substances. These EPSs have a very high binding affinity 
for heavy metals such as lead, cadmium and copper. Bacteria such as Staphylo-
coccus aureus, Micrococcus luteus, and Azotobacter spp. have been reported for 
production of exopolymer that show high metal binding affinity [51]. Plant growth is 
promoted by reducing the stress induced by the ethylene-mediated effects on plants 
by producing 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme [52– 
54]. Some microbes have the ability to produce low molecular weight siderophores as 
iron-chelating agents for immobilization of iron. Siderophores also have a binding 
affinity for other toxic heavy metals. Therefore, siderophores have the ability to 
minimize the bioavailability of heavy metals and reduce their metal toxicity. Bacte-
rial metabolites are capable of crystallizing or precipitating heavy metals to reduce 
cellular uptake of heavy metals [55, 56]. 

The advantages of such microorganisms, with their multiple properties of metal 
resistance or reduction and the ability to promote plant growth through various mech-
anisms in metal-contaminated soil, are the most suitable options for bioremediation 
studies. PGPR can impose various indirect impacts on plants such as plant pathogen 
inhibition activity by competing for nutrients and space [57, 58]. In addition to the 
direct and indirect positive effects on biomass production, plant-associated bacteria 
can also contribute to increased metal availability and uptake, and reduced phyto-
toxicity of metals [59]. In recent years, PGPR has been shown to be effective in 
enhancing phytoremediation of petroleum and other pollutants [60, 61]. PGPR inter-
acts with toxic heavy metals in soil, reducing their bioavailability. Energy-dependent 
metal efflux systems such as ATPases and chemiosmotic ion or proton pumps have 
been reported for the uptake of Cr and Cd metallothionein by bacterial cells [55]. 
The mechanism of cytosolic metal sequestration has been previously reported. In 
this mechanism, metallothionein, a low-molecular weight, bacterial cells to detoxify 
heavy metals such as Cd, Cu, Hg, and Ag secrete cysteine rich metal binding protein. 
Methylation of heavy metals by bacterial cells has been reported as an alternative 
mechanism of bacteria [56, 62]. The metal reduction mechanism has been studied in 
several bacteria. For example, detoxification of chromium involves the reduction of 
Cr (VI) to Cr (III) reported previously [63]. 

PGPR has the ability to produce various metal chelating agents, such as 
siderophores and organic acids, in the soil environment. They can acidify the microen-
vironment and induce the changes in redox potential [64, 65]. Due to these inherent 
mechanisms, the rhizosphere bacterium, which promotes plant growth, is a potential 
candidate for soil metal remediation. PGPR can also contribute to the reduction of 
phytotoxicity of metals via biosorption and bioaccumulation mechanisms. Bacte-
rial cells have a very high surface-area-to-volume ratio and may adsorb more heavy 
metals than inorganic soil components either by a metabolism-independent passive 
or by a metabolism-dependent active process [66, 67]. Many authors suggest that the 
bacterial biosorption or bioaccumulation mechanism, along with other plant growth-
promoting properties, including ACC deaminase and plant hormone production, is 
involved in promoting plant growth in metal-contaminated soils [38, 68]. The genes
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encoding heavy metal resistance of microorganisms need to be identified. Several 
molecular techniques have been used to identify metal resistance genes in microor-
ganisms [69]. DNA microarray technique has been adopted as a powerful tool for 
identifying gene regulation under stress heavy metals [70]. The mass spectrometry-
based proteomic techniques have been used to investigate the patterns of proteins 
expression due to intracellular metal accumulation [71]. Whole-genome sequencing 
method has been shown to help identify genes that play an important role in enhancing 
metal accumulation process [72]. Similarly, transcriptomics analysis techniques have 
been used to identify genes responsible for effective metal accumulation processes 
[73]. In addition, bioinformatics and mathematical modelling have been used to 
analyse the microbial metal resistance capability [74]. Therefore, advanced tech-
niques have the potential to improve the metal bioaccumulation processes in the 
future. 

