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�Introduction

Once the subject of futuristic Sci-Fi movies and books, 
Artificial Intelligence (AI) has become part of our everyday 
lives. Algorithms developed by Amazon, Google, and 
Facebook utilize AI to predict texts, recognize and translate 
language, suggest purchases, and achieve facial recognition. AI 
was introduced in 1956 at what is now called the Dartmouth 
Conference. The conference was organized by John McCarthy, 
who at the time was an Assistant Professor of Mathematics at 
Dartmouth. He invited several mathematicians and scientists 
to gather for summer to perform an intense study of comput-
erized intelligence. He believed that aspects of human intelli-
gence could be precisely described in such a way that a 
machine could simulate it. He is also credited with coining the 
term Artificial Intelligence. AI is simply defined as the ability 
of a computer software system to be able to perform human 
cognitive functions. Examples of cognitive functions include 

Chapter 45
Artificial Intelligence 
in Endoscopy
Jesse R. Conner, Aman B. Ali, and Nabil Tariq

J. R. Conner · A. B. Ali · N. Tariq (*) 
Department of Surgery, Houston Methodist Hospital,  
Houston, TX, USA
e-mail: ABali@houstonmethodist.org; ntariq@houstonmethodist.org

© SAGES 2023
M. Kroh et al. (eds.), The SAGES Manual Operating Through 
the Endoscope, https://doi.org/10.1007/978-3-031-21044-0_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21044-0_45&domain=pdf
mailto:ABali@houstonmethodist.org
mailto:ntariq@houstonmethodist.org
https://doi.org/10.1007/978-3-031-21044-0_45#DOI


930

image recognition, identifying patterns, solving problems, and 
ultimately learning. The first step in image recognition is that 
a computer must learn a pattern or part of a pattern. For this, 
large amounts of data are required. The computer must also 
make computations, which require massive amounts of com-
putational power [1]. Since the 1950s there was relatively little 
AI activity as both data and computational power were lack-
ing. As computers have become more affordable and more 
advanced with increasing processing power, as well as the 
addition of the internet allowing for access to immense 
amounts of available data, we are now seeing substantial 
expansion in AI developments today. As AI makes its way 
into our daily lives, it also has great potential to aid the clini-
cian in the diagnosis and treatment of diseases.

�Definitions and Terminology

The idea of Artificial intelligence (AI) was first described in 
the 1950s by British mathematician Alan Turing. He defined 
this intelligent behavior of a computer as its ability to achieve 
human-level performance in cognitive tasks [2]. He believed 
that a machine could identify patterns within data and learn 
from these patterns to perform a specific task that would 
otherwise require human intelligence. Examples of these 
tasks include problem-solving, independent pattern recogni-
tion, and learning. Essentially all AI today is based on 
machine learning.

�Machine Learning (ML)

Machine Learning (ML) is under the umbrella of AI; how-
ever, essentially all AI today uses machine learning. The term 
ML was first introduced in 1959 by Arthur Samuel from 
IBM. ML refers to a computer system that can develop the 
ability to learn by using data without specific programming 
and can develop predictive algorithms by analyzing input 
data and recognizing patterns [3]. Computers can be taught 
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simple tasks when they are given data, and the algorithm can 
complete every portion of a problem and come to the correct 
conclusion. In more advanced tasks, this algorithm becomes 
much more difficult to create. Thus it is easier to let the com-
puter help make the algorithm and then solve the problem. 
Machine learning essentially uses different approaches to 
teach computers to accomplish tasks where no satisfactory 
human-made algorithm exists. There are three main types of 
learning methodologies: supervised learning is when the com-
puter is given human-labeled data and desired outputs, and 
the computer learns general rules to categorize inputs to 
determine the desired outputs; unsupervised learning is when 
the computer is given unlabeled data and is tasked with 
uncovering the hidden pattern within the data to group and 
further categorize the data until it can differentiate the 
desired output; reinforcement learning, is when the algorithm 
learns from trial and error scenarios [4, 5].

