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Abstract. Odour Source Localisation (OSL) is the task of finding the
origin of a chemical emitting event by reasoning from observed mea-
surements. Multiple cost functions have been proposed to assist in the
decision-making process of cognitive strategies, but it is not yet clear
which of these information metrics performs better in the OSL process.
Additionally, most of these works have only been validated in simulation
or in small controllable conditions such as wind tunnels with the agent
starting the search close to the source position, raising additional ques-
tions about their performance in real-world scenarios. This work aims
to compare the performance of cognitive search strategies between three
distinct information metrics: Entropy, Kullback-Leibler (KL) divergence
and Free Energy, and at the same time, evaluate their efficiency in a
natural water stream with an Autonomous Surface Vehicle (ASV). All
three strategies successfully locate the source in most of the trials, with
Entropy and KL showing similar performance. Free Energy had a lower
success rate than Entropy an KL but generated more efficient travelled
paths, at the cost of a higher computational effort.

Keywords: Odour source localisation · Bayesian inference ·
Information-theoretic · Field robotics · Autonomous surface vehicles

1 Introduction

Rivers and lakes sustain a large bio-diversity of animals and plants and play a
major role in supplying freshwater to cities and agriculture fields. A chemical spill
in such environments can cause a negative impact on the balance of the ecosystem
by introducing harmful substances into the water stream. The dispersion of
the contaminants through the moving current originates an odour plume that
can endanger humans and living organisms. Odour Source Localisation (OSL)
is the task responsible for finding the origin of such polluting events which is
extremely relevant to allow for fast interventions and avoid further risks to the
environment. This process is usually carried out by a static sensor network or
by mobile sensors that have advantage of sampling at different locations and
adapting their trajectory to track a chemical plume toward its source [1].
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The process of OSL with mobile sensors has attracted significant interest
from the research community and is typically composed of three distinct tasks:
(1) searching the active plume region, (2) tracking the plume towards its source
after odour traces are found, and (3) confirming the source location. Bio-inspired
search strategies employ different movement patterns triggered from actual per-
ceptions of the chemical parameters or also from flow information [2]. In natural
environments, turbulence originates fluctuating and intermittent odour detec-
tions, causing these reactive approaches to lose performance since the agent
does not perceive the plume during significant periods of time. In situations
where odour encounters are scarce, cognitive strategies guided by information-
theoretic concepts, such as Infotaxis [3] are preferable to reactive or bio-inspired
approaches [4]. They rely on two key components: (1) a probabilistic Bayesian
inference belief of the source parameters that can be approximated with a grid or
a Particle Filter, and (2) a movement decision based on the expected uncertainty
reduction of the source belief at admissible positions. The expected uncertainty
reduction, or by other others, the expected gain of information if the robot
moved to a possible position, is quantified with a cost function employing an
information metric such as Shannon Entropy (S) [3] or the Kullback-Leibler
(KL) divergence [5]. A relevant topic within information-driven decision making
is the development of cost functions that produce an efficient balance between
exploration and exploitation. The original Infotaxis cost function is composed by
an exploitation term represented by the probability of finding the source after the
next movement position and an exploration term determined from the expected
uncertainty reduction if the source is not found. The former term only has a
significant weight when the agent is close to the expected source position, which
means that the overall search is determined based on the exploration term. This
conclusion led to the proposal of a modified Infotaxis cost function which only
uses the former exploration term [6]. In an attempt to increase the directness
of the search toward the expected source location, a form of Free Energy (FE)
was proposed in [7] where a fixed “temperature” parameter adjusts the balance
between the exploitation term represented through the distance between the
agent position and the expected source location, and the exploration term quan-
tified by the Entropy of the source belief. Song et al. [8] proposed an improved
version of this cost function by replacing the fixed parameter with a dynamic
temperature value obtained from the trace of the covariance matrix of a Particle
Filter estimation process, which shifts the weight of both terms according to the
uncertainty of the belief map. A different line of work seeks to guide the agent
toward the position that promotes the highest divergence between the actual
and the expected probability density function (PDF), quantified by KL diver-
gence [5]. However, it is still unclear how this approach generates non-identical
search patterns from Entropy or Free Energy difference minimisation. Moving
to the position of maximum divergence should generate similar behaviours as
to moving to the position that minimises the difference of Entropy [9,10], but
to the best of the authors’ knowledge, in the context of OSL, a comparison
between both strategies under realistic conditions is still absent. While thor-
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oughly evaluated under simulated environments or controllable conditions such
as wind tunnels [11], field validations are still scarce. More recently, a few stud-
ies employed UAVs as the searching agents [5,12], but aquatic environments are
often overlooked. Some field tests with the goal of locating chemical sources do
exist but do not employ info-theoretic strategies [13,14]. The informative path
planning technique proposed by Stankiewicz et al. [15] has the potential to be
used in OSL applications, however, the main objective is to generate water qual-
ity models, while the information-driven search strategy from Flashpohler et
al. [16] makes use of bathymetric data from a shallow coral area for validation
instead of chemical readings from an odour plume.