Rhizoremediation of Heavy Metal-Polluted Soil 

Rhizoremediation is the remediation of polluted soil by rhizobacteria observed in 
the rhizosphere of plants. The symbiosis of microorganisms and plants in the plant 
rhizosphere found to be useful as an effective restoration technique. This is a relatively 
novel approach and may provide a practical remedy [75, 76]. PGPR, which promote 
plant growth, are soil bacteria that grow in the rhizosphere of plants and promote plant 
growth through various mechanisms. Plant roots interact with a number of different 
microorganisms, which affect plant growth as well as soil conditions. Rhizosphere 
bacterial colonization is known to be beneficial to bacteria, but their presence may 
also be beneficial to plants [27, 28, 77]. Some PGPR strains have been applied to 
plants that grow in poor soils that are heavily contaminated with heavy metals. Under 
these conditions, uninoculated plants and plants inoculated with the LMR250 strain 
did not grow, while the other five bacterial inoculants restored plant growth. The 
best performing strain, Pseudarthrobacter oxydans LMR291, has been reported as 
an excellent biofertilizer or biostimulant that promotes plant growth in contaminated 
soil [46]. 

In addition, a pot assay was performed to determine if the Curtobacterium 
oceanosedimentum strain could promote Chili growth under cadmium stress. Bacte-
rial colonization significantly increased root and shoot lengths by up to 58% and 60%, 
respectively, compared to controls. After inoculation with the cadmium-resistant 
strain, the plants gained both fresh and dry weight. In both the control and inocu-
lated plants, cadmium accumulates more in the roots than in shoots, indicating that 
Chili stabilizes Cd levels. In addition to improving plant properties, Cd-resistant 
strains have also been shown to increase the amount of total plant chlorophyll, 
total phenol, proline, and ascorbic acid. The PGPR inoculants protect the plants 
from adverse effects of cadmium [34]. Inoculations of P. aeruginosa and B. gladioli 
showed improvements in root length, shoot length, and photosynthetic pigments.
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Levels of protein-bound and non-protein bound thiols were also increased in Cd-
treated seedlings. Therefore, microorganisms have growth promoting properties that 
allow them to reduce the metal toxicity in plants [35]. 

The PGPR NT27 isolate was a strain of the genus Pseudomonas. In the presence of 
Cr (VI), the shoot and root dry weights of M. sativa was increased by 97.6 and 95.4%, 
respectively, compared to uninoculated control plants. Chlorophyll content has also 
increased significantly, and the stress markers, hydrogen peroxide, malondialdehyde, 
and proline have decreased. Thus, chromium-tolerant Pseudomonas sp had a positive 
effect on shoots and roots of M. sativa plants by reducing chromium toxicity [36]. Six 
Cr-tolerant PGPR strains were isolated and identified as Bacillus spp. The consortium 
of Cr-tolerant strains was used for the inoculation in combination with Biochar. The 
highest increase in shoot and root length was (22–23.4%) and the highest increase in 
chlorophyll and SOD was (28–40%). Similarly, proline and sugar levels improved 
to 20.5% and 9.6%, respectively. A significant reduction in Cr uptake was recorded 
in the dry biomass of wheat plants, with Cr concentrations of 0.28 ± 1.01 mg/kg 
compared to controls. Therefore, according to the results, PGPR and biochar are an 
important tools for protecting plants from chromium toxicity and can be used as 
inoculum for better crop production [37]. Nearly 180 Cr (VI) resistant PGPRs were 
isolated, and after screening, 10 efficient bacteria that could function under Cr (VI) 
stress conditions were selected. Wheat seeds (Triticum aestivum L.) were inoculated 
with selected bacterial isolates and sown in Cr (VI) contaminated (20 mg/kg) pots. 
The results showed that Cr (VI) contaminated soil significantly suppressed plant 
growth and development. However, inoculation significantly improved plant growth 
parameters compared to uninoculated plants. In inoculated pots, soil Cr (VI) levels 
were reduced by up to 62%. Cr (VI) levels were up to 36% lower in roots and up to 
60% lower in shoots than uninoculated plants grown in contaminated pots [78]. 

