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Abstract. Autonomous navigation in dynamic environments is a nowa-
days unsolved challenge. Several approaches have been proposed to solve
it, but they either have a low success rate, do not consider robot kinody-
namic constraints or are not able to navigate through big scenarios where
the known map information is needed. In this work, a previously existing
planner, the Strategy-based Dynamic Object Velocity Space, S-DOVS, is
modified and adapted to be included in a full navigation stack, with a local-
ization system, an obstacle tracker and a global planner. The result is a
system that is able to navigate successfully in real-world scenarios, where
it may face complex challenges as dynamic obstacles or replanning. The
final work is exhaustively tested in simulation and in a ground robot.
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1 Introduction

Robotic autonomous navigation is a problem that has been addressed in many
works. Traditional planners have proven to be able to navigate successfully and
efficiently in static scenarios. They use the information received by the robot
sensors to compute a path that it must follow. Nevertheless, most of that com-
monly used planners fail when they face dynamic obstacles, as they do not take
their variables into account, as in the scenario shown in Fig. 1.

A dynamic obstacle is an object that does not have null velocity and the
robot should avoid. Not only the current position of the obstacle must be taken
into account, but also other variables as its velocity or its trajectory. Moreover,
the velocity of the obstacle may vary. All of those aspects must be considered.
Otherwise, the robot could collide with dynamic obstacles or have suboptimal
behaviors.

A planner designed to navigate in dynamic scenarios is the S-DOVS, pro-
posed in [1]. It uses the Dynamic Object Velocity Space (DOVS) to identify in
which state the robot is and its relation with the environment. Based on that, it
identifies a situation and applies a velocity to the robot according to a predefined
strategy. The planner differs from other planners in the fact that it considers the
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Fig. 1. An autonomous robot navigating in a dynamic scenario.

robot kinodynamic constraints and uses a deep abstraction of the environment,
which is the DOVS.

The S-DOVS planner, however, has some limitations. It is able to navigate
through two points that are directly connected, but it is not able in isolation to
reach a goal in a big known map, where it should navigate through intermediate
goals to exploit the map information and connections. It is not able to avoid
convex objects or with big walls, or trap situations, where a replanning behavior
would be intended. Moreover, it assumes perfect knowledge of the environment,
itself and other obstacles.

In this work, we improve and complete the work presented in [1] to include
a modified version of the S-DOVS planner in a full navigation stack, obtain-
ing an autonomous robot that may navigate autonomously through real-world
scenarios.

2 Background

2.1 Related Work

We can find in the literature a wide range of iterative motion planners. They
compute a safe plan to reach the goal, recomputing it reactively if they find any
obstacle that interferes with the path. The Dynamic Window Approach (DWA)
[2] is a well established and widely used local planner for static environments
and non-holonomic robots, which computes the next motion command in the
robot velocity space by optimizing a criterion that weights maximum velocities,
distance to obstacles, and motion towards the goal. It only contemplates the
velocities reachable by the robot within its kinodynamic constraints, but does
not consider future collisions with obstacle trajectories. In [3] the global dynamic
window approach is also applied for computing high-velocity motions.

Other approaches include the representation of the robot movement as the
result of potential forces, as the artificial potential fields presented in [4] or
representing the environment as a spring-mass system, as the elastic band [5].

The previous works develop planning methods for static or no highly dynamic
environments. In [6–8], planners for dynamic environments are developed.
Including dynamic obstacles in the model requires a more complex represen-
tation than just using obstacles’ positions as if they were static. There is a wide
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range of methods that use the velocity of the obstacles in the model. Two models
have been widely used in the literature. One of them are the inevitable collision
states (ICS), introduced in [9], where the dynamics of the system and the obsta-
cles are used to compute future states where a collision is inevitable. The other
one is the Velocity Obstacle (VO), introduced in [10]. The VO is defined with
the trajectories the dynamic obstacles have in time, computing those that could
cause a collision with the robot. The velocities that are not inside the velocity
obstacles are available to be chosen by the robot. The model ensures also that
the robot dynamics are respected.

In [1], a model to represent the environment dynamism is defined for non-
holonomic robots, the Dynamic Object Velocity Space (DOVS), where the robot
kinodynamic constraints are included. Using this model, a strategy-based plan-
ner is developed, the S-DOVS, which identifies a situation among several defined
as a function of the relative robot and moving objects variables. For each situa-
tion, the method applies a different action (robot linear and angular velocities),
balancing the time to goal and robot safety.

