
Automated Temporal Verification
for Algebraic Effects

Yahui Song(B), Darius Foo, and Wei-Ngan Chin

School of Computing, National University of Singapore, Singapore, Singapore
{yahuis,dariusf,chinwn}@comp.nus.edu.sg

Abstract. Although effect handlers offer a versatile abstraction for
user-defined effects, they produce complex and less restricted execution
traces due to the composable non-local control flow mechanisms. This
paper is interested in the temporal behaviors of effect sequences, such
as unhandled effects, termination of the communication, safety, fairness,
etc. Specifically, we propose a novel effects logic ContEffs, to write precise
and modular specifications for programs in the presence of user-defined
effect handlers and primitive effects. As a second contribution, we devise
a forward verifier together with a fixpoint calculator to infer the behav-
iors of such programs. Lastly, our automated verification framework pro-
vides a purely algebraic term-rewriting system (TRS) as the back-end
solver, efficiently checking the entailments between ContEffs assertions.
To demonstrate the feasibility, we prototype a verification system where
zero-shot, one-shot, and multi-shot continuations coexist; prove its cor-
rectness; present experimental results; and report on case studies.

1 Introduction

User-defined effects and effect handlers are advertised and advocated as a rel-
atively easy-to-understand and modular approach to delimited control. They
offer the ability to suspend and resume computations, allowing information to
be transmitted both ways. More specifically, an effect handler resembles an
exception handler, i.e., control is transferred to an enclosing handler. Unlike
the exception handlers, the key difference is that effects handlers have access to
a continuation. By invoking this continuation, the handler can communicate a
reply to the suspended computation and resume its execution.

For example, effect Yield : int -> unit, declares the Yield effect, to be
used in the generator functions. When it is performed, the program suspends
its current execution and returns the yielded int value to the handler. Such
usages separate the logic, e.g., iterating a list, from the effectful operations, such
as “printing on the console” or “sending an element to a consumer”, thereby
improving code reuse and memory efficiency. Functions perform effects without
needing to know how the handlers are implemented, and the computation may
be enclosed by different handlers that handle the same effect differently.

Recently, effect handlers are found in several research programming lan-
guages, such as Eff [1], Frank [2], Links [3], Multicore OCaml [4], and Scala [5],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
I. Sergey (Ed.): APLAS 2022, LNCS 13658, pp. 88–109, 2022.
https://doi.org/10.1007/978-3-031-21037-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21037-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-21037-2_5

Automated Temporal Verification for Algebraic Effects 89

etc. There is a growing need for programmers and researchers to reason about
the combination of primitive effects and user-defined handlers. In particular, we
are interested in the techniques for inferring and verifying temporal behaviors
of such non-local control flows, which have not been extensively studied. In this
paper, we tackle the following verification challenges:
1. The coexistence of zero-shot, one-shot and multi-shot continuations. The
design decisions of various implementations [4,6] and verification solutions [7,8]
diverge upon the question that, should it be permitted or forbidden to invoke a
captured continuation more than once? In this paper, our forward inference rules
shows the generality to incorporate both one-shot and multi-shot continuations.
Furthermore, it naturally supports reasoning on exceptions by treating them as
zero-shot, i.e., that abandon the continuations completely.
2. Non-terminating behaviors. Figure 1 presents the so-called “recursive cow”
program drawn from the benchmark [9], which looks like it is terminating but
it actually cycles. Function f() performs the predefined effect Foo; then loop

() handles effect Foo by resuming a closure which in turn performs Foo when
applied.

1 effect Foo : (unit -> unit)

2

3 let f() = perform Foo ()

4

5 let loop()

6 = match f () with

7 | _ -> () (*normal return*)

8 | effect Foo k -> continue k

9 (fun () -> perform Foo ())

Fig. 1. A loop.

With higher-order effect signa-
tures and in the setting of deep han-
dlers1, the communications between
the computation and handlers poten-
tially lead to infinite traces. It is
useful yet challenging to automati-
cally infer/verify the termination of
the communication. In this paper,
we devise ContEffs, i.e., extended
regular expressions with arithmetic
constraints, to provide more precise
specifications by integrating: � for finite traces; ω for infinite traces; ∞ for pos-
sibly finite or infinite traces.
3. Linear temporal properties. For decades monads have dominated the scene
of pure functional programming with effects, and the recent popularization of
algebraic effects and handlers promises to change the landscape. However, with
rapid change also comes confusion. In monads, the effectful behavior is defined in
bind and return, statically determining the behavior inside the do block. Whereas
algebraic effects call effectful operations with no inherent behavior. Instead, the
behavior is determined dynamically by the encompassing handler. Although this
gives greater flexibility in the composition of effectful code, it requires further
specifications and verification to enforce the temporal requirements.

In this work, ContEffs smoothly encode and go beyond the linear temporal
logic (LTL). For examples: “Effect A will never be followed by effect B” is a fair-
ness property, and it is expressed as: (� · A · B)�, where is a wildcard matching
to any events; � denotes a repeated pattern; B denotes the negation of an effect

1 A deep handler is persistent: after it has handled one effect, it remains installed, as
the topmost frame of the captured continuation [10,11].

90 Y. Song et al.

B . “Function send(int n) terminates when n is non-negative, otherwise it does
not terminate” is expressed as: n≥0∧()� ∨ n<0∧()ω, which is beyond LTL.

Having ContEffs as the specification language, we are interested in the fol-
lowing verification problem: Given a program P, and a temporal property Φ′,
does ΦP � Φ′ hold2? In a typical verification context, checking the inclusion/en-
tailment between the program effects ΦP and the valid traces Φ′ proves that:
the program P will never lead to unsafe traces which violate Φ′.

To effectively check ΦP � Φ′, we deploy a purely algebraic TRS inspired by
Antimirov and Mosses’ algorithm [12], which was originally designed for decid-
ing the inequalities of regular expressions. Our TRS shows the ability to solve
inclusions beyond the expressiveness of finite-state automata, also suggests that
it is a better average-case algorithm than those based on automata theory.

We aim to lay the foundation for a practical verification system that is pre-
cise, concise, and modular to prove temporal properties of effectful programs.
To the best of the authors’ knowledge, this work is the first to provide an exten-
sive temporal verification framework for programs with user-defined effects and
handlers. We summarize our main contributions as follows:

1. The Continuous Effect (ContEffs): We define the syntax and semantics
of ContEffs, to be the specification language, which captures the temporal
behaviors of given higher-order programs with algebraic effects.

2. Front-End Effects Inference: Targeting a ML-like language with the pres-
ence of algebraic effects [4,13], we establish a set of forward rules, to composi-
tionally infer the program’s temporal behaviors. The inference process makes
use of a fixpoint calculator and the back-end solver TRS.

3. The Term Rewriting System (TRS): To check the entailments (i.e., the
language inclusion relation) between two ContEffss, we present the rewriting
rules, to prove the inferred effects against given temporal specifications.

4. Implementation and Evaluation: We prototype the proposed verification
system based on the latest Multicore OCaml (4.12.0) implementation. We
prove its correctness and present case studies investigating ContEffs ’ expres-
siveness and the potential for various extensions.

2 Overview

2.1 A Sense of ContEffs in File I/O

We define Hoare-triple style specifications, marked in lavender, for each pro-
gram, which leads to a compositional verification strategy, where temporal rea-
soning can be done locally. We model an abstract form of file I/O in Fig. 2.
Effects Open and Close are both declared to be performed with a value of type
int, indexing the operated file.

