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Abstract Global climate change, environmental stresses, intensification of crop-
ping practices, changed precipitation cycles, depleted water resources and reduction 
in soil fertility are the major constraints limiting crop productivity. Among various 
environmental (abiotic) stresses, soil salinity is one of the serious climate change 
impact, which affects about 20 and 33% of the total cultivated and irrigated agri-
cultural lands, respectively. In recent years, soil salinization of agricultural land, 
along with water and environmental pollution; have emerged as significant threats to 
worldwide food security and agricultural sustainability. Salt stress results from exces-
sive accumulation of salts in the soil that significantly affects soil fertility, stability, 
biodiversity, and consequently affects crop productivity. These problems necessi-
tated the search of sustainable and eco-friendly agri-technologies to ameliorate the 
adverse effects of salt stress on plant growth and crop yield. In this context, some 
microorganisms inhabiting either the plant rhizosphere in extreme environments, or 
within halophytic plant roots, also possessing other plant growth-promoting traits, 
showed enormous potential in enhancing the adaptation ability of stressed plants to 
salinity stress conditions. These plant-associated beneficial microbes play key role in 
salt stress mitigation by producing osmoprotectants, antioxidants, ACC deaminase 
enzyme, hormones, exopolysaccharides, organic acids, nitric oxide and siderophores 
along with increased nutrient availability. Subsequent inoculations of crop plants with 
such salt–tolerant plant growth–promoting bacteria (PGPB) were found to increase 
the plant growth and crop yield of different plants grown in saline soils. This review 
briefly summarizes the different biochemical and molecular mechanisms employed 
by rhizospheric microbial communities for alleviation of salinity stress. Further, in-
depth knowledge related to beneficial interactions of salt-tolerant microbes with the 
native crop plants is needed to facilitate plant growth and crop productivity under 
saline agro-ecosystems.
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Introduction 

Increasing crop production to fulfill world food demand is a key agricultural challenge 
for sustaining 70% of food sources in order to feed 9 billion people by 2050 [1]. 
Changing agro-climatic factors, using integrated management techniques, as well as 
current intensive cropping systems are the limiting constraints for increasing crop 
yield in agricultural systems [2, 3]. Climate change, declining water sources, soil 
salinization, water pollution and limited availability of cultivated land are the other 
major constraints to twenty-first century agriculture [4–7]. Moreover, crop yield is 
hampered by high winds, dryness, soil salinity, high temperatures, and flooding. 
Among all these constraints, soil salinity is a worst environmental stress that reduces 
area of productive land, plant growth, crop yield as well as quality of agri-produce 
[8–10]. In addition, farmers use excessive amount of nitrogenous and phosphatic 
fertilizers in intensive farming system for increasing food production [11, 12]. The 
injudicious use of chemical fertilizers in modern agriculture has further degraded 
soil and water quality, rendering soils biologically inert and often excessively saline, 
and it has even polluted surface and ground water [13]. It is estimated that between 
20 and 33% of the world’s agricultural lands have been damaged as a result of soil 
salinity, which has led to losses of $27.3 billion worldwide [3, 14]. 

Due to increasing problem of soil salinity, alternative strategies are needed to 
sustain agriculture production in salt-stressed soil and to increase crop yield in an 
eco-friendly and sustainable manner [15, 16]. The major strategies include plant 
genetic engineering, conventional breeding, and the use of salt-tolerant plant growth 
promoting rhizobacteria (ST-PGPR) as bio-inoculants in order to alleviate delete-
rious effects of high salt stress on plant growth and development [17–19]. In addi-
tion, increased salinity levels have also been reported to adversely affect microbial 
population and their plant-growth-promoting (PGP) properties [20]. These observa-
tions suggested the isolation and utilization of salt-tolerant plant-growth-promoting 
bacteria (PGPR) to protect crops from salinization and climate change. Therefore, 
different laboratories worldwide are currently involved in screening of salt-tolerant 
microorganisms obtained from different habitats and agroclimatic zones, and from 
various plant parts and regions i.e., phyllosphere, rhizosphere, and endorhizosphere, 
for their tolerance to high salt concentrations to cope up with high soil salinity 
levels. These halo-tolerant microorganisms are subsequently tested for mitigation 
of salinity stress on plants, for increasing nutrient uptake [21] and to enhance plant 
growth [22, 23]. Thus, application of selected salt-tolerant microbes in the form of 
bio-enhancers/bioprotectants may lead to increased survivability of crop plants under 
extreme saline conditions through alteration in various physiological, biochemical, 
and molecular pathways, resulting in enhancement of crop productivity [24–26]. 

Several microorganisms belonging to different genera, such as Azotobacter, 
Azospirillum, Bacillus, Burkholderia, Enterobacter, Enterococcus, Pantoea, Paeni-
bacillus, Pseudomonas, Rhizobium, Serratia, Stenotrophomonas and Variovorax
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have been found to induce stress tolerance in different crops and positively influ-
ence plant growth under adverse saline conditions [19, 26–30]. For instance, salt-
tolerant indigenous species of Pseudomonas, Agrobacterium, Klebsiella, Bacillus, 
and Ochrobactrum isolated from the halophytic plant, Arthrocnemum indicum, 
showed tolerance to 4–8% NaCl and improved productivity of groundnut in saline 
soil over uninoculated control plants [31]. Many salt-tolerant strains of Bacillus also 
possessed other plant growth promoting (PGP) traits along with high tolerance to 
excess of salt (4% NaCl) [32]. Some of the bacterial isolates showed salt tolerance 
even upto 10% NaCl along with excellent PGP attributes including solubilization 
of P, K and Zn, and production of indole-3-acetic acid (IAA), cell wall degrading 
enzymes, exopolysaccharides, biofilm, antibiotics, and siderophores [33–35]. 

Salt-tolerant bacteria employ several direct and indirect mechanisms to survive 
and proliferate under salt-stressed conditions in soil, and subsequently contribute 
towards amelioration of salt stress and stimulation of plant growth resulting into 
increased crop yield. Some of these salt-tolerant bacteria are currently being devel-
oped as biofertilizers; as a cost-effective environmental-friendly agri-technology to 
increase food production [36–39]. This chapter summarizes the characterization of 
salt-tolerant microbes and discusses various mechanisms involved in amelioration of 
salt stress. The use of salt-tolerant PGPR as bio-inoculants to improve crop production 
under salt stress conditions is also documented. Information provided in this chapter 
will help in understanding of plant-microbe interactions under saline environments 
to improve saline soil-based agriculture. 

Climate Change and Soil Salinization 

Agriculture is the most vulnerable sector that is often exposed to plethora of climate 
changes. Global warming, changes in precipitation patterns and recent abrupt changes 
in climatic conditions has increased incidence of abiotic and biotic stresses [6, 40]. 
The exposure of plants to stressed environments has been accounted for as major 
cause for stagnation of productivity in agriculture and horticulture crops [40, 41]. 
Recent climate changes accompanied by altered precipitation cycles and depleted 
water resources are further expected to exacerbate crop stresses [42]. Several abiotic 
stresses such as extreme temperatures (heat stress, cold and frost), drought, flooding, 
soil salinity and nutrient stress have been found to adversely affect crop cultivation, 
plant development and production of cereal as well as legume crops under field 
conditions [43, 44]. Besides, intensive utilization of agricultural lands for growth of 
exhaustive crops has further declined soil fertility and environmental degradation. 

Inter-seasonal climatic variability is a major concern among abiotic stress factors, 
which is normally reflected from year-to-year fluctuations in crop yields. The abiotic 
stresses, for example, extreme temperatures, dry season, flooding, salinity, metal 
stress and nutrient stress are the results of climate change and global warming, which 
causes alteration in precipitation patterns [6]. Abiotic stresses also cause land degra-
dation, which make soil nutrient deficient and more stress prone [43]. Abiotic stresses
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are blended and associated with each other. For instance, increase or reduction in 
rainfall, rise or fall in temperature brings dry spell stress. Dry spell stress at last gives 
rise to salinity stress, which causes alkalization of soil. The nutrients stay inacces-
sible to the plants developed in alkaline saline soil and it leads to nutrient-deprived 
circumstances or nutrient stress. Humidity in environment is another climatic vari-
ability. In moist regions, pace of precipitation is high and soil leaching decreases soil 
pH because of decrease of basic cations. Hence, decline in soil pH results in acidifi-
cation stress. Because of acidification stress, nutrient become inaccessible to plants 
and further leads to nutrient stress in the soil. Accordingly, abiotic stresses appear to 
be interconnected with each other and function as a chain because of variations in 
climatic environments [44]. 

The probability of occurrence of extreme climatic changes has increased in the last 
couple of decades and has reshaped the Earth’s ecosystems [43, 45]. Climate change 
has accelerated tenfold in the last century and green house gas (GHG) emissions have 
caused a rise of 0.9 °C in average temperature in the nineteenth century. Warming 
could reach 1.5 °C by 2050 due to deforestation, GHG emissions, and pollution of 
soil, water, and air. The enormous temperature rise has exacerbated droughts, food 
shortages, unexpected precipitation, and heat waves. On the other hand, farmers lack 
the appropriate management technologies to sustain agricultural productivity under 
forced abiotic stress conditions, which adversely influence plant growth and yield 
[43]. The climate change has also far-reaching effects on survival and functioning of 
beneficial microorganisms and climate-smart agricultural practices, which is vital to 
food supply and the global economy [45]. Climate change models have anticipated 
that warmer temperatures and increase in the frequency and term of dry spells during 
twenty-first century will have net negative consequences for productivity of agri-
cultural and horticultural crops. Natural disaster damages have topped $200 billion 
annually since 2016, and 95% of these losses are due to climate-related weather 
events like cyclones, floods, and droughts. The world’s population is predicted to 
top 9 billion by 2050, straining agricultural areas, which are already impacted by 
climate change. Thus, rapid climate change has threatened global food security due 
to its adverse effects on crop productivity [43]. 

Global Distribution of Saline Soils 

Human activities have disrupted the natural hydrological equilibrium in many agro-
climatic regions since the beginning of industrialization. These operations disrupt 
the natural distribution of salt in various landscapes and deteriorated the natural and 
agricultural environments. Soil salinization is a major threat to global food supply 
with changes in climatic conditions [46]. Poor drainage, brackish water irrigation, 
and long-term agricultural irrigation increase the salinity in soil [47]. The primary 
salinization area is less than one billion acres, where as secondary salinization has 
covered an area of 77 million hectares (with 58% occurring in irrigated areas and 
20% of all irrigated lands) [48, 49]. About 5.2 billion hectares of agricultural land
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worldwide are salt-affected and are unsuitable for crop cultivation [50]. Low rainfall, 
erosion of native rocks, excessively surface evaporation, use of inorganic fertiliser, 
irrigation with salty water, and unsustainable farming techniques all lead to soil 
salinization [51, 52]. By 2050, half of all arable land may be salt-affected. More than 
7 × 106 hectares of soil in India are salt-affected [53, 54]. 