�Deep Learning (DL)

As depicted in Fig. 45.1, Deep Learning (DL) is a specialized 
form of machine learning and is based on multiple layered 

ARTIFICIAL INTELLIGENCE
Any technique which enables
computers to mimic human
behavior

MACHINE LEARNING
Any algorithm that allows
computers to learn and improve
with experience

DEEP LEARNING
Subset of machine learning in
which neural networks adapt
and learn from large amounts
of data

Deep Learning

Machine Learning

Artificial Intelligence

Figure 45.1  Artificial intelligence, machine learning, and deep 
learning
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neural networks. Neural networks are the hidden layers 
within a machine learning algorithm that identify unseen pat-
terns and are able to group similar data into categories, which 
can be further categorized by additional hidden layers until 
the desired output is identified. While ML often consists of 
1–2 layers of neural networks, DL contains several, often up 
to 150 layers. This allows the computer to take unlabeled data 
and further subcategorize it to be able to make predictions 
and conclusions about the data. This eliminates the need for 
manual feature extraction and makes DL models ideal for 
processing data in the form of images and videos. Once the 
framework of the neural network has been established with 
vast quantities of labeled data, or in this instance images, the 
computer has the ability to extract relevant features straight 
from the data and make inferences and predictions on raw, 
unlabeled data. An important feature of DL algorithms is the 
more data the algorithm has, the better it is able to perform, 
so as we collect more images and video images over time, the 
more accurate the predictions should become. This has made 
DL instrumental in processing images and videos, which has 
helped in endoscopic detection and diagnoses of diseases [6].

�Current Applications of Artificial Intelligence 
in Endoscopy

As computing power and data storing capacities have 
improved, so too has the exploration of the application of 
artificial intelligence (AI) in medicine. The following is a 
review of the applications of AI in endoscopy that are in use 
currently.

�Evaluation of Barrett’s Esophagus

Barrett’s Esophagus (BE) poses a difficult diagnostic prob-
lem as it is a known risk factor for the development of 
esophageal adenocarcinoma and may harbor dysplastic 
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changes that are not readily evident on conventional endos-
copy. The current solution to this problem is random biopsies 
(Seattle protocol); however, this approach is labor-intensive 
and has a relatively low per-lesion sensitivity of 64% for the 
detection of dysplasia [7]. The Seattle protocol consists of 
four-quadrant biopsies every 2 cm of the Barrett’s segment. 
Two centimeters of BE would equate to approximately 
14 cm2 of surface area. A single biopsy samples approximately 
0.125 cm2, so the Seattle protocol would only cover 0.5 cm2 of 
the esophageal mucosa, which would only be 3.5% of the 
Barrett’s segment [8]. Recently the American Society of 
Gastrointestinal Endoscopy (ASGE) has endorsed the use of 
advanced imaging techniques to aid in targeted biopsies to 
replace random four-quadrant biopsies. The society deter-
mined performance criteria that new technologies should 
meet in order to be considered effective, including the sensi-
tivity of more than 90%, a specificity of 80%, and a negative 
predictive value of 98% [9]. Technologies that have been 
developed include volumetric laser endomicroscopy, wide-
area transepithelial sampling, chromoendoscopy, and magni-
fication endoscopy. While these techniques have shown 
promise in achieving the ASGE criteria, they still are time-
consuming and require special expertise, which limits their 
use. This has led to the investigation of the use of AI to aid 
the nonexpert endoscopist in diagnosis.

The evaluation of BE with standard white light endoscopy 
(WLE) and the addition of narrow-band imaging (NBI) is 
one of the longest-standing techniques. AI algorithms were 
developed for WLE/NBI images by van der Sommen et al. to 
detect early neoplastic lesions with BE.  The algorithm was 
based on 100 images from 44 patients with BE to develop 
specific color and texture filters and machine learning to dif-
ferential dysplastic from nondysplastic BE [10]. The system 
achieved a sensitivity and specificity of 86% and 87%, respec-
tively, showing the potential of computer-assisted diagnosis 
of neoplasia within BE using standard, widely available endo-
scopic techniques. Hashimoto et al. improved upon this idea, 
creating an AI algorithm utilizing 916 retrospectively col-
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lected images of histology-proven high-grade dysplasia or T1 
adenocarcinoma in BE as well as 916 control images [11]. 
These images were obtained with standard WLE, NBI, as well 
as Near Focus which is an imaging technique on Olympus™ 
endoscopes that allows the focus to adjust to objects within 
2mm of the endoscope. The system was trained to first iden-
tify any neoplastic image within a video and flag it as an 
image of interest. Once flagged, the image would be analyzed, 
and the area of neoplasia would be identified with a rectan-
gular box. The algorithm was validated utilizing 458 test 
images with an overall sensitivity of 96.4%, specificity of 
94.2%, and accuracy of 95.4%. Importantly the algorithm is 
able to make predictions on >40 frames per second, which 
made real-time evaluation a potential possibility. Ebigbo 
et al. realized this potential in their computer-aided diagnosis 
model, which utilized AI and deep learning (DL) to identify 
early adenocarcinoma in BE [12]. They used a state-of-the-art 
encoder-decoder to transfer live endoscopic images to their 
AI system. The AI system can be activated at any time during 
the endoscopy by the practitioner once the segment of inter-
est has been reached. Once activated, the system randomly 
analyzes images from the live feed and produces a blue bar 
that displays the probability of cancer in the given segment, 
with positivity being considered a probability over 90%. The 
system underwent validation on real-time images from endo-
scopic video on 14 patients, which contained 36 images of 
early AC and 26 of normal BE. The model’s predictions were 
compared to the corresponding pathological examination of 
resected specimens. The AI system had a sensitivity of 83.7%, 
specificity of 100%, and an overall accuracy of 89.9% show-
ing its potential for real-time use.

