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Abstract. Odour source localisation is a hard problem with many appli-
cations. Over the years, researchers have drawn inspiration from Nature
to devise many single-robot approaches. Swarm approaches have been
growing in popularity, as they offer redundancy to the loss of agents,
flexibility, scalability and enable experimenters to employ simpler robots.
Many existing swarm approaches make use of robot formations. In this
work, we focus on optimising the shape of a swarm formation for find-
ing and tracking odour plumes. We do so by using a genetic algorithm,
thus avoiding the cumbersome trial-and-error process that experimenters
typically follow to hand-design the formations. The swarm is guided by
a leader, which is controlled by a bio-inspired search strategy using the
perceptions of the entire swarm. The results show that the evolved for-
mations of three and five robots consistently outperform a single robot
and that the best evolved three robot formation is more successful than
the hand-designed swarms of three and five robots. As a result, one could
opt by using the evolved three robot formation, minimizing the amount
of robots needed. Conversely, in case there is a high risk of loss of robots,
the evolved five robot formation could be preferable.

Keywords: Odour source localisation · Genetic algorithms · Swarm
robotics

1 Introduction

The terms fragance and odour are typically used to refer respectively to pleas-
ant and unpleasant scents. Nevertheless, both refer to the animals’ perception
of volatile chemical compounds. Through the sense of olfaction, animals often
track odours to find mates or sources of food. In the literature, odour source
localisation (OSL) refers to the task of locating the source that is emitting a
given odour.

OSL is a hard problem with many applications. Over the years, researchers
have drawn inspiration from Nature to devise many robotic approaches, mostly
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relying on a single robot. The existing approaches can be categorised as reac-
tive, which often attempt to mimic natural behaviours such as those of the E.
coli bacteria, the dung beetle or the male silkworm moth [18], and probabilistic
approaches (e.g., Infotaxis [19]), which try to estimate the location of the chem-
ical source. Despite the success of single-robot approaches, in Nature, animals
cooperate to fulfil tasks that they would otherwise be unable to accomplish or
would do so with lower performance. As an example, bees and ants form swarms
to forage for food, whereas birds and fish travel in flocks and schools to pro-
tect themselves [20]. Biological swarms have been the source of inspiration for
various optimisation methods and, more recently, to robotic approaches. Swarm
Robotics (SR) rely on highly scalable approaches employing groups of agents
with limited capabilities, which would be unable or inefficient at performing the
target task. Yet, through their local interactions, complex behaviours emerge
enabling them to solve the task as a group [7]. The use of multiple robots provides
advantages such as robustness to the loss of agents, flexibility and scalability,
which are particularly interesting when working in inhospitable environments.
Moreover, swarm approaches enable experiments to employ inexpensive robots,
reducing the economic impact of loosing some agents. The use of multiple robots
also provides the ability to sense the environment in many locations simultane-
ously, which is particularly helpful to locate chemical sources in environments
with intermittent and meandering chemical plumes.

The existing swarm approaches can be divided based on whether the robots
move in formation. The approaches that do not enforce formations often employ
meta-heuristic algorithms to guide the robots. Various works have proposed Par-
ticle Swarm Optimisation (PSO) methods for guiding robotic swarms in the
search for chemical sources [6,15]. Others have proposed evolutionary approaches
[13,14]. Despite the differences inherent to the algorithms used, both types of
approaches operate quite similarly. All of them iteratively evolve waypoints for
the robots, which are evaluated through the chemical concentration sensed at
each location. Thus, the methods attempt to find the location of maximum
chemical concentration. In turn, formation-based approaches typically rely on
attractive/repulsive forces, resulting in regular shapes [1,8]. Lochmater et al. [9]
proposed the crosswind formation method, which uses a minimum of two robots
moving in a crosswind line formation to perform the plume tracking stage of
OSL. The robots share their wind and odour perceptions, along with relative
position with each other and attempt to keep the formation centred around
the chemical plume while moving to the source. Their wind-tunnel experiments
showed that a formation of three robots was sufficient for tracking the chemical
plume. Marjovi and Marques [12], analytically studied the optimal swarm forma-
tion for finding chemical plumes, concluding that, under a set of assumptions,
the maximum probability of detection is attained by using a line formation,
oriented diagonally between the crosswind and upwind directions.