Excessive accumulation of salts in the soil limits uptake of plant nutrients and 
water absorption, thereby disrupting plant growth and development processes [55]. 
Excess calcium, magnesium, sodium, sulphate, and chloride ions limit plant devel-
opment by causing soil salinization. Farmland salinization is increasing by 0.3–1.5 
million hectares per year, resulting in agricultural production losses of more than 
20%. The salinization of arable land will have an impact on agricultural revenue 
and economic development, along with global food supply; and crop productivity 
losses may cost about 12–27.3 billion dollars per year [14, 56]. Chemical or phys-
ical methods used for salt extraction from salt affected soils may contribute towards 
restoration of saline soils [14] (Fig. 13.1). For example, lime and gypsum are two 
chemical neutralizers [57], whereas, leaching, scraping and flushing are physical 
methods for salinity management [58]. In addition, crops that are tolerant to salt, such 
as barley, rice, wheat, mung bean, cotton, and canola, are being developed [59]. Only 
a small number of salt-tolerating genes have been investigated for their potential to 
enhance crop production in both normal and saline soil [60]. It is common to increase 
agricultural output by employing environment-friendly methods and upgrading irri-
gated land. Biotic and abiotic factors have an effect on the current agricultural system, 
making it more efficient and sustainable is a major challenge for agriculture scientists 
[61].

Recently, use of salt-tolerant plant growth-promoting rhizobacteria as biofertil-
izers has emerged as novel agri-technology for improving soil health and crop yield 
under salt stress conditions [7, 44, 62–65]. These salt-tolerant rhizobacteria produce 
osmo-regulators, antioxidants, exopolysaccharides, ACC deaminase, nitric oxide, 
phytohormones, siderophores and transporter proteins, which act as promising bio-
enhancer for increasing crop productivity and phytopathogen resistance, thereby 
sustaining soil health under salt stress conditions [3, 18, 39, 56, 64]. 

Salinity Stress and Impact on Plants and Microbes 

Soil salinity has emerged as a major environmental issue due to disastrous conse-
quences of salt deposition in soils and its detrimental influence on agriculture produc-
tion [4, 6, 14]. Plants acquire an array of protective genetic and metabolic mecha-
nisms during the course of evolution to combat adverse environmental fluctuations 
and stresses. Many a times, the burden of abiotic stresses is reduced with the contri-
bution of associated microbes. Various studies on plant-microbe interactions estab-
lished that salinity has profound effect on the survival and activity of soil-inhabiting 
microorganisms as well as on the growth of plants.
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Fig. 13.1 Environmental stresses induced by climate change and mechanisms involved in salt stress 
mitigation

Effect of Salinity Stress on Plants 

Presence of excess salt in soil is detrimental to plant health. Many stages of plant 
development, from germination through maturity, are known to be influenced by 
salinity. However, agricultural crops respond differentially to salinized soil condi-
tions. Usually, salinity reduces the agricultural output of most cereals, legumes, 
forages, and horticultural crops. In addition, salinity also alters the ecological balance 
and physicochemical properties of the soil. Salt stress leads in low agricultural yield, 
significant soil erosion, and limited socio-economic returns [66]. Additionally, salt 
stress has an effect on the morphological, biochemical, and physiological processes of 
the plant. These processes include germination of seeds, plant health, photosynthetic 
activity, protein synthesis, lipid metabolism, water holding capacity and absorption 
of nutrients [67–69]. For instance, the accumulation of sodium ions in leaf laminae 
hindered flowering in chickpea (Cicer arietinum L.) plants [70]. The buildup of 
sodium ions in plant tissues leads to the formation of different reactive oxygen 
species (ROS), which impede photosynthesis [71]. ROS are known to damage DNA 
and further induce lipid peroxidation, protein oxidation, enzyme inactivation, and 
chlorophyll degradation [72]. 

Under these saline conditions, plants use the salt overload sensitive (SOS) 
pathway, which is an essential protective mechanism used for sodium ion extrusion, 
potassium/sodium ion levels retention, and ion homeostasis [3, 73]. The negative
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effects on the SOS system under salt stress include a reduction in germination of 
seeds, leaf area, and pigmentation; an increase in defoliation and senescence; and 
a reduction in reproductive capability. In addition, salt stress causes ion toxicity, 
restricts water transfer from soil solutions, limits nutrient absorption, and causes 
osmotic and oxidative stress. Thus, it affects the overall plant health [56, 74–77]. 
Additionally, salt stress suppresses the plant growth and development, including 
enzyme activity [78], DNA, RNA, and protein synthesis, and mitosis during the 
reproductive stage of the plant [19, 79]. Salinity also impairs reproductive develop-
ment in plants by retarding sporogenesis and stamen filament elongation, triggering 
ovule abortion and fertilized embryo senescence, and promoting programmed cell 
death in plant tissues. The survival and development of plants are monitored to deter-
mine their resistance to salt stress because they include the up- and down-regulation 
of physiological systems, such as osmotic balance [80]. Failure to attain equilibrium 
between these systems results in cell dehydration, loss of turgidity, and ultimately 
plant death [76]. Some studies have linked salt stress to stunted plant development 
and symbiosis in field peas, causing a decrease in biomass and production [81]. Even 
nutrient-rich weeds, such as Portulaca oleracea L., are significantly affected by salt, 
as seen by alterations in physiology and root architecture, as well as decreases in 
biomass and yield [82]. Thus, salt stress is hazardous at various stages of cereal 
and legume cropping systems, producing 15–100% loss in legumes and endangering 
food security [3, 83, 84]. 

The drastic effect of salt stress can be observed in terms of crop yield losses. The 
primary effects related to crop yield can be in terms of germination which either 
decreases or sometimes ceases under extreme saline conditions. Ali Khan et al. [85] 
showed that under saline conditions growth, yield, and biomass of pearl millet is 
adversely affected in terms of germination percentage, plant height, leaf area, total 
biomass and grain yield plant−1. Impact of salinity on pea was also found to adversely 
affect growth, yield and biomass [81]. Farooq et al. [83] also reviewed the effects of 
salt stress on grain legumes, and they described that in different legumes salinity may 
reduce crop yield by 12–100%. Salt tolerance of black cumin (Nigella sativa L.) and 
its effect on seed emergence and germination, and yield were studied by Faravani 
et al. [86]. They showed that an increase in salinity level from 0.3 to 9 dS m−1 

reduced the average seed and biological yield. Similarly, the effect of different levels 
of salinity on a weed plant Portulaca oleracea showed a reduction in biomass and 
yield, changes in physiological attributes, and alteration in stem and root structure 
[87]. Salinity has thus a wide level of impacts on seed germination, plant growth and 
crop yield of different crops. 

It was observed that chickpea crop is extremely susceptible to salt stress and 
salinity is main restrictive factor bringing about low production. Salinity additionally 
brought about poor plant growth, low nitrogen fixing ability, reduced nodule numbers 
and decreased percentage of tissue nitrogen in arid and semiarid regions, in this 
manner, bringing about 8–10% losses in chickpea yield [17, 88]. To distinguish 
tolerant genotypes from sensitive genotypes of chickpea, a concentration of 40 mmol 
L−1 NaCl was accounted for as optimum level of salinity [89]. Reduction in salinity 
levels was found to cause excellent recovery with substantial new shoot growth. The
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critical point of salinity level for seed yield reduction of chickpea was reported as low 
as 3 dS m−1 in field soils [90]. Rhizobial isolates also showed different growth rate 
at higher NaCl concentrations. Maximum growth rate was seen at 1% (w/v) NaCl 
and minimum growth rate was seen at 4% (w/v) NaCl [91]. Only 11.1% of isolates 
tolerated 5% NaCl concentration [91, 92]. 

Effects of Salinity on Soil Microorganisms 

In dry and semiarid locations, where precipitation is scarce and often insufficient to 
eliminate salts from the plant root zone, soil salinity is a significant constraint on agri-
cultural output [93, 94]. Both microorganisms and plants are negatively impacted by 
high salt concentrations [95]. However, the metabolic burden imposed by these stress 
tolerance systems might be deleterious to sensitive bacteria, reducing the activity of 
the cells that survive the stress [96–98]. Various reports on naturally saline soils have 
indicated that salinity has negative effects on microbial soil communities and their 
activity [95, 99–101]. The impact is usually more prominent in the rhizosphere due to 
enhanced consumption of water absorption by the plants as a result of transpiration. 
Accordingly, osmoadaptation necessitates a significant amount of energy [102, 103]. 

Omar et al. [104] reported that higher salt concentration upto 5% significantly 
decreased the entire microbiota. Other biotic and abiotic stresses (including soil 
salinity) have been reported to affect rhizosphere microbial composition, biodiver-
sity, microbial metabolic activity and functioning, agricultural residue decomposition 
and nutrient availability, soil health and plant development [19, 76, 105, 106]. There 
is genetic variation in salt tolerance among rhizobia, which can have a substantial 
impact on the productivity of legume crops. The capacity for growth and survival 
of different chickpea rhizobial strains in salt conditions varies greatly [107, 108]. It 
also has been found that rapid rhizobia growth is associated with greater salt toler-
ance. Changes in cell shape and size or abnormalities in the pattern of extracellular 
polysaccharides (EPS) and lipopolysaccharides (LPS) have been seen in rhizobia 
that have been exposed to salt stress [108–110]. The symbiosis is more vulnerable 
to salt stress than free-living rhizobia because legume plants are more sensitive to 
salinity stress in general. Many strains of Rhizobium spp. have had their inoculum 
viability, nodulation, and nitrogen-fixing abilities reported to be negatively impacted 
by salt stress [109]. 

Only 33% of bacterial isolates were able to survive in solutions containing more 
than 8% NaCl (w/v), and of those, only 19% displayed PGP characteristics at these 
concentrations, as reported by Upadhyay et al. [111]. Isolate SU8 had the highest 
proline content and synthesis, with 2.73 and 11.95 g mg protein at 0% and 10% 
NaCl (w/v), respectively. The synthesis of reducing sugars (RS) and total soluble 
sugars (TSS) in rhizobacterial isolates was inversely related to the concentration of 
salt (NaCl), which had the potential to lower salinity levels and promote the develop-
ment of agricultural crops grown in salty conditions. All of the rhizobacterial-isolated 
strains were able to grow up to a concentration of 4% NaCl, but their capacity
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to tolerate salt decreased with rising salt concentrations. The experiment involved 
screening of 40 rhizobacterial isolates for different concentrations of sodium chlo-
ride, ranging from 2 to 8% [20]. Garg and Sharma [112] identified and tested 10 
rhizobia from Trigonella foenumgraecum for stress tolerance. To evaluate the growth 
of the isolates, a yeast mannitol medium with a wide pH range (4–10) and varying 
NaCl concentrations (0.05–5%) was used. Increasing salt concentrations inhibited 
the development of Rhizobium strains. Shultana et al. [113] also isolated salt tolerant 
rhizospheric bacteria from rice roots grown in saline conditions (0.41–17.64 dS 
m−1). Salt tolerant rhizobacterial isolates were grown on Tryptic Soy Agar media 
plates with different NaCl concentration (0, 0.5, 1, 1.5, 2.0M) to check their salt 
tolerant capacity. Five highly salt tolerant strains were found to grow upto 2.0M NaCl, 
however increasing salt concentrations inhibited the growth of isolated rhizobacteria. 