Volumetric laser endomicroscopy (VLE) is a newer endo-
scopic imaging modality that has been developed to aid in the 
diagnosis of dysplasia within BE [6]. VLE uses the second-
generation optical coherence tomography in a balloon-based 
system. After endoscopic deployment of the device balloon 
within the area of BE, an infrared light generates a circumfer-
ential scan of 6cm segment of the esophagus. The scan 
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reaches a penetration depth of 3mm into the tissue with an 
axial resolution of 7 μm allowing for visualization of esopha-
geal layers and submucosal vascular networks [13]. The scans 
then must be manually reviewed for concerning features, 
including surface intensity greater than subsurface intensity, 
lack of layering, and presence of irregular and dilated glands. 
Once an area of suspicion is determined, the area is marked 
between two laser cautery marks for subsequent biopsy with 
WLE. The technology has shown promise, improving neopla-
sia diagnostic yield in BE by 55% compared to random biop-
sies alone in a multicenter US trial. However, it can be 
burdensome because of the large amount of complex visual 
data that must be processed [3]. An AI software known as 
intelligent real-time image segmentation (IRIS) was devel-
oped to assist the endoscopist with quickly and accurately 
identifying areas of suspicion. The system identifies the three 
established VLE features associated with histologic dysplasia 
and color codes them, then displays them superimposed over 
the VLE imaging. Areas on the VLE image that contain all 
three colors then can be marked for subsequent biopsy. A 
prospective randomized trial is currently underway compar-
ing the use of VLE with and without IRIS, with primary out-
comes being the time of interpretation, biopsy yield, and a 
number of biopsies (NCT03814824). Results of this study are 
pending as of January 2022.

Wide-area transepithelial sampling (WATS) is another 
technique to increase the diagnostic accuracy of random 
biopsies surveillance for BE. The technique consists of pass-
ing a brush through the working endoscopic channel and 
rotating the brush repeatedly back and forth across BE tissue 
until pinpoint bleeding is observed. The brush is then 
removed, and its contents smeared onto two glass slides; the 
bristles are then cut into a transport medium. The slides and 
transport medium are transported to a central pathologist 
that specializes in WATS specimens. The transport medium 
and slides are then analyzed by a high-speed, computer-
assisted neural network that has been optimized for esopha-
geal mucosa—the computer flags all abnormal cells, which 
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produces a high-resolution image for the pathologist to 
review. The concept was first validated by a study by 
Vennalaganti et al., in which 149 BE WATS specimens were 
reviewed by four pathologists with a very high interobserver 
agreement (percent agreement calculated at 88.6%) [14]. A 
multicenter, prospective, randomized trial was then con-
ducted comparing Seattle protocol to Seattle protocol plus 
WATS. The addition of WATS to biopsy sampling resulted in 
an additional 23 cases of high-grade dysplasia/esophageal 
adenocarcinoma, which was a 14% increase. Interestingly, 11 
of the 23 additional cases identified by WATS had no evi-
dence of dysplasia on biopsy histology alone. WATS added an 
average of 4.5 mins to the procedure. [15]