In recent years, learning approaches to solve the problem of motion planning
in dynamic environments have gained importance, in works like [11–13] or [14],
which also uses the DOVS. They try to use reinforcement learning to solve the
limitations of model-based approaches in problems with high complexity and a
big number of variables. However, the gap between the light-weight simulations
used to train and the real world is huge. The simulators are not able to reproduce
exactly the real-world physics and randomness, meaning that the interactions
with the environment are biased. They do not consider robot kinodynamics,
assuming the robots do not have acceleration constraints, may choose any veloc-
ity at any time and they may have maximum linear and angular acceleration at
the same time. Moreover, they usually suppose the robot is holonomic, which is
not common in real life, or has perfect knowledge of the environment.

2.2 Dynamic Object Velocity Space (DOVS)

The velocity space (VS) is defined as the set of velocities the robot may reach
with the constraints of maximum and minimum velocities imposed. Some of the
velocities would make the robot collide with another object, while others are safe
velocities. The Dynamic Object Velocity Space (DOVS) is addressed in [1]. This
model abstracts the dynamic environment, representing safe and unsafe velocities
the robot can select every sampling period. The Dynamic Object Velocity (DOV)
is defined as the velocities of VS that can lead to a collision in a time horizon.
The methods that use this model, may choose the next velocity command in a
control period among the safe velocities outside DOV.

DOVS is used to navigate through dynamic scenarios by computing safe
motion commands within a time horizon. The robot size is reduced to a point,
enlarging the obstacles with the robot radius. Then, for each moving obstacle,
the collision band is defined as the area swept by an enlarged obstacle whilst it
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moves. In each possible pair of angular and linear velocities, the robot motion
results in a circular trajectory while the velocities are kept. The intersection of
the trajectories with the collision band define the possible collision points of the
robot with the obstacle, if at the time in which the robot passes through that
point, the obstacle is there too. The maximum and minimum velocities that lead
to a collision with every obstacle are computed, obtaining from the sets of safe
and unsafe velocities. A dynamic window is used to set the velocities the robot
may take in the next step within its kinodynamic constraints.

The DOVS may be graphically represented, as it is shown in Fig. 2. In the
image, safe velocities are represented in white, unsafe are dark, the dynamic
window is represented with a green rhombus, the velocities that lead to the goal
with a magenta line, safe velocities close to the ones that align the robot to the
goal with a green line, and the big triangle represent the robot velocity limits
corresponding to a differential drive robot.

Fig. 2. A graphical representation of the DOVS.

The robot may choose a velocity among a set of only 8 possible velocities: The
velocities of the extremes of the rhombus, the current velocity of the robot (center
of the rhombus), the intersection of the green line with the rhombus (minimum
and maximum velocities that lead to the goal) and the velocity that leads to
the goal with the current linear velocity. Those last three velocities are only
available if the velocities that lead to the goal are inside the dynamic window.
The robot selects an action based on strategies, as explained in [1]. Depending on
the situation of the agent and the objects that surround it, a state is identified
as one of the predefined situations in a tree. For each recognized situation, a
different behavior is designed, so that the robot avoids collisions and reaches the
goal, balancing the safety and the maxima robot velocities in every sampling
time. There is an extension of this work [14], where the predefined strategies are
substituted by a decision-making process using a basic reinforcement learning
method based on Q-tables for representing the accumulated reward for each
state.
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2.3 Contribution

Many of the works using learning based approaches for navigation in dynamic
environments are typically trained in unrealistic simulations, while the S-DOVS
model-based planner was designed regarding real-world physics and dynamics.
Nevertheless, the original S-DOVS planner has some limitations, as it is a local
planner to move between goals. It is not integrated with a global planner to
navigate in environments with multiple rooms or convex objects due to the
absence of a map, and has not a replanning capability in trap situations. It also
assumes that the robot and obstacle localization is perfectly known, focusing on
the navigation problem. The contributions of this work are:

– Modifications and improvements in the S-DOVS original model.
– A decentralization of the DOVS model, allowing a multi-robot execution, with

each robot performing its own computations.
– An adaptation of an obstacle tracker to be used alongside the S-DOVS, getting

rid of the perfect knowledge of the environment.
– An inclusion of a global planner that is able to work with the S-DOVS while

enhancing its strengths.
– A ROS implementation and adaptation of the model, allowing the execution

in both simulation and the real world, respecting robot kinodynamics in both
of them.