Mechanisms of Salinity Stress Tolerance in Microbes 
and Plants 

The rhizosphere is the most favourable environment for microbial populations [114]. 
Numerous microorganisms, such as bacteria, fungi, actinomycetes, and archaea, 
populate the rhizosphere of different plants. These soil or rhizosphere-inhabiting 
bacteria influence the ecosystem function, plant health, and pollutant degradation 
[115, 116]. These microbial communities act as a catalyst for the transformation, 
decomposition, and recycling of soil nutrients and organic matter in the soil. Thus, 
microbial populations have been found to affect crop development both directly 
and indirectly. Some of these soil- or rhizosphere-inhabiting microorganisms have 
acquired the ability to survive high salt (NaCl) concentrations. These salt-tolerant 
microbes have the potential to boost productivity of both grains and legumes in arid 
and semi-arid regions for sustainable agriculture [117]. It has been demonstrated that 
various bacterial genera such as Klebsiella, Streptomyces, Pseudomonas, Agrobac-
terium, Bacillus, Enterobacter, Stenotrophomonas, Rhizobium and Ochromobacter 
enhance grain and legume production in saline circumstances [31, 118, 119]. As 
salinity increased in the rhizosphere, it affects root exudation, microbial population 
and degradation of organic materials [120]. A negative correlation was observed 
between EC of soil and microbial biomass, indicating that soil salinity has a negative 
effect on microbial biomass [121]. In similar studies, Nelson and Mele [122] observed 
that NaCl has an indirect influence on rhizospheric microbial diversity through root 
exudates and plant quantity/quality, as well as a direct effect via microbial toxi-
city. Under salt soil conditions, molecular signaling among microorganisms and 
plants play a substantial effect on their rhizospheric microbiota [123]. 

When rhizospheric bacteria are exposed to a highly osmosis conditions, fast turgor 
loss and dehydration occur to compensate for the outflow of water. Ionic instability 
is caused by elevated ion concentrations, which maintains K+ osmotic balance, acti-
vates osmotic responses, and up-regulates genes involved in adaptation, metabolism,
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defensive, and amino acid transport pathways in the cytoplasm. Furthermore, the 
production of organic solutes increases intracellular osmotic strength, which helps to 
stabilise biomolecules under salt stress conditions [124, 125]. The second mechanism 
of salt tolerant rhizospheric bacteria is exopolysaccharide (EPS) production, which 
alters membrane compositions such as periplasmic glucans, proteins, fatty acids, 
shorter peptidoglycans, and interpeptide bridges, and capsule content for acceler-
ated water retention, regulating carbon source usage in microbial cells, and protecting 
microbiota from osmotic stress [126–128]. Flexible surface appendages surrounding 
the microbial cell also act as a protective barrier at low electrolyte concentrations, 
decreasing osmotic stress and minimizing the damaging effects of ionic strength 
changes [129]. 

Various microorganisms, inhabiting the phyllosphere, rhizosphere, and endorhi-
zosphere, have been found to help plants in adaptation during salt stress by absorbtion 
of nutrients from soil leading to improvement in plant growth and development [21]. 
Besides this, metabolic activity and functioning of microbial enzymes under salt 
stress may improve seed germination, root architecture, chlorophyll content, biomass, 
and disease resistance. In brief, salt mitigation strategies include direct and indirect 
mechanisms leading to promotion of plant growth and increases in crop yield in saline 
soils (Fig. 13.2). Direct mechanisms include enhanced accumulation of osmoprotec-
tants such as glycine, betaine, trehalose, and proline [130, 131], upregulating produc-
tion of antioxidant enzymes, such as SOD, CAT, APX, and GR, to provide protection 
against oxidative stress [72, 132], maintaining high K+/Na+ ratio (ion homeostasis) 
and regulating the expression of ion transporters to protect against ion toxicity [72, 
133, 134], lowering of stress-induced hormone (ethylene) level with expression of 
ACC deaminase activity [37, 135], synthesizing of exopolysaccharides and biofilm 
formation to reduce Na+ ion accumulation in plant roots by binding to excessive Na+ 

ions and preventing their translocation to plant leaves via xylems [132, 136], and 
maintaining high levels of photosynthetic activity and stomatal conductance [137]. 
Other indirect mechanisms employed for salt stress amelioration by PGPR include 
enhancing nutrient availability and uptake, siderophore production for iron uptake, 
phosphate solubilization [136, 138], modulating plant growth hormones for root and 
shoot development, and by conferring disease resistance through inducing systemic 
tolerance, production of organic acids and nitric oxide [139], and secretion of extra-
cellular polymeric substances for increased soil aggregation to improve plant growth 
under salt stress [76, 140–142].

Under salinity stress, Pseudomonas sp. and Novosphingobium sp. from citrus and 
Distichlis spicata rhizobacterial strains reduced salicylic acid (SA), abscisic acid 
(ABA), and ethylene, as well as root proline and chloride accumulation and photo-
system II activity [143]. He et al. [144] identified a novel salt-tolerant Pseudomonas 
sp. in the rhizosphere of the desert shrub Haloxylon ammodendron, which caused 
perennial ryegrass to become salt-tolerant. Proteomic, genomics and transcriptomics 
studies characterized various transcription factors, gene expression, protein expres-
sion and microbial interactions in plant cells and microbes in response to salt 
tolerance [145]. For instance, Burkholderia phytofirmans strain induced long-term 
metabolic and transcriptional changes in Arabidopsis thaliana involving expression
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Fig. 13.2 Rhizobacteria-mediated adaptive responses of plants to salinity stress to promote plant 
growth

of genes related to ROS scavenging (APX2), lipoxygenase-2 reduction, and detoxi-
fying (Glyoxalase 7) under salt stress [146]. Some of the salt-tolerating PGPR strains 
regulated the expression of dehydroascorbate reductase, catalase (CAT), ascorbate 
peroxidase (APX), and glutathione reductase (GR) genes under salt stress condi-
tions [147]. Functional metagenomics was used to find numerous salt-tolerant genes 
in PGPR and some of the salt-tolerant PGPR strains alleviated salt stress along 
with biological control of phytopathogens [3, 84, 148–150]. Several PGPR strains 
synthesized phytohormones [e.g., IAA, cytokinins (CK), and gibberellins] as well 
as having ACC deaminase activity [64, 119, 135, 151]. 

Production and Accumulation of Osmoprotectants 

Stressed plants produce osmoprotectants like quaternary ammonium compounds 
such as betaine, proline, polyamines, glycine and other amino acids that improve 
water intake and reduce water losses, and dilute the concentrations of toxic ion [152, 
153]. Various plant growth promoting strains have been characterized, which possess 
the capacity to tolerate osmotic stress from K+ ions and osmolytes in the cytoplasm 
[154, 155]. At 2.5 mol L−1 NaCl, upregulation of the proA, proH, and proJ genes 
was observed in salt tolerant PGPR strains [156]. During salt stress, Halomonas sp.
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SBS 10 and Azospirillum spp. were found to accumulate proline, ectoine, glycine, 
betaine and trehalose, making maize plants resistant to salt stress [157, 158]. Inoc-
ulation of salt-stressed tomato plants with Pseudomonas extremorientalis TSAU20 
reported to have increased proline levels [159]. Similarly, increase in glycine and 
betaine levels conferring salt tolerance under osmotic stress, was observed in rice 
and sugarcane, when inoculated with B. pumilus, Pseudomonas pseudoalcaligenes, 
and Enterobacter sp. EN-21 [160, 161]. In wheat crop, inoculation with Dietzia 
natronolimnaea STR1 exhibited strong antioxidants activity and accumulation of 
proline under salt stress conditions [162]. Inoculating salt-stressed Acacia gerrardii 
with B. subtilis strain was reported to enhance proline levels and enhanced salt 
tolerance by maintaining water balance [150]. Trehalose, an osmoprotectant sugar, 
was found to confer salinity resistance, and many genes involved in biosynthesis of 
trehalose were identified in halo-tolerant PGPR strains [3, 163–165]. 

Antioxidant Enzyme Activity 

Salt-stressed plants produce different reactive oxygen species (ROS) that damage 
various proteins, lipids, and DNA [166]. The level of ROS-scavenging enzymes such 
as superoxide dismutase (SOD), APX and CAT was reduced on exposure of plants 
to abiotic stress i.e., salt and drought, and increased the lipid peroxidation [84, 167]. 
A wide range of antioxidant enzymes, such as superoxide dismutases, nitrate reduc-
tase (NR), catalase (CAT), peroxidase (POD) and glutathione reductase (GR) were 
produced by salt-tolerant PGPR strains under salinity stress [3, 145, 168]. Interest-
ingly, inoculation of chickpea plants with Azospirillum lipoferum strain FK1 caused 
enhanced expression of the anti-oxidant genes and also improved nutrient absorp-
tion, non-enzymatic metabolites and flavonoids leading to improvement in symbiotic 
efficiency [169]. Wheat plants co-inoculated with Azospirillum brasilense DSM1690 
and Pseudomonas fluorescens Ms-01 showed higher POD levels than uninoculated 
control plants [170]. Salt-tolerant Bacillus cereus strain Pb25 enhanced the level of 
antioxidant enzymes catalase and peroxidase in mungbean (Vigna radiata), when 
grown at 9 dS m−1 saline conditions [72]. After PGPR inoculation, salt-stressed 
plants may stimulate the expression of antioxidant enzyme-related genes, resulting 
in enhanced ROS-scavenging enzyme activity [171]. 

During salinity stress, peroxidation of lipids has been reported to increase malon-
dialdehyde (MDA) concentration, indicating damage to structural integrity of cell 
membrane and inoculation with salt tolerant PGPR strains reduced MDA accumula-
tion and thus, helped plants to combat salinity stress [172]. Similarly, the decreased 
levels of MDA were observed in rice seedlings after inoculation with Enterobacter 
sp. P23 even during salt stress [119]. Inoculation of PGPR strains viz. Serratia sp. 
SL-12 in wheat [118], and Klebsiella sp. IG3 in oat plants [173], were found to 
reduce MDA level. Thus, inoculation of plants with PGPR was found to increase 
biomass and nutrient efficiency in stressed plants by altering the level of antioxi-
dants and stomatal conductance [174]. Therefore, use of salt-tolerant rhizobacteria
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as bio-inoculants causes enhancement of plant growth under salinity stress condi-
tions through modulation of osmoprotectants levels, upregulation of the stress-related 
genes, and by enhanced production of enzymatic and non-enzymatic antioxidants in 
stressed plants. 

Reduced Uptake of Salt Ions by Microbes and Plants 

Another strategy for PGPR tolerance to high salt concentration is minimization 
of salt absorption by ion affinity transporter control, root structure alteration via 
broad rhizosheath, and cation trapping in exopolysaccharides. Microbes maintain 
ion homeostasis by boosting the K+/Na+ ratio and decreasing Na+ and Cl− in the 
shoot and leaves, respectively. Salt stress changes the expression of genes such 
as KT1, NHX2, SOS1, and HKT1, and these molecular alterations result in salt 
tolerance [146]. Niu et al. [175] reported that Pucciniella tenuiflora infected with 
Bacillus subtilis GB30 caused lower Na+ buildup, which was corroborated by the 
down-regulation of ptHKT2 and up-regulation of ptHKT1 and ptSOS1 genes in roots 
exposed to high NaCl concentrations (200 mmol L−1). 

Volatile organic compounds (VOCs) have been reported to play crucial role in 
many cases of PGPR interaction with plants especially antibiosis and biocontrol of 
plant pathogens, and regulation of auxins [176, 177]. During salt stress, VOCs down-
regulate the expression of high affinity K+ transporter (HKT1), but it is upregulated 
in shoots, which results in lower accumulation of Na+ inside the plant [178]. 