The effects of PGPR, which stimulates plant growth under stress, are considered 
an effective strategy. It has been studied that plant grown in heavy metals polluted 
areas in the presence of PGPR were able to accumulate significant amounts of heavy 
metals in some plant parts than plants grown in soils without microbial flora [79]. 
The IAA-producing strain B. subtilis SJ101 promoted the growth of Brassica juncea 
in Ni-contaminated soil [38]. Similarly, Zn, Cu, Ni, and Co tolerant IAA producing 
strains were found to promote rapid root growth of B. juncea in soil contaminated 
with Cd [53]. Pinter et al. [39] found that siderophore production, phosphate solubi-
lization, and nitrogen fixation activity of As-resistant B. licheniformis, M. luteus, and 
P. fluorescens increase the biomass of grapevine in the presence of high As concen-
trations. Environmental adaptability of Cd, Pb, and Cu resistant bacterial strains 
obtained from rhizospheric soil of Boehmeria nivea growing around mine refineries 
[80]. Scientists revealed rhizosphere bacteria of the genera Pseudomonas, Bacillus, 
Cupriavidus, and Acinetobacter are resistant to Pb, Cd, and Cu. A wide range of 
plant growth promoting properties of rhizobia including nitrogen fixation, solubi-
lization of insoluble minerals such as phosphate, phytohormones and siderophores 
production, ACC deaminase synthesis, and volatile compounds such as acetoin and 
2, 3-butanediol. Thus, rhizobia are found to be good candidates for detoxification of 
heavy metals [40, 41].
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Of the 58 PGPR isolates, 8 bacterial strains were screened for multiple heavy 
metal tolerance, salt tolerance, indole-3-acetic acid, phosphate solubilization, and 
siderophore production, and finally the WW-40 strain was selected as a potent PGPR. 
Applying this strain under greenhouse conditions, the highest 52% of seed germi-
nation, 1078% of vigour index, 68.57% of shoot length, 71% root length, 44.44% 
of shoot fresh weight, 50% of root fresh weight, 52.38% of shoot biomass, and 
66.66% of root biomass increased significantly compared to heavy metal treatment 
maize seedlings. Chlorophyll content increased by 68.75% in the consortium with Zn 
compared to the Zn inoculated pot. Similarly, the carotenoid content of Zn consor-
tium pot increased by 57.89% and the xanthophylls content of the Zn consortium pot 
increased by 65.62% compared to other metal treatment pots. Therefore, the heavy 
metal resistant isolates that stand out in this study may be PGPR strains for both biore-
mediation and crop growth promotion [81]. The use of PGPR supports plant growth 
in contaminated soil, and urea-degrading bacteria can immobilize heavy metals by 
carbonate precipitation process. Therefore, dual treatment with such bacteria may 
be useful for plant growth and bioremediation in polluted soil. Pot experiments 
were carried out to grow radish plants in soil contaminated with Cd and Pb treated 
with PGPR P. fluorescens, and the results were compared with dual inoculation of 
P. fluorescens in combination with ureolytic S. epidermidis HJ2. The removal rate 
of Cd and Pb from the soil was 17% with PGPR alone, and more than 83% was 
reported with combined treatment [42]. Table 18.2 shows the importance of PGPR 
in phytoremediation of heavy metal contaminated soil. 

Table 18.2 PGPR-assisted phytoremediation of heavy metal contaminated soil 

PGPR Plant/s Heavy 
metal/s 

Impact on plant Reference 

B. licheniformis, M. 
luteus, and  P. 
fluorescens 

Grapevine Pb, Cd, 
and Cu 

Increased the biomass of 
grapevine 

[80] 

B. subtilis SJ101 B. juncea Ni Promoted the growth of 
plant 

[38] 

Pseudomonas Sp M. sativa Cr (VI) Increased shoot and root 
length, chlorophyll 
content enhanced 

[36] 

Bacillus Sp with 
biochar 

Wheat plant Cr Increased shoot and root 
length, chlorophyll 
content enhanced 

[37] 

C. 
oceanosedimentum 

Chili Cd Significantly increased 
root and shoot lengths 

[34]

(continued)
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Table 18.2 (continued)

PGPR Plant/s Heavy
metal/s

Impact on plant Reference

B. licheniformis, M. 
luteus, P. fluorescens 

Vitis vinifera As M. luteus increased plant 
biomass, protein content, 
and POX activity 
B. licheniformis 
increased plant biomass 
and APX 
P. fluorescens augmented 
POX activity 

[39] 

Bacillus megaterium B. campestris and 
B. rapa 

Cd Inoculation increased 
biomass, soluble 
proteins, and vitamin C 
content 

[82] 

B. safensis and P. 
fluorescens 

Helianthus annuus Zn and 
Pb 

Inoculation reduced Zn 
and Pb uptake by plant 
tissues 

[83] 