2 The inclusion notation � is formally defined in Definition 3.

Automated Temporal Verification for Algebraic Effects 91

8 let close_file n

9 (*@ req _^*.Open(n)!

10 .(~Close(n)!)^* @*)

11 (*@ ens Close(n)! @*)

12 = perform (Close n)

13

14 let file_9 ()

15 (*@ req emp @*)

16 (*@ ens Open(9)!.Close(9)!@*)

17 = open_file 9;

18 close_file 9

1 effect Open : int -> unit

2 effect Close: int -> unit

3

4 let open_file n

5 (*@ req _^* @*)

6 (*@ ens Open(n)! @*)

7 = perform (Open n)

Fig. 2. A simple file I/O example.

Function open file takes an argu-
ment n. Its precondition uses a wild-
card ‘ ’ under a Kleene star, indicating
that any finite number/kind of effects
is allowed to have occurred before the
call to open file. In other words, it is
always possible to open a file. Its post-
condition indicates that it performs
the effect Open applied with n.

The precondition of close file
states that it can only be called after
such a history trace where the nth file
has been requested to be Opened, and
not been requested to be Closeed3.

We use . to denote the sequential
composition of effect traces, ! denotes
the emission of a certain effect, and ~
denotes the negation of a certain effect
label.

The precondition of file 9: emp, stands for an empty trace, which means no
history trace is allowed by the calling site of function file 9. We formalize this
idea of being allowed as an entailment relation between specifications in Sec. 5.
The verification fails when the real implementation violates the specifications.

2.2 Effects Inferences via a Fixpoint Calculation

1 effect Goo : (unit -> unit)

2

3 let f_g ()

4 (*@ req _^* @*)

5 (*@ ens Foo!.Goo!.Foo?() @*)

6 = let f = perform Foo in

7 let g = perform Goo in

8 f () (* g is abandoned *)

9

10 let loop ()

11 (*@ req _^* @*)

12 (*@ ens _^*.(Foo.Goo)^w @*)

13 = match f_g () with

14 | _ -> ()

15 | effect Foo k -> continue k

16 (fun () -> perform Goo ())

17 | effect Goo k -> continue k

18 (fun () -> perform Foo ())

Fig. 3. Another Loop.

We continue to examine a vari-
ant of the so-called “recursive cow”
benchmark program [9] in Fig. 3.,
which generates an infinite trace.
The handling of effects Foo and Goo
are notable because their resumption
carry closures back to the suspended
points, which in turn perform effects
when fully applied.

We argue informally that loop is
non-terminating. This is because the
invocation of f g () performs Foo,
which obtains the resumed closure
(defined in line 16) and stores it in the
variable f. Then the application to f
in turn performs Goo. The performing
of Goo brings us to the handler at line

3 close file’s precondition prevents closing files that are not opened. The constraints
can be strengthened or loosened as needed. For example, to prevent opening a file
which is already opened, we need to strengthen open file’s precondition accordingly.

92 Y. Song et al.

18, which resumes a closure that performs Foo when applied. The resulting post-
condition, deploys the ω operator, states that loop finally performs an infinite
succession of alternating Foo and Goo effects. In fact, our fixpoint calculator
computes the final effects for loop as Foo · Goo · Goo · Foo · (Goo · Foo)ω, which
entails the declared postcondition (c.f. Fig. 4.).

Loops like these between handler and callee are generally caused by per-
forming effects in the recovery closure when handling an effect, that results in a
cycle back to that same (deep) handler. However, resuming with a closure, is a
useful pattern for inverting control between handler and callee, does give rise to
this trap. Our fixpoint analysis and specifications are aimed at capturing such
situations, which have not been extensively explored.

2.3 The TRS: To Prove Effects Inclusions

The rewriting system proposed by Antimirov and Mosses [14] decides inequal-
ities of regular expressions (REs) through an iterated process of checking the
inequalities of their partial derivatives [15]. There are two basic rules: [DISPROVE
], which infers false from trivially inconsistent inequalities; and [UNFOLD], which
applies Definition 1 to generate new inequalities. In detail, given Σ is the whole
set of the alphabet, DA(r) is the partial derivative of r w.r.t the event A.

Definition 1 (REs Inequality). For REs r, s, r � s ⇔ ∀(A ∈ Σ). DA(r) � DA(s).

Similarly, we formally define the inclusion of ContEffs in Definition 3.
Next we present the effects inclusion, generated from Fig. 3, proving process

for the post condition checking in Fig. 4. Termination is guaranteed because
the set of derivatives to be considered is finite, and possible cycles are detected
using memorization. We use ♠ to indicate such pairings. The rewriting rules are
defined in Sec. 5. In particular, the rule [Reoccur] finds the syntactic identity
from the internal proof tree, for the current open goal [16].

Foo · (Goo · Foo)ω · (Goo · Foo)ω ♠ ∨ (Foo · Goo)ω
fst=Goo

Goo · Foo · (Goo · Foo)ω · (Goo · Foo)ω ∨ Goo · (Foo · Goo)ω
fst=Foo

Foo · (Goo · Foo)ω · (Goo · Foo)ω ♠
fst=Goo

Goo · Foo · (Goo · Foo)ω · (Foo · Goo)ω ∨ (Foo · Goo)ω
fst=Goo

Goo · Goo · Foo · (Goo · Foo)ω · (Foo · Goo)ω ∨ Goo · (Foo · Goo)ω
fst=Foo

Foo Goo Goo Foo (Goo Foo)ω (Foo Goo)ω

Fig. 4. Proving the postcondition of loop ().

3 Language and Specifications

3.1 The Target Language

Syntax. We target a minimal, ML-like (typed, higher-order, call-by-value) core
pure language, defined in Fig. 5. Here, c, x and A are meta-variables ranging
respectively over integer constants, variables, and labels of effects.

Automated Temporal Verification for Algebraic Effects 93

A program P comprises a list of effect declarations eff ∗ and a list of method
definitions meth∗; the ∗ superscript denotes a finite, possibly empty list of items.
Programs are typed according to basic types τ . Each method meth has a name
mn, an expression body e, and pre- and postconditions Φpre and Φpost (the
syntax of effect specifications Φ is given in Fig. 7). Constructs like sequencing
are defined via elaboration to more primitive forms.

(Program) P ::= eff ∗ meth∗

(Effect Declarations) eff ::= A : τ
(Method Definition) meth ::= τ mn (τ v) [req Φpre ens Φpost] {e}
(Types) τ ::= bool | int | unit | τ1 τ2
(Values) v ::= c | x | λx ⇒ e
(Handler) h ::= (return x e | ocs)
(Operation Cases) ocs ::= ∅ | {effect A(x, κ) e ocs
(Expressions) e ::= v | v1 v2 | let x=v in e | if v then e1 else e2 |

perform A(v, λx ⇒ e) | match e with h | resume v
(Selected Elaborations)

e1; e2 =⇒ let ()=e1 in e2
e1 e2 =⇒ let f=e1 in let x=e2 in (f x)

perform A(e1, λy ⇒ e2) =⇒ let x=e1 in perform A(x, λy ⇒ e2)
let x=perform A(v, λy ⇒ e1) in e2 =⇒ perform A(v, λy ⇒ let x=e1 in e2)

perform A(v) =⇒ perform A(v, λx ⇒ x)

c ∈ Z ∪ B ∪ unit x , y ,mn, κ ∈ var A ∈ Σ

Fig. 5. Syntax of expressions.