�Esophageal Squamous Cell Carcinoma

While AI has shown promise in aiding in the diagnosis of 
esophageal adenocarcinoma, it has also been applied to the 
identification of esophageal squamous cell carcinoma 
(ESCC). Squamous cell carcinoma of the esophagus is more 
prevalent in Asian populations, which results in less experi-
ence in Western communities in the diagnosis and treatment 
of this relatively rare disease. The current gold standard in 
screening is Lugol chromoendoscopy, which requires the 
application of Lugol’s solution to the lower esophagus. While 
this method has a high sensitivity (>90%), it has a relatively 
low specificity of near 70%, thought to be secondary to over-
identification of inflammatory mucosa as neoplastic [7]. In 
addition to the low specificity, the Lugol’s solution can cause 
GERD-like symptoms, discomfort, as well as allergic reac-
tions. There have been several advancements in endoscopic 
techniques to try to replace the Lugol chromoendoscopy, 
including confocal laser endomicroscopy, endocytoscopy, and 
high-resolution microendoscopy; all are variations of identi-
fying and interpreting microscopic images in order to better 
target biopsies. Despite these advancements, which have 
shown good performance on test images, their use remains 
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quite limited because of the relatively low access. To this end, 
Horie et al. created a convolutional neural network trained 
on 8428 retrospectively obtained training images utilizing 
WLE alone [16]. The program was tested on 1118 test images 
containing an array of adenocarcinoma, squamous cell carci-
noma, and no carcinoma. Esophageal cancer was detected 
with a sensitivity of 98%. However, there were quite a few 
false positives with a positive predictive value of only 40%. 
Most of the false positives were due to shadowing and iden-
tification of normal structures as cancerous. The next year, 
Tokai et al. took the same CNN and used an additional 1751 
test images with information about invasion depth to see if 
the system could accurately predict the depth of invasion of 
esophageal SCC.  The depth of invasion determines the 
extent of treatment. According to Japanese guidelines, lesions 
reaching muscular mucosa (T1a) or infiltrating the submu-
cosa up to 200μm (T1b-SM1) have a very low likelihood of 
nodal metastases and are amendable to endoscopic resection, 
whereas those infiltrating the submucosa past 200μm 
(T1b-SM2) are treated with esophagectomy. The system was 
tested along with 13 expert endoscopists against 291 retro-
spectively obtained images of ESCC of different invasion 
depths. The AI system identified 95.5% of ESCC within the 
test images and was able to accurately predict the invasion 
depth with a sensitivity of 84.1% and an accuracy of 80.6% 
[17]. The system accuracy was better than 12 out of the 13 
experts, showing its potential diagnostic ability.

�Detection of Helicobacter pylori (H. pylori) 
infection

H. pylori infection is a known risk factor for developing gas-
tric cancer. However, diagnosis on endoscopy can be chal-
lenging. Watanabe et  al. illustrated this point by testing 
endoscopists ability to diagnose H. pylori. Six endoscopists of 
varying experience were given a series of retrospectively 
obtained images of H. pylori-infected and uninfected patients. 
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They found that the diagnostic yield for identifying H. pylori-
infected patients was 62.1%. They also discovered that the 
less experienced the endoscopist was, the lower their diagnos-
tic yield was, thus demonstrating the potential for CAD in 
recognizing H. pylori-infected patients [18]. In 2017 Shichijo 
et  al. developed a CNN-based CAD to identify H. pylori 
infections using regular WLE. They retrospectively obtained 
32,208 images of H. pylori-positive (735 patients) and nega-
tive (1015 patients) from which their CNN was constructed. 
The system, as well 23 endoscopists with varying levels of 
experience, was asked to classify a separate retrospectively 
obtained data set of endoscopic images as either H. pylori-
infected or H. pylori-uninfected. The CAD system had a 
sensitivity, specificity, and accuracy of 88.9%, 87.4%, and 
87.7%, respectively. As a whole, the endoscopists obtained 
sensitivity, specificity, and accuracy of 79%, 83.2%, and 
82.4%, with the more experienced endoscopists performing 
better than less experienced endoscopists [19]. Around the 
same time, Itoh et al. also created a CNN utilizing 149 pro-
spectively obtained images from a single endoscopist to train 
the system. The CAD system was then tested on an additional 
30 images that had been obtained at the same time but that 
were not used for the development of the CNN. The system 
was able to identify H. pylori-infected patients with a sensi-
tivity and specificity of 86.7% and 86.7%, which was a slight 
improvement from previous studies [20]. While these CNN-
based CAD systems do show promise in aiding the endosco-
pist in the endoscopic identification of H. pylori infection, 
they have yet to be used in a real-time, live fashion, which 
limits their current feasible use.

