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Abstract. This paper introduces RL-Studio, an open-source software that eases
the implementation of reinforcement learning algorithms to solve a problem. This
software enables the integration of any simulator to recreate the problem where
a reinforcement learning algorithm can be applied. Some relevant advantages of
this tool are the generalization of common software components and the unified
architecture. RL-Studio permits to just focus on fine tuning the hyperparameters of
the algorithmand redefine the goal and reward function of the previously integrated
projects. In case a non-integrated scenario, algorithm or simulator is needed, RL-
Studio also provides some already integrated libraries that can be reused to save
time. It has been experimentally validated in research projects and some of the
canonical problems such as Robot Mesh or Mountain Car.
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1 Introduction

The use of autonomous agents has become popular in recent years. It is already com-
mon to find robots in extensive areas of society such as logistics automation and ware-
house robots, self-driving cars and aerial unmanned vehicles and even home vacuum
robots among many examples. It is now possible to travel in driverless vehicles of the
Waymo company in San Francisco or acquire home cleaning robots such as Roomba® or
Braava®. Traditionally the solution has been built through modular handcrafted pieces
of hardware and software, where each one has been designed to solve a minimal case,
and altogether has been able to obtain the solution. But autonomous agents are designed
to help and even replace human beings in tasks carried out in multidimensional fields.
Therefore, the complexity of agent control systems has increased in such a way that it
is very difficult to design them with those explicit programming methods. Traditional
methods do not scale well nor only in other fields, but even in their application domain.
Deep learning (DL) as a function approximator and feature learning has demonstrated
its excellence in finding low-dimensional patterns in multidimensional data so has made
possible to face real problems in complex environments. For this reason, DL is used
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extensively in visual object detection and perception. Supervised and semi-supervised
learning methods, using these DL techniques, process labeled datasets to find similar
patterns in the input data. Even with no enough labeled data, data augmentation can
help to generate synthetic data that help neural networks achieve good performance. DL
has demonstrated robustness in end-to-end solutions based on the direct understanding
of the input information for delivering a complete and functional result. There are real
business solutions implemented like Tesla Autopilot, in garbage collection to identify
containers, in waste recycling or even in garment recognition. However, DL needs tons
of labeled data and with these techniques alone it is not easy to guarantee that a neural
net understands the real complex environments. It is also necessary to learn to simulate
complex scenarios where there could be dangerous events. A dataset which undersam-
ples these important cases might yield a classifier which fails on them. Reinforcement
learning (RL) is based on behavioral psychology where the agent learns by interacting
in an environment through trial and error seeking to maximize reward and traditionally
has been used successfully in control tasks. In this type of problems an agent, a car or
robot, is interacting in an environment, such as a road, a city, or a room, at time-step to
obtain a reward. The agent has to learn which are the best decisions and actions at each
moment to learn the best strategy, the policy, that leads to optimizing the rewards in the
long term. The reward is one of the most important distinctions in RL, since the objective
sought is the maximization of the expected values of the cumulative sum of a signal.
The design of the reward function in an RL algorithm is a mixture of art and science,
achieved through testing hard work. Unlike the previous methods, RL algorithms do
not need massive training data to learn. The agent receives the information just having
contact with the environment in which it operates. But one of the main issues of robotic
learning is to collect a large amount of data autonomously and safely.Modern simulation
tools and RL methods, such as addressing partial observations, domain-randomization
or domain adaptation help reducing the reality gap in sim-to-real transfer scenarios. In
RLmethods we let the agent find the best solution so that it can be generalized to similar
domains without having to program explicitly. But creating a good policy representation
is not a trivial problem, and now other kinds of complex issues appear to solve as sample
efficiency, credit assignment, exploration vs. exploitation, or representation. To help in
domains with high-dimensional states and continuous actions, the use of DL algorithms,
as the representation learning part, within RL framework has created the new field of
Deep Reinforcement Learning (DRL). Developing RL models involves different steps.
One is to select the agent with the appropriate characteristics and sensors to correctly
read the information from the environment. Another is to choose the RL algorithm that
suits the goal. There are dozens and each of them has its own parameters that must be
adjusted. Additionally, each simulator has features that make it suitable for a specific
problem, and finally, the work process requires continuous trial and error testing, eval-
uating the training results, tweaking parameters, or even changing the design of certain
components.