(Evaluation contexts) E ::= | let x=E in e | match E with h

(Reduction rules) E [e1] E[e2] if e1 e2
let x=v in e e[v/x]
(λx ⇒ e) v e[v/x]

if true then e1 else e2 e1
if false then e1 else e2 e2

match v with h e[v/x] if (return x e) ∈ h
match (perform A(v, λy ⇒ e1)) with h e2[v/x][(λy ⇒ match e1 with h)/κ]

if (effect A(x, κ) e2) ∈ h
match (perform A(v, λy ⇒ e1)) with h perform A(v, λy ⇒ match e1 with h)

if A /∈ h

Fig. 6. Evaluation contexts and reduction rules

Operational Semantics. The reduction rules up to those for match are stan-
dard. Matching on a pure value results in the body of the always-present return
handler being executed, with x bound to the value. The next two cases define how

94 Y. Song et al.

effects are performed and handled, but before covering them, we first explain how
the expression perform A(v , λx ⇒ e) works informally: it performs the effect A
(e.g. a shared-memory read) with argument v (e.g. the memory location to be
read). The result value of the effect (e.g. the contents of the memory location)
is then bound to x and evaluation resumes with the continuation e. Note that
how exactly the read is implemented is defined by handlers which enclose the
perform.

With that in mind, there are two cases when matching on an effectful expres-
sion. If the effect A is handled by an appropriate case in an enclosing handler,
both value and continuation are substituted into the body of the case – note
that the continuation contains an identical handler (making the enclosing han-
dler deep). Otherwise, if the effect is unhandled, reduction proceeds with the
current match “pushed” into the continuation, to handle subsequent performs.

3.2 The Specification Language

Syntax. We enrich a Hoare-style verification system with effect specifications,
using the notation {req Φpre ens Φpost} for function pre- and postconditions.
As defined in Fig. 7, Φ is a set of disjunctive tuples including a pure formula π,
an event sequence θ, and a return value v.

() Φ ::= (π, θ, v)
(Parameterized Label) l ::= Σ(v)

(Event Sequences) θ ::= ⊥ | | ev | Q | θ1 ·θ2 | θ1∨θ2 | θ | θ∞ | θω

(Single Events) ev ::= | l | l
(Placeholders) Q ::= l ! | l?(v)

(Pure formulae) π ::= True | False | R(t1 , t2) | π1∧π2 |π1∨π2 |¬π |π1⇒π2

(Terms) t ::= n | x | t1+t2 | t1 -t2

x var (Finite Kleene Star) (Finite/Infinite) (Infinite) ω

Fig. 7. Syntax of ContEffs.

A is an effect label drawn from Σ , a finite set of user-defined effect labels. A
parameterized label is an effect label together with a value argument v. An event
ev is an assertion about the (non-)occurrence of an individual, handled effect.

Placeholders Q stand for traces (sequences of events). The two kinds of place-
holders are unhandled effects l!, which may give rise to further effects upon being
handled, and l?(v), which describes the trace that results when l is resumed with
a higher-order function, and this function is applied to v. Placeholders enable
modular verification, allowing higher-order perform sites to be described inde-
pendently of any particular handler. They are only instantiated while verifying
handlers, using the fixed-point reasoning (Sect. 4.2).

Effect sequences θ can be constructed by false (⊥); the empty trace ε; a
single event ev ; a placeholder Q ; a sequence concatenation θ1 ·θ2 ; and sequence

Automated Temporal Verification for Algebraic Effects 95

disjunction θ1∨θ2 . Effect sequences can be also constructed by �, representing
finite (zero or more) repetition of a trace; by ω, representing an infinite repetition
of a trace; or by ∞, representing an overapproximation of both finite and infinite
possibilities [17]. Although θ� and θω are subsumed by θ∞, integrating all of the
operators makes the specification language more flexible and precise. It also
makes the logic conveniently fuse traditional linear temporal logics.

Pure formulae π are Presburger arithmetic formulae. R(t1 , t2) is a binary
relation (R ∈ {=, >,<,≥,≤}). Terms are constant integer values n, integer
variables x , and additions and subtractions of terms.

Semantic Model of Effect Sequences. To define the model, var is the set
of program variables, val is the set of primitive values, α is the set of concrete
events drawn from single events l or placeholders Q . Let E , ϕ |= Φ denote the
models relation, i.e., the context E and linear temporal events ϕ satisfy the effect
specification Φ, where E records the stack status and the bindings from variables
to placeholders, E � var→(val ∪ Q); and ϕ is a list of events, ϕ � [α].

Since the return value in effect specifications is irrelevant to the semantic
model, we define E , ϕ |= (π, θ) to be E , ϕ |= (π, θ, v) for some return value v .

The semantics of effect sequences is defined in Fig. 8. [] is an empty sequence;
[l] is the sequence that contains one parameterized label l; ++ is the append
operation of two effect sequences; and

∨
j is a disjunction of parameterized

labels j . Comparisons between labels use simple lexical equivalence.

E , ϕ |= Φ iff ∃(π, θ, v) ∈ Φ. E , ϕ |= (π, θ, v)

E , ϕ |= () iff π E=True and ϕ=[]

E , ϕ |= (π,) iff π E=True and ∃l ∈ Σ(v), ϕ=[l]

E , ϕ |= (π, l) iff π E=True and ϕ=[l]

E , ϕ |= (π, l) iff π E=True and E , ϕ |= j where j ∈ Σ(v) and j=l

E , ϕ |= (π,Q) iff π E=True and ϕ=[Q]

E , ϕ |= (π, θ1 ·θ2) iff ∃ϕ1 , ϕ2 . ϕ=ϕ1++ϕ2 and E , ϕ1 |=(π, θ1) and E , ϕ2 |=(π, θ2)

E , ϕ |= (π, θ1∨θ2) iff E , ϕ |= (π, θ1) or E , ϕ |= (π, θ2)

E , ϕ |= (π, θ) iff E , ϕ |= () or E , ϕ |= (π, θ · θ)

E , ϕ |= (π, θ∞) iff E , ϕ |= (π, θ) or E , ϕ |= (π, θω)

E , ϕ |= (π, θω) iff E , ϕ |= (π, θ · θω)

E , ϕ |= (False, ⊥) iff false

Fig. 8. Semantics of effect sequences.

96 Y. Song et al.

3.3 Instrumented Semantics

To facilitate the soundness proof in Theorem 1 for the verification rules presented
in Sect. 4, we also define an instrumented reduction relation i−−→, which operates
on program states of the form

⌈
e, E , ϕ

⌉
, where an expression is associated with

a context and the trace of effects performed in the course of its execution. i−−→∗

denotes its reflexive, transitive closure. Here, given e −→ e ′ and a most general
high-order effects signature (A : τ1→(τ2→τ3)) ∈ P:

e = v1 v2 E(v1)=A(v)?
⌈
e, E , ϕ

⌉ i−−→⌈
e′, E , ϕ++[A(v)?(v2)]

⌉ [Inst-App]
e = let x=v in e1

⌈
e, E , ϕ

⌉ i−−→⌈
e′, (x�→v)::E , ϕ

⌉ [Inst-Bind]

e = match perform A(v, λx⇒e1) with h A /∈ h
⌈
e, E , ϕ

⌉ i−−→⌈
e′, (x�→A(v)?)::E , ϕ++[A(v)!]