ACC Deaminase Activity and Lowering of Ethylene Formation 

Ethylene, a stress hormone, is synthesized under stressed conditions and affects a 
number of metabolic activities within plants [136]. In addition, plants release 1-
aminocyclopropane-1-carboxylic acid (ACC) in root exudates, which is converted 
to the stress hormone ethylene (C2H4) by the enzyme ACC oxidase. Ethylene has 
been demonstrated to play fundamental roles in root branching, root hair formation, 
nodule development and for amelioration of biotic as well as biotic stresses [33]. 
On the other hand, many plant growth-promoting bacteria possess the enzyme ACC 
deaminase; which scavenges the exuded ACC and thereby down-regulates ethylene 
production by cleaving ACC into α-ketobutyrate and ammonia [135, 179–182]. Low 
levels of ethylene acts in plant defence against different abiotic stresses [183], but 
excessive levels of ethylene can cause ethylene stress, which slows growth and devel-
opment in plants [184, 185]. Under stress conditions, plants produce ethylene, which 
subsequently affects legume nodule formation [186, 187]. Under salt stress, PGPR 
can convert ACC into ammonia and α-ketobutyrate, providing nitrogen to the plants 
[33, 76]. Rhizobacteria with ACC deaminase activity were reported to reduce salt 
stress and enhanced plant growth of tomato and rice [188].
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ACC deaminase activity has been reported in various salt–tolerant bacte-
rial genera belonging to Arthrobacter, Acidovorax, Bacillus, Brevibacterium, 
Enterobacter, Exiguobacterium, Gracilibacillus, Klebsiella, Methylobacterium, 
Planococcus, Pseudomonas, Rhizobium, Salinicoccus, Stenotrophomonas, Vari-
ovorax and Virgibacillus [189]. Inoculation of ACC deaminase-containing halo-
tolerant bacteria was found to ameliorate salt stress in plants and improved crop 
productivity under salinity stress [151, 190–192]. For instance, inoculation of salt-
tolerant ACC deaminase activity containing Enterobacter cloacae strain KBPD 
improved nodulation and symbiotic efficiency in Vigna radiata at 50, 100, and 
150 mmol L−1 NaCl concentrations [64]. Similarly, Tiwari et al. [193] found that 
ACC deaminase-producing salt tolerant PGPR strains improved plant cell biochem-
ical characteristics such as bio-compatible solute formation, membrane permeability, 
stability, and photosynthetic pigment production under salt and drought stress. Ali 
et al. [194] reported that inoculation with endophytc strains i.e., Pseudomonas 
migulae and Pseudomonas fluorescens containing ACC deaminase activity improved 
physiological indices in plants under stress conditions. 

In another study, inoculation of oat (Avena sativa) with Klebsiella sp. strain IG 
3 enhanced shoot and root lengths, plant biomass, and relative water contents under 
NaCl stress (100 mmol L−1) [173]. The concomitant higher expression of acds genes 
(encoding ACC deaminase) and ipdc genes (encoding IAA) was observed under 
stress conditions. Expression of ACC deaminase in ST-PGPR strains was demon-
strated to enhance the infection thread persistence during nodulation in legume crops, 
which is adversely affected by ethylene under salt stress conditions [187]. Shaharoona 
et al. [195] reported that the coinoculation of an ACC deaminase-possessing PGPR 
and Bradyrhizobium in mungbean (Vigna radiata L.) improved nodulation and other 
symbiotic traits by reducing ethylene as compared with the single Bradyrhizobium 
treatment. The ACC deaminase-producing halo-tolerant bacterial strains Brevibac-
terium iodinum RS16, Zimmermannella alba RS11, and Bacillus licheniformis RS56 
have been reported to reduce the secondary ethylene peak in red pepper plants at 
150 mmol L−1 NaCl [196]. The inoculation of lentils with ACC deaminase-producing 
PGPR led to higher plant growth, nodulation, and grain yield under oxidative stress 
conditions [197]. Arthrobacter sp. and Bacillus sp. producing IAA and ACC deam-
inase increased proline content under salt stress in sweet pepper and chickpea [198, 
199]. Chandra et al. [200] reported that three ACC deaminase-producing bacterial 
strains viz. Pseudomonas palleroniana DPB16, Pseudomonas sp. UW4, and V. para-
doxus RAA3, enhanced growth, nutrient uptake, osmolyte production, antioxidant 
enzyme activities, and grain yield of wheat under salt and drought stress conditions 
in contrast to the uninoculated control treatment. Thus, various inoculation studies 
in different crops suggested that ACC+ bacteria could be used as an eco-friendly 
inoculant to improve growth of salinity-sensitive crop plants [29, 192, 201]. 

Hussein et al. [202] evaluated eight yeast strains i.e., Yarrowia lipolytica YEAST-
1, Candida diddensiae YEAST-2, Trichosporon gamsii YEAST-5, T. ovoides 
YEAST-6, Y. lipolytica YEAST-16, C. subhashii YEAST-17, Saccharomyces cere-
visiae YEAST-30, and S. cerevisiae YEAST-34) for plant growth-promotion (PGP) 
traits, biofilm formation, seed germination and for alleviation of salinity stress in
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wheat (Triticum aestivum L.). Y. lipolytica YEAST-1 strain was found to enhance 
the plumule length of T. aestivum seedling by more than 4.0, 3.0, and 2.0 cm at 
salinity stress of 50, 100, and 200 mM NaCl, respectively, after 96 h of treatment. 
Highest expression of amino-cyclopropane-1-carboxylate deaminase (ACCD) genes 
was observed in S. cerevisiae YEAST-34, at 5 mM ACC. Inoculation of Y. lipolytica 
YEAST-1 enhanced the radicle length of T. aestivum seedling significantly by 0.8 cm 
at 50 mM NaCl, 0.7 at 100 mM NaCl, and 0.06 cm at 200 mM NaCl stress. 

Exopolysaccharide Production and Biofilm Formation 

Salt-tolerant PGPR strains were found to form exopolysaccharides (EPSs), which 
promote biofilm formation and root colonization leading to better plant-microbe 
interactions. Root colonization by exoploysaccharide producing salt tolerant rhizo-
spheric strains improves uptake of nutrients (i.e., potassium and phosphorus), disease 
resistance, plant development and growth [203]. EPSs improve soil particle aggrega-
tion, promote cation exchange, water and nutrient retention, environmental changes, 
and root colonization [204, 205]. Inoculation of Bacillus subtilis in salt-stressed 
Arabidopsis plants suppressed the upregulation of HKT1 (high-affinity potassium 
ion transporters), prevented excessive Na+ ion absorption by plant tissues and 
sustained ion homeostasis [132]. Similarly, salt resistance in oilseeds crops such 
as Brassica napus increased K+ retention and decreased K+ ion-permeable channel 
by activating H+-ATPase activity and maintaining a negative membrane potential 
[206]. Increased plasma membrane sodium/hydrogen ions or potassium/sodium 
ions exchange activity also increased ROS-mediated Na+ extrusion from plant roots 
[206]. Microorganisms and host plants, such as Triticum aestivum, Brassica sp., and 
Hordeum vulgare, were discovered to have a close link with salt tolerance [206–208]. 

Bacterization with salt-tolerant EPS-producing rhizobacteria was found to 
improve germination of seeds [203]. The development of biofilm, which was helped 
along by the synthesis of EPS, contributed to an increase in PGPR’s resilience to both 
abiotic or biotic stresses [209]. EPS-producing Enterobacter sp. P23 reduced Na+ 

ion concentration in rice seedlings by binding excess Na+ ions [119]. Similarly, co-
inoculation of salt-tolerant Halomonas variabilis HT1 and Planococcus rifietoensis 
RT4 at 200 mmol L−1 NaCl concentration was found to increase plant growth and 
soil aggregation by EPS, and biofilm development in chickpea [141]. Treatment with 
Enterobacter sp. MN17 and Bacillus sp. MN54 was reported to improve plant water 
condition and growth of Chenopodium quinoa at 400 mmol L−1 NaCl irrigation 
conditions [210]. Salt-tolerant EPS and biofilm-producing Marinobacter lipolyticus 
strain SM19, and B. subtilis sub sp. inaquosorum alleviated the deleterious effects 
of drought and salinity stress in Triticum aestivum [211]. Recently, Chu et al. [212] 
demonstrated the essential role of EPS-producing halo-tolerant Pseudomonas PS01 
in the regulation of the LOX2 gene related to salt stress tolerance in Arabidopsis 
thaliana.
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Siderophore Production 

Iron is the fourth most prevalent metal in the Earth and it also acts as a cofactor 
in 140 enzymes in plants. It is generally present as Fe3+ (ferric), insoluble (OH) 
hydroxides, and oxyhydroxides O (OH) under abundant O2 availability [213]. 
Soil- or rhizosphere-inhabiting microorganisms produce low-molecular-weight, 
iron chelators termed as siderophores [214]. Plants assimilate iron from bacteria-
produced siderophores either via ligand exchange, direct absorption of siderophore-
Fe complexes, or iron uptake [215, 216]. Numbers of studies have demonstrated that 
inoculations with siderophore-producing rhizobacteria enhance plant development 
through increased siderophore-mediated Fe-uptake [213]. Crowley and Kraemer 
[217] found a siderophore-mediated iron transport system in oat plants. They 
concluded that siderophores synthesized by rhizospheric bacteria transport the iron to 
oat plants, which has capabilities for absorbing Fe-siderophore complexes even when 
there is a scarcity of iron in the soil. In a similar manner, the Fe-pyoverdine complex 
that was produced by Pseudomonas fluorescens C7 was absorbed by Arabidopsis 
thaliana plants, which resulted in an increase of iron within the plant tissues as well 
as an improvement in plant development [218]. 

Sadeghi et al. [219] reported that siderophore production in Streptomyces increase 
wheat growth under saline conditions. Tank and Saraf [220] also found PGPR 
promotes growth of tomato plants grown under 2% NaCl conditions; and PGPR 
were demonstrated to solubilize insoluble P and produced siderophores. Similarly, 
bacterial strains viz. Halobacillus SL3 and Bacillus halodenitrificans PU62 were 
found to produce siderophores in saline conditions [23]. Siderophore-producing 
Pseudomonas sp. GRP-3 improved iron nutrition in Vigna radiata by reducing 
chlorosis and increasing chlorophyll content. Siderophore-producing rhizobacteria 
increased plant height and improved nitrogen uptake [221]. Rajkumar et al. [213] also  
found siderophore-producing Ensifer meliloti strains that suppressed groundnut char-
coal rot. Siderophore-producing salt-tolerant Bacillus aryabhattai MS3 strain was 
isolated from the root area of salt-prone rice fields and highest siderophore produc-
tion was observed, which estimated at 60% and 43% under non-saline and saline 
(200 mM NaCl) conditions, respectively [222]. The expression of the entD gene 
(involved in the biosynthesis of siderophore) was evidenced irrespective of saline 
states. The salt-tolerant Bacillus aryabhattai MS3 strain may enhance plant growth 
in saline soils with iron limitation. 

Phosphate Solubilization 

Phosphorous is the second most important vital macronutrient for plant growth and 
crop production [223, 224]. It plays a key role in the development of the root stem, the 
formation of seeds and flowers, nitrogen fixation, and disease resistance. Phosphorous
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exists in a bound and insoluble form with calcium in neutral soils [as tricalcium phos-
phate (Ca3PO4)2], or with iron and aluminium in acidic soils [as aluminium phosphate 
(Al3PO4) or iron phosphate (Fe3PO4) in soil [225]. Thus, the concentration of soluble 
or inorganic available phosphorus i.e., orthophosphate is very low in the soil [226]. 
Phosphate-solubilizing microorganisms (PSMs) possess the capability to transform 
insoluble form of phosphate into inorganic utilizable form mainly through organic 
acids production [227–230]. Various soil microbes including Azotobacter, Bacillus, 
Bradyrhizobium, Pseudomonas, Erwinia sp., Flavobacterium sp., Micrococcus sp., 
Corynebacterium, Nostoc, Serratia phosphaticum, Calothrix brauna, Burkholderia, 
Sarcina sp., Scytonema and Advenella kashmirensis have been found to solubilize 
phosphorous in soil [231–234]. 