The Reinforcement Learning Studio (RL-Studio) tool, the main contribution of this
article, is designed with the aim of facilitating the creation of RL models. It is modular,
it allows working with different agents, in any environment, and with any RL algorithm.
Any type of sensor suitable for collecting information can be designed and allows to
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integrate any simulation tool. All these features allow research experimental validation.
RL-Studio toolkit is open-source and easily downloaded1.

2 Related Works

In this section we provide a brief perspective of the state-of-art algorithms, methods
and tools in RL. Regarding algorithms, there are two main taxonomies in classical
RL, sample-based learning methods or also denominated value-based algorithms and
approximate solution methods or policy-based algorithms. The former is used in actions
and states in low-dimensionality problems and inside this category we can find dynamic
programming, Monte-Carlo methods, and temporal-difference methods. The latter can
work with real scenarios with continuous actions and states space and the solution they
provide is only approximate. Policy gradients are themost popular family ofmethods [7].
DRL algorithms fall in both categories and we discard other methods such as imitation-
based algorithms where the agents try to mimic expert actions.

2.1 RL Software Frameworks

There are several frameworks that allow learning RL models without having to program
from scratch, although some have different characteristics. Basically, frameworks are
modular, cross-platform and ease of running with many pre-implemented RL algorithms
allowing easy reproduction of training and results, making it painless to understand and
to prototype new research ideas. OpenAI baselines, supported by OpenAI company,
allows working with different state-of-the-art RL algorithms. It was design specifically
for RL research providing built-in simulated environments such as Atari games, board
games, 2D and 3D physical simulations, so it allows easily train agents, develop new RL
algorithms and compare them.Keras-rl based onKeras DL framework and developed by
Google, with easy integration with Tensorflow and OpenAI environments. Ray lib is an
open-source project developed at UC Berkeley that, in addition to having the preceding
characteristics, allows building distributed applications in large infrastructures and has
been included in themajor cloud providers.ReAgent byMeta company and thus supports
an easy integration with Pytorch. Acme developed by DeepMind focus on as a starting
block for novel researchers and designed to run single-stream or distributed agents.

2.2 Simulation Tools

Planning and control strategies in real robots are often expensive, time-consuming and
sometimes dangerous. So, powerful and realistic dynamic simulation tools have been
developed improving Sim2Real practice. The next simulators have been chosen consid-
ering their level ofmaturity, modularity, and popularity among engineers and researchers
in RL. All of them allow flexible level of control and can run in a fast and distributed
manner in order to provide the iteration time required for experimental research. Carla
is a domain-specific platform and has been built for the development of algorithms for

1 https://github.com/JdeRobot/RL-Studio.

https://github.com/JdeRobot/RL-Studio
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autonomous cars. It includes very real scenarios to test results thus it is widely used in
the RL research community.Mujoco is a free and open-source physics engine designed
for the purpose of model-based optimization recently acquired by DeepMind. It has
been developed with mind in optimization through contacts. Unity ML-Agents Toolkit
is a real-time 3D development general platform based in Unity game engine, able to
perform sensory, physical and task logic complexity. Gazebo is a simulation environ-
ment with a built-in physics engine called Ignition. Ignition allows you to simulate the
robot with realistic physics. Since Gazebo integrates very well with Robotic Operating
System (ROS) which is the main robotics framework, it has been widely adopted in
robotics community.

2.3 RL in Robotics

In recent years, RL has achieved human-level control in fields as diverse as video games,
Go game, financial industry, traffic and smart cities, education system and health as some
examples. In robotics the advantages of RL in online adaptability and self-learning
features of complex systems have developed considerable research in learning simple
manipulation tasks such as opening doors and stacking Lego blocks, or in to complete
object rearrangement tasks such as grasping an apple and putting it on a plate, moving
object flexible grasping [8], pushing objects to desired locations [6] visuomotor control
[5] object pushing and trajectory following [12], for satisfying relative object positioning
tasks [10], and for cloth manipulation such as folding different fabric types [1]. In
legged locomotion tasks, RL models are a good promise to design high performance
controllers for legged robots [4] and applications in which the robot can learn walking
and turning from scratch in the real world [11]. In navigation, RL methods enable
mobile robots to self-explore and self-learn by interactingwith the dynamic environment.
While in traditional programming every task involved could be carefully design, such
as environment perception, localization, pose estimations, obstacle avoidance and path
planning, with RL techniques have been possible build accurate end-to-end models
[13]. In global and local path planning, RL algorithms have achieved improvements
in accuracy, stability and robustness [9]. In Trajectory and route tracking, where the
robots track in a partially observable nonlinear dynamic environment, RL methods have
improved the real time adaptability of obstacle avoidance and navigation by trajectory
and route tracking techniques [3]. And finally, in autonomous vehicles RLmethods have
had remarkable success in end-to-end models ending in commercial proposals such as
[2].