– Evaluation in simulation and real-world experiments.

3 Approach

The approach taken was designing a whole robotic system to be able to navigate
in complete real-world dynamic scenarios by using S-DOVS.

3.1 Decentralization and ROS

The first step of the work was adapting the program to be used directly on a
real robot. The initial setup proposed in [1] was purely written in C++, and
all the computations were achieved by the main program. The ground truth
information was also provided by the simulator, not by any sensor. The initial
step was adapting the algorithm to be used with the Robotic Operating System
(ROS) [15], an open-source framework that includes a set of libraries and tools
for robotic applications. A simple diagram of the ROS aspects used in this work
and the way they work is shown in Fig. 3.

Stage [16], which is one of the best simulators integrated in ROS, was used.
It is a lightweight simulator that is able to include multiple robots in the same
scenario with few computational resources. In addition, it simulates realistically
the robots’ dynamics and kinematics, as well as their sensors and world physics.
The simulator is modified so that collisions are detected and the agents may
be teleported to start a new episode without restarting the simulation. Two
types of agents were developed. Some of them, active agents, use the S-DOVS
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Fig. 3. A simple diagram of ROS. Sensors information is used for localization (AMCL
node) and planning (typically move base node).

algorithm for navigation. The others have a preferred linear and angular velocity,
which they keep until they find a wall. Then, they turn around and restore their
previous velocities. Therefore, passive agents do not avoid collisions and may
act as dynamic obstacles. The launching is performed with an automatic script
that creates the agents, the environment and launches them. An example of
simulations with different number of agents is shown in Fig. 4.

(a) 1 active, 15 passive (b) 7 active, 5 passive (c) 9 rooms scenario

Fig. 4. Example of different scenarios in Stage. Passive agents are in black and active
agents (with a laser sensor) in the same color as their goals. (Color figure online)

3.2 Localization

The robot needs to know where it is to be able to navigate in a scenario. In a
centralized program and in simulation, the position of the robot is known. Stage
does it, and this approach is used for passive agents, which do not perform any
computation. Nevertheless, active agents should behave as in the real world, and
they should not use that information. As sensors, the robots only have a 2-D
LIDAR sensor and the wheels encoders for estimating the odometry.

Having the static map of the scenario and the 2-D laser scans from the
onboard rangefinder sensor, the approach applied for localization is using Adap-
tive Monte Carlo Localization (AMCL) [17], provided in the ROS navigation
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stack. It uses a high number of particles that are placed in possible robot poses.
As more measurements are collected, the particles are updated and sampled in
the places where the robot is more likely to be, converging to the robot’s current
position after a few iterations. Therefore, the robot is localized by using the
AMCL, which takes as the input the map, the 2-D laser scan, the initial position
and the encoders’ measurements; and publishes the robot pose in the map frame.
A representation of the AMCL in a real execution is shown in Fig. 5(b).

(a) Scenario in
Stage

(b) RVIZ with
AMCL

(c) RVIZ with ob-
stacles.

Fig. 5. The visualization of Stage and what the robot senses in RVIZ; with AMCL
pose (red), particles (blue) and laser scans in (b); and obstacles and odometry in (c).
(Color figure online)

3.3 Global Planner

The S-DOVS local planner is able to navigate in dynamic environments, where
the initial position and the goal are connected with a straight line, as the other
planners for dynamic environments in the state-of-the-art. Nevertheless, to nav-
igate in the real world, using the information extracted from a known map is
helpful. The robot could find a large wall that should surround or could be
trapped by two walls or by other obstacles temporally stopped, problems that
could be sorted out by a global planner. Moreover, the original static map may
be dynamically updated, so that the robot could add sensed static obstacles and
take them into account in new plans. For instance, the robot may try to enter a
room through a door, find out that the door is closed, and replan to find a path
through a different entrance.

The typical approach in robot navigation is having a global planner comput-
ing a dense path of points and the local planner in charge of following them.
However, one of the key aspects of the S-DOVS is that it takes only one point as
a goal that could be far from the initial pose, and plans the trajectory in advance
with the estimated velocities of the obstacles. Thus, the S-DOVS should receive
points that are connected in the map and far enough from each other, so that it
has the freedom to maneuver properly.