�Colonic Polyp Detection

Colonic polyp detection has also been an area of active AI 
research. The rate of colonic polyp detection should be con-
sistent within a given population; however, studies have 
shown the detection rates among endoscopists vary greatly. It 
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is also estimated that every 1% increase in adenoma detec-
tion rate will decrease the adenocarcinoma rate by 3–6% [21], 
which is why polyp detection is fertile ground for AI utiliza-
tion. In 2003, Karkanis et  al. created a selection algorithm 
based on feature extraction to identify colonic polyps on 
colonoscopy images. The system showed the feasibility of 
computer-aided diagnosis, reaching a specificity of 97% and a 
sensitivity of 90%. However the system was tested on still 
images limiting its clinical use [22]. In 2013, Glòria Fernández-
Esparrch developed a computer-aided diagnosis model that 
analyzed colonoscopy videos and produced an overlying 
energy map correlating with the likelihood of a polyp being 
present. Tested on 24 videos, the system had a sensitivity of 
70.4% and a specificity of 72.4% for polyp detection [23]. 
Urban et al. aimed to improve upon this performance in 2018, 
developing a state-of-the-art learning CNN. The system was 
trained first on millions of labeled natural images contained 
on the ImageNet learning database. Once this baseline train-
ing had been complete, the system was then fine-tuned on 
8641 hand-labeled images from screening colonoscopies from 
over 2000 patients [21]. Testing commenced on 1300 still 
images, where it achieved an accuracy of 96.4% with an Area 
Under the Curve (AUC) of 0.974. Not only did the system 
show good accuracy, but it was also able to analyze 98 images 
per second, making real-time use feasible. This was tested by 
running the system over 9 full colonoscopy recordings in 
which 28 total polyps had been removed at the original colo-
noscopy. The video of the colonoscopies was first reviewed by 
three experts, who identified 36 unique polyps. The CNN 
system was then tested on the videos and was able to identify 
all 36 polyps as well as an additional nine polyps that were 
missed by the experts. Of the 9 additional polyps that were 
identified three of them were deemed high likelihood of 
being an actual polyp while the other 6 were considered low 
likelihood. While this system showed promising result, it still 
was not tested in a live clinical situation. In 2019 Klare et al. 
performed a prospective study, testing a developed auto-
mated polyp detection software utilizing AI which had previ-
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ously been validated in ex vivo applications. The software was 
designed to identify and mark polypoid structures in real-
time endoscopy. The system works by utilizing a frame-
grabber device to capture the colonoscopy video stream. The 
images are then cropped by the software neglecting unneces-
sary image data such as the black frame. A weighted combi-
nation of color, structure, textures, and motion information is 
used to identify regions of interest that may represent a 
polyp. The system gives feedback to the endoscopist by encir-
cling the area of interest with circles displayed on an HD 
screen. To test the feasibility of use during real-time colonos-
copy, the system was applied to 55 real-time colonoscopies. 
The endoscopist was unable to see the screen that displayed 
the computer-aided diagnosis system. A researcher was able 
to see the real-time unbiased endoscopy screen next to the 
diagnostic system computer screen. The endoscopist would 
give vocal cues to when a polyp was identified. The researcher 
would then correlate this information with the information 
provided by the system. A total of 73 polyps were identified 
by the endoscopist, 40 neoplastic, 36 adenomas, and 1 
intramucosal carcinoma. The CAD system identified 55 of 
the 73 polyps (75.3%), and 31 of the 40 neoplastic polyps [24]. 
The system also indicated an average of 6 false positive 
images per procedure. No polyps were identified by the sys-
tem prior to being detected by the endoscopist. On logistic 
regression analysis the system struggled to identify flat-
shaped and small polyps. While the system did not perform as 
well as the expert endoscopist, this study did show the 
potential utility of real-time computer-aided diagnosis of 
colonic polyps, especially with deep learning models that con-
tinue to improve their performance over time.