3 RL-Studio Tool

RL-Studio is a modular open-source multi-platform command line software application
supported in Linux and Mac OS and developed in Python language. It currently works
with Gazebo and OpenAi Gym simulators, although Carla will be available shortly. It
enables the flexibility of configuring the agents, algorithms, environments and simulation
parameters by just modifying the configuration file used at launch time. It enables two
main use cases: training and inference mode. In training mode, RL-Studio permits to
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develop robotic brains that best adapt to a specific domain in stochastic environments.
In inference mode, RL-Studio allows to choose any of the trained robotics brains and
test them in the same or any other different environments.

3.1 Software Architecture

RL-Studio has been designed with four main logic components in mind. Agent contains
the definition of the training and inference agents and the necessary software utilities
for execution. RL algorithm where algorithms are found. Env holds the environment
features and simulation tools applied in every project. Based on OpenAI Gym, it acts as
an information processing engine. And finally in Simulator the agent features, sensors
and actuators to be launched by the simulator are found. The simulator processes the
dynamics physics knowledge of the environment simulating the real world. The informa-
tion flowing through the nodes is managed by ROS, a standard robotic communication
framework, that acts as middleware between agents and environment. To build a new
project from scratch, the following classes must be implemented: Environment class,
located in the Env package, interfaces the simulator sensors and actuators to both exe-
cute the actions indicated by the agent and to provide the reward and next state using the
step and reset methods. Algorithm class, located in the algorithm package, is in charge
of learning from the experience to finally select the action which maximizes the reward
and leads the agent to its objective. Agent class, located in the agents package as the
core class of the project, is in charge of building the simulation according to the models
and worlds configurations, loading the trained algorithm in inference mode, calling the
environment class methods to execute the selected actions, feeding the algorithm with
the resulting rewards, saving the trained algorithm in training mode and tracking the
performance making use of the logging and monitoring libraries. In RL-Studio operat-
ing cycle, each agent acts as an independent node in ROS, obtaining the data through
the onboard sensors, e.g., a camera, and publishing it through the ROS topics. The RL-
Studio environment subscribes to the agent topics and receives the data that is used to

Fig. 1. RL-Studio satisfies the standard RL cycle. ROS handles information between nodes
through topics. Highlight on the right, an agent can actuate in training mode where the agent
executes the corresponding RL algorithm. Or in inference mode, the already trained brain is
executed.
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generate the necessary information that it sends back to the agent actuators, also through
the ROS topics. Therefore, RL-Studio satisfies the standard RL cycle where the envi-
ronment generates the state and the reward at each time step and the agent gives back
the corresponding action as shown in Fig. 1. RL-Studio currently supports the simulator
Gazebo and the algorithms Q-learning and DQN.

3.2 Configuration

The configuration validation has been generalized to just focus on adding, removing or
modifying parameters that will affect our agents both in learning or inferencing mode.
These configuration parameters have to be provided in a yaml file, where the agent,
algorithm, environment, simulation tool and execution mode, training or inference, are
setting. RL-Studio builds the scenario and starts its execution, and for that it needs
some of the following input parameters: 1. Agent: width, height, weight, sensors, etc. 2.
Actions: number of actions and values. 3. Environment: start pose, world specifications,
maximum steps per iteration… 4. Algorithm hyper-parameters: learning rate, discount
factor, future rewards relevance…5. Training configuration: savemodel flag, logs folder,
logs level… 6. Inference configuration: inferences file name and actions file name.
Depending on the mode input parameter, RL-Studio runs in training or inference mode.

3.3 Training and Inference Mode

Trainingmode allows to create reinforcement learningmodels that will be saved for later
use. In the training mode execution flow, first RL-Studio loads the training configura-
tion settings and validates the integrity. Then, it initializes the project implementation
and starts the training: the simulator engine and the configured training algorithm are
launched, the configured environment is built from an existing or newly created imple-
mentation and monitoring utilities are called. The environment, as an OpenAI Gym
based, plays an important role in this mode, and it is used as a library to interact with the
simulated world. It implements the reset and steps execution behavior which retrieves
the state the agent can read from sensors and the rewards obtained in every state. The
goal of inference mode is to test whether robotic brains can generalize to other envi-
ronments. Therefore, the execution flow is similar to the training mode, except that the
trained brain to be tested must be included as a parameter in the configuration file.