In this work, the A* implementation of the ROS standard move base has been
used as a preliminary global planner, to compute an initial global path. Moreover,
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the map is kept updated so that the global cost map takes into account newly
seen static obstacles, and the A* algorithm plans accordingly. The inflation ratio
of the cost map is set to the double of the robot size, so that the S-DOVS has
enough space to choose its own direction.

From the initial global plan precomputed by the A*, our global planner
takes one point per square meter, ending up in a plan with separated points.
Intermediate points in a straight line of the plan are undesirable, as the S-
DOVS could have suboptimal performance if trying to reach all of them instead
of computing the velocities to reach the last one. To remove them, for each three
points, if they could be considered to be in the same line, the point of the middle
is removed. To check it, we test whether the slope of the line that passes through
the first and the second points is similar than the slope of the line that passes
through the first and the third points. This is done with the following equation:

y1 − y2
x1 − x2

≈ y1 − y3
x1 − x3

=⇒ |(y1 − y2)(x1 − x3) − (y1 − y3)(x1 − x2)| < ε, (1)

where ε is a constant set to 0.05 and the points coordinates are (xi, yi).
When the robot gets close to an intermediate goal, but before it is reached,

the S-DOVS is fed with the next goal of the path, so that the robot does not
stop in the points of the path and moves fluently. In addition, when the robot
gets too far from the plan computed by the global planner or stops because it
is in a trap situation, a new plan is recomputed. With this behavior, the robot
follows points that are adapted to the trajectory of the S-DOVS and is able to
replan when the map is updated with new static obstacles that block its way.
An example of this replanning behavior is shown in Fig. 6.

(a) The original path (b) The path after replanning

Fig. 6. A visualization of the global planner behavior. The computed path is shown in
blue. The robot tries to reach the goal with the shortest way, but replans a new path
after updating the map with the obstacles. (Color figure online)

3.4 Obstacle Tracker

In a realistic scenario, each active agent must gather the information of the
other obstacles from the sensor measurements. The DOVS model uses the cur-
rent obstacles’ position, radius and velocity to predict their trajectory and their
collision band; which must be computed using the LIDAR sensor.
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To solve this problem, the work presented in [18] is used. It first takes the laser
measurements and group them to form circles or segments. The obstacles’ center
and their size (radius or length, respectively) are stored. Then, an Extended
Kalman Filter is used to track the measurements in time and check whether new
obstacles discovered belong to previous measurement or not. The size, position
and linear velocity of the obstacles is tracked through the time. Moreover, if an
obstacle is no longer seen, it keeps its track a few steps in case it is seen again.

That work is extended, as the orientation and angular velocity of the obstacles
are needed too. The orientation is computed by using the direction of the obsta-
cle trajectory, while the angular velocity is computed by tracking the change
in the orientation with a high frequency. This is performed to be aware of sud-
den changes in the obstacles’ motion. Nevertheless, spurious measurements or
occlusions lead to wrong estimations. Thus, a median filter is used to remove
wrong angular velocity estimations. A visualization of the obstacle tracker in a
real execution is shown in Fig. 5(c).

3.5 Modifications in S-DOVS

One of the main contributions to the original model is the inclusion of segment
obstacles. In the original version, all the obstacles were treated as circles, defined
by their position, velocity and radius, and walls would be treated as a group of
circles (inaccurate and curvy). The solution designed was introducing segment
obstacles detected by the obstacle tracker to the model. The way to introduce
the segments in the DOVS was by saving the points of the extremes. If a tra-
jectory intersects with a point that is between the extremes of the segment,
the velocity that leads to that trajectory is forbidden (any velocity in an early
implementation, changed as shown later).

Strategies that make the agent choose velocities that lead to trapping sit-
uations or situation with small margin to react have been removed, as well as
some other risky situations, such as trying to accelerate when there are no free
velocities to try to find any (the new behavior is braking to avoid running over
pedestrians).

Another change made is a modification in the calculations of the forbidden
velocities for static obstacles. An obstacle is considered static if it is a segment or
its velocity is smaller than 0.1 m/s (in the original model, the minimum velocity
to be static was 10−5 m/s, but in the real world estimation errors may be found).
The original model sets that any trajectory that collides with an obstacle in any
time is forbidden. However, that could be too conservative for static obstacles,
which may be easily avoided. In that case, the trajectories are only considered
forbidden if the distance following that trajectory is bigger than the distance
necessary to make the robot brake, multiplied by a safety factor. That distance
is defined with the following formula:

brake distance =
v2

2 ∗ max(Δv)
(2)
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4 Experimental Results

The videos of all the experiments may be accessed in the following link: https://
youtu.be/fGHZiMt-Yao.