�Detection of Inflammatory Conditions

Ulcerative colitis (UC) and Crohn’s disease are conditions 
that can be difficult to diagnose, differentiate from each 
other, and stratify severity of disease. Ozawa et al. applied AI 
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to this problem by creating a CNN-based CAD system 
intended to identify the severity of ulcerative colitis. The 
motivation for creating the CAD was the amount of interob-
server variability that existed among endoscopist when clas-
sifying the severity of disease, which was greater among 
nonexperts. This can affect clinical decisions, such as starting 
patients on expensive biological medication. They trained 
their CNN image recognition system using 26,304 colonos-
copy images from 841 patients with UC. They then tested the 
system on a separate set of 3981 images, tasking the system to 
identify the images as Mayo grades of inflammation. The sys-
tem was able to correctly classify 73% of the Mayo 0 images, 
70% of the Mayo 1 images, and 63% of the Mayo 2–3 images 
[25]. In 2018 Maeda also developed a machine learning-based 
CAD utilizing endocytoscopic images to try to predict histo-
logical healing of UC. They argued that there is an incremen-
tal benefit of achieving histological healing of UC beyond 
just endoscopic mucosal healing, as ongoing histological 
inflammation increases the risk of exacerbation and dyspla-
sia. The CAD was trained on 12,900 endocytoscopic images 
with known, biopsy proven histological grades of healing. It 
was then validated on 525 retrospectively obtained images, 
where the histology was also known from biopsy. The system 
had an overall diagnostic sensitivity, specificity, and accuracy 
of being able to predict ongoing histologic inflammation of 
74%, 97%, and 91% respectively [26]. While the sensitivity is 
too low to do away with physical biopsies, as systems improve 
it could reduce the need and cost of several biopsies within 
each area of UC. Celiac disease is another relatively common 
inflammatory disorder that is immune-mediated. The gold 
standard for diagnosis is endoscopy and biopsy; however, 
there is interobserver variability with this approach as well. 
Celiac disease is another disease which can be difficult to 
diagnose by the unexperienced endoscopist. Wimmer et  al. 
strived to create a CNN that would accurately identify celiac 
disease using CAD. They trained models already in existence 
that had been previously trained on large image data sets of 
the natural world. They then fine-tuned them to be able to 
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identify images of celiac disease using modified immersion 
technique with traditional WLE as well as under 
NBI. Modified immersion technique is a technique that con-
sists of closeup views of the wall of the duodenum under clear 
water to enhance the image of the duodenal villi. The system 
was able to achieve an accuracy of 90.5% in diagnosing celiac 
disease from the endoscopic images alone [27]. There has yet 
to be a computer-aided diagnostic system for celiac or IBD 
that has been tested in real-time conditions, which limit their 
applicability to clinical practice.

As we make technological advances in medicine in terms 
of smaller and more precise equipment, we have also used 
imaging and navigation with the help of AI for procedural 
planning and guidance. Though this application is not gastro-
enterology related, it is one of the new applications of AI in 
therapeutics, not just diagnostics. Figure 45.2 shows the Auris 
Bronchoscope to target small lung lesions for biopsy which 
are not accessible through conventional bronchoscopy. The 
Auris Bronchoscopy uses an outer sheath and an inner bron-
choscope with a 4-way steering control, electromagnetic navi-
gation guidance, and continuous peripheral visualization for 
procedural navigation and biopsy [29]. The Auris 
Bronchoscope uses the MONARCH Platform which com-
bines electromagnetic tracking, optical pattern recognition, 
and robotic kinematic data to help locate the bronchoscope 
during the procedure and provide positional data for the 
scope in relation to the target lesion. In 2019, a post-
marketing multicenter study using the Monarch Auris robotic 
platform in 165 patients showed successful navigation to 
88.6% of the lung nodules with 70.7% of the nodules located 
in the outer third of the lung [30].

�AI—Limitations and Challenges

Despite the significant advances made in medicine over the 
last several decades, there continue to be large and increas-
ingly complex problems that arise. This is partly because of 
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Figure 45.2  The Auris Bronchoscope is formed by an inner scope 
and the outer sheath. (a) The bronchoscope includes a camera that 
provides the operative perspective, an integrated light source in the 
handle, and a 2.1 mm inner diameter working channel for the pass-
ing of manually controlled tools. (b) The Auris Cart with the robotic 
arms. (c) Attachment of the bronchoscope to the robotic arms with 
the proximal valve for saline, air, or instrument insertion (arrow). (d) 
The tower with the monitor for endoscopic and electromagnetic 
navigation display. (e) The controller. From Murgu, S.D.  Robotic 
assisted-bronchoscopy: technical tips and lessons learned from the 
initial experience with sampling peripheral lung lesions. BMC Pulm 
Med 19, 89 (2019) [28] http://creativecommons.org/licenses/by/4.0/

the phenomenon of “we did not know what we did not 
know,” as we become aware of more and more layers of 
complexity in each disease process. What adds to this chal-
lenge is the decreasing tolerance (appropriately) of failure 
and error. With massive amounts of data becoming avail-
able, there is an opportunity to use artificial intelligence to 
make things better for our patients, clinicians, health sys-
tems, and society overall.