Klebsiella oxytoca H. annuus Co, Pb, 
and Zn 

Inoculation enhanced 
plant growth 

[84] 

Klebsiella sp. Vigna radiata Cd, Cu, 
and Pb 

Inoculation promoted 
plant growth under HM 
stress 

[85] 

Kocuria flava and B. 
vietnamensis 

Oryza sativa As Inoculation promoted 
plant growth (shoot and 
root length and weight) 

[86] 

Possible Rhizobacterial Strategies for Heavy Metals 
Bioremediation 

Rhizobacterial Biosorption of Heavy Metals 

Biosorption is a new biological technique that has been employed for the last 20 years. 
It is an inexpensive approach to remove heavy metals from polluted environments 
[87]. Biosorption is based on the ionic interactions between the extracellular surface 
of living cells or dead biomass with metal ions. Therefore, most of the pollu-
tants adhere on the cell surfaces instead of being oxidised by aerobic or anaer-
obic metabolism. Biosorption is considered as an effective technique for removal 
of various heavy metals from aqueous solutions [88, 89]. Researchers have shown 
that charged functional groups act as nucleation sites for the biosorption of various 
metal-containing precipitates. There are three mechanisms reported by which heavy 
metals can be adsorbed from contaminated environment: (1) Adsorption on the bacte-
rial cell surfaces (2) Additional surface complexation and precipitation of actinides 
and (3) Precipitation of actinides with bacterial cell lysates [90]. In microorganisms, 
heavy metals are accumulated through adsorption or absorption processes reported



358 S. Patil et al.

previously [91–93]. Adsorption is the main mechanism of heavy metal accumulation 
observed in several microorganisms. Adsorption is an energy-independent process 
that occurs in both living and non-living bacterial cells. However, absorption is an 
energy-dependent process that occurs in living bacterial cells [94]. Bacterial cell walls 
have some specific functional groups such as carboxyl, amine, phosphonate, and 
hydroxyl groups [95]. These functional groups are involved in metal binding on the 
cell surfaces [96]. Anionic carboxyl and phosphate groups contribute to overall nega-
tive charge on microbial cell walls. Almost all heavy metals are positively charged 
and easily interact with cell walls. Therefore, metal ions bind or accumulate inside 
the cell via cell membrane [97]. Thus, the success of the metal adsorption process 
depends on the diverse structure of the bacterial cell wall. Gram-positive bacterial cell 
wall consists of a thick layer of peptidoglycan, which has high adsorption capacity 
[98, 99]. Gram-positive bacteria have the ability to remove heavy metal cations due 
to their electronegative charges due to the presence of teichoic and teichuronic acids 
in the cell wall. Thus, metal binding mechanism depends on the chemical nature of 
cell biomass and ionic strength of metal ions [100, 101] (Fig. 18.2). 

Uptake of Cd (II) by biomass of Sphingomonas paucimobilis has been reported 
earlier. The ability of living cells to remove Cd (II) was found to be significantly 
higher than that of dead cells [104]. Another study also reported that live cells of 
Enterobacter cloacae TU cells were superior in removing Cd (II) compared to dead 
cells [105]. Huang et al. [106] studied those dead cells have been shown to have 
higher Cd (II) biosorption capacity than live cells [106]. It has also been shown that 
live and dead biomass of P. plecoglossicida have approximately the same Cd (II) 
biosorption capacity [107]. 

However, being biosorbent, little research has been carried out on live and dead 
cells of PGPR. The use of live or dead biomass to remove heavy metals continues

Fig. 18.2 Biosorption of heavy metals on bacterial cell surface [90, 102, 103] 
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to be debated. Therefore, living and non-living biomass of C. necator GX_5, Sphin-
gomonas sp. GX_15, and Curtobacterium sp. GX_31 have been used as biosor-
bents to compare their Cd (II) adsorption capacities [108]. Dead cells showed higher 
adsorption capacity than the live cells of Curtobacterium sp. GX_31. However, in 
the case of C. necator GX_5 and Sphingomonas sp. GX_15, the loading capacity of 
non-living biomass was stronger when compared with living biomass at 20 mg/L of 
Cd (II). After autoclaving, slight changes in the spectrum were observed, and FTIR 
analysis showed that more functional groups of the dead biosorbents were involved 
in Cd (II) binding. FTIR study also revealed that functional groups such as hydroxyl, 
amino, amide, and carboxyl groups played a vital role in complexation with Cd (II). 
Thus, it was concluded that dead cells are more effective biosorbents for Cd (II) 
remediation [108]. In another study, 10 different PGPRs were isolated, and identi-
fied as Arthrobacter globiformis, B. megaterium, B. cereus, B. pumilus, S. lentus, E. 
asburiae, S. paucimobilis, Pantoea spp., Rhizobium rhizogenes, and R. radiobacter. 
These isolates were tested for their arsenic biosorption capability. It was observed 
that all rhizobacteria showed arsenic biosorption capability. However, S. paucimo-
bilis showed the highest biosorption capacity for arsenic (146.4 ± 23.4 mg/g dry cell 
weight) [109]. 