3.4 Logging and Monitoring

Every training carries out with RL-Studio is registered in the desired location through
the configuration file. Directories are automatically created, in case they do not exist,
to save the trained brains as well as the log files necessary to analyze training or infer-
ence execution. Also, some error messages and common helpful information have been
generalized to be imported in any integrated project. Some libraries have been imple-
mented to monitor the evolution of training in the RL-Studio projects: LivePlot library
is based on matplotlib2 and renders a graph of either episode rewards or episode lengths.

2 https://matplotlib.org.

https://matplotlib.org
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Stats\_recorder stores in json format the episode lengths, episode rewards, episode types
and their timestamps. Video_recorder optionally renders a movie of a rollout.

4 Experiments

RL-Studio has been validated building and collaboratively evolving some of the
following research projects.

4.1 Robot Mesh

The problem to solve is to make an agent learn the optimal path to the goal as soon
as possible inside a mesh. The provided environment permits performing one of four
actions, ahead, back, left and right, and each simulation step tried to get closer to the
location/state in the boardwhichwas configured as goal. This problemhas been validated
in RL-Studio shown in this video3 with Q-learning algorithm based on the hyperparam-
eters obtained after several tests, γ = 0.95, α = 0.9, exploration min = 0.00001 and
exploration decay = 0.999, a sparse reward function with 1 when the goal is reached
and 0 otherwise and the input sensory information has been the position of the agent,
x and y coordinates, running in Gazebo simulation tool, Fig. 2 left. As we can see in
the Fig. 2 right, the agent learned the optimal path to the goal in approximately 100
iterations. In this problem, RL-studio has been especially useful to easily training and
validating the inference mode.

Fig. 2. Left: RobotMesh inRL-Studio usingGazebo simulator. Right: Training steps per iteration,
showing model stabilization after 100 episodes.

4.2 Mountain Car

The objective has been to teach a car how to get out of the valley and reach the peak of
a mountain, Fig. 3 left, in less than 300 steps just applying one action, force to right,
to left or do nothing, every 0.5 s. It has been needed to get farther from the goal to be
able to reach it. Thus, defining the problem, action and states, and the hyper-parameters

3 https://www.youtube.com/watch?v=36Zko9hSY6k.

https://www.youtube.com/watch?v=36Zko9hSY6k
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configuration has been more complicated so the agent could learn either the optimal or
a feasible sequence of steps to accomplish the objective. In this case we have solved
the problem using Gazebo, Q-learning algorithm, the state space defined by discretized
vehicle coordinates received by the GPS-simulated input sensor, x = [−10, 10], and the
discretized linear velocity, v = [−100, 100]. The reward function is 1 when the goal is
reached and 0 otherwise and the best hyper-parameters configuration tested has been γ

= 0.9, α = 0.2, exploration min = 0.01 and exploration decay = 0.99995.

Fig. 3. Left: Mountain-car in RL-Studio using Gazebo simulator. Right: Training steps per
iteration, starting model stabilization after 100 episodes.

As we can see in the Fig. 3 right, the agent considerably improved its performance
as it learns. In this problem, RL-Studio has been especially useful to build the problem.
Thanks to the easy way of configuring the actions to be applied, the agent to be used and
the monitoring libraries already integrated, we could perform multiple tests to solve the
canonical mountain car problem as it can see in this video4.

4.3 Formula1 Visual Follow-Line

The agent is based on a real Formula1 (F1) car and it is endowed with a built-in color
camera as input sensory data for reading the information retrieved by environment. The
environments designed are several circuits with different characteristics of length and
curves as can be seen in Fig. 4. They are inspired by real F1 circuits and each one has
different light conditions, road textures, size straights and pronounced curves what helps
us understand the learning generalization capabilities of the model5.

Fig. 4. Some of the circuits in RL-Studio. From left to right: Simple circuit, Nürburgring and
Montreal.

4 https://www.youtube.com/watch?v=KZjDe6N-d0k.
5 https://www.youtube.com/watch?v=3jdxZTjPCss.

https://www.youtube.com/watch?v=KZjDe6N-d0k
https://www.youtube.com/watch?v=3jdxZTjPCss
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The robot goal has been to follow the center red line of the road as closely as possible
and without leaving the road as shown in Fig. 5. The environment retrieved a reward
that tells the agent how good is the action taken, following the standard RL cycle.