Salt stress in soil has been reported to affect population of phosphorus solublizing 
microbes and their P-solubilization capability [235]. Alkaline soils containing high 
level of calcium-phosphate were found to increase P-solubilization [236]. High 
salt-tolerating rhizobacteria may solubilize phosphate, Zn and K, fix nitrogen, and 
produce ACC deaminase activity and phytohormones, making more nutrients avail-
able to plants even under abiotic (drought and salt) stress conditions [84]. For 
instance, Alteromonas sp. and Pseudomonas sp. solubilize phosphate at 2 mol L−1 

NaCl concentrations [237]. Some bacteria mineralize P by producing phosphatases 
and phytases enzymes. Mahdi et al. [238] reported that phosphate-solubilizing 
bacteria produce phosphatase enzyme, which releases P from minerals by replacing 
phosphate cations with H+. Potassium (K) is another most important nutrient for 
growth of plants after nitrogen and phosphorous [239]. Therefore, inoculation of 
halotolerant K solubilizing bacterial strains i.e., Acinetobacter pitti strain L1/4, 
A. pitti strain L3/3, Rhizobium pusense strain L3/4, Caprivadus oxalaticus strain 
L4/12 and Ochrobactrum ciceri strain L5/1 caused significant increases in the shoot 
length, fresh weight, dry weight and chlorophyll contents of rice plants under saline 
conditions [240]. 

Production of Phytohormones 

Auxins (indole acetic acid; IAA), cytokinins, gibberellins (GA), ethylene, and 
abscisic acid (ABA) constitute up the five major groups of phytohormones [241– 
244]. These plant and bacterial hormones, known as phytohormones, regulate a wide 
variety of physiological processes, including as cell division, development, gene 
expression, and stress responses, as well as the rate and form of root and shoot 
growth [245–247]. Phytohormones have been shown to improve a plant’s nutrient 
availability, water absorption capacity, and resistance to salt stress by increasing root 
hair length and root surface area [248–252]. The capability of plants to acclima-
tize to salinity stress depends on their interaction with beneficial potent microbes 
that have the ability to produce IAA, CK, and gibberellic acids (GAs) [145, 253]. 
Therefore, attempts are being made to identify PGPR strains that can help plants to
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overcome and mitigate salt stress by producing phytohormones. For instance, auxin-
producing salt-tolerant Leclercia adecarboxylata strain MO1 enhanced carbohydrate 
synthesis, chlorophyll fluorescence, ipdc gene expression, and organic acid produc-
tion in tomato [254]. IAA-producing PGPR strains were demonstrated to enhance 
ACC deaminase activity via a signalling cascade that hydrolyzed ACC into ammonia 
and α-ketobutyrate [33], allowing the plant to proliferate even under salt stress by 
lowering ethylene levels. 

Application of Enterobacter sp. found to enhance seed germination (48%) of 
rice at 150 mmol L−1 salt concentration [119]. Bacillus amyloliquefaciens SQR9 
strain improved maize seedling development, antioxidant enzyme activities (CAT, 
POD, and GR), total sugar content, and K+/Na+ ratio, under salt stress conditions. 
PGPR-inoculated plants retain K+ ions to minimise Na+ toxicity under salt stress 
[255]. Streptomyces lowers salt stress in wheat by producing auxins, according to 
Sadeghi et al. [219]. Auxins and GAs were found to lower the inhibitory effects 
of salt’s on wheat seedlings [23]. Enterobacter sp. EJ01 obtained from halophyte 
Dianthus increased salt tolerance (200 mmol L−1) in tomato plants by boosting 
desiccation, embryogenesis, proline biosynthesis, and stress-inducing and priming 
activities [256]. Ensifer meliloti genetically modified for enhanced production of IAA 
conferred the ability to tolerate 0.3 mol L−1 salt in Medicago truncatula [257]. Zahir 
et al. [258] found that inoculating a beneficial rhizospheric microbiome increased 
mungbean (Vigna radiata) growth and yield in saline environments via better IAA 
production. Thus, PGPR’s phytohormone synthesis is an exploitable trait; more 
research is needed to use these rhizosphere bacteria to lessen salinity’s effects. 
Pantoea agglomerans strain lma2 can produce 161 g mL−1 IAA at 200 mmol L−1 of 
NaCl, making it a potential PGPR under salt stress [259]. Numan et al. [78] showed  
extensive IAA production in durum wheat with osmotolerant PGPR Azospirillum 
brasilense NH at high salt concentrations, underlining IAA’s role in salt tolerance. 
Micrococcus luteus also increase maize growth by producing IAA [78]. As poten-
tial auxin makers, many rhizobia and rhizobacteria strains also found to withstand 
salt and osmotic stress in mung bean [260, 261]. Kuzmina et al. [234] reported that 
IAA production and phosphate-mobilizing activity of Advenella kashmirensis strain 
IB-K1 showed plant growth-promoting effects on wheat seedlings. Additionally, the 
presowing treatment of wheat (Triticum durum Desf.) seeds with A. kashmirensis 
strain IB-K1 effectively relieved the deleterious effect of salt stress on plant growth 
under moderate salinization level of cultured soil, which ultimately resulted in higher 
plant output. 

Gibberellin-producing bacterial isolates, such as Azospirillum sp., Bacillus 
pumilus, Bacillus licheniformis, and P. fluorescens, were reported by Bottini et al. 
[262]. Salinity stress reduces GA synthesis in plants, while PGPR inoculation 
increases endogenous GA [263], inducing salinity tolerance and preventing tissue 
damage [264]. For instance, increased endogenous GA levels in Promicromonospora 
sp. SE188, Burkholderia cepacia SE4, and Acinetobacter calcoaceticus SE370 
improved cucumber plant growth under salt stress, with increased proteins and antiox-
idant enzymes, and decreased sugars and ribonuclease [84, 265]. Attia et al. [266] 
showed that seed priming with gibberellic acid (GA3, 3 μM) partially attenuated the
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salt stress effect and efficiently reduced polyamines (PA; putrescine, spermidine and 
spermine) levels in salt-stressed seedlings of fennel (Foeniculum vulgare Mill.) as 
compared to the control. Organ and treatment-specific reduction in peroxidase and 
catalase activities were observed. In a similar manner, the responses of PA genes to 
salinity were found to be varied. In hypocotyls and cotyledons (H+C), up-regulation 
was observed for SPMS1, ODC1, and ADC1, whereas down-regulation was shown 
for SAMDC1 in the radicle. 

Another phytohormone abscisic acid (ABA) is produced by salt-tolerant strains 
of Achromobacter xylosoxidans, B. licheniformis, Proteus mirabilis, P. fluorescens, 
Stenotrophomonas maltophilia, and Bacillus megaterium produce [3, 243]. Recent 
reports suggested that ABA-mediated signalling increases salt tolerance in different 
crops. For instance, inoculation of Dietzia natronolimnaea STR1 and Bacillus 
amyloliquefaciens RWL-1 in wheat and rice altered auxin and ABA signalling 
cascades, resulting in increase of salinity tolerance [162, 267]. The mechanism 
involved in lowering the inhibitory effect of salt on plant development by abscisic 
acid is through increasing K+ and Ca2+ ions, reducing sugar and proline in the 
root, and neutralizing Na+ and chloride (Cl−) ions concentrations [268, 269]. Patel 
and Saraf [270] also identified salt-tolerant Pseudomonas putida, Pseudomonas 
stutzeri, and Stenotrophomonas maltophilia in Coleus rhizospheres with elevated 
CK, gibberellins, and IAA level under salt stress conditions. 

Cytokinins (CK) are involved in tissue differentiation and cell proliferation func-
tion, and act as master regulators in mitigating salinity stress in plants [271]. Many 
salt-tolerant species of Bacillus, Arthrobacter, Pseudomonas, Azospirillum, Azoto-
bacter, Arthrobacter, Halomonas, and Stenotrophomonas were reported to produce 
cytokinins [272]. Increased cytokinin production decreased ethylene, reducing leaf 
senescence in cereals and legumes, hence boosting plant growth [273, 274]. Sita 
and Kumar [275] provided a more in-depth explanation of the function of gamma-
aminobutyric acid (GABA) in the resistance of legumes to abiotic stress. Another 
phytohormone 5-aminolevulinic acid (ALA) has recently received wide applications 
due to its potential use as herbicide, insecticide, antimicrobial, alleviation of abiotic 
stress and plant growth stimulator under different stress conditions [276]. Growth 
rate of root and shoot, and leaf water relations of canola (Brassica napus) plants were 
improved by ALA application under different NaCl (100, 200 mM) concentrations 
[277]. Bacterial inoculation of mustard plants with ALA producing and salt tolerant 
(8% NaCl) isolate JMM15 showed 190.89% (at 0 dS m−1 EC), 123.18% (at 8 dS 
m−1 EC) and 230.86% (at 12 dS m−1 EC) increase in shoot dry weight at 80 days of 
growth under controlled greenhouse conditions [10]. 

Organic Acids Role in Amelioration of Salt Stress 

One of the most severe abiotic stressors that plants can experience is salinity stress, 
which can cause disruptions in their physiological, biochemical, and metabolic 
processes. The application of natural metabolites to the plant is a viable technique for
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mitigating the deleterious effects of stresses on plants. It has been observed that the 
use of salicylic acid (SA) has tremendous agronomic potential in terms of enhancing 
the stress response of a variety of agronomically valuable crops, such as barley, maize, 
sunflower, wheat, bean, strawberry, and chamomile, amongst others [278]. Under 
salt stress conditions, SA application has been reported to provide several benefi-
cial effects for plants i.e., the mitigation or reduction of photosynthetic pigments 
and photosynthetic performance, preservation of membrane integrity, stimulation 
of ABA and proline accumulation, reduction in lipid peroxidation and membrane 
permeability, lowering Na+ content and higher K+ concentration, etc. [278]. Treat-
ment of wheat seedlings with sinapic acid, caffeic acid, ferulic acid, and p-coumaric 
acid, in addition to SA, resulted in enhanced growth of the plants despite the pres-
ence of salt stress [279]. Caffeic acid protected cucumber from chilling stress [280], 
and application with ellagic acid expedited the germination and seedling growth of 
chickpea under osmotic stress conditions. In addition, the treatment with vanillic 
acid lowered the deleterious effects of salt stress in tomato plants [280–282]. It has 
been also observed that all of these phenolic acids enhance the antioxidant capacity 
of plants by improving the activity of antioxidant enzymes and the accumulation of 
nonenzymatic antioxidants. 

When comparing three different Brassica crops (kale, white cabbage, and Chinese 
cabbage), Lini’c et al. [283] found a positive correlation between phenolic acid 
levels and salinity tolerance, with kale being the most tolerant, white cabbage being 
moderately tolerant, and Chinese cabbage being the most sensitive species. Salicylic 
acid (SA) and ferulic acid (FA) were applied topically to plants and their effects 
on Chinese cabbage (Brassica rapa L. ssp. pekinensis (Lour.) Hanelt cv. Cantonner 
Witkrop) that had been exposed to short-term salt stress (150 mM NaCl, 72 h) were 
assessed [284]. Under salt stress conditions, rise in SA and proline concentration 
was reported whereas a decline in phenolic compounds, antioxidant activity, and 
photosynthetic performance (particularly owing to the degradation of PSI function) 
was observed. 