This work aims to fill the knowledge gap about experimental validation of
cognitive search strategies by comparing the performance of three different cost
functions and their efficiency with a real field experiment in a natural water
stream. A static surface platform acts as a chemical pollutant source, emitting a
controlled amount of non-pollutant saline solution to a river, while a small ASV
equipped with a conductivity probe acts as the searching agent performing all
the necessary computations onboard. The main contributions of this paper are:
(1) - Performance analysis of three well-known information metrics (Entropy,
KL, FE) under realistic field conditions; (2) - Efficiency evaluation of cognitive
search strategies with a real field experiment in a natural water stream.

2 Information-Theoretic Framework for Odour Source
Localisation

Consider a mobile agent moving in known locations pt = (x, y) ∈ R
2 at the

water surface with the capability to sense the water at time t ≥ 0 s for chemical
measurements c(p, d, t) at different depths d. Furthermore, assume a bounded
workspace Ω with water flowing in a dominant direction u, and a source in
an unknown position (xs, ys, d) releasing a chemical pollutant at an unknown
rate Q. It is assumed that the source and measurement depth are at the same
level, restricting the search to a 2D space. The goal is to estimate the source
location (xs, ys) from a set of measurements across the workspace. The agent
starts searching for odour traces from a random position located downstream
of the suspicious source. The searching strategy consists in moving upstream
with zig-zag motion patterns until detecting traces of the target substance as
proposed by Marjovi et al. [17]. After a first detection (x′, y′), the agent switches
to one of the cognitive search strategies studied in this work. Those strategies use
a Bayesian inference belief and an information-theoretic decision making (Fig. 1)
to guide the searching agent. This work aims to evaluate the performance of the
decision making process for different cost functions.

2.1 Dispersion Model

Dispersion models are fundamental tools to reason about the olfactory obser-
vations a robot acquires along its mission. This work adopts a Gaussian plume
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Fig. 1. OSL framework

model (1) which provides an analytical solution of the advection-diffusion equa-
tion for a point source, located at position (xs, ys) in a Cartesian coordinates
frame, releasing at constant rate Q, with average water ū flowing steadily in the
direction ud with speed us and assuming an infinite space.

M =
Q

πūσyσz
exp

(−(y − ys)2

2σ2
y

)
(1)

The lateral and vertical dispersion coefficients, σy and σz respectively, are func-
tions of the downstream distance (x) to the source , modelled as:

σ2
y = 2Dy(x − xs)/us σ2

z = 2Dz(x − xs)/us (2)

Assuming a laminar flow these parameters can be considered equal (σz = σy).
The coordinates are rotated ud degrees (flow direction) in order to aligned the
model with the actual flow.