Most formation-based approaches rely on experimenters to carefully hand-
design the individual behaviour of each robot, often leading to cumbersome trial-
and-error processes [4]. Evolutionary Algorithms (EA) are a family of stochas-



144 J. Macedo et al.

tic search heuristics loosely inspired by the principles of evolution by natural
selection and Mendel’s genetics. EAs have been successfully applied to different
problems from various domains [5] which either do not have analytical solutions
or where such solutions would take too much effort to be found. Their use for
evolving robotic morphologies [16] and controllers [2,17] yielded the research
field of Evolutionary Robotics (ER). Genetic Algorithms (GA) are a family of
evolutionary algorithms that iteratively improve a population of solutions for a
given problem. GAs have already been used to evolve waypoints for a team of
robots performing OSL [13]. In that work, no mutation operator was used, as the
assignment of the locations to the robots and their navigation was considered
to introduce enough randomness into the process. This method was able to per-
form well in a simulation environment without wind, being the odour dispersion
dictated only by molecular diffusion. Later, [14] improved on it, introducing a
directed mutation operator that biased the search towards upwind or crosswind
depending on whether odour was sensed.

In this work, we focus on optimising the shape of a swarm formation for
finding and tracking odour plumes. We do so by using a genetic algorithm, thus
avoiding the cumbersome trial-and-error process that experimenters typically
follow. The swarm is guided by a dynamically selected leader, which in turn is
controlled by a bio-inspired strategy using the perceptions of the entire swarm.

2 Evolution of Swarm Formations

This paper proposes to locate odour sources with a robotic swarm that moves in
formation to search for a chemical source. The swarm is guided by a leader, which
is selected at the beginning of the trial as the one with the intended position
closest to the formation centre. This approach reduces the possible behaviour
instabilities caused by frequent leader changes while still being flexible, as if the
leader becomes inoperative, the next closest robot may assume that role. The
leader is controlled by a hand-designed reactive controller. In turn, the remaining
robots are attracted to their defined positions in the formation, contributing with
environmental measurements to the leader’s controller.

Contrarily to the existing works, which use regular shaped hand-designed
formations, this work proposes to evolve the swarm formation with a genetic
algorithm. Considering a swarm of N robots, its formation is represented by
an array of 2N real numbers, with each pair Dr,i, θr,i being the distance and
angle of robot i to the formation’s virtual centre. As an example, consider the
genotype of Fig. 1, which corresponds to a formation of 5 robots.

Fig. 1. Example genotype for a formation of 5 robots.
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The corresponding phenotype is depicted on Fig. 2, with the 5 robots (r1 to
r5) shown as blue circles surrounding the virtual centre (black circle) and the
large dotted circle representing the maximum admissible radius for the forma-
tion.

Fig. 2. Example formation of 5 robots, defined by the genotype of Fig. 1. The black
circle represents the formation’s virtual centre, whereas the blue circles represent the
robots (r1 to r5).

The GA evolves a population of formations for a number of generations,
outputting the best one found. The candidate solutions are evaluated by having
the swarm perform an OSL trial, and its quality is measured by the fitness
function designed in [11], which assesses how close the robots get to the source,
the duration of the search and the ratio of time spent in the plume:

F =
N∑

i=1

(
β

di

D
+ η

t

T
+ ζ

pi

t

)
(1)

where N is the number of robots in the swarm, di is the final distance of robot
i to the odour source, D is the maximum distance to the odour source in this
arena, t is the duration of the search, T is the maximum evaluation time and
pi is the time robot i spent without sensing odour. β and η and ζ are weight
coefficients and their values are all set to 1. The goal of the GA is to minimise
this function, i.e., the lower its value, the better.



146 J. Macedo et al.

3 Experimental Setup

3.1 Baseline Formations

In order to assess the performance of the evolved swarms, five baseline formations
were devised: a single robot formation S1, two line formations, L3 and L5, each
respectively having 3 and 5 robots spaced 2.5 m from each other; and two circular
formations, C3 and C5, each with respectively 3 and 5 robots spaced equally at
5 m from the centre. Figure 3 presents these formations in the order that they
were described.

Fig. 3. Baseline formations and their genotypes.

3.2 Formation Leader Controller

The formation leader uses the perceptions of the robots in the swarm to select the
actions to perform. In this work, the selection is made based on a simple reactive
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controller, composed by symbols that have previously been used with Genetic
Programming [11]. This strategy is inspired by natural behaviours [3] moving
crosswind to locate the chemical plume and upwind to track it to its source. It
starts by evaluating whether odour has been sensed in the last t seconds. If so,
it moves l1 meters upwind. Otherwise, it moves l2 meters crosswind, halting as
soon as odour is sensed. In this work, t, l1 and l2 are respectively set to 10 s,
0.5 m and 0.5 m. Algorithm 1 presents the pseudocode for this controller.