Both proline and SA levels dropped when salt-stressed plants were treated with 
SA and FA (10 mM). Interestingly, in FA and SA treatments, the content of polyphe-
nolic chemicals, notably FA, sinapic acid (SiA), kaempferol (KAE), and quercetin 
(QUE), enhanced in salt-stressed plants. As a result, there was an increase in antiox-
idant activities and a rise in photosynthetic efficiency. When comparing FA and 
SA, the latter was found to have a more beneficial alleviating impact on salt stress. 
Gholamnia et al. [285] also examined the effects of three different salt levels and two 
different temperatures on peppermint (Mentha piperita L.) by comparing the expres-
sion profiles of genes encoding proteins involved in the rosmarinic acid production 
pathway and various physiological responses. The upregulation of C4H and HPPR 
genes indicates the functions of these genes in defence mechanisms as well as the 
impacts of phenolic chemicals on oxidative stress inhibition.
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Nitric Oxide Production and Mitigation of Salt Stress 

Nitric oxide (NO) is a gaseous and highly reactive nitrogen species, which is produced 
under normal as well as environmental stress conditions in living cells. NO has 
been reported to regulate various developmental processes during plant growth such 
as seed germination, root growth, stomata closure, flowering, stress response, and 
cell death [286, 287]. NO also modulates production of reactive oxygen species 
(ROS) in plants after exposure to various abiotic stresses and subsequently, acti-
vate defence mechanisms through enhanced production of antioxidants [288, 289]. 
Production of nitric oxide also leads to altered gene expression and activation of 
various redox regulated genes encoding antioxidant enzymes such as glutathione 
peroxidase (GPx), superoxide dismutase (SOD), glutathione reductase (GR), ascor-
bate peroxidase (APX) and chloramphenicol acetyltransferase (CAT), and may result 
in suppression of lipid peroxidation or malondialdehyde (MDA) synthesis [290–292]. 
The exogenous application of NO enhanced the production of ascorbate, glutathione, 
total phenolic content, proline, and flavonoids in NaCl-treated spinach [293] and 
tomato plants [294]. In addition, NO acts as an endogenous modulator of several 
plant hormones resulting in the inhibition of the induced programmed cell death and 
aid in stomatal function in Arabidopsis, wheat and pea plants [295, 296]. 

Salt stress normally has a negative effect on ion homeostasis and osmotic balance 
of plant cells [94]. Intracellular ion imbalance inhibits soil nutrient uptake leading 
to nutrition deficiencies. Furthermore, salt stress provokes membrane disintegration, 
loss of metabolic function ion leakage, DNA defragmentation, and subsequent cell 
death [297]. Plants have evolved various protective mechanisms to ameliorate the 
negative effects of salt stress. NO mediated mitigation of stress and the underlying 
mechanisms have been extensively studied using different approaches [298–301]. 
For instance, regulation of Na+/K+ ratio and H+-ATPase of the plasma membrane 
is caused by NO, which confers salt tolerance in axenically grown cucumber plant 
[302]. Similarly, NO was demonstrated to activate the synthesis of H+-ATPase in 
maize seedlings, resulting in production of H+ gradient, which force the exchange of 
Na+/H+ and causes homeostasis of Na+ and K+ [303]. In another similar study, Zhao 
et al. [290] showed that NO acted as a signal in salt resistance in the calluses from two 
ecotypes of reed and induced the expression of the plasma membrane H+-ATPase, 
which provided protection by making a balance in K+:Na+ ion ratio. NO mediated 
protection against salt stress in vivo has been shown in Arabidopsis Atnoa1 mutants 
with impaired endogenous NO levels as these plants show enhanced sensitivity to salt 
stress, as well as reduced survival rates compared to wild type plants. Additionally, 
these mutants exhibited a greater Na+/K+ ratio in the shoots than the wild type plants 
[304, 305]. 

Besides this, NO donor sodium nitroprusside (SNP) has been found to alleviate 
osmotic stress tolerance and enhances seedling growth under salt stress in several 
plant species including rice, lupin, and cucumber [306, 307]. Increases in dry weights 
have been reported in maize, and seashore mallow seedlings after NO application 
under salt stress [303, 308]. In addition, the release of the nanoparticle known as
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chitosan nanoparticles (CS NPs) by NO treatment has been found to mitigate the toxic 
effects of salinity in maize plants [309]. The induction of polyamines is known to be 
closely associated with NO production or exogenous application of NO donors [308]. 
Therefore, NO-polyamine interaction may cause adaptive responses in plants for 
stress tolerance [310]. The increased levels of H2O2 in soybean due to the long-term 
salinity stress treatment, were reduced to the basal levels with exogenously-applied 
NO donor [311]. Adamu et al. [312] observed that treatment of salt-susceptible 
rice seedlings with SNP (NO donor) under salt stress caused a significant increase 
in the expression of OsHIPP38, OsGR1, and OsP5CS2 and provided a resistant 
response to salt stress. On the other hand, untreated control plants (lacking NO donor 
treatment) succumbed to salt-stress. Furthermore, SNP-treated plants produced more 
plant biomass under salt stress conditions. 

Inoculation Effects of Salt-Tolerant Bacteria in Improving 
Plant Growth of Different Crops 

The deleterious effects of salinity have been observed on plant growth and yield in 
various crops including mungbean, soybean, groundnut, pigeon pea, common bean, 
chickpea, groundnut, maize, tomato and cucumber. The main problem in the agricul-
ture sector is to find an alternate solution for salt-stressed soil that ensures agricultural 
sustainability while increasing yield production in an environment friendly manner 
[15, 16]. 

The capacity of halo-tolerant rhizobacteria to deal with high soil salinity problem 
is well acknowledged and bacterization with salt-tolerant rhizobacterial strains has 
been found to mitigate the deleterious effects of salts on plants [9, 313–317]. Thus, 
use of salt-tolerant microbes as bio-enhancers/bioprotectants not only increases agri-
cultural yield but also ensures plant survival in extreme salty conditions via physi-
ological, biochemical, and molecular routes [24]. Besides salt tolerance, other PGP 
traits of salt-tolerant rhizobacteria contributes towards improvement of plant growth 
and increases in crop yield of different crops including cereals, legumes, oil seeds, 
and vegetables (Table 13.1). Thus, development of microbial consortia consisting 
of different bacteria or bacteria with mycorrhizal fungi has emerged as another 
feasible approach for improved amelioration of plant abiotic and biotic stresses 
[26, 318–320]. 

When pepper plants were inoculated with Bacillus sp. TW4, they showed a 
decrease in osmotic stress, which is often seen in the form of salt (and/or drought) 
stress. Under the influence of abiotic stress, the expression of genes associated with 
ethylene metabolism was found to be suppressed in these pepper plant [198]. Bacillus 
sp. TW4 exhibited ACC deaminase activity, which may be associated to the lowered 
expression of these genes. It has also been found that salt stress also affects nodu-
lation during Phaseolus-Rhizobium interactions. However, in contrast to application 
of Rhizobium strain, Azospirillum inoculation of salt-stressed plants resulted in a
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longer exudation of plant flavonoids, suggesting an upregulation of flavonoid genes 
[313]. In barley seedlings, inoculation with Azospirillum seemed to alleviate NaCl 
stress, exhibiting the response to salt stress [321]. Salinity reduced the dry mass of the 
roots and shoots of lettuce plants compared to the control plants growing in non-saline 
environments [322]. At both medium and high salt conditions, the plants inoculated 
with Pseudomonas mendocina exhibited significantly higher shoot biomass than the 
control plants. Reduced chlorosis, necrosis, and drying were also seen in salt-stressed 
Mt-RD64 plants in comparison to salt-stressed Mt-1021 plants [322]. The antioxidant 
enzymes such as superoxide dismutase, ascorbic peroxidase, glutathione reductase, 
and proline oxidase were also associated to mitigate the salt stress. 

Misra et al. [323] revealed the occurrence of most prominent group of ACC 
deaminase-producing salt tolerant Bacillus sp., which caused salt stress mitigation 
and improved grain yield of rice in different agro-ecological zones. Similarly, inoc-
ulation with Pseudomonas strain 002 [314] and Staphylococcus sciuri strain SAT-17 
[324], which were able to tolerate 75 and 150 mmol L−1 NaCl, respectively, were 
found to improve plant growth and biomass under salinity treatments. The inocula-
tion with saline-adapted Azospirillum strains was found to improve grain productivity 
in wheat [22]. Nadeem et al. [325] documented significantly improved plant height, 
root length, chlorophyll content, and grain yield in maize under salt stress conditions 
using ACC deaminase-producing PGPR. Similarly, significant stimulation of growth 
and seed germination was observed in cotton under saline conditions with the inocu-
lation of P. putida strain RS 198 [21]. Likewise, Upadhyay et al. [111] demonstrated 
that combined inoculation of B. subtilis and Arthrobacter sp. was found to mitigate 
soil salinity effects in wheat and caused improvement in plant biomass, total soluble 
sugars, and proline content. Inoculation of Halobacillus sp. and B. halodenitrificans 
also enhanced the growth parameters of wheat in salt-affected soils as compared with 
the uninoculated control at 320 mmol L−1 NaCl [23]. In similar studies, inoculation of 
wheat (Triticum aestivum L.) var. WH157 with salinity-tolerant Azotobacter strains 
i.e., ST3, ST6, ST9, ST17 and ST24 caused significant increase in total nitrogen, 
biomass and grain yield in earthern pots containing saline soil under pot house 
conditions [326]. Maximum increase in plant growth parameters were obtained after 
inoculation with Azotobacter strain ST24 at fertilization dose of 120 kg N ha−1 and 
its inoculation resulted in attaining 89.9 cm plant height, 6.1 g seed yield, 12.0 g 
shoot dry weight and 0.7% total nitrogen. 

Significant increases in seed germination and enhancement in plant growth have 
been reported by several workers due to osmoprotectant accumulation, modulation 
of gene expression associated with salt stress, and by induction of antioxidative 
enzymes against the ROS pathway [119, 327, 328]. Recently, Damodaran et al. 
[329] demonstrated enhanced grain yield in rice and wheat by using Lysinibacillus 
sp. that mitigated the harmful effects caused by high salt stress. Similarly, bacter-
ization of soybean with Bacillus firmus SW5 resulted in significant improvement 
in nutrient uptake, photosynthesis, gas exchange, flavonoid and phenolic contents, 
osmoprotectants, and antioxidant enzymes under salt stress conditions [330]. Treat-
ment of sunflower (Helianthus annus) with fluorescent Pseudomonas was found to
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positively affect plant biomass in salt stress conditions [331] whereas other bacte-
rial genera belonging to species of Pseudomonas, Ochrobactrum, Agrobacterium, 
and Klebsiella induced salt tolerance in groundnut [31]. Similarly, inoculation of a 
Pseudomonas strain isolated from halophilic grass Distichlis spicata was observed 
to improve the growth of different crops under salt stress [332]. 

Table 13.1 PGPRs conferring salt tolerance in plants 

PGPR strains Crop PGPR attributes References 

Aeromonas sp. Wheat (Triticum aestivum) EPS production [80] 

Acinetobacter johnsonii Maize (Zea mays L.) Enzymatic activities, 
nutrient uptake and 
antioxidant defence 

[335] 

Azotobacter 
chroococcum 

Maize Improved K+/Na+ ratio, 
polyphenol content and 
proline 

[336] 

Bacillus 
amyloliquefaciens 

Rice (Oryza sativa) Betaine, sucrose and 
trehalose 

[327] 

Bacillus 
amyloliquefaciens 

Rice Proline content [337] 

Glutamicibacter sp Rice Production of ACC 
deaminase 

[338] 

Micrococcus sp. Arabidopsis thaliana and 
rice 

Production of IAA and 
siderophore 

[339] 

Klebsiella oxytoca and 
Bacillus sp. 