2.2 Inference

In order to continuously update a belief of the potential source, observed data
is reasoned through Bayesian inference. It is subsequently used to influence the
movement decision of the searching agent, which makes this step a critical factor
within the localisation process. Following the same trend of recent works [12],
the process of obtaining a posterior PDF of a state vector θt given a set of
observations c1:t as in:

P (θt|c1:t) ∝ P (c1:t|θt−1)P (θt−1) (3)

is approximated with a Particle Filter [18] with a group of N weighted particles
Ot := {θj=1:N

t , wj=1:N
t }, including all the parameters from the dispersion model

within the state vector as in θt = [xs, ys, Q,Dy, us, ud].
The likelihood of the observed data given the actual hypothesis P (c1:t|θt−1)

is evaluated with a normal distribution taking the form [19]:

P (c1:t|θj=1:N
t−1 ) ∝ exp

(
−1

2
.

k∑
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(
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where k represents the number of observed values, σd ∝ g1M(pi, θ
j
t−1) the stan-

dard deviation of measurement errors proportional to the predicted concentra-
tion with a constant g1 and σm the standard deviation accounting for model
errors.

2.3 Decision Making

The decision making process tries to optimise the search, guiding the agent
towards the most informative positions, which are the ones that minimise the
expected uncertainty about the source. This uncertainty is quantified with the so-
called information utilities between the actual and future posterior PDF. First,
a number of possible future positions Nap

are generated from discrete movement
steps [3]. For each of those positions ap, a future PDF is obtained considering the
actual knowledge of the source parameters and the dispersion model, allowing
to compute the most informative movement position. For this step, this work
follows a similar approach to [5] where, for each possible future position, Nz

future concentration values are generated by drawing Nz weighted particles from
the actual PDF. For each future observation, the weights are updated, and the
information utility is computed with the new weights ŵ. The total expected
information E is the average of the information utility from all future observation
values as in E(ap) ≈ 1

Nz

∑Nz

m=1 F(ŵ(m,j)) where F is the utility function to
be evaluated with the future observations and respective future weights. As
previously stated, three information metrics are evaluated: Entropy, KL and
FE. Shannon Entropy was the first information metric used in the context of
OSL with a grid-based belief [3]. It quantifies the uncertainty about a given
information with form:

S ≈ −
N∑

j=1

wj ln(wj) (5)

Relative Entropy (6), also known as the KL divergence, is a measure of how
much a future distribution at instance k+1 diverges from the actual distribution
k. The lower the values, the more identical the distributions are.

KL =
N∑

i=1

ŵ
(i,m)
k+1 ln

ŵ
(i,m)
k+1

w
(i)
k

(6)

The FE principle takes the original form of FE = W + TS where W repre-
sents the potential energy, and T is the temperature that balances the relation-
ship between the expected value W and the uncertainty S. Following the same
approach as Song et al. [20], the term W is represented by the distance between
the robot and the estimated source, the term T the trace of the covariance matrix
R from the posterior PDF and S as the Entropy, given by:

FE =
N∑

j=1

wj
∥∥ap − θj

xs,ys

∥∥α1 − tr(R)α2S (7)

with α1 and α2 the weights that control the balance between both terms.
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Fig. 2. Testing section of Mondego River near the University of Coimbra.

3 Testing Environment

The experiments were performed in a section of the Mondego River near the
Engineering Campus of the University of Coimbra (Fig. 2). It has a large variety
of river features, such as shallow waters and sandy banks forming small isles in
the middle of the river bed. The testing section has a length of approximately
70 m per 60 m of width and an average depth of 2 m. The measured conductivity
value of clean water was 4700 μS/m (baseline), the water temperature was at
22◦C and the flow speed at approximately 1.5 m/s. A pollution event is simulated
with a solution of salted water emitted at a constant rate of 1 l/min with a
peristaltic pump from a floating platform. The solution is a mixture of 1 kg of
salt for 4 l of water, with each reservoir having a total volume of 30 l, allowing
30 min of experimental time. The salted water produces a realistic non-pollutant
odour plume easily distinguished from clean water with a conductivity sensor.
The negative point is the higher density of the solution, which causes the plume
to spread towards the riverbed as it moves further down flow. A considerable
high emission rate is also required to generate a detectable plume at a significant
distance from the source position. The OSL mission is performed with a small
ASV composed of two floaters with a Bluerobotics T200 thruster attached at
each one, having an overall dimension of 0.85× 0.55 m. It can localise itself with
a Global Navigation Satellite System (GNSS) module, configured in real-time
kinematic positioning mode. The platform’s motion is controlled by a Pixhawk
4 autopilot maintaining a moving speed of 0.5 m/s between goals positions. The
high-level mission is provided by an Orange Pi 3 single board computer (SBC)
running a Robot Operating System (ROS) framework. The platform uses a sonar
to measure the depth of the river basin and an Atlas Scientific conductivity probe
to detect the salted plume at a sample rate 2 Hz. The algorithms were coded with
Python programming language and optimised with Numba JIT compiler.
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Table 1. OSL parameters and Priors.