Therefore, PGPR not only promotes plant growth, but are also promising biosor-
bents for removing heavy metals from the environment. However, there is still 
some debate about the biosorption and bioaccumulation processes, and their role 
in cadmium adsorption. Therefore, cadmium biosorption and bioaccumulation study 
was carried out by using three different Cd (II)-resistant PGPR such as C. necator 
GX_5, Sphingomonas sp. GX_15, and Curtobacterium sp. GX_31. The study found 
that the highest Cd (II) removal efficiency values for GX_5, GX_15, and GX_31 were 
25.05%, 53.88%, and 86.06%, respectively at 20 mg/L of Cd (II) [110]. Recently, 
several microorganisms are genetically modified to improve the metal sorption 
capacity [111, 112]. Bacteria such as S. xylosus and S. carnosus are transgenic strains 
that express two different polyhistidyl peptides (His3-Glu-His3 and His6) reported 
earlier [113]. Similarly, E. coli and P. putida strains have been employed for phos-
phate biosorption through phosphate-binding protein [114]. E. coli was genetically 
modified to express the Ni21 transport system and at the same time overexpress pea 
MT as a carboxyl-terminal fusion with glutathione S-transferase (GSTMT). This 
change improved the Ni21-accumulating capacity of E. coli [115]. 

Bioaccumulation of Heavy Metals by Rhizobacteria 

Uptake of heavy metals by microorganisms occurs in two main stages: (i) 
metabolism-independent; and (ii) metabolism-dependent [90]. In the first stage, metal 
binding takes place on the cell surface via various mechanisms such as adsorption, 
precipitation, complexation, ion-exchange, and crystallization [116]. In the second 
stage, the metal uptake in microorganisms occurs through bioaccumulation process. 
Heavy metal ions are adsorbed on the cell surface and slowly enter the cytoplasm of
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the cell. Therefore, the metal species remain immobilized within the cell cytoplasm 
of the cell. This process is also known as metal sequestration [69]. This process is 
slow and dependent on several factors such as metabolic energy, temperature and 
metabolic inhibitors [90]. 

Bioaccumulation process in which microorganisms use importer complexes to 
take up heavy metals into the intracellular space via translocation pathways through 
the lipid bilayer. Once heavy metals enter cells, they can be sequestrated by several 
proteins and peptide ligands [69]. Bacteria synthesize metal-binding proteins such 
as metallothionein (MT) after exposure to high concentrations of metals to enhance 
their metal-binding capacity [117]. Therefore, MTs have metal-binding capacity and 
are encoded by genes expressed in a diverse group of rhizobacteria to facilitate the 
accumulation of heavy metals [118]. Recombinant expression of inner membrane 
importers from three major transporter classes: (i) channels, (ii) secondary carriers, 
and (iii) primary active transporters are studied well to enhance heavy metal bioac-
cumulation by increasing cytoplasmic uptake from the periplasmic membrane [119] 
as shown in Fig. 18.3. 