⌉ [Inst-Escape]

e = match perform A(v, λx⇒e1) with h A ∈ h
⌈
e, E , ϕ

⌉ i−−→⌈
e′, E , ϕ++[A(v)]

⌉ [Inst-Caught]

4 Forward Verification

An overview of our automated verification system is given in Fig. 9. It consists
of a Hoare-style forward verifier and a TRS. The input of the forward verifier is
a target program annotated with temporal specifications written in ContEffs.

The input of the TRS is a pair of effects LHS and RHS, referring to the
inclusion LHS � RHS to be checked (LHS for left-hand-side trace, and RHS for
right-hand-side trace). The verifier calls the TRS to prove produced inclusions.

Higher-order

Hoare-style

Two
LHS RHS

Inclusion
Prover (TRS) Sec. 5

Proof Obligations

Fig. 9. System overview. Rounded boxes are the main procedures. Rectangular boxes
describe the inputs to the procedures. The verification relies on the TRS (dash line).

We formalize a set of syntax-directed forward verification rules for the
core language. P denotes the program being checked. With pre/postconditions
declared for each method in P, we apply modular verification to a method’s body
using Hoare-style triples E � {Φ} e {Φ′} where E is the context; if Φ describes
the effects which have been performed since the beginning of P, if e terminates,
Φ′ describes the effects that will have been performed after.

Automated Temporal Verification for Algebraic Effects 97

4.1 Forward Verification Rules

In [FV -Meth], the rule computes the final effects Φ from the method body, and
checks the inclusion between Φ and the declared specifications. Note that for
succinctness, the user-provided Φpost only denotes the extension of the effects
from executing the method body. Formally, E � {Φpre} e {Φpre ·Φpost} is a valid
triple.

E
 {Φpre} e {Φ} Φ � Φpre · Φpost

 τ mn (τ v) [req Φpre ens Φpost] {e} [FV -Meth]

Definition 2 (ContEffs Concatenation). Given two ContEffs Φ1 and Φ2 ,
Φ1 · Φ2 = {(π1 ∧ π2 , θ1 · θ2 , v2) | (π1 , θ1 , v1) ∈ Φ1 , (π2 , θ2 , v2) ∈ Φ2}

[FV -Perform] concatenates a placeholder to the current effects, where Φ·A(v)!
≡ {(π, θ · A(v)!, v) | (π, θ, v) ∈ Φ}, then extends the environment by binding x
to A(v)?, referring to the resumed value of performing A(v).

Φ′=Φ · A(v)! (x�→A(v)?)::E
 {Φ′} e {Φ′′}
E
 {Φ} perform A(v, λx⇒e) {Φ′′} [FV -Perform]

For applications v1 v2 , if v1 is a function definition with annotated specifica-
tions, [FV -Call] checks whether the instantiated precondition of callee, Φpre [v2/v],
is satisfied by the current effects state, then it obtains the next effects state by
concatenating the instantiated postcondition, Φpost [v2/v], to the current effects
state; if v1 maps to l?, [FV -App] concatenates l?(v2) into the current effect
state, referring to the effects generated by applying v2 to the value resumed
from performing l . [FV -Value] updates the current return value.

E(v1)=τ mn (τ v) [req Φpre ens Φpost] {e} Φ � Φpre[v2/v]

E
 {Φ} v1v2 {Φ · Φpost[v2/v]} [FV -Call]

E(v1)=l? θ′=l?(v2)

E
 {Φ} v1v2 {Φ · θ′} [FV -App]
Φ′ = {(π, θ, v′) | (π, θ, v) ∈ Φ}

E
 {Φ} v′ {Φ′} [FV -Value]

[FV -If -Else] unions the effects from both branches, where Φ ∧ π′ ≡ {(π ∧ π′,
θ, v) | (π, θ, v) ∈ Φ}. [FV -Let] extends E with x binding to v .

E
 {Φ∧(v=true)} e1 {Φ1} E
 {Φ∧(v=false)} e2 {Φ2}
E
 {Φ} if v then e1 else e2 {Φ1} ∪ {Φ2} [FV -If -Else]

(x�→v)::E
 {Φ} e {Φ′}
E
 {Φ} let x=v in e {Φ′} [FV -Let]

98 Y. Song et al.

[FV -Match] computes the effects of e using the initial state {(True, ε, ())},
then deploys the fixpoint algorithm to compute the final effects after been han-
dled by h. The notion ♥ is a special event marking the end of the traces, which
is essential when distinguishing the zero/one/multi-shots continuations.

E
 {(True, ε, ())} e {Φ′} Φ′′={(π, θ · ♥, v) | (π, θ, v) ∈ Φ′}
E , h
fix Φ′′ � Φfix (cf. Sec. 4.2)

E
 {Φ} match e with h {Φ · Φfix} [FV -Match]

4.2 Fixpoint Computation

Given any effect Φ and fixed environment E and handler H, the relation
E ,H �fix Φ � Φfix concludes the fixpoint effects Φfix via the following rule, where

∀(π, θ, v) ∈ Φ. ‖E , ε, H‖
fix (π, θ, v) � Φ′

E , H
fix Φ �
⋃

Φ′ [Fix -Disj]

for all execution tuples (π, θ, v) from Φ, given E and H, it is reduced to Φ′. Their
relation is captured by: ‖E , θhis ,H‖ �fix (π, θ, v) � Φ′, where θhis is the history
trace and initialized by ε. The final result Φfix is a union set of all the Φ′.

Rule [Fix -Normal] is applied when the trace is reduced to the ending mark
♥, which indicates that the execution of the handled program is finished. In this
case, the resulting state Φ′ is achieved by computing the strongest post condition
of eret [v/x] from the starting state {(π, θhis , v)}.

(return x �→ eret) ∈ H ([x�→v])::E
 {(π, θhis , v)} eret {Φ′}
‖E , θhis , H‖
fix (π, ♥, v) � Φ′ [Fix -Normal]

Rule [Fix -Unfold-Skip] is applied when the starting events α are handled
effects ev , or placeholders corresponding to the effects cannot be handled by
the current handler. In this case, the rule simple achieves α into the history
context θhis and continues to reason about the tail of the trace, i.e., θ.

α ∈ {ev, l !, l?(v′)} (l /∈ H) ‖E , θhis · α, H‖
fix (π, θ, v) � Φ′

‖E , θhis , H‖
fix (π, α · θ, v) � Φ′ [Fix -Unfold-Skip]

Rule [Fix -Unfold-Handle] is applied when the starting events α are unhandled
effects l ! which can be handled by the current handler. In this case, the rule uses
the relation E ′,H,D �h 〈Φ〉 e 〈Φ′〉 to reason about the handling code e, where E ′
extends E with x�→v. Note that, here the rule achieves l into the history context,
indicating that the emission l ! is handled.