Algorithm 1. Controller for the formation leader
if NPL(t) then

moveDirection(U, l1 m, C)
else

moveDirection(X, l2 m, SO())
end if

3.3 Genetic Algorithm

Table 1. Parameters of the genetic algorithm

Parameter Value

Number of generations 100

Size of the population 100

Size of the elite 3

Crossover rate 0.7

Mutation rate 0.003

Size of the tournament 2

The overall parameters of the GA used for evolving the formations are presented
on Table 1. For a swarm of N robots, the individuals are represented by a vector
of 2N real numbers. The relative position of each robot in the formation is
represented by a distance Dr and angle θr to the virtual centre of the formation.
In this work, Dr and θr may respectively vary in the intervals [0, 5] m and
[−π, π] rad. In order to maximise the diversity of the initial individuals, the
initial population is created using Latin Hypercubes [5]. Moreover, to increase
the local and global search abilities of the GA, on each generation, 10 random
and 10 elitist immigrants are injected into the population. GAs work by selecting
and recombining a set of individuals. In this work, tournament selection is used
to choose the mates, which are recombined through arithmetic crossover, with
α = 0.5. Gaussian mutation may then be applied to each gene, with each σ
being 10% of the domain’s width, i.e., σDr = 0.5 and σθr = 0.2π. Finally, a new
population is created with the individuals chosen through elitist selection.
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3.4 Evaluation Environment

Fig. 4. Time average of air-flow (grey) and gas dispersion (green) of an instance of the
evaluation environment. The green circles represent a screenshot of the odour plume at
the last simulation step. The rectangle surrounding the chemical source (black circle)
denotes the region from which its location is sampled, whereas the rectangle at the
lower right corner represents the start region for the robots. (Color figure online)

A simulator specific for ER and odour source localisation experiments is used
[10], as it showed to be much faster than real-time while adequately modelling
the real world phenomena of odour dispersion and air-flow. The simulator uses a
filament-based model of chemical dispersion, where each odour filament contains
a given amount of molecules. An environment is devised based on a 40× 40 m2

arena containing no obstacles and a single odour source, being its parameters
presented on Table 2. The stability of the wind and chemical emission rate were
set to create an intermittent meandering plume. Each robot is modelled as a cir-
cular two-wheeled differential unit, measuring 16 cm in diameter. The robots are
able to measure the wind velocity and chemical concentration at their location,
as well as the distance to nearby obstacles through simulated laser range finders.
Each laser range finder has 10 equally spaced beams, with a field of view of π
radians and a maximum range of 0.5 m. The robots move with a maximum linear
speed of 0.5 m/s and a maximum angular speed of 0.3 rad. For further details, we
direct the reader to [10]. Figure 4 presents one instance of the evaluation envi-
ronment. Thirty instances are created with the same parameters, one for each
independent trial. The position of the chemical source and the initial pose of
the robot are sampled from the respective regions for each environment instance
and kept fixed for all evaluations in the same trial. The robot successfully finds
the source if it reaches a position closer than 0.5 m from it, within 1500 s.
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Table 2. Environmental parameters

Parameter Value

Filament emission rate (Fr) 0.1 Hz

Initial filament radius (fr(0)) 0.0316 m

Filament growth rate (γ) 0.01 m2/s

Chemical emission rate (Q̄) 9.86 mg/s

Detection threshold (Dt) 1 ng/cm3

Initial wind speed (Ws) 0.7 m/s

Initial wind direction (Wd) 0 rad

Std. dev. of the Gaussian noise emulating turbulence (Wv) 0.075

Size of each grid cell for computing the wind velocity (Wc) 6 × 6 m2

Diffusivity constant (Kx) 6 m2/s

Dimensions of the arena 40 × 40 m2

Robot’s initial pose x ∼ U(36, 39) m,

y ∼ U(36, 39) m,

θ ∼ N(−π/2, π/4) rad

Source position x ∼ U(8, 14) m,

y ∼ U(19.2, 21.2) m

Simulation step 0.5 s

Simulation time 1500 s

4 Experimental Results

Thirty independent trials of the evolutionary approach were conducted for evolv-
ing formations of three and five robots. Afterwards, a validation step took place,
consisting on taking the best formation from each trial and re-evaluating it on
the thirty environment instances. The performance of the swarms is measured
through the success rates and duration of successful trials achieved in validation.
As plotted in Fig. 5, using five robots seems to lead to higher success rates and
lower search times. In order to draw more robust conclusions, statistical hypoth-
esis tests are applied. The Kolmogorov-Smirnov test was applied, showing that,
at a 95% confidence interval, none of the data could be considered to follow nor-
mal distributions. As a result, the Wilcoxon test was selected to perform pairwise
comparisons of the success rates and duration of the searches. Its results showed
that there are no statistically significant differences between the success rates of
swarms of 3 and 5 robots (p = 9.7848e−01) but that there are significant differ-
ences between the duration of the successful searches (p = 4.6796e−03), implying
that using 5 robots leads to locating the sources significantly faster.