Cotton seeds Antioxidative enzymes 
and photosynthetic 
pigment 

[340] 

Klebsiella sp. Oat (Avena sativa) Proline content, 
malondialdehyde content, 
antioxidant enzymes 

[173] 

Curtobacteriumsp. Barley (Hordeum vulgare 
L.), soybean (Glycine max 
L.) 

Production of proline and 
IAA 

[341] 

Bacillus baekryungensis 
DPM17 

okra (Abelmoschus 
esculentus) 

Phosphate solubilization, 
nitrogen fixation, 
production of ammonia, 
IAA and gibberellins 

[342] 

Arthrobacter woluwensis 
AK1 

Soybean (Glycine max L.) Production of IAA and 
ABA 

[343] 

Mesorhizobium sp. Chick pea (Cicer 
arietinum) 

ACC deaminase activity [344] 

Bacillus licheniformis, 
Pseudomonas 
plecoglossicida 

Sunflower Production of IAA, 
biofilm formation, 
phosphate solubilization, 
and ACC 
deaminase activity 

[345]

(continued)
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Table 13.1 (continued)

PGPR strains Crop PGPR attributes References

Bacillus marisflavi sp., 
Bacillus cereus 

Pisum sativum Production of ACC 
deaminase 

[346] 

Orchbactrum sp Groundnut (Arachis 
hypogaea L.) 

Production of IAA and 
ACC deaminase 

[347] 

Pseudomonas sp. Tomato Production of IAA, ACC 
deminase and EPS 

[164] 

Pantoea sp. Mungbean (Vigna radiata 
L.) 

ACC deaminase activity [348] 

Tsukamurella 
tyrosinosolvens, 
Burkholderia pyrrocinia 

Peanuts Increased catalase, 
superoxide dismutase and 
peroxidase activities 

[349] 

Streptomyces sp. and 
Bacillus sp. 

Ice-plant 
(Mesembryanthemum 
crystallinum L.) 

IAA, phosphorus 
solubilization, ACC 
deaminase, siderophore 
production 

[350] 

Saravanakumar and Samiyappan [333] showed that ACC deaminase-producing P. 
fluorescens strain TDK-1 significantly enhanced the growth of groundnut seedlings 
under salt stress conditions as compared with inoculation of strain lacking ACC 
deaminase activity. Inoculation of wheat with Chryseobacterium gleum sp. strain 
SUK possessing ACC deaminase activity showed significant stimulation of plant 
growth and enhancement in grain yield under salt stress conditions [64]. In another 
experiment, combined application of rhizobia and ACC deaminase-producing Pseu-
domonas on mungbean (Vigna radiata) showed superior growth, nodulation, and 
yield under salt stress conditions [261]. Similarly, coinoculation of soybean with 
salt-tolerating P. putida TSAU1 and ACC deaminase-producing Bacillus japonicum 
USDA 110 improved plant growth, macro- and micro-nutrient acquisitions, and seed 
protein content by modulating root architecture under salt stress conditions [159]. 
The combined inoculation of Variovorax paradoxus 5C-2 and Mesorhizobium loti 
strains possessing ACC deaminase activity had additive and synergistic effects on 
nodulation, root growth, and uptake of elements (e.g., N, P, Mg, Ca, Na, and Zn) 
in Lotus ornithopodioides and L. edulis [334]. Separate inoculation with the two 
bacterial strains viz. Rhizobium sp. LSMR-32 and Enterococcus mundtii LSMRS-
3, possessing multifunctional growth promoting traits, ameliorated salinity stress 
effects and increased seed germination, grain yield, plant height, biomass, chloro-
phyll content, and nutrient uptake compared to uninoculated plants under salt stress 
conditions [319]. Inoculation with both the strains increased nodule number, nodule 
biomass, and leghaemoglobin amount in spring mungbean along with increase in 
soil phosphatase and dehydrogenase levels. 

Ullah et al. [351] inoculated wheat cv. Inqlab-91 seeds with cultures of Pseu-
domonas mendocina Khsr2, Pseudomonas putida Khsr4, Pseudomonas stutzeri 
Khsr3 and Azotobacter vinelandii Khsr1. The applied PGPR strains significantly
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improved the transfer of K, Ca, Mg and Zn from soil to plant shoots and reduced 
the transfer of Cr in inoculated plants over that of uninoculated soil. The maximum 
K+/Na+ ratio of rhizosphere soil and wheat leaves was recorded in Pseudomonas 
putida Khsr4 inoculation. The applied PGPR helped in selective uptake of K over 
Na and enhanced transfer of nutrients resulting in higher yield. Yield of ridge sown 
plot was 3.59% higher than drill sown plot, and 10.87% higher than broadcast sown 
plot respectively. Oliveira Lopes et al. [352] reported that synergistic interactions 
between five different rhizobia (B. elkanii BR 2003, B. pachyrhizi BR 3262, B. 
yuanmingense BR 3267, B. paxllaeri BR 10,398, and B. icense BR 10,399) and 
Azospirillum baldaniorum strain (Sp245), alone or in combination, attenuated the 
deleterious effects of salt stress (75 mM NaCl) on lima bean. Plants coinoculated with 
rhizobia and A. baldaniorum showed the highest value for root length, plant biomass 
(shoot, root, and nodules), number of nodules, and photosynthetic pigments. Coinoc-
ulated plants under salt stress showed a minor increase in sodium and the highest 
potassium content values, and nitrogen fixation efficiency than plants inoculated with 
rhizobia. 

Three isolates e.g., E-2, T-2, and T-1 (identified as Klebsiella sp. strain BAB-6433, 
Citrobacter freundii strain R2A5, and Citrobacter sp. DY1981, respectively) showed 
salt (NaCl) tolerance at concentrations of 7%, 6%, and 6%, respectively [353]. Inoc-
ulation of these salt-tolerant isolates significantly improved plant growth of paddy 
plants in a hydroponic study, ensuring nutrient availability to the plants grown under 
a nutrient (nitrate or phosphate) deprived growth matrix. Naseri et al. [354] reported 
that highest saline stress, 10 dS m−1, reduced shoot and root dry weight and root 
volume of tomato up to 51.3, 41.5, and 51.8%, respectively. In addition, it also 
increased stomatal resistance and proline content 2.01- and 3.66-folds and decreased 
K+/Na+ ratio 4.16-folds, respectively. Inoculation of Bacillus megaterium P2 on 
tomato plants was found to modulate salt tolerance mechanisms, improved plant 
growth factors, soil biological indicators and also balanced K+/Na+ uptake even at 
10 dS m−1 salinity level. However, the efficiency of strains was dependent on the 
magnitude of salt stress. In similar studies, Gritli et al. [26] evaluated the effect of 
different microbial inocula consisting of nodule-forming and nitrogen-fixing Rhizo-
bium laguerreae and arbuscular mycorrhizal fungus (AMF) Rhizophagus irregu-
laris, along with various plant growth-promoting bacteria (PGPB) including Bacillus 
subtilus, Bacillus simplex and Bacillus megaterium on alleviating salt stress in 
Lathyrus cicera under pot trial studies. Exposure of plants to salinity (100 mM 
NaCl) significantly reduced growth of L. cicera. On the other hand, inocula-
tion with different inocula enhanced plant growth and markedly promoted various 
biochemical traits, and resulted in mitigating deleterious effects of salinity stress 
on L. cicera. Coinoculation also upregulated the expression of two marker genes 
(LcHKT1 and LcNHX7) related to salinity tolerance.
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Genetic Engineering of Plants and Microbes for Efficient 
Alleviation of Salinity Stress 

In response to a wide range of environmental challenges, plants have evolved a wide 
range of strategies for modulating their rhizosphere. A deeper knowledge of the inter-
kingdom signaling and biological processes occurring between microbes and plants 
may provide insights as to how the rhizosphere might be controlled to enhance plant 
health and production [355–358]. In the long term, rhizosphere engineering might 
lessen our need for herbicides and pesticides by substituting beneficient microbiota, 
biostimulants, or transgenic plants for agrochemicals [359]. Rhizosphere engineering 
is possible through the appropriate selection of crop species and cultivars, by appli-
cation of stress-tolerant microbes as soil/seed treatments [360, 361]. Microorgan-
isms can be developed to enhance nutritional availability in addition to resistance 
to abiotic or biotic stresses, inhibition of harmful bacteria, or that can support the 
survival of beneficial microorganisms. Crops can be chosen by breeders to have bene-
ficial attributes, or beneficial microorganisms can be developed [5, 59, 362, 363]. The 
development of genetic techniques and the growing field of metagenomics will speed 
up research on the rhizosphere’s microbial diversity, and rhizosphere engineering will 
lead to efficient modification of microorganisms for ecologically sustainable farming 
practices [315, 364, 365]. 

Various genetic engineering techniques and molecular biology approaches are 
being employed recently to improve the beneficial traits in plants and microorgan-
isms to improve soil health resulting into increased plant growth and crop yield [361, 
366]. In addition, identification of novel effective microbial inoculants, detecting 
particular bacterial gene sequences, analyzing population density with copy number 
of particular functional genes and the persistence of microbial inoculants in soil is a 
never-ending process to achieve desirable impacts on crop productivity [367–370]. 
The genetic diversity of rhizobacterial isolates is shown by DNA finger printing 
[371]. For instance, two efficient bacterial isolates i.e., Bacillus cereus (P31) and 
Achromobacter xylosoxidans (P35) were identified by 16S rDNA analysis out of 
seven bacterial strains isolated from surface-sterilized sweet potato roots and these 
strains were recommended to decrease chemical fertilizer consumption in sustain-
able agriculture [372]. Enterobacter spp. exhibiting PGP features and isolated from 
maize roots was phylogenetically described using the MicroSeqTM 16S rDNA tech-
nology, and it showed the closest similarity (99.4%) with Enterobacter asburiae 
[373]. Bacillus, Delftia, Methylobacterium, Microbacterium, Paenibacillus, Staphy-
lococcus, and Stenotrophomonas were identified in common bean based on 16S 
rDNA sequences [374]. The inoculation of Dianthus caryophyllus roots with Kleb-
siella SGM 81 having ipdC gene significantly altered plant development in both 
laboratory and field environments, and caused an increase in root hair formation 
suggesting increased synthesis of auxins [375]. The presence of the acdS gene 
was detected in nine strains using PCR amplification and Microbacterium sp. ECI-
12A showed the highest ACC deaminase activity (539.1 nmol α-ketobutyrate mg−1
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protein h−1) [19]. Amplification of the pqq gene (involved in phosphate solubiliza-
tion) revealed similarities between the indigenous and previously sequenced Bacillus 
licheniformis strains in this gene and its surrounding regions [376]. 

Multiple strategies are utilized by halotolerant PGPR in order to overcome the 
effects of salinity stress. In saline agroecosystems, salt-tolerant rhizobacteria boost 
plant performance under abiotic stress, which leads to higher crop output [377]. 
There is still a paucity of knowledge on the salt tolerance mechanisms of halo-
tolerant PGPR. This lack of knowledge includes bacterial genes and proteogenomics 
in osmotolerance as well as plant-microbial interactions in saline soil. In spite of this, 
numerous studies on salt-resistant rhizobacteria have been carried out in the last ten 
years in order to investigate the molecular processes of gene expression when salt is 
present in the environment [378]. Ma et al. [379] have proposed that understanding 
the regulation networks of salt-tolerant rhizobacteria during abiotic stress could be 
a critical way of combating such stressors and promoting global food production in 
an environmentally acceptable manner. This method might be used to develop either 
specific microbes or beneficent microbial consortium to boost plant development 
in a variety of soil conditions. Thus, plant/soil-optimized microorganisms may be 
employed as inoculum for various crops in various soils. Various reports indicated 
that crop-specific soil microbiomes improve plant-microbe interactions over time 
[380]. 