Automated Temporal Verification for Algebraic Effects 99

α ∈ {l !} (effect A(x, κ) �→ e) ∈ H (l=A(v′))
E ′=(x�→v)::E E ′, H, θ
h 〈(π, θhis · l , v)〉 e 〈Φ′〉 (cf. Sec. 4.3)

‖E , θhis , H‖
fix (π, α · θ, v) � Φ′ [Fix -Unfold-Handle]

4.3 Reasoning in the Handling Program

Rules for E ,H,D �h 〈Φ〉 e 〈Φ′〉 (where D stands for the not-yet-handled con-
tinuation, of the type θ) are mostly similar to the top-level forward relation
E � {Φ} e {Φ′}, except for the rules:

∀(π, θ, v) ∈ Φ ‖E , θ, H‖
fix (π, D[v′/l?], v) � Φ′

E , H, D
h 〈Φ′〉 e 〈Φ′′〉
E , H, D
h 〈Φ〉 let x=κ v′ in e 〈Φ′′〉 [Handle-Resume]

Φ′={(π, θ, v′) | (π, θ, v) ∈ Φ}
E , H, D
h 〈Φ〉 v′ 〈Φ′〉 [Handle-Value]

In [Handle-Resume], all the placeholders l? shown in the continuation D can be
finally instantiated by κ’s argument value, v ′. Possible loops are also captured
in this step, when D[v ′/l?] produces the effects’ emissions which has already
been handled. The final result Φ′′ is achieved by reasoning e after handling the
rest continuation. Note that if the handling program directly returns a single
value, the rule [Handle-Value] abandons the continuation D completely, which is
intuitively why we are able to handle exceptions (zero-shot continuations). The
rest of the rules and a demonstration example are presented in Appendix A.

Lemma 1 (Soundness of the Fixpoint Computation). Given an effect Φ,
with the environment E and handler H. Φfix is the updated version of Φ, where
all Φ’s placeholders – which can be handled by H – are handled as H defines.

Formally , ∀E , ∀H, ∀Φ, if E , H
fix Φ � Φfix is valid, then:

when Φ is a set, Φfix={‖E , ε, H‖
fix (π, θ, v) � Φ′ | (π, θ, v) ∈ Φ}; (1)
when Φ=(π, θ, v), α=fst(θ), θhis is the handled trace,

if α=♥ : ([x�→v])::E
{(π, θhis , v)}eret{Φ′} is valid , given (return x�→eret)∈H; (2)
if α∈{ev, l !, l?(v′)} (l /∈H) : ‖E , θhis · α, H‖
fix (π, Dα(θ), v) � Φ′ is valid ; (3)
if α∈{l !} (l∈H) : (x�→v)::E , H, Dα(θ)
h 〈(π, θhis · l , v)〉 e 〈Φ′〉 is valid , given

(effect A(x, κ) �→ e)∈H. (4)

Proof. See Appendix B.

Theorem 1 (Soundness of Verification Rules). Given an expression e, the
linear effect trace produced by the real execution of e satisfies the effect specifi-
cation derived via the forward verification rules.

100 Y. Song et al.

Formally , ∀e, ∀E , ∀ϕ, ∀Φ given
⌈
e, E , ϕ

⌉ i−−→∗ ⌈
v, E ′, ϕ′⌉ and E
 {Φ} e {Φ′},

if E , ϕ|=Φ then E ′, ϕ′|=Φ′.

Proof. See Appendix B.

5 Temporal Verification via a TRS

A TRS checks inclusions among logical terms, via an iterated process of checking
the inclusions of their partial derivatives [15]. It is triggered i) prior to function
calls for the precondition checking; and ii) at the end of verifying a function
for postcondition checking. Given two effects Φ1 and Φ2 , the TRS decides if
the inclusion Φ1 � Φ2 is valid. During the rewriting process, the inclusions are
of the form Ω � Φ1�θΦ2 , a shorthand for: Ω � θ · Φ1 � θ · Φ2 . To prove such
inclusions amounts to checking whether all the possible traces in the antecedent
Φ1 are legitimately allowed in the possible traces from the consequent Φ2 . Ω is
the proof context, i.e., a set of effect inclusion hypotheses, and θ is the history
of effects from the antecedent that have been used to match the effects from the
consequent. The inclusion checking is initially invoked with Ω={} and θ=ε.

Effect Disjunction. An inclusion with a disjunctive antecedent succeeds if both
disjunctions entail the consequent. An inclusion with a disjunctive consequent
succeeds if the antecedent entails any of the disjunctions. Note that the event
sequences’ entailment checking is irrelevant to the returning values.

[LHS -OR]
Ω
 (π, θ) � Φ′ and Ω
 Φ � Φ′

Ω
 (π, θ, v) :: Φ � Φ′

[RHS -OR]
Ω
 (π, θ) � (π′, θ′) or (π, θ) � Φ′

Ω
 (π, θ) � (π′, θ′, v ′) :: Φ′

Definition 3 (ContEffs Inclusion). For effects (π1 , θ1) and (π2 , θ2),
(π1 , θ1) � (π2 , θ2) ⇔ π1⇒π2 and (∀α ∈ Σ). Dα(θ1) � Dα(θ2).

Next we provide the definitions and implementations of auxiliary functions4

Nullable(δ), Infinitable(κ), First(fst) and Derivative(D) respectively. Intuitively,
the Nullable function δ(Φ) returns a boolean value indicating whether θ contains
the empty trace; the Infinitable function κ(θ) returns a boolean value indicating
whether θ is possibly infinite; the First function fst(θ) computes possible initial
elements of θ; and the Derivative function Dα(θ) eliminates an event α5 from
the head of θ and returns what remains.

4 The definitions are extended from [15], to be able to deal with placeholders and
infinite traces, proposed in this work.

5 α could be a single label l , a negated label l , a wildcard , or a placeholder Q .

Automated Temporal Verification for Algebraic Effects 101

Definition 4 (Nullable). Given any sequence θ, we recursively define δ(θ)6

δ(ε)=δ(θ�)=δ(θ∞)=true δ(θ1 ·θ2)=δ(θ1)∧δ(θ2) δ(θ1∨θ2)=δ(θ1)∨δ(θ2)

Definition 5 (Infinitable). Given any sequence θ, we recursively define κ(θ)7

κ(θ∞)=κ(θω)=true κ(θ1 ·θ2)=κ(θ1)∨κ(θ2) κ(θ1∨θ2)=κ(θ1)∨κ(θ2)

Definition 6 (First). Let fst(θ) be the set of initial elements derivable from
sequence represents all the traces contained in θ.

fst(⊥)=fst(ε)={} fst(ev)={ev} fst(Q)={Q} fst(θ1∨θ2)=fst(es1) ∪ fst(es2)

fst(θ1 ·θ2)=

{
fst(es1) ∪ fst(es2) if δ(θ1)=true

fst(θ1) if δ(θ1)=false
fst(θ�)=fst(θ∞)=fst(θω)=fst(θ)

Definition 7 (Partial Derivative). The partial derivative Dα(θ) of effects θ
w.r.t. an element α computes the effects for the left quotient, α-1 �θ�8.

Dα(⊥)=⊥ Dα(ε)=⊥ Dα(θ1∨θ2)=Dα(θ1) ∨ Dα(θ2) Dα(θ�)=Dα(θ) · θ�

Dα(ev)=

{
ε if α ⊆ ev

⊥ else
Dα(Q)=

{
ε if α=Q

⊥ else
Dα(θ∞)=Dα(θ) · θ∞

Dα(θ1 ·θ2)=

{
(Dα(θ1) · θ2) ∨ Dα(θ2) if δ(θ1)=true

Dα(θ1) · θ2 if δ(θ1)=false
Dα(θω)=Dα(θ) · θω

5.1 Rewriting Rules

1. Axioms. Analogous to the standard propositional logic, ⊥ (referring to false)
entails any effects, while no non-false effects entails ⊥.