OSL framework

N 5000 Nap 8

g1 1 length 6 m

σm 300 μS/m Nz 200

α1 1.4 α2 1.3

Prior

xs U(x′, x′ + 150) m Dy U(0.001, 0.2) m2/s

ys U(y′, y′ + 30) m us N (us
′, 1) m/s

Q U(0.01, 200) g/s ud N (ud
′, 0.1) rad

3.1 Evaluation Metrics

A first experiment was performed with the agent starting downriver at approxi-
mately 80 m from the source, where the first odour encounter occurred at about
40 m. Due to the amount of time the experiment took (approximately 35 min),
and considering the available volume of saline solution, the initial starting dis-
tance was fixed at 30 m from the source. By detecting traces of odour during the
first crossflow movement, the plume search time is reduced, allowing more exper-
imental time for cognitive search. A total of six reservoirs of the target solution
were available, enabling four trials to be performed for each cost function, which
makes the results not statistically significant. Moreover, to avoid losing poten-
tial data between movement locations and achieve a faster search strategy, at
the possible cost of higher localisation error, all the observations during the last
movement segment between positions are used instead of stopping the agent to
collect and average data. The search ends with the uncertainty dropping below a
certain threshold and the agent located within 6 m of distance from the estimated
position. For a better initialisation of the water speed and direction states, an
initial prior was estimated using the platform’s GNSS localization by stopping
it during short periods and letting it move with the water flow. The remaining
parameters of the OSL framework and initial priors (us

′, ud
′) are summarised

in Table 1. The following metrics were evaluated for each strategy:

1. Localisation error: The error between the estimated and true source position.
The state vector contains six fields, but for this work, the main interest lies
in the source position;

2. Success rate: An experiment is considered successful if the located source is
within 10 m of error from the true source position;

3. Exploration/exploitation ratio: A decision is considered exploitative if the
chosen ap location falls within a section of ±67.5◦ in the direction of the true
source position. Otherwise, the decision is considered explorative.

4. Distance efficiency: Ratio from the azimuthal distance between the starting
position to the true source location and the total travelled distance;

5. Computation time: The time spent by inference and decision making pro-
cesses;

6. Search efficiency: The minimum required time to travel between the starting
and true source positions divided by the total extent of the experiment.
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4 Experimental Results

The cognitive strategies were able to successfully locate the true source position
in most of the trials. Similar to Loisy et al. [21], the cognitive search is started
after the first traces of odour are found, enabling the inference process to be
initialised with enhanced prior information. The particles (location states) are
initialised from the agent position towards the upflow direction, considerably
narrowing the search space.

Fig. 3. Left column: Trajectory and measured concentrations for one experiment of
each information metric (Entropy, KL, FE from top to bottom). Right column: Evo-
lution of the estimation with the associated uncertainty for each of the respective
experiments.

The left column from Fig. 3 show the trajectories of one experiment for each
information utility. It can be seen the magnitude of the concentration values
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Fig. 4. Analysis of metrics’ performance: (a) Localisation error, (b) Exploration/
exploitation ratio, (c) Computation times, (d) Success rate, travel and search efficiency.

increasing as the agent moves closer to the source position, as well as a nar-
rower active region. This characteristic makes the process increasingly difficult
since odour encounters are restricted to a small section in the crossflow direc-
tion. Another visible feature common to all three metrics is the tendency of the
agent to perform exploratory behaviours, with a significant number of crossflow
movements, during the first stages of the search. It can be explained by the
lower magnitude of the measured concentration values and higher intermittency,
which requires additional exploration to improve the knowledge of the source
parameters. The right column of the same figure demonstrates the evolution
of the estimated source location and respective uncertainty regarding the true
source parameters. As the process evolves, the error and the spread of the esti-
mated states reduce until reaching a value near the true source. Only closer to
the source does the uncertainty of estimation reduces considerably, a common
feature of all metrics.