Microorganisms employed for metal bioaccumulation must be metal tolerant to 
one or more metal contaminants at high concentrations. They also should have the 
metal biotransformational potential to convert toxic heavy metals into non-toxic

Fig. 18.3 Bioaccumulation of heavy metals by bacterial cell [90, 119] 
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forms [120, 121]. Thus, PGPRs not only promote plant growth but also found to be 
promising agents for heavy metal remediation. Li et al. [110] isolated three cadmium-
resistant PGPR namely Cupriavidus necator GX_5, Sphingomonas sp. GX_15, and 
Curtobacterium sp. GX_31 and used for bioaccumulation study under different Cd 
(II) concentrations. The study revealed that bioaccumulation was dominant in C. 
necator GX_5 and metal uptake was about 50.66–60.38%. The bioaccumulation 
study was also evidenced by different techniques such as SEM–EDX, TEM and FTIR 
spectroscopy. Further bioaccumulation study showed that heavy metals (cadmium 
and zinc) were mostly adhered on the cell wall instead of accumulating inside the 
cells [122]. In case of rhizobacteria, heavy metals in soluble and complex form 
are accumulated by live bacterial cells [123]. Studies on bioaccumulation of heavy 
metals by PGPR are very less reported and thus there is scope to carry out research 
in future. 

Rhizobacterial Exopolysaccharides (EPS) for Heavy Metal 
Remediation 

EPS is a complex mixture of high molecular weight biopolymer metabolites produced 
by several microorganisms that protects against harsh environmental conditions. 
Rhizobacterial EPS has high metal binding capability which composed of polysac-
charides, proteins, uronic acid, humic substances, lipids nucleic acid, and glycopro-
teins. Alginate (EPS) obtained from Azotobacter shows a strong metal binding capa-
bility. This property of EPS helps in remediation of toxic heavy metals by creating a 
microenvironment of essential metal ions to maintain the health of soil ecosystem and 
promotes plant growth [124–127]. EPS can assist in biofilm formation that protect 
cells in adverse conditions and helping plants by absorbing more water and nutri-
ents [128]. Biofilms have been employed in bioremediation processes because of 
their inherent ability to thrive in harsh environments. Bacterial biofilms are highly 
dense biomass embedded in EPS used for metal remediation via biosorption and 
bioaccumulation processes [129]. EPS of bacterial biofilm have high metal binding 
affinity. EPS form organometal complexes via electrostatic forces of attraction [129]. 
Thus, heavy metals are immobilised by bacterial biofilms via EPS and cell membrane 
components due to their high affinity towards heavy metals [130]. The ionic charges 
on the EPS of biofilm are due to several functional groups such as carboxyl, amino, 
phenol, phosphate, and sulfhydryl groups. These functional groups are responsible 
net negative charges on the EPS surface that assist the formation of organometallic 
complexes with heavy metals [129, 130]. Three-dimensional excitation-emission 
matrix (EEM) fluorescence spectroscopy was used to study the interaction of EPS of 
biofilm and Hg (II). In this study, EPS of biofilm is a class of organic ligands that are 
important for complexing with Hg (II) and have profound effects on chemical forms, 
mobility, bioavailability, and ecotoxicity of heavy metals in the aquatic environment 
[130]. Thus, EPS could be an effective biosorbent for heavy metals. EPS obtained
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from rhizobacteria exhibited strong heavy metal binding capacity, removing precip-
itated metal sulfides and oxides, leading to formation of EPS-metal complexes and 
thus, promoting remediation of heavy metals [131]. Carboxyl and phosphate groups 
of EPS produced by P. putida have been reported for adsorption of Cd2+ [132]. EPS of 
A. chroococcum strain XU1 exhibited biosorption capacity about 33.5 and 38.9 mg/g 
for lead and mercury, respectively [126]. 

It has been also reported that biofilm-grown cells have showed high resistance 
to heavy metals. Further study revealed that Pseudomonas biofilms was developed 
in presence of lead and zinc. However, there was no direct evidence provided by 
authors to prove the metal resistance potential of biofilms [133]. The nitrogen-fixing 
species Sinorhizobium meliloti has the ability to synthesize two different symbiosis-
promoting EPSs: (1) succinoglycan and (2) galactoglucan. These EPSs have been 
studied to play important roles in plant development and protection from environ-
mental stress. Researchers evaluated the role of EPS in bacterial resistance to heavy 
metals and metalloids, which are known to affect various biological processes. A 
recent study showed that EPS is essential for protecting bacteria from the toxicity 
of Hg (II) and As (III) stress. Biofilm formation has also been observed in the pres-
ence of heavy metals. Therefore, it was finally concluded that bacterial strain, which 
produces EPS have higher metal resistance ability compared to non-EPS bacterial 
strain [134]. PGPR such as Pseudomonas sp. H13 and Brevundomonas sp. H16 were 
reported for their ability to form biofilm and adsorbing heavy metals including Cu2+, 
Zn2+, Cd2+, and Pb2+. It has been observed that C–OH and P=O groups related to 
polysaccharides showed a significant role in heavy metal adsorption and immobiliza-
tion [135]. A biofilm forming cadmium tolerant PGPR, Aeromonas sp enhanced the 
root length and shoot height of augmented plant by 21.4 and 17.36%, respectively, as 
compared to the non-augmented plants. It was also noticed that bioaugmentation of 
Aeromonas sp. in the rhizosphere of Vetiveria zizanioides increased cadmium uptake 
by 67.7% in the soil treated with 15 mg/kg of Cd [136]. 