To compare the performance of the evolutionary approach with the hand-
designed formations, the best formation for each amount of robots must be
selected. This choice is made by selecting the formation that attains the highest
success rates in validation. In case of ties, the formation that takes the least
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Fig. 5. Boxplots of the success rate (left) and duration of successful runs (right) of the
evolved strategies in validation.

Fig. 6. Best formations evolved for three (left) and five (right) robots.

amount of time to locate the chemical source is chosen. Figure 6 presents the
best formations found for three (E3) and five (E5) robots.

To better assess the performance of the evolved formations, their perfor-
mance is compared to those of the baseline formations, evaluated on the thirty
environmental instances (Table 3). As can be seen, using one robot leads to the
overall worst success rate and slowest searches. Also, the evolved formations con-
sistently present higher success rates than the hand designed ones. In particular,
E3 presents a higher success rate than all hand-designed formations, even those
using 5 robots. Conversely, E5 is slower than L5 and C5. The statistical anal-
ysis is once again performed, with the results of the Kolmogorov-Smirnov test
showing that, at a 95% confidence interval, none of the data can be considered
to follow normal distributions. As a result, the Wilcoxon test is selected for the
remaining analysis.
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Table 3. Success rates and duration of successful searches of the baseline and best
evolved formations

Formation Success rate Mean search duration

S1 70% 685.24 ± 284.21 s

L3 76.67% 507.67 ± 287.67 s

C3 80% 521.69 ± 177.25 s

L5 93.33% 348.29 ± 127.23 s

C5 76.67% 371.91 ± 140.43 s

E3 100% 409.57 ± 130.70 s

E5 96.67% 382.97 ± 185.84 s

The first analysis consists on comparing the success and duration of the
searches of S1, E3 and E5, to assess whether the amount of robots used produces
substantial performance gains. The Bonferroni correction is applied, adjusting
the significance value to 0.0167. The Wilxocon test shows that there are statis-
tically significant differences between the success of S1 and E3 (p = 2.6998e−03)
and of S1 and E5 (p = 1.1412e−02), but that there are no significant differences
when comparing E3 and E5 (p = 3.1731e−01). Regarding the duration of the
searches, the Wilcoxon test shows that there are statistically significant differ-
ences between S1 and E3 (p = 3.1108e−05) and S1 and E5 (p = 8.1842e−05), but
that there are no significant differences between E3 and E5 (p = 6.4351e−01).
These results show that using only one robot leads to significantly lower success
rates and longer searches than using 3 or 5 robots in the formations specified by
E3 and E5. Also, using E3 could be preferred to E5, as less robots are required to
attain equivalent performances. However, using E5 should be more robust when
there is a high risk of loosing robots.

The next step in the analysis consists on comparing the performance of hand-
designed and evolved formations for the same amount of robots. Once again, the
Wilcoxon test is applied with the adjusted significance value of 0.0167, show-
ing that there are significant differences between the success of E3 and C3
(p = 1.4306e−02) and E3 and L3 (p = 8.1510e−03), but there are no significant
differences between C3 and L3 (p = 6.5472e−01). Regarding the duration of the
searches, the Wilcoxon test shows no significant differences between the three
robot formations. Analysing the 5 robot formations, the Wilcoxon test shows no
significant differences between their success rates or duration of the searches. As
a result, one may conclude that the shape of the formation is more important
when using less robots.

5 Conclusions and Future Work

This paper proposed an evolutionary approach for evolving the shape of a for-
mation of a robotic swarm tasked with locating odour sources. The formation is
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guided by a leader, which is controlled by a simple reactive controller. The other
robots are then attracted to their intended positions in the formation, which
are defined as distances and angles to the formation’s virtual centre. Formations
of three and five robots were evolved and the best solutions were compared to
each other, as well as to hand-designed formations of one, three and five robots.
The results showed that there are no significant differences in the success rates
of the evolved formations of three and five robots, but that using five robots
leads to significantly faster searches. When comparing the overall best evolved
swarms with hand-designed formations, a set of conclusions could be drawn: (1)
using evolved formations of three and five robots consistently outperforms using
a single robot; (2) the best evolved formation of 3 robots is significantly more
successful than the hand-designed swarms, but their search times are equivalent;
and (3) there are no statistically significant differences between the performances
of all five robots formations. As a result, one could opt by using the evolved for-
mation of three robots, minimizing the amount of robots needed. Conversely,
in case there is high risk of loss of robots, the evolved five robots formation
could be preferred, as it presents slightly better performance indicators than the
hand-designed ones.

In the future, studies shall be conducted to analyse the influence of the loss
of agents. Furthermore, co-evolution techniques shall be investigated for jointly
evolving the shape of the formation and the controller for its leader.
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