From Fig. 4a, it can be seen that entropy has the best results in terms of
localisation accuracy with a mean error of 5 m across the experiments, with
KL and FE producing higher mean localisation errors of approximately 11 m.
The primary source of mean localisation error lies in the estimation of ys state,
stretching the dispersion of the particles towards the upflow direction (Fig. 5).
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Fig. 5. Particles convergence. Left: Successful experiment; Right: failed experiment.

A possible explanation is the use of multiple instantaneous observations from
the last movement segment in the inference process, which contributes to higher
uncertainty while reasoning with the source hypothesis.

In terms of exploration/exploitation ratio (Fig. 4b), KL has the highest
exploration percentage with 54.7%, Entropy is the most balanced metric with
∼50% for each behaviour, and FE produces the most exploitative behaviour,
as expected, with 65.7%. This additional term of FE contributed to the least
travelled distance of all three metrics (approximately half of KL), but the nega-
tive point is the worst success rate compared with Entropy and KL. The higher
exploitative term may lead the agent towards the source too soon, where further
exploration was needed, trapping the search in regions with no odour encounters,
resulting in failure. The adjustable gains in the cost function are also a drawback
towards field implementations since it requires a specific tuning to balance the
exploration and exploitation behaviour, which may not be the most efficient for
different scenarios.

By analysing computation times (Fig. 4c), one can conclude that the decision
making step is by far the most demanding operation of the search process. It is
even more meaningful for FE metric with a significantly higher computational
cost when compared with Entropy and KL. It is worth mentioning again that all
algorithms and additional functionalities are running onboard the ASV. While
significantly lower times can be achieved with more capable SBCs or processing
units, the main conclusion to be drawn here is the computational weight of the
decision making process towards the whole search strategy. Evaluating the results
from an efficiency point of view (Fig. 4d), while FE has the best efficiency in
terms of travelled distance, the lower success rate, higher computational cost, and
consequently significantly higher decision time make it the least efficient method
of the three. Entropy and KL have identical success rates and travel efficiency
(with KL having a slightly worst travel efficiency), but Entropy’s slightly lower
computational cost makes it the most efficient search strategy. Analysing the
experiments that were unable to locate the source within an acceptable range,
two different failure scenarios were identified: (1) the filter converged towards a
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location that was distant from the true source position, and (2) the filter was not
able to converge to a position, with the particles spread out over a large area as
it can be seen in the right image from Fig. 5. The left image from the same figure
shows a successful experiment with the particles converging towards a region in
the vicinity of the true source location. In short, one can conclude both Entropy
and KL generate similar search strategies with near-identical localisation results.

5 Conclusions

This work aimed to improve the knowledge toward OSL field experiments by
performing and evaluating cognitive search strategies in a natural water stream
with a small ASV. All of the three cost functions were able to locate the source
within an acceptable margin of error successfully. Entropy and KL generated sim-
ilar search trajectories, although KL had a slightly larger exploration ratio and,
consequently, longer travel distances. FE was more efficient in terms of travelled
distance, but its higher “greedy” nature due to the additional exploitation term
also led to a lower success rate. A possible explanation is the weight adjust-
ment between both terms (exploration and exploitation) that plays a major
role in the performance of this cost function and is difficult to tune in natu-
ral environments where the conditions are not known in advance. As expected,
the decision-making step proved to be the most computational-heavy process
of the whole search strategy, with FE the most demanding cost function. This
increase in computational effort did not traduce in a better performance overall,
as previously stated since the success rate was lower than the other two cost
functions. Efforts should be made towards researching decision strategies that
require less computational effort and can still adapt to the dynamic nature of
the environment, which is critical for searching agents with limited processing
capabilities.
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