Rhizobacterial Biosurfactant Mediated Heavy Metal 
Remediation 

Biosurfactant-mediated metal remediation from metal-polluted soils is considered a 
promising environmental green technology [137]. Biosurfactants are surface-active 
molecules that reduce the surface tension between liquid and liquid or liquid and solid 
[138]. Several microorganisms such as bacteria, yeast, and fungi have been reported to 
be capable of producing biosurfactants. These biosurfactants are commonly used for 
remediation of heavy metals such as cadmium, lead and zinc [139]. Several bacte-
rial isolates within the genus Pseudomonas, Bacillus, Micrococcus, Arthrobacter, 
and Rahnella have been reported as potent producers of biosurfactants [140]. Endo-
phytic Rahnella sp. JN6 significantly enhanced the phytoremediation efficacy in



18 Heavy Metals Pollution and Role of Soil PGPR: A Mitigation Approach 363

cadmium, lead and zinc contaminated soil [141]. Rhizobacteria produce biosurfac-
tants that not only contribute to metal bioavailability but also promote plant growth. 
Biosurfactants are composed of polysaccharides, proteins, lipoproteins, lipopolysac-
charides, or complex mixtures. Many species of Acinetobacter have produced high-
molecular weight emulsifiers [77, 138]. However, rhamnolipids are the major class 
of biosurfactants produced by P. aeruginosa and other several microorganisms [139]. 

A potential of biosurfactant producing the endophytic Pseudomonas sp. Lk9 was 
tested for cadmium uptake and growth promotion of Solanum nigrum L. Researcher 
has found that Solanum nigrum L inoculated by Pseudomonas sp. Lk9 increases the 
cadmium availability, increases shoot dry biomass by 14% and total Cd accumu-
lated in the shoot by 46.6% mg/kg [142]. Similarly, Miscanthus sinensis inoculation 
with the biosurfactant-producing multimetal-tolerant endophytic P. koreensis AGB-1 
improved plant biomass by 54% and also increased metals content in roots and shoots 
[143]. Further study has been performed on the metal speciation by biosurfactant-
producing B. subtilis, P. aeruginosa, and P. fluorescence. This study showed that P. 
aeruginosa strain has high metal exchangeable fraction concentrations compared to 
other strains [144]. 

Conclusion 

Restoring soil contaminated with toxic metals is a major challenge. Several physico-
chemical methods are available for treating metal-contaminated soil. These methods 
have several disadvantages. Therefore, searching an alternative method is of high 
priority. A biological approach that fascinates many scientists because it has many 
advantages over traditional methods. Microbial remediation of heavy metal-polluted 
environment has emerged as an efficient green technology. There are several reports 
available on bioremediation of heavy metal-polluted soil by PGPR. 

It has been investigated that PGPR is a promising agent for remediation of heavy 
metal-contaminated soils. There are various strategies like biosorption, bioaccumula-
tion, EPS-assisted, bioleaching, biosurfactant-assisted, and biofilm-based techniques 
that have been used for restoration purposes. In the future, further research is needed 
to improve the bioremediation process with PGPR. Heavy metal tolerance in PGPR 
needs to be understood in detail, and genes responsible for metal tolerance need to 
be thoroughly studied in the future. Since the bioaccumulation of heavy metals by 
PGPR has not been sufficiently studied, it is very important to carry out the research 
work in detail. In order to develop efficient green technology in the future, it is neces-
sary to study the interaction between PGPR and heavy metals at the molecular level. 
PGPR-metal interactions need to be study at molecular level in order to develop 
efficient green technology in future. Further genetic modification in PGPR is of high 
importance to improve efficacy of bioremediation process. Another genetic manipu-
lation in PGPR is very important for improving the efficiency of the bioremediation 
process.
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