π1⇒π2

Ω
 (π1 , ⊥) � (π2 , θ)
[Bot-LHS]

θ �= ⊥
Ω
 (π1 , θ) �� (π2 , ⊥)

[Bot-RHS]

2. Disprove (Heuristic Refutation). These rules are used to disprove the
inclusions when the antecedent obviously contains more traces than the con-
sequent. Here nullable and infinitable witness the empty trace and infinite
traces respectively.

δ(θ1) ∧ ¬δ(θ2)

Ω
 (π1 , θ1) �� (π2 , θ2)
[Dis-Nullable]

κ(θ1) ∧ ¬κ(θ2)

Ω
 (π1 , θ1) �� (π2 , θ2)
[Dis-Infinitable]

6 false for unmentioned constructs.
7 false for unmentioned constructs.
8 �θ� represents all the traces contained in θ.

102 Y. Song et al.

3. Prove. We use the rule [Reoccur] to prove an inclusion when there exist
inclusion hypotheses in the proof context Ω , which are able to soundly prove
the current goal. One of the special cases of this rule is when the identical
inclusion is shown in the proof context, we then prove it valid.

(π1 , θ1)�(π3 , θ3) ∈ Ω (π3 , θ3)�(π4 , θ4) ∈ Ω (π4 , θ4)�(π2 , θ2) ∈ Ω

Ω
 (π1 , θ1) � (π2 , θ2)
[Reoccur]

4. Unfolding (Induction). This is the inductive step of unfolding the inclu-
sions. Firstly, we make use of the auxiliary function fst to get a set of effects
F , which are all the possible initial elements from the antecedent. Secondly,
we obtain a new proof context Ω ′ by adding the current inclusion, as an
inductive hypothesis, into the current proof context Ω . Thirdly, we iterate
each element α ∈ F , and compute the partial derivatives (next-state effects)
of both the antecedent and consequent w.r.t α. The proof of the original
inclusion succeeds if all the derivative inclusions succeed.

F = fst(θ1) π1⇒π2 ∀α ∈ F . (θ1�θ2) :: Ω
 Dα(θ1) � Dα(θ2)

Ω
 (π1 , θ1) � (π2 , θ2)
[Unfold]

Theorem 2 (TRS-Termination). The rewriting system TRS is terminating.

Proof. See Appendix C.

Theorem 3 (TRS-Soundness). Given an inclusion Φ1 � Φ2 , if the TRS
returns TRUE when proving Φ1 � Φ2 , then Φ1 � Φ2 is valid.

Proof. See Appendix D.

6 Implementation and Evaluation

To show the feasibility of our approach, we have prototyped our automated veri-
fication system using OCaml (See Zenodo [18]). The proof obligations generated
by the verifier are discharged using Z3 [19]. We prove termination and sound-
ness of the TRS. We validate the front-end forward verifier against the latest
Multicore OCaml (4.12.0) implementation for conformance.

Table 1 presents the evaluation results of a microbenchmark, to demonstrate
how verification scales with program size. We annotate 12 synthetic test pro-
grams with temporal specifications, half of which fail to verify. The experiments
were done on a MacBook Pro with a 2.6 GHz 6-Core Intel Core i7 processor. The
table records: No., the index of the program; LOC, lines of code; Infer(ms),
effects inference time; #Prop(✓), number of valid properties; Avg-Prove(ms),
average proving time for the valid properties; #Prop(✗), number of invalid prop-
erties; and Avg-Dis(ms), average disproving time for the invalid properties.

Automated Temporal Verification for Algebraic Effects 103

Table 1. Experimental results.

No. LOC Infer(ms) #Prop(✓) Avg-Prove(ms) #Prop(✗) Avg-Dis(ms)

1 32 14.128 5 7.7786 5 6.2852

2 48 14.307 5 7.969 5 6.5982

3 71 15.029 5 7.922 5 6.4344

4 98 14.889 5 18.457 5 7.9562

5 156 14.677 7 10.080 7 4.819

6 197 15.471 7 8.3127 7 6.8101

7 240 18.798 7 18.559 7 7.468

8 285 20.406 7 23.3934 7 9.9086

9 343 26.514 9 16.5666 9 13.9667

10 401 26.893 9 18.3899 9 10.2169

11 583 49.931 14 17.203 15 10.4443

12 808 75.707 25 21.6795 24 16.9064

Discussion: Generally, inference and proving time increase linearly with pro-
gram length. Furthermore, we notice that disproving times for invalid properties
are consistently lower than those for proved properties, regardless of program
complexity. This finding echos the insights from prior TRS-based works [14,20–
23], which suggest that TRS is a better average-case algorithm than those based
on the comparison of automata.

A summary: A TRS is efficient because it only constructs automata as far as
it needs, which makes it more efficient when disproving incorrect specifications,
as we can disprove it earlier without constructing the whole automata. In other
words, the more invalid inclusions are, the more efficient our solver is.

6.1 Case Studies

I. Encoding LTL. Classical LTL uses the temporal operators G (“globally”)
and F (“in the future”), which we also write � and ♦, respectively; and intro-
duced the concept of fairness, which places additional constraints on infinite
paths. LTL was subsequently extended to include the U (“until”) operator and
the X (“next time”) operator. As shown in Fig. 2, we encode these basic opera-
tors into our effects, making the specification more intuitive and readable, mainly
when nested operators occur. Furthermore, by putting the effects in the precon-
dition, our approach naturally subsumes past-time LTL along the way9.

9 Our implementation supports specifications written in LTL formulae, by providing
a translator from LTL to ContEffs. The translation schema is taken from [17].

104 Y. Song et al.

Table 2. Examples for converting LTL formulae into Effects. (l , j are labels.)

�l ≡ l∞ ♦l ≡ � · l l U j ≡ l� · j l → ♦j ≡ ¬l ∨ � · j
X l ≡ · l �♦l ≡ (� · l)∞ ♦�l ≡ � · l∞ ♦l ∨ ♦j ≡ � · l ∨ � · j

1 effect Exc: unit

2 effect Other: unit

3

4 let raise ()

5 (*@ req _^* @*)

6 (*@ ens Exc!.Other! @*)

7 = perform Exc;

8 perform Other

9

10 let excHandler

11 (*@ req _^* @*)

12 (*@ ens Exc @*)

13 = match raise () with

14 | _ -> (* Abandoned *)

15 | effect Exc k -> ()

Fig. 10. Encoding Exceptions.

II. Encoding Exceptions. Exceptions
are a special case of algebraic effects which
never resume, and Fig. 10 demonstrates
how our framework soundly reasons about
exceptions together with other kinds of
effects. Here raise() performs Exc first,
then does some other operations after-
wards, represented by performing effect
Other.

The handler on line 15 discharges Exc
and returns, leaving the continuation k
completely unused. Our fixpoint calculator
computes the final trace of excHandler as
simply Exc. We observe that the handler
defined in the normal return (line 14) will
be completely abandoned – because execu-
tion flow does not go back to raise() after
handling Exc. The verified postcondition of excHandler matches how we would
intuitively expect exceptions to work10.

7 Related Work

Verification Framework: This work is a significant extension of [20,25], which
deploys the verification framework, i.e., a forward verifier with a TRS. However,
the goal of this paper is to reason about algebraic effects, which are octagonal and
have different features from the sequential programs targeted in [20,25]. More
specifically, our proposal handles coexistence of zero/one/multi-shot continua-
tions; detects non-terminating behaviors; enforces static temporal properties of
algebraic effects. None of these challenges has been tackled before.