Recently, functional metagenomics provided a magnificent way of identification 
of various genes responsible for salt resistance in microorganisms. Liu et al. [381] 
carried out whole genome analysis of a halotolerant PGPR Klebsiella sp. D5A and 
it revealed the presence of salt tolerance genes with a wide range of pH adaptability 
and PGP traits including phosphate solubilization, IAA biosynthesis, acetoin, and 
2,3-butanediol synthesis, siderophore production, and N2 fixation. The salt-stress 
induced damage in citrus plants was reduced by treatment with Pseudomonas putida 
and Novosphingobium sp., which resulted in lowering the level of abscisic acid (ABA) 
and salicylic acid (SA), reducing the efficiency of photosystem II (Fv/Fm), increasing 
accumulation of IAA in the leaf and inhibiting accumulation of root chloride and 
proline during salt stress [382]. A salt-tolerant Enterobacter sp. UPMR18 strain 
containing ACC deaminase showed plant growth-promoting effects through induc-
tion of reactive oxygen species scavenging enzymes including superoxide dismutase 
(SOD), ascorbate peroxidase (APX) and catalase (CAT) and upregulating to ROS 
pathway genes [143]. In similar studies, a novel salt-tolerant bacterial strain Pseu-
domonas sp. M30-35 was obtained from the rhizosphere of succulent xerohalophyte 
shrub Haloxylon ammodendron, which showed salt and drought tolerance capabili-
ties. Pseudomonas sp. M30-35 was found to contain 34 genes possessing homology 
with certain genes associated with PGP traits and abiotic stress tolerance [144]. 
Bacillus safensis VK strain showed salt tolerance up to 14% NaCl and pH ranging 
from 4 to 8 [383]. Several genes were characterized by genomic studies of B. safensis 
strain, which were associated with functioning of PGP traits under conditions of high 
salt concentrations, drought, heavy metals, and polyaromatic hydrocarbons contam-
ination. Sapre et al. [173] isolated Klebsiella sp. IG 3 from the rhizosphere of wheat
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and it showed salt tolerance up to 20%. This strain positively modulated the expres-
sion profile of rbcL (codes for the ribulose-1,5-bisphosphate carboxylase/oxygenase 
RuBisCo) and WRKY1 (transcription factor dealing with plants reaction to biotic 
stress) genes under salt-stress conditions. 

An integrated strategy that included already identified genetic variants, using 
diversified and new sources to produce novel variations. Moreover, instead of 
focusing on a single attribute or characterstics during breeding, it may be more 
productive to look for combinations of characteristics (Table 13.2). A variety of genes 
involved in various pathways that increase plant tolerance to abiotic stresses have 
been used in the development of transgenic plants in recent years. Genes encoding 
different enzymes involved in promoting tolerance to multiple abiotic stresses 
through modifications in membrane phospholipids, production of osmoprotectants, 
and late embryogenesis proteins can be introduced into cereal or legume plants using 
single-gene transformation [384]. In legumes, mass screening is being used to iden-
tify salt-tolerant germplasm for enhancement of legume genotype. Sehrawat et al. 
[385] assessed 117 mungbean genotypes for salt tolerance and observed signifi-
cant diversity in their efficiency under salt treatment, and classifying them as highly 
tolerant, moderately tolerant, sensitive, and extremely susceptible genotypes. Char-
acteristics such as germination and seedling growth, proline content, photosynthetic 
efficiency, osmoregulation, crop yield, nodule formation, and ion homeostasis were 
used to screen genotypes for salt stress resistance.

Various reports on the salt tolerant transgenic plants have shown that activating 
a stress-response signal transduction pathway is an effective and potential method 
for increasing plant tolerance to biotic stresses [406–408]. Co-activation of various 
stress-response pathways, with either synergistic or antagonistic effects, may emerge 
from simultaneous exposure of a plant to multiple abiotic stress conditions. To 
deal with abiotic stresses, numerous distinct stress hormones, including ethylene, 
jasmonic acid, and abscisic acid or reactive oxygen species activation, receptors and 
signaling complexes, and networks of transcription factors and mitogen-activated 
protein kinase (MAPK) cascades are likely to communicate with one another. It 
was recently discovered that ethylene plays a fundamental role in the response of 
Arabidopsis to heat and osmotic stress. It was also observed that the expression of the 
transcriptional co-activator MBF1c in Arabidopsis enhances the tolerance of trans-
genic plants to these stresses by activating the ethylene-response signal transduction 
pathway [409]. 

ERF1 genes in various species have been frequently reported to participate in 
abiotic and biotic stress responses. The overexpression of ERF1 gene in Arabidopsis 
enhanced the defense of transgenic plants against P. cucumerina [410], as well as 
their resistance against drought and salt stress [411]. The overexpression of ERF1 
gene in wheat strengthened the responses of the transgenic plants to pathogen stress 
and several abiotic stresses [412]. In Arabidopsis, AtERF1 gene played a positive role 
in salt, drought, and heat stress tolerance by regulating stress-specific gene, and by 
integrating jasmonic acid, ethylene, and abscisic acid signals [413]. Overexpression 
of the pepper CaERF5 gene in tobacco plants enhanced the resistance to Ralstonia 
solanacearum infection under the influence of salicylic acid, methyl jasmonate, and
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Table 13.2 Transgenic plants having improved salt tolerance 

Crops Transferred gene Observations References 

Wheat Mt1 D Turgor maintenance [386] 

Brassica SOS1 Plasma membrane Na+/K+ 

antiporter 
[387] 

h-type Trx proteins, 
AtTrx-h2 

Improved antioxidant enzyme 
activity 

[388] 

Tomato BADH1 Improves salt tolerance; 
accumulation of betaine 

[389] 

SIMYB 102 Salt tolerance by regulating 
Na+-K+ homeostasis and ROS 
balance 

[390] 

Arabidopsis thaliana JcDREB Transcription factor [391] 

Soybean WRKY11 Improves salt tolerance [392] 

Chickpea P5CS Synthesis and accumulation of 
proline 

[393] 

Mungbean codA Improve abiotic stress 
tolerance 

[394] 

VrWRKY Enhance abiotic stress 
tolerance 

[395] 

Common bean Asr1, Asr2 ABA signaling pathway [396] 

Alfalfa CsALDH12A1 Improves salt tolerance [397] 

GmDREB1 Conferred salt tolerance [398] 

IbOr Increased tolerance to multiple 
abiotic stresses 

[399] 

Faba bean PR10a Synthesis and accumulation of 
osmolytes 

[400] 

Populus OsCYP714D1 Improved the salt tolerance [401] 

Pigeon pea OsRuvB Improve salt tolerance through 
increases in chlorophyll 
content, relative water content, 
peroxidase and catalase 
activity 

[402] 

Peanut AhWRKY75 Increased antioxidant activity [403] 

Potato StCYS1 High proline and chlorophyll 
content 

[404] 

Birch BpERF1.1 Improved tolerance to cold, 
salt and drought stress 

[405]

ethylene [410]. In similar studies, overexpression of the soybean GmERF3 gene, 
an AP2/ERF type transcription factor improved the tolerance of transgenic tobacco
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against drought, salinity, and even mosaic disease [411]. Zhang et al. [405] over-
expressed BpERF1.1 gene in birch (Betula platyphylla Suk.) using Agrobacterium-
mediated infection method and obtained 11 transgenic lines with improved toler-
ance against multiple abiotic stresses. RNA-seq analysis identified 689 differentially 
expressed genes (DEGs) in the transgenic birch compared with WT, including 228 up-
regulated genes and 461 down-regulated genes. Gene ontology enrichment analysis 
showed that among these DEGs, 273 genes were involved in various plant biological 
processes, and 83% of them were involved in cellular processes, metabolic processes, 
biological regulation and response to stimulus (11%). Thus, BpERF1.1 gene was 
found to improve the tolerance and resistance of birch against cold, salt and drought 
stress, probably by interconnecting with other genes involved in plant response to 
abiotic stresses. 

Conclusions and Future Perspectives 

Extensive studies have been carried out to analyze various environmental factors, 
which affect soil fertility and cause agricultural yield losses due to salt stress [6, 
45, 414]. The study of ecological and evolutionary responses to salt stress in agroe-
cosystems could benefit from the identification and examination of significant local 
microorganisms that are found in salty environments [415]. It is impossible to exag-
gerate the significance of using metagenomic, proteogenomic, and metabolomic 
approaches in order to harness and discover new PGPR, as well as specific metabo-
lites and upregulated gene expression for the salt tolerance [145]. Given the effects 
of climate change, screening of sufficient salt-resistant PGPR strains is needed 
that may provide tolerance to abiotic stresses in order to maintain crop quality 
[416–418]. For developing novel and effective bio-enhancers, bioinoculants, and 
bio-protectants, characterization of essential metabolites, such as osmoprotectants, 
anti-oxidant enzymes, biosurfactants, phytohormone precursors and nutrients are 
needed. In agriculture, microbial consortia have become increasingly popular that 
may provide tolerance not only to abiotic stress, but also give resistance against 
phytopathogens [419]. 

Abiotic stresses are one of the most serious barriers to agricultural production 
on a global scale. Salt-tolerant microorganisms that are associated with rhizoplane, 
rhizosphere, and endophytic bacteria can play an important role in conferring abiotic 
stress resistance to plants. Currently, a lot of efforts are being made to improve 
the field efficacy of ACC deaminase-producing halo-tolerant bacteria. For instance, 
significant efforts are invested in development of improved biofertilizer formula-
tions and bioinoculants to resist salt stress in wheat and cucumber such as chitosan-
immobilized aggregated Methylobacterium oryzae strain CBMB20 [420], super 
absorbent polymer [421], and Paenibacillus beijingensis BJ-18 and Bacillus sp. L-56 
[422]. Inoculations of effective salt-tolerant bioinoculants will assist in the mitigation 
of the adverse effects of climate change and help in enhancing crop productivity in 
salt-stressed soils contributing to an expanded global food supply for ever-growing
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global population. These salt-tolerant biofertilizers will provide phytohormones and 
nutrients, lower ethylene levels, induce novel plant genes to accelerate osmolyte 
accumulation, increase K+ concentration, reduce Na+ uptake, and ultimately main-
taining a high K+ ions. Numerous plant species have demonstrated salt tolerance as 
a result of bacterization with PGPR. 

The production of stress-tolerant cultivars through conventional breeding and 
genetic engineering is essential, but the process is time-consuming and expensive. 
In comparison, the utilization of microorganisms to alleviate the negative effects of 
abiotic stresses is less expensive, friendlier to the environment, and requires less time. 
To maximize the benefits of microbial inoculants and enhance plant development and 
tolerance to a variety of biotic and abiotic stressors, new strategies will be developed 
once it is understood how the various microbial populations and plant systems are 
connected to one another. In the future, more in-depth research focusing on the gene 
expression level and multi-functional PGP features of salt-tolerating rhizobacteria 
needs to be carried out in order to build tailor-made bioformulations that may mitigate 
the effects of salinity stress under changing climate conditions and may boost plant 
growth under abiotic stresses in saline soil [423, 424]. 
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