Fig. 5. Left: F1 circulating in the Simple circuit and taking a curve to the left from two
perspectives. Right: The same F1 agent in Montreal circuit.

In this project Q-learning has been used as RL algorithm and Gazebo tool as a
simulator. Q-learn is a tabular RL algorithm admitting a space of actions and states of
low dimensionality. Therefore, the raw input sensory data must have been processed to
obtain the appropriate information, simplifying it to a set of positions that indicates how
close or far the car is from the center of the red line. Every input frame is separated in
17 vertical columns, from −8 to 8 including 0, each of them representing a position or
state. In this project, the F1 has been trained with 1 point of perception, so the state will
be between -8 to 8. Knowing only the lower half of the image captured by the camera
sensor contains the road information, and after various tests, we take as a perception
point a distance of 60 pixels below the middle of the image, Fig. 6. So, the distance from
the center of the image to the center red line of the road will give us the state of the car
at each time step. In RL-Studio is very easy to configure different points of perception.

Fig. 6. Simplified perception with one point

Likewise, we have created a set of discrete actions defined as a vector a = [v, w]
which contains the two degrees of freedom that a planar vehicle needs, linear and angular
velocity in m/sec and rad/sec respectively. So, we have defined three actions, action A
= [3,0], action B = [1, 2] and action C = [2, −1]. Training with low speeds allows us
have not taking into account the kinematics and dynamics of the vehicle for the model.
The below defined reward function R, maximizes the value being close to the center, c,
of the road line, decreasing as it moves further away. A high penalty has been defined
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in case the car goes off the track to help make learning faster. Remember that F1 does
not have the stop action defined to prevent unwanted behavior.

R =

⎧
⎪⎪⎨

⎪⎪⎩

10 c < |0.2|
2 |0.4| > c > |0.2|
1 |0.9| > c > |0.4|
−100 c > |0.9|

Three training have been executed in the Simple circuit for two hours each one and
4000 steps in every episode, green, yellow and blue in Fig. 7 left, with hyperparameters
optimized to γ = 0.9, α = 0.8 and exploration decay = 0.998. In all of them, the agent
has been able to complete the circuit and in two of the three trials, green and yellow,
converge very quickly in just less than 10 epochs and accumulating high reward. Namely
it spends more time in regions nearby the center of the line where the reward returns
the highest values. Likewise, the number of steps taken in every training is showing in
Fig. 7 right.

Table 1 contains more information about the three experiments. We can see the
algorithm has learned by improving in each one of the episodes not only in completed
lap time, but in a smaller number of episodes and in less exploration, time given by the
variable ε, where an ε nearby to 1 tells the exploration time is low. Time per lap (min.)
shows time in minutes to complete the first lap. Total epochs shows number of episodes
carried out in two hours.

Fig. 7. Results of the same three training sessions in the Simple circuit, with a simplified percep-
tion point and three discretized actions. Left: Cumulated reward in three Simple circuit training.
Right: Number of steps in every training in Simple circuit training.

We have taken the time per lap as a quantitative metric to know how the algorithm
has learned and the percentage of circuit completed, as a qualitative metric, has allowed
to know if the agent has completed the circuit correctly. In this last case as all training
converged, the values have been 100%.
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Table 1. Three different training in Simple circuit with one point of perception and the three
defined actions A, B and C.

Simple circuits

Training 1 2 3

Time per lap (min.) 20:06 6:53 4:26

Epochs to complete 20 2 1

Total epochs 60 10 10

ε 0.8 0.84 0.85

Circuit completed 100% 100% 100%

5 Conclusions

In this paper we have presented a tool to build and test RL models applied to robotics.
The proposed architecture, modular-based, has been validated in three different robotics
projects where it has demonstrated its robustness, effectiveness and usability. It allows
indirect programming with RL based methods in such a way that defining the space of
states and actions, robots can find the policy that maximizes the sought objective. RL-
Studio covers the cycle of any standard RL model and is easily configurable for training
and inference, allowing to configure all the pieces that make up an RL model. As future
work, we plan to integrate other simulators used in the scientific robotics community
like Carla, along with more state-of-the-art algorithms in RL such as DDPG and PPO
which allow to work with real continuous spaces. We will also take advantage of its
modularity along with Docker to create end-to-end solutions with hardly any changes
in the configuration.
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