Temporal Verification: One of the leading communities of temporal verifica-
tion is automata-based model checking, mainly for finite-state systems. Various
model checkers are based on some temporal logic specifications, such as LTL and
CTL. Such tools extract the logic design from the program using modeling lan-
guages and verify specific assertions to guarantee various properties. Meanwhile,

10 In general, each procedure has a set of circumstances for which it will terminate
normally. An exception breaks the normal flow (these circumstances) of execution
and executes a pre-registered exception handler instead [24].

Automated Temporal Verification for Algebraic Effects 105

to conduct temporal reasoning locally and for higher-order program, there is a
sub-community whose aim is to support temporal specifications in the form of
effects via the type-and-effect system. The inspiration from this approach is that
it leads to a modular and compositional verification strategy, where temporal rea-
soning can be combined together to reason about the overall program [13,26,27].
However, the temporal effects in prior work tend to coarsely over-approximate
the behaviors either via ω-regular expressions [26] or Büchi automata [27]. The
conventional effects [13] have the form (Φu ,Φv), which separates the finite and
infinite effects. In this work, by integrating finite, infinite, and possibly both
into a single disjunctive form, our effects eliminate the finiteness distinction,
and enable an expressive modular temporal verification.

Type-and-effect Systems: Many languages with algebraic effects are
equipped with type-and-effect systems – which enrich existing types with infor-
mation about effects – to allow the effect-related behaviors of functions to be
specified and checked. A common method of doing this is row-polymorphic effect
types, used by languages such as Koka [6,28], Helium [29,30], Frank [31], and
Links [32]. An effect row specifies a multiset of effects a function may perform,
and is popular for its simplicity, expressiveness (naturally enabling effect poly-
morphism), and support for inference of principal effects [6]. There are numerous
extensions to this model, including presence types attached to effect labels, allow-
ing one to express the absence of an effect [32], existential and local effects for
modularity [29], and linearity [33]. Other choices include sets of (instances of)
effects [30], and structural subtyping constraints [34]. We consider finer-grained
specifications of program behavior outside the realm of effect systems and discuss
them separately.

Trace-based Effect Systems: Combining program events with a temporal
program logic for asserting properties of event traces yields a powerful and gen-
eral engine for enforcing program properties. Several works [35–37] have demon-
strated that static approximations of program event traces can be generated by
type and effect analyses [38,39], in a form amenable to existing model-checking
techniques for verification. Trace-based analyses have been shown capable of stat-
ically enforcing flow-sensitive security properties such as safe locking behavior
[40]; resource usage policies such as file usage protocols and memory management
[37]; and enforcement of secure service composition [41].

More related to our work, prior research has been extending Hoare logic
with event traces. Malecha et al. [42] focuses on finite traces (terminating) for
web applications, leaving the divergent computation, which indicates false, ver-
ified for every specification. Nakata et al. [43] focuses on infinite traces (non-
terminating) by providing coinductive trace definitions. Moreover, this paper
draws similarities to contextual effects [44], which computes the effects that have
already occurred as the prior effects. The effects of the computation yet to take
place as the future effects. Besides, prior work [45] proposes an annotated type
and effect system and infers behaviors from Concurrent ML [46] programs for

106 Y. Song et al.

channel-based communications, though it did not provide any inclusion solving
process.

8 Conclusion

This work is mainly motivated by how to modularly specify and verify programs
in the presence of both user-defined primitive effects and effect handlers.

To provide a practical proposal to verify such higher-order programs with
crucial temporal constraints, we present a novel effects logic, ContEffs, to specify
user-defined effects and effect handlers. This logic enjoys two key benefits that
enable modular reasoning: the placeholder operator and the disjunction of finite
and infinite traces. We demonstrate several small but non-trivial case studies to
show ContEffs’ feasibility. Our code and specification are particularly compact
and generic; furthermore, as far as we know, this is the first temporal specification
and proof of correctness of control inversion with the presence of algebraic effects.

Acknowledgement. We would like to thank the referees of APLAS 2022 for their
helpful advice. This work is supported by grants NSOE-TSS2019-06 and MoE Tier-1
251RES1822.

References

1. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Log.
Algebraic Methods Program. 84(1), 108–123 (2015). https://doi.org/10.1016/j.
jlamp.2014.02.001

2. Convent, L., Lindley, S., McBride, C., McLaughlin, C.: Doo bee doo bee doo. J.
Funct. Program. 30, e9 (2020). https://doi.org/10.1017/S0956796820000039

3. Hillerström, D., Lindley, S., Atkey, R.: Effect handlers via generalised
continuations. J. Funct. Program. 30, e5 (2020). https://doi.org/10.1017/
S0956796820000040

4. Sivaramakrishnan, K.C., Dolan, S., White, L., Kelly, T., Jaffer, S., Madhavapeddy,
A.: Retrofitting effect handlers onto OCaml. In: PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
Virtual Event, Canada, June 20–25, 2021, S. N. Freund and E. Yahav, Eds. ACM,
pp. 206–221 (2021). https://doi.org/10.1145/3453483.3454039

5. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effekt: capability-passing style for
type-and effect-safe, extensible effect handlers in scala. J. Funct. Programm. 30,
1–46 (2020)

6. Leijen, D.: Koka: programming with row polymorphic effect types. In: Pro-
ceedings 5th Workshop on Mathematically Structured Functional Programming,
MSFP@ETAPS 2014, Grenoble, France, 12 April 2014, ser. EPTCS, P. B. Levy
and N. Krishnaswami, Eds., vol. 153, pp. 100–126 (2014). https://doi.org/10.4204/
EPTCS.153.8

7. Landin, P.J.: A generalization of jumps and labels. Higher-Order Symbolic Com-
put. 11(2), 125–143 (1998). https://doi.org/10.1023/A:1010068630801

8. De Vilhena, P.E., Pottier, F.: A separation logic for effect handlers. Proc. ACM
Program. Lang. 5, 1–28 (2021). https://doi.org/10.1145/3434314

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1017/S0956796820000040
https://doi.org/10.1017/S0956796820000040
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.4204/EPTCS.153.8
https://doi.org/10.1023/A:1010068630801
https://doi.org/10.1145/3434314

Automated Temporal Verification for Algebraic Effects 107

9. Recursive cow. https://github.com/effect-handlers/effects-rosetta-stone/tree/
master/examples/recursive-cow

10. Hillerström, D., Lindley, S.: Shallow effect handlers. In: Ryu, S. (ed.) APLAS 2018.
LNCS, vol. 11275, pp. 415–435. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02768-1 22

11. Kammar, O., Lindley, S., Oury, N.: Handlers in action. ACM SIGPLAN Notices
48(9), 145–158 (2013)

12. Antimirov, V.: Rewriting regular inequalities. In: Reichel, H. (ed.) FCT 1995.
LNCS, vol. 965, pp. 116–125. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60249-6 44

13. Nanjo, Y., Unno, H., Koskinen, E., Terauchi, T.: A fixpoint logic and depen-
dent effects for temporal property verification. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, ACM, pp. 759–768 (2018)

14. Antimirov, V.M., Mosses, P.D.: Rewriting extended regular expressions.
Theor. Comput. Sci. 143(1), 51–72 (1995). https://doi.org/10.1016/0304-
3975(95)80024-4

15. Antimirov, V.: Partial derivatives of regular expressions and finite automata con-
structions. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp.
455–466. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0 96

16. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005). https://doi.org/10.1007/11554554 8

17. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C.B., Liu, Z.,
Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 291–305. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-75292-9 20

18. Zenodo. https://zenodo.org/record/7009799#.Yw-yyuxBwRS
19. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

20. Song, Y., Chin, W.-N.: Automated temporal verification of integrated dependent
effects. In: Lin, S.-W., Hou, Z., Mahony, B. (eds.) ICFEM 2020. LNCS, vol. 12531,
pp. 73–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63406-3 5

21. Almeida, M., Moreira, N., Reis, R.: Antimirov and Mosses’s rewrite system revis-
ited. Int. J. Found. Comput. Sci. 20(4), 669–684 (2009). https://doi.org/10.1142/
S0129054109006802

22. Keil, M., Thiemann, P.: Symbolic solving of extended regular expression inequali-
ties. In: 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15–17, 2014, New Delhi,
India, ser. LIPIcs, V. Raman and S. P. Suresh, Eds., vol. 29. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, pp. 175–186 (2014). https://doi.org/10.4230/
LIPIcs.FSTTCS.2014.175

23. Hovland, D.: The inclusion problem for regular expressions. J. Comput. Syst. Sci.
78(6), 1795–1813 (2012). https://doi.org/10.1016/j.jcss.2011.12.003

24. Exception WiKi. https://en.wikipedia.org/wiki/Exception handling
25. Song, Y., Chin, W.-N.: A synchronous effects logic for temporal verification of

pure esterel. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS,
vol. 12597, pp. 417–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-67067-2 19

https://github.com/effect-handlers/effects-rosetta-stone/tree/master/examples/recursive-cow
https://github.com/effect-handlers/effects-rosetta-stone/tree/master/examples/recursive-cow
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1007/3-540-60249-6_44
https://doi.org/10.1007/3-540-60249-6_44
https://doi.org/10.1016/0304-3975(95)80024-4
https://doi.org/10.1016/0304-3975(95)80024-4
https://doi.org/10.1007/3-540-59042-0_96
https://doi.org/10.1007/11554554_8
https://doi.org/10.1007/978-3-540-75292-9_20
https://zenodo.org/record/7009799#.Yw-yyuxBwRS
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-63406-3_5
https://doi.org/10.1142/S0129054109006802
https://doi.org/10.1142/S0129054109006802
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.175
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.175
https://doi.org/10.1016/j.jcss.2011.12.003
https://en.wikipedia.org/wiki/Exception_handling
https://doi.org/10.1007/978-3-030-67067-2_19
https://doi.org/10.1007/978-3-030-67067-2_19

108 Y. Song et al.

26. Hofmann, M., Chen, W.: Abstract interpretation from büchi automata. In: Pro-
ceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), p. 51. ACM (2014)

27. Koskinen, E., Terauchi, T.: Local temporal reasoning. In: Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), p. 59. ACM (2014)

28. Daan, L.: Type directed compilation of row-typed algebraic effects. In: Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
pp. 486–499 (2017)

29. Biernacki, D., Piróg, M., Polesiuk, P., Sieczkowski, F.: Abstracting algebraic effects.
In: Proceedings of the ACM on Programming Languages, vol. 3, no. POPL, pp.
1–28 (2019)

30. Dariusz, B., Maciej, P., Piotr, P., Filip, S.: Binders by day, labels by night: effect
instances via lexically scoped handlers. In: Proceedings of the ACM on Program-
ming Languages, vol. 4, no. POPL, pp. 1–29 (2019)

31. Lindley, S., McBride, C., McLaughlin, C.: Do be do be do. CoRR, vol.
abs/1611.09259, (2016). http://arxiv.org/abs/1611.09259

32. Lindley, S., Cheney, J.: Row-based effect types for database integration. In: Pro-
ceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and
Implementation, pp. 91–102 (2012)

33. Leijen, D.: Algebraic effect handlers with resources and deep finalization. Technical
Report MSR-TR-2018-10. Tech. Rep, Microsoft Research (2018)

34. Pretnar, M.: Inferring algebraic effects. arXiv preprint arXiv:1312.2334 (2013)
35. Skalka, C., Smith, S., Van Horn, D.: Types and trace effects of higher order pro-

grams. J. Funct. Programm. 18(2), 179–249 (2008)
36. Skalka, C., Smith, S.: History effects and verification. In: Chin, W.-N. (ed.) APLAS

2004. LNCS, vol. 3302, pp. 107–128. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30477-7 8

37. Marriott, K., Stuckey, P.J., Sulzmann, M.: Resource usage verification. In: Ohori,
A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 212–229. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40018-9 15

38. Talpin, J.-P., Jouvelot, P.: The type and effect discipline. Inf. Comput. 111(2),
245–296 (1994)

39. Amtoft, T., Nielson, H.R., Nielson, F.: Type and effect systems: behaviours for
concurrency. World Sci. (1999)

40. Foster, J.S., Terauchi, T., Aiken, A.: Flow-sensitive type qualifiers. In: Proceedings
of the ACM SIGPLAN 2002 Conference on Programming language design and
implementation, pp. 1–12 (2002)

41. Bartoletti, M., Degano, P., Ferrari, G.L.: Enforcing secure service composition.
In: 18th IEEE Computer Security Foundations Workshop (CSFW’05). IEEE, pp.
211–223 (2005)

42. Malecha, G., Morrisett, G., Wisnesky, R.: Trace-based verification of imperative
programs with i/o. J. Symbolic Comput. 46(2), 95–118 (2011)

43. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step
semantics of while. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 488–
506. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 26

http://arxiv.org/abs/1611.09259
http://arxiv.org/abs/1312.2334
https://doi.org/10.1007/978-3-540-30477-7_8
https://doi.org/10.1007/978-3-540-30477-7_8
https://doi.org/10.1007/978-3-540-40018-9_15
https://doi.org/10.1007/978-3-642-11957-6_26

Automated Temporal Verification for Algebraic Effects 109

44. Neamtiu, I., Hicks, M., Foster, J.S., Pratikakis, P.: Contextual effects for version-
consistent dynamic software updating and safe concurrent programming. In: Pro-
ceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 37–49 (2008)

45. Nielson, H.R., Amtoft, T., Nielson, F.: Behaviour analysis and safety conditions:
a case study in CML. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp.
255–269. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053595

46. Reppy, J.H.: Concurrent ML: design, application and semantics. In: Lauer, P.E.
(ed.) Functional Programming, Concurrency, Simulation and Automated Reason-
ing. LNCS, vol. 693, pp. 165–198. Springer, Heidelberg (1993). https://doi.org/10.
1007/3-540-56883-2 10

https://doi.org/10.1007/BFb0053595
https://doi.org/10.1007/3-540-56883-2_10
https://doi.org/10.1007/3-540-56883-2_10

	Automated Temporal Verification for Algebraic Effects
	1 Introduction
	2 Overview
	2.1 A Sense of ContEffs in File I/O
	2.2 Effects Inferences via a Fixpoint Calculation
	2.3 The TRS: To Prove Effects Inclusions

	3 Language and Specifications
	3.1 The Target Language
	3.2 The Specification Language
	3.3 Instrumented Semantics

	4 Forward Verification
	4.1 Forward Verification Rules
	4.2 Fixpoint Computation
	4.3 Reasoning in the Handling Program

	5 Temporal Verification via a TRS
	5.1 Rewriting Rules

	6 Implementation and Evaluation
	6.1 Case Studies

	7 Related Work
	8 Conclusion
	References