Recently, the Food and Drug Administration (FDA) 
approved one of the first AI systems for clinical use in oph-
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thalmology for interpretation of diabetic retinopathy fundu-
scopic images [31]. AI can be instrumental in computer-assisted 
diagnosis (CAD) in multiple fields but especially endoscopy. 
It can assist in quality control of procedures being performed 
as well as performance improvement of novice (and even 
expert) endoscopists. It can help make diagnoses more 
quickly and potentially more accurately, especially with pre-
malignant lesions [32]. It can also potentially help in disease 
localization and therapeutics in the future using preoperative 
image guidance. With the vast and rapid advances in comput-
ing power, the role of artificial intelligence in clinical medi-
cine should have been ubiquitous. The fact that it is not is due 
to several challenges and limitations.

Many of the AI systems used in endoscopy so far have 
used limited datasets. They rely on high-quality endoscopic 
images to train the datasets for recognition, excluding lower 
quality images like those with some mucus or bile on them. 
This does not always follow real-world conditions, potentially 
falsely increasing accuracy in the initial single center studies. 
This could cause overfitting of the models and falsely increase 
detection accuracy [3]. The artificial intelligence neural net-
work training will need to include live, unprocessed videos to 
simulate real-world conditions. Just like humans, the more 
training and feedback the AI gets, the better it can get.

The involvement of AI in diagnostics and clinical medicine 
will have nonclinical implications as well. These include 
assumption of responsibility for errors, ethical concerns, and 
medico-legal risks. There is also the risk of amplification of 
this error by a faulty algorithm. Instead of a single error by a 
single physician, the application of the AI broadly could 
result in a vast number of errors [33]. Currently, there is a 
relative lack of standards and regulations to evaluate efficacy 
and safety of AI systems in clinical medicine [34]. These regu-
latory and legislative issues will need to be addressed by 
involving all the stakeholders including clinicians, technology 
experts, industry and regulatory bodies among others. Payors 
like insurance companies and/or the government will also 
need to be involved to address reimbursements for the added 
initial cost that AI incorporation may introduce.
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Recently, Watson for Oncology, IBM Watson Health’s AI 
algorithm, was used by several hospitals around the world for 
treatment recommendations for cancer patients. Some of the 
recommendations were found to be faulty such as recom-
mending use of bevacizumab in a patient with bleeding, 
which is a contraindication [33]. The algorithm was based on 
a small number of theoretical cases with limited input from 
oncologists [33, 35]. This example highlights potential prob-
lems with current algorithms and also provides opportunities 
for future improvements. This has regulatory implications 
and significant work has yet to be done on that front. As men-
tioned earlier, because of the potential for amplification of 
these errors, the algorithms need to be based on as large a 
dataset as possible with ongoing machine and deep learning. 
There needs to be detailed simulation, validation, frequent 
audit, and periodic prospective evaluation of the algorithm. 
This would need to go beyond the current FDA requirements 
for medical algorithm approval [33, 36]. There may also be 
regulatory need to make algorithms more accessible so they 
can withstand scientific scrutiny as well, but it can be chal-
lenging to balance intellectual property rights with transpar-
ency. There also is a need to address data security and privacy. 
With global teams of hackers already pervasive and involved 
in data breaches and ransom, significant software security 
measures will need to be taken to maintain data privacy and 
also to avoid a malicious hack of algorithms that can result in 
erroneous or dangerous recommendations from the AI.

�Conclusion

Will AI ever replace clinicians? Though there are fields like 
radiology and pathology that initially seem more at risk, phy-
sicians will still be needed to process the information and 
come up with a treatment plan for the foreseeable future. AI 
will be used to analyze, process, and find patterns in massive 
sets of data that observe and detect things that are not 
humanly possible [33]. It can do so accurately, efficiently, 
repeatedly, and reliably. What seems difficult to replace is the 
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advantages of an actual person to communicate with the 
patient and their family with empathy and sympathy, to read 
the nonverbal cues of a stressed patient, and to provide the 
ever-important human touch to comfort the patient [31].
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