4.1 Simulation Experiments

In the simulation experiments, the effectiveness of the global planner is tested.
The global planner should help the S-DOVS to avoid collisions by using the
previous static map information, and also by adding new static obstacles to the
costmap that are avoided with the global plan.

Two different kinds of experiments are performed. The first ones use a simple
4 m x 4 m room as the scenario. In that scenario, static and dynamic obstacles are
randomly placed, whose velocities are random too. The robot starts in a random
position and has to navigate to a goal. A set of 200 scenarios are generated
for any number of obstacles in the range 1 to 15. The robot ties to complete
the same scenario both with only the S-DOVS and with the global planner too.
With these experiments, we want to prove that the global planner not only does
not worsen the performance, but also improves it. Theoretically, in that kind of
scenario, the global planner would not be needed. Nevertheless, the addition of
newly seen static obstacles to the costmap could help.

The other kind of experiments use the same structure as the previous one.
The only difference is that the map changes. Instead of only one room, 9 rooms
are included, as in Fig. 4. In this kind of scenario, the S-DOVS planner will face
convex obstacles that could not avoid.

The results obtained in the experiments are shown in Table 1. The robot
is able to reach the goal in more episodes when it uses the complete naviga-
tion stack, even on the map with only one room, due to the fact that obstacles
could remain static in the way to the goal. The global planner adds them to the
cost map, helping the S-DOVS. On the 9-room map, the benefits are clear. The
S-DOVS needs to reactively know how to navigate through the rooms. The inter-
mediate goals sent by the global planner makes it know how to avoid properly
the walls, which could be interpreted as convex obstacles. The approaches per-
form similarly in terms of time in the single-room map, and comparably in the
multi-room map although the whole system is clearly more safe and successful.

Table 1. Difference in success rate (number of success complete system
number of success S-DOVS only

) and time rate

(mean time complete system
mean time S-DOVS only

), on a map with a single room and with 9 rooms, for the
same 200 random scenarios for each number of agents.

Map Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Single Success 1.02 1.12 0.99 1.05 1.02 1.19 1.19 1.02 1.16 1.06 1.23 1.06 1.06 1.29 1.39

Time 1.02 1.01 0.97 0.99 0.98 1.09 1.05 1.00 1.06 1.08 0.93 1.03 0.89 1.06 1.11

Multi Success 3.09 2.89 3.41 2.84 3.09 4.16 4.11 3.08 3.67 3.21 3.73 2.86 3.93 3.52 3.53

Time 1.09 1.32 1.11 1.07 1.21 1.08 1.13 1.07 0.95 1.11 1.25 1.24 1.10 1.10 1.11

https://youtu.be/fGHZiMt-Yao
https://youtu.be/fGHZiMt-Yao
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4.2 Real-world Experiments

The whole system has been tested on a Turtlebot 2 platform with a NUC with
Intel Core i5-6260U CPU and 8 GB of RAM, equipped with a Hokuyo 2D-LIDAR
sensor.

The system was analyzed in two experiments. One experiment checked
whether the robot could replan properly in the real world. It was sent to a
goal and, when the robot tried to follow the closest path, it found a closed door;
so it needed to replan and go through an alternative path, as seen in Fig. 7, when
the robot has just replanned. The other experiment performed was navigating
autonomously in a room with other people acting as dynamic obstacles. In both
experiments, the robot was successful, navigating autonomously by using the
whole integration of the system. An example of navigation may be seen in the
previously shown Fig. 1.

Fig. 7. An image where the robot has just replanned after detecting a closed door,
with the global plan shown in red. The global costmap is also shown. (Color figure
online)

5 Conclusion

In this work, we develop a complete system that is able to navigate autonomously
in dynamic environments, avoiding collisions while minimizing the time to reach
the goal. The S-DOVS local planner has been improved and adapted to work
in the real world and in realistic scenarios, also considering the robot kinody-
namic constraints, which are avoided in many works in the literature. The local
planner is integrated in a ROS full navigation stack, a localization node and a
global planner. In addition, the proposed navigation stack could be used in other
planner intended for dynamic scenarios. The system has been tested in several
simulation and real-world experiments, proving a good performance, mainly in
more complex scenarios having several